Science.gov

Sample records for gland stem cells

  1. Stem cells and the developing mammary gland.

    PubMed

    Makarem, Maisam; Spike, Benjamin T; Dravis, Christopher; Kannan, Nagarajan; Wahl, Geoffrey M; Eaves, Connie J

    2013-06-01

    The mammary gland undergoes dynamic changes throughout life. In the mouse, these begin with initial morphogenesis of the gland in the mid-gestation embryo followed by hormonally regulated changes during puberty and later in adulthood. The adult mammary gland contains a hierarchy of cell types with varying potentials for self-maintenance and differentiation. These include cells able to produce complete, functional mammary glands in vivo and that contain daughter cells with the same remarkable regenerative potential, as well as cells with more limited clonogenic activity in vitro. Here we review how applying in vitro and in vivo methods for quantifying these cells in adult mammary tissue to fetal mammary cells has enabled the first cells fulfilling the functional criteria of transplantable, isolated mammary stem cells to be identified a few days before birth. Thereafter, the number of these cells increases rapidly. Populations containing these fetal stem cells display growth and gene expression programs that differ from their adult counterparts but share signatures characteristic of certain types of breast cancer. Such observations reinforce growing evidence of important differences between tissue-specific fetal and adult cells with stem cell properties and emphasize the merits of investigating their molecular basis.

  2. Stem cells in normal mammary gland and breast cancer.

    PubMed

    Luo, Jie; Yin, Xin; Ma, Tao; Lu, Jun

    2010-04-01

    The mammary gland is a structurally dynamic organ that undergoes dramatic alterations with age, menstrual cycle, and reproductive status. Mammary gland stem cells, the minor cell population within the mature organ, are thought to have multiple functions in regulating mammary gland development, tissue maintenance, major growth, and structural remodeling. In addition, accumulative evidence suggests that breast cancers are initiated and maintained by a subpopulation of tumor cells with stem cell features (called cancer stem cells). A variety of methods have been developed to identify and characterize mammary stem cells, and several signal transduction pathways have been identified to be essential for the self-renewal and differentiation of mammary gland stem cells. Understanding the origin of breast cancer stem cells, their relationship to breast cancer development, and the differences between normal and cancer stem cells may lead to novel approaches to breast cancer diagnosis, prevention, and treatment.

  3. Salivary Glands: Stem Cells, Self-duplication, or Both?

    PubMed

    Aure, M H; Arany, S; Ovitt, C E

    2015-11-01

    Understanding the intrinsic potential for renewal and regeneration within a tissue is critical for the rational design of reparative strategies. Maintenance of the salivary glands is widely thought to depend on the differentiation of stem cells. However, there is also new evidence that homeostasis of the salivary glands, like that of the liver and pancreas, relies on self-renewal of differentiated cells rather than a stem cell pool. Here, we review the evidence for both modes of turnover and consider the implications for the process of regeneration. We propose that the view of salivary glands as postmitotic and dependent on stem cells for renewal be revised to reflect the proliferative activity of acinar cells and their role in salivary gland homeostasis.

  4. [Salivary gland stem cells : Can they restore radiation-induced salivary gland dysfunction?].

    PubMed

    Rotter, N; Schwarz, S; Jakob, M; Brandau, S; Wollenberg, B; Lang, S

    2010-06-01

    Adult stem cells are actively investigated in the fields of regenerative medicine and tissue engineering, as they exhibit specific characteristics that make them promising candidates for cellular therapies. Depending on their tissue of origin these characteristics include long-term proliferation and the capacity to differentiate into various cell types. To date adult stem cells have been isolated from a multitude of tissues. Non-embryogenic adult tissues contain only small numbers of such stem cells and the derivation of such tissues can cause comorbidities. Therefore, there is ongoing interest in the identification and characterisation of novel cell sources for stem cell isolation and characterisation.Recently, salivary gland tissue has also been explored as a possible source of stem cells, first in animals and later in humans. Such salivary gland-derived stem cells might be useful in the treatment of radiation-induced salivary gland hypofunction, and possibly also in other diseases with loss of acinar cells, such as sequelae of radio iodine treatment or Sjögren's disease.In this paper we review the current status of salivary gland stem cell biology and application and discuss the possible role of stem cells in the development of novel therapies for salivary gland dysfunctions such as postradiogenic xerostomia.

  5. Human salivary gland stem cells ameliorate hyposalivation of radiation-damaged rat salivary glands.

    PubMed

    Jeong, Jaemin; Baek, Hyunjung; Kim, Yoon-Ju; Choi, Youngwook; Lee, Heekyung; Lee, Eunju; Kim, Eun Sook; Hah, Jeong Hun; Kwon, Tack-Kyun; Choi, Ik Joon; Kwon, Heechung

    2013-11-15

    Salivary function in mammals may be defective for various reasons, such as aging, Sjogren's syndrome or radiation therapy in head and neck cancer patients. Recently, tissue-specific stem cell therapy has attracted public attention as a next-generation therapeutic reagent. In the present study, we isolated tissue-specific stem cells from the human submandibular salivary gland (hSGSCs). To efficiently isolate and amplify hSGSCs in large amounts, we developed a culture system (lasting 4-5 weeks) without any selection. After five passages, we obtained adherent cells that expressed mesenchymal stem cell surface antigen markers, such as CD44, CD49f, CD90 and CD105, but not the hematopoietic stem cell markers, CD34 and CD45, and that were able to undergo adipogenic, osteogenic and chondrogenic differentiation. In addition, hSGSCs were differentiated into amylase-expressing cells by using a two-step differentiation method. Transplantation of hSGSCs to radiation-damaged rat salivary glands rescued hyposalivation and body weight loss, restored acinar and duct cell structure, and decreased the amount of apoptotic cells. These data suggest that the isolated hSGSCs, which may have characteristics of mesenchymal-like stem cells, could be used as a cell therapy agent for the damaged salivary gland.

  6. Mammary gland development: cell fate specification, stem cells and the microenvironment.

    PubMed

    Inman, Jamie L; Robertson, Claire; Mott, Joni D; Bissell, Mina J

    2015-03-15

    The development of the mammary gland is unique: the final stages of development occur postnatally at puberty under the influence of hormonal cues. Furthermore, during the life of the female, the mammary gland can undergo many rounds of expansion and proliferation. The mammary gland thus provides an excellent model for studying the 'stem/progenitor' cells that allow this repeated expansion and renewal. In this Review, we provide an overview of the different cell types that constitute the mammary gland, and discuss how these cell types arise and differentiate. As cellular differentiation cannot occur without proper signals, we also describe how the tissue microenvironment influences mammary gland development.

  7. Human Salivary Gland Stem Cells Functionally Restore Radiation Damaged Salivary Glands.

    PubMed

    Pringle, Sarah; Maimets, Martti; van der Zwaag, Marianne; Stokman, Monique A; van Gosliga, Djoke; Zwart, Erik; Witjes, Max J H; de Haan, Gerald; van Os, Ronald; Coppes, Rob P

    2016-03-01

    Adult stem cells are often touted as therapeutic agents in the regenerative medicine field, however data detailing both the engraftment and functional capabilities of solid tissue derived human adult epithelial stem cells is scarce. Here we show the isolation of adult human salivary gland (SG) stem/progenitor cells and demonstrate at the single cell level in vitro self-renewal and differentiation into multilineage organoids. We also show in vivo functionality, long-term engraftment, and functional restoration in a xenotransplantation model. Indeed, transplanted human salisphere-derived cells restored saliva production and greatly improved the regenerative potential of irradiated SGs. Further selection for c-Kit expression enriched for cells with enhanced regenerative potencies. Interestingly, interaction of transplanted cells with the recipient SG may also be involved in functional recovery. Thus, we show for the first time that salispheres cultured from human SGs contain stem/progenitor cells capable of self-renewal and differentiation and rescue of saliva production. Our study underpins the therapeutic promise of salisphere cell therapy for the treatment of xerostomia. PMID:26887347

  8. Bone marrow-derived mesenchymal stem cells migrate to healthy and damaged salivary glands following stem cell infusion.

    PubMed

    Schwarz, Silke; Huss, Ralf; Schulz-Siegmund, Michaela; Vogel, Breda; Brandau, Sven; Lang, Stephan; Rotter, Nicole

    2014-09-01

    Xerostomia is a severe side effect of radiation therapy in head and neck cancer patients. To date, no satisfactory treatment option has been established. Because mesenchymal stem cells (MSCs) have been identified as a potential treatment modality, we aimed to evaluate stem cell distribution following intravenous and intraglandular injections using a surgical model of salivary gland damage and to analyse the effects of MSC injections on the recruitment of immune cells. The submandibular gland ducts of rats were surgically ligated. Syngeneic adult MSCs were isolated, immortalised by simian virus 40 (SV40) large T antigen and characterized by flow cytometry. MSCs were injected intravenously and intraglandularly. After 1, 3 and 7 days, the organs of interest were analysed for stem cell recruitment. Inflammation was analysed by immunohistochemical staining. We were able to demonstrate that, after intravenous injection, MSCs were recruited to normal and damaged submandibular glands on days 1, 3 and 7. Unexpectedly, stem cells were recruited to ligated and non-ligated glands in a comparable manner. After intraglandular injection of MSCs into ligated glands, the presence of MSCs, leucocytes and macrophages was enhanced, compared to intravenous injection of stem cells. Our data suggest that injected MSCs were retained within the inflamed glands, could become activated and subsequently recruited leucocytes to the sites of tissue damage. PMID:24810808

  9. Stem cell marker prominin-1 regulates branching morphogenesis, but not regenerative capacity, in the mammary gland.

    PubMed

    Anderson, Lisa H; Boulanger, Corinne A; Smith, Gilbert H; Carmeliet, Peter; Watson, Christine J

    2011-03-01

    Prominin-1 (Prom1) is recognized as a stem cell marker in several tissues, including blood, neuroepithelium, and gut, and in human and mouse embryos and many cancers. Although Prom1 is routinely used as a marker for isolating stem cells, its biological function remains unclear. Here we use a knockout model to investigate the role of Prom1 in the mammary gland. We demonstrate that complete loss of Prom1 does not affect the regenerative capacity of the mammary epithelium. Surprisingly, we also show that in the absence of Prom1, mammary glands have reduced ductal branching, and an increased ratio of luminal to basal cells. The effects of Prom1 loss in the mammary gland are associated with decreased expression of prolactin receptor and matrix metalloproteinase-3. These experiments reveal a novel, functional role for Prom1 that is not related to stem cell activity, and demonstrate the importance of tissue-specific characterization of putative stem cell markers.

  10. Clonal proliferation of multipotent stem/progenitor cells in the neonatal and adult salivary glands

    SciTech Connect

    Kishi, Teruki; Takao, Tukasa; Fujita, Kiyohide; Taniguchi, Hideki . E-mail: rtanigu@med.yokohama-cu.ac.jp

    2006-02-10

    Salivary gland stem/progenitor cells are thought to be present in intercalated ductal cells, but the fact is unclear. In this study, we sought to clarify if stem/progenitor cells are present in submandibular glands using colony assay, which is one of the stem cell assay methods. Using a low-density culture of submandibular gland cells of neonatal rats, we developed a novel culture system that promotes single cell colony formation. Average doubling time for the colony-forming cells was 24.7 (SD = {+-}7.02) h, indicating high proliferative potency. When epidermal growth factor (EGF) and hepatocyte growth factor (HGF) were added to the medium, the number of clonal colonies increased greater than those cultured without growth factors (13.2 {+-} 4.18 vs. 4.5 {+-} 1.73). The RT-PCR and immunostaining demonstrated expressing acinar, ductal, and myoepithelial cell lineage markers. This study demonstrated the presence of the salivary gland stem/progenitor cells that are highly proliferative and multipotent in salivary glands.

  11. Stem cells in the canine pituitary gland and in pituitary adenomas.

    PubMed

    van Rijn, Sarah J; Tryfonidou, Marianna A; Hanson, Jeanette M; Penning, Louis C; Meij, Björn P

    2013-12-01

    Cushing's disease (CD) or pituitary-dependent hypercortisolism is a common endocrinopathy in dogs, with an estimated prevalence of 1 or 2 in 1000 dogs per year. It is caused by an adrenocorticotropic hormone secreting adenoma in the pars distalis or pars intermedia of the pituitary gland. The pituitary gland is a small endocrine gland located in the pituitary fossa. In the postnatal individual, the hypothalamus-pituitary axis plays a central role in maintaining homeostatic functions, like control of metabolism, reproduction, and growth. Stem cells are suggested to play a role in the homeostatic adaptations of the adult pituitary gland, such as the rapid specific cell-type expansion in response to pregnancy or lactation. Several cell populations have been suggested as pituitary stem cells, such as Side Population cells and cells expressing Sox2 or Nestin. These cell populations are discussed in this review. Also, stem and progenitor cells are thought to play a role in pituitary tumorigenesis, such as the development of pituitary adenomas in dogs. There are limited reports on the role of stem cells in pituitary adenomas, especially in dogs. Further studies are needed to identify and characterize this cell population and to develop specific cell targeting therapeutic strategies as a new way of treating canine CD.

  12. Generation of Murine Sympathoadrenergic Progenitor-Like Cells from Embryonic Stem Cells and Postnatal Adrenal Glands

    PubMed Central

    Saxena, Shobhit; Wahl, Joachim; Huber-Lang, Markus S.; Stadel, Dominic; Braubach, Peter; Debatin, Klaus-Michael; Beltinger, Christian

    2013-01-01

    Sympathoadrenergic progenitor cells (SAPs) of the peripheral nervous system (PNS) are important for normal development of the sympathetic PNS and for the genesis of neuroblastoma, the most common and often lethal extracranial solid tumor in childhood. However, it remains difficult to isolate sufficient numbers of SAPs for investigations. We therefore set out to improve generation of SAPs by using two complementary approaches, differentiation from murine embryonic stem cells (ESCs) and isolation from postnatal murine adrenal glands. We provide evidence that selecting for GD2 expression enriches for ESC-derived SAP-like cells and that proliferating SAP-like cells can be isolated from postnatal adrenal glands of mice. These advances may facilitate investigations about the development and malignant transformation of the sympathetic PNS. PMID:23675538

  13. Generation of murine sympathoadrenergic progenitor-like cells from embryonic stem cells and postnatal adrenal glands.

    PubMed

    Saxena, Shobhit; Wahl, Joachim; Huber-Lang, Markus S; Stadel, Dominic; Braubach, Peter; Debatin, Klaus-Michael; Beltinger, Christian

    2013-01-01

    Sympathoadrenergic progenitor cells (SAPs) of the peripheral nervous system (PNS) are important for normal development of the sympathetic PNS and for the genesis of neuroblastoma, the most common and often lethal extracranial solid tumor in childhood. However, it remains difficult to isolate sufficient numbers of SAPs for investigations. We therefore set out to improve generation of SAPs by using two complementary approaches, differentiation from murine embryonic stem cells (ESCs) and isolation from postnatal murine adrenal glands. We provide evidence that selecting for GD2 expression enriches for ESC-derived SAP-like cells and that proliferating SAP-like cells can be isolated from postnatal adrenal glands of mice. These advances may facilitate investigations about the development and malignant transformation of the sympathetic PNS.

  14. Stem and progenitor cell division kinetics during postnatal mouse mammary gland development.

    PubMed

    Giraddi, Rajshekhar R; Shehata, Mona; Gallardo, Mercedes; Blasco, Maria A; Simons, Benjamin D; Stingl, John

    2015-01-01

    The cycling properties of mammary stem and progenitor cells is not well understood. To determine the division properties of these cells, we administered synthetic nucleosides for varying periods of time to mice at different stages of postnatal development and monitored the rate of uptake of these nucleosides in the different mammary cell compartments. Here we show that most cell division in the adult virgin gland is restricted to the oestrogen receptor-expressing luminal cell lineage. Our data also demonstrate that the oestrogen receptor-expressing, milk and basal cell subpopulations have telomere lengths and cell division kinetics that are not compatible with these cells being hierarchically organized; instead, our data indicate that in the adult homeostatic gland, each cell type is largely maintained by its own restricted progenitors. We also observe that transplantable stem cells are largely quiescent during oestrus, but are cycling during dioestrus when progesterone levels are high.

  15. The use of human sweat gland-derived stem cells for enhancing vascularization during dermal regeneration.

    PubMed

    Danner, Sandra; Kremer, Mathias; Petschnik, Anna Emilia; Nagel, Sabine; Zhang, Ziyang; Hopfner, Ursula; Reckhenrich, Ann K; Weber, Caroline; Schenck, Thilo L; Becker, Tim; Kruse, Charli; Machens, Hans-Günther; Egaña, José T

    2012-06-01

    Vascularization is a key process in tissue engineering and regeneration and represents one of the most important issues in the field of regenerative medicine. Thus, several strategies to improve vascularization are currently under clinical evaluation. In this study, stem cells derived from human sweat glands were isolated, characterized, seeded in collagen scaffolds, and engrafted in a mouse full skin defect model for dermal regeneration. Results showed that these cells exhibit high proliferation rates and express stem cell and differentiation markers. Moreover, cells responded to angiogenic environments by increasing their migration (P<0.001) and proliferation (P<0.05) capacity and forming capillary-like structures. After seeding in the scaffolds, cells distributed homogeneously, interacting directly with the scaffold, and released bioactive molecules involved in angiogenesis, immune response, and tissue remodeling. In vivo, scaffolds containing cells were used to induce dermal regeneration. Here we have found that the presence of the cells significantly improved vascularization (P<0.001). As autologous sweat gland-derived stem cells are easy to obtain, exhibit a good proliferation capacity, and improve vascularization during dermal regeneration, we suggest that the combined use of sweat gland-derived stem cells and scaffolds for dermal regeneration might improve dermal regeneration in future clinical settings.

  16. Asrij maintains the stem cell niche and controls differentiation during Drosophila lymph gland hematopoiesis.

    PubMed

    Kulkarni, Vani; Khadilkar, Rohan J; Magadi, Srivathsa S; Srivathsa, M S; Inamdar, Maneesha S

    2011-01-01

    Several signaling pathways control blood cell (hemocyte) development in the Drosophila lymph gland. Mechanisms that modulate and integrate these signals are poorly understood. Here we report that mutation in a conserved endocytic protein Asrij affects signal transmission and causes aberrant lymph gland hematopoiesis. Mammalian Asrij (Ociad1) is expressed in stem cells of the blood vascular system and is implicated in several cancers. We found that Drosophila Asrij is a pan-hemocyte marker and localizes to a subset of endocytic vesicles. Loss of asrij causes hyperproliferation of lymph gland lobes coupled with increased hemocyte differentiation, thereby depleting the pool of quiescent hemocyte precursors. This co-relates with fewer Col+ cells in the hematopoietic stem cell niche of asrij mutants. Asrij null mutants also show excess specification of crystal cells that express the RUNX factor Lozenge (Lz), a target of Notch signaling. Asrij mutant lymph glands show increased N in sorting endosomes suggesting aberrant trafficking. In vitro assays also show impaired traffic of fluorescent probes in asrij null hemocytes. Taken together our data suggest a role for Asrij in causing increased Notch signaling thereby affecting hemocyte differentiation. Thus, conserved endocytic functions may control blood cell progenitor quiescence and differentiation. PMID:22110713

  17. Stem/progenitor cells in non-lactating versus lactating equine mammary gland.

    PubMed

    Spaas, Jan H; Chiers, Koen; Bussche, Leen; Burvenich, Christian; Van de Walle, Gerlinde R

    2012-11-01

    The mammary gland is a highly regenerative organ that can undergo multiple cycles of proliferation, lactation, and involution. Based on the facts that (i) mammary stem/progenitor cells (MaSC) are proposed to be the driving forces behind mammary growth and function and (ii) variation exists between mammalian species with regard to physiological and pathological functioning of this organ, we believe that studying MaSC from different mammals is of great comparative interest. Over the years, important data has been gathered on MaSC of men and mice, although knowledge on MaSC in other mammals remains limited. Therefore, the aim of this work was to isolate and characterize MaSC from the mammary gland of horses. Hereby, our salient findings were that the isolated equine cells met the 2 in vitro hallmark properties of stem cells, namely the ability to self-renew and to differentiate into multiple cell lineages. Moreover, the cells were immunophenotyped using markers for CD29, CD44, CD49f, and Ki67. Finally, we propose the mammosphere assay as a valuable in vitro assay to study MaSC during different physiological phases since it was observed that equine lactating mammary gland contains significantly more mammosphere-initiating cells than the inactive, nonlactating gland (a reflection of MaSC self-renewal) and, moreover, that these spheres were significantly larger in size upon initial cultivation (a reflection of progenitor cell proliferation). Taken together, this study not only extends the current knowledge of mammary gland biology, but also benefits the comparative approach to study and compare MaSC in different mammalian species.

  18. Notch-Dependent Pituitary SOX2(+) Stem Cells Exhibit a Timed Functional Extinction in Regulation of the Postnatal Gland.

    PubMed

    Zhu, Xiaoyan; Tollkuhn, Jessica; Taylor, Havilah; Rosenfeld, Michael G

    2015-12-01

    Although SOX2(+) stem cells are present in the postnatal pituitary gland, how they are regulated molecularly and whether they are required for pituitary functions remain unresolved questions. Using a conditional knockout animal model, here we demonstrate that ablation of the canonical Notch signaling in the embryonic pituitary gland leads to progressive depletion of the SOX2(+) stem cells and hypoplastic gland. Furthermore, we show that the SOX2(+) stem cells initially play a significant role in contributing to postnatal pituitary gland expansion by self-renewal and differentiating into distinct lineages in the immediate postnatal period. However, we found that within several weeks postpartum, the SOX2(+) stem cells switch to an essentially dormant state and are no longer required for homeostasis/tissue adaptation. Our results present a dynamic tissue homeostatic model in which stem cells provide an initial contribution to the growth of the neonatal pituitary gland, whereas the mature gland can be maintained in a stem cell-independent fashion.

  19. ALDH/CD44 identifies uniquely tumorigenic cancer stem cells in salivary gland mucoepidermoid carcinomas.

    PubMed

    Adams, April; Warner, Kristy; Pearson, Alexander T; Zhang, Zhaocheng; Kim, Hong Sun; Mochizuki, Daiki; Basura, Gregory; Helman, Joseph; Mantesso, Andrea; Castilho, Rogério M; Wicha, Max S; Nör, Jacques E

    2015-09-29

    A small sub-population of cells characterized by increased tumorigenic potential, ability to self-renew and to differentiate into cells that make up the tumor bulk, has been characterized in some (but not all) tumor types. These unique cells, namedcancer stem cells, are considered drivers of tumor progression in these tumors. The purpose of this work is to understand if cancer stem cells play a functional role in the tumorigenesis of salivary gland mucoepidermoid carcinomas. Here, we investigated the expression of putative cancer stem cell markers (ALDH, CD10, CD24, CD44) in primary human mucoepidermoid carcinomas by immunofluorescence, in vitro salisphere assays, and in vivo tumorigenicity assays in immunodeficient mice. Human mucoepidermoid carcinoma cells (UM-HMC-1, UM-HMC-3A, UM-HMC-3B) sorted for high levels of ALDH activity and CD44 expression (ALDHhighCD44high) consistently formed primary and secondary salispheres in vitro, and showed enhanced tumorigenic potential in vivo (defined as time to tumor palpability, tumor growth after palpability), when compared to ALDHlowCD44low cells. Cells sorted for CD10/CD24, and CD10/CD44 showed varying trends of salisphere formation, but consistently low in vivo tumorigenic potential. And finally, cells sorted for CD44/CD24 showed inconsistent results in salisphere formation and tumorigenic potential assays when different cell lines were evaluated. Collectively, these data demonstrate that salivary gland mucoepidermoid carcinomas contain a small population of cancer stem cells with enhanced tumorigenic potential and that are characterized by high ALDH activity and CD44 expression. These results suggest that patients with mucoepidermoid carcinoma might benefit from therapies that ablate these highly tumorigenic cells.

  20. ALDH/CD44 identifies uniquely tumorigenic cancer stem cells in salivary gland mucoepidermoid carcinomas

    PubMed Central

    Adams, April; Warner, Kristy; Pearson, Alexander T.; Zhang, Zhaocheng; Kim, Hong Sun; Mochizuki, Daiki; Basura, Gregory; Helman, Joseph; Mantesso, Andrea; Castilho, Rogério M.; Wicha, Max S.; Nör, Jacques E.

    2015-01-01

    A small sub-population of cells characterized by increased tumorigenic potential, ability to self-renew and to differentiate into cells that make up the tumor bulk, has been characterized in some (but not all) tumor types. These unique cells, namedcancer stem cells, are considered drivers of tumor progression in these tumors. The purpose of this work is to understand if cancer stem cells play a functional role in the tumorigenesis of salivary gland mucoepidermoid carcinomas. Here, we investigated the expression of putative cancer stem cell markers (ALDH, CD10, CD24, CD44) in primary human mucoepidermoid carcinomas by immunofluorescence, in vitro salisphere assays, and in vivo tumorigenicity assays in immunodeficient mice. Human mucoepidermoid carcinoma cells (UM-HMC-1, UM-HMC-3A, UM-HMC-3B) sorted for high levels of ALDH activity and CD44 expression (ALDHhighCD44high) consistently formed primary and secondary salispheres in vitro, and showed enhanced tumorigenic potential in vivo (defined as time to tumor palpability, tumor growth after palpability), when compared to ALDHlowCD44low cells. Cells sorted for CD10/CD24, and CD10/CD44 showed varying trends of salisphere formation, but consistently low in vivo tumorigenic potential. And finally, cells sorted for CD44/CD24 showed inconsistent results in salisphere formation and tumorigenic potential assays when different cell lines were evaluated. Collectively, these data demonstrate that salivary gland mucoepidermoid carcinomas contain a small population of cancer stem cells with enhanced tumorigenic potential and that are characterized by high ALDH activity and CD44 expression. These results suggest that patients with mucoepidermoid carcinoma might benefit from therapies that ablate these highly tumorigenic cells. PMID:26449187

  1. Sparing the region of the salivary gland containing stem cells preserves saliva production after radiotherapy for head and neck cancer.

    PubMed

    van Luijk, Peter; Pringle, Sarah; Deasy, Joseph O; Moiseenko, Vitali V; Faber, Hette; Hovan, Allan; Baanstra, Mirjam; van der Laan, Hans P; Kierkels, Roel G J; van der Schaaf, Arjen; Witjes, Max J; Schippers, Jacobus M; Brandenburg, Sytze; Langendijk, Johannes A; Wu, Jonn; Coppes, Robert P

    2015-09-16

    Each year, 500,000 patients are treated with radiotherapy for head and neck cancer, resulting in relatively high survival rates. However, in 40% of patients, quality of life is severely compromised because of radiation-induced impairment of salivary gland function and consequent xerostomia (dry mouth). New radiation treatment technologies enable sparing of parts of the salivary glands. We have determined the parts of the major salivary gland, the parotid gland, that need to be spared to ensure that the gland continues to produce saliva after irradiation treatment. In mice, rats, and humans, we showed that stem and progenitor cells reside in the region of the parotid gland containing the major ducts. We demonstrated in rats that inclusion of the ducts in the radiation field led to loss of regenerative capacity, resulting in long-term gland dysfunction with reduced saliva production. Then we showed in a cohort of patients with head and neck cancer that the radiation dose to the region of the salivary gland containing the stem/progenitor cells predicted the function of the salivary glands one year after radiotherapy. Finally, we showed that this region of the salivary gland could be spared during radiotherapy, thus reducing the risk of post-radiotherapy xerostomia.

  2. Sparing the region of the salivary gland containing stem cells preserves saliva production after radiotherapy for head and neck cancer.

    PubMed

    van Luijk, Peter; Pringle, Sarah; Deasy, Joseph O; Moiseenko, Vitali V; Faber, Hette; Hovan, Allan; Baanstra, Mirjam; van der Laan, Hans P; Kierkels, Roel G J; van der Schaaf, Arjen; Witjes, Max J; Schippers, Jacobus M; Brandenburg, Sytze; Langendijk, Johannes A; Wu, Jonn; Coppes, Robert P

    2015-09-16

    Each year, 500,000 patients are treated with radiotherapy for head and neck cancer, resulting in relatively high survival rates. However, in 40% of patients, quality of life is severely compromised because of radiation-induced impairment of salivary gland function and consequent xerostomia (dry mouth). New radiation treatment technologies enable sparing of parts of the salivary glands. We have determined the parts of the major salivary gland, the parotid gland, that need to be spared to ensure that the gland continues to produce saliva after irradiation treatment. In mice, rats, and humans, we showed that stem and progenitor cells reside in the region of the parotid gland containing the major ducts. We demonstrated in rats that inclusion of the ducts in the radiation field led to loss of regenerative capacity, resulting in long-term gland dysfunction with reduced saliva production. Then we showed in a cohort of patients with head and neck cancer that the radiation dose to the region of the salivary gland containing the stem/progenitor cells predicted the function of the salivary glands one year after radiotherapy. Finally, we showed that this region of the salivary gland could be spared during radiotherapy, thus reducing the risk of post-radiotherapy xerostomia. PMID:26378247

  3. Sparing the region of the salivary gland containing stem cells preserves saliva production after radiotherapy for head and neck cancer

    PubMed Central

    van Luijk, Peter; Pringle, Sarah; Deasy, Joseph O.; Moiseenko, Vitali V.; Faber, Hette; Hovan, Allan; Baanstra, Mirjam; van der Laan, Hans P.; Kierkels, Roel G. J.; van der Schaaf, Arjen; Witjes, Max J.; Schippers, Jacobus M.; Brandenburg, Sytze; Langendijk, Johannes A.; Wu, Jonn; Coppes, Robert P.

    2016-01-01

    Each year, 500,000 patients are treated with radiotherapy for head and neck cancer, resulting in relatively high survival rates. However, in 40% of patients, quality of life is severely compromised because of radiation-induced impairment of salivary gland function and consequent xerostomia (dry mouth). New radiation treatment technologies enable sparing of parts of the salivary glands. We have determined the parts of the major salivary gland, the parotid gland, that need to be spared to ensure that the gland continues to produce saliva after irradiation treatment. In mice, rats, and humans, we showed that stem and progenitor cells reside in the region of the parotid gland containing the major ducts. We demonstrated in rats that inclusion of the ducts in the radiation field led to loss of regenerative capacity, resulting in long-term gland dysfunction with reduced saliva production. Then we showed in a cohort of patients with head and neck cancer that the radiation dose to the region of the salivary gland containing the stem/progenitor cells predicted the function of the salivary glands one year after radiotherapy. Finally, we showed that this region of the salivary gland could be spared during radiotherapy, thus reducing the risk of post-radiotherapy xerostomia. PMID:26378247

  4. Induction and differentiation of adipose-derived stem cells from human buccal fat pads into salivary gland cells.

    PubMed

    Kawakami, Miyuki; Ishikawa, Hiroshi; Tanaka, Akira; Mataga, Izumi

    2016-07-01

    Atrophy or hypofunction of the salivary gland because of aging or disease leads to hyposalivation that affects patient quality of life by causing dry mouth, deterioration of mastication/deglutition, and poor oral hygiene status. Current therapy for atrophy or hypofunction of the salivary gland in clinical practice focuses on symptom relief using drugs and artificial saliva; therefore, there is still a need to develop new therapies. To investigate potential novel therapeutic targets, we induced the differentiation of salivary gland cells by co-culturing human adipose-derived stem cells isolated from buccal fat pads (hBFP-ASCs) with human salivary-gland-derived fibroblasts (hSG-fibros). We examined their potential for transplantation and tissue neogenesis. Following the culture of hBFP-ASCs and hSG-fibros, differentiated cells were transplanted into the submandibular glands of SCID mice, and their degree of differentiation in tissues was determined. We also examined their potential for functional tissue reconstitution using a three-dimensional (3D) culture system. Co-cultured cells expressed salivary-glandrelated markers and generated new tissues following transplantation in vivo. Moreover, cell reconstituted glandular structures in the 3D culture system. In conclusion, coculture of hSG-fibros with hBFP-ASCs led to successful differentiation into salivary gland cells that could be transplanted to generate new tissues.

  5. Stem cells in the development and differentiation of the human adrenal glands.

    PubMed

    Terada, Tadashi

    2015-01-01

    There are no studies on stem cells (SCs) and development and differentiation (DD) of the human adrenal glands. The SCs in DD of the adrenal glands were herein investigated histochemically and immunohistochemically in 18 human embryonic adrenal glands at gestational week (GW) 7-40. At 7 GW, the adrenal glands were present, and at 7 GW, numerous embryonic SCs (ESCs) are seen to create the adrenal cortex. The ESCs were composed exclusively of small cells with hyperchromatic nuclei without nucleoli. The ESCs were positive for neural cell adhesion molecule, KIT, neuron-specific enolase, platelet-derived growth factor receptor-α, synaptophysin, and MET. They were negative for other SC antigens, including chromogranin, ErbB2, and bcl-2. They were also negative for lineage antigens, including cytokeratin (CK)7, CK8, CK18, and CK19, carcinoembryonic antigen, carbohydrate antigen 19-9, epithelial membrane antigen, HepPar1, mucin core apoprotein (MUC)1, MUC2, MUC5AC, and MUC6, and cluster differentiation (CD)3, CD45, CD20, CD34, and CD31. The Ki-67 labeling index (LI) was high (Ki-67 LI = around 20%). α-Fetoprotein was positive in the ESCs and adrenal cells. The ESC was first seen in the periphery of the adrenal cortex at 7-10 GW. The ESC migrates into the inner part of the adrenal cortex. Huge islands of ESC were present near the adrenal, and they appeared to provide the ESC of the adrenal. At 16 GW, adrenal medulla appeared, and the adrenal ESCs were present in the periphery or the cortex, in the cortical parenchyma, corticomedullary junctions, and in the medulla. The adrenal essential architecture was established around 20 GW; however, there were still ESCs. At term, there are a few ESCs. These data suggest that the adrenal glands were created by ESCs.

  6. Human mesenchymal stem cells cultured with salivary gland biopsies adopt an epithelial phenotype.

    PubMed

    Maria, Ola M; Tran, Simon D

    2011-06-01

    Sjogren's syndrome and radiotherapy for head and neck cancer result in severe xerostomia and irreversible salivary gland damage for which no effective treatment is currently available. Cell culture methods of primary human salivary gland epithelial cells (huSGs) are slow and cannot provide a sufficient number of cells. In addition, the majority of cultured huSGs are of a ductal phenotype and thus not fluid/saliva secretory cells. Some reports indicated that mesenchymal stem cells (MSCs) possessed the potential to differentiate into epithelial cells. To test this hypothesis with huSGs, a coculture system containing 2 chambers separated by a polyester membrane was used to study the capacity of human MSCs to adopt an epithelial phenotype when cocultured with human salivary gland biopsies. Results were that 20%-40% of cocultured MSCs expressed tight junction proteins [claudin-1 (CLDN-1), -2, -3, and -4; occludin; junctional adhesion molecule-A; and zonula occludens-1] as well as other epithelial markers [aquaporin-5, α-amylase (α-AMY), and E-cadherin], and generated a higher transepithelial electrical resistance. Electron microscopy demonstrated that these MSCs had comparable cellular structures to huSGs, such as tight junction structures and numerous secretory granules. Quantitative real time (RT)-polymerase chain reaction revealed an upregulation of several salivary genes (aquaporin-5, AMY, and CLDN-2). Moreover, the amounts of α-AMY detected in cocultured MSCs were comparable to those detected in huSGs control cultures. These data suggest that cocultured MSCs can demonstrate a temporary change into a salivary gland acinar phenotype.

  7. Autonomous isolation, long-term culture and differentiation potential of adult salivary gland-derived stem/progenitor cells.

    PubMed

    Baek, Hyunjung; Noh, Yoo Hun; Lee, Joo Hee; Yeon, Soo-In; Jeong, Jaemin; Kwon, Heechung

    2014-09-01

    Salivary gland stem/progenitor cells belong to the endodermal lineage and may serve as good candidates to replace their dysfunctional counterparts. The objective of this study was to isolate large numbers of salivary gland tissue-derived stem cells (SGSCs) from adult rats in order to develop a clinically applicable method that does not involve sorting or stem cell induction by duct ligation. We analysed SGSCs isolated from normal rat salivary glands to determine whether they retained the major characteristics of stem cells, self-renewal and multipotency, especially with respect to the various endodermal cell types. SGSCs expressed high levels of integrin α6β1 and c-kit, which are surface markers of SGSCs. In particular, the integrin α6β1(+) /c-kit(+) salivary gland cells maintained the morphology, proliferation activity and multipotency of stem cells for up to 92 passages in 12 months. Furthermore, we analysed the capacity of SGSCs to differentiate into endoderm lineage cell types, such as acinar-like and insulin-secreting cells. When cultured on growth factor reduced matrigel, the morphology of progenitor cells changed to acinar-like structures and these cells expressed the acinar cell-specific marker, α-amylase, and tight junction markers. Moreover, reverse transcription-polymerase chain reaction (RT-PCR) data showed increased expression of pancreatic cell markers, including insulin, Pdx1, pan polypeptide and neurogenin-3, when these cells formed pancreatic clusters in the presence of activin A, exendin-4 and retinoic acid. These data demonstrate that adult salivary stem/progenitor cells may serve as a potential source for cell therapy in salivary gland hypofunction and diabetes.

  8. Hedgehog signaling activation induces stem cell proliferation and hormone release in the adult pituitary gland

    PubMed Central

    Pyczek, Joanna; Buslei, Rolf; Schult, David; Hölsken, Annett; Buchfelder, Michael; Heß, Ina; Hahn, Heidi; Uhmann, Anja

    2016-01-01

    Hedgehog (HH) signaling is known to be essential during the embryonal development of the pituitary gland but the knowledge about its role in the adult pituitary and in associated tumors is sparse. In this report we investigated the effect of excess Hh signaling activation in murine pituitary explants and analyzed the HH signaling status of human adenopituitary lobes and a large cohort of pituitary adenomas. Our data show that excess Hh signaling led to increased proliferation of Sox2+ and Sox9+ adult pituitary stem cells and to elevated expression levels of adrenocorticotropic hormone (Acth), growth hormone (Gh) and prolactin (Prl) in the adult gland. Inhibition of the pathway by cyclopamine reversed these effects indicating that active Hh signaling positively regulates proliferative processes of adult pituitary stem cells and hormone production in the anterior pituitary. Since hormone producing cells of the adenohypophysis as well as ACTH-, GH- and PRL-immunopositive adenomas express SHH and its target GLI1, we furthermore propose that excess HH signaling is involved in the development/maintenance of hormone-producing pituitary adenomas. These findings advance the understanding of physiological hormone regulation and may open new treatment options for pituitary tumors. PMID:27109116

  9. Expression of Putative Stem Cell Marker, Hepatocyte Nuclear Factor 4 Alpha, in Mammary Gland of Water Buffalo.

    PubMed

    Choudhary, Ratan K; Choudhary, Shanti; Kaur, Harmanjot; Pathak, Devendra

    2016-01-01

    Buffaloes account for more than 56% of total milk production in India. Cyclic remodeling of mammary glands of human, mice, cow, sheep, and goat is determined by mammary stem cells. It is logical to assume that buffalo mammary gland will have mammary stem/progenitor cells. Thus far, no report exists on identification of buffalo mammary stem cells. Hepatocyte nuclear factor 4 alpha (HNF4A) is a candidate marker for hepatic progenitor cells and has recently been suggested as a marker of bovine mammary stem/progenitor cells. We hypothesized that ( 1 ) HNF4A identifies putative buffalo mammary stem/progenitor cells and ( 2 ) the number of HNF4A-positive cells increases during mastitis. Sixteen buffalo mammary samples were collected from a local slaughterhouse. Hematoxylin and eosin staining were performed on 5-micron thick sections and on the basis of gross examination and histomorphology of the mammary glands, physiological stages of the animals were estimated as non-lactating (n = 4), mastitis (n = 9), and prepubertal (n = 3). In total, 24048 cells were counted (5-10 microscopic fields/animal; n = 16 animals) of which, 40% cells were mammary epithelial cells (MEC) and 60% cells were the stromal cells. The percentage of MEC in non-lactating animals was higher compared to mastitic animals (47.3% vs. 37.3%), which was likely due to loss of MEC in mastitis. HNF4A staining was observed in nuclei of MEC of ducts, alveoli, and stromal cells. Basal location and low frequency of HNF4A-positive MEC (ranges from 0.4-4.5%) were consistent with stem cell characteristics. Preliminary study showed coexpression of HNF4A with MSI1 (a mammary stem cell marker in sheep), suggesting HNF4A was likely to be a putative mammary stem/progenitor cell marker in buffalo. HNF4A-positive MEC (basal and luminal; light and dark stained) tended to be higher in non-lactating than the mastitic animals (8.73 ± 1.71% vs. 4.29 ± 1.19%; P = 0.07). The first hypothesis that HNF4A identify

  10. Expression of Putative Stem Cell Marker, Hepatocyte Nuclear Factor 4 Alpha, in Mammary Gland of Water Buffalo.

    PubMed

    Choudhary, Ratan K; Choudhary, Shanti; Kaur, Harmanjot; Pathak, Devendra

    2016-01-01

    Buffaloes account for more than 56% of total milk production in India. Cyclic remodeling of mammary glands of human, mice, cow, sheep, and goat is determined by mammary stem cells. It is logical to assume that buffalo mammary gland will have mammary stem/progenitor cells. Thus far, no report exists on identification of buffalo mammary stem cells. Hepatocyte nuclear factor 4 alpha (HNF4A) is a candidate marker for hepatic progenitor cells and has recently been suggested as a marker of bovine mammary stem/progenitor cells. We hypothesized that ( 1 ) HNF4A identifies putative buffalo mammary stem/progenitor cells and ( 2 ) the number of HNF4A-positive cells increases during mastitis. Sixteen buffalo mammary samples were collected from a local slaughterhouse. Hematoxylin and eosin staining were performed on 5-micron thick sections and on the basis of gross examination and histomorphology of the mammary glands, physiological stages of the animals were estimated as non-lactating (n = 4), mastitis (n = 9), and prepubertal (n = 3). In total, 24048 cells were counted (5-10 microscopic fields/animal; n = 16 animals) of which, 40% cells were mammary epithelial cells (MEC) and 60% cells were the stromal cells. The percentage of MEC in non-lactating animals was higher compared to mastitic animals (47.3% vs. 37.3%), which was likely due to loss of MEC in mastitis. HNF4A staining was observed in nuclei of MEC of ducts, alveoli, and stromal cells. Basal location and low frequency of HNF4A-positive MEC (ranges from 0.4-4.5%) were consistent with stem cell characteristics. Preliminary study showed coexpression of HNF4A with MSI1 (a mammary stem cell marker in sheep), suggesting HNF4A was likely to be a putative mammary stem/progenitor cell marker in buffalo. HNF4A-positive MEC (basal and luminal; light and dark stained) tended to be higher in non-lactating than the mastitic animals (8.73 ± 1.71% vs. 4.29 ± 1.19%; P = 0.07). The first hypothesis that HNF4A identify

  11. Palliative Care for Salivary Gland Dysfunction Highlights the Need for Regenerative Therapies: A Review on Radiation and Salivary Gland Stem Cells

    PubMed Central

    Chibly, Alejandro Martinez; Nguyen, Thao; Limesand, Kirsten H

    2015-01-01

    Radiotherapy remains the major course of treatment for Head and Neck cancer patients. A common consequence of radiation treatment is dysfunction of the salivary glands, which leads to a number of oral complications including xerostomia and dysphagia, for which there is no existent cure. Here, we briefly describe the current palliative treatments available for patients undergoing these conditions, such as oral lubricants, saliva substitutes, and saliva stimulants. None of these options achieves restoration of normal quality of life due to their limited effectiveness, and in some cases, adverse side effects of their own. Other therapies under development, such as acupuncture and electrostimulation have also yielded mixed results in clinical trials. Due to the ineffectiveness of palliative care to restore quality of life, it is reasonable to aim for the development of regenerative therapies that allow restoration of function of the salivary epithelium following radiation treatment. Adult stem cells are a necessary component of wound healing, and play important roles in preserving normal function of adult tissues. Thus, the present review mainly focuses on the effects of radiation on adult stem cells in a variety of tissues, which may be at play in the response of salivary glands to radiation treatment. This is of clinical importance because progenitor cells of the salivary glands have shown partial regenerative potential in mouse transplantation assays. Therefore, understanding how these progenitor cells are affected by radiation offers potential for development of new therapies for patients with xerostomia. PMID:26693098

  12. Long-Term In Vitro Expansion of Salivary Gland Stem Cells Driven by Wnt Signals

    PubMed Central

    Maimets, Martti; Rocchi, Cecilia; Bron, Reinier; Pringle, Sarah; Kuipers, Jeroen; Giepmans, Ben N.G.; Vries, Robert G.J.; Clevers, Hans; de Haan, Gerald; van Os, Ronald; Coppes, Robert P.

    2015-01-01

    Summary Adult stem cells are the ultimate source for replenishment of salivary gland (SG) tissue. Self-renewal ability of stem cells is dependent on extrinsic niche signals that have not been unraveled for the SG. The ductal compartment in SG has been identified as the location harboring stem cells. Here, we report that rare SG ductal EpCAM+ cells express nuclear β-catenin, indicating active Wnt signaling. In cell culture experiments, EpCAMhigh cells respond potently to Wnt signals stimulating self-renewal and long-term expansion of SG organoids, containing all differentiated SG cell types. Conversely, Wnt inhibition ablated long-term organoid cultures. Finally, transplantation of cells pre-treated with Wnt agonists into submandibular glands of irradiated mice successfully and robustly restored saliva secretion and increased the number of functional acini in vivo. Collectively, these results identify Wnt signaling as a key driver of adult SG stem cells, allowing extensive in vitro expansion and enabling restoration of SG function upon transplantation. PMID:26724906

  13. Merkel cell carcinoma with glandular differentiation admixed with sweat gland carcinoma and spindle cell carcinoma: histogenesis of merkel cell carcinoma from hair follicle stem cells.

    PubMed

    Koba, Shinichi; Nagase, Kotaro; Ikeda, Satoshi; Aoki, Shigehisa; Misago, Noriyuki; Narisawa, Yutaka

    2015-03-01

    We describe a unique case of Merkel cell carcinoma (MCC) with a heterogeneous differentiation exhibiting distinct triphasic phenotypic differentiation features: small cells typical of MCC, sweat gland carcinoma (sweat gland Ca.) with possible decapitation secretion, and spindle cell carcinoma (spindle cell Ca.). The patient was an 84-year-old Japanese woman. We evaluated the present case immunohistochemically with various antibodies. The histological features showed a gradual transition from MCC to sweat gland Ca. and spindle cell Ca. For clarifying the histogenesis, immunophenotypic analysis of the 3 different components of the carcinoma was performed using hair follicle stem cell markers (eg, CK15, CK19, and CD200) that have been identified as biomarkers of human bulge cells. The triphasic components immunohistochemically shared the characteristic feature of CK19 and CD200 expression. We posit that the MCC arose from hair follicle stem cells residing within the bulge area where Merkel cells are preferentially situated. Based on our findings, we recommend adding this rare neoplasm to the expanding morphological spectrum of MCC.

  14. Cell therapy for salivary gland regeneration.

    PubMed

    Lin, C-Y; Chang, F-H; Chen, C-Y; Huang, C-Y; Hu, F-C; Huang, W-K; Ju, S-S; Chen, M-H

    2011-03-01

    There are still no effective therapies for hyposalivation caused by irradiation. In our previous study, bone marrow stem cells can be transdifferentiated into acinar-like cells in vitro. Therefore, we hypothesized that transplantation with bone marrow stem cells or acinar-like cells may help functional regeneration of salivary glands. Bone marrow stem cells were labeled with nanoparticles and directly co-cultured with acinar cells to obtain labeled acinar-like cells. In total, 140 severely combined immune-deficiency mice were divided into 4 groups for cell therapy experiments: (1) normal mice, (2) mice receiving irradiation around their head-and-neck areas; (3) mice receiving irradiation and intra-gland transplantation with labeled stem cells; and (4) mice receiving irradiation and intra-gland transplantation with labeled acinar-like cells. Our results showed that salivary glands damaged due to irradiation can be rescued by cell therapy with either bone marrow stem cells or acinar-like cells for recovery of saliva production, body weight, and gland weight. Transdifferentiation of bone marrow stem cells into acinar-like cells in vivo was also noted. This study demonstrated that cell therapy with bone marrow stem cells or acinar-like cells can help functional regeneration of salivary glands, and that acinar-like cells showed better therapeutic potentials than those of bone marrow stem cells.

  15. Stem Cells

    MedlinePlus

    Stem cells are cells with the potential to develop into many different types of cells in the body. They serve as a repair ... body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  16. Lacrimal Gland Inflammation Deregulates Extracellular Matrix Remodeling and Alters Molecular Signature of Epithelial Stem/Progenitor Cells

    PubMed Central

    Umazume, Takeshi; Thomas, William M.; Campbell, Sabrina; Aluri, Hema; Thotakura, Suharika; Zoukhri, Driss; Makarenkova, Helen P.

    2015-01-01

    Purpose The adult lacrimal gland (LG) is highly regenerative and is able to repair itself even after substantial damage; however, this ability to regenerate is lost with the development of dry eye conditions in chronically inflamed LGs.This study compares changes in the cell adhesion and cell matrix molecules and stem cell transcription factors in the LGs of healthy mice and of two mouse models of Sjögren's syndrome: nonobese diabetic (NOD) and MRL-lpr/lpr (MRL/lpr) mice during the early stage of inflammation. Methods The LGs from 12- to 13-week-old female MRL/lpr and male NOD mice along with their respective control strains were harvested and divided into three pieces and processed for quantitative (q) RT-PCR and qRT-PCR Arrays, histology, immunohistochemistry, and Western blotting. Results The extracellular matrix (ECM) and adhesion molecules RT2-PCR array combined with protein expression data revealed changes in the expression of integrins, matrix metalloproteinases, and other molecules, which are associated largely with invasion, attachment, and expansion of the lymphocytic cells, whereas changes in the stem cell transcription factors revealed substantial decrease in expression of transcription factors associated with epithelial stem/progenitor cell lineage. Conclusions We concluded that the expression of several important ECM components is significantly deregulated in the LG of two murine models of Sjögren's syndrome, suggesting an alteration of the epithelial stem/progenitor cell niche. This may result in profound effects on localization, activation, proliferation, and differentiation of the LG stem/progenitor cells and, therefore, LG regeneration. PMID:26747770

  17. Expression of novel, putative stem cell markers in prepubertal and lactating mammary glands of bovine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mammary stem cells (MaSC) are essential for growth and maintenance of the mammary epithelium. Two main phases of mammary growth include ductal elongation prior to puberty and lobulo-alveolar growth and development during pregnancy. Some studies have utilized morphological characteristics and retenti...

