Science.gov

Sample records for glacial trees recovered

  1. Carbon starvation in glacial trees recovered from the La Brea tar pits, southern California.

    PubMed

    Ward, Joy K; Harris, John M; Cerling, Thure E; Wiedenhoeft, Alex; Lott, Michael J; Dearing, Maria-Denise; Coltrain, Joan B; Ehleringer, James R

    2005-01-18

    The Rancho La Brea tar pit fossil collection includes Juniperus (C3) wood specimens that 14C date between 7.7 and 55 thousand years (kyr) B.P., providing a constrained record of plant response for southern California during the last glacial period. Atmospheric CO2 concentration ([CO2]) ranged between 180 and 220 ppm during glacial periods, rose to approximately 280 ppm before the industrial period, and is currently approaching 380 ppm in the modern atmosphere. Here we report on delta13C of Juniperus wood cellulose, and show that glacial and modern trees were operating at similar leaf-intercellular [CO2](ci)/atmospheric [CO2](ca) values. As a result, glacial trees were operating at ci values much closer to the CO2-compensation point for C3 photosynthesis than modern trees, indicating that glacial trees were undergoing carbon starvation. In addition, we modeled relative humidity by using delta18O of cellulose from the same Juniperus specimens and found that glacial humidity was approximately 10% higher than that in modern times, indicating that differences in vapor-pressure deficits did not impose additional constrictions on ci/ca in the past. By scaling ancient ci values to plant growth by using modern relationships, we found evidence that C3 primary productivity was greatly diminished in southern California during the last glacial period.

  2. Interannual physiological responses of glacial trees to changes in atmospheric [CO2] since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Gerhart, L. M.; Harris, J. M.; Ward, J. K.

    2009-12-01

    During the Last Glacial Maximum, atmospheric [CO2] were as low as 180 ppm and have currently risen to a modern value of 385 ppm as a result of fossil fuel combustion and deforestation. In order to understand how changing [CO2] influenced the physiology of trees over the last 50,000 years, we analyzed carbon isotope ratios of individual tree rings from juniper wood specimens from the Rancho La Brea tar pits in southern California and kauri wood specimens from peat bogs in New Zealand (North Island). Modern trees from different altitudes were compared to account for changes in precipitation and temperature through time in order to isolate the effects of changing [CO2]. We hypothesized that over the last 50,000 years, the ratio of ci (intracellular [CO2]) to ca (atmospheric [CO2]) would be maintained within each species. Consequently, ci values would be significantly lower in glacial trees due to lower ca levels during the LGM. In addition, we hypothesized that low [CO2] (which does not vary between years during the LGM) dominated tree physiology during the LGM as evidenced by low levels of inter-annual variation in ci/ca ratios relative to modern trees (which are known to respond to high frequency variation in water and temperature between years). In both kauri and juniper trees, mean ci/ca values remained constant throughout 50,000 years despite major climatic and [CO2] changes, indicating that there is a long-term physiological set point in these species. Limitations on the ci values of glacial junipers suggest that 90 ppm CO2 represents a survival compensation point for this species. In addition, glacial trees showed very low inter-annual variation in ci/ca values compared to modern trees. This suggests that glacial tree physiology may have been dominated by low CO2 that was constant between years, whereas modern trees may be dominated by climatic factors that vary substantially between years. Consequently, while each species maintained mean ci/ca values over time

  3. Glacial refugia and modern genetic diversity of 22 western North American tree species.

    PubMed

    Roberts, David R; Hamann, Andreas

    2015-04-01

    North American tree species, subspecies and genetic varieties have primarily evolved in a landscape of extensive continental ice and restricted temperate climate environments. Here, we reconstruct the refugial history of western North American trees since the last glacial maximum using species distribution models, validated against 3571 palaeoecological records. We investigate how modern subspecies structure and genetic diversity corresponds to modelled glacial refugia, based on a meta-analysis of allelic richness and expected heterozygosity for 473 populations of 22 tree species. We find that species with strong genetic differentiation into subspecies had widespread and large glacial refugia, whereas species with restricted refugia show no differentiation among populations and little genetic diversity, despite being common over a wide range of environments today. In addition, a strong relationship between allelic richness and the size of modelled glacial refugia (r(2) = 0.55) suggest that population bottlenecks during glacial periods had a pronounced effect on the presence of rare alleles. PMID:25761711

  4. Glacial refugia and modern genetic diversity of 22 western North American tree species

    PubMed Central

    Roberts, David R.; Hamann, Andreas

    2015-01-01

    North American tree species, subspecies and genetic varieties have primarily evolved in a landscape of extensive continental ice and restricted temperate climate environments. Here, we reconstruct the refugial history of western North American trees since the last glacial maximum using species distribution models, validated against 3571 palaeoecological records. We investigate how modern subspecies structure and genetic diversity corresponds to modelled glacial refugia, based on a meta-analysis of allelic richness and expected heterozygosity for 473 populations of 22 tree species. We find that species with strong genetic differentiation into subspecies had widespread and large glacial refugia, whereas species with restricted refugia show no differentiation among populations and little genetic diversity, despite being common over a wide range of environments today. In addition, a strong relationship between allelic richness and the size of modelled glacial refugia (r2 = 0.55) suggest that population bottlenecks during glacial periods had a pronounced effect on the presence of rare alleles. PMID:25761711

  5. Glacial survival of boreal trees in northern Scandinavia.

    PubMed

    Parducci, Laura; Jørgensen, Tina; Tollefsrud, Mari Mette; Elverland, Ellen; Alm, Torbjørn; Fontana, Sonia L; Bennett, K D; Haile, James; Matetovici, Irina; Suyama, Yoshihisa; Edwards, Mary E; Andersen, Kenneth; Rasmussen, Morten; Boessenkool, Sanne; Coissac, Eric; Brochmann, Christian; Taberlet, Pierre; Houmark-Nielsen, Michael; Larsen, Nicolaj Krog; Orlando, Ludovic; Gilbert, M Thomas P; Kjær, Kurt H; Alsos, Inger Greve; Willerslev, Eske

    2012-03-01

    It is commonly believed that trees were absent in Scandinavia during the last glaciation and first recolonized the Scandinavian Peninsula with the retreat of its ice sheet some 9000 years ago. Here, we show the presence of a rare mitochondrial DNA haplotype of spruce that appears unique to Scandinavia and with its highest frequency to the west-an area believed to sustain ice-free refugia during most of the last ice age. We further show the survival of DNA from this haplotype in lake sediments and pollen of Trøndelag in central Norway dating back ~10,300 years and chloroplast DNA of pine and spruce in lake sediments adjacent to the ice-free Andøya refugium in northwestern Norway as early as ~22,000 and 17,700 years ago, respectively. Our findings imply that conifer trees survived in ice-free refugia of Scandinavia during the last glaciation, challenging current views on survival and spread of trees as a response to climate changes.

  6. The RECAP ice core - recovering a full Glacial record from Eastern Greenland

    NASA Astrophysics Data System (ADS)

    Vinther, Bo

    2016-04-01

    During May-June 2015 the 584m an international team drilled the RECAP (REnland ice CAp Project) ice core to bedrock on the Renland ice cap in Eastern Greenland. The exact drill site selection was determined from a detailed radio echo sounding (RES) grid, that had been measured from the ice cap surface right before drilling operations began. The RES data suggested that the ice cap internal layers are horizontal almost right down to the bed at the selected site, and that ice from the Glacial period was present some 30-50m above bedrock. The RES results have now been confirmed by measurements on the RECAP core that shows the entire Glacial being nicely preserved in the 20m section indicated by the RES measurements. The RECAP core thus yields the first undisturbed ice core record from Eastern Greenland covering the last Glacial, a marked improvement compared to the landmark 1988 Renland ice core that was disturbed by ice flow features both during the mid-Holocene and especially during Marine Isotope Stages 4 and 5.

  7. Multiple glacial refugia for cool-temperate deciduous trees in northern East Asia: the Mongolian oak as a case study.

    PubMed

    Zeng, Yan-Fei; Wang, Wen-Ting; Liao, Wan-Jin; Wang, Hong-Fang; Zhang, Da-Yong

    2015-11-01

    In East Asia, temperate forests are predicted to have retracted southward to c. 30° N during the last glacial maximum (LGM) based on fossil pollen data, whereas phylogeographic studies have often suggested glacial in situ survival of cool-temperate deciduous trees in their modern northern ranges. Here we report a study of the genetic diversity and structure of 29 natural Mongolian oak (Quercus mongolica) populations using 19 nuclear simple sequence repeat (nSSR) loci and four chloroplast DNA fragments. Bayesian clustering analysis with nSSRs revealed five groups, which were inferred by approximate Bayesian computation (ABC) to have diverged in multiple refugia through multiple glacial-interglacial cycles. Analysis of chloroplast DNA variation revealed four lineages that were largely but incompletely geographically disjunct. Ecological niche modelling (ENMs) indicated a southward range shift of the oak's distribution at the LGM, although high suitability scores were also evident in the Changbai Mts. (Northeast China), the Korean Peninsula, areas surrounding the Bohai Sea, and along the coast of the Russian Far East. In addition, endemic chloroplast DNA haplotypes and nuclear lineages occurred in high-latitude northern areas where the ENM predicted no suitable habitat. The combined evidence from nuclear and chloroplast DNA, and the results of the ENM clearly demonstrate that multiple northern refugia, including cryptic ones, were maintained across the current distributional range of the Mongolian oak during the LGM or earlier glacial periods. Though spatially limited, postglacial expansions from these refugia have led to a pattern of decreased genetic diversity with increasing latitude. PMID:26439083

  8. Multiple glacial refugia for cool-temperate deciduous trees in northern East Asia: the Mongolian oak as a case study.

    PubMed

    Zeng, Yan-Fei; Wang, Wen-Ting; Liao, Wan-Jin; Wang, Hong-Fang; Zhang, Da-Yong

    2015-11-01

    In East Asia, temperate forests are predicted to have retracted southward to c. 30° N during the last glacial maximum (LGM) based on fossil pollen data, whereas phylogeographic studies have often suggested glacial in situ survival of cool-temperate deciduous trees in their modern northern ranges. Here we report a study of the genetic diversity and structure of 29 natural Mongolian oak (Quercus mongolica) populations using 19 nuclear simple sequence repeat (nSSR) loci and four chloroplast DNA fragments. Bayesian clustering analysis with nSSRs revealed five groups, which were inferred by approximate Bayesian computation (ABC) to have diverged in multiple refugia through multiple glacial-interglacial cycles. Analysis of chloroplast DNA variation revealed four lineages that were largely but incompletely geographically disjunct. Ecological niche modelling (ENMs) indicated a southward range shift of the oak's distribution at the LGM, although high suitability scores were also evident in the Changbai Mts. (Northeast China), the Korean Peninsula, areas surrounding the Bohai Sea, and along the coast of the Russian Far East. In addition, endemic chloroplast DNA haplotypes and nuclear lineages occurred in high-latitude northern areas where the ENM predicted no suitable habitat. The combined evidence from nuclear and chloroplast DNA, and the results of the ENM clearly demonstrate that multiple northern refugia, including cryptic ones, were maintained across the current distributional range of the Mongolian oak during the LGM or earlier glacial periods. Though spatially limited, postglacial expansions from these refugia have led to a pattern of decreased genetic diversity with increasing latitude.

  9. Phylogenetic assemblage structure of North American trees is more strongly shaped by glacial-interglacial climate variability in gymnosperms than in angiosperms.

    PubMed

    Ma, Ziyu; Sandel, Brody; Svenning, Jens-Christian

    2016-05-01

    How fast does biodiversity respond to climate change? The relationship of past and current climate with phylogenetic assemblage structure helps us to understand this question. Studies of angiosperm tree diversity in North America have already suggested effects of current water-energy balance and tropical niche conservatism. However, the role of glacial-interglacial climate variability remains to be determined, and little is known about any of these relationships for gymnosperms. Moreover, phylogenetic endemism, the concentration of unique lineages in restricted ranges, may also be related to glacial-interglacial climate variability and needs more attention. We used a refined phylogeny of both angiosperms and gymnosperms to map phylogenetic diversity, clustering and endemism of North American trees in 100-km grid cells, and climate change velocity since Last Glacial Maximum together with postglacial accessibility to recolonization to quantify glacial-interglacial climate variability. We found: (1) Current climate is the dominant factor explaining the overall patterns, with more clustered angiosperm assemblages toward lower temperature, consistent with tropical niche conservatism. (2) Long-term climate stability is associated with higher angiosperm endemism, while higher postglacial accessibility is linked to to more phylogenetic clustering and endemism in gymnosperms. (3) Factors linked to glacial-interglacial climate change have stronger effects on gymnosperms than on angiosperms. These results suggest that paleoclimate legacies supplement current climate in shaping phylogenetic patterns in North American trees, and especially so for gymnosperms.

  10. Recovering evolutionary trees under a more realistic model of sequence evolution.

    PubMed

    Lockhart, P J; Steel, M A; Hendy, M D; Penny, D

    1994-07-01

    We report a new transformation, the LogDet, that is consistent for sequences with differing nucleotide composition and that have arisen under simple but asymmetric stochastic models of evolution. This transformation is required because existing methods tend to group sequences on the basis of their nucleotide composition, irrespective of their evolutionary history. This effect of differing nucleotide frequencies is illustrated by using a tree-selection criterion on a simple distance measure defined solely on the basis of base composition, independent of the actual sequences. The new LogDet transformation uses determinants of the observed divergence matrices and works because multiplication of determinants (real numbers) is commutative, whereas multiplication of matrices is not,except in special symmetric cases. The use of determinants thus allows more general models of evolution with a symmetric rates of nucleotide change. The transformation is illustrated on a theoretical data set (where existing methods select the wrong tree) and with three biological data sets: chloroplasts, birds/mammals (nuclear), and honeybees ( mitochondrial ) . The LogDet transformation reinforces the logical distinction between transformations on the data and tree-selection criteria. The overall conclusions from this study are that irregular A,C,G,T compositions are an important and possible general cause of patterns that can mislead tree-reconstruction methods, even when high bootstrap values are obtained. Consequently, many published studies may need to be reexamined. PMID:19391266

  11. Tree species for recovering nitrogen from dairy-farm effluent in New Zealand.

    PubMed

    Roygard, J K; Clothier, B E; Green, S R; Bolan, N S

    2001-01-01

    Land treatment of dairy-farm effluent is being widely adopted as an alternative to disposal into surface waters in New Zealand. This study investigated water balances and associated N leaching from short-rotation forest (SRF) species irrigated with dairy-farm effluent. Single trees were grown in lysimeters filled with Manawatu fine sandy loam (mixed mesic Dystric Eutrochrept). Dairy-farm effluent was applied during two irrigation periods at 21.5 mm wk(-1) with a total loading equivalent to 870 kg N ha(-1) occurring over 17 mo. Following tree harvest in April 1997, measurements continued until August 1997 to monitor tree reestablishment. Cumulative N leached did not differ between lysimeters in which evergreen Sydney blue gum (Eucalyptus saligna Sm.) and shining gum [Eucalyptus nitens (H. Deane & Maiden) Maiden] and deciduous kinu-yanagi (Salix kinuyanagi Kimura) were grown. Leachate N concentrations of all treatments were on average higher than the New Zealand drinking water standard of 11.3 mg N L(-1). The E. nitens and S. kinuyanagi treatments leached 33 and 35 kg N ha(-1) yr(-1) in 1996 following application of 236 kg N ha(-1) during the first irrigation season. Leaf area was strongly correlated to evapotranspiration, drainage volume, and nitrogen leached. The majority of leaching in the tree treatments occurred after harvest. Reducing the leaching in the regrowth phase may be achieved through timing harvest in the spring when growth rates are higher and leaching potential is lower. Based on N uptake rates observed in this study and average pond discharge, a plantation of 5.4 ha would be required for N recovery on a typical dairy farm in New Zealand. PMID:11401254

  12. Tree species for recovering nitrogen from dairy-farm effluent in New Zealand.

    PubMed

    Roygard, J K; Clothier, B E; Green, S R; Bolan, N S

    2001-01-01

    Land treatment of dairy-farm effluent is being widely adopted as an alternative to disposal into surface waters in New Zealand. This study investigated water balances and associated N leaching from short-rotation forest (SRF) species irrigated with dairy-farm effluent. Single trees were grown in lysimeters filled with Manawatu fine sandy loam (mixed mesic Dystric Eutrochrept). Dairy-farm effluent was applied during two irrigation periods at 21.5 mm wk(-1) with a total loading equivalent to 870 kg N ha(-1) occurring over 17 mo. Following tree harvest in April 1997, measurements continued until August 1997 to monitor tree reestablishment. Cumulative N leached did not differ between lysimeters in which evergreen Sydney blue gum (Eucalyptus saligna Sm.) and shining gum [Eucalyptus nitens (H. Deane & Maiden) Maiden] and deciduous kinu-yanagi (Salix kinuyanagi Kimura) were grown. Leachate N concentrations of all treatments were on average higher than the New Zealand drinking water standard of 11.3 mg N L(-1). The E. nitens and S. kinuyanagi treatments leached 33 and 35 kg N ha(-1) yr(-1) in 1996 following application of 236 kg N ha(-1) during the first irrigation season. Leaf area was strongly correlated to evapotranspiration, drainage volume, and nitrogen leached. The majority of leaching in the tree treatments occurred after harvest. Reducing the leaching in the regrowth phase may be achieved through timing harvest in the spring when growth rates are higher and leaching potential is lower. Based on N uptake rates observed in this study and average pond discharge, a plantation of 5.4 ha would be required for N recovery on a typical dairy farm in New Zealand.

  13. Recovering more than tree cover: herbivores and herbivory in a restored tropical dry forest.

    PubMed

    Juan-Baeza, Iris; Martínez-Garza, Cristina; Del-Val, Ek

    2015-01-01

    Intense and chronic disturbance may arrest natural succession, reduce environmental quality and lead to ecological interaction losses. Where natural succession does not occur, ecological restoration aims to accelerate this process. While plant establishment and diversity is promoted by restoration, few studies have evaluated the effect of restoration activities on ecological processes and animal diversity. This study assessed herbivory and lepidopteran diversity associated with two pioneer tree species growing in 4-year-old experimental restoration plots in a tropical dry forest at Sierra de Huautla, in Morelos, Mexico. The study was carried out during the rainy season of 2010 (July-October) in eleven 50 x 50 m plots in three different habitats: cattle-excluded, cattle-excluded with restoration plantings, and cattle grazing plots. At the beginning of the rainy season, 10 juveniles of Heliocarpus pallidus (Malvaceae) and Ipomoea pauciflora (Convolvulaceae) were selected in each plot (N = 110 trees). Herbivory was measured in 10 leaves per plant at the end of the rainy season. To evaluate richness and abundance of lepidopteran larvae, all plants were surveyed monthly. Herbivory was similar among habitats and I. pauciflora showed a higher percentage of herbivory. A total of 868 lepidopteran larvae from 65 morphospecies were recorded. The family with the highest number of morphospecies (9 sp.) was Geometridae, while the most abundant family was Saturnidae, with 427 individuals. Lepidopteran richness and abundance were significantly higher in H. pallidus than in I. pauciflora. Lepidopteran richness was significantly higher in the cattle-excluded plots, while abundance was significantly higher in the non-excluded plots. After four years of cattle exclusion and the establishment of plantings, lepidopteran richness increased 20 -fold in the excluded plots compared to the disturbed areas, whereas herbivory levels were equally high in both restored and disturbed sites

  14. Recovering More than Tree Cover: Herbivores and Herbivory in a Restored Tropical Dry Forest

    PubMed Central

    2015-01-01

    Intense and chronic disturbance may arrest natural succession, reduce environmental quality and lead to ecological interaction losses. Where natural succession does not occur, ecological restoration aims to accelerate this process. While plant establishment and diversity is promoted by restoration, few studies have evaluated the effect of restoration activities on ecological processes and animal diversity. This study assessed herbivory and lepidopteran diversity associated with two pioneer tree species growing in 4-year-old experimental restoration plots in a tropical dry forest at Sierra de Huautla, in Morelos, Mexico. The study was carried out during the rainy season of 2010 (July-October) in eleven 50 x 50 m plots in three different habitats: cattle-excluded, cattle-excluded with restoration plantings, and cattle grazing plots. At the beginning of the rainy season, 10 juveniles of Heliocarpus pallidus (Malvaceae) and Ipomoea pauciflora (Convolvulaceae) were selected in each plot (N = 110 trees). Herbivory was measured in 10 leaves per plant at the end of the rainy season. To evaluate richness and abundance of lepidopteran larvae, all plants were surveyed monthly. Herbivory was similar among habitats and I. pauciflora showed a higher percentage of herbivory. A total of 868 lepidopteran larvae from 65 morphospecies were recorded. The family with the highest number of morphospecies (9 sp.) was Geometridae, while the most abundant family was Saturnidae, with 427 individuals. Lepidopteran richness and abundance were significantly higher in H. pallidus than in I. pauciflora. Lepidopteran richness was significantly higher in the cattle-excluded plots, while abundance was significantly higher in the non-excluded plots. After four years of cattle exclusion and the establishment of plantings, lepidopteran richness increased 20 –fold in the excluded plots compared to the disturbed areas, whereas herbivory levels were equally high in both restored and disturbed sites

  15. Recovering more than tree cover: herbivores and herbivory in a restored tropical dry forest.

    PubMed

    Juan-Baeza, Iris; Martínez-Garza, Cristina; Del-Val, Ek

    2015-01-01

    Intense and chronic disturbance may arrest natural succession, reduce environmental quality and lead to ecological interaction losses. Where natural succession does not occur, ecological restoration aims to accelerate this process. While plant establishment and diversity is promoted by restoration, few studies have evaluated the effect of restoration activities on ecological processes and animal diversity. This study assessed herbivory and lepidopteran diversity associated with two pioneer tree species growing in 4-year-old experimental restoration plots in a tropical dry forest at Sierra de Huautla, in Morelos, Mexico. The study was carried out during the rainy season of 2010 (July-October) in eleven 50 x 50 m plots in three different habitats: cattle-excluded, cattle-excluded with restoration plantings, and cattle grazing plots. At the beginning of the rainy season, 10 juveniles of Heliocarpus pallidus (Malvaceae) and Ipomoea pauciflora (Convolvulaceae) were selected in each plot (N = 110 trees). Herbivory was measured in 10 leaves per plant at the end of the rainy season. To evaluate richness and abundance of lepidopteran larvae, all plants were surveyed monthly. Herbivory was similar among habitats and I. pauciflora showed a higher percentage of herbivory. A total of 868 lepidopteran larvae from 65 morphospecies were recorded. The family with the highest number of morphospecies (9 sp.) was Geometridae, while the most abundant family was Saturnidae, with 427 individuals. Lepidopteran richness and abundance were significantly higher in H. pallidus than in I. pauciflora. Lepidopteran richness was significantly higher in the cattle-excluded plots, while abundance was significantly higher in the non-excluded plots. After four years of cattle exclusion and the establishment of plantings, lepidopteran richness increased 20 -fold in the excluded plots compared to the disturbed areas, whereas herbivory levels were equally high in both restored and disturbed sites

  16. Will the US economy recover in 2010? A minimal spanning tree study

    NASA Astrophysics Data System (ADS)

    Zhang, Yiting; Lee, Gladys Hui Ting; Wong, Jian Cheng; Kok, Jun Liang; Prusty, Manamohan; Cheong, Siew Ann

    2011-06-01

    We calculated the cross correlations between the half-hourly times series of the ten Dow Jones US economic sectors over the period February 2000 to August 2008, the two-year intervals 2002-2003, 2004-2005, 2008-2009, and also over 11 segments within the present financial crisis, to construct minimal spanning trees (MSTs) of the US economy at the sector level. In all MSTs, a core-fringe structure is found, with consumer goods, consumer services, and the industrials consistently making up the core, and basic materials, oil & gas, healthcare, telecommunications, and utilities residing predominantly on the fringe. More importantly, we find that the MSTs can be classified into two distinct, statistically robust, topologies: (i) star-like, with the industrials at the center, associated with low-volatility economic growth; and (ii) chain-like, associated with high-volatility economic crisis. Finally, we present statistical evidence, based on the emergence of a star-like MST in Sep 2009, and the MST staying robustly star-like throughout the Greek Debt Crisis, that the US economy is on track to a recovery.

  17. Vegetation dynamics during the Last Interglacial-Glacial cycle in the Arno coastal plain (Tuscany, western Italy): location of a new tree refuge

    NASA Astrophysics Data System (ADS)

    Lucchi, M. Ricci

    2008-12-01

    Pollen analysis of the pre-Last Glacial Maximum succession of a 105 m-long continuous core from Tirrenia (Tuscany) provides evidence for the existence of an area of relatively high ecological stability where the effects of climate change were mitigated. The chronological framework of the vegetation record, spanning the Last Interglacial-Glacial cycle, was established by (i) AMS 14C dating, (ii) correlation with well-dated pollen sequences, and (iii) local stratigraphical constraints. A high lithological and sedimentological variability, with facies associations changing from fluvial to alluvial and coastal plain, enhances the palaeoenvironmental control on pollen distribution, thus helping to discriminate the impact of local factors on vegetation history. The most remarkable evidence, however, is represented by the continuous record of temperate trees throughout the whole glacial period, which provides useful indications on the location and nature of cold stage refugia. Most of the vegetation changes recorded in the core can be compared to the vegetation history of the Last Interglacial-Glacial cycle from southern Europe as a whole. In addition, local geographic and environmental features account for a more complex and varied floristic composition. Only the last phase of the Penultimate Glacial (MIS6), which was characterized by the diffusion of an arid steppe tundra, is recorded at the base of the core. The subsequent Last Interglacial (MIS5e) interval shows a poor and scattered pollen content due to the instability of the sedimentary environment. Nevertheless, it provides evidence of both global and local controls on vegetation dynamics, as indicated by the initial expansion of thermophilous forests and the remarkably late diffusion of conifers ( Pinus-Abies-Picea forests), respectively. Similarly, the transition to the Last Glacial (MIS5b and 5a in the core) is characterized by a reduced vegetation response to the typical stadial/interstadial climate variability

  18. A glacial chronology for post Little Ice Age glacier changes based on proglacial geomorphology, tree rings, OSL- and 14C-dating at Mt. Pulongu, southeastern Tibet

    NASA Astrophysics Data System (ADS)

    Loibl, David; Hochreuther, Philipp; Hülle, Daniela; Zhu, Haifeng; Lehmkuhl, Frank

    2014-05-01

    The remote eastern Nyainqêntanglha Range contains numerous temperate monsoonal glaciers which are highly sensitive to climate change. However, there is still a great lack of information on late Holocene glacier fluctuations and the factors driving these changes. We conducted field work at two large debris covered glaciers on the northern and southern slopes of Mt. Pulongu (~6,300 m a.s.l.). Detailed geomorphological mapping of the proglacial settings revealed similar patterns of two major and three minor/recessional glacial advances. At the northern glacier, tree ring dating for the moraines of the two major advances resulted in minimum ages of ~1670 AD and ~1745 AD, respectively. These Little Ice Age (LIA) ages are supported by geochemical measurements on glacial and glacio-fluvial sediments from these settings showing almost no signs of chemical weathering. Further evidence, including 14C-age and depositional characteristics of a buried tree, and moraine topography, suggest that the second advance was stronger but was hampered by a dead ice relict of the previous advance. At the northern glacier, this obstacle led to an ice tailback and subsequently to lateral moraine oversteepening and breaching, resulting in a large lateral glacier lobe. At the southern glacier, the valley is narrower and hence did not allow the formation of a lateral glacier lobe. However, the proglacial setting, i.e. pronounced push moraines, suggests a similar sequence of events. Furthermore, both settings contain two moraine-dammed lakes in similar positions. A combination of OSL-dating, tree ring based reconstruction of the local climate, and constraints from the proglacial geomorphological setting enabled the inclusion of the 3 minor moraine stages into the glacial chronology. This multiproxy-approach resulted in a well-established morphochronology with multiple direct and indirect dates that allow the reconstruction of the glacial fluctuations at Mt. Pulongu since the LIA. A regional

  19. Extending glacial refugia for a European tree: genetic markers show that Iberian populations of white elm are native relicts and not introductions

    PubMed Central

    Fuentes-Utrilla, P; Venturas, M; Hollingsworth, P M; Squirrell, J; Collada, C; Stone, G N; Gil, L

    2014-01-01

    Conservation policies usually focus on in situ protection of native populations, a priority that requires accurate assessment of population status. Distinction between native and introduced status can be particularly difficult (and at the same time, is most important) for species whose natural habitat has become both rare and highly fragmented. Here, we address the status of the white elm (Ulmus laevis Pallas), a European riparian tree species whose populations have been fragmented by human activity and is protected wherever it is considered native. Small populations of this species are located in Iberia, where they are unprotected because they are considered introductions due to their rarity. However, Iberia and neighbouring regions in southwestern France have been shown to support discrete glacial refuge populations of many European trees, and the possibility remains that Iberian white elms are native relicts. We used chloroplast RFLPs and nuclear microsatellites to establish the relationship between populations in Iberia and the Central European core distribution. Bayesian approaches revealed significant spatial structure across populations. Those in Iberia and southwestern France shared alleles absent from Central Europe, and showed spatial population structure within Iberia common in recognized native taxa. Iberian populations show a demographic signature of ancient population bottlenecks, while those in Central European show a signature of recent population bottlenecks. These patterns are not consistent with historical introduction of white elm to Iberia, and instead strongly support native status, arguing for immediate implementation of conservation measures for white elm populations in Spain and contiguous areas of southern France. PMID:24022495

  20. Genetic and palaeo-climatic evidence for widespread persistence of the coastal tree species Eucalyptus gomphocephala (Myrtaceae) during the Last Glacial Maximum

    PubMed Central

    Nevill, Paul G.; Bradbury, Donna; Williams, Anna; Tomlinson, Sean; Krauss, Siegfried L.

    2014-01-01

    Background and Aims Few phylogeographic studies have been undertaken of species confined to narrow, linear coastal systems where past sea level and geomorphological changes may have had a profound effect on species population sizes and distributions. In this study, a phylogeographic analysis was conducted of Eucalyptus gomphocephala (tuart), a tree species restricted to a 400 × 10 km band of coastal sand-plain in south west Australia. Here, there is little known about the response of coastal vegetation to glacial/interglacial climate change, and a test was made as to whether this species was likely to have persisted widely through the Last Glacial Maximum (LGM), or conforms to a post-LGM dispersal model of recovery from few refugia. Methods The genetic structure over the entire range of tuart was assessed using seven nuclear (21 populations; n = 595) and four chloroplast (24 populations; n = 238) microsatellite markers designed for eucalypt species. Correlative palaeodistribution modelling was also conducted based on five climatic variables, within two LGM models. Key Results The chloroplast markers generated six haplotypes, which were strongly geographically structured (GST = 0·86 and RST = 0·75). Nuclear microsatellite diversity was high (overall mean HE 0·75) and uniformly distributed (FST = 0·05), with a strong pattern of isolation by distance (r2 = 0·362, P = 0·001). Distribution models of E. gomphocephala during the LGM showed a wide distribution that extended at least 30 km westward from the current distribution to the palaeo-coastline. Conclusions The chloroplast and nuclear data suggest wide persistence of E. gomphocephala during the LGM. Palaeodistribution modelling supports the conclusions drawn from genetic data and indicates a widespread westward shift of E. gomphocephala onto the exposed continental shelf during the LGM. This study highlights the importance of the inclusion of complementary, non-genetic data (information on geomorphology and

  1. A comparison of climate simulations for the last glacial maximum with three different versions of the ECHAM model and implications for summer-green tree refugia

    NASA Astrophysics Data System (ADS)

    Arpe, K.; Leroy, S. A. G.; Mikolajewicz, U.

    2011-02-01

    Model simulations of the last glacial maximum (21 ± 2 ka) with the ECHAM3 T42 atmosphere-only, ECHAM5-MPIOM T31 atmosphere-ocean coupled and ECHAM5 T106 atmosphere-only models are compared. The topography, land-sea mask and glacier distribution for the ECHAM5 simulations were taken from the Paleoclimate Modelling Intercomparison Project Phase II (PMIP2) data set while for ECHAM3 they were taken from PMIP1. The ECHAM5-MPIOM T31 model produced its own sea surface temperatures (SST) while the ECHAM5 T106 simulations were forced at the boundaries by this coupled model SSTs corrected from their present-day biases and the ECHAM3 T42 model was forced with prescribed SSTs provided by Climate/Long-Range Investigation, Mapping, and Prediction project (CLIMAP). The SSTs in the ECHAM5-MPIOM simulation for the last glacial maximum (LGM) were much warmer in the northern Atlantic than those suggested by CLIMAP or Overview of Glacial Atlantic Ocean Mapping (GLAMAP) while the SSTs were cooler everywhere else. This had a clear effect on the temperatures over Europe, warmer for winters in western Europe and cooler for eastern Europe than the simulation with CLIMAP SSTs. Considerable differences in the general circulation patterns were found in the different simulations. A ridge over western Europe for the present climate during winter in the 500 hPa height field remains in both ECHAM5 simulations for the LGM, more so in the T106 version, while the ECHAM3 CLIMAP-SST simulation provided a trough which is consistent with cooler temperatures over western Europe. The zonal wind between 30° W and 10° E shows a southward shift of the polar and subtropical jets in the simulations for the LGM, least obvious in the ECHAM5 T31 one, and an extremely strong polar jet for the ECHAM3 CLIMAP-SST run. The latter can probably be assigned to the much stronger north-south gradient in the CLIMAP SSTs. The southward shift of the polar jet during the LGM is supported by palaeo-data. Cyclone tracks in

  2. Trees

    ERIC Educational Resources Information Center

    Al-Khaja, Nawal

    2007-01-01

    This is a thematic lesson plan for young learners about palm trees and the importance of taking care of them. The two part lesson teaches listening, reading and speaking skills. The lesson includes parts of a tree; the modal auxiliary, can; dialogues and a role play activity.

  3. The last glacial maximum locations of summer-green tree refugia using simulations with ECHAM3 T42 uncoupled, ECHAM5 T31 coupled and ECHAM5 T106 uncoupled models

    NASA Astrophysics Data System (ADS)

    Arpe, K.; Leroy, S. A. G.; Mikolajewicz, U.

    2010-04-01

    Model simulations of the last glacial maximum (21±2 ka) with the ECHAM3 T42, ECHAM5 T31 coupled and ECHAM5 T106 uncoupled models are compared. The ECHAM5 T106 simulations were forced at the boundaries by results from the coupled ECHAM5-MPIOM atmosphere ocean model while the ECHAM3 T42 model was forced with prescribed sea surface temperatures (SSTs) provided by Climate/Long-Range Investigation, Mapping Prediction project (CLIMAP). The topography, land-sea mask and glacier distribution for the ECHAM5 simulations were taken from the PMIP2 data set while for ECHAM3 they were taken from PMIP1. The ECHAM5 simulations were run with a variable SST in time simulated by the coupled model. These were also used for the T106 run but corrected for systematic errors. The SSTs in the ECHAM5-MPIOM simulations for the last glacial maximum (LGM) were much warmer in the northern Atlantic than those suggested by CLIMAP or GLAMAP while they were cooler everywhere else. This had a clear effect on the temperatures over Europe, warmer for winters in Western Europe and cooler for Eastern Europe than the simulation with CLIMAP SSTs. Considerable differences in the general circulation patterns were found in the different simulations. A ridge over Western Europe for the present climate during winter in the 500 hPa height field remains in the ECHAM5 simulations for the LGM, more so in the T106 version, while the ECHAM3 CLIMAP simulation provided a trough. The zonal wind between 30° W and 10° E shows a southward shift of the polar and subtropical jet in the T106 simulation for the LGM and an extremely strong polar jet for the ECHAM3 CLIMAP. The latter can probably be assigned to the much stronger north-south gradient in the CLIMAP SSTs. The southward shift of the polar jet during LGM is supported by observation evidence. Cyclone tracks in winter represented by high precipitation are characterised over Europe for the present by a main branch from Great Britain to Norway and a secondary branch

  4. Glacial history of Tranquilo glacier (Central Patagonia) since the Last Glacial Maximum through to the present.

    NASA Astrophysics Data System (ADS)

    Sagredo, E. A.; Araya, P. S.; Schaefer, J. M.; Kaplan, M. R.; Kelly, M. A.; Lowell, T. V.; Aravena, J. C.

    2014-12-01

    Deciphering the timing and the inter-hemispheric phasing of former glacial fluctuations is critical for understanding the mechanisms and climate signals underlying these glacial events. Here, we present a detailed chronology of glacial fluctuations for Río Tranquilo glacier (47°S), since the LGM, including up to the present. Río Tranquilo is a small glacial valley located on the northern flank of Monte San Lorenzo, an isolated granitic massif, ~70 km to the east of the southern limit of the Northern Patagonian Icefield. Although Mt. San Lorenzo is located on the leeward side of the Andes, it is one of the most glacierized mountains in the region, with an ice surface area of ~140 km2. Geomorphic evidence suggests that during past episodes of climate change several small glaciers that today occupy the headwalls of Río Tranquilo valley expanded and coalesced, depositing a series of moraines complexes along the flanks and bottom of the valley. We used two independent dating techniques to constrain the age of the glacial history of the area. 10Be surface exposure ages from boulders located atop moraine ridges reveal that Río Tranquilo valley underwent glacial expansion/stabilization during at least the LGM (late LGM?), Late glacial (ACR and Younger Dryas) and Mid-Holocene. Within the Mid-Holocene limits, tree-ring based chronology indicates that Río Tranquilo glacier expanded during the Late Holocene as well. Our results are the first detailed chronology of glacial fluctuations from a single valley glacier, spanning the entire period from the (end of the) LGM up to the present, in southern South America. By identifying different glacial episodes within a single alpine valley, this study provides baseline data for studying the relative magnitude of the climate events responsible for these glacial events.

  5. Glacial integrative modelling.

    PubMed

    Ganopolski, Andrey

    2003-09-15

    Understanding the mechanisms of past climate changes requires modelling of the complex interaction between all major components of the Earth system: atmosphere, ocean, cryosphere, lithosphere and biosphere. This paper reviews attempts at such an integrative approach to modelling climate changes during the glacial age. In particular, the roles of different factors in shaping glacial climate are compared based on the results of simulations with an Earth-system model of intermediate complexity, CLIMBER-2. It is shown that ice sheets, changes in atmospheric compositions, vegetation cover, and reorganization of the ocean thermohaline circulation play important roles in glacial climate changes. Another example of this approach is the modelling of two major types of abrupt glacial climate changes: Dansgaard-Oeschger and Heinrich events. Our results corroborate some of the early proposed mechanisms, which relate abrupt climate changes to the internal instability of the ocean thermohaline circulation and ice sheets. At the same time, it is shown that realistic representation of the temporal evolution of the palaeoclimatic background is crucial to simulate observed features of the glacial abrupt climate changes.

  6. Glacial integrative modelling.

    PubMed

    Ganopolski, Andrey

    2003-09-15

    Understanding the mechanisms of past climate changes requires modelling of the complex interaction between all major components of the Earth system: atmosphere, ocean, cryosphere, lithosphere and biosphere. This paper reviews attempts at such an integrative approach to modelling climate changes during the glacial age. In particular, the roles of different factors in shaping glacial climate are compared based on the results of simulations with an Earth-system model of intermediate complexity, CLIMBER-2. It is shown that ice sheets, changes in atmospheric compositions, vegetation cover, and reorganization of the ocean thermohaline circulation play important roles in glacial climate changes. Another example of this approach is the modelling of two major types of abrupt glacial climate changes: Dansgaard-Oeschger and Heinrich events. Our results corroborate some of the early proposed mechanisms, which relate abrupt climate changes to the internal instability of the ocean thermohaline circulation and ice sheets. At the same time, it is shown that realistic representation of the temporal evolution of the palaeoclimatic background is crucial to simulate observed features of the glacial abrupt climate changes. PMID:14558899

  7. The taphonomy of human remains in a glacial environment.

    PubMed

    Pilloud, Marin A; Megyesi, Mary S; Truffer, Martin; Congram, Derek

    2016-04-01

    A glacial environment is a unique setting that can alter human remains in characteristic ways. This study describes glacial dynamics and how glaciers can be understood as taphonomic agents. Using a case study of human remains recovered from Colony Glacier, Alaska, a glacial taphonomic signature is outlined that includes: (1) movement of remains, (2) dispersal of remains, (3) altered bone margins, (4) splitting of skeletal elements, and (5) extensive soft tissue preservation and adipocere formation. As global glacier area is declining in the current climate, there is the potential for more materials of archaeological and medicolegal significance to be exposed. It is therefore important for the forensic anthropologist to have an idea of the taphonomy in this setting and to be able to differentiate glacial effects from other taphonomic agents. PMID:26917542

  8. Glacial Geology of Wisconsin.

    ERIC Educational Resources Information Center

    Madison Public Schools, WI.

    This publication is a teacher's resource and guidebook for the presentation of the three filmstrips in the "Glacial Geology of Wisconsin" series. The first filmstrip is subtitled, "Evidence of the Glaciers," the second "How the Glaciers Reshaped the Landscape," and the third "Fossils of the Ice Age." Included are a list of objectives, an outline…

  9. Recovering lead from batteries

    NASA Astrophysics Data System (ADS)

    David Prengaman, R.

    1995-01-01

    Over the past 20 years, a significant number of processes have been developed to recover lead from scrap batteries. These processes recover lead via hydrometallurgical processing of the paste component of the battery followed by electrowinning. A number of pilot plant operations have been conducted, but thus far none of the processes have become operational.

  10. Glacial atmospheric phosphorus deposition

    NASA Astrophysics Data System (ADS)

    Kjær, Helle Astrid; Dallmayr, Remi; Gabrieli, Jacopo; Goto-Azuma, Kumiko; Hirabayashi, Motohiro; Svensson, Anders; Vallelonga, Paul

    2016-04-01

    Phosphorus in the atmosphere is poorly studied and thus not much is known about atmospheric phosphorus and phosphate transport and deposition changes over time, though it is well known that phosphorus can be a source of long-range nutrient transport, e.g. Saharan dust transported to the tropical forests of Brazil. In glacial times it has been speculated that transport of phosphorus from exposed shelves would increase the ocean productivity by wash out. However whether the exposed shelf would also increase the atmospheric load to more remote places has not been investigated. Polar ice cores offer a unique opportunity to study the atmospheric transport of aerosols on various timescales, from glacial-interglacial periods to recent anthropogenic influences. We have for the first time determined the atmospheric transport of phosphorus to the Arctic by means of ice core analysis. Both total and dissolved reactive phosphorus were measured to investigate current and past atmospheric transport of phosphorus to the Arctic. Results show that glacial cold stadials had increased atmospheric total phosphorus mass loads of 70 times higher than in the past century, while DRP was only increased by a factor of 14. In the recent period we find evidence of a phosphorus increase over the past 50 yrs in ice cores close to human occupation likely correlated to forest fires. References: Kjær, Helle Astrid, et al. "Continuous flow analysis method for determination of dissolved reactive phosphorus in ice cores." Environmental science & technology 47.21 (2013): 12325-12332. Kjær, Helle Astrid, et al. "Greenland ice cores constrain glacial atmospheric fluxes of phosphorus." Journal of Geophysical Research: Atmospheres120.20 (2015).

  11. Recovering after stroke

    MedlinePlus

    Stroke rehabilitation; Cerebrovascular accident - rehabilitation; Recovery from stroke; Stroke - recovery; CVA - recovery ... LIVE AFTER A STROKE Most people will need stroke rehabilitation (rehab) to help them recover after they leave ...

  12. Glacial curvilineations: gradual or catastrophic origin?

    NASA Astrophysics Data System (ADS)

    Clark, Chris; Livingstone, Stephen

    2016-04-01

    Glacial curvilineations (GCLs) are enigmatic landforms that have recently been discovered in Poland (Lesemann et al., 2010, 2014). They comprise parallel sets of sinuous ridges separated by troughs that are found in tunnel valleys and replicate the morphology and pattern of the valley sides. The sedimentology for some has been reported to indicate that the sediment composition relates to a pre-GCL phase. So far just one theory for their formation exists - erosion by longitudinal-vortices within high-energy subglacial meltwater flows (Lesemann et al., 2010). Here, we provide an alternative hypothesis for their formation developed from observations of GCLs found along the southern sector of the Laurentide Ice Sheet. In all cases GCLs were found associated with tunnel valley widenings or hollows and occur as distinct parallel sets that mimic each other in terms of nicks and cusps. Using analogies from tree-rings and coral growth we take such mimicry as indicating either incremental growth or development from a template over time. Although without a strong physical explanation we find it much less likely that a series of parallel water channels would maintain such strong mimicry. We instead suggest that subglacial thawing of frozen ground in association with discrete water bodies (tunnel valleys or subglacial lakes) resulted in retrogressive bank failure, possibly along a glide plane provided by a frozen surface. References: Lesemann, J.-E., Piotrowski, J. a, Wysota, W., 2010. "Glacial curvilineations": New glacial landforms produced by longitudinal vortices in subglacial meltwater flows. Geomorphology 120, 153-161. Lesemann, J.-E., Piotrowski, J. a, Wysota, W., 2014. Genesis of the "glacial curvilineation" landscape by meltwater processes under the former Scandinavian Ice Sheet, Poland. Sediment. Geol. 312, 1-18.

  13. PROCESS OF RECOVERING URANIUM

    DOEpatents

    Carter, J.M.; Larson, C.E.

    1958-10-01

    A process is presented for recovering uranium values from calutron deposits. The process consists in treating such deposits to produce an oxidlzed acidic solution containing uranium together with the following imparities: Cu, Fe, Cr, Ni, Mn, Zn. The uranium is recovered from such an impurity-bearing solution by adjusting the pH of the solution to the range 1.5 to 3.0 and then treating the solution with hydrogen peroxide. This results in the precipitation of uranium peroxide which is substantially free of the metal impurities in the solution. The peroxide precipitate is then separated from the solution, washed, and calcined to produce uranium trioxide.

  14. Method for recovering petroleum

    SciTech Connect

    Coenen, H.; Kriegel, E.

    1985-08-06

    A process for recovering petroleum from deposits which have already been worked by primary extraction or are not suited for primary extraction. A gas in its supercritical state is introduced into the deposit. The supercritical gas charges itself with the petroleum while flowing through the deposit. The charged supercritical gas leaves the deposit and the petroleum is separated in a plurality of fractions from the charged supercritical gas.

  15. Effect of low glacial atmospheric CO{sub 2} on tropical African montane vegetation

    SciTech Connect

    Jolly, D.; Haxeltine, A.

    1997-05-02

    Estimates of glacial-interglacial climate change in tropical Africa have varied widely. Results from a process-based vegetation model show how montane vegetation in East Africa shifts with changes in both carbon dioxide concentration and climate. For the last glacial maximum, the change in atmospheric carbon dioxide concentration alone could explain the observed replacement of tropical montane forest by a scrub biome. This result implies that estimates of the last glacial maximum tropical cooling based on tree-line shifts must be revised. 30 refs., 2 figs.

  16. Recovering plant biodiversity

    PubMed Central

    2011-01-01

    Studying recovering plant biodiversity on Mount Pinatubo may provide valuable insights that improve our understanding of recovery of other ecosystems following disturbances of all types. Ongoing sheet and rill erosion coupled with mass waste events in the unstable pyroclastic flow deposits persist, effectively re-setting primary succession at micro-landscape scale without affecting habitat level diversity. Spatial factors and micro-habitat diversity may exert more control over continued succession as the riparian systems become more deeply dissected and complex. The number of taxa within functional groups and conservation concerns are botanical issues that deserve further research. PMID:22019638

  17. Kennebunk glacial advance: A reappraisal

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey W.

    1981-06-01

    Evidence for the Kennebunk glacial advance (readvance) in southwestern Maine is discussed in light of recent geologic mapping. Orientations of glacially produced lineations record the response of ice to major topographic controls and do not indicate glacial readvance. Minor end moraines and large stratified end moraines associated with deformed marine sediments of the Presumpscot Formation occur throughout the southwestern coastal zone. These features outline the general pattern of ice retreat from this part of the coastal zone and suggest that withdrawal of the last ice from southwestern Maine occurred with minor stillstands and local frontal fluctuations but without significant readvance. The Kennebunk glacial advance (readvance) appears to have been one of many local fluctuations of the ice front during general recession, occurring at about 13,200 yr B.P.

  18. The last glacial maximum

    USGS Publications Warehouse

    Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M.

    2009-01-01

    We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ???14.5 ka.

  19. The Last Glacial Maximum.

    PubMed

    Clark, Peter U; Dyke, Arthur S; Shakun, Jeremy D; Carlson, Anders E; Clark, Jorie; Wohlfarth, Barbara; Mitrovica, Jerry X; Hostetler, Steven W; McCabe, A Marshall

    2009-08-01

    We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level approximately 14.5 ka.

  20. Categorizing Ideas about Trees: A Tree of Trees

    PubMed Central

    Fisler, Marie; Lecointre, Guillaume

    2013-01-01

    The aim of this study is to explore whether matrices and MP trees used to produce systematic categories of organisms could be useful to produce categories of ideas in history of science. We study the history of the use of trees in systematics to represent the diversity of life from 1766 to 1991. We apply to those ideas a method inspired from coding homologous parts of organisms. We discretize conceptual parts of ideas, writings and drawings about trees contained in 41 main writings; we detect shared parts among authors and code them into a 91-characters matrix and use a tree representation to show who shares what with whom. In other words, we propose a hierarchical representation of the shared ideas about trees among authors: this produces a “tree of trees.” Then, we categorize schools of tree-representations. Classical schools like “cladists” and “pheneticists” are recovered but others are not: “gradists” are separated into two blocks, one of them being called here “grade theoreticians.” We propose new interesting categories like the “buffonian school,” the “metaphoricians,” and those using “strictly genealogical classifications.” We consider that networks are not useful to represent shared ideas at the present step of the study. A cladogram is made for showing who is sharing what with whom, but also heterobathmy and homoplasy of characters. The present cladogram is not modelling processes of transmission of ideas about trees, and here it is mostly used to test for proximity of ideas of the same age and for categorization. PMID:23950877

  1. Recover chemicals from wastewater

    SciTech Connect

    1995-01-01

    For years, solution mining near Prague in the Czech Republic has produced acid-laden wastewater, which has accumulated in deep underground caverns. Over the years, this acid waste has spread into a large underground reservoir, which today threatens the aquifer that supplies drinking water to Prague, about 70 miles south of the mine. Later this year, a two-pronged site cleanup will be carried out by Resources Conservation Co. International (RCCI), a subsidiary of Ionics, Inc. (Watertown, Mass.). First, the acid water will be pumped to the surface. Then, the stream, which contains sulfuric acid and aluminum ammonium sulfate (ammonium alum) will undergo evaporation and crystallization to recover the ammonium alum, a widely used water-treatment chemical, and fresh water for reuse.

  2. METHOD OF RECOVERING THORIUM

    DOEpatents

    Fisher, R.W.

    1957-12-10

    A method is described for recovering thorium from impurities found in a slag containing thorium and said impurities, comprising leaching a composition containing thorium with water, removing the water solution, treating the residue with hydrochloric acid, separating the solution from the insoluble residue, adjusting its acidity to 1 to 3 normal, adding oxalic acid, and thereafter separating the precipitated thorium oxalate digesting the residue from the hydrochloric acid treatment with a strong solution of sodium hydroxide at an elevated temperature, removing said solution and treating the insoluble residue with hydrochloric acid, separating the solution from the insoluble residue, adjusting the acidity of this solution to 1 to 3 normal, adding nitric acid to oxidize the iron present, adding oxalic acid and thereafter separating the thorium oxalate thus precipitated.

  3. Process for recovering uranium

    DOEpatents

    MacWood, G. E.; Wilder, C. D.; Altman, D.

    1959-03-24

    A process useful in recovering uranium from deposits on stainless steel liner surfaces of calutrons is presented. The deposit is removed from the stainless steel surface by washing with aqueous nitric acid. The solution obtained containing uranium, chromium, nickel, copper, and iron is treated with an excess of ammonium hydroxide to precipitnte the uranium, iron, and chromium and convert the nickel and copper to soluble ammonio complexions. The precipitated material is removed, dried and treated with carbon tetrachloride at an elevated temperature of about 500 to 600 deg C to form a vapor mixture of UCl/ sub 4/, UCl/sub 5/, FeCl/sub 3/, and CrCl/sub 4/. The UCl/sub 4/ is separated from this vapor mixture by selective fractional condensation at a temperature of about 500 to 400 deg C.

  4. PROCESS FOR RECOVERING URANIUM

    DOEpatents

    MacWood, G.E.; Wilder, C.D.; Altman, D.

    1959-03-24

    A process is described for recovering uranium from deposits on stainless steel liner surfaces of calutrons. The deposit is removed from the stainless steel surface by washing with aqueous nitric acid. The solution obtained containing uranium, chromium, nickels copper, and iron is treated with excess of ammonium hydroxide to precipitatc the uranium, irons and chromium and convert thc nickel and copper to soluble ammonia complexions. The precipitated material is removed, dried, and treated with carbon tetrachloride at an elevated temperature of about 500 to 600 deg C to form a vapor mixture of UCl/sub 4/, UCl/sub 5/, FeCl/ sub 3/, and CrCl/sub 4/. The UCl/sub 4/ is separated from this vapor mixture by selective fractional condensation at a temprrature of about 300 to400 deg C.

  5. Pre-glacial, Early Glacial, and Ice Sheet Stratigraphy Cored During NBP1402, Sabrina Coast, East Antarctic Margin

    NASA Astrophysics Data System (ADS)

    Domack, E. W.; Gulick, S. P. S.; Fernandez-Vasquez, R. A.; Frederick, B.; Lavoie, C.; Leventer, A.; Shevenell, A.; Saustrup, S., Sr.; Bohaty, S. M.; Sangiorgi, F.

    2014-12-01

    Western Wilkes Land provides an unusual setting with regard to passive margin subsidence and exposure of Cenozoic sedimentary units across the continental shelf, due to the unique rift to drift history off of the Australian-Antarctic Discordance and subsequent deep glacial erosion of the evolved continental shelf. The first factor has provided extensive accommodation space for the preservation of stratigraphic sequences that in turn represent critical periods in the climate evolution of Antarctica. Glacial erosion has then provided access to this stratigraphy that is usually inaccessible to all but deep drilling programs. Such stratigraphies are well exposed to within cm of the seafloor off the Sabrina Coast. Cruise NBP1402 investigated this region via a combination of multi-channel seismic imaging and innovative, strategic coring. The geophysical data imaged the geologic evolution of the margin, which exhibits a continuum from non-glacial, partly glaciated, to fully glaciated depo- and erosional systems. Based on the seismic stratigraphy, we collected dredges and one barrel Jumbo Piston Cores (JPCs) across areas of outcropping strata imaged seismically, a unique strategy that allowed us to identify and sample specific reflectors. The stratigraphically deepest coring targeted sections for which the seismic character suggested a pre-glacial context, with non-glaciated continental margin sequences including deltas. Coring recovered dark organic rich siltstones and sandy mudstones, and a large concretion whose center contained a cm-sized plant fossil. In addition, the sediments contain a fossil snail. These fossils provide a glimpse into the pre-glacial terrestrial environment in Antarctica. Overlying this section, coring recovered similar dark siltstones with a 20 cm thick horizon with abundant large angular clasts of variable lithology, interpreted to be ice-rafted debris and indicative of early glacial ice in Antarctica. Finally, JPCs targeting a younger part of

  6. Pennsylvanian tropical rain forests responded to glacial-interglacial rhythms

    NASA Astrophysics Data System (ADS)

    Falcon-Lang, Howard J.

    2004-08-01

    Pennsylvanian tropical rain forests flourished during an icehouse climate mode. Although it is well established that Milankovitch-band glacial-interglacial rhythms caused marked synchronous changes in Pennsylvanian tropical climate and sea level, little is known of vegetation response to orbital forcing. This knowledge gap has now been addressed through sequence- stratigraphic analysis of megafloral and palynofloral assemblages within the Westphalian D Cantabrian Sydney Mines Formation of eastern Canada. This succession was deposited in a low- accommodation setting where sequences can be attributed confidently to glacio-eustasy. Results show that long-lived, low-diversity peat mires dominated by lycopsids were initiated during deglaciation events, but were mostly drowned by rising sea level at maximum interglacial conditions. Only upland coniferopsid forests survived flooding without significant disturbance. Mid- to late interglacial phases witnessed delta-plain progradation and establishment of high-diversity, mineral-substrate rain forests containing lycopsids, sphenopsids, pteridosperms, cordaites, and tree ferns. Renewed glaciation resulted in sea-level fall, paleovalley incision, and the onset of climatic aridity. Glacial vegetation was dominated by cordaites, pteridosperms, and tree ferns; hydrophilic lycopsids and sphenopsids survived in paleovalley refugia. Findings clearly demonstrate the dynamic nature of Pennsylvanian tropical ecosystems and are timely given current debates about the impact of Quaternary glacial-interglacial rhythms on the biogeography of tropical rain forest.

  7. PROCESS OF RECOVERING URANIUM

    DOEpatents

    Kilner, S.B.

    1959-12-29

    A method is presented for separating and recovering uranium from a complex mixure of impurities. The uranium is dissolved to produce an aqueous acidic solution including various impurities. In accordance with one method, with the uranium in the uranyl state, hydrogen cyanide is introduced into the solution to complex the impurities. Subsequently, ammonia is added to the solution to precipitate the uraniunn as ammonium diuranate away from the impurities in the solution. Alternatively, the uranium is precipitated by adding an alkaline metal hydroxide. In accordance with the second method, the uranium is reduced to the uranous state in the solution. The reduced solution is then treated with solid alkali metal cyanide sufficient to render the solution about 0.1 to 1.0 N in cyanide ions whereat cyanide complex ions of the metal impurities are produced and the uranium is simultaneously precipituted as uranous hydroxide. Alternatively, hydrogen cyanide may be added to the reduced solution and the uranium precipitated subsequently by adding ammonium hydroxide or an alkali metal hydroxide. Other refinements of the method are also disclosed.

  8. Glacial marine sedimentation: Paleoclimatic significance

    SciTech Connect

    Anderson, J.B.; Ashley, G.M.

    1991-01-01

    This publication resulted from a symposium held during the 1988 Annual Meeting of the Geological Society of America. Many, but not all, contributors to the symposium have papers in this volume. This Special Paper consists of 14 chapters and a Subject/Geographic index. Each chapter has is own list of references. The papers cover a wide range of modem climate/ ocean environments, including papers on glacial marine sediments from Antarctica, the fiords of Alaska, and sediments from the Canadian High Arctic. In addition, three papers discuss [open quote]old[close quotes] glacial marine records (i.e., pre-Tertiary), and one paper discusses the Yakataga Formation of the Gulf of Alaska which is a Miocene-to-late-Pleistocene sequence. The last chapter in the book includes a survey and summary of the evidence for the paleoclimatic significance of glacial marine sediments by the two editors, John Anderson and Gail Ashley. It is worth noting that Anderson and Domack state in the Foreword that there is a considerable variation in terminology; hence they employ a series of definitions which they urge the other authors to employ. They define and explain what they mean by [open quotes]polar ice cap,[close quotes] [open quote]polar tundra (subpolar),[close quotes] and [open quotes]temperate oceanic and boreal[close quotes] in terms of the dominant glacial and glacial marine processes. Although one might quarrel with the terminology, the broad differences between these three glaciological regimes are indeed fundamental and need to be sought in the geological record. The flavor of the volume can be judged by some of the chapter titles. Contributions on Antarctica include a paper by Anderson and other entitled [open quote]Sedimentary facies associated with Antarctica's floating ice masses[close quotes] and a companion paper by Anderson and Domack which deals with the extremely complex glacial marine facies (13 facies are delimited) in McMurdo Sound, Antarctica.

  9. Sub-glacial volcanic eruptions

    USGS Publications Warehouse

    White, Donald Edward

    1956-01-01

    The literature on sub-glacial volcanic eruptions and the related flood phenomena has been reviewed as a minor part of the larger problem of convective and conductive heat transfer from intrusive magma. (See Lovering, 1955, for a review of the extensive literature on this subject.) This summary of data on sub-glacial eruptions is part of a program that the U.S. Geological Survey is conducting in connection with its Investigations of Geologic Processes project on behalf of the Division of Research, U.S. Atomic Energy Commission.

  10. Millennial climatic fluctuations are key to the structure of last glacial ecosystems.

    PubMed

    Huntley, Brian; Allen, Judy R M; Collingham, Yvonne C; Hickler, Thomas; Lister, Adrian M; Singarayer, Joy; Stuart, Anthony J; Sykes, Martin T; Valdes, Paul J

    2013-01-01

    Whereas fossil evidence indicates extensive treeless vegetation and diverse grazing megafauna in Europe and northern Asia during the last glacial, experiments combining vegetation models and climate models have to-date simulated widespread persistence of trees. Resolving this conflict is key to understanding both last glacial ecosystems and extinction of most of the mega-herbivores. Using a dynamic vegetation model (DVM) we explored the implications of the differing climatic conditions generated by a general circulation model (GCM) in "normal" and "hosing" experiments. Whilst the former approximate interstadial conditions, the latter, designed to mimic Heinrich Events, approximate stadial conditions. The "hosing" experiments gave simulated European vegetation much closer in composition to that inferred from fossil evidence than did the "normal" experiments. Given the short duration of interstadials, and the rate at which forest cover expanded during the late-glacial and early Holocene, our results demonstrate the importance of millennial variability in determining the character of last glacial ecosystems. PMID:23613985

  11. Glacial-Holocene Deep Atlantic Variability

    NASA Astrophysics Data System (ADS)

    Oppo, D.; Curry, W. B.; Huang, K.; Gebbie, G.; Keigwin, L. D.

    2012-12-01

    Despite decades of research on deep ocean circulation during the Last Glacial Maximum (LGM) and deglaciation, many uncertainties remain. Even first order questions such as whether Antarctic Intermediate Water (AAIW) influenced the North Atlantic in the past are unresolved. Here, we update the glacial western Atlantic benthic δ13C transect of Curry and Oppo (2005) including new data from four cores recovered between 450 and 1100 m water depth, at AAIW depths in the western tropical North Atlantic. Low glacial values are consistent with the presence of AAIW. However, in the modern ocean, remineralization of organic matter drives δ13C values at these water depths lower than expected from their end-member composition. As this may have also been the case in the past, insights from more conservative tracers like δ18O of calcite, the air-sea exchange δ13C signature (δ13Cas), and neodymium isotopes (ɛNd) are important. We evaluate new and published relevant data and present a new δ13Cas transect for the LGM (updated from Marchitto and Broecker, 2006). A preliminary inversion of LGM data using an ocean pathways model (Gebbie and Huybers, 2010) will be presented. δ13C values in these same four western tropical North Atlantic cores during the Heinrich Event are also consistent with, but may not require, a contribution of AAIW. δ13C values decrease further following the Heinrich event and remain low throughout the deglaciation, during which the records exhibit coherent millennial-scale oscillations. For much of the deglaciation, δ13C values in these cores appear to be lower than values at other sites from similar depths in the western North and South Atlantic, suggestive of non-conservative behavior. The benthic records exhibit high amplitude δ18O variability, which may reflect vertical movement of isopynals, in association with variations in geostrophic flow (e.g. Lynch-Stieglitz et al., 2011). Our new deglacial data will be discussed in the broader context of

  12. A northern glacial refugium for bank voles (Clethrionomys glareolus).

    PubMed

    Kotlík, Petr; Deffontaine, Valérie; Mascheretti, Silvia; Zima, Jan; Michaux, Johan R; Searle, Jeremy B

    2006-10-01

    There is controversy and uncertainty on how far north there were glacial refugia for temperate species during the Pleistocene glaciations and in the extent of the contribution of such refugia to present-day populations. We examined these issues using phylogeographic analysis of a European woodland mammal, the bank vole (Clethrionomys glareolus). A Bayesian coalescence analysis indicates that a bank vole population survived the height of the last glaciation (approximately 25,000-10,000 years B.P.) in the vicinity of the Carpathians, a major central European mountain chain well north of the Mediterranean areas typically regarded as glacial refugia for temperate species. Parameter estimates from the fitted isolation with migration model show that the divergence of the Carpathian population started at least 22,000 years ago, and it was likely followed by only negligible immigration from adjacent regions, suggesting the persistence of bank voles in the Carpathians through the height of the last glaciation. On the contrary, there is clear evidence for gene flow out of the Carpathians, demonstrating the contribution of the Carpathian population to the colonization of Europe after the Pleistocene. These findings are consistent with data from animal and plant fossils recovered in the Carpathians and provide the clearest phylogeographic evidence to date of a northern glacial refugium for temperate species in Europe. PMID:17001012

  13. Extraterrestrial accretion and glacial cycles

    NASA Technical Reports Server (NTRS)

    Muller, R. A.

    1994-01-01

    We propose that the approx. 100-k.y. cycle seen in terrestrial glaciation is due to changes in meteor flux that come from changes in the Earth's orbit. This model can explain a 70-k.y. 'anomalous' period in climate data and the apparent discrepancy between present extraterrestrial fluxes and those in oceanic sediments. It can be tested by measuring Ir densities in sediments and ice during glacials and interglacials.

  14. A new record of post-glacial sedimentation in a glacial trough, offshore sub-Antarctic South Georgia

    NASA Astrophysics Data System (ADS)

    Meisel, Ove; Graham, Alastair; Kuhn, Gerhard

    2014-05-01

    Past studies of South Georgia's climatic history were constrained to land-based sedimentary records, such as peat bogs and coastal lakes, or to terrestrial geomorphology, such as terminal moraines. Hence, the current state of knowledge on past climatic changes in South Georgia is characterised by a complete absence of records from sedimentary marine archives in the fjords or coastal embayments of the region. This study comprises detailed examination of one of the first marine sediment cores recovered on its northeastern shelf in Royal Bay Glacial Trough. Alongside the analysis of new acoustic sub-bottom data, it is the first work to deliver extensive insight into South Georgia's post-glacial climatic history from a marine perspective. The glacial troughs on the South Georgia shelf radiate from the coast towards the shelf edge and represent major sediment traps as they form the only key large-scale depressions in the shelf bathymetry. Sedimentary records, covering a period since at least the Last Glacial Maximum, are thought likely to be recorded in most of them. The sediment core of this study covers sedimentation dated from a maximum of 15,346 ± 492 cal. yr BP until the present day. Physical core parameters indicate a major change in climatic conditions around 14,000 cal. yr BP, the time of the Antarctic Cold Reversal. Holocene climate variabilities are also recorded in the trough infill. The acoustic data show a major change in sedimentation and a pronounced unconformity at the core site, which appears to have had a widespread effect over a large area of the shelf. The origin of the unconformity remains unclear, though several hypotheses, including bottom-current erosion, glacial overriding and earthquake activity, are proposed and discussed. Another important finding at the core site is the presence of methane-derived authigenic carbonates. They form either as secondary precipitates in the subsurface or syndepositional at the seafloor as individual minerals or

  15. Humid glacials, arid interglacials? Results from a multiproxy study of the loess-paleosol sequence Crvenka, Serbia

    NASA Astrophysics Data System (ADS)

    Zech, R.; Zech, M.; Markovic, S.; Huang, Y.

    2012-04-01

    The loess-paleosol sequences in the Carpathian Basin, southeast Europe, are up to tens of meters thick and provide valuable archives for paleoenvironmental and -climate change over several glacial-interglacial cycles. The Crvenka section spans the full last glacial cycle and is used in this multi-proxy study to reconstruct past climate conditions. Crvenka features the characteristic pattern in terms of grain size and weathering intensity, i.e. finer grain sizes and more intensive weathering in the paleosols compared to the glacial loess units. The analysis of plant-derived long-chain n-alkanes as molecular biomarkers for past vegetation indicates the presence of trees during glacials, which is consistent with other e.g. macrofossil findings and the notion that parts of southeast Europe served as tree-refugia. However, virtually tree-less grass steppes are reconstructed for the Eemian, the last interglacial. More humid conditions during glacials and more arid conditions during interglacials would be in good agreement with lake-level reconstructions from the Dead Sea, but they seem to be at odds with traditional interpretations of pollen and stable isotope records for the Mediterranean region. In order to further contribute to this issue, we performed compound-specific D/H analyses on the most abundant alkanes C29 and C31, which should mainly record past changes in the isotopic composition of precipitation. The absence of a clear signal towards more depleted values during glacials shows that the temperature-effect is not dominant and probably offset by a strong source-effect, namely the enrichment of the Mediterranean sea water during glacials. This very same source effect may generally need to be taken into account when interpreting terrestrial isotope records in the Mediterranean, which implies that more positive values during glacials may not necessarily indicate an amount-effect and more arid conditions.

  16. Robust 3D Quantification of Glacial Landforms: A Use of Idealised Drumlins in a Real DEM

    NASA Astrophysics Data System (ADS)

    Hillier, J. K.; Smith, M. S.

    2012-04-01

    (-Fm60) removing clutter (e.g. trees and buildings) to estimate a terrain model (DTM) before processing improves ɛh dramatically to 0.412. Mean height (hin) of 6.8 m is then much better recovered at 7.1±0.3 (2σ), as opposed to 12.5 ± 0.6 (2σ) before decluttering. So, guidelines proposed to best quantify mapped glacial landforms are to i) declutter before ii) removing heights within the drumlin, then iii) interpolating to estimate a basal surface using Delauney triangulation. Mapping landforms' outlines from DTMs is not recommended since outlines are shifted by the distortions they contain, inducing errors. The 'synthetic' DEMs used have been demonstrated to be statistically valid, reliably representing reality. So, the optimal isolation method will now be used to assess the drumlins and their populations in the study area. Synthetic DEMs could be readily created to assess a variety of other landforms and other areas.