  18. Adipose Mesenchymal Stem Cell Secretome Modulated in Hypoxia for Remodeling of Radiation-Induced Salivary Gland Damage

    PubMed Central

    An, Hye-Young; Shin, Hyun-Soo; Choi, Jeong-Seok; Kim, Hun Jung

    2015-01-01

    Background and Purpose This study was conducted to determine whether a secretome from mesenchymal stem cells (MSC) modulated by hypoxic conditions to contain therapeutic factors contributes to salivary gland (SG) tissue remodeling and has the potential to improve irradiation (IR)-induced salivary hypofunction in a mouse model. Materials and Methods Human adipose mesenchymal stem cells (hAdMSC) were isolated, expanded, and exposed to hypoxic conditions (O2 < 5%). The hypoxia-conditioned medium was then filtered to a high molecular weight fraction and prepared as a hAdMSC secretome. The hAdMSC secretome was subsequently infused into the tail vein of C3H mice immediately after local IR once a day for seven consecutive days. The control group received equal volume (500 μL) of vehicle (PBS) only. SG function and structural tissue remodeling by the hAdMSC secretome were investigated. Human parotid epithelial cells (HPEC) were obtained, expanded in vitro, and then irradiated and treated with either the hypoxia-conditioned medium or a normoxic control medium. Cell proliferation and IR-induced cell death were examined to determine the mechanism by which the hAdMSC secretome exerted its effects. Results The conditioned hAdMSC secretome contained high levels of GM-CSF, VEGF, IL-6, and IGF-1. Repeated systemic infusion with the hAdMSC secretome resulted in improved salivation capacity and increased levels of salivary proteins, including amylase and EGF, relative to the PBS group. The microscopic structural integrity of SG was maintained and salivary epithelial (AQP-5), endothelial (CD31), myoepithelial (α-SMA) and SG progenitor cells (c-Kit) were successfully protected from radiation damage and remodeled. The hAdMSC secretome strongly induced proliferation of HPEC and led to a significant decrease in cell death in vivo and in vitro. Moreover, the anti-apoptotic effects of the hAdMSC secretome were found to be promoted after hypoxia-preconditioning relative to normoxia

  19. Role of Keratinocyte Growth Factor in the Differentiation of Sweat Gland-Like Cells From Human Umbilical Cord-Derived Mesenchymal Stem Cells

    PubMed Central

    Xu, Yongan; Hong, Yucai; Xu, Mengyan; Ma, Kui; Fu, Xiaobing

    2016-01-01

    Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have higher proliferation potency and lower immune resistance than human bone marrow MSCs and can differentiate into various functional cells. Many regulatory factors, including keratinocyte growth factor (KGF), are involved in the development of skin and cutaneous appendages. Although KGF is important in wound healing, the role of KGF in hUC-MSC differentiation remains unknown. In our previous work, we found the mixing medium (nine parts of basic sweat-gland [SG] medium plus one part of conditioned heat-shock SG medium) could induce hUC-MSC differentiation to sweat gland-like cells (SGCs). In this study, we further improved the inducing medium and determined the effects of KGF in hUC-MSC differentiation. We found KGF expression in the SGCs and that recombinant human KGF could induce hUC-MSC differentiation into SGCs, suggesting KGF plays a pivotal role in promoting hUC-MSC differentiation to SGCs. Furthermore, the SGCs differentiated from hUC-MSCs were applied to severely burned skin of the paw of an in vivo severe combined immunodeficiency mouse burn model. Burned paws treated with SGCs could regenerate functional sparse SGs 21 days after treatment; the untreated control paws could not. Collectively, these results demonstrated that KGF is a critical growth factor for SGC differentiation from hUC-MSCs and the differentiated SGCs from hUC-MSCs may have a potential therapeutic application for regeneration of destroyed SGs and injured skin. Significance There is growing evidence demonstrating a potential therapeutic application of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in injured skin. In the current study, conditioned media and chemically defined media with recombinant human keratinocyte growth factor (KGF) could induce hUC-MSC differentiation into sweat gland-like cells (SGCs). Moreover, the differentiated SGCs from hUC-MSCs could regenerate functional sparse sweat glands in a

  20. Types of Stem Cells

    MedlinePlus

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... stem cells blog from the International Society for Stem Cell Research. Learn About Stem Cells From Lab to You ...

  1. Pituitary Gland Development and Disease: From Stem Cell to Hormone Production

    PubMed Central

    Davis, Shannon W.; Ellsworth, Buffy S.; Peréz Millan, María Inés; Gergics, Peter; Schade, Vanessa; Foyouzi, Nastaran; Brinkmeier, Michelle L.; Mortensen, Amanda H.

    2014-01-01

    Many aspects of pituitary development have become better understood in the last two decades. The signaling pathways regulating pituitary growth and shape have emerged, and the balancing interactions between the pathways are now appreciated. Markers for multi-potent progenitor cells are being identified, and signature transcription factors have been discovered for most hormone producing cell types. We now realize that pulsatile hormone secretion involves a 3-D integration of cellular networks. About a dozen genes are known to cause pituitary hypoplasia when mutated due to their essential roles in pituitary development. Similarly, a few genes are known that predispose to familial endocrine neoplasia, and several genes mutated in sporadic pituitary adenomas are documented. In the next decade we anticipate gleaning a deeper appreciation of these processes at the molecular level, insight into the development of the hypophyseal portal blood system, and evolution of better therapeutics for congenital and acquired hormone deficiencies and for common craniopharyngiomas and pituitary adenomas. PMID:24290346

  2. Stem Cell Basics

    MedlinePlus

    ... stem cells? What are the potential uses of human stem cells and the obstacles that must be overcome before ... two kinds of stem cells from animals and humans: embryonic stem cells and non-embryonic "somatic" or "adult" stem cells . ...

  3. Learn About Stem Cells

    MedlinePlus

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... ISSCR Get Involved Media © 2015 International Society for Stem Cell Research Terms of Use Disclaimer Privacy Policy

  4. [Thyroid gland dysfunction, disorders of somatic and sexual development, disturbances of fertility after hematopoietic stem cell transplantation].

    PubMed

    Wędrychowicz, Anna; Starzyk, Jerzy

    2013-01-01

    Since the 1980s, hematopoietic stem cell transplantation (HSCT) has been performed for malignant and non-malignant disorders leading to increasing numbers of long-term survivors. Some of them develop long-term posttransplantation complications, among them endocrine complications that arise many years after HSCT and demand to be treated till the end of patients´ life. In the paper "classical", observed several years after HSCT had been used as a treatment procedure, endocrine complications are discussed and the review of literature regarding this problem is presented. Thyroid dysfunction, disorders of somatic and sexual development are presented in details. Gonad dysfunction with the problem of fertility disturbances is reported. The paper presents the etiopathogenesis, methods of prevention, as well as treatment and the results of the treatment of these endocrine complications after HSCT. Moreover actual recommendations for screening and prevention of endocrine complications in long-term HCT survivors are presented. PMID:23739647

  5. Of Microenvironments and Mammary Stem Cells

    SciTech Connect

    LaBarge, Mark A; Petersen, Ole W; Bissell, Mina J

    2007-06-01

    In most adult tissues there reside pools of stem and progenitor cells inside specialized microenvironments referred to as niches. The niche protects the stem cells from inappropriate expansion and directs their critical functions. Thus guided, stem cells are able to maintain tissue homeostasis throughout the ebb and flow of metabolic and physical demands encountered over a lifetime. Indeed, a pool of stem cells maintains mammary gland structure throughout development, and responds to the physiological demands associated with pregnancy. This review discusses how stem cells were identified in both human and mouse mammary glands; each requiring different techniques that were determined by differing biological needs and ethical constraints. These studies together create a robust portrait of mammary gland biology and identify the location of the stem cell niche, elucidate a developmental hierarchy, and suggest how the niche might be manipulated for therapeutic benefit.

  6. Salivary gland homeostasis is maintained through acinar cell self-duplication.

    PubMed

    Aure, Marit H; Konieczny, Stephen F; Ovitt, Catherine E

    2015-04-20

    Current dogma suggests that salivary gland homeostasis is stem cell dependent. However, the extent of stem cell contribution to salivary gland maintenance has not been determined. We investigated acinar cell replacement during homeostasis, growth, and regeneration, using an inducible CreER(T2) expressed under the control of the Mist1 gene locus. Genetic labeling, followed by a chase period, showed that acinar cell replacement is not driven by the differentiation of unlabeled stem cells. Analysis using R26(Brainbow2.1) reporter revealed continued proliferation and clonal expansion of terminally differentiated acinar cells in all major salivary glands. Induced injury also demonstrated the regenerative potential of pre-labeled acinar cells. Our results support a revised model for salivary gland homeostasis based predominantly on self-duplication of acinar cells, rather than on differentiation of stem cells. The proliferative capacity of differentiated acinar cells may prove critical in the implementation of cell-based strategies to restore the salivary glands.

  7. ΔNp63 promotes stem cell activity in mammary gland development and basal-like breast cancer by enhancing Fzd7 expression and Wnt signalling.

    PubMed

    Chakrabarti, Rumela; Wei, Yong; Hwang, Julie; Hang, Xiang; Andres Blanco, Mario; Choudhury, Abrar; Tiede, Benjamin; Romano, Rose-Anne; DeCoste, Christina; Mercatali, Laura; Ibrahim, Toni; Amadori, Dino; Kannan, Nagarajan; Eaves, Connie J; Sinha, Satrajit; Kang, Yibin

    2014-10-01

    Emerging evidence suggests that cancer is populated and maintained by tumour-initiating cells (TICs) with stem-like properties similar to those of adult tissue stem cells. Despite recent advances, the molecular regulatory mechanisms that may be shared between normal and malignant stem cells remain poorly understood. Here we show that the ΔNp63 isoform of the Trp63 transcription factor promotes normal mammary stem cell (MaSC) activity by increasing the expression of the Wnt receptor Fzd7, thereby enhancing Wnt signalling. Importantly, Fzd7-dependent enhancement of Wnt signalling by ΔNp63 also governs tumour-initiating activity of the basal subtype of breast cancer. These findings establish ΔNp63 as a key regulator of stem cells in both normal and malignant mammary tissues and provide direct evidence that breast cancer TICs and normal MaSCs share common regulatory mechanisms.

  8. Basal cell adenoma of the sublingual gland.

    PubMed

    Lin, Hsin-Ching; Chien, Chih-Yen; Huang, Shun-Chen; Su, Chih-Ying

    2003-12-01

    Salivary gland tumors constitute about 3% to 4% of all head and neck neoplasms. Approximately 80% originate in the parotid gland, and they rarely present in the sublingual gland; however, a disproportionately large majority of sublingual gland tumors are malignant. Basal cell adenoma is a benign epithelial salivary gland tumor that appears to have unique histologic characteristics, different from those of mixed tumors, and has a predilection for development in the parotid and minor salivary glands. No case has ever been reported as arising from the sublingual gland in the otolaryngology literature. We report here a case of a middle-aged woman with basal cell adenoma of the sublingual gland. The clinical presentation, pathological features, differential diagnosis, and treatment options for this relatively rare tumor are discussed.

  9. Stem Cell Sciences plc.

    PubMed

    Daniels, Sebnem

    2006-09-01

    Stem Cell Sciences' core objective is to develop safe and effective stem cell-based therapies for currently incurable diseases. In order to achieve this goal, Stem Cell Sciences recognizes the need for multiple technologies and a globally integrated stem cell initiative. The key challenges for the successful application of stem cells in the clinic is the need for a reproducible supply of pure, fully characterized stem cells that have been grown in suitable conditions for use in the clinic.

  10. Markers of epidermal stem cell subpopulations in adult mammalian skin.

    PubMed

    Kretzschmar, Kai; Watt, Fiona M

    2014-10-01

    The epidermis is the outermost layer of mammalian skin and comprises a multilayered epithelium, the interfollicular epidermis, with associated hair follicles, sebaceous glands, and eccrine sweat glands. As in other epithelia, adult stem cells within the epidermis maintain tissue homeostasis and contribute to repair of tissue damage. The bulge of hair follicles, where DNA-label-retaining cells reside, was traditionally regarded as the sole epidermal stem cell compartment. However, in recent years multiple stem cell populations have been identified. In this review, we discuss the different stem cell compartments of adult murine and human epidermis, the markers that they express, and the assays that are used to characterize epidermal stem cell properties.

  11. Tissue-specific designs of stem cell hierarchies.

    PubMed

    Visvader, Jane E; Clevers, Hans

    2016-04-01

    Recent work in the field of stem cell biology suggests that there is no single design for an adult tissue stem cell hierarchy, and that different tissues employ distinct strategies to meet their self-renewal and repair requirements. Stem cells may be multipotent or unipotent, and can exist in quiescent or actively dividing states. 'Professional' stem cells may also co-exist with facultative stem cells, which are more specialized daughter cells that revert to a stem cell state under specific tissue damage conditions. Here, we discuss stem cell strategies as seen in three solid mammalian tissues: the intestine, mammary gland and skeletal muscle. PMID:26999737

  12. Stem cells supporting other stem cells

    PubMed Central

    Leatherman, Judith

    2013-01-01

    Adult stem cell therapies are increasingly prevalent for the treatment of damaged or diseased tissues, but most of the improvements observed to date are attributed to the ability of stem cells to produce paracrine factors that have a trophic effect on existing tissue cells, improving their functional capacity. It is now clear that this ability to produce trophic factors is a normal and necessary function for some stem cell populations. In vivo adult stem cells are thought to self-renew due to local signals from the microenvironment where they live, the niche. Several niches have now been identified which harbor multiple stem cell populations. In three of these niches – the Drosophila testis, the bulge of the mammalian hair follicle, and the mammalian bone marrow – one type of stem cell has been found to produce factors that contribute to the maintenance of a second stem cell population in the shared niche. In this review, I will examine the architecture of these three niches and discuss the molecular signals involved. Together, these examples establish a new paradigm for stem cell behavior, that stem cells can promote the maintenance of other stem cells. PMID:24348512

  13. Stem cell biobanks.

    PubMed

    Bardelli, Silvana

    2010-04-01

    Stem cells contribute to innate healing and harbor a promising role for regenerative medicine. Stem cell banking through long-term storage of different stem cell platforms represents a fundamental source to preserve original features of stem cells for patient-specific clinical applications. Stem cell research and clinical translation constitute fundamental and indivisible modules catalyzed through biobanking activity, generating a return of investment. PMID:20560026

  14. Cell-Specific Cre Strains For Genetic Manipulation in Salivary Glands

    PubMed Central

    Maruyama, Eri O.; Aure, Marit H.; Xie, Xiaoling; Myal, Yvonne; Gan, Lin; Ovitt, Catherine E.

    2016-01-01

    The secretory acinar cells of the salivary gland are essential for saliva secretion, but are also the cell type preferentially lost following radiation treatment for head and neck cancer. The source of replacement acinar cells is currently a matter of debate. There is evidence for the presence of adult stem cells located within specific ductal regions of the salivary glands, but our laboratory recently demonstrated that differentiated acinar cells are maintained without significant stem cell contribution. To enable further investigation of salivary gland cell lineages and their origins, we generated three cell-specific Cre driver mouse strains. For genetic manipulation in acinar cells, an inducible Cre recombinase (Cre-ER) was targeted to the prolactin-induced protein (Pip) gene locus. Targeting of the Dcpp1 gene, encoding demilune cell and parotid protein, labels intercalated duct cells, a putative site of salivary gland stem cells, and serous demilune cells of the sublingual gland. Duct cell-specific Cre expression was attempted by targeting the inducible Cre to the Tcfcp2l1 gene locus. Using the R26Tomato Red reporter mouse, we demonstrate that these strains direct inducible, cell-specific expression. Genetic tracing of acinar cells using PipGCE supports the recent finding that differentiated acinar cells clonally expand. Moreover, tracing of intercalated duct cells expressing DcppGCE confirms evidence of duct cell proliferation, but further analysis is required to establish that renewal of secretory acinar cells is dependent on stem cells within these ducts. PMID:26751783

  15. Cell-Specific Cre Strains For Genetic Manipulation in Salivary Glands.

    PubMed

    Maruyama, Eri O; Aure, Marit H; Xie, Xiaoling; Myal, Yvonne; Gan, Lin; Ovitt, Catherine E

    2016-01-01

    The secretory acinar cells of the salivary gland are essential for saliva secretion, but are also the cell type preferentially lost following radiation treatment for head and neck cancer. The source of replacement acinar cells is currently a matter of debate. There is evidence for the presence of adult stem cells located within specific ductal regions of the salivary glands, but our laboratory recently demonstrated that differentiated acinar cells are maintained without significant stem cell contribution. To enable further investigation of salivary gland cell lineages and their origins, we generated three cell-specific Cre driver mouse strains. For genetic manipulation in acinar cells, an inducible Cre recombinase (Cre-ER) was targeted to the prolactin-induced protein (Pip) gene locus. Targeting of the Dcpp1 gene, encoding demilune cell and parotid protein, labels intercalated duct cells, a putative site of salivary gland stem cells, and serous demilune cells of the sublingual gland. Duct cell-specific Cre expression was attempted by targeting the inducible Cre to the Tcfcp2l1 gene locus. Using the R26Tomato Red reporter mouse, we demonstrate that these strains direct inducible, cell-specific expression. Genetic tracing of acinar cells using PipGCE supports the recent finding that differentiated acinar cells clonally expand. Moreover, tracing of intercalated duct cells expressing DcppGCE confirms evidence of duct cell proliferation, but further analysis is required to establish that renewal of secretory acinar cells is dependent on stem cells within these ducts. PMID:26751783

  16. Cell-Specific Cre Strains For Genetic Manipulation in Salivary Glands.

    PubMed

    Maruyama, Eri O; Aure, Marit H; Xie, Xiaoling; Myal, Yvonne; Gan, Lin; Ovitt, Catherine E

    2016-01-01

    The secretory acinar cells of the salivary gland are essential for saliva secretion, but are also the cell type preferentially lost following radiation treatment for head and neck cancer. The source of replacement acinar cells is currently a matter of debate. There is evidence for the presence of adult stem cells located within specific ductal regions of the salivary glands, but our laboratory recently demonstrated that differentiated acinar cells are maintained without significant stem cell contribution. To enable further investigation of salivary gland cell lineages and their origins, we generated three cell-specific Cre driver mouse strains. For genetic manipulation in acinar cells, an inducible Cre recombinase (Cre-ER) was targeted to the prolactin-induced protein (Pip) gene locus. Targeting of the Dcpp1 gene, encoding demilune cell and parotid protein, labels intercalated duct cells, a putative site of salivary gland stem cells, and serous demilune cells of the sublingual gland. Duct cell-specific Cre expression was attempted by targeting the inducible Cre to the Tcfcp2l1 gene locus. Using the R26Tomato Red reporter mouse, we demonstrate that these strains direct inducible, cell-specific expression. Genetic tracing of acinar cells using PipGCE supports the recent finding that differentiated acinar cells clonally expand. Moreover, tracing of intercalated duct cells expressing DcppGCE confirms evidence of duct cell proliferation, but further analysis is required to establish that renewal of secretory acinar cells is dependent on stem cells within these ducts.

  17. [Acinar cell carcinoma of submaxillary gland].

    PubMed

    Comeche, C; Calabuig, C; Barona, R

    1997-01-01

    Although acine cell neoplasms have for a long time been regarded as benign tumors, they are presently considered to represent the carcinomas. These rare tumors mainly affect the parotid glands, and only exceptionally involve other salivary glands. Clinically, acic cell carcinoma present as isolated tumors simulating a pleomorphic adenoma. The diagnosis is histopathological, and complete surgical removal of the tumor is the treatment of choice, with cervical lymphatic voiding and/or postoperative radiotherapy in selected cases. A prolonged patient follow-up is required, for the tumor may recur many years after surgery. We report a case of acinic cell carcinoma in submaxillary gland.

  18. Cell proliferation in salivary gland tumors.

    PubMed

    Skálová, A; Leivo, I

    1996-06-01

    Salivary gland tumors often pose considerable difficulty in differential diagnostic and prognostic assessment based on histomorphologic grounds alone. Histomorphology may poorly correlate with clinical outcome and the tumors within the same type in classification schedule exhibit different clinical courses. Prognostic relevance of various cell proliferation markers has been investigated in many types of human cancer, recently including salivary gland tumors. Evaluation of DNA content by flow cytometry and by cytophotometry, AgNOR technique, and immunohistochemical detection of antigens in cycling cells such as the Ki67 antigen and proliferating cell nuclear antigen (PCNA) have been applied to a variety of benign and malignant salivary gland tumors in only few studies so far. Cell proliferation, assessed with the MIB1 antibody, that recognizes the Ki67 antigen in proliferating cells, represents a significant prognostic factor for acinic cell carcinomas and mucoepidermoid carcinomas of salivary gland origin. Moreover, much lower proliferative activity as assessed with the MIB1 antibody helps to distinguish difficult cases of polymorphous low grade adenocarcinomas from adenoid cystic carcinomas and may contribute to differentiation of solid myoepithelial cell-rich pleomorphic adenomas from various malignant tumors. Thus, assessment of cell proliferation in salivary gland tumors using the MIB1 antibody and PCNA in paraffin-embedded tissue should be incorporated into routine immunohistologic evaluation of histologically difficult cases of salivary gland tumors.

  19. Two-photon imaging of stem cells

    NASA Astrophysics Data System (ADS)

    Uchugonova, A.; Gorjup, E.; Riemann, I.; Sauer, D.; König, K.

    2008-02-01

    A variety of human and animal stem cells (rat and human adult pancreatic stem cells, salivary gland stem cells, dental pulpa stem cells) have been investigated by femtosecond laser 5D two-photon microscopy. Autofluorescence and second harmonic generation have been imaged with submicron spatial resolution, 270 ps temporal resolution, and 10 nm spectral resolution. In particular, NADH and flavoprotein fluorescence was detected in stem cells. Major emission peaks at 460nm and 530nm with typical mean fluorescence lifetimes of 1.8 ns and 2.0 ns, respectively, were measured using time-correlated single photon counting and spectral imaging. Differentiated stem cells produced the extracellular matrix protein collagen which was detected by SHG signals at 435 nm.

  20. Stem Cell Research.

    PubMed

    Trounson, Alan; Kolaja, Kyle; Petersen, Thomas; Weber, Klaus; McVean, Maralee; Funk, Kathleen A

    2015-01-01

    Stem cells have great potential in basic research and are being slowly integrated into toxicological research. This symposium provided an overview of the state of the field, stem cell models, described allogenic stem cell treatments and issues of immunogenicity associated with protein therapeutics, and tehn concentrated on stem cell uses in regenerative medicine focusing on lung and testing strategies on engineered tissues from a pathologist's perspective.

  1. Information on Stem Cell Research

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS Information on Stem Cell Research Research @ NINDS Stem Cell Highlights Submit a hESC ... found here: Human Induced Pluripotent Stem Cells NINDS Stem Cell Research on Campus The Intramural Research Program of NINDS ...

  2. Plant stem cell niches.

    PubMed

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  3. Artificial Stem Cell Niches

    PubMed Central

    Lutolf, Matthias P.; Blau, Helen M.

    2011-01-01

    Stem cells are characterized by their dual ability to reproduce themselves (self-renew) and specialize (differentiate), yielding a plethora of daughter cells that maintain and regenerate tissues. In contrast to their embryonic counterparts, adult stem cells retain their unique functions only if they are in intimate contact with an instructive microenvironment, termed stem cell niche. In these niches, stem cells integrate a complex array of molecular signals that, in concert with induced cell-intrinsic regulatory networks, control their function and balance their numbers in response to physiologic demands. This progress report provides a perspective on how advanced materials technologies could be used (i) to engineer and systematically analyze specific aspects of functional stem cells niches in a controlled fashion in vitro and (ii) to target stem cell niches in vivo. Such “artificial niches” constitute potent tools for elucidating stem cell regulatory mechanisms with the capacity to directly impact the development of novel therapeutic strategies for tissue regeneration. PMID:20882496

  4. Stem Cell Information: Glossary

    MedlinePlus

    ... based therapies Cell culture Cell division Chromosome Clone Cloning Cord blood stem cells Culture medium Differentiation Directed ... Pluripotent Polar body Preimplantation Proliferation Regenerative medicine Reproductive cloning Signals Somatic cell Somatic cell nuclear transfer (SCNT) ...

  5. Notch signaling regulates gastric antral LGR5 stem cell function

    PubMed Central

    Demitrack, Elise S; Gifford, Gail B; Keeley, Theresa M; Carulli, Alexis J; VanDussen, Kelli L; Thomas, Dafydd; Giordano, Thomas J; Liu, Zhenyi; Kopan, Raphael; Samuelson, Linda C

    2015-01-01

    The major signaling pathways regulating gastric stem cells are unknown. Here we report that Notch signaling is essential for homeostasis of LGR5+ antral stem cells. Pathway inhibition reduced proliferation of gastric stem and progenitor cells, while activation increased proliferation. Notch dysregulation also altered differentiation, with inhibition inducing mucous and endocrine cell differentiation while activation reduced differentiation. Analysis of gastric organoids demonstrated that Notch signaling was intrinsic to the epithelium and regulated growth. Furthermore, in vivo Notch manipulation affected the efficiency of organoid initiation from glands and single Lgr5-GFP stem cells, suggesting regulation of stem cell function. Strikingly, constitutive Notch activation in LGR5+ stem cells induced tissue expansion via antral gland fission. Lineage tracing using a multi-colored reporter demonstrated that Notch-activated stem cells rapidly generate monoclonal glands, suggesting a competitive advantage over unmanipulated stem cells. Notch activation was associated with increased mTOR signaling, and mTORC1 inhibition normalized NICD-induced increases in proliferation and gland fission. Chronic Notch activation induced undifferentiated, hyper-proliferative polyps, suggesting that aberrant activation of Notch in gastric stem cells may contribute to gastric tumorigenesis. PMID:26271103

  6. Clonal Evolution of Stem Cells in the Gastrointestinal Tract.

    PubMed

    Fink, Juergen; Koo, Bon-Kyoung

    2016-01-01

    The field of gastrointestinal epithelial stem cells is a rapidly developing area of adult stem cell research. The discovery of Lgr5(+) intestinal stem cells has enabled us to study many hidden aspects of the biology of gastrointestinal adult stem cells. Marked by Lgr5 and Troy, several novel endodermal stem cells have been identified in the gastrointestinal tract. A precise working model of stem cell propagation, dynamics, and plasticity has been revealed by a genetic labeling method, termed lineage tracing. This chapter introduces the reidentification of crypt base columnar cells as Lgr5(+) stem cells in the intestine. Subsequently, it will discuss dynamic clonal evolution and cellular plasticity in the intestinal stem cell zone, as well as in stem cell zones of stomach glands. PMID:27573765

  7. [Basal cell adenomas of the salivary glands].

    PubMed

    Kozlovskiĭ, O M

    1975-01-01

    The author presents data on morphology and clinical features of basal-cell adenomas of the salivary gland (10 cases). Singling out this neoplasm into independent onconosological group seems reasonable since basal-cell adenoma not infrequently is erroneously diagnosed as cylindroma or mixed tumour of the salivary gland, which may lead to a wrong clinical prognosis and inadequate therapeutic measures. The clinical course of this tumour is benign. The main morphological feature of the tumour is a monomorphic character of cell elements, their palisade-like distribution over the periphery of individual tumour structures and a clear-cut delimination of the parenchyma from the stroma.

  8. "Clear cell" oncocytoma of salivary gland.

    PubMed

    Ellis, G L

    1988-07-01

    For the most part, clear cell neoplasms of the salivary glands are adenocarcinomas of at least low-grade malignant potential. However, a rare benign clear cell tumor of major salivary glands can be distinguished as a histologic variant of oncocytoma and oncocytosis. Ten such cases have been identified in the files of the Armed Forces Institute of Pathology (Washington, DC). Eight patients were women, and nine of the lesions involved the parotid gland. All of the patients were middle-aged or older adults. The light-microscopic morphology and the phosphotungstic acid-hematoxylin (PTAH), PAS, and mucicarmine staining patterns were consistent with oncocytoma and oncocytosis. Transitions from typical eosinophilic oncocytes to clear cells were evident. Electron microscopy and histochemistry demonstrated that the clear cytoplasm seen by light microscopy was primarily due to artifact and intracytoplasmic glycogen. Mitochondria were the preponderant cytoplasmic organelles. Two patients were known to have experienced recurrent lesions.

  9. Stem cells and reproduction

    PubMed Central

    Du, Hongling; Taylor, Hugh S.

    2011-01-01

    Purpose of review To review the latest developments in reproductive tract stem cell biology. Recent findings In 2004, two studies indicated that ovaries contain stem cells which form oocytes in adults and that can be cultured in vitro into mature oocytes. A live birth after orthotopic transplantation of cyropreserved ovarian tissue in a woman whose ovaries were damaged by chemotherapy demonstrates the clinical potential of these cells. In the same year, another study provided novel evidence of endometrial regeneration by stem cells in women who received bone marrow transplants. This finding has potential for the use in treatment of uterine disorders. It also supports a new theory for the cause of endometriosis, which may have its origin in ectopic transdifferentiation of stem cells. Several recent studies have demonstrated that fetal cells enter the maternal circulation and generate microchimerism in the mother. The uterus is a dynamic organ permeable to fetal stem cells, capable of transdifferentiation and an end organ in which bone marrow stem cells may differentiate. Finally stem cell transformation can be an underlying cause of ovarian cancer. Summary Whereas we are just beginning to understand stem cells, the potential implications of stem cells to reproductive biology and medicine are apparent. PMID:20305558

  10. Stem cells in urology.

    PubMed

    Aboushwareb, Tamer; Atala, Anthony

    2008-11-01

    The shortage of donors for organ transplantation has stimulated research on stem cells as a potential resource for cell-based therapy in all human tissues. Stem cells have been used for regenerative medicine applications in many organ systems, including the genitourinary system. The potential applications for stem cell therapy have, however, been restricted by the ethical issues associated with embryonic stem cell research. Instead, scientists have explored other cell sources, including progenitor and stem cells derived from adult tissues and stem cells derived from the amniotic fluid and placenta. In addition, novel techniques for generating stem cells in the laboratory are being developed. These techniques include somatic cell nuclear transfer, in which the nucleus of an adult somatic cell is placed into an oocyte, and reprogramming of adult cells to induce stem-cell-like behavior. Such techniques are now being used in tissue engineering applications, and some of the most successful experiments have been in the field of urology. Techniques to regenerate bladder tissue have reached the clinic, and exciting progress is being made in other areas, such as regeneration of the kidney and urethra. Cell therapy as a treatment for incontinence and infertility might soon become a reality. Physicians should be optimistic that regenerative medicine and tissue engineering will one day provide mainstream treatment options for urologic disorders.

  11. Mammary stem cells have myoepithelial cell properties

    PubMed Central

    Prater, Michael D.; Petit, Valérie; Russell, I. Alasdair; Giraddi, Rajshekhar; Shehata, Mona; Menon, Suraj; Schulte, Reiner; Kalajzic, Ivo; Rath, Nicola; Olson, Michael F.; Metzger, Daniel; Faraldo, Marisa M.; Deugnier, Marie-Ange; Glukhova, Marina A.; Stingl, John

    2014-01-01

    Contractile myoepithelial cells dominate the basal layer of the mammary epithelium and are considered to be differentiated cells. However, we observe that up to 54% of single basal cells can form colonies when seeded into adherent culture in the presence of agents that disrupt acin-myosin interactions, and on average, 65% of the single-cell-derived basal colonies can repopulate a mammary gland when transplanted in vivo. This indicates that a high proportion of basal myoepithelial cells can give rise to a mammary repopulating unit (MRU). We demonstrate that myoepithelial cells, flow-sorted using 2 independent myoepithelial-specific reporter strategies, have MRU capacity. Using an inducible lineage tracing approach we follow the progeny of α-smooth muscle actin-expressing myoepithelial cells and show that they function as long-lived lineage-restricted stem cells in the virgin state and during pregnancy. PMID:25173976

  12. Neurotrophic factor GDNF promotes survival of salivary stem cells.

    PubMed

    Xiao, Nan; Lin, Yuan; Cao, Hongbin; Sirjani, Davud; Giaccia, Amato J; Koong, Albert C; Kong, Christina S; Diehn, Maximilian; Le, Quynh-Thu

    2014-08-01

    Stem cell-based regenerative therapy is a promising treatment for head and neck cancer patients that suffer from chronic dry mouth (xerostomia) due to salivary gland injury from radiation therapy. Current xerostomia therapies only provide temporary symptom relief, while permanent restoration of salivary function is not currently feasible. Here, we identified and characterized a stem cell population from adult murine submandibular glands. Of the different cells isolated from the submandibular gland, this specific population, Lin-CD24+c-Kit+Sca1+, possessed the highest capacity for proliferation, self renewal, and differentiation during serial passage in vitro. Serial transplantations of this stem cell population into the submandibular gland of irradiated mice successfully restored saliva secretion and increased the number of functional acini. Gene-expression analysis revealed that glial cell line-derived neurotrophic factor (Gdnf) is highly expressed in Lin-CD24+c-Kit+Sca1+ stem cells. Furthermore, GDNF expression was upregulated upon radiation therapy in submandibular glands of both mice and humans. Administration of GDNF improved saliva production and enriched the number of functional acini in submandibular glands of irradiated animals and enhanced salisphere formation in cultured salivary stem cells, but did not accelerate growth of head and neck cancer cells. These data indicate that modulation of the GDNF pathway may have potential therapeutic benefit for management of radiation-induced xerostomia. PMID:25036711

  13. Pathophysiology of myoepithelial cells in salivary glands

    PubMed Central

    Shah, Amisha Ashok Kumar; Mulla, Aamera Farouq; Mayank, Mrinal

    2016-01-01

    Myoepithelial cells (MECs) are considered to be a key participant in most salivary gland diseases, particularly tumors. MECs structurally resemble both epithelial cells and smooth muscles. Diagnostic dilemmas caused are due to inadequacy of characterizing the wide spectrum of morphologic and immunologic features which are different for both normal and neoplastic MECs. This article discusses the development, functions and structure of both normal and neoplastic MECs, their staining properties and differences in the morphologic and immunophenotypic properties of the MEC in detail. It also describes the role of MEC in pathogenesis and morphogenesis of various nonneoplastic and neoplastic salivary gland lesions and thereby are responsible for the myriad histopathology of salivary gland tumors. PMID:27721615

  14. The role of non-coding RNAs in the regulation of stem cells and progenitors in the normal mammary gland and in breast tumors

    PubMed Central

    Tordonato, Chiara; Di Fiore, Pier Paolo; Nicassio, Francesco

    2015-01-01

    The outlook on stem cell (SC) biology is shifting from a rigid hierarchical to a more flexible model in which the identity and the behavior of adult SCs, far from being fixed, are determined by the dynamic integration of cell autonomous and non-autonomous mechanisms. Within this framework, the recent discovery of thousands of non-coding RNAs (ncRNAs) with regulatory function is redefining the landscape of transcriptome regulation, highlighting the interplay of epigenetic, transcriptional, and post-transcriptional mechanisms in the specification of cell fate and in the regulation of developmental processes. Furthermore, the expression of ncRNAs is often tissue- or even cell type-specific, emphasizing their involvement in defining space, time and developmental stages in gene regulation. Such a role of ncRNAs has been investigated in embryonic and induced pluripotent SCs, and in numerous types of adult SCs and progenitors, including those of the breast, which will be the topic of this review. We will focus on ncRNAs with an important role in breast cancer, in particular in mammary cancer SCs and progenitors, and highlight the ncRNA-based circuitries whose subversion alters a number of the epigenetic, transcriptional, and post-transcriptional events that control “stemness” in the physiological setting. PMID:25774169

  15. Intraoperative Stem Cell Therapy

    PubMed Central

    Coelho, Mónica Beato; Cabral, Joaquim M.S.; Karp, Jeffrey M.

    2013-01-01

    Stem cells hold significant promise for regeneration of tissue defects and disease-modifying therapies. Although numerous promising stem cell approaches are advancing in clinical trials, intraoperative stem cell therapies offer more immediate hope by integrating an autologous cell source with a well-established surgical intervention in a single procedure. Herein, the major developments in intraoperative stem cell approaches, from in vivo models to clinical studies, are reviewed, and the potential regenerative mechanisms and the roles of different cell populations in the regeneration process are discussed. Although intraoperative stem cell therapies have been shown to be safe and effective for several indications, there are still critical challenges to be tackled prior to adoption into the standard surgical armamentarium. PMID:22809140

  16. Brain tumor stem cells.

    PubMed

    Palm, Thomas; Schwamborn, Jens C

    2010-06-01

    Since the end of the 'no-new-neuron' theory, emerging evidence from multiple studies has supported the existence of stem cells in neurogenic areas of the adult brain. Along with this discovery, neural stem cells became candidate cells being at the origin of brain tumors. In fact, it has been demonstrated that molecular mechanisms controlling self-renewal and differentiation are shared between brain tumor stem cells and neural stem cells and that corruption of genes implicated in these pathways can direct tumor growth. In this regard, future anticancer approaches could be inspired by uncovering such redundancies and setting up treatments leading to exhaustion of the cancer stem cell pool. However, deleterious effects on (normal) neural stem cells should be minimized. Such therapeutic models underline the importance to study the cellular mechanisms implicated in fate decisions of neural stem cells and the oncogenic derivation of adult brain cells. In this review, we discuss the putative origins of brain tumor stem cells and their possible implications on future therapies.

  17. Inmunohistochemical profile of solid cell nest of thyroid gland.

    PubMed

    Ríos Moreno, María José; Galera-Ruiz, Hugo; De Miguel, Manuel; López, María Inés Carmona; Illanes, Matilde; Galera-Davidson, Hugo

    2011-03-01

    It is widely held that solid cell nests (SCN) of the thyroid are ultimobranchial body remnants. SCNs are composed of main cells and C cells. It has been suggested that main cells might be pluripotent cells contributing to the histogenesis of C cells and follicular cells, as well as to the formation of certain thyroid tumors. The present study sought to analyze the immunohistochemical profile of SCN and to investigate the potential stem cell role of SCN main cells. Tissue sections from ten cases of nodular hyperplasia (non-tumor goiter) with SCNs were retrieved from the files of the Hospital Infanta Luisa (Seville, Spain). Parathormone (PTH), calcitonin (CT), thyroglobulin (TG), thyroid transcription factor (TTF-1), galectin 3 (GAL3), cytokeratin 19 (CK 19), p63, bcl-2, OCT4, and SALL4 expression were evaluated by immunohistochemistry. Patient clinical data were collected, and tissue sections were stained with hematoxylin-eosin for histological examination. Most cells stained negative for PTH, CT, TG, and TTF-1. Some cells staining positive for TTF-1 and CT required discussion. However, bcl-2, p63, GAL3, and CK 19 protein expression was detected in main cells. OCT4 protein expression was detected in only two cases, and SALL4 expression in none. Positive staining for bcl-2 and p63, and negative staining for PTH, CT, and TG in SCN main cells are both consistent with the widely accepted minimalist definition of stem cells, thus supporting the hypothesis that they may play a stem cell role in the thyroid gland, although further research will be required into stem cell markers. Furthermore, p63 and GAL-3 staining provides a much more sensitive means of detecting SCNs than staining for carcinoembryonic antigen, calcitonin, or other markers; this may help to distinguish SCNs from their mimics.

  18. Fish stem cell cultures.

    PubMed

    Hong, Ni; Li, Zhendong; Hong, Yunhan

    2011-04-13

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on "Fish Stem Cells and Nuclear Transfer", we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  19. Stem cells in dermatology.

    PubMed

    Ogliari, Karolyn Sassi; Marinowic, Daniel; Brum, Dario Eduardo; Loth, Fabrizio

    2014-01-01

    Preclinical and clinical research have shown that stem cell therapy could be a promising therapeutic option for many diseases in which current medical treatments do not achieve satisfying results or cure. This article describes stem cells sources and their therapeutic applications in dermatology today.

  20. Stem Cell Transplants (For Teens)

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Stem Cell Transplants KidsHealth > For Teens > Stem Cell Transplants Print ... Does it Take to Recover? Coping What Are Stem Cells? As you probably remember from biology class, every ...

  1. Autophagy in stem cells

    PubMed Central

    Guan, Jun-Lin; Simon, Anna Katharina; Prescott, Mark; Menendez, Javier A.; Liu, Fei; Wang, Fen; Wang, Chenran; Wolvetang, Ernst; Vazquez-Martin, Alejandro; Zhang, Jue

    2013-01-01

    Autophagy is a highly conserved cellular process by which cytoplasmic components are sequestered in autophagosomes and delivered to lysosomes for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis as well as remodeling during normal development, and dysfunctions in autophagy have been associated with a variety of pathologies including cancer, inflammatory bowel disease and neurodegenerative disease. Stem cells are unique in their ability to self-renew and differentiate into various cells in the body, which are important in development, tissue renewal and a range of disease processes. Therefore, it is predicted that autophagy would be crucial for the quality control mechanisms and maintenance of cellular homeostasis in various stem cells given their relatively long life in the organisms. In contrast to the extensive body of knowledge available for somatic cells, the role of autophagy in the maintenance and function of stem cells is only beginning to be revealed as a result of recent studies. Here we provide a comprehensive review of the current understanding of the mechanisms and regulation of autophagy in embryonic stem cells, several tissue stem cells (particularly hematopoietic stem cells), as well as a number of cancer stem cells. We discuss how recent studies of different knockout mice models have defined the roles of various autophagy genes and related pathways in the regulation of the maintenance, expansion and differentiation of various stem cells. We also highlight the many unanswered questions that will help to drive further research at the intersection of autophagy and stem cell biology in the near future. PMID:23486312

  2. Markers of Epidermal Stem Cell Subpopulations in Adult Mammalian Skin

    PubMed Central

    Kretzschmar, Kai; Watt, Fiona M.

    2014-01-01

    The epidermis is the outermost layer of mammalian skin and comprises a multilayered epithelium, the interfollicular epidermis, with associated hair follicles, sebaceous glands, and eccrine sweat glands. As in other epithelia, adult stem cells within the epidermis maintain tissue homeostasis and contribute to repair of tissue damage. The bulge of hair follicles, where DNA-label-retaining cells reside, was traditionally regarded as the sole epidermal stem cell compartment. However, in recent years multiple stem cell populations have been identified. In this review, we discuss the different stem cell compartments of adult murine and human epidermis, the markers that they express, and the assays that are used to characterize epidermal stem cell properties. PMID:24993676

  3. SMOOTH MUSCLE STEM CELLS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vascular smooth muscle cells (SMCs) originate from multiple types of progenitor cells. In the embryo, the most well-studied SMC progenitor is the cardiac neural crest stem cell. Smooth muscle differentiation in the neural crest lineage is controlled by a combination of cell intrinsic factors, includ...

  4. Plant Stem Cells.

    PubMed

    Greb, Thomas; Lohmann, Jan U

    2016-09-12

    Among the trending topics in the life sciences, stem cells have received a fair share of attention in the public debate - mostly in connection with their potential for biomedical application and therapies. While the promise of organ regeneration and the end of cancer have captured our imagination, it has gone almost unnoticed that plant stem cells represent the ultimate origin of much of the food we eat, the oxygen we breathe, as well the fuels we burn. Thus, plant stem cells may be ranked among the most important cells for human well-being. Research by many labs in the last decades has uncovered a set of independent stem cell systems that fulfill the specialized needs of plant development and growth in four dimensions. Surprisingly, the cellular and molecular design of these systems is remarkably similar, even across diverse species. In some long-lived plants, such as trees, plant stem cells remain active over hundreds or even thousands of years, revealing the exquisite precision in the underlying control of proliferation, self-renewal and differentiation. In this minireview, we introduce the basic features of the three major plant stem cell systems building on these facts, highlight their modular design at the level of cellular layout and regulatory underpinnings and briefly compare them with their animal counterparts. PMID:27623267

  5. [Stem cells and cancer].

    PubMed

    Arvelo, Francisco; Cotte, Carlos; Sojo, Felipe

    2014-12-01

    Surgery, radiotherapy and chemotherapy are universally recognized as the most effective anti-cancer therapies. Despite significant advances directed towards elucidating molecular mechanisms and developing clinical trials, cancer still remains a major public health issue. Cancer stem cells are a subpopulation of the cells that form the tumor. The discovery of these human cancer cells opens a perspective for understanding tumor recurrence, drug resistance and metastasis; and opens up new research directions on how cancer cells are capable of switching from dormancy to malignancy. Therapeutic alternatives emerge from a better understanding of the biology and the environment of tumor stem cells. The present paper aims to summarize the characteristics and properties of cancer stem cells, the ongoing research, as well as the best strategies for prevention and control of the mechanisms of tumor recurrence.

  6. Aneuploidy in stem cells

    PubMed Central

    Garcia-Martinez, Jorge; Bakker, Bjorn; Schukken, Klaske M; Simon, Judith E; Foijer, Floris

    2016-01-01

    Stem cells hold enormous promise for regenerative medicine as well as for engineering of model systems to study diseases and develop new drugs. The discovery of protocols that allow for generating induced pluripotent stem cells (IPSCs) from somatic cells has brought this promise steps closer to reality. However, as somatic cells might have accumulated various chromosomal abnormalities, including aneuploidies throughout their lives, the resulting IPSCs might no longer carry the perfect blueprint for the tissue to be generated, or worse, become at risk of adopting a malignant fate. In this review, we discuss the contribution of aneuploidy to healthy tissues and how aneuploidy can lead to disease. Furthermore, we review the differences between how somatic cells and stem cells respond to aneuploidy. PMID:27354891

  7. The dynamics of murine mammary stem/progenitor cells

    PubMed Central

    DONG, Qiaoxiang; SUN, Lu-Zhe

    2014-01-01

    The stem/progenitor cells in the murine mammary gland are a highly dynamic population of cells that are responsible for ductal elongation in puberty, homeostasis maintenance in adult, and lobulo-alveolar genesis during pregnancy. In recent years understanding the epithelial cell hierarchy within the mammary gland is becoming particularly important as these different stem/progenitor cells were perceived to be the cells of origin for various subtypes of breast cancer. Although significant advances have been made in enrichment and isolation of stem/progenitor cells by combinations of antibodies against cell surface proteins together with flow cytometry, and in identification of stem/progenitor cells with multi-lineage differentiation and self-renewal using mammary fat pad reconstitution assay and in vivo genetic labeling technique, a clear understanding of how these different stem/progenitors are orchestrated in the mammary gland is still lacking. Here we discuss the different in vivo and in vitro methods currently available for stem/progenitor identification, their associated caveats, and a possible new hierarchy model to reconcile various putative stem/progenitor cell populations identified by different research groups. PMID:25580105

  8. Dental pulp stem cells

    PubMed Central

    Ashri, Nahid Y.; Ajlan, Sumaiah A.; Aldahmash, Abdullah M.

    2015-01-01

    Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors. PMID:26620980

  9. [Cell proliferation in salivary gland tumors].

    PubMed

    Frade González, C; García-Caballero, T; Lozano Ramírez, A; Labella Caballero, T

    2001-01-01

    Previous studies on cell proliferation in salivary gland tumors have shown the utility of immunostain with MIB1 in the differential diagnosis and prognosis of these neoplasms. We have carried out a study of 39 salivary gland tumors (17 benign), from different histological lineages. The immunocytochemical method used was the streptavidin--biotin--peroxidase complex which used the MIB1 monoclonal antibody. Benign tumors showed a low cell proliferation rates, below 5% with an overall average of 1.9%. The malignant tumors presented higher rates, with a middle value of 17.85%. Epidermoid carcinomas had the higher cell proliferation rates, with an average of 43%. In adenoid cystic carcinomas, we have observed that proliferation was greater at the peripheral level of tumor nests and cell surrounding the cystic structures. Neoplasms of low grade of malignancy presented lower cell proliferation rates. The MIB1 immunostain allowed to reach a differential diagnosis between pleomorphic adenoma and adenoid cystic carcinoma, specially in those cases in which there could be any doubt.

  10. Stem cells in microfluidics

    PubMed Central

    Wu, Huei-Wen; Lin, Chun-Che; Lee, Gwo-Bin

    2011-01-01

    Microfluidic techniques have been recently developed for cell-based assays. In microfluidic systems, the objective is for these microenvironments to mimic in vivo surroundings. With advantageous characteristics such as optical transparency and the capability for automating protocols, different types of cells can be cultured, screened, and monitored in real time to systematically investigate their morphology and functions under well-controlled microenvironments in response to various stimuli. Recently, the study of stem cells using microfluidic platforms has attracted considerable interest. Even though stem cells have been studied extensively using bench-top systems, an understanding of their behavior in in vivo-like microenvironments which stimulate cell proliferation and differentiation is still lacking. In this paper, recent cell studies using microfluidic systems are first introduced. The various miniature systems for cell culture, sorting and isolation, and stimulation are then systematically reviewed. The main focus of this review is on papers published in recent years studying stem cells by using microfluidic technology. This review aims to provide experts in microfluidics an overview of various microfluidic systems for stem cell research. PMID:21522491

  11. Stem Cell Research

    SciTech Connect

    Verfaillie, Catherine

    2009-01-23

    We have identified a population of primitive cells in normal human post-natal bone marrow that can, at the single cell level, differentiate in many ways and also proliferate extensively. These cells can differentiate in vitro into most mesodermal cell types (for example, bone cells, and others), as well as cells into cells of the nervous system. The finding that stem cells exist in post-natal tissues with previously unknown proliferation and differentiation potential opens up the possibility of using them to treat a host of degenerative, traumatic or congenital diseases.

  12. Stem Cell Research

    SciTech Connect

    Verfaillie, Catherine

    2002-01-23

    We have identified a population of primitive cells in normal human post-natal bone marrow that can, at the single cell level, differentiate in many ways and also proliferate extensively. These cells can differentiate in vitro into most mesodermal cell types (for example, bone cells, and others), as well as cells into cells of the nervous system. The finding that stem cells exist in post-natal tissues with previously unknown proliferation and differentiation potential opens up the possibility of using them to treat a host of degenerative, traumatic or congenital diseases.

  13. Catalyzing stem cell research.

    PubMed

    Willemse, Lisa; Lyall, Drew; Rudnicki, Michael

    2008-09-01

    In 2001, the Stem Cell Network was the first of its kind, a bold initiative to forge and nurture pan-Canadian collaborations involving researchers, engineers, clinicians and private and public sector partners. Canada's broad and deep pool of stem cell talent proved to be a fertile ground for such an initiative, giving rise to a strong, thriving network that, 7 years later, can list innovative cell expansion and screening technologies, early-phase clinical trials for stroke, pulmonary hypertension, muscular dystrophy and cornea replacement, and leading discourse on ethical, legal and social issues among its accomplishments. As it moves into its second and final phase of funding, the Stem Cell Network continues to push boundaries and has set its sights on overcoming the obstacles that impede the transfer of research findings to clinical applications, commercial products and public policy. PMID:18729799

  14. Catalyzing stem cell research.

    PubMed

    Willemse, Lisa; Lyall, Drew; Rudnicki, Michael

    2008-09-01

    In 2001, the Stem Cell Network was the first of its kind, a bold initiative to forge and nurture pan-Canadian collaborations involving researchers, engineers, clinicians and private and public sector partners. Canada's broad and deep pool of stem cell talent proved to be a fertile ground for such an initiative, giving rise to a strong, thriving network that, 7 years later, can list innovative cell expansion and screening technologies, early-phase clinical trials for stroke, pulmonary hypertension, muscular dystrophy and cornea replacement, and leading discourse on ethical, legal and social issues among its accomplishments. As it moves into its second and final phase of funding, the Stem Cell Network continues to push boundaries and has set its sights on overcoming the obstacles that impede the transfer of research findings to clinical applications, commercial products and public policy.

  15. Chemotherapy targeting cancer stem cells.

    PubMed

    Liu, Haiguang; Lv, Lin; Yang, Kai

    2015-01-01

    Conventional chemotherapy is the main treatment for cancer and benefits patients in the form of decreased relapse and metastasis and longer overall survival. However, as the target therapy drugs and delivery systems are not wholly precise, it also results in quite a few side effects, and is less efficient in many cancers due to the spared cancer stem cells, which are considered the reason for chemotherapy resistance, relapse, and metastasis. Conventional chemotherapy limitations and the cancer stem cell hypothesis inspired our search for a novel chemotherapy targeting cancer stem cells. In this review, we summarize cancer stem cell enrichment methods, the search for new efficient drugs, and the delivery of drugs targeting cancer stem cells. We also discuss cancer stem cell hierarchy complexity and the corresponding combination therapy for both cancer stem and non-stem cells. Learning from cancer stem cells may reveal novel strategies for chemotherapy in the future.

  16. Chemotherapy targeting cancer stem cells

    PubMed Central

    Liu, Haiguang; Lv, Lin; Yang, Kai

    2015-01-01

    Conventional chemotherapy is the main treatment for cancer and benefits patients in the form of decreased relapse and metastasis and longer overall survival. However, as the target therapy drugs and delivery systems are not wholly precise, it also results in quite a few side effects, and is less efficient in many cancers due to the spared cancer stem cells, which are considered the reason for chemotherapy resistance, relapse, and metastasis. Conventional chemotherapy limitations and the cancer stem cell hypothesis inspired our search for a novel chemotherapy targeting cancer stem cells. In this review, we summarize cancer stem cell enrichment methods, the search for new efficient drugs, and the delivery of drugs targeting cancer stem cells. We also discuss cancer stem cell hierarchy complexity and the corresponding combination therapy for both cancer stem and non-stem cells. Learning from cancer stem cells may reveal novel strategies for chemotherapy in the future. PMID:26045975

  17. Reduced salivary gland size and increased presence of epithelial progenitor cells in DLK1-deficient mice.

    PubMed

    García-Gallastegui, P; Luzuriaga, J; Aurrekoetxea, M; Baladrón, V; Ruiz-Hidalgo, M J; García-Ramírez, J J; Laborda, J; Unda, F; Ibarretxe, G

    2016-06-01

    DLK1 (PREF1, pG2, or FA1) is a transmembrane and secreted protein containing epidermal growth factor-like repeats. Dlk1 expression is abundant in many tissues during embryonic and fetal development and is believed to play an important role in the regulation of tissue differentiation and fetal growth. After birth, Dlk1 expression is abolished in most tissues but is possibly reactivated to regulate stem cell activation and responses to injury. We have recently reported that DLK1 regulates many aspects of salivary gland organogenesis. Here, we have extended our studies of the salivary gland phenotype of Dlk1 knock-out mice. We have observed that salivary glands are smaller and weigh significantly less in both Dlk1 knock-out males and females compared with gender and age-matched wild-type mice and regardless of the natural sexual dimorphism in rodent salivary glands. This reduced size correlates with a reduced capacity of Dlk1-deficient mice to secrete saliva after stimulation with pilocarpine. However, histological and ultrastructural analyses of both adult and developing salivary gland tissues have revealed no defects in Dlk1 ((-/-)) mice, indicating that genetic compensation accounts for the relatively mild salivary phenotype in these animals. Finally, despite their lack of severe anomalies, we have found that salivary glands from Dlk1-deficient mice present a higher amount of CK14-positive epithelial progenitors at various developmental stages, suggesting a role for DLK1 in the regulation of salivary epithelial stem cell balance.

  18. Unilateral parotid gland involvement with synchronous multiple Basal cell adenomas.

    PubMed

    Ozcan, Cengiz; Apa, Duygu Düsmez; Vayisoglu, Yusuf; Görür, Kemal

    2007-11-01

    Basal cell adenoma (BCA) is a rare benign epithelial tumor of the salivary gland. BCA is seen most frequently in the parotid gland and less commonly in the submandibular gland and minor glands of the upper lips, oral cavity, and hard palate. Salivary gland tumors are observed as single tumors in one salivary gland. Double or multiple tumors of the salivary gland tumors are unusual and metachronous or bilateral salivary gland tumors are more observed than synchronous or unilateral tumors. The most commonly seen multiple tumor unilaterally or bilaterally is the Warthin's tumor. A 65-year-old woman with a painful, slowly enlarging mass in front of the left ear, which was present for 6 months, was evaluated. Physical examination revealed two solid and well-delineated masses in the preauricular region, which were 1.5 x 1 cm in diameter and in the tail of the parotid gland, which is 2.5 x 2 cm in diameter. Excision of the superficial lobe of the parotid gland was performed. The macroscopic examination of the specimen showed the two discrete nodular masses. Histologic examination of the two nodular solid lesions was reported as BCA. Multiple synchronous nonmembranous-type BCAs of the unilateral parotid gland is a rare entity. More extensive excision of the parotid gland tumor, careful macroscopic perioperative examination of the surgical specimen, and histologic evaluation of all surgical specimens might be necessary for reducing revision operations and surgical complications.

  19. Acinic cell tumors of salivary gland origin.

    PubMed

    Clemis, J D; Bland, J; Fung, C

    1977-09-01

    The acinic cell tumor of salivary gland origin, once thought to be benign, is now known to be an incidiously slow growing malignant neoplasm with lethal potential. While the degree of malignant behavior of individual acinic cell tumors is notably variable, all must be treated with aggression. Traditional and current methods of treatment are reviewed; and, in conjunction with the tumors herein reported, guidelines for managment of this uncommon malignancy are suggested. Four cases have been reviewed in detail and critically analyzed. The pathology, including features of both light and electron microscopy, in included--particularly in relation to the oncocytoid areas identified in from 10% to 40% of the parenchymal cells of our tumors. Since an accurate histopathologic diagnosis is the first step in the establishment of a proper treatment plan, pitfalls in histologic diagnosis have been stressed.

  20. Stem cells and transplant arteriosclerosis.

    PubMed

    Xu, Qingbo

    2008-05-01

    Stem cells can differentiate into a variety of cells to replace dead cells or to repair damaged tissues. Recent evidence indicates that stem cells are involved in the pathogenesis of transplant arteriosclerosis, an alloimmune initiated vascular stenosis that often results in transplant organ failure. Although the pathogenesis of transplant arteriosclerosis is not yet fully understood, recent developments in stem cell research have suggested novel mechanisms of vascular remodeling in allografts. For example, stem cells derived from the recipient may repair damaged endothelial cells of arteries in transplant organs. Further evidence suggests that stem cells or endothelial progenitor cells may be released from both bone marrow and non-bone marrow tissues. Vascular stem cells appear to replenish cells that died in donor vessels. Concomitantly, stem/progenitor cells may also accumulate in the intima, where they differentiate into smooth muscle cells. However, several issues concerning the contribution of stem cells to the pathogenesis of transplant arteriosclerosis are controversial, eg, whether bone marrow-derived stem cells can differentiate into smooth muscle cells that form neointimal lesions of the vessel wall. This review summarizes recent research on the role of stem cells in transplant arteriosclerosis, discusses the mechanisms of stem cell homing and differentiation into mature endothelial and smooth muscle cells, and highlights the controversial issues in the field.

  1. Laser biomodulation on stem cells

    NASA Astrophysics Data System (ADS)

    Liu, Timon C.; Duan, Rui; Li, Yan; Li, Xue-Feng; Tan, Li-Ling; Liu, Songhao

    2001-08-01

    Stem cells are views from the perspectives of their function, evolution, development, and cause. Counterintuitively, most stem cells may arise late in development, to act principally in tissue renewal, thus ensuring an organisms long-term survival. Surprisingly, recent reports suggest that tissue-specific adult stem cells have the potential to contribute to replenishment of multiple adult tissues. Stem cells are currently in the news for two reasons: the successful cultivation of human embryonic stem cell lines and reports that adult stem cells can differentiate into developmentally unrelated cell types, such as nerve cells into blood cells. The spotlight on stem cells has revealed gaps in our knowledge that must be filled if we are to take advantage of their full potential for treating devastating degenerative diseases such as Parkinsons's disease and muscular dystrophy. We need to know more about the intrinsic controls that keep stem cells as stem cells or direct them along particular differentiation pathways. Such intrinsic regulators are, in turn, sensitive to the influences of the microenvironment, or niche, where stem cells normally reside. Both intrinsic and extrinsic signals regular stem cell fate and some of these signals have now been identified. Vacek et al and Wang et al have studied the effect of low intensity laser on the haemopoietic stem cells in vitro. There experiments show there is indeed the effect of low intensity laser on the haemopoietic stem cells in vitro, and the present effect is the promotion of haemopoietic stem cells proliferation. In other words, low intensity laser irradiation can act as an extrinsic signal regulating stem cell fate. In this paper, we study how low intensity laser can be used to regulate stem cell fate from the viewpoint of collective phototransduction.

  2. Stem Cells in Mammalian Gonads.

    PubMed

    Wu, Ji; Ding, Xinbao; Wang, Jian

    2016-01-01

    Stem cells have great value in clinical application because of their ability to self-renew and their potential to differentiate into many different cell types. Mammalian gonads, including testes for males and ovaries for females, are composed of germline and somatic cells. In male mammals, spermatogonial stem cells maintain spermatogenesis which occurs continuously in adult testis. Likewise, a growing body of evidence demonstrated that female germline stem cells could be found in mammalian ovaries. Meanwhile, prior studies have shown that somatic stem cells exist in both testes and ovaries. In this chapter, we focus on mammalian gonad stem cells and discuss their characteristics as well as differentiation potentials.

  3. Characterization of amniotic stem cells.

    PubMed

    Koike, Chika; Zhou, Kaixuan; Takeda, Yuji; Fathy, Moustafa; Okabe, Motonori; Yoshida, Toshiko; Nakamura, Yukio; Kato, Yukio; Nikaido, Toshio

    2014-08-01

    The amnion membrane is developed from embryo-derived cells, and amniotic cells have been shown to exhibit multidifferentiation potential. These cells represent a desirable source for stem cells for a variety of reasons. However, to date very few molecular analyses of amnion-derived cells have been reported, and efficient markers for isolating the stem cells remain unclear. This paper assesses the characterization of amnion-derived cells as stem cells by examining stemness marker expressions for amnion-derived epithelial cells and mesenchymal cells by flow cytometry, immunocytochemistry, and quantitative PCR. Flow cytometry revealed that amnion epithelial cells expressed CD133, CD 271, and TRA-1-60, whereas mecenchymal cells expressed CD44, CD73, CD90, and CD105. Immunohistochemistry showed that both cells expressed the stemness markers Oct3/4, Sox2, Klf4, and SSEA4. Stemness genes' expression in amnion epithelial cells, mesenchymal cells, fibroblast, bone marrow-derived mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs) was compared by quantitative reverse-transcription polymerase chain reaction (RT-PCR). Amnion-derived epithelial cells and mesenchymal cells expressed Oct3/4, Nanog, and Klf4 more than bone marrow-derived MSCs. The sorted TRA1-60-positive cells expressed Oct3/4, Nanog, and Klf4 more than unsorted cells or TRA1-60-negative cells. TRA1-60 can be a marker for isolating amnion epithelial stem cells.

  4. Materials as stem cell regulators

    NASA Astrophysics Data System (ADS)

    Murphy, William L.; McDevitt, Todd C.; Engler, Adam J.

    2014-06-01

    The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine.

  5. Materials as stem cell regulators

    PubMed Central

    Murphy, William L.; McDevitt, Todd C.; Engler, Adam J.

    2014-01-01

    The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine. PMID:24845994

  6. CELL CONTACTS IN THE MOUSE MAMMARY GLAND

    PubMed Central

    Pitelka, Dorothy R.; Hamamoto, Susan T.; Duafala, Joan G.; Nemanic, Michael K.

    1973-01-01

    The nature and distribution of cell contacts have been examined in thin sections and freeze-fracture replicas of mammary gland samples from female C3H/Crgl mice at stages from birth through pregnancy, lactation, and postweaning involution. Epithelial cells of major mammary ducts at all stages examined are linked at their luminal borders by junctional complexes consisting of tight junctions, variable intermediate junctions, occasional small gap junctions, and one or more series of desmosomes. Scattered desmosomes and gap junctions link ductal epithelial and myoepithelial cells in all combinations; hemidesmosomes attach myoepithelial cells to the basal lamina. Freeze-fracture replicas confirm the erratic distribution of gap junctions and reveal a loose, irregular network of ridges comprising the continuous tight-junctional belts. Alveoli develop early in gestation and initially resemble ducts. Later, as alveoli and small ducts become actively secretory, they lose all desmosomes and most intermediate junctions, whereas tight and gap junctions persist, The tight-junctional network becomes compact and orderly, its undulating ridges oriented predominantly parallel to the luminal surface. It is suggested that these changes in junctional morphology, occurring in secretory cells around parturition, may be related to the greatly enhanced rate of movement of milk precursors and products through the lactating epithelium, or to the profound and recurrent changes in shape of secretory cells that occur in relation to myoepithelial cell contraction, or to both. PMID:4569313

  7. Salivary gland NK cells are phenotypically and functionally unique.

    PubMed

    Tessmer, Marlowe S; Reilly, Emma C; Brossay, Laurent

    2011-01-13

    Natural killer (NK) cells and CD8(+) T cells play vital roles in containing and eliminating systemic cytomegalovirus (CMV). However, CMV has a tropism for the salivary gland acinar epithelial cells and persists in this organ for several weeks after primary infection. Here we characterize a distinct NK cell population that resides in the salivary gland, uncommon to any described to date, expressing both mature and immature NK cell markers. Using RORγt reporter mice and nude mice, we also show that the salivary gland NK cells are not lymphoid tissue inducer NK-like cells and are not thymic derived. During the course of murine cytomegalovirus (MCMV) infection, we found that salivary gland NK cells detect the infection and acquire activation markers, but have limited capacity to produce IFN-γ and degranulate. Salivary gland NK cell effector functions are not regulated by iNKT or T(reg) cells, which are mostly absent in the salivary gland. Additionally, we demonstrate that peripheral NK cells are not recruited to this organ even after the systemic infection has been controlled. Altogether, these results indicate that viral persistence and latency in the salivary glands may be due in part to the presence of unfit NK cells and the lack of recruitment of peripheral NK cells.

  8. Melanocytes, melanocyte stem cells, and melanoma stem cells.

    PubMed

    Lang, Deborah; Mascarenhas, Joseph B; Shea, Christopher R

    2013-01-01

    Melanocyte stem cells differ greatly from melanoma stem cells; the former provide pigmented cells during normal tissue homeostasis and repair, and the latter play an active role in a lethal form of cancer. These 2 cell types share several features and can be studied by similar methods. Aspects held in common by both melanocyte stem cells and melanoma stem cells include their expression of shared biochemical markers, a system of similar molecular signals necessary for their maintenance, and a requirement for an ideal niche microenvironment for providing these factors. This review provides a perspective of both these cell types and discusses potential models of stem cell growth and propagation. Recent findings provide a strong foundation for the development of new therapeutics directed at isolating and manipulating melanocyte stem cells for tissue engineering or at targeting and eradicating melanoma specifically, while sparing nontumor cells.

  9. Dental mesenchymal stem cells.

    PubMed

    Sharpe, Paul T

    2016-07-01

    Mammalian teeth harbour mesenchymal stem cells (MSCs), which contribute to tooth growth and repair. These dental MSCs possess many in vitro features of bone marrow-derived MSCs, including clonogenicity, expression of certain markers, and following stimulation, differentiation into cells that have the characteristics of osteoblasts, chondrocytes and adipocytes. Teeth and their support tissues provide not only an easily accessible source of MSCs but also a tractable model system to study their function and properties in vivo In addition, the accessibility of teeth together with their clinical relevance provides a valuable opportunity to test stem cell-based treatments for dental disorders. This Review outlines some recent discoveries in dental MSC function and behaviour and discusses how these and other advances are paving the way for the development of new biologically based dental therapies. PMID:27381225

  10. A spindle-cell myoepithelioma of the lacrimal gland.

    PubMed

    Heathcote, J G; Hurwitz, J J; Dardick, I

    1990-08-01

    A middle-aged woman developed unilateral, painless proptosis that increased slowly over 1 year. A clinical diagnosis of pleomorphic adenoma of the lacrimal gland was supported by computed tomographic scanning and the tumor was excised. On histological examination the tumor proved to be a benign, myxoid myoepithelioma of spindle-cell type. Although occasionally seen in the salivary glands, to our knowledge, this tumor has not previously been described in the lacrimal gland.

  11. STUDIES ON AN EPITHELIAL (GLAND) CELL JUNCTION

    PubMed Central

    Loewenstein, Werner R.; Kanno, Yoshinobu

    1964-01-01

    Membrane permeability of an epithelial cell junction (Drosophila salivary gland) was examined with intracellular microelectrodes and with fluorescent tracers. In contrast to the non-junctional cell membrane surface, which has a low permeability to ions (10-4 mho/cm2), the junctional membrane surface is highly permeable. In fact, it introduces no substantial restriction to ion flow beyond that in the cytoplasm; the resistance through a chain of cells (150 Ω cm) is only slightly greater than in extruded cytoplasm (100 Ω cm). The diffusion resistance along the intercellular space to the exterior, on the other hand, is very high. Here, there exists an ion barrier of, at least, 104Ω cm2. As a result, small ions and fluorescein move rather freely from one cell to the next, but do not leak appreciably through the intercellular space to the exterior. The organ here, rather than the single cell, appears to be the unit of ion environment. The possible underlying structural aspects are discussed. PMID:14206423

  12. [Perinatal sources of stem cells].

    PubMed

    Piskorska-Jasiulewicz, Magdalena Maria; Witkowska-Zimny, Małgorzata

    2015-03-08

    Recently, stem cell biology has become an interesting topic. Several varieties of human stem cells have been isolated and identified in vivo and in vitro. Successful application of hematopoietic stem cells in hematology has led to the search for other sources of stem cells and expanding the scale of their application. Perinatal stem cells are a versatile cell population, and they are interesting for both scientific and practical objectives. Stem cells from perinatal tissue may be particularly useful in the clinic for autologous transplantation for fetuses and newborns, and after banking in later stages of life, as well as for in utero transplantation in the case of genetic disorders. In this review paper we focus on the extraction and therapeutic potential of stem cells derived from perinatal tissues such as the placenta, the amnion, amniotic fluid, umbilical cord blood and Wharton's jelly.

  13. Serum-Induced Differentiation of Human Meibomian Gland Epithelial Cells

    PubMed Central

    Sullivan, David A.; Liu, Yang; Kam, Wendy R.; Ding, Juan; Green, Karin M.; Shaffer, Scott A.; Hatton, Mark P.; Liu, Shaohui

    2014-01-01

    Purpose. We hypothesize that culturing immortalized human meibomian gland epithelial cells in serum-containing medium will induce their differentiation. The purpose of this investigation was to begin to test our hypothesis, and explore the impact of serum on gene expression and lipid accumulation in human meibomian gland epithelial cells. Methods. Immortalized and primary human meibomian gland epithelial cells were cultured in the presence or absence of serum. Cells were evaluated for lysosome and lipid accumulation, polar and neutral lipid profiles, and gene expression. Results. Our results support our hypothesis that serum stimulates the differentiation of human meibomian gland epithelial cells. This serum-induced effect is associated with a significant increase in the expression of genes linked to cell differentiation, epithelium development, the endoplasmic reticulum, Golgi apparatus, vesicles, and lysosomes, and a significant decrease in gene activity related to the cell cycle, mitochondria, ribosomes, and translation. These cellular responses are accompanied by an accumulation of lipids within lysosomes, as well as alterations in the fatty acid content of polar and nonpolar lipids. Of particular importance, our results show that the molecular and biochemical changes of immortalized human meibomian gland epithelial cells during differentiation are analogous to those of primary cells. Conclusions. Overall, our findings indicate that immortalized human meibomian gland epithelial cells may serve as an ideal preclinical model to identify factors that control cellular differentiation in the meibomian gland. PMID:24867579

  14. Reprogramming stem cells is a microenvironmental task

    SciTech Connect

    Bissell, Mina J; Inman, Jamie

    2008-10-14

    That tumor cells for all practical purposes are unstable and plastic could be expected. However, the astonishing ability of the nuclei from cells of normal adult tissues to be reprogrammed - given the right embryonic context - found its final truth even for mammals in the experiments that allowed engineering Dolly (1). The landmark experiments showed that nuclei originating from cells of frozen mammary tissues were capable of being reprogrammed by the embryonic cytoplasm and its microenvironment to produce a normal sheep. The rest is history. However, whether microenvironments other than those of the embryos can also reprogram adult cells of different tissue origins still containing their cytoplasm is of obvious interest. In this issue of PNAS, the laboratory of Gilbert Smith (2) reports on how the mammary gland microenvironment can reprogram both embryonic and adult stem neuronal cells. The work is a follow-up to their previous report on testis stem cells that were reprogrammed by the mammary microenvironment (3). They demonstrated that cells isolated from the seminiferous tubules of the mature testis, mixed with normal mammary epithelial cells, contributed a sizable number of epithelial progeny to normal mammary outgrowths in transplanted mammary fat pads. However, in those experiments they were unable to distinguish which subpopulation of the testis cells contributed progeny to the mammary epithelial tree. The current work adds new, compelling, and provocative information to our understanding of stem cell plasticity. Booth et al. (2) use neuronal stem cells (NSCs) isolated from WAP-cre/R26R mice combined with unlabeled mammary epithelial cells that subsequently are implanted in cleared mammary fat pads. In this new microenvironment, the NSCs that are incorporated into the branching mammary tree make chimeric glands (Fig. 1) that remarkably can also express the milk protein {beta}-casein, progesterone receptor, and estrogen receptor {alpha}. Remarkably, the

  15. Stem cell aging

    PubMed Central

    Muller-Sieburg, Christa; Sieburg, Hans B.

    2009-01-01

    The question whether stem cells age remains an enigma. Traditionally, aging was thought to change the properties of hematopoietic stem cells (HSC). We discuss here a new model of stem cell aging that challenges this view. It is now well-established that the HSC compartment is heterogeneous, consisting of epigenetically fixed subpopulations of HSC that differ in self-renewal and differentiation capacity. New data show that the representation of these HSC subsets changes during aging. HSC that generate lymphocyte-rich progeny are depleted, while myeloid-biased HSC are enriched in the aged HSC compartment. Myeloid-biased HSC, even when isolated from young donors, have most of the characteristics that had been attributed to aged HSC. Thus, the distinct behavior of the HSC isolated from aged hosts is due to the accumulation of myeloid-biased HSC. By extension this means that the properties of individual HSC are not substantially changed during the lifespan of the organism and that aged hosts do not contain many aged HSC. Myeloid-biased HSC give rise to mature cells slowly but contribute for a long time to peripheral hematopoiesis. We propose that such slow, “lazy” HSC are less likely to be transformed and therefore may safely sustain hematopoiesis for a long time. PMID:19066464

  16. Developmental biology: cell fate in the mammary gland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most breast cancers have their origin in the luminal epithelial cells of the mammary gland. Defining how a master regulator controls the development of this cell lineage could provide important hints about why this should be. ...

  17. Statins and stem cell modulation.

    PubMed

    Xu, Hui; Yang, Yue-Jin; Yang, Tao; Qian, Hai-Yan

    2013-01-01

    Stem cell-based therapy is a promising option for the treatment of ischemic heart diseases. As to a successful stem cell-based therapy, one of the most important issues is that the stable engraftment and survival of implanted stem cells in cardiac microenvironment. There are evidences suggest that pharmacological treatment devoted to regulate stem cell function might represent a potential new therapeutic strategy and are drawing nearer to becoming a part of treatment in clinical settings. Statins could exert cholesterol-independent or pleiotropic effects to cardiovascular system. Recent studies have shown that statins could modulate the biological characteristics and function of various stem cells, thus could be an effective method to facilitate stem cell therapy. This review will focus on statins and their modulation effects on various stem cells.

  18. Ovarian cancer stem cells enrichment.

    PubMed

    Yang, Lijuan; Lai, Dongmei

    2013-01-01

    The concept of cancer stem cells (CSCs) provides a new paradigm for understanding cancer biology. Cancer stem cells are defined as a minority of cancer cells with stem cell properties responsible for maintenance and growth of tumors. The targeting of CSCs is a potential therapeutic strategy to combat ovarian cancer. Ovarian epithelial cancer cells cultured in serum-free medium can form sphere cells. These sphere cells may be enriched for cancer stem cells (CSCs). The isolation of sphere cells from solid tumors is an important technique in studying cancer cell biology. Here we describe the isolation of sphere cells from primary ovarian cancer tissue, ascites fluid, and the cancer cell line SKOV3 with stem cell selection medium. PMID:23913228

  19. Culture and characterization of mammary cancer stem cells in mammospheres.

    PubMed

    Piscitelli, Eleonora; Cocola, Cinzia; Thaden, Frank Rüdiger; Pelucchi, Paride; Gray, Brian; Bertalot, Giovanni; Albertini, Alberto; Reinbold, Rolland; Zucchi, Ileana

    2015-01-01

    Mammospheres (MMs) are a model for culturing and maintaining mammary gland stem cells (SCs) or cancer stem cells (CSCs) ex situ. As MMs recapitulate the micro-niche of the mammary gland or a tumor, MMs are a model for studying the properties of SCs or CSCs, and for mapping, isolating, and characterizing the SC/CSC generated lineages. Cancer stem cells share with normal SCs the properties of self-renewal and the capacity to generate all cell types and organ structures of the mammary gland. Analysis of human tumor samples suggests that CSCs are heterogeneous in terms of proliferation and differentiation potential. Mammospheres from CSCs likewise display heterogeneity. This heterogeneity makes analysis of CSC generated MMs challenging. To identify the unique and diverse properties of MM derived CSCs, comparative analysis with MMs obtained from normal SCs is required. Here we present protocols for identifying and enriching cells with SC features from a cancer cell line using the LA7CSCs as a model. A comprehensive and comparative approach for identifying, isolating, and characterizing MMs from SCs and CSCs from human breast is also introduced. In addition, we describe detailed procedures for identifying, isolating, and characterizing mammary gland specific cell types, generated during MM formation.

  20. Breast Cancer Stem Cells

    PubMed Central

    Velasco-Velázquez, Marco A.; Homsi, Nora; De La Fuente, Marisol; Pestell, Richard G.

    2012-01-01

    Breast cancer stem cells (BCSCs) constitute a subpopulation of tumor cells that express stem cell-associated markers and have a high capacity for tumor generation in vivo. Identification of BCSCs from tumor samples or breast cancer cell lines has been based mainly on CD44+/CD24−/low or ALDH+ phenotypes. BCSCs isolation has allowed the analysis of the molecular mechanisms involved in their origin, self-renewal, differentiation into tumor cells, resistance to radiation therapy and chemotherapy, and invasiveness and metastatic ability. Molecular genetic analysis using knockout animals and inducible transgenics have identified NF-κB, c-Jun, p21CIP1, and Forkhead-like-protein Dach1 in BCSC expansion and fate. Clinical analyses of BCSCs in breast tumors have found a correlation between the proportion of BCSCs and poor prognosis. Therefore, new therapies that specifically target BCSCs are an urgent need. We summarize recent evidence that partially explain the biological characteristics of BCSCs. PMID:22249027

  1. Eosinophilic bodies in pyloric and Brunner's gland cells.

    PubMed Central

    Rubio, C A; Hirota, T; Itabashi, M; Jacobsson, B; Lignelid, H

    1992-01-01

    A previously unreported cell phenotype occurred in the pyloric and Brunner glands in two gastrectomy specimens. The cells were characterised by homogeneous, eosinophilic material in the cytoplasm. The eosinophilic material had an abnormally strong reactivity for Cystatin C, a protein found recently in the normal secretion of pyloric and Brunner's gland cells. The reason for the apparent cytoplasmic accumulation of cystatin C in the two patients described remains unclear. Images PMID:1479043

  2. Pancreatic cancer stem cells

    PubMed Central

    Zhu, Ya-Yun; Yuan, Zhou

    2015-01-01

    Studies are emerging in support of the cancer stem cells (CSCs) theory which considers that a tiny subset of cancer cells is exclusively responsible for the initiation and malignant behavior of a cancer. This cell population, also termed CSCs, possesses the capacity both to self-renew, producing progeny that have the identical tumorigenic potential, and to differentiate into the bulk of cancer cells, helping serve the formation of the tumor entities, which, altogether, build the hierarchically organized structure of a cancer. In this review, we try to articulate the complicated signaling pathways regulating the retention of the characteristics of pancreatic CSCs, and in the wake of which, we seek to offer insights into the CSCs-relevant targeted therapeutics which are, in the meantime, confronted with bigger challenges than ever. PMID:26045976

  3. Stem cells and neurodegenerative diseases.

    PubMed

    Hou, LingLing; Hong, Tao

    2008-04-01

    Neurodegenerative diseases are characterized by the neurodegenerative changes or apoptosis of neurons involved in networks, which are important to specific physiological functions. With the development of old-aging society, the incidence of neurodegenerative diseases is on the increase. However, it is difficult to diagnose for most of neurodegenerative diseases. At present, there are too few effective therapies. Advances in stem cell biology have raised the hope and possibility for the therapy of neurodegenerative diseases. Recently, stem cells have been widely attempted to treat neurodegenerative diseases of animal model. Here we review the progress and prospects of various stem cells, including embryonic stem cells, mesenchymal stem cell and neural stem cells and so on, for the treatments of neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, Huntington' disease and Amyotrophic lateral sclerosis/Lou Gehrig's disease.

  4. Skeletal stem cells

    PubMed Central

    Bianco, Paolo; Robey, Pamela G.

    2015-01-01

    Skeletal stem cells (SSCs) reside in the postnatal bone marrow and give rise to cartilage, bone, hematopoiesis-supportive stroma and marrow adipocytes in defined in vivo assays. These lineages emerge in a specific sequence during embryonic development and post natal growth, and together comprise a continuous anatomical system, the bone-bone marrow organ. SSCs conjoin skeletal and hematopoietic physiology, and are a tool for understanding and ameliorating skeletal and hematopoietic disorders. Here and in the accompanying poster, we concisely discuss the biology of SSCs in the context of the development and postnatal physiology of skeletal lineages, to which their use in medicine must remain anchored. PMID:25758217

  5. Mechanotransduction: Tuning Stem Cells Fate

    PubMed Central

    D'Angelo, Francesco; Tiribuzi, Roberto; Armentano, Ilaria; Kenny, Josè Maria; Martino, Sabata; Orlacchio, Aldo

    2011-01-01

    It is a general concern that the success of regenerative medicine-based applications is based on the ability to recapitulate the molecular events that allow stem cells to repair the damaged tissue/organ. To this end biomaterials are designed to display properties that, in a precise and physiological-like fashion, could drive stem cell fate both in vitro and in vivo. The rationale is that stem cells are highly sensitive to forces and that they may convert mechanical stimuli into a chemical response. In this review, we describe novelties on stem cells and biomaterials interactions with more focus on the implication of the mechanical stimulation named mechanotransduction. PMID:24956164

  6. Stem Cells, Redox Signaling, and Stem Cell Aging

    PubMed Central

    Liang, Raymond

    2014-01-01

    Abstract Significance: Functional stem cell decline has been postulated to result in loss of maintenance of tissue homeostasis leading to organismal decline and diseases of aging. Recent Advances: Recent findings implicate redox metabolism in the control of stem cell pool and stem cell aging. Although reactive oxygen species (ROS) are better known for their damaging properties to DNA, proteins and lipids, recent findings suggest that ROS may also be an integral physiological mediator of cellular signaling in primary cells. Critical Issues: Here we review recent published work on major signaling pathways and transcription factors that are regulated by ROS and mediate ROS regulation of stem cell fate. We will specifically focus on how alterations in this regulation may be implicated in disease and particularly in diseases of stem cell aging. In general, based on the work described here we propose a model in which ROS function as stem cell rheostat. Future Directions: Future work in elucidating how ROS control stem cell cycling, apoptotic machinery, and lineage determination should shed light on mechanisms whereby ROS may control stem cell aging. Antioxid. Redox Signal. 20, 1902–1916. PMID:24383555

  7. Bovine mammary stem cells: new perspective for dairy science.

    PubMed

    Martignani, E; Cravero, D; Miretti, S; Accornero, P; Baratta, M

    2014-01-01

    Mammary stem cells provide opportunities for the cyclic remodelling of the bovine mammary gland. Therefore, understanding the character and regulation of mammary stem cells is important for increasing animal health and productivity. The exciting possibility that stem cell expansion can influence milk production is currently being investigated by several researchers. In fact, appropriate regulation of mammary stem cells could hopefully benefit milk yield, persistency of lactation, dry period management and tissue repair. Accordingly, we and others have attempted to characterize and regulate the function of bovine mammary stem cells. However, research on mammary stem cells requires tissue biopsies, which represents a limitation for the management of animal welfare. Interestingly, different studies recently reported the identification of putative mammary stem cells in human breast milk. The possible identification of primitive cell types within cow's milk may provide a non-invasive source of relevant mammary cells for a wide range of applications. In this review, we have summarized the main achievements in this field for dairy cow science and described the interesting perspectives open to manipulate milk persistency during lactation and to cope with oxidative stress during the transition period by regulating mammary stem cells.

  8. [Stem cells and cardiac regeneration].

    PubMed

    Perez Millan, Maria Ines; Lorenti, Alicia

    2006-01-01

    Stem cells are defined by virtue of their functional attributes: absence of tissue specific differentitated markers, capable of proliferation, able to self-maintain the population, able to produce a large number of differentiated, functional progeny, able to regenerate the tissue after injury. Cell therapy is an alternative for the treatment of several diseases, like cardiac diseases (cell cardiomyoplasty). A variety of stem cells could be used for cardiac repair: from cardiac and extracardiac sources. Each cell type has its own profile of advantages, limitations, and practicability issues in specific clinical settings. Differentiation of bone marrow stem cells to cardiomyocyte-like cells have been observed under different culture conditions. The presence of resident cardiac stem cell population capable of differentiation into cardiomyocyte or vascular lineage suggests that these cells could be used for cardiac tissue repair, and represent a great promise for clinical application. Stem cells mobilization by cytokines may also offer a strategy for cardiac regeneration. The use of stem cells (embryonic and adult) may hold the key to replacing cells lost in many devastating diseases. This potential benefit is a major focus for stem cell research.

  9. Reduced salivary gland size and increased presence of epithelial progenitor cells in DLK1-deficient mice.

    PubMed

    García-Gallastegui, P; Luzuriaga, J; Aurrekoetxea, M; Baladrón, V; Ruiz-Hidalgo, M J; García-Ramírez, J J; Laborda, J; Unda, F; Ibarretxe, G

    2016-06-01

    DLK1 (PREF1, pG2, or FA1) is a transmembrane and secreted protein containing epidermal growth factor-like repeats. Dlk1 expression is abundant in many tissues during embryonic and fetal development and is believed to play an important role in the regulation of tissue differentiation and fetal growth. After birth, Dlk1 expression is abolished in most tissues but is possibly reactivated to regulate stem cell activation and responses to injury. We have recently reported that DLK1 regulates many aspects of salivary gland organogenesis. Here, we have extended our studies of the salivary gland phenotype of Dlk1 knock-out mice. We have observed that salivary glands are smaller and weigh significantly less in both Dlk1 knock-out males and females compared with gender and age-matched wild-type mice and regardless of the natural sexual dimorphism in rodent salivary glands. This reduced size correlates with a reduced capacity of Dlk1-deficient mice to secrete saliva after stimulation with pilocarpine. However, histological and ultrastructural analyses of both adult and developing salivary gland tissues have revealed no defects in Dlk1 ((-/-)) mice, indicating that genetic compensation accounts for the relatively mild salivary phenotype in these animals. Finally, despite their lack of severe anomalies, we have found that salivary glands from Dlk1-deficient mice present a higher amount of CK14-positive epithelial progenitors at various developmental stages, suggesting a role for DLK1 in the regulation of salivary epithelial stem cell balance. PMID:26711912

  10. Involvement of Plant Stem Cells or Stem Cell-Like Cells in Dedifferentiation.

    PubMed

    Jiang, Fangwei; Feng, Zhenhua; Liu, Hailiang; Zhu, Jian

    2015-01-01

    Dedifferentiation is the transformation of cells from a given differentiated state to a less differentiated or stem cell-like state. Stem cell-related genes play important roles in dedifferentiation, which exhibits similar histone modification and DNA methylation features to stem cell maintenance. Hence, stem cell-related factors possibly synergistically function to provide a specific niche beneficial to dedifferentiation. During callus formation in Arabidopsis petioles, cells adjacent to procambium cells (stem cell-like cells) are dedifferentiated and survive more easily than other cell types. This finding indicates that stem cells or stem cell-like cells may influence the dedifferentiating niche. In this paper, we provide a brief overview of stem cell maintenance and dedifferentiation regulation. We also summarize current knowledge of genetic and epigenetic mechanisms underlying the balance between differentiation and dedifferentiation. Furthermore, we discuss the correlation of stem cells or stem cell-like cells with dedifferentiation. PMID:26635851

  11. Adult Stem and Progenitor Cells

    NASA Astrophysics Data System (ADS)

    Geraerts, Martine; Verfaillie, Catherine M.

    The discovery of adult stem cells in most adult tissues is the basis of a number of clinical studies that are carried out, with therapeutic use of hematopoietic stem cells as a prime example. Intense scientific debate is still ongoing as to whether adult stem cells may have a greater plasticity than previously thought. Although cells with some features of embryonic stem cells that, among others, express Oct4, Nanog and SSEA1 are isolated from fresh tissue, it is not clear if the greater differentiation potential is acquired during cell culture. Moreover, adult more pluripotent cells do not have all pluripotent characteristics typical for embryonic stem cells. Recently, some elegant studies were published in which adult cells could be completely reprogrammed to embryonic stem cell-like cells by overexpression of some key transcription factors for pluripotency (Oct4, Sox2, Klf4 and c-Myc). It will be interesting for the future to investigate the exact mechanisms underlying this reprogramming and whether similar transcription factor pathways are present and/or can be activated in adult more pluripotent stem cells.

  12. The new stem cell biology.

    PubMed Central

    Quesenberry, Peter J.; Colvin, Gerald A.; Lambert, Jean-Francois; Frimberger, Angela E.; Dooner, Mark S.; Mcauliffe, Christina I.; Miller, Caroline; Becker, Pamela; Badiavas, Evangelis; Falanga, Vincent J.; Elfenbein, Gerald; Lum, Lawrence G.

    2002-01-01

    Recent studies have indicated that bone marrow stem cells are capable of generating muscle, cardiac, hepatic, renal, and bone cells. Purified hematopoietic stem cells have generated cardiac and hepatic cells and reversed disease manifestations in these tissues. Hematopoietic stem cells also alter phenotype with cell cycle transit or circadian phase. During a cytokine stimulated cell cycle transit, reversible alterations of differentiation and engraftment occur. Primitive hematopoietic stem cells express a wide variety of adhesion and cytokine receptors and respond quickly with migration and podia extensions on exposure to cytokines. These data suggest an "Open Chromatin" model of stem cell regulation in which there is a fluctuating continuum in the stem cell/progenitor cell compartments, rather than a hierarchical relationship. These observations, along with progress in using low dose treatments and tolerization approaches, suggest many new therapeutic strategies involving stem cells and the creation of a new medical specialty; stemology. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:12053709

  13. Stem cells in pharmaceutical biotechnology.

    PubMed

    Zuba-Surma, Ewa K; Józkowicz, Alicja; Dulak, Józef

    2011-11-01

    Multiple populations of stem cells have been indicated to potentially participate in regeneration of injured organs. Especially, embryonic stem cells (ESC) and recently inducible pluripotent stem cells (iPS) receive a marked attention from scientists and clinicians for regenerative medicine because of their high proliferative and differentiation capacities. Despite that ESC and iPS cells are expected to give rise into multiple regenerative applications when their side effects are overcame during appropriate preparation procedures, in fact their most recent application of human ESC may, however, reside in their use as a tool in drug development and disease modeling. This review focuses on the applications of stem cells in pharmaceutical biotechnology. We discuss possible relevance of pluripotent cell stem populations in developing physiological models for any human tissue cell type useful for pharmacological, metabolic and toxicity evaluation necessary in the earliest steps of drug development. The present models applied for preclinical drug testing consist of primary cells or immortalized cell lines that show limitations in terms of accessibility or relevance to their in vivo counterparts. The availability of renewable human cells with functional similarities to their in vivo counterparts is the first landmark for a new generation of cell-based assays. We discuss the approaches for using stem cells as valuable physiological targets of drug activity which may increase the strength of target validation and efficacy potentially resulting in introducing new safer remedies into clinical trials and the marketplace. Moreover, we discuss the possible applications of stem cells for elucidating mechanisms of disease pathogenesis. The knowledge about the mechanisms governing the development and progression of multitude disorders which would come from the cellular models established based on stem cells, may give rise to new therapeutical strategies for such diseases. All

  14. Bioprinting for stem cell research

    PubMed Central

    Tasoglu, Savas; Demirci, Utkan

    2012-01-01

    Recently, there has been a growing interest to apply bioprinting techniques to stem cell research. Several bioprinting methods have been developed utilizing acoustics, piezoelectricity, and lasers to deposit living cells onto receiving substrates. Using these technologies, spatially defined gradients of immobilized proteins can be engineered to direct stem cell differentiation into multiple subpopulations of different lineages. Stem cells can also be patterned in a high-throughput manner onto flexible implementation patches for tissue regeneration or onto substrates with the goal of accessing encapsulated stem cell of interest for genomic analysis. Here, we review recent achievements with bioprinting technologies in stem cell research, and identify future challenges and potential applications including tissue engineering and regenerative medicine, wound healing, and genomics. PMID:23260439

  15. Stem cells for spine surgery.

    PubMed

    Schroeder, Joshua; Kueper, Janina; Leon, Kaplan; Liebergall, Meir

    2015-01-26

    In the past few years, stem cells have become the focus of research by regenerative medicine professionals and tissue engineers. Embryonic stem cells, although capable of differentiating into cell lineages of all three germ layers, are limited in their utilization due to ethical issues. In contrast, the autologous harvest and subsequent transplantation of adult stem cells from bone marrow, adipose tissue or blood have been experimentally utilized in the treatment of a wide variety of diseases ranging from myocardial infarction to Alzheimer's disease. The physiologic consequences of stem cell transplantation and its impact on functional recovery have been studied in countless animal models and select clinical trials. Unfortunately, the bench to bedside translation of this research has been slow. Nonetheless, stem cell therapy has received the attention of spinal surgeons due to its potential benefits in the treatment of neural damage, muscle trauma, disk degeneration and its potential contribution to bone fusion.

  16. Silk fibroin scaffolds promote formation of the ex vivo niche for salivary gland epithelial cell growth, matrix formation, and retention of differentiated function.

    PubMed

    Zhang, Bin-Xian; Zhang, Zhi-Liang; Lin, Alan L; Wang, Hanzhou; Pilia, Marcello; Ong, Joo L; Dean, David D; Chen, Xiao-Dong; Yeh, Chih-Ko

    2015-05-01

    Salivary gland hypofunction often results from a number of causes, including the use of various medications, radiation for head and neck tumors, autoimmune diseases, diabetes, and aging. Since treatments for this condition are lacking and adult salivary glands have little regenerative capacity, there is a need for cell-based therapies to restore salivary gland function. Development of these treatment strategies requires the establishment of a system that is capable of replicating the salivary gland cell "niche" to support the proliferation and differentiation of salivary gland progenitor cells. In this study, a culture system using three-dimensional silk fibroin scaffolds (SFS) and primary salivary gland epithelial cells (pSGECs) from rat submandibular (SM) gland and parotid gland (PG) was established and characterized. pSGECs grown on SFS, but not tissue culture plastic (TCP), formed aggregates of cells with morphological features resembling secretory acini. High levels of amylase were released into the media by both cell types after extended periods in culture on SFS. Remarkably, cultures of PG-derived cells on SFS, but not SM cells, responded to isoproterenol, a β-adrenergic receptor agonist, with increased enzyme release. This behavior mimics that of the salivary glands in vivo. Decellularized extracellular matrix (ECM) formed by pSGECs in culture on SFS contained type IV collagen, a major component of the basement membrane. These results demonstrate that pSGECs grown on SFS, but not TCP, retain important functional and structural features of differentiated salivary glands and produce an ECM that mimics the native salivary gland cell niche. These results demonstrate that SFS has potential as a scaffold for creating the salivary gland cell niche in vitro and may provide an approach for inducing multipotent stem cells to provide therapeutically meaningful numbers of salivary gland progenitor cells for regenerating these tissues in patients.

  17. The advantages of hair follicle pluripotent stem cells over embryonic stem cells and induced pluripotent stem cells for regenerative medicine.

    PubMed

    Amoh, Yasuyuki; Katsuoka, Kensei; Hoffman, Robert M

    2010-12-01

    Multipotent adult stem cells have many potential therapeutic applications. Our recent findings suggest that hair follicles are a promising source of easily accessible multipotent stem cells. Stem cells in the hair follicle area express the neural stem cell marker nestin, suggesting that hair-follicle stem cells and neural stem cells have common features. Nestin-expressing hair follicle stem cells can form neurons and other cell types, and thus adult hair follicle stem cells could have important therapeutic applications, particularly for neurologic diseases. Transplanted hair follicle stem cells promote the functional recovery of injured peripheral nerve and spinal cord. Recent findings suggest that direct transplantation of hair-follicle stem cells without culture can promote nerve repair, which makes them potentially clinically practical. Human hair follicle stem cells as well as mouse hair follicle stem cells promote nerve repair and can be applied to test the hypothesis that human hair follicle stem cells can provide a readily available source of neurologically therapeutic stem cells. The use of hair follicle stem cells for nerve regeneration overcomes critical problems of embryonic stem cells or induced pluripotent stem cells in that the hair follicle stem cells are multipotent, readily accessible, non-oncogenic, and are not associated with ethical issues.

  18. Stem cells, colorectal cancer and cancer stem cell markers correlations.

    PubMed

    Cherciu, Irina; Bărbălan, A; Pirici, D; Mărgăritescu, C; Săftoiu, A

    2014-01-01

    : The idea of stem cells as being progenitors of cancer was initially controversial, but later supported by research in the field of leukemia and solid tumors. Afterwards, it was established that genetic abnormalities can affect the stem and progenitor cells, leading to uncontrolled replication and deregulated differentiation. These alterations will cause the changeover to cancerous stem cells (CSC) having two main characteristics: tumor initiation and maintenance. This review will focus on the colorectal cancer stem cell (CR-CSCs) theory which provides a better understanding of different tumor processes: initiation, aggressive growth, recurrence, treatment resistance and metastasis. A search in PubMed/Medline was performed using the following keywords: colorectal cancer stem cells (CR-CSCs), colorectal neoplasms stem cells, colorectal cancer stem cell (CR-CSCs) markers, etc. Electronic searches were supplemented by hand searching reference lists, abstracts and proceedings from meetings. Isolation of CR-CSCs can be achieved by targeting and selecting subpopulation of tumor cells based on expression of one or multiple cell surface markers associated with cancer self-renewal, markers as: CD133, CD166, CD44, CD24, beta1 integrin-CD29, Lgr5, EpCAM (ESA), ALDH-1, Msi-1, DCAMLK1 or EphB receptors. The identification and localization of CR-CSCs through different markers will hopefully lead to a better stratification of prognosis and treatment response, as well as the development of new effective strategies for cancer management.

  19. STAT signaling in mammary gland differentiation, cell survival and tumorigenesis.

    PubMed

    Haricharan, S; Li, Y

    2014-01-25

    The mammary gland is a unique organ that undergoes extensive and profound changes during puberty, menstruation, pregnancy, lactation and involution. The changes that take place during puberty involve large-scale proliferation and invasion of the fat-pad. During pregnancy and lactation, the mammary cells are exposed to signaling pathways that inhibit apoptosis, induce proliferation and invoke terminal differentiation. Finally, during involution the mammary gland is exposed to milk stasis, programmed cell death and stromal reorganization to clear the differentiated milk-producing cells. Not surprisingly, the signaling pathways responsible for bringing about these changes in breast cells are often subverted during the process of tumorigenesis. The STAT family of proteins is involved in every stage of mammary gland development, and is also frequently implicated in breast tumorigenesis. While the roles of STAT3 and STAT5 during mammary gland development and tumorigenesis are well studied, others members, e.g. STAT1 and STAT6, have only recently been observed to play a role in mammary gland biology. Continued investigation into the STAT protein network in the mammary gland will likely yield new biomarkers and risk factors for breast cancer, and may also lead to novel prophylactic or therapeutic strategies against breast cancer.

  20. Mammary stem cells: expansion and animal productivity

    PubMed Central

    2014-01-01

    Identification and characterization of mammary stem cells and progenitor cells from dairy animals is important in the understanding of mammogenesis, tissue turnover, lactation persistency and regenerative therapy. It has been realized by many investigators that altered lactation, long dry periods (non-milking period between two consecutive lactation cycles), abrupt cessation of lactation (common in water buffaloes) and disease conditions like mastitis, greatly reduce milk yield thus render huge financial losses within the dairy sector. Cellular manipulation of specialized cell types within the mammary gland, called mammary stem cells (MaSCs)/progenitor cells, might provide potential solutions to these problems and may improve milk production. In addition, MaSCs/progenitor cells could be used in regenerative therapy against tissue damage caused by mastitis. This review discusses methods of MaSC/progenitor cell manipulation and their mechanisms in bovine and caprine animals. Author believes that intervention of MaSCs/progenitor cells could lessen the huge financial losses to the dairy industry globally. PMID:25057352

  1. Mammary stem cells: expansion and animal productivity.

    PubMed

    Choudhary, Ratan K

    2014-01-01

    Identification and characterization of mammary stem cells and progenitor cells from dairy animals is important in the understanding of mammogenesis, tissue turnover, lactation persistency and regenerative therapy. It has been realized by many investigators that altered lactation, long dry periods (non-milking period between two consecutive lactation cycles), abrupt cessation of lactation (common in water buffaloes) and disease conditions like mastitis, greatly reduce milk yield thus render huge financial losses within the dairy sector. Cellular manipulation of specialized cell types within the mammary gland, called mammary stem cells (MaSCs)/progenitor cells, might provide potential solutions to these problems and may improve milk production. In addition, MaSCs/progenitor cells could be used in regenerative therapy against tissue damage caused by mastitis. This review discusses methods of MaSC/progenitor cell manipulation and their mechanisms in bovine and caprine animals. Author believes that intervention of MaSCs/progenitor cells could lessen the huge financial losses to the dairy industry globally.

  2. FDA Warns About Stem Cell Claims

    MedlinePlus

    ... Home For Consumers Consumer Updates FDA Warns About Stem Cell Claims Share Tweet Linkedin Pin it More sharing ... blood-forming system. back to top Regulation of Stem Cells FDA regulates stem cells in the U.S. to ...

  3. LncRNAs in Stem Cells

    PubMed Central

    Hu, Shanshan; Shan, Ge

    2016-01-01

    Noncoding RNAs are critical regulatory factors in essentially all forms of life. Stem cells occupy a special position in cell biology and Biomedicine, and emerging results show that multiple ncRNAs play essential roles in stem cells. We discuss some of the known ncRNAs in stem cells such as embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, adult stem cells, and cancer stem cells with a focus on long ncRNAs. Roles and functional mechanisms of these lncRNAs are summarized, and insights into current and future studies are presented. PMID:26880946

  4. Stem cells: review and update.

    PubMed

    Sylvester, Karl G; Longaker, Michael T

    2004-01-01

    Regenerative medicine and emerging biotechnologies stand to revolutionize the practice of medicine. Advancements in stem cell biology, including embryonic and postnatal somatic stem cells, have made the prospect of tissue regeneration a potential clinical reality. Short of reproductive cloning, these same technologies, properly used, could allow for the creation of replacement tissue for the deficient host. To provide a concise review for surgeons on the current science and biology of stem cells, we surveyed the scientific literature, MEDLINE, and relevant political headlines that illuminate the stem cell discussion; the issues are summarized in this review. Building on this conceptual framework, the related issues of clinical promise and the political debate enveloping this emerging technology are examined. A basic understanding of stem cell biology is paramount to stay informed of this emerging technology and the national debate.

  5. Stem Cells, Retinal Ganglion Cells, and Glaucoma

    PubMed Central

    Sluch, Valentin M.; Zack, Donald J.

    2015-01-01

    Retinal ganglion cells represent an essential neuronal cell type for vision. These cells receive inputs from light-sensing photoreceptors via retinal interneurons and then relay these signals to the brain for further processing. Retinal ganglion cell diseases that result in cell death, e.g. glaucoma, often lead to permanent damage since mammalian nerves do not regenerate. Stem cell differentiation can generate cells needed for replacement or can be used to generate cells capable of secreting protective factors to promote survival. In addition, stem cell-derived cells can be used in drug screening research. Here, we discuss the current state of stem cell research potential for interference in glaucoma and other optic nerve diseases with a focus on stem cell differentiation to retinal ganglion cells. PMID:24732765

  6. Gastrointestinal stem cell up-to-date.

    PubMed

    Pirvulet, V

    2015-01-01

    Cellular and tissue regeneration in the gastrointestinal tract depends on stem cells with properties of self-renewal, clonogenicity, and multipotency. Progress in stem cell research and the identification of potential gastric, intestinal, colonic stem cells new markers and the signaling pathways provide hope for the use of stem cells in regenerative medicine and treatments for disease. This review provides an overview of the different types of stem cells, focusing on tissue-restricted adult stem cells.

  7. Notch Signaling in Meibomian Gland Epithelial Cell Differentiation

    PubMed Central

    Gidfar, Sanaz; Afsharkhamseh, Neda; Sanjari, Sara; Djalilian, Ali R.