  17. Assessment of Potentially Dangerous Glacial Lakes in Chinese Himalayas

    NASA Astrophysics Data System (ADS)

    Xiaojun, Yao; Shiyin, Liu; Xin, Wang

    2010-05-01

    Glacial lake outburst floods (GLOFs) are catastrophic discharges of water resulting primarily from melting glaciers. In the face of global warming, most Himalayan glaciers have been retreating at a rate that ranges from a few meters to several tens of meters per year, resulting in an increase in the number and size and size of glacial lakes and a concomitant increase in the threat of GLOFs. In the past 50 years, 16 GLOF events which were reported in Tibet had caused the loss of human lives as well as severe damage to local infrastructure. Based on the combination of temperature and precipitation of these 14 failed moraine-dammed lakes, the climatic background could be classified into 4 types, that is, warm-wet, warm-arid, cold-wet and near common weather condition. Under different climatic background types, the outburst mechanisms can be further divided into 5 types and 21 modes based on the analysis of 31 failed moraine-dammed lakes documented all over the world. As to a potentially dangerous moraine-dammed lake, all possible breach modes under each climatic background are firstly described and its qualitative possibilities are given by experts, then the decision-making trees are formed and the breach probability of the potentially dangerous moraine-dammed lake can be calculate. The breaching probabilities of the 143 potentially dangerous moraine-dammed lakes were calculated one by one using the decision-making trees model in Chinese Himalayas. The calculating results show that there are 44 lakes with very high breaching probability, 47 lakes with high breaching probability, 24 lakes with median breaching probability, 24 lakes with low breaching probability, 4 lakes with very low breaching probability. The 91 lakes with very high and high breaching probability rate should be requested in the next steps of detailed assessment and should be took into account in local infrastructure construction, such as road, hydropower station and residential plan, etc. Key words

  18. Tracing the glacial sulphur cycle

    NASA Astrophysics Data System (ADS)

    Hansson, M. E.; Jonsell, U.; Bigler, M.; de Angelis, M.; Fischer, H.; Siggaard-Andersen, M.-L.; Steffensen, J. P.; Udisti, R.; Wolff, E.

    2003-04-01

    Sulphate aerosols are playing a major role in climate forcing in the present atmosphere and therefore possibly also during other climatic stages. The deposition of sulphur-containing species onto polar ice sheets provides a tool for determining variations in the sulphur cycle in the past. Relatively short atmospheric residence times for sulphate aerosols cause spatial gradients and a high sensitivity to variations in the general circulation of the atmosphere and the hydrological cycle. Several factors may influence the air-snow transfer functions and post-depositional process may modify the deposited signal. Therefore, both a large spatial and temporal coverage is needed to identify significant changes in the sulphur cycle in the past. The EPICA Dome C ice core from Antarctica is providing the longest records ever, spanning several glacial cycles. Unique high-resolution chemical records, from discontinuous samples analysed by Ion Chromatography (IC), are gradually evolving from the cooperation between the laboratories in the EPICA Chemistry Consortium. The EPICA DML ice core is analysed in parallel by the same laboratories and the profiles are growing with the progress of the drilling each season. The sulphate and methane sulphonate records are here in focus and will be presented as far as they reach at present. High-resolution chemical records are now also available from the NorthGRIP ice core from Greenland spanning the last glacial cycle. An interhemispheric comparison of sulphur-containing species during the glacial period will be presented, using both new high-resolution data and previous ice core data from a few locations as well as initial results from sulphur isotope measurements, with the aim to increase our understanding of variations in the global sulphur cycle with climate change.

  19. Tree Lifecycle.

    ERIC Educational Resources Information Center

    Nature Study, 1998

    1998-01-01

    Presents a Project Learning Tree (PLT) activity that has students investigate and compare the lifecycle of a tree to other living things and the tree's role in the ecosystem. Includes background material as well as step-by-step instructions, variation and enrichment ideas, assessment opportunities, and student worksheets. (SJR)

  20. Recirculated and Energy Recovered Linacs

    SciTech Connect

    Geoffrey Krafft

    2003-05-01

    Linacs that are recirculated share many characteristics with ordinary linacs, including the ability to accelerate electron beams from an injector to high energy with relatively little (normalized) emittance growth and the ability to deliver ultrashort bunch duration pulses to users. When such linacs are energy recovered, the additional possibility of accelerating very high average beam current arises. Because this combination of beam properties is not possible from either a conventional linac, or from storage rings where emittance and pulse length are set by the equilibrium between radiation damping and quantum excitation of oscillations about the closed orbit, energy recovered linacs are being considered for an increasing variety of applications. These possibilities extend from high power free-electron lasers and recirculated linac light sources, to electron coolers for high energy colliders or actual electron-ion colliding- beam machines based on an energy recovered linac for the electrons.

  1. Personality in recovered depressed elderly.

    PubMed

    Schneider, L S; Zemansky, M F; Bender, M; Sloane, R B

    1992-01-01

    Personality traits in euthymic elderly subjects with and without past histories of major depressive episodes were assessed using the Structured Clinical Interview for DSM-III-R and the Social Adjustment Scale-SR. Recovered depressed subjects were characterized by significantly more personality traits from DSM-III-R Clusters B and C than controls, and they exhibited differences in social adjustment, as well. Subjects who have recovered from depressive episodes may show significant differences in personality and social adjustment that might represent residua of past depression, a trait characteristic, or a risk factor for recurrence.

  2. Recovering Zinc From Discarded Tires

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1984-01-01

    Zinc sulfate monohydrate sold at profit. Shredded tire material steeped in three sulfuric acid baths to extract zinc. Final product removed by evaporating part of solution until product crystallizes out. Recovered as zinc sulfate monohydrate and sold as fertilizer or for general use.

  3. PROCESS OF RECOVERING ALKALI METALS

    DOEpatents

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  4. Obsidian hydration dates glacial loading?

    PubMed

    Friedman, I; Pierce, K L; Obradovich, J D; Long, W D

    1973-05-18

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming. The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow. PMID:17806883

  5. Obsidian hydration dates glacial loading?

    PubMed

    Friedman, I; Pierce, K L; Obradovich, J D; Long, W D

    1973-05-18

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming. The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  6. Obsidian hydration dates glacial loading?

    USGS Publications Warehouse

    Friedman, I.; Pierce, K.L.; Obradovich, J.D.; Long, W.D.

    1973-01-01

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming . The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  7. Decadal-scale climate drivers for glacial dynamics in Glacier National Park, Montana, USA

    USGS Publications Warehouse

    Pederson, G.T.; Fagre, D.B.; Gray, S.T.; Graumlich, L.J.

    2004-01-01

    Little Ice Age (14th-19th centuries A.D.) glacial maxima and 20th century retreat have been well documented in Glacier National Park, Montana, USA. However, the influence of regional and Pacific Basin driven climate variability on these events is poorly understood. We use tree-ring reconstructions of North Pacific surface temperature anomalies and summer drought as proxies for winter glacial accumulation and summer ablation, respectively, over the past three centuries. These records show that the 1850's glacial maximum was likely produced by ???70 yrs of cool/wet summers coupled with high snowpack. Post 1850, glacial retreat coincides with an extended period (>50 yr) of summer drought and low snowpack culminating in the exceptional events of 1917 to 1941 when retreat rates for some glaciers exceeded 100 m/yr. This research highlights potential local and ocean-based drivers of glacial dynamics, and difficulties in separating the effects of global climate change from regional expressions of decadal-scale climate variability. Copyright 2004 by the American Geophysical Union.

  8. Exceptionally well-preserved early Oligocene diatoms from glacial sediments of Prydz Bay, East Antarctica

    USGS Publications Warehouse

    Barron, J.A.; Mahood, A.D.

    1993-01-01

    An exceptionally well-preserved early Oligocene diatom assemblage is documented and illustrated from the internal sediment of a gastropod shell, which was collected from glacial sedments recovered at ODP Site 739, Prydz Bay, Antarctica. The diatoms were deposited between 35.9 and 34.8 Ma according to diatom and calcareous nannofossil stratigraphy, apparently soon after a period of major ice sheet advance across the Prydz Bay continental shelf. The diatom assemblage is neritic in character, but it can readily be correlated with open ocean assemblages from the Southern Ocean as well as with similar material recovered from the CIROS-1 drillhole in the Ross Sea. -Authors

  9. Recovering entanglement by local operations

    SciTech Connect

    D’Arrigo, A.; Lo Franco, R.; Benenti, G.; Paladino, E.; Falci, G.

    2014-11-15

    We investigate the phenomenon of bipartite entanglement revivals under purely local operations in systems subject to local and independent classical noise sources. We explain this apparent paradox in the physical ensemble description of the system state by introducing the concept of “hidden” entanglement, which indicates the amount of entanglement that cannot be exploited due to the lack of classical information on the system. For this reason this part of entanglement can be recovered without the action of non-local operations or back-transfer process. For two noninteracting qubits under a low-frequency stochastic noise, we show that entanglement can be recovered by local pulses only. We also discuss how hidden entanglement may provide new insights about entanglement revivals in non-Markovian dynamics.

  10. Methods of recovering alkali metals

    DOEpatents

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  11. Tree Amigos.

    ERIC Educational Resources Information Center

    Center for Environmental Study, Grand Rapids, MI.

    Tree Amigos is a special cross-cultural program that uses trees as a common bond to bring the people of the Americas together in unique partnerships to preserve and protect the shared global environment. It is a tangible program that embodies the philosophy that individuals, acting together, can make a difference. This resource book contains…

  12. Talking Trees

    ERIC Educational Resources Information Center

    Tolman, Marvin

    2005-01-01

    Students love outdoor activities and will love them even more when they build confidence in their tree identification and measurement skills. Through these activities, students will learn to identify the major characteristics of trees and discover how the pace--a nonstandard measuring unit--can be used to estimate not only distances but also the…

  13. Historical distribution of Sundaland's Dipterocarp rainforests at Quaternary glacial maxima.

    PubMed

    Raes, Niels; Cannon, Charles H; Hijmans, Robert J; Piessens, Thomas; Saw, Leng Guan; van Welzen, Peter C; Slik, J W Ferry

    2014-11-25

    The extent of Dipterocarp rainforests on the emergent Sundaland landmass in Southeast Asia during Quaternary glaciations remains a key question. A better understanding of the biogeographic history of Sundaland could help explain current patterns of biodiversity and support the development of effective forest conservation strategies. Dipterocarpaceae trees dominate the rainforests of Sundaland, and their distributions serve as a proxy for rainforest extent. We used species distribution models (SDMs) of 317 Dipterocarp species to estimate the geographic extent of appropriate climatic conditions for rainforest on Sundaland at the last glacial maximum (LGM). The SDMs suggest that the climate of central Sundaland at the LGM was suitable to sustain Dipterocarp rainforest, and that the presence of a previously suggested transequatorial savannah corridor at that time is unlikely. Our findings are supported by palynologic evidence, dynamic vegetation models, extant mammal and termite communities, vascular plant fatty acid stable isotopic compositions, and stable carbon isotopic compositions of cave guano profiles. Although Dipterocarp species richness was generally lower at the LGM, areas of high species richness were mostly found off the current islands and on the emergent Sunda Shelf, indicating substantial species migration and mixing during the transitions between the Quaternary glacial maxima and warm periods such as the present.

  14. Record of glacial Lake Missoula floods in glacial Lake Columbia, Washington

    NASA Astrophysics Data System (ADS)

    Hanson, Michelle A.; Clague, John J.

    2016-02-01

    During the last glaciation (marine oxygen isotope stage 2), outburst floods from glacial Lake Missoula deposited diagnostic sediments within glacial Lake Columbia. Two dominant outburst flood lithofacies are present within glacial Lake Columbia deposits: a flood expansion bar facies and a finer-grained hyperpycnite facies. We conclude that the flood sediments have a glacial Lake Missoula source because: (1) current indicators indicate westward flow through the lake, and upvalley flow followed by downvalley flow in tributary valleys; (2) no flood sediments are found north of a certain point; (3) there is a dominance of Belt-Purcell Supergroup clasts in a flood expansion bar; and (4) some of the finer-grained beds have a pink colour, reflective of glacial Lake Missoula lake-bottom sediments. A new radiocarbon age of 13,400 ± 100 14C BP on plant detritus found below 37 flood beds helps constrain the timing of outburst flooding from glacial Lake Missoula.

  15. Fast Vegetational Responses to Late-Glacial Climate Change

    NASA Astrophysics Data System (ADS)

    Williams, J. W.; Post, D. M.; Cwynar, L. C.; Lotter, A. F.; Levesque, A. J.

    2001-12-01

    How rapidly can natural ecosystems respond to rapid climate change? This question can be addressed by studying paired paleoecological and paleoclimatological records spanning the last deglaciation. Between 16 and 10 ka, abrupt climatic oscillations (e.g. Younger Dryas, Gerzensee/Killarney Oscillations) interrupted the general warming trend. Rates of climate change during these events were as fast or faster than projected rates of change for this century. We compiled a dozen high-resolution lacustrine records in North America and Europe with a pollen record and independent climatic proxy, a clear Younger Dryas signal, and good age control. Cross-correlation analysis suggests that vegetation responded rapidly to late-glacial climate change, with significant changes in vegetation composition occurring within the lifespan of individual trees. At all sites, vegetation lagged climate by less than 200 years, and at two-thirds of the sites, the initial vegetational response occurred within 100 years. The finding of rapid vegetational responses is consistent across sites and continents, and is similar to the 100-200 year response times predicted by gap-scale forest models. Likely mechanisms include 1) increased susceptibility of mature trees to disturbances such as fire, wind, and disease, thereby opening up gaps for colonization, 2) the proximity of these sites to late-glacial treeline, where climate may directly control plant population densities and range limits, 3) the presence of herbaceous taxa with short generation times in these plant communities, and 4) rapid migration due to rare long-distance seed dispersals. Our results are consistent with reports that plant ranges are already shifting in response to recent climate change, and suggest that these shifts will persist for the next several centuries. Widespread changes in plant distributions may affect surface-atmosphere interactions and will challenge attempts to manage ecosystems and conserve biodiversity.

  16. Glacial and marine chronology of Mars

    NASA Technical Reports Server (NTRS)

    Strom, Robert G.; Kargel, Jeffrey S.; Johnson, Natasha; Knight, Christine

    1992-01-01

    A summary is given of the glacial and marine chronology of Mars. Hydrological models of oceans and ice sheets, the cratering record, hydrological cycling, and episodic glaciation are discussed. Evidence for a Noachian ocean is evaluated.

  17. A fresh look at glacial foods

    USGS Publications Warehouse

    Colman, Steven M.

    2002-01-01

    Over the last 20 years, it has become clear that ice ages are characterized by glacial as well as climatic instability on millennial time scales. In his Perspective, Colman highlights two recent papers investigating the role of glacial meltwater and continental drainage in this instability. The results suggest a fundamental instability feedback between ocean circulation and ice sheet dynamics and provides an explanation for why instability was greatest at times of intermediate ice volume.

  18. Last Glacial vegetation and climate change in the southern Levant

    NASA Astrophysics Data System (ADS)

    Miebach, Andrea; Chen, Chunzhu; Litt, Thomas

    2015-04-01

    limiting factor for tree growth was precipitation. Consequently, the precipitation gradient was not as strong as today, and semiarid conditions prevailed in the southern Levant during the Last Glacial. Our study will contribute to the overall aim to reconstruct the way of modern humans to Europe and to understand the complex connection between climate and vegetation change in the Eastern Mediterranean.

  19. Subglacial morphology and glacial evolution of the Palmer deep outlet system, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Domack, Eugene; Amblàs, David; Gilbert, Robert; Brachfeld, Stefanie; Camerlenghi, Angelo; Rebesco, Michele; Canals, Miquel; Urgeles, Roger

    2006-04-01

    The Palmer Deep is an erosional, inner-shelf trough located at the convergence of ice flow from three distinct accumulation centers. It served as a funnel for ice flow out across the continental shelf of the Antarctic Peninsula. Swath mapping of 1440 km 2 of seafloor in and adjacent to the Palmer Deep basin defines a large paleo-ice stream that flowed 230 km across the Antarctic Peninsula continental shelf during the Last Glacial Maximum (MIS-2). The unique perspective and detail of the Palmer Deep physiography allow us to recognize several phases of erosion and deposition in the outlet basin. These events are uniquely constrained by two ODP drill cores (sites 1099 and 1098) that together recovered over 150 m of latest Pleistocene and Holocene sediment. We divide this region of the continental shelf into three zones based upon mega- to meso-scale bathymetric features and emphasize that all three were part of one glacial outlet during the most recent period of glaciation. These zones include from inner shelf to outer shelf: the Palmer Deep basin, the Palmer Deep Outlet Sill and the Hugo Island Trough. Specific seafloor features associated with these zones include: relict terraces, sub-glacial lake deltas, channels and levees, debris slopes, spindle and out bed forms, mega-scale glacial lineations, morainal banks, and bank breach points. The origin of many of these features can be linked to the development of a sub-glacial lake basin within the Palmer Deep during or prior to MIS-2, its subsequent drainage, and recession of the Palmer Deep ice stream system. This sub-glacial lake system is reconstructed at the head of a major paleo-ice stream.

  20. Process for recovering actinide values

    DOEpatents

    Horwitz, E. Philip; Mason, George W.

    1980-01-01

    A process for rendering actinide values recoverable from sodium carbonate scrub waste solutions containing these and other values along with organic compounds resulting from the radiolytic and hydrolytic degradation of neutral organophosphorous extractants such as tri-n butyl phosphate (TBP) and dihexyl-N,N-diethyl carbamylmethylene phosphonate (DHDECAMP) which have been used in the reprocessing of irradiated nuclear reactor fuels. The scrub waste solution is preferably made acidic with mineral acid, to form a feed solution which is then contacted with a water-immiscible, highly polar organic extractant which selectively extracts the degradation products from the feed solution. The feed solution can then be processed to recover the actinides for storage or recycled back into the high-level waste process stream. The extractant is recycled after stripping the degradation products with a neutral sodium carbonate solution.

  1. METHOD OF RECOVERING URANIUM COMPOUNDS

    DOEpatents

    Poirier, R.H.

    1957-10-29

    S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.

  2. Glacial influence on caldera-forming eruptions

    NASA Astrophysics Data System (ADS)

    Geyer, Adelina; Bindeman, Ilya

    2010-05-01

    Investigation of Ar-Ar, U-Pb, and 14C ages of caldera-forming eruptions for the past million years in glaciated arc of Kamchatka has lead to observations that the majority of large-volume ignimbrites, which are associated with the morphologically-preserved calderas, correspond in time with 'maximum glacial' conditions. The latter are defined as the highest δ18O foraminifera values on the N Pacific SPECMAP stack. Additional evidence comes from clustering Kamchatka-derived marine ash layers with glacial moraines in DSDP cores. The strongest field evidence comes from glaciated multi-caldera volcanoes that hosted thick glacial ice caps. In this paper, we investigate how glacial load dynamics may alter eruption frequency in such glaciated multicaldera volcanoes. We present results of numerical simulations that include ice cap of different thickness (ranging from 0 to 1 km) on top of calderas of relevant sizes (5 to 40 km) with magma chambers at different depths. We also study the effects of an asymmetric ice distribution, a variable pre-caldera topography, glacial overpressure on volatiles solubility, and the subglacial intracaldera hydrothermal system on changing mechanical properties of roof rock. The results are: 1) Any ice cap retard ring-fall propagation and caldera formation; 2) Asymmetric distribution of ice plays no or minor role; 3) Glacial erosion of part of volcanic edifice or interglacial edifice failure may promote ring fracture; 4) hydrothermal system under an ice cap may have more acidic hydrothermal fluids leading to more effective hydrothermal rotting of the intracaldera roof rocks; 5) short period interstadial during maximal glaciation may play most important role in pressure fluctuations/volatite saturation condition; 6) Arching influence of the ice cap on roof rock may lead to ring fracture. Overall, the maximal glacial time represent the most dynamic time in a multi-caldera volcano life promoting physical and chemical feedbacks.

  3. History of glacial terminations from the Tiber River, Rome: Insights into glacial forcing mechanisms

    NASA Astrophysics Data System (ADS)

    Marra, Fabrizio; Florindo, Fabio; Boschi, Enzo

    2008-06-01

    We document the aggradational history of the Tiber River delta through the last 17,000 years by means of 17 new 14C ages from peat or wood collected from the delta sediment. An abrupt change in sediment clast size, grading from gravel to clay, occurred between 13.63 (±0.20) and 12.80 (±0.15) ka, indicating that it was synchronous with the last glacial termination, with no appreciable phase lag. Knowing this phase relationship enables us to reduce the magnitudes of age uncertainties for aggradational sections corresponding to glacial terminations IX through III, which we had dated previously by 40Ar/39Ar methods. Glacial terminations VIII, VI, and IV precede beyond 95% confidence the ages predicted by Northern Hemisphere summer insolation maxima. Additionally, we find that each of these seven glacial terminations follows particularly mild insolation minima, which we suggest may be regarded as the preconditioning factor to trigger a glacial termination.

  4. Recovering Radioactive Materials with OSRP team

    ScienceCinema

    None

    2016-07-12

    The National Nuclear Security Administration sponsors a program, executed by Los Alamos National Laboratory, to recover radioisotopes used by industry and academia and no longer needed. Called the "Offsite Source Recovery Program (OSRP), it has recovered

  5. Recovering Radioactive Materials with OSRP team

    SciTech Connect

    2008-04-30

    The National Nuclear Security Administration sponsors a program, executed by Los Alamos National Laboratory, to recover radioisotopes used by industry and academia and no longer needed. Called the "Offsite Source Recovery Program (OSRP), it has recovered

  6. Millennial Climatic Fluctuations Are Key to the Structure of Last Glacial Ecosystems

    PubMed Central

    Huntley, Brian; Allen, Judy R. M.; Collingham, Yvonne C.; Hickler, Thomas; Lister, Adrian M.; Singarayer, Joy; Stuart, Anthony J.; Sykes, Martin T.; Valdes, Paul J.

    2013-01-01

    Whereas fossil evidence indicates extensive treeless vegetation and diverse grazing megafauna in Europe and northern Asia during the last glacial, experiments combining vegetation models and climate models have to-date simulated widespread persistence of trees. Resolving this conflict is key to understanding both last glacial ecosystems and extinction of most of the mega-herbivores. Using a dynamic vegetation model (DVM) we explored the implications of the differing climatic conditions generated by a general circulation model (GCM) in “normal” and “hosing” experiments. Whilst the former approximate interstadial conditions, the latter, designed to mimic Heinrich Events, approximate stadial conditions. The “hosing” experiments gave simulated European vegetation much closer in composition to that inferred from fossil evidence than did the “normal” experiments. Given the short duration of interstadials, and the rate at which forest cover expanded during the late-glacial and early Holocene, our results demonstrate the importance of millennial variability in determining the character of last glacial ecosystems. PMID:23613985

  7. Sources of glacial moisture in Mesoamerica

    USGS Publications Warehouse

    Bradbury, J.P.

    1997-01-01

    Paleoclimatic records from Mesoamerica document the interplay between Atlantic and Pacific sources of precipitation during the last glacial stage and Holocene. Today, and throughout much of the Holocene, the entire region receives its principal moisture in the summer from an interaction of easterly trade winds with the equatorial calms. Glacial records from sites east of 95?? W in Guatemala, Florida, northern Venezuela and Colombia record dry conditions before 12 ka, however. West of 95?? W, glacial conditions were moister than in the Holocene. For example, pollen and diatom data show that Lake Pa??tzcuaro in the central Mexican highlands was cool, deep and fresh during this time and fossil pinyon needles in packrat middens in Chihuahua, Sonora, Arizona, and Texas indicate cooler glacial climates with increased winter precipitation. Cold Gulf of Mexico sea-surface temperatures and reduced strength of the equatorial calms can explain arid full and late glacial environments east of 95?? W whereas an intensified pattern of winter, westerly air flow dominated hydrologic balances as far south as 20?? N. Overall cooler temperatures may have increased effective moisture levels during dry summer months in both areas. ?? 1997 INQUA/ Elsevier Science Ltd.

  8. Last Glacial loess in the conterminous USA

    USGS Publications Warehouse

    Bettis, E. Arthur; Muhs, Daniel R.; Roberts, Helen M.; Wintle, Ann G.

    2003-01-01

    The conterminous United States contains an extensive and generally well-studied record of Last Glacial loess. The loess occurs in diverse physiographic provinces, and under a wide range of climatic and ecological conditions. Both glacial and non-glacia lloess sources are present, and many properties of the loess vary systematically with distance from loess sources. United States' mid-continent Last Glacial loess is probably the thickest in the world, and our calculated mass accumulation rates (MARs) are as high as 17,500 g/m2/yr at the Bignell Hill locality in Nebraska, and many near-source localities have MARs greater than 1500 g/m2/yr. These MARs are high relative to rates calculated in other loess provinces around the world. Recent models of LastGlacial dust sources fail to predict the extent and magnitude of dust flux from the mid-continent of the United States. A better understanding of linkages between climate, ice sheet behaviour, routing of glacial meltwater, land surface processes beyond the ice margin, and vegetation is needed to improve the predictive capabilities of models simulating dust flux from this region.

  9. Glacial-interglacial organic carbon record from the Makassar Strait, Indonesia: Implications for regional changes in continental vegetation

    USGS Publications Warehouse

    Visser, K.; Thunell, R.; Goni, M.A.

    2004-01-01

    Recent studies convincingly show that climate in the Western Pacific Warm Pool and other equatorial/tropical regions was significantly colder (by ???3-4??C) during glacial periods, prompting a reexamination of the late Pleistocene paleoenvironments of these regions. This study examines changes in continental vegetation during the last two deglaciations (Terminations I and II) using a sediment core (MD9821-62) recovered from the Makassar Strait, Indonesia. Evidence based on the lignin phenol ratios suggests that vegetation on Borneo and other surrounding islands did not significantly change from tropical rainforest during the last two glacial periods relative to subsequent interglacial periods. This supports the hypothesis that the winter monsoon increased in strength during glacial periods, allowing Indonesia to maintain high rainfall despite the cooler conditions. ?? 2003 Elsevier Ltd. All rights reserved.

  10. Audubon Tree Study Program.

    ERIC Educational Resources Information Center

    National Audubon Society, New York, NY.

    Included are an illustrated student reader, "The Story of Trees," a leaders' guide, and a large tree chart with 37 colored pictures. The student reader reviews several aspects of trees: a definition of a tree; where and how trees grow; flowers, pollination and seed production; how trees make their food; how to recognize trees; seasonal changes;…

  11. Visualizing phylogenetic trees using TreeView.

    PubMed

    Page, Roderic D M

    2002-08-01

    TreeView provides a simple way to view the phylogenetic trees produced by a range of programs, such as PAUP*, PHYLIP, TREE-PUZZLE, and ClustalX. While some phylogenetic programs (such as the Macintosh version of PAUP*) have excellent tree printing facilities, many programs do not have the ability to generate publication quality trees. TreeView addresses this need. The program can read and write a range of tree file formats, display trees in a variety of styles, print trees, and save the tree as a graphic file. Protocols in this unit cover both displaying and printing a tree. Support protocols describe how to download and install TreeView, and how to display bootstrap values in trees generated by ClustalX and PAUP*. PMID:18792942

  12. Tree-growth analyses to estimate tree species' drought tolerance.

    PubMed

    Eilmann, Britta; Rigling, Andreas

    2012-02-01

    Climate change is challenging forestry management and practices. Among other things, tree species with the ability to cope with more extreme climate conditions have to be identified. However, while environmental factors may severely limit tree growth or even cause tree death, assessing a tree species' potential for surviving future aggravated environmental conditions is rather demanding. The aim of this study was to find a tree-ring-based method suitable for identifying very drought-tolerant species, particularly potential substitute species for Scots pine (Pinus sylvestris L.) in Valais. In this inner-Alpine valley, Scots pine used to be the dominating species for dry forests, but today it suffers from high drought-induced mortality. We investigate the growth response of two native tree species, Scots pine and European larch (Larix decidua Mill.), and two non-native species, black pine (Pinus nigra Arnold) and Douglas fir (Pseudotsuga menziesii Mirb. var. menziesii), to drought. This involved analysing how the radial increment of these species responded to increasing water shortage (abandonment of irrigation) and to increasingly frequent drought years. Black pine and Douglas fir are able to cope with drought better than Scots pine and larch, as they show relatively high radial growth even after irrigation has been stopped and a plastic growth response to drought years. European larch does not seem to be able to cope with these dry conditions as it lacks the ability to recover from drought years. The analysis of trees' short-term response to extreme climate events seems to be the most promising and suitable method for detecting how tolerant a tree species is towards drought. However, combining all the methods used in this study provides a complete picture of how water shortage could limit species.

  13. Tree harvesting

    SciTech Connect

    Badger, P.C.

    1995-12-31

    Short rotation intensive culture tree plantations have been a major part of biomass energy concepts since the beginning. One aspect receiving less attention than it deserves is harvesting. This article describes an method of harvesting somewhere between agricultural mowing machines and huge feller-bunchers of the pulpwood and lumber industries.

  14. Aspen Trees.

    ERIC Educational Resources Information Center

    Canfield, Elaine

    2002-01-01

    Describes a fifth-grade art activity that offers a new approach to creating pictures of Aspen trees. Explains that the students learned about art concepts, such as line and balance, in this lesson. Discusses the process in detail for creating the pictures. (CMK)

  15. Vegetation of the Central Beringian Lowlands: Evidence of a Glacial Refugium Found in IODP Expedition 323 Sediment

    NASA Astrophysics Data System (ADS)

    Westbrook, R.; Fowell, S. J.; Bigelow, N. H.; VanLaningham, S.

    2011-12-01

    The lowlands of central Beringia may have acted as a glacial refugium for boreal vegetation, which expanded into eastern and western Beringia as climate changed and glaciers retreated. Persistence of trees, shrubs and mesic-adapted vegetation in the vicinity of the modern Bering Strait and Bering Sea Shelf could have presented a barrier to migrating fauna during Pleistocene glacial stages. These hypotheses have been difficult to test, because sampling has been restricted to lacustrine sediment and peat deposits accessible in eastern and western Beringia. Pollen analysis of cores from IODP Expedition 323 (Bering Sea Expedition) sites U1339 and U1343, on the edge of the Bering Sea Shelf, permits reconstruction of the terrestrial vegetation of adjacent south-central Beringia. Palynological assemblages extracted from sediment that accumulated during Marine Isotope Stages 2 and 6 are dominated by grass (Poaceae ≥ 15%) and sedge (Cyperaceae ≥ 20%). Spruce (Picea ≥ 5%), birch (Betula ≥ 10%) and alder (Alnus ≥ 5%) are also consistently present throughout glacial/interglacial cycles, suggesting that small populations of trees and shrubs remained in central Beringia during glacial maxima. These results support the refugium hypothesis. Although it is possible that some of the boreal plant pollen deposited during glacial stages is derived from interglacial sediment reworked by rivers flowing across the emergent shelf, we postulate that such sources only contribute about 1-5% of the total sediment found at these Bering slope sites. Thus we consider the palynological assemblages from IODP Expedition 323 a robust proxy for the glacial vegetation of central Beringia.

  16. Phytoremediation of 1,4-dioxane-containing recovered groundwater.

    PubMed

    Ferro, Ari M; Kennedy, Jean; LaRue, James C

    2013-01-01

    The results of a pilot-scale phytoremediation study are reported in this paper. Small plots of trees established on a closed municipal waste landfill site were irrigated with recovered groundwater containing 1,4-dioxane (dioxane) and other volatile organic compounds (VOCs). The plots were managed to minimize the leaching of irrigation water, and leaching was quantified by the use of bromide tracer. Results indicated that the dioxane (2.5 microg/L) was effectively removed, probably via phytovolatilization, and that a full-scale phytoremediation system could be used. A system is now in place at the site in which the recovered groundwater can be treated using two different approaches. A physical treatment system (PTS) will be used during the winter months, and a 12 ha phytoremediation system (stands of coniferous trees) will be used during the growing season. The PTS removes VOCs using an air-stripper, and destroys dioxane using a photo-catalytic oxidation process. Treated water will be routed to the local sewer system. The phytoremediation system, located on the landfill, will be irrigated with effluent from the PTS air-stripper containing dioxane. Seasonal use of the phytoremediation system will reduce reliance on the photo-catalytic oxidation process that is extremely energy consumptive and expensive to operate.

  17. Two middle Pleistocene glacial-interglacial cycles from the Valle Grande, Jemez Mountains, northern New Mexico

    USGS Publications Warehouse

    Fawcett, Peter J.; Heikoop, Jeff; Goff, Fraser; Anderson, R. Scott; Donohoo-Hurley, L.; Geissman, John William; WoldeGabriel, Giday; Allen, Craig D.; Johnson, Catrina M.; Smith, Susan J.; Fessenden-Rahn, Julianna

    2006-01-01

    A long-lived middle Pleistocene lake formed in the Valle Grande, a large moat valley of the Valles caldera in northern New Mexico, when a post-caldera eruption (South Mountain rhyolite) dammed the drainage out of the caldera. The deposits of this lake were cored in May 2004 (GLAD5 project, hole VC-3) and 81 m of mostly lacustrine silty mud were recovered. A tentative chronology has been established for VC-3 with a basal tephra Ar-Ar date of 552 +/- 3 ka, a correlation of major climatic changes in the core with other long Pleistocene records (deep sea oxygen isotope records and long Antarctic ice core records), and the recognition of two geomagnetic field polarity events in the core which can be correlated with globally recognized events. This record spans a critical interval of the middle Pleistocene from MIS 14 (552 ka) to MIS 10 (~360 ka), at which time the lacustrine sediments filled the available accommodation space in the caldera moat. Multiple analyses, including core sedimentology and stratigraphy, sediment density and rock magnetic properties, organic carbon content and carbon isotope ratios, C/N ratios, and pollen content reveal two glacial/interglacial cycles in the core (MIS 14 to MIS 10). This record includes glacial terminations V and VI and complete sections spanning interglacials MIS 13 and MIS 11. In the VC-3 record, both of these interglacials are relatively long compared with the intervening glacials (MIS 14 and MIS 12), and interglacial MIS 13 is significantly muted in amplitude compared with MIS 11. These features are similar to several other mid-Pleistocene records. The glacial terminations are quite abrupt in this record with notable changes in sedimentation, organic carbon content, C/N ratios and watershed vegetation type. Termination V is the largest climate change evident in this part of the middle Pleistocene. The glacial inceptions tend to be more gradual, on the order of a few thousand years.

  18. Cosmogenic 10Be constraints on Little Ice Age glacial advances in the eastern Tian Shan, China

    NASA Astrophysics Data System (ADS)

    Li, Yanan; Li, Yingkui; Harbor, Jon; Liu, Gengnian; Yi, Chaolu; Caffee, Marc W.

    2016-04-01

    Presumed Little Ice Age (LIA) glacial advances, represented by a set of fresh, sharp-crested, boulder covered and compact moraines a few hundred meters downstream from modern glaciers, have been widely recognized in the Central Asian highlands. However, few studies have constrained the formation ages of these moraines. We report 31 10Be exposure ages from presumed LIA moraines in six glacial valleys in the Urumqi River headwater area and the Haxilegen Pass area of the eastern Tian Shan, China. Our results reveal that the maximum LIA glacial extent occurred mainly around 430 ± 100 yr, a cold and wet period as indicated by proxy data from ice cores, tree rings, and lake sediments in Central Asia. We also dated a later glacial advance to 270 ± 55 yr. However, 10Be exposure ages on several presumed LIA moraines in front of small, thin glaciers are widely scattered and much older than the globally recognized timing of the LIA. Historical topographic maps indicate that most glaciers were more extensive in the early 1960s, and two of our 10Be sample sites were located close to the ice front at that time. Boulders transported by these small and thin glaciers may be reworked from deposits originally formed prior to the LIA glacial advances, producing apparently old and widely scattered exposure ages due to varied nuclide inheritance. Other published ages indicated an earlier LIA advance around 790 ± 300 yr in the easternmost Tian Shan, but in our study area the more extensive advance around 430 ± 100 yr likely reworked or covered deposits from this earlier event.

  19. Abrupt climate and vegetation variability of eastern Anatolia during the last glacial

    NASA Astrophysics Data System (ADS)

    Pickarski, N.; Kwiecien, O.; Langgut, D.; Litt, T.

    2015-11-01

    Detailed analyses of the Lake Van pollen, Ca / K ratio, and stable oxygen isotope record allow the identification of millennial-scale vegetation and environmental changes in eastern Anatolia throughout the last glacial (~ 111.5-11.7 ka BP). The climate of the last glacial was cold and dry, indicated by low arboreal pollen (AP) levels. The driest and coldest period corresponds to Marine Isotope Stage (MIS) 2 (~ 28-14.5 ka BP), which was dominated by highest values of xerophytic steppe vegetation. Our high-resolution multi-proxy record shows rapid expansions and contractions of tree populations that reflect variability in temperature and moisture availability. These rapid vegetation and environmental changes can be related to the stadial-interstadial pattern of Dansgaard-Oeschger (DO) events as recorded in the Greenland ice cores. Periods of reduced moisture availability were characterized by enhanced occurrence of xerophytic species and high terrigenous input from the Lake Van catchment area. Furthermore, the comparison with the marine realm reveals that the complex atmosphere-ocean interaction can be explained by the strength and position of the westerlies, which are responsible for the supply of humidity in eastern Anatolia. Influenced by the diverse topography of the Lake Van catchment, more pronounced DO interstadials (e.g., DO 19, 17-16, 14, 12 and 8) show the strongest expansion of temperate species within the last glacial. However, Heinrich events (HE), characterized by highest concentrations of ice-rafted debris (IRD) in marine sediments, cannot be separated from other DO stadials based on the vegetation composition in eastern Anatolia. In addition, this work is a first attempt to establish a continuous microscopic charcoal record for the last glacial in the Near East. It documents an immediate response to millennial-scale climate and environmental variability and enables us to shed light on the history of fire activity during the last glacial.

  20. Unimodular trees versus Einstein trees

    NASA Astrophysics Data System (ADS)

    Álvarez, Enrique; González-Martín, Sergio; Martín, Carmelo P.

    2016-10-01

    The maximally helicity violating tree-level scattering amplitudes involving three, four or five gravitons are worked out in Unimodular Gravity. They are found to coincide with the corresponding amplitudes in General Relativity. This a remarkable result, insofar as both the propagators and the vertices are quite different in the two theories.

  1. Glacial geography and native North American languages

    NASA Astrophysics Data System (ADS)

    Rogers, Richard A.

    1985-01-01

    This study tests the hypothesis that the number and distribution of some native American languages may be related to ice-margin changes of the Wisconsin glaciation. The analysis indicated that the number of languages per unit area is much greater in unglaciated areas of the last glacial maximum than in glaciated areas. The pattern of languge overlap between land areas sequentially exposed during deglaciation appears to indicate the direction of movement of populations from the periphery toward the core of the area once covered by the Wisconsin Ice Sheet. The data strongly indicate that North America was inhabited prior to the Wisconsin glacial maximum, because glacial maximum conditions apparently influenced linguistic distributions. Evidence suggests that ancestral Eskimo-Aleut and Na-Dene speakers occupied the northwestern edge of the continental ice mass, and that ancestral Algonquian speakers were south of the ice mass during the Wisconsin glacial maximum (approximately 18,000 yr ago). These three linguistic groups were the principal ones to spreas into areas exposed by the recession of the Wisconsin ice.

  2. Late glacial aridity in southern Rocky Mountains

    SciTech Connect

    Davis, O.K.; Pitblado, B.L.

    1995-09-01

    While the slopes of the present-day Colorado Rocky Mountains are characterized by large stands of subalpine and montane conifers, the Rockies of the late glacial looked dramatically different. Specifically, pollen records suggest that during the late glacial, Artemisia and Gramineae predominated throughout the mountains of Colorado. At some point between 11,000 and 10,000 B.P., however, both Artemisia and grasses underwent a dramatic decline, which can be identified in virtually every pollen diagram produced for Colorado mountain sites, including Como Lake (Sangre de Cristo Mountains), Copley Lake and Splains; Gulch (near Crested Butte), Molas Lake (San Juan Mountains), and Redrock Lake (Boulder County). Moreover, the same pattern seems to hold for pollen spectra derived for areas adjacent to Colorado, including at sites in the Chuska Mountains of New Mexico and in eastern Wyoming. The implications of this consistent finding are compelling. The closest modem analogues to the Artemisia- and Gramineae-dominated late-glacial Colorado Rockies are found in the relatively arid northern Great Basin, which suggests that annual precipitation was much lower in the late-glacial southern Rocky Mountains than it was throughout the Holocene.

  3. Potential flood volume of Himalayan glacial lakes

    NASA Astrophysics Data System (ADS)

    Fujita, K.; Sakai, A.; Takenaka, S.; Nuimura, T.; Surazakov, A. B.; Sawagaki, T.; Yamanokuchi, T.

    2013-01-01

    Glacial lakes are potentially dangerous sources of glacial lake outburst floods (GLOFs), and represent a serious natural hazard in Himalayan countries. Despite the development of various indices aimed at determining the risk of such flooding, an objective evaluation of the thousands of Himalayan glacial lakes has yet to be completed. In this study we propose a single index, based on the depression angle from the lakeshore, which allows the lakes to be assessed using remotely sensed digital elevation models (DEMs). We test our approach on five lakes in Nepal, Bhutan, and Tibet using images taken by the declassified Hexagon KH-9 satellite before these lakes flooded. All five lakes had a steep lakefront area (SLA), on which a depression angle was steeper than our proposed threshold of 10° before the GLOF event, but the SLA was no longer evident after the events. We further calculated the potential flood volume (PFV); i.e. the maximum volume of floodwater that could be released if the lake surface was lowered sufficiently to eradicate the SLA. This approach guarantees repeatability because it requires no particular expertise to carry out. We calculated PFVs for more than 2000 Himalayan glacial lakes using the ASTER data. The distribution follows a power-law function, and we identified 49 lakes with PFVs of over 10 million m3 that require further detailed field investigations.

  4. Phylogeographical analysis of mtDNA data indicates postglacial expansion from multiple glacial refugia in woodland caribou (Rangifer tarandus caribou).

    PubMed

    Klütsch, Cornelya F C; Manseau, Micheline; Wilson, Paul J

    2012-01-01

    Glacial refugia considerably shaped the phylogeographical structure of species and may influence intra-specific morphological, genetic, and adaptive differentiation. However, the impact of the Quaternary ice ages on the phylogeographical structure of North American temperate mammalian species is not well-studied. Here, we surveyed ~1600 individuals of the widely distributed woodland caribou (Rangifer tarandus caribou) using mtDNA control region sequences to investigate if glacial refugia contributed to the phylogeographical structure in this subspecies. Phylogenetic tree reconstruction, a median-joining network, and mismatch distributions supported postglacial expansions of woodland caribou from three glacial refugia dating back to 13544-22005 years. These three lineages consisted almost exclusively of woodland caribou mtDNA haplotypes, indicating that phylogeographical structure was mainly shaped by postglacial expansions. The putative centres of these lineages are geographically separated; indicating disconnected glacial refugia in the Rocky Mountains, east of the Mississippi, and the Appalachian Mountains. This is in congruence with the fossil record that caribou were distributed in these areas during the Pleistocene. Our results suggest that the last glacial maximum substantially shaped the phylogeographical structure of this large mammalian North American species that will be affected by climatic change. Therefore, the presented results will be essential for future conservation planning in woodland caribou. PMID:23285137

  5. Phylogeographical Analysis of mtDNA Data Indicates Postglacial Expansion from Multiple Glacial Refugia in Woodland Caribou (Rangifer tarandus caribou)

    PubMed Central

    Klütsch, Cornelya F. C.; Manseau, Micheline; Wilson, Paul J.

    2012-01-01

    Glacial refugia considerably shaped the phylogeographical structure of species and may influence intra-specific morphological, genetic, and adaptive differentiation. However, the impact of the Quaternary ice ages on the phylogeographical structure of North American temperate mammalian species is not well-studied. Here, we surveyed ∼1600 individuals of the widely distributed woodland caribou (Rangifer tarandus caribou) using mtDNA control region sequences to investigate if glacial refugia contributed to the phylogeographical structure in this subspecies. Phylogenetic tree reconstruction, a median-joining network, and mismatch distributions supported postglacial expansions of woodland caribou from three glacial refugia dating back to 13544–22005 years. These three lineages consisted almost exclusively of woodland caribou mtDNA haplotypes, indicating that phylogeographical structure was mainly shaped by postglacial expansions. The putative centres of these lineages are geographically separated; indicating disconnected glacial refugia in the Rocky Mountains, east of the Mississippi, and the Appalachian Mountains. This is in congruence with the fossil record that caribou were distributed in these areas during the Pleistocene. Our results suggest that the last glacial maximum substantially shaped the phylogeographical structure of this large mammalian North American species that will be affected by climatic change. Therefore, the presented results will be essential for future conservation planning in woodland caribou. PMID:23285137

  6. Phylogeographical analysis of mtDNA data indicates postglacial expansion from multiple glacial refugia in woodland caribou (Rangifer tarandus caribou).

    PubMed

    Klütsch, Cornelya F C; Manseau, Micheline; Wilson, Paul J

    2012-01-01

    Glacial refugia considerably shaped the phylogeographical structure of species and may influence intra-specific morphological, genetic, and adaptive differentiation. However, the impact of the Quaternary ice ages on the phylogeographical structure of North American temperate mammalian species is not well-studied. Here, we surveyed ~1600 individuals of the widely distributed woodland caribou (Rangifer tarandus caribou) using mtDNA control region sequences to investigate if glacial refugia contributed to the phylogeographical structure in this subspecies. Phylogenetic tree reconstruction, a median-joining network, and mismatch distributions supported postglacial expansions of woodland caribou from three glacial refugia dating back to 13544-22005 years. These three lineages consisted almost exclusively of woodland caribou mtDNA haplotypes, indicating that phylogeographical structure was mainly shaped by postglacial expansions. The putative centres of these lineages are geographically separated; indicating disconnected glacial refugia in the Rocky Mountains, east of the Mississippi, and the Appalachian Mountains. This is in congruence with the fossil record that caribou were distributed in these areas during the Pleistocene. Our results suggest that the last glacial maximum substantially shaped the phylogeographical structure of this large mammalian North American species that will be affected by climatic change. Therefore, the presented results will be essential for future conservation planning in woodland caribou.

  7. Central Michigan University's Glacial Park: Instruction through Landscaping.

    ERIC Educational Resources Information Center

    Pape, Bruce; Francek, Mark A.

    1992-01-01

    Describes the creation of a glacial park on a university campus. Suggests that the park is a useful instructional resource that helps students relate classroom material to outdoor phenomena by visualizing and identifying glacial landforms, recognizing their spatial relationships, and understanding how glacial features originated. Offers advice for…

  8. Glacial influence on caldera-forming eruptions

    NASA Astrophysics Data System (ADS)

    Geyer, Adelina; Bindeman, Ilya

    2011-04-01

    It has been suggested that deglaciations have influenced volcanism in several areas around the world increasing productivity of mantle melting and eruptions from crustal magma chambers. However, the connection between glaciations and increased volcanism is not straightforward. Investigation of Ar-Ar, U-Pb, and 14C ages of caldera-forming eruptions for the past million years in the glaciated arc of Kamchatka has lead to the observation that the majority of large-volume ignimbrites, which are associated with the morphologically preserved calderas, correspond in time with "maximum glacial" conditions for the past several glacial cycles. In the field, the main proof is related to the fact that glaciated multi-caldera volcanoes hosted thick glacial ice caps. Additional evidence comes from clustering Kamchatka-derived marine ash layers with glacial moraines in DSDP cores. Here we present a set of new results from numerical modelling using the Finite Element Method that investigate how the glacial load dynamic may affect the conditions for ring-fault formation in such glaciated multi-caldera volcanoes. Different scenarios were simulated by varying: (1) the thickness and asymmetric distribution of the existing ice cap, (2) the depth and size of the magmatic reservoir responsible for the subsequent collapse event, (3) the thickness and mechanical properties of the roof rock due to the alteration by hydrothermal fluids, (4) the existence of a deeper and wider magmatic reservoir and (5) possible gravitational failure triggered, in part, by subglacial rock mass build up and hydrothermal alteration. The results obtained indicate that: (1) Any ice cap plays against ring fault formation; (2) Asymmetric distribution of ice may favour the initiation of trap-door type collapse calderas; (3) Glacial erosion of part of volcanic edifice or interglacial edifice failure may facilitate subsequent ring fault formation; (4) hydrothermal system under an ice cap may lead to a quite effective

  9. Glacial to Interglacial Climate and Sea Level Changes Recorded in Submerged Speleothems, Argentarola, Italy

    NASA Astrophysics Data System (ADS)

    Folz-Donahue, K.; Dutton, A.; Antonioli, F.; Richards, D. A.; Nita, D. C.; Lambeck, K.

    2014-12-01

    Direct records of Quaternary sea level change can provide insight on the timing and nature of ice sheet retreat during glacial terminations. Such records are generally rare, particularly prior to the last deglaciation, due in part to the difficulty of recovering material from sites that have been submerged by subsequent sea-level rise. A suite of stalagmites recovered from a submerged cave on Argentarola Island in the Tyrrhenian Sea contains hiatuses that were formed when the cave became submerged by seawater. These hiatuses are remarkable due to the presence of calcite tubes secreted by serpulid worms, providing direct evidence of marine inundation. As sea level drops during the following glacial inception, the cave is drained and dense spelean calcite encases the serpulid worm tubes, forming alternating layers of spelean and serpulid calcite. U-Th dates of spelean calcite directly above and below these serpulid layers has previously been used to constrain timing and amplitude of sea level highstands in the Mediterranean. Stable isotope records from the same cave have also been used to indicate increased precipitation across the Mediterranean during Sapropel 6 (175 ka). Here we present U-Th dates and stable isotope records for three Argentarola stalagmites. These specimens were recovered from -22, -18, and -14 m relative to present sea level (rpsl), and complement previously published data for Argentarola stalagmites at -21, -18.5, and -18 m rpsl. The timing and elevation of spelean calcite directly above and below serpulid tube layers provide rare insight on rates of sea-level change between -14 and -22 m during glacial terminations and inceptions prior to the last termination. Stable isotope records from the same stalagmites are used to investigate changes in western Mediterranean climate and potential relationships to Mediterranean sapropel events.

  10. Glacial-marine and glacial-lacustrine sedimentation in Sebago Lake, Maine: Locating the marine limit

    SciTech Connect

    Johnston, R.A.; Kelley, J.T. ); Belknap, D. . Dept. of Geological Sciences)

    1993-03-01

    The marine limit in Maine marks a sea-level highstand at approximately 13 ka. It was inferred to cross Sebago Lake near Frye Island by Thompson and Borns (1985) on the Surficial Geological Map of Maine, dividing the lake into a northern glacial-lacustrine basin and a southern glacial-marine basin. This study examined the accuracy of the mapped marine limit in the lake and the nature of glacial-lacustrine and glacial-marine facies in Maine. Recognition of the marine limit is usually based on mapped shorelines, glacial-marine deltas, and contacts with glacial-marine sediments. This study, in Maine's second largest lake, collected 100 kilometers of side-scan sonar images, 100 kilometers of seismic reflection profiles, and one core. Side-scan sonar records show coarse sand and gravel and extensive boulder fields at an inferred grounding-line position near Frye Island, where the marine limit was drawn. ORE Geopulse seismic reflection profiles reveal a basal draping unit similar to glacial-marine units identified offshore. Later channels cut more than 30 m into the basal stratified unit. In addition, till and a possible glacial-tectonic grounding-line feature were identified. Slumps and possible spring disruptions are found in several locations. The top unit is an onlapping ponded Holocene lacustrine unit. Total sediment is much thicker in the southern basin; the northern basin, >97 m deep, north of the marine limit appears to have been occupied by an ice block. Retrieved sediments include 12 meters of rhythmites. Microfossil identifications and dating will resolve the environments and time of deposition in this core.

  11. The latest LGM culmination of the Garda Glacier (Italian Alps) and the onset of glacial termination. Age of glacial collapse and vegetation chronosequence

    NASA Astrophysics Data System (ADS)

    Ravazzi, Cesare; Pini, Roberta; Badino, Federica; De Amicis, Mattia; Londeix, Laurent; Reimer, Paula J.

    2014-12-01

    In the deglacial sequence of the largest end moraine system of the Italian Alps, we focused on the latest culmination of the Last Glacial Maximum, before a sudden downwasting of the piedmontane lobe occupying the modern lake basin. We obtained a robust chronology for this culmination and for the subsequent deglacial history by cross-radiocarbon dating of a proximal fluvioglacial plain and of a deglacial continuous lake sedimentation. We used reworked dinocysts to locate sources of glacial abrasion and to mark the input of glacial meltwater until depletion. The palynological record from postglacial lake sediments provided the first vegetation chronosequence directly reacting to the early Lateglacial withdrawal so far documented in the Alps. Glacier collapse occurred soon after 17.46 ± 0.2 ka cal BP, which is, the Manerba advance culmination. Basin deglaciation of several overdeepened foreland piedmont lakes on southern and northern sides of the Alps appears to be synchronous at millennial scale and near-synchronous with large-scale glacial retreat at global scale. The pioneering succession shows a first afforestation step at a median modeled age of 64 years after deglaciation, while rapid tree growth lagged 7 centuries. Between 16.4 ± 0.16 and 15.5 ± 0.16 ka cal BP, a regressive phase interrupted forest growth marking a Lateglacial phase of continental-dry climate predating GI-1. This event, spanning the most advanced phases of North-Atlantic H1, is consistently radiocarbon-framed at three deglacial lake records so far investigated on the Italian side of the Alps. Relationships with the Gschnitz stadial from the Alpine record of Lateglacial advances are discussed.

  12. Potential flood volume of Himalayan glacial lakes

    NASA Astrophysics Data System (ADS)

    Fujita, K.; Sakai, A.; Takenaka, S.; Nuimura, T.; Surazakov, A. B.; Sawagaki, T.; Yamanokuchi, T.

    2013-07-01

    Glacial lakes are potentially dangerous sources of glacial lake outburst floods (GLOFs), and represent a serious natural hazard in Himalayan countries. Despite the development of various indices aimed at determining the outburst probability, an objective evaluation of the thousands of Himalayan glacial lakes has yet to be completed. In this study we propose a single index, based on the depression angle from the lakeshore, which allows the lakes to be assessed using remotely sensed digital elevation models (DEMs). We test our approach on five lakes in Nepal, Bhutan, and Tibet using images taken by the declassified Hexagon KH-9 satellite before these lakes experienced an outburst flood. All five lakes had a steep lakefront area (SLA), on which a depression angle was steeper than our proposed threshold of 10° before the GLOF event, but the SLA was no longer evident after the events. We further calculated the potential flood volume (PFV); i.e., the maximum volume of floodwater that could be released if the lake surface was lowered sufficiently to eradicate the SLA. This approach guarantees repeatability to assess the possibility of GLOF hazards because it requires no particular expertise to carry out, though the PFV does not quantify the GLOF risk. We calculated PFVs for more than 2000 Himalayan glacial lakes using visible band images and DEMs of ASTER data. The PFV distribution follows a power-law function. We found that 794 lakes did not have an SLA, and consequently had a PFV of zero, while we also identified 49 lakes with PFVs of over 10 million m3, which is a comparable volume to that of recorded major GLOFs. This PFV approach allows us to preliminarily identify and prioritize those Himalayan glacial lakes that require further detailed investigation on GLOF hazards and risk.

  13. Surveying Dead Trees and CO2-Induced Stressed Trees Using AVIRIS in the Long Valley Caldera

    NASA Technical Reports Server (NTRS)

    deJong, Steven M.

    1996-01-01

    background of glacial deposits and crystalline rocks. The dead tree areas are located on the flanks of Mammoth Mountain (N:37 deg 37' 45" and W:119 deg 02' 05") at an elevation between 2600 and 3000 meters. The area is covered by an open type of Montane Forest. The dominant tree species are Lodgepole Pine (Pinus contorta), the Red Fir (Abies magnifica) and the Jeffrey Pine (Pinus jeffreyi). The soil surface near Horseshoe Lake is generally fairly bright. The surface is covered by glacial deposits (till) consisting mainly of weathered granitic rocks.

  14. Postglacial trends of hillslope development in two glacially formed mountain valleys in western Norway

    NASA Astrophysics Data System (ADS)

    Laute, K.; Beylich, A. A.

    2012-04-01

    Although rockfall talus slopes occur in all regions where rock weathering products accumulate beneath rock faces and cliffs, they are particularly common in glacially formed mountain landscapes. The retreat of glacier ice from glaciated valleys which have probably experienced oversteepening of rock slopes by glacial erosion causes paraglacial destabilization of the valley sidewalls related to stress-relief, unloading, frost weathering and / or degradation of mountain permafrost. Large areas of the Norwegian fjord landscapes are occupied by hillslopes which are owned by the influences of the glacial inheritance of the last glacial maximum (LGM). This study focuses on Postglacial trends of hillslope development in two glacially formed mountain valleys in western Norway (Erdalen and Bødalen). The research is part of a doctoral thesis, which is integrated in the Norwegian Research Council (NFR) funded SedyMONT-Norway project within the ESF TOPO-EUROPE SedyMONT (Timescales of sediment dynamics, climate and topographic change in mountain landscapes) Programme. The main aspects addressed in this study are: (i) the spatio-temporal variability of denudative slope processes over the Holocene and (ii) the Postglacial modification of the glacial relief. The applied process-based approach includes detailed geomorphological fieldmapping combined with terrestrial laser scans (LIDAR) of slope deposits in order to identify possible deposition processes and their spatial variability, relative dating techniques (tree rings and lichens) to analyze subrecent temporal variations, detailed surface mapping with additional geophysical subsurface investigations to estimated regolith thicknesses as well as CIR- and orthophoto delineation combined with GIS and DEM computing for calculating estimates of average valley-wide rockwall retreat rates. Results show Holocene rockwall retreat rates for the two valleys which are in a comparable range with other estimates of rockwall retreat rates in

  15. Technical Tree Climbing.

    ERIC Educational Resources Information Center

    Jenkins, Peter

    Tree climbing offers a safe, inexpensive adventure sport that can be performed almost anywhere. Using standard procedures practiced in tree surgery or rock climbing, almost any tree can be climbed. Tree climbing provides challenge and adventure as well as a vigorous upper-body workout. Tree Climbers International classifies trees using a system…

  16. The vegetation cover of New Zealand at the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Newnham, Rewi; McGlone, Matt; Moar, Neville; Wilmshurst, Janet; Vandergoes, Marcus

    2013-08-01

    A new reconstruction of the vegetation cover for New Zealand at the Last Glacial Maximum (LGM) is presented, based primarily on a database of 66 pollen site records and a more limited range of plant macrofossil and coleopteran records. Extensive forest is evident only from Auckland northwards. Conifer-broadleaf forest similar to that in the region today, but with Agathis australis scarce, persisted in the far north, whilst Nothofagus trees and a range of shrub taxa characterised the more open forests elsewhere in Northland. Survival of Nothofagus-dominated forest in coastal and exposed continental shelf locations to the southwest of Auckland and northwestern South Island is also indicated. Beyond these regions, vegetation cover comprised shrubland- and grassland-dominant communities, with the latter more prominent in eastern areas, to the south and presumably at higher altitudes. Nevertheless the survival of forest trees is indicated unambiguously in most regions apart from the eastern South Island. Thus the concept of 'micro glacial forest refugia' in New Zealand remains supported by this latest glacial vegetation reconstruction and we draw possible parallels with the developing but contentious concept of 'northern cryptic refugia' in Europe. Recent assertions that pollen and beetle reconstructions of the New Zealand LGM vegetation patterns diverge significantly are not supported by this analysis. Rather, the two proxies are readily reconciled if the term 'woody' as indicated by coleoptera is not restricted to tall forest trees but extended to the widespread woody shrub and small tree elements of the New Zealand flora. Regional distinctions in the LGM vegetation reconstruction concur broadly with the contemporary vegetation pattern, suggesting that, along with temperature depression and likely drier growing conditions, a zonal circulation regime with prominent southern westerly winds was important at 21 ka, as it is today. Pollen-climate modelling of the extent of

  17. Recovering Radioactive Materials with ORSP Team

    ScienceCinema

    LANL

    2016-07-12

    The National Nuclear Security Administration sponsors a program, executed by Los Alamos National Laboratory, to recover radioisotopes used by industry and academia and no longer needed. Called the "Offsite Source Recovery Program (OSRP), it has recovered more than 16,000 orphan sources as of 2008.

  18. North Atlantic Deep Water Production during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Howe, Jacob N. W.; Piotrowski, Alexander M.; Noble, Taryn L.; Mulitza, Stefan; Chiessi, Cristiano M.; Bayon, Germain

    2016-06-01

    Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial-interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ13C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters.

  19. North Atlantic Deep Water Production during the Last Glacial Maximum.

    PubMed

    Howe, Jacob N W; Piotrowski, Alexander M; Noble, Taryn L; Mulitza, Stefan; Chiessi, Cristiano M; Bayon, Germain

    2016-01-01

    Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial-interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ(13)C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters. PMID:27256826

  20. Ice flow models and glacial erosion over multiple glacial-interglacial cycles

    NASA Astrophysics Data System (ADS)

    Headley, R. M.; Ehlers, T. A.

    2015-03-01

    Mountain topography is constructed through a variety of interacting processes. Over glaciological timescales, even simple representations of glacial-flow physics can reproduce many of the distinctive features formed through glacial erosion. However, detailed comparisons at orogen time and length scales hold potential for quantifying the influence of glacial physics in landscape evolution models. We present a comparison using two different numerical models for glacial flow over single and multiple glaciations, within a modified version of the ICE-Cascade landscape evolution model. This model calculates not only glaciological processes but also hillslope and fluvial erosion and sediment transport, isostasy, and temporally and spatially variable orographic precipitation. We compare the predicted erosion patterns using a modified SIA as well as a nested, 3-D Stokes flow model calculated using COMSOL Multiphysics. Both glacial-flow models predict different patterns in time-averaged erosion rates. However, these results are sensitive to the climate and the ice temperature. For warmer climates with more sliding, the higher-order model yields erosion rates that vary spatially and by almost an order of magnitude from those of the SIA model. As the erosion influences the basal topography and the ice deformation affects the ice thickness and extent, the higher-order glacial model can lead to variations in total ice-covered area that are greater than 30% those of the SIA model, again with larger differences for temperate ice. Over multiple glaciations and long timescales, these results suggest that higher-order glacial physics should be considered, particularly in temperate, mountainous settings.

  1. Glacial bed forms at Findelengletscher, Zermatt, Switzerland

    NASA Astrophysics Data System (ADS)

    Madella, Andrea; Nyffenegger, Franziska; Schlüchter, Christian

    2013-04-01

    The current glacier meltdown is increasingly unveiling the glacial bed forms produced by the most recent glacial advance of the 1980ies, such as flutes, mega-flutes and drumlins. This is a challenging opportunity to study these morphologies and the processes involved in their formation; in addition, our observation suggests a new question to be answered: why can't any of these features in units belonging to previous glacial advances be recognised? Similar forms could either have been washed away already, or never been built during LGM and since. The most beautiful and evident of the forms under investigation are the flutes and mega-flutes: elongated streamlined ridges of sediments either starting from an obstacle or just sticking out of the basal lodgement till. The way flutes have been initiated and then evolve is still partially unknown, due to their variety in shape, size and material. The glacial forefield at Findelengletscher under investigation deglaciated over the past two years, offers a well-preserved variety of such forms at all scales. Their material (basal lodgement till) is homogeneous and consistent all over the site, as well as their fabric. In addition, this silty sand shows a low plasticity index. These preliminary results support the idea that flutes build up very quickly during repeated seasonal advances in thin ice conditions with retreating trend (Coray, 2007), and that they could be equally easily and rapidly washed away. References: Coray Sandro (2007): Genesis and significance of flutes at Findelengletscher, Valais, Switzerland, Institute of Geological Sciences, University of Bern.

  2. Low but structured chloroplast diversity in Atherosperma moschatum (Atherospermataceae) suggests bottlenecks in response to the Pleistocene glacials

    PubMed Central

    Worth, James R. P.; Marthick, James R.; Jordan, Gregory J.; Vaillancourt, René E.

    2011-01-01

    Background and Aims The cool temperate rainforests of Australia were much reduced in range during the cold and dry glacial periods, although genetic evidence indicates that two key rainforest species, Nothofagus cunninghamii and Tasmannia lanceolata, survived within multiple locations and underwent only local range expansions at the end of the Last Glacial. To better understand the glacial response of a co-occurring but wind-dispersed and less cold-tolerant rainforest tree species, Atherosperma moschatum, a chloroplast phylogeographic study was undertaken. Methods A total of 3294 bp of chloroplast DNA sequence was obtained for 155 samples collected from across the species' range. Key Results The distribution of six haplotypes observed in A. moschatum was geographically structured with an inferred ancestral haplotype restricted to Tasmania, while three non-overlapping and endemic haplotypes were found on the mainland of south-eastern Australia. Last glacial refugia for A. moschatum are likely to have occurred in at least one location in western Tasmania and in Victoria and within at least two locations in the Great Dividing Range of New South Wales. Nucleotide diversity of A. moschatum was lower (π = 0·00021) than either N. cunninghamii (0·00101) or T. lanceolata (0·00073), and was amongst the lowest recorded for any tree species. Conclusions This study provides evidence for past bottlenecks having impacted the chloroplast diversity of A. moschatum as a result of the species narrower climatic niche during glacials. This hypothesis is supported by the star-like haplotype network and similar estimated rates of chloroplast DNA substitution for A. moschatum and the two more cold tolerant and co-occurring species that have higher chloroplast diversity, N. cunninghamii and T. lanceolata. PMID:21856633

  3. Topographic quantitative EEG amplitude in recovered alcoholics.

    PubMed

    Pollock, V E; Schneider, L S; Zemansky, M F; Gleason, R P; Pawluczyk, S

    1992-05-01

    Topographic measures of electroencephalographic (EEG) amplitude were used to compare recovered alcoholics (n = 14) with sex- and age-matched control subjects. Delta, alpha, and beta activity did not distinguish the groups, but regional differences in theta distribution did. Recovered alcoholics showed more uniform distributions of theta amplitudes in bilateral anterior and posterior regions compared with controls. Because a minimum of 5 years had elapsed since the recovered alcoholic subjects fulfilled DSM-III-R criteria for alcohol abuse or dependence, it is unlikely these EEG theta differences reflect the effects of withdrawal.

  4. Constraints on the glacial erosion rule

    NASA Astrophysics Data System (ADS)

    Herman, Frédéric

    2016-04-01

    It is thought that glaciers erode their underlying bedrock mainly through abrasion and quarrying. Theories predict erosion to be proportional to ice-sliding velocity raised to some power: ˙e = Kguls (1) where ė is the erosion rate, and Kg a proportionality constant and l an exponent. By implementing such a rule in numerical models, it has been possible to reproduce typical glacial landscape features, such as U-shape valleys, hanging valleys, glacial cirques or fjords. Although there have been great advances in the level of sophistication of these models, for example through the inclusion of high-order ice dynamics and subglacial hydrology, the proportionality constant, and the exponent have remained poorly constrained parameters. Recently, two independent studies in the Antarctic Peninsula and Patagonian Andes (Koppes et al., 2015) and the Franz Josef Glacier, New Zealand (Herman et al., 2015) simultaneously collected erosion rate and ice velocity data to find that erosion depends non-linearly on sliding velocity, and that the exponent on velocity is about 2. Such a nonlinear rule is appealing because it may, in part, explain the observed variations in erosion rates globally. Furthermore, an exponent about 2 closely matches theoretical predictions for abrasion. Although it is tempting to argue that abrasion is the dominant process for fast flowing glaciers like the Franz Josef Glacier, there is a clear need for more data and better quantification for the role of quarrying. Both studies also led to very similar values for the proportionality constant Kg. These new results therefore imply that glacial erosion processes might be better constrained than previously thought. Given that glacial velocity can nowadays be measured and modeled at an unprecedented resolution, it may potentially become possible to use glacial erosion models in a predictive manner. Herman, F. et al. "Erosion by an Alpine glacier." Science 350.6257 (2015): 193-195. Koppes, M. et al. "Observed

  5. The Tree Worker's Manual.

    ERIC Educational Resources Information Center

    Smithyman, S. J.

    This manual is designed to prepare students for entry-level positions as tree care professionals. Addressed in the individual chapters of the guide are the following topics: the tree service industry; clothing, eqiupment, and tools; tree workers; basic tree anatomy; techniques of pruning; procedures for climbing and working in the tree; aerial…

  6. Glacial Retreat and Associated Glacial Lake Hazards in the High Tien Shan

    NASA Astrophysics Data System (ADS)

    Smith, T. T.

    2013-12-01

    A number of studies have identified glacial retreat throughout the greater Himalayan region over the past few decades, but the Karakorum region remains an anomaly with large stagnating or advancing glaciers. The glacial behavior in the Tien Shan is still unclear, as few studies have investigated mass balances in the region. This study focuses on the highest peaks of the Tien Shan mountain range, in the region of Jengish Chokusu along the Kyrgyzstan-China-Kazakhstan border. In a first step, a 30-year time series of Landsat imagery (n=27) and ASTER imagery (n=10) was developed to track glacial growth and retreat in the region. Using a combination of spectral and topographic information, glacial outlines are automatically delineated. As several important glaciers in the study region contain medium to high levels of debris cover, our algorithm also improves upon current methods of detecting debris-covered glaciers by using topography, distance weighting methods, river networks, and additional spectral data. Linked to glacial retreat are glacial lake outburst floods (GLOFs) that have become increasingly common in High Mountain Asia over the last few decades. As glaciers retreat, their melt water is often trapped by weakly bonded moraines. These moraines have been known to fail due to overtopping caused by surge waves created by avalanches, rockslides, or glacial calving. A suite of studies throughout High Mountain Asia have used remotely-sensed data to monitor the formation and growth of glacial lakes. In a second step of the work, lake-area changes over the past 15 years were tracked monthly and seasonally using dense Landsat/ASTER coverage (n=30) with an automatic procedure based on spectral and topographic information. Previous work has identified GLOFs as a significant process for infrastructural damage in the southern Tien Shan/northern Pamir, as well as in the better studied Himalaya region. Lake identification and quantification of lake-growth rates is a valuable

  7. Recovering recyclable materials from shredder residue

    NASA Astrophysics Data System (ADS)

    Jody, Bassam J.; Daniels, Edward J.; Bonsignore, Patrick V.; Brockmeier, Norman F.