    2016-01-01

    Purpose Notch1 was previously shown to play a critical role in murine meibomian gland function and maintenance. In this study, we have examined the expression and activation of Notch pathway in human meibomian gland epithelial cells in vitro. Methods An immortalized human meibomian gland epithelial cell (HMGEC) line was cultured under proliferative and differentiative conditions. Expression of Notch receptors and ligands were evaluated by quantitative PCR and Western blot. The effect of Notch inhibition and induction on oil production was also assessed. Results Human meibomian gland epithelial cell expressed Notch1, Notch2, Notch3, Jagged1, Jagged2, Delta-like 1, and Delta-like 3. The level of cleaved (activated) Notch1 strongly increased with differentiation. The expression of Notch3 was inversely correlated with proliferation. Induction and inhibition of Notch1 led to an increase and decrease in the amount of oil production, respectively. Conclusions Notch signaling appears to play an important role in human meibomian gland epithelial differentiation and oil production. This may provide a potential therapeutic pathway for treating meibomian gland dysfunction. PMID:26943148

  8. Keratinocyte stem cells: a commentary.

    PubMed

    Potten, Christopher S; Booth, Catherine

    2002-10-01

    For many years it has been widely accepted that stem cells play a crucial role in adult tissue maintenance. The concept that the renewing tissues of the body contain a small subcompartment of self-maintaining stem cells, upon which the entire tissue is dependent, is also now accepted as applicable to all renewing tissues. Gene therapy and tissue engineering are driving considerable interest in the clinical application of such hierarchically organized cellular compartments. Recent initial observations have provided a tantalizing insight into the large pluripotency of these cells. Indeed, scientists are now beginning to talk about the possible totipotency of some adult tissue stem cells. Such work is currently phenomenologic, but analysis of data derived from genomics and proteomics, identifying the crucial control signals involved, will soon provide a further impetus to stem cell biology with far reaching applications. The epidermis with its relatively simple structure, ease of accessibility, and the ability to grow its cells in vitro is one obvious target tissue for testing stem cell manipulation theories. It is crucial, however, that the normal keratinocyte stem cell is thoroughly characterized prior to attempting to manipulate its pluripotency. This commentary assesses the data generated to date and critically discusses the conclusions that have been drawn. Our current level of understanding, or lack of understanding, of the keratinocyte stem cell is reviewed.

  9. [Basal cell adenocarcinoma of the sublingual gland].

    PubMed

    Petersen, Stig Krarup; Bjørndal, Kristine; Krogdahl, Annelise; Godballe, Christian

    2010-02-15

    The cause of a swelling in the floor of the mouth will in most cases be benign. For example, a ranula, sialolithiasis and/or infection. Tumors of the sublingual gland are very rare, but 90% are malignant and therefore malignancy should always be excluded in case of an asymptomatic swelling covered by intact mucosa. PMID:20156409

  10. A Comparison of Culture Characteristics between Human Amniotic Mesenchymal Stem Cells and Dental Stem Cells.

    PubMed

    Yusoff, Nurul Hidayat; Alshehadat, Saaid Ayesh; Azlina, Ahmad; Kannan, Thirumulu Ponnuraj; Hamid, Suzina Sheikh Abdul

    2015-04-01

    In the past decade, the field of stem cell biology is of major interest among researchers due to its broad therapeutic potential. Stem cells are a class of undifferentiated cells that are able to differentiate into specialised cell types. Stem cells can be classified into two main types: adult stem cells (adult tissues) and embryonic stem cells (embryos formed during the blastocyst phase of embryological development). This review will discuss two types of adult mesenchymal stem cells, dental stem cells and amniotic stem cells, with respect to their differentiation lineages, passage numbers and animal model studies. Amniotic stem cells have a greater number of differentiation lineages than dental stem cells. On the contrary, dental stem cells showed the highest number of passages compared to amniotic stem cells. For tissue regeneration based on animal studies, amniotic stem cells showed the shortest time to regenerate in comparison with dental stem cells.

  11. Cell rheology: Stressed-out stem cells

    NASA Astrophysics Data System (ADS)

    Holle, Andrew W.; Engler, Adam J.

    2010-01-01

    Experiments have shown that the physical characteristics of the matrix surrounding a stem cell can affect its behaviour. This picture gets further complicated by studies of stem cells and their differentiated counterparts that show that the cells' own softness also has a clear role in how they respond to stress.

  12. Rat parotid gland cell differentiation in three-dimensional culture.

    PubMed

    Baker, Olga J; Schulz, David J; Camden, Jean M; Liao, Zhongji; Peterson, Troy S; Seye, Cheikh I; Petris, Michael J; Weisman, Gary A

    2010-10-01

    The use of polarized salivary gland cell monolayers has contributed to our understanding of salivary gland physiology. However, these cell models are not representative of glandular epithelium in vivo, and, therefore, are not ideal for investigating salivary epithelial functions. The current study has developed a three-dimensional (3D) cell culture model for rat Par-C10 parotid gland cells that forms differentiated acinar-like spheres on Matrigel. These 3D Par-C10 acinar-like spheres display characteristics similar to differentiated acini in salivary glands, including cell polarization, tight junction (TJ) formation required to maintain transepithelial potential difference, basolateral expression of aquaporin-3 and Na+/K+/2Cl- cotransporter-1, and responsiveness to the muscarinic receptor agonist carbachol that is decreased by the anion channel blocker diphenylamine-2-carboxylic acid or chloride replacement with gluconate. Incubation of the spheres in the hypertonic medium increased the expression level of the water channel aquaporin-5. Further, the proinflammatory cytokines tumor necrosis factor-alpha and interferon-gamma induced alterations in TJ integrity in the acinar-like spheres without affecting individual cell viability, suggesting that cytokines may affect salivary gland function by altering TJ integrity. Thus, 3D Par-C10 acinar-like spheres represent a novel in vitro model to study physiological and pathophysiological functions of differentiated acini.

  13. Bone regeneration and stem cells

    PubMed Central

    Arvidson, K; Abdallah, B M; Applegate, L A; Baldini, N; Cenni, E; Gomez-Barrena, E; Granchi, D; Kassem, M; Konttinen, Y T; Mustafa, K; Pioletti, D P; Sillat, T; Finne-Wistrand, A

    2011-01-01

    Abstract This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed. PMID:21129153

  14. Stem cell therapy without the cells

    PubMed Central

    Maguire, Greg

    2013-01-01

    As an example of the burgeoning importance of stem cell therapy, this past month the California Institute for Regenerative Medicine (CIRM) has approved $70 million to create a new network of stem cell clinical trial centers. Much work in the last decade has been devoted to developing the use of autologous and allogeneic adult stem cell transplants to treat a number of conditions, including heart attack, dementia, wounds, and immune system-related diseases. The standard model teaches us that adult stem cells exists throughout most of the body and provide a means to regenerate and repair most tissues through replication and differentiation. Although we have often witnessed the medical cart placed in front of the scientific horse in the development of stem cell therapies outside of academic circles, great strides have been made, such as the use of purified stem cells1 instead of whole bone marrow transplants in cancer patients, where physicians avoid re-injecting the patients with their own cancer cells.2 We most often think of stem cell therapy acting to regenerate tissue through replication and then differentiation, but recent studies point to the dramatic effects adult stem cells exert in the repair of various tissues through the release of paracrine and autocrine substances, and not simply through differentiation. Indeed, up to 80% of the therapeutic effect of adult stem cells has been shown to be through paracrine mediated actions.3 That is, the collected types of molecules released by the stem cells, called the secretome, or stem cell released molecules (SRM), number in the 100s, including proteins, microRNA, growth factors, antioxidants, proteasomes, and exosomes, and target a multitude of biological pathways through paracrine actions. The composition of the different molecule types in SRM is state dependent, and varies with cell type and conditions such as age and environment. PMID:24567776

  15. Characteristics and EGFP expression of porcine mammary gland epithelial cells.

    PubMed

    Zheng, Yue-Mao; He, Xiao-Ying

    2010-12-01

    The aims of this study were to establish a porcine mammary gland epithelial (PMGE) cell line, and to determine if these PMGE cells could be maintained long-term in culture by continuous subculturing following transfection with a reporter gene, enhanced green fluorescence protein (EGFP). Primary culture of PMGE cells was achieved by outgrowth of migrating cells from the fragments of the mammary gland tissue of a lactating pig. The passage sixteen PMGE cells were transfected with EGFP gene using lipofection. The expression of Cell keratins of epithelial cells in PMGE cells was tested by immunofluorescence. Βeta-Casein gene mRNA was tested for PMGE cells by RT-PCR. The results showed that PMGE cells could form dome-like structure which looked like nipple, and the cells contained different cell types. The expression of Cell keratins demonstrated the property of epithelial cells, and the PMGE cells could express transcript encoding a Βeta-Casein protein. EGFP gene was successfully transferred into the PMGE cells, and the transfected cells could be maintained long-term in culture by continuous subculturing. In conclusion, we have established a EGFP gene transfected porcine mammary gland epithelial (ET-PMGE) cell line. PMID:20400167

  16. Characteristics and EGFP expression of porcine mammary gland epithelial cells.

    PubMed

    Zheng, Yue-Mao; He, Xiao-Ying

    2010-12-01

    The aims of this study were to establish a porcine mammary gland epithelial (PMGE) cell line, and to determine if these PMGE cells could be maintained long-term in culture by continuous subculturing following transfection with a reporter gene, enhanced green fluorescence protein (EGFP). Primary culture of PMGE cells was achieved by outgrowth of migrating cells from the fragments of the mammary gland tissue of a lactating pig. The passage sixteen PMGE cells were transfected with EGFP gene using lipofection. The expression of Cell keratins of epithelial cells in PMGE cells was tested by immunofluorescence. Βeta-Casein gene mRNA was tested for PMGE cells by RT-PCR. The results showed that PMGE cells could form dome-like structure which looked like nipple, and the cells contained different cell types. The expression of Cell keratins demonstrated the property of epithelial cells, and the PMGE cells could express transcript encoding a Βeta-Casein protein. EGFP gene was successfully transferred into the PMGE cells, and the transfected cells could be maintained long-term in culture by continuous subculturing. In conclusion, we have established a EGFP gene transfected porcine mammary gland epithelial (ET-PMGE) cell line.

  17. Three-dimensional co-culture of BM-MSCs and eccrine sweat gland cells in Matrigel promotes transdifferentiation of BM-MSCs.

    PubMed

    Li, Haihong; Li, Xuexue; Zhang, Mingjun; Chen, Lu; Zhang, Bingna; Tang, Shijie; Fu, Xiaobing

    2015-10-01

    Victims with extensive and deep burns are unable to regenerate eccrine sweat glands. Combining of stem cells and biomimetic ECM to generate cell-based 3D tissues is showing promise for tissue repair and regeneration. We co-cultured BrdU-labeled bone marrow-derived mesenchymal stem cells (BM-MSCs) and eccrine sweat gland cells in Matrigel for 2 weeks in vitro and then evaluated for BM-MSCs differentiation into functional eccrine sweat gland cells by morphological assessment and immunohistochemical double staining for BrdU/pancytokeratin, BrdU/ZO-2, BrdU/E-cadherin, BrdU/desmoglein-2, BrdU/Na(+)-K(+)-ATPase α, BrdU/NHE1 and BrdU/CFTR. Cells formed spheroid-like structures in Matrigel, and BrdU-labeled BM-MSCs were involved in the 3D reconstitution of eccrine sweat gland tissues, and the incorporated BM-MSCs expressed an epithelial cell marker (pancytokeratin), epithelial cell junction proteins (ZO-2, E-cadherin and desmoglein-2) and functional proteins of eccrine sweat glands (Na(+)-K(+)-ATPase α, NHE1 and CFTR). In conclusion, three-dimensional co-culture of BM-MSCs and eccrine sweat gland cells in Matrigel promotes the transdifferentiation of BM-MSCs into potentially functional eccrine sweat gland cells. PMID:26189057

  18. BrdU-label-retaining cells in rat eccrine sweat glands over time.

    PubMed

    Li, Haihong; Zhang, Mingjun; Li, Xuexue; Chen, Lu; Zhang, Bingna; Tang, Shijie; Fu, Xiaobing

    2016-03-01

    Cell proliferation and turnover are fueled by stem cells. In a previous study, we demonstrated that rat eccrine sweat glands contained abundant bromodeoxyuridine (BrdU)-label-retaining cells (LRCs). However, morphological observations showed that eccrine sweat glands usually show little or no signs of homeostatic change. In this study, we account for why the homeostatic change is rare in eccrine sweat glands based on cytokinetic changes in BrdU-LRC turnover, and also determine the BrdU-labeled cell type. Thirty-six newborn SD rats, were injected intraperitoneally with 50mg/kg BrdU twice daily at a 2h interval for 4 consecutive days. After a chase period of 4, 6, 8, 12, 24 and 32 weeks, rats were euthanized, and the hind footpads were removed and processed for BrdU immunostaining, and BrdU/α-SMA and BrdU/K14 double-immunostaining. BrdU-LRCs were observed in the ducts, secretory coils and mesenchymal cells at all survival time points. The percentage of BrdU(+) cells in rat eccrine sweat glands averaged 4.2±1.2% after 4 weeks of chase, increased slightly by the 6th week, averaging 4.4±0.9%, and peaked at 8 weeks, averaging 5.3±1.0%. Subsequently, the average percentage of BrdU(+) cells declined to 3.2±0.8% by the 32nd week. There was no difference in the percentage of BrdU-LRCs among the different survival time points except that a significant difference in the percentage of BrdU-LRCs detected at 24 weeks versus 8 weeks, and 32 weeks versus 8 weeks, was observed. We concluded that the BrdU-LRCs turnover is slow in eccrine sweat glands. PMID:26657518

  19. Microbioreactors for Stem Cell Research

    NASA Astrophysics Data System (ADS)

    Freytes, Donald O.; Vunjak-Novakovic, Gordana

    During tissue development and regeneration, stem cells respond to the entire milieu of their environment, through dynamic interactions with the surrounding cells, extracellular matrix, and cascades of molecular and physical regulatory factors. A new generation of culture systems is emerging to offer some of the biological fidelity of a whole organism within highly controllable in vitro settings and provide the cultured cells with the combinations of factors they normally encounter in vivo. There is a growing notion that such "biomimetic" systems are essential for unlocking the full potential of stem cells - for tissue regeneration as well as biological research. In this chapter, we discuss the biological principles for designing biologically inspired culture systems for stem cell research and focus on the control of stem cell microenvironment through surface patterning, microfluidics, and electrical stimulation.

  20. Stem cells and combinatorial science.

    PubMed

    Fang, Yue Qin; Wong, Wan Qing; Yap, Yan Wen; Orner, Brendan P

    2007-09-01

    Stem cell-based technologies have the potential to help cure a number of cell degenerative diseases. Combinatorial and high throughput screening techniques could provide tools to control and manipulate the self-renewal and differentiation of stem cells. This review chronicles historic and recent progress in the stem cell field involving both pluripotent and multipotent cells, and it highlights relevant cellular signal transduction pathways. This review further describes screens using libraries of soluble, small-molecule ligands, and arrays of molecules immobilized onto surfaces while proposing future trends in similar studies. It is hoped that by reviewing both the stem cell and the relevant high throughput screening literature, this paper can act as a resource to the combinatorial science community.

  1. The embryonic stem cell test.

    PubMed

    Schulpen, Sjors H W; Piersma, Aldert H

    2013-01-01

    The embryonic stem cell test is an animal-free alternative test method for developmental toxicity. Mouse embryonic stem cells are cultured in a hanging drop method to form embryoid bodies. These embryoid bodies, when plated on tissue culture dishes, differentiate to form contracting myocardial cell foci within 10 days. Inhibition of cardiomyocyte differentiation by test compounds serves as the end point of the assay, as monitored by counting contracting muscle foci under the microscope.

  2. Harvesting dental stem cells - Overview

    PubMed Central

    Sunil, P. M.; Manikandan, Ramanathan; Muthumurugan; Yoithapprabhunath, Thukanayakanpalayam Ragunathan; Sivakumar, Muniapillai

    2015-01-01

    Dental stem cells have recently become one of the widely researched areas in dentistry. Ever since the identification of stem cells from various dental tissues like deciduous teeth, dental papilla, periodontal ligament and third molars, storing them for future use for various clinical applications was being explored. Dental stem cells were harvested and isolated using various techniques by different investigators and laboratories. This article explains the technical aspects of preparing the patient, atraumatic and aseptic removal of the tooth and its safe transportation and preservation for future expansion. PMID:26538883

  3. Stem cells, dot-com.

    PubMed

    Liang, Bryan A; Mackey, Tim K

    2012-09-12

    Direct-to-consumer (DTC) advertising of suspect goods and services has burgeoned because of the Internet. Despite very limited approval for use, DTC stem cell-marketed "treatments" have emerged for an array of conditions, creating global public health and safety risks. However, it remains unclear whether such use of stem cells is subject to drugs or biologics regulations. To address this gap, regulatory agencies should be given clear authority, and the international community should create a framework for appropriate stem cell use. In addition, consumer protection laws should be used to scrutinize providers.

  4. Neuropeptides degranulate serous cells of ferret tracheal glands

    SciTech Connect

    Gashi, A.A.; Borson, D.B.; Finkbeiner, W.E.; Nadel, J.A.; Basbaum, C.B.

    1986-08-01

    To determine whether serous or mucous cells in tracheal submucosal glands respond to the neuropeptides substance P (SP) and vasoactive intestinal peptide (VIP). The authors studied the peptide-induced changes in gland cell morphology accompanying release of TVSO4-labeled macromolecules from tracheal explants of ferrets. Explants were labeled for 1 h in medium containing TVSO4 and washed for 3.5 additional hours. Base-line secretion in the absence of drugs declined between 1.5 and 3.5 h after the pulse. Between 2.5 and 3.5 h, the average percent change in counts per minute recovered per sample period was not significantly different from zero. Substance P and VIP added 4 h after labeling each increased greatly the release of TVSO4-labeled macromolecules above base line. Bethanechol, a muscarinic-cholinergic agonist, increased secretion by an average of 142% above base line. Light and electron microscopy of the control tissues showed glands with narrow lumens and numerous secretory granules. Glands treated with SP or VIP had enlarged lumens and the serous cells were markedly degranulated. These phenomena were documented by morphometry and suggest that SP and VIP cause secretion from glands at least partially by stimulating exocytosis from serous cells.

  5. Drosophila's contribution to stem cell research

    PubMed Central

    Singh, Gyanesh

    2016-01-01

    The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. Recent developments in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosophila stem cells were later discovered to have functional homologs in mammalian stem cells. Like mammals, Drosophila germline stem cells (GSCs) are controlled by both intrinsic as well as external signals. Inside the Drosophila testes, germline and somatic stem cells form a cluster of cells (the hub). Hub cells depend on JAK-STAT signaling, and, in absence of this signal, they do not self-renew. In Drosophila, significant changes occur within the stem cell niche that contributes to a decline in stem cell number over time. In case of aging Drosophila, somatic niche cells show reduced DE-cadherin and unpaired (Upd) proteins. Unpaired proteins are known to directly decrease stem cell number within the niches, and, overexpression of upd within niche cells restored GSCs in older males also . Stem cells in the midgut of Drosophila are also very promising. Reduced Notch signaling was found to increase the number of midgut progenitor cells. On the other hand, activation of the Notch pathway decreased proliferation of these cells. Further research in this area should lead to the discovery of additional factors that regulate stem and progenitor cells in Drosophila. PMID:26180635

  6. Drosophila's contribution to stem cell research.

    PubMed

    Singh, Gyanesh

    2015-01-01

    The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. Recent developments in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosophila stem cells were later discovered to have functional homologs in mammalian stem cells. Like mammals, Drosophila germline stem cells (GSCs) are controlled by both intrinsic as well as external signals. Inside the Drosophila testes, germline and somatic stem cells form a cluster of cells (the hub). Hub cells depend on JAK-STAT signaling, and, in absence of this signal, they do not self-renew. In Drosophila, significant changes occur within the stem cell niche that contributes to a decline in stem cell number over time. In case of aging Drosophila, somatic niche cells show reduced DE-cadherin and unpaired (Upd) proteins. Unpaired proteins are known to directly decrease stem cell number within the niches, and, overexpression of upd within niche cells restored GSCs in older males also . Stem cells in the midgut of Drosophila are also very promising. Reduced Notch signaling was found to increase the number of midgut progenitor cells. On the other hand, activation of the Notch pathway decreased proliferation of these cells. Further research in this area should lead to the discovery of additional factors that regulate stem and progenitor cells in Drosophila. PMID:26180635

  7. Advances in stem cell therapy.

    PubMed

    Pérez López, Silvia; Otero Hernández, Jesús

    2012-01-01

    Since the beginning of stem cell biology, considerable effort has been focused in the translation of scientific insights into new therapies. Cell-based assays represent a new strategy for organ and tissue repair in several pathologies. Moreover, alternative treatment strategies are urgently needed due to donor organ shortage that costs many lives every year and results in lifelong immunosuppression. At the moment, only the use of hematopoietic stem cells is considered as the standard for the treatment of malignant and genetic bone marrow disorders, being all other stem cell applications highly experimental. The present chapter tries to summarize some ongoing approaches of stem cell regenerative medicine and also introduces recent findings from published studies and trials conducted in various tissues such as skeletal muscle, liver and lung.

  8. Development of Causative Treatment Strategies for Lacrimal Gland Insufficiency by Tissue Engineering and Cell Therapy. Part 1: Regeneration of Lacrimal Gland Tissue: Can We Stimulate Lacrimal Gland Renewal In Vivo?

    PubMed

    Dietrich, Jana; Massie, Isobel; Roth, Mathias; Geerling, Gerd; Mertsch, Sonja; Schrader, Stefan

    2016-09-01

    Severe dry eye syndrome (DES) is a complex disease that is commonly caused by inflammatory and degenerative changes in the lacrimal gland, and can result in severe pain and disruption to visual acuity. In healthy subjects, the ocular surface is continually lubricated by the tear film that ensures that the ocular surface remains moist and free of debris, enabling normal vision. The lacrimal fluid, mid-layer of the tear film, is mainly produced by the lacrimal gland and if this is dysfunctional for any reason, severe DES can develop. Currently, only palliative treatments for DES exist that aim to either replace or retain tears and/or minimize inflammation. A curative approach that aims to trigger the regeneration of existing lacrimal gland tissue in situ may, therefore, be very beneficial to DES patients. This article reviews the different approaches that have been explored toward lacrimal gland regeneration. Progress to date in vitro, in vivo, and in man is described with a focus on clinical feasibility and efficacy. Promising candidates for drug-dependent treatment of DES are growth factors and cytokines, such as hepatocyte growth factor (HGF) and tumor necrosis factor α-stimulated gene 6 protein (TSG-6). Only a few studies have evaluated gene therapy for lacrimal gland deficiencies, but with promising results. However gene therapy carries a variety of risks regarding carcinogenesis and therefore a treatment in the near future using this approach seems to be unlikely. Cell therapies utilizing mesenchymal stem cells (MSCs) seem to be more applicable than those using human amniotic membrane (hAM) epithelial cells or induced pluripotent stem (iPS) cells, since MSCs combine the favorable traits of both (multipotency, capability to stimulate regeneration immunomodulatory and non-immunogenic properties).

  9. Diabetes and stem cell function.

    PubMed

    Fujimaki, Shin; Wakabayashi, Tamami; Takemasa, Tohru; Asashima, Makoto; Kuwabara, Tomoko

    2015-01-01

    Diabetes mellitus is one of the most common serious metabolic diseases that results in hyperglycemia due to defects of insulin secretion or insulin action or both. The present review focuses on the alterations to the diabetic neuronal tissues and skeletal muscle, including stem cells in both tissues, and the preventive effects of physical activity on diabetes. Diabetes is associated with various nervous disorders, such as cognitive deficits, depression, and Alzheimer's disease, and that may be caused by neural stem cell dysfunction. Additionally, diabetes induces skeletal muscle atrophy, the impairment of energy metabolism, and muscle weakness. Similar to neural stem cells, the proliferation and differentiation are attenuated in skeletal muscle stem cells, termed satellite cells. However, physical activity is very useful for preventing the diabetic alteration to the neuronal tissues and skeletal muscle. Physical activity improves neurogenic capacity of neural stem cells and the proliferative and differentiative abilities of satellite cells. The present review proposes physical activity as a useful measure for the patients in diabetes to improve the physiological functions and to maintain their quality of life. It further discusses the use of stem cell-based approaches in the context of diabetes treatment.

  10. Stem cells in cardiac repair.

    PubMed

    Henning, Robert J

    2011-01-01

    Myocardial infarction is the leading cause of death among people in industrialized nations. Although the heart has some ability to regenerate after infarction, myocardial restoration is inadequate. Consequently, investigators are currently exploring the use of human embryonic stem cells (hESCs), skeletal myoblasts and adult bone marrow stem cells to limit infarct size. hESCs are pluripotent cells that can regenerate myocardium in infarcted hearts, attenuate heart remodeling and contribute to left ventricle (LV) systolic force development. Since hESCs can form heart teratomas, investigators are differentiating hESCs toward cardiac progenitor cells prior to transplantation into hearts. Large quantities of hESCs cardiac progenitor cells, however, must be generated, immune rejection must be prevented and grafts must survive over the long term to significantly improve myocardial performance. Transplanted autologous skeletal myoblasts can survive in infarcted myocardium in small numbers, proliferate, differentiate into skeletal myofibers and increase the LV ejection fraction. These cells, however, do not form electromechanical connections with host cardiomyocytes. Consequently, electrical re-entry can occur and cause cardiac arrhythmias. Autologous bone marrow mononuclear cells contain hematopoietic and mesenchymal stem cells. In several meta-analyses, patients with coronary disease who received autologous bone marrow cells by intracoronary injection show significant 3.7% (range: 1.9-5.4%) increases in LV ejection fraction, decreases in LV end-systolic volume of -4.8 ml (range: -1.4 to -8.2 ml) and reductions in infarct size of 5.5% (-1.9 to -9.1%), without experiencing arrhythmias. Bone marrow cells appear to release biologically active factors that limit myocardial damage. Unfortunately, bone marrow cells from patients with chronic diseases propagate poorly and can die prematurely. Substantial challenges must be addressed and resolved to advance the use of stem cells

  11. [Therapeutic use of stem cells. II. Adult stem cells].

    PubMed

    Uzan, Georges

    2004-09-30

    Many degenerative diseases are not curable by means of classical medicine. The long term objective of cell therapy is to treat the patients with their own stem cells that could be either purified from the diseased organ or from "reservoirs" of stem cells such as that constituted by the bone marrow. The existence of stem cells in the organs or reservoirs is now established in vitro and in some cases, in animal models. Numbers of technical problems linked to the scarcity of these cells still delay the clinical use of purified stem cells. However, clinical protocols using heterogeneous cell populations have already started to treat a growing number of diseases. In some case, autologous cells can be used, as it is the case for bone marrow transplantation in blood diseases. Mesenchymal cells, also purified from the bone marrow are currently used in orthopaedic diseases. Because these cells reveal a broad differentiation potential, active research programs explore their possible use for treatment of other diseases. Bone marrow also contains vascular stem cells that could be active in reappearing defective vessels responsible for ischaemic diseases. Indeed, clinical trials in which bone marrow cells are injected in the cardiac muscle of patients with myocardial infarction or in the leg muscle (gastrocnemius) of patients with hind limb ischaemia have already started. Artificial skin prepared from skin biopsies is used for the reconstitution of the derma of severely burned patients. Clinical trials have also started, using allogenic cells. The patients must be treated by immunosuppressive drugs. Neurodegenerative diseases such as Parkinson have been successfully treated by intra-cerebral injection of foetal neurones. Pancreatic islets implanted in the liver have shown to re-establish a normal glycaemia in diabetic patients. However, all these clinical trials use differentiated cells or at least progenitors which display differentiation potential and lifetime much more

  12. Mist1 Expressing Gastric Stem Cells Maintain the Normal and Neoplastic Gastric Epithelium and Are Supported by a Perivascular Stem Cell Niche.

    PubMed

    Hayakawa, Yoku; Ariyama, Hiroshi; Stancikova, Jitka; Sakitani, Kosuke; Asfaha, Samuel; Renz, Bernhard W; Dubeykovskaya, Zinaida A; Shibata, Wataru; Wang, Hongshan; Westphalen, Christoph B; Chen, Xiaowei; Takemoto, Yoshihiro; Kim, Woosook; Khurana, Shradha S; Tailor, Yagnesh; Nagar, Karan; Tomita, Hiroyuki; Hara, Akira; Sepulveda, Antonia R; Setlik, Wanda; Gershon, Michael D; Saha, Subhrajit; Ding, Lei; Shen, Zeli; Fox, James G; Friedman, Richard A; Konieczny, Stephen F; Worthley, Daniel L; Korinek, Vladimir; Wang, Timothy C

    2015-12-14

    The regulation and stem cell origin of normal and neoplastic gastric glands are uncertain. Here, we show that Mist1 expression marks quiescent stem cells in the gastric corpus isthmus. Mist1(+) stem cells serve as a cell-of-origin for intestinal-type cancer with the combination of Kras and Apc mutation and for diffuse-type cancer with the loss of E-cadherin. Diffuse-type cancer development is dependent on inflammation mediated by Cxcl12(+) endothelial cells and Cxcr4(+) gastric innate lymphoid cells (ILCs). These cells form the perivascular gastric stem cell niche, and Wnt5a produced from ILCs activates RhoA to inhibit anoikis in the E-cadherin-depleted cells. Targeting Cxcr4, ILCs, or Wnt5a inhibits diffuse-type gastric carcinogenesis, providing targets within the neoplastic gastric stem cell niche.

  13. Bilateral acinous cell tumors of the parotid gland.

    PubMed

    Nelson, D W; Nichols, R D; Fine, G

    1978-12-01

    Acinous cell tumors are uncommon neoplasms which arise either from the secretory cells of the salivary gland acini or from pluripotential duct cells and occur almost exclusively in the parotid gland. Nine previous instances of the bilateral occurrence of this tumor in the parotid gland have been reported. We present a tenth case and illustrate several aspects of the clinical behavior of this unique tumor. The histological pattern of this type of tumor was considered universally to be benign until 1953 when attention was called to a malignant variant. It is difficult to find reference to a benign form after that time. It is, in fact, impossible to forecast the clinical behavior of an individual specimen based upon its histopathology. In order to recognize this unpredictability, the World Health Organization Classification of Epithelial Tumors of Salivary Gland Origin proposed a category, "Acinic Cell Tumors," separate from clearly benign or malignant neoplasms. Later, attention was called to the grammatical designation, "acinous cell tumor." Because acinous cell tumors are uncommon, numerically significant series are gathered from several institutions or over several decades during which treatment methods vary widely. This makes it difficult to accept the validity of conclusions based upon the reported data. There is, however, a clearly documented tendency of the tumor to recur after long symptomless intervals so that extended follow-up is necessary before "cure" is established. Treatment of acinous cell tumors is surgical. The value of radiation therapy in the management of recurrent tumors is not firmly established.

  14. Intestinal Stem Cells: Got Calcium?

    PubMed

    Nászai, Máté; Cordero, Julia B

    2016-02-01

    Calcium ions are well-known intracellular signalling molecules. A new study identifies local cytoplasmic calcium as a central integrator of metabolic and proliferative signals in Drosophila intestinal stem cells. PMID:26859268

  15. Ectodermal Differentiation of Wharton's Jelly Mesenchymal Stem Cells for Tissue Engineering and Regenerative Medicine Applications.

    PubMed

    Jadalannagari, Sushma; Aljitawi, Omar S

    2015-06-01

    Mesenchymal stem cells (MSCs) from Wharton's jelly (WJ) of the human umbilical cord are perinatal stem cells that have self-renewal ability, extended proliferation potential, immunosuppressive properties, and are accordingly excellent candidates for tissue engineering. These MSCs are unique, easily accessible, and a noncontroversial cell source of regeneration in medicine. Wharton's jelly mesenchymal stem cells (WJMSCs) are multipotent and capable of multilineage differentiation into cells like adipocytes, bone, cartilage, and skeletal muscle upon exposure to appropriate conditions. The ectoderm is one of the three primary germ layers found in the very early embryo that differentiates into the epidermis, nervous system (spine, peripheral nerves, brain), and exocrine glands (mammary, sweat, salivary, and lacrimal glands). Accumulating evidence shows that MSCs obtained from WJ have an ectodermal differentiation potential. The current review examines this differentiation potential of WJMSC into the hair follicle, skin, neurons, and sweat glands along with discussing the potential utilization of such differentiation in regenerative medicine.

  16. Stem cell potential of the mammalian gonad

    PubMed Central

    Liu, Chia-Feng; Barsoum, Ivraym; Gupta, Rupesh; Hofmann, Marie-Claude; Yao, Humphrey Hung-Chang

    2010-01-01

    Stem cells have enormous potential for therapeutic application because of their ability to self-renew and differentiate into different cell types. Gonads, which consist of somatic cells and germ cells, are the only organs capable of transmitting genetic materials to the offspring. Germ-line stem cells and somatic stem cells have been found in the testis; however, the presence of stem cells in the ovary remains controversial. In this review, we discuss studies focusing on whether stem cell properties are present in the different cell types of male and female gonads and their implications on stem cell research. PMID:19482665

  17. Pancreatic stem cells remain unresolved.

    PubMed

    Jiang, Fang-Xu; Morahan, Grant

    2014-12-01

    Diabetes mellitus is caused by absolute (type 1) or relative (type 2) deficiency of insulin-secreting islet β cells. An ideal treatment of diabetes would, therefore, be to replace the lost or deficient β cells, by transplantation of donated islets or differentiated endocrine cells or by regeneration of endogenous islet cells. Due to their ability of unlimited proliferation and differentiation into all functional lineages in our body, including β cells, embryonic stem cells and induced pluripotent stem cells are ideally placed as cell sources for a diabetic transplantation therapy. Unfortunately, the inability to generate functional differentiated islet cells from pluripotent stem cells and the poor availability of donor islets have severely restricted the broad clinical use of the replacement therapy. Therefore, endogenous sources that can be directed to becoming insulin-secreting cells are actively sought after. In particular, any cell types in the developing or adult pancreas that may act as pancreatic stem cells (PSC) would provide an alternative renewable source for endogenous regeneration. In this review, we will summarize the latest progress and knowledge of such PSC, and discuss ways that facilitate the future development of this often controversial, but crucial research.

  18. In search of adrenocortical stem and progenitor cells.

    PubMed

    Kim, Alex C; Barlaskar, Ferdous M; Heaton, Joanne H; Else, Tobias; Kelly, Victoria R; Krill, Kenneth T; Scheys, Joshua O; Simon, Derek P; Trovato, Alessia; Yang, Wei-Hsiung; Hammer, Gary D

    2009-05-01

    Scientists have long hypothesized the existence of tissue-specific (somatic) stem cells and have searched for their location in different organs. The theory that adrenocortical organ homeostasis is maintained by undifferentiated stem or progenitor cells can be traced back nearly a century. Similar to other organ systems, it is widely believed that these rare cells of the adrenal cortex remain relatively undifferentiated and quiescent until needed to replenish the organ, at which time they undergo proliferation and terminal differentiation. Historical studies examining cell cycle activation by label retention assays and regenerative potential by organ transplantation experiments suggested that the adrenocortical progenitors reside in the outer periphery of the adrenal gland. Over the past decade, the Hammer laboratory, building on this hypothesis and these observations, has endeavored to understand the mechanisms of adrenocortical development and organ maintenance. In this review, we summarize the current knowledge of adrenal organogenesis. We present evidence for the existence and location of adrenocortical stem/progenitor cells and their potential contribution to adrenocortical carcinomas. Data described herein come primarily from studies conducted in the Hammer laboratory with incorporation of important related studies from other investigators. Together, the work provides a framework for the emerging somatic stem cell field as it relates to the adrenal gland.

  19. Stem cell applications in diabetes.

    PubMed

    Noguchi, Hirofumi

    2012-01-01

    Diabetes mellitus is a devastating disease and the World Health Organization (WHO) expects that the number of diabetic patients will increase to 300 million by the year 2025. Patients with diabetes experience decreased insulin secretion that is linked to a significant reduction in the number of islet cells. Type 1 diabetes is characterized by the selective destruction of pancreatic β cells caused by an autoimmune attack. Type 2 diabetes is a more complex pathology that, in addition to β cell loss caused by apoptotic programs, includes β cell de-differentiation and peripheric insulin resistance. The success achieved over the last few years with islet transplantation suggests that diabetes can be cured by the replenishment of deficient β cells. These observations are proof of the concept and have intensified interest in treating diabetes or other diseases not only by cell transplantation but also by stem cells. An increasing body of evidence indicates that, in addition to embryonic stem cells, several potential adult stem/progenitor cells derived from the pancreas, liver, spleen, and bone marrow could differentiate into insulin-producing cells in vitro or in vivo. However, significant controversy currently exists in this field. Pharmacological approaches aimed at stimulating the in vivo/ex vivo regeneration of β cells have been proposed as a way of augmenting islet cell mass. Overexpression of embryonic transcription factors in stem cells could efficiently induce their differentiation into insulin-expressing cells. A new technology, known as protein transduction, facilitates the differentiation of stem cells into insulin-producing cells. Recent progress in the search for new sources of β cells has opened up several possibilities for the development of new treatments for diabetes.

  20. Challenges and Strategies for Regenerating the Lacrimal Gland.

    PubMed

    Hirayama, Masatoshi; Kawakita, Tetsuya; Tsubota, Kazuo; Shimmura, Shigeto

    2016-04-01

    The lacrimal gland produces the aqueous component of tears, including electrolytes, peptides, and glycoproteins necessary to maintain homeostasis and optical properties of the ocular surface. Stem cells that contribute to the homeostasis of the lacrimal gland are under extensive study. It is still unclear whether such stem cells are of mesenchymal or epithelial origin. It is also possible that a unique epithelial stem cell undergoes epithelial-mesenchymal transition and contributes to the mesenchyme. Developmental studies in mice have shown that a network of growth factors contributes to epithelial-mesenchymal interaction during morphogenesis of the lacrimal gland. Recently, the developmental process was successfully recapitulated in vitro, providing a valuable tool for study of lacrimal gland development and possibly opening doors to regenerative therapy. While further studies are required to identify and appreciate the potential of lacrimal gland stem cells, advances in stem cell biology in general should become a catalyst towards developing regenerative therapy of the lacrimal gland.

  1. Targeting Breast Cancer Stem Cells

    PubMed Central

    McDermott, Sean P.; Wicha, Max S.

    2010-01-01

    The cancer stem cell (CSC) hypothesis postulates that tumors are maintained by a self-renewing CSC population that is also capable of differentiating into non-self renewing cell populations that constitute the bulk of the tumor. Although, the CSC hypothesis does not directly address the cell of origin of cancer, it is postulated that tissue-resident stem or progenitors are the most common targets of transformation. Clinically, CSCs are predicted to mediate tumor recurrence after chemo- and radiation-therapy due to the relative inability of these modalities to effectively target CSCs. If this is the case, then CSC must be efficiently targeted to achieve a true cure. Similarities between normal and malignant stem cells, at the levels of cell-surface proteins, molecular pathways, cell cycle quiescence, and microRNA signaling present challenges in developing CSC-specific therapeutics. Approaches to targeting CSCs include the development of agents targeting known stem cell regulatory pathways as well as unbiased high-throughput siRNA or small-molecule screening. Based on studies of pathways present in normal stem cells, recent work has identified potential “Achilles heals” of CSC, whereas unbiased screening provides opportunities to identify new pathways utilized by CSC as well as develop potential therapeutic agents. Here, we review both approaches and their potential to effectively target breast CSC. PMID:20599450

  2. Natural killer cell lymphoma of the parotid gland.

    PubMed

    Furukawa, Masayuki; Suzuki, Hideaki; Tohmiya, Yasuo; Matsuura, Kazuto; Takahashi, Etsu; Ichinohasama, Ryo; Kobayashi, Toshimitsu

    2003-01-01

    The majority of all parotid lymphomas are of the non-Hodgkin type and of B-cell origin. Primary natural killer cell lymphomas of the parotid gland are extremely rare. We present a case of natural killer cell lymphoma in a 34-year-old woman. The disease was refractory to chemotherapy, and the patient eventually succumbed due to lymphoma-associated hemophagocytic syndrome. PMID:14564097

  3. Dormancy activation mechanism of tracheal stem cells

    PubMed Central

    Li, Xin; Xu, Jing-xian; Jia, Xin-Shan; Li, Wen-ya; Han, Yi-chen; Wang, En-hua; Li, Fang

    2016-01-01

    Accurate markers and molecular mechanisms of stem cell dormancy and activation are poorly understood. In this study, the anti-cancer drug, 5-fluorouracil, was used to selectively kill proliferating cells of human bronchial epithelial (HBE) cell line. This method can enrich and purify stem cell population. The dormant versus active status of stem cells was determined by phosphorylation of RNAp II Ser2. The surviving stem cells were cultured to form stem cell spheres expressing stem cell markers and transplanted into nude mice to form a teratoma. The results demonstrated the properties of stem cells and potential for multi-directional differentiation. Bisulfite sequencing polymerase chain reaction showed that demethylation of the Sox2 promoter by 5-FU resulted in Sox2 expression in the dormant stem cells. This study shows that the dormancy and activation of HBE stem cells is closely related to epigenetic modification. PMID:27009861

  4. Stem cell regulation: Implications when differentiated cells regulate symmetric stem cell division.

    PubMed

    Høyem, Marte Rørvik; Måløy, Frode; Jakobsen, Per; Brandsdal, Bjørn Olav

    2015-09-01

    We use a mathematical model to show that if symmetric stem cell division is regulated by differentiated cells, then changes in the population dynamics of the differentiated cells can lead to changes in the population dynamics of the stem cells. More precisely, the relative fitness of the stem cells can be affected by modifying the death rate of the differentiated cells. This result is interesting because stem cells are less sensitive than differentiated cells to environmental factors, such as medical therapy. Our result implies that stem cells can be manipulated indirectly by medical treatments that target the differentiated cells. PMID:25997796

  5. Engineering stem cell niches in bioreactors

    PubMed Central

    Liu, Meimei; Liu, Ning; Zang, Ru; Li, Yan; Yang, Shang-Tian

    2013-01-01

    Stem cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells and amniotic fluid stem cells have the potential to be expanded and differentiated into various cell types in the body. Efficient differentiation of stem cells with the desired tissue-specific function is critical for stem cell-based cell therapy, tissue engineering, drug discovery and disease modeling. Bioreactors provide a great platform to regulate the stem cell microenvironment, known as “niches”, to impact stem cell fate decision. The niche factors include the regulatory factors such as oxygen, extracellular matrix (synthetic and decellularized), paracrine/autocrine signaling and physical forces (i.e., mechanical force, electrical force and flow shear). The use of novel bioreactors with precise control and recapitulation of niche factors through modulating reactor operation parameters can enable efficient stem cell expansion and differentiation. Recently, the development of microfluidic devices and microbioreactors also provides powerful tools to manipulate the stem cell microenvironment by adjusting flow rate and cytokine gradients. In general, bioreactor engineering can be used to better modulate stem cell niches critical for stem cell expansion, differentiation and applications as novel cell-based biomedicines. This paper reviews important factors that can be more precisely controlled in bioreactors and their effects on stem cell engineering. PMID:24179601

  6. Stem Cells and Liver Regeneration

    PubMed Central

    DUNCAN, ANDREW W.; DORRELL, CRAIG; GROMPE, MARKUS

    2011-01-01

    One of the defining features of the liver is the capacity to maintain a constant size despite injury. Although the precise molecular signals involved in the maintenance of liver size are not completely known, it is clear that the liver delicately balances regeneration with overgrowth. Mammals, for example, can survive surgical removal of up to 75% of the total liver mass. Within 1 week after liver resection, the total number of liver cells is restored. Moreover, liver overgrowth can be induced by a variety of signals, including hepatocyte growth factor or peroxisome proliferators; the liver quickly returns to its normal size when the proliferative signal is removed. The extent to which liver stem cells mediate liver regeneration has been hotly debated. One of the primary reasons for this controversy is the use of multiple definitions for the hepatic stem cell. Definitions for the liver stem cell include the following: (1) cells responsible for normal tissue turnover, (2) cells that give rise to regeneration after partial hepatectomy, (3) cells responsible for progenitor-dependent regeneration, (4) cells that produce hepatocyte and bile duct epithelial phenotypes in vitro, and (5) transplantable liver-repopulating cells. This review will consider liver stem cells in the context of each definition. PMID:19470389

  7. Dental Stem Cell in Tooth Development and Advances of Adult Dental Stem Cell in Regenerative Therapies.

    PubMed

    Tan, Jiali; Xu, Xin; Lin, Jiong; Fan, Li; Zheng, Yuting; Kuang, Wei

    2015-01-01

    Stem cell-based therapies are considered as a promising treatment for many clinical usage such as tooth regeneration, bone repairation, spinal cord injury, and so on. However, the ideal stem cell for stem cell-based therapy still remains to be elucidated. In the past decades, several types of stem cells have been isolated from teeth, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), dental follicle progenitor stem cells (DFPCs) and stem cells from apical papilla (SCAP), which may be a good source for stem cell-based therapy in certain disease, especially when they origin from neural crest is considered. In this review, the specific characteristics and advantages of the adult dental stem cell population will be summarized and the molecular mechanisms of the differentiation of dental stem cell during tooth development will be also discussed.

  8. Stem cells and kidney regeneration.

    PubMed

    Chou, Yu-Hsiang; Pan, Szu-Yu; Yang, Chian-Huei; Lin, Shuei-Liong

    2014-04-01

    Kidney disease is an escalating burden all over the world. In addition to preventing kidney injury, regenerating damaged renal tissue is as important as to retard the progression of chronic kidney disease to end stage renal disease. Although the kidney is a delicate organ and has only limited regenerative capacity compared to the other organs, an increasing understanding of renal development and renal reprogramming has kindled the prospects of regenerative options for kidney disease. Here, we will review the advances in the kidney regeneration including the manipulation of renal tubular cells, fibroblasts, endothelial cells, and macrophages in renal disease. Several types of stem cells, such as bone marrow-derived cells, adipocyte-derived mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells are also applied for renal regeneration. Endogenous or lineage reprogrammed renal progenitor cells represent an attractive possibility for differentiation into multiple renal cell types. Angiogenesis can ameliorate hypoxia and renal fibrosis. Based on these studies and knowledge, we hope to innovate more reliable pharmacological or biotechnical methods for kidney regeneration medicine.

  9. Characteristics and EGFP expression of goat mammary gland epithelial cells.

    PubMed

    Zheng, Y-M; He, X-Y; Zhang, Y

    2010-12-01

    The aims of this study were (i) to establish a goat mammary gland epithelial (GMGE) cell line, and (ii) to determine if these GMGE cells could be maintained long-term in culture by continuous subculturing following transfection with a reporter gene, enhanced green fluorescence protein (EGFP). Primary culture of GMGE cells was achieved by outgrowth of migrating cells from the fragments of the mammary gland tissue of a lactating goat. The passage 16 GMGE cells were transfected with EGFP gene using lipofection. The expression of Cell keratins of epithelial cells in GMGE cells was test by immunofluorescence. Βeta-Casein gene mRNA was test for GMGE cells by RT-PCR. The results showed that when grown at low density on a plastic substratum, the GMGE cells formed islands, and when grown to confluency, the cells formed a monolayer and aggregated with the characteristic cobble-stone morphology of epithelial cells. GMGE cells could form dome-like structure which looked like nipple, and the lumen-like structures formed among the cells. Several blister-like structures appeared in the appearance of the cells. The GMGE cells contained different cell types, majority of the cells were short shuttle-like or polygon which were beehive-like. A part of cells were round and flat, a small number of cells were elongated. Some of the GMGE cells contained milk drops. The cell nuclei were round which had 2-4 obvious cores. The expression of Cell keratins demonstrated the property of epithelial cells in GMGE cells by immunofluorescence. The GMGE cells could express transcript encoding a Βeta-Casein protein. EGFP gene was successfully transferred into the GMGE cells, and the transfected cells could be maintained long-term in culture by continuous subculturing. In conclusion, we have established a EGFP gene transfected GMGE (ET-GMGE) cell line and maintained it long-term in culture by continuous subculturing. PMID:20113446

  10. Characteristics and EGFP expression of goat mammary gland epithelial cells.

    PubMed

    Zheng, Y-M; He, X-Y; Zhang, Y

    2010-12-01

    The aims of this study were (i) to establish a goat mammary gland epithelial (GMGE) cell line, and (ii) to determine if these GMGE cells could be maintained long-term in culture by continuous subculturing following transfection with a reporter gene, enhanced green fluorescence protein (EGFP). Primary culture of GMGE cells was achieved by outgrowth of migrating cells from the fragments of the mammary gland tissue of a lactating goat. The passage 16 GMGE cells were transfected with EGFP gene using lipofection. The expression of Cell keratins of epithelial cells in GMGE cells was test by immunofluorescence. Βeta-Casein gene mRNA was test for GMGE cells by RT-PCR. The results showed that when grown at low density on a plastic substratum, the GMGE cells formed islands, and when grown to confluency, the cells formed a monolayer and aggregated with the characteristic cobble-stone morphology of epithelial cells. GMGE cells could form dome-like structure which looked like nipple, and the lumen-like structures formed among the cells. Several blister-like structures appeared in the appearance of the cells. The GMGE cells contained different cell types, majority of the cells were short shuttle-like or polygon which were beehive-like. A part of cells were round and flat, a small number of cells were elongated. Some of the GMGE cells contained milk drops. The cell nuclei were round which had 2-4 obvious cores. The expression of Cell keratins demonstrated the property of epithelial cells in GMGE cells by immunofluorescence. The GMGE cells could express transcript encoding a Βeta-Casein protein. EGFP gene was successfully transferred into the GMGE cells, and the transfected cells could be maintained long-term in culture by continuous subculturing. In conclusion, we have established a EGFP gene transfected GMGE (ET-GMGE) cell line and maintained it long-term in culture by continuous subculturing.

  11. Pluripotent stem cells from germ cells.

    PubMed

    Kerr, Candace L; Shamblott, Michael J; Gearhart, John D

    2006-01-01

    To date, stem cells have been derived from three sources of germ cells. These include embryonic germ cells (EGCs), embryonal carcinoma cells (ECCs), and multipotent germ line stem cells (GSCs). EGCs are derived from primordial germ cells that arise in the late embryonic and early fetal period of development. ECCs are derived from adult testicular tumors whereas GSCs have been derived by culturing spermatogonial stem cells from mouse neonates and adults. For each of these lines, their pluripotency has been demonstrated by their ability to differentiate into cell types derived from the three germ layers in vitro and in vivo and in chimeric animals, including germ line transmission. These germ line-derived stem cells have been generated from many species including human, mice, porcine, and chicken albeit with only slight modifications. This chapter describes general considerations regarding critical aspects of their derivation compared with their counterpart, embryonic stem cells (ESCs). Detailed protocols for EGC derivation and maintenance from human and mouse primordial germ cells (PGCs) will be presented.

  12. DNA methylation and hydroxymethylation in stem cells.

    PubMed

    Cheng, Ying; Xie, Nina; Jin, Peng; Wang, Tao

    2015-06-01

    In mammals, DNA methylation and hydroxymethylation are specific epigenetic mechanisms that can contribute to the regulation of gene expression and cellular functions. DNA methylation is important for the function of embryonic stem cells and adult stem cells (such as haematopoietic stem cells, neural stem cells and germline stem cells), and changes in DNA methylation patterns are essential for successful nuclear reprogramming. In the past several years, the rediscovery of hydroxymethylation and the TET enzymes expanded our insights tremendously and uncovered more dynamic aspects of cytosine methylation regulation. Here, we review the current knowledge and highlight the most recent advances in DNA methylation and hydroxymethylation in embryonic stem cells, induced pluripotent stem cells and several well-studied adult stems cells. Our current understanding of stem cell epigenetics and new advances in the field will undoubtedly stimulate further clinical applications of regenerative medicine in the future.

  13. Stem cells' exodus: a journey to immortality.

    PubMed

    Zhou, Yi; Lewallen, Michelle; Xie, Ting

    2013-01-28

    Stem cell niches provide a regulatory microenvironment that retains stem cells and promotes self-renewal. Recently in Developmental Cell, Rinkevich et al. (2013) showed that cell islands (CIs) of Botryllus schlosseri, a colonial chordate, provide niches for maintaining cycling stem cells that migrate from degenerated CIs to newly formed buds.

  14. Human stem cell ethics: beyond the embryo.

    PubMed

    Sugarman, Jeremy

    2008-06-01

    Human embryonic stem cell research has elicited powerful debates about the morality of destroying human embryos. However, there are important ethical issues related to stem cell research that are unrelated to embryo destruction. These include particular issues involving different types of cells used, the procurement of such cells, in vivo use of stem cells, intellectual property, and conflicts of interest.

  15. Stem-cell ecology and stem cells in motion

    PubMed Central

    Scadden, David T.

    2008-01-01

    This review highlights major scientific developments over the past 50 years or so in concepts related to stem-cell ecology and to stem cells in motion. Many thorough and eloquent reviews have been presented in the last 5 years updating progress in these issues. Some paradigms have been challenged, others validated, or new ones brought to light. In the present review, we will confine our remarks to the historical development of progress. In doing so, we will refrain from a detailed analysis of controversial data, emphasizing instead widely accepted views and some challenging novel ones. PMID:18398055

  16. Introduction to stem cells and regenerative medicine.

    PubMed

    Kolios, George; Moodley, Yuben

    2013-01-01

    Stem cells are a population of undifferentiated cells characterized by the ability to extensively proliferate (self-renewal), usually arise from a single cell (clonal), and differentiate into different types of cells and tissue (potent). There are several sources of stem cells with varying potencies. Pluripotent cells are embryonic stem cells derived from the inner cell mass of the embryo and induced pluripotent cells are formed following reprogramming of somatic cells. Pluripotent cells can differentiate into tissue from all 3 germ layers (endoderm, mesoderm, and ectoderm). Multipotent stem cells may differentiate into tissue derived from a single germ layer such as mesenchymal stem cells which form adipose tissue, bone, and cartilage. Tissue-resident stem cells are oligopotent since they can form terminally differentiated cells of a specific tissue. Stem cells can be used in cellular therapy to replace damaged cells or to regenerate organs. In addition, stem cells have expanded our understanding of development as well as the pathogenesis of disease. Disease-specific cell lines can also be propagated and used in drug development. Despite the significant advances in stem cell biology, issues such as ethical controversies with embryonic stem cells, tumor formation, and rejection limit their utility. However, many of these limitations are being bypassed and this could lead to major advances in the management of disease. This review is an introduction to the world of stem cells and discusses their definition, origin, and classification, as well as applications of these cells in regenerative medicine.

  17. Common stemness regulators of embryonic and cancer stem cells.

    PubMed

    Hadjimichael, Christiana; Chanoumidou, Konstantina; Papadopoulou, Natalia; Arampatzi, Panagiota; Papamatheakis, Joseph; Kretsovali, Androniki

    2015-10-26

    Pluripotency of embryonic stem cells (ESCs) and induced pluripotent stem cells is regulated by a well characterized gene transcription circuitry. The circuitry is assembled by ESC specific transcription factors, signal transducing molecules and epigenetic regulators. Growing understanding of stem-like cells, albeit of more complex phenotypes, present in tumors (cancer stem cells), provides a common conceptual and research framework for basic and applied stem cell biology. In this review, we highlight current results on biomarkers, gene signatures, signaling pathways and epigenetic regulators that are common in embryonic and cancer stem cells. We discuss their role in determining the cell phenotype and finally, their potential use to design next generation biological and pharmaceutical approaches for regenerative medicine and cancer therapies.

  18. Common stemness regulators of embryonic and cancer stem cells

    PubMed Central

    Hadjimichael, Christiana; Chanoumidou, Konstantina; Papadopoulou, Natalia; Arampatzi, Panagiota; Papamatheakis, Joseph; Kretsovali, Androniki

    2015-01-01

    Pluripotency of embryonic stem cells (ESCs) and induced pluripotent stem cells is regulated by a well characterized gene transcription circuitry. The circuitry is assembled by ESC specific transcription factors, signal transducing molecules and epigenetic regulators. Growing understanding of stem-like cells, albeit of more complex phenotypes, present in tumors (cancer stem cells), provides a common conceptual and research framework for basic and applied stem cell biology. In this review, we highlight current results on biomarkers, gene signatures, signaling pathways and epigenetic regulators that are common in embryonic and cancer stem cells. We discuss their role in determining the cell phenotype and finally, their potential use to design next generation biological and pharmaceutical approaches for regenerative medicine and cancer therapies. PMID:26516408

  19. Cancer stem cell signaling pathways.

    PubMed

    Matsui, William H

    2016-09-01

    Tissue development and homeostasis are governed by the actions of stem cells. Multipotent cells are capable of self-renewal during the course of one's lifetime. The accurate and appropriate regulation of stem cell functions is absolutely critical for normal biological activity. Several key developmental or signaling pathways have been shown to play essential roles in this regulatory capacity. Specifically, the Janus-activated kinase/signal transducer and activator of transcription, Hedgehog, Wnt, Notch, phosphatidylinositol 3-kinase/phosphatase and tensin homolog, and nuclear factor-κB signaling pathways have all been shown experimentally to mediate various stem cell properties, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation. Unsurprisingly, many of these crucial signaling pathways are dysregulated in cancer. Growing evidence suggests that overactive or abnormal signaling within and among these pathways may contribute to the survival of cancer stem cells (CSCs). CSCs are a relatively rare population of cancer cells capable of self-renewal, differentiation, and generation of serially transplantable heterogeneous tumors of several types of cancer. PMID:27611937

  20. Separation of cells from the rat anterior pituitary gland

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Hatfield, J. Michael

    1984-01-01

    Data concerned with analyzing the cellular organization of the rat anterior pituitary gland are examined. The preparation of the cell suspensions and the methods used to separate pituitary cell types are described. Particular emphasis is given to velocity sedimentation at unit gravity, density gradient centrifugation, affinity methods, fluorescence activated cell sorting, and density gradient and continuous-flow electrophoresis. The difficulties encountered when attempting to compare data from different pituitary cell separation studies are discussed, and results from various experiments are presented. The functional capabilities of the separated cell populations can be tested in various culture systems.

  1. Normal adrenal glands in small cell lung carcinoma: CT-guided biopsy

    SciTech Connect

    Pagani, J.J.

    1983-05-01

    Twenty-four small cell lung carcinoma patients with morphologically normal adrenal glands by computed tomographic (CT) criteria underwent percutaneous thin-needle biopsy of their adrenal glands. Of 43 glands biopsied, 29 had adequate cellular material for interpretation. Five (17%) of the 29 glands were positive for metastases; the rest had negative biopsies. This series indicates an approximate 17% false-negative diagnosis rate by CT when staging the adrenal glands in patients with small cell lung carcinoma. It also demonstrates the utility of percutaneous needle biopsy as an investigational tool to further evaluate normal-sized adrenal glands in the oncologic patient.

  2. Late recurrence of acinic cell carcinoma of the parotid gland.

    PubMed

    Miki, H; Masuda, E; Ohata, S; Komaki, K; Hirokawa, M; Uehara, H; Asano, H; Monden, Y

    1999-08-01

    Acinic cell carcinoma of the salivary glands is a rare cancer representing a low grade malignancy. The recurrence of a tumor is sometimes encountered, usually within 5 years of initial operation. We describe an unusual recurrence after a long interval following primary surgery. In 1987, a 60-year-old woman underwent excision of a mass in the superficial lobe of the right parotid gland under the preoperative diagnosis of a benign tumor. A histologic diagnosis of acinic cell carcinoma was made by examining sections from the resected mass. The patient noted several small nodules in the right parotid region in 1995, but she did not visit our clinic until 1998 when tenderness developed. A locally recurrent tumor and cervical lymph nodes containing metastases were resected and postoperative radiotherapy was given 11 years after the first operation. At least 10 years of follow-up may be necessary for patients with acinic cell carcinoma because of slow-tumor growth.

  3. Immunocompetent cells in benign and malignant salivary gland tumors.

    PubMed

    Kärjä, V J; Syrjänen, K J; Syrjänen, S M

    1996-10-01

    IgA-, IgG, and IgM-producing plasma cells as well as 3- and T-lymphocytes were immunophenotyped and quantitated in a series of 216 benign and malignant salivary gland tumors, with special emphasis placed on the clinical behavior of the tumors. Highest number of plasma cells were found in mucoepidermoid carcinomas, where IgG-plasma cells were the sole Ig-class secreted. No IgA-immunoreactivity was found in adenoid cystic, undifferentiated, acinic cell, carcinoma in pleomorphic adenoma, and mucoepidermoid carcinomas. In squamous cell carcinomas, the number of IgM-plasma cells was higher than that in other salivary gland tumors. Basal cell adenomas contained only IgM-positive plasma cells. In logistic regression analysis, IgG- and IgM-producing plasma cells in malignant salivary gland tumors were related to an increased tumor diameter (p = 0.022 and 0.046, respectively). In benign tumors, neither clinical nor prognostic value could be attributed to the distribution of plasma cells. T-cells and B-cells were present in 63.9% and 33.8% of all tumors, found in 63.8% and 26.7% (p = 0.0048) of the benign tumors, and in 64.1% and 41.7% (not significant) of the malignant tumors, respectively. The presence of T- of B-lymphocytes was of no prognostic significance in malignant tumors. In benign tumors, however, the mean age of the patients was significantly higher (p = 0.010) and the mean time to recurrence significantly shorter (p = 0.018) in patients with tumors containing T-cells than in those devoid of these cells. In conclusion, the cell-mediated immunity (T-cells and their subsets) seems to play a more important role in pathogenesis and prognostication of salivary gland neoplasms than do the cells of the B-cell lineage, and, clearly, further studies are needed to elucidate these issues.

  4. Stem cells sources for intervertebral disc regeneration.

    PubMed

    Vadalà, Gianluca; Russo, Fabrizio; Ambrosio, Luca; Loppini, Mattia; Denaro, Vincenzo

    2016-05-26

    Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments. Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers (e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration.

  5. Stem cells sources for intervertebral disc regeneration

    PubMed Central

    Vadalà, Gianluca; Russo, Fabrizio; Ambrosio, Luca; Loppini, Mattia; Denaro, Vincenzo

    2016-01-01

    Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments. Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers (e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration. PMID:27247704

  6. Stem cells sources for intervertebral disc regeneration.

    PubMed

    Vadalà, Gianluca; Russo, Fabrizio; Ambrosio, Luca; Loppini, Mattia; Denaro, Vincenzo

    2016-05-26

    Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments. Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers (e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration. PMID:27247704

  7. Stem cell transplantation for neuroblastoma.

    PubMed

    Fish, J D; Grupp, S A

    2008-01-01

    High-risk neuroblastoma is a childhood malignancy with a poor prognosis. Gradual improvements in survival have correlated with therapeutic intensity, and the ability to harvest, process and store autologous hematopoietic stem cells has allowed for dose intensification beyond marrow tolerance. The use of high-dose chemotherapy with autologous hematopoietic stem cell rescue in consolidation has resulted in improvements in survival, although further advances are still needed. Newer approaches to SCT and supportive care, most notably the transition to PBSC, have resulted in further improvement in survival and decreases in treatment-related mortality. Research into experimental approaches to hematopoietic SCT is ongoing.

  8. Characterization of an epithelial cell line from bovine mammary gland.

    PubMed

    German, Tania; Barash, Itamar

    2002-05-01

    Elucidation of the bovine mammary gland's unique characteristics depends on obtaining an authentic cell line that will reproduce its function in vitro. Representative clones from bovine mammary cell populations, differing in their attachment capabilities, were cultured. L-1 cells showed strong attachment to the plate, whereas H-7 cells detached easily. Cultures established from these clones were nontumorigenic upon transplantation to an immunodeficient host; they exhibited the epithelial cell characteristics of positive cytokeratin but not smooth muscle actin staining. Both cell lines depended on fetal calf serum for proliferation. They exhibited distinct levels of differentiation on Matrigel in serum-free, insulin-supplemented medium on the basis of their organization and beta-lactoglobulin (BLG) secretion. H-7 cells organized into mammospheres, whereas L-1 cells arrested in a duct-like morphology. In both cell lines, prolactin activated phosphorylation of the signal transducer and activator of transcription, Stat5-a regulator of milk protein gene transcription, and of PHAS-I-an inhibitor of translation initiation in its nonphosphorylated form. De novo synthesis and secretion of BLG were detected in differentiated cultures: in L-1 cells, BLG was dependent on lactogenic hormones for maximal induction but was less stringently controlled than was beta-casein in the mouse CID-9 cell line. L-1 cells also encompassed a near-diploid chromosomal karyotype and may serve as a tool for studying functional characteristics of the bovine mammary gland.

  9. Basal cell adenocarcinomas of the major salivary glands.

    PubMed

    Ellis, G L; Wiscovitch, J G

    1990-04-01

    Basal cell adenoma of salivary gland has become an established variant of monomorphic adenoma since its segregation from pleomorphic adenoma in 1967. Although there have been many comprehensive reports about benign basal cell adenomas, only rare case reports of malignant basal cell type neoplasms have appeared in the literature. Described in this report are the clinicopathologic features of 29 cases labeled basal cell adenocarcinomas that had morphologic characteristics of basal cell adenomas but infiltrative, perineural, and intravascular growth features that indicated a malignant potential. With limited follow-up, seven tumors are known to have recurred, and three of these metastasized to lymph nodes and lung. One patient died with extensive local spread of the tumor. All patients were adults. The peak incidence was in the sixth decade of life, and there was no gender predilection. The parotid gland was the predominant site. A solid type growth configuration was most frequent; membranous, trabecular, and tubular types were less frequent, in that order. Three patients also had dermal cylindromas, perhaps indicative of a salivary gland-skin adnexal diathesis that has been previously reported.

  10. Carcinoma in basal cell adenoma of the parotid gland.

    PubMed

    Nagao, T; Sugano, I; Ishida, Y; Matsuzaki, O; Konno, A; Kondo, Y; Nagao, K

    1997-01-01

    Malignant transformation of basal cell adenoma (BCA) of the parotid gland is rarely reported, and when occurred, may principally become manifest as a malignant basaloid tumor, i.e. basal cell adenocarcinoma or adenoid cystic carcinoma. We describe herein three cases of non-basaloid carcinoma arising in BCA. The incidence of this malignant tumor was 0.2% of all parotid gland tumors and 4.3% of BCAs in our series. One case was salivary duct carcinoma showing histologic evidence of transition between malignant and benign elements. The remaining two cases were well-encapsulated parotid gland tumors, which were composed of BCA and scattered foci of malignant transformation. Malignant components were adenocarcinoma, not otherwise specified (NOS), and sometimes intermixed with neoplastic myoepithelial cells included BCA cells. These two cases were regarded to be intracapsular carcinoma in BCA. BCA components showed solid, tubular and trabecular arrangements. The patients' prognosis was quite variable among these three cases; the first case died of disease after 27 months, whereas the latter two cases are alive and well for 4 and 10 years after surgery. Ki-67 labeling index indicated that cell proliferative activity was at least five times higher in carcinomas than BCAs. Non-basaloid carcinomas such as salivary duct carcinoma or adenocarcinoma, NOS, do develop in BCAs as in the case of a pleomorphic adenoma with malignant transformation, though the incidence may be extremely rare.

  11. Human breast cancer cells are redirected to mammary epithelial cells upon interaction with the regenerating mammary gland microenvironment in-vivo.

    PubMed

    Bussard, Karen M; Smith, Gilbert H

    2012-01-01

    Breast cancer is the second leading cause of cancer deaths in the United States. At present, the etiology of breast cancer is unknown; however the possibility of a distinct cell of origin, i.e. a cancer stem cell, is a heavily investigated area of research. Influencing signals from the tissue niche are known to affect stem cells. Literature has shown that cancer cells lose their tumorigenic potential and display 'normal' behavior when placed into 'normal' ontogenic environments. Therefore, it may be the case that the tissue microenvironment is able to generate signals to redirect cancer cell fate. Previously, we showed that pluripotent human embryonal carcinoma cells could be redirected by the regenerating mammary gland microenvironment to contribute epithelial progeny for 'normal' gland development in-vivo. Here, we show that that human metastatic, non-metastatic, and metastasis-suppressed breast cancer cells proliferate and contribute to normal mammary gland development in-vivo without tumor formation. Immunochemistry for human-specific mitochondria, keratin 8 and 14, as well as human-specific milk proteins (alpha-lactalbumin, impregnated transplant hosts) confirmed the presence of human cell progeny. Features consistent with normal mammary gland development as seen in intact hosts (duct, lumen formation, development of secretory acini) were recapitulated in both primary and secondary outgrowths from chimeric implants. These results suggest the dominance of the tissue microenvironment over cancer cell fate. This work demonstrates that cultured human breast cancer cells (metastatic and non-metastatic) respond developmentally to signals generated by the mouse mammary gland microenvironment during gland regeneration in-vivo.

  12. Matrigel improves functional properties of primary human salivary gland cells.

    PubMed

    Maria, Ola M; Zeitouni, Anthony; Gologan, Olga; Tran, Simon D

    2011-05-01

    Currently, there is no effective treatment available to patients with irreversible loss of functional salivary acini caused by Sjogren's syndrome or after radiotherapy for head and neck cancer. A tissue-engineered artificial salivary gland would help these patients. The graft cells for this device must establish tight junctions in addition to being of fluid-secretory nature. This study analyzed a graft source from human salivary glands (huSG) cultured on Matrigel. Cells were obtained from parotid and submandibular glands, expanded in vitro, and then plated on either Matrigel-coated (2 mg/mL) or uncoated culture dish. Immunohistochemistry, transmission electron microscopy, quantitative real-time-polymerase chain reaction, Western blot, and transepithelial electrical resistance were employed. On Matrigel, huSG cells adopted an acinar phenotype by forming three-dimensional acinar-like units (within 24 h of plating) as well as a monolayer of cells. On uncoated surfaces (plastic), huSG cells only formed monolayers of ductal cells. Both types of culture conditions allowed huSG cells to express tight junction proteins (claudin-1, -2, -3, -4; occludin; JAM-A; and ZO-1) and adequate transepithelial electrical resistance. Importantly, 99% of huSG cells on Matrigel expressed α-amylase and the water channel protein Aquaporin-5, as compared to <5% of huSG cells on plastic. Transmission electron microscopy confirmed an acinar phenotype with many secretory granules. Matrigel increased the secretion of α-amylase two to five folds into the media, downregulated certain salivary genes, and regulated the translation of acinar proteins. This three-dimensional in vitro serum-free cell culture method allows the organization and differentiation of huSG cells into salivary cells with an acinar phenotype.

  13. Ascl3 marks adult progenitor cells of the mouse salivary gland.

    PubMed

    Rugel-Stahl, Anastasia; Elliott, Marilyn E; Ovitt, Catherine E

    2012-05-01

    The Ascl3 transcription factor marks a subset of salivary gland duct cells present in the three major salivary glands of the mouse. In vivo, these cells generate both duct and secretory acinar cell descendants. Here, we have analyzed whether Ascl3-expressing cells retain this multipotent lineage potential in adult glands. Cells isolated from mouse salivary glands were cultured in vitro as non-adherent spheres. Lineage tracing of the Ascl3-expressing cells within the spheres demonstrates that Ascl3+ cells isolated from adult glands remain multipotent, generating both duct and acinar cell types in vitro. Furthermore, we demonstrate that the progenitor cells characterized by Keratin 5 expression are an independent population from Ascl3+ progenitor cells. We conclude that the Ascl3+ cells are intermediate lineage-restricted progenitor cells of the adult salivary glands.

  14. The regulatory niche of intestinal stem cells.

    PubMed

    Sailaja, Badi Sri; He, Xi C; Li, Linheng

    2016-09-01

    The niche constitutes a unique category of cells that support the microenvironment for the maintenance and self-renewal of stem cells. Intestinal stem cells reside at the base of the crypt, which contains adjacent epithelial cells, stromal cells and smooth muscle cells, and soluble and cell-associated growth and differentiation factors. We summarize here recent advances in our understanding of the crucial role of the niche in regulating stem cells. The stem cell niche maintains a balance among quiescence, proliferation and regeneration of intestinal stem cells after injury. Mesenchymal cells, Paneth cells, immune cells, endothelial cells and neural cells are important regulatory components that secrete niche ligands, growth factors and cytokines. Intestinal homeostasis is regulated by niche signalling pathways, specifically Wnt, bone morphogenetic protein, Notch and epidermal growth factor. These insights into the regulatory stem cell niche during homeostasis and post-injury regeneration offer the potential to accelerate development of therapies for intestine-related disorders.

  15. The regulatory niche of intestinal stem cells.

    PubMed

    Sailaja, Badi Sri; He, Xi C; Li, Linheng

    2016-09-01

    The niche constitutes a unique category of cells that support the microenvironment for the maintenance and self-renewal of stem cells. Intestinal stem cells reside at the base of the crypt, which contains adjacent epithelial cells, stromal cells and smooth muscle cells, and soluble and cell-associated growth and differentiation factors. We summarize here recent advances in our understanding of the crucial role of the niche in regulating stem cells. The stem cell niche maintains a balance among quiescence, proliferation and regeneration of intestinal stem cells after injury. Mesenchymal cells, Paneth cells, immune cells, endothelial cells and neural cells are important regulatory components that secrete niche ligands, growth factors and cytokines. Intestinal homeostasis is regulated by niche signalling pathways, specifically Wnt, bone morphogenetic protein, Notch and epidermal growth factor. These insights into the regulatory stem cell niche during homeostasis and post-injury regeneration offer the potential to accelerate development of therapies for intestine-related disorders. PMID:27060879

  16. Identification of Putative Bovine Mammary Epithelial Stem Cells by Their Retention of Labeled DNA Strands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stem cells characteristically retain labeled DNA for extended periods due to their selective segregation of template DNA strands during mitosis. In this study, proliferating cells in the prepubertal bovine mammary gland were labeled using five daily-injections of 5-bromo-2-deoxyuridine (BrdU). Fiv...

  17. Becoming a Blood Stem Cell Donor

    MedlinePlus

    ... total__ Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Subscribe Subscribed Unsubscribe 359 359 Loading... ... Ever considered becoming a bone marrow or blood stem cell donor? Follow this true story of a former ...

  18. Stem Cell Transplant Patients and Fungal Infections

    MedlinePlus

    ... Foodborne, Waterborne, and Environmental Diseases Mycotic Diseases Branch Stem Cell Transplant Patients and Fungal Infections Recommend on Facebook ... Mold . Top of Page Preventing fungal infections in stem cell transplant patients Fungi are difficult to avoid because ...

  19. Adult Stem Cells and Diabetes Therapy

    PubMed Central

    Ilgun, Handenur; Kim, Joseph William; Luo, LuGuang

    2016-01-01

    The World Health Organization estimates that diabetes will be the fourth most prevalent disease by 2050. Developing a new therapy for diabetes is a challenge for researchers and clinicians in field. Many medications are being used for treatment of diabetes however with no conclusive and effective results therefore alternative therapies are required. Stem cell therapy is a promising tool for diabetes therapy, and it has involved embryonic stem cells, adult stem cells, and pluripotent stem cells. In this review, we focus on adult stem cells, especial human bone marrow stem cells (BM) for diabetes therapy, its history, and current development. We discuss prospects for future diabetes therapy such as induced pluripotent stem cells which have popularity in stem cell research area. PMID:27123495

  20. Stem cell technology for neurodegenerative diseases.

    PubMed

    Lunn, J Simon; Sakowski, Stacey A; Hur, Junguk; Feldman, Eva L

    2011-09-01

    Over the past 20 years, stem cell technologies have become an increasingly attractive option to investigate and treat neurodegenerative diseases. In the current review, we discuss the process of extending basic stem cell research into translational therapies for patients suffering from neurodegenerative diseases. We begin with a discussion of the burden of these diseases on society, emphasizing the need for increased attention toward advancing stem cell therapies. We then explain the various types of stem cells utilized in neurodegenerative disease research, and outline important issues to consider in the transition of stem cell therapy from bench to bedside. Finally, we detail the current progress regarding the applications of stem cell therapies to specific neurodegenerative diseases, focusing on Parkinson disease, Huntington disease, Alzheimer disease, amyotrophic lateral sclerosis, and spinal muscular atrophy. With a greater understanding of the capacity of stem cell technologies, there is growing public hope that stem cell therapies will continue to progress into realistic and efficacious treatments for neurodegenerative diseases.

  1. Perspectives on human stem cell research.

    PubMed

    Jung, Kyu Won

    2009-09-01

    Human stem cell research draws not only scientists' but the public's attention. Human stem cell research is considered to be able to identify the mechanism of human development and change the paradigm of medical practices. However, there are heated ethical and legal debates about human stem cell research. The core issue is that of human dignity and human life. Some prefer human adult stem cell research or iPS cell research, others hES cell research. We do not need to exclude any type of stem cell research because each has its own merits and issues, and they can facilitate the scientific revolution when working together.

  2. [Genetic regulation of plant shoot stem cells].

    PubMed

    Al'bert, E V; Ezhova, T A

    2013-02-01

    This article describes the main features of plant stem cells and summarizes the results of studies of the genetic control of stem cell maintenance in the apical meristem of the shoot. It is demonstrated that the WUS-CLV gene system plays a key role in the maintenance of shoot apical stem cells and the formation of adventitious buds and somatic embryos. Unconventional concepts of plant stem cells are considered.

  3. Stem Cell Research Policies around the World

    PubMed Central

    Dhar, Deepali; Hsi-en Ho, John

    2009-01-01

    The proliferation of stem cell research, conflated with its ethical and moral implications, has led governments to attempt regulation of both the science and funding of stem cells. Due to a diversity of opinions and cultural viewpoints, no single policy or set of rules exist to govern stem cell research. Instead, each country has developed its own policy. The following map catalogs the general legal and political milleu regarding stem cell research by country. PMID:19774124

  4. Stem cells and colorectal carcinogenesis

    PubMed Central

    Stoian, M; Stoica, V; Radulian, G

    2016-01-01

    Abstract Colorectal cancer represents an important cause of mortality and morbidity. Unfortunately, the physiopathology is still under study. There are theories about carcinogenesis and it is known that not only a single factor is responsible for the development of a tumor, but several conditions. Stem cells are a promising target for the treatment of colorectal cancer, along with the environment that has an important role. It has been postulated that mutations within the adult colonic stem cells may induce neoplastic changes. This theory is based on the observation that within a colon cancer, less than 1% of the neoplastic cells have the ability to regenerate the tumor and therefore they are responsible for recurrence. It is important to know that a new way of treatment needs to be found, since these cells are resistant to chemotherapy and radiotherapy.

  5. Derivation of Diverse Hormone-Releasing Pituitary Cells from Human Pluripotent Stem Cells.

    PubMed

    Zimmer, Bastian; Piao, Jinghua; Ramnarine, Kiran; Tomishima, Mark J; Tabar, Viviane; Studer, Lorenz

    2016-06-14

    Human pluripotent stem cells (hPSCs) provide an unlimited cell source for regenerative medicine. Hormone-producing cells are particularly suitable for cell therapy, and hypopituitarism, a defect in pituitary gland function, represents a promising therapeutic target. Previous studies have derived pituitary lineages from mouse and human ESCs using 3D organoid cultures that mimic the complex events underlying pituitary gland development in vivo. Instead of relying on unknown cellular signals, we present a simple and efficient strategy to derive human pituitary lineages from hPSCs using monolayer culture conditions suitable for cell manufacturing. We demonstrate that purified placode cells can be directed into pituitary fates using defined signals. hPSC-derived pituitary cells show basal and stimulus-induced hormone release in vitro and engraftment and hormone release in vivo after transplantation into a murine model of hypopituitarism. This work lays the foundation for future cell therapy applications in patients with hypopituitarism.

  6. Stem/Progenitor cells in vascular regeneration.

    PubMed

    Zhang, Li; Xu, Qingbo

    2014-06-01

    A series of studies has been presented in the search for proof of circulating and resident vascular progenitor cells, which can differentiate into endothelial and smooth muscle cells and pericytes in animal and human studies. In terms of pluripotent stem cells, including embryonic stem cells, iPS, and partial-iPS cells, they display a great potential for vascular lineage differentiation. Development of stem cell therapy for treatment of vascular and ischemic diseases remains a major challenging research field. At the present, there is a clear expansion of research into mechanisms of stem cell differentiation into vascular lineages that are tested in animal models. Although there are several clinical trials ongoing that primarily focus on determining the benefits of stem cell transplantation in ischemic heart or peripheral ischemic tissues, intensive investigation for translational aspects of stem cell therapy would be needed. It is a hope that stem cell therapy for vascular diseases could be developed for clinic application in the future.

  7. S100β-Positive Cells of Mesenchymal Origin Reside in the Anterior Lobe of the Embryonic Pituitary Gland

    PubMed Central

    Yoshida, Saishu; Fujiwara, Ken; Tsukada, Takehiro; Kanno, Naoko; Ueharu, Hiroki; Nishihara, Hiroto; Kato, Takako; Yashiro, Takashi; Kato, Yukio

    2016-01-01

    The anterior and intermediate lobes of the pituitary gland develop through invagination of the oral ectoderm and as they are endocrine tissues, they participate in the maintenance of vital functions via the synthesis and secretion of numerous hormones. We recently observed that several extrapituitary cells invade the anterior lobe of the developing pituitary gland. This raised the question of the origin(s) of these S100β-positive cells, which are not classic endocrine cells but instead comprise a heterogeneous cell population with plural roles, especially as stem/progenitor cells. To better understand the roles of these S100β-positive cells, we performed immunohistochemical analysis using several markers in S100β/GFP-TG rats, which express GFP in S100β-expressing cells under control of the S100β promoter. GFP-positive cells were present as mesenchymal cells surrounding the developing pituitary gland and at Atwell's recess but were not present in the anterior lobe on embryonic day 15.5. These cells were negative for SOX2, a pituitary stem/progenitor marker, and PRRX1, a mesenchyme and pituitary stem/progenitor marker. However, three days later, GFP-positive and PRRX1-positive (but SOX2-negative) cells were observed in the parenchyma of the anterior lobe. Furthermore, some GFP-positive cells were positive for vimentin, p75, isolectin B4, DESMIN, and Ki67. These data suggest that S100β-positive cells of extrapituitary origin invade the anterior lobe, undergoing proliferation and diverse transformation during pituitary organogenesis. PMID:27695124

  8. College Students' Conceptions of Stem Cells, Stem Cell Research, and Cloning

    ERIC Educational Resources Information Center

    Concannon, James P.; Siegel, Marcelle A.; Halverson, Kristy; Freyermuth, Sharyn

    2010-01-01

    In this study, we examined 96 undergraduate non-science majors' conceptions of stem cells, stem cell research, and cloning. This study was performed at a large, Midwest, research extensive university. Participants in the study were asked to answer 23 questions relating to stem cells, stem cell research, and cloning in an on-line assessment before…

  9. Cytologic diagnosis of acinic-cell carcinoma of salivary glands.

    PubMed

    Nagel, H; Laskawi, R; Büter, J J; Schröder, M; Chilla, R; Droese, M

    1997-05-01

    The cytologic findings in fine-needle aspiration (FNA) biopsies obtained from 40 primary and 18 recurrent acinic-cell carcinomas (ACC) were retrospectively analyzed. Cytomorphologically, ACC is characterized by acinar differentiated tumor cells. In addition to these diagnostic clue cells, other types of neoplastic cells including vacuolated cells, cells resembling oncocytes, and nonspecific glandular cells are encountered. A pronounced lymphocytic reaction is a hallmark in 10% of ACC aspirates. Both the variety of tumor cell differentiation and the pronounced lymphocytic reaction observed in ACC aspirates may result in confusion with other salivary gland lesions. The differential diagnosis of ACC encompasses adenocarcinoma, mucoepidermoid carcinoma, pleomorphic adenoma, Warthin tumor, sebaceous lymphadenoma, benign lymphoepithelial lesion, sialoadenosis, sialadenitis caused by radiotherapy, and lymphadenitis. Primary ACCs were correctly diagnosed in 68%; additionally, ACC was suspected or included in the differential diagnosis in 15%. Increased familiarity with the spectrum of cytomorphologic findings and the potential diagnostic pitfalls in ACC will improve the cytodiagnosis of this neoplasm.

  10. Setting FIRES to Stem Cell Research

    ERIC Educational Resources Information Center

    Miller, Roxanne Grietz

    2005-01-01

    The goal of this lesson is to present the basic scientific knowledge about stem cells, the promise of stem cell research to medicine, and the ethical considerations and arguments involved. One of the challenges of discussing stem cell research is that the field is constantly evolving and the most current information changes almost daily. Few…

  11. Blood-Forming Stem Cell Transplants

    MedlinePlus

    ... Health Professionals Questions to Ask about Your Treatment Research Blood-Forming Stem Cell Transplants On This Page What are bone marrow ... are evaluating BMT and PBSCT in clinical trials (research studies) for the treatment ... are the donor’s stem cells matched to the patient’s stem cells in allogeneic ...

  12. Extinction models for cancer stem cell therapy

    PubMed Central

    Sehl, Mary; Zhou, Hua; Sinsheimer, Janet S.; Lange, Kenneth L.

    2012-01-01

    Cells with stem cell-like properties are now viewed as initiating and sustaining many cancers. This suggests that cancer can be cured by driving these cancer stem cells to extinction. The problem with this strategy is that ordinary stem cells are apt to be killed in the process. This paper sets bounds on the killing differential (difference between death rates of cancer stem cells and normal stem cells) that must exist for the survival of an adequate number of normal stem cells. Our main tools are birth–death Markov chains in continuous time. In this framework, we investigate the extinction times of cancer stem cells and normal stem cells. Application of extreme value theory from mathematical statistics yields an accurate asymptotic distribution and corresponding moments for both extinction times. We compare these distributions for the two cell populations as a function of the killing rates. Perhaps a more telling comparison involves the number of normal stem cells NH at the extinction time of the cancer stem cells. Conditioning on the asymptotic time to extinction of the cancer stem cells allows us to calculate the asymptotic mean and variance of NH. The full distribution of NH can be retrieved by the finite Fourier transform and, in some parameter regimes, by an eigenfunction expansion. Finally, we discuss the impact of quiescence (the resting state) on stem cell dynamics. Quiescence can act as a sanctuary for cancer stem cells and imperils the proposed therapy. We approach the complication of quiescence via multitype branching process models and stochastic simulation. Improvements to the τ-leaping method of stochastic simulation make it a versatile tool in this context. We conclude that the proposed therapy must target quiescent cancer stem cells as well as actively dividing cancer stem cells. The current cancer models demonstrate the virtue of attacking the same quantitative questions from a variety of modeling, mathematical, and computational perspectives

  13. Quantifying Lgr5-positive stem cell behaviour in the pyloric epithelium

    PubMed Central

    Leushacke, Marc; Barker, Nick; Pin, Carmen

    2016-01-01

    Using in-vivo lineage tracing data we quantified clonal expansion as well as proliferation and differentiation of the Lgr5-positive stem cell population in pyloric gastric glands. Fitting clone expansion models, we estimated that there are five effective Lgr5-positive cells able to give rise to monoclonal glands by replacing each other following a pattern of neutral drift dynamics. This analysis is instrumental to assess stem cell performance; however, stem cell proliferation is not quantified by clone expansion analysis. We identified a suitable mathematical model to quantify proliferation and differentiation of the Lgr5-positive population. As expected for populations in steady-state, the proliferation rate of the Lgr5-positive population was equal to its rate of differentiation. This rate was significantly faster than the rate at which effective cells are replaced, estimated by modelling clone expansion/contraction. This suggests that the majority of Lgr5-positive cell divisions serve to renew epithelial cells and only few result in the effective replacement of a neighbour to effect expansion to the entire gland. The application of the model under altered situations with uncoupled differentiation and proliferation was demonstrated. This methodology represents a valuable tool for quantifying stem cell performance in homeostasis and importantly for deciphering altered stem cell behaviour in disease. PMID:26916214

  14. Methods for Stem Cell Production and Therapy

    NASA Technical Reports Server (NTRS)

    Claudio, Pier Paolo (Inventor); Valluri, Jagan V. (Inventor)

    2015-01-01

    The present invention relates to methods for rapidly expanding a stem cell population with or without culture supplements in simulated microgravity conditions. The present invention relates to methods for rapidly increasing the life span of stem cell populations without culture supplements in simulated microgravity conditions. The present invention also relates to methods for increasing the sensitivity of cancer stem cells to chemotherapeutic agents by culturing the cancer stem cells under microgravity conditions and in the presence of omega-3 fatty acids. The methods of the present invention can also be used to proliferate cancer cells by culturing them in the presence of omega-3 fatty acids. The present invention also relates to methods for testing the sensitivity of cancer cells and cancer stem cells to chemotherapeutic agents by culturing the cancer cells and cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce tissue for use in transplantation by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors to promote differentiation of cancer stem cells under microgravity conditions.

  15. Modern stem cell therapy: approach to disease.

    PubMed

    Zemljic, Mateja; Pejkovic, Bozena; Krajnc, Ivan; Kocbek, Lidija

    2015-12-01

    Various types of stem cells exist, each with their own advantages and disadvantages. Considering the current available evidence, important preclinical and clinical studies regarding the therapeutic potential of stem cells, stem cell therapy might be the important strategy for tissue repair. The development of stem cell therapy for tissue repair has primarily relied on stem cells, especially mesenchymal stem cells. Multilineage differentiation into all of the described cells are considered as important candidates for a range of diseases like neurological diseases, cardiovascular diseases, gastrointestinal cancer and genetic defects, as well as for acute and chronic wounds healing and pharmaceutical treatment. We review the properties and multipotency of stem cells and their differentiation potential, once cultured under specific growth conditions, for use in cell-based therapies and functional tissue replacement.

  16. Nuclear Mechanics and Stem Cell Differentiation.

    PubMed

    Mao, Xinjian; Gavara, Nuria; Song, Guanbin

    2015-12-01

    Stem cells are characterized by their self-renewal and multi-lineage differentiation potential. Stem cell differentiation is a prerequisite for the application of stem cells in regenerative medicine and clinical therapy. In addition to chemical stimulation, mechanical cues play a significant role in regulating stem cell differentiation. The integrity of mechanical sensors is necessary for the ability of cells to respond to mechanical signals. The nucleus, the largest and stiffest cellular organelle, interacts with the cytoskeleton as a key mediator of cell mechanics. Nuclear mechanics are involved in the complicated interactions of lamins, chromatin and nucleoskeleton-related proteins. Thus, stem cell differentiation is intimately associated with nuclear mechanics due to its indispensable role in mechanotransduction and mechanical response. This paper reviews several main contributions of nuclear mechanics, highlights the hallmarks of the nuclear mechanics of stem cells, and provides insight into the relationship between nuclear mechanics and stem cell differentiation, which may guide clinical applications in the future.

  17. Human Hepatic Stem Cell and Maturational Liver Lineage Biology

    PubMed Central

    Turner, Rachael; Lozoya, Oswaldo; Wang, Yunfang; Cardinale, Vincenzo; Gaudio, Eugenio; Alpini, Gianfranco; Mendel, Gemma; Wauthier, Eliane; Barbier, Claire; Alvaro, Domenico; Reid, Lola M.

    2011-01-01

    Livers are comprised of maturational lineages of cells beginning extrahepatically in the hepato-pancreatic common duct near the duodenum and intrahepatically in zone 1 by the portal triads. The extrahepatic stem cell niches are the peribiliary glands deep within the walls of the bile ducts; those intrahepatically are the canals of Hering in postnatal livers and that derive from ductal plates in fetal livers. Intrahepatically, there are at least 8 maturational lineage stages from the stem cells in zone 1 (periportal), through the midacinar region (zone 2), to the most mature cells and apoptotic cells found pericentrally in zone 3. Those found in the biliary tree are still being defined. Parenchymal cells are closely associated with lineages of mesenchymal cells, and their maturation is coordinated. Each lineage stage consists of parenchymal and mesenchymal cell partners distinguishable by their morphology, ploidy, antigens, biochemical traits, gene expression, and ability to divide. They are governed by changes in chromatin (e.g. methylation), gradients of paracrine signals (soluble factors and insoluble extracellular matrix components), mechanical forces, and feedback loop signals derived from late lineage cells. Feedback loop signals, secreted by late lineage stage cells into bile, flow back to the periportal area and regulate the stem cells and other early lineage stage cells, in mechanisms dictating the size of the liver mass. Recognition of maturational lineage biology and its regulation by these multiple mechanisms offers new understandings of liver biology, pathologies, and strategies for regenerative medicine. PMID:21374667

  18. Isolation and characterization of cutaneous epithelial stem cells

    PubMed Central

    Jensen, Uffe B.; Ghazizadeh, Soosan; Owens, David M.

    2014-01-01

    SUMMARY During homeostasis, adult mammalian skin turnover is maintained by a number of multipotent and unipotent epithelial progenitors located either in the epidermis, hair follicle or sebaceous gland. Recent work has illustrated that these various progenitor populations reside in regionalized niches and are phenotypically distinct from one another. This degree of heterogeneity within the progenitor cell landscape in the cutaneous epithelium complicates our ability to target, purify and manipulate cutaneous epithelial stem cell subpopulations in adult skin. The techniques outlined in this chapter describe basic procedures for the isolation and purification of murine epithelial progenitors and assessing their capacity for ex vivo propagation. PMID:23483387

  19. Stem cells: science, policy, and ethics.

    PubMed

    Fischbach, Gerald D; Fischbach, Ruth L

    2004-11-01

    Human embryonic stem cells offer the promise of a new regenerative medicine in which damaged adult cells can be replaced with new cells. Research is needed to determine the most viable stem cell lines and reliable ways to promote the differentiation of pluripotent stem cells into specific cell types (neurons, muscle cells, etc). To create new cell lines, it is necessary to destroy preimplantation blastocysts. This has led to an intense debate that threatens to limit embryonic stem cell research. The profound ethical issues raised call for informed, dispassionate debate.

  20. Muscle stem cells at a glance

    PubMed Central

    Wang, Yu Xin; Dumont, Nicolas A.; Rudnicki, Michael A.

    2014-01-01

    ABSTRACT Muscle stem cells facilitate the long-term regenerative capacity of skeletal muscle. This self-renewing population of satellite cells has only recently been defined through genetic and transplantation experiments. Although muscle stem cells remain in a dormant quiescent state in uninjured muscle, they are poised to activate and produce committed progeny. Unlike committed myogenic progenitor cells, the self-renewal capacity gives muscle stem cells the ability to engraft as satellite cells and capitulate long-term regeneration. Similar to other adult stem cells, understanding the molecular regulation of muscle stem cells has significant implications towards the development of pharmacological or cell-based therapies for muscle disorders. This Cell Science at a Glance article and accompanying poster will review satellite cell characteristics and therapeutic potential, and provide an overview of the muscle stem cell hallmarks: quiescence, self-renewal and commitment. PMID:25300792

  1. Cell motion predicts human epidermal stemness

    PubMed Central

    Toki, Fujio; Tate, Sota; Imai, Matome; Matsushita, Natsuki; Shiraishi, Ken; Sayama, Koji; Toki, Hiroshi; Higashiyama, Shigeki

    2015-01-01

    Image-based identification of cultured stem cells and noninvasive evaluation of their proliferative capacity advance cell therapy and stem cell research. Here we demonstrate that human keratinocyte stem cells can be identified in situ by analyzing cell motion during their cultivation. Modeling experiments suggested that the clonal type of cultured human clonogenic keratinocytes can be efficiently determined by analysis of early cell movement. Image analysis experiments demonstrated that keratinocyte stem cells indeed display a unique rotational movement that can be identified as early as the two-cell stage colony. We also demonstrate that α6 integrin is required for both rotational and collective cell motion. Our experiments provide, for the first time, strong evidence that cell motion and epidermal stemness are linked. We conclude that early identification of human keratinocyte stem cells by image analysis of cell movement is a valid parameter for quality control of cultured keratinocytes for transplantation. PMID:25897083

  2. Characterization of the myoepithelial cells in the major salivary glands of the fruit bat Artibeus jamaicensis.

    PubMed

    Guerrero-Hernández, Julio; Moreno-Mendoza, Norma

    2016-08-01

    Bats constitute one of the most numerous mammalian species. Bats have a wide range of dietary habits and include carnivorous, haematophagous, insectivorous, frugivorous and nectivorous species. The salivary glands of these species have been of particular research interest due to their structural variability among chiropterans with different types of diets. Myoepithelial cells (MECs), which support and facilitate the expulsion of saliva from the secretory portions of salivary glands, are very important for their function; however, this cell type has not been extensively studied in the salivary glands of bats. In this study, we characterized the MECs in the major salivary glands of the fruit bat Artibeus jamaicensis. Herein, we describe the morphology of the parotid, submandibular and sublingual glands of A. jamaicensis at the light- and electro-microscopic level and the distribution of MECs in these glands, as defined by their expression of smooth-muscle markers such as α-smooth muscle actin (SMAα) and desmin, and of epithelial cell markers, such as KRT14. We found that the anatomical locations of the major salivary glands in this bat species are similar to those of humans, except that the bat sublingual gland appears to be unique, extending to join the contralateral homologous gland. Morphologically, the parotid gland has the characteristics of a mixed-secretory gland, whereas the submandibular and sublingual glands were identified as mucous-secretory glands. MECs positive for SMAα, KRT14 and desmin were found in all of the structural components of the three glands, except in their excretory ducts. Desmin is expressed at a lower level in the parotid gland than in the other glands. Our results suggest that the major salivary glands of A. jamaicensis, although anatomically and structurally similar to those of humans, play different physiological roles that can be attributed to the dietary habits of this species. PMID:27168421

  3. Three-dimensional culture of sebaceous gland cells revealing the role of prostaglandin E{sub 2}-induced activation of canonical Wnt signaling

    SciTech Connect

    Yoshida, Go J. Saya, Hideyuki

    2013-09-06

    Highlights: •Three-dimensional culture generates “semi-vivo” sebaceous glands. •Xenograft model failed to mimic the biology of sebaceous glands in vivo. •Proinflammatory cytokine PGE{sub 2} enhances Wnt signal activity in the organoids. •PGE{sub 2} influences on the mitochondrial and lipid metabolism in the organoids. •Considering 3R agenda, “semi-vivo” sebaceous glands are useful for research. -- Abstract: Background: Prostaglandin E{sub 2} (PGE{sub 2}) is a proinflammatory mediator and activates the canonical Wnt–β-catenin signaling pathway in hematopoietic stem cells. The SZ95 cell line was established from human sebaceous gland cells and is studied as a model system for these cells. Given that 2D culture of SZ95 cells does not recapitulate the organization of sebaceous glands in situ, we developed a 3D culture system for these cells and examined the effects of PGE{sub 2} on cell morphology and function. Results: SZ95 cells maintained in 3D culture formed organoids that mimicked the organization of sebaceous glands in situ, including the establishment of a basement membrane. Organoids exposed to PGE{sub 2} were larger and adopted a more complex organization compared with control organoids. PGE{sub 2} activated the canonical Wnt signaling pathway as well as increased cell viability and proliferation, mitochondrial metabolism, and lipid synthesis in the organoids. Conclusions: Culture of SZ95 cells in 3D culture system recapitulates the structure and susceptibility to PGE{sub 2} of sebaceous glands in situ and should prove useful for studies of the response of these glands to inflammation and other environmental stressors. Our results also implicate PGE{sub 2}-induced activation of canonical Wnt signaling pathway in regulation of the morphology,proliferation, and function of “semi-vivo” sebaceous glands.

  4. Stem cell biology in thyroid cancer: Insights for novel therapies

    PubMed Central

    Bhatia, Parisha; Tsumagari, Koji; Abd Elmageed, Zakaria Y; Friedlander, Paul; Buell, Joseph F; Kandil, Emad

    2014-01-01

    Currently, thyroid cancer is one of the most common endocrine cancer in the United States. A recent involvement of sub-population of stem cells, cancer stem cells, has been proposed in different histological types of thyroid cancer. Because of their ability of self-renewal and differentiation into various specialized cells in the body, these putative cells drive tumor genesis, metastatic activity and are responsible to provide chemo- and radioresistant nature to the cancer cells in the thyroid gland. Our Review was conducted from previously published literature to provide latest apprises to investigate the role of embryonic, somatic and cancer stem cells, and discusses the hypothesis of epithelial-mesenchymal transition. Different methods for their identification and isolation through stemness markers using various in vivo and in vitro methods such as flow cytometry, thyrosphere formation assay, aldehyde dehydrogenase activity and ATP-binding cassette sub-family G member 2 efflux-pump mediated Hoechst 33342 dye exclusion have been discussed. The review also outlines various setbacks that still remain to target these tumor initiating cells. Future perspectives of therapeutic strategies and their potential to treat advanced stages of thyroid cancer are also disclosed in this review. PMID:25426258

  5. Integrin adhesion in regulation of lacrimal gland acinar cell secretion.

    PubMed

    Andersson, Sofia V; Hamm-Alvarez, Sarah F; Gierow, J Peter

    2006-09-01

    The extracellular microenvironment regulates lacrimal gland acinar cell secretion. Culturing isolated rabbit lacrimal gland acinar cells on different extracellular matrix proteins revealed that laminin enhances carbachol-stimulated secretion to a greater extent than other extracellular matrix proteins investigated. Furthermore, immunofluorescence indicated that integrin subunits, potentially functioning as laminin receptors are present in acinar cells. Among these, the integrin alpha6 and beta1 subunit mRNA expression was also confirmed by RT-PCR and sequence analysis. Secretion assays, which measured beta-hexosaminidase activity released in the culture media, demonstrated that function-blocking integrin alpha6 and beta1 monoclonal antibodies (mAbs) induce a rapid, transient and dose-dependent secretory response in cultured cells. To determine the intracellular pathways by which integrin alpha6 and beta1 mAbs could induce secretion, selected second messenger molecules were inhibited. Although inhibitors of protein kinase C and IP(3)-induced Ca(2+) mobilization attenuated carbachol-stimulated secretion, no effect on integrin mAb-induced release was observed. In addition, protein tyrosine kinases do not appear to have a role in transducing signals arising from mAb interactions. Our data clearly demonstrate, though, that cell adhesion through integrins regulates secretion from lacrimal gland acinar cells. The fact that the integrin mAbs affect the cholinergic response differently and that the integrin beta1 mAb secretion, but not the alpha6, was attenuated by the phosphatase inhibitor, sodium orthovanadate, suggests that each subunit utilizes separate intracellular signaling pathways to induce exocytosis. The results also indicate that the secretory response triggered by the beta1 integrin mAb is generated through dephosphorylation events.

  6. Embryonic Stem Cell Patents and Human Dignity

    PubMed Central

    Resnik, David B.

    2009-01-01

    This article examines the assertion that human embryonic stem cells patents are immoral because they violate human dignity. After analyzing the concept of human dignity and its role in bioethics debates, this article argues that patents on human embryos or totipotent embryonic stem cells violate human dignity, but that patents on pluripotent or multipotent stem cells do not. Since patents on pluripotent or multipotent stem cells may still threaten human dignity by encouraging people to treat embryos as property, patent agencies should carefully monitor and control these patents to ensure that patents are not inadvertently awarded on embryos or totipotent stem cells. PMID:17922198

  7. Stem cell maintenance in a different niche

    PubMed Central

    Ahn, Ji Yeon; Lee, Seung Tae

    2013-01-01

    To overcome the difficulty of controlling stem cell fate and function in applications to regenerative medicine, a number of alternative approaches have been made. Recent reports demonstrate that a non-cellular niche modulating the biophysical microenvironment with chemical factors can support stem cell self-renewal. In our previous studies, early establishment was executed to optimize biophysical factors and it was subsequently found that the microgeometry of the extracellular matrix made huge differences in stem cell behavior and phenotype. We review here a three-dimensional, non-cellular niche designed to support stem cell self-renewal. The characteristics of stem cells under the designed system are further discussed. PMID:23875159

  8. Acinic cell carcinoma of the parotid gland in children.

    PubMed

    Levine, S B; Potsic, W P

    1986-09-01

    Acinic cell carcinoma is an infrequent malignancy of salivary gland tissue in adults that is very rare in children. Review of the English literature reveals only 25 reported cases of this neoplasm in pediatric populations. This is a case report of the youngest known child to undergo parotidectomy and facial nerve dissection for an acinic cell carcinoma. The unusual clinical and surgical findings might suggest the need for changes in approach to treatment of a tumor that has been previously described as relatively benign.