    1994-02-01

    Each year, about 11 million tons of metals are recovered in the United States from about 10 million discarded automobiles. The recovered metals account for about 75 percent of the total weight of the discarded vehicles. The balance of the material, known as shredder residue, amounts to about three million tons annually and is currently landfilled. The residue contains a diversity of potentially recyclable materials, including polyurethane foams, iron oxides, and certain thermoplastics. This article discusses a process under development at Argonne National Laboratory to separate and recover the recyclable materials from this waste stream. The process consists essentially of two stages. First, a physical separation is used to recover the foams and the metal oxides, followed by a chemical process to extract certain thermoplastics. The status of the technology and the process economics are reviewed here.

  8. Automated monitoring of recovered water quality

    NASA Technical Reports Server (NTRS)

    Misselhorn, J. E.; Hartung, W. H.; Witz, S. W.

    1974-01-01

    Laboratory prototype water quality monitoring system provides automatic system for online monitoring of chemical, physical, and bacteriological properties of recovered water and for signaling malfunction in water recovery system. Monitor incorporates whenever possible commercially available sensors suitably modified.

  9. Metallurgical examination of recovered copper jet particles

    SciTech Connect

    Lassila, D.H.; Nikkel, D.J. Jr.; Kershaw, R.P.; Walters, W.P.

    1995-11-30

    A shaped charge (81 mm, 42{degrees}, OFHC copper cone) was fired into a ``soft` recovery bunker to allow metallurgical examination of recovered jet particles and the slug. The initial weight of the copper liner was 245 gm, of which 184 gm was recovered. The number of jet particles recovered was 37 (approximately 63% of the particles formed by the charge). Extensive metallurgical analyses were performed on the recovered slug and jet particles. The microstructural features associated with voids, e.g. dendritic grain growth, clearly indicate that the regions in the vicinity of the centerline of the slug and jet particles were melted. In this work we present calculations of jet temperature as a function of constitutive behavior. In order to predict melt in the center region of the jet we find it necessary to scale flow stress with a pressure dependent shear modulus.

  10. METHOD FOR RECOVERING URANIUM FROM OILS

    DOEpatents

    Gooch, L.H.

    1959-07-14

    A method is presented for recovering uranium from hydrocarbon oils, wherein the uranium is principally present as UF/sub 4/. According to the invention, substantially complete removal of the uranium from the hydrocarbon oil may be effected by intimately mixing one part of acetone to about 2 to 12 parts of the hydrocarbon oil containing uranium and separating the resulting cake of uranium from the resulting mixture. The uranium in the cake may be readily recovered by burning to the oxide.

  11. Phylogeography and Post-Glacial Recolonization in Wolverines (Gulo gulo) from across Their Circumpolar Distribution

    PubMed Central

    Zigouris, Joanna; Schaefer, James A.; Fortin, Clément; Kyle, Christopher J.

    2013-01-01

    Interglacial-glacial cycles of the Quaternary are widely recognized in shaping phylogeographic structure. Patterns from cold adapted species can be especially informative - in particular, uncovering additional glacial refugia, identifying likely recolonization patterns, and increasing our understanding of species’ responses to climate change. We investigated phylogenetic structure of the wolverine, a wide-ranging cold adapted carnivore, using a 318 bp of the mitochondrial DNA control region for 983 wolverines (n = 209 this study, n = 774 from GenBank) from across their full Holarctic distribution. Bayesian phylogenetic tree reconstruction and the distribution of observed pairwise haplotype differences (mismatch distribution) provided evidence of a single rapid population expansion across the wolverine’s Holarctic range. Even though molecular evidence corroborated a single refugium, significant subdivisions of population genetic structure (0.01< ΦST <0.99, P<0.05) were detected. Pairwise ΦST estimates separated Scandinavia from Russia and Mongolia, and identified five main divisions within North America - the Central Arctic, a western region, an eastern region consisting of Ontario and Quebec/Labrador, Manitoba, and California. These data are in contrast to the nearly panmictic structure observed in northwestern North America using nuclear microsatellites, but largely support the nuclear DNA separation of contemporary Manitoba and Ontario wolverines from northern populations. Historic samples (c. 1900) from the functionally extirpated eastern population of Quebec/Labrador displayed genetic similarities to contemporary Ontario wolverines. To understand these divergence patterns, four hypotheses were tested using Approximate Bayesian Computation (ABC). The most supported hypothesis was a single Beringia incursion during the last glacial maximum that established the northwestern population, followed by a west-to-east colonization during the Holocene. This

  12. North Atlantic Deep Water Production during the Last Glacial Maximum

    PubMed Central

    Howe, Jacob N. W.; Piotrowski, Alexander M.; Noble, Taryn L.; Mulitza, Stefan; Chiessi, Cristiano M.; Bayon, Germain

    2016-01-01

    Changes in deep ocean ventilation are commonly invoked as the primary cause of lower glacial atmospheric CO2. The water mass structure of the glacial deep Atlantic Ocean and the mechanism by which it may have sequestered carbon remain elusive. Here we present neodymium isotope measurements from cores throughout the Atlantic that reveal glacial–interglacial changes in water mass distributions. These results demonstrate the sustained production of North Atlantic Deep Water under glacial conditions, indicating that southern-sourced waters were not as spatially extensive during the Last Glacial Maximum as previously believed. We demonstrate that the depleted glacial δ13C values in the deep Atlantic Ocean cannot be explained solely by water mass source changes. A greater amount of respired carbon, therefore, must have been stored in the abyssal Atlantic during the Last Glacial Maximum. We infer that this was achieved by a sluggish deep overturning cell, comprised of well-mixed northern- and southern-sourced waters. PMID:27256826

  13. Earth's glacial record and its tectonic setting

    NASA Astrophysics Data System (ADS)

    Eyles, N.

    1993-09-01

    Glaciations have occurred episodically at different time intervals and for different durations in Earth's history. Ice covers have formed in a wide range of plate tectonic and structural settings but the bulk of Earth's glacial record can be shown to have been deposited and preserved in basins within extensional settings. In such basins, source area uplift and basin subsidence fulfill the tectonic preconditions for the initiation of glaciation and the accomodation and preservation of glaciclastic sediments. Tectonic setting, in particular subsidence rates, also dictates the type of glaciclastic facies and facies successions that are deposited. Many pre-Pleistocene glaciated basins commonly contain well-defined tectonostratigraphic successions recording the interplay of tectonics and sedimentation; traditional climatostratigraphic approaches involving interpretation in terms of either ice advance/retreat cycles or glacio-eustatic sea-level change require revision. The direct record of continental glaciation in Earth history, in the form of classically-recognised continental glacial landforms and "tillites", is meagre; it is probable that more than 95% of the volume of preserved "glacial" strata are glacially-influenced marine deposits that record delivery of large amounts of glaciclastic sediment to offshore basins. This flux has been partially or completely reworked by "normal" sedimentary processes such that the record of glaciation and climate change is recorded in marine successions and is difficult to decipher. The dominant "glacial" facies in the rock record are subaqueous debris flow diamictites and turbidites recording the selective preservation of poorly-sorted glaciclastic sediment deposited in deep water basins by sediment gravity flows. However, these facies are also typical of many non-glacial settings, especially volcanically-influenced environments; numerous Archean and Proterozoic diamictites, described in the older literature as tillites, have no

  14. Glacial isostatic uplift of the European Alps

    NASA Astrophysics Data System (ADS)

    Mey, Juergen; Scherler, Dirk; Wickert, Andrew D.; Egholm, David L.; Tesauro, Magdala; Schildgen, Taylor F.; Strecker, Manfred R.

    2016-04-01

    Present-day vertical movements of the Earth's surface are mostly due to tectonic deformation, volcanic processes, and crustal loading/unloading. In tectonically stable regions of North America and Scandinavia, vertical movements are almost entirely attributable to glacial isostatic rebound after the melting of the Laurentide and Fennoscandian ice sheets. In contrast, the Pleistocene Alpine icecap grew on a younger mountain belt that formed by collision of the European and African plates, still subject to shortening. Therefore, measured uplift is potentially a composite signal of tectonic shortening and unloading after deglaciation and concomitant erosion. Deciphering the contributions of tectonics and crustal unloading to present-day uplift rates in formerly-glaciated mountain belts is a prerequisite to using uplift data to estimate the viscosity structure of the Earth's mantle, a key variable in geodynamics. We evaluate the post-LGM glacial-isostatic rebound of the Alps following a 4-tiered procedure. First, we estimated the thickness distribution of sedimentary valley fills to create a bedrock map of the entire mountain belt. Second, this map was used as topographic basis for the reconstruction of the Alpine icecap using a numerical ice-flow model. Third, we estimated the equilibrium deflection of the Alpine lithosphere, using the combined loads of ice and sediments with a variable effective elastic thickness. Finally, we used an exponential decay function to infer the residual deflection and the present-day uplift rate for a range of upper mantle viscosities. Our analysis shows that virtually all of the geodetically measured surface uplift in the Swiss and the Austrian Alps can be attributed to glacial unloading and redistribution of sediments, assuming an upper-mantle viscosity lower than that inferred for an old craton (e.g., Fennoscandia), but higher than that for a region with recent crustal thinning (e.g., Basin and Range province).

  15. The vegetation and climate during the Last Glacial Cold Period, northern South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Callard, S. Louise; Newnham, Rewi M.; Vandergoes, Marcus J.; Alloway, Brent V.; Smith, Carol

    2013-08-01

    Pollen assemblages from Howard Valley, South Island, New Zealand, were used to reconstruct the palaeovegetation and infer past climate during the period ca 38-21 cal. ka, which encompasses the Marine Isotope Stage (MIS) 3/2 transition and Last Glacial Cold Period (LGCP). A glacier occupied the upper Howard Valley during the Last Glacial, whilst extensive glaciofluvial outwash surfaces were constructed in the lower valley. Episodic periods of fluvial aggradation and incision have produced a complex sequence of terraces flanking the main Howard River and its tributaries. Sedimentary sequences from three exposed valley fills, sampled for palynological analysis and radiocarbon dating, consist of a complex vertical and lateral arrangement of coarse textured cobbly sandy gravels interbedded with organic-rich silt deposits. Palynology of these organic-rich horizons was directly compared to an existing beetle record from these same horizons. During late MIS 3 the site was dominated by marshy shrubland vegetation interspersed with mixed beech forest, indicating temperatures ˜2-3 °C cooler than present. Climate cooling began as early as 35.7 cal. ka and coincides with evidence of cooling from other sites in New Zealand, South America and with an Antarctic cooling signature. A three phase vegetation and inferred climate pattern occurs at the site during the LGCP beginning with a transition to an alpine/sub-alpine grassland comparable to communities growing near treeline today marking the change to glacial conditions before 31 cal. ka. A small increase in tree abundance between ca 25.8 and 22.7 cal. ka suggests minor climate amelioration during the mid-LGCP. During this phase, a possible volcanically induced vegetation disruption caused by the deposition of the Kawakawa Tephra at 25 cal. ka is evident in the pollen record. This is followed by a further decline in tree pollen and increase in alpine grassland and herb pollen indicating further deterioration of conditions and a

  16. Applications for carbon fibre recovered from composites

    NASA Astrophysics Data System (ADS)

    Pickering; Liu, Z.; Turner, TA; Wong, KH

    2016-07-01

    Commercial operations to recover carbon fibre from waste composites are now developing and as more recovered fibre becomes available new applications for recovered fibre are required. Opportunities to use recovered carbon fibre as a structural reinforcement are considered involving the use of wet lay processes to produce nonwoven mats. Mats with random in-plane fibre orientation can readily be produced using existing commercial processes. However, the fibre volume fraction, and hence the mechanical properties that can be achieved, result in composites with limited mechanical properties. Fibre volume fractions of 40% can be achieved with high moulding pressures of over 100 bar, however, moulding at these pressures results in substantial fibre breakage which reduces the mean fibre length and the properties of the composite manufactured. Nonwoven mats made from aligned, short carbon fibres can achieve higher fibre volume fractions with lower fibre breakage even at high moulding pressure. A process for aligning short fibres is described and a composite of over 60% fibre volume fraction has been manufactured at a pressures up to 100 bar with low fibre breakage. Further developments of the alignment process have been undertaken and a composite of 46% fibre volume fraction has been produced moulded at a pressure of 7 bar in an autoclave, exhibiting good mechanical properties that compete with higher grade materials. This demonstrates the potential for high value applications for recovered carbon fibre by fibre alignment.

  17. Glacial lakes in the Indian Himalayas--from an area-wide glacial lake inventory to on-site and modeling based risk assessment of critical glacial lakes.

    PubMed

    Worni, Raphael; Huggel, Christian; Stoffel, Markus

    2013-12-01

    Glacial lake hazards and glacial lake distributions are investigated in many glaciated regions of the world, but comparably little attention has been given to these topics in the Indian Himalayas. In this study we present a first area-wide glacial lake inventory, including a qualitative classification at 251 glacial lakes >0.01 km(2). Lakes were detected in the five states spanning the Indian Himalayas, and lake distribution pattern and lake characteristics were found to differ significantly between regions. Three glacial lakes, from different geographic and climatic regions within the Indian Himalayas were then selected for a detailed risk assessment. Lake outburst probability, potential outburst magnitudes and associated damage were evaluated on the basis of high-resolution satellite imagery, field assessments and through the use of a dynamic model. The glacial lakes analyzed in the states of Jammu and Kashmir and Himachal Pradesh were found to present moderate risks to downstream villages, whereas the lake in Sikkim severely threatens downstream locations. At the study site in Sikkim, a dam breach could trigger drainage of ca. 16×10(6)m(3) water and generate maximum lake discharge of nearly 7000 m(3) s(-). The identification of critical glacial lakes in the Indian Himalayas and the detailed risk assessments at three specific sites allow prioritizing further investigations and help in the definition of risk reduction actions. PMID:23218457

  18. Glacial lakes in the Indian Himalayas--from an area-wide glacial lake inventory to on-site and modeling based risk assessment of critical glacial lakes.

    PubMed

    Worni, Raphael; Huggel, Christian; Stoffel, Markus

    2013-12-01

    Glacial lake hazards and glacial lake distributions are investigated in many glaciated regions of the world, but comparably little attention has been given to these topics in the Indian Himalayas. In this study we present a first area-wide glacial lake inventory, including a qualitative classification at 251 glacial lakes >0.01 km(2). Lakes were detected in the five states spanning the Indian Himalayas, and lake distribution pattern and lake characteristics were found to differ significantly between regions. Three glacial lakes, from different geographic and climatic regions within the Indian Himalayas were then selected for a detailed risk assessment. Lake outburst probability, potential outburst magnitudes and associated damage were evaluated on the basis of high-resolution satellite imagery, field assessments and through the use of a dynamic model. The glacial lakes analyzed in the states of Jammu and Kashmir and Himachal Pradesh were found to present moderate risks to downstream villages, whereas the lake in Sikkim severely threatens downstream locations. At the study site in Sikkim, a dam breach could trigger drainage of ca. 16×10(6)m(3) water and generate maximum lake discharge of nearly 7000 m(3) s(-). The identification of critical glacial lakes in the Indian Himalayas and the detailed risk assessments at three specific sites allow prioritizing further investigations and help in the definition of risk reduction actions.

  19. Range persistence during the last glacial maximum: Carex macrocephala was not restricted to glacial refugia.

    PubMed

    King, Matthew G; Horning, Matthew E; Roalson, Eric H

    2009-10-01

    The distribution of many species inhabiting northwestern North America has been heavily influenced by the climatic changes during the late Pleistocene. Several studies have suggested that species were restricted to glacial refugia north and/or south of the continental ice sheet front. It is also hypothesized that the coast of northwestern North America could have been a prime location for glacial refugia because of the lowering of the eustatic sea level and the concomitant rise of the continental shelf because of tectonic rebound. Alternatively, some coastal species distributions and demographics may have been unaffected in the long-term by the last glacial maximum (LGM). We tested the glacial refugium hypothesis on an obligate coastal plant species, Carex macrocephala by sampling 600 individuals from 41 populations with 11 nuclear microsatellite loci and the rpL16 plastid intragenic spacer region. The microsatellite data sets suggest a low level of population differentiation with a standardized G'(ST) = 0.032 and inbreeding was high with an F = 0.969. The homogenization of the populations along the coast was supported by a principal coordinate analysis, amovas and samova analyses. Analyses using the rpL16 data set support the results of the microsatellite analyses, with a low F(ST) of 0.042. Coalescent and mismatch analyses using rpL16 suggest that C. macrocephala has not gone through a significant bottleneck within the past 100,000 years, although a much earlier population expansion was indicated by the mismatch analysis. Carex macrocephala exhibits the characteristics of metapopulation dynamics and on the basis of these results, we concluded that it was not restricted to glacial refugia during the LGM, but that it existed as a large metapopulation.

  20. Slow growth rates of Amazonian trees: consequences for carbon cycling.

    PubMed

    Vieira, Simone; Trumbore, Susan; Camargo, Plinio B; Selhorst, Diogo; Chambers, Jeffrey Q; Higuchi, Niro; Martinelli, Luiz Antonio

    2005-12-20

    Quantifying age structure and tree growth rate of Amazonian forests is essential for understanding their role in the carbon cycle. Here, we use radiocarbon dating and direct measurement of diameter increment to document unexpectedly slow growth rates for trees from three locations spanning the Brazilian Amazon basin. Central Amazon trees, averaging only approximately 1 mm/year diameter increment, grow half as fast as those from areas with more seasonal rainfall to the east and west. Slow growth rates mean that trees can attain great ages; across our sites we estimate 17-50% of trees with diameter >10 cm have ages exceeding 300 years. Whereas a few emergent trees that make up a large portion of the biomass grow faster, small trees that are more abundant grow slowly and attain ages of hundreds of years. The mean age of carbon in living trees (60-110 years) is within the range of or slightly longer than the mean residence time calculated from C inventory divided by annual C allocation to wood growth (40-100 years). Faster C turnover is observed in stands with overall higher rates of diameter increment and a larger fraction of the biomass in large, fast-growing trees. As a consequence, forests can recover biomass relatively quickly after disturbance, whereas recovering species composition may take many centuries. Carbon cycle models that apply a single turnover time for carbon in forest biomass do not account for variations in life strategy and therefore may overestimate the carbon sequestration potential of Amazon forests.

  1. Ergonomic analysis jobs in recovered factories.

    PubMed

    Cuenca, Gabriela; Zotta, Gastón

    2012-01-01

    With the advent of the deep economic crisis in Argentina on 2001, the recovery of companies through to the creation of the Cooperatives Working Self-Management or Factories Recovered by its workers was constituted as one of the ways in which the salaried disobeyed the increasing unemployment. When the companies turn into recovered factories they tend to leave of side practices that have been seen like imposed by the previous organization and not understanding them as a primary condition for the execution of his tasks. Safety and ergonomics are two disciplines that are no longer considered relevant to the daily work. Therefore this investigation aims to revalue, undergo semantic to give back to a place in every organization analyzed. This research developed a self-diagnostic tool for working conditions, and the environment, present in the recovered factories.

  2. Tree Tectonics

    NASA Astrophysics Data System (ADS)

    Vogt, Peter R.

    2004-09-01

    Nature often replicates her processes at different scales of space and time in differing media. Here a tree-trunk cross section I am preparing for a dendrochronological display at the Battle Creek Cypress Swamp Nature Sanctuary (Calvert County, Maryland) dried and cracked in a way that replicates practically all the planform features found along the Mid-Oceanic Ridge (see Figure 1). The left-lateral offset of saw marks, contrasting with the right-lateral ``rift'' offset, even illustrates the distinction between transcurrent (strike-slip) and transform faults, the latter only recognized as a geologic feature, by J. Tuzo Wilson, in 1965. However, wood cracking is but one of many examples of natural processes that replicate one or several elements of lithospheric plate tectonics. Many of these examples occur in everyday venues and thus make great teaching aids, ``teachable'' from primary school to university levels. Plate tectonics, the dominant process of Earth geology, also occurs in miniature on the surface of some lava lakes, and as ``ice plate tectonics'' on our frozen seas and lakes. Ice tectonics also happens at larger spatial and temporal scales on the Jovian moons Europa and perhaps Ganymede. Tabletop plate tectonics, in which a molten-paraffin ``asthenosphere'' is surfaced by a skin of congealing wax ``plates,'' first replicated Mid-Oceanic Ridge type seafloor spreading more than three decades ago. A seismologist (J. Brune, personal communication, 2004) discovered wax plate tectonics by casually and serendipitously pulling a stick across a container of molten wax his wife and daughters had used in making candles. Brune and his student D. Oldenburg followed up and mirabile dictu published the results in Science (178, 301-304).

  3. Geothermal activity helps life survive glacial cycles.

    PubMed

    Fraser, Ceridwen I; Terauds, Aleks; Smellie, John; Convey, Peter; Chown, Steven L

    2014-04-15

    Climate change has played a critical role in the evolution and structure of Earth's biodiversity. Geothermal activity, which can maintain ice-free terrain in glaciated regions, provides a tantalizing solution to the question of how diverse life can survive glaciations. No comprehensive assessment of this "geothermal glacial refugia" hypothesis has yet been undertaken, but Antarctica provides a unique setting for doing so. The continent has experienced repeated glaciations that most models indicate blanketed the continent in ice, yet many Antarctic species appear to have evolved in almost total isolation for millions of years, and hence must have persisted in situ throughout. How could terrestrial species have survived extreme glaciation events on the continent? Under a hypothesis of geothermal glacial refugia and subsequent recolonization of nongeothermal regions, we would expect to find greater contemporary diversity close to geothermal sites than in nongeothermal regions, and significant nestedness by distance of this diversity. We used spatial modeling approaches and the most comprehensive, validated terrestrial biodiversity dataset yet created for Antarctica to assess spatial patterns of diversity on the continent. Models clearly support our hypothesis, indicating that geothermally active regions have played a key role in structuring biodiversity patterns in Antarctica. These results provide critical insights into the evolutionary importance of geothermal refugia and the history of Antarctic species.

  4. Glacial CO2 Cycles: A Composite Scenario

    NASA Astrophysics Data System (ADS)

    Broecker, W. S.

    2015-12-01

    There are three main contributors to the glacial drawdown of atmospheric CO2 content: starvation of the supply of carbon to the ocean-atmosphere reservoir, excess CO2 storage in the deep sea, and surface-ocean cooling. In this talk, I explore a scenario in which all three play significant roles. Key to this scenario is the assumption that deep ocean storage is related to the extent of nutrient stratification of the deep Atlantic. The stronger this stratification, the larger the storage of respiration CO2. Further, it is my contention that the link between Milankovitch insolation cycles and climate is reorganizations of the ocean's thermohaline circulation leading to changes in the deep ocean's CO2 storage. If this is the case, the deep Atlantic d13C record kept in benthic foraminifera shells tells us that deep ocean CO2 storage follows Northern Hemisphere summer insolation cycles and thus lacks the downward ramp so prominent in the records of sea level, benthic 18O and CO2. Rather, the ramp is created by the damping of planetary CO2 emissions during glacial time intervals. As it is premature to present a specific scenario, I provide an example as to how these three contributors might be combined. As their magnitudes and shapes remain largely unconstrained, the intent of this exercise is to provoke creative thinking.

  5. Interhemispheric correlation of late pleistocene glacial events

    SciTech Connect

    Lowell, T.V.; Heusser, C.J.; Andersen, B.G.

    1995-09-15

    A radiocarbon chronology shows that piedmont glacier lobes in the Chilean Andes achieved maxima during the last glaciation at 13,900 to 14,890, 21,000, 23,060, 26,940, 29,600, and {ge}33,500 carbon-14 years before present ({sup 14}C yr B.P.) in a cold and wet Subantarctic Parkland environment. The last glaciation ended with massive collapse of ice lobes close to 14,000 {sup 14}C yr B.P., accompanied by an influx of North Patagonian Rain Forest species. In the Southern Alps of New Zealand, additional glacial maxima are registered at 17,720 {sup 14}C yr B.P., and at the beginning of the Younger Dryas at 11,050 {sup 14}C yr B.P. These glacial maxima in mid-latitude mountains rimming the South Pacific were coeval with ice-rafting pulses in the North Atlantic Ocean. Furthermore, the last termination began suddenly and simultaneously in both polar hemispheres before the resumption of the modern mode of deep-water production in the Nordic Seas. Such interhemispheric coupling implies a global atmospheric signal rather than regional climatic changes caused by North Atlantic thermohaline switches or Laurentide ice surges. 51 refs., 3 figs., 1 tab.

  6. Geothermal activity helps life survive glacial cycles

    PubMed Central

    Fraser, Ceridwen I.; Terauds, Aleks; Smellie, John; Convey, Peter; Chown, Steven L.

    2014-01-01

    Climate change has played a critical role in the evolution and structure of Earth’s biodiversity. Geothermal activity, which can maintain ice-free terrain in glaciated regions, provides a tantalizing solution to the question of how diverse life can survive glaciations. No comprehensive assessment of this “geothermal glacial refugia” hypothesis has yet been undertaken, but Antarctica provides a unique setting for doing so. The continent has experienced repeated glaciations that most models indicate blanketed the continent in ice, yet many Antarctic species appear to have evolved in almost total isolation for millions of years, and hence must have persisted in situ throughout. How could terrestrial species have survived extreme glaciation events on the continent? Under a hypothesis of geothermal glacial refugia and subsequent recolonization of nongeothermal regions, we would expect to find greater contemporary diversity close to geothermal sites than in nongeothermal regions, and significant nestedness by distance of this diversity. We used spatial modeling approaches and the most comprehensive, validated terrestrial biodiversity dataset yet created for Antarctica to assess spatial patterns of diversity on the continent. Models clearly support our hypothesis, indicating that geothermally active regions have played a key role in structuring biodiversity patterns in Antarctica. These results provide critical insights into the evolutionary importance of geothermal refugia and the history of Antarctic species. PMID:24616489

  7. Geothermal activity helps life survive glacial cycles.

    PubMed

    Fraser, Ceridwen I; Terauds, Aleks; Smellie, John; Convey, Peter; Chown, Steven L

    2014-04-15

    Climate change has played a critical role in the evolution and structure of Earth's biodiversity. Geothermal activity, which can maintain ice-free terrain in glaciated regions, provides a tantalizing solution to the question of how diverse life can survive glaciations. No comprehensive assessment of this "geothermal glacial refugia" hypothesis has yet been undertaken, but Antarctica provides a unique setting for doing so. The continent has experienced repeated glaciations that most models indicate blanketed the continent in ice, yet many Antarctic species appear to have evolved in almost total isolation for millions of years, and hence must have persisted in situ throughout. How could terrestrial species have survived extreme glaciation events on the continent? Under a hypothesis of geothermal glacial refugia and subsequent recolonization of nongeothermal regions, we would expect to find greater contemporary diversity close to geothermal sites than in nongeothermal regions, and significant nestedness by distance of this diversity. We used spatial modeling approaches and the most comprehensive, validated terrestrial biodiversity dataset yet created for Antarctica to assess spatial patterns of diversity on the continent. Models clearly support our hypothesis, indicating that geothermally active regions have played a key role in structuring biodiversity patterns in Antarctica. These results provide critical insights into the evolutionary importance of geothermal refugia and the history of Antarctic species. PMID:24616489

  8. Solid recovered fuels in the steel industry.

    PubMed

    Kepplinger, Werner L; Tappeiner, Tamara

    2012-04-01

    By using waste materials as alternative fuels in metallurgical plants it is possible to minimize the traditionally used reducing agents, such as coke, coal, oil or natural gas. Moreover, by using waste materials in the metallurgical industry it is feasible to recover these materials as far as possible. This also represents another step towards environmental protection because carbon dioxide emissions can be reduced, if the H(2) content of the waste material is greater in comparison with that of the substituted fuel and the effects of global warming can therefore be reduced. In the present article various solid recovered fuels and their applications in the metallurgical industry are detailed.

  9. Proportion of recovered waterfowl bands reported

    USGS Publications Warehouse

    Geis, A.D.; Atwood, E.L.

    1961-01-01

    Data from the annual mail survey of waterfowl hunters in the United States were used to estimate the total numbers of banded waterfowl that were shot. These estimates were compared with Banding Office records to estimate the proportion of recovered bands that was reported. On the average, about two banded birds were recovered for each one reported. The proportion reported was higher for some areas and for some species than for others. The proportion reported was higher when more of the reports came through employees of conservation agencies.

  10. The Needs of Trees

    ERIC Educational Resources Information Center

    Boyd, Amy E.; Cooper, Jim

    2004-01-01

    Tree rings can be used not only to look at plant growth, but also to make connections between plant growth and resource availability. In this lesson, students in 2nd-4th grades use role-play to become familiar with basic requirements of trees and how availability of those resources is related to tree ring sizes and tree growth. These concepts can…

  11. Ocean Drilling Program Leg 178 (Antarctic Peninsula): Sedimentology of glacially influenced continental margin topsets and foresets

    USGS Publications Warehouse

    Eyles, N.; Daniels, J.; Osterman, L.E.; Januszczak, N.

    2001-01-01

    Ocean Drilling Program Leg 178 (February-April 1998) drilled two sites (Sites 1097 and 1103) on the outer Antarctic Peninsula Pacific continental shelf. Recovered strata are no older than late Miocene or early Pliocene (<4.6 Ma). Recovery at shallow depths in loosely consolidated and iceberg-turbated bouldery sediment was poor but improved with increasing depth and consolidation to allow description of lithofacies and biofacies and interpretation of depositional environment. Site 1097 lies on the outer shelf within Marguerite Trough which is a major outlet for ice expanding seaward from the Antarctic Peninsula and reached a maximum depth drilled of 436.6 m below the sea floor (mbsf). Seismic stratigraphic data show flat-lying upper strata resting on strata that dip gently seaward. Uppermost strata, to a depth of 150 mbsf, were poorly recovered, but data suggest they consist of diamictites containing reworked and abraded marine microfauna. This interval is interpreted as having been deposited largely as till produced by subglacial cannibalization of marine sediments (deformation till) recording ice sheet expansion across the shelf. Underlying gently dipping strata show massive, stratified and graded diamictite facies with common bioturbation and slump stuctures that are interbedded with laminated and massive mudstones with dropstones. The succession contains a well-preserved in situ marine microfauna typical of open marine and proglacial marine environments. The lower gently dipping succession at Site 1097 is interpreted as a complex of sediment gravity flows formed of poorly sorted glacial debris. Site 1103 was drilled in that part of the continental margin that shows uppermost flat-lying continental shelf topsets overlying steeper dipping slope foresets seaward of a structural mid-shelf high. Drilling reached a depth of 363 mbsf with good recovery in steeply dipping continental slope foreset strata. Foreset strata are dominated by massive and chaotically

  12. Glacial magnetite dissolution in abyssal NW Pacific sediments - evidence for carbon trapping?

    NASA Astrophysics Data System (ADS)

    Korff, Lucia; von Dobeneck, Tilo; Frederichs, Thomas; Kasten, Sabine; Kuhn, Gerhard; Gersonde, Rainer; Diekmann, Bernhard

    2016-04-01

    The abyssal North Pacific Ocean's large volume, depth, and terminal position on the deep oceanic conveyor make it a candidate site for deep carbon trapping as postulated by climate theory to explain the massive glacial drawdown of atmospheric CO2. As the major basins of the North Pacific have depths of 5500-6500m, far below the modern and glacial Calcite Compensation Depths (CCD), these abyssal sediments are carbonate-free and therefore not suitable for carbonate-based paleoceanographic proxy reconstructions. Instead, paleo-, rock and environmental magnetic methods are generally well applicable to hololytic abyssal muds and clays. In 2009, the international paleoceanographic research cruise SO 202 INOPEX ('Innovative North Pacific Experiment') of the German RV SONNE collected two ocean-spanning EW sediment core transects of the North Pacific and Bering Sea recovering a total of 50 piston and gravity cores from 45 sites. Out of seven here considered abyssal Northwest Pacific piston cores collected at water depths of 5100 to 5700m with mostly coherent shipboard susceptibility logs, the 20.23m long SO202-39-3, retrieved from 5102 m water depth east of northern Shatsky Rise (38°00.70'N, 164°26.78'E), was rated as the stratigraphically most promising record of the entire core transect and selected for detailed paleo- and environmental magnetic, geochemical and sedimentological investigations. This core was dated by correlating its RPI and Ba/Ti records to well-dated reference records and obviously provides a continuous sequence of the past 940 kyrs. The most striking orck magnetic features are coherent magnetite-depleted zones corresponding to glacial periods. In the interglacial sections, detrital, volcanic and even submicron bacterial magnetite fractions are excellently preserved. These alternating magnetite preservation states seem to reflect dramatic oxygenation changes in the deep North Pacific Ocean and hint at large-scale benthic glacial carbon trapping

  13. Contrasting scaling properties of interglacial and glacial climates

    PubMed Central

    Shao, Zhi-Gang; Ditlevsen, Peter D.

    2016-01-01

    Understanding natural climate variability is essential for assessments of climate change. This is reflected in the scaling properties of climate records. The scaling exponents of the interglacial and the glacial climates are fundamentally different. The Holocene record is monofractal, with a scaling exponent H∼0.7. On the contrary, the glacial record is multifractal, with a significantly higher scaling exponent H∼1.2, indicating a longer persistence time and stronger nonlinearities in the glacial climate. The glacial climate is dominated by the strong multi-millennial Dansgaard–Oeschger (DO) events influencing the long-time correlation. However, by separately analysing the last glacial maximum lacking DO events, here we find the same scaling for that period as for the full glacial period. The unbroken scaling thus indicates that the DO events are part of the natural variability and not externally triggered. At glacial time scales, there is a scale break to a trivial scaling, contrasting the DO events from the similarly saw-tooth-shaped glacial cycles. PMID:26980084

  14. Contrasting scaling properties of interglacial and glacial climates.

    PubMed

    Shao, Zhi-Gang; Ditlevsen, Peter D

    2016-01-01

    Understanding natural climate variability is essential for assessments of climate change. This is reflected in the scaling properties of climate records. The scaling exponents of the interglacial and the glacial climates are fundamentally different. The Holocene record is monofractal, with a scaling exponent H∼0.7. On the contrary, the glacial record is multifractal, with a significantly higher scaling exponent H∼1.2, indicating a longer persistence time and stronger nonlinearities in the glacial climate. The glacial climate is dominated by the strong multi-millennial Dansgaard-Oeschger (DO) events influencing the long-time correlation. However, by separately analysing the last glacial maximum lacking DO events, here we find the same scaling for that period as for the full glacial period. The unbroken scaling thus indicates that the DO events are part of the natural variability and not externally triggered. At glacial time scales, there is a scale break to a trivial scaling, contrasting the DO events from the similarly saw-tooth-shaped glacial cycles. PMID:26980084

  15. Quaternary Glacial Mapping in Western Wisconsin Using Soil Survey Information

    ERIC Educational Resources Information Center

    Oehlke, Betsy M.; Dolliver, Holly A. S.

    2011-01-01

    The majority of soils in the western Wisconsin have developed from glacial sediments deposited during the Quaternary Period (2.6 million years before present). In many regions, multiple advances and retreats have left a complex landscape of diverse glacial sediments and landforms. The soils that have developed on these deposits reflect the nature…

  16. Light attenuation characteristics of glacially-fed lakes

    NASA Astrophysics Data System (ADS)

    Rose, Kevin C.; Hamilton, David P.; Williamson, Craig E.; McBride, Chris G.; Fischer, Janet M.; Olson, Mark H.; Saros, Jasmine E.; Allan, Mathew G.; Cabrol, Nathalie

    2014-07-01

    Transparency is a fundamental characteristic of aquatic ecosystems and is highly responsive to changes in climate and land use. The transparency of glacially-fed lakes may be a particularly sensitive sentinel characteristic of these changes. However, little is known about the relative contributions of glacial flour versus other factors affecting light attenuation in these lakes. We sampled 18 glacially-fed lakes in Chile, New Zealand, and the U.S. and Canadian Rocky Mountains to characterize how dissolved absorption, algal biomass (approximated by chlorophyll a), water, and glacial flour contributed to attenuation of ultraviolet radiation (UVR) and photosynthetically active radiation (PAR, 400-700 nm). Variation in attenuation across lakes was related to turbidity, which we used as a proxy for the concentration of glacial flour. Turbidity-specific diffuse attenuation coefficients increased with decreasing wavelength and distance from glaciers. Regional differences in turbidity-specific diffuse attenuation coefficients were observed in short UVR wavelengths (305 and 320 nm) but not at longer UVR wavelengths (380 nm) or PAR. Dissolved absorption coefficients, which are closely correlated with diffuse attenuation coefficients in most non-glacially-fed lakes, represented only about one quarter of diffuse attenuation coefficients in study lakes here, whereas glacial flour contributed about two thirds across UVR and PAR. Understanding the optical characteristics of substances that regulate light attenuation in glacially-fed lakes will help elucidate the signals that these systems provide of broader environmental changes and forecast the effects of climate change on these aquatic ecosystems.

  17. Sub-glacial Origin of the Hot Springs Bay Valley hydrothermal System, Akutan, Alaska

    NASA Astrophysics Data System (ADS)

    Stelling, P. L.; Tobin, B.; Knapp, P.

    2015-12-01

    Exploration for geothermal energy in Hot Springs Bay Valley (HSBV) on Akutan Island, Alaska, has revealed a rich hydrothermal history, including what appears to be a stage of peak activity during a significant glacial period. Alteration mineralogy observed in 754 m of drill core recovered from the outflow zone is dominated by chlorite and includes minor smectite clays, a suite of zeolite species and several moderately high-temperature hydrothermal minerals (epidote/clinozoisite, prehnite, adularia and wairakite). The latter minerals each have minimum formation temperatures exceeding 200 oC, and fluid inclusion results in related calcite crystals indicate temperatures of formation to be as high as 275 oC, some 100 oC hotter than the modern boiling point with depth (BPD) curve at that depth (>62 m). In order to maintain liquid temperatures this high, the pressure during mineralization must have been substantially greater (~680 bar), a pressure change equivalent to erosion of ~280 m of rock (ρ=2.5 g/cm3). Although glacial erosion rates are too low (0.034 mm/yr; Bekele et al., 2003) for this amount of erosion to occur in a single glaciation, glacial melting and ablation are substantially more rapid (~100 mm/yr; Bekele et al., 2003; Person et al., 2012). Thus, a more probable scenario than pure erosion is that peak hydrothermal conditions occurred during a large glacial event, with the added pressure from the overlying ice allowing the high temperature minerals to form closer to the ground surface. Subsequent melting of the ice eroded upper tributary valleys and upper levels of the originally smectite-rich alteration assemblage, explaining the paucity of swelling clays in the region. We present mineralogical, fluid inclusion and geochronologic evidence to support these conclusions, and discuss the general implications of sub-glacial hydrothermal system formation and geothermal resource potential. References: Bekele, E., Rostron, B. and Person, M. (2003) Fluid pressure

  18. Applications for Energy Recovering Free Electron Lasers

    SciTech Connect

    George Neil

    2007-08-01

    The availability of high-power, high-brilliance sources of tunable photons from energy-recovered Free Electron Lasers is opening up whole new fields of application of accelerators in industry. This talk will review some of the ideas that are already being put into production, and some of the newer ideas that are still under development.

  19. Process for recovering filler from polymer

    DOEpatents

    Smith, Maurice L.; Smith, Robert M.

    1978-01-01

    This disclosure relates to a process for recovering filler material from a polymeric matrix by reacting the matrix at an elevated temperature in a gas atmosphere with a controlled oxidizing potential and thereafter separating and cleaning the residue from the reaction mixture.

  20. Stress Levels of Recovering Drug Addicts.

    ERIC Educational Resources Information Center

    LaMon, Brent C.; Alonzo, Anthony

    It appears that chronic drug use may develop as a means of coping in which individuals use self-medication to produce a more desirable state of being. Because drugs are often used to cope with stress, this study examined stress among recovering male drug addicts (N=23) from an urban substance abuse program by administering a self-report inventory…

  1. The influence of glacial ice sheets on Atlantic meridional overturning circulation through atmospheric circulation change under glacial climate

    NASA Astrophysics Data System (ADS)

    Sherriff-Tadano, Sam; Abe-Ouchi, Ayako; Yoshimori, Masakazu; Oka, Akira; Chan, Wing-Le

    2016-04-01

    Recent coupled modeling studies have shown that the existence of the glacial ice sheets intensifies the Atlantic meridional overturning circulation (AMOC). Since this may play an important role in maintaining a strong AMOC over the last glacial period, which is suggested by recent reconstruction study, it is very important to understand the process by which glacial ice sheets intensify the AMOC. Here, a decoupled simulation is conducted to investigate the effect of wind change due to glacial ice sheets on the AMOC, the crucial region where wind modifies the AMOC and the mechanism, which remained elusive in previous studies. First, from atmospheric general circulation model (AGCM) experiments, the effect of glacial ice sheets on the surface wind is evaluated. Second, from ocean general circulation model (OGCM) experiments, the influence of the wind stress change on the AMOC is evaluated by applying only the changes in the surface wind as a boundary condition, while leaving surface heat and freshwater fluxes unchanged. Moreover, several sensitivity experiments are conducted. Using the AGCM, glacial ice sheets are applied individually. Using the OGCM, changes in the wind are applied regionally or at different magnitudes, ranging from the full glacial to modern levels. These experiments demonstrate that glacial ice sheets intensify the AMOC through an increase in the wind stress curl mainly at the North Atlantic mid-latitudes. This intensification is caused by the increased Ekman upwelling and gyre transport of salt while the change in sea ice transport works as a negative, though minor, feedback.

  2. Wind Stress Increases Glacial Atlantic Overturning

    NASA Astrophysics Data System (ADS)

    Muglia, J.; Schmittner, A.

    2015-12-01

    Previous Paleoclimate Model Intercomparison Project (PMIP) simulations of the Last Glacial Maximum (LGM) Atlantic Meridional Overturning Circulation (AMOC) showed ambiguous results on transports and structure. Here we analyze the most recent PMIP3 models, which show a consistent increase (on average by 41%) and deepening (580 m) of the AMOC for all models with respect to pre-industrial control (PIC) simulations (see Figure), in contrast to some reconstructions. Changes in wind stress alone lead to similar AMOC responses in a climate-ocean circulation model, suggesting that atmospheric circulation changes in the North Atlantic due to the presence of ice sheets are an important control in the PMIP3 models' LGM response. These results improve our understanding of the LGM AMOC's driving forces and are relevant for the evaluation of models that are used in the IPCC's Assessment Reports for future climate projections, as well as for the currently ongoing design of the next round of PMIP.

  3. Glacial terminations and the global water budget

    SciTech Connect

    Broecker, W.S. . Lamont-Doherty Geological Observatory)

    1992-01-01

    Evidence suggests that the last glacial period came to an abrupt close about 13,500 years ago. This evidence indicates: (1) that the melting of the North American ice sheet commenced abruptly at this time; (2) that surface temperatures in the northern Atlantic rose sharply at this time; (3) that surface water conditions in the Antarctic changed abruptly at this time; (4) that the salinity of the Red Sea dropped abruptly at this time; and (5) that accumulation rate of planktonic foraminifera in the South China Sea underwent an abrupt five-fold increase at this time. This project has been directed toward better developing and documenting our explanation for the abruptness of these changes. This project has supported investigation of several aspects of this hypothesis. We suggest that the Greenland climate changes are driven by oscillations in salt content which modulate the strength of the Atlantic's conveyor circulation.

  4. Characterization methods for fractured glacial tills

    USGS Publications Warehouse

    Haefner, R.J.

    2000-01-01

    This paper provides a literature review of methods successfully employed to characterize finegrained and fractured or unfractured glacial deposits. Descriptions and examples are given for four major categories of characterization methods: physical, hydraulic, chemical, and indirect. Characterization methods have evolved significantly within the past ten years; however, there still exists uncertainty about the reliability of individual characterization methods applied to till deposits. Therefore, a combination of methods is best, the choice of which depends on the objectives of the work. Sampling methods, sampling scales, and reporting methods are extremely important and should be considered when interpreting and comparing results between sites. Recognition of these issues is necessary to ensure that decisions regarding the transport of fluids in fractured tills are not based on the assumption that poorly permeable tills are always an inhibitor of subsurface flow.

  5. Understanding Antarctic Climate and Glacial History

    NASA Astrophysics Data System (ADS)

    DeConto, Rob; Escutia, Carlota

    2010-01-01

    First Antarctic Climate Evolution Symposium; Granada, Spain, 7-11 September 2009; Antarctic Climate Evolution (ACE; http://www.ace.scar.org), a scientific research project of the Scientific Committee on Antarctic Research and a core International Polar Year project, held its first international symposium in Spain in September 2009. ACE's mission is to facilitate the study of Antarctic climate and glacial history through integration of numerical modeling with geophysical and geological data. Nearly 200 international scientists from the fields of climate, ocean, and ice modeling joined geologists, geophysicists, and geochemists for 5 days of intense interaction. Oral sessions were plenary and were limited to allow time for poster viewing, discussion, and workshops (http://www.acegranada2009.com/).

  6. Dissolved organic matter export in glacial and non-glacial streams along the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Hood, E. W.; Scott, D.; Jeffery, A.; Schreiber, S.; Heavner, M.; Edwards, R.; D'Amore, D. V.; Fellman, J.

    2009-12-01

    The Gulf of Alaska drainage basin contains more than 75,000 km2 of glaciers, many of which are rapidly thinning and receding. We are using a paired watershed approach to evaluate how changes in glacier ecosystems will impact the export dissolved organic matter (DOM) into the Gulf of Alaska. Our primary study watersheds, Lemon Creek and Montana Creek, are similar in size, bedrock lithology and elevation range and extend from near sea level to the margin or interior of the Juneau Icefield. Lemon Creek has a glacial coverage of ~60%, while Montana Creek is free of glacier ice. Our goal is to evaluate seasonal differences in the quantity, chemical character and reactivity of DOM being exported from these watersheds to downstream near-shore marine ecosystems. In addition, we are monitoring a variety of physical parameters that influence instream DOM metabolism in both watersheds. Our initial results from the 2009 runoff season indicate that concentrations of dissolved organic carbon (DOC) are substantially higher in the non-glacial watershed. However, fluorescence analyses indicate that DOM from the glacier watershed has a higher protein and lower humic material content compared to DOM from the non-glacial watershed. After the spring snowmelt season, physical parameters between the two watersheds diverged, with higher streamflow and turbidity as well as colder water temperatures in the glacial watershed. Although our previous yield calculations show significantly higher DOC fluxes from the forested watershed, our results here suggest that glacier watersheds may be an important source of labile carbon to the near shore marine ecosystem. The contrast in the physical habitat between the two rivers (e.g glacier stream = cold, low light penetration, unstable substrate) supports the hypothesis that that in-stream DOM processing is limited within glacier dominated rivers, therefore delivering a higher percentage of labile DOM downstream.

  7. Late Glacial lakes - uniform or contrasting ecosystems?

    NASA Astrophysics Data System (ADS)

    Zawiska, Izabela; Rzodkiewicz, Monika; Noryśkiewicz, Agnieszka M.; Obremska, Milena; Ott, Florian; Kramkowski, Mateusz; Słowiński, Michał; Błaszkiewicz, Mirosław; Brauer, Achim

    2015-04-01

    Climate changes are one of the most investigated topic in paleolimnology. The Late Glacial and Early Holocene time are specially interesting as than most abrupt changes happened. Lake sediments are known to be great source of information of the past environments. They are functioning as natural archives because in them preserve animal and plants remains. In this study we investigated three cores of the biogenic sediments from the lakes located in close vicinity in Tuchola Forest (Northern Poland): paleolake Trzechowskie, Lake Czechowskie-deepest part and Lake Czechowskie-bay. We made Cladocera, diatom and pollen analysis, the chronology was determined by varve counting, Laacher See Tephra (12,880 yrs BP) and 14C dating. The aim of our research was to find out the response of zooplankton, phytoplankton, lake and catchment vegetation to abrupt climate changes. We were interested in similarities and differences between those three locations in response of entire communities but also species composition. The preliminary results revealed that the Cladocera, diatoms and plants communities were sensitive to climatic shifts and it is well shown in the results of ordination method (PCA). However in the Cladocera and diatoms assemblages, which reflect well lake environment conditions, the dominant species and total number of species present, were different in all three locations. Especially great difference was noted between paleolake Trzechowskie and Lake Czechowskie (core from the deepest part). The results of our research shows that in Late Glacial time landscape in Lake Czechowskie region (Tuchola Forest, Northern Poland) had mosaic character. Local factors such as relief, edaphic conditions strongly modified type of vegetation and in close vicinity existed lakes that had very diverse environments.

  8. Numerical simulation of Glacial Isostatic Adjustment

    NASA Astrophysics Data System (ADS)

    Miglio, E.

    2015-12-01

    In the Earth's crust, stress can be subdivided into tectonic background stress, overburden pressure, and pore-fluid pressure. The superposition of the first two and the variation of the third part are key factors in controlling movement along faults. Furthermore, stresses due to sedimentation and erosion contribute to the total stress field. In deglaciated regions, an additional stress must be considered: the rebound stress, which is related to rebounding of the crust and mantle after deglaciation. During the growth of a continental ice sheet, the lithosphere under the iceload is deformed and the removal of the ice load during deglaciation initiates a rebound process. The uplift is well known in formerly glaciated areas, e.g.North America and Scandinavia, and in currently deglaciating areas, e.g.Alaska, Antarctica, and Greenland. The whole process of subsiding and uplifting during the growth and melting of an iceload and all related phenomena is known as glacial isostatic adjustment. During the process of glaciation, the surface of the lithosphere is depressed underneath the ice load and compressional flexural stresses are induced in the upper lithosphere, whereas the bottom of the lithosphere experiences extensional flexural stresses; an additional vertical stress due to the ice load is present and it decreases to zero during deglaciation. During rebound, flexural stresses relax slowly. These stresses are able to change the original stress directions and regime.In this work we aim to study the effect of the GIA process in the context of petroleum engineering. The main aspect we will focus on is the mathematical and numerical modeling of the GIA including thermal effects. We plan also to include a preliminary study of the effect of the glacial erosion. All these phenomena are of paramount importance in petroleum engineering: for example some reservoir have been depleted due to tilting caused by both GIA, erosion and thermal effects.

  9. Fault slip during a glacial cycle

    NASA Astrophysics Data System (ADS)

    Steffen, Rebekka; Wu, Patrick; Steffen, Holger; Eaton, Dave

    2013-04-01

    Areas affected by glacial isostatic adjustment (GIA) generally show uplift after deglaciation. These regions are also characterized by a moderate past and present-day seismicity, at seismic moment release rates that exceed those expected under stable tectonic conditions. Several faults have been found in North America and Europe, which have been activated during or after the last deglaciation. Large-magnitude earthquakes have generated fault offsets of up to 120 m. Due to the recent melting of Greenland and Antarctic ice sheets, an understanding of the occurrence of these earthquakes is important. With a new finite-element model, we are able to estimate, for the first time, fault slip during a glacial cycle for continental ice sheets. A two-dimensional earth model based on former GIA studies is developed, which is loaded with a hyperbolic ice sheet. The fault is able to move in a stress field consisting of rebound stress, tectonic background stress, and lithostatic stress. The sensitivity of this fault is tested regarding lithospheric and crustal thickness, viscosity structure of upper and lower mantle, ice-sheet thickness and width, and fault parameters including coefficient of friction, depth, angle and location. Fault throws of up to 30 m are obtained using a fault of 45° dipping below the ice sheet centre. The thickness of the crust is one of the major parameters affecting the total fault throw, e.g. higher values for a thinner crust. Most faults start to move close to the end of deglaciation, and movement stops after one thrusting/reverse earthquake. However, certain conditions may also lead to several fault movements after the end of glaciations.

  10. Glacial onset predated Late Ordovician climate cooling

    NASA Astrophysics Data System (ADS)

    Pohl, Alexandre; Donnadieu, Yannick; Le Hir, Guillaume; Ladant, Jean-Baptiste; Dumas, Christophe; Alvarez-Solas, Jorge; Vandenbroucke, Thijs R. A.

    2016-06-01

    The Ordovician glaciation represents the acme of one of only three major icehouse periods in Earth's Phanerozoic history and is notorious for setting the scene for one of the "big five" mass extinction events. Nevertheless, the mechanisms that drove ice sheet growth remain poorly understood and the final extent of the ice sheet crudely constrained. Here using an Earth system model with an innovative coupling method between ocean, atmosphere, and land ice accounting for climate and ice sheet feedback processes, we report simulations portraying for the first time the detailed evolution of the Ordovician ice sheet. We show that the emergence of the ice sheet happened in two discrete phases. In a counterintuitive sequence of events, the continental ice sheet appeared suddenly in a warm climate. Only during the second act, and set against a background of decreasing atmospheric CO2, followed steeply dropping temperatures and extending sea ice. The comparison with abundant sedimentological, geochemical, and micropaleontological data suggests that glacial onset may have occurred as early as the Middle Ordovician Darriwilian, in agreement with recent studies reporting third-order glacioeustatic cycles during the same period. The second step in ice sheet growth, typified by a sudden drop in tropical sea surface temperatures by ˜8°C and the further extension of a single, continental-scale ice sheet over Gondwana, marked the onset of the Hirnantian glacial maximum. By suggesting the presence of an ice sheet over Gondwana throughout most of the Middle and Late Ordovician, our models embrace the emerging paradigm of an "early Paleozoic Ice Age."

  11. Late Holocene glacial history of the Copper River Delta, coastal south-central Alaska, and controls on valley glacier fluctuations

    NASA Astrophysics Data System (ADS)

    Barclay, David J.; Yager, Elowyn M.; Graves, Jason; Kloczko, Michael; Calkin, Parker E.

    2013-12-01

    Fluctuations of four valley glaciers in coastal south-central Alaska are reconstructed for the past two millennia. Tree-ring crossdates on 216 glacially killed stumps and logs provide the primary age control, and are integrated with glacial stratigraphy, ages of living trees on extant landforms, and historic forefield photographs to constrain former ice margin positions. Sheridan Glacier shows four distinct phases of advance: in the 530s to c.640s in the First Millennium A.D., and the 1240s to 1280s, 1510s to 1700s, and c.1810s to 1860s during the Little Ice Age (LIA). The latter two LIA advances are also recorded on the forefields of nearby Scott, Sherman and Saddlebag glaciers. Comparison of the Sheridan record with other two-millennia long tree-ring constrained valley glacier histories from south-central Alaska and Switzerland shows the same four intervals of advance. These expansions were coeval with decreases in insolation, supporting solar irradiance as the primary pacemaker for centennial-scale fluctuations of mid-latitude valley glaciers prior to the 20th century. Volcanic aerosols, coupled atmospheric-oceanic systems, and local glacier-specific effects may be important to glacier fluctuations as supplemental forcing factors, for causing decadal-scale differences between regions, and as a climatic filter affecting the magnitude of advances.

  12. Fault-Tree Compiler

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Boerschlein, David P.

    1993-01-01

    Fault-Tree Compiler (FTC) program, is software tool used to calculate probability of top event in fault tree. Gates of five different types allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language easy to understand and use. In addition, program supports hierarchical fault-tree definition feature, which simplifies tree-description process and reduces execution time. Set of programs created forming basis for reliability-analysis workstation: SURE, ASSIST, PAWS/STEM, and FTC fault-tree tool (LAR-14586). Written in PASCAL, ANSI-compliant C language, and FORTRAN 77. Other versions available upon request.

  13. Apparatus for separating and recovering hydrogen isotopes

    DOEpatents

    Heung, Leung K.

    1994-01-01

    An apparatus for recovering hydrogen and separating its isotopes. The apparatus includes a housing bearing at least a fluid inlet and a fluid outlet. A baffle is disposed within the housing, attached thereto by a bracket. A hollow conduit is coiled about the baffle, in spaced relation to the baffle and the housing. The coiled conduit is at least partially filled with a hydride. The hydride can be heated to a high temperature and cooled to a low temperature quickly by circulating a heat transfer fluid in the housing. The spacing between the baffle and the housing maximizes the heat exchange rate between the fluid in the housing and the hydride in the conduit. The apparatus can be used to recover hydrogen isotopes (protium, deuterium and tritium) from gaseous mixtures, or to separate hydrogen isotopes from each other.

  14. Variations in glacial and interglacial marine conditions over the last two glacial cycles off northern Greenland

    NASA Astrophysics Data System (ADS)

    Löwemark, Ludvig; Chao, Weng-Si; Gyllencreutz, Richard; Hanebuth, Till J. J.; Chiu, Pin-Yao; Yang, Tien-Nan; Su, Chih-Chieh; Chuang, Chih-Kai; León Dominguez, Dora Carolina; Jakobsson, Martin

    2016-09-01

    Five sediment cores from the Lomonosov Ridge and the Morris Jesup Rise north of Greenland show the history of sea-ice coverage and primary productivity over the last two glacial cycles. Variations in Manganese content, benthic and planktonic foraminifera, bioturbation, and trace fossil diversity are interpreted to reflect differences in sea-ice cover and sediment depositional conditions between the identified interglacials. Marine Isotope Stage (MIS) 1 and MIS 2 are represented by thin (<<5 cm) sediment units while the preceding interglacial MIS 5 and glacial MIS 6 are characterized by thick (10-20 cm) deposits. Foraminiferal abundances and bioturbation suggest that MIS 1 was generally characterized by severe sea-ice conditions north of Greenland while MIS 5 appears to have been considerably warmer with more open water, higher primary productivity, and higher sedimentation rates. Strengthened flow of Atlantic water along the northern continental shelf of Greenland rather than development of local polynyas is here suggested as a likely cause for the relatively warmer marine conditions during MIS 5 compared to MIS 1. The cores also suggest distinct differences between the glacial intervals MIS 2 and MIS 6. While MIS 6 is distinguished by a relatively thick sediment unit poor in foraminifera and with low Mn values, MIS 2 is practically missing. We speculate that this could be the effect from a paleocrystic sea-ice cover north of Greenland during MIS 2 that prevented sediment delivery from sea ice and icebergs. In contrast, the thick sequence deposited during MIS 6 indicates a longer glacial period with dynamic intervals characterized by huge drifting icebergs delivering ice rafted debris (IRD). A drastic shift from thinner sedimentary cycles where interglacial sediment parameters indicate more severe sea-ice conditions gave way to larger amplitude cycles with more open water indicators was observed around the boundary between MIS 7/8. This shift is in agreement with a

  15. Glacial ocean and continental climate variability off southernmost Chile during the past 60 kyr

    NASA Astrophysics Data System (ADS)

    Lamy, F.; Caniupan, M.; Arz, H. W.; Hebbeln, D.; Kaiser, J.; Kilian, R.; Kissel, C.; Lange, C.; Mollenhauer, G.; Ninnemann, U.

    2009-04-01

    We present paleoceanographic and continental paleoclimate data from sediment core MD07-3128 recovered during IMAGES XV-MD159-PACHIDERME cruise off southernmost Chile. The coring site is located at ~53°S at the continental slope (~1000 m water depth) off the Pacific entrance of the Strait of Magellan. Based on the preliminary stratigraphy (14C and paleomagnetic evidence), the Holocene sequence is very condensed and largely consists of foraminifera sand, whereas enhanced terrestrial sediment input provides high time-resolution during the last glacial back to ca. 65 kyr BP. The alkenone SST record reveals a very strong warming of ca. 8˚C over the last termination and millennial-sale variability in the order of 2-4˚C in the glacial (MIS 2-4). The timing and structure of the termination and some of the millennial-scale fluctuations in the glacial are very similar to those observed in the well-dated SST record from the Chilean margin ODP Site 1233 (41°S) and in the temperature reconstructions from Antarctic ice-cores. There are however important differences in the new southernmost Chilean margin record, e.g. regarding a long-term warming trend over the MIS 3 followed by a cooling towards the LGM. Opal/CaCO3 ratios are generally higher and alkenone concentrations lower during millennial-scale cold intervals suggesting SST-related shifts in the calcareous and siliceous plankton communities. The cold period between ~25 to ~19 kyr BP is accompanied by a significant increase in ice rafted debris and alkenone C37:4 content in particular at ~21, ~20 and ~18 kyr BP that correlate with reduced iron contents (most likely due to Quarz-rich IRD). These changes may be related with glacier advances documented in the Strait of Magellan region or wind-driven changes in the advection of ice-bergs to the site.

  16. High-resolution Geophysical Mapping of Submarine Glacial Landforms

    NASA Astrophysics Data System (ADS)

    Jakobsson, M.; Dowdeswell, J. A.; Canals, M.; Todd, B. J.; Dowdeswell, E. K.; Hogan, K. A.; Mayer, L. A.

    2014-12-01

    Glacial landforms are generated from the activity of glaciers and display spatial dimensions ranging from below one meter up to tens of kilometers. Glacial landforms are used as diagnostic features of past activity of ice sheets and glaciers; they are specifically important in the field of palaeoglaciology. Mapping of submarine glacial landforms is largely dependent on geophysical survey methods capable of imaging the seafloor and sub-bottom through the water column. Full "global" seafloor mapping coverage, equivalent to what exists for land elevation, is to-date only achieved by the powerful method of deriving bathymetry from altimeters on satellites like GEOSAT and ERS-1. The lateral resolution of satellite derived bathymetry is, however, limited by the footprint of the satellite and the need to average out local wave and wind effects resulting in values of around 15 km. Consequently, mapping submarine glacial landforms requires for the most part higher resolution than is achievable by satellite derived bathymetry. The most widely-used methods for mapping submarine glacial landforms are based on echo-sounding principles. This presentation shows how the evolution of marine geophysical mapping techniques, in particular the advent of side-scan and multibeam bathymetric sonars, has made it possible to study submarine glacial landforms in unprecedented detail. Examples are shown from the Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient, which will be published in late 2015 in the Memoir Series of the Geological Society of London.

  17. Extensive glaciation in Transbaikalia, Siberia, at the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Margold, Martin; Jansen, John D.; Gurinov, Artem L.; Codilean, Alexandru T.; Fink, David; Preusser, Frank; Reznichenko, Natalya V.; Mifsud, Charles

    2016-01-01

    Successively smaller glacial extents have been proposed for continental Eurasia during the stadials of the last glacial period leading up to the Last Glacial Maximum (LGM). At the same time the large mountainous region east of Lake Baikal, Transbaikalia, has remained unexplored in terms of glacial chronology despite clear geomorphological evidence of substantial past glaciations. We have applied cosmogenic 10Be exposure dating and optically stimulated luminescence to establish the first quantitative glacial chronology for this region. Based on eighteen exposure ages from five moraine complexes, we propose that large mountain ice fields existed in the Kodar and Udokan mountains during Oxygen Isotope Stage 2, commensurate with the global LGM. These ice fields fed valley glaciers (>100 km in length) reaching down to the Chara Depression between the Kodar and Udokan mountains and to the valley of the Vitim River northwest of the Kodar Mountains. Two of the investigated moraines date to the Late Glacial, but indications of incomplete exposure among some of the sampled boulders obscure the specific details of the post-LGM glacial history. In addition to the LGM ice fields in the highest mountains of Transbaikalia, we report geomorphological evidence of a much more extensive, ice-cap type glaciation at a time that is yet to be firmly resolved.

  18. Glacial and periglacial buzzsaws: fitting mechanisms to metaphors

    NASA Astrophysics Data System (ADS)

    Hall, Adrian M.; Kleman, Johan

    2014-03-01

    The buzzsaw hypothesis refers to the potential for glacial and periglacial processes to rapidly denude mountains at and above glacier Equilibrium Line Altitudes (ELAs), irrespective of uplift rates, rock type or pre-existing topography. Here the appropriateness of the buzzsaw metaphor is examined alongside questions of the links between glacial erosion and ELAs, and whether the glacial system can produce low-relief surfaces or limit summit heights. Plateau fragments in mountains on both active orogens and passive margins that have been cited as products of glacial and periglacial buzzsaw erosion instead generally represent dissected remnants of largely inherited, pre-glacial relief. Summit heights may correlate with ELAs but no causal link need be implied as summit erosion rates are low, cirque headwalls may not directly abut summits and, on passive margins, cirques are cut into pre-existing mountain topography. Any simple links between ELAs and glacial erosion break down on passive margins due to topographic forcing of ice-sheet growth, and to the km-scale vertical swaths through which ELAs have shifted through the Quaternary. Glaciers destroy rather than create low-relief rock surfaces through the innate tendency for ice flow to be faster, thicker and warmer along valleys. The glacial buzzsaw cuts down.

  19. Recovering selenium from copper refinery slimes

    NASA Astrophysics Data System (ADS)

    Hyvärinen, Olli; Lindroos, Leo; Yllö, Erkki

    1989-07-01

    The selenium contained within copper refinery slimes may be recovered advantageously by roasting at about 600°C. While roasting in air is inefficient, roasting in a sulfating atmosphere enables practically complete selenium recovery. Based on laboratory tests, a new selenium recovery process was adopted at Outokumpu Copper Refinery. In this process, sulfation is achieved by feeding sulfur dioxide and oxygen into the roasting furnace.

  20. Emergency destruction system for recovered chemical munitions

    SciTech Connect

    Shepodd, T.J.; Stofleth, J.H.; Haroldsen, B.L.

    1998-04-01

    At the request of the US Army Project Manager for Non-Stockpile Chemical Materiel, Sandia National Laboratories is developing a transportable system for destroying recovered, explosively configured, chemical warfare munitions. The system uses shaped charges to access the agent and burster followed by chemical neutralization to destroy them. The entire process takes place inside a sealed pressure vessel. In this paper, they review the design, operation, and testing of a prototype system capable of containing up to one pound of explosive.

  1. Late Glacial vegetation reconstruction based on leaf waxes from the Gemündener Maar, Germany

    NASA Astrophysics Data System (ADS)

    Wüthrich, Lorenz; Lutz, Selina; Zech, Michael; Hepp, Johannes; Sirocko, Frank; Zech, Roland

    2015-04-01

    Lake sediments are valuable archives for the reconstruction of past changes in climate and vegetation. In the present study, we analyse samples from the Gemündener Maar, a lake situated in the western Eiffel, Germany, for their leaf wax composition: In the bottom part of the core, corresponding to the Oldest Dryas (i.e. older than ~15 ka), n-alkanes have a high average chain length (ACL), which points to a vegetation dominated by grass. During the Bölling/Alleröd, a decrease of the ACL can be interpreted as signal of more deciduous trees. During the Younger Dryas (~12.8 to 11.5 ka), the ACL increases again. Trees probably became again less abundant, before finally, the ACL records the return of deciduous trees during the early Holocene. In general, the total concentrations of both, n-alkanes and sugar biomarkers are high enough to measure compound-specific isotopes on n-alkanes (deuterium) and sugars (18-O). Combined, these two isotopes might help to obtain more information about the relative humidity and mean air temperature during the late glacial.

  2. Method for recovering metals from waste

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    2000-01-01

    A method for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300-800.degree. C. to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000-1,550.degree. C. at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  3. Method for recovering metals from waste

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    1998-01-01

    A method for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300.degree.-800.degree. C. to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000.degree.-1,550.degree. C. at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  4. Method for recovering metals from waste

    DOEpatents

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1998-12-01

    A method is described for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800 C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000--1,550 C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification. 2 figs.

  5. Method for recovering materials from waste

    DOEpatents

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1994-01-01

    A method for recovering metals from metals-containing wastes, a vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800{degrees}C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1000--1550{degrees}C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  6. Theoretical design of an energy recovering divertor

    NASA Astrophysics Data System (ADS)

    Baver, D. A.

    2010-11-01

    An energy recovering divertor (ERD) is a device for converting thermal to electrical energy in the divertor channel of a tokamak. Because ERD's are a type of heat engine operating at plasma temperatures, they have the thermodynamic potential for extremely high efficiencies. An ERD offers several important benefits to a tokamak fusion reactor. First, any energy recovered by the ERD is subtracted from divertor heat load, thus circumventing materials limitations. Second, energy recovered by the ERD is available for auxiliary heating, thus allowing the reactor to break even at a lower Lawson parameter. Third, an ERD can be used to power auxiliary current drive, thus reducing dependence on bootstrap current. We will present a design for an ERD based on amplification of Alfven waves in a manner analogous to a free-electron laser. While its projected efficiency falls short of the thermodynamic potential for this class of device, it nonetheless demonstrates the theoretical viability of direct power conversion in a tokamak divertor. We will also present potential approaches towards higher efficiency devices of this type. Work supported by the U.S. DOE under grant DE-FG02-97ER54392.

  7. Recovering chaotic properties from small data.

    PubMed

    Shao, Chenxi; Fang, Fang; Liu, Qingqing; Wang, Tingting; Wang, Binghong; Yin, Peifeng

    2014-12-01

    Physical properties are obviously essential to study a chaotic system that generates discrete-time signals, but recovering chaotic properties of a signal source from small data is a very troublesome work. Existing chaotic models are weak in dealing with such case in that most of them need big data to exploit those properties. In this paper, geometric theory is considered to solve this problem. We build a smooth trajectory from series to implicitly exhibit the chaotic properties with series-nonuniform rational B-spline (S-NURBS) modeling method, which is presented by our team to model slow-changing chaotic time series. As for the part of validation, we reveal how well our model recovers the properties from both the statistical and the chaotic aspects to confirm the effectiveness of the model. Finally a practical chaotic model is built up to recover the chaotic properties contained in the Musa standard dataset, which is used in analyzing software reliability, thereby further proves the high credibility of this model in practical time series. The effectiveness of the S-NURBS modeling leads us to believe that it is really a feasible and worthy research area to study chaotic systems from geometric perspective. For this reason, we reckon that we have opened up a new horizon for chaotic system research.

  8. Evidence of late glacial paleoseismicity from submarine landslide deposits within Lac Dasserat, northwestern Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Brooks, Gregory R.

    2016-09-01

    An integrated seismo- and chronostratigraphic investigation at Lac Dasserat, northwestern Quebec, identified 74 separate failures within eight event horizons. Horizons E and B, and H and G have strong or moderately-strong multi-landslide signatures, respectively, composed of 11-23 failures, while horizons F, D, C, and A have minor landslide signatures consisting of a single or pair of deposit(s). Cores collected at six sites recovered glacial Lake Ojibway varve deposits that are interbedded with the event horizons. The correlation of the varves to the regional Timiskaming varve series allowed varve ages or ranges of varve ages to be determined for the event horizons. Horizons H, G, E, and B are interpreted to be evidence of paleoearthquakes with differing levels of interpretative confidence, based on the relative strength of the multi-landslide signatures, the correlation to other disturbed deposits of similar age in the region, and the lack or possibility of alternative aseismic mechanisms. The four interpreted paleoearthquakes occurred between 9770 ± 200 and 8470 ± 200 cal yr BP, when glacial Lake Ojibway was impounded behind the Laurentide Ice Sheet during deglaciation. They probably represent an elevated period of seismicity at deglaciation that was driven by crustal unloading.

  9. Tropical-Subpolar Linkages in the North Atlantic during the last Glacial Period

    NASA Astrophysics Data System (ADS)

    Vautravers, M. J.; Hodell, D. A.

    2010-12-01

    We studied millennial-scale changes in planktonic foraminifera assemblages from the last glacial period in a high-resolution core (KN166-14-JPC13) recovered from the southern part of the Gardar Drift in the subpolar North Atlantic. Similar to recent findings reported by Jonkers et al. (2010), we also found that the sub-polar North Atlantic Ocean experienced some seasonal warming during each of the Heinrich Events (HEs). In addition, increasing abundances of tropical species are found just prior to the IRD event marking the end of each Bond cycle, suggesting that summer warming may have been involved in triggering Heinrich events. We suggest that tropical-subtropical water transported via the Gulf Stream and North Atlantic Drift may have triggered the collapse of large NH ice-shelves. Sharp decreases in polar species are tied to abrupt warming following Heinrich Events as documented in Greenland Ice cores and other marine records in the North Atlantic. The record bears a strong resemblance to the tropical record of Cariaco basin (Peterson et al., 2000), suggesting strong tropical-subpolar linkages in the glacial North Atlantic. Enhanced spring productivity, possibly related to eddy activity along the Subpolar Front, is recorded by increased shell size, high δ13C in G. bulloides and other biological indices early during the transition from HE stadials to the following interstadial.

  10. Hydrolysis and composition of recovered fibres fractionated from solid recovered fuel.

    PubMed

    Kemppainen, K; Siika-Aho, M; Östman, A; Sipilä, E; Puranen, T; von Weymarn, N; Kruus, K

    2014-10-01

    Fibres fractionated from solid recovered fuel (SRF), a standardised market combustion fuel produced from sorted waste, were considered as a source of lignocellulosic fermentable sugars. The fibre yield from four samples of SRF was 25-45%, and the separated material consisted of 52-54% carbohydrates, mainly glucan, with a high content of ash (12-17%). The enzymatic digestibility of recovered fibres was studied at low and high solids loading and compared with model substrates containing only chemical and mechanical pulps. Above 80% hydrolysis yield was reached at 20% solids loading in 48 h, but variation was observed between different samples of recovered fibres. Surfactants were found to improve the hydrolysis yield of recovered fibres especially in tumbling-type of mixing at low solids loading, where hydrolysis was found to stagnate without surfactants. The results suggest that SRF is a potential source of easily digestible lignocellulosic carbohydrates for use in biorefineries.

  11. Late Ordovician (Ashgillian) glacial deposits in southern Jordan

    NASA Astrophysics Data System (ADS)

    Turner, Brian R.; Makhlouf, Issa M.; Armstrong, Howard A.

    2005-11-01

    The Late Ordovician (Ashgillian) glacial deposits in southern Jordan, comprise a lower and upper glacially incised palaeovalley system, occupying reactivated basement and Pan-African fault-controlled depressions. The lower palaeovalley, incised into shoreface sandstones of the pre-glacial Tubeiliyat Formation, is filled with thin glaciofluvial sandstones at the base, overlain by up to 50 m of shoreface sandstone. A prominent glaciated surface near the top of this palaeovalley-fill contains intersecting glacial striations aligned E-W and NW-SE. The upper palaeovalley-fill comprises glaciofluvial and marine sandstones, incised into the lower palaeovalley or, where this is absent, into the Tubeiliyat Formation. Southern Jordan lay close to the margin of a Late Ordovician terrestrial ice sheet in Northwest Saudi Arabia, characterised by two major ice advances. These are correlated with the lower and upper palaeovalleys in southern Jordan, interrupted by two subsidiary glacial advances during late stage filling of the lower palaeovalley when ice advanced from the west and northwest. Thus, four ice advances are now recorded from the Late Ordovician glacial record of southern Jordan. Disturbed and deformed green sandstones beneath the upper palaeovalley-fill in the Jebel Ammar area, are confined to the margins of the Hutayya graben, and have been interpreted as structureless glacial loessite or glacial rock flour. Petrographic and textural analyses of the deformed sandstones, their mapped lateral transition into undeformed Tubeiliyat marine sandstones away from the fault zone, and the presence of similar sedimentary structures to those in the pre-glacial marine Tubeiliyat Formation suggest that they are a locally deformed facies equivalent of the Tubeiliyat, not part of the younger glacial deposits. Deformation is attributed to glacially induced crustal stresses and seismic reactivation of pre-existing faults, previously weakened by epeirogenesis, triggering sediment

  12. Early local last glacial maximum in the tropical Andes.

    PubMed

    Smith, Jacqueline A; Seltzer, Geoffrey O; Farber, Daniel L; Rodbell, Donald T; Finkel, Robert C

    2005-04-29

    The local last glacial maximum in the tropical Andes was earlier and less extensive than previously thought, based on 106 cosmogenic ages (from beryllium-10 dating) from moraines in Peru and Bolivia. Glaciers reached their greatest extent in the last glacial cycle approximately 34,000 years before the present and were retreating by approximately 21,000 years before the present, implying that tropical controls on ice volumes were asynchronous with those in the Northern Hemisphere. Our estimates of snowline depression reflect about half the temperature change indicated by previous widely cited figures, which helps resolve the discrepancy between estimates of terrestrial and marine temperature depression during the last glacial cycle.

  13. Probability of moraine survival in a succession of glacial advances.

    USGS Publications Warehouse

    Gibbons, A.B.; Megeath, J.D.; Pierce, K.L.

    1984-01-01

    Emplacement of glacial moraines normally results in obliteration of older moraines deposited by less extensive glacial advances, a process we call 'obliterative overlap'. Assuming randomness and obliterative overlap, after 10 glacial episodes the most likely number of surviving moraines is only three. The record of the Pleistocene is in agreement with the probability analysis: the 10 glaciations during the past 0.9 Myr inferred from the deep-sea record resulted in moraine sequences in which only two or three different-aged moraine belts can generally be distinguished. -from Authors

  14. Isotopic evidence for reduced productivity in the glacial Southern Ocean

    SciTech Connect

    Shemesh, A. ); Macko, S.A. ); Charles, C.D. ); Rau, G.H. )

    1993-10-15

    Records of carbon and nitrogen isotopes in biogenic silica and carbon isotopes in planktonic foraminifera from deep-sea sediment cores from the Southern Ocean reveal that the primary production during the last glacial maximum was lower than Holocene productivity. These observations conflict with the hypothesis that the low atmospheric carbon dioxide concentrations were introduced by an increase in the efficiency of the high-latitude biological pump. Instead, different oceanic sectors may have had high glacial productivity, or alternative mechanisms that do not involve the biological pump must be considered as the primary cause of the low glacial atmospheric carbon dioxide concentrations.

  15. Associated terrestrial and marine fossils in the late-glacial Presumpscot Formation, southern Maine, USA, and the marine reservoir effect on radiocarbon ages

    USGS Publications Warehouse

    Thompson, W.B.; Griggs, C.B.; Miller, N.G.; Nelson, R.E.; Weddle, T.K.; Kilian, T.M.

    2011-01-01

    Excavations in the late-glacial Presumpscot Formation at Portland, Maine, uncovered tree remains and other terrestrial organics associated with marine invertebrate shells in a landslide deposit. Buds of Populus balsamifera (balsam poplar) occurred with twigs of Picea glauca (white spruce) in the Presumpscot clay. Tree rings in Picea logs indicate that the trees all died during winter dormancy in the same year. Ring widths show patterns of variation indicating responses to environmental changes. Fossil mosses and insects represent a variety of species and wet to dry microsites. The late-glacial environment at the site was similar to that of today's Maine coast. Radiocarbon ages of 14 tree samples are 11,907??31 to 11,650??5014C yr BP. Wiggle matching of dated tree-ring segments to radiocarbon calibration data sets dates the landslide occurrence at ca. 13,520+95/??20calyr BP. Ages of shells juxtaposed with the logs are 12,850??6514C yr BP (Mytilus edulis) and 12,800??5514C yr BP (Balanus sp.), indicating a marine reservoir age of about 1000yr. Using this value to correct previously published radiocarbon ages reduces the discrepancy between the Maine deglaciation chronology and the varve-based chronology elsewhere in New England. ?? 2011 University of Washington.

  16. Associated terrestrial and marine fossils in the late-glacial Presumpscot Formation, southern Maine, USA, and the marine reservoir effect on radiocarbon ages

    NASA Astrophysics Data System (ADS)

    Thompson, Woodrow B.; Griggs, Carol B.; Miller, Norton G.; Nelson, Robert E.; Weddle, Thomas K.; Kilian, Taylor M.

    2011-05-01

    Excavations in the late-glacial Presumpscot Formation at Portland, Maine, uncovered tree remains and other terrestrial organics associated with marine invertebrate shells in a landslide deposit. Buds of Populus balsamifera (balsam poplar) occurred with twigs of Picea glauca (white spruce) in the Presumpscot clay. Tree rings in Picea logs indicate that the trees all died during winter dormancy in the same year. Ring widths show patterns of variation indicating responses to environmental changes. Fossil mosses and insects represent a variety of species and wet to dry microsites. The late-glacial environment at the site was similar to that of today's Maine coast. Radiocarbon ages of 14 tree samples are 11,907 ± 31 to 11,650 ± 50 14C yr BP. Wiggle matching of dated tree-ring segments to radiocarbon calibration data sets dates the landslide occurrence at ca. 13,520 + 95/-20 cal yr BP. Ages of shells juxtaposed with the logs are 12,850 ± 65 14C yr BP ( Mytilus edulis) and 12,800 ± 55 14C yr BP ( Balanus sp.), indicating a marine reservoir age of about 1000 yr. Using this value to correct previously published radiocarbon ages reduces the discrepancy between the Maine deglaciation chronology and the varve-based chronology elsewhere in New England.

  17. Relationship between crown condition and tree diameter growth in southern Swedish oaks.

    PubMed

    Drobyshev, Igor; Linderson, Hans; Sonesson, Kerstin

    2007-05-01

    We studied correlation between crown conditions and tree-ring widths in 260 trees of pedunculate oak (Quercus robur L.) growing on 33 sites in southern Sweden. The tree-ring increment over 1998-2002 was highest in trees with healthy crowns, intermediate in trees with moderately declined crowns, and lowest in trees with heavily declining crowns. The time period with significant correlation between crown status and tree-ring increment varied between 10 years (given autocorrelation in tree-ring chronologies preserved) and 4 years (autocorrelation removed). In pairwise comparisons of three crown classes, differences in tree-ring increment between trees with healthy crowns and trees with heavily declining crowns were the most pronounced, Fisher LSD P value staying below 0.05 over 13 years (autocorrelation preserved ) or 4 years (autocorrelation removed). Over two 5-year periods (1993-1997 vs. 1998-2002) the cumulative increment increased significantly for trees with healthy crowns, did not change in trees with moderately declining crowns, and significantly decreased in trees with heavily declining crowns. For trees with healthy crowns, this dynamics may represent growth recovery after 1992 drought. Instead, oaks with defoliation above 60% appear to reach a threshold in their ability to recover growth. At sites on nutrient-poor soils cumulative increments over 1998-2002 differed significantly among trees with different crown condition and no differences were observed at sites on nutrient-rich soils. Analyses and interpretation of the oak growth trends as recovered from tree-ring chronologies may be improved by controlling for the crown status of the trees sampled, e.g., by using sampling strategy that would represent the average crown and growth conditions of the sites.

  18. Chem-Is-Tree.

    ERIC Educational Resources Information Center

    Barry, Dana M.

    1997-01-01

    Provides details on the chemical composition of trees including a definition of wood. Also includes an activity on anthocyanins as well as a discussion of the resistance of wood to solvents and chemicals. Lists interesting products from trees. (DDR)

  19. Tree Classification Software

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1993-01-01

    This paper introduces the IND Tree Package to prospective users. IND does supervised learning using classification trees. This learning task is a basic tool used in the development of diagnosis, monitoring and expert systems. The IND Tree Package was developed as part of a NASA project to semi-automate the development of data analysis and modelling algorithms using artificial intelligence techniques. The IND Tree Package integrates features from CART and C4 with newer Bayesian and minimum encoding methods for growing classification trees and graphs. The IND Tree Package also provides an experimental control suite on top. The newer features give improved probability estimates often required in diagnostic and screening tasks. The package comes with a manual, Unix 'man' entries, and a guide to tree methods and research. The IND Tree Package is implemented in C under Unix and was beta-tested at university and commercial research laboratories in the United States.

  20. Fine Dissection of Human Mitochondrial DNA Haplogroup HV Lineages Reveals Paleolithic Signatures from European Glacial Refugia

    PubMed Central

    Sarno, Stefania; Sevini, Federica; Vianello, Dario; Tamm, Erika; Metspalu, Ene; van Oven, Mannis; Hübner, Alexander; Sazzini, Marco; Franceschi, Claudio; Pettener, Davide; Luiselli, Donata

    2015-01-01

    Genetic signatures from the Paleolithic inhabitants of Eurasia can be traced from the early divergent mitochondrial DNA lineages still present in contemporary human populations. Previous studies already suggested a pre-Neolithic diffusion of mitochondrial haplogroup HV*(xH,V) lineages, a relatively rare class of mtDNA types that includes parallel branches mainly distributed across Europe and West Asia with a certain degree of structure. Up till now, variation within haplogroup HV was addressed mainly by analyzing sequence data from the mtDNA control region, except for specific sub-branches, such as HV4 or the widely distributed haplogroups H and V. In this study, we present a revised HV topology based on full mtDNA genome data, and we include a comprehensive dataset consisting of 316 complete mtDNA sequences including 60 new samples from the Italian peninsula, a previously underrepresented geographic area. We highlight points of instability in the particular topology of this haplogroup, reconstructed with BEAST-generated trees and networks. We also confirm a major lineage expansion that probably followed the Late Glacial Maximum and preceded Neolithic population movements. We finally observe that Italy harbors a reservoir of mtDNA diversity, with deep-rooting HV lineages often related to sequences present in the Caucasus and the Middle East. The resulting hypothesis of a glacial refugium in Southern Italy has implications for the understanding of late Paleolithic population movements and is discussed within the archaeological cultural shifts occurred over the entire continent. PMID:26640946

  1. Historical distribution of Sundaland’s Dipterocarp rainforests at Quaternary glacial maxima

    PubMed Central

    Cannon, Charles H.; Hijmans, Robert J.; Piessens, Thomas; Saw, Leng Guan; van Welzen, Peter C.; Slik, J. W. Ferry

    2014-01-01

    The extent of Dipterocarp rainforests on the emergent Sundaland landmass in Southeast Asia during Quaternary glaciations remains a key question. A better understanding of the biogeographic history of Sundaland could help explain current patterns of biodiversity and support the development of effective forest conservation strategies. Dipterocarpaceae trees dominate the rainforests of Sundaland, and their distributions serve as a proxy for rainforest extent. We used species distribution models (SDMs) of 317 Dipterocarp species to estimate the geographic extent of appropriate climatic conditions for rainforest on Sundaland at the last glacial maximum (LGM). The SDMs suggest that the climate of central Sundaland at the LGM was suitable to sustain Dipterocarp rainforest, and that the presence of a previously suggested transequatorial savannah corridor at that time is unlikely. Our findings are supported by palynologic evidence, dynamic vegetation models, extant mammal and termite communities, vascular plant fatty acid stable isotopic compositions, and stable carbon isotopic compositions of cave guano profiles. Although Dipterocarp species richness was generally lower at the LGM, areas of high species richness were mostly found off the current islands and on the emergent Sunda Shelf, indicating substantial species migration and mixing during the transitions between the Quaternary glacial maxima and warm periods such as the present. PMID:25385612

  2. Late Glacial beech forest: an 18,000 5000-BP pollen record from Auckland, New Zealand

    NASA Astrophysics Data System (ADS)

    Lancashire, A. K.; Flenley, J. R.; Harper, M.

    2002-07-01

    Australia, New Zealand and South America are the main sources of terrestrial climate change records for midlatitudes in the Southern Hemisphere. The advantage of studying the New Zealand record is that its vegetation has been subject to human influence for only the last thousand years. Vegetation records for Auckland are important because earlier work indicates that during the Last Glacial Maximum, the boundary between scrubland and forest lay in the Auckland region. Auckland is situated in a volcanic field and the coring site was in the crater of a small extinct volcano (Crater Hill, formed about 29 ka BP). The 4-m long core contained sediment dating from c. 5 to c. 18 ka BP. We present pollen and diatom records from this core. The pollen records from basal clays indicate southern beech forest (mainly Nothofagus menziesii) was present in the region around Crater Hill from 18 to 14.5 ka BP. At this time, there were areas of scrub in the crater surrounding a hardwater lake. The southern forest limit could well have been close to the site. Records from overlying peat indicate beech forest was replaced by Podocarp broadleaf forest as the Last Glacial ended. Metrosideros spp. (coastal forest trees) peak in the early Holocene. This coincides with an impoverished diatom flora which indicates drier conditions in the basin. When the lake reformed in the Holocene on peat its water was more acidic.

  3. Assessing the persistence of millennial-scale oscillations during the penultimate glacial phase in southern Europe

    NASA Astrophysics Data System (ADS)

    Wilson, Graham; Frogley, Mick; Jones, Tim; Leng, Melanie

    2016-04-01

    There is growing evidence that millennial-scale climate oscillations are a pervasive feature of glacial intervals. During the last glaciation (Marine Isotope Stage (MIS) 2-4), incursions of cold water into the North Atlantic appeared to coincide with abrupt reductions in southern European tree populations (Tzedakis et al., 2004: Geology 32, 109-112), suggesting down-stream impacts on continental temperature and hydroclimate. Ice-rafting into the North Atlantic during the penultimate glacial (MIS 6) is thought to be less extensive than at times during MIS 2-4, perhaps resulting in more subdued climate oscillations. Published pollen data from Lake Ioannina core I-284 (Epirus, NW Greece) suggest pronounced oscillations in tree population extent during early MIS 6 (185-155 ka), followed by much-reduced tree populations and subdued oscillations throughout late MIS 6 (155-135 ka) (Roucoux et al., 2011: Journal of Quaternary Science 26, 616-626). Previous studies of the diatom and isotope records from the MIS 7/6, 6/5e and 2/1 transitions, and from MIS 5e and 1 in Lake Ioannina core I-284 demonstrate the sensitivity of these proxies to changes in regional climate. Here we apply a combined diatom and stable isotope (carbon and oxygen) approach to evaluate the influence of millennial-scale oscillations on southern Europe hydroclimate during MIS 6. The new isotope data from Lake Ioannina core I-284 demonstrates higher precipitation / evaporation (P/E) ratios between c. 178 and 164 ka, associated with peak insolation during MIS 6e, and episodes of planktonic diatom expansion likely reflecting the interstadials of the 6e complex. Close correspondence between diatom planktonic frequencies, arboreal pollen and regional sea-surface temperatures together provide strong evidence for millennial-scale oscillations in regional precipitation at times during the early‒mid MIS 6. The isotope data suggest overall cooler and drier conditions during the mid-late MIS 6, consistent with

  4. Illumination Under Trees

    SciTech Connect

    Max, N

    2002-08-19

    This paper is a survey of the author's work on illumination and shadows under trees, including the effects of sky illumination, sun penumbras, scattering in a misty atmosphere below the trees, and multiple scattering and transmission between leaves. It also describes a hierarchical image-based rendering method for trees.

  5. Winter Birch Trees

    ERIC Educational Resources Information Center

    Sweeney, Debra; Rounds, Judy

    2011-01-01

    Trees are great inspiration for artists. Many art teachers find themselves inspired and maybe somewhat obsessed with the natural beauty and elegance of the lofty tree, and how it changes through the seasons. One such tree that grows in several regions and always looks magnificent, regardless of the time of year, is the birch. In this article, the…

  6. Minnesota's Forest Trees. Revised.

    ERIC Educational Resources Information Center

    Miles, William R.; Fuller, Bruce L.

    This bulletin describes 46 of the more common trees found in Minnesota's forests and windbreaks. The bulletin contains two tree keys, a summer key and a winter key, to help the reader identify these trees. Besides the two keys, the bulletin includes an introduction, instructions for key use, illustrations of leaf characteristics and twig…

  7. The Wish Tree Project

    ERIC Educational Resources Information Center

    Brooks, Sarah DeWitt

    2010-01-01

    This article describes the author's experience in implementing a Wish Tree project in her school in an effort to bring the school community together with a positive art-making experience during a potentially stressful time. The concept of a wish tree is simple: plant a tree; provide tags and pencils for writing wishes; and encourage everyone to…

  8. What happened to the coal forests during Pennsylvanian glacial phases?

    SciTech Connect

    Falcon-Lang, H.J.; Dimichele, W.A.

    2010-09-15

    Sequence stratigraphic analysis of Pennsylvanian coal-bearing strata suggests that glacial-interglacial fluctuations at high latitudes drove cyclic changes in tropical biomes. A literature review of plant assemblages in this paleoclimatic context suggests that coal forests dominated during humid interglacial phases, but were replaced by seasonally dry vegetation during glacial phases. After each glacial event, coal forests reassembled with largely the same species composition. This remarkable stasis implies that coal-forest refugia existed across the equatorial landscape during glacial phases, expanding to repopulate lowlands during and following deglaciation. One possibility is that refugia comprised small pockets of wetland forest strung out along valleys at some sites, but data are currently insufficient to test this hypothesis. The model presented here, if accepted, dramatically alters our understanding of the coal forests and helps explain aspects of their dynamics.

  9. Enigmatic sediment ridges in the German Bight - glacial vs post-glacial morphologies?

    NASA Astrophysics Data System (ADS)

    Unnithan, Vikram; Pio Rossi, Angelo; Praeg, Daniel

    2014-05-01

    The German Wadden Sea extends over 1000 km from the Dutch coast to that of Sweden and consists of a long chain of barrier islands and ephemeral sand banks punctuated by estuaries and rivers. The sedimentary environment is currently shaped and characterised by storm surges, high tidal and wave energy levels. However, this part of the North Sea has been repeatedly covered by continental ice sheets, and it remains unclear how glacial to interglacial sedimentary processes may have influenced seabed morphology in the region. The study area is situated approximately 70 km north of Cuxhaven, and 5 km due east of the islands of Helgoland and Dune. It covers an approximate area of 5 km square with water depths ranging from 50 m in the south to about 20 m in the north. High resolution multibeam (Simrad EM710) and parametric echosounder (Innomar SES2000) data were acquired during graduate and undergraduate teaching excursions on the RV Heincke in Spring 2010 (HE-324) and 2011 (HE-349). The seabed swath bathymetric data reveal distinctive linear seabed ridges. The ridges trend NNW-SSE, are 1-5 m in height, have wavelengths on the order of 100 m and crest lengths ranging from 100-2500 m. The ridge crests are broadly anastomosing. They bifurcate towards the north to form more subdued structures, while they converge and disappear to the south. Profiles across the ridges show an asymmetric structure, with steeper slopes trending west in the western part of the study area but trending east in the eastern part. These enigmatic sedimentary structures have not been previously mapped in the Wadden Sea, and their origin remains uncertain. Possible interpretations to be tested include sub-crop structural control on seabed morphology, relict glacial or glaciofluvial landforms and post-glacial marine bedforms linked to processes of sediment redistribution.

  10. Recovering hydrocarbons from hydrocarbon-containing vapors

    DOEpatents

    Mirza, Zia I.; Knell, Everett W.; Winter, Bruce L.

    1980-09-30

    Values are recovered from a hydrocarbon-containing vapor by contacting the vapor with quench liquid consisting essentially of hydrocarbons to form a condensate and a vapor residue, the condensate and quench fluid forming a combined liquid stream. The combined liquid stream is mixed with a viscosity-lowering liquid to form a mixed liquid having a viscosity lower than the viscosity of the combined liquid stream to permit easy handling of the combined liquid stream. The quench liquid is a cooled portion of the mixed liquid. Viscosity-lowering liquid is separated from a portion of the mixed liquid and cycled to form additional mixed liquid.

  11. Recovering valuable metals from recycled photovoltaic modules.

    PubMed

    Yi, Youn Kyu; Kim, Hyun Soo; Tran, Tam; Hong, Sung Kil; Kim, Myong Jun

    2014-07-01

    Recovering valuable metals such as Si, Ag, Cu, and Al has become a pressing issue as end-of-life photovoltaic modules need to be recycled in the near future to meet legislative requirements in most countries. Of major interest is the recovery and recycling of high-purity silicon (> 99.9%) for the production of wafers and semiconductors. The value of Si in crystalline-type photovoltaic modules is estimated to be -$95/kW at the 2012 metal price. At the current installed capacity of 30 GW/yr, the metal value in the PV modules represents valuable resources that should be recovered in the future. The recycling of end-of-life photovoltaic modules would supply > 88,000 and 207,000 tpa Si by 2040 and 2050, respectively. This represents more than 50% of the required Si for module fabrication. Experimental testwork on crystalline Si modules could recover a > 99.98%-grade Si product by HNO3/NaOH leaching to remove Al, Ag, and Ti and other metal ions from the doped Si. A further pyrometallurgical smelting at 1520 degrees C using CaO-CaF2-SiO2 slag mixture to scavenge the residual metals after acid leaching could finally produce > 99.998%-grade Si. A process based on HNO3/NaOH leaching and subsequent smelting is proposed for recycling Si from rejected or recycled photovoltaic modules. Implications: The photovoltaic industry is considering options of recycling PV modules to recover metals such as Si, Ag, Cu, Al, and others used in the manufacturing of the PV cells. This is to retain its "green" image and to comply with current legislations in several countries. An evaluation of potential resources made available from PV wastes and the technologies used for processing these materials is therefore of significant importance to the industry. Of interest are the costs of processing and the potential revenues gained from recycling, which should determine the viability of economic recycling of PV modules in the future.

  12. Recovering gallium from residual bayer process liquor

    NASA Astrophysics Data System (ADS)

    Afonso de Magalhães, Maria Elizabeth; Tubino, Matthieu

    1991-06-01

    Gallium is normally obtained by direct electrolysis as a by-product from Bayer process residual liquor at an aluminum processing plant. However, to permit any net accumulation of the metal, the gallium concentration must be at least about 0.3 g/l in the liquor. This article describes a continuous process of extraction with organic solvents and rhodamine-B, followed by a re-extraction step into aqueous media. The final product is a solid containing up to 18 wt.% Ga in a solid mixture of hydroxides and oxides of gallium and aluminum. This final product can then be electrolyzed to recover the gallium more efficiently.

  13. Greenland ice cores constrain glacial atmospheric fluxes of phosphorus

    NASA Astrophysics Data System (ADS)

    Kjær, Helle Astrid; Dallmayr, Remi; Gabrieli, Jacopo; Goto-Azuma, Kumiko; Hirabayashi, Motohiro; Svensson, Anders; Vallelonga, Paul

    2015-10-01

    Phosphorus is a limiting nutrient for primary productivity, but little is known about past atmospheric fluxes to the open ocean. In this study, phosphate and phosphorus concentrations have been determined in the North Greenland Eemian Ice Drilling Project ice core for selected periods during the last glacial. Phosphate was determined continuously by using a molybdenum blue spectroscopic absorption method and discretely using an ion chromatograph. Total P was determined discretely using an inductively coupled plasma sector field mass spectrometer. For the last glacial period, we found concentrations of between 3 and 62 nM PO43- and 7 and 929 nM P. We find glacial atmospheric fluxes of phosphorus to Greenland were 4 to 11 times higher than in the past century, with the highest input during the cold glacial stadials (GS). Changes in P and PO43- fluxes between mild glacial interstadials (GI) and GS correlate positively with dust variability. The soluble fraction of P is larger in the mild GIs as compared to the dust-rich GSs. For the very high phosphate and phosphorus loads during the Last Glacial Maximum, the relationship between phosphate and dust is weaker than in GIs and milder GSs, suggesting either secondary phosphate sources or multiple dust sources. Based on crustal abundances, we find that dust inputs are sufficient to account for all P deposited during all periods investigated except the Last Glacial Maximum. During the glacial, sea salts contributed 10-3 nM P, while land biogenic emissions were a minor source of P.

  14. Oceanographic gradients and seabird prey community dynamics in glacial fjords

    USGS Publications Warehouse

    Arimitsu, Mayumi L.; Piatt, John F.; Madison, Erica N.; Conaway, Jeff; Hillgruber, N.

    2012-01-01

    Glacial fjord habitats are undergoing rapid change as a result of contemporary global warming, yet little is known about how glaciers influence marine ecosystems. These ecosystems provide important feeding, breeding and rearing grounds for a wide variety of marine organisms, including seabirds of management concern. To characterize ocean conditions and marine food webs near tidewater glaciers, we conducted monthly surveys of oceanographic variables, plankton, fish and seabirds in Kenai Fjords, Alaska, from June to August of 2007 and 2008. We also measured tidal current velocities near glacial features. We found high sediment load from glacial river runoff played a major role in structuring the fjord marine ecosystem. Submerged moraines (sills) isolated cool, fresh, stratified and silt-laden inner fjord habitats from oceanic influence. Near tidewater glaciers, surface layers of turbid glacial runoff limited availability of light to phytoplankton, but macrozooplankton were abundant in surface waters, perhaps due to the absence of a photic cue for diel migration. Fish and zooplankton community structure varied along an increasing temperature gradient throughout the summer. Acoustic measurements indicated that low density patches of fish and zooplankton were available in the surface waters near glacial river outflows. This is the foraging habitat occupied most by Kittlitz's murrelet (Brachyramphus brevirostris), a rare seabird that appears to be specialized for life in glacially influenced environments. Kittlitz's murrelets were associated with floating glacial ice, and they were more likely to occur near glaciers, in deeper water, and in areas with high acoustic backscatter. Kittlitz's murrelet at-sea distribution was limited to areas influenced by turbid glacial outflows, and where prey was concentrated near the surface in waters with low light penetration. Tidewater glaciers impart unique hydrographic characteristics that influence marine plankton and fish

  15. Carbon pools recover more quickly than plant biodiversity in tropical secondary forests.

    PubMed

    Martin, Philip A; Newton, Adrian C; Bullock, James M

    2013-12-22

    Although increasing efforts are being made to restore tropical forests, little information is available regarding the time scales required for carbon and plant biodiversity to recover to the values associated with undisturbed forests. To address this knowledge gap, we carried out a meta-analysis comparing data from more than 600 secondary tropical forest sites with nearby undisturbed reference forests. Above-ground biomass approached equivalence to reference values within 80 years since last disturbance, whereas below-ground biomass took longer to recover. Soil carbon content showed little relationship with time since disturbance. Tree species richness recovered after about 50 years. By contrast, epiphyte richness did not reach equivalence to undisturbed forests. The proportion of undisturbed forest trees and epiphyte species found in secondary forests was low and changed little over time. Our results indicate that carbon pools and biodiversity show different recovery rates under passive, secondary succession and that colonization by undisturbed forest plant species is slow. Initiatives such as the Convention on Biological Diversity and REDD+ should therefore encourage active management to help to achieve their aims of restoring both carbon and biodiversity in tropical forests.

  16. Carbon pools recover more quickly than plant biodiversity in tropical secondary forests.

    PubMed

    Martin, Philip A; Newton, Adrian C; Bullock, James M

    2013-12-22

    Although increasing efforts are being made to restore tropical forests, little information is available regarding the time scales required for carbon and plant biodiversity to recover to the values associated with undisturbed forests. To address this knowledge gap, we carried out a meta-analysis comparing data from more than 600 secondary tropical forest sites with nearby undisturbed reference forests. Above-ground biomass approached equivalence to reference values within 80 years since last disturbance, whereas below-ground biomass took longer to recover. Soil carbon content showed little relationship with time since disturbance. Tree species richness recovered after about 50 years. By contrast, epiphyte richness did not reach equivalence to undisturbed forests. The proportion of undisturbed forest trees and epiphyte species found in secondary forests was low and changed little over time. Our results indicate that carbon pools and biodiversity show different recovery rates under passive, secondary succession and that colonization by undisturbed forest plant species is slow. Initiatives such as the Convention on Biological Diversity and REDD+ should therefore encourage active management to help to achieve their aims of restoring both carbon and biodiversity in tropical forests. PMID:24197410

  17. Carbon pools recover more quickly than plant biodiversity in tropical secondary forests

    PubMed Central

    Martin, Philip A.; Newton, Adrian C.; Bullock, James M.

    2013-01-01

    Although increasing efforts are being made to restore tropical forests, little information is available regarding the time scales required for carbon and plant biodiversity to recover to the values associated with undisturbed forests. To address this knowledge gap, we carried out a meta-analysis comparing data from more than 600 secondary tropical forest sites with nearby undisturbed reference forests. Above-ground biomass approached equivalence to reference values within 80 years since last disturbance, whereas below-ground biomass took longer to recover. Soil carbon content showed little relationship with time since disturbance. Tree species richness recovered after about 50 years. By contrast, epiphyte richness did not reach equivalence to undisturbed forests. The proportion of undisturbed forest trees and epiphyte species found in secondary forests was low and changed little over time. Our results indicate that carbon pools and biodiversity show different recovery rates under passive, secondary succession and that colonization by undisturbed forest plant species is slow. Initiatives such as the Convention on Biological Diversity and REDD+ should therefore encourage active management to help to achieve their aims of restoring both carbon and biodiversity in tropical forests. PMID:24197410

  18. A Spectrum Tree Kernel

    NASA Astrophysics Data System (ADS)

    Kuboyama, Tetsuji; Hirata, Kouichi; Kashima, Hisashi; F. Aoki-Kinoshita, Kiyoko; Yasuda, Hiroshi

    Learning from tree-structured data has received increasing interest with the rapid growth of tree-encodable data in the World Wide Web, in biology, and in other areas. Our kernel function measures the similarity between two trees by counting the number of shared sub-patterns called tree q-grams, and runs, in effect, in linear time with respect to the number of tree nodes. We apply our kernel function with a support vector machine (SVM) to classify biological data, the glycans of several blood components. The experimental results show that our kernel function performs as well as one exclusively tailored to glycan properties.

  19. Distributed Contour Trees

    SciTech Connect

    Morozov, Dmitriy; Weber, Gunther H.

    2014-03-31

    Topological techniques provide robust tools for data analysis. They are used, for example, for feature extraction, for data de-noising, and for comparison of data sets. This chapter concerns contour trees, a topological descriptor that records the connectivity of the isosurfaces of scalar functions. These trees are fundamental to analysis and visualization of physical phenomena modeled by real-valued measurements. We study the parallel analysis of contour trees. After describing a particular representation of a contour tree, called local{global representation, we illustrate how di erent problems that rely on contour trees can be solved in parallel with minimal communication.

  20. Rapid loss of glacial ice reveals stream community assembly processes

    PubMed Central

    Brown, Lee E; Milner, Alexander M

    2012-01-01

    Glacial retreat creates new habitat which is colonized and developed by plants and animals during the process of primary succession. While there has been much debate about the relative role of deterministic and stochastic processes during terrestrial succession, evidence from freshwater ecosystems remains minimal and a general consensus is lacking. Using a unique 27 years record of community assembly following glacial recession in southeast Alaska, we demonstrate significant change in the trait composition of stream invertebrate communities as catchment glacial cover decreased from ∼70% to zero. Functional diversity increased significantly as glacier cover decreased and taxonomic richness increased. Null modelling approaches led to a key finding that niche filtering processes were dominant when glacial cover was extensive, reflecting water temperature and dispersal constraints. Thereafter the community shifted towards co-occurrence of stochastic and deterministic assembly processes. A further novel discovery was that intrinsic functional redundancy developed throughout the study, particularly because new colonizers possessed similar traits to taxa already present. Rapid glacial retreat is occurring in Arctic and alpine environments worldwide and the assembly processes observed in this study provide new fundamental insights into how glacially influenced stream ecosystems will respond. The findings support tolerance as a key primary successional mechanism in this system, and have broader value for developing our understanding of how biological communities in river ecosystems assemble or restructure in response to environmental change.

  1. Examining differences between recovered and declining endangered species

    USGS Publications Warehouse

    Abbitt, R.J.F.; Michael, Scott J.

    2001-01-01

    Between 1973 and 1999, 43 species in the United States were reclassified from endangered to threatened or removed entirely from the Endangered Species List. Of these, 23 were identified as recovered. In 1999 the U.S. Fish and Wildlife Service (USFWS) published a list of 33 additional species for possible reclassification and/or delisting. We initiated this study to examine why some endangered species recover but others continue to decline and to identify differences in management activities between these two groups. We defined recovered/recovering species as previously recovered species and the additional recovered/recovering species listed by the USFWS. We defined declining species as those identified as declining in the most recent USFWS Report to Congress. Information on recovered/recovering and declining species was gathered from relevant literature, recovery plans, U.S. Federal Register documents, and individuals responsible for the recovery management of each species. We used this information to examine (1) the percentage of current and historic range covered by management activities; (2) threats affecting the species; (3) population sizes at the time of listing; (4) current versus historic range size; and (5) percentage of recovery management objectives completed. Although few statistical analyses provided significant results, those that did suggest the following differences between recovered/recovering and declining species: (1) recovered/recovering species face threats that are easier to address; (2) recovered/recovering species occupy a greater percentage of their historic range; and (3) recovered/recovering species have a greater percentage of their recovery management objectives completed. Those species with threats easier to address and that occupy a greater percentage of their historic range are recovered/recovering. In contrast, declining species face threats more difficult to address and occupy significantly less of their historic range. If this

  2. Holocene and Late Glacial varved sediments from Czechowskie Lake (Poland)

    NASA Astrophysics Data System (ADS)

    Ott, Florian; Brauer, Achim; Słowiński, Michał; Dulski, Peter; Plessen, Birgit; Blaszkiewicz, Miroslaw

    2013-04-01

    Annual laminated (varved) sediment records are essential for detailed paleoclimate and environmental reconstructions as they function as a natural memory beyond instrumental datasets. In order to determine Holocene inter-annual and decadal-scale variability we investigated varved Lake Czechowskie (53°52' N/ 18°14' E, 108 m asl.), northern Poland. During two coring campaigns in 2009 and 2012 we recovered several long and short cores with the longest core reaching 14.5 m. Based on correlation with a biostratigraphically and tephrochronologically dated neighboring paleolake sediment record (Trzechowskie mire) the record extends back in to the Late Glacial. Lake Czechowskie is well suited for climate reconstruction as varves are almost entirely well (88 %) or poorly (5%) preserved. Only 7 % of the sediment profile are non-varved. Detailed investigations have been carried out for the last 2000 years of the sediment profile applying micro-facies analyses combined with X-ray fluorescence element scanning (µ-XRF) at 200 µm resolution and carbon and nitrogen analyses (TOC, TC, TN) at five-varveresolution. The chronology has been established by a multiple dating approach with 137Cs (for the last ca. 50 years), AMS 14C on plant macro remains (back to 2800 cal BP) and varve counting. Varve formation and preservation ceases at the beginning of the 20th century whereas the younger sediments are again faintly varved. Micro-facies analyses reveal that the sediment consists of biogenic calcite varves with intercalated diatom rich layers. Three distinct 100 to 200 years long periods of up to threefold thicker varves (approx. 1.4 to 5.0 mm/year) are predominantly caused by an increase in the diatom sub-layers and indicate distinct short-term climatic and environmental fluctuations. Possible reasons for these changes that occurred abruptly with only few years are either changes in lake water circulation or in nutrient supply to the lake. This study is a contribution to the Virtual

  3. Process for recovering organic vapors from air

    DOEpatents

    Baker, Richard W.

    1985-01-01

    A process for recovering and concentrating organic vapor from a feed stream of air having an organic vapor content of no more than 20,000 ppm by volume. A thin semipermeable membrane is provided which has a feed side and a permeate side, a selectivity for organic vapor over air of at least 50, as measured by the ratio of organic vapor permeability to nitrogen permeability, and a permeability of organic vapor of at least 3.times.10.sup.-7 cm.sup.3 (STP) cm/cm.sup.2 sec.cm Hg. The feed stream is passed across the feed side of the thin semipermeable membrane while providing a pressure on the permeate side which is lower than the feed side by creating a partial vacuum on the permeate side so that organic vapor passes preferentially through the membrane to form an organic vapor depleted air stream on the feed side and an organic vapor enriched stream on the permeate side. The organic vapor which has passed through the membrane is compressed and condensed to recover the vapor as a liquid.

  4. When will the Antarctic Ozone Hole Recover?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Steve

    2006-01-01

    The Antarctic ozone hole develops each year and culminates by early Spring. Antarctic ozone values have been monitored since 1979 using satellite observations from the .TOMS instrument. The severity of the hole has been assessed from TOMS using the minimum total ozone value from the October monthly mean (depth of the hole) and by calculating the average size during the September-October period. Ozone is mainly destroyed by halogen catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this presentation, we show the relationships of halogens and temperature to, both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Using projections of halogen levels combined with age-of-air estimates, we find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. The ozone hole will begin to show first signs of recovery in about 2023, and the hole will fully recover to pre-1980 levels in approximately 2070. This 2070 recovery is 20 years later than recent projections.

  5. When Will the Antarctic Ozone Hole Recover?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Steve

    2005-01-01

    The Antarctic ozone hole develops each year and culminates by early Spring. Antarctic ozone values have been monitored since 1979 using satellite observations from the TOMS instrument. The severity of the hole has been assessed from TOMS using the minimum total ozone value from the October monthly mean (depth of the hole) and by calculating the average size during the September-October period. Ozone is mainly destroyed by halogen catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this presentation, we show the relationships of halogens and temperature to both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Using projections of halogen levels combined with age-of-air estimates, we find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. We will show estimates of both when the ozone hole will begin to show first signs of recovery, and when the hole will fully recover to pre-1980 levels.

  6. When Will the Antarctic Ozone Hole Recover?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.

    2006-01-01

    The Antarctic ozone hole develops each year and culminates by early spring (late September - early October). Antarctic ozone values have been monitored since 1979 using satellite observations from the TOMS instrument. The severity of the hole has been assessed from TOMS using the minimum total ozone value from the October monthly mean (depth of the hole) and by calculating the average area coverage during this September-October period. Ozone is mainly destroyed by halogen (chlorine and bromine) catalytic cycles, and these losses are modulated by temperature variations in the collar of the polar lower stratospheric vortex. In this talk, I will show the relationships of halogens and temperature to both the size and depth of the hole. Because atmospheric halogen levels are responding to international agreements that limit or phase out production, the amount of halogens in the stratosphere should decrease over the next few decades. Using projections of halogen levels combined with age-of-air estimates, we find that the ozone hole is recovering at an extremely slow rate and that large ozone holes will regularly recur over the next 2 decades. The ozone hole will begin to show first signs of recovery in about 2023, and the hole will fully recover to pre-1980 levels in approximately 2070. This 2070 recovery is 20 years later than recent projections. I will also discuss current assessments of mid-latitude ozone recovery.

  7. PROCESS OF RECOVERING URANIUM FROM ITS ORES

    DOEpatents

    Galvanek, P. Jr.

    1959-02-24

    A process is presented for recovering uranium from its ores. The crushed ore is mixed with 5 to 10% of sulfuric acid and added water to about 5 to 30% of the weight of the ore. This pugged material is cured for 2 to 3 hours at 100 to 110 deg C and then cooled. The cooled mass is nitrate-conditioned by mixing with a solution equivalent to 35 pounds of ammunium nitrate and 300 pounds of water per ton of ore. The resulting pulp containing 70% or more solids is treated by upflow percolation with a 5% solution of tributyl phosphate in kerosene at a rate equivalent to a residence time of about one hour to extract the solubilized uranium. The uranium is recovered from the pregnant organic liquid by counter-current washing with water. The organic extractant may be recycled. The uranium is removed from the water solution by treating with ammonia to precipitate ammonium diuranate. The filtrate from the last step may be recycled for the nitrate-conditioning treatment.

  8. Growth of a Pine Tree

    ERIC Educational Resources Information Center

    Rollinson, Susan Wells

    2012-01-01

    The growth of a pine tree is examined by preparing "tree cookies" (cross-sectional disks) between whorls of branches. The use of Christmas trees allows the tree cookies to be obtained with inexpensive, commonly available tools. Students use the tree cookies to investigate the annual growth of the tree and how it corresponds to the number of whorls…

  9. Glacial Landforms, how distorted is our view of them?

    NASA Astrophysics Data System (ADS)

    Smith, Mike J.; Hillier, John K.

    2014-05-01

    Concurrent with the dramatic resurgence in geomorphological mapping over the last decade there has been a progression towards finding more objective, and sometimes automated, techniques and procedures for mapping. Yet manual, interpretive, techniques remain effective and commonly used. By definition manual mapping is subjective and it is therefore important that criteria are developed, and agreed upon, in order to facilitate inter-comparability of mapped outputs and assess the reliability of these data. To this end we have compared glacial geomorphological mapping by different interpreters. An EGU funded workshop was attended by 24 academics, ranging from undergraduates to faculty. All had an interest in geomorphological mapping, but there was a mix of expertise, from those with many years experience in mapping from satellite imagery and DEMs, to those with almost no background. In order to robustly compare mapping by individuals, a real landscape containing statistically representative 'synthetic' drumlins (Hillier and Smith, 2012) was utilised. To create these synthetic DEMs, observed drumlins were removed from a measured DEM and replaced by elongate 3D Gaussian ones of equivalent dimensions positioned randomly with respect to the 'noise' (e.g. trees) and regional trends (e.g. hills). Five variations were generated, each containing 173 drumlins (known a priori), and for each DEM mappers asked to map the outline, ridge crest and highpoint of each identifiable drumlin prior to the workshop. In total 20,760 landforms were presented to the 24 mappers and 11,687 were mapped, of which 8,288 were coincident. Drumlins mapped per individual ranged from 198 to 989 out of 865 present. Overall 'accuracy' (i.e. ncoincident/ntotal) was 40%, however the 'reliability' of mapping (i.e. ncoincident/nmapped) ranged from 41% to 100% depending upon the mapper. This presentation summarises the results of the mapping, gives insights into the drivers of accuracy (e.g. experience

  10. Paleomonsoonal Precipitation and Hydroclimate Variability from Glacial to Interglacial Climates in the Southwest: The Stoneman Lake, Arizona Record

    NASA Astrophysics Data System (ADS)

    Garcia, D.; Fawcett, P. J.; Anderson, R. S.; Sharp, Z. D.

    2015-12-01

    Oxygen isotope values from diatom silica have been used to determine past hydrological conditions in a variety of settings including differentiating summer monsoonal paleoprecipitation from winter frontal paleoprecipitation in the American southwest. Lacustrine cores from the Valles Caldera, New Mexico, show a distinct change in silica oxygen isotope values from glacial to interglacial as a switch from a purely winter frontal precipitation during the glacial to a mix of winter frontal and summer monsoonal precipitation during the interglacial. A relatively large (ca. 20‰) and rapid increase in δ18O following the glacial termination implies an abrupt onset of the North American monsoon. We plan to elaborate on this research to see if this is true elsewhere in the southwest. Two lacustrine sediment cores (70 m deep and 30 m deep respectively) were recovered from Stoneman Lake, northern Arizona in October of 2014. With these cores we plan to determine regional hydroclimate variability between the Pleistocene-Holocene glacial transition ca. 14 ka. Oxygen isotope analysis from diatom silica will allow us to determine past sources of precipitation to the basin (Gulf of Mexico vs North Pacific), and paleoprecipitation variability. In conjunction with other proxies, we can determine if the onset of paleomonsoonal precipitation in central Arizona occurs immediately after the glacial termination as in NM, or if there is some component of monsoonal precipitation during the late glacial period. Diatom sampling was performed at approximately every 50 cm. To purify the diatoms, the samples are chemically and physically separated. The step wise fluorination and laser ablation technique are then applied to remove water & hydroxyl groups and to extract O2 & SiF4 respectively.If results from the Stoneman Lake core are similar to that of the Valles Caldera core, we should expect to see a nearly 20‰ increase in δ18Olake water. This would suggest a: 1) collapse of the summer

  11. Status of glacial Lake Columbia during the last floods from glacial Lake Missoula

    USGS Publications Warehouse

    Atwater, B.F.

    1987-01-01

    The last floods from glacial Lake Missoula, Montana, probably ran into glacial Lake Columbia, in northeastern Washington. In or near Lake Columbia's Sanpoil arm, Lake Missoula floods dating from late in the Fraser glaciation produced normally graded silt beds that become thinner upsection and which alternate with intervals of progressively fewer varves. The highest three interflood intervals each contain only one or two varves, and about 200-400 successive varves conformably overlie the highest flood bed. This sequence suggests that jo??kulhlaup frequency progressively increased until Lake Missoula ended, and that Lake Columbia outlasted Lake Missoula. The upper Grand Coulee, Lake Columbia's late Fraser-age outlet, contains a section of 13 graded beds, most of them sandy and separated by varves, that may correlate with the highest Missoula-flood beds of the Sanpoil River valley. The upper Grand Coulee also contains probable correlatives of many of the approximately 200-400 succeeding varves, as do nearby parts of the Columbia River valley. This collective evidence casts doubt on a prevailing hypothesis according to which one or more late Fraser-age floods from Lake Missoula descended the Columbia River valley with little or no interference from Lake Columbia's Okanogan-lobe dam. ?? 1987.

  12. Evolutionary history of a widespread tree species Acer mono in East Asia.

    PubMed

    Guo, Xi-Di; Wang, Hong-Fang; Bao, Lei; Wang, Tian-Ming; Bai, Wei-Ning; Ye, Jun-Wei; Ge, Jian-Ping

    2014-11-01

    East Asia has the most diverse temperate flora in the world primarily due to the lack of Pleistocene glaciation and the geographic heterogeneity. Although increasing phylogeography studies in this region provided more proofs in this issue, discrepancies and uncertainty still exist, especially in northern temperate deciduous broad-leaved and coniferous mixed forest region (II). And a widespread plant species could reduce the complexity to infer the relationship between diversity and physiographical pattern. Hence, we studied the evolution history of a widespread temperate tree, Acer mono, populations in region II and the influence of physiographic patterns on intraspecific genetic diversity. Analyses of chloroplast sequences and nuclear microsatellites indicated high levels of genetic diversity. The diversity distribution was spatially heterogeneous and a latitudinal cline existed in both markers. The spatial distribution pattern between genetic diversity within A. mono and the diversity at species level was generally consistent. Western subtropical evergreen broad-leaved forest subregion (IVb) had a unique ancient chloroplast clade (CP3) and a nuclear gene pool (GP5) with dominance indicating the critical role of this area in species diversification. Genetic data and ecological niche model results both suggested that populations in region II disappeared during the last glacial maximum (LGM) and recovered from south of Changbai Mt. and the Korean Peninsula. Two distribution centers were likely during the LGM, one in the north edge of warm temperate deciduous broad-leaved forest region (III) and another in the south edge of region III. This was reflected by the genetic pattern with two spatially independent genetic groups. This study highlights the key role of region III in sustaining genetic diversity in the northern range and connecting diversity between southern and northern range. We elucidated the diversity relationship between vegetation regions which could

  13. Evolutionary history of a widespread tree species Acer mono in East Asia.

    PubMed

    Guo, Xi-Di; Wang, Hong-Fang; Bao, Lei; Wang, Tian-Ming; Bai, Wei-Ning; Ye, Jun-Wei; Ge, Jian-Ping

    2014-11-01

    East Asia has the most diverse temperate flora in the world primarily due to the lack of Pleistocene glaciation and the geographic heterogeneity. Although increasing phylogeography studies in this region provided more proofs in this issue, discrepancies and uncertainty still exist, especially in northern temperate deciduous broad-leaved and coniferous mixed forest region (II). And a widespread plant species could reduce the complexity to infer the relationship between diversity and physiographical pattern. Hence, we studied the evolution history of a widespread temperate tree, Acer mono, populations in region II and the influence of physiographic patterns on intraspecific genetic diversity. Analyses of chloroplast sequences and nuclear microsatellites indicated high levels of genetic diversity. The diversity distribution was spatially heterogeneous and a latitudinal cline existed in both markers. The spatial distribution pattern between genetic diversity within A. mono and the diversity at species level was generally consistent. Western subtropical evergreen broad-leaved forest subregion (IVb) had a unique ancient chloroplast clade (CP3) and a nuclear gene pool (GP5) with dominance indicating the critical role of this area in species diversification. Genetic data and ecological niche model results both suggested that populations in region II disappeared during the last glacial maximum (LGM) and recovered from south of Changbai Mt. and the Korean Peninsula. Two distribution centers were likely during the LGM, one in the north edge of warm temperate deciduous broad-leaved forest region (III) and another in the south edge of region III. This was reflected by the genetic pattern with two spatially independent genetic groups. This study highlights the key role of region III in sustaining genetic diversity in the northern range and connecting diversity between southern and northern range. We elucidated the diversity relationship between vegetation regions which could

  14. Should precise numerical dating overrule glacial geomorphology?

    NASA Astrophysics Data System (ADS)

    Winkler, Stefan

    2016-04-01

    Numerical age dating techniques, namely different types of terrestrial cosmogenic nuclide dating (TCND), have achieved an impressive progress in both laboratory precision and regional calibration models during the past few decades. It is now possible to apply precise TCND even to young landforms like Late Holocene moraines, a task seemed hardly achievable just about 15 years ago. An increasing number of studies provide very precise TCND ages for boulders from Late Holocene moraines enabling related reconstruction of glacier chronologies and the interpretation of these glacial landforms in a palaeoclimatological context. These studies may also solve previous controversies about different ages assigned to moraines obtained by different dating techniques, for example relative-age dating techniques or techniques combining relative-age dating with few fixed points derived from numerical age dating. There are a few cases, for example Mueller Glacier and nearby long debris-covered valley glacier in Aoraki/Mt.Cook National Park (Southern Alps, New Zealand), where the apparent "supremacy" of TCND-ages seem to overrule glacial geomorphological principles. Enabled by a comparatively high number of individual boulders precisely dated by TCND, moraine ridges on those glacier forelands have been primarily clustered on basis of these boulder ages rather than on their corresponding morphological position. To the extreme, segments of a particular moraine complex morphologically and sedimentologically proven to be formed during one event have become split and classified as two separate "moraines" on different parts of the glacier foreland. One ledge of another moraine complex contains 2 TCND-sampled boulders apparently representing two separate "moraines"-clusters of an age difference in the order of 1,500 years. Although recently criticism has been raised regarding the non-contested application of the arithmetic mean for calculation of TCND-ages for individual moraines, this

  15. Preformed Nitrate in the Glacial North Atlantic

    NASA Astrophysics Data System (ADS)

    Homola, K.; Spivack, A. J.; D'Hondt, S.; Estes, E. R.; Insua, T. L.; McKinley, C. C.; Murray, R. W.; Pockalny, R. A.; Robinson, R. S.; Sauvage, J.

    2015-12-01

    Atmospheric CO2 abundances are highly correlated with global temperature variations over the past 800,000 years. Consequently, understanding the feedbacks between climate and CO2 is important for predictions of future climate. Leading hypotheses to explain this feedback invoke changes in ocean biology, circulation, chemistry, and/or gas exchange rates to trap CO2 in the deep ocean, thereby reducing the greenhouse effect of CO2 in the atmosphere. To test these hypotheses, we use sediment pore water profiles of dissolved nitrate and oxygen to reconstruct paleo-preformed nitrate concentrations at two deep-water sites in the western North Atlantic (23°N 57°W, 5557 m water depth; 30°N 58°W, 5367 m water depth). Preformed nitrate increases down-core to 22.7 μM (25.6 m core depth) at the northern site, and to 28.5 μM (27.8 m core depth) at the southern site. The large preformed nitrate gradient between these sites reveals a paleo-boundary between a southern water source high in preformed nitrate and a northern water source with lower concentrations, similar to today's ocean. However, the boundary between these water masses occurs north of where their modern counterparts meet, indicating that Antarctic Bottom Water (AABW) extended farther north during the Last Glacial Maximum (LGM). In addition, the southern source had a higher preformed nitrate concentration than today's AABW (25 μM), contradicting hypotheses that nutrient utilization was more efficient in the Southern Ocean deep-water formation regions during the LGM. Comparison to our previous Pacific data reveals that the average preformed nitrate concentration of the deep ocean was slightly higher during the LGM than today. This result implies that the CO2-climate feedback was not principally due to more efficient nitrate utilization.

  16. "Pleistocene Park" - A Glacial Ecosystem in a Warming World

    NASA Astrophysics Data System (ADS)

    Zimov, N.; Zimov, S. A.

    2011-12-01

    Most people if asked what association they have to the phrase - ice age, will answer - "Mammoth". But mammoths are not only big wooly elephants which went extinct in the beginning of Holocene. They were also part of a great ecosystem, the Northern Steppe or Mammoth Ecosystem, which was the world's largest ecosystem for hundreds thousand of years. This ecosystem, with extremely high rates of biocycling, could maintain animal densities which can be hardly found anywhere in the modern world. Northern steppe played an important role in shaping the glacial climate of the planet. High albedo grasslands reflected a much bigger portion of sun heat back to the atmosphere. Cold soils and permafrost served as sinks of carbon, helping to keep greenhouse gas concentration in the atmosphere at low levels. In the beginning of Holocene, simultaneously with wave of human expansion, an extinction wave took place. Tens of megafauna species became extinct at that time worldwide, while ones that resisted the extinction substantially dropped in numbers. The Northern Steppe ecosystem became imbalanced. Without large numbers of herbivores grazing and trampling the pasture, trees, shrubs and moss invaded grasslands. Within just a few hundreds years the mammoth ecosystem was gone, replaced by much lower productivity ecosystems. Already 14 thousand year ago, by simply increasing hunting pressure, humans managed to dramatically change Earth's appearance. We propose that by artificially maintaining a high animal density and diversity on a limited territory for extended period of time, it will be possible to reverse the shift, reestablishing the productive Northern Steppe ecosystem. Moss, shrubs and tree sprouts are not able to resist grazing pressure so they will be quickly replaced by grasses and herbs. Animals digesting all aboveground biomass would accelerate nutrition cycling and consequently increase bioproductivity. Higher bioproductivity would increase evapotranspiration, keeping soils

  17. Management of Patients With Recovered Systolic Function.

    PubMed

    Basuray, Anupam; Fang, James C

    2016-01-01

    Advancements in the treatment of heart failure (HF) with systolic dysfunction have given rise to a new population of patients with improved ejection fraction (EF). The management of this distinct population is not well described due to a lack of consensus on the definition of myocardial recovery, a scarcity of data on the natural history of these patients, and the absence of focused clinical trials. Moreover, an improvement in EF may have different prognostic and management implications depending on the underlying etiology of cardiomyopathy. This can be challenging for the clinician who is approached by a patient inquiring about a reduction of medical therapy after apparent EF recovery. This review explores management strategies for HF patients with recovered EF in a disease-specific format. PMID:26796969

  18. Apparatus to recover tritium from tritiated molecules

    DOEpatents

    Swansiger, William A.

    1988-01-01

    An apparatus for recovering tritium from tritiated compounds is provided, including a preheater for heating tritiated water and other co-injected tritiated compounds to temperatures of about 600.degree. C. and a reactor charged with a mixture of uranium and uranium dioxide for receiving the preheated mixture. The reactor vessel is preferably stainless steel of sufficient mass so as to function as a heat sink preventing the reactor side walls from approaching high temperatures. A disposable copper liner extends between the reaction chamber and stainless steel outer vessel to prevent alloying of the uranium with the outer vessel. The uranium dioxide functions as an insulating material and heat sink preventing the reactor side walls from attaining reaction temperatures to thereby minimize tritium permeation rates. The uranium dioxide also functions as a diluent to allow for volumetric expansion of the uranium as it is converted to uranium dioxide.

  19. Diagnostics For Recirculating And Energy Recovered Linacs

    SciTech Connect

    Geoffrey A. Krafft; Jean-Claude Denard

    2002-12-18

    In this paper, the electron beam diagnostics developed for recirculating electron accelerators will be reviewed. The main novelties in dealing with such accelerators are: to have sufficient information and control possibilities for the longitudinal phase space, to have means to accurately set the recirculation path length, and to have a means to distinguish the beam passes on measurements of position in the linac proper. The solutions to these problems obtained at Jefferson Laboratory and elsewhere will be discussed. In addition, more standard instrumentation (profiling and emittance measurements) will be reviewed in the context of recirculating linacs. Finally, and looking forward, electron beam diagnostics for applications to high current energy recovered linacs will be discussed.

  20. PROCESSES OF RECOVERING URANIUM FROM A CALUTRON

    DOEpatents

    Baird, D.O.; Zumwalt, L.R.

    1958-07-15

    An improved process is described for recovering the residue of a uranium compound which has been subjected to treatment in a calutron, from the parts of the calutron disposed in the source region upon which the residue is deposited. The process may be utilized when the uranium compound adheres to a surface containing metals of the group consisting of copper, iron, chromium, and nickel. The steps comprise washing the surface with an aqueous acidic oxidizing solvent for the uranium whereby there is obtained an acidic aqueous Solution containing uranium as uranyl ions and metals of said group as impurities, treating the acidic solution with sodium acetate in the presenee of added sodium nitrate to precipitate the uranium as sodium uranyl acetate away from the impurities in the solution, and separating the sodium uranyl acetate from the solution.

  1. High Brightness Beam Applications: Energy Recovered Linacs

    SciTech Connect

    Geoffrey A. Krafft

    2005-09-01

    In the first part of the paper some general statements are made regarding applications suitable for utilizing energy recovered linacs (ERLs) by contrasting their potential performance to that of single pass linacs and storage rings. As a result of their potential for extremely good beam quality in combination with high average beam current, ERLs have been used and considered as drivers of both free electron laser and partially coherent photon sources, from THz through X-rays; as a suitable technology for high energy electron cooling; and as a continuous or semi-continuous electron beam source for high energy colliders. At present, beam requirements tend to be highly matched to end use requirements. By reviewing some of the many examples which have either been reduced to practice, or are being explored presently, one can develop an appreciation for the wide range of parameters being considered in ERL applications.

  2. Recovering two languages with the right hemisphere.

    PubMed

    Marini, Andrea; Galetto, Valentina; Tatu, Karina; Duca, Sergio; Geminiani, Giuliano; Sacco, Katiuscia; Zettin, Marina

    2016-08-01

    Converging evidence suggests that the right hemisphere (RH) plays an important role in language recovery from aphasia after a left hemisphere (LH) lesion. In this longitudinal study we describe the neurological, cognitive, and linguistic profile of A.C., a bilingual who, after a severe traumatic brain injury, developed a form of fluent aphasia that affected his two languages (i.e., Romanian and Italian). The trauma-induced parenchymal atrophy led to an exceptional ventricular dilation that, gradually, affected the whole left hemisphere. A.C. is now recovering both languages relying only on his right hemisphere. An fMRI experiment employing a bilingual covert verb generation task documented the involvement of the right middle temporal gyrus in processes of lexical selection and access. This case supports the hypothesis that the RH plays a role in language recovery from aphasia when the LH has suffered massive lesions. PMID:27289209

  3. Aspects of conducting site investigations in glacial terrain

    SciTech Connect

    Schilling, K.E. )

    1993-03-01

    Much of northern US is mantled by Pleistocene glacial drift consisting of heterogeneous deposits of fine to coarse-textured sediments. Hazardous waste site investigations in glacial settings can often present unique design and implementation considerations. Complex glacial stratigraphy encountered during drilling activities demands flexibility built into work plans to allow for field decisions based on field conditions. Continuous cores should be collected from boreholes on a routine basis for stratigraphic purposes with particular importance assigned to field identification of relative permeabilities of stratigraphic units. Selection of appropriate field screening methodology should be based on site conditions. Utilization of open borehole groundwater sampling is recommended for fine-textured glacial settings where soil gas and well point sampling are ineffective. Installation of boreholes allows for collection of stratigraphic information and enables more surface area exposed beneath the water table for groundwater recharge and sampling. Water level determinations can be made on open boreholes for an initial assessment of the horizontal direction of groundwater flow. Placement of screens for monitoring wells should be based on field determination of likely groundwater flow paths. Nested wells are necessary to define the vertical groundwater flow system at most sites. Evaluation of the vertical flow system can often dominate site investigations in fine-textured glacial terrain. Two case studies from Iowa illustrate the usefulness of incorporating the above considerations in planning and implementing in fine-textured glacial sediments. Field investigations utilizing open borehole groundwater sampling successfully delineated site glacial geology and hydrogeology for determination of the nature and extent of groundwater contamination and better located the horizontal and vertical placement of monitoring wells.

  4. Simulated Last Glacial Maximum Δ14CATM and the Deep Glacial Ocean Reservoir

    NASA Astrophysics Data System (ADS)

    Mariotti, V.; Paillard, D.; Roche, D. M.; Bouttes, N.; Bopp, L.

    2012-12-01

    Δ14Catm has been estimated at 420 ± 80‰ (INTCAL09) during the Last Glacial Maximum (LGM) compared to preindustrial times (0‰), but mechanisms explaining this difference are not yet resolved. Δ14Catm is a function of cosmogenic production in high atmosphere and of carbon cycling in the Earth system (through carbon exchange with the superficial reservoirs, ocean and continental biosphere). 10Be-based reconstructions show a contribution of the cosmogenic production term of only 200 ± 200‰ at the LGM. The remaining 220‰ of Δ14Catm variation between the LGM and preindustrial times have thus to be explained by changes in the carbon cycle. Recently, Bouttes et al. (2010) proposed to explain most of the difference in atmospheric pCO2 between glacial and interglacial times by brine-induced ocean stratification in the Southern Ocean. This mechanism involves the formation of very saline water masses that can store Dissolved Inorganic Carbon (DIC) in the deep ocean. During glacial times, the sinking of brines is enhanced and more DIC is stored in the deep ocean, lowering atmospheric pCO2. Such an isolated ocean reservoir would be characterized by a low Δ14C signature. Evidence of such 14C-depleted deep waters during the LGM has recently been found in the Southern Ocean (Skinner et al., 2010). The degassing of this carbon with low Δ14C would then reduce Δ14Catm throughout the deglaciation. We have further developed the CLIMBER-2 model to include a cosmogenic production of 14C as well as an interactive atmospheric 14C reservoir. We investigate the role of both sinking of brines and cosmogenic production, alongside iron and vertical diffusion mechanisms to explain changes in Δ14Catm during the last deglaciation. In our simulations, not only the sinking of brine mechanism is consistent with past Δ14C data but also it explains most of the differences in atmospheric pCO2 and Δ14C between LGM and preindustrial times.

  5. Climate variability of Late Pleistocene deglaciation in the North American midcontinent derived from tree rings

    NASA Astrophysics Data System (ADS)

    Panyushkina, Irina P.; Livina, Valerie N.; Leavitt, Steve W.; Mode, William N.

    2016-04-01

    High-resolution climatic proxies, such as tree rings spanning millennia, have excellent potential to describe high- and low-frequency variability of climate. In practice, however, although the number of Holocene millennium-length tree-ring records is still rather limited, they are especially rare for the Late Pleistocene warming period following the Last Glacial Maximum. Furthermore, detection of climatic variability in tree-ring data is hindered due to intricate methodology of chronology development that transforms changes in tree geometry and a variety of environmental responses of tree growth to a climatic signal. Following meticulous derivation of a new tree-ring chronology, we propose a novel approach to analyze annual, decadal, multi-decadal and centennial climate-related variability of floating tree rings dated back near the end of the Pleistocene. We have developed a 1400-year tree-ring width chronology of spruce from the Green Bay area (Wisconsin) dated from 14.5 ka to 13.1ka cal BP. This new North American midcontinent record is composed of 10 overlapped site chronologies and has two short gaps filled with linear interpolation. The Green Bay chronology covers most of the warm and moist Bølling-Allerød interstadial (14.7 ka -12.7 ka BP). Within the Bølling-Allerød interstadial, there were several abrupt and brief cooling excursions such as the Older Dryas with full-glacial-like temperature conditions. We have applied tipping point analysis to detect the changes of climate-system states during these turbulent times and obtained early warning signals in the tree-ring variance. The analysis detected four short-term bifurcations dated ca. 14,450 cal BP, 14,000 cal BP, 13,750-13,600 cal BP and 13,180-13,100 cal BP. The bifurcation events of the tree-ring record correspond well to the abrupt and short cooling temperature excursions of the Bølling-Allerød interstadial documented in δ18O and Ca of GRIP ice-core records, and the Laurentide ice sheet dynamics

  6. Precise prediction of glacial cycle with its rhythm

    NASA Astrophysics Data System (ADS)

    Lai, C.; Tseng, Y.; Yu, W.; Chueh, P.