  9. Separation of cells from the rat anterior pituitary gland

    NASA Technical Reports Server (NTRS)

    Hymer, Wesley C.; Hatfield, J. Michael

    1983-01-01

    Various techniques for separating the hormone-producing cell types from the rat anterior pituitary gland are examined. The purity, viability, and responsiveness of the separated cells depend on the physiological state of the donor, the tissue dissociation procedures, the staining technique used for identification of cell type, and the cell separation technique. The chamber-gradient setup and operation, the characteristics of the gradient materials, and the separated cell analysis of velocity sedimentation techniques (in particular Staput and Celsep) are described. Consideration is given to the various types of materials used in density gradient centrifugation and the operation of a gradient generating device. The use of electrophoresis to separate rat pituitary cells is discussed.

  10. Plasticity of hematopoietic stem cells.

    PubMed

    Ogawa, Makio; LaRue, Amanda C; Mehrotra, Meenal

    2015-01-01

    Almost two decades ago, a number of cell culture and preclinical transplantation studies suggested the striking concept of the tissue-reconstituting ability of hematopoietic stem cells (HSCs). While this heralded an exciting time of radically new therapies for disorders of many organs and tissues, the concept was soon mired by controversy and remained dormant. This chapter provides a brief review of evidence for HSC plasticity including our findings based on single HSC transplantation in mouse. These studies strongly support the concept that HSCs are pluripotent and may be the source for the majority, if not all, of the cell types in our body. PMID:26590762

  11. Klotho, stem cells, and aging

    PubMed Central

    Bian, Ao; Neyra, Javier A; Zhan, Ming; Hu, Ming Chang

    2015-01-01

    Aging is an inevitable and progressive biological process involving dysfunction and eventually destruction of every tissue and organ. This process is driven by a tightly regulated and complex interplay between genetic and acquired factors. Klotho is an antiaging gene encoding a single-pass transmembrane protein, klotho, which serves as an aging suppressor through a wide variety of mechanisms, such as antioxidation, antisenescence, antiautophagy, and modulation of many signaling pathways, including insulin-like growth factor and Wnt. Klotho deficiency activates Wnt expression and activity contributing to senescence and depletion of stem cells, which consequently triggers tissue atrophy and fibrosis. In contrast, the klotho protein was shown to suppress Wnt-signaling transduction, and inhibit cell senescence and preserve stem cells. A better understanding of the potential effects of klotho on stem cells could offer novel insights into the cellular and molecular mechanisms of klotho deficiency-related aging and disease. The klotho protein may be a promising therapeutic agent for aging and aging-related disorders. PMID:26346243

  12. Klotho, stem cells, and aging.

    PubMed

    Bian, Ao; Neyra, Javier A; Zhan, Ming; Hu, Ming Chang

    2015-01-01

    Aging is an inevitable and progressive biological process involving dysfunction and eventually destruction of every tissue and organ. This process is driven by a tightly regulated and complex interplay between genetic and acquired factors. Klotho is an antiaging gene encoding a single-pass transmembrane protein, klotho, which serves as an aging suppressor through a wide variety of mechanisms, such as antioxidation, antisenescence, antiautophagy, and modulation of many signaling pathways, including insulin-like growth factor and Wnt. Klotho deficiency activates Wnt expression and activity contributing to senescence and depletion of stem cells, which consequently triggers tissue atrophy and fibrosis. In contrast, the klotho protein was shown to suppress Wnt-signaling transduction, and inhibit cell senescence and preserve stem cells. A better understanding of the potential effects of klotho on stem cells could offer novel insights into the cellular and molecular mechanisms of klotho deficiency-related aging and disease. The klotho protein may be a promising therapeutic agent for aging and aging-related disorders. PMID:26346243

  13. Klotho, stem cells, and aging.

    PubMed

    Bian, Ao; Neyra, Javier A; Zhan, Ming; Hu, Ming Chang

    2015-01-01

    Aging is an inevitable and progressive biological process involving dysfunction and eventually destruction of every tissue and organ. This process is driven by a tightly regulated and complex interplay between genetic and acquired factors. Klotho is an antiaging gene encoding a single-pass transmembrane protein, klotho, which serves as an aging suppressor through a wide variety of mechanisms, such as antioxidation, antisenescence, antiautophagy, and modulation of many signaling pathways, including insulin-like growth factor and Wnt. Klotho deficiency activates Wnt expression and activity contributing to senescence and depletion of stem cells, which consequently triggers tissue atrophy and fibrosis. In contrast, the klotho protein was shown to suppress Wnt-signaling transduction, and inhibit cell senescence and preserve stem cells. A better understanding of the potential effects of klotho on stem cells could offer novel insights into the cellular and molecular mechanisms of klotho deficiency-related aging and disease. The klotho protein may be a promising therapeutic agent for aging and aging-related disorders.

  14. Combination Cell Therapy with Mesenchymal Stem Cells and Neural Stem Cells for Brain Stroke in Rats

    PubMed Central

    Hosseini, Seyed Mojtaba; Farahmandnia, Mohammad; Razi, Zahra; Delavari, Somayeh; Shakibajahromi, Benafsheh; Sarvestani, Fatemeh Sabet; Kazemi, Sepehr; Semsar, Maryam

    2015-01-01

    Objectives Brain stroke is the second most important events that lead to disability and morbidity these days. Although, stroke is important, there is no treatment for curing this problem. Nowadays, cell therapy has opened a new window for treating central nervous system disease. In some previous studies the Mesenchymal stem cells and neural stem cells. In this study, we have designed an experiment to assess the combination cell therapy (Mesenchymal and Neural stem cells) effects on brain stroke. Method and Materials The Mesenchymal stem cells were isolated from adult rat bone marrow and the neural stem cells were isolated from ganglion eminence of rat embryo 14 days. The Mesenchymal stem cells were injected 1 day after middle cerebral artery occlusion (MCAO) and the neural stem cells transplanted 7 day after MCAO. After 28 days, the neurological outcomes and brain lesion volumes were evaluated. Also, the activity of Caspase 3 was assessed in different groups. Result The group which received combination cell therapy had better neurological examination and less brain lesion. Also the combination cell therapy group had the least Caspase 3 activity among the groups. Conclusions The combination cell therapy is more effective than Mesenchymal stem cell therapy and neural stem cell therapy separately in treating the brain stroke in rats. PMID:26019759

  15. Stem Cells News Update: A Personal Perspective

    PubMed Central

    Wong, SC

    2013-01-01

    This article is a follow-up to a previous Commentary published in 2011. It updates some of the events mentioned in that Commentary and continues with more interesting and exciting news on stem cell research and the emerging field of Regenerative Medicine. Some of the news includes: 1) the 2012 Nobel Prize for Medicine awarded to John B. Gurdon and Shinya Yamanaka; 2) the cloning of human embryonic stem cells; 3) the continued search for truly pluripotent adult stem cells via in vitro and in vivo protocols; 4) the breakthrough in organ replacements; 5) the global stem cell race; 6) the global stem cell cryo-preservation business; 7) the worldwide stem cell donor registries, and 8) the issue of government regulation on stem cell therapy. PMID:24778557

  16. [Stem cells and tissue engineering techniques].

    PubMed

    Sica, Gigliola

    2013-01-01

    The therapeutic use of stem cells and tissue engineering techniques are emerging in urology. Here, stem cell types, their differentiating potential and fundamental characteristics are illustrated. The cancer stem cell hypothesis is reported with reference to the role played by stem cells in the origin, development and progression of neoplastic lesions. In addition, recent reports of results obtained with stem cells alone or seeded in scaffolds to overcome problems of damaged urinary tract tissue are summarized. Among others, the application of these biotechnologies in urinary bladder, and urethra are delineated. Nevertheless, apart from the ethical concerns raised from the use of embryonic stem cells, a lot of questions need to be solved concerning the biology of stem cells before their widespread use in clinical trials. Further investigation is also required in tissue engineering utilizing animal models.

  17. Stem cell facelift: between reality and fiction.

    PubMed

    Atiyeh, Bishara S; Ibrahim, Amir E; Saad, Dibo A

    2013-03-01

    Stem cells are "big business" throughout medical technology, and their potential application in cosmetic procedures is no exception. One of the latest nonsurgical facial treatments (and new catchphrases) in plastic surgery is the "stem cell facelift." It is evident from the currently available scientific literature that the use of stem cell therapy for facial rejuvenation is limited to the theoretical induction of skin tightening and can in no way be equated to a facelift. In fact, what is advertised and promoted as a new and original technique of stem cell facelifting is mostly stem cell-enriched lipofilling. Despite encouraging data suggesting that adult stem cells hold promise for future applications, the data from clinical evidence available today do not substantiate the marketing and promotional claims being made to patients. To claim that the "stem cell facelift" is a complete facial rejuvenation procedure surgery is unethical.

  18. Stem cells news update: a personal perspective.

    PubMed

    Wong, Sc

    2013-12-01

    This article is a follow-up to a previous Commentary published in 2011. It updates some of the events mentioned in that Commentary and continues with more interesting and exciting news on stem cell research and the emerging field of Regenerative Medicine. Some of the news includes: 1) the 2012 Nobel Prize for Medicine awarded to John B. Gurdon and Shinya Yamanaka; 2) the cloning of human embryonic stem cells; 3) the continued search for truly pluripotent adult stem cells via in vitro and in vivo protocols; 4) the breakthrough in organ replacements; 5) the global stem cell race; 6) the global stem cell cryo-preservation business; 7) the worldwide stem cell donor registries, and 8) the issue of government regulation on stem cell therapy.

  19. Stem cells and repair of lung injuries

    PubMed Central

    Neuringer, Isabel P; Randell, Scott H

    2004-01-01

    Fueled by the promise of regenerative medicine, currently there is unprecedented interest in stem cells. Furthermore, there have been revolutionary, but somewhat controversial, advances in our understanding of stem cell biology. Stem cells likely play key roles in the repair of diverse lung injuries. However, due to very low rates of cellular proliferation in vivo in the normal steady state, cellular and architectural complexity of the respiratory tract, and the lack of an intensive research effort, lung stem cells remain poorly understood compared to those in other major organ systems. In the present review, we concisely explore the conceptual framework of stem cell biology and recent advances pertinent to the lungs. We illustrate lung diseases in which manipulation of stem cells may be physiologically significant and highlight the challenges facing stem cell-related therapy in the lung. PMID:15285789

  20. Stem cell facelift: between reality and fiction.

    PubMed

    Atiyeh, Bishara S; Ibrahim, Amir E; Saad, Dibo A

    2013-03-01

    Stem cells are "big business" throughout medical technology, and their potential application in cosmetic procedures is no exception. One of the latest nonsurgical facial treatments (and new catchphrases) in plastic surgery is the "stem cell facelift." It is evident from the currently available scientific literature that the use of stem cell therapy for facial rejuvenation is limited to the theoretical induction of skin tightening and can in no way be equated to a facelift. In fact, what is advertised and promoted as a new and original technique of stem cell facelifting is mostly stem cell-enriched lipofilling. Despite encouraging data suggesting that adult stem cells hold promise for future applications, the data from clinical evidence available today do not substantiate the marketing and promotional claims being made to patients. To claim that the "stem cell facelift" is a complete facial rejuvenation procedure surgery is unethical. PMID:23417722

  1. Stem Cells, Science, and Public Reasoning

    ERIC Educational Resources Information Center

    Hurlbut, J. Benjamin; Robert, Jason Scott

    2012-01-01

    These are interesting days in the scientific, social, and political debates about human embryonic stem cell research. Pluripotent stem cells--cells that can, in principle, give rise to the body's full range of cell types--were previously derivable only from human embryos that were destroyed in the process. Now, a variety of somatic cell types can…

  2. Cancer Stem Cells Converted from Pluripotent Stem Cells and the Cancerous Niche

    PubMed Central

    Kasai, T; Chen, L; Mizutani, AZ; Kudoh, T; Murakami, H; Fu, L; Seno, M

    2014-01-01

    Nowadays, the cancer stem cells are considered to be significantly responsible for growth, metastasis, invasion and recurrence of all cancer. Cancer stem cells are typically characterized by continuous proliferation and self-renewal as well as by differentiation potential, while stem cells are considered to differentiate into tissue- specific phenotype of mature cells under the influence of micro-environment. Cancer stem cells should be traced to the stem cells under the influence of a micro-environment, which induces malignant tumors. In this review, we propose this micro-environment as a ‘cancerous niche’ and discuss its importance on the formation and maintenance of cancer stem cells with the recent experimental results to establish cancer stem cell models from induced pluripotent stem cells. These models of cancer stem cell will provide the great advantages in cancer research and its therapeutic applications in the future. PMID:25075155

  3. Learning about Cancer by Studying Stem Cells

    MedlinePlus

    ... About Cancer by Studying Stem Cells Inside Life Science View All Articles | Inside Life Science Home Page Learning About Cancer by Studying Stem ... Once Upon a Stem Cell This Inside Life Science article also appears on LiveScience . Learn about related ...

  4. Stem cells shine in Shanghai.

    PubMed

    Cheng, Linzhao; Xiao, Lei; Zeng, Fanyi; Zhang, Y Alex

    2008-01-10

    From November 6 to 9, 2007, more than 500 scientists from 20 countries and regions gathered in Shanghai, China, to attend the 2007 Shanghai International Symposium on Stem Cell Research. This dynamic meeting was jointly organized by the International Society for Stem Cell Research (ISSCR), the Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (SIBS/CAS), and other institutes in China. For the first time, the ISSCR added its name to a conference other than its own annual meeting, embracing this opportunity to learn more about research that is happening in China and providing a platform for local researchers who do not always have the opportunity to travel internationally to the ISSCR annual meetings. Here we present a sampling of the diverse research presented by the local and international participants during the science-packed 4 day meeting.

  5. Adult stem cells and tissue repair.

    PubMed

    Körbling, M; Estrov, Z; Champlin, R

    2003-08-01

    Recently, adult stem cells originating from bone marrow or peripheral blood have been suggested to contribute to repair and genesis of cells specific for liver, cardiac and skeletal muscle, gut, and brain tissue. The mechanism involved has been termed transdifferentiation, although other explanations including cell fusion have been postulated. Using adult stem cells to generate or repair solid organ tissue obviates the immunologic, ethical, and teratogenic issues that accompany embryonic stem cells.

  6. Cancer stem cells and metastasis.

    PubMed

    Sampieri, Katia; Fodde, Riccardo

    2012-06-01

    Cancer stem cells (CSCs) represent a subpopulation of tumour cells endowed with self-renewal and multi-lineage differentiation capacity but also with an innate resistance to cytotoxic agents, a feature likely to pose major clinical challenges towards the complete eradication of minimal residual disease in cancer patients. Operationally, CSCs are defined by their tumour-propagating ability when serially transplanted into immune-compromised mice and by their capacity to fully recapitulate the original heterogeneity of cell types observed in the primary lesions they are derived from. CSCs were first identified in haematopoietic malignancies and later in a broad spectrum of solid tumours including those of the breast, colon and brain. Notably, several CSC characteristics are relevant to metastasis, such as motility, invasiveness and, as mentioned above, resistance to DNA damage-induced apoptosis. Here, we have reviewed the current literature on the relation between CSCs and metastasis formation. Preliminary studies on cancer cell lines and patient-derived material suggest a rate-limiting role for stem-like cells in the processes of tumour cell dissemination and metastasis formation. However, additional studies are needed to deliver formal proof of their identity as the cell of origin of recurrences at distant organ sites. Nevertheless, several studies have already provided pre-clinical evidence of the efficacy of novel therapies directed against disseminated CSCs.

  7. Generalized Potential of Adult Neural Stem Cells

    NASA Astrophysics Data System (ADS)

    Clarke, Diana L.; Johansson, Clas B.; Wilbertz, Johannes; Veress, Biborka; Nilsson, Erik; Karlström, Helena; Lendahl, Urban; Frisén, Jonas

    2000-06-01

    The differentiation potential of stem cells in tissues of the adult has been thought to be limited to cell lineages present in the organ from which they were derived, but there is evidence that some stem cells may have a broader differentiation repertoire. We show here that neural stem cells from the adult mouse brain can contribute to the formation of chimeric chick and mouse embryos and give rise to cells of all germ layers. This demonstrates that an adult neural stem cell has a very broad developmental capacity and may potentially be used to generate a variety of cell types for transplantation in different diseases.

  8. Mesenchymal Stem Cells in Hematopoietic Stem Cell Transplantation

    PubMed Central

    Battiwalla, Minoo; Hematti, Peiman

    2009-01-01

    Mesenchymal stromal/stem cells (MSCs) of bone marrow (BM) origin not only provide the supportive microenvironmental niche for hematopoietic stem cells (HSCs) but are also capable of differentiating into various cell types of mesenchymal origin, such as bone, fat, and cartilage. In vitro and in vivo data suggest that MSCs have low inherent immunogenicity, modulate/suppress immunological responses through interactions with immune cells, and home to damaged tissues to participate in regeneration processes through their diverse biological properties. MSCs derived from BM are being evaluated for a wide range of clinical applications including disorders as diverse as myocardial infarction or newly diagnosed diabetes mellitus type-1. However, their use in HSC transplantation, either for enhancement of hematopoietic engraftment or for treatment/prevention of graft versus host disease, is far ahead of other indications. Ease of isolation and ex vivo expansion of MSCs, combined with their intriguing immunomodulatory properties, and their impressive record of safety in a wide variety of clinical trials make these cells promising candidates for further investigation. PMID:19728189

  9. CANCER STEM CELLS AND RADIORESISTANCE

    PubMed Central

    K, Rycaj; D.G, Tang

    2015-01-01

    Purpose Radiation therapy has made significant contributions to cancer therapy. However, despite continuous improvements, tumor recurrence and therapy resistance still occur in a high proportion of patients. One underlying reason for this radioresistance might be attributable to the presence of cancer stem cells (CSCs). Conclusions This review discusses CSC-specific mechanisms that confer radiation resistance with a focus on breast cancer and glioblastoma multiforme (GBM), thereby emphasizing the addition of these potential therapeutic targets in order to potentiate radiotherapy efficacy. PMID:24527669

  10. Stem cells - biological update and cell therapy progress.

    PubMed

    Girlovanu, Mihai; Susman, Sergiu; Soritau, Olga; Rus-Ciuca, Dan; Melincovici, Carmen; Constantin, Anne-Marie; Mihu, Carmen Mihaela

    2015-01-01

    In recent years, the advances in stem cell research have suggested that the human body may have a higher plasticity than it was originally expected. Until now, four categories of stem cells were isolated and cultured in vivo: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem cells (hiPSCs). Although multiple studies were published, several issues concerning the stem cells are still debated, such as: the molecular mechanisms of differentiation, the methods to prevent teratoma formation or the ethical and religious issues regarding especially the embryonic stem cell research. The direct differentiation of stem cells into specialized cells: cardiac myocytes, neural cells, pancreatic islets cells, may represent an option in treating incurable diseases such as: neurodegenerative diseases, type I diabetes, hematologic or cardiac diseases. Nevertheless, stem cell-based therapies, based on stem cell transplantation, remain mainly at the experimental stages and their major limitation is the development of teratoma and cancer after transplantation. The induced pluripotent stem cells (hiPSCs) represent a prime candidate for future cell therapy research because of their significant self-renewal and differentiation potential and the lack of ethical issues. This article presents an overview of the biological advances in the study of stem cells and the current progress made in the field of regenerative medicine.

  11. Stem cell tracking with optically active nanoparticles

    PubMed Central

    Gao, Yu; Cui, Yan; Chan, Jerry KY; Xu, Chenjie

    2013-01-01

    Stem-cell-based therapies hold promise and potential to address many unmet clinical needs. Cell tracking with modern imaging modalities offers insight into the underlying biological process of the stem-cell-based therapies, with the goal to reveal cell survival, migration, homing, engraftment, differentiation, and functions. Adaptability, sensitivity, resolution, and non-invasiveness have contributed to the longstanding use of optical imaging for stem cell tracking and analysis. To identify transplanted stem cells from the host tissue, optically active probes are usually used to label stem cells before the administration. In comparison to the traditional fluorescent probes like fluorescent proteins and dyes, nanoparticle-based probes are advantageous in terms of the photo-stabilities and minimal changes to the cell phenotype. The main focus here is to overview the recent development of optically active nanoparticles for stem cells tracking. The related optical imaging modalities include fluorescence imaging, photoacoustic imaging, Raman and surface enhanced Raman spectroscopy imaging. PMID:23638335

  12. Cytogenetic analysis of myoepithelial cell carcinoma of salivary gland.

    PubMed

    Magrini, Elisabetta; Pragliola, Antonella; Farnedi, Anna; Betts, Christine M; Cocchi, Roberto; Foschini, Maria P

    2004-01-01

    Myoepithelial cell carcinoma (MCC) of the salivary gland is a rare entity. Here, we describe the karyotype of MCC. The patient was a 53-year-old man, with a rapidly growing lesion of the palate. Despite complete surgical excision, radio- and chemotherapy, the lesion rapidly harboured local and distant metastases leading to the death of the patient, 4 months after the diagnosis. On histological and ultrastructural examination, the primary tumour and the related metastases were composed of oval and spindle cells, with features of myoepithelial cell differentiation reported in the literature. Cytogenetic analysis showed a composite karyotype in the primary tumour: 45-46,XY, +3[cp3]/ 44-45,XY, -17[cp4]/ 46,XY[5]. The lymph-node metastasis was near-triploid and showed a complex karyotype. Our cytogenetic data differ from those described in benign or slowly growing salivary gland tumours showing myoepithelial cell differentiation. It is suggested that highly aggressive tumours might follow a different pathway of malignant transformation.

  13. Stem cells in the nervous system.

    PubMed

    Maldonado-Soto, Angel R; Oakley, Derek H; Wichterle, Hynek; Stein, Joel; Doetsch, Fiona K; Henderson, Christopher E

    2014-11-01

    Given their capacity to regenerate cells lost through injury or disease, stem cells offer new vistas into possible treatments for degenerative diseases and their underlying causes. As such, stem cell biology is emerging as a driving force behind many studies in regenerative medicine. This review focuses on the current understanding of the applications of stem cells in treating ailments of the human brain, with an emphasis on neurodegenerative diseases. Two types of neural stem cells are discussed: endogenous neural stem cells residing within the adult brain and pluripotent stem cells capable of forming neural cells in culture. Endogenous neural stem cells give rise to neurons throughout life, but they are restricted to specialized regions in the brain. Elucidating the molecular mechanisms regulating these cells is key in determining their therapeutic potential as well as finding mechanisms to activate dormant stem cells outside these specialized microdomains. In parallel, patient-derived stem cells can be used to generate neural cells in culture, providing new tools for disease modeling, drug testing, and cell-based therapies. Turning these technologies into viable treatments will require the integration of basic science with clinical skills in rehabilitation.

  14. Stem Cells in the Nervous System

    PubMed Central

    Maldonado-Soto, Angel R.; Oakley, Derek H.; Wichterle, Hynek; Stein, Joel; Doetsch, Fiona K.; Henderson, Christopher E.

    2014-01-01

    Given their capacity to regenerate cells lost through injury or disease, stem cells offer new vistas into possible treatments for degenerative diseases and their underlying causes. As such, stem cell biology is emerging as a driving force behind many studies in the field of regenerative medicine. This review focuses on our current understanding of the applications of stem cells in treating ailments of the human brain, with an emphasis on neurodegenerative diseases. Two types of neural stem cells are discussed: endogenous neural stem cells residing within the adult brain, and pluripotent stem cells capable of forming neural cells in culture. Endogenous neural stem cells give rise to neurons throughout life, but they are restricted to specialized regions in the brain. Elucidating the molecular mechanisms regulating these cells is key in determining their therapeutic potential, as well as finding mechanisms to activate dormant stem cells outside of these specialized microdomains. In parallel, patient-derived stem cells can be used to generate neural cells in culture, providing new tools for disease modeling, drug testing and cell-based therapies. Turning these technologies into viable treatments will require the integration of basic science with clinical skills in rehabilitation. PMID:24800720

  15. Engineering Stem Cells for Biomedical Applications.

    PubMed

    Yin, Perry T; Han, Edward; Lee, Ki-Bum

    2016-01-01

    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer.

  16. Stressed stem cells: Temperature response in aged mesenchymal stem cells.

    PubMed

    Stolzing, Alexandra; Sethe, Sebastian; Scutt, Andrew M

    2006-08-01

    Mesenchymal stem cells (MSCs) derived from young (6 week) and aged (56 week) Wistar rats were cultured at standard (37 degrees C) and reduced (32 degrees C) temperature and compared for age markers and stress levels. (ROS, NO, TBARS, carbonyls, lipofuscin, SOD, GPx, apoptosis, proteasome activity) and heat shock proteins (HSP27, -60, -70, -90). Aged MSCs display many of the stress markers associated with aging in other cell types, but results vary across marker categories and are temperature dependant. In young MSCs, culturing at reduced temperature had a generally beneficial effect: the anti-apoptotic heat shock proteins HSP 27, HSP70, and HSP90 were up-regulated; pro-apoptotic HSP60 was downregulated; SOD, GPx increased; and levels in ROS, NO, TBARS, carbonyl, and lipofuscin were diminished. Apoptosis was reduced, but also proteasome activity. In contrast, in aged MSCs, culturing at reduced temperature generally produced no 'beneficial' changes in these parameters, and can even have detrimental effects. Implications for tissue engineering and for stem cell gerontology are discussed. The results suggest that a 'hormesis' theory of stress response can be extended to MSCs, but that cooling cultivation temperature stress produces positive effects in young cells only.

  17. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    SciTech Connect

    Varga, Nora; Vereb, Zoltan; Rajnavoelgyi, Eva; Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs; Apati, Agota

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  18. Bone marrow-derived cells rescue salivary gland function in mice with head and neck irradiation.

    PubMed

    Sumita, Yoshinori; Liu, Younan; Khalili, Saeed; Maria, Ola M; Xia, Dengsheng; Key, Sharon; Cotrim, Ana P; Mezey, Eva; Tran, Simon D

    2011-01-01

    Treatment for most patients with head and neck cancers includes ionizing radiation. A consequence of this treatment is irreversible damage to salivary glands (SGs), which is accompanied by a loss of fluid-secreting acinar-cells and a considerable decrease of saliva output. While there are currently no adequate conventional treatments for this condition, cell-based therapies are receiving increasing attention to regenerate SGs. In this study, we investigated whether bone marrow-derived cells (BMDCs) can differentiate into salivary epithelial cells and restore SG function in head and neck irradiated mice. BMDCs from male mice were transplanted into the tail-vein of 18Gy-irradiated female mice. Salivary output was increased in mice that received BMDCs transplantation at week 8 and 24 post-irradiation. At 24 weeks after irradiation (IR), harvested SGs (submandibular and parotid glands) of BMDC-treated mice had greater weights than those of non-treated mice. Histological analysis shows that SGs of treated mice demonstrated an increased level of tissue regenerative activity such as blood vessel formation and cell proliferation, while apoptotic activity was increased in non-transplanted mice. The expression of stem cell markers (Sca-1 or c-kit) was detected in BMDC-treated SGs. Finally, we detected an increased ratio of acinar-cell area and approximately 9% of Y-chromosome-positive (donor-derived) salivary epithelial cells in BMDC-treated mice. We propose here that cell therapy using BMDCs can rescue the functional damage of irradiated SGs by direct differentiation of donor BMDCs into salivary epithelial cells.

  19. Reforming craniofacial orthodontics via stem cells

    PubMed Central

    Mohanty, Pritam; Prasad, N.K.K.; Sahoo, Nivedita; Kumar, Gunjan; Mohanty, Debapreeti; Sah, Sushila

    2015-01-01

    Stem cells are the most interesting cells in cell biology. They have the potential to evolve as one of the most powerful technologies in the future. The future refers to an age where it will be used extensively in various fields of medical and dental sciences. Researchers have discovered a number of sources from which stem cells can be derived. Craniofacial problems are very common and occur at all ages. Stem cells can be used therapeutically in almost every field of health science. In fact, many procedures will be reformed after stem cells come into play. This article is an insight into the review of the current researches being carried out on stem cells and its use in the field of orthodontics, which is a specialized branch of dentistry. Although the future is uncertain, there is a great possibility that stem cells will be used extensively in almost all major procedures of orthodontics. PMID:25767761

  20. Mammary Gland Development

    PubMed Central

    Macias, Hector

    2012-01-01

    The mammary gland develops through several distinct stages. The first transpires in the embryo as the ectoderm forms a mammary line that resolves into placodes. Regulated by epithelial/mesenchymal interactions, the placodes descend into the underlying mesenchyme and produce the rudimentary ductal structure of the gland present at birth. Subsequent stages of development – pubertal growth, pregnancy, lactation and involution – occur postnatally under the regulation of hormones. Puberty initiates branching morphogenesis, which requires growth hormone and estrogen, as well as IGF1, to create a ductal tree that fills the fat pad. Upon pregnancy the combined actions of progesterone and prolactin generate alveoli, which secrete milk during lactation. Lack of demand for milk at weaning initiates the process of involution whereby the gland is remodeled back to its pre-pregnancy state. These processes require numerous signaling pathways that have distinct regulatory functions at different stages of gland development. Signaling pathways also regulate a specialized subpopulation of mammary stem cells that fuel the dramatic changes in the gland occurring with each pregnancy. Our knowledge of mammary gland development and mammary stem cell biology has significantly contributed to our understanding of breast cancer and has advanced the discovery of therapies to treat this disease. PMID:22844349

  1. Stem Cells in the Cornea.

    PubMed

    Hertsenberg, Andrew J; Funderburgh, James L

    2015-01-01

    The cornea is the tough, transparent tissue through which light first enters the eye and functions as a barrier to debris and infection as well as two-thirds of the refractive power of the eye. Corneal damage that is not promptly treated will often lead to scarring and vision impairment. Due to the limited options currently available to treat corneal scars, the identification and isolation of stem cells in the cornea has received much attention, as they may have potential for autologous, cell-based approaches to the treatment of damaged corneal tissue.

  2. Stem cell differentiation and human liver disease

    PubMed Central

    Zhou, Wen-Li; Medine, Claire N; Zhu, Liang; Hay, David C

    2012-01-01

    Human stem cells are scalable cell populations capable of cellular differentiation. This makes them a very attractive in vitro cellular resource and in theory provides unlimited amounts of primary cells. Such an approach has the potential to improve our understanding of human biology and treating disease. In the future it may be possible to deploy novel stem cell-based approaches to treat human liver diseases. In recent years, efficient hepatic differentiation from human stem cells has been achieved by several research groups including our own. In this review we provide an overview of the field and discuss the future potential and limitations of stem cell technology. PMID:22563188

  3. Adult Stem Cell Responses to Nanostimuli

    PubMed Central

    Tsimbouri, Penelope M.

    2015-01-01

    Adult or mesenchymal stem cells (MSCs) have been found in different tissues in the body, residing in stem cell microenvironments called “stem cell niches”. They play different roles but their main activity is to maintain tissue homeostasis and repair throughout the lifetime of an organism. Their ability to differentiate into different cell types makes them an ideal tool to study tissue development and to use them in cell-based therapies. This differentiation process is subject to both internal and external forces at the nanoscale level and this response of stem cells to nanostimuli is the focus of this review. PMID:26193326

  4. Stem cells and the Planarian Schmidtea mediterranea.

    PubMed

    Sánchez Alvarado, Alejandro

    2007-01-01

    In recent years, stem cells have been heralded as potential therapeutic agents to address a large number of degenerative diseases. Yet, in order to rationally utilize these cells as effective therapeutic agents, and/or improve treatment of stem-cell-associated malignancies such as leukemias and carcinomas, a better understanding of the basic biological properties of stem cells needs to be acquired. A major limitation in the study of stem cells lies in the difficulty of accessing and studying these cells in vivo. This barrier is further compounded by the limitations of in vitro culture systems, which are unable to emulate the microenvironments in which stem cells reside and which are known to provide critical regulatory signals for their proliferation and differentiation. Given the complexity of vertebrate embryonic and adult stem cell populations and their relative inaccessibility to in vivo molecular analyses, the study of stem cells should benefit from analyzing their counterparts in simpler model organisms. In the past, the use of Drosophila or C. elegans has provided invaluable contributions to our understanding of genes and pathways involved in a variety of human diseases. However, stem cells in these organisms are mostly restricted to the gonads, and more importantly neither Drosophila, nor C. elegans are capable of regenerating body parts lost to injury. Therefore, a simple animal with experimentally accessible stem cells playing a role in tissue maintenance and/or regeneration should be very useful in identifying and functionally testing the mechanisms regulating stem cell activities. The planarian Schmidtea mediterranea is poised to fill this experimental gap. S. mediterranea displays robust regenerative properties driven by a stem cell population capable of producing the approximately 40 different cell types found in this organism, including the germ cells. Given that all known metazoans depend on stem cells for their survival, it is extremely likely that

  5. Anatomy, biogenesis and regeneration of salivary glands.

    PubMed

    Holmberg, Kyle V; Hoffman, Matthew P

    2014-01-01

    An overview of the anatomy and biogenesis of salivary glands is important in order to understand the physiology, functions and disorders associated with saliva. A major disorder of salivary glands is salivary hypofunction and resulting xerostomia, or dry mouth, which affects hundreds of thousands of patients each year who suffer from salivary gland diseases or undergo head and neck cancer treatment. There is currently no curative therapy for these patients. To improve these patients' quality of life, new therapies are being developed based on findings in salivary gland cell and developmental biology. Here we discuss the anatomy and biogenesis of the major human salivary glands and the rodent submandibular gland, which has been used extensively as a research model. We also include a review of recent research on the identification and function of stem cells in salivary glands, and the emerging field of research suggesting that nerves play an instructive role during development and may be essential for adult gland repair and regeneration. Understanding the molecular mechanisms involved in gland biogenesis provides a template for regenerating, repairing or reengineering diseased or damaged adult human salivary glands. We provide an overview of 3 general approaches currently being developed to regenerate damaged salivary tissue, including gene therapy, stem cell-based therapy and tissue engineering. In the future, it may be that a combination of all three will be used to repair, regenerate and reengineer functional salivary glands in patients to increase the secretion of their saliva, the focus of this monograph. PMID:24862590

  6. PEDF & stem cells: niche vs. nurture.

    PubMed

    Fitchev, Philip; Chung, Chuhan; Plunkett, Beth A; Brendler, Charles B; Crawford, Susan E

    2014-01-01

    Anti-angiogenic pigment epithelium-derived factor (PEDF) is a multifunctional 50kD secreted glycoprotein emerging as a key factor in stem cell renewal. Characteristics of the stem cell niche can be highly dependent on location, access to the vasculature, oxygen tension and neighboring cells. In the neural stem cell (NSC) niche, specifically the subventricular zone, PEDF actively participates in the self renewal process and promotes stemness by upregulating Notch signaling effectors Hes1 and Hes5. The local vascular endothelial cells and ependymal cells are the likely sources of PEDF for the NSC while mesenchymal and retinal stem cells can actually produce PEDF. The opposing actions of PEDF and VEGF on various cells are recapitulated in the NSC niche. Intraventricular injection of PEDF promotes stem cell renewal, while injection of VEGF prompts differentiation and neurogenesis in the subventricular zone. Enhancing the expression of PEDF in stem cells has promising therapeutic implications. Bone marrow mesenchymal stem cells overexpressing PEDF effectively inhibited pathologic angiogenesis in the murine eye and these same cells suppressed hepatocellular carcinoma growth. As a protein with bioactivities in nearly all normal organ systems, it is likely that PEDF will continue to gain visibility as an essential component in the development and delivery of novel stem cell-based therapies to combat disease.

  7. Promise of cancer stem cell vaccine

    PubMed Central

    Zhou, Li; Lu, Lin; Wicha, Max S; Chang, Alfred E; Xia, Jian-chuan; Ren, Xiubao; Li, Qiao

    2015-01-01

    Dendritic cell (DC)-based vaccines designed to target cancer stem cells (CSC) can induce significant antitumor responses via conferring host anti-CSC immunity. Our recent studies have demonstrated that CSC-DC vaccine could inhibit metastasis of primary tumors and induce humoral immune responses against cancer stem cells. This approach highlights the promise of cancer stem cell vaccine in cancer immunotherapy. PMID:26337078

  8. The use of glandular-derived stem cells to improve vascularization in scaffold-mediated dermal regeneration.

    PubMed

    Egaña, José T; Danner, Sandra; Kremer, Mathias; Rapoport, Daniel H; Lohmeyer, Jörn A; Dye, Julian F; Hopfner, Ursula; Lavandero, Sergio; Kruse, Charli; Machens, Hans-Günther

    2009-10-01

    Clinical success in tissue regeneration requires improvements in vascularization capacity of scaffolds. Several efforts have been made in this field including cellular and acellular technologies. In this work we combined the use of stem cells derived from pancreas or submandibular glands expressing green fluorescent protein (GFP(+)) with a commercially available scaffold for dermal regeneration. Cells were isolated, characterized and seeded in a scaffold for dermal regeneration. Scaffolds containing cells were used to induce dermal regeneration in a full skin defect model. After 3 weeks of in vivo regeneration, tissues were harvested and vascularization was analyzed. Results showed that gland-derived stem cells displayed stem cell features and presented multipotential differentiation capacity because they were able to differentiate in cell types representing the 3 different germ layers. After seeding, cells were homogeneously distributed and formed focal adhesions with the scaffold. Metabolic assays showed that cells can be cultured for at least 3 weeks in the scaffold. In vivo, the presence of pancreatic or submandibular stem cells significantly enhanced the vascularization compared to empty scaffolds. Presence of gland-derived stem cells in the regenerating tissue was confirmed by the detection of GFP expression in the wound area. In order to explore the possible mechanisms behind the improvement in vascular regeneration, in vitro experiments were performed, showing that gland-derived stem cells could contribute by angiogenic and vasculogenic mechanisms to this process. Our results suggest that the combined use of stem cells derived from glands and scaffold for dermal regeneration could be a rational alternative to improve vascularization in scaffold-mediated dermal regeneration.

  9. Stem Cells in Teeth and Craniofacial Bones

    PubMed Central

    Zhao, H.; Chai, Y.

    2015-01-01

    Stem cells are remarkable, and stem cell–based tissue engineering is an emerging field of biomedical science aiming to restore damaged tissue or organs. In dentistry and reconstructive facial surgery, it is of great interest to restore lost teeth or craniofacial bone defects using stem cell–mediated therapy. In the craniofacial region, various stem cell populations have been identified with regeneration potential. In this review, we provide an overview of the current knowledge concerning the various types of tooth- and craniofacial bone–related stem cells and discuss their in vivo identities and regulating mechanisms. PMID:26350960

  10. [Advances in Lung Stem Cells and Lung Cancer Stem Cells].

    PubMed

    Yin, Huijing; Deng, Jiong

    2015-10-20

    Cancer stem cells (CSCs) are emerging as a hot topic for cancer research. Lung CSCs share many characteristics with normal lung stem cells (SCs), including self-renewal and multi-potency for differentiation. Many molecular markers expressed in various types of CSCs were also found in lung CSCs, such as CD133, CD44, aldehyde dehydrogenase (ALDH) and ATP-binding cassette sub-family G member 2 (ABCG2). Similarly, proliferation and expansion of lung CSCs are regulated not only by signal transduction pathways functioning in normal lung SCs, such as Notch, Hedgehog and Wnt pathways, but also by those acting in tumor cells, such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3) and phosphatidylinositol 3 kinase (PI3K) pathways. As CSC plays an critical role in tumor recurrence, metastasis and drug-resistance, understanding the difference between lung CSCs and normal lung SCs, identifying and targeting CSC markers or related signaling pathways may increase the efficacy of therapy on lung cancer and improved survival of lung cancer patients.

  11. Therapeutic potential of amniotic fluid stem cells.

    PubMed

    Abdulrazzak, Hassan; De Coppi, Paolo; Guillot, Pascale V

    2013-03-01

    Human amniotic fluid cells have been used traditionally as a diagnostic tool for genetic anomalies. More recently it has been recognized that amniotic fluid contains populations of stem cells. Mesenchymal stem cells (AFMSC) were first to be described. These cells are able to differentiate towards mesodermal lineages. More recently cells with broader potential, defined as amniotic fluid stem cells (AFSC), were also isolated. They have intermediate characteristics between embryonic and adult stem cells and are able to differentiate into lineages representative of all three germ layers but unlike ES cells they do not form tumours in vivo. Furthermore, AFSC have been reverted to functional pluripotency in a transgene-free approach using an epigenetics modifier. These characteristics, together with absence of ethical issues concerning their employment, have made stem cells from amniotic fluid a promising candidate for cell therapy and tissue engineering.

  12. Stem Cell Therapy for Autism

    PubMed Central

    Ichim, Thomas E; Solano, Fabio; Glenn, Eduardo; Morales, Frank; Smith, Leonard; Zabrecky, George; Riordan, Neil H

    2007-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions whose incidence is reaching epidemic proportions, afflicting approximately 1 in 166 children. Autistic disorder, or autism is the most common form of ASD. Although several neurophysiological alterations have been associated with autism, immune abnormalities and neural hypoperfusion appear to be broadly consistent. These appear to be causative since correlation of altered inflammatory responses, and hypoperfusion with symptology is reported. Mesenchymal stem cells (MSC) are in late phases of clinical development for treatment of graft versus host disease and Crohn's Disease, two conditions of immune dysregulation. Cord blood CD34+ cells are known to be potent angiogenic stimulators, having demonstrated positive effects in not only peripheral ischemia, but also in models of cerebral ischemia. Additionally, anecdotal clinical cases have reported responses in autistic children receiving cord blood CD34+ cells. We propose the combined use of MSC and cord blood CD34+cells may be useful in the treatment of autism. PMID:17597540

  13. Multiple Myeloma Cancer Stem Cells

    PubMed Central

    Huff, Carol Ann; Matsui, William

    2008-01-01

    Multiple myeloma is characterized by the clonal expansion of neoplastic plasma cells within the bone marrow, elevated serum immunoglobulin, and osteolytic bone disease. The disease is highly responsive to a wide variety of anticancer treatments including conventional cytotoxic chemotherapy, corticosteroids, radiation therapy, and a growing number of agents with novel mechanisms of action. However, few if any patients are cured with these modalities and relapse remains a critical issue. A better understanding of clonogenic multiple myleoma cells is essential to ultimately improving long-term outcomes, but the nature of the cells responsible for myeloma regrowth and disease relapse is unclear. We review evidence that functional heterogeneity exists in multiple myeloma and discuss potential strategies and clinical implications of the stem-cell model of cancer in this disease. PMID:18539970

  14. Stem cell therapy for autism.

    PubMed

    Ichim, Thomas E; Solano, Fabio; Glenn, Eduardo; Morales, Frank; Smith, Leonard; Zabrecky, George; Riordan, Neil H

    2007-06-27

    Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions whose incidence is reaching epidemic proportions, afflicting approximately 1 in 166 children. Autistic disorder, or autism is the most common form of ASD. Although several neurophysiological alterations have been associated with autism, immune abnormalities and neural hypoperfusion appear to be broadly consistent. These appear to be causative since correlation of altered inflammatory responses, and hypoperfusion with symptology is reported. Mesenchymal stem cells (MSC) are in late phases of clinical development for treatment of graft versus host disease and Crohn's Disease, two conditions of immune dysregulation. Cord blood CD34+ cells are known to be potent angiogenic stimulators, having demonstrated positive effects in not only peripheral ischemia, but also in models of cerebral ischemia. Additionally, anecdotal clinical cases have reported responses in autistic children receiving cord blood CD34+ cells. We propose the combined use of MSC and cord blood CD34+cells may be useful in the treatment of autism.

  15. Establishment of a Mesenchymal Stem Cell Bank

    PubMed Central

    Cooper, Khushnuma; Viswanathan, Chandra

    2011-01-01

    Adult stem cells have generated great amount of interest amongst the scientific community for their potential therapeutic applications for unmet medical needs. We have demonstrated the plasticity of mesenchymal stem cells isolated from the umbilical cord matrix. Their immunological profile makes it even more interesting. We have demonstrated that the umbilical cord is an inexhaustible source of mesenchymal stem cells. Being a very rich source, instead of discarding this tissue, we worked on banking these cells for regenerative medicine application for future use. The present paper gives a detailed account of our experience in the establishment of a mesenchymal stem cell bank at our facility. PMID:21826152

  16. Mesenchymal Stem Cells in Cardiology.

    PubMed

    White, Ian A; Sanina, Cristina; Balkan, Wayne; Hare, Joshua M

    2016-01-01

    Cardiovascular disease (CVD) accounts for more deaths globally than any other single disease. There are on average 1.5 million episodes of myocardial infarction (heart attack) each year in the United States alone with roughly one-third resulting in death. There is therefore a major need for developing new and effective strategies to promote cardiac repair. Intramyocardial transplantation of mesenchymal stem cells (MSCs) has emerged as a leading contender in the pursuit of clinical intervention and therapy. MSCs are potent mediators of cardiac repair and are therefore an attractive tool in the development of preclinical and clinical trials. MSCs are capable of secreting a large array of soluble factors, which have had demonstrated effects on pathogenic cardiac remolding, fibrosis, immune activation, and cardiac stem cell proliferation within the damaged heart. MSCs are also capable of differentiation into cardiomyocytes, endothelial cells, and vascular smooth muscle cells, although the relative contribution of trilineage differentiation and paracrine effectors on cardiac repair remains the subject of active investigation. PMID:27236666

  17. Patenting human genes and stem cells.

    PubMed

    Martin-Rendon, Enca; Blake, Derek J

    2007-01-01

    Cell lines and genetically modified single cell organisms have been considered patentable subjects for the last two decades. However, despite the technical patentability of genes and stem cell lines, social and legal controversy concerning their 'ownership' has surrounded stem cell research in recent years. Some granted patents on stem cells with extremely broad claims are casting a shadow over the commercialization of these cells as therapeutics. However, in spite of those early patents, the number of patent applications related to stem cells is growing exponentially. Both embryonic and adult stem cells have the ability to differentiate into several cell lineages in an organism as a result of specific genetic programs that direct their commitment and cell fate. Genes that control the pluripotency of stem cells have been recently identified and the genetic manipulation of these cells is becoming more efficient with the advance of new technologies. This review summarizes some of the recent published patents on pluripotency genes, gene transfer into stem cells and genetic reprogramming and takes the hematopoietic and embryonic stem cell as model systems.

  18. A Progesterone-CXCR4 Axis Controls Mammary Progenitor Cell Fate in the Adult Gland

    PubMed Central

    Shiah, Yu-Jia; Tharmapalan, Pirashaanthy; Casey, Alison E.; Joshi, Purna A.; McKee, Trevor D.; Jackson, Hartland W.; Beristain, Alexander G.; Chan-Seng-Yue, Michelle A.; Bader, Gary D.; Lydon, John P.; Waterhouse, Paul D.; Boutros, Paul C.; Khokha, Rama

    2015-01-01

    Summary Progesterone drives mammary stem and progenitor cell dynamics through paracrine mechanisms that are currently not well understood. Here, we demonstrate that CXCR4, the receptor for stromal-derived factor 1 (SDF-1; CXC12), is a crucial instructor of hormone-induced mammary stem and progenitor cell function. Progesterone elicits specific changes in the transcriptome of basal and luminal mammary epithelial populations, where CXCL12 and CXCR4 represent a putative ligand-receptor pair. In situ, CXCL12 localizes to progesterone-receptor-positive luminal cells, whereas CXCR4 is induced in both basal and luminal compartments in a progesterone-dependent manner. Pharmacological inhibition of CXCR4 signaling abrogates progesterone-directed expansion of basal (CD24+CD49fhi) and luminal (CD24+CD49flo) subsets. This is accompanied by a marked reduction in CD49b+SCA-1− luminal progenitors, their functional capacity, and lobuloalveologenesis. These findings uncover CXCL12 and CXCR4 as novel paracrine effectors of hormone signaling in the adult mammary gland, and present a new avenue for potentially targeting progenitor cell growth and malignant transformation in breast cancer.

  19. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, but has a latent negative effect on cell proliferation

    SciTech Connect

    Rauner, Gat; Barash, Itamar

    2014-10-15

    The challenge in manipulating the proportion of somatic stem cells lies in having to override tissue homeostasis. Xanthosine infusion via the teat canal has been reported to augment the number of label-retaining cells in the mammary gland of 3-month-old bovine calves. To further delineate xanthosine's effect on defined stem cells in the mammary gland of heifers—which are candidates for increased prospective milk production following such manipulation—bovine mammary parenchymal tissue was transplanted and integrated into the cleared mammary fat pad of immunodeficient mice. Xanthosine administration for 14 days did not affect the number of label-retaining cells after 10- and 11-week chases. No change in stem cell proportion, analyzed according to CD49f and CD24 expression, was noted. Clone formation and propagation rate of cultured cells, as well as expression of stem cell markers, were also unaffected. In contrast, a latent 50% decrease in bovine mammary cell proliferation rate was observed 11 weeks after xanthosine administration. Tumor development in mice was also limited by xanthosine administration. These effects may have resulted from an initial decrease in expression of the rate-limiting enzyme in guanine synthesis, IMPDH. The data indicate that caution should be exerted when considering xanthosine for stem cell manipulation. - Highlights: • Novel “bovinized“ mouse model for exogenous effects on bovine mammary gland. • Xanthosine did not affect stem cell number/function in bovine mammary gland. • Xanthosine caused an immediate decrease in IMPDH expression in bovine mammary gland. • Xanthosine had latent negative effect on cell proliferation in bovine mammary gland. • Xanthosine administration limited mammary tumor growth.

  20. Secretory and basal cells of the epithelium of the tubular glands in the male Mullerian gland of the caecilian Uraeotyphlus narayani (Amphibia: Gymnophiona).

    PubMed

    George, Jancy M; Smita, Matthew; Kadalmani, Balamuthu; Girija, Ramankutty; Oommen, Oommen V; Akbarsha, Mohammad A

    2004-12-01

    Caecilians are exceptional among the vertebrates in that males retain the Mullerian duct as a functional glandular structure. The Mullerian gland on each side is formed from a large number of tubular glands connecting to a central duct, which either connects to the urogenital duct or opens directly into the cloaca. The Mullerian gland is believed to secrete a substance to be added to the sperm during ejaculation. Thus, the Mullerian gland could function as a male accessory reproductive gland. Recently, we described the male Mullerian gland of Uraeotyphlus narayani using light and transmission electron microscopy (TEM) and histochemistry. The present TEM study reports that the secretory cells of both the tubular and basal portions of the tubular glands of the male Mullerian gland of this caecilian produce secretion granules in the same manner as do other glandular epithelial cells. The secretion granules are released in the form of structured granules into the lumen of the tubular glands, and such granules are traceable to the lumen of the central duct of the Mullerian gland. This is comparable to the situation prevailing in the epididymal epithelium of several reptiles. In the secretory cells of the basal portion of the tubular glands, mitochondria are intimately associated with fabrication of the secretion granules. The structural and functional organization of the epithelium of the basal portion of the tubular glands is complicated by the presence of basal cells. This study suggests the origin of the basal cells from peritubular tissue leukocytes. The study also indicates a role for the basal cells in acquiring secretion granules from the neighboring secretory cells and processing them into lipofuscin material in the context of regression of the Mullerian gland during the period of reproductive quiescence. In these respects the basal cells match those in the epithelial lining of the epididymis of amniotes.

  1. Secretory and basal cells of the epithelium of the tubular glands in the male Mullerian gland of the caecilian Uraeotyphlus narayani (Amphibia: Gymnophiona).