    2010-12-01

    An ability to explain and predict the paleoclimatic cycles is one of necessary conditions for reliable predictions of future climate without and with anthropogenic forcing. Here, we solved a big puzzle. Quaternary glacial cycles, as represented by climate proxy data of benthic δ18O, can be divided into four typical periods (TP) with four characteristic points (CP). The cyclic sequence of them goes in the following order: (1) Onset point of glacial termination, (2) Glacial termination period, (3) Zip point of glacial termination, (4) Inter-glacial period, (5) Inception point of glaciations, (6) Period for glacial maturation, (7) Glacial maximum point, and (8) Period for glacial hibernation. The glacial termination (GT) is a swift transition period of about 6,500 years only. A precise prediction of its onset point is a great challenge to the theorem of orbital-forcing that is being developed since Milankovitch. We consider the climate system as a stack of heat capacitors that get warmed up by absorbing part of the insolation and cooled down via gray-body radiation. Part of the insolation is transformed into chemical energy through photosynthesis (CETP) and eventually gets accumulated in the clathrate hydrate (CH) in seawater. We found that, during the last 1.7 million years, every Onset point of GT falls in a very precise time-window defined with three conditions: (1) the eccentricity (E) of Earth’s orbit is increasing, (2) the obliquity (T) is also increasing, and (3) the phase angle of precession (P) falls between 7π/8 and 5π/4. The CETP is converted into sensible heat via oxidation of gases released from dissociated CH. The dissociation of CH depends on its floating level and dissociating level. Those levels are controlled by seawater temperature and the density of CH. The Zip point of GT comes when the average temperature of seawater at 150 m depth is about 18 C, which is mostly influenced by the H2S in the CH. We define the Inception point of glaciations as

  7. Bryophyte Species Richness on Retention Aspens Recovers in Time but Community Structure Does Not

    PubMed Central

    Oldén, Anna; Ovaskainen, Otso; Kotiaho, Janne S.; Laaka-Lindberg, Sanna; Halme, Panu

    2014-01-01

    Green-tree retention is a forest management method in which some living trees are left on a logged area. The aim is to offer ‘lifeboats’ to support species immediately after logging and to provide microhabitats during and after forest re-establishment. Several studies have shown immediate decline in bryophyte diversity after retention logging and thus questioned the effectiveness of this method, but longer term studies are lacking. Here we studied the epiphytic bryophytes on European aspen (Populus tremula L.) retention trees along a 30-year chronosequence. We compared the bryophyte flora of 102 ‘retention aspens’ on 14 differently aged retention sites with 102 ‘conservation aspens’ on 14 differently aged conservation sites. We used a Bayesian community-level modelling approach to estimate the changes in bryophyte species richness, abundance (area covered) and community structure during 30 years after logging. Using the fitted model, we estimated that two years after logging both species richness and abundance of bryophytes declined, but during the following 20–30 years both recovered to the level of conservation aspens. However, logging-induced changes in bryophyte community structure did not fully recover over the same time period. Liverwort species showed some or low potential to benefit from lifeboating and high potential to re-colonise as time since logging increases. Most moss species responded similarly, but two cushion-forming mosses benefited from the logging disturbance while several weft- or mat-forming mosses declined and did not re-colonise in 20–30 years. We conclude that retention trees do not function as equally effective lifeboats for all bryophyte species but are successful in providing suitable habitats for many species in the long-term. To be most effective, retention cuts should be located adjacent to conservation sites, which may function as sources of re-colonisation and support the populations of species that require old

  8. Species integrity in trees.

    PubMed

    Ortiz-Barrientos, Daniel; Baack, Eric J

    2014-09-01

    From California sequoia, to Australian eucalyptus, to the outstanding diversity of Amazonian forests, trees are fundamental to many processes in ecology and evolution. Trees define the communities that they inhabit, are host to a multiplicity of other organisms and can determine the ecological dynamics of other plants and animals. Trees are also at the heart of major patterns of biodiversity such as the latitudinal gradient of species diversity and thus are important systems for studying the origin of new plant species. Although the role of trees in community assembly and ecological succession is partially understood, the origin of tree diversity remains largely opaque. For instance, the relative importance of differing habitats and phenologies as barriers to hybridization between closely related species is still largely uncharacterized in trees. Consequently, we know very little about the origin of trees species and their integrity. Similarly, studies on the interplay between speciation and tree community assembly are in their infancy and so are studies on how processes like forest maturation modifies the context in which reproductive isolation evolves. In this issue of Molecular Ecology, Lindtke et al. (2014) and Lagache et al. (2014) overcome some traditional difficulties in studying mating systems and sexual isolation in the iconic oaks and poplars, providing novel insights about the integrity of tree species and on how ecology leads to variation in selection on reproductive isolation over time and space. PMID:25155715

  9. Slow growth rates of Amazonian trees: Consequences for carbon cycling

    PubMed Central

    Vieira, Simone; Trumbore, Susan; Camargo, Plinio B.; Selhorst, Diogo; Chambers, Jeffrey Q.; Higuchi, Niro; Martinelli, Luiz Antonio

    2005-01-01

    Quantifying age structure and tree growth rate of Amazonian forests is essential for understanding their role in the carbon cycle. Here, we use radiocarbon dating and direct measurement of diameter increment to document unexpectedly slow growth rates for trees from three locations spanning the Brazilian Amazon basin. Central Amazon trees, averaging only ≈1mm/year diameter increment, grow half as fast as those from areas with more seasonal rainfall to the east and west. Slow growth rates mean that trees can attain great ages; across our sites we estimate 17-50% of trees with diameter >10 cm have ages exceeding 300 years. Whereas a few emergent trees that make up a large portion of the biomass grow faster, small trees that are more abundant grow slowly and attain ages of hundreds of years. The mean age of carbon in living trees (60-110 years) is within the range of or slightly longer than the mean residence time calculated from C inventory divided by annual C allocation to wood growth (40-100 years). Faster C turnover is observed in stands with overall higher rates of diameter increment and a larger fraction of the biomass in large, fast-growing trees. As a consequence, forests can recover biomass relatively quickly after disturbance, whereas recovering species composition may take many centuries. Carbon cycle models that apply a single turnover time for carbon in forest biomass do not account for variations in life strategy and therefore may overestimate the carbon sequestration potential of Amazon forests. PMID:16339903

  10. Glacial climate states and abrupt climate change in MIROC AOGCM

    NASA Astrophysics Data System (ADS)

    Abe-Ouchi, Ayako; Ohgaito, Rumi; Takahashi, Kunio; Yoshimori, Masa; Kawamura, Kenji; Oka, Akira; Chan, Wing-Le; Sherriff-Tadano, Sam

    2016-04-01

    Millennial climate change such as D-O cycles and AIM recorded in ice cores in both Hemispheres is known to show a relatively higher amplitude in the middle-level of a glacial cycle than in the interglacial state or severe glacial state. Here we ran several sensitivity experiments using a coupled atmosphere and ocean GCM (MIROC4m, renamed from MIROC3.2.2) and show that the response to fresh water release to the ocean and bipolar response is highly dependent on the background climate. The experiments were conducted with 500 years water hosing of 0.05 to 0.1 Sv (where 1 Sv is equivalent to the water flux of 10m sea level rise in 100 years) in the North Atlantic 50-70N under different basic states; modern climate state with the pre-industrial condition, middle glacial climate state and full glacial condition, mainly differing in the ice sheet configuration and atmospheric amount of Greenhouse Gases. The results under middle glacial condition show largest cooling/warming response in North Atlantic and a reasonable bipolar warming/cooling signal revealed in the ice core data of the both hemisphere. We discuss the responses under different background climates which involve the strong coupling between atmosphere, ocean and sea ice and their dependence on the configuration of ice sheet.

  11. Crevassing and calving of glacial ice

    NASA Astrophysics Data System (ADS)

    Kenneally, James Patrick

    Calving of ice is a relatively new area of research in the still young field of glaciology. In the short time that calving has been studied, it has been mainly treated as an afterthought, with the predominant mode of thinking being that it will happen so to concern oneself with why is not important. Many studies dealt with observations of calving front positions over time vs. ice velocity in an attempt to quantify the calving rate as the difference between the two, while others have attempted to deduce some empirical relationship between calving rate and variables such as water depth or temperature. This study instead addresses the question of why, where, and when ice will first become crevassed, which is an obviously necessary condition for a later calving event to occur. Previous work examining the causes of calving used ideas put forth from a variety of fields, including civil engineering, materials science, and results from basic physics and mechanics. These theories are re-examined here and presented as part of a larger whole. Important results from the field of fracture mechanics are utilized frequently, and these results can be used as a predictor of ice behavior and intrinsic properties of ice, as well as properties like back stresses induced by local pinning points and resistive shears along glacial ice boundaries. A theory of fracture for a material experiencing creep is also presented with applications to ice shelves and crevasse penetration. Finally, a speculative theory regarding large scale iceberg formation is presented. It is meant mainly as an impetus to further discussion on the topic, with the hope that a model relating crevasse geometries to flow parameters can result in crevasse spacings that could produce the tabular icebergs which are so newsworthy. The primary focus of this thesis is to move away from the "after the fact" studies that are so common in calving research, and instead devote energy to determining what creates the conditions that

  12. 40 CFR 721.4600 - Recovered metal hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Recovered metal hydroxide. 721.4600... Substances § 721.4600 Recovered metal hydroxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a recovered metal hydroxide (PMN...

  13. 40 CFR 721.4600 - Recovered metal hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Recovered metal hydroxide. 721.4600... Substances § 721.4600 Recovered metal hydroxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a recovered metal hydroxide (PMN...

  14. 40 CFR 721.4600 - Recovered metal hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Recovered metal hydroxide. 721.4600... Substances § 721.4600 Recovered metal hydroxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a recovered metal hydroxide (PMN...

  15. 40 CFR 721.4600 - Recovered metal hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Recovered metal hydroxide. 721.4600... Substances § 721.4600 Recovered metal hydroxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a recovered metal hydroxide (PMN...

  16. 40 CFR 721.4600 - Recovered metal hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Recovered metal hydroxide. 721.4600... Substances § 721.4600 Recovered metal hydroxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a recovered metal hydroxide (PMN...

  17. 33 CFR 385.20 - Restoration Coordination and Verification (RECOVER).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Water Management District to conduct assessment, evaluation, and planning and integration activities... applying system-wide models and tools; and evaluating modifications to the Plan. RECOVER is not a policy... additional members to the RECOVER Leadership Group. (e) RECOVER shall perform assessment, evaluation,...

  18. 32 CFR 245.26 - Aircraft being recovered.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Aircraft being recovered. 245.26 Section 245.26... Traffic Under ESCAT § 245.26 Aircraft being recovered. Aircraft being recovered will be expedited to home or an alternate base. Search and Rescue aircraft may be expedited on their missions. Such...

  19. 32 CFR 245.26 - Aircraft being recovered.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Aircraft being recovered. 245.26 Section 245.26... Traffic Under ESCAT § 245.26 Aircraft being recovered. Aircraft being recovered will be expedited to home or an alternate base. Search and Rescue aircraft may be expedited on their missions. Such...

  20. 32 CFR 245.26 - Aircraft being recovered.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Aircraft being recovered. 245.26 Section 245.26... Traffic Under ESCAT § 245.26 Aircraft being recovered. Aircraft being recovered will be expedited to home or an alternate base. Search and Rescue aircraft may be expedited on their missions. Such...

  1. 32 CFR 245.26 - Aircraft being recovered.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Aircraft being recovered. 245.26 Section 245.26... Traffic Under ESCAT § 245.26 Aircraft being recovered. Aircraft being recovered will be expedited to home or an alternate base. Search and Rescue aircraft may be expedited on their missions. Such...

  2. 32 CFR 245.26 - Aircraft being recovered.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Aircraft being recovered. 245.26 Section 245.26... Traffic Under ESCAT § 245.26 Aircraft being recovered. Aircraft being recovered will be expedited to home or an alternate base. Search and Rescue aircraft may be expedited on their missions. Such...

  3. Spawning distribution of sockeye salmon in a glacially influenced watershed: The importance of glacial habitats

    USGS Publications Warehouse

    Young, D.B.; Woody, C.A.

    2007-01-01

    The spawning distribution of sockeye salmon Oncorhynchus nerka was compared between clear and glacially turbid habitats in Lake Clark, Alaska, with the use of radiotelemetry. Tracking of 241 adult sockeye salmon to 27 spawning locations revealed both essential habitats and the relationship between spawn timing and seasonal turbidity cycles. Sixty-six percent of radio-tagged sockeye salmon spawned in turbid waters (???5 nephelometric turbidity units) where visual observation was difficult. Spawning in turbid habitats coincided with seasonal temperature declines and associated declines in turbidity and suspended sediment concentration. Because spawn timing is heritable and influenced by temperature, the observed behavior suggests an adaptive response to glacier-fed habitats, as it would reduce embryonic exposure to the adverse effects of fine sediments. ?? Copyright by the American Fisheries Society 2007.

  4. [Structural recovering in Andean successional forests from Porce (Antioquia, Colombia)].

    PubMed

    Yepes, Adriana P; del Valle, Jorge I; Jaramillo, Sandra L; Orrego, Sergio A

    2010-03-01

    Places subjected to natural or human disturbance can recover forest through an ecological process called secondary succession. Tropical succession is affected by factors such as disturbances, distance from original forest, surface configuration and local climate. These factors determine the composition of species and the time trend of the succession itself. We studied succession in soils used for cattle ranching over various decades in the Porce Region of Colombia (Andean Colombian forests). A set of twenty five permanent plots was measured, including nine plots (20 x 50 m) in primary forests and sixteen (20 x 25 m) in secondary forests. All trees with diameter > or =1.0 cm were measured. We analyzed stem density, basal area, above-ground biomass and species richness, in a successional process of ca. 43 years, and in primary forests. The secondary forests' age was estimated in previous studies, using radiocarbon dating, aerial photographs and a high-resolution satellite image analysis (7 to >43 years). In total, 1,143 and 1,766 stems were measured in primary and secondary forests, respectively. Basal area (5.7 to 85.4 m2 ha(-1)), above-ground biomass (19.1 to 1,011.5 t ha(-1)) and species richness (4 to 69) directly increased with site age, while steam density decreased (3,180 to 590). Diametric distributions were "J-inverted" for primary forests and even-aged size-class structures for secondary forests. Three species of palms were abundant and exclusive in old secondary forests and primary forests: Oenocarpus mapora, Euterpe precatoria and Oenocarpus bataua. These palms happened in cohorts after forest disturbances. Secondary forest structure was 40% in more than 43 years of forest succession and indicate that many factors are interacting and affecting the forests succession in the area (e.g. agriculture, cattle ranching, mining, etc.).

  5. Topological rearrangements and local search method for tandem duplication trees.

    PubMed

    Bertrand, Denis; Gascuel, Olivier

    2005-01-01

    The problem of reconstructing the duplication history of a set of tandemly repeated sequences was first introduced by Fitch . Many recent studies deal with this problem, showing the validity of the unequal recombination model proposed by Fitch, describing numerous inference algorithms, and exploring the combinatorial properties of these new mathematical objects, which are duplication trees. In this paper, we deal with the topological rearrangement of these trees. Classical rearrangements used in phylogeny (NNI, SPR, TBR, ...) cannot be applied directly on duplication trees. We show that restricting the neighborhood defined by the SPR (Subtree Pruning and Regrafting) rearrangement to valid duplication trees, allows exploring the whole duplication tree space. We use these restricted rearrangements in a local search method which improves an initial tree via successive rearrangements. This method is applied to the optimization of parsimony and minimum evolution criteria. We show through simulations that this method improves all existing programs for both reconstructing the topology of the true tree and recovering its duplication events. We apply this approach to tandemly repeated human Zinc finger genes and observe that a much better duplication tree is obtained by our method than using any other program.

  6. Bering Sea Porewaters and Late Glacial Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Mix, A. C.; McKay, J. L.; Ross, A.; Okazaki, Y.; Scientific Team of IODP Expedition 323

    2011-12-01

    The combination of high-resolution porewater d18O and chlorinity, benthic and planktonic foraminiferal d18O in IODP Sites U1339 (1870 m depth) and U1344 (3172 m depth) constrain late glacial circulation in the Bering Sea. During the Last Glacial Interval, the water column below 1800 m approached the freezing point, and upper ocean stratification was lower than today. Both scenarios point to likely local ventilation, associated with brine formation, during glacial time. An additional deep ventilation event may have occurred during late Holocene (Neoglacial?) time, evidenced by relatively low d18O and high chlorinity porewaters. Intervals of high biological productivity appear to be associated with relatively high upper-ocean stratification, perhaps implying a role for nutrients or micronutrients sourced from the continents.

  7. Tectonic control on the persistence of glacially sculpted topography.

    PubMed

    Prasicek, Günther; Larsen, Isaac J; Montgomery, David R

    2015-08-14

    One of the most fundamental insights for understanding how landscapes evolve is based on determining the extent to which topography was shaped by glaciers or by rivers. More than 10(4) years after the last major glaciation the topography of mountain ranges worldwide remains dominated by characteristic glacial landforms such as U-shaped valleys, but an understanding of the persistence of such landforms is lacking. Here we use digital topographic data to analyse valley shapes at sites worldwide to demonstrate that the persistence of U-shaped valleys is controlled by the erosional response to tectonic forcing. Our findings indicate that glacial topography in Earth's most rapidly uplifting mountain ranges is rapidly replaced by fluvial topography and hence valley forms do not reflect the cumulative action of multiple glacial periods, implying that the classic physiographic signature of glaciated landscapes is best expressed in, and indeed limited by, the extent of relatively low-uplift terrain.

  8. EDITORIAL: Cryospheric ecosystems: a synthesis of snowpack and glacial research

    NASA Astrophysics Data System (ADS)

    Hodson, Andy; Brock, Ben; Pearce, David; Laybourn-Parry, Johanna; Tranter, Martyn

    2015-11-01

    The fourteen letters that contributed to this focus issue on cryospheric ecosytems provide an excellent basis for considering the state of the science following a marked increase in research attention since the new millennium. Research letters from the focus issue provide significant insights into the biogeochemical and biological processes associated with snow, glacier ice and glacial sediments. This has been achieved via a significant, empirical effort that has given particular emphasis to glacier surface habitats. However, far less is known about aerobiology, glacial snow covers, supraglacial lakes and sub-ice sedimentary habitats, whose access for sampling and in-situ monitoring remains a great challenge to scientists. Furthermore, the use of models to explore key fluxes, processes and impacts of a changing glacial cryosphere are conspicuous by their absence. As a result, a range of process investigations and modelling studies are required to address the increasing urgency and uncertainty that is associated with understanding the response of cryospheric ecosystems to global change.

  9. Glacial geology of the Hellas region on Mars

    NASA Technical Reports Server (NTRS)

    Kargel, Jeffrey S.; Strom, Robert G.; Johnson, Natasha

    1991-01-01

    A glacial geologic interpretation was recently presented for Argyre, which is herein extended to Hellas. This glacial event is believed to constitute an important link in a global cryohydric epoch of Middle Amazonian age. At glacial maximum, ice apparently extended far beyond the regions of Argyre and Hellas, and formed what is termed as the Austral Ice Sheet, an agglomeration of several ice domes and lobes including the Hellas Lobe. It is concluded that Hellas was apparently heavily glaciated. Also glaciation was young by Martian standards (Middle Amazonian), and ancient by terrestrial standards. Glaciation appears to have occurred during the same period that other areas on Mars were experiencing glaciation and periglacial activity. Glaciation seems to have occurred as a geological brief epoch of intense geomorphic activity in an era characterized by long periods of relative inactivity.

  10. Early local last glacial maximum in the tropical Andes.

    PubMed

    Smith, Jacqueline A; Seltzer, Geoffrey O; Farber, Daniel L; Rodbell, Donald T; Finkel, Robert C

    2005-04-29

    The local last glacial maximum in the tropical Andes was earlier and less extensive than previously thought, based on 106 cosmogenic ages (from beryllium-10 dating) from moraines in Peru and Bolivia. Glaciers reached their greatest extent in the last glacial cycle approximately 34,000 years before the present and were retreating by approximately 21,000 years before the present, implying that tropical controls on ice volumes were asynchronous with those in the Northern Hemisphere. Our estimates of snowline depression reflect about half the temperature change indicated by previous widely cited figures, which helps resolve the discrepancy between estimates of terrestrial and marine temperature depression during the last glacial cycle. PMID:15860623

  11. Tectonic control on the persistence of glacially sculpted topography

    PubMed Central

    Prasicek, Günther; Larsen, Isaac J.; Montgomery, David R.

    2015-01-01

    One of the most fundamental insights for understanding how landscapes evolve is based on determining the extent to which topography was shaped by glaciers or by rivers. More than 104 years after the last major glaciation the topography of mountain ranges worldwide remains dominated by characteristic glacial landforms such as U-shaped valleys, but an understanding of the persistence of such landforms is lacking. Here we use digital topographic data to analyse valley shapes at sites worldwide to demonstrate that the persistence of U-shaped valleys is controlled by the erosional response to tectonic forcing. Our findings indicate that glacial topography in Earth's most rapidly uplifting mountain ranges is rapidly replaced by fluvial topography and hence valley forms do not reflect the cumulative action of multiple glacial periods, implying that the classic physiographic signature of glaciated landscapes is best expressed in, and indeed limited by, the extent of relatively low-uplift terrain. PMID:26271245

  12. Tectonic control on the persistence of glacially sculpted topography.

    PubMed

    Prasicek, Günther; Larsen, Isaac J; Montgomery, David R

    2015-01-01

    One of the most fundamental insights for understanding how landscapes evolve is based on determining the extent to which topography was shaped by glaciers or by rivers. More than 10(4) years after the last major glaciation the topography of mountain ranges worldwide remains dominated by characteristic glacial landforms such as U-shaped valleys, but an understanding of the persistence of such landforms is lacking. Here we use digital topographic data to analyse valley shapes at sites worldwide to demonstrate that the persistence of U-shaped valleys is controlled by the erosional response to tectonic forcing. Our findings indicate that glacial topography in Earth's most rapidly uplifting mountain ranges is rapidly replaced by fluvial topography and hence valley forms do not reflect the cumulative action of multiple glacial periods, implying that the classic physiographic signature of glaciated landscapes is best expressed in, and indeed limited by, the extent of relatively low-uplift terrain. PMID:26271245

  13. Giant glacial cirques of non-mountainous terrains

    NASA Astrophysics Data System (ADS)

    Amantov, A.; Amantova, M.

    2012-04-01

    Cirques are usually considered as specific landforms of hill and mountain terrains produced by alpine glaciers, and/or slope failures (landslides). However, glacial cirques seem to be present also in non-mountainous terrains that underwent extensive Pleistocene ice-sheet glaciations and strong glacial and fluvio-glacial erosion. The largest form in the Baltic region is Severoladozhsky (North Lake Ladoga) cirque, probably the world's largest representative, with the length and width close to 100 km. Another example is the deepest Landsort basin of the Baltic Sea. In those cases Meso-Neoproterozoic sediments were subject to selected erosion, with evident overdeepening of the bedrock surface in comparison with surrounding crystalline frame. The bowl headwall shape of the cirque-like landforms was determined by the outline of the margin of exhumed basin. The origin of the major basins of margins of the Baltic and Canadian shields are similar. However, direct analogues of giant cirques are not well developed in this part of North America due to geological deviations and dominant directions of ice movement. Comparable landforms (like the South Chippewa basin of the Lake Michigan) are therefore less mature. We define glacial cirque as an amphitheatre-shape depression with comparable values of length and width, steep headwall with adjacent side slopes and gentle lip with commonly increased glacial accumulation. They are usually located within an ice stream that created typical relief profile with normal horseshoe overdeepening, and in areas predefined by geological and geomorphological peculiarities. This definition likely fits both classic mountain cirques, and giant ones created in favorable conditions in domains that underwent extensive glaciations and relevant selective glacial erosion. Length/width ratio typical for giant cirques group is close to 1:1, being comparable with classical alpine ones. Major differences (like length/height ratio of other order and possible

  14. Is rate of glacial retreat accelerated in Indian Himalaya? (Invited)

    NASA Astrophysics Data System (ADS)

    Kulkarni, A. V.

    2013-12-01

    The Himalaya has one of the largest concentration of glaciers and rivers like Indus, Ganga and Bramhputra originate from this region. The snow and glacier melt is an important source of water for these rivers. However, this source of water may get affected in the near future due to changes in the cryosphere. Therefore, retreat of Himalayan glaciers are discussed extensively in scientific and public forums in India. Conventionally health of glaciers is assessed using changes in glacial length, as it is widely measured. However changes in glacial length and loss in areal extent near terminus needs to be interpreted carefully, as these changes can be influenced by numerous terrain and climatically sensitive parameters. The terrain parameters which can influence glacial retreat are slope, area altitude distribution, debris cover and orientation. In addition, climatically sensitive parameters like mass balance, glacial lakes and black carbon can also influence glacier retreat. These multiple influences can produce a complex pattern of glacial retreat. In this paper long-term glacier retreat in three river basins in the Indian Himalaya as Tista, Baspa and Parbati will be discussed. These basins are located in different climatically sensitive regions and each basin has unique dominant process of mass wasting. In addition to terrain parameters, influence of process like formation and expansion of moraine dammed lakes in Tista basin, deposition of black carbon on accumulation area in Baspa basin and debris cover in Parbati basin will also be discussed. This will provide understanding on varying influence of different mass wasting processes on glacial retreat during last five decades in the Indian Himalaya.

  15. The Flame Tree

    ERIC Educational Resources Information Center

    Lewis, Richard

    2004-01-01

    Lewis's own experiences living in Indonesia are fertile ground for telling "a ripping good story," one found in "The Flame Tree." He hopes people will enjoy the tale and appreciate the differences of an unfamiliar culture. The excerpt from "The Flame Tree" will reel readers in quickly.

  16. CSI for Trees

    ERIC Educational Resources Information Center

    Rubino, Darrin L.; Hanson, Deborah

    2009-01-01

    The circles and patterns in a tree's stem tell a story, but that story can be a mystery. Interpreting the story of tree rings provides a way to heighten the natural curiosity of students and help them gain insight into the interaction of elements in the environment. It also represents a wonderful opportunity to incorporate the nature of science.…

  17. Trees Are Terrific!

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1992-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. Contents are organized into the following sections: (1) "What Makes a Tree a Tree?," including information…

  18. Tree Topology Estimation.

    PubMed

    Estrada, Rolando; Tomasi, Carlo; Schmidler, Scott C; Farsiu, Sina

    2015-08-01

    Tree-like structures are fundamental in nature, and it is often useful to reconstruct the topology of a tree - what connects to what - from a two-dimensional image of it. However, the projected branches often cross in the image: the tree projects to a planar graph, and the inverse problem of reconstructing the topology of the tree from that of the graph is ill-posed. We regularize this problem with a generative, parametric tree-growth model. Under this model, reconstruction is possible in linear time if one knows the direction of each edge in the graph - which edge endpoint is closer to the root of the tree - but becomes NP-hard if the directions are not known. For the latter case, we present a heuristic search algorithm to estimate the most likely topology of a rooted, three-dimensional tree from a single two-dimensional image. Experimental results on retinal vessel, plant root, and synthetic tree data sets show that our methodology is both accurate and efficient. PMID:26353004

  19. Tree nut oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The major tree nuts include almonds, Brazil nuts, cashew nuts, hazelnuts, macadamia nuts, pecans, pine nuts, pistachio nuts, and walnuts. Tree nut oils are appreciated in food applications because of their flavors and are generally more expensive than other gourmet oils. Research during the last de...

  20. Trees for Mother Earth.

    ERIC Educational Resources Information Center

    Greer, Sandy

    1993-01-01

    Describes Trees for Mother Earth, a program in which secondary students raise funds to buy fruit trees to plant during visits to the Navajo Reservation. Benefits include developing feelings of self-worth among participants, promoting cultural exchange and understanding, and encouraging self-sufficiency among the Navajo. (LP)

  1. Structural Equation Model Trees

    ERIC Educational Resources Information Center

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  2. The Southern Ocean's biological pump during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Anderson, Robert F.; Chase, Zanna; Fleisher, Martin Q.; Sachs, Julian

    Ice core records from Antarctica show large (˜80 ppm) and regular climate-related changes in atmospheric CO 2, with minimum values during glacial periods and maximum values during peak interglacials. The suggested role of the Southern Ocean in driving these changes is based on either the potential for increased utilization of surface nutrients or the potential for decreased ventilation of deep waters during glacial times. Several recent studies have invoked increased stratification of the Southern Ocean to explain lower glacial atmospheric CO 2 levels in terms of reduced exchange of CO 2 between the deep sea and the atmosphere. A northward displacement and/or substantial weakening of the westerly winds during glacial periods are implicit in the scenarios that invoke enhanced stratification. However, both circulation models and proxy results argue against a weakening of the westerlies. In fact, the mean flow of the Antarctic Circumpolar Current and wind-driven upwelling during the Last Glacial Maximum (LGM) are thought to be at least as vigorous as those which exist today. Given these boundary conditions, we offer two (competing) scenarios for ecosystem structure and export production of the glacial Southern Ocean. The first scenario satisfies all proxy records for nutrient utilization and phytoplankton growth rate, and requires increased (relative to today) nitrate utilization south of the Antarctic Polar Front (APF) by phytoplankton other than diatoms, together with a shift in the zone of maximum diatom growth from south (interglacials) to north (glacials) of the APF. The second scenario has reduced growth of all phytoplankton species south of the APF during glacials, and a shift in the zone of maximum export production to the north of the Polar Front. The principal weakness of the first scenario is that there is little sedimentary evidence to support the increased export of particulate organic carbon required by the inferred increase in nitrate utilization south

  3. Glacial modification of granite tors in the Cairngorms, Scotland

    USGS Publications Warehouse

    Hall, A.M.; Phillips, W.M.

    2006-01-01

    A range of evidence indicates that many granite tors in the Cairngorms have been modified by the flow of glacier ice during the Pleistocene. Comparisons with SW England and the use of a space-time transformation across 38 tor groups in the Cairngorms allow a model to be developed for progressive glacial modification. Tors with deeply etched surfaces and no, or limited, block removal imply an absence of significant glacial modification. The removal of superstructure and blocks, locally forming boulder trains, and the progressive reduction of tors to stumps and basal slabs represent the more advanced stages of modification. Recognition of some slabs as tor stumps from which glacial erosion has removed all superstructure allows the original distribution of tors to be reconstructed for large areas of the Cairngorms. Unmodified tors require covers of non-erosive, cold-based ice during all of the cold stages of the Middle and Late Pleistocene. Deformation beneath cold-based glacier ice is capable of the removal of blocks but advanced glacial modification requires former wet-based glacier ice. The depth of glacial erosion at former tor sites remains limited largely to the partial or total elimination of the upstanding tor form. Cosmogenic nuclide exposure ages (Phillips et al., 2006) together with data from weathering pit depths (Hall and Phillips, 2006), from the surfaces of tors and large erratic blocks require that the glacial entrainment of blocks from tors occurred in Marine Isotope Stages (MIS) 4-2, 6 and, probably, at least one earlier phase. The occurrence of glacially modified tors on or close to, the main summits of the Cairngorms requires full ice cover over the mountains during these Stages. Evidence from the Cairngorms indicates that tor morphology can be regarded as an important indicator of former ice cover in many formerly glaciated areas, particularly where other evidence of ice cover is sparse. Recognition of the glacial modification of tors is important

  4. The glacial iron cycle from source to export

    NASA Astrophysics Data System (ADS)

    Hawkings, J.; Wadham, J. L.; Tranter, M.; Raiswell, R.; Benning, L. G.; Statham, P. J.; Tedstone, A. J.; Nienow, P. W.; Telling, J.; Bagshaw, E.; Simmons, S. L.

    2014-12-01

    Nutrient availability limits primary production in large sectors of the world's oceans. Iron is the major limiting nutrient in around one third of the oceanic euphotic zone, most significantly in the Southern Ocean proximal to Antarctica. In these areas the availability of bioavailable iron can influence the amount of primary production, and thus the strength of the biological pump and associated carbon drawdown from the atmosphere. Despite experiencing widespread iron limitation, the Polar oceans are among the most productive on Earth. Due to the extreme cold, remoteness and their perceived "stasis", ice sheets have previously been though of as insignificant in global biogeochemical cycles. However, large marine algal blooms have been observed in iron-limited areas where glacial influence is large, and it is possible that these areas are stimulated by glacial bioavailable iron input. Here we discuss the importance of the Greenland and Antarctic ice sheets in the global iron cycle. Using field collected trace element data, bulk meltwater chemistry and mineralogical analysis, including photomicrographs, EELS and XANES, we present, for the first time, a conceptual model of the glacial iron cycle from source to export. Using this data we discuss the sources of iron in glacial meltwater, transportation and alteration through the glacial system, and subsequent export to downstream environments. Data collected in 2012 and 2013 from two different Greenlandic glacial catchments are shown, with the most detailed breakdown of iron speciation and concentrations in glacial areas yet reported. Furthermore, the first data from Greenlandic icebergs is presented, allowing meltwater-derived and iceberg-derived iron export to be compared, and the influence of both in marine productivity to be estimated. Using our conceptual model and flux estimates from our dataset, glacial iron delivery in both the northern and southern hemisphere is discussed. Finally, we compare our flux

  5. The tree of eukaryotes.

    PubMed

    Keeling, Patrick J; Burger, Gertraud; Durnford, Dion G; Lang, B Franz; Lee, Robert W; Pearlman, Ronald E; Roger, Andrew J; Gray, Michael W

    2005-12-01

    Recent advances in resolving the tree of eukaryotes are converging on a model composed of a few large hypothetical 'supergroups', each comprising a diversity of primarily microbial eukaryotes (protists, or protozoa and algae). The process of resolving the tree involves the synthesis of many kinds of data, including single-gene trees, multigene analyses, and other kinds of molecular and structural characters. Here, we review the recent progress in assembling the tree of eukaryotes, describing the major evidence for each supergroup, and where gaps in our knowledge remain. We also consider other factors emerging from phylogenetic analyses and comparative genomics, in particular lateral gene transfer, and whether such factors confound our understanding of the eukaryotic tree.

  6. From Family Trees to Decision Trees.

    ERIC Educational Resources Information Center

    Trobian, Helen R.

    This paper is a preliminary inquiry by a non-mathematician into graphic methods of sequential planning and ways in which hierarchical analysis and tree structures can be helpful in developing interest in the use of mathematical modeling in the search for creative solutions to real-life problems. Highlights include a discussion of hierarchical…

  7. Deepwater redox changes in the southern Okinawa Trough since the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Dou, Yanguang; Yang, Shouye; Li, Chao; Shi, Xuefa; Liu, Jihua; Bi, Lei

    2015-06-01

    In this study, rare earth element (REE) was treated as a paleo-redox proxy to investigate the changes of depositional environment in the southern Okinawa Trough since the last glacial maximum. The acid-leachable fraction (leachate) of the sediments recovered from the ODP Site 1202B is dominated by biogenic and authigenic components while detrital contamination is minor. The significant enrichment of middle REE suggests a large contribution from authigenic Mn oxyhydroxides and cerium (Ce) anomaly can indicate deepwater redox change. The REE parameters including Ce anomaly in the leachate exhibit remarkable and abrupt changes in the early Holocene (∼9.5 ka) and during LGM (∼20 ka). An increase of Ce anomaly at 28-22 ka implies the suboxic deepwater condition probably caused by increased primary productivity. Weak positive Ce anomalies during the last glacial maximum and deglaciation suggest an oxic depositional environment responding to the enhanced deepwater ventilation with the advection of the North Pacific Intermediate Water and/or South China Sea Intermediate Water into the trough. A decrease of Ce anomaly in the early Holocene might be caused by the intrusion and strengthening of the Kuroshio Current in the trough that enhanced the water stratification and induced a gradual development of suboxic depositional condition. Furthermore, an abrupt change of chemical composition at ca. 4 ka probably indicates a decrease of dissolved oxygen in deepwater and a weakening of ventilation in the Okinawa Trough. This study suggests that REE proxy can provide new insights into the linkage among surface current, deepwater circulation and sediment record in the continental margin where terrigenous input dominates.

  8. Culturable bacteria in Himalayan glacial ice in response to atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Hou, S.; Ma, X.; Qin, D.; Chen, T.

    2007-01-01

    Only recently has specific attention been given to culturable bacteria in Tibetan glaciers, but their relation to atmospheric circulation is less understood yet. Here we present the results of culturable bacteria preserved in an ice core drilled from the East Rongbuk (ER) glacier, Himalayas. The average concentrations of culturable bacteria are 5.0, 0.8, 0.1 and 0.7 CFU mL-1 for the glacier ice deposited during the premonsoon, monsoon, postmonsoon and winter seasons, respectively. The high concentration of culturable bacteria in ER glacier deposited during the premonsoon season is attributed to the transportation of continental dust stirred up by the frequent dust storms during spring. This is also confirmed by the spatial distribution of culturable bacteria in Tibetan glaciers. Continental dust originated from the Northwest China accounts for the high abundance of culturable bacteria in the northern Tibetan Plateau, while monsoon moisture exerts great influence on culturable bacteria with low abundance in the southern plateau. The numbers of representatives with different ARDRA patterns from RFLP analysis are 10, 15, 1 and 2 for the glacial ice deposited during the premonsoon, monsoon, postmonsoon and winter seasons, respectively, suggesting that culturable bacteria deposited in ER glacier during monsoon season are more diverse than that deposited during the other seasons, possibly due to their derivation from both marine air masses and local or regional continental sources, while culturable bacteria deposited during the other seasons are from only one possible origin that is transported by westerlies. Our results show the first report of seasonal variations of abundance and species diversity of culturable bacteria recovered from glacial ice in the Himalayas, and we suggest that microorganisms in Himalayan ice might provide a potential new proxy for the reconstruction of atmospheric circulation.

  9. Records of glacial-interglacial variability during the Pliocene: IODP Expedition 318 - Site U1361

    NASA Astrophysics Data System (ADS)

    Gonzalez, J. J.; Escutia, C.; Espejo, F. J.; Williams, T.; McKay, R. M.; Passhier, S.; van de Flierdt, T.; Tauxe, L.; Brinkhuis, H.

    2012-04-01

    One of the aims of IODP Expedition 318 drilling on the East Antarctic Wilkes Land margin was to obtain the record of Antarctic climate and cryosphere variability during the past warm climates of the early-middle Pliocene. A complete Pliocene section was recovered from Site U1361, located on the continental rise eastern levee of the Jussieu Channel. We present the results from a continous high-resolution geochemical study (X-Ray Fluorescence (XRF) scanner and discrete XRF analysis) conducted on sediments from Site U1361. These records are compared with shipboard physical properties data measured on the core, clay mineralogy analyses and with a post-cruise revised sedimentary facies model. Age constrains for the studied sediments are provided by the age-depth model constructed shipboard and refined post-cruise, which indicated the studies sediments to be comprised between 5.18 and 2.46 Ma. The downcore variations of these multiple proxies is interpreted to result from changes in primary biogenic productivity, terrigenous supply, and sedimentary processes that allow us to reconstruct changes in paleoceanographic and paleoenvironmental conditions associated with glacial-interglacial cyclicity. In this sense it is remarkable the Ba/Al and Ca variations, associated to the diatomaceous-rich silty-clay facies, suggesting high-productivity during interglacial periods at our site. In addition to the glacial/interglacial cyclic variability, we also discuss a marked change in the compositional and physical properties variability patterns within the section that we interpret to correspond with the start of the Pliocene cooling trend in this margin. This contribution results from work funded by: the Integrated Ocean Drilling Program, CTM2009-08467-E (Spanish Ministry of Science and Education and FEDER funds); and the Spanish Ministry of Science and Innovation project CAGES (CTM2011-24079).

  10. Ever deeper phylogeographies: trees retain the genetic imprint of Tertiary plate tectonics.

    PubMed

    Hampe, Arndt; Petit, Rémy J

    2007-12-01

    Changes in species distributions after the last glacial maximum (c. 18 000 years bp) are beginning to be understood, but information diminishes quickly as one moves further back in time. In this issue of Molecular Ecology, Magri et al. (2007) present the fascinating case of a Mediterranean tree species whose populations preserve the genetic imprints of plate tectonic events that took place between 25 million years and 15 million years ago. The study provides a unique insight into the pace of evolution of trees, which, despite interspecific gene flow, can retain a cohesive species identity over timescales long enough to allow the diversification of entire plant and animal genera.

  11. Glacial landforms of the southern Ungava Bay region (Canada): implications for the late-glacial dynamics and the damming of glacial Lake Naskaupi

    NASA Astrophysics Data System (ADS)

    Dube-Loubert, Hugo; Roy, Martin

    2014-05-01

    The Laurentide ice sheet played an important role in the late Pleistocene climate, notably through discharges of icebergs and meltwater. In this context, the Ungava Bay region in northern Quebec-Labrador appears particularly important, especially during the last deglaciation when the retreating ice margin dammed major river valleys, creating large proglacial lakes (e.g., McLean, aux Feuilles). The history of these lakes is closely related to the temporal evolution of the Labrador-Quebec ice dome. There are, however, large uncertainties regarding the position of its ice divide system through time, thereby limiting our understanding of the history of these glacial lakes. Here we focus on glacial and deglacial landforms present in the George River valley, south of Ungava Bay, in order to bring additional constraints on the late-glacial ice dynamics of this region, which also comprised glacial Lake Naskaupi. This work is based on surficial mapping using aerial photos and satellite imagery, combined with extensive fieldwork and sediment sampling. Our investigation showed significant differences in the distribution of glacial landforms across the region. The area east of the George River is characterized by well-developed Naskaupi shorelines while the elevated terrains show a succession of geomorphological features indicative of cold-based ice or ice with low basal velocities. In the easternmost part of this sector, ice flow directional data indicate that the ice was flowing towards ENE, against the regional slope. Eskers show paleocurrent directions indicating a general ice retreat from east to west. In the western part of this sector, near the George River valley, eskers are absent and the region is covered by felsenmeer and ground moraine that likely reflect the presence of a residual ice mass that was no longer dynamic. The presence of a stagnant ice represents the best mechanism to explain the formation of glacial lakes in the George River valley and its main

  12. Morphologic Map of Glacial and Periglacial Features in the Northwestern Argyre Basin, Mars

    NASA Astrophysics Data System (ADS)

    Raack, J.; Hiesinger, H.; Reiss, D.

    2010-03-01

    We produced a morphological map of the northwestern rim of the Argyre Basin with focus on glacial and periglacial features. We report on features such as gullies, pingo-like forms and glacial remnants which are observed.

  13. The Influence of Glacial Ice Sheets on Atlantic Meridional Overturning Circulation Through Atmospheric Circulation Change under Glacial Climate

    NASA Astrophysics Data System (ADS)

    Sherriff-Tadano, S.; Abe-Ouchi, A.; Yoshimori, M.; Oka, A.; Chan, W. L.

    2014-12-01

    It is well known that glacial ice sheets (Laurentide, Fennoscandian and Antarctic ice sheets) exert a large influence on the climate including the atmospheric circulation. Moreover, recent climate modeling studies suggest that glacial ice sheets have a large impact on the Atlantic meridional overturning circulation (AMOC). However, the process by which the ice sheets impact on the AMOC is not yet fully understood. On the other hand, recent studies showed that surface wind changes play a crucial role on changes to the AMOC under glacial climate. Therefore, in this study, we investigate in detail, the process by which the ice sheet modifies the AMOC through surface wind change. Here we conduct numerical experiments using an atmospheric general circulation model (AGCM) and an ocean general circulation model (OGCM) separately. Our method consists of 2 steps. First, from AGCM experiments, we evaluate the effect of glacial ice sheets on the surface wind. Second, from OGCM experiments, we evaluate the influence of the wind stress change on the AMOC by applying the surface wind change as a boundary condition, while leaving other boundary conditions (surface heat and water fluxes) unchanged. In addition, we conduct several sensitivity experiments. Using the AGCM, we explore individual ice sheet effect, ice sheet topography effect and albedo effect on surface wind change. Moreover, using the OGCM, we change the surface wind gradually or apply the surface wind change only at a specific region in order to explore the wind change effect in detail. We find that glacial ice sheets largely intensify the AMOC by surface wind change under glacial climate. Compare to other regions, it reveals that the wind change at the North Atlantic (NA) is a key region. There, the northern glacial ice sheet topography intensifies the Icelandic Low and anti-cyclonic circulation over the Laurentide ice sheet. However, this wind effect is effective only when the NA is not widely covered by sea ice

  14. Do post-glacial river valleys in northern New England store mill-dam legacy sediments?

    NASA Astrophysics Data System (ADS)

    Strouse, S.; Snyder, N. P.

    2010-12-01

    Dam-influenced floodplain morphology has not been studied extensively in post-glacial rivers with high densities of colonial-era milldams. Fluvial restoration in the eastern U.S. often focuses on understanding the natural, or pre-Colonial, floodplain processes. Recent work by Walter and Merritts (2008) in the piedmont of the U.S. Mid-Atlantic region suggests milldams significantly impact sedimentation by creating surfaces composed of post-dam legacy sediment that are often abandoned by the river and function as fill terraces. This work has not yet been tested in a post-glacial environment. I analyze channel morphology and sedimentation patterns upstream of two breached dams on the Sheepscot River in Mid-Coastal Maine using lidar digital elevation models, historical aerial photographs, radiocarbon dating, and hydraulic modeling. In the past several decades, observable channel morphologic changes occurred at the two study sites: Maxcy’s Mills dam (built in 1809, it was 4-m high and breached in the late 1950s), and at Head Tide dam (built in the 1760s, it is 6-m high and was partially breached in 1952). The Sheepscot River is one of Maine’s eight rivers with native anadromous Atlantic salmon populations. Because Atlantic salmon are a federally listed endangered species, understanding the existence and transport of legacy sediment has become an important component of habitat restoration efforts in the region. The goal of this investigation is to determine the extent of legacy sediment in order to better understand how historical dam sites affect morphology and sediment transport in a post-glacial, low-gradient river system. Field and remote sensing analyses indicate that surfaces (up to 2-m high) composed of mud and sand function as floodplains 1.5-2.5 km upstream of both former dam sites. Preliminary analysis of seven radiocarbon dates from pieces of tree bark sampled from the stratigraphy (58-187 cm below the surface) of the two study sites suggest at least 1.8 m

  15. Phylogenetic trees in bioinformatics

    SciTech Connect

    Burr, Tom L

    2008-01-01

    Genetic data is often used to infer evolutionary relationships among a collection of viruses, bacteria, animal or plant species, or other operational taxonomic units (OTU). A phylogenetic tree depicts such relationships and provides a visual representation of the estimated branching order of the OTUs. Tree estimation is unique for several reasons, including: the types of data used to represent each OTU; the use ofprobabilistic nucleotide substitution models; the inference goals involving both tree topology and branch length, and the huge number of possible trees for a given sample of a very modest number of OTUs, which implies that fmding the best tree(s) to describe the genetic data for each OTU is computationally demanding. Bioinformatics is too large a field to review here. We focus on that aspect of bioinformatics that includes study of similarities in genetic data from multiple OTUs. Although research questions are diverse, a common underlying challenge is to estimate the evolutionary history of the OTUs. Therefore, this paper reviews the role of phylogenetic tree estimation in bioinformatics, available methods and software, and identifies areas for additional research and development.

  16. Lazy decision trees

    SciTech Connect

    Friedman, J.H.; Yun, Yeogirl; Kohavi, R.

    1996-12-31

    Lazy learning algorithms, exemplified by nearest-neighbor algorithms, do not induce a concise hypothesis from a given training set; the inductive process is delayed until a test instance is given. Algorithms for constructing decision trees, such as C4.5, ID3, and CART create a single {open_quotes}best{close_quotes} decision tree during the training phase, and this tree is then used to classify test instances. The tests at the nodes of the constructed tree are good on average, but there may be better tests for classifying a specific instance. We propose a lazy decision tree algorithm-LazyDT-that conceptually constructs the {open_quotes}best{close_quote} decision tree for each test instance. In practice, only a path needs to be constructed, and a caching scheme makes the algorithm fast. The algorithm is robust with respect to missing values without resorting to the complicated methods usually seen in induction of decision trees. Experiments on real and artificial problems are presented.

  17. Ecology of invasive Melilotus alba on Alaskan glacial river floodplains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    White sweetclover has recently invaded glacial river floodplains in Alaska. We sampled vegetation and measured environmental variables along transects located along the Nenana, Matanuska, and Stikine Rivers to describe plant communities and to determine the effects of white sweetclover on other plan...

  18. Obliquity Control On Southern Hemisphere Climate During The Last Glacial

    PubMed Central

    Fogwill, C.J.; Turney, C.S.M.; Hutchinson, D.K.; Taschetto, A.S.; England, M.H.

    2015-01-01

    Recent paleoclimate reconstructions have challenged the traditional view that Northern Hemisphere insolation and associated feedbacks drove synchronous global climate and ice-sheet volume during the last glacial cycle. Here we focus on the response of the Patagonian Ice Sheet, and demonstrate that its maximum expansion culminated at 28,400 ± 500 years before present (28.4 ± 0.5 ka), more than 5,000 years before the minima in 65°N summer insolation and the formally-defined Last Glacial Maximum (LGM) at 21,000 ± 2,000 years before present. To investigate the potential drivers of this early LGM (eLGM), we simulate the effects of orbital changes using a suite of climate models incorporating prescribed and evolving sea-ice anomalies. Our analyses suggest that Antarctic sea-ice expansion at 28.5 ka altered the location and intensity of the Southern Hemisphere storm track, triggering regional cooling over Patagonia of 5°C that extends across the wider mid-southern latitudes. In contrast, at the LGM, continued sea-ice expansion reduced regional temperature and precipitation further, effectively starving the ice sheet and resulting in reduced glacial expansion. Our findings highlight the dominant role that orbital changes can play in driving Southern Hemisphere glacial climate via the sensitivity of mid-latitude regions to changes in Antarctic sea-ice extent. PMID:26115344

  19. Terrestrial glacial eskers: Analogs for Martian sinuous ridges

    NASA Technical Reports Server (NTRS)

    Kargel, Jeffrey S.; Strom, Roger G.

    1991-01-01

    A glacial model was introduced last year for the Argyre region, a concept which is now extended, and which was recently integrated with a Global Hydrologic Model incorporating many other aspects of Martian geology. Despite wide agreement that the Martian ridges strongly resemble glacial eskers, this hypothesis has been presented with great equivocation due to a perceived lack of other glacial landforms. Quite to the contrary, it is shown that the Martian ridges actually do occur in logical ordered sequences with many other types of characteristically glacial appearing landforms. Herein, the esker hypothesis is further supported in isolation from considerations of regional landform assemblages. It is concluded that Martian sinuous ridges are similar in every respect to terrestrial eskers: scale, morphology, planimetric pattern, and associations with other probable glaciogenic landforms. It is found that the esker hypothesis is well supported. Eskers are glaciofluvial structures, and owe their existence to large scale melting of stagnant temporate glaciers. Thus, eskers are indicators of an ameliorating climatic regime after a protracted episode of cold, humid conditions.

  20. Glacial melting: an overlooked threat to Antarctic krill

    PubMed Central

    Fuentes, Verónica; Alurralde, Gastón; Meyer, Bettina; Aguirre, Gastón E.; Canepa, Antonio; Wölfl, Anne-Cathrin; Hass, H. Christian; Williams, Gabriela N.; Schloss, Irene R.

    2016-01-01

    Strandings of marine animals are relatively common in marine systems. However, the underlying mechanisms are poorly understood. We observed mass strandings of krill in Antarctica that appeared to be linked to the presence of glacial meltwater. Climate-induced glacial meltwater leads to an increased occurrence of suspended particles in the sea, which is known to affect the physiology of aquatic organisms. Here, we study the effect of suspended inorganic particles on krill in relation to krill mortality events observed in Potter Cove, Antarctica, between 2003 and 2012. The experimental results showed that large quantities of lithogenic particles affected krill feeding, absorption capacity and performance after only 24 h of exposure. Negative effects were related to both the threshold concentrations and the size of the suspended particles. Analysis of the stomach contents of stranded krill showed large quantities of large particles ( > 106 μm3), which were most likely mobilized by glacial meltwater. Ongoing climate-induced glacial melting may impact the coastal ecosystems of Antarctica that rely on krill. PMID:27250339

  1. Obliquity Control on Southern Hemisphere Climate during the Last Glacial

    NASA Astrophysics Data System (ADS)

    Fogwill, C. J.; Hutchinson, D. K.; Turney, C. S.; Taschetto, A.; England, M. H.

    2015-12-01

    Recent paleoclimate reconstructions have challenged the traditional view that Northern Hemisphere insolation and associated feedbacks drove synchronous global climate and ice-sheet volume during the last glacial cycle. Here we focus on the response of the Patagonian Ice Sheet, and demonstrate that its maximum expansion culminated at 28,400 ± 500 years before present (28.4 ± 0.5 ka), more than 5,000 years before the minima in 65°N summer insolation and the formally-defined Last Glacial Maximum (LGM) at 21,000 ± 2,000 years before present. To investigate the potential drivers of this early LGM (eLGM), we simulate the effects of orbital changes using a suite of climate models incorporating prescribed and evolving sea-ice anomalies. Our analyses suggest that Antarctic sea-ice expansion at 28.5 ka altered the location and intensity of the Southern Hemisphere storm track, triggering regional cooling over Patagonia of 5°C that extends across the wider mid-southern latitudes. In contrast, at the LGM, continued sea-ice expansion reduced regional temperature and precipitation further, effectively starving the ice sheet and resulting in reduced glacial expansion. Our findings highlight the dominant role that orbital changes can play in driving Southern Hemisphere glacial climate via the sensitivity of mid-latitude regions to changes in Antarctic sea-ice extent.

  2. Glacial isostatic stress shadowing by the Antarctic ice sheet

    NASA Technical Reports Server (NTRS)

    Ivins, E. R.; James, T. S.; Klemann, V.

    2005-01-01

    Numerous examples of fault slip that offset late Quaternary glacial deposits and bedrock polish support the idea that the glacial loading cycle causes earthquakes in the upper crust. A semianalytical scheme is presented for quantifying glacial and postglacial lithospheric fault reactivation using contemporary rock fracture prediction methods. It extends previous studies by considering differential Mogi-von Mises stresses, in addition to those resulting from a Coulomb analysis. The approach utilizes gravitational viscoelastodynamic theory and explores the relationships between ice mass history and regional seismicity and faulting in a segment of East Antarctica containing the great Antarctic Plate (Balleny Island) earthquake of 25 March 1998 (Mw 8.1). Predictions of the failure stress fields within the seismogenic crust are generated for differing assumptions about background stress orientation, mantle viscosity, lithospheric thickness, and possible late Holocene deglaciation for the D91 Antarctic ice sheet history. Similar stress fracture fields are predicted by Mogi-von Mises and Coulomb theory, thus validating previous rebound Coulomb analysis. A thick lithosphere, of the order of 150-240 km, augments stress shadowing by a late melting (middle-late Holocene) coastal East Antarctic ice complex and could cause present-day earthquakes many hundreds of kilometers seaward of the former Last Glacial Maximum grounding line.

  3. Glacial Influences on Solar Radiation in a Subarctic Sea.

    EPA Science Inventory

    Understanding macroscale processes controlling solar radia­tion in marine systems will be important in interpreting the potential effects of global change from increasing ultraviolet radiation (UV) and glacial retreat. This study provides the first quantitative assessment of UV i...

  4. Alaskan mountain glacial melting observed by satellite gravimetry

    NASA Astrophysics Data System (ADS)

    Chen, J. L.; Tapley, B. D.; Wilson, C. R.

    2006-08-01

    We use satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) as an indication of mass change to study potential long-term mountain glacial melting in southern Alaska and West Canada. The first 3.5 yr of GRACE monthly gravity data, spanning April 2002-November 2005, show a prominent glacial melting trend in the mountain regions around the Gulf of Alaska (GOA). GRACE-observed surface mass changes correlate remarkably well with available mass balance data at Gulkana and Wolverine, two benchmark glaciers of the U.S. Geological Survey (USGS), although the GRACE signals are smaller in magnitude. In addition, terrestrial water storage (TWS) changes estimated from an advanced land surface model show significant mass loss in this region during the same period. After correcting for the leakage errors and removing TWS contributions using model estimates, we conclude that GRACE-observed glacial melting in the GOA mountain region is equivalent to ˜ - 101 ± 22 km 3/yr, which agrees quite well with the assessment of ˜ - 96 ± 35 km 3/yr based on airborne laser altimetry data, and is consistent with an earlier estimate based on the first 2 yr of GRACE data. This study demonstrates the significant potentials of satellite gravity measurements for monitoring mountain glacial melting and regional climate change.

  5. Sulfur/Carbonate Springs and Life in Glacial Ice

    NASA Technical Reports Server (NTRS)

    Allen, C. C.; Grasby, S.; Longazo, T.

    2001-01-01

    Glacial springs are useful analogs to channels and seeps issuing from frozen strata on Mars. Mineralized water can move through, and discharge from, solid ice. This water, even near freezing, can support microbial life and bring it to the surface. Additional information is contained in the original extended abstract.

  6. The gravity apple tree

    NASA Astrophysics Data System (ADS)

    Espinosa Aldama, Mariana

    2015-04-01

    The gravity apple tree is a genealogical tree of the gravitation theories developed during the past century. The graphic representation is full of information such as guides in heuristic principles, names of main proponents, dates and references for original articles (See under Supplementary Data for the graphic representation). This visual presentation and its particular classification allows a quick synthetic view for a plurality of theories, many of them well validated in the Solar System domain. Its diachronic structure organizes information in a shape of a tree following similarities through a formal concept analysis. It can be used for educational purposes or as a tool for philosophical discussion.

  7. Learning classification trees

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1991-01-01

    Algorithms for learning classification trees have had successes in artificial intelligence and statistics over many years. How a tree learning algorithm can be derived from Bayesian decision theory is outlined. This introduces Bayesian techniques for splitting, smoothing, and tree averaging. The splitting rule turns out to be similar to Quinlan's information gain splitting rule, while smoothing and averaging replace pruning. Comparative experiments with reimplementations of a minimum encoding approach, Quinlan's C4 and Breiman et al. Cart show the full Bayesian algorithm is consistently as good, or more accurate than these other approaches though at a computational price.

  8. Evolutionary tree reconstruction

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Kanefsky, Bob

    1990-01-01

    It is described how Minimum Description Length (MDL) can be applied to the problem of DNA and protein evolutionary tree reconstruction. If there is a set of mutations that transform a common ancestor into a set of the known sequences, and this description is shorter than the information to encode the known sequences directly, then strong evidence for an evolutionary relationship has been found. A heuristic algorithm is described that searches for the simplest tree (smallest MDL) that finds close to optimal trees on the test data. Various ways of extending the MDL theory to more complex evolutionary relationships are discussed.

  9. Oxygen-isotope variations in post-glacial Lake Ontario

    NASA Astrophysics Data System (ADS)

    Hladyniuk, Ryan; Longstaffe, Fred J.

    2016-02-01

    The role of glacial meltwater input to the Atlantic Ocean in triggering the Younger Dryas (YD) cooling event has been the subject of controversy in recent literature. Lake Ontario is ideally situated to test for possible meltwater passage from upstream glacial lakes and the Laurentide Ice Sheet (LIS) to the Atlantic Ocean via the lower Great Lakes. Here, we use the oxygen-isotope compositions of ostracode valves and clam shells from three Lake Ontario sediment cores to identify glacial meltwater contributions to ancient Lake Ontario since the retreat of the LIS (∼16,500 cal [13,300 14C] BP). Differences in mineralogy and sediment grain size are also used to identify changes in the hydrologic regime. The average lakewater δ18O of -17.5‰ (determined from ostracode compositions) indicates a significant contribution from glacial meltwater. Upon LIS retreat from the St. Lawrence lowlands, ancient Lake Ontario (glacial Lake Iroquois) lakewater δ18O increased to -12‰ largely because of the loss of low-18O glacial meltwater input. A subsequent decrease in lakewater δ18O (from -12 to -14‰), accompanied by a median sediment grain size increase to 9 μm, indicates that post-glacial Lake Ontario received a final pulse of meltwater (∼13,000-12,500 cal [11,100-10,500 14C] BP) before the onset of hydrologic closure. This meltwater pulse, which is also recorded in a previously reported brief freshening of the neighbouring Champlain Valley (Cronin et al., 2012), may have contributed to a weakening of thermohaline circulation in the Atlantic Ocean. After 12,900 cal [11,020 14C] BP, the meltwater presence in the Ontario basin continued to inhibit entry of Champlain seawater into early Lake Ontario. Opening of the North Bay outlet diverted upper Great Lakes water from the lower Great Lakes causing a period (12,300-8300 cal [10,400-7500 14C] BP) of hydrologic closure in Lake Ontario (Anderson and Lewis, 2012). This change is demarcated by a shift to higher δ18Olakewater

  10. Glacial geology, glacial recession, proglacial lakes, and postglacial environments, Fishers Island, New York

    SciTech Connect

    Sirkin, L. ); Funk, R.E. . Anthropological Survey)

    1993-03-01

    The Fishers Island Moraine, a complex of three parallel ice margin depositional trends, forms the west-central segment of a major recessional moraine of the Connecticut-Rhode Island Lobe of the late Wisconsinan glacier. As such, the moraine links the Orient Point Moraine of eastern Long Island and the Charlestown Moraine of western Rhode Island and marks a prominent recessional ice margin. The moraine is correlative with the Roanoke Point Moraine of the Connecticut Lobe of northeastern Long Island. Pollen stratigraphy of >13,180 ka bog sediments begins early in the spruce (A) pollen zone with evidence of a cold, late-glacial climate. The pine (B) pollen zone, beginning prior to 11,145 ka, and the oak (C) pollen zone, dating from about 9,000 ka with hickory and hemlock subzones, are well represented. However, after about 2,000 ka, the stratigraphic record in the bog sections is missing in most cases due to peat harvesting. Pollen spectra from several archeological sites fall within the late oak pollen zone, well within the land clearing interval with evidence of hardwood forests and locally holly and cedar. Evidence of cultigens in the pollen record is sparse. Marine deposits over fresh water bog and proglacial lake sediments show that some coastal bogs were drowned by sea level rise.

  11. Symptom overreporting and recovered memories of childhood sexual abuse.

    PubMed

    Geraerts, Elke; Jelicic, Marko; Merckelbach, Harald

    2006-10-01

    The authenticity of recovered memories is a much debated issue. Surprisingly, no study has systematically looked at symptom overreporting in people claiming recovered memories of childhood sexual abuse (CSA). In a first sample we administered the Structured Inventory of Malingered Symptomatology (SIMS) to individuals who said they had recovered CSA memories (n=66), individuals who said their CSA had always been accessible (continuous CSA memory group; n=119), and controls who said they had no CSA experiences (n=83). In a second sample individuals reporting recovered (n=45) or continuous (n=45) CSA memories completed the Morel Emotional Numbing Test (MENT). Our aim was to compare these groups with regard to their tendency to overreport symptoms. The results indicate that people with recovered memories do not score higher on the SIMS and the MENT than other CSA survivors suggesting that symptom overreporting is not typical for people reporting recovered memories.

  12. Abrupt glacial climate shifts controlled by ice sheet changes.

    PubMed

    Zhang, Xu; Lohmann, Gerrit; Knorr, Gregor; Purcell, Conor

    2014-08-21

    During glacial periods of the Late Pleistocene, an abundance of proxy data demonstrates the existence of large and repeated millennial-scale warming episodes, known as Dansgaard-Oeschger (DO) events. This ubiquitous feature of rapid glacial climate change can be extended back as far as 800,000 years before present (BP) in the ice core record, and has drawn broad attention within the science and policy-making communities alike. Many studies have been dedicated to investigating the underlying causes of these changes, but no coherent mechanism has yet been identified. Here we show, by using a comprehensive fully coupled model, that gradual changes in the height of the Northern Hemisphere ice sheets (NHISs) can alter the coupled atmosphere-ocean system and cause rapid glacial climate shifts closely resembling DO events. The simulated global climate responses--including abrupt warming in the North Atlantic, a northward shift of the tropical rainbelts, and Southern Hemisphere cooling related to the bipolar seesaw--are generally consistent with empirical evidence. As a result of the coexistence of two glacial ocean circulation states at intermediate heights of the ice sheets, minor changes in the height of the NHISs and the amount of atmospheric CO2 can trigger the rapid climate transitions via a local positive atmosphere-ocean-sea-ice feedback in the North Atlantic. Our results, although based on a single model, thus provide a coherent concept for understanding the recorded millennial-scale variability and abrupt climate changes in the coupled atmosphere-ocean system, as well as their linkages to the volume of the intermediate ice sheets during glacials.

  13. Negligible glacial-interglacial variation in continental chemical weathering rates.

    PubMed

    Foster, Gavin L; Vance, Derek

    2006-12-14

    Chemical weathering of the continents is central to the regulation of atmospheric carbon dioxide concentrations, and hence global climate. On million-year timescales silicate weathering leads to the draw-down of carbon dioxide, and on millennial timescales chemical weathering affects the calcium carbonate saturation state of the oceans and hence their uptake of carbon dioxide. However, variations in chemical weathering rates over glacial-interglacial cycles remain uncertain. During glacial periods, cold and dry conditions reduce the rate of chemical weathering, but intense physical weathering and the exposure of carbonates on continental shelves due to low sea levels may increase this rate. Here we present high-resolution records of the lead isotope composition of ferromanganese crusts from the North Atlantic Ocean that cover the past 550,000 years. Combining these records with a simple quantitative model of changes in the lead isotope composition of the deep North Atlantic Ocean in response to chemical weathering, we find that chemical weathering rates were two to three times lower in the glaciated interior of the North Atlantic Region during glacial periods than during the intervening interglacial periods. This decrease roughly balances the increase in chemical weathering caused by the exposure of continental shelves, indicating that chemical weathering rates remained relatively constant on glacial-interglacial timescales. On timescales of more than a million years, however, we suggest that enhanced weathering of silicate glacial sediments during interglacial periods results in a net draw-down of atmospheric carbon dioxide, creating a positive feedback on global climate that, once initiated, promotes cooling and further glaciation.

  14. Abrupt glacial climate shifts controlled by ice sheet changes

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Lohmann, Gerrit; Knorr, Gregor; Purcell, Conor

    2014-08-01

    During glacial periods of the Late Pleistocene, an abundance of proxy data demonstrates the existence of large and repeated millennial-scale warming episodes, known as Dansgaard-Oeschger (DO) events. This ubiquitous feature of rapid glacial climate change can be extended back as far as 800,000 years before present (BP) in the ice core record, and has drawn broad attention within the science and policy-making communities alike. Many studies have been dedicated to investigating the underlying causes of these changes, but no coherent mechanism has yet been identified. Here we show, by using a comprehensive fully coupled model, that gradual changes in the height of the Northern Hemisphere ice sheets (NHISs) can alter the coupled atmosphere-ocean system and cause rapid glacial climate shifts closely resembling DO events. The simulated global climate responses--including abrupt warming in the North Atlantic, a northward shift of the tropical rainbelts, and Southern Hemisphere cooling related to the bipolar seesaw--are generally consistent with empirical evidence. As a result of the coexistence of two glacial ocean circulation states at intermediate heights of the ice sheets, minor changes in the height of the NHISs and the amount of atmospheric CO2 can trigger the rapid climate transitions via a local positive atmosphere-ocean-sea-ice feedback in the North Atlantic. Our results, although based on a single model, thus provide a coherent concept for understanding the recorded millennial-scale variability and abrupt climate changes in the coupled atmosphere-ocean system, as well as their linkages to the volume of the intermediate ice sheets during glacials.

  15. Abrupt glacial climate shifts controlled by ice sheet changes.

    PubMed

    Zhang, Xu; Lohmann, Gerrit; Knorr, Gregor; Purcell, Conor

    2014-08-21

    During glacial periods of the Late Pleistocene, an abundance of proxy data demonstrates the existence of large and repeated millennial-scale warming episodes, known as Dansgaard-Oeschger (DO) events. This ubiquitous feature of rapid glacial climate change can be extended back as far as 800,000 years before present (BP) in the ice core record, and has drawn broad attention within the science and policy-making communities alike. Many studies have been dedicated to investigating the underlying causes of these changes, but no coherent mechanism has yet been identified. Here we show, by using a comprehensive fully coupled model, that gradual changes in the height of the Northern Hemisphere ice sheets (NHISs) can alter the coupled atmosphere-ocean system and cause rapid glacial climate shifts closely resembling DO events. The simulated global climate responses--including abrupt warming in the North Atlantic, a northward shift of the tropical rainbelts, and Southern Hemisphere cooling related to the bipolar seesaw--are generally consistent with empirical evidence. As a result of the coexistence of two glacial ocean circulation states at intermediate heights of the ice sheets, minor changes in the height of the NHISs and the amount of atmospheric CO2 can trigger the rapid climate transitions via a local positive atmosphere-ocean-sea-ice feedback in the North Atlantic. Our results, although based on a single model, thus provide a coherent concept for understanding the recorded millennial-scale variability and abrupt climate changes in the coupled atmosphere-ocean system, as well as their linkages to the volume of the intermediate ice sheets during glacials. PMID:25119027

  16. Hydrostratigraphy of Tree Island Cores from Water Conservation Area 3

    USGS Publications Warehouse

    McNeill, Donald F.; Cunningham, Kevin J.

    2003-01-01

    Cores and borehole-geophysical logs collected on and around two tree islands in Water Conservation Area 3 have been examined to develop a stratigraphic framework for these ecosystems. Especially important is the potential for the exchange of ground water and surface water within these features. The hydrostratigraphic results from this study document the lithologic nature of the foundation of the tree islands, the distribution of porous intervals, the potential for paleotopographic influence on their formation, and the importance of low-permeability, subaerial-exposure horizons on the vertical exchange of ground water and surface water. Figure 1. Location of Tree Islands 3AS3 and 3BS1. [larger image] Results from this hydrostratigraphic study indicate that subtle differences occur in lithofacies and topography between the on-island and off-island subsurface geologic records. Specifics are described herein. Firstly, at both tree-island sites, the top of the limestone bedrock is slightly elevated beneath the head of the tree islands relative to the off-island core sites and the tail of the tree islands, which suggests that bedrock 'highs' acted as 'seeds' for the development of the tree islands of this study and possibly many others. Secondly, examination of the recovered core and the caliper logs tentatively suggest that the elevated limestone beneath the tree islands may have a preferentially more porous framework relative to limestone beneath the adjacent areas, possibly providing a ground-water-to-surface-water connection that sustains the tree island system. Finally, because the elevation of the top of the limestone bedrock at the head of Tree Island 3AS3 is slightly higher than the surrounding upper surface of the peat, and because the wetland peats have a lower hydraulic conductivity than the limestone bedrock (Miami Limestone and Fort Thompson Formation), it is possible that there is a head difference between surface water of the wetlands and the ground water

  17. Chinaberry tree (Melia azedarach) poisoning in dog: a case report.

    PubMed

    Ferreiro, D; Orozco, J P; Mirón, C; Real, T; Hernández-Moreno, D; Soler, F; Pérez-López, M

    2010-02-01

    This article describes a case of Chinaberry tree poisoning diagnosed in a dog. The initial clinical signs were variable and included tremors (muscular seizures) and a moderate limp in the dog's back leg, which evolved to a more severe condition in the following hours. Abdominal radiographic evaluation was requested, and abundant small, foreign, radio-dense bodies were detected, which were associated with Chinaberry tree fruits after surgical extraction. Adequate treatment was established, and the patient recovered completely. In addition, we compare clinical and gross postmortem findings in other similar cases reported in the literature. There is a general lack of information of such poisoning in pets.

  18. The water relations of trees on karst

    NASA Astrophysics Data System (ADS)

    Schwinning, S.