    PubMed

    George, Jancy M; Smita, Matthew; Kadalmani, Balamuthu; Girija, Ramankutty; Oommen, Oommen V; Akbarsha, Mohammad A

    2004-12-01

    Caecilians are exceptional among the vertebrates in that males retain the Mullerian duct as a functional glandular structure. The Mullerian gland on each side is formed from a large number of tubular glands connecting to a central duct, which either connects to the urogenital duct or opens directly into the cloaca. The Mullerian gland is believed to secrete a substance to be added to the sperm during ejaculation. Thus, the Mullerian gland could function as a male accessory reproductive gland. Recently, we described the male Mullerian gland of Uraeotyphlus narayani using light and transmission electron microscopy (TEM) and histochemistry. The present TEM study reports that the secretory cells of both the tubular and basal portions of the tubular glands of the male Mullerian gland of this caecilian produce secretion granules in the same manner as do other glandular epithelial cells. The secretion granules are released in the form of structured granules into the lumen of the tubular glands, and such granules are traceable to the lumen of the central duct of the Mullerian gland. This is comparable to the situation prevailing in the epididymal epithelium of several reptiles. In the secretory cells of the basal portion of the tubular glands, mitochondria are intimately associated with fabrication of the secretion granules. The structural and functional organization of the epithelium of the basal portion of the tubular glands is complicated by the presence of basal cells. This study suggests the origin of the basal cells from peritubular tissue leukocytes. The study also indicates a role for the basal cells in acquiring secretion granules from the neighboring secretory cells and processing them into lipofuscin material in the context of regression of the Mullerian gland during the period of reproductive quiescence. In these respects the basal cells match those in the epithelial lining of the epididymis of amniotes. PMID:15487004

  2. Concise Review: Paracrine Role of Stem Cells in Pituitary Tumors: A Focus on Adamantinomatous Craniopharyngioma.

    PubMed

    Martinez-Barbera, Juan Pedro; Andoniadou, Cynthia L

    2016-02-01

    The existence of tissue-specific progenitor/stem cells in the adult pituitary gland of the mouse has been demonstrated recently using genetic tracing experiments. These cells have the capacity to differentiate into all of the different cell lineages of the anterior pituitary and self-propagate in vitro and can therefore contribute to normal homeostasis of the gland. In addition, they play a critical role in tumor formation, specifically in the etiology of human adamantinomatous craniopharyngioma, a clinically relevant tumor that is associated with mutations in CTNNB1 (gene encoding β-catenin). Mouse studies have shown that only pituitary embryonic precursors or adult stem cells are able to generate tumors when targeted with oncogenic β-catenin, suggesting that the cell context is critical for mutant β-catenin to exert its oncogenic effect. Surprisingly, the bulk of the tumor cells are not derived from the mutant progenitor/stem cells, suggesting that tumors are induced in a paracrine manner. Therefore, the cell sustaining the mutation in β-catenin and the cell-of-origin of the tumors are different. In this review, we will discuss the in vitro and in vivo evidence demonstrating the presence of stem cells in the adult pituitary and analyze the evidence showing a potential role of these stem cells in pituitary tumors.

  3. Stem cells in the light of evolution

    PubMed Central

    Chakraborty, Chiranjib; Agoramoorthy, Govindasamy

    2012-01-01

    All organisms depend on stem cells for their survival. As a result, stem cells may be a prerequisite for the evolution of specific characteristics in organisms that include regeneration, multicellularity and coloniality. Stem cells have attracted the attention of biologists and medical scientists for a long time. These provide materials for regenerative medicine. We review in this paper, the link between modern stem cell research and early studies in ancient organisms. It also outlines details on stem cells in the light of evolution with an emphasis on their regeneration potential, coloniality and multicellularity. The information provided might be of use to molecular biologists, medical scientists and developmental biologists who are engaged in integrated research involving the stem cells. PMID:22825600

  4. Stem cell niche engineering through droplet microfluidics.

    PubMed

    Allazetta, Simone; Lutolf, Matthias P

    2015-12-01

    Stem cells reside in complex niches in which their behaviour is tightly regulated by various biochemical and biophysical signals. In order to unveil some of the crucial stem cell-niche interactions and expedite the implementation of stem cells in clinical and pharmaceutical applications, in vitro methodologies are being developed to reconstruct key features of stem cell niches. Recently, droplet-based microfluidics has emerged as a promising strategy to build stem cell niche models in a miniaturized and highly precise fashion. This review highlights current advances in using droplet microfluidics in stem cell biology. We also discuss recent efforts in which microgel technology has been interfaced with high-throughput analyses to engender screening paradigms with an unparalleled potential for basic and applied biological studies.

  5. Fueling Hope: Stem Cells in Social Media.

    PubMed

    Robillard, Julie M; Cabral, Emanuel; Hennessey, Craig; Kwon, Brian K; Illes, Judy

    2015-08-01

    Social media is broadening opportunities to engage in discussions about biomedical advances such as stem cell research. However, little is known about how information pertaining to stem cells is disseminated on platforms such as Twitter. To fill this gap, we conducted a content analysis of tweets containing (i) a stem cell keyword, and (ii) a keyword related to either spinal cord injury (SCI) or Parkinson disease (PD). We found that the discussion about stem cells and SCI or PD revolves around different aspects of the research process. We also found that the tone of most tweets about stem cells is either positive or neutral. The findings contribute new knowledge about Twitter as a connecting platform for many voices and as a key tool for the dissemination of information about stem cells and disorders of the central nervous system.

  6. Role of stem cells in tooth bioengineering

    PubMed Central

    Singh, Kamleshwar; Mishra, Niraj; Kumar, Lakshya; Agarwal, Kaushal Kishore; Agarwal, Bhaskar

    2012-01-01

    The creation of teeth in the laboratory depends upon the manipulation of stem cells and requires a synergy of all cellular and molecular events that finally lead to the formation of tooth-specific hard tissues, dentin, and enamel. This review focuses on the different sources of stem cells that have been used for making teeth in vitro. The search was performed from 1970 to 2012 and was limited to English language papers. The keywords searched on medline were ‘stem cells and dentistry,’ ‘stem cells and odontoblast,’ ‘stem cells and dentin,’ and ‘stem cells and ameloblasts.’ PMID:25756031

  7. [Stem cell therapy for neurodegenerative disorders].

    PubMed

    Meyer, Morten; Jensen, Pia; Rasmussen, Jens Zimmer

    2010-09-20

    Intrastriatal, foetal neural transplants can ameliorate symptoms in patients with Parkinson's and Huntington's disease, although not stop the primary cell-loss. Several issues must, however, be addressed before general or extended clinical use of cell therapy in neurodegenerative diseases can become a reality. Improvements include standardized and safe master cell-lines derived from human embryonic stem cells, induced pluripotent stem cells and neural stem cells. Cells from these sources are expected to become available for cell replacement therapies or therapeutic production of trophic, anti-inflammatory and restorative factors within a few years.

  8. Melatonin improves spermatogonial stem cells transplantation efficiency in azoospermic mice

    PubMed Central

    Gholami, Mohammadreza; Saki, Ghasem; Hemadi, Masoud; Khodadadi, Ali; Mohammadi-asl, Javad

    2014-01-01

    Objective(s): Transplantation quality improvement and reduction of cellular damage are important goals that are now considered by researchers. Melatonin is secreted from the pineal gland and some organs such as testes. According to beneficial effects of melatonin (such as its antioxidant and antiapoptotic properties), researchers have proposed that the use of melatonin may improve transplantation quality. The aim of this study was to investigate the effects of melatonin on the spermatogonial stem cells transplantation in the azoospermic mice. Materials and Methods: The testes of the BALB/c mice pups (6-day-old) after vitrified-thawed, were digested with enzymes (collagenase, DNaseΙ, trypsin-EDTA) to disperse the cells. The SSCs, type A, were isolated from the rest of testicular cells by MACS. Spermatogonial stem cells were labeled with PKH26 fluorescent kit. Labeled spermatogonial stem cells were transplanted into the testes of infertile mice (busulfan 40 mg/kg). The mice died two months after transplantation and the efficiency of spermatogenesis was investigated. TNP2 and hematoxyline-eosin staining were used to detect the efficiency of cell transplantation. Results: TNP2 were detected in the samples that received melatonin and spermatogonial stem cells transplantation, simultaneously. TNP2 was not detectable in the transplant recipient mice that received placebo for 10 weeks (control group). According to hematoxyline-eosin staining, melatonin improved structure of testes. Conclusion: Administration of melatonin (20 mg/kg) simultaneously with transplantation of spermatogonial stem cells in azoospermia mouse testis increases the efficiency of transplantation and improves structural properties of the testes tissue. PMID:24711891

  9. Human stem cells and articular cartilage regeneration.

    PubMed

    Inui, Atsuyuki; Iwakura, Takashi; Reddi, A Hari

    2012-11-05

    The regeneration of articular cartilage damaged due to trauma and posttraumatic osteoarthritis is an unmet medical need. Current approaches to regeneration and tissue engineering of articular cartilage include the use of chondrocytes, stem cells, scaffolds and signals, including morphogens and growth factors. Stem cells, as a source of cells for articular cartilage regeneration, are a critical factor for articular cartilage regeneration. This is because articular cartilage tissue has a low cell turnover and does not heal spontaneously. Adult stem cells have been isolated from various tissues, such as bone marrow, adipose, synovial tissue, muscle and periosteum. Signals of the transforming growth factor beta superfamily play critical roles in chondrogenesis. However, adult stem cells derived from various tissues tend to differ in their chondrogenic potential. Pluripotent stem cells have unlimited proliferative capacity compared to adult stem cells. Chondrogenesis from embryonic stem (ES) cells has been studied for more than a decade. However, establishment of ES cells requires embryos and leads to ethical issues for clinical applications. Induced pluripotent stem (iPS) cells are generated by cellular reprogramming of adult cells by transcription factors. Although iPS cells have chondrogenic potential, optimization, generation and differentiation toward articular chondrocytes are currently under intense investigation.

  10. [Bioethical challenges of stem cell tourism].

    PubMed

    Ventura-Juncá, Patricio; Erices, Alejandro; Santos, Manuel J

    2013-08-01

    Stem cells have drawn extraordinary attention from scientists and the general public due to their potential to generate effective therapies for incurable diseases. At the same time, the production of embryonic stem cells involves a serious ethical issue concerning the destruction of human embryos. Although adult stem cells and induced pluripotential cells do not pose this ethical objection, there are other bioethical challenges common to all types of stem cells related particularly to the clinical use of stem cells. Their clinical use should be based on clinical trials, and in special situations, medical innovation, both of which have particular ethical dimensions. The media has raised unfounded expectations in patients and the public about the real clinical benefits of stem cells. At the same time, the number of unregulated clinics is increasing around the world, making direct offers through Internet of unproven stem cell therapies that attract desperate patients that have not found solutions in standard medicine. This is what is called stem cells tourism. This article reviews this situation, its consequences and the need for international cooperation to establish effective regulations to prevent the exploitation of patients and to endanger the prestige of legitimate stem cell research.

  11. ICRP Publication 131: Stem cell biology with respect to carcinogenesis aspects of radiological protection.

    PubMed

    Hendry, J H; Niwa, O; Barcellos-Hoff, M H; Globus, R K; Harrison, J D; Martin, M T; Seed, T M; Shay, J W; Story, M D; Suzuki, K; Yamashita, S

    2016-06-01

    Current knowledge of stem cell characteristics, maintenance and renewal, evolution with age, location in 'niches', and radiosensitivity to acute and protracted exposures is reviewed regarding haematopoietic tissue, mammary gland, thyroid, digestive tract, lung, skin, and bone. The identity of the target cells for carcinogenesis continues to point to the more primitive and mostly quiescent stem cell population (able to accumulate the protracted sequence of mutations necessary to result in malignancy), and, in a few tissues, to daughter progenitor cells. Several biological processes could contribute to the protection of stem cells from mutation accumulation: (1) accurate DNA repair; (2) rapid induced death of injured stem cells; (3) retention of the intact parental strand during divisions in some tissues so that mutations are passed to the daughter differentiating cells; and (4) stem cell competition, whereby undamaged stem cells outcompete damaged stem cells for residence in the vital niche. DNA repair mainly operates within a few days of irradiation, while stem cell replications and competition require weeks or many months depending on the tissue type. This foundation is used to provide a biological insight to protection issues including the linear-non-threshold and relative risk models, differences in cancer risk between tissues, dose-rate effects, and changes in the risk of radiation carcinogenesis by age at exposure and attained age.

  12. ICRP Publication 131: Stem cell biology with respect to carcinogenesis aspects of radiological protection.

    PubMed

    Hendry, J H; Niwa, O; Barcellos-Hoff, M H; Globus, R K; Harrison, J D; Martin, M T; Seed, T M; Shay, J W; Story, M D; Suzuki, K; Yamashita, S

    2016-06-01

    Current knowledge of stem cell characteristics, maintenance and renewal, evolution with age, location in 'niches', and radiosensitivity to acute and protracted exposures is reviewed regarding haematopoietic tissue, mammary gland, thyroid, digestive tract, lung, skin, and bone. The identity of the target cells for carcinogenesis continues to point to the more primitive and mostly quiescent stem cell population (able to accumulate the protracted sequence of mutations necessary to result in malignancy), and, in a few tissues, to daughter progenitor cells. Several biological processes could contribute to the protection of stem cells from mutation accumulation: (1) accurate DNA repair; (2) rapid induced death of injured stem cells; (3) retention of the intact parental strand during divisions in some tissues so that mutations are passed to the daughter differentiating cells; and (4) stem cell competition, whereby undamaged stem cells outcompete damaged stem cells for residence in the vital niche. DNA repair mainly operates within a few days of irradiation, while stem cell replications and competition require weeks or many months depending on the tissue type. This foundation is used to provide a biological insight to protection issues including the linear-non-threshold and relative risk models, differences in cancer risk between tissues, dose-rate effects, and changes in the risk of radiation carcinogenesis by age at exposure and attained age. PMID:26956677

  13. Telomeres, stem cells, and hematology

    PubMed Central

    2008-01-01

    Telomeres are highly dynamic structures that adjust the cellular response to stress and growth stimulation based on previous cell divisions. This critical function is accomplished by progressive telomere shortening and DNA damage responses activated by chromosome ends without sufficient telomere repeats. Repair of critically short telomeres by telomerase or recombination is limited in most somatic cells, and apoptosis or cellular senescence is triggered when too many uncapped telomeres accumulate. The chance of the latter increases as the average telomere length decreases. The average telomere length is set and maintained in cells of the germ line that typically express high levels of telomerase. In somatic cells, the telomere length typically declines with age, posing a barrier to tumor growth but also contributing to loss of cells with age. Loss of (stem) cells via telomere attrition provides strong selection for abnormal cells in which malignant progression is facilitated by genome instability resulting from uncapped telomeres. The critical role of telomeres in cell proliferation and aging is illustrated in patients with 50% of normal telomerase levels resulting from a mutation in one of the telomerase genes. Here, the role of telomeres and telomerase in human biology is reviewed from a personal historical perspective. PMID:18263784

  14. Stem cell reprogramming: A 3D boost

    NASA Astrophysics Data System (ADS)

    Abilez, Oscar J.; Wu, Joseph C.

    2016-03-01

    Biophysical factors in an optimized three-dimensional microenvironment enhance the reprogramming efficiency of human somatic cells into pluripotent stem cells when compared to traditional cell-culture substrates.

  15. Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer

    PubMed Central

    Zhang, Dingxiao; Park, Daechan; Zhong, Yi; Lu, Yue; Rycaj, Kiera; Gong, Shuai; Chen, Xin; Liu, Xin; Chao, Hsueh-Ping; Whitney, Pamela; Calhoun-Davis, Tammy; Takata, Yoko; Shen, Jianjun; Iyer, Vishwanath R.; Tang, Dean G.

    2016-01-01

    The prostate gland mainly contains basal and luminal cells constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here we describe a genome-wide transcriptome analysis of human benign prostatic basal and luminal epithelial populations using deep RNA sequencing. Through molecular and biological characterizations, we show that the differential gene-expression profiles account for their distinct functional properties. Strikingly, basal cells preferentially express gene categories associated with stem cells, neurogenesis and ribosomal RNA (rRNA) biogenesis. Consistent with this profile, basal cells functionally exhibit intrinsic stem-like and neurogenic properties with enhanced rRNA transcription activity. Of clinical relevance, the basal cell gene-expression profile is enriched in advanced, anaplastic, castration-resistant and metastatic prostate cancers. Therefore, we link the cell-type-specific gene signatures to aggressive subtypes of prostate cancer and identify gene signatures associated with adverse clinical features. PMID:26924072

  16. Perinatal exposure to bisphenol a increases adult mammary gland progesterone response and cell number.

    PubMed

    Ayyanan, Ayyakkannu; Laribi, Ouahiba; Schuepbach-Mallepell, Sonia; Schrick, Christina; Gutierrez, Maria; Tanos, Tamara; Lefebvre, Gregory; Rougemont, Jacques; Yalcin-Ozuysal, Ozden; Brisken, Cathrin

    2011-11-01

    Bisphenol A [BPA, 2,2,-bis (hydroxyphenyl) propane] is one of the highest-volume chemicals produced worldwide. It is detected in body fluids of more than 90% of the human population. Originally synthesized as an estrogenic compound, it is currently utilized to manufacture food and beverage containers resulting in uptake with food and drinks. There is concern that exposure to low doses of BPA, defined as less than or equal to 5 mg/kg body weight /d, may have developmental effects on various hormone-responsive organs including the mammary gland. Here, we asked whether perinatal exposure to a range of low doses of BPA is sufficient to alter mammary gland hormone response later on in life, with a possible impact on breast cancer risk. To mimic human exposure, we added BPA to the drinking water of C57/Bl6 breeding pairs. Analysis of the mammary glands of their daughters at puberty showed that estrogen-dependent transcriptional events were perturbed and the number of terminal end buds, estrogen-induced proliferative structures, was altered in a dose-dependent fashion. Importantly, adult females showed an increase in mammary epithelial cell numbers comparable to that seen in females exposed to diethylbestrol, a compound exposure to which was previously linked to increased breast cancer risk. Molecularly, the mRNAs encoding Wnt-4 and receptor activator of nuclear factor κB ligand, two key mediators of hormone function implicated in control of mammary stem cell proliferation and carcinogenesis, showed increased induction by progesterone in the mammary tissue of exposed mice. Thus, perinatal exposure to environmentally relevant doses of BPA alters long-term hormone response that may increase the propensity to develop breast cancer.

  17. Plant stem cells as innovation in cosmetics.

    PubMed

    Moruś, Martyna; Baran, Monika; Rost-Roszkowska, Magdalena; Skotnicka-Graca, Urszula

    2014-01-01

    The stem cells thanks to their ability of unlimited division number or transformation into different cell types creating organs, are responsible for regeneration processes. Depending on the organism in which the stem cells exists, they divide to the plant or animal ones. The later group includes the stem cells existing in both embryo's and adult human's organs. It includes, among others, epidermal stem cells, located in the hair follicle relieves and also in its basal layers, and responsible for permanent regeneration of the epidermis. Temporary science looks for method suitable for stimulation of the epidermis stem cells, amongst the other by delivery of e.g., growth factors for proliferation that decrease with the age. One of the methods is the use of the plant cell culture technology, including a number of methods that should ensure growth of plant cells, issues or organs in the environment with the microorganism-free medium. It uses abilities of the different plant cells to dedifferentiation into stem cells and coming back to the pluripotent status. The extracts obtained this way from the plant stem cells are currently used for production of both common or professional care cosmetics. This work describes exactly impact of the plant stem cell extract, coming from one type of the common apple tree (Uttwiler Spätlauber) to human skin as one of the first plant sorts, which are used in cosmetology and esthetic dermatology.

  18. Prospects of Stem Cells for Retinal Diseases.

    PubMed

    Ng, Tsz Kin; Lam, Dennis S C; Cheung, Herman S

    2013-01-01

    Retinal diseases, including glaucoma, retinitis pigmentosa, diabetic retinopathy, and age-related macular degeneration, are the leading causes of irreversible visual impairment and blindness in developed countries. Traditional and current treatment regimens are based on surgical or medical interventions to slow down the disease progression. However, the number of retinal cells would continue to diminish, and the diseases could not be completely cured. There is an emerging role of stem cells in retinal research. The stem cell therapy on retinal diseases is based on 2 theories: cell replacement therapy and neuroprotective effect. The former hypothesizes that new retinal cells could be regenerated from stem cells to substitute the damaged cells in the diseased retina, whereas the latter believes that the paracrine effects of stem cells modulate the microenvironments of the diseased retina so as to protect the retinal neurons. This article summarizes the choice of stem cells in retinal research. Moreover, the current progress of retinal research on stem cells and the clinical applications of stem cells on retinal diseases are reviewed. In addition, potential challenges and future prospects of retinal stem cell research are discussed.

  19. Burning Fat Fuels Leukemic Stem Cell Heterogeneity.

    PubMed

    Thomas, Daniel; Majeti, Ravindra

    2016-07-01

    Obese leukemia patients exhibit reduced survival after chemotherapy, suggesting an important role of adipose tissue in disease progression. In this issue of Cell Stem Cell, Ye et al. (2016) reveal metabolic heterogeneity in leukemic stem cell (LSC) subpopulations and show that chemotherapy-resistant CD36+ LSCs co-opt gonadal adipose tissue to support their metabolism and survival. PMID:27392217

  20. Ocular stem cells: a status update!

    PubMed Central

    2014-01-01

    Stem cells are unspecialized cells that have been a major focus of the field of regenerative medicine, opening new frontiers and regarded as the future of medicine. The ophthalmology branch of the medical sciences was the first to directly benefit from stem cells for regenerative treatment. The success stories of regenerative medicine in ophthalmology can be attributed to its accessibility, ease of follow-up and the eye being an immune-privileged organ. Cell-based therapies using stem cells from the ciliary body, iris and sclera are still in animal experimental stages but show potential for replacing degenerated photoreceptors. Limbal, corneal and conjunctival stem cells are still limited for use only for surface reconstruction, although they might have potential beyond this. Iris pigment epithelial, ciliary body epithelial and choroidal epithelial stem cells in laboratory studies have shown some promise for retinal or neural tissue replacement. Trabecular meshwork, orbital and sclera stem cells have properties identical to cells of mesenchymal origin but their potential has yet to be experimentally determined and validated. Retinal and retinal pigment epithelium stem cells remain the most sought out stem cells for curing retinal degenerative disorders, although treatments using them have resulted in variable outcomes. The functional aspects of the therapeutic application of lenticular stem cells are not known and need further attention. Recently, embryonic stem cell-derived retinal pigment epithelium has been used for treating patients with Stargardts disease and age-related macular degeneration. Overall, the different stem cells residing in different components of the eye have shown some success in clinical and animal studies in the field of regenerative medicine. PMID:25158127

  1. Ocular stem cells: a status update!

    PubMed

    Dhamodaran, Kamesh; Subramani, Murali; Ponnalagu, Murugeswari; Shetty, Reshma; Das, Debashish

    2014-01-01

    Stem cells are unspecialized cells that have been a major focus of the field of regenerative medicine, opening new frontiers and regarded as the future of medicine. The ophthalmology branch of the medical sciences was the first to directly benefit from stem cells for regenerative treatment. The success stories of regenerative medicine in ophthalmology can be attributed to its accessibility, ease of follow-up and the eye being an immune-privileged organ. Cell-based therapies using stem cells from the ciliary body, iris and sclera are still in animal experimental stages but show potential for replacing degenerated photoreceptors. Limbal, corneal and conjunctival stem cells are still limited for use only for surface reconstruction, although they might have potential beyond this. Iris pigment epithelial, ciliary body epithelial and choroidal epithelial stem cells in laboratory studies have shown some promise for retinal or neural tissue replacement. Trabecular meshwork, orbital and sclera stem cells have properties identical to cells of mesenchymal origin but their potential has yet to be experimentally determined and validated. Retinal and retinal pigment epithelium stem cells remain the most sought out stem cells for curing retinal degenerative disorders, although treatments using them have resulted in variable outcomes. The functional aspects of the therapeutic application of lenticular stem cells are not known and need further attention. Recently, embryonic stem cell-derived retinal pigment epithelium has been used for treating patients with Stargardts disease and age-related macular degeneration. Overall, the different stem cells residing in different components of the eye have shown some success in clinical and animal studies in the field of regenerative medicine.

  2. Generation of functional thyroid from embryonic stem cells.

    PubMed

    Antonica, Francesco; Kasprzyk, Dominika Figini; Opitz, Robert; Iacovino, Michelina; Liao, Xiao-Hui; Dumitrescu, Alexandra Mihaela; Refetoff, Samuel; Peremans, Kathelijne; Manto, Mario; Kyba, Michael; Costagliola, Sabine

    2012-11-01

    The primary function of the thyroid gland is to metabolize iodide by synthesizing thyroid hormones, which are critical regulators of growth, development and metabolism in almost all tissues. So far, research on thyroid morphogenesis has been missing an efficient stem-cell model system that allows for the in vitro recapitulation of the molecular and morphogenic events regulating thyroid follicular-cell differentiation and subsequent assembly into functional thyroid follicles. Here we report that a transient overexpression of the transcription factors NKX2-1 and PAX8 is sufficient to direct mouse embryonic stem-cell differentiation into thyroid follicular cells that organize into three-dimensional follicular structures when treated with thyrotropin. These in vitro-derived follicles showed appreciable iodide organification activity. Importantly, when grafted in vivo into athyroid mice, these follicles rescued thyroid hormone plasma levels and promoted subsequent symptomatic recovery. Thus, mouse embryonic stem cells can be induced to differentiate into thyroid follicular cells in vitro and generate functional thyroid tissue.

  3. Hardwiring Stem Cell Communication through Tissue Structure.

    PubMed

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-03-10

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function, but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. PMID:26967287

  4. Hardwiring Stem Cell Communication through Tissue Structure.

    PubMed

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-03-10

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function, but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues.

  5. Nanomaterials for Engineering Stem Cell Responses.

    PubMed

    Kerativitayanan, Punyavee; Carrow, James K; Gaharwar, Akhilesh K

    2015-08-01

    Recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. Synergistic interactions between nanomaterials and stem cell engineering offer numerous possibilities to address some of the daunting challenges in regenerative medicine, such as controlling trigger differentiation, immune reactions, limited supply of stem cells, and engineering complex tissue structures. Specifically, the interactions between stem cells and their microenvironment play key roles in controlling stem cell fate, which underlines therapeutic success. However, the interactions between nanomaterials and stem cells are not well understood, and the effects of the nanomaterials shape, surface morphology, and chemical functionality on cellular processes need critical evaluation. In this Review, focus is put on recent development in nanomaterial-stem cell interactions, with specific emphasis on their application in regenerative medicine. Further, the emerging technologies based on nanomaterials developed over the past decade for stem cell engineering are reviewed, as well as the potential applications of these nanomaterials in tissue regeneration, stem cell isolation, and drug/gene delivery. It is anticipated that the enhanced understanding of nanomaterial-stem cell interactions will facilitate improved biomaterial design for a range of biomedical and biotechnological applications.

  6. Wnt Signaling in Cancer Stem Cell Biology.

    PubMed

    de Sousa E Melo, Felipe; Vermeulen, Louis

    2016-06-27

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer.

  7. Genetic and epigenetic instability of stem cells.

    PubMed

    Rajamani, Karthyayani; Li, Yuan-Sheng; Hsieh, Dean-Kuo; Lin, Shinn-Zong; Harn, Horng-Jyh; Chiou, Tzyy-Wen

    2014-01-01

    Recently, research on stem cells has been receiving an increasing amount of attention, both for its advantages and disadvantages. Genetic and epigenetic instabilities among stem cells have been a recurring obstacle to progress in regenerative medicine using stem cells. Various reports have stated that these instabilities can transform stem cells when transferred in vivo and thus have the potential to develop tumors. Previous research has shown that various extrinsic and intrinsic factors can contribute to the stability of stem cells. The extrinsic factors include growth supplements, growth factors, oxygen tension, passage technique, and cryopreservation. Controlling these factors based on previous reports may assist researchers in developing strategies for the production and clinical application of "safe" stem cells. On the other hand, the intrinsic factors can be unpredictable and uncontrollable; therefore, to ensure the successful use of stem cells in regenerative medicine, it is imperative to develop and implement appropriate strategies and technique for culturing stem cells and to confirm the genetic and epigenetic safety of these stem cells before employing them in clinical trials.

  8. The Patentability of Stem Cells in Australia.

    PubMed

    Petering, Jenny; Cowin, Prue

    2015-07-01

    The potential therapeutic applications of stem cells are unlimited. However, the ongoing political and social debate surrounding the intellectual property and patenting considerations of stem cell research has led to the implementation of strict legislative regulations. In Australia the patent landscape surrounding stem cells has evolved considerably over the past 20 years. The Australian Patents Act 1990 includes a specific exclusion to the patentability of human beings and of biological processes for their generation. However, this exclusion has received no judicial consideration to date, and so its scope and potential impact on stem cell patents is unclear.

  9. Wnt Signaling in Cancer Stem Cell Biology

    PubMed Central

    de Sousa e Melo, Felipe; Vermeulen, Louis

    2016-01-01

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer. PMID:27355964

  10. Stomach development, stem cells and disease.

    PubMed

    Kim, Tae-Hee; Shivdasani, Ramesh A

    2016-02-15

    The stomach, an organ derived from foregut endoderm, secretes acid and enzymes and plays a key role in digestion. During development, mesenchymal-epithelial interactions drive stomach specification, patterning, differentiation and growth through selected signaling pathways and transcription factors. After birth, the gastric epithelium is maintained by the activity of stem cells. Developmental signals are aberrantly activated and stem cell functions are disrupted in gastric cancer and other disorders. Therefore, a better understanding of stomach development and stem cells can inform approaches to treating these conditions. This Review highlights the molecular mechanisms of stomach development and discusses recent findings regarding stomach stem cells and organoid cultures, and their roles in investigating disease mechanisms.

  11. [Stem cells - biology and therapeutic application].

    PubMed

    Sikora, Magdalena A; Olszewski, Waldemar L

    2004-04-01

    Enormous hope is connected with stem cells with regard to cell therapy, and this has become one of the most dynamically developing areas of science at the moment. A stem cell has unlimited potential for self-renewal. It appears that it can be a source of in vitro differentiated progeny cells capable of repairing damaged tissue. These review provides information about the biological properties of embryonic stem cells, i.e. ESs (embryonic stem cells), EGs (embryonic germ cells), and ECs (embryonic carcinoma cells). Possible human embryonic stem cell applications are described, with consideration of the desired cell line and the signals involved in their differentiation. The information about adult stem cells present - hemopoietic stem cells and the cells residing in selected tissues and organs: endothelium, pancreas, liver, epithelium, and gastrointestinal tract. Methods of their identification using the cell surfaces are also presented: the possibilities of in vitro transdifferentation, the phenomenon of in vivo plasticity, as well as morphological and genetic properties. Some topics of cell therapy and its clinical application in diabetics amplification are included. PMID:15114255

  12. Cancer stem cells: impact, heterogeneity, and uncertainty

    PubMed Central

    Magee, Jeffrey A.; Piskounova, Elena; Morrison, Sean J.

    2015-01-01

    The differentiation of tumorigenic cancer stem cells into non-tumorigenic cancer cells confers heterogeneity to some cancers beyond that explained by clonal evolution or environmental differences. In such cancers, functional differences between tumorigenic and non-tumorigenic cells influence response to therapy and prognosis. However, it remains uncertain whether the model applies to many, or few, cancers due to questions about the robustness of cancer stem cell markers and the extent to which existing assays underestimate the frequency of tumorigenic cells. In cancers with rapid genetic change, reversible changes in cell states, or biological variability among patients the stem cell model may not be readily testable. PMID:22439924

  13. Single-cell sequencing in stem cell biology.

    PubMed

    Wen, Lu; Tang, Fuchou

    2016-04-15

    Cell-to-cell variation and heterogeneity are fundamental and intrinsic characteristics of stem cell populations, but these differences are masked when bulk cells are used for omic analysis. Single-cell sequencing technologies serve as powerful tools to dissect cellular heterogeneity comprehensively and to identify distinct phenotypic cell types, even within a 'homogeneous' stem cell population. These technologies, including single-cell genome, epigenome, and transcriptome sequencing technologies, have been developing rapidly in recent years. The application of these methods to different types of stem cells, including pluripotent stem cells and tissue-specific stem cells, has led to exciting new findings in the stem cell field. In this review, we discuss the recent progress as well as future perspectives in the methodologies and applications of single-cell omic sequencing technologies.

  14. Current Biosafety Considerations in Stem Cell Therapy.

    PubMed

    Mousavinejad, Masoumeh; Andrews, Peter W; Shoraki, Elham Kargar

    2016-01-01

    Stem cells can be valuable model systems for drug discovery and modelling human diseases as well as to investigate cellular interactions and molecular events in the early stages of development. Controlling the differentiation of stem cells into specific germ layers provides a potential source of highly specialized cells for therapeutic applications. In recent years, finding individual properties of stem cells such as their ultimate self-renewal capacity and the generation of particular cell lines by differentiation under specific culture conditions underpins the development of regenerative therapies. These futures make stem cells a leading candidate to treat a wide range of diseases. Nevertheless, as with all novel treatments, safety issues are one of the barriers that should be overcome to guarantee the quality of a patient's life after stem cell therapy. Many studies have pointed to a large gap in our knowledge about the therapeutic applications of these cells. This gap clearly shows the importance of biosafety concerns for the current status of cell-based therapies, even more than their therapeutic efficacy. Currently, scientists report that tumorigenicity and immunogenicity are the two most important associated cell-based therapy risks. In principle, intrinsic factors such as cell characteristics and extrinsic elements introduced by manufacturing of stem cells can result in tumor formation and immunological reactions after stem cell transplantation. Therapeutic research shows there are many biological questions regarding safety issues of stem cell clinical applications. Stem cell therapy is a rapidly advancing field that needs to focus more on finding a comprehensive technology for assessing risk. A variety of risk factors (from intrinsic to extrinsic) should be considered for safe clinical stem cell therapies. PMID:27540533

  15. Current Biosafety Considerations in Stem Cell Therapy

    PubMed Central

    Mousavinejad, Masoumeh; Andrews, Peter W.; Shoraki, Elham Kargar

    2016-01-01

    Stem cells can be valuable model systems for drug discovery and modelling human diseases as well as to investigate cellular interactions and molecular events in the early stages of development. Controlling the differentiation of stem cells into specific germ layers provides a potential source of highly specialized cells for therapeutic applications. In recent years, finding individual properties of stem cells such as their ultimate self-renewal capacity and the generation of particular cell lines by differentiation under specific culture conditions underpins the development of regenerative therapies. These futures make stem cells a leading candidate to treat a wide range of diseases. Nevertheless, as with all novel treatments, safety issues are one of the barriers that should be overcome to guarantee the quality of a patient’s life after stem cell therapy. Many studies have pointed to a large gap in our knowledge about the therapeutic applications of these cells. This gap clearly shows the importance of biosafety concerns for the current status of cell-based therapies, even more than their therapeutic efficacy. Currently, scientists report that tumorigenicity and immunogenicity are the two most important associated cell-based therapy risks. In principle, intrinsic factors such as cell characteristics and extrinsic elements introduced by manufacturing of stem cells can result in tumor formation and immunological reactions after stem cell transplantation. Therapeutic research shows there are many biological questions regarding safety issues of stem cell clinical applications. Stem cell therapy is a rapidly advancing field that needs to focus more on finding a comprehensive technology for assessing risk. A variety of risk factors (from intrinsic to extrinsic) should be considered for safe clinical stem cell therapies. PMID:27540533

  16. Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy.

    PubMed

    Naderi-Meshkin, Hojjat; Bahrami, Ahmad Reza; Bidkhori, Hamid Reza; Mirahmadi, Mahdi; Ahmadiankia, Naghmeh

    2015-01-01

    Stem/progenitor cell-based therapeutic approach in clinical practice has been an elusive dream in medical sciences, and improvement of stem cell homing is one of major challenges in cell therapy programs. Stem/progenitor cells have a homing response to injured tissues/organs, mediated by interactions of chemokine receptors expressed on the cells and chemokines secreted by the injured tissue. For improvement of directed homing of the cells, many techniques have been developed either to engineer stem/progenitor cells with higher amount of chemokine receptors (stem cell-based strategies) or to modulate the target tissues to release higher level of the corresponding chemokines (target tissue-based strategies). This review discusses both of these strategies involved in the improvement of stem cell homing focusing on mesenchymal stem cells as most frequent studied model in cellular therapies.

  17. In search of liver cancer stem cells.

    PubMed

    Ma, Stephanie; Chan, Kwok Wah; Guan, Xin-Yuan

    2008-09-01

    Recent research efforts in stem cell and cancer biology have put forth a "stem cell model of carcinogenesis" which stipulates that the capability to maintain tumor formation and growth specifically resides in a small population of cells called cancer stem cells. The stem cell-like characteristics of these cells, including their ability to self-renew and differentiate; and their limited number within the bulk of the tumor mass, are believed to account for their capability to escape conventional therapies. In the past few years, the hypothesis of stem cell-driven tumorigenesis in liver cancer has received substantial support from the recent ability to identify and isolate a subpopulation of liver cancer cells that is not only able to initiate tumor growth, but also serially establish themselves as tumor xenografts with high efficiency and consistency. In this review, stem cell biology that contributes to explain tumor development in the particular context of liver cancer will be discussed. We will begin by briefly considering the knowledge available on normal liver stem cells and their role in tissue renewal and regeneration. We will then summarize the current scientific knowledge of liver cancer stem cells, discuss their relevance to the diagnosis and treatment of the disease and consider the outstanding challenges and potential opportunities that lie ahead of us.

  18. Stem cells in bone tissue engineering.

    PubMed

    Seong, Jeong Min; Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Mantalaris, Anathathios; Hwang, Yu-Shik

    2010-12-01

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone.

  19. Generation of new islets from stem cells.

    PubMed

    Roche, Enrique; Soria, Bernat

    2004-01-01

    Spain ranks number one in organ donors (35 per million per yr). Although the prevalence of diabetes is low (100,000 type 1 diabetic patients and 2 million type 2 diabetic patients), the expected number of patients receiving islet transplants should be estimated at 200 per year. Islet replacement represents a promising cure for diabetes and has been successfully applied in a limited number of type 1 diabetic patients, resulting in insulin independence for periods longer than 3 yr. However, it has been difficult to obtain sufficient numbers of islets from cadaveric donors. Interesting alternatives include acquiring renewable sources of cells using either embryonic or adult stem cells to overcome the islet scarcity problem. Stem cells are capable of extensive proliferation rates and are capable of differentiating into other cell types of the body. In particular, totipotent stem cells are capable of differentiating into all cell types in the body, whereas pluripotent stem cells are limited to the development of a certain number of differentiated cell types. Insulin-producing cells have been obtained from both embryonic and adult stem cells using several approaches. In animal models of diabetes, the therapeutic application of bioengineered insulin-secreting cells derived from stem cells has delivered promising results. This review will summarize the different approaches that have been used to obtain insulin-producing cells from embryonic and adult stem cells and highlights the key points that will allow in vitro differentiation and subsequent transplantation in the future. PMID:15289648

  20. Adult stem-like cells in kidney

    PubMed Central

    Hishikawa, Keiichi; Takase, Osamu; Yoshikawa, Masahiro; Tsujimura, Taro; Nangaku, Masaomi; Takato, Tsuyoshi

    2015-01-01

    Human pluripotent cells are promising for treatment for kidney diseases, but the protocols for derivation of kidney cell types are still controversial. Kidney tissue regeneration is well confirmed in several lower vertebrates such as fish, and the repair of nephrons after tubular damages is commonly observed after renal injury. Even in adult mammal kidney, renal progenitor cell or system is reportedly presents suggesting that adult stem-like cells in kidney can be practical clinical targets for kidney diseases. However, it is still unclear if kidney stem cells or stem-like cells exist or not. In general, stemness is defined by several factors such as self-renewal capacity, multi-lineage potency and characteristic gene expression profiles. The definite use of stemness may be obstacle to understand kidney regeneration, and here we describe the recent broad findings of kidney regeneration and the cells that contribute regeneration. PMID:25815133

  1. Nonclinical safety strategies for stem cell therapies

    SciTech Connect

    Sharpe, Michaela E.; Morton, Daniel; Rossi, Annamaria

    2012-08-01

    Recent breakthroughs in stem cell biology, especially the development of the induced pluripotent stem cell techniques, have generated tremendous enthusiasm and efforts to explore the therapeutic potential of stem cells in regenerative medicine. Stem cell therapies are being considered for the treatment of degenerative diseases, inflammatory conditions, cancer and repair of damaged tissue. The safety of a stem cell therapy depends on many factors including the type of cell therapy, the differentiation status and proliferation capacity of the cells, the route of administration, the intended clinical location, long term survival of the product and/or engraftment, the need for repeated administration, the disease to be treated and the age of the population. Understanding the product profile of the intended therapy is crucial to the development of the nonclinical safety study design.

  2. Adult stem-like cells in kidney.

    PubMed

    Hishikawa, Keiichi; Takase, Osamu; Yoshikawa, Masahiro; Tsujimura, Taro; Nangaku, Masaomi; Takato, Tsuyoshi

    2015-03-26

    Human pluripotent cells are promising for treatment for kidney diseases, but the protocols for derivation of kidney cell types are still controversial. Kidney tissue regeneration is well confirmed in several lower vertebrates such as fish, and the repair of nephrons after tubular damages is commonly observed after renal injury. Even in adult mammal kidney, renal progenitor cell or system is reportedly presents suggesting that adult stem-like cells in kidney can be practical clinical targets for kidney diseases. However, it is still unclear if kidney stem cells or stem-like cells exist or not. In general, stemness is defined by several factors such as self-renewal capacity, multi-lineage potency and characteristic gene expression profiles. The definite use of stemness may be obstacle to understand kidney regeneration, and here we describe the recent broad findings of kidney regeneration and the cells that contribute regeneration. PMID:25815133

  3. Gene regulatory networks controlling hematopoietic progenitor niche cell production and differentiation in the Drosophila lymph gland.

    PubMed

    Tokusumi, Yumiko; Tokusumi, Tsuyoshi; Shoue, Douglas A; Schulz, Robert A

    2012-01-01

    Hematopoiesis occurs in two phases in Drosophila, with the first completed during embryogenesis and the second accomplished during larval development. The lymph gland serves as the venue for the final hematopoietic program, with this larval tissue well-studied as to its cellular organization and genetic regulation. While the medullary zone contains stem-like hematopoietic progenitors, the posterior signaling center (PSC) functions as a niche microenvironment essential for controlling the decision between progenitor maintenance versus cellular differentiation. In this report, we utilize a PSC-specific GAL4 driver and UAS-gene RNAi strains, to selectively knockdown individual gene functions in PSC cells. We assessed the effect of abrogating the function of 820 genes as to their requirement for niche cell production and differentiation. 100 genes were shown to be essential for normal niche development, with various loci placed into sub-groups based on the functions of their encoded protein products and known genetic interactions. For members of three of these groups, we characterized loss- and gain-of-function phenotypes. Gene function knockdown of members of the BAP chromatin-remodeling complex resulted in niche cells that do not express the hedgehog (hh) gene and fail to differentiate filopodia believed important for Hh signaling from the niche to progenitors. Abrogating gene function of various members of the insulin-like growth factor and TOR signaling pathways resulted in anomalous PSC cell production, leading to a defective niche organization. Further analysis of the Pten, TSC1, and TSC2 tumor suppressor genes demonstrated their loss-of-function condition resulted in severely altered blood cell homeostasis, including the abundant production of lamellocytes, specialized hemocytes involved in innate immune responses. Together, this cell-specific RNAi knockdown survey and mutant phenotype analyses identified multiple genes and their regulatory networks required for

  4. Ascl3 knockout and cell ablation models reveal complexity of salivary gland maintenance and regeneration.

    PubMed

    Arany, Szilvia; Catalán, Marcelo A; Roztocil, Elisa; Ovitt, Catherine E

    2011-05-15

    Expression of the transcription factor, Ascl3, marks a population of adult progenitor cells, which can give rise to both acinar and duct cell types in the murine salivary glands. Using a previously reported Ascl3(EGFP-Cre/+) knock-in strain, we demonstrate that Ascl3-expressing cells represent a molecularly distinct, and proliferating population of progenitor cells located in salivary gland ducts. To investigate both the role of the Ascl3 transcription factor, and the role of the cells in which it is expressed, we generated knockout and cell-specific ablation models. Ascl3 knockout mice develop smaller salivary glands than wild type littermates, but secrete saliva normally. They display a lower level of cell proliferation, consistent with their smaller size. In the absence of Ascl3, the cells maintain their progenitor function and continue to generate both acinar and duct cells. To directly test the role of the progenitor cells, themselves, in salivary gland development and regeneration, we used Cre-activated expression of diphtheria toxin (DTA) in the Ascl3-expressing (Ascl3+) cell population, resulting in specific cell ablation of Ascl3+ cells. In the absence of the Ascl3+ progenitor cells, the mice developed morphologically normal, albeit smaller, salivary glands able to secrete saliva. Furthermore, in a ductal ligation model of salivary gland injury, the glands of these mice were able to regenerate acinar cells. Our results indicate that Ascl3+ cells are active proliferating progenitors, but they are not the only precursors for salivary gland development or regeneration. We conclude that maintenance of tissue homeostasis in the salivary gland must involve more than one progenitor cell population.

  5. Cancer stem cells in glioblastoma

    PubMed Central

    Lathia, Justin D.; Mack, Stephen C.; Mulkearns-Hubert, Erin E.; Valentim, Claudia L.L.; Rich, Jeremy N.

    2015-01-01

    Tissues with defined cellular hierarchies in development and homeostasis give rise to tumors with cellular hierarchies, suggesting that tumors recapitulate specific tissues and mimic their origins. Glioblastoma (GBM) is the most prevalent and malignant primary brain tumor and contains self-renewing, tumorigenic cancer stem cells (CSCs) that contribute to tumor initiation and therapeutic resistance. As normal stem and progenitor cells participate in tissue development and repair, these developmental programs re-emerge in CSCs to support the development and progressive growth of tumors. Elucidation of the molecular mechanisms that govern CSCs has informed the development of novel targeted therapeutics for GBM and other brain cancers. CSCs are not self-autonomous units; rather, they function within an ecological system, both actively remodeling the microenvironment and receiving critical maintenance cues from their niches. To fulfill the future goal of developing novel therapies to collapse CSC dynamics, drawing parallels to other normal and pathological states that are highly interactive with their microenvironments and that use developmental signaling pathways will be beneficial. PMID:26109046

  6. Neurogenic differentiation of amniotic fluid stem cells.

    PubMed

    Rosner, M; Mikula, M; Preitschopf, A; Feichtinger, M; Schipany, K; Hengstschläger, M

    2012-05-01

    In 2003, human amniotic fluid has been shown to contain stem cells expressing Oct-4, a marker for pluripotency. This finding initiated a rapidly growing and very promising new stem cell research field. Since then, amniotic fluid stem (AFS) cells have been demonstrated to harbour the potential to differentiate into any of the three germ layers and to form three-dimensional aggregates, so-called embryoid bodies, known as the principal step in the differentiation of pluripotent stem cells. Marker selection and minimal dilution approaches allow the establishment of monoclonal AFS cell lineages with high proliferation potential. AFS cells have a lower risk for tumour development and do not raise the ethical issues of embryonic stem cells. Compared to induced pluripotent stem cells, AFS cells do not need exogenic treatment to induce pluripotency, are chromosomal stable and do not harbour the epigenetic memory and accumulated somatic mutations of specific differentiated source cells. Compared to adult stem cells, AFS can be grown in larger quantities and show higher differentiation potential. Accordingly, in the recent past, AFS became increasingly accepted as an optimal tool for basic research and probably also for specific cell-based therapies. Here, we review the current knowledge on the neurogenic differentiation potential of AFS cells.

  7. Prostate cancer stem cell biology

    PubMed Central

    Yu, Chunyan; Yao, Zhi; Jiang, Yuan; Keller, Evan. T.

    2012-01-01

    The cancer stem cell (CSC) model provides insights into pathophysiology of cancers and their therapeutic response. The CSC model has been both controversial, yet provides a foundation to explore cancer biology. In this review, we provide an overview of CSC concepts, biology and potential therapeutic avenues. We then focus on prostate CSC including (1) their purported origin as either basal-derived or luminal-derived cells; (2) markers used for prostate CSC identification; (3) alterations of signaling pathways in prostate CSCs (4) involvement of prostate CSCs in metastasis of PCa and (5) microRNA-mediated regulation of prostate CSCs. Although definitive evidence for the identification and characterization of prostate CSCs still remains unclear, future directions pursuing therapeutic targets of CSCs may provide novel insights for the treatment of PCa. PMID:22402315

  8. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments. PMID:27026484

  9. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  10. Enhancing spontaneous stem cell healing (Review)

    PubMed Central

    MAGUIRE, GREG; FRIEDMAN, PETER

    2014-01-01

    Adult stem cells are distributed throughout the human body and are responsible to a great extent for the body’s ability to maintain and heal itself. Accumulating data since the 1990s regarding stem cells have demonstrated that the beneficial effects of stem cells are not restricted to their ability to differentiate and are more likely due to their ability to release a multitude of molecules. Recent studies indicated that ≤80% of the therapeutic benefit of adult stem cells is manifested by the stem cell released molecules (SRM) rather than the differentiation of the stem cells into mature tissue. Stem cells may release potent combinations of factors that modulate the molecular composition of the cellular milieu to evoke a multitude of responses from neighboring cells. A multitude of pathways are involved in cellular and tissue function and, when the body is in a state of disease or trauma, a multitude of pathways are involved in the underlying mechanisms of that disease or trauma. Therefore, stem cells represent a natural systems-based biological factory for the production and release of a multitude of molecules that interact with the system of biomolecular circuits underlying disease or tissue damage. Currently, efforts are aimed at defining, stimulating, enhancing and harnessing SRM mechanisms, in order to develop systems-based methods for tissue regeneration, develop drugs/biologics or other therapeutics and enhance the release of SRM into the body for natural healing through proper dietary, exercise and other lifestyle strategies. PMID:24649089

  11. DNA damage response in adult stem cells.

    PubMed

    Insinga, Alessandra; Cicalese, Angelo; Pelicci, Pier Giuseppe

    2014-04-01

    This review discusses the processes of DNA-damage-response and DNA-damage repair in stem and progenitor cells of several tissues. The long life-span of stem cells suggests that they may respond differently to DNA damage than their downstream progeny and, indeed, studies have begun to elucidate the unique stem cell response mechanisms to DNA damage. Because the DNA damage responses in stem cells and progenitor cells are distinctly different, stem and progenitor cells should be considered as two different entities from this point of view. Hematopoietic and mammary stem cells display a unique DNA-damage response, which involves active inhibition of apoptosis, entry into the cell-cycle, symmetric division, partial DNA repair and maintenance of self-renewal. Each of these biological events depends on the up-regulation of the cell-cycle inhibitor p21. Moreover, inhibition of apoptosis and symmetric stem cell division are the consequence of the down-regulation of the tumor suppressor p53, as a direct result of p21 up-regulation. A deeper understanding of these processes is required before these findings can be translated into human anti-aging and anti-cancer therapies. One needs to clarify and dissect the pathways that control p21 regulation in normal and cancer stem cells and define (a) how p21 blocks p53 functions in stem cells and (b) how p21 promotes DNA repair in stem cells. Is this effect dependent on p21s ability to inhibit p53? Such molecular knowledge may pave the way to methods for maintaining short-term tissue reconstitution while retaining long-term cellular and genomic integrity.