    2008-05-01

    The ecohydrology of karst has not received much attention, despite the disproportionally large effect that karst ecosystems might have on the availability of global freshwater quantity and quality. Theoretical considerations suggest that the ecohydrology of woody plants in karst, specifically where soil cover is thin and trees take root in the epikarst, could be very different from that of woody plants in systems with deep soils. I explore the mechanistic basis and possible ecohydrologic consequences of these differences, as well as present the results of a field study into the water relations of trees in karst. The study examined the water sources and water relations of Quercus fusiformis (Small) and Juniperus ashei (Buchholz) in the karst region of the eastern Edwards Plateau, Texas (USA). Stable isotope analysis of stem water suggested that both trees used evaporatively enriched water stored in the epikarst. Q. fusiformis had consistently higher predawn water potentials than J. ashei during drought. However, epikarst structure had strong effects on the predawn water potentials experienced during drought. Although the water potentials of both species recovered after drought- breaking rain events, associated shifts in stem water isotope ratios did not indicate significant uptake of rainwater from the shallow soil. A hypothesis is developed to explain this phenomenon invoking a piston-flow mechanism that pushes water stored in macropores into the pseudomatrix and into the presumed active root zones of the trees. The study suggests that tree species of the Edwards Plateau do not commonly reduce aquifer recharge by tapping directly into macropores or perched water tables, but more likely by reducing water storage in the pseudomatrix of the epikarst.

  19. Taxonomy of interpretation trees

    NASA Astrophysics Data System (ADS)

    Flynn, Patrick J.; Jain, Anil K.

    1992-02-01

    This paper explores alternative models of the interpretation tree (IT), whose search is one of the dominant paradigms for object recognition. Recurrence relations for the unpruned size of eight different types of search tree are introduced. Since exhaustive search of the IT in most recognition systems is impractical, pruning of various types is employed. It is therefore useful to see how much of the IT will be explored in a typical recognition problem. Probabilistic models of the search process have been proposed in the literature and used as a basis for theoretical bounds on search tree size, but experiments on a large number of images suggest that for 3-D object recognition from range data, the error probabilities (assumed to be constant) display significant variation. Hence, the theoretical bounds on the interpretation tree's size can serve only as rough estimates of the computational burden incurred during object recognition.

  20. Tree Nut Allergies

    MedlinePlus

    ... tree nut used on the label. Read all product labels carefully before purchasing and consuming any item. Ingredients ... Getting Started Newly Diagnosed Emergency Care Plan Food Labels Mislabeled Products Tips for Managing Food Allergies Resources For... Most ...

  1. Generalized constructive tree weights

    SciTech Connect

    Rivasseau, Vincent E-mail: adrian.tanasa@ens-lyon.org; Tanasa, Adrian E-mail: adrian.tanasa@ens-lyon.org

    2014-04-15

    The Loop Vertex Expansion (LVE) is a quantum field theory (QFT) method which explicitly computes the Borel sum of Feynman perturbation series. This LVE relies in a crucial way on symmetric tree weights which define a measure on the set of spanning trees of any connected graph. In this paper we generalize this method by defining new tree weights. They depend on the choice of a partition of a set of vertices of the graph, and when the partition is non-trivial, they are no longer symmetric under permutation of vertices. Nevertheless we prove they have the required positivity property to lead to a convergent LVE; in fact we formulate this positivity property precisely for the first time. Our generalized tree weights are inspired by the Brydges-Battle-Federbush work on cluster expansions and could be particularly suited to the computation of connected functions in QFT. Several concrete examples are explicitly given.

  2. Leonardo's Tree Theory.

    ERIC Educational Resources Information Center

    Werner, Suzanne K.

    2003-01-01

    Describes a series of activities exploring Leonardo da Vinci's tree theory that are designed to strengthen 8th grade students' data collection and problem solving skills in physical science classes. (KHR)

  3. The tree BVOC index.

    PubMed

    Simpson, J R; McPherson, E G

    2011-01-01

    Urban trees can produce a number of benefits, among them improved air quality. Biogenic volatile organic compounds (BVOCs) emitted by some species are ozone precursors. Modifying future tree planting to favor lower-emitting species can reduce these emissions and aid air management districts in meeting federally mandated emissions reductions for these compounds. Changes in BVOC emissions are calculated as the result of transitioning to a lower-emitting species mix in future planting. A simplified method for calculating the emissions reduction and a Tree BVOC index based on the calculated reduction is described. An example illustrates the use of the index as a tool for implementation and monitoring of a tree program designed to reduce BVOC emissions as a control measure being developed as part of the State Implementation Plan (SIP) for the Sacramento Federal Nonattainment Area. PMID:21435760

  4. Tree-bank grammars

    SciTech Connect

    Charniak, E.

    1996-12-31

    By a {open_quotes}tree-bank grammar{close_quotes} we mean a context-free grammar created by reading the production rules directly from hand-parsed sentences in a tree bank. Common wisdom has it that such grammars do not perform well, though we know of no published data on the issue. The primary purpose of this paper is to show that the common wisdom is wrong. In particular, we present results on a tree-bank grammar based on the Penn Wall Street Journal tree bank. To the best of our knowledge, this grammar outperforms all other non-word-based statistical parsers/grammars on this corpus. That is, it outperforms parsers that consider the input as a string of tags and ignore the actual words of the corpus.

  5. Thriving in the Cold: Glacial Expansion and Post-Glacial Contraction of a Temperate Terrestrial Salamander (Plethodon serratus)

    PubMed Central

    Newman, Catherine E.; Austin, Christopher C.

    2015-01-01

    The dynamic geologic history of the southeastern United States has played a major role in shaping the geographic distributions of amphibians in the region. In the phylogeographic literature, the predominant pattern of distribution shifts through time of temperate species is one of contraction during glacial maxima and persistence in refugia. However, the diverse biology and ecology of amphibian species suggest that a “one-size-fits-all” model may be inappropriate. Nearly 10% of amphibian species in the region have a current distribution comprised of multiple disjunct, restricted areas that resemble the shape of Pleistocene refugia identified for other temperate taxa in the literature. Here, we apply genetics and spatially explicit climate analyses to test the hypothesis that the disjunct regions of these species ranges are climatic refugia for species that were more broadly distributed during glacial maxima. We use the salamander Plethodon serratus as a model, as its range consists of four disjunct regions in the Southeast. Phylogenetic results show that P. serratus is comprised of multiple genetic lineages, and the four regions are not reciprocally monophyletic. The Appalachian salamanders form a clade sister to all other P. serratus. Niche and paleodistribution modeling results suggest that P. serratus expanded from the Appalachians during the cooler Last Glacial Maximum and has since been restricted to its current disjunct distribution by a warming climate. These data reject the universal applicability of the glacial contraction model to temperate taxa and reiterate the importance of considering the natural history of individual species. PMID:26132077

  6. Thriving in the Cold: Glacial Expansion and Post-Glacial Contraction of a Temperate Terrestrial Salamander (Plethodon serratus).

    PubMed

    Newman, Catherine E; Austin, Christopher C

    2015-01-01

    The dynamic geologic history of the southeastern United States has played a major role in shaping the geographic distributions of amphibians in the region. In the phylogeographic literature, the predominant pattern of distribution shifts through time of temperate species is one of contraction during glacial maxima and persistence in refugia. However, the diverse biology and ecology of amphibian species suggest that a "one-size-fits-all" model may be inappropriate. Nearly 10% of amphibian species in the region have a current distribution comprised of multiple disjunct, restricted areas that resemble the shape of Pleistocene refugia identified for other temperate taxa in the literature. Here, we apply genetics and spatially explicit climate analyses to test the hypothesis that the disjunct regions of these species ranges are climatic refugia for species that were more broadly distributed during glacial maxima. We use the salamander Plethodon serratus as a model, as its range consists of four disjunct regions in the Southeast. Phylogenetic results show that P. serratus is comprised of multiple genetic lineages, and the four regions are not reciprocally monophyletic. The Appalachian salamanders form a clade sister to all other P. serratus. Niche and paleodistribution modeling results suggest that P. serratus expanded from the Appalachians during the cooler Last Glacial Maximum and has since been restricted to its current disjunct distribution by a warming climate. These data reject the universal applicability of the glacial contraction model to temperate taxa and reiterate the importance of considering the natural history of individual species.

  7. Glacial vicariance in Eurasia: mitochondrial DNA evidence from Scots pine for a complex heritage involving genetically distinct refugia at mid-northern latitudes and in Asia Minor

    PubMed Central

    Naydenov, Krassimir; Senneville, Sauphie; Beaulieu, Jean; Tremblay, Francine; Bousquet, Jean

    2007-01-01

    Background At the last glacial maximum, Fennoscandia was covered by an ice sheet while the tundra occupied most of the rest of northern Eurasia. More or less disjunct refugial populations of plants were dispersed in southern Europe, often trapped between mountain ranges and seas. Genetic and paleobotanical evidences indicate that these populations have contributed much to Holocene recolonization of more northern latitudes. Less supportive evidence has been found for the existence of glacial populations located closer to the ice margin. Scots pine (Pinus sylvestris L.) is a nordic conifer with a wide natural range covering much of Eurasia. Fractures in its extant genetic structure might be indicative of glacial vicariance and how different refugia contributed to the current distribution at the continental level. The population structure of Scots pine was investigated on much of its Eurasian natural range using maternally inherited mitochondrial DNA polymorphisms. Results A novel polymorphic region of the Scots pine mitochondrial genome has been identified, the intron 1 of nad7, with three variants caused by insertions-deletions. From 986 trees distributed among 54 populations, four distinct multi-locus mitochondrial haplotypes (mitotypes) were detected based on the three nad7 intron 1 haplotypes and two previously reported size variants for nad1 intron B/C. Population differentiation was high (GST = 0.657) and the distribution of the mitotypes was geographically highly structured, suggesting at least four genetically distinct ancestral lineages. A cosmopolitan lineage was widely distributed in much of Europe throughout eastern Asia. A previously reported lineage limited to the Iberian Peninsula was confirmed. A new geographically restricted lineage was found confined to Asia Minor. A new lineage was restricted to more northern latitudes in northeastern Europe and the Baltic region. Conclusion The contribution of the various ancestral lineages to the current

  8. Tree rings and environmental change during deglaciation in the N. American Great Lakes area

    NASA Astrophysics Data System (ADS)

    Leavitt, S. W.; Panyushkina, I. P.

    2010-12-01

    Greenland ice-core proxies give a high-resolution perspective on the remarkable climate variability since the last full-glacial period, but high-resolution tree-ring records could provide valuable added insight into this variability and its manifestations in terrestrial settings. Only a single oak/pine tree-ring chronology from Europe extends from the present to beyond 10,000 years ago, so inferring high-resolution mid-N. American environmental variability during this period is a particularly challenging but worthwhile objective, because trajectories of human and mega-fauna populations are likely linked to this variability, and some of the abrupt hemispheric- to global-scale climate events may have even been triggered in this region. Fortunately, the geologic circumstances of this post-glacial period have been favorable to preservation of wood in the time frame from 8000 to 14,000 years ago. In an ongoing project originating in 2002, we have been slowly accumulating wood samples from around the Great Lakes area variously preserved in glacial till, sands of alluvial and lacustrine origin, peat deposits, and submerged in lakes. In addition to contributing an expanding set of “floating” tree-ring chronologies for discrete time intervals within the 6000-year period, some coeval chronologies are from different locations so spatial variability can be gleaned. This presentation reports on the progress of this project with respect to sites, chronologies, ring-width and isotope analysis, patterns of change in variability through time, and comparison with modern trees. Among the most notable discoveries thus far has been a Younger Dryas event-age forest, whose unusual history is chronicled through the tree-ring micro-features and measurements.

  9. Tree Topology Estimation

    PubMed Central

    Estrada, Rolando; Tomasi, Carlo; Schmidler, Scott C.; Farsiu, Sina

    2015-01-01

    Tree-like structures are fundamental in nature, and it is often useful to reconstruct the topology of a tree—what connects to what—from a two-dimensional image of it. However, the projected branches often cross in the image: the tree projects to a planar graph, and the inverse problem of reconstructing the topology of the tree from that of the graph is ill-posed. We regularize this problem with a generative, parametric tree-growth model. Under this model, reconstruction is possible in linear time if one knows the direction of each edge in the graph—which edge endpoint is closer to the root of the tree—but becomes NP-hard if the directions are not known. For the latter case, we present a heuristic search algorithm to estimate the most likely topology of a rooted, three-dimensional tree from a single two-dimensional image. Experimental results on retinal vessel, plant root, and synthetic tree datasets show that our methodology is both accurate and efficient. PMID:26353004

  10. Quaternary glacial and post-glacial depositional history associated with the Green Bay lobe, east-central Wisconsin

    SciTech Connect

    Thieme, L.D.; Smith, G.L. . Dept. of Geology)

    1993-03-01

    Multiple layers of peat and wood fragments indicate that Quaternary glaciation of the east-central region of Wisconsin was punctuated by at least two interglacial periods. Till, outwash, and glaciolacustrine deposits suggest that deposition took place in alternating glacial and non-glacial environments due to oscillations in the position of the Green Bay Lobe terminus. The data for this study consists of 36 auger borings, 70 geologic logs and 100 well-construction reports from water wells. Nine vibracores were taken at the northern margin of Lake Winnebago in order to document in detail the post-glacial history of Glacial Lake Oshkosh/Lake Winnebago. Local bedrock consists of limestones and dolomites of the Middle Ordovician Sinnipee Group. Bedrock elevations range from 211--237 m; bedding dips regionally to the southeast at 1--2 degrees. Bedrock is overlain by a 3--13 m-thick layer of alternating red clay and gray silty-clay (basal Kewaunee Formation ) perhaps deposited in a proglacial lake. These sediments are overlain by apeat/wood layer indicating marsh deposition. This peat/wood layer is overlain by more proglacial lake sediment, 3--10 m of gray brown clay to silty-clay. A second peat/wood layer overlies the gray/brown sediment and may correlate with the Two Creeks buried forest bed. The uppermost unit consists of 2--3 m red silty-clay till (Middle Inlet Member of the Kewaunee Formation). Along the northern margin of present-day Lake Winnebago, red silty-clay is overlain by silty-sand deposited by Glacial Lake Oshkosh. Future work includes obtaining radiocarbon dates from buried peat/wood layers to verify these tentative correlations between east-central Wisconsin and the Lake Michigan Basin.

  11. How Trees Can Save Energy.

    ERIC Educational Resources Information Center

    Fazio, James R., Ed.

    1991-01-01

    This document might easily have been called "How To Use Trees To Save Energy". It presents the energy saving advantages of landscaping the home and community with trees. The discussion includes: (1) landscaping advice to obtain the benefits of tree shade; (2) the heat island phenomenon in cities; (3) how and where to properly plant trees for…

  12. State Trees and Arbor Days.

    ERIC Educational Resources Information Center

    Forest Service (USDA), Washington, DC.

    Provides information on state trees for each of the 50 states and the District of Columbia. Includes for each state: (1) year in which state tree was chosen; (2) common and scientific names of the tree; (3) arbor day observance; (4) address of state forester; and (5) drawings of the tree, leaf, and fruit or cone. (JN)

  13. Genetic Signals of Demographic Expansion in Downy Woodpecker (Picoides pubescens) after the Last North American Glacial Maximum

    PubMed Central

    Pulgarín-R, Paulo C.; Burg, Theresa M.

    2012-01-01

    The glacial cycles of the Pleistocene have been recognized as important, large-scale historical processes that strongly influenced the demographic patterns and genetic structure of many species. Here we present evidence of a postglacial expansion for the Downy Woodpecker (Picoides pubescens), a common member of the forest bird communities in North America with a continental distribution. DNA sequences from the mitochondrial tRNA-Lys, and ATPase 6 and 8 genes, and microsatellite data from seven variable loci were combined with a species distribution model (SDM) to infer possible historical scenarios for this species after the last glacial maximum. Analyses of Downy Woodpeckers from 23 geographic areas suggested little differentiation, shallow genealogical relationships, and limited population structure across the species’ range. Microsatellites, which have higher resolution and are able to detect recent differences, revealed two geographic groups where populations along the eastern edge of the Rocky Mountains (Montana, Utah, Colorado, and southern Alberta) were genetically isolated from the rest of the sampled populations. Mitochondrial DNA, an important marker to detect historical patterns, recovered only one group. However, populations in Idaho and southeast BC contained high haplotype diversity and, in general were characterized by the absence of the most common mtDNA haplotype. The SDM suggested several areas in the southern US as containing suitable Downy Woodpecker habitat during the LGM. The lack of considerable geographic structure and the starburst haplotype network, combined with several population genetic tests, suggest a scenario of demographic expansion during the last part of Pleistocene and early Holocene. PMID:22792306

  14. Species-wide phylogeography of North American mule deer (Odocoileus hemionus): cryptic glacial refugia and postglacial recolonization.

    PubMed

    Latch, Emily K; Heffelfinger, James R; Fike, Jennifer A; Rhodes, Olin E

    2009-04-01

    Quaternary climatic oscillations greatly influenced the present-day population genetic structure of animals and plants. For species with high dispersal and reproductive potential, phylogeographic patterns resulting from historical processes can be cryptic, overshadowed by contemporary processes. Here we report a study of the phylogeography of Odocoileus hemionus, a large, vagile ungulate common throughout western North America. We examined sequence variation of mitochondrial DNA (control region and cytochrome b) within and among 70 natural populations across the entire range of the species. Among the 1766 individual animals surveyed, we recovered 496 haplotypes. Although fine-scale phylogenetic structure was weakly resolved using phylogenetic methods, network analysis clearly revealed the presence of 12 distinct haplogroups. The spatial distribution of haplogroups showed a strong genetic discontinuity between the two morphological types of O. hemionus, mule deer and black-tailed deer, east and west of the Cascade Mountains in the Pacific Northwest. Within the mule deer lineage, we identified several haplogroups that expanded before or during the Last Glacial Maximum, suggesting that mule deer persisted in multiple refugia south of the ice sheets. Patterns of genetic diversity within the black-tailed deer lineage suggest a single refugium along the Pacific Northwest coast, and refute the hypothesis that black-tailed deer persisted in one or more northern refugia. Our data suggest that black-tailed deer recolonized areas in accordance with the pattern of glacial retreat, with initial recolonization northward along a coastal route and secondary recolonization inland.

  15. Stem compression reversibly reduces phloem transport in Pinus sylvestris trees.

    PubMed

    Henriksson, Nils; Tarvainen, Lasse; Lim, Hyungwoo; Tor-Ngern, Pantana; Palmroth, Sari; Oren, Ram; Marshall, John; Näsholm, Torgny

    2015-10-01

    Manipulating tree belowground carbon (C) transport enables investigation of the ecological and physiological roles of tree roots and their associated mycorrhizal fungi, as well as a range of other soil organisms and processes. Girdling remains the most reliable method for manipulating this flux and it has been used in numerous studies. However, girdling is destructive and irreversible. Belowground C transport is mediated by phloem tissue, pressurized through the high osmotic potential resulting from its high content of soluble sugars. We speculated that phloem transport may be reversibly blocked through the application of an external pressure on tree stems. Thus, we here introduce a technique based on compression of the phloem, which interrupts belowground flow of assimilates, but allows trees to recover when the external pressure is removed. Metal clamps were wrapped around the stems and tightened to achieve a pressure theoretically sufficient to collapse the phloem tissue, thereby aiming to block transport. The compression's performance was tested in two field experiments: a (13)C canopy labelling study conducted on small Scots pine (Pinus sylvestris L.) trees [2-3 m tall, 3-7 cm diameter at breast height (DBH)] and a larger study involving mature pines (∼15 m tall, 15-25 cm DBH) where stem respiration, phloem and root carbohydrate contents, and soil CO2 efflux were measured. The compression's effectiveness was demonstrated by the successful blockage of (13)C transport. Stem compression doubled stem respiration above treatment, reduced soil CO2 efflux by 34% and reduced phloem sucrose content by 50% compared with control trees. Stem respiration and soil CO2 efflux returned to normal within 3 weeks after pressure release, and (13)C labelling revealed recovery of phloem function the following year. Thus, we show that belowground phloem C transport can be reduced by compression, and we also demonstrate that trees recover after treatment, resuming C

  16. Stem compression reversibly reduces phloem transport in Pinus sylvestris trees.

    PubMed

    Henriksson, Nils; Tarvainen, Lasse; Lim, Hyungwoo; Tor-Ngern, Pantana; Palmroth, Sari; Oren, Ram; Marshall, John; Näsholm, Torgny

    2015-10-01

    Manipulating tree belowground carbon (C) transport enables investigation of the ecological and physiological roles of tree roots and their associated mycorrhizal fungi, as well as a range of other soil organisms and processes. Girdling remains the most reliable method for manipulating this flux and it has been used in numerous studies. However, girdling is destructive and irreversible. Belowground C transport is mediated by phloem tissue, pressurized through the high osmotic potential resulting from its high content of soluble sugars. We speculated that phloem transport may be reversibly blocked through the application of an external pressure on tree stems. Thus, we here introduce a technique based on compression of the phloem, which interrupts belowground flow of assimilates, but allows trees to recover when the external pressure is removed. Metal clamps were wrapped around the stems and tightened to achieve a pressure theoretically sufficient to collapse the phloem tissue, thereby aiming to block transport. The compression's performance was tested in two field experiments: a (13)C canopy labelling study conducted on small Scots pine (Pinus sylvestris L.) trees [2-3 m tall, 3-7 cm diameter at breast height (DBH)] and a larger study involving mature pines (∼15 m tall, 15-25 cm DBH) where stem respiration, phloem and root carbohydrate contents, and soil CO2 efflux were measured. The compression's effectiveness was demonstrated by the successful blockage of (13)C transport. Stem compression doubled stem respiration above treatment, reduced soil CO2 efflux by 34% and reduced phloem sucrose content by 50% compared with control trees. Stem respiration and soil CO2 efflux returned to normal within 3 weeks after pressure release, and (13)C labelling revealed recovery of phloem function the following year. Thus, we show that belowground phloem C transport can be reduced by compression, and we also demonstrate that trees recover after treatment, resuming C

  17. The Post-Glacial Species Velocity of Picea glauca following the Last Glacial Maximum in Alaska.

    NASA Astrophysics Data System (ADS)

    Morrison, B. D.; Napier, J.; Kelly, R.; Li, B.; Heath, K.; Hug, B.; Hu, F.; Greenberg, J. A.

    2015-12-01

    Anthropogenic climate change is leading to dramatic fluctuations to Earth's biodiversity that has not been observed since past interglacial periods. There is rising concern that Earth's warming climate will have significant impacts to current species ranges and the ability of a species to persist in a rapidly changing environment. The paleorecord provides information on past species distributions in relation to climate change, which can illuminate the patterns of potential future distributions of species. Particularly in areas where there are multiple potential limiting factors on a species' range, e.g. temperature, radiation, and evaporative demand, the spatial patterns of species migrations may be particularly complex. In this study, we assessed the change in the distributions of white spruce (Picea glauca) from the Last Glacial Maxima (LGM) to present-day for the entire state of Alaska. To accomplish this, we created species distribution models (SDMs) calibrated from modern vegetation data and high-resolution, downscaled climate surfaces at 60m. These SDMs were applied to downscaled modern and paleoclimate surfaces to produce estimated ranges of white spruce during the LGM and today. From this, we assessed the "species velocity", the rate at which white spruce would need to migrate to keep pace with climate change, with the goal of determining whether the expansion from the LGM to today originated from microclimate refugia. Higher species velocities indicate locations where climate changed drastically and white spruce would have needed to migrate rapidly to persist and avoid local extinction. Conversely, lower species velocities indicated locations where the local climate was changing less rapidly or was within the center of the range of white spruce, and indicated locations where white spruce distributions were unlikely to have changed significantly. Our results indicate the importance of topographic complexity in buffering the effects of climate change

  18. Survival of Listeria innocua in rainbow trout protein recovered by isoelectric solubilization and precipitation with acetic and citric acids.

    PubMed

    Otto, R A; Paker, I; Bane, L; Beamer, S; Jaczynski, J; Matak, K E

    2011-08-01

    During mechanical fish processing, a substantial amount of protein is discarded as by-products. Isoelectric solubilization and precipitation (ISP) is a process that uses extreme pH shifts to solubilize and precipitate protein from by-products to recover previously discarded protein. Typically, strong acids are used for pH reduction, but these acids do not have a pasteurization effect (6 log reduction) on bacterial load; therefore, organic acids were used during ISP processing to test the impact on Listeria innocua concentrations. Headed and gutted rainbow trout (Oncorhynchus mykiss) were inoculated with L. innocua, homogenized, and brought to the target pH with granular citric acid (pH 2.0 and 2.5) or glacial acetic acid (pH 3.0 and 3.5). Proteins were solubilized for 10 min at 4°C, and insoluble components (e.g., skin and insoluble protein) were removed by centrifugation. The remaining solution was pH shifted to the protein isoelectric point (pH 5.5) with sodium hydroxide, and precipitated protein was separated from the water. Microbial cells for each component (proteins, insolubles, and water) were enumerated on modified Oxford agar (MOX) and tryptic soy agar with 6% yeast extract (TSAYE). The sums of the surviving cells from each component were compared with the initial inoculum levels. No significant differences were observed between results obtained from TSAYE and from MOX (P > 0.05). Significant reductions in microbial populations were detected, regardless of pH or acid type (P < 0.05). The greatest reduction was at pH 3.0 with glacial acetic acid, resulting in a mean reduction of 6.41 log CFU/g in the recovered protein and 5.88 log CFU/g in the combined components. These results demonstrate the antimicrobial potential of organic acids in ISP processing.

  19. Microbial Succession in Glacial Foreland Soils of the Canadian Subarctic

    NASA Astrophysics Data System (ADS)

    Kazemi, S.; Lanoil, B. D.

    2014-12-01

    The Canadian arctic has experienced increasing temperatures over the past century leading to heightened rate of glacial retreat. Glacial retreat leads to subsequent exposure of foreland soils to atmospheric conditions, thus creating a sequence of change in these ecosystems. Microbes are critical for soil development and nutrient dynamics in glacial systems as they are the primary colonizers of these soils and have been demonstrated to play a role in geochemical weathering and nutrient cycling beneath the glacier. Although viable microbial communities exist beneath glaciers and are known to be important for the glacial ecosystem, the impact of glacial retreat on these communities and development of the resulting foreland ecosystem is not well understood. Here, we investigate how microbial communities respond to changing conditions brought on by glacial retreat and whether a pattern of succession, such as those found in well characterized plant systems, occurs along a soil foreland in these microbial communities. We hypothesis that time since deglaciation is the major determinant of structure and composition of microbial assemblages. To test this, soil samples were collected along two glacier forelands, Trapridge Glacier and Duke River Glacier, located in Kluane National Park, Yukon Territory. Chronosequence dating of satellite images using geographic information system software revealed sampling sites have been ice-free from ~30 years to over 60 years. Soil chemistry analysis of major nutrients revealed no change in chemical parameters along the chronosequence, suggesting that presence of microbes after exposure from subglacial environments does not significantly alter soil characteristics in the timeframe observed. Furthermore, next-generation IonTorrentTM sequencing performed on soil samples revealed over five million sequencing reads, suggesting prominent microbial presence within these soils. Further analysis on sequencing data is needed to establish the

  20. The Glacial BuzzSaw, Isostasy, and Global Crustal Models

    NASA Astrophysics Data System (ADS)

    Levander, A.; Oncken, O.; Niu, F.

    2015-12-01

    The glacial buzzsaw hypothesis predicts that maximum elevations in orogens at high latitudes are depressed relative to temperate latitudes, as maximum elevation and hypsography of glaciated orogens are functions of the glacial equilibrium line altitude (ELA) and the modern and last glacial maximum (LGM) snowlines. As a consequence crustal thickness, density, or both must change with increasing latitude to maintain isostatic balance. For Airy compensation crustal thickness should decrease toward polar latitudes, whereas for Pratt compensation crustal densities should increase. For similar convergence rates, higher latitude orogens should have higher grade, and presumably higher density rocks in the crustal column due to more efficient glacial erosion. We have examined a number of global and regional crustal models to see if these predictions appear in the models. Crustal thickness is straightforward to examine, crustal density less so. The different crustal models generally agree with one another, but do show some major differences. We used a standard tectonic classification scheme of the crust for data selection. The globally averaged orogens show crustal thicknesses that decrease toward high latitudes, almost reflecting topography, in both the individual crustal models and the models averaged together. The most convincing is the western hemisphere cordillera, where elevations and crustal thicknesses decrease toward the poles, and also toward lower latitudes (the equatorial minimum is at ~12oN). The elevation differences and Airy prediction of crustal thickness changes are in reasonable agreement in the North American Cordillera, but in South America the observed crustal thickness change is larger than the Airy prediction. The Alpine-Himalayan chain shows similar trends, however the strike of the chain makes interpretation ambiguous. We also examined cratons with ice sheets during the last glacial period to see if continental glaciation also thins the crust toward

  1. Glacially induced stresses in sedimentary rocks of northern Poland

    NASA Astrophysics Data System (ADS)

    Trzeciak, Maciej; Dąbrowski, Marcin

    2016-04-01

    During the Pleistocene large continental ice sheets developed in Scandinavia and North America. Ice-loading caused bending of the lithosphere and outward flow in the mantle. Glacial loading is one of the most prominent tectono-mechanical event in the geological history of northern Poland. The Pomeranian region was subjected several times to a load equivalent of more than 1 km of rocks, which led to severe increase in both vertical and horizontal stresses in the upper crustal rocks. During deglaciation a rapid decrease in vertical stress is observed, which leads to destabilization of the crust - most recent postglacial faults scarps in northern Sweden indicate glacially induced earthquakes of magnitude ~Mw8. The presence of the ice-sheet altered as well the near-surface thermal structure - thermal gradient inversion is still observable in NW Poland. The glacially related processes might have left an important mark in the sedimentary cover of northern Poland, especially with regard to fracture reopening, changes in stress state, and damage development. In the present study, we model lithospheric bending caused by glacial load, but our point of interest lies in the overlying sediments. Typical glacial isostatic studies model the response of (visco-) elastic lithosphere over viscoelastic or viscous asthenosphere subjected to external loads. In our model, we introduce viscoelastic sedimentary layers at the top of this stack and examine the stress relaxation patterns therein. As a case study for our modelling, we used geological profiles from northern Poland, near locality of Wejherowo, which are considered to have unconventional gas potential. The Paleozoic profile of this area is dominated by almost 1 km thick Silurian-Ordovician shale deposits, which are interbedded with thin and strong limestone layers. This sequence is underlain by Cambrian shales and sandstones, and finally at ~3 km depth - Precambrian crystalline rocks. Above the Silurian there are approximately

  2. Pleistocene glacial evolution of Fuentes Carrionas (Cantabrian Range, NW Spain)

    NASA Astrophysics Data System (ADS)

    Pellitero, Ramon

    2014-05-01

    Fuentes Carrionas is a massif situated at the N of Spain, between Castilla y Leon and Cantabria regions. It is the second highest mountain massif of the Cantabrian Range after Picos de Europa, with peaks over 2500 m.a.s.l. and valleys well over 1000 m.a.s.l. Fuentes Carrionas was glaciated during Quaternary, and even during the Holocene and as far as Little Ice Age the presence of glaciers, or at least permafrost is controversial. Results from glacial geomorphology analysis of Fuentes Carrionas Massif are presented. Based on the interpretation of glacial landforms, glacial evolution since the Last Glacial Maximum until Pleistocene deglaciation is described. Four different glacial equilibrium phases are identified, the last one divided into two pulsations. Deglaciation process took place between 36 ka BP and 11 ka BP. Local Last Glacial Maximum is dated back to 36-38 ka. BP, therefore earlier than LGM. Glaciers reached 15 km. long and occupied valleys down to 1250 m.a.s.l. during this phase. By European LGM (20-18 ka.BP) glaciers had substantially retreated to fronts about 1700 m.a.s.l. A final stage with two marked pulsations shows only small glaciers located at cirques above 2000 m.a.s.l. and, finally, only small cirque glaciers at North and Northeast orientation above 2200 m.a.s.l. Both these phases have been correlated to Oldest and Younger Dryas, although no dates have been done yet. A palaeoenvironmental reconstruction is proposed, based on ELA (Equilibrium Line Altitude) rise. ELA has been calculated with the AAR method and 0.67 ratio. This reconstruction shows that temperatures ranged between 9°C and 10°C lower than present ones at the end of Pleistocene, depending on a precipitations variation between 30% higher and 20% lower than current ones. Further research will focus on these retreat phases, especially on Younger Dryas identification and reconstruction for this site and the rest of Cantabrian Range.

  3. Supportive Counseling for Students Recovering from Substance Abuse.

    ERIC Educational Resources Information Center

    Bauer, Ann Marie

    Adults who are recovering from substance abuse usually possess coping skills that adolescents have not yet developed. This paper examines the special needs of adolescents who are recovering from substance abuse. Young people have not had the opportunity to develop healthy social, emotional, and cognitive skills because they are using chemicals at…

  4. 24 CFR 792.203 - Application of amounts recovered.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 4 2011-04-01 2011-04-01 false Application of amounts recovered. 792.203 Section 792.203 Housing and Urban Development REGULATIONS RELATING TO HOUSING AND URBAN... Recovery of Section 8 Funds § 792.203 Application of amounts recovered. (a) The PHA may only use the...

  5. Fertilizing cotton with P recovered from swine wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new treatment technology has been developed to recover soluble P from waste on swine (Sus scrofa domesticus) farms. Our objective was to compare this recovered P to triple superphosphate and broiler litter for soil availability, leaching, and cotton (Gossypium hirsutum L.) plant P concentration. A...

  6. Fertilizing cotton with recovered P from swine manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new treatment technology has been developed to recover soluble P from liquid swine manure. Our objective was to compare P availability and leaching distribution in soils using the recovered P from swine wastewater (31% P2O5) compared with triple superphosphate (46% P2O5) and broiler litter (2.6% P...

  7. 48 CFR 945.607-2 - Recovering precious metals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Recovering precious metals... Recovering precious metals. (b) Contractors generating contractor inventory containing precious metals shall... the DOE precious metals pool. This includes all precious metals in any form, including shapes,...

  8. 48 CFR 245.607-2 - Recovering precious metals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Recovering precious metals... Disposal of Contractor Inventory 245.607-2 Recovering precious metals. (b) Precious metals are silver, gold... office with disposition instructions for certain categories of precious metals-bearing...

  9. Apparatus for recovering matter adhered to a host surface

    NASA Technical Reports Server (NTRS)

    Paik, W. W.; Chapman, C. P. (Inventor)

    1973-01-01

    The development of an apparatus for removing and recovering matter adhered to a host surface is described. The device consists of a pickup head with an ultrasonic transducer adapted to deliver ultrasonic pressure waves against the material. The ultrasonic waves agitate the material and cause its separation from the surface. A vacuum system recovers the material and delivers it to suitable storage containers.

  10. The Recovered Memory Controversy: A Representative Case Study

    ERIC Educational Resources Information Center

    Colangelo, James J.

    2009-01-01

    The recovered memory controversy has been an ongoing debate within the mental health profession for the past two decades. Disagreement remains in the field over the veracity of "forgotten" memories of childhood sexual abuse that are recalled or recovered during therapy. At the heart of the controversy are the concepts of repression and…

  11. Glacial landscape evolution on Hall Peninsula, Baffin Island, since the Last Glacial Maximum: insights into switching glacial dynamics and thermo-mechanical conditions

    NASA Astrophysics Data System (ADS)

    Johnson, C. L.; Ross, M.

    2012-12-01

    Ice cover in north central Hall Peninsula, Baffin Island has evolved from full Laurentide Ice Sheet (LIS) cover during the Last Glacial Maximum (LGM) to a thin ice cap that now covers about 800 km2 in the northeast sector. The exposed subglacial landscape consists of contrasting geomorphological zones which allude to complex spatial and temporal changes in basal ice dynamics and thermal regime since LGM. We used satellite imagery, field observations, a large till geochemical database, and terrestrial cosmogenic isotopes to get new insights into subglacial erosion intensity, ice flow dynamics, and glacial history. Fields of streamlined bedrock-cored ridges (e.g. drumlins) have been mapped and their elongation ratios calculated. The density of bedrock-controlled lakes, which has traditionally been used as a proxy for subglacial erosion intensity on Baffin Island, has been re-examined using modern GIS techniques. This work has revealed a mosaic of glacial terrain zones each consisting of characteristics that are distinct from the other zones. Five glacial terrain zones (GTZ) have been recognized. One zone (GTZ 1) is characterized by a broad flowset of northeast trending streamlined hills and parallel paleo-flow indicators. It also has the highest streamlined hill density, longest elongation ratios, and the highest lake density of the study area. This northeast flowset is crosscut locally by ice flow indicators that converge into troughs that now form a series of fjords. Landforms and ice flow indicators of this younger system (GTZ 2) are traced inland showing propagation of the channelized system into this portion of the LIS. The central area of the peninsula contains a zone of thicker till and rolling topography (GTZ 3) as well as a zone consisting of southeast trending features and associated perpendicular moraines (GTZ 4). The modern ice cap and its past extension form the last zone (GTZ 5). The preservation of the northeast system (GTZ 1) outside of the

  12. Identifying representative trees from ensembles.

    PubMed

    Banerjee, Mousumi; Ding, Ying; Noone, Anne-Michelle

    2012-07-10

    Tree-based methods have become popular for analyzing complex data structures where the primary goal is risk stratification of patients. Ensemble techniques improve the accuracy in prediction and address the instability in a single tree by growing an ensemble of trees and aggregating. However, in the process, individual trees get lost. In this paper, we propose a methodology for identifying the most representative trees in an ensemble on the basis of several tree distance metrics. Although our focus is on binary outcomes, the methods are applicable to censored data as well. For any two trees, the distance metrics are chosen to (1) measure similarity of the covariates used to split the trees; (2) reflect similar clustering of patients in the terminal nodes of the trees; and (3) measure similarity in predictions from the two trees. Whereas the latter focuses on prediction, the first two metrics focus on the architectural similarity between two trees. The most representative trees in the ensemble are chosen on the basis of the average distance between a tree and all other trees in the ensemble. Out-of-bag estimate of error rate is obtained using neighborhoods of representative trees. Simulations and data examples show gains in predictive accuracy when averaging over such neighborhoods. We illustrate our methods using a dataset of kidney cancer treatment receipt (binary outcome) and a second dataset of breast cancer survival (censored outcome).

  13. On the gravity and geoid effects of glacial isostatic adjustment in Fennoscandia - a short note

    NASA Astrophysics Data System (ADS)

    Sjöberg, L. E.

    2016-02-01

    Many geoscientists argue that there is a gravity low of 10-30 mGal in Fennoscandia as a remaining fingerprint of the last ice age and load, both vanished about 10 kyr ago. However, the extraction of the gravity signal related with Glacial Isostatic Adjustment (GIA) is complicated by the fact that the total gravity field is caused by many significant density distributions in the Earth. Here we recall a methodology originating with A. Bjerhammar 35 years ago, that emphasizes that the present land uplift phenomenon mainly occurs in the region thatwas covered by the ice cap, and it is highly correlated with the spectral window of degrees 10-22 of the global gravity field, whose lower limit fairly well corresponds to the wavelength that agrees with the size of the region. This implies that, although in principle the GIA is a global phenomenon, the geoid and gravity lows as well as the land upheaval in Fennoscandia are typically regional phenomena that cannot be seen in a global correlation study as it is blurred by many irrelevant gravity signals. It is suggested that a regional multi-regression analysis with a band-limited spectral gravity signal as the observable, a method tested already 2 decades ago, can absorb possible significant disturbing signals, e.g. from topographic and crustal depth variations, and thereby recover the GIA signal.

  14. On the gravity and geoid effects of glacial isostatic adjustment in Fennoscandia - a short note

    NASA Astrophysics Data System (ADS)

    Sjöberg, L. E.

    2015-12-01

    Many geoscientists argue that there is a gravity low of 10-30 mGal in Fennoscandia as a remaining fingerprint of the last ice age and load, both vanished about 10 kyr ago. However, the extraction of the gravity signal related with Glacial Isostatic Adjustment (GIA) is complicated by the fact that the total gravity field is caused by many significant density distributions in the Earth. Here we recall a methodology originating with A. Bjerhammar 35 years ago, that emphasizes that the present land uplift phenomenon mainly occurs in the region thatwas covered by the ice cap, and it is highly correlated with the spectral window of degrees 10-22 of the global gravity field, whose lower limit fairly well corresponds to the wavelength that agrees with the size of the region. This implies that, although in principle the GIA is a global phenomenon, the geoid and gravity lows as well as the land upheaval in Fennoscandia are typically regional phenomena that cannot be seen in a global correlation study as it is blurred by many irrelevant gravity signals. It is suggested that a regional multi-regression analysis with a band-limited spectral gravity signal as the observable, a method tested already 2 decades ago, can absorb possible significant disturbing signals, e.g. from topographic and crustal depth variations, and thereby recover the GIA signal.

  15. Glacial cycles drive variations in the production of oceanic crust.

    PubMed

    Crowley, John W; Katz, Richard F; Huybers, Peter; Langmuir, Charles H; Park, Sung-Hyun

    2015-03-13

    Glacial cycles redistribute water between oceans and continents, causing pressure changes in the upper mantle, with consequences for the melting of Earth's interior. Using Plio-Pleistocene sea-level variations as a forcing function, theoretical models of mid-ocean ridge dynamics that include melt transport predict temporal variations in crustal thickness of hundreds of meters. New bathymetry from the Australian-Antarctic ridge shows statistically significant spectral energy near the Milankovitch periods of 23, 41, and 100 thousand years, which is consistent with model predictions. These results suggest that abyssal hills, one of the most common bathymetric features on Earth, record the magmatic response to changes in sea level. The models and data support a link between glacial cycles at the surface and mantle melting at depth, recorded in the bathymetric fabric of the sea floor. PMID:25766231

  16. Palaeogeographic regulation of glacial events during the Cretaceous supergreenhouse

    NASA Astrophysics Data System (ADS)

    Ladant, Jean-Baptiste; Donnadieu, Yannick

    2016-09-01

    The historical view of a uniformly warm Cretaceous is being increasingly challenged by the accumulation of new data hinting at the possibility of glacial events, even during the Cenomanian-Turonian (~95 Myr ago), the warmest interval of the Cretaceous. Here we show that the palaeogeography typifying the Cenomanian-Turonian renders the Earth System resilient to glaciation with no perennial ice accumulation occurring under prescribed CO2 levels as low as 420 p.p.m. Conversely, late Aptian (~115 Myr ago) and Maastrichtian (~70 Myr ago) continental configurations set the stage for cooler climatic conditions, favouring possible inception of Antarctic ice sheets under CO2 concentrations, respectively, about 400 and 300 p.p.m. higher than for the Cenomanian-Turonian. Our simulations notably emphasize that palaeogeography can crucially impact global climate by modulating the CO2 threshold for ice sheet inception and make the possibility of glacial events during the Cenomanian-Turonian unlikely.

  17. Evidence for Obliquity Forcing of Glacial Termination II

    NASA Astrophysics Data System (ADS)

    Drysdale, R. N.; Hellstrom, J. C.; Zanchetta, G.; Fallick, A. E.; Sánchez Goñi, M. F.; Couchoud, I.; McDonald, J.; Maas, R.; Lohmann, G.; Isola, I.

    2009-09-01

    Variations in the intensity of high-latitude Northern Hemisphere summer insolation, driven largely by precession of the equinoxes, are widely thought to control the timing of Late Pleistocene glacial terminations. However, recently it has been suggested that changes in Earth’s obliquity may be a more important mechanism. We present a new speleothem-based North Atlantic marine chronology that shows that the penultimate glacial termination (Termination II) commenced 141,000 ± 2500 years before the present, too early to be explained by Northern Hemisphere summer insolation but consistent with changes in Earth’s obliquity. Our record reveals that Terminations I and II are separated by three obliquity cycles and that they started at near-identical obliquity phases.

  18. Glacial geomorphic evidence for a late climatic change on Mars

    NASA Technical Reports Server (NTRS)

    Kargel, J. S.; Strom, R. G.

    1992-01-01

    In a series of preliminary reports, we documented evidence of former glacial epochs on Mars. Apparent glacial landforms seemed to be concentrated primarily at middle to high southern latitudes. We now have additional evidence supporting the view that Martian glaciation appears to have been more extensive than previously recognized. The growth and collapse of ice sheets on Mars seems closely analogous to the growth and decline of Earth's great Pleistocene ice sheets. This implies that climate change was probably somewhat comparable on the two planets, although in the case of Mars the entire planet seems to have changed rapidly to a cold, dry present-day environment after the collapse of the ice sheets.

  19. Climate model benchmarking with glacial and mid-Holocene climates

    NASA Astrophysics Data System (ADS)

    Harrison, S. P.; Bartlein, P. J.; Brewer, S.; Prentice, I. C.; Boyd, M.; Hessler, I.; Holmgren, K.; Izumi, K.; Willis, K.

    2014-08-01

    Past climates provide a test of models' ability to predict climate change. We present a comprehensive evaluation of state-of-the-art models against Last Glacial Maximum and mid-Holocene climates, using reconstructions of land and ocean climates and simulations from the Palaeoclimate Modelling and Coupled Modelling Intercomparison Projects. Newer models do not perform better than earlier versions despite higher resolution and complexity. Differences in climate sensitivity only weakly account for differences in model performance. In the glacial, models consistently underestimate land cooling (especially in winter) and overestimate ocean surface cooling (especially in the tropics). In the mid-Holocene, models generally underestimate the precipitation increase in the northern monsoon regions, and overestimate summer warming in central Eurasia. Models generally capture large-scale gradients of climate change but have more limited ability to reproduce spatial patterns. Despite these common biases, some models perform better than others.

  20. The Role of Glacial Erosion in Limiting Ice Sheet Extents

    NASA Astrophysics Data System (ADS)

    Jamieson, S.; Hulton, N.

    2007-12-01

    We aim to identify and quantify feedbacks between ice dynamics and glacial erosion. Whilst geological and geomorphological evidence indicates that ice sheets generally oscillate in time with orbital forcing, their extents are not necessarily a direct function of the amplitude of this forcing. Benthic δ18O records document glacial-interglacial fluctuations and indicate that maximum Pleistocene global ice volume occurs around 400 ka. However, geomorphological evidence in a number of regions is contradictory, with the most extensive ice masses often occurring 100's of kyrs prior to peaks in the δ18O record. For example, the glacial landforms of Patagonia preserve a record of just such behaviour with each successive glacial advance since 1.15 Ma covering an area less extensive than the previous expansion. This implies that other processes are modifying the linkages between ice sheets and climate. We ask: Could glacial erosion of bedrock have caused ice sheets to self-regulate their extents? Ground-breaking experiments by Oerlemans (1984) demonstrated that erosion induced margin retreat was indeed possible. He showed that retreat could be achieved but only where eroding ice streams were smaller in width than the wavelength of lithospheric response. In Patagonia however, the scales of retreat are much larger than this lithospheric wavelength - but could erosion still be an important factor? We use the GLIMMER 3-D thermomechanical ice sheet model (Payne, 1999) with an added erosion component to simulate long-term landscape evolution under theoretical ice sheets (Jamieson et al., 2007). We show that models of glacial erosion can generate feedbacks on a significant scale such that ice sheets can self-limit their extents over periods of 105 - 106 years regardless of the flexural response of the land surface. Erosion around the ELA enables increasingly efficient ice drainage, and the mass balance of the ice sheet thus shifts towards a more negative state. At the same time

  1. The inference of gene trees with species trees.

    PubMed

    Szöllősi, Gergely J; Tannier, Eric; Daubin, Vincent; Boussau, Bastien

    2015-01-01

    This article reviews the various models that have been used to describe the relationships between gene trees and species trees. Molecular phylogeny has focused mainly on improving models for the reconstruction of gene trees based on sequence alignments. Yet, most phylogeneticists seek to reveal the history of species. Although the histories of genes and species are tightly linked, they are seldom identical, because genes duplicate, are lost or horizontally transferred, and because alleles can coexist in populations for periods that may span several speciation events. Building models describing the relationship between gene and species trees can thus improve the reconstruction of gene trees when a species tree is known, and vice versa. Several approaches have been proposed to solve the problem in one direction or the other, but in general neither gene trees nor species trees are known. Only a few studies have attempted to jointly infer gene trees and species trees. These models account for gene duplication and loss, transfer or incomplete lineage sorting. Some of them consider several types of events together, but none exists currently that considers the full repertoire of processes that generate gene trees along the species tree. Simulations as well as empirical studies on genomic data show that combining gene tree-species tree models with models of sequence evolution improves gene tree reconstruction. In turn, these better gene trees provide a more reliable basis for studying genome evolution or reconstructing ancestral chromosomes and ancestral gene sequences. We predict that gene tree-species tree methods that can deal with genomic data sets will be instrumental to advancing our understanding of genomic evolution.

  2. Sedimentary architecture of the Amundsen Sea Embayment shelf, West Antarctica, from pre-glacial to glacial processes

    NASA Astrophysics Data System (ADS)

    Gohl, Karsten; Uenzelmann-Neben, Gabriele; Hillenbrand, Claus-Dieter; Larter, Robert; Nitsche, Frank

    2013-04-01

    Studies of the sedimentary architecture and characteristics of Antarctic shelves provide clues of past ice sheet advance-retreat cycles and help improve constraints for paleo-ice dynamic models since early glacial periods. A first seismostratigraphic analysis of the Amundsen Sea Embayment shelf and slope of West Antarctica reveals insights into the structural architecture of the continental margin and shows stages of sediment deposition, erosion and transport history from pre-glacial times to early glaciation and to the most recent glacial periods. The shelf geometry consists of a large pre- and syn-rift basin in the middle shelf region between outcropping basement of the inner shelf and basement ridges and highs beneath the outer shelf. A middle shelf sub-basin exists which may have formed as a result of motion along an early West Antarctic Rift System branch. At least 4 km of pre-glacial strata has been eroded from the present inner shelf and coastal hinterland by ice sheet advances since the onset of glaciation. Some of the eroded sediments were deposited as a progradational wedge extending the outer shelf by 25 to 65 km oceanward of the pre-glacial shelf-break. Comparing the observed seismic characteristics with those of other Antarctic shelf sequences, we assign an Early Cretaceous age for bottom sedimentary unit ASS-1, a Late Cretaceous to Oligocene age for unit ASS-2, an Early to Mid-Miocene age for unit ASS-3, a Mid-Miocene age for unit ASS-4, a Late Miocene to Early Pliocene age for unit ASS-5, and a Pliocene to Pleistocene age for the top unit ASS-6. The survival of buried grounding zone wedges in the upper part of unit ASS-5 of the outer shelf is consistent with the onset of a long warming phase and a retreated ice sheet in the early Pliocene as observed for the Ross Sea shelf and reconstructed from paleo-ice sheet models. Our data also reveal that the paleo-ice flow paths of the central Pine Island Trough system have remained stationary across the

  3. Mercury fluxes out of glacial and non-glacial streams, as determined by continuous measurements of turbidity and CDOM

    NASA Astrophysics Data System (ADS)

    Vermilyea, A.; Nagorski, S. A.; Lamborg, C. H.; Scott, D.; Hood, E. W.

    2011-12-01

    Glaciers and icefields along the Alaskan coast contribute nearly half of the freshwater discharge to the Gulf of Alaska and can play an important role in near-shore marine ecosystems. In southeastern Alaska, glaciers are rapidly thinning and retreating and are being replaced by temperate forests and wetlands. This ongoing landscape evolution is altering the sensitivity of coastal watersheds to atmospheric Hg inputs. The influence of glacial runoff with high suspended sediment loads on in-stream mercury fluxes and dynamics is poorly understood. In contrast, numerous studies have shown that streams with large contributions from wetlands typically carry high dissolved organic matter (DOM) and filtered methylmercury (FMHg) loads. This study compares and contrasts the mercury concentrations, fluxes, partitioning, and speciation in two coastal watersheds in southeastern Alaska. The two watersheds are separated by only 23 km and are relatively similar in area, however one is heavily glaciated (Lemon Creek) and one is dominated by temperate forest and wetlands (Peterson Creek). Grab samples for unfiltered total mercury (UTHg), particulate total mercury (PTHg), filtered total mercury (FTHg), and FMHg were taken during three, 4-day sampling periods within the glacial melt season (May-Sept) while continuously monitoring in-situ chromophoric dissolved organic matter (CDOM) fluorescence and stream turbidity. While UTHg concentration-discharge relationships were poor (R2=0.38-0.55) in both streams, flux estimates for UTHg were greatly improved using CDOM fluorescence (R2=0.82) for Peterson Creek, and turbidity (R2=0.81) for Lemon Creek. UTHg concentrations were consistently greater in Peterson Creek (factor of 1.7-2.3); however, the watershed area normalized UTHg flux was 3-6 times greater in glacial Lemon Creek than Peterson Creek across all time periods. In Peterson Creek, the majority of the UTHg was in the filtered phase, whereas in Lemon Creek the majority of the mercury

  4. The Atlantic-Mediterranean watershed, river basins and glacial history shape the genetic structure of Iberian poplars.

    PubMed

    Macaya-Sanz, D; Heuertz, M; López-de-Heredia, U; De-Lucas, A I; Hidalgo, E; Maestro, C; Prada, A; Alía, R; González-Martínez, S C

    2012-07-01

    Recent phylogeographic studies have elucidated the effects of Pleistocene glaciations and of Pre-Pleistocene events on populations from glacial refuge areas. This study investigates those effects in riparian trees (Populus spp.), whose particular features may convey enhanced resistance to climate fluctuations. We analysed the phylogeographic structure of 44 white (Populus alba), 13 black (Populus nigra) and two grey (Populus x canescens) poplar populations in the Iberian Peninsula using plastid DNA microsatellites and sequences. We also assessed fine-scale spatial genetic structure and the extent of clonality in four white and one grey poplar populations using nuclear microsatellites and we determined quantitative genetic differentiation (Q(ST) ) for growth traits in white poplar. Black poplar displayed higher regional diversity and lower differentiation than white poplar, reflecting its higher cold-tolerance. The dependence of white poplar on phreatic water was evidenced by strong differentiation between the Atlantic and Mediterranean drainage basins and among river basins, and by weaker isolation by distance within than among river basins. Our results suggest confinement to the lower river courses during glacial periods and moderate interglacial gene exchange along coastlines. In northern Iberian river basins, white poplar had lower diversity, fewer private haplotypes and larger clonal assemblies than in southern basins, indicating a stronger effect of glaciations in the north. Despite strong genetic structure and frequent asexual propagation in white poplar, some growth traits displayed adaptive divergence between drainage and river basins (Q(ST) >F(ST)), highlighting the remarkable capacity of riparian tree populations to adapt to regional environmental conditions.

  5. Major changes in glacial and Holocene terrestrial temperatures and sources of organic carbon recorded in the Amazon fan by tetraether lipids

    NASA Astrophysics Data System (ADS)

    Bendle, James A.; Weijers, Johan W. H.; Maslin, Mark A.; Sinninghe Damsté, Jaap S.; Schouten, Stefan; Hopmans, Ellen C.; Boot, Christopher S.; Pancost, Richard D.

    2010-12-01

    The Amazon basin is a major component of the global carbon and hydrological cycles, a significant natural source of methane, and home to remarkable biodiversity and endemism. Reconstructing past climate changes in the Amazon basin is important for a better understanding of the effect of such changes on these critical functions of the basin. Using a novel biomarker proxy, based on the membrane lipids of soil bacteria with a new regional calibration, we present a reconstruction of changes in mean annual air temperatures for the Amazon catchment during the last 37 kyr B.P. Biomarkers were extracted from Ocean Drilling Program sediment core ODP942 recovered from the Amazon fan. The Amazon fan is a major depository for terrestrial sediments, with the advantage that the terrestrial material captured reflects a regional integration of the whole river catchment. The reconstructed tropical Amazonian temperatures were ˜5°C cooler at the Last Glacial Maximum (˜21°C) compared to modern values (˜26°C). This is in agreement with previous estimates of tropical continental temperatures in the tropical Amazon basin and tropical Africa during the Last Glacial Maximum. Moreover, we also illustrate how the soil bacterial membrane lipid record reveals major changes in basin dynamics and sediment provenance during the glacial-Holocene transition, impacting the biomarker reconstructions from ˜11 kyr onward.

  6. 27 CFR 17.183 - Disposition of recovered alcohol and material from which alcohol can be recovered.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Disposition of recovered alcohol and material from which alcohol can be recovered. 17.183 Section 17.183 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DRAWBACK...

  7. Glacial Isostatic Adjustment Observed with VLBI and SLR

    NASA Technical Reports Server (NTRS)

    Argus, D.; Peltier, W.; Watkins, M.

    1999-01-01

    In global geodetic solutions vertical rates of site motion are usually estimated relative to the geocenter (center of figure) of the solid earth. The velocity of the geocenter is estimated assuming that the plates are rigid, that the velocities of the plates equal those in NUVEL-1A (DeMets et al. 1990, 1994) and that the uplift, subsidence, and intraplate deformation due to glacial isostatic adjustment is negligible.

  8. An Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient

    NASA Astrophysics Data System (ADS)

    Jakobsson, M.; Dowdeswell, J. A.; Canals, M.; Todd, B. J.; Dowdeswell, E. K.; Hogan, K. A.

    2014-12-01

    In the past two decades there have been several advances that make the production of an atlas of submarine glacial landforms timely. First is the development of high-resolution imaging technologies; multi-beam echo-sounding or swath bathymetry that allows the detailed mapping of the sea floor at water depths of tens to thousands of metres across continental margins, and 3-D seismic methods that enable the visualisation of palaeo-continental shelves in Quaternary sediments and ancient palaeo-glacial rocks (e.g. Late Ordovician of Northern Africa). A second technological development is that of ice-breaking or ice-strengthened ships that can penetrate deep into the ice-infested waters of the Arctic and Antarctic, to deploy the multibeam systems. A third component is that of relevance - through both the recognition that the polar regions, and especially the Arctic, are particularly sensitive parts of the global environmental system and that these high-latitude margins (both modern and ancient) are likely to contain significant hydrocarbon resources. An enhanced understanding of the sediments and landforms of these fjord-shelf-slope systems is, therefore, of increasing importance to both academics and industry. We are editing an Atlas of Submarine Glacial Landforms that presents a series of individual contributions that describe, discuss and illustrate features on the high-latitude, glacier-influenced sea floor. Contributions are organised in two ways: first, by position on a continental margin - from fjords, through continental shelves to the continental slope and rise; secondly, by scale - as individual landforms and assemblages of landforms. A final section provides discussion of integrated fjord-shelf-slope systems. Over 100 contributions by scientists from many countries contain descriptions and interpretation of swath-bathymetric data from both Arctic and Antarctic margins and use 3D seismic data to investigate ancient glacial landforms. The Atlas will be

  9. EPICA Dome C record of glacial and interglacial intensities

    NASA Astrophysics Data System (ADS)

    Masson-Delmotte, V.; Stenni, B.; Pol, K.; Braconnot, P.; Cattani, O.; Falourd, S.; Kageyama, M.; Jouzel, J.; Landais, A.; Minster, B.; Barnola, J. M.; Chappellaz, J.; Krinner, G.; Johnsen, S.; Röthlisberger, R.; Hansen, J.; Mikolajewicz, U.; Otto-Bliesner, B.

    2010-01-01

    Climate models show strong links between Antarctic and global temperature both in future and in glacial climate simulations. Past Antarctic temperatures can be estimated from measurements of water stable isotopes along the EPICA Dome C ice core over the past 800 000 years. Here we focus on the reliability of the relative intensities of glacial and interglacial periods derived from the stable isotope profile. The consistency between stable isotope-derived temperature and other environmental and climatic proxies measured along the EDC ice core is analysed at the orbital scale and compared with estimates of global ice volume. MIS 2, 12 and 16 appear as the strongest glacial maxima, while MIS 5.5 and 11 appear as the warmest interglacial maxima. The links between EDC temperature, global temperature, local and global radiative forcings are analysed. We show: (i) a strong but changing link between EDC temperature and greenhouse gas global radiative forcing in the first and second part of the record; (ii) a large residual signature of obliquity in EDC temperature with a 5 ky lag; (iii) the exceptional character of temperature variations within interglacial periods. Focusing on MIS 5.5, the warmest interglacial of EDC record, we show that orbitally forced coupled climate models only simulate a precession-induced shift of the Antarctic seasonal cycle of temperature. While they do capture annually persistent Greenland warmth, models fail to capture the warming indicated by Antarctic ice core δD. We suggest that the model-data mismatch may result from the lack of feedbacks between ice sheets and climate including both local Antarctic effects due to changes in ice sheet topography and global effects due to meltwater-thermohaline circulation interplays. An MIS 5.5 sensitivity study conducted with interactive Greenland melt indeed induces a slight Antarctic warming. We suggest that interglacial EDC optima are caused by transient heat transport redistribution comparable with

  10. Ocean Cooling Pattern at the Last Glacial Maximum

    DOE PAGESBeta

    Zhuang, Kelin; Giardino, John R.

    2012-01-01

    Ocean temperature and ocean heat content change are analyzed based on four PMIP3 model results at the Last Glacial Maximum relative to the prehistorical run. Ocean cooling mostly occurs in the upper 1000 m depth and varies spatially in the tropical and temperate zones. The Atlantic Ocean experiences greater cooling than the rest of the ocean basins. Ocean cooling is closely related to the weakening of meridional overturning circulation and enhanced intrusion of Antarctic Bottom Water into the North Atlantic.

  11. Uncovering the glacial history of the Irish continental shelf (Invited)

    NASA Astrophysics Data System (ADS)

    Dunlop, P.; Benetti, S.; OCofaigh, C.

    2013-12-01

    In 1999 the Irish Government initiated a €32 million survey of its territorial waters known as the Irish National Seabed Survey (INSS). The INSS is amongst the largest marine mapping programmes ever undertaken anywhere in the world and provides high-resolution multibeam, backscatter and seismic data of the seabed around Ireland. These data have been used to provide the first clear evidence for extensive glaciation of the continental shelf west and northwest of Ireland. Streamlined drumlins on the mid to outer shelf record former offshore-directed ice flow towards the shelf edge and show that the ice sheet was grounded in a zone of confluence where ice flowing onto the shelf from northwest Ireland merged with ice flowing across the Malin Shelf from southwest Scotland. The major glacial features on the shelf are well developed nested arcuate moraine systems that mark the position of the ice sheet margin and confirm that the former British Irish Ice Sheet was grounded as far as the shelf edge around 100 km offshore of west Donegal at the last glacial maximum. Distal to the moraines, on the outermost shelf, prominent zones of iceberg plough marks give way to the Barra/Donegal fan and a well developed system of gullies and canyons which incise the continental slope. Since 2008 several scientific cruises have retrieved cores from the shelf and slope to help build a more detailed understanding of glacial events in this region. This presentation will provide an overview of the glacial history of the Irish shelf and will discuss ongoing research programmes that are building on the initial research findings to produce a better understanding of the nature and timing of ice sheet events in this region.

  12. Case for periodic, colossal jokulhlaups from Pleistocene glacial Lake Missoula.

    USGS Publications Warehouse

    Waitt, R.B., Jr.

    1985-01-01

    Lake Missoula (2500 km3) remained sealed as long as any segment of the glacial dam remained grounded; when the lake rose to a critical level c.600 m in depth, the glacier bed at the seal became buoyant, initiating underflow from the lake. Subglacial tunnels then grew exponentially, leading to catastrophic discharge. Calculations of the water budget for the lake basin (including input from the Cordilleran ice sheet) suggest that the lake filled every three to seven decades. -from Author

  13. Glacial History of the Pirrit Hills, West Antarctica

    NASA Astrophysics Data System (ADS)

    Spector, P. E.; Stone, J. O.

    2014-12-01

    We present new ice-thickness constraints from the Pirrit Hills, a small, far-flung group of nunataks located in the Weddell Sector. At the Pirrit Hills, fresh glacial erratics indicate ice levels ~350-450 m above present during the last ice age. The highest erratics have preliminary 10Be exposure ages of ~16 ka, and the ages generally decrease with decreasing elevation, recording the thinning of the ice in the region. Despite the evidence of thicker ice, weathered bedrock extends down to the present ice level, implying prolonged subaerial weathering prior to the last ice age. These features, and the lack of evidence for wet-based glacial erosion, indicate cold-based and non-erosive ice cover. Over the elevation range in which we found glacial erratics, bedrock 10Be, 26Al, and 21Ne concentrations are consistent with modest ice cover, and have exposure ages ranging from ~0.3-1.5 Myr. Around 450 m above the present ice level, bedrock 10Be, 26Al, and 21Ne concentrations increase by a factor of ~4-5 and do not indicate past ice cover. This height coincides with a break in the otherwise steep slopes of the Pirrit Hills, and the bedrock above is more weathered than the bedrock below. This transition marks the height above which ice cover, if it has occurred in the past few million years, has been very rare, brief, and cold-based. This feature may relate to the trimline imprinted on ridges in the Ellsworth Mountains. In both cases, alpine landscapes have been preserved by a polar climate and glacial highstands rising only partway up the mountain flanks.

  14. Tectonic stress feedback loop explains U-shaped glacial valleys

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2014-03-01

    In the shadow of the Matterhorn, the broad form of the Matter Valley—like so many throughout the Alps—is interrupted by a deep U-shaped glacial trough. Carved into a landscape reflecting millennia of tectonic uplift and river erosion, growing evidence suggests the 100-meter-deep U-shaped groove was produced shortly after a shift toward major cycles of Alpine glaciation almost a million years ago. Subsequent glaciations may have therefore had little effect on the landscape.

  15. Sulfur/Carbonate Springs and Life in Glacial Ice

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Grasby, Stephen; Longazo, Teresa

    2001-01-01

    Ice in the near subsurface of Mars apparently discharges liquid water on occasion. Cold-tolerant microorganisms are known to exist within terrestrial glacial ice, and may be brought to the surface as a result of melting events. We are investigating a set of springs that deposit sulfur and carbonate minerals, as well as evidence of microbial life, on the surface of a glacier in the Canadian arctic. Additional information is contained in the original extended abstract.

  16. Climate, CO2, and the history of North American grasses since the Last Glacial Maximum.

    PubMed

    Cotton, Jennifer M; Cerling, Thure E; Hoppe, Kathryn A; Mosier, Thomas M; Still, Christopher J

    2016-03-01

    The spread of C4 grasses in the late Neogene is one of the most important ecological transitions of the Cenozoic, but the primary driver of this global expansion is widely debated. We use the stable carbon isotopic composition (δ(13)C) of bison and mammoth tissues as a proxy for the relative abundance of C3 and C4 vegetation in their grazing habitat to determine climatic and atmospheric CO2 controls on C4 grass distributions from the Last Glacial Maximum (LGM) to the present. We predict the spatial variability of grass δ(13)C in North America using a mean of three different methods of classification and regression tree (CART) machine learning techniques and nine climatic variables. We show that growing season precipitation and temperature are the strongest predictors of all single climate variables. We apply this CART analysis to high-resolution gridded climate data and Coupled Model Intercomparison Project (CMIP5) mean paleoclimate model outputs to produce predictive isotope landscape models ("isoscapes") for the current, mid-Holocene, and LGM average δ(13)C of grass-dominated areas across North America. From the LGM to the present, C4 grass abundances substantially increased in the Great Plains despite concurrent increases in atmospheric CO2. These results suggest that changes in growing season precipitation rather than atmospheric CO2 were critically important in the Neogene expansion of C4 grasses. PMID:27051865

  17. Climate, CO2, and the history of North American grasses since the Last Glacial Maximum

    PubMed Central

    Cotton, Jennifer M.; Cerling, Thure E.; Hoppe, Kathryn A.; Mosier, Thomas M.; Still, Christopher J.

    2016-01-01

    The spread of C4 grasses in the late Neogene is one of the most important ecological transitions of the Cenozoic, but the primary driver of this global expansion is widely debated. We use the stable carbon isotopic composition (δ13C) of bison and mammoth tissues as a proxy for the relative abundance of C3 and C4 vegetation in their grazing habitat to determine climatic and atmospheric CO2 controls on C4 grass distributions from the Last Glacial Maximum (LGM) to the present. We predict the spatial variability of grass δ13C in North America using a mean of three different methods of classification and regression tree (CART) machine learning techniques and nine climatic variables. We show that growing season precipitation and temperature are the strongest predictors of all single climate variables. We apply this CART analysis to high-resolution gridded climate data and Coupled Model Intercomparison Project (CMIP5) mean paleoclimate model outputs to produce predictive isotope landscape models (“isoscapes”) for the current, mid-Holocene, and LGM average δ13C of grass-dominated areas across North America. From the LGM to the present, C4 grass abundances substantially increased in the Great Plains despite concurrent increases in atmospheric CO2. These results suggest that changes in growing season precipitation rather than atmospheric CO2 were critically important in the Neogene expansion of C4 grasses. PMID:27051865

  18. Late-Glacial to Early Holocene Climate Changes from a Central Appalachians Pollen and Macrofossil Record

    NASA Technical Reports Server (NTRS)

    Kneller, Margaret; Peteet, Dorothy

    1997-01-01

    A Late-glacial to early Holocene record of pollen, plant macrofossils and charcoal, based on two cores, is presented for Browns Pond in the central Appalachians of Virginia. An AMS radiocarbon chronology defines the timing of moist and cold excursions, superimposed upon the overall warming trend from 14,200 to 7,500 C-14 yr B.P. This site shows cold, moist conditions from approximately 14,200 to 12,700 C-14 yr B.P., with warming at 12,730, 11,280 and 10,050 C-14 yr B.P. A decrease in deciduous broad-leaved tree taxa and Pinus strobus (haploxylon) pollen, simultaneous with a re-expansion of Abies denotes a brief, cold reversal from 12,260 to 12,200 C-14 yr B.P. A second cold reversal, inferred from increases in montane conifers, is centered at 7,500 C-14 yr B.P. The cold reversals at Browns Pond may be synchronous with climate change in Greenland, and northwestern Europe. Warming at 11,280 C-14 yr B.P. shows the complexity of regional climate responses during the Younger Dryas chronozone.

  19. Glacial aridity in central Indonesia coeval with intensified monsoon circulation

    NASA Astrophysics Data System (ADS)

    Konecky, Bronwen; Russell, James; Bijaksana, Satria

    2016-03-01

    The Last Glacial Maximum was cool and dry over the Indo-Pacific Warm Pool (IPWP), a key region driving global oceanic-atmospheric circulation. Both low- and high-latitude teleconnections with insolation, ice sheets, and sea level have been suggested to explain the pervasive aridity observed in paleoecological and geomorphic data. However, proxies tracking the H- and O-isotopic composition of rainfall (e.g., speleothems, sedimentary biomarkers) suggest muted aridity or even wetter conditions than the present, complicating interpretations of glacial IPWP climate. Here we use multiproxy reconstructions from lake sediments and modern rainfall isotopic measurements from central Indonesia to show that, contrary to the classical "amount effect," intensified Australian-Indonesian monsoon circulation drove lighter H- and O-isotopic composition of IPWP rainfall during the LGM, while at the same time, dry conditions prevailed. Precipitation isotopes are particularly sensitive to the apparent increase in monsoon circulation and perhaps also decreased moisture residence time implied by our data, explaining contrasts among proxy records while illuminating glacial IPWP atmospheric circulation, a key target for climate models.

  20. Human population dynamics in Europe over the Last Glacial Maximum.

    PubMed

    Tallavaara, Miikka; Luoto, Miska; Korhonen, Natalia; Järvinen, Heikki; Seppä, Heikki

    2015-07-01

    The severe cooling and the expansion of the ice sheets during the Last Glacial Maximum (LGM), 27,000-19,000 y ago (27-19 ky ago) had a major impact on plant and animal populations, including humans. Changes in human population size and range have affected our genetic evolution, and recent modeling efforts have reaffirmed the importance of population dynamics in cultural and linguistic evolution, as well. However, in the absence of historical records, estimating past population levels has remained difficult. Here we show that it is possible to model spatially explicit human population dynamics from the pre-LGM at 30 ky ago through the LGM to the Late Glacial in Europe by using climate envelope modeling tools and modern ethnographic datasets to construct a population calibration model. The simulated range and size of the human population correspond significantly with spatiotemporal patterns in the archaeological data, suggesting that climate was a major driver of population dynamics 30-13 ky ago. The simulated population size declined from about 330,000 people at 30 ky ago to a minimum of 130,000 people at 23 ky ago. The Late Glacial population growth was fastest during Greenland interstadial 1, and by 13 ky ago, there were almost 410,000 people in Europe. Even during the coldest part of the LGM, the climatically suitable area for human habitation remained unfragmented and covered 36% of Europe.

  1. Human population dynamics in Europe over the Last Glacial Maximum

    PubMed Central

    Tallavaara, Miikka; Luoto, Miska; Korhonen, Natalia; Järvinen, Heikki; Seppä, Heikki

    2015-01-01

    The severe cooling and the expansion of the ice sheets during the Last Glacial Maximum (LGM), 27,000–19,000 y ago (27–19 ky ago) had a major impact on plant and animal populations, including humans. Changes in human population size and range have affected our genetic evolution, and recent modeling efforts have reaffirmed the importance of population dynamics in cultural and linguistic evolution, as well. However, in the absence of historical records, estimating past population levels has remained difficult. Here we show that it is possible to model spatially explicit human population dynamics from the pre-LGM at 30 ky ago through the LGM to the Late Glacial in Europe by using climate envelope modeling tools and modern ethnographic datasets to construct a population calibration model. The simulated range and size of the human population correspond significantly with spatiotemporal patterns in the archaeological data, suggesting that climate was a major driver of population dynamics 30–13 ky ago. The simulated population size declined from about 330,000 people at 30 ky ago to a minimum of 130,000 people at 23 ky ago. The Late Glacial population growth was fastest during Greenland interstadial 1, and by 13 ky ago, there were almost 410,000 people in Europe. Even during the coldest part of the LGM, the climatically suitable area for human habitation remained unfragmented and covered 36% of Europe. PMID:26100880

  2. Testing hypotheses about glacial cycles against the observational record

    NASA Astrophysics Data System (ADS)

    Kaufmann, Robert K.; Juselius, Katarina

    2013-01-01

    We estimate an identified cointegrated vector autoregression model of the climate system to test hypotheses about the physical mechanisms that may drive glacial cycles during the late Pleistocene. Results indicate that a permanent doubling of CO2 generates a 11.1°C rise in Antarctic temperature. Large variations in atmospheric CO2 over glacial cycles are driven by changes in sea ice and sea surface temperature in southern oceans and marine biological activity. The latter can be represented by a two-step process in which iron dust increases biological activity and the increase in biological activity reduces CO2 concentrations. Glacial variations in ice volume, as proxied by δ18O are driven by changes in CO2 concentrations, global and high latitude solar insolation, latitudinal gradients in solar insolation, and the atmospheric concentration of CO2. The model is able to quantify the effects of ice volume and temperature on sea level, such that in the long-run, sea level rises 14 m per 0.11‰ δ18O and about 17 m/°C of sea surface temperature in southern oceans. Beyond these specific results, the multivariate model suggests omitted variables may bias bivariate analyses of these mechanisms.

  3. Tree nut allergens.

    PubMed

    Roux, Kenneth H; Teuber, Suzanne S; Sathe, Shridhar K

    2003-08-01

    Allergic reactions to tree nuts can be serious and life threatening. Considerable research has been conducted in recent years in an attempt to characterize those allergens that are most responsible for allergy sensitization and triggering. Both native and recombinant nut allergens have been identified and characterized and, for some, the IgE-reactive epitopes described. Some allergens, such as lipid transfer proteins, profilins, and members of the Bet v 1-related family, represent minor constituents in tree nuts. These allergens are frequently cross-reactive with other food and pollen homologues, and are considered panallergens. Others, such as legumins, vicilins, and 2S albumins, represent major seed storage protein constituents of the nuts. The allergenic tree nuts discussed in this review include those most commonly responsible for allergic reactions such as hazelnut, walnut, cashew, and almond as well as those less frequently associated with allergies including pecan, chestnut, Brazil nut, pine nut, macadamia nut, pistachio, coconut, Nangai nut, and acorn.

  4. Tree nut allergens.

    PubMed

    Roux, Kenneth H; Teuber, Suzanne S; Sathe, Shridhar K

    2003-08-01

    Allergic reactions to tree nuts can be serious and life threatening. Considerable research has been conducted in recent years in an attempt to characterize those allergens that are most responsible for allergy sensitization and triggering. Both native and recombinant nut allergens have been identified and characterized and, for some, the IgE-reactive epitopes described. Some allergens, such as lipid transfer proteins, profilins, and members of the Bet v 1-related family, represent minor constituents in tree nuts. These allergens are frequently cross-reactive with other food and pollen homologues, and are considered panallergens. Others, such as legumins, vicilins, and 2S albumins, represent major seed storage protein constituents of the nuts. The allergenic tree nuts discussed in this review include those most commonly responsible for allergic reactions such as hazelnut, walnut, cashew, and almond as well as those less frequently associated with allergies including pecan, chestnut, Brazil nut, pine nut, macadamia nut, pistachio, coconut, Nangai nut, and acorn. PMID:12915766

  5. Effects of colonization processes on genetic diversity: differences between annual plants and tree species.

    PubMed Central

    Austerlitz, F; Mariette, S; Machon, N; Gouyon, P H; Godelle, B

    2000-01-01

    Tree species are striking for their high within-population diversity and low among-population differentiation for nuclear genes. In contrast, annual plants show much more differentiation for nuclear genes but much less diversity than trees. The usual explanation for this difference is that pollen flow, and therefore gene flow, is much higher for trees. This explanation is problematic because it relies on equilibrium hypotheses. Because trees have very recently recolonized temperate areas, they have experienced many foundation events, which usually reduce within-population diversity and increase differentiation. Only extremely high levels of gene flow could counterbalance these successive founder effects. We develop a model to study the impact of life cycle of forest trees, in particular of the length of their juvenile phase, on genetic diversity and differentiation during the glacial period and the following colonization period. We show that both a reasonably high level of pollen flow and the life-cycle characteristics of trees are needed to explain the observed structure of genetic diversity. We also show that gene flow and life cycle both have an impact on maternally inherited cytoplasmic genes, which are characterized both in trees and annual species by much less diversity and much more differentiation than nuclear genes. PMID:10757772

  6. Species tree estimation and the historical biogeography of heroine cichlids.

    PubMed

    Hulsey, C Darrin; Keck, Benjamin P; Hollingsworth, Phillip R

    2011-01-01

    Heroine cichlids are major components of the fish faunas in both Central America and the Caribbean. To examine the evolutionary patterns of how cichlids colonized both of these regions, we reconstructed the phylogenetic relationships among 23 cichlid lineages. We used three phylogenetically novel nuclear markers (Dystropin b, Myomesin1, and Wnt7b) in combination with sequence data from seven other gene regions (Nd2, Rag1, Enc1, Sreb2, Ptr, Plagl2, and Zic1) to elucidate the species tree of these cichlids. The species examined represent major heroine lineages in South America, Central America, and the Greater Antilles. The individual gene trees of these groups were topologically quite discordant. Therefore, we combined the genetic partitions and inferred the species tree using both concatenation and a coalescent-based Bayesian method. The two resulting phylogenetic topologies were largely concordant but differed in two fundamental ways. First, more nodes in the concatenated tree were supported with substantial or 100% Bayesian posterior support than in the coalescent-based tree. Second, there was a minor, but biogeographically critical, topological difference between the concatenated and coalescent-based trees. Nevertheless, both analyses recovered topologies consistent with the Greater Antillean heroines being phylogenetically nested within the largely Central American heroine radiation. This study suggests that reconstructions of cichlid phylogeny and historical biogeography should account for the vagaries of individual gene histories.

  7. The gene tree delusion.

    PubMed

    Springer, Mark S; Gatesy, John

    2016-01-01

    Higher-level relationships among placental mammals are mostly resolved, but several polytomies remain contentious. Song et al. (2012) claimed to have resolved three of these using shortcut coalescence methods (MP-EST, STAR) and further concluded that these methods, which assume no within-locus recombination, are required to unravel deep-level phylogenetic problems that have stymied concatenation. Here, we reanalyze Song et al.'s (2012) data and leverage these re-analyses to explore key issues in systematics including the recombination ratchet, gene tree stoichiometry, the proportion of gene tree incongruence that results from deep coalescence versus other factors, and simulations that compare the performance of coalescence and concatenation methods in species tree estimation. Song et al. (2012) reported an average locus length of 3.1 kb for the 447 protein-coding genes in their phylogenomic dataset, but the true mean length of these loci (start codon to stop codon) is 139.6 kb. Empirical estimates of recombination breakpoints in primates, coupled with consideration of the recombination ratchet, suggest that individual coalescence genes (c-genes) approach ∼12 bp or less for Song et al.'s (2012) dataset, three to four orders of magnitude shorter than the c-genes reported by these authors. This result has general implications for the application of coalescence methods in species tree estimation. We contend that it is illogical to apply coalescence methods to complete protein-coding sequences. Such analyses amalgamate c-genes with different evolutionary histories (i.e., exons separated by >100,000 bp), distort true gene tree stoichiometry that is required for accurate species tree inference, and contradict the central rationale for applying coalescence methods to difficult phylogenetic problems. In addition, Song et al.'s (2012) dataset of 447 genes includes 21 loci with switched taxonomic names, eight duplicated loci, 26 loci with non-homologous sequences that are

  8. Heartwood and tree exudates

    SciTech Connect

    Hillis, W.E.

    1987-01-01

    Increasingly, mankind will depend on renewable resources produced at low energy cost - such as forest products. Greater demands will require increased growth as well as utilisation with reduced loss. After a certain age, trees from heartwood containing increased amounts of extractives which are also formed in injured sapwood or are exuded. Their presence can provide trees with resistance to disease and insect attack and they can also affect the efficient utilisation of wood. In this book different facets of heartwood, extractives and exudates are reviewed as a whole for the first time.

  9. The gene tree delusion.

    PubMed

    Springer, Mark S; Gatesy, John

    2016-01-01

    Higher-level relationships among placental mammals are mostly resolved, but several polytomies remain contentious. Song et al. (2012) claimed to have resolved three of these using shortcut coalescence methods (MP-EST, STAR) and further concluded that these methods, which assume no within-locus recombination, are required to unravel deep-level phylogenetic problems that have stymied concatenation. Here, we reanalyze Song et al.'s (2012) data and leverage these re-analyses to explore key issues in systematics including the recombination ratchet, gene tree stoichiometry, the proportion of gene tree incongruence that results from deep coalescence versus other factors, and simulations that compare the performance of coalescence and concatenation methods in species tree estimation. Song et al. (2012) reported an average locus length of 3.1 kb for the 447 protein-coding genes in their phylogenomic dataset, but the true mean length of these loci (start codon to stop codon) is 139.6 kb. Empirical estimates of recombination breakpoints in primates, coupled with consideration of the recombination ratchet, suggest that individual coalescence genes (c-genes) approach ∼12 bp or less for Song et al.'s (2012) dataset, three to four orders of magnitude shorter than the c-genes reported by these authors. This result has general implications for the application of coalescence methods in species tree estimation. We contend that it is illogical to apply coalescence methods to complete protein-coding sequences. Such analyses amalgamate c-genes with different evolutionary histories (i.e., exons separated by >100,000 bp), distort true gene tree stoichiometry that is required for accurate species tree inference, and contradict the central rationale for applying coalescence methods to difficult phylogenetic problems. In addition, Song et al.'s (2012) dataset of 447 genes includes 21 loci with switched taxonomic names, eight duplicated loci, 26 loci with non-homologous sequences that are

  10. Recovery of trees from drought depends on belowground sink control.

    PubMed

    Hagedorn, Frank; Joseph, Jobin; Peter, Martina; Luster, Jörg; Pritsch, Karin; Geppert, Uwe; Kerner, Rene; Molinier, Virginie; Egli, Simon; Schaub, Marcus; Liu, Jian-Feng; Li, Maihe; Sever, Krunoslav; Weiler, Markus; Siegwolf, Rolf T W; Gessler, Arthur; Arend, Matthias

    2016-01-01

    Climate projections predict higher precipitation variability with more frequent dry extremes(1). CO2 assimilation of forests decreases during drought, either by stomatal closure(2) or by direct environmental control of sink tissue activities(3). Ultimately, drought effects on forests depend on the ability of forests to recover, but the mechanisms controlling ecosystem resilience are uncertain(4). Here, we have investigated the effects of drought and drought release on the carbon balances in beech trees by combining CO2 flux measurements, metabolomics and (13)CO2 pulse labelling. During drought, net photosynthesis (AN), soil respiration (RS) and the allocation of recent assimilates below ground were reduced. Carbohydrates accumulated in metabolically resting roots but not in leaves, indicating sink control of the tree carbon balance. After drought release, RS recovered faster than AN and CO2 fluxes exceeded those in continuously watered trees for months. This stimulation was related to greater assimilate allocation to and metabolization in the rhizosphere. These findings show that trees prioritize the investment of assimilates below ground, probably to regain root functions after drought. We propose that root restoration plays a key role in ecosystem resilience to drought, in that the increased sink activity controls the recovery of carbon balances. PMID:27428669

  11. Recovering Bi and Sb from electrolyte in copper electrorefining

    NASA Astrophysics Data System (ADS)

    Ando, K.; Tsuchida, N.

    1997-12-01

    The separation of antimony and bismuth in copper electrorefining is somewhat difficult and costly. An ion-exchange technique for the removal of the metals from the electrolyte has been practiced recently, although the metals recovered require further processing. Sumitomo Metal Mining has developed a process to recover antimony and bismuth directly from the eluant by an electrowinning process using a mixture of sulfuric acid and sodium chloride as an eluant for the desorption from the resin. The content of bismuth in the antimony metal recovered by this process was less than 0.2%, while the content of antimony in the bismuth metal was less than 0.4%.

  12. Proportion of recovered goose and brant bands that are reported

    USGS Publications Warehouse

    Martinson, R.K.; McCann, J.A.

    1966-01-01

    A few more than one-third of the goose and brant bands recovered by hunters were reported to the Bird Banding Laboratory (a rate of 0.361) during the 1962-64 hunting seasons. We calculated this band-reporting rate by comparing the estimated number of goose and brant bands recovered by hunters, based on a mail questionnaire survey, with the number of bands actually reported to the Bird Banding Laboratory. This band-reporting rate is probably representative only of the 1962-65 period. It is likely that, in earlier years, a greater proportion (perhaps about 0.60) of recovered goose and brant bands were reported.

  13. Climatic Instability and Regional Glacial Advances in the Late Ediacaran

    NASA Astrophysics Data System (ADS)

    Hannah, J. L.; Stein, H. J.; Marolf, N.; Bingen, B.

    2014-12-01

    The Ediacaran Period closed out the environmentally raucous Neoproterozoic Era with the last of multiple glacial events and the first ephemeral glimmer of multicellular life. As such, evolution of Earth's biosphere and the marine environments that nurtured this nascent biota are of particular interest. Because the Ediacaran biota appear in the stratigraphic record just above tillites in many localities, inferences are naturally drawn to link glaciation to bioevolution. Here we review known controls on the timing and extent of the late Ediacaran Gaskier and Varanger glacial events, bolstered by new constraints on the Moelv tillite of South Norway. The elusive mid-Ediacaran glacial strata are poorly dated, patchy in distribution, and relatively limited in thickness. The type Gaskier glaciogenic units in Newfoundland are 582 to 584 Ma, based on U-Pb zircon ages from intercalated ash beds [1]. The Varanger glaciogenic deposits in northern Norway, in contrast, remain only roughly constrained to ca. 630 to 560 Ma. Post-Gaskier negative carbon isotope excursions (CIEs) have been reported from multiple localities in both China and SW United States, suggesting climatic instability in the late Ediacaran. Although most localities lack solid geochronology, paleontologic constraints place the Hongtiegou glacial diamictite and accompanying CIE in the Chaidam Basin, NW China, in the latest Ediacaran, ca. 555 Ma [2]. We previously suggested that the Moelv tillite in south Norway was roughly equivalent to the Gaskier, based on an imprecise Re-Os age of ~560 Ma [3] for the underlying Biri shale. Reanalysis of these data shows that the upper part of the shale section was disturbed by a redox front during the Caledonian orogeny. The undisturbed lower part of the section yields a more precise Model 1 isochron age of 559.5 ± 6.2 Ma, clearly post-dating the Gaskier event well outside analytical uncertainty. These new results bolster arguments that the Gaskier glaciation was not a global

  14. Transience and Glacial Erosion in South Central Alaska

    NASA Astrophysics Data System (ADS)

    Valentino, J.; Spotila, J. A.; Owen, L. A.; Buscher, J.

    2013-12-01

    It is documented that a glacial presence in active orogenic belts undergoing rapid rock uplift will increase erosion rates often matching rates of rock uplift. Glacial erosion seems to have shaped the mass balance of numerous mountain ranges and tectonic settings, but the Kenai Peninsula and Chugach Mountains of south central Alaska do not conform to this pattern. The Kenai Peninsula is an uplifted forearc forming above the Aleutian subduction zone and the Chugach Mountains are the continuation of the orogenic belt around Prince William Sound. This mountain belt is comprised of accreted Mesozoic island arcs, which were sequentially metamorphosed from the cretaceous through the Tertiary. Geomorphic analysis and past studies, including Buscher et al. (2008) and Arkle et al. (2013), show that the Chugach Mountains and Kenai Peninsula are similar to the Saint Elias Mountains in the Yakutat collision zone with regards to topographic ruggedness. The region is dominated by alpine glaciers, ice fields, and extensive valley glaciers that are actively eroding the topography through headwall erosion and valley glacier down cutting. Despite this, there is a low background long term erosion rate of <0.1-0.2 mm/yr (Buscher et al, 2008). This suggests a transient landscape that has not yet fully adjusted to onset of erosive glacial conditions. Through the use of four dating techniques spanning different timescales, we aim to quantify erosion rates in the Kenai and Chugach Mountains. (U-TH)/He thermochronometry (106-7 yr), He/He thermochronometry (105-6 yr), OSL thermochronometry (105-6 yr), and 10Be and 36CL cosmogenic dating (103-4 yr), are being used in conjunction to test if short-term rates exceed long-term rates, thereby indicating a transient response to late Cenozoic glaciations. This analysis will also address how landscapes respond to the onset of glacial conditions and subsequent climate fluctuations. The history of exhumation and erosion will also characterize the role

  15. Systematically enhanced subarctic Pacific stratification and nutrient utilization during glacials

    NASA Astrophysics Data System (ADS)

    Knudson, K. P.; Ravelo, A. C.

    2015-12-01

    The modern subarctic North Pacific is characterized as a high-nitrate, low-chlorophyll (HNLC) area, but evidence for increased nutrient utilization during the last glacial indicates that this region is highly dynamic. As such, this HNLC area is of particular interest in regard to understanding changes in the biological pump and carbon sequestration and predicting how biogeochemical processes will influence, or be influenced by, future climate change. While it has been suggested that changes in iron supply and/or ocean stratification could explain fluctuations in nutrient utilization and productivity in the subarctic Pacific, short records of nutrient utilization have previously hindered the evaluation of these potential mechanisms over long timescales. Here we present new, high-resolution records of bulk sediment δ15N from 0-1.2 Ma from Integrated Ocean Drilling Program Exp. 323 Site U1342, which are used to calculate Δδ15N (U1342 δ15Nbulk - ODP Site 1012 δ15Nbulk) as a nitrate utilization proxy. The unprecedented length and resolution of this new record allows us, for the first time, to determine orbital-scale systematic behavior in subarctic Pacific nutrient utilization over many glacial/interglacial cycles. Spectral analyses demonstrate that enhanced nutrient utilization was paced by climate on Milankovitch orbital cycles since the Mid-Pleistocene Transition (MPT; ~800 ka). Nitrate utilization maxima is statistically correlated with glacial maxima and enhanced dust/iron availability (represented by existing records of EPICA ice core dust, Southern Pacific Ocean sediment iron, and China loess) but shows low correlation to primary productivity, suggesting that stratification has systematically exerted an important control on subarctic Pacific nutrient utilization since the MPT. These findings imply that the presence of iron helped to change the region into a nitrate-limited, rather than iron-limited, region during glacials and that stratification, which

  16. Optically Stimulated Luminescence Dating of Glacial Outwash Spanning the Last Glacial Cycle on the Western Olympic Peninsula, Washington, USA

    NASA Astrophysics Data System (ADS)

    Marshall, K. J.; Thackray, G. D.; Rittenour, T. M.

    2012-12-01

    Valley glaciers in the Olympic Mountains, Washington coalesced and advanced onto the Pacific coastal lowlands six times during Late Pleistocene time. With each advance, the valley glaciers constructed extensive landforms and thick stratigraphic sequences. Along the coast of the Olympic Peninsula, between the Hoh and Queets Rivers, wave-cut sea cliffs expose alternating sequences of outwash fans formed during periods of glacial advance and marine transgressive facies formed during periods of sea-level high stand. Previous work, encompassing geomorphic mapping of inland and coastal outcrops, stratigraphy, stratigraphic correlation, and radiocarbon dating, established a provisional glacial chronology for the Olympic coast, but was limited to the range of radiocarbon dating. Within the sea cliffs, three primary units of outwash were identified: the Hoh Oxbow (MIS 3), Lyman Rapids (MIS 4 or 5b), and Steamboat Creek outwash (MIS 6 or older). The outwash units are generally bounded by interglacial sea-level high stand sediments or interstadial terrestrial sediment. Our new investigations utilize detailed sedimentology and stratigraphy, mapping of geomorphic sequences, and optically stimulated luminescence (OSL) dating to extend and solidify the coastal glacial chronology. OSL methods provide a means to date outwash sequences directly and enable dating of previously undateable older sediments. The quartz in these sediments appears to be fully bleached and retains the luminescence signal. Furthermore, at two locations where both radiocarbon and OSL methods were applied on the same sediments, the ages are indistinguishable, indicating that OSL is reliable in these settings. Preliminary OSL ages from the outwash units indicate valley glacier advances on the Olympic Peninsula during Hoh Oxbow (MIS 3, ca. 30-50 ka), Lyman Rapids (MIS 4, ca. 50-80 ka), and Steamboat Creek (MIS 5d or older, >/= 105 ka). Additionally, general sediment fining up-section suggests a decrease in

  17. Modelling of Gas Hydrate Dissociation During The Glacial-Inter-glacial Cycles, Case Study The Chatham Rise, New Zealand

    NASA Astrophysics Data System (ADS)

    Oluwunmi, P.; Pecher, I. A.; Archer, R.; Moridis, G. J.; Reagan, M. T.

    2015-12-01

    Seafloor depressions covering an area of >20,000 km2 on the Chatham Rise, south east of New Zealand, have been interpreted as pockmarks which are related to past fluid releases. It is proposed that the seafloor depressions were caused by sudden escape of overpressured gas generated by gas hydrate dissociation during glacial sea-level lowering. We are attempting to simulate the evolution of the gas hydrate system through glacial-interglacial cycles in the study area using TOUGH-Hydrate. The Chatham Rise offers a unique opportunity for studying the effect of depressurization from sealevel lowering to gas hydrate systems because it is a bathymetric barrier preventing the Subtropical Front separating subtropical and subantarctic waters from migrating during glacial-interglacial cycles. Hence, bottom-water temperatures can be assumed to remain constant. Recent results from paleoceanographic studies however, indicate that bottom-temperature may have varied locally. These temperature changes may have a more significant effect on the shallow gas hydrate system in the study area than the relatively gradual decrease of pressure associated with sealevel lowering.

  18. Reconstruction of full glacial environments and summer temperatures from Lago della Costa, a refugial site in Northern Italy

    NASA Astrophysics Data System (ADS)

    Samartin, Stéphanie; Heiri, Oliver; Kaltenrieder, Petra; Kühl, Norbert; Tinner, Willy

    2016-07-01

    Vegetation and climate during the last ice age and the Last Glacial Maximum (LGM, ∼23,000-19,000 cal BP) were considerably different than during the current interglacial (Holocene). Cold climatic conditions and growing ice-sheets during the last glaciation radically reduced forest extent in Europe to a restricted number of so-called "refugia", mostly located in the southern part of the continent. On the basis of paleobotanical analyses the Euganian Hills (Colli Euganei) in northeastern Italy have previously been proposed as one of the northernmost refugia of temperate trees (e.g. deciduous Quercus, Tilia, Ulmus, Fraxinus excelsior, Acer, Abies alba, Fagus sylvatica, Carpinus and Castanea) in Europe. In this study we provide the first quantitative, vegetation independent summer air temperature reconstruction for Northern Italy spanning the time ∼31,000-17,000 cal yr BP, which covers the coldest periods of the last glacial, including the LGM and Heinrich stadials 1 to 3. Chironomids preserved in a lake sediment core from Lago della Costa (7m a.s.l.), a small lake at the south-eastern edge of the Euganean Hills, allowed quantitative reconstruction of Full and Late Glacial summer air temperatures using a combined Swiss-Norwegian temperature inference model based on chironomid assemblages from 274 lakes. Chironomid and pollen evidence from Lago della Costa derives from finely stratified autochthonous organic gyttja sediments, which excludes major sediment mixing or reworking. After reconstructing paleo-temperatures, we address the question whether climate conditions were warm enough to permit the local survival of temperate tree species during the LGM and whether local expansions and pollen-inferred contractions of temperate tree taxa coincided with chironomid-inferred climatic changes. Our results suggest that chironomids at Lago della Costa have responded to major climatic fluctuations such as temperature decreases during the LGM and Heinrich stadials. The

  19. The Inference of Gene Trees with Species Trees

    PubMed Central

    Szöllősi, Gergely J.; Tannier, Eric; Daubin, Vincent; Boussau, Bastien

    2015-01-01

    This article reviews the various models that have been used to describe the relationships between gene trees and species trees. Molecular phylogeny has focused mainly on improving models for the reconstruction of gene trees based on sequence alignments. Yet, most phylogeneticists seek to reveal the history of species. Although the histories of genes and species are tightly linked, they are seldom identical, because genes duplicate, are lost or horizontally transferred, and because alleles can coexist in populations for periods that may span several speciation events. Building models describing the relationship between gene and species trees can thus improve the reconstruction of gene trees when a species tree is known, and vice versa. Several approaches have been proposed to solve the problem in one direction or the other, but in general neither gene trees nor species trees are known. Only a few studies have attempted to jointly infer gene trees and species trees. These models account for gene duplication and loss, transfer or incomplete lineage sorting. Some of them consider several types of events together, but none exists currently that considers the full repertoire of processes that generate gene trees along the species tree. Simulations as well as empirical studies on genomic data show that combining gene tree–species tree models with models of sequence evolution improves gene tree reconstruction. In turn, these better gene trees provide a more reliable basis for studying genome evolution or reconstructing ancestral chromosomes and ancestral gene sequences. We predict that gene tree–species tree methods that can deal with genomic data sets will be instrumental to advancing our understanding of genomic evolution. PMID:25070970

  20. Arbutus unedo, Strawberry Tree

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Encylopedia of Fruit and Nuts is designed as a research reference source on temperate and tropical fruit and nut crops. Strawberry tree or madrone is native to the Mediterranean region of southern Europe (Arbutus unedo L., Ericaceae) with a relict population in Ireland, as well as in North Ameri...

  1. A Universal Phylogenetic Tree.

    ERIC Educational Resources Information Center

    Offner, Susan

    2001-01-01

    Presents a universal phylogenetic tree suitable for use in high school and college-level biology classrooms. Illustrates the antiquity of life and that all life is related, even if it dates back 3.5 billion years. Reflects important evolutionary relationships and provides an exciting way to learn about the history of life. (SAH)

  2. MPI File Tree Walk

    2007-04-30

    MPI-FTW is a scalable MPI based software application that navigates a directory tree by dynamically allocating processes to navigate sub-directories found. Upon completion, MPI-FTW provides statistics on the number of directories found, files found, and time to complete. Inaddition, commands can be executed at each directory level.

  3. Tree-Ties.

    ERIC Educational Resources Information Center

    Gresczyk, Rick

    Created to help students understand how plants were used for food, for medicine, and for arts and crafts among the Ojibwe (Chippewa) Indians, the game Tree-Ties combines earth and social sciences within a specific culture. The game requires mutual respect, understanding, and agreement to succeed. Sounding like the word "treaties", the title is a…

  4. The Medicine Tree.

    ERIC Educational Resources Information Center

    Brokenleg, Martin

    2000-01-01

    Demographic changes in population continue to bring children of different cultural backgrounds to classrooms. This article provides suggestions teachers and counselors can use to bridge cultures. Using the parable of a medicine tree, it explains how no society can endure without caring for its young. (Author/JDM)

  5. Phylogenics & Tree-Thinking

    ERIC Educational Resources Information Center

    Baum, David A.; Offner, Susan

    2008-01-01

    Phylogenetic trees, which are depictions of the inferred evolutionary relationships among a set of species, now permeate almost all branches of biology and are appearing in increasing numbers in biology textbooks. While few state standards explicitly require knowledge of phylogenetics, most require some knowledge of evolutionary biology, and many…

  6. Tree theorem for inflation

    SciTech Connect

    Weinberg, Steven

    2008-09-15

    It is shown that the generating function for tree graphs in the ''in-in'' formalism may be calculated by solving the classical equations of motion subject to certain constraints. This theorem is illustrated by application to the evolution of a single inflaton field in a Robertson-Walker background.

  7. Digging Deeper with Trees.

    ERIC Educational Resources Information Center

    Growing Ideas, 2001

    2001-01-01

    Describes hands-on science areas that focus on trees. A project on leaf pigmentation involves putting crushed leaves in a test tube with solvent acetone to dissolve pigment. In another project, students learn taxonomy by sorting and classifying leaves based on observable characteristics. Includes a language arts connection. (PVD)

  8. Trees at the Center.

    ERIC Educational Resources Information Center

    Flannery, Maura

    1998-01-01

    Recommends introducing students to biology using a topical focus that can offer intriguing perspectives on the discipline. Describes a biology course that uses trees as a topical focus. Presents a list of literary resources and reviews student interactions. Contains 50 references. (DDR)

  9. Christmas Tree Category Manual.

    ERIC Educational Resources Information Center

    Bowman, James S.; Turmel, Jon P.

    This manual provides information needed to meet the standards for pesticide applicator certification. Pests and diseases of christmas tree plantations are identified and discussed. Section one deals with weeds and woody plants and the application, formulation and effects of herbicides in controlling them. Section two discusses specific diseases…

  10. The Sacred Tree.

    ERIC Educational Resources Information Center

    Lethbridge Univ. (Alberta).

    Designed as a text for high school students and adults, this illustrated book presents ethical concepts and teachings of Native societies throughout North America concerning the nature and possibilities of human existence. The final component of a course in self-discovery and development, the book begins with the legend of the "Sacred Tree"…

  11. Vegetation, climate and fire-dynamics in East Africa inferred from the Maundi crater pollen record from Mt Kilimanjaro during the last glacial-interglacial cycle

    NASA Astrophysics Data System (ADS)

    Schüler, Lisa; Hemp, Andreas; Zech, Wolfgang; Behling, Hermann

    2012-04-01

    The pollen, charcoal and sedimentological record from the Maundi crater, located at 2780 m elevation on the south-eastern slope of Mt Kilimanjaro, is one of the longest terrestrial records in equatorial East Africa, giving an interesting insight into the vegetation and climate dynamics back to the early last Glacial period. Our sediment record has a reliable chronology until 42 ka BP. An extrapolation of the age-depth model, as well as matching with other palaeo-records from tropical East Africa, suggest a total age of about 90 ka BP at the bottom of the record. During the last Glacial the distribution as well as the composition of the vegetation belts classified as colline savanna, submontane woodland, montane forest, ericaceous belt, and alpine vegetation changed. The early last Glacial is characterized by high amounts of Poaceae and Asteraceae pollen suggesting a climatically dry but stable phase. Based on the absence of pollen grains in samples deposited around 70 ka BP, we assume the occurrence of distinct drought periods. During the pre-LGM (Last Glacial Maximum) a higher taxa diversity of the ericaceous and montane zone is recorded and suggests a spread of forest and shrub vegetation, thus indicating a more humid period. The taxa diversity increases steadily during the recorded time span. The decent of vegetation zones indicate dry and cold conditions during the LGM and seem to have been detrimental for many taxa, especially those of the forest vegetation; however, the early last Glacial seems to have been markedly drier than the LGM. The reappearance of most of the taxa (most importantly Alchemilla, Araliaceae, Dodonea, Hagenia, Ilex, Myrsine, Moraceae, Piperaceae) during the deglacial and Holocene period suggest a shift into humid conditions. An increase in ferns and the decrease in grasses during the Holocene also indicate increasing humidity. Fire played an important role in controlling the development and elevation of the ericaceous zone and the tree

  12. A high resolution Late Glacial to Holocene record of climatic and environmental change in the Mediterranean from Lake Ohrid (Macedonia/Albania)

    NASA Astrophysics Data System (ADS)

    Lacey, Jack; Francke, Alexander; Leng, Melanie; Vane, Chris; Wagner, Bernd

    2015-04-01

    Lake Ohrid (Macedonia/Albania) is one of the world's oldest lakes and is renowned for its high degree of biological diversity. It is the target site for the ICDP SCOPSCO (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid) project, an international research initiative to study the links between geology, environment and the evolution of endemic taxa. In 2011 a 10-meter core was recovered from the western shore of Lake Ohrid adjacent to the Lini Peninsula. Here we present high-resolution stable isotope and geochemical data from this core through the Late Glacial to Holocene to reconstruct past climate and hydrology (TIC, δ18Ocalcite, δ13Ccalcite) as well as the terrestrial and aquatic vegetation response to climate (TOC, TOC/N, δ13Corganic, Rock-Eval pyrolysis). The data identify 3 main zones: (1) the Late Glacial-Holocene transition represented by low TIC, TOC and higher isotope values, (2) the early to mid-Holocene characterised by higher TOC, TOC/N and lower δ18Ocalcite, and (3) the late Holocene which shows a marked decrease in TIC and TOC. In general there is an overall trend of increasing δ18Ocalcite from 9 ka to present, suggesting progressive aridification through the Holocene, which is consistent with previous records from Lake Ohrid and the wider Mediterranean region. Several proxies show commensurate excursions that imply the impact of short-term climate oscillations, such as the 8.2 ka event and the Little Ice Age. This is the best-dated and highest resolution archive of Late Glacial and Holocene climate from Lake Ohrid and confirms the overriding influence of the North Atlantic in the north-eastern Mediterranean. The data presented set the context for the SCOPSCO project cores recovered in spring-summer 2013 dating back into the Lower Pleistocene, and will act as a recent calibration to reconstruct climate and hydrology over the entire lake history.

  13. What People Recovering from Alcoholism Need to Know about Osteoporosis

    MedlinePlus

    ... formation and increase bone breakdown. Because of the effects of alcohol on balance and gait, people with alcoholism tend ... abuse ends. Nutrition. Because of the negative nutritional effects of chronic alcohol use, people recovering from alcoholism should make healthy ...

  14. Improving CO2 Efficiency for Recovering Oil in Heterogeneous Reservoirs

    SciTech Connect

    Grigg, Reid B.; Svec, Robert K.

    2003-03-10

    The work strived to improve industry understanding of CO2 flooding mechanisms with the ultimate goal of economically recovering more of the U.S. oil reserves. The principle interests are in the related fields of mobility control and injectivity.

  15. Analysis of ``soft`` recovered shaped charge jet particles

    SciTech Connect

    Lassila, D.H.; Nikkel, D.J. Jr.; Kershaw, R.P.; Walters, W.P.

    1996-04-01

    A shaped charge with an 81 mm diameter, 42{degree} apex angle oxygen-free high-conductivity (OFHC) copper conical liner was fired into a ``soft`` recovery bunker to allow metallurgical examination of recovered jet particles and the slug. The initial weight of the copper liner was 245 g, of which 184 g was recovered. The number of jet particles recovered was 37 (approximately 63% of the particles formed by the charge). Extensive metallurgical analyses were performed on the recovered slug and jet particles. The microstructural features associated with voids, e.g., dendritic grain growth, clearly indicate that the regions in the vicinity of the centerline of the slug and jet particles were melted. In this work the authors present calculations of jet temperature as a function of constitutive behavior. In order to predict melt in the center region of the jet they find it necessary to scale flow stress with a pressure dependent shear modulus.

  16. Linking glacial melting to Late Quaternary sedimentation in climatically sensitive mountainous catchments of the Mount Chlemos compex, Kalavryta, southern Greece

    NASA Astrophysics Data System (ADS)

    Pope, Richard; Hughes, Philip

    2014-05-01

    Compared to the mountainous areas of northern Greece (e.g. Woodward et al., 2008), the influence of deglaciation cycles on sedimentation in mountainous catchments in southern Greece remains poorly understood due to the poor preservation of small moraines and limited opportunities to date glacial and fluvial sediment dynamics fluvial sediments (Pope, unpublished data). Nevertheless, intriguing new insight into links between glacial cycles and sediment transfer/deposition phases in upland catchments have emerged by applying multiple dating techniques to well-preserved multiple generations of moraines and extensive glacio-fluvial fan systems on Mount Chelmos (2355 m a.s.l.). U-series dating of calcites within proximal fan sediments constrain the earliest phase of glacio-fluvial sedimentation to 490 (±21.0)(ka (MIS 12), while OSL dating of fine sands constrains the deposition of extensive medial glacio-fluvial gravels in (valley we walked down through trees) to between 250.99 (±20.67) and 160.82 (±11.08) ka. By comparison, cosmogenic dating of moraine boulders indicates that three generations of well-preserved moraines in the highest cirque areas date to 31-23 ka, 17-16 ka and 12-11.5 ka. OSL dating also provides ages of 18 and 17 (±11.08) for an extensive glacio-fluvial terrace in a major valley draining the southern flanksof Mount Chelmos. The initial Mount Chelmos geochronology suggests that the earliest and middle phases of glacio-fluvial sedimentation are coincident with the Middle Pleistocene glacial stages stages recorded in the Pindus range (Hughes et al, 2006). These include the Skamnellian (MIS 12) and the Vlasian (MIS 6) Stages as well as other cold stage between these (e.g. MIS 8).Evidence of glacio-fluvial outwash in MIS 8 is interesting since evidence for this in the moraine records has remained elusive although is suggested further north in the Balkans (Hughes et al., 2011). The valley moraines and glacio-fluvial terraces (late MIS 2) post-date the

  17. Prolonged Soil Frost Affects Hydraulics and Phenology of Apple Trees.

    PubMed

    Beikircher, Barbara; Mittmann, Claudia; Mayr, Stefan

    2016-01-01

    Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. 'Golden Delicious.' To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback. PMID:27379146

  18. Prolonged Soil Frost Affects Hydraulics and Phenology of Apple Trees.

    PubMed

    Beikircher, Barbara; Mittmann, Claudia; Mayr, Stefan

    2016-01-01

    Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. 'Golden Delicious.' To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback.

  19. Prolonged Soil Frost Affects Hydraulics and Phenology of Apple Trees

    PubMed Central

    Beikircher, Barbara; Mittmann, Claudia; Mayr, Stefan

    2016-01-01

    Restoration of an adequate water supply in spring is a prerequisite for survival of angiosperm trees in temperate regions. Trees must re-establish access to soil water and recover xylem functionality. We thus hypothesized that prolonged soil frost impairs recovery and affects hydraulics and phenology of Malus domestica var. ‘Golden Delicious.’ To test this hypothesis, over two consecutive winters the soil around some trees was insulated to prolong soil frosting, From mid-winter to early summer, the level of native embolism, the water and starch contents of wood, bark and buds were quantified at regular intervals and findings correlated with various phenological parameters, xylogenesis and fine root growth. The findings confirm that prolonged soil frost affects tree hydraulics and phenology but the severity of the effect depends on the climatic conditions. In both study years, percentage loss of hydraulic conductivity (PLC) decreased from about 70% at the end of winter to about 10% in May. Thereby, xylem refilling strongly coincided with a decrease of starch in wood and bark. Also treated trees were able to restore their hydraulic system by May but, in the warm spring of 2012, xylem refilling, the increases in water content and starch depolymerization were delayed. In contrast, in the cold spring of 2013 only small differences between control and treated trees were observed. Prolongation of soil frost also led to a delay in phenology, xylogenesis, and fine root growth. We conclude that reduced water uptake from frozen or cold soils impairs refilling and thus negatively impacts tree hydraulics and growth of apple trees in spring. Under unfavorable circumstances, this may cause severe winter damage or even dieback. PMID:27379146

  20. Unexpected spontaneous ignition of Late Glacial sediments from the palaeolake Wukenfurche (NE Germany)

    NASA Astrophysics Data System (ADS)

    Dräger, Nadine; Brademann, Brian; Theuerkauf, Martin; Wulf, Sabine; Tjallingii, Rik; Słowiński, Michał; Schlaak, Norbert; Błaszkiewicz, Mirosław; Brauer, Achim

    2015-04-01

    A new finely laminated sediment archive has been recovered from the palaeolake Wukenfurche, NE Germany, comprising the last Glacial to Interglacial transition. The site is located within the Eberswalde ice-marginal valley and south of the terminal moraine that was formed during the Pomeranian phase of the Weichselian glaciation. Two sediment cores were obtained from the presently swampy area in July 2014. From these individual profiles a 14.7 m long continuous composite profile has been compiled by correlation of distinct marker layers. Glacial sand deposits covered by basal peat are found at the base of the cores. A visible volcanic ash layer 6 cm above the transition from basal peat into the overlaying finely laminated lake sediments corresponds most likely to the late Allerød Laacher See Tephra (LST). Preliminary counting on core photographs of the 3.5 m thick package of reddish and black alternating laminae above the LST yields a total of ca. 2500 layer couplets. Further micro-facies analyses on large-scale thin sections will be applied to test if these couplets are of annual origin (i.e. varves). Standard preparation for large-scale thin sections involves freeze-drying (for 48 hours) of 10 cm-long sediment slabs stored in aluminum boxes. Immediately after releasing the vacuum of the freeze-dryer chamber we observed an unexpected spontaneous combustion of the sediment from a particular interval of the profile. The exothermic combustion process lasted for approximately 10 to 20 minutes during which temperatures of up to 350°C have been measured with an infrared camera. Preliminary results suggest that oxidation of iron sulfides contributes to the observed reaction. To our knowledge this is the first time that such spontaneous combustion of lake sediments after freeze-drying has been observed. Details of the combustion process and sediment characteristics will be provided. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape

  1. Are Physical Properties Able to Differentiate Glacial and Interglacial Coral Identity?

    NASA Astrophysics Data System (ADS)

    Lado-Insua, T.; Moran, K.; Anderson, L.; Webster, J. M.; Morgan, S.; Fehr, A.; Lofi, J.; Lukies, V.; Loggia, D.; Iodp Expedition 325 Scientists

    2010-12-01

    The Integrated Ocean Drilling Program Expedition 325 to the Great Barrier Reef provides new information on past sea-level changes and better understanding of mechanisms driving glacial-interglacial cycles. Coral samples recovered during this expedition provide a deeper understanding of coral reef responses to environmental stresses. Inter- and intra-specific differences, growth rates, coral health, symbiotic algae and environmental conditions are all potential causes of differences in the density of coral skeletons and their distribution. Past changes in sea level and temperature can be related not only to isotope ratios but also to the presence of different communities of corals. Density changes in the coral composition can be detected using physical properties such as an increase in the calcium carbonate of a sample. De’ath et al. (2009) reported severe and sudden recent declines in calcification in Porites spp. corals in the Great Barrier Reef in the present that have not been observed over at least the last 400 years, and they attributed the decrease in calcification to changes in sea level, sea surface temperature (SST) and saturation of aragonite in the water column, all of which can limit the capacity of the corals to precipitate calcium carbonate. Variation in Sr/Ca can be related to SST, but different strains of symbiotic algae in the corals’ tissues can also be an important factor affecting skeletal Sr/Ca ratios. Such changes have never been tracked during previous glaciations, but the samples from Expedition 325 give the opportunity to explore their values during and since the last glacial maximum. Physical properties such as gamma ray density, electrical resistivity, and acoustic p-wave velocity can be related to characteristics of the marine sediments that, in turn, are indicative of the depositional environments. We performed a multivariate analysis that relates physical characteristics measured with a multi-sensor core logger (MSCL) and downhole

  2. The stratotype and facies of the glacial Lower Vendian Nichatka Formation, Chara River basin, Central Siberia

    NASA Astrophysics Data System (ADS)

    Chumakov, N. M.; Kernitskii, V. V.

    2016-07-01

    Sediments of the Nichatka Formation are facially studied and thoroughly described, the sections are correlated, and the subformations are recognized. The formation represents a key stratigraphic unit to reveal the origin of the Central Siberian glacial horizon and to correlate it with glacial horizons in other regions of the world, namely, with the Laplandian Horizon of the Lower Vendian, Nantou and Marino tillites, etc. The Nichatka Formation is correlated with the glacial Bolshoi Patom (Dzhemkukan) Formation of the Vendian reference section at the Ura Uplift. Unlike the latter, it is mainly composed of continental glacial deposits and is marked by a complex facies composition. The glacial origin of the Nichatka Formation is reliably determined on the basis of a set of diagnostic characters. This permits a more complete reconstruction of the Early Vendian depositional environments. In addition to typical basal tillites and marginal moraine deposits, the formation includes glaciolacustrine and fluvioglacial sediments along with aquatillites, allotillites, and the glacial fan, including subaqueous, deposits.

  3. Glacial inception during the late Holocene without carbon emissions from early agriculture: lessons from the stage-19 glacial inception

    NASA Astrophysics Data System (ADS)

    He, F.; Vavrus, S. J.; Kutzbach, J. E.; Ruddiman, W. F.; Tzedakis, P. C.

    2013-12-01

    Decreases in orbitally-forced summer insolation along with downward trends in greenhouse gases (GHG) have been precursors to incipient glaciation in the past. In the last several thousand years of the current interglacial, while summer insolation has decreased, there was a reversal of the downward trends in CH4 and CO2 concentration within the Holocene around 5,000 and 7,000 years ago. While the cause of this reversal remains unresolved, a leading hypothesis is Ruddiman's Early Anthropogenic Hypothesis that early agriculture, starting several thousand years ago, caused emissions of GHG large enough to reverse natural downward trends in CO2 and CH4 and kept Earth's climate anomalously warm, with the corollary that this may have prevented incipient glaciation during the late Holocene. Here we use the 1-degree, fully coupled Community Climate System Model version 4 (CCSM4) with climate forcings (orbital parameters and GHG) of a previous glacial inception to investigate whether glacial inception should have occurred prior to the industrial revolution if the concentrations of CH4 and CO2 had followed their natural downward trends throughout the Holocene. Tzedakis et al. [2012] show that for the previous eight interglacials, Stage 11 and Stage 19 are the best analogs of the Holocene because of their low eccentricities, and Stage 19 is a better analog than Stage 11 for the Holocene due to the in-phase relationship between obliquity and precession. Furthermore, their study suggests that 777 ka BP (777,000 years before present) is the timing of glacial inception for Stage 19, based on the occurrence of the earliest bipolar seesaw event associated with glacial melting. Not only do the orbital parameters at 777 ka BP resemble pre-industrial conditions, but the concentrations of CO2 at that time were essentially the same as their expected 'natural' pre-industrial values in the absence of anthropogenic greenhouse emissions. Our multi-millennial coupled CCSM4 simulations show

  4. Waveform correlation by tree matching.

    PubMed

    Cheng, Y C; Lu, S Y

    1985-03-01

    A waveform correlation scheme is presented. The scheme consists of four parts: 1) the representation of waveforms by trees, 2) the definition of basic operations on tree nodes and tree distance, 3) a tree matching algorithm, and 4) a backtracking procedure to find the best node-to-node correlation. This correlation scheme has been implemented. Results show that the scheme has the capability of handling distortions that result from stretching or shrinking of intervals or from missing intervals.

  5. Glacial to Holocene climate changes in Easter Island (SE Pacific, 27

    NASA Astrophysics Data System (ADS)

    Sáez, A.; Giralt, S.; Valero-Garcés, B. L.; Moreno, A.; Bao, R.; Pueyo, J. J.; Hernández, A.

    2009-04-01

    Sedimentary architecture and paleoclimate for the last 34 000 cal years BP and human activity during the last 850 years have been reconstructed from the Raraku Lake sediments in Easter Island (SE Pacific, 27°S) using a high-resolution multiproxy study of 8 cores, 36 AMS radiocarbon dates and correlation with previous core studies. The Last Glacial period was characterized by cold and relatively humid conditions between 34 to 28 cal kyr BP. High lake levels and clastic input dominated sedimentation in Raraku Lake and a relatively open forest developed at that time. Between 28 and 17.3 cal kyr BP, including LGM period, colder conditions contributed to a reduction of the tree coverage in the island. The end of Glacial Period occurred at 17.3 cal kyr BP and was characterized by a sharp decrease in lake level conducive to the development of major floods due to the erosion of littoral sediments. The Deglaciation Period (Termination 1) occurred between 17.3 and 12.5 cal kyr BP, characterized by an increase in lake productivity, a decrease in the terrigenous input and a rapid lake level recovery inaugurating a period of intermediate lake levels. During this period, the dominance of algal lamination is interpreted as a warmer climate. The timing and duration of this warming trend in Easter Island broadly agrees with other mid- and low latitude circum South Pacific terrestrial records. The early Holocene was characterized by low lake levels. The lake level dropped during the early Holocene (ca. 9.5 cal kyr BP) and peatbog and shallow lake conditions dominated till mid Holocene, partially caused by the colmatation of the lacustrine basin. During the mid Holocene an intense drought occurred that led to a persistent low water table period, subaerial exposure and erosion of some of the sediments, generating a sedimentary gap in the Raraku sequence, from 4.2 to 0.8 cal kyr BP. The palm deforestation of the Easter Island, attributed to the human colonization at about 850 cal yr

  6. The state and their implication of Himalayan glacial lake changes from satellite observations

    NASA Astrophysics Data System (ADS)

    Nie, Y.; Sheng, Y.; Liu, Q.; Liu, L.; Liu, S.; Zhang, Y.; Song, C.

    2015-12-01

    Glacial lake outburst floods (GLOFs)generally result in catastrophic damages and fatalities. The Himalayas, the world's highest mountains hosting large number of glaciers, have frequently suffered from GLOFs events in the past decades. Climatic warming-induced melting and retreating glaciers make glacial lakes expand obviously and urge the potential risk of GLOFs in Himalayas. However, our knowledge on the state of glacial lakes in the entire Himalayas is still limited. This study conducts a systematically satellite-based inventory to firstly reveal the evolution complex, regional difference and causes of Himalayan glacial lake changes in the whole Himalayas. Hundreds of Landsat images and Google Earth high resolution imagery were employed to extract the extents of glacial lakes at four epochs (circa1990, circa 2000, circa 2005 and circa 2010). Object-oriented mapping method was used to automatically map the lakes. In association with published glacier data (e.g., China Glacier Inventory, Randolph and GLIMS Glacier data), visual inspections and iterative checks for individual lake guarantee the accuracy of our results. This study demonstrates the spatial and topographic distributions, differences, heterogeneity of glacial lake changes and their causes. Our results show that Himalayan glacial lakes present a rapidly expanding state in general. Both disappeared lakes and new-formed lakes were observed, however, pre-existing glacial lakes contributed most to the total areal expansion. Himalayan glacial lakes appeared a clear altitudinal difference between north side and south side of main range. Evolutions of glacial lakes between eastern, western and central Himalaya were different, and the most rapidly expanding areas need to be more concerned. Climatic and geomorphic controls result in the heterogeneity of glacial lake changes. This study will help assess the potential risk of GLOFs and promote the public awareness of glacial disasters in high mountain areas.

  7. The Hopi Fruit Tree Book.

    ERIC Educational Resources Information Center

    Nyhuis, Jane

    Referring as often as possible to traditional Hopi practices and to materials readily available on the reservation, the illustrated booklet provides information on the care and maintenance of young fruit trees. An introduction to fruit trees explains the special characteristics of new trees, e.g., grafting, planting pits, and watering. The…

  8. Building up rhetorical structure trees

    SciTech Connect

    Marcu, D.

    1996-12-31

    I use the distinction between the nuclei and the satellites that pertain to discourse relations to introduce a compositionality criterion for discourse trees. I provide a first-order formalization of rhetorical structure trees and, on its basis, I derive an algorithm that constructs all the valid rhetorical trees that can be associated with a given discourse.

  9. New Life From Dead Trees

    ERIC Educational Resources Information Center

    DeGraaf, Richard M.

    1978-01-01

    There are numerous bird species that will nest only in dead or dying trees. Current forestry practices include clearing forests of these snags, or dead trees. This practice is driving many species out of the forests. An illustrated example of bird succession in and on a tree is given. (MA)

  10. Our Air: Unfit for Trees.

    ERIC Educational Resources Information Center

    Dochinger, Leon S.

    To help urban, suburban, and rural tree owners know about air pollution's effects on trees and their tolerance and intolerance to pollutants, the USDA Forest Service has prepared this booklet. It answers the following questions about atmospheric pollution: Where does it come from? What can it do to trees? and What can we do about it? In addition,…

  11. The Re-Think Tree.

    ERIC Educational Resources Information Center

    Gear, Jim

    1993-01-01

    The Re-Think Tree is a simple framework to help individuals assess and improve their behaviors related to environmental issues. The branches of the tree in order of priority are refuse, reduce, re-use, and recycle. Roots of the tree include such things as public opinion, education, and watchdog groups. (KS)

  12. Recovered memory and the Daubert criteria: recovered memory as professionally tested, peer reviewed, and accepted in the relevant scientific community.

    PubMed

    Dalenberg, Constance

    2006-10-01

    Research during the past two decades has firmly established the reliability of the phenomenon of recovered memory. This review first highlights the strongest evidence for the phenomenon itself and discusses the survey, experimental, and biological evidence for the varying mechanisms that may underlie the phenomenon. Routes to traumatic amnesia from dissociative detachment (loss of emotional content leading to loss of factual content) and from dissociative compartmentalization (failure in integration) are discussed. Next, an argument is made that false memory is a largely orthogonal concept to recovered memory; the possibility of one phenomena is largely irrelevant to the potential for the other. Furthermore, some aspects of the false memory research offer supportive data for the recovered memory researcher. Finally, the issue of error rates in making the Daubert case is explored. It is concluded that the weight of the evidence should allow the recovered memory victim to come before the court.

  13. Glacial hazards: communicating the science and managing the risk

    NASA Astrophysics Data System (ADS)

    Reynolds, J. M.

    2009-04-01

    The recession of glaciers worldwide has received huge media coverage over the last few years in association with the issue of climate change. Young people at schools and colleges are increasingly aware of the environmental pressures due to ‘global warming'. Yet simultaneously, there appears to be an increasing move away from studying science both at pre-university and undergraduate levels. One of the oft cited reasons is that students cannot see the application of the subjects being taught them. Glacial hazards are one of the most obvious adverse effects of climate change, with many, often poor, communities in remote mountain areas being the most affected by frequently devastating Glacial Lake Outburst Floods (GLOFs). When students are exposed to examples of these hazards and the science behind them, many become enthused by the subject and want to study it further. There has been a huge increase in the number of students selecting projects on glacial hazards as well as a large increase in the number of institutions offering to teach modules on this subject. In an effort to provide a basic visualisation, Peter Kennett has taken the principle of GLOFs and developed a cheap but highly visual demonstration of the potentially devastating effect of melting ice within a moraine leading to subsidence and subsequent dam failure. This is available on www.earthlearningidea.com as ‘Dam burst danger - modelling the collapse of a natural dam in the mountains - and the disaster that might follow'. Furthermore, the methods by which glacial hazards are assessed provide excellent applications of geophysics, geology, geography (physical and Human), engineering, mathematics, and glaciology. By exploring the potential vulnerability of communities downstream, the applications can be extended to include sociology, economics, geopolitics and even psychology. Glacial hazards have been the subject of presentations to the Earth Science Teachers Association (ESTA) in the UK to demonstrate

  14. Mid-late Pleistocene glacial evolution in the Grove Mountains, East Antarctica, constraints from cosmogenic 10Be surface exposure dating of glacial erratic cobbles

    NASA Astrophysics Data System (ADS)

    Dong, Guocheng; Huang, Feixin; Yi, Chaolu; Liu, Xiaohan; Zhou, Weijian; Caffee, Marc W.

    2016-08-01

    Glacial histories from the East Antarctic Ice Sheet (EAIS) provide keys to understanding correlations between the EAIS and global climate. They are especially helpful in the assessment of global sea level change, and as a means of quantifying the magnitude of past glacial activity and the rate at which ice responded to climate change. Given the significance of EAIS glacial histories, it is imperative that more glacial chronologic data for this region be obtained, especially for the mid-to-late Pleistocene. We report cosmogenic 10Be surface exposure dating results from glacially transported cobbles embedded in blue-ice moraine material at Mount Harding, the Grove Mountains, EAIS. Forty exotic cobbles sampled along two profiles (A and B) on this blue-ice moraine present apparent exposure-ages ranging from 7.2 to 542.2 ka. We explore this scattered dataset by using Principal Component Analysis (PCA) to identify statistically significant trends in the data. We identify a correlation between exposure-age and distance of the cobbles from Mount Harding. In profile A, cobbles further from Mount Harding yield older exposure-ages than those that are relatively close. In profile B, cobbles closer to Mount Harding are found to have relatively older exposure-ages. In term of glacial history we suggest that the direction of ice flow changed during the period from ∼60 to 200 ka, and that multiple glacial fluctuations occurred in the mid-late Pleistocene.

  15. Beryllium-10 dating of the duration and retreat of the last pinedale glacial sequence.

    PubMed

    Gosse, J C; Klein, J; Lawn, B; Middleton, R; Evenson, E B

    1995-06-01

    Accurate terrestrial glacial chronologies are needed for comparison with the marine record to establish the dynamics of global climate change during transitions from glacial to interglacial regimes. Cosmogenic beryllium-10 measurements in the Wind River Range indicate that the last glacial maximum (marine oxygen isotope stage 2) was achieved there by 21,700 +/- 700 beryllium-10 years and lasted 5900 years. Ages of a sequence of recessional moraines and striated bedrock surfaces show that the initial deglaciation was rapid and that the entire glacial system retreated 33 kilometers to the cirque basin by 12,100 +/- 500 beryllium-10 years.

  16. Beryllium-10 dating of the duration and retreat of the last pinedale glacial sequence.

    PubMed

    Gosse, J C; Klein, J; Lawn, B; Middleton, R; Evenson, E B

    1995-06-01

    Accurate terrestrial glacial chronologies are needed for comparison with the marine record to establish the dynamics of global climate change during transitions from glacial to interglacial regimes. Cosmogenic beryllium-10 measurements in the Wind River Range indicate that the last glacial maximum (marine oxygen isotope stage 2) was achieved there by 21,700 +/- 700 beryllium-10 years and lasted 5900 years. Ages of a sequence of recessional moraines and striated bedrock surfaces show that the initial deglaciation was rapid and that the entire glacial system retreated 33 kilometers to the cirque basin by 12,100 +/- 500 beryllium-10 years. PMID:17778979

  17. Beryllium-10 dating of the duration and retreat of the last pinedale glacial sequence

    SciTech Connect

    Gosse, J.C. |; Klein, J.; Evenson, E.B.

    1995-06-02

    Accurate terrestrial glacial chronologies are needed for comparison with the marine record to establish the dynamics of global climate change during transitions from glacial to interglacial regimes. Cosmogenic beryllium-10 measurements in the Wind River Range indicate that the last glacial maximum (marine oxygen isotope stage 2) was achieved there by 21,700 {+-} 700 beryllium-10 years and lasted 5900 years. Ages of a sequence of recessional moraines and striated bedrock surfaces show that the initial deglaciation was rapid and that the entire glacial system retreated 33 kilometers to the cirque basin by 12,100 {+-} 500 beryllium-10 years.

  18. Direct evidence of central European forest refugia during the last glacial period based on mollusc fossils

    NASA Astrophysics Data System (ADS)

    Juřičková, Lucie; Horáčková, Jitka; Ložek, Vojen

    2014-07-01

    Although there is evidence from molecular studies for the existence of central European last glacial refugia for temperate species, there is still a great lack of direct fossil records to confirm this theory. Here we bring such evidence in the form of fossil shells from twenty strictly forest land snail species, which were recorded in radiocarbon-dated late glacial or older mollusc assemblages of nine non-interrupted mollusc successions situated in the Western Carpathians, and one in the Bohemian Massif. We proposed that molluscs survived the last glacial period in central Europe in isolated small patches of broadleaf forest, which we unequivocally demonstrate for two sites of last glacial maximum age.

  19. Origin of glacial dust in four East Antarctica ice cores

    NASA Astrophysics Data System (ADS)

    Delmonte, B.; Petit, J. R.; Basile-Doelsh, I.; Jagoutz, E.; Michard, A.; Maggi, V.; Revel-Rolland, M.

    2003-04-01

    We investigated the geographic origin of mineral aerosol (dust) windblown from the Southern Hemisphere continents and preserved in four East Antarctica ices cores using 87Sr/86Sr -143Nd/144Nd isotopic systems. For the equivalent size range (diameter < 5 micron) the isotope composition is compared to the signature of Potential Source Areas (PSAs) of the Southern Hemisphere. Our initial collection of PSA samples was recently documented by new samples of loesses, fluvial and sands deposits from South America, South Africa, New Zealand and the Antarctic Dry Valleys. In addition, the isotopic fingerprint was measured on ice core from glacial climate (corresponding to even number of marine isotopic stages) for four different ice cores from the East Antarctic Plateau: EPICA-Dome C (75^o06'S, 123^o 24'E; Stage 2,4,6), Vostok (78^o S, 106^o E; Stage 6), Dome B (77^o05' S, 94^o 55' E; Stage 2) and Komsomolskaia (74^o 05' S, 97^o 29' E, Stage 2). The Sr-Nd signature of dust from the four sites appear very close from each other, and confirm the previous results from Basile (1997) from the Vostok ice core. Altogether, they define a restricted isotopic field, and suggest provenance from the same source(s). The comparison with the isotopic signature from the PSAs allows to exclude South Africa as possible candidate, but a partial overlap arises among Southern South America (Chile, Argentina), New Zealand and the Antarctic Dry Valleys. A possible contribution from all these three sources cannot be excluded. However New Zealand and Antarctic source and contribution to Antarctic ice seem quite negligible, an hypothesis as also supported by the absence of volcanic ashes from these area in the Vostok ice core. for the last four glacial/interglacial cycles. Our data confirm previous studies (Grousset et al., 1992, Basile et al., 1997) suggesting South America as the dominant source for dust in East Antarctica in glacial times.

  20. SEM microfabric analysis of glacial varves, Geneseo, N. Y

    SciTech Connect

    Pietraszek, S.R. . Geology Dept.)

    1993-03-01

    A detailed study of the microfabric of Pleistocene varved silty-clay from Geneseo Valley (Geneseo, N.Y.) indicates rapid deposition of sediment in a flocculated state into a glacial lake. Ten varve couplets of a 10 cm thick sample were studied using the Scanning Electron Microscope to determine their microfabric. Each varve ranges from 0.5 cm to 2.0 cm and represents an annual ( ) deposit. Varves consists of a lower light colored, coarse zone of silt and clay, and an upper darker colored, organic fine clayey zone. Graded bedding is observed in each couplet, and random clay particle orientation is dominant throughout a varve, with the exception of the top 0.5 mm of the fine layer. The upper and lower contacts are sharp. Fabric features are instrumental in reconstructing a depositional environment. Microfabric results of the glacial unit indicate that an initial heavy concentration of clay and silt was introduced into the basin in a single pulse during spring runoff. The majority of silt settled together with clay in a flocculated or aggregated state, forming the lower coarse zone of random orientation. As the silt concentration diminished, the clay continued to flocculate and settled as a fine clay aggregate. It is proposed that the settling took place during the spring and summer months. Finally, during the winter months, the sediment surface of the varve was disturbed by nemotode burrows, which reoriented the clay flakes into a zone of preferred fabric. Microfabric analysis of these glacial varves, thus suggests that sediment was rapidly deposited in a flocculated state.

  1. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes.

    PubMed

    Schmittner, Andreas; Galbraith, Eric D

    2008-11-20

    Earth's climate and the concentrations of the atmospheric greenhouse gases carbon dioxide (CO(2)) and nitrous oxide (N(2)O) varied strongly on millennial timescales during past glacial periods. Large and rapid warming events in Greenland and the North Atlantic were followed by more gradual cooling, and are highly correlated with fluctuations of N(2)O as recorded in ice cores. Antarctic temperature variations, on the other hand, were smaller and more gradual, showed warming during the Greenland cold phase and cooling while the North Atlantic was warm, and were highly correlated with fluctuations in CO(2). Abrupt changes in the Atlantic meridional overturning circulation (AMOC) have often been invoked to explain the physical characteristics of these Dansgaard-Oeschger climate oscillations, but the mechanisms for the greenhouse-gas variations and their linkage to the AMOC have remained unclear. Here we present simulations with a coupled model of glacial climate and biogeochemical cycles, forced only with changes in the AMOC. The model simultaneously reproduces characteristic features of the Dansgaard-Oeschger temperature, as well as CO(2) and N(2)O fluctuations. Despite significant changes in the land carbon inventory, CO(2) variations on millennial timescales are dominated by slow changes in the deep ocean inventory of biologically sequestered carbon and are correlated with Antarctic temperature and Southern Ocean stratification. In contrast, N(2)O co-varies more rapidly with Greenland temperatures owing to fast adjustments of the thermocline oxygen budget. These results suggest that ocean circulation changes were the primary mechanism that drove glacial CO(2) and N(2)O fluctuations on millennial timescales.

  2. Analysis of glacial and periglacial processes using structure from motion

    NASA Astrophysics Data System (ADS)

    Piermattei, L.; Carturan, L.; de Blasi, F.; Tarolli, P.; Dalla Fontana, G.; Vettore, A.; Pfeifer, N.

    2015-11-01

    Close-range photo-based surface reconstruction from the ground is rapidly emerging as an alternative to lidar (light detection and ranging), which today represents the main survey technique in many fields of geoscience. The recent evolution of photogrammetry, incorporating computer vision algorithms such as Structure from Motion (SfM) and dense image matching such as Multi-View Stereo (MVS), allows the reconstruction of dense 3-D point clouds for the photographed object from a sequence of overlapping images taken with a digital consumer camera. The objective of our work was to test the accuracy of the ground-based SfM-MVS approach in calculating the geodetic mass balance of a 2.1 km2 glacier in the Ortles-Cevedale Group, Eastern Italian Alps. In addition, we investigated the feasibility of using the image-based approach for the detection of the surface displacement rate of a neighbouring active rock glacier. Airborne laser scanning (ALS) data were used as benchmarks to estimate the accuracy of the photogrammetric DTMs and the reliability of the method in this specific application. The glacial and periglacial analyses were performed using both range and image-based surveying techniques, and the results were then compared. The results were encouraging because the SfM-MVS approach enables the reconstruction of high-quality DTMs which provided estimates of glacial and periglacial processes similar to those achievable by ALS. Different resolutions and accuracies were obtained for the glacier and the rock glacier, given the different survey geometries, surface characteristics and areal extents. The analysis of the SfM-MVS DTM quality allowed us to highlight the limitations of the adopted expeditious method in the studied alpine terrain and the potential of this method in the multitemporal study of glacial and periglacial areas.

  3. A modeling framework for inferring tree growth and allocation from physiological, morphological and allometric traits.

    PubMed

    Ogle, Kiona; Pacala, Stephen W

    2009-04-01

    Predictions of forest succession, diversity and function require an understanding of how species differ in their growth, allocation patterns and susceptibility to mortality. These processes in turn are affected by allometric constraints and the physiological state of the tree, both of which are coupled to the tree's labile carbon status. Ultimately, insight into the hidden labile pools and the processes affecting the allocation of labile carbon to storage, maintenance and growth will improve our ability to predict tree growth, mortality and forest dynamics. We developed the 'Allometrically Constrained Growth and Carbon Allocation' (ACGCA) model that explicitly couples tree growth, mortality, allometries and labile carbon. This coupling results in (1) a semi-mechanistic basis for predicting tree death, (2) an allocation scheme that simultaneously satisfies allometric relationships and physiology-based carbon dynamics and (3) a range of physiological states that are consistent with tree behavior (e.g., healthy, static, shrinking, recovering, recovered and dead). We present the ACGCA model and illustrate aspects of its behavior by conducting simulations under different forest gap dynamics scenarios and with parameter values obtained for two ecologically dissimilar species: loblolly pine (Pinus taeda L.) and red maple (Acer rubrum L.). The model reproduces growth and mortality patterns of these species that are consistent with their shade-tolerance and succession status. The ACGCA framework provides an alternative, and potentially improved, approach for predicting tree growth, mortality and forest dynamics. PMID:19203984

  4. Bathymetry and temperature of some glacial lakes in Wyoming

    PubMed Central

    Leopold, Luna B.

    1980-01-01

    On the west flank of the Wind River Mountains, Wyoming, are several large lakes occupying glacially scoured depressions dammed by terminal moraines. Fremont, Willow, and New Fork Lakes, having maximal depths of 185, 85, and 62 m, respectively, are not only deep, but in 1970-1978 they had no measurable coliform. They have exceptionally low values of total dissolved solids; Fremont Lake has only 12.8 mg/liter, probably the second most dilute large lake in coterminus United States. Summer mixing is restricted to the uppermost 10 m, below which the lakes are essentially isothermal at the maximum density temperature, about 3.9°C. PMID:16592797

  5. Bathymetry and temperature of some glacial lakes in Wyoming.

    PubMed

    Leopold, L B

    1980-04-01

    On the west flank of the Wind River Mountains, Wyoming, are several large lakes occupying glacially scoured depressions dammed by terminal moraines. Fremont, Willow, and New Fork Lakes, having maximal depths of 185, 85, and 62 m, respectively, are not only deep, but in 1970-1978 they had no measurable coliform. They have exceptionally low values of total dissolved solids; Fremont Lake has only 12.8 mg/liter, probably the second most dilute large lake in coterminus United States. Summer mixing is restricted to the uppermost 10 m, below which the lakes are essentially isothermal at the maximum density temperature, about 3.9 degrees C.

  6. Bathymetry and temperature of some glacial lakes in Wyoming.

    PubMed

    Leopold, L B

    1980-04-01

    On the west flank of the Wind River Mountains, Wyoming, are several large lakes occupying glacially scoured depressions dammed by terminal moraines. Fremont, Willow, and New Fork Lakes, having maximal depths of 185, 85, and 62 m, respectively, are not only deep, but in 1970-1978 they had no measurable coliform. They have exceptionally low values of total dissolved solids; Fremont Lake has only 12.8 mg/liter, probably the second most dilute large lake in coterminus United States. Summer mixing is restricted to the uppermost 10 m, below which the lakes are essentially isothermal at the maximum density temperature, about 3.9 degrees C. PMID:16592797

  7. Early Pleistocene Glacial Cycles and the Integrated Summer Insolation Forcing

    NASA Astrophysics Data System (ADS)

    Huybers, Peter

    2006-07-01

    Long-term variations in Northern Hemisphere summer insolation are generally thought to control glaciation. But the intensity of summer insolation is primarily controlled by 20,000-year cycles in the precession of the equinoxes, whereas early Pleistocene glacial cycles occur at 40,000-year intervals, matching the period of changes in Earth's obliquity. The resolution of this 40,000-year problem is that glaciers are sensitive to insolation integrated over the duration of the summer. The integrated summer insolation is primarily controlled by obliquity and not precession because, by Kepler's second law, the duration of the summer is inversely proportional to Earth's distance from the Sun.

  8. Glacial processes and morphologies in the southern hemisphere of Mars

    NASA Astrophysics Data System (ADS)

    Banks, Maria Elaine

    2009-06-01

    Understanding the history of ice on Mars provides important insight into Martian geologic and climatic history. A model capable of ice reconstruction that requires few input parameters, and a detailed analyses of landforms in an area with hypothesized glacial modification, Argyre Planitia, provide further understanding of Martian ice. A threshold-sliding model was developed to model perfectly-plastic deformation of ice that is applicable to ice bodies that deform when a threshold basal shear stress is exceeded. The model requires three inputs describing bed topography, ice margins, and a function defining the threshold basal shear stress. The model was tested by reconstructing the Greenland ice sheet and then used to reconstruct ice draping impact craters on the margins of the Martian South Polar Layered Deposits using an average constant basal shear stress of ~0.6 bars for the majority of Martian examples. This inferred basal shear stress value is almost 1/3 of the average basal shear stress calculated for the Greenland ice sheet. Reasons for the lower Martian basal shear stress are unclear but could involve the strain-weakening behavior of ice. The threshold- sliding model can be used for ice reconstruction and forward modeling of erosion and deposition to provide further insight into the history of ice on Mars. To test the glacial hypothesis in the Argyre region, landforms are examined using images from the High Resolution Imaging Science Experiment (HiRISE) and other Martian datasets. Linear grooves and streamlined hills are consistent with glacial erosion. Deep semi-circular embayments in mountains resemble cirques. U-shaped valleys have stepped longitudinal profiles and tributary valleys have hanging valley morphology similar to terrestrial glacial valleys. Boulders blanketing a valley floor resemble ground moraine. Sinuous ridges cross topography, have layers, occur in troughs, and have variations in height that appear related to the surrounding surface

  9. Early Pleistocene glacial cycles and the integrated summer insolation forcing.

    PubMed

    Huybers, Peter

    2006-07-28

    Long-term variations in Northern Hemisphere summer insolation are generally thought to control glaciation. But the intensity of summer insolation is primarily controlled by 20,000-year cycles in the precession of the equinoxes, whereas early Pleistocene glacial cycles occur at 40,000-year intervals, matching the period of changes in Earth's obliquity. The resolution of this 40,000-year problem is that glaciers are sensitive to insolation integrated over the duration of the summer. The integrated summer insolation is primarily controlled by obliquity and not precession because, by Kepler's second law, the duration of the summer is inversely proportional to Earth's distance from the Sun. PMID:16794041

  10. Glacial-to-interglacial Changes in NADW Fluxes?

    NASA Technical Reports Server (NTRS)

    Mix, A. C.; Fairbanks, R. G.

    1984-01-01

    Interglacial gradients in delta 13C between Atlantic and Pacific deep waters reflect differences between low-nutrient, 13C-enriched North Atlantic Deep Water (NADW) and high-nutrient, 13C-depleted Pacific Deep Water. Reduced Atlantic-Pacific delta 13C and cadmium gradients at the last glacial maximum have been used to suggest substantial replacement of NADW with nutrient-rich Antarctic Bottom Water (Boyle and Keigwin, 1982; Shackleton et al., 1983). We show that the Atlantic delta 13C signal is linked directly to North Atlantic polar-front migration, as reflected by planktonic foraminiferal faunas.

  11. Rate of tree carbon accumulation increases continuously with tree size.

    PubMed

    Stephenson, N L; Das, A J; Condit, R; Russo, S E; Baker, P J; Beckman, N G; Coomes, D A; Lines, E R; Morris, W K; Rüger, N; Alvarez, E; Blundo, C; Bunyavejchewin, S; Chuyong, G; Davies, S J; Duque, A; Ewango, C N; Flores, O; Franklin, J F; Grau, H R; Hao, Z; Harmon, M E; Hubbell, S P; Kenfack, D; Lin, Y; Makana, J-R; Malizia, A; Malizia, L R; Pabst, R J; Pongpattananurak, N; Su, S-H; Sun, I-F; Tan, S; Thomas, D; van Mantgem, P J; Wang, X; Wiser, S K; Zavala, M A

    2014-03-01

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle--particularly net primary productivity and carbon storage--increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree's total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.

  12. Rate of tree carbon accumulation increases continuously with tree size

    NASA Astrophysics Data System (ADS)

    Stephenson, N. L.; Das, A. J.; Condit, R.; Russo, S. E.; Baker, P. J.; Beckman, N. G.; Coomes, D. A.; Lines, E. R.; Morris, W. K.; Rüger, N.; Álvarez, E.; Blundo, C.; Bunyavejchewin, S.; Chuyong, G.; Davies, S. J.; Duque, Á.; Ewango, C. N.; Flores, O.; Franklin, J. F.; Grau, H. R.; Hao, Z.; Harmon, M. E.; Hubbell, S. P.; Kenfack, D.; Lin, Y.; Makana, J.-R.; Malizia, A.; Malizia, L. R.; Pabst, R. J.; Pongpattananurak, N.; Su, S.-H.; Sun, I.-F.; Tan, S.; Thomas, D.; van Mantgem, P. J.; Wang, X.; Wiser, S. K.; Zavala, M. A.

    2014-03-01

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle--particularly net primary productivity and carbon storage--increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree's total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.

  13. Rate of tree carbon accumulation increases continuously with tree size.

    PubMed

    Stephenson, N L; Das, A J; Condit, R; Russo, S E; Baker, P J; Beckman, N G; Coomes, D A; Lines, E R; Morris, W K; Rüger, N; Alvarez, E; Blundo, C; Bunyavejchewin, S; Chuyong, G; Davies, S J; Duque, A; Ewango, C N; Flores, O; Franklin, J F; Grau, H R; Hao, Z; Harmon, M E; Hubbell, S P; Kenfack, D; Lin, Y; Makana, J-R; Malizia, A; Malizia, L R; Pabst, R J; Pongpattananurak, N; Su, S-H; Sun, I-F; Tan, S; Thomas, D; van Mantgem, P J; Wang, X; Wiser, S K; Zavala, M A

    2014-03-01

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle--particularly net primary productivity and carbon storage--increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree's total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to undertand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence. PMID:24429523

  14. Global Value Trees

    PubMed Central

    Zhu, Zhen; Puliga, Michelangelo; Cerina, Federica; Chessa, Alessandro; Riccaboni, Massimo

    2015-01-01

    The fragmentation of production across countries has become an important feature of the globalization in recent decades and is often conceptualized by the term “global value chains” (GVCs). When empirically investigating the GVCs, previous studies are mainly interested in knowing how global the GVCs are rather than how the GVCs look like. From a complex networks perspective, we use the World Input-Output Database (WIOD) to study the evolution of the global production system. We find that the industry-level GVCs are indeed not chain-like but are better characterized by the tree topology. Hence, we compute the global value trees (GVTs) for all the industries available in the WIOD. Moreover, we compute an industry importance measure based on the GVTs and compare it with other network centrality measures. Finally, we discuss some future applications of the GVTs. PMID:25978067

  15. Doubly robust survival trees.

    PubMed

    Steingrimsson, Jon Arni; Diao, Liqun; Molinaro, Annette M; Strawderman, Robert L

    2016-09-10

    Estimating a patient's mortality risk is important in making treatment decisions. Survival trees are a useful tool and employ recursive partitioning to separate patients into different risk groups. Existing 'loss based' recursive partitioning procedures that would be used in the absence of censoring have previously been extended to the setting of right censored outcomes using inverse probability censoring weighted estimators of loss functions. In this paper, we propose new 'doubly robust' extensions of these loss estimators motivated by semiparametric efficiency theory for missing data that better utilize available data. Simulations and a data analysis demonstrate strong performance of the doubly robust survival trees compared with previously used methods. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27037609

  16. Eucalyptus Tree: A Potential Source of Cryptococcus neoformans in Egyptian Environment.

    PubMed

    Elhariri, Mahmoud; Hamza, Dalia; Elhelw, Rehab; Refai, Mohamed

    2016-01-01

    In Egypt, the River Red Gum (Eucalyptus camaldulensis) is a well-known tree and is highly appreciated by the rural and urban dwellers. The role of Eucalyptus trees in the ecology of Cryptococcus neoformans is documented worldwide. The aim of this survey was to show the prevalence of C. neoformans during the flowering season of E. camaldulensis at the Delta region in Egypt. Three hundred and eleven samples out of two hundred Eucalyptus trees, including leaves, flowers, and woody trunks, were collected from four governorates in the Delta region. Thirteen isolates of C. neoformans were recovered from Eucalyptus tree samples (4.2%). Molecular identification of C. neoformans was done by capsular gene specific primer CAP64 and serotype identification was done depending on LAC1 gene. This study represents an update on the ecology of C. neoformans associated with Eucalyptus tree in Egyptian environment. PMID:26884765

  17. Eucalyptus Tree: A Potential Source of Cryptococcus neoformans in Egyptian Environment

    PubMed Central

    Hamza, Dalia; Elhelw, Rehab; Refai, Mohamed

    2016-01-01

    In Egypt, the River Red Gum (Eucalyptus camaldulensis) is a well-known tree and is highly appreciated by the rural and urban dwellers. The role of Eucalyptus trees in the ecology of Cryptococcus neoformans is documented worldwide. The aim of this survey was to show the prevalence of C. neoformans during the flowering season of E. camaldulensis at the Delta region in Egypt. Three hundred and eleven samples out of two hundred Eucalyptus trees, including leaves, flowers, and woody trunks, were collected from four governorates in the Delta region. Thirteen isolates of C. neoformans were recovered from Eucalyptus tree samples (4.2%). Molecular identification of C. neoformans was done by capsular gene specific primer CAP64 and serotype identification was done depending on LAC1 gene. This study represents an update on the ecology of C. neoformans associated with Eucalyptus tree in Egyptian environment. PMID:26884765

  18. Fault-Tree Compiler Program

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Martensen, Anna L.

    1992-01-01

    FTC, Fault-Tree Compiler program, is reliability-analysis software tool used to calculate probability of top event of fault tree. Five different types of gates allowed in fault tree: AND, OR, EXCLUSIVE OR, INVERT, and M OF N. High-level input language of FTC easy to understand and use. Program supports hierarchical fault-tree-definition feature simplifying process of description of tree and reduces execution time. Solution technique implemented in FORTRAN, and user interface in Pascal. Written to run on DEC VAX computer operating under VMS operating system.

  19. Structural regression trees

    SciTech Connect

    Kramer, S.

    1996-12-31

    In many real-world domains the task of machine learning algorithms is to learn a theory for predicting numerical values. In particular several standard test domains used in Inductive Logic Programming (ILP) are concerned with predicting numerical values from examples and relational and mostly non-determinate background knowledge. However, so far no ILP algorithm except one can predict numbers and cope with nondeterminate background knowledge. (The only exception is a covering algorithm called FORS.) In this paper we present Structural Regression Trees (SRT), a new algorithm which can be applied to the above class of problems. SRT integrates the statistical method of regression trees into ILP. It constructs a tree containing a literal (an atomic formula or its negation) or a conjunction of literals in each node, and assigns a numerical value to each leaf. SRT provides more comprehensible results than purely statistical methods, and can be applied to a class of problems most other ILP systems cannot handle. Experiments in several real-world domains demonstrate that the approach is competitive with existing methods, indicating that the advantages are not at the expense of predictive accuracy.

  20. Insert tree completion system

    SciTech Connect

    Brands, K.W.; Ball, I.G.; Cegielski, E.J.; Gresham, J.S.; Saunders, D.N.

    1982-09-01

    This paper outlines the overall project for development and installation of a low-profile, caisson-installed subsea Christmas tree. After various design studies and laboratory and field tests of key components, a system for installation inside a 30-in. conductor was ordered in July 1978 from Cameron Iron Works Inc. The system is designed to have all critical-pressure-containing components below the mudline and, with the reduced profile (height) above seabed, provides for improved safety of satellite underwater wells from damage by anchors, trawl boards, and even icebergs. In addition to the innovative nature of the tree design, the completion includes improved 3 1/2-in. through flowline (TFL) pumpdown completion equipment with deep set safety valves and a dual detachable packer head for simplified workover capability. The all-hydraulic control system incorporates a new design of sequencing valve for both Christmas tree control and remote flowline connection. A semisubmersible drilling rig was used to initiate the first end flowline connection at the wellhead for subsequent tie-in to the prelaid, surface-towed, all-welded subsea pipeline bundle.

  1. Domestication of a Mesoamerican cultivated fruit tree, Spondias purpurea

    PubMed Central

    Miller, Allison; Schaal, Barbara

    2005-01-01

    Contemporary patterns of genetic variation in crops reflect historical processes associated with domestication, such as the geographic origin(s) of cultivated populations. Although significant progress has been made in identifying several global centers of domestication, few studies have addressed the issue of multiple origins of cultivated plant populations from different geographic regions within a domestication center. This study investigates the domestication history of jocote (Spondias purpurea), a Mesoamerican cultivated fruit tree. Sequences of the chloroplast spacer trnG–trnS were obtained for cultivated and wild S. purpurea trees, two sympatric taxa (Spondias mombin var. mombin and Spondias radlkoferi), and two outgroups (S. mombin var. globosa and Spondias testudinus). A phylogeographic approach was used and statistically significant associations of clades and geographical location were tested with a nested clade analysis. The sequences confirm that wild populations of S. purpurea are the likely progenitors of cultivated jocote trees. This study provides phylogeographic evidence of multiple domestications of this Mesoamerican cultivated fruit tree. Haplotypes detected in S. purpurea trees form two clusters, each of which includes alleles recovered in both cultivated and wild populations from distinct geographic regions. Cultivated S. purpurea populations have fewer unique trnG–trnS alleles than wild populations; however, five haplotypes were absent in the wild. The presence of unique alleles in cultivation may reflect contemporary extinction of the tropical dry forests of Mesoamerica. These data indicate that some agricultural habitats may be functioning as reservoirs of genetic variation in S. purpurea. PMID:16126899

  2. Domestication of a Mesoamerican cultivated fruit tree, Spondias purpurea.

    PubMed

    Miller, Allison; Schaal, Barbara

    2005-09-01

    Contemporary patterns of genetic variation in crops reflect historical processes associated with domestication, such as the geographic origin(s) of cultivated populations. Although significant progress has been made in identifying several global centers of domestication, few studies have addressed the issue of multiple origins of cultivated plant populations from different geographic regions within a domestication center. This study investigates the domestication history of jocote (Spondias purpurea), a Mesoamerican cultivated fruit tree. Sequences of the chloroplast spacer trnG-trnS were obtained for cultivated and wild S. purpurea trees, two sympatric taxa (Spondias mombin var. mombin and Spondias radlkoferi), and two outgroups (S. mombin var. globosa and Spondias testudinus). A phylogeographic approach was used and statistically significant associations of clades and geographical location were tested with a nested clade analysis. The sequences confirm that wild populations of S. purpurea are the likely progenitors of cultivated jocote trees. This study provides phylogeographic evidence of multiple domestications of this Mesoamerican cultivated fruit tree. Haplotypes detected in S. purpurea trees form two clusters, each of which includes alleles recovered in both cultivated and wild populations from distinct geographic regions. Cultivated S. purpurea populations have fewer unique trnG-trnS alleles than wild populations; however, five haplotypes were absent in the wild. The presence of unique alleles in cultivation may reflect contemporary extinction of the tropical dry forests of Mesoamerica. These data indicate that some agricultural habitats may be functioning as reservoirs of genetic variation in S. purpurea.

  3. Iceland Dust Storms Linked to Glacial Outwash Deposits and to Sub-Glacial Flood (Jökulhlaup) Events

    NASA Astrophysics Data System (ADS)

    Prospero, J. M.; Arnalds, Ó.; Olafsson, H.; Bullard, J.; Hodgkins, R.

    2008-12-01

    Studies of Arctic snow and ice cores reveal large temporal changes in dust concentrations, especially over glacial-interglacial cycles. Most efforts to model dust variability with climate have focused on sources in tropical and mid-latitude arid regions and have neglected high latitude emissions because of a lack of information on possible sources. Here we report on aerosol measurements which show that dust storms are common on Iceland and that major events are associated with glacial sedimentary environments. In July 1991 we established an aerosol sampling site on Heimaey, a small island located 18 km off the southeast coast of Iceland, with the objective of studying the transport of pollutant species to the Arctic. We found that although concentrations of nitrate and non-sea-salt sulfate were generally quite low, there were sporadic peaks that were primarily attributed to pollutant transport from Europe [Prospero et al., 1995]. Recently we expanded our analyses to include mineral dust, covering the period 1997 through 2004. Dust is present during much of the year (annual average 3.9 μg m-3) with a strong seasonal cycle (maximum in April, 14.0 μg m-3). However there are many spikes in the dust record, some exceeding 100 μg m-3, which are not associated with pollutant transport peaks. A search of NASA satellite web archives yielded six "dust storm" images that were acquired during our data period. These show prominent dust plumes streaming off the coast of Iceland. Here we show that each image could be closely linked to a major dust peak in our record (although there were many more peaks than satellite images). Most of these dust events were associated with dust emitted from glacial outwash (sandur) deposits. Some of the largest dust peaks were linked to jökulhlaups, an Icelandic term for sub-glacially generated outburst floods. The dust clouds were typically comprised of a series of well-defined plumes emitted from large "point" sources, mostly associated with

  4. Evidence for Millennial-Scale Climate Variability in the Surface Waters Above ODP Site 980, NE Atlantic Ocean During the Last Glacial Interval (MIS 4-2)

    NASA Astrophysics Data System (ADS)

    Michaud, J. R.; Cullen, J. L.; McManus, J. F.; Oppo, D. W.

    2004-05-01

    Successful efforts to recover quality high sedimentation rate deep-sea sediment sections from the North Atlantic over the last decade have produced a number of studies demonstrating that climate instability at sub-orbital and even millennial time-scales is a pervasive component of Late Pleistocene North Atlantic climate. This is particularly true during Marine Isotope Stages (MIS) 4-2, i.e., the last glacial interval. One such high sedimentation rate section was recovered at ODP Site 980, Northeast Atlantic Ocean where sedimentation rates during MIS 4-2 exceed 15cm/kyr. Recently, we have begun to generate more detailed records from MIS 4-2 at Site 980 by reducing our sampling interval from 20 to around 2.5 cm, improving the resolution of our records an order of magnitude, from 1200-1300 to 100-200 years. 300 samples were used to generate high resolution records of changes in the input of ice-rafted detritus (IRD), along with limited data documenting changes in the relative abundance of the N. pachyderma, left coiling, which can be evaluated within the context of our previously generated lower resolution planktic and benthic oxygen isotope records used to generate our age model for this interval. Our previously published low resolution IRD record enabled us to identify Heinrich events 1-6 within the sediment interval deposited during the last glacial. Each event is characterized by IRD concentrations ranging from 500 to over 2500 lithic grains >150 microns per gram sediment. Superimposing our new high resolution IRD record reveals that Heinrich events 3,2,1 occurring at approximately 32, 23, and 17 kya, respectively, are each composed of a series of separate abrupt rapid increases in IRD concentrations approaching 1,000 grains per gram. An additional comparable event occurring at approximately 20 kya has also been identified. In the early part of the last glacial H6, H5, and H4 occurring at approximately 66, 47, and 38 kya, respectively, are recorded as much more

  5. Glacial evolution of the Ampato Volcanic Complex (Peru)

    NASA Astrophysics Data System (ADS)

    Alcalá, J.; Palacios, D.; Zamorano, J. J.; Vázquez, L.

    2009-04-01

    Ice masses on the Western range of the Central Andes are a main source of water resources and act as a geoindicator of variations in the climate of the tropics (Mark, 2008). The study of their evolution is of particular interest since they are situated in the transition zone between the tropical and mid-latitude circulation areas of the atmosphere (Zech et al., 2007). The function of this transition area is currently under debate, and understanding it is essential for the development of global climate models (Kull et al, 2008; Mark, 2008). However our understanding of the evolution of glaciers and their paleoclimatic factors for this sector of the Central Andes is still at a very basic level. This paper presents initial results of a study on the glacial evolution of the Ampato volcanic complex (15°24´- 15° 51´ S, 71° 51´ - 73° W; 6288 m a.s.l.) located in the Western Range of the Central Andes in Southern Peru, 70 km NW of the city of Arequipa. The main objectives are to identify the number of glacial phases the complex has undergone using geomorphological criteria to define a time frame for each phase, based on cosmogenic 36Cl dating of a sequence of moraine deposits; and to estimate the glacier Equilibrium Line Altitude (ELA) of each phase. The Ampato volcanic complex is formed by 3 great andesitic stratovolcanoes, the Nevados HualcaHualca-Sabancaya-Ampato, which started forming between the late Miocene and early Quaternary (Bulmer et al., 1999), aligned N-S and with summits covered with glaciers. The Sabancaya volcano is fully active, with its latest eruption occurring in 2001. Glacial landforms were identified and mapped using photointerpretation of vertical aerial photographs from 1955 (1:35,000 scale, National Geographic Institute of Peru), oblique photographs from 1943 (Aerophotographical Service of Peru), and a geo-referenced high-resolution Mrsid satellite image from 2000 (NASA). This cartography was corrected and improved through fieldwork. It was

  6. Terraces in phylogenetic tree space.

    PubMed

    Sanderson, Michael J; McMahon, Michelle M; Steel, Mike

    2011-07-22

    A key step in assembling the tree of life is the construction of species-rich phylogenies from multilocus--but often incomplete--sequence data sets. We describe previously unknown structure in the landscape of solutions to the tree reconstruction problem, comprising sometimes vast "terraces" of trees with identical quality, arranged on islands of phylogenetically similar trees. Phylogenetic ambiguity within a terrace can be characterized efficiently and then ameliorated by new algorithms for obtaining a terrace's maximum-agreement subtree or by identifying the smallest set of new targets for additional sequencing. Algorithms to find optimal trees or estimate Bayesian posterior tree distributions may need to navigate strategically in the neighborhood of large terraces in tree space.

  7. How To Write a Municipal Tree Ordinance.

    ERIC Educational Resources Information Center

    Fazio, James R., Ed.

    1990-01-01

    At the heart of the Tree City USA program are four basic requirements: The community must have the following: (1) a tree board or department; (2) an annual community forestry program with financial provisions for trees and tree care; (3) an annual Arbor Day proclamation and observance; and (4) a tree ordinance. Sections of a model tree ordinance…

  8. Sensitivity of palaeotidal models of the northwest European shelf seas to glacial isostatic adjustment since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Ward, Sophie L.; Neill, Simon P.; Scourse, James D.; Bradley, Sarah L.; Uehara, Katsuto

    2016-11-01

    The spatial and temporal distribution of relative sea-level change over the northwest European shelf seas has varied considerably since the Last Glacial Maximum, due to eustatic sea-level rise and a complex isostatic response to deglaciation of both near- and far-field ice sheets. Because of the complex pattern of relative sea level changes, the region is an ideal focus for modelling the impact of significant sea-level change on shelf sea tidal dynamics. Changes in tidal dynamics influence tidal range, the location of tidal mixing fronts, dissipation of tidal energy, shelf sea biogeochemistry and sediment transport pathways. Significant advancements in glacial isostatic adjustment (GIA) modelling of the region have been made in recent years, and earlier palaeotidal models of the northwest European shelf seas were developed using output from less well-constrained GIA models as input to generate palaeobathymetric grids. We use the most up-to-date and well-constrained GIA model for the region as palaeotopographic input for a new high resolution, three-dimensional tidal model (ROMS) of the northwest European shelf seas. With focus on model output for 1 ka time slices from the Last Glacial Maximum (taken as being 21 ka BP) to present day, we demonstrate that spatial and temporal changes in simulated tidal dynamics are very sensitive to relative sea-level distribution. The new high resolution palaeotidal model is considered a significant improvement on previous depth-averaged palaeotidal models, in particular where the outputs are to be used in sediment transport studies, where consideration of the near-bed stress is critical, and for constraining sea level index points.

  9. How does tree age influence damage and recovery in forests impacted by freezing rain and snow?

    PubMed

    Zhu, LiRong; Zhou, Ting; Chen, BaoMing; Peng, ShaoLin

    2015-05-01

    The response and recovery mechanisms of forests to damage from freezing rain and snow events are a key topic in forest research and management. However, the relationship between the degree of damage and tree age, i.e., whether seedlings, young trees, or adult trees are most vulnerable, remains unclear and is rarely reported. We investigated the effect of tree age on the degrees of vegetation damage and subsequent recovery in three subtropical forest types-coniferous, mixed, and broad-leaved-in the Tianjing Mountains, South China, after a series of rare icy rain and freezing snow events in 2008. The results showed that damage and recovery rates were both dependent on tree age, with the proportion of damaged vegetation increasing with age (estimated by diameter at breast height, DBH) in all three forest types and gradually plateauing. Significant variation occurred among forest types. Young trees in the coniferous forest were more vulnerable than those in the broad-leaved forest. The type of damage also varied with tree age in different ways in the three forest types. The proportion of young seedlings that were uprooted (the most severe type of damage) was highest in the coniferous forest. In the mixed forest, young trees were significantly more likely to be uprooted than seedlings and adult trees, while in the broad-leaved forest, the proportion of uprooted adult trees was significantly higher than that of seedlings and young trees. There were also differences among forest types in how tree age affected damage recovery. In the coniferous forest, the recovery rate of trees with broken trunks or crowns (DBH > 2.5 cm) increased with tree age. However, in the mixed and broad-leaved forests, no obvious correlation between the recovery rate of trees with broken trunks or crowns and tree age was observed. Trees with severe root damage did not recover; they were uprooted and died. In these forests, vegetation damage and recovery showed tree age dependencies, which varied

  10. How does tree age influence damage and recovery in forests impacted by freezing rain and snow?

    PubMed

    Zhu, LiRong; Zhou, Ting; Chen, BaoMing; Peng, ShaoLin

    2015-05-01

    The response and recovery mechanisms of forests to damage from freezing rain and snow events are a key topic in forest research and management. However, the relationship between the degree of damage and tree age, i.e., whether seedlings, young trees, or adult trees are most vulnerable, remains unclear and is rarely reported. We investigated the effect of tree age on the degrees of vegetation damage and subsequent recovery in three subtropical forest types-coniferous, mixed, and broad-leaved-in the Tianjing Mountains, South China, after a series of rare icy rain and freezing snow events in 2008. The results showed that damage and recovery rates were both dependent on tree age, with the proportion of damaged vegetation increasing with age (estimated by diameter at breast height, DBH) in all three forest types and gradually plateauing. Significant variation occurred among forest types. Young trees in the coniferous forest were more vulnerable than those in the broad-leaved forest. The type of damage also varied with tree age in different ways in the three forest types. The proportion of young seedlings that were uprooted (the most severe type of damage) was highest in the coniferous forest. In the mixed forest, young trees were significantly more likely to be uprooted than seedlings and adult trees, while in the broad-leaved forest, the proportion of uprooted adult trees was significantly higher than that of seedlings and young trees. There were also differences among forest types in how tree age affected damage recovery. In the coniferous forest, the recovery rate of trees with broken trunks or crowns (DBH > 2.5 cm) increased with tree age. However, in the mixed and broad-leaved forests, no obvious correlation between the recovery rate of trees with broken trunks or crowns and tree age was observed. Trees with severe root damage did not recover; they were uprooted and died. In these forests, vegetation damage and recovery showed tree age dependencies, which varied

  11. Rate of tree carbon accumulation increases continuously with tree size

    USGS Publications Warehouse

    Stephenson, N.L.; Das, A.J.; Condit, R.; Russo, S.E.; Baker, P.J.; Beckman, N.G.; Coomes, D.A.; Lines, E.R.; Morris, W.K.; Rüger, N.; Álvarez, E.; Blundo, C.; Bunyavejchewin, S.; Chuyong, G.; Davies, S.J.; Duque, Á.; Ewango, C.N.; Flores, O.; Franklin, J.F.; Grau, H.R.; Hao, Z.; Harmon, M.E.; Hubbell, S.P.; Kenfack, D.; Lin, Y.; Makana, J.-R.; Malizia, A.; Malizia, L.R.; Pabst, R.J.; Pongpattananurak, N.; Su, S.-H.; Sun, I-F.; Tan, S.; Thomas, D.; van Mantgem, P.J.; Wang, X.; Wiser, S.K.; Zavala, M.A.

    2014-01-01

    Forests are major components of the global carbon cycle, providing substantial feedback to atmospheric greenhouse gas concentrations. Our ability to understand and predict changes in the forest carbon cycle—particularly net primary productivity and carbon storage—increasingly relies on models that represent biological processes across several scales of biological organization, from tree leaves to forest stands. Yet, despite advances in our understanding of productivity at the scales of leaves and stands, no consensus exists about the nature of productivity at the scale of the individual tree, in part because we lack a broad empirical assessment of whether rates of absolute tree mass growth (and thus carbon accumulation) decrease, remain constant, or increase as trees increase in size and age. Here we present a global analysis of 403 tropical and temperate tree species, showing that for most species mass growth rate increases continuously with tree size. Thus, large, old trees do not act simply as senescent carbon reservoirs but actively fix large amounts of carbon compared to smaller trees; at the extreme, a single big tree can add the same amount of carbon to the forest within a year as is contained in an entire mid-sized tree. The apparent paradoxes of individual tree growth increasing with tree size despite declining leaf-level and stand-level productivity can be explained, respectively, by increases in a tree’s total leaf area that outpace declines in productivity per unit of leaf area and, among other factors, age-related reductions in population density. Our results resolve conflicting assumptions about the nature of tree growth, inform efforts to understand and model forest carbon dynamics, and have additional implications for theories of resource allocation and plant senescence.

  12. Glacial sequence stratigraphy reveal the Weichselian glacial history of the SE sector of the Eurasian Ice Sheet

    NASA Astrophysics Data System (ADS)

    Räsänen, Matti

    2016-04-01

    Reconstructions of the last Weichselian glacial cycle 117,000-11,700 years (kyr) ago propose that S Finland, adjacent Russia and the Baltic countries in the SE sector of the Eurasian Ice Sheet (EIS), were glaciated during the Middle Weichselian time [marine isotope stage (MIS) 4, 71-57 kyr ago] and that this glaciation was preceded in S Finland by an Early Weichselian interstadial (MIS 5c, 105-93 kyr ago) with pine forest. Here glacial sequence stratigraphy (Powell and Cooper 2002) is applied to isolated Late Pleistocene onshore outcrop sections in S Finland. The analysed sedimentary records have traditionally been investigated, interpreted and published separately by different authors without an attempt to a methodologically more systematic survey. By putting new field data and old observations into a regional sequence stratigraphic framework it is shown how previously unnoticed regularities can be found in the lithofacies and fossil successions. It is shown that the proposed Middle Weichselian glaciation or the pine dominated interstadial did not take place at all (Räsänen et al. 2015). The one Late Weichselian glaciation (MIS 2, 29-11 kyr ago) at the SE sector of EIS was preceded in S Finland by a nearly 90 kyr long still poorly known non-glacial period, featuring tundra with permafrost and probably birch forest. The new Middle Weichselian paleoenvironmental scenario revises the configuration and hydrology of the S part of EIS and gives new setting for the evolution of Scandinavian biota. References Powell, R. D., and Cooper, J. M., 2002, A glacial sequence stratigraphic model for temperate, glaciated continental shelves, in Dowdeswell, J. A., and Cofaig, C. Ó. eds., Glacier-Influenced Sedimentation on High-Latitude Continental Margins: The Geological Society of London, London, Geological Society London, Special Publication v. 203, p. 215-244. Räsänen, M.E., Huitti, J.V., Bhattarai, S. Harvey, J. and Huttunen, S. 2015, The SE sector of the Middle

  13. Tentative correlation of midcontinent glacial sequence with marine chronology

    SciTech Connect

    Dube, T.E.

    1985-01-01

    A tentative glacial-interglacial 3-million-year chronology is synthesized by regional correlation of Midcontinent tills and paleosols to marine paleotemperature/eustatic cycles and oxygen isotope stages. The paleotemperature curves of Beard et al. (1982), based on planktonic foraminiferal abundances, correspond directly with eustatic cycles during the last 3 Ma. These generalized curves are shown to correlate reasonably well with standard oxygen isotope stages at least for the past 900 ka. This indicates that paleotemperature and Vail-type eustatic cycles have been glacially induced during the last 3 Ma. The chronology developed here utilizes both paleotemperature and oxygen isotope stages; however, below the Jaramillo magnetic subchron, isotope curves are more variable and only paleotemperature stages are used. Tills and paleosols at type localities in the Midcontinent area of the US are correlated to the SPECMAP oxygen isotope time scale. Because mid-Brunhes events are poorly constrained by radiometric dates, alternative correlations are possible. The oldest known Midcontinent tills correlate to the first Plio-Pleistocene cold paleotemperature stage and drop in sea level at 2.4 Ma. This Late Pliocene event also corresponds to the first major isotopic enrichment and the onset of late Cenozoic ice-rafting in the North Atlantic region.

  14. Intensified deep Pacific inflow and ventilation in Pleistocene glacial times.

    PubMed

    Hall, I R; McCave, I N; Shackleton, N J; Weedon, G P; Harris, S E

    2001-08-23

    The production of cold, deep waters in the Southern Ocean is an important factor in the Earth's heat budget. The supply of deep water to the Pacific Ocean is presently dominated by a single source, the deep western boundary current east of New Zealand. Here we use sediment records deposited under the influence of this deep western boundary current to reconstruct deep-water properties and speed changes during the Pleistocene epoch. In physical and isotope proxies we find evidence for intensified deep Pacific Ocean inflow and ventilation during the glacial periods of the past 1.2 million years. The changes in throughflow may be directly related to an increased production of Antarctic Bottom Water during glacial times. Possible causes for such an increased bottom-water production include increasing wind strengths in the Southern Ocean or an increase in annual sea-ice formation, leaving dense water after brine rejection and thereby enhancing deep convection. We infer also that the global thermohaline circulation was perturbed significantly during the mid-Pleistocene climate transition between 0.86 and 0.45 million years ago.

  15. The importance of equilibration in glacial climate simulations

    NASA Astrophysics Data System (ADS)

    Brandefelt, Jenny; Kjellström, Erik; Näslund, Jens-Ove; Strandberg, Gustav; Voelker, Antje; Wohlfarth, Barbara

    2010-05-01

    Last Glacial Maximum (21 000 yrs BP; LGM) and Greenland Stadial 12 (44 000 yrs BP; GS12) climate has been simulated with the National Centre for Atmospheric Research (NCAR) Community Climate System Model version 3 (CCSM3). Although the simulations were initiated from simulated glacial climates, both simulations required 1500 years of additional integration to reach equilibrium under the imposed boundary conditions and forcings. The annual global mean surface temperature changes by only 0.1oC during the last 1000 years of the 1500 year long GS12 simulation. Despite this small global change the slow equilibration is important for the simulated regional climate. The corresponding change in the annual mean surface air temperature in the North Atlantic region is more than 3oC with a maximum of 8oC in south-eastern Greenland. This regional change is coupled to a decrease of the sea ice extent in the North Atlantic region. Both climates are compared to available proxy data of sea surface temperature (SST). The simulated SST changes by up to 2oC in the North Atlantic region during the last 1000 years of the GS12 integration which leads to a better agreement with proxy data. Simulated LGM SSTs are colder than the proxy data but show similar spatial patterns. Simulated GS12 SSTs are in better agreement with the available proxy data.

  16. Numerical modeling of glacial earthquakes induced by iceberg capsize

    NASA Astrophysics Data System (ADS)

    Sergeant, A.; Yastrebov, V.; Castelnau, O.; Mangeney, A.; Stutzmann, E.; Montagner, J. P.; Burton, J. C.

    2015-12-01

    Glacial earthquakes is a class of seismic events of magnitude up to 5, occurring primarily in Greenland, in the margins of large marine-terminated glaciers with near-grounded termini. They are caused by calving of cubic-kilometer scale unstable icebergs which penetrate the full-glacier thickness and, driven by the buoyancy forces, capsize against the calving front. These phenomena produce seismic energy including surface waves with dominant energy between 10-150 s of period whose seismogenic source is compatible with the contact force exerted on the terminus by the iceberg while it capsizes. A reverse motion and posterior rebound of the terminus have also been measured and associated with the fluctuation of this contact force. Using a finite element model of iceberg and glacier terminus coupled with simplified fluid-structure interaction model, we simulate calving and capsize of icebergs. Contact and frictional forces are measured on the terminus and compared with laboratory experiments. We also study the influence of various factors, such as iceberg geometry, calving style and terminus interface. Being extended to field environments, the simulation results are compared with forces obtained by seismic waveform inversion of registered glacial earthquakes.

  17. Mapping bedrock beneath glacial till using CDP seismic reflection methods

    SciTech Connect

    Keiswetter, D.; Black, R.; Steeples, D.

    1994-03-01

    This paper is a case history demonstrating the applicability of the common depth point (CDP) seismic reflection method to image bedrock beneath glacial till in northwestern Iowa. Reflections from the base of the 40-m thick glacial till are clearly observable on field files at around 45 to 50 ms two-way traveltime and possess a dominant frequency of around 100 Hz. The bedrock reflection is confirmed by drill data. The seismic data are of sufficient quality to detect local bedrock topographic changes and to interpret discontinuities along the till-bedrock interface. Finite-difference synthetic seismograms substantiate the interpreted reflections and the diffraction signatures from faults observed on the field files. At some locations along the seismic line, intra-till reflections are apparent on the field files. These intra-till features are on the order of tens of meters in length along the line traverse and reflections from them are not enhanced by common depth point processing. Intra-till reflections could be indicative of gravels or other alluvial materials that may serve as local aquifers.

  18. Palaeogeographic regulation of glacial events during the Cretaceous supergreenhouse

    PubMed Central

    Ladant, Jean-Baptiste; Donnadieu, Yannick

    2016-01-01

    The historical view of a uniformly warm Cretaceous is being increasingly challenged by the accumulation of new data hinting at the possibility of glacial events, even during the Cenomanian–Turonian (∼95 Myr ago), the warmest interval of the Cretaceous. Here we show that the palaeogeography typifying the Cenomanian–Turonian renders the Earth System resilient to glaciation with no perennial ice accumulation occurring under prescribed CO2 levels as low as 420 p.p.m. Conversely, late Aptian (∼115 Myr ago) and Maastrichtian (∼70 Myr ago) continental configurations set the stage for cooler climatic conditions, favouring possible inception of Antarctic ice sheets under CO2 concentrations, respectively, about 400 and 300 p.p.m. higher than for the Cenomanian–Turonian. Our simulations notably emphasize that palaeogeography can crucially impact global climate by modulating the CO2 threshold for ice sheet inception and make the possibility of glacial events during the Cenomanian–Turonian unlikely. PMID:27650167

  19. Deep Arctic Ocean warming during the last glacial cycle

    USGS Publications Warehouse

    Cronin, T. M.; Dwyer, G.S.; Farmer, J.; Bauch, H.A.; Spielhagen, R.F.; Jakobsson, M.; Nilsson, J.; Briggs, W.M.; Stepanova, A.

    2012-01-01

    In the Arctic Ocean, the cold and relatively fresh water beneath the sea ice is separated from the underlying warmer and saltier Atlantic Layer by a halocline. Ongoing sea ice loss and warming in the Arctic Ocean have demonstrated the instability of the halocline, with implications for further sea ice loss. The stability of the halocline through past climate variations is unclear. Here we estimate intermediate water temperatures over the past 50,000 years from the Mg/Ca and Sr/Ca values of ostracods from 31 Arctic sediment cores. From about 50 to 11 kyr ago, the central Arctic Basin from 1,000 to 2,500 m was occupied by a water mass we call Glacial Arctic Intermediate Water. This water mass was 1–2 °C warmer than modern Arctic Intermediate Water, with temperatures peaking during or just before millennial-scale Heinrich cold events and the Younger Dryas cold interval. We use numerical modelling to show that the intermediate depth warming could result from the expected decrease in the flux of fresh water to the Arctic Ocean during glacial conditions, which would cause the halocline to deepen and push the warm Atlantic Layer into intermediate depths. Although not modelled, the reduced formation of cold, deep waters due to the exposure of the Arctic continental shelf could also contribute to the intermediate depth warming.

  20. Mapping of glacial landforms from Seasat radar images

    NASA Technical Reports Server (NTRS)

    Ford, J. P.

    1984-01-01

    Glacial landforms in the drumlin drift belt of Ireland and the Alaska Range can be identified and mapped from Seasat synthetic-aperture radar (SAR) images. Drumlins cover 60 percent of the Ireland scene. The width/length ratio of individual drumlins can be measured on the SAR images, allowing regional differences in drumlin shape to be mapped. This cannot be done with corresponding Landsat multispectral scanner (MSS) images because of lower spatial resolution and because of shadowing effects that vary seasonally. The Alaska scene shows the extent and nature of morphological features such as medial and lateral moraines, stagnant ice, and fluted ground moraine in glaciated valleys. Perception of these features on corresponding Landsat MSS images is limited by seasonal diffrences in solar illumination. Because SAR is not affected by such differences or by cloud cover, it is particularly well suited for monitoring glacial movement. The disadvantage of distorted high-relief features on Seasat SAR images can be reduced in future SAR systems by modifying the radar illumination geometry.

  1. Intensified deep Pacific inflow and ventilation in Pleistocene glacial times.

    PubMed

    Hall, I R; McCave, I N; Shackleton, N J; Weedon, G P; Harris, S E

    2001-08-23

    The production of cold, deep waters in the Southern Ocean is an important factor in the Earth's heat budget. The supply of deep water to the Pacific Ocean is presently dominated by a single source, the deep western boundary current east of New Zealand. Here we use sediment records deposited under the influence of this deep western boundary current to reconstruct deep-water properties and speed changes during the Pleistocene epoch. In physical and isotope proxies we find evidence for intensified deep Pacific Ocean inflow and ventilation during the glacial periods of the past 1.2 million years. The changes in throughflow may be directly related to an increased production of Antarctic Bottom Water during glacial times. Possible causes for such an increased bottom-water production include increasing wind strengths in the Southern Ocean or an increase in annual sea-ice formation, leaving dense water after brine rejection and thereby enhancing deep convection. We infer also that the global thermohaline circulation was perturbed significantly during the mid-Pleistocene climate transition between 0.86 and 0.45 million years ago. PMID:11518963

  2. A Novel Seismic Method for Glacial Calving Localization

    NASA Astrophysics Data System (ADS)

    Mei, M. Y. J.; Holland, D. M.; Zheng, T.

    2015-12-01

    Glacial calving is a significant contributor to sea level rise, but the dynamics of how and why calving happens is not yet understood. A novel method of determining calving location using seismic wave arrival times from two local seismic stations at Helheim Glacier is presented. The difference in wave arrival times is used to define a locus (hyperbola) of possible origins, which intersects uniquely with the calving front. Our method is motivated by difficulties with traditional seismic location methods that fail due to both the emergent nature of calving, which obscures the P and S-wave onsets, as well as the proximity of the seismometers, which combines body and surface waves into one arrival. This method is calibrated via known calving events at Helheim Glacier in August 2014, then applied to other calving events in both 2013-2014 and 2014-2015. Extending this method with an additional station allows for triangulation of the calving location, which removes the need for up-to-date imagery of the calving front. Additionally, this method can be extended to allow for three-dimensional localization. By getting more precise locations of glacial calving, we may improve our understanding of why and how glaciers calve.

  3. Ecology of invasive Melilotus albus on Alaskan glacial river floodplains

    USGS Publications Warehouse

    Conn, Jeff S.; Werdin-Pfisterer, Nancy R.; Beattie, Katherine L.; Densmore, Roseann V.

    2011-01-01

    Melilotus albus (white sweetclover) has invaded Alaskan glacial river floodplains. We measured cover and density of plant species and environmental variables along transects perpendicular to the Nenana, Matanuska, and Stikine Rivers to study interactions between M. albus and other plant species and to characterize the environment where it establishes. Melilotus albus was a pioneer species on recently disturbed sites and did not persist into closed canopy forests. The relationships between M. albus cover and density and other species were site-specific.Melilotus albus was negatively correlated with native species Elaeagnus commutata at the Nenana River, but not at the Matanuska River. Melilotus albus was positively correlated with the exotic species Crepis tectorumand Taraxacum officinale at the Matanuska River and T. officinale on the upper Stikine River. However, the high density of M. albus at a lower Stikine River site was negatively correlated with T. officinale and several native species including Lathyrus japonicus var. maritimus and Salix alaxensis. Glacial river floodplains in Alaska are highly disturbed and are corridors for exotic plant species movement. Melilotus albus at moderate to low densities may facilitate establishment of exotic species, but at high densities can reduce the cover and density of both exotic and native species.

  4. Palaeogeographic regulation of glacial events during the Cretaceous supergreenhouse.

    PubMed

    Ladant, Jean-Baptiste; Donnadieu, Yannick

    2016-01-01

    The historical view of a uniformly warm Cretaceous is being increasingly challenged by the accumulation of new data hinting at the possibility of glacial events, even during the Cenomanian-Turonian (∼95 Myr ago), the warmest interval of the Cretaceous. Here we show that the palaeogeography typifying the Cenomanian-Turonian renders the Earth System resilient to glaciation with no perennial ice accumulation occurring under prescribed CO2 levels as low as 420 p.p.m. Conversely, late Aptian (∼115 Myr ago) and Maastrichtian (∼70 Myr ago) continental configurations set the stage for cooler climatic conditions, favouring possible inception of Antarctic ice sheets under CO2 concentrations, respectively, about 400 and 300 p.p.m. higher than for the Cenomanian-Turonian. Our simulations notably emphasize that palaeogeography can crucially impact global climate by modulating the CO2 threshold for ice sheet inception and make the possibility of glacial events during the Cenomanian-Turonian unlikely. PMID:27650167

  5. Towards accurate observation and modelling of Antarctic glacial isostatic adjustment

    NASA Astrophysics Data System (ADS)

    King, M.

    2012-04-01

    The response of the solid Earth to glacial mass changes, known as glacial isostatic adjustment (GIA), has received renewed attention in the recent decade thanks to the Gravity Recovery and Climate Experiment (GRACE) satellite mission. GRACE measures Earth's gravity field every 30 days, but cannot partition surface mass changes, such as present-day cryospheric or hydrological change, from changes within the solid Earth, notably due to GIA. If GIA cannot be accurately modelled in a particular region the accuracy of GRACE estimates of ice mass balance for that region is compromised. This lecture will focus on Antarctica, where models of GIA are hugely uncertain due to weak constraints on ice loading history and Earth structure. Over the last years, however, there has been a step-change in our ability to measure GIA uplift with the Global Positioning System (GPS), including widespread deployments of permanent GPS receivers as part of the International Polar Year (IPY) POLENET project. I will particularly focus on the Antarctic GPS velocity field and the confounding effect of elastic rebound due to present-day ice mass changes, and then describe the construction and calibration of a new Antarctic GIA model for application to GRACE data, as well as highlighting areas where further critical developments are required.

  6. Mechanisms of abrupt climate change of the last glacial period

    NASA Astrophysics Data System (ADS)

    Clement, Amy C.; Peterson, Larry C.

    2008-12-01

    More than a decade ago, ice core records from Greenland revealed that the last glacial period was characterized by abrupt climate changes that recurred on millennial time scales. Since their discovery, there has been a large effort to determine whether these climate events were a global phenomenon or were just confined to the North Atlantic region and also to reveal the mechanisms that were responsible for them. In this paper, we review the available paleoclimate observations of abrupt change during the last glacial period in order to place constraints on possible mechanisms. Three different mechanisms are then reviewed: ocean thermohaline circulation, sea ice feedbacks, and tropical processes. Each mechanism is tested for its ability to explain the key features of the observations, particularly with regard to the abruptness, millennial recurrence, and geographical extent of the observed changes. It is found that each of these mechanisms has explanatory strengths and weaknesses, and key areas in which progress could be made in improving the understanding of their long-term behavior, both from observational and modeling approaches, are suggested. Finally, it is proposed that a complete understanding of the mechanisms of abrupt change requires inclusion of processes at both low and high latitudes, as well as the potential for feedbacks between them. Some suggestions for experimental approaches to test for such feedbacks with coupled climate models are given.

  7. Glacial Isostatic Adjustment and Contemporary Sea Level Rise: An Overview

    NASA Astrophysics Data System (ADS)

    Spada, Giorgio

    2016-08-01

    Glacial isostatic adjustment (GIA) encompasses a suite of geophysical phenomena accompanying the waxing and waning of continental-scale ice sheets. These involve the solid Earth, the oceans and the cryosphere both on short (decade to century) and on long (millennia) timescales. In the framework of contemporary sea-level change, the role of GIA is particular. In fact, among the processes significantly contributing to contemporary sea-level change, GIA is the only one for which deformational, gravitational and rotational effects are simultaneously operating, and for which the rheology of the solid Earth is essential. Here, I review the basic elements of the GIA theory, emphasizing the connections with current sea-level changes observed by tide gauges and altimetry. This purpose is met discussing the nature of the "sea-level equation" (SLE), which represents the basis for modeling the sea-level variations of glacial isostatic origin, also giving access to a full set of geodetic variations associated with GIA. Here, the SLE is employed to characterize the remarkable geographical variability of the GIA-induced sea-level variations, which are often expressed in terms of "fingerprints". Using harmonic analysis, the spatial variability of the GIA fingerprints is compared to that of other components of contemporary sea-level change. In closing, some attention is devoted to the importance of the "GIA corrections" in the context of modern sea-level observations, based on tide gauges or satellite altimeters.

  8. Glacial Refugium of Pinus pumila (Pall.) Regel in Northeastern Siberia

    SciTech Connect

    Shilo, N A; Lozhkin, A V; Anderson, P M; Brown, T A; Pakhomov, A Y; Solomatkina, T B

    2007-02-10

    One of the most glowing representatives of the Kolyma flora [1], ''Pinus pumila'' (Pall.) Regel (Japanese stone pine), is a typical shrub in larch forests of the northern Okhotsk region, basins of the Kolyma and Indigirka rivers, and high-shrub tundra of the Chukchi Peninsula. It also forms a pine belt in mountains above the forest boundary, which gives way to the grass-underbrush mountain tundra and bald mountains. In the southern Chukchi Peninsula, ''Pinus pumila'' along with ''Duschekia fruticosa'' (Rupr.) Pouzar and ''Betula middendorffii'' Trautv. et C. A. Mey form trailing forests transitional between tundra and taiga [2]. Pinus pumila pollen, usually predominating in subfossil spore-and-pollen spectra of northeastern Siberia, is found as single grains or a subordinate component (up 2-3%, rarely 10%) in spectra of lacustrine deposits formed during the last glacial stage (isotope stage 2) in the Preboreal and Boreal times of the Holocene. Sometimes, its content increases to 15-22% in spectra of lacustrine deposits synchronous to the last glacial stage near the northern coast of the Sea of Okhotsk [3], evidently indicating the proximity of Japanese stone pine thickets.

  9. Seasonality in the Arabian Sea over glacial-interglacial cycles

    NASA Astrophysics Data System (ADS)

    de Nooijer, L. J.; Tjallingii, R.; Brummer, G. J.; Reichart, G. J.

    2012-04-01

    The Indian monsoon system controls seasonal precipitation alterations over the Indian continent and upwelling of nutrient-rich waters to the surface in the northern Arabian Sea. Functioning and strength of this weather system due to climate change is one of the important issues in predicting the effects of global warming on the region's economy, agriculture and social welfare. The strength of the Indian monsoon system through time can be studied by changes in seawater temperature and chemistry from single-specimen analysis of planktic foraminiferal calcite. Temperature reconstructions based on many single specimens allow reconstruction of past seasonal sea water temperatures ranges and thus seasonal temperature variability. . Here we present seawater reconstructions based on single-specimen Mg/Ca of the surface dweller Globigerinoides ruber and the deeper-living G. dutertrei of two sediment cores of the western equatorial Indian Ocean off Tanzania and the northern Arabian Sea. From both cores, specimens are analyzed for calcitic Mg/Ca using laser ablation-ICP-MS of time-intervals representing the Holocene optimum, Last Glacial Maximum, Marine Isotope Stage 4, MIS 5 and MIS6. The resulting temperature ranges allow reconstruction of variability in the strength of the Indian Monsoon as well as cross-equatorial heat transport during glacials and interglacials.

  10. Recovering The Photometry Of Brighter Than Saturated Objects In SDSS

    NASA Astrophysics Data System (ADS)

    Dahab, William

    2007-05-01

    We present the results of a technique that recovers the integrity of the SDSS photometry from bright (m < 15) and/or saturated objects in the SDSS. Bright objects saturate the CCD used by the SDSS, with overabundant electrons spilling over to nearby pixels, resulting in bleed trails. The photometric pipeline should, and indeed does, effectively process these bleed trails yielding usable data. This technique filters objects based on their specific flags, and recovers the stellar locus in color-color space. Objects as bright as g = 13 were extremely well recovered, as well as much of the data down to g = 11. We used these data to search for blue, saturated objects, hoping to find bright quasars. No new quasars were discovered, but several previously known objects, including 3C 273, were. We did discover a new cataclysmic variable, demonstrating the viability of this technique in the search for new, bright objects.

  11. Information processing in recovered depressed children and adolescents.

    PubMed

    Dalgleish, T; Neshat-Doost, H; Taghavi, R; Moradi, A; Yule, W; Canterbury, R; Vostanis, P

    1998-10-01

    Previous research into subjective probability estimates for negative events revealed that depressed children estimated events as equally likely to happen to themselves as to other children. In contrast, both controls and anxious children estimated that negative events were more likely to happen to others than to themselves. The present study followed up this finding by investigating the subjective probability judgements concerning future negative events generated by children and adolescents who have recovered from depression. Subjects generated probability estimates either for themselves or for other children for a range of negative events on a visual analogue scale. The results revealed that both recovered depressed and matched control groups estimated negative events as significantly more likely to happen to others than to themselves. It was also found that the recovered depressed subjects estimated that negative events were less likely overall, compared to the controls. These results are discussed in the context of the adult literature.

  12. Recovering pointwise values of discontinuous data within spectral accuracy

    NASA Technical Reports Server (NTRS)

    Gottlieb, D.; Tadmor, E.

    1985-01-01

    The pointwise values of a function, f(x), can be accurately recovered either from its spectral or pseudospectral approximations, so that the accuracy solely depends on the local smoothness of f in the neighborhood of the point x. Most notably, given the equidistant function grid values, its intermediate point values are recovered within spectral accuracy, despite the possible presence of discontinuities scattered in the domain. (Recall that the usual spectral convergence rate decelerates otherwise to first order, throughout). To this end, a highly oscillatory smoothing kernel is employed in contrast to the more standard positive unit-mass mollifiers. In particular, post-processing of a stable Fourier method applied to hyperbolic equations with discontinuous data, recovers the exact solution modulo a spectrally small error. Numerical examples are presented.

  13. Overdeepening development in a glacial landscape evolution model with quarrying

    NASA Astrophysics Data System (ADS)

    Ugelvig, S. V.; Egholm, D. L.; Brædstrup, C. F.; Iverson, N. R.

    2013-12-01

    In glacial landscape evolution models, subglacial erosion rates are often related to basal sliding or ice discharge by a power-law. This relation can be justified when considering bed abrasion, where rock debris transported in the basal ice drives erosion. However, the relation is not well supported when considering models for quarrying of rock blocks from the bed. Field observations indicate that the principal mechanism of glacial erosion is quarrying, which emphasize the importance of a better way of implementing erosion by quarrying in glacial landscape evolution models. Iverson (2012) introduced a new model for subglacial erosion by quarrying that operates from the theory of adhesive wear. The model is based on the fact that cavities, with a high level of bedrock differential stress, form in the lee of bed obstacles when the sliding velocity is too high to allow for the ice to creep around the obstacles. The erosion rate is quantified by considering the likelihood of rock fracturing on topographic bumps. The model includes a statistical treatment of the bedrock weakness, which is neglected in previous quarrying models. Sliding rate, effective pressure, and average bedslope are the primary factors influencing the erosion rate of this new quarrying model [Iverson, 2012]. We have implemented the quarrying model in a depth-integrated higher-order ice-sheet model [Egholm et al. 2011], coupled to a model for glacial hydrology. In order to also include the effects of cavitation on the subglacial sliding rate, we use a sliding law proposed by Schoof (2005), which includes an upper limit for the stress that can be supported at the bed. Computational experiments show that the combined influence of pressure, sliding rate and bed slope leads to realistically looking landforms such as U-shaped valleys, cirques, hanging valleys and overdeepenings. The influence of the effective pressure leads naturally to overdeepenings. However, in contrast to previously used erosion models

  14. Causes of strong ocean heating during glacial periods

    NASA Astrophysics Data System (ADS)

    Zimov, N.; Zimov, S. A.

    2013-12-01

    During the last deglaciation period, the strongest climate changes occurred across the North Atlantic regions. Analyses of borehole temperatures from the Greenland ice sheet have yielded air temperature change estimates of 25°C over the deglaciation period (Dahl-Jensen et al. 1998). Such huge temperature changes cannot currently be explained in the frames of modern knowledge about climate. We propose that glacial-interglacial cycles are connected with gradual warming of ocean interior waters over the course of glaciations and quick transport of accumulated heat from ocean to the atmosphere during the deglaciation periods. Modern day ocean circulation is dominated by thermal convection with cold waters subsiding in the Northern Atlantic and filling up the ocean interior with cold and heavy water. However during the glaciation thermal circulation stopped and ocean circulation was driven by 'haline pumps' -Red and Mediterranean seas connected with ocean with only narrow but deep straights acts as evaporative basins, separating ocean water into fresh water which returns to the ocean surface (precipitation) and warm but salty, and therefore heavy, water which flows down to the ocean floor. This haline pump is stratifying the ocean, allowing warmer water locate under the colder water and thus stopping thermal convection in the ocean. Additional ocean interior warming is driven by geothermal heat flux and decomposition of organic rain. To test the hypothesis we present simple ocean box model that describes thermohaline circulation in the World Ocean. The first box is the Red and Mediterranean sea, the second is united high-latitude seas, the third is the ocean surface, and the fourth the ocean interior. The volume of these water masses and straight cross-sections are taken to be close to real values. We have accepted that the exchange of water between boxes is proportional to the difference in water density in these boxes, Sun energy inputs to the ocean and sea surface

  15. Dichotomy Boundary Glaciation Models: Implications for Timing and Glacial Processes

    NASA Astrophysics Data System (ADS)

    Fastook, J. L.; Head, J. W.

    2008-12-01

    An integrated system with glacial features exists at 34E, 41N in the Deuteronilus-Protonilus Mensae region. This 30,000 km2 valley system is typical of dozens of fretted valleys in this region along the dichotomy boundary. We compare features described in current geological observations with results from the University of Maine Ice Sheet Model (UMISM) that we feel support the glacial interpretation of these features and also allow speculation as to the timing and processes responsible for the formation of these features. Geological observations identify evidence for a number of features that are felt to be indicative of glacial flow. These include: 1) localized alcoves from which emanate narrow, lobate concentric-ridged flows interpreted to be remnants of debris-covered glaciers; 2) alcove depressions perhaps indicating sublimation of material from relict ice-rich accumulation zones; 3) plateau-ridge remnants between alcoves typical of glacially eroded aretes; 4) horseshoe-shaped ridges upstream of topographic obstacles; 5) convergence and merging of LVF fabric in the down-valley direction; 6) deformation, distortion and folding of LVF in the vicinity of convergence; 7) LVF with pits and elongated troughs in distorted areas; 8) distinctive lobe-shaped termini with associated pitting where the LVF emerges into the northern lowlands. This evidence defines a coherent, unified flow regime extending from the upper valley reaches down to the northern lowlands. Additional support for the glacial hypothesis comes from a GCM for a dusty-atmosphere Mars with obliquity set to 35o and a water source in the Tharsis region. The GCM generates a pattern of ice accumulation in good agreement with these geological observations. This climate is what one might expect to follow a high- obliquity excursion of the sort that built ice sheets on the Tharsis volcanoes. UMISM as used here is an adaptation for the Martian environment of a thermo-mechanically coupled shallow- ice approximation

  16. Recovering metal values hydrometallurgically from spent dry battery cells

    NASA Astrophysics Data System (ADS)

    Rabah, M. A.; Barakat, M. A.; Mahrous, Y. Sh.

    1999-12-01

    A hydro-pyrometallurgical method was used to recover metal values from spent dry battery cells. Water-soluble ingredients were filtered, and solid residue was sorted by magnetic separation and water flotation. Parameters affecting the recovery efficiency were also studied. Results revealed that metallic parts, carbon rods, and paper were safely recovered; pure NH4Cl, MnO2, and ZnCl2 salts were obtained. Maximum recovery efficiencies reached 93 percent for manganese and 99.5 percent for zinc and NH4.

  17. Pen-reared fulvous tree ducks used in movement studies of wild populations

    USGS Publications Warehouse

    Flickinger, Edward L.; King, K.A.; Heyland, O.

    1973-01-01

    To obtain movement data on wild fulvous tree ducks (Dendrocygna bicolor) 165 immature pen-reared fulvous tree ducks were color-marked and released in three southeast Texas counties in July October 1969/70. Nine (5 percent) of the marked birds were recovered from 3 days to 9 months after release, and an additional 15 birds provided sight records. Many released birds apparently became integrated into the wild population; all of those observed were with wild flocks. Six birds were recovered over 50 miles from the release sites. Four released in late July to mid-September had moved eastward and two went southward in September or later. Five were still in the Texas-Louisiana rice belt (three in late November). The sixth bird was recovered in October in Veracruz, which supports the assumption that U.S. Gulf Coast nesting populations winter in southern Mexico.

  18. Impacts of climate and humans on the vegetation in NW Turkey: palynological insights from Lake Iznik since the Last Glacial

    NASA Astrophysics Data System (ADS)

    Miebach, A.; Niestrath, P.; Roeser, P.; Litt, T.

    2015-11-01

    The Marmara region in northwestern Turkey provides a unique opportunity for studying the vegetation history in response to climate changes and anthropogenic impacts because of its location between different climate and vegetation zones and its long settlement history. Geochemical and mineralogical investigations of the largest lake in the region, Lake Iznik, already registered climate related changes of the lake level and the lake mixing. However, a palynological investigation encompassing the Late Pleistocene to Middle Holocene was still missing. Here, we present the first pollen record of the last ca. 31 ka cal BP (calibrated kilo years before 1950) inferred from Lake Iznik sediments as an independent proxy for paleoecological reconstructions. Our study reveals that the vegetation in the Iznik area changed generally between steppe during glacial/stadial conditions, forest-steppe during interstadial conditions, and oak dominated mesic forest during interglacial conditions. Moreover, a pronounced succession of pioneer trees, cold temperate, warm temperate, and Mediterranean trees appeared since the Lateglacial. Rapid climate changes, which are reflected by vegetation changes, can be correlated with Dansgaard-Oeschger (DO) events such as DO-4, DO-3, and DO-1, the Younger Dryas, and probably also the 8.2 event. Since the mid-Holocene, the vegetation was influenced by anthropogenic activities. During early settlement phases, the distinction between climate-induced and human-induced changes of the vegetation is challenging. Still, evidence for human activities consolidates since the Early Bronze Age (ca. 4.8 ka cal BP): cultivated trees, crops, and secondary human indicator taxa appeared, and forests got cleared. Subsequent fluctuations between extensive agricultural use and regeneration of the natural vegetation become apparent.

  19. Impacts of climate and humans on the vegetation in northwestern Turkey: palynological insights from Lake Iznik since the Last Glacial

    NASA Astrophysics Data System (ADS)

    Miebach, Andrea; Niestrath, Phoebe; Roeser, Patricia; Litt, Thomas

    2016-03-01

    The Marmara region in northwestern Turkey provides a unique opportunity for studying the vegetation history in response to climate changes and anthropogenic impacts because of its location between different climate and vegetation zones and its long settlement history. Geochemical and mineralogical investigations of the largest lake in the region, Lake Iznik, already registered climate-related changes of the lake level and the lake mixing. However, a palynological investigation encompassing the Late Pleistocene to Middle Holocene was still missing. Here, we present the first pollen record of the last ca. 31 ka cal BP (calibrated kilo years before 1950) inferred from Lake Iznik sediments as an independent proxy for paleoecological reconstructions. Our study reveals that the vegetation in the Iznik area changed generally between (a) steppe during glacials and stadials indicating dry and cold climatic conditions, (b) forest-steppe during interstadials indicating milder and moister climatic conditions, and (c) oak-dominated mesic forest during interglacials indicating warm and moist climatic conditions. Moreover, a pronounced succession of pioneer trees, cold temperate, warm temperate, and Mediterranean trees appeared since the Lateglacial. Rapid climate changes, which are reflected by vegetation changes, can be correlated with Dansgaard-Oeschger (DO) events such as DO-4, DO-3, and DO-1, the Younger Dryas, and probably also the 8.2 event. Since the mid-Holocene, the vegetation was influenced by anthropogenic activities. During early settlement phases, the distinction between climate-induced and human-induced changes of the vegetation is challenging. Still, evidence for human activities consolidates since the Early Bronze Age (ca. 4.8 ka cal BP): cultivated trees, crops, and secondary human indicator taxa appeared, and forests were cleared. Subsequent fluctuations between extensive agricultural uses and regenerations of the natural vegetation become apparent.

  20. Paleoceanographic history of the Lower Bengal Fan during the last glacial cycle - IODP Expedition 354

    NASA Astrophysics Data System (ADS)

    Dekens, P. S.; Weber, M. E.; Lantzsch, H.; Das, S. K.; Williams, T.; Adhikari, R. R.; Jia, G.; Fox, L. R.; Ge, J.; Manoj, M. C.; Savian, J. F.; Reilly, B. T.; Selkin, P. A.; Meynadier, L.; Spiess, V.; France-Lanord, C.; Sharma, B.

    2015-12-01

    IODP Expedition 354 drilled a ~320 km long transect of seven sites on the Lower Bengal Fan at 8o N in the Northern Indian Ocean. The sediments cores recovered record a complex relationship between turbiditic and hemipelagic environments. This variability offers a unique opportunity to link our understanding of tectonic and terrestrial processes with climate and oceanography. With the exception the westernmost Site U1454, all sites show a several meter thick, hemipelagic top layer, usually representing Late Quaternary sediment. We present physical, geochemical and stable isotopic properties of this interval to establish a time frame and assess the paleoceanographic development of the region during the last glacial cycle. We sampled Site U1452C-1H continuously for the uppermost 480 cm of hemipelagic sediment in 2-cm increments. Preliminary results indicate the Toba Ash 1 (0.74 ka) is a distinct time marker in all physical properties. Furthermore, wet-bulk density as well as color reflectance b* (the red-green component) and L* (the lightness) show a dominant precession cyclicity. Hence, we are able to provide an insolation-tuned chronology for the last 200 ka (MIS1 - 7) as a preliminary age model. These records agree well with d18O records retrieved from Chinese caves. We will present a preliminary paleoceanographic proxy data to reconstruct sea-surface temperature (SST), sea-surface salinity (SSS), ice volume, marine biological productivity, nutrient supply, and deep-water circulation. These oceanographic and climate conditions are linked to changes in monsoonal strength and terrestrial input using sedimentary proxies to reconstruct chemical weathering and sediment sources and transport time. This work addresses one of the primary cruise objectives - linking monsoon variability, regional and global climate, and Bay of Bengal sediment deposition.