  12. Stem cells of the skin epithelium

    PubMed Central

    Alonso, Laura; Fuchs, Elaine

    2003-01-01

    Tissue stem cells form the cellular base for organ homeostasis and repair. Stem cells have the unusual ability to renew themselves over the lifetime of the organ while producing daughter cells that differentiate into one or multiple lineages. Difficult to identify and characterize in any tissue, these cells are nonetheless hotly pursued because they hold the potential promise of therapeutic reprogramming to grow human tissue in vitro, for the treatment of human disease. The mammalian skin epithelium exhibits remarkable turnover, punctuated by periods of even more rapid production after injury due to burn or wounding. The stem cells responsible for supplying this tissue with cellular substrate are not yet easily distinguishable from neighboring cells. However, in recent years a significant body of work has begun to characterize the skin epithelial stem cells, both in tissue culture and in mouse and human skin. Some epithelial cells cultured from skin exhibit prodigious proliferative potential; in fact, for >20 years now, cultured human skin has been used as a source of new skin to engraft onto damaged areas of burn patients, representing one of the first therapeutic uses of stem cells. Cell fate choices, including both self-renewal and differentiation, are crucial biological features of stem cells that are still poorly understood. Skin epithelial stem cells represent a ripe target for research into the fundamental mechanisms underlying these important processes. PMID:12913119

  13. Epidermal Stem Cells in Orthopaedic Regenerative Medicine

    PubMed Central

    Li, Jin; Zhen, Gehua; Tsai, Shin-Yi; Jia, Xiaofeng

    2013-01-01

    In the last decade, great advances have been made in epidermal stem cell studies at the cellular and molecular level. These studies reported various subpopulations and differentiations existing in the epidermal stem cell. Although controversies and unknown issues remain, epidermal stem cells possess an immune-privileged property in transplantation together with easy accessibility, which is favorable for future clinical application. In this review, we will summarize the biological characteristics of epidermal stem cells, and their potential in orthopedic regenerative medicine. Epidermal stem cells play a critical role via cell replacement, and demonstrate significant translational potential in the treatment of orthopedic injuries and diseases, including treatment for wound healing, peripheral nerve and spinal cord injury, and even muscle and bone remodeling. PMID:23727934

  14. Transdifferentiation of Stem Cells: A Critical View

    NASA Astrophysics Data System (ADS)

    Gruh, Ina; Martin, Ulrich

    Recently a large amount of new data on the plasticity of stem cells of various lineages have emerged, providing new perspectives especially for the therapeutic application of adult stem cells. Previously unknown possibilities of cell differentiation beyond the known commitment of a given stem cell have been described using keywords such as "blood to liver," or "bone to brain." Controversies on the likelihood, as well as the biological significance, of these conversions almost immediately arose within this young field of stem cell biology. This chapter will concentrate on these controversies and focus on selected examples demonstrating the technical aspects of stem cell transdifferentiation and the evaluation of the tools used to analyze these events.

  15. Cancer stem cells of the digestive system.

    PubMed

    Colvin, Hugh S; Nishida, Naohiro; Koseki, Jun; Konno, Masamitsu; Kawamoto, Koichi; Tsunekuni, Kenta; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2014-12-01

    Stem cells of the digestive system are ideal in many ways for research, given they are abundant, highly proliferative and have a uniform structural arrangement. This in turn has enormously aided the research of cancer stem cells of the digestive system, which is now shaping our understanding of cancer stem cells. In this review, the recent advances in the understanding of cancer stem cells of the digestive system have been summarized, including aspects such as their identification, origin, cell-cycle dormancy, relationship with epithelial-mesenchymal transition, cellular metabolism and the underlying molecular mechanisms. Newly acquired knowledge concerning cancer stem cells have led to the development of novel cancer therapeutics with provisional yet encouraging results.

  16. Signaling involved in stem cell reprogramming and differentiation

    PubMed Central

    Tanabe, Shihori

    2015-01-01

    Stem cell differentiation is regulated by multiple signaling events. Recent technical advances have revealed that differentiated cells can be reprogrammed into stem cells. The signals involved in stem cell programming are of major interest in stem cell research. The signaling mechanisms involved in regulating stem cell reprogramming and differentiation are the subject of intense study in the field of life sciences. In this review, the molecular interactions and signaling pathways related to stem cell differentiation are discussed. PMID:26328015

  17. Models of breast morphogenesis based on localization of stem cells in the developing mammary lobule.

    PubMed

    Honeth, Gabriella; Schiavinotto, Tommaso; Vaggi, Federico; Marlow, Rebecca; Kanno, Tokuwa; Shinomiya, Ireneusz; Lombardi, Sara; Buchupalli, Bharath; Graham, Rosalind; Gazinska, Patrycja; Ramalingam, Vernie; Burchell, Joy; Purushotham, Anand D; Pinder, Sarah E; Csikasz-Nagy, Attila; Dontu, Gabriela

    2015-04-14

    Characterization of normal breast stem cells is important for understanding their role in breast development and in breast cancer. However, the identity of these cells is a subject of controversy and their localization in the breast epithelium is not known. In this study, we utilized a novel approach to analyze the morphogenesis of mammary lobules, by combining one-dimensional theoretical models and computer-generated 3D fractals. Comparing predictions of these models with immunohistochemical analysis of tissue sections for candidate stem cell markers, we defined distinct areas where stem cells reside in the mammary lobule. An increased representation of stem cells was found in smaller, less developed lobules compared to larger, more mature lobules, with marked differences in the gland of nulliparous versus parous women and that of BRCA1/2 mutation carriers versus non-carriers.

  18. Models of breast morphogenesis based on localization of stem cells in the developing mammary lobule.

    PubMed

    Honeth, Gabriella; Schiavinotto, Tommaso; Vaggi, Federico; Marlow, Rebecca; Kanno, Tokuwa; Shinomiya, Ireneusz; Lombardi, Sara; Buchupalli, Bharath; Graham, Rosalind; Gazinska, Patrycja; Ramalingam, Vernie; Burchell, Joy; Purushotham, Anand D; Pinder, Sarah E; Csikasz-Nagy, Attila; Dontu, Gabriela

    2015-04-14

    Characterization of normal breast stem cells is important for understanding their role in breast development and in breast cancer. However, the identity of these cells is a subject of controversy and their localization in the breast epithelium is not known. In this study, we utilized a novel approach to analyze the morphogenesis of mammary lobules, by combining one-dimensional theoretical models and computer-generated 3D fractals. Comparing predictions of these models with immunohistochemical analysis of tissue sections for candidate stem cell markers, we defined distinct areas where stem cells reside in the mammary lobule. An increased representation of stem cells was found in smaller, less developed lobules compared to larger, more mature lobules, with marked differences in the gland of nulliparous versus parous women and that of BRCA1/2 mutation carriers versus non-carriers. PMID:25818813

  19. [Renal cell carcinoma metastasis to the thyroid gland 15 years after nephrectomy].

    PubMed

    Mathiesen, Jes Sloth; Fleischer, Jens Geelmuyden; Godballe, Christian

    2015-01-26

    Renal cell carcinoma (RCC) metastasis to the thyroid gland is rare and can mimic primary thyroid carcinoma leading to diagnostic difficulties. We present a case of a 55-year-old female with RCC metastasis to the thyroid gland 15 years after nephrectomy. Diagnosis was made after total thyroidectomy. This case emphasizes the importance of considering metastasis in patients with increasing growth of the thyroid gland over a short period of time known with earlier RCC, even decades after nephrectomy. PMID:25612964

  20. Clonogenicity: holoclones and meroclones contain stem cells.

    PubMed

    Beaver, Charlotte M; Ahmed, Aamir; Masters, John R

    2014-01-01

    When primary cultures of normal cells are cloned, three types of colony grow, called holoclones, meroclones and paraclones. These colonies are believed to be derived from stem cells, transit-amplifying cells and differentiated cells respectively. More recently, this approach has been extended to cancer cell lines. However, we observed that meroclones from the prostate cancer cell line DU145 produce holoclones, a paradoxical observation as meroclones are thought to be derived from transit-amplifying cells. The purpose of this study was to confirm this observation and determine if both holoclones and meroclones from cancer cell lines contain stem cells. We demonstrated that both holoclones and meroclones can be serially passaged indefinitely, are highly proliferative, can self-renew to form spheres, are serially tumorigenic and express stem cell markers. This study demonstrates that the major difference between holoclones and meroclones derived from a cancer cell line is the proportion of stem cells within each colony, not the presence or absence of stem cells. These findings may reflect the properties of cancer as opposed to normal cells, perhaps indicating that the hierarchy of stem cells is more extensive in cancer.

  1. Pathological modifications of plant stem cell destiny

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In higher plants, the shoot apex contains undifferentiated stem cells that give rise to various tissues and organs. The fate of these stem cells determines the pattern of plant growth as well as reproduction; and such fate is genetically preprogrammed. We found that a bacterial infection can derai...

  2. Skeletal stem cells in space and time.

    PubMed

    Kassem, Moustapha; Bianco, Paolo

    2015-01-15

    The nature, biological characteristics, and contribution to organ physiology of skeletal stem cells are not completely determined. Chan et al. and Worthley et al. demonstrate that a stem cell for skeletal tissues, and a system of more restricted, downstream progenitors, can be identified in mice and demonstrate its role in skeletal tissue maintenance and regeneration.

  3. Stem Cell Research and Health Education

    ERIC Educational Resources Information Center

    Eve, David J.; Marty, Phillip J.; McDermott, Robert J.; Klasko, Stephen K.; Sanberg, Paul R.

    2008-01-01

    Stem cells are being touted as the greatest discovery for the potential treatment of a myriad of diseases in the new millennium, but there is still much research to be done before it will be known whether they can live up to this description. There is also an ethical debate over the production of one of the most valuable types of stem cell: the…

  4. Improving Stem Cell Therapeutics with Mechanobiology.

    PubMed

    Shin, Jae-Won; Mooney, David J

    2016-01-01

    In recent years, it has become clear that mechanical cues play an integral role in maintaining stem cell functions. Here we discuss how integrating physical approaches and engineering principles in stem cell biology, including culture systems, preclinical models, and functional assessment, may improve clinical application in regenerative medicine.

  5. Stem Cell Fate Is a Touchy Subject.

    PubMed

    Smith, Quinton; Gerecht, Sharon

    2016-09-01

    Uncoupling synergistic interactions between physio-chemical cues that guide stem cell fate may improve efforts to direct their differentiation in culture. Using supramolecular hydrogels, Alakpa et al. (2016) demonstrate that mesenchymal stem cell differentiation is paired to depletion of bioactive metabolites, which can be utilized to chemically induce osteoblast and chondrocyte fate. PMID:27588745

  6. Engineering stem cells for future medicine.

    PubMed

    Ricotti, Leonardo; Menciassi, Arianna

    2013-03-01

    Despite their great potential in regenerative medicine applications, stem cells (especially pluripotent ones) currently show a limited clinical success, partly due to a lack of biological knowledge, but also due to a lack of specific and advanced technological instruments able to overcome the current boundaries of stem cell functional maturation and safe/effective therapeutic delivery. This paper aims at describing recent insights, current limitations, and future horizons related to therapeutic stem cells, by analyzing the potential of different bioengineering disciplines in bringing stem cells toward a safe clinical use. First, we clarify how and why stem cells should be properly engineered and which could be in a near future the challenges and the benefits connected with this process. Second, we identify different routes toward stem cell differentiation and functional maturation, relying on chemical, mechanical, topographical, and direct/indirect physical stimulation. Third, we highlight how multiscale modeling could strongly support and optimize stem cell engineering. Finally, we focus on future robotic tools that could provide an added value to the extent of translating basic biological knowledge into clinical applications, by developing ad hoc enabling technologies for stem cell delivery and control.

  7. BMP-SHH signaling network controls epithelial stem cell fate via regulation of its niche in the developing tooth.

    PubMed

    Li, Jingyuan; Feng, Jifan; Liu, Yang; Ho, Thach-Vu; Grimes, Weston; Ho, Hoang Anh; Park, Shery; Wang, Songlin; Chai, Yang

    2015-04-20

    During embryogenesis, ectodermal stem cells adopt different fates and form diverse ectodermal organs, such as teeth, hair follicles, mammary glands, and salivary glands. Interestingly, these ectodermal organs differ in their tissue homeostasis, which leads to differential abilities for continuous growth postnatally. Mouse molars lose the ability to grow continuously, whereas incisors retain this ability. In this study, we found that a BMP-Smad4-SHH-Gli1 signaling network may provide a niche supporting transient Sox2+ dental epithelial stem cells in mouse molars. This mechanism also plays a role in continuously growing mouse incisors. The differential fate of epithelial stem cells in mouse molars and incisors is controlled by this BMP/SHH signaling network, which partially accounts for the different postnatal growth potential of molars and incisors. Collectively, our study highlights the importance of crosstalk between two signaling pathways, BMP and SHH, in regulating the fate of epithelial stem cells during organogenesis.

  8. Stem Cell Research: Unlocking the Mystery of Disease

    MedlinePlus

    ... Home Current Issue Past Issues From the Director: Stem Cell Research: Unlocking the Mystery of Disease Past Issues / Summer ... Zerhouni, NIH Director, described the need for expanding stem cell research. Recently, he spoke about stem cell research with ...

  9. Organ or Stem Cell Transplant and Your Mouth

    MedlinePlus

    ... Stem Cell Transplant and Your Mouth Organ or Stem Cell Transplant and Your Mouth Main Content Key Points​ ... Your Dentist Before Transplant Before an organ or stem cell transplant, have a dental checkup. Your mouth should ...

  10. Impact of retrotransposons in pluripotent stem cells.

    PubMed

    Tanaka, Yoshiaki; Chung, Leeyup; Park, In-Hyun

    2012-12-01

    Retrotransposons, which constitute approximately 40% of the human genome, have the capacity to 'jump' across the genome. Their mobility contributes to oncogenesis, evolution, and genomic plasticity of the host genome. Induced pluripotent stem cells as well as embryonic stem cells are more susceptible than differentiated cells to genomic aberrations including insertion, deletion and duplication. Recent studies have revealed specific behaviors of retrotransposons in pluripotent cells. Here, we review recent progress in understanding retrotransposons and provide a perspective on the relationship between retrotransposons and genomic variation in pluripotent stem cells. PMID:23135636

  11. Artificial gametes from stem cells

    PubMed Central

    Moreno, Inmaculada; Míguez-Forjan, Jose Manuel

    2015-01-01

    The generation of artificial gametes is a real challenge for the scientific community today. In vitro development of human eggs and sperm will pave the way for the understanding of the complex process of human gametogenesis and will provide with human gametes for the study of infertility and the onset of some inherited disorders. However, the great promise of artificial gametes resides in their future application on reproductive treatments for all these people wishing to have genetically related children and for which gamete donation is now their unique option of parenthood. This is the case of infertile patients devoid of suitable gametes, same sex couples, singles and those fertile couples in a high risk of transmitting serious diseases to their progeny. In the search of the best method to obtain artificial gametes, many researchers have successfully obtained human germ cell-like cells from stem cells at different stages of differentiation. In the near future, this field will evolve to new methods providing not only viable but also functional and safe artificial germ cells. These artificial sperm and eggs should be able to recapitulate all the genetic and epigenetic processes needed for the correct gametogenesis, fertilization and embryogenesis leading to the birth of a healthy and fertile newborn. PMID:26161331

  12. Overcoming Multidrug Resistance in Cancer Stem Cells

    PubMed Central

    Moitra, Karobi

    2015-01-01

    The principle mechanism of protection of stem cells is through the expression of ATP-binding cassette (ABC) transporters. These transporters serve as the guardians of the stem cell population in the body. Unfortunately these very same ABC efflux pumps afford protection to cancer stem cells in tumors, shielding them from the adverse effects of chemotherapy. A number of strategies to circumvent the function of these transporters in cancer stem cells are currently under investigation. These strategies include the development of competitive and allosteric modulators, nanoparticle mediated delivery of inhibitors, targeted transcriptional regulation of ABC transporters, miRNA mediated inhibition, and targeting of signaling pathways that modulate ABC transporters. The role of ABC transporters in cancer stem cells will be explored in this paper and strategies aimed at overcoming drug resistance caused by these particular transporters will also be discussed. PMID:26649310

  13. Biophysical regulation of stem cell differentiation.

    PubMed

    Govey, Peter M; Loiselle, Alayna E; Donahue, Henry J

    2013-06-01

    Bone adaptation to its mechanical environment, from embryonic through adult life, is thought to be the product of increased osteoblastic differentiation from mesenchymal stem cells. In parallel with tissue-scale loading, these heterogeneous populations of multipotent stem cells are subject to a variety of biophysical cues within their native microenvironments. Bone marrow-derived mesenchymal stem cells-the most broadly studied source of osteoblastic progenitors-undergo osteoblastic differentiation in vitro in response to biophysical signals, including hydrostatic pressure, fluid flow and accompanying shear stress, substrate strain and stiffness, substrate topography, and electromagnetic fields. Furthermore, stem cells may be subject to indirect regulation by mechano-sensing osteocytes positioned to more readily detect these same loading-induced signals within the bone matrix. Such paracrine and juxtacrine regulation of differentiation by osteocytes occurs in vitro. Further studies are needed to confirm both direct and indirect mechanisms of biophysical regulation within the in vivo stem cell niche.

  14. [Stem cells--cloning, plasticity, bioethic].

    PubMed

    Pflegerl, Pamina; Keller, Thomas; Hantusch, Brigitte; Hoffmann, Thomas Sören; Kenner, Lukas

    2008-01-01

    Stem cells with certain characteristics have become promising tools for molecular medicine. They have the potential to self-regenerate and to differentiate into specific tissues. Besides their great potential, embryonic stem cells (ESC) run the risk of enhanced tumorigenesis. The use of human embryonic stem cells (hESC) is ethically problematic because their isolation involves the destruction of human embryos. Recently developed methods generate are able to pluripotent stem cells from fibroblasts. Alternatives for ESC are adult stem cells (ASC) derived from bone marrow, cord blood, amniotic fluid and other tissues. The following article is on the basis of testimony of Lukas Kenner for the German Bundestag about the use of ESC for research, therapy and drug development. Ethical aspects are taken into consideration.

  15. Stem cell plasticity in development and cancer: epigenetic origin of cancer stem cells.

    PubMed

    Shah, Mansi; Allegrucci, Cinzia

    2013-01-01

    Stem cells are unique cells that can self-renew and differentiate into many cell types. Plasticity is a fundamental characteristic of stem cells and it is regulated by reversible epigenetic modifications. Although gene-restriction programs are established during embryonic development when cell lineages are formed, stem cells retain a degree of flexibility that is essential for tissue regeneration. For instance, quiescent adult stem cells can be induced to proliferate and trans-differentiate in response to injury. The same degree of plasticity is observed in cancer, where cancer cells with stem cell characteristics (or cancer stem cells) are formed by transformation of normal stem cells or de-differentiation of somatic cells. Reprogramming experiments with normal somatic cells and cancer cells show that epigenetic landscapes are more plastic than originally thought and that their manipulation can induce changes in cell fate. Our knowledge of stem cell function is still limited and only by understanding the mechanisms regulating developmental potential together with the definition of epigenetic maps of normal and diseased tissues we can reveal the true extent of their plasticity. In return, the control of plastic epigenetic programs in stem cells will allow us to develop effective treatments for degenerative diseases and cancer. PMID:23150267

  16. The biology of cancer stem cells.

    PubMed

    Lobo, Neethan A; Shimono, Yohei; Qian, Dalong; Clarke, Michael F

    2007-01-01

    Cancers originally develop from normal cells that gain the ability to proliferate aberrantly and eventually turn malignant. These cancerous cells then grow clonally into tumors and eventually have the potential to metastasize. A central question in cancer biology is, which cells can be transformed to form tumors? Recent studies elucidated the presence of cancer stem cells that have the exclusive ability to regenerate tumors. These cancer stem cells share many characteristics with normal stem cells, including self-renewal and differentiation. With the growing evidence that cancer stem cells exist in a wide array of tumors, it is becoming increasingly important to understand the molecular mechanisms that regulate self-renewal and differentiation because corruption of genes involved in these pathways likely participates in tumor growth. This new paradigm of oncogenesis has been validated in a growing list of tumors. Studies of normal and cancer stem cells from the same tissue have shed light on the ontogeny of tumors. That signaling pathways such as Bmi1 and Wnt have similar effects in normal and cancer stem cell self-renewal suggests that common molecular pathways regulate both populations. Understanding the biology of cancer stem cells will contribute to the identification of molecular targets important for future therapies.

  17. Are stem cells a cure for diabetes?

    PubMed

    McCall, Michael D; Toso, Christian; Baetge, Emmanuel E; Shapiro, A M James

    2010-01-01

    With the already heightened demand placed on organ donation, stem cell therapy has become a tantalizing idea to provide glucose-responsive insulin-producing cells to Type 1 diabetic patients as an alternative to islet transplantation. Multiple groups have developed varied approaches to create a population of cells with the appropriate characteristics. Both adult and embryonic stem cells have received an enormous amount of attention as possible sources of insulin-producing cells. Although adult stem cells lack the pluripotent nature of their embryonic counterparts, they appear to avoid the ethical debate that has centred around the latter. This may limit the eventual application of embryonic stem cells, which have already shown promise in early mouse models. One must also consider the potential of stem cells to form teratomas, a complication which would prove devastating in an immunologically compromised transplant recipient. The present review looks at the progress to date in both the adult and embryonic stem cells fields as potential treatments for diabetes. We also consider some of the limitations of stem cell therapy and the potential complications that may develop with their use. PMID:19807695

  18. Translational research of adult stem cell therapy.

    PubMed

    Suzuki, Gen

    2015-11-26

    Congestive heart failure (CHF) secondary to chronic coronary artery disease is a major cause of morbidity and mortality world-wide. Its prevalence is increasing despite advances in medical and device therapies. Cell based therapies generating new cardiomyocytes and vessels have emerged as a promising treatment to reverse functional deterioration and prevent the progression to CHF. Functional efficacy of progenitor cells isolated from the bone marrow and the heart have been evaluated in preclinical large animal models. Furthermore, several clinical trials using autologous and allogeneic stem cells and progenitor cells have demonstrated their safety in humans yet their clinical relevance is inconclusive. This review will discuss the clinical therapeutic applications of three specific adult stem cells that have shown particularly promising regenerative effects in preclinical studies, bone marrow derived mesenchymal stem cell, heart derived cardiosphere-derived cell and cardiac stem cell. We will also discuss future therapeutic approaches.

  19. Breast cancer stem cells and radiation

    NASA Astrophysics Data System (ADS)

    Phillips, Tiffany Marie

    2007-12-01

    The present studies explore the response of breast cancer stem cells (BCSC's) to radiation and the implications for clinical cancer treatment. Current cancer therapy eliminates bulky tumor mass but may fail to eradicate a critical tumor initiating cell population termed "cancer stem cells". These cells are potentially responsible for tumor formation, metastasis, and recurrence. Recently cancer stem cells have been prospectively identified in various malignancies, including breast cancer. The breast cancer stem cell has been identified by the surface markers CD44+/CD24 -(low). In vitro mammosphere cultures allow for the enrichment of the cancer stem cell population and were utilized in order to study differential characteristics of BCSC's. Initial studies found that BCSC's display increased radiation resistance as compared to other non-stem tumor cells. This resistance was accompanied by decreased H2AX phosphorylation, decreased reactive oxygen species formation, and increased phosphorylation of the checkpoint protein Chk1. These studies suggest differential DNA damage and repair within the BCSC population. Studies then examined the consequences of fractionated radiation on the BCSC population and found a two-fold increase in BCSC's following 5 x 3Gy. This observation begins to tie cancer stem cell self-renewal to the clinical stem cell phenomenon of accelerated repopulation. Accelerated repopulation is observed when treatment gaps increase between sequential fractions of radiotherapy and may be due to cancer stem cell symmetric self-renewal. The balance between asymmetric and symmetric stem cell division is vital for proper maintenance; deregulation is likely linked to cancer initiation and progression. The developmental Notch-1 pathway was found to regulate BCSC division. Over-expressing the constitutively active Notch-1-ICD in MCF7 cells produced an increase in the BCSC population. Additionally, radiation was observed to increase the expression of the Notch-1

  20. Stem cells and lineages of the intestine: a developmental and evolutionary perspective

    PubMed Central

    Takashima, Shigeo; Gold, David; Hartenstein, Volker

    2012-01-01

    The intestine consists of epithelial cells that secrete digestive enzymes and mucus (gland cells), absorb food particles (enterocytes), and produce hormones (endocrine cells). Intestinal cells are rapidly turned over and need to be replaced. In cnidarians, mitosis of differentiated intestinal cells accounts for much of the replacement; in addition, migratory, multipotent stem cells (interstitial cells) contribute to the production of intestinal cells. In other phyla, intestinal cell replacement is solely the function of stem cells entering the gut from the outside (such as in case of the neoblasts of platyhelmints) or intestinal stem cells located within the midgut epithelium (as in both vertebrates or arthropods). We will attempt in the following to review important aspects of midgut stem cells in different animal groups: where are they located, what types of lineages do they produce, and how do they develop. We will start out with a comparative survey of midgut cell types found across the animal kingdom; then briefly look at the specification of these cells during embryonic development; and finally focus on the stem cells that regenerate midgut cells during adult life. In a number of model systems, including mouse, zebrafish and Drosophila, the molecular pathways controlling ISC proliferation and the specification of intestinal cell types are under intensive investigation. We will highlight findings of the recent literature, focusing on aspects that are shared between the different models and that point at evolutionary ancient mechanisms of intestinal cell formation. PMID:23179635

  1. Microfluidic Isolation of CD34-Positive Skin Cells Enables Regeneration of Hair and Sebaceous Glands In Vivo.

    PubMed

    Zhu, Beili; Nahmias, Yaakov; Yarmush, Martin L; Murthy, Shashi K

    2014-11-01

    Skin stem cells resident in the bulge area of hair follicles and at the basal layer of the epidermis are multipotent and able to self-renew when transplanted into full-thickness defects in nude mice. Based on cell surface markers such as CD34 and the α6-integrin, skin stem cells can be extracted from tissue-derived cell suspensions for engraftment using the gold standard cell separation technique of fluorescence-activated cell sorting (FACS). This paper describes an alternative separation method using microfluidic devices coated with degradable antibody-functionalized hydrogels. The microfluidic method allows direct injection of tissue digestate (no preprocessing tagging of cells is needed), is fast (45 minutes from injected sample to purified cells), and scalable. This method is used in this study to isolate CD34-positive (CD34+) cells from murine skin tissue digestate, and the functional capability of these cells is demonstrated by transplantation into nude mice using protocols developed by other groups for FACS-sorted cells. Specifically, the transplantation of microfluidic isolated CD34+ cells along with dermal and epidermal cells was observed to generate significant levels of hair follicles and sebaceous glands consistent with those observed previously with FACS-sorted cells.

  2. Microfluidic Isolation of CD34-Positive Skin Cells Enables Regeneration of Hair and Sebaceous Glands In Vivo

    PubMed Central

    Zhu, Beili; Nahmias, Yaakov; Yarmush, Martin L.

    2014-01-01

    Skin stem cells resident in the bulge area of hair follicles and at the basal layer of the epidermis are multipotent and able to self-renew when transplanted into full-thickness defects in nude mice. Based on cell surface markers such as CD34 and the α6-integrin, skin stem cells can be extracted from tissue-derived cell suspensions for engraftment using the gold standard cell separation technique of fluorescence-activated cell sorting (FACS). This paper describes an alternative separation method using microfluidic devices coated with degradable antibody-functionalized hydrogels. The microfluidic method allows direct injection of tissue digestate (no preprocessing tagging of cells is needed), is fast (45 minutes from injected sample to purified cells), and scalable. This method is used in this study to isolate CD34-positive (CD34+) cells from murine skin tissue digestate, and the functional capability of these cells is demonstrated by transplantation into nude mice using protocols developed by other groups for FACS-sorted cells. Specifically, the transplantation of microfluidic isolated CD34+ cells along with dermal and epidermal cells was observed to generate significant levels of hair follicles and sebaceous glands consistent with those observed previously with FACS-sorted cells. PMID:25205844

  3. Peribiliary Glands as a Niche of Extrapancreatic Precursors Yielding Insulin-Producing Cells in Experimental and Human Diabetes.

    PubMed

    Carpino, Guido; Puca, Rosa; Cardinale, Vincenzo; Renzi, Anastasia; Scafetta, Gaia; Nevi, Lorenzo; Rossi, Massimo; Berloco, Pasquale B; Ginanni Corradini, Stefano; Reid, Lola M; Maroder, Marella; Gaudio, Eugenio; Alvaro, Domenico

    2016-05-01

    Peribiliary glands (PBGs) are niches in the biliary tree and containing heterogeneous endodermal stem/progenitors cells that can differentiate, in vitro and in vivo, toward pancreatic islets. The aim of this study was to evaluate, in experimental and human diabetes, proliferation of cells in PBGs and differentiation of the biliary tree stem/progenitor cells (BTSCs) toward insulin-producing cells. Diabetes was generated in mice by intraperitoneal injection of a single dose of 200 mg/kg (N = 12) or 120 mg/kg (N = 12) of streptozotocin. Liver, pancreas, and extrahepatic biliary trees were en bloc dissected and examined. Cells in PBGs proliferated in experimental diabetes, and their proliferation was greatest in the PBGs of the hepatopancreatic ampulla, and inversely correlated with the pancreatic islet area. In rodents, the cell proliferation in PBGs was characterized by the expansion of Sox9-positive stem/progenitor cells that gave rise to insulin-producing cells. Insulin-producing cells were located mostly in PBGs in the portion of the biliary tree closest to the duodenum, and their appearance was associated with upregulation of MafA and Gli1 gene expression. In patients with type 2 diabetes, PBGs at the level of the hepatopancreatic ampulla contained cells showing signs of proliferation and pancreatic fate commitment. In vitro, high glucose concentrations induced the differentiation of human BTSCs cultures toward pancreatic beta cell fates. The cells in PBGs respond to diabetes with proliferation and differentiation towards insulin-producing cells indicating that PBG niches may rescue pancreatic islet impairment in diabetes. These findings offer important implications for the pathophysiology and complications of this disease. Stem Cells 2016;34:1332-1342. PMID:26850087

  4. Luminal epithelial cells within the mammary gland can produce basal cells upon oncogenic stress.

    PubMed

    Hein, S M; Haricharan, S; Johnston, A N; Toneff, M J; Reddy, J P; Dong, J; Bu, W; Li, Y

    2016-03-17

    In the normal mammary gland, the basal epithelium is known to be bipotent and can generate either basal or luminal cells, whereas the luminal epithelium has not been demonstrated to contribute to the basal compartment in an intact and normally developed mammary gland. It is not clear whether cellular heterogeneity within a breast tumor results from transformation of bipotent basal cells or from transformation and subsequent basal conversion of the more differentiated luminal cells. Here we used a retroviral vector to express an oncogene specifically in a small number of the mammary luminal epithelial cells and tested their potential to produce basal cells during tumorigenesis. This in-vivo lineage-tracing work demonstrates that luminal cells are capable of producing basal cells on activation of either polyoma middle T antigen or ErbB2 signaling. These findings reveal the plasticity of the luminal compartment during tumorigenesis and provide an explanation for cellular heterogeneity within a cancer.

  5. Human adipose stem cells: current clinical applications.

    PubMed

    Gir, Phanette; Oni, Georgette; Brown, Spencer A; Mojallal, Ali; Rohrich, Rod J

    2012-06-01

    Adipose-derived stem cells are multipotent cells that can easily be extracted from adipose tissue, are capable of expansion in vitro, and have the capacity to differentiate into multiple cell lineages, which have the potential for use in regenerative medicine. However, several issues need to be studied to determine safe human use. For example, there are questions related to isolation and purification of adipose-derived stem cells, their effect on tumor growth, and the enforcement of U.S. Food and Drug Administration regulations. Numerous studies have been published, with the interest in the potential for regenerative medicine continually growing. Several clinical trials using human adipose stem cell therapy are currently being performed around the world, and there has been a rapid evolution and expansion of their number. The purpose of this article was to review the current published basic science evidence and ongoing clinical trials involving the use of adipose-derived stem cells in plastic surgery and in regenerative medicine in general. The results of the studies and clinical trials using adipose-derived stem cells reported in this review seem to be promising not only in plastic surgery but also in a wide variety of other specialties. Nevertheless, those reported showed disparity in the way adipose-derived stem cells were used. Further basic science experimental studies with standardized protocols and larger randomized trials need to be performed to ensure safety and efficacy of adipose-derived stem cells use in accordance with U.S. Food and Drug Administration guidelines.

  6. [Stem cells: limitations and opportunities in Peru].

    PubMed

    Amiel-Pérez, José; Casado, Fanny

    2015-10-01

    Stem cells are defined as rare cells that are characterized by asymmetric division, a process known as self-renewal, and the potential to differentiate into more than one type of terminally differentiated cell. There is a diversity of stem cells including embryonic stem cells, which exist only during the first stages of human development, and many adult stem cells depending on the specific tissues from where they derive or the ones derived from mesenchymal or stromal tissues. On the other hand, there are induced pluripotent stem cells generated by genetic engineering with similar properties to embryonic stem cells that are derived from adult tissues without the ethical and legal limitations. In all cases, there are many questions that are being addressed by research in basic sciences to better inform clinical practice. In Peru, there is much to do refining techniques and improving methodologies, which requires experience, proper facilities and highly specialized human resources. However, there are interesting efforts to place Peruvian stem cell research in the international scientific arena.

  7. High Throughput Optimization of Stem Cell Microenvironments

    PubMed Central

    Yang, Fan; Mei, Ying; Langer, Robert; Anderson, Daniel G.

    2009-01-01

    Stem cells have great potential as cell sources for regenerative medicine due to both their self-renewal and multi-lineage differentiation capacity. Despite advances in the field of stem cell biology, major challenges remain before stem cells can be widely used for therapeutic purposes. One challenge is to develop reproducible methods to control stem cell growth and differentiation. The niche in which stem cells reside is a complex, multi-factorial environment. In contrast to using cells alone, biomaterials can provide initial structural support, and allow cells to adhere, proliferate and differentiate in a three-dimensional environment. Researchers have incorporated signals into the biomaterials that can promote desired cell functions in a spatially and temporally controlled manner. Despite progress in biomaterial design and methods to modulate cellular behavior, many of the complex signal networks that regulate cell-material interactions remain unclear. Due to the vast numbers of material properties to be explored and the complexity of cell-surface interactions, it is often difficult to optimize stem cell microenvironments using conventional, iterative approaches. To address these challenges, high throughput screening of combinatorial libraries has emerged as a novel approach to achieve rapid screening with reduced materials and costs. In this review, we discuss recent research in the area of high throughput approaches for characterization and optimization of cellular interactions with their microenvironments. In contrast to conventional approaches, screening combinatorial libraries can result in the discovery of unexpected material solutions to these complex problems. PMID:19601753

  8. Connecting Mitochondria, Metabolism, and Stem Cell Fate

    PubMed Central

    Wanet, Anaïs; Arnould, Thierry; Najimi, Mustapha

    2015-01-01

    As sites of cellular respiration and energy production, mitochondria play a central role in cell metabolism. Cell differentiation is associated with an increase in mitochondrial content and activity and with a metabolic shift toward increased oxidative phosphorylation activity. The opposite occurs during reprogramming of somatic cells into induced pluripotent stem cells. Studies have provided evidence of mitochondrial and metabolic changes during the differentiation of both embryonic and somatic (or adult) stem cells (SSCs), such as hematopoietic stem cells, mesenchymal stem cells, and tissue-specific progenitor cells. We thus propose to consider those mitochondrial and metabolic changes as hallmarks of differentiation processes. We review how mitochondrial biogenesis, dynamics, and function are directly involved in embryonic and SSC differentiation and how metabolic and sensing pathways connect mitochondria and metabolism with cell fate and pluripotency. Understanding the basis of the crosstalk between mitochondria and cell fate is of critical importance, given the promising application of stem cells in regenerative medicine. In addition to the development of novel strategies to improve the in vitro lineage-directed differentiation of stem cells, understanding the molecular basis of this interplay could lead to the identification of novel targets to improve the treatment of degenerative diseases. PMID:26134242

  9. Connecting Mitochondria, Metabolism, and Stem Cell Fate.

    PubMed

    Wanet, Anaïs; Arnould, Thierry; Najimi, Mustapha; Renard, Patricia

    2015-09-01

    As sites of cellular respiration and energy production, mitochondria play a central role in cell metabolism. Cell differentiation is associated with an increase in mitochondrial content and activity and with a metabolic shift toward increased oxidative phosphorylation activity. The opposite occurs during reprogramming of somatic cells into induced pluripotent stem cells. Studies have provided evidence of mitochondrial and metabolic changes during the differentiation of both embryonic and somatic (or adult) stem cells (SSCs), such as hematopoietic stem cells, mesenchymal stem cells, and tissue-specific progenitor cells. We thus propose to consider those mitochondrial and metabolic changes as hallmarks of differentiation processes. We review how mitochondrial biogenesis, dynamics, and function are directly involved in embryonic and SSC differentiation and how metabolic and sensing pathways connect mitochondria and metabolism with cell fate and pluripotency. Understanding the basis of the crosstalk between mitochondria and cell fate is of critical importance, given the promising application of stem cells in regenerative medicine. In addition to the development of novel strategies to improve the in vitro lineage-directed differentiation of stem cells, understanding the molecular basis of this interplay could lead to the identification of novel targets to improve the treatment of degenerative diseases.

  10. Calcium signaling in pluripotent stem cells.

    PubMed

    Apáti, Ágota; Pászty, Katalin; Erdei, Zsuzsa; Szebényi, Kornélia; Homolya, László; Sarkadi, Balázs

    2012-04-28

    Pluripotent stem cells represent a new source of biological material allowing the exploration of signaling phenomena during normal cell development and differentiation. Still, the calcium signaling pathways and intracellular calcium responses to various ligands or stress conditions have not been sufficiently explored as yet in embryonic or induced pluripotent stem cells and in their differentiated offspring. This is partly due to the special culturing conditions of these cell types, the rapid morphological and functional changes in heterogeneous cell populations during early differentiation, and methodological problems in cellular calcium measurements. In this paper, we review the currently available data in the literature on calcium signaling in pluripotent stem cells and discuss the potential shortcomings of these studies. Various assay methods are surveyed for obtaining reliable data both in undifferentiated embryonic stem cells and in specific, stem cell-derived human tissues. In this paper, we present the modulation of calcium signaling in human embryonic stem cells (hESC) and in their derivates; mesenchymal stem cell like (MSCl) cells and cardiac tissues using the fluorescent calcium indicator Fluo-4 and confocal microscopy. LPA, trypsin and angiotensin II were effective in inducing calcium signals both in HUES9 and MSCl cells. Histamine and thrombin induced calcium signal exclusively in the MSCl cells, while ATP was effective only in HUES9 cells. There was no calcium signal evoked by GABA, even at relatively high concentrations. In stem cell-derived cardiomyocytes a rapid increase in the beating rate and an increase of the calcium signal peaks could be observed after the addition of adrenaline, while verapamil led to a strong decrease in cellular calcium and stopped spontaneous contractions in a relaxed state.

  11. Dynamics of Lgr6+ Progenitor Cells in the Hair Follicle, Sebaceous Gland, and Interfollicular Epidermis

    PubMed Central

    Füllgrabe, Anja; Joost, Simon; Are, Alexandra; Jacob, Tina; Sivan, Unnikrishnan; Haegebarth, Andrea; Linnarsson, Sten; Simons, Benjamin D.; Clevers, Hans; Toftgård, Rune; Kasper, Maria

    2015-01-01

    Summary The dynamics and interactions between stem cell pools in the hair follicle (HF), sebaceous gland (SG), and interfollicular epidermis (IFE) of murine skin are still poorly understood. In this study, we used multicolor lineage tracing to mark Lgr6-expressing basal cells in the HF isthmus, SG, and IFE. We show that these Lgr6+ cells constitute long-term self-renewing populations within each compartment in adult skin. Quantitative analysis of clonal dynamics revealed that the Lgr6+ progenitor cells compete neutrally in the IFE, isthmus, and SG, indicating population asymmetry as the underlying mode of tissue renewal. Transcriptional profiling of Lgr6+ and Lgr6− cells did not reveal a distinct Lgr6-associated gene expression signature, raising the question of whether Lgr6 expression requires extrinsic niche signals. Our results elucidate the interrelation and behavior of Lgr6+ populations in the IFE, HF, and SG and suggest population asymmetry as a common mechanism for homeostasis in several epithelial skin compartments. PMID:26607954

  12. Stem cells and small molecule screening: haploid embryonic stem cells as a new tool.

    PubMed

    Wu, Bi; Li, Wei; Wang, Liu; Liu, Zhong-hua; Zhao, Xiao-yang

    2013-06-01

    Stem cells can both self-renew and differentiate into various cell types under certain conditions, which makes them a good model for development and disease studies. Recently, chemical approaches have been widely applied in stem cell biology by promoting stem cell self-renewal, proliferation, differentiation and somatic cell reprogramming using specific small molecules. Conversely, stem cells and their derivatives also provide an efficient and robust platform for small molecule and drug screening. Here, we review the current research and applications of small molecules that modulate stem cell self-renewal and differentiation and improve reprogramming, as well as the applications that use stem cells as a tool for small molecule screening. Moreover, we introduce the recent advance in haploid embryonic stem cells research. Haploid embryonic stem cells maintain haploidy and stable growth over extensive passages, possess the ability to differentiate into all three germ layers in vitro and in vivo, and contribute to the germlines of chimeras when injected into blastocysts. Androgenetic haploid stem cells can also be used in place of sperm to produce fertile progeny after intracytoplasmic injection into mature oocytes. Such characteristics demonstrate that haploid stem cells are a new approach for genetic studies at both the cellular and animal levels and that they are a valuable platform for future small molecule screening.

  13. Bioreactor Engineering of Stem Cell Environments

    PubMed Central

    Tandon, Nina; Marolt, Darja; Cimetta, Elisa; Vunjak-Novakovic, Gordana

    2013-01-01

    Stem cells hold promise to revolutionize modern medicine by development of new therapies, disease models and drug screening systems. Standard cell culture systems have limited biological relevance because they do not recapitulate the complex 3-dimensional interactions and biophysical cues that characterize the in vivo environment. In this review, we discuss the current advances in engineering stem cell environments using novel biomaterials and bioreactor technologies. We also reflect on the challenges the field is currently facing with regard to translation of stem cell based therapies into the clinic. PMID:23531529

  14. Update on small intestinal stem cells

    PubMed Central

    Tesori, Valentina; Puglisi, Maria Ausiliatrice; Lattanzi, Wanda; Gasbarrini, Giovanni Battista; Gasbarrini, Antonio

    2013-01-01

    Among somatic stem cells, those residing in the intestine represent a fascinating and poorly explored research field. Particularly, somatic stem cells reside in the small intestine at the level of the crypt base, in a constant balance between self-renewal and differentiation. Aim of the present review is to delve into the mechanisms that regulate the delicate equilibrium through which intestinal stem cells orchestrate intestinal architecture. To this aim, special focus will be addressed to identify the integrating signals from the surrounding niche, supporting a model whereby distinct cell populations facilitate homeostatic vs injury-induced regeneration. PMID:23922464

  15. Isolation of dendritic-cell-like S100β-positive cells in rat anterior pituitary gland.

    PubMed

    Horiguchi, Kotaro; Fujiwara, Ken; Yoshida, Saishu; Higuchi, Masashi; Tsukada, Takehiro; Kanno, Naoko; Yashiro, Takashi; Tateno, Kozue; Osako, Shunji; Kato, Takako; Kato, Yukio

    2014-07-01

    S100β-protein-positive cells in the anterior pituitary gland appear to possess multifunctional properties. Because of their pleiotropic features, S100β-positive cells are assumed to be of a heterogeneous or even a non-pituitary origin. The observation of various markers has allowed these cells to be classified into populations such as stem/progenitor cells, epithelial cells, astrocytes and dendritic cells. The isolation and characterization of each heterogeneous population is a prerequisite for clarifying the functional character and origin of the cells. We attempt to isolate two of the subpopulations of S100β-positive cells from the anterior lobe. First, from transgenic rats that express green fluorescent protein (GFP) driven by the S100β protein promoter, we fractionate GFP-positive cells with a cell sorter and culture them so that they can interact with laminin, a component of the extracellular matrix. We observe that one morphological type of GFP-positive cells possesses extended cytoplasmic processes and shows high adhesiveness to laminin (process type), whereas the other is round in shape and exhibits low adherence to laminin (round type). We successfully isolate cells of the round type from the cultured GFP-positive cells by taking advantage of their low affinity to laminin and then measure mRNA levels of the two cell types by real-time polymerase chain reaction. The resultant data show that the process type expresses vimentin (mesenchymal cell marker) and glial fibrillary acidic protein (astrocyte marker). The round type expresses dendritic cell markers, CD11b and interleukin-6. Thus, we found a method for isolating dendritic-cell-like S100β-positive cells by means of their property of adhering to laminin.

  16. Cloned kids derived from caprine mammary gland epithelial cells.

    PubMed

    Yuan, Y-G; Cheng, Y; Guo, L; Ding, G-L; Bai, Y-J; Miao, M-X; An, L-Y; Zhao, J-H; Cao, Y-J

    2009-09-01

    The use of nucleus transfer techniques to generate transgenic dairy goats capable of producing recombinant therapeutic proteins in milk could have a major impact on the pharmaceutical industry. However, transfection or gene targeting of nucleus transfer donor cells requires a long in vitro culture period and the selection of marker genes. In the current study, we evaluated the potential for using caprine mammary gland epithelial cells (CMGECs), isolated from udders of lactating F1 hybrid goats (Capra hircus) and cryopreserved at Passages 24 to 26, for nucleus transfer into enucleated in vivo-matured oocytes. Pronuclear-stage reconstructed embryos were transferred into the oviducts of 31 recipient goats. Twenty-three (74%), 21 (72%), and 14 (48%) recipients were confirmed pregnant by ultrasonography on Days 30, 60, and 90, respectively. Four recipients aborted between 35 and 137 d of gestation. Five recipients carried the pregnancies to term and delivered one goat kid each, one of which subsequently died due to respiratory difficulties. The remaining four goat kids were healthy and well. Single-strand conformation polymorphism analysis confirmed that all kids were clones of the donor cells. In conclusion, the CMGECs remained totipotent for nucleus transfer.

  17. Stem cell applications in military medicine.

    PubMed

    Christopherson, Gregory T; Nesti, Leon J

    2011-10-19

    There are many similarities between health issues affecting military and civilian patient populations, with the exception of the relatively small but vital segment of active soldiers who experience high-energy blast injuries during combat. A rising incidence of major injuries from explosive devices in recent campaigns has further complicated treatment and recovery, highlighting the need for tissue regenerative options and intensifying interest in the possible role of stem cells for military medicine. In this review we outline the array of tissue-specific injuries typically seen in modern combat - as well as address a few complications unique to soldiers--and discuss the state of current stem cell research in addressing each area. Embryonic, induced-pluripotent and adult stem cell sources are defined, along with advantages and disadvantages unique to each cell type. More detailed stem cell sources are described in the context of each tissue of interest, including neural, cardiopulmonary, musculoskeletal and sensory tissues, with brief discussion of their potential role in regenerative medicine moving forward. Additional commentary is given to military stem cell applications aside from regenerative medicine, such as blood pharming, immunomodulation and drug screening, with an overview of stem cell banking and the unique opportunity provided by the military and civilian overlap of stem cell research.

  18. Current understanding concerning intestinal stem cells

    PubMed Central

    Cui, Shuang; Chang, Peng-Yu

    2016-01-01

    In mammals, the intestinal epithelium is a tissue that contains two distinct pools of stem cells: active intestinal stem cells and reserve intestinal stem cells. The former are located in the crypt basement membrane and are responsible for maintaining epithelial homeostasis under intact conditions, whereas the latter exhibit the capacity to facilitate epithelial regeneration after injury. These two pools of cells can convert into each other, maintaining their quantitative balance. In terms of the active intestinal stem cells, their development into functional epithelium is precisely controlled by the following signaling pathways: Wnt/β-catenin, Ras/Raf/Mek/Erk/MAPK, Notch and BMP/Smad. However, mutations in some of the key regulator genes associated with these signaling pathways, such as APC, Kras and Smad4, are also highly associated with gut malformations. At this point, clarifying the biological characteristics of intestinal stem cells will increase the feasibility of preventing or treating some intestinal diseases, such as colorectal cancer. Moreover, as preclinical data demonstrate the therapeutic effects of colon stem cells on murine models of experimental colitis, the prospects of stem cell-based regenerative treatments for ulcerous lesions in the gastrointestinal tract will be improved all the same.

  19. Current understanding concerning intestinal stem cells

    PubMed Central

    Cui, Shuang; Chang, Peng-Yu

    2016-01-01

    In mammals, the intestinal epithelium is a tissue that contains two distinct pools of stem cells: active intestinal stem cells and reserve intestinal stem cells. The former are located in the crypt basement membrane and are responsible for maintaining epithelial homeostasis under intact conditions, whereas the latter exhibit the capacity to facilitate epithelial regeneration after injury. These two pools of cells can convert into each other, maintaining their quantitative balance. In terms of the active intestinal stem cells, their development into functional epithelium is precisely controlled by the following signaling pathways: Wnt/β-catenin, Ras/Raf/Mek/Erk/MAPK, Notch and BMP/Smad. However, mutations in some of the key regulator genes associated with these signaling pathways, such as APC, Kras and Smad4, are also highly associated with gut malformations. At this point, clarifying the biological characteristics of intestinal stem cells will increase the feasibility of preventing or treating some intestinal diseases, such as colorectal cancer. Moreover, as preclinical data demonstrate the therapeutic effects of colon stem cells on murine models of experimental colitis, the prospects of stem cell-based regenerative treatments for ulcerous lesions in the gastrointestinal tract will be improved all the same. PMID:27610020

  20. Stem cell applications in military medicine.

    PubMed

    Christopherson, Gregory T; Nesti, Leon J

    2011-01-01

    There are many similarities between health issues affecting military and civilian patient populations, with the exception of the relatively small but vital segment of active soldiers who experience high-energy blast injuries during combat. A rising incidence of major injuries from explosive devices in recent campaigns has further complicated treatment and recovery, highlighting the need for tissue regenerative options and intensifying interest in the possible role of stem cells for military medicine. In this review we outline the array of tissue-specific injuries typically seen in modern combat - as well as address a few complications unique to soldiers--and discuss the state of current stem cell research in addressing each area. Embryonic, induced-pluripotent and adult stem cell sources are defined, along with advantages and disadvantages unique to each cell type. More detailed stem cell sources are described in the context of each tissue of interest, including neural, cardiopulmonary, musculoskeletal and sensory tissues, with brief discussion of their potential role in regenerative medicine moving forward. Additional commentary is given to military stem cell applications aside from regenerative medicine, such as blood pharming, immunomodulation and drug screening, with an overview of stem cell banking and the unique opportunity provided by the military and civilian overlap of stem cell research. PMID:22011454

  1. Current understanding concerning intestinal stem cells.

    PubMed

    Cui, Shuang; Chang, Peng-Yu

    2016-08-21

    In mammals, the intestinal epithelium is a tissue that contains two distinct pools of stem cells: active intestinal stem cells and reserve intestinal stem cells. The former are located in the crypt basement membrane and are responsible for maintaining epithelial homeostasis under intact conditions, whereas the latter exhibit the capacity to facilitate epithelial regeneration after injury. These two pools of cells can convert into each other, maintaining their quantitative balance. In terms of the active intestinal stem cells, their development into functional epithelium is precisely controlled by the following signaling pathways: Wnt/β-catenin, Ras/Raf/Mek/Erk/MAPK, Notch and BMP/Smad. However, mutations in some of the key regulator genes associated with these signaling pathways, such as APC, Kras and Smad4, are also highly associated with gut malformations. At this point, clarifying the biological characteristics of intestinal stem cells will increase the feasibility of preventing or treating some intestinal diseases, such as colorectal cancer. Moreover, as preclinical data demonstrate the therapeutic effects of colon stem cells on murine models of experimental colitis, the prospects of stem cell-based regenerative treatments for ulcerous lesions in the gastrointestinal tract will be improved all the same. PMID:27610020

  2. Stem cell tracking using iron oxide nanoparticles.

    PubMed

    Bull, Elizabeth; Madani, Seyed Yazdan; Sheth, Roosey; Seifalian, Amelia; Green, Mark; Seifalian, Alexander M

    2014-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are an exciting advancement in the field of nanotechnology. They expand the possibilities of noninvasive analysis and have many useful properties, making them potential candidates for numerous novel applications. Notably, they have been shown that they can be tracked by magnetic resonance imaging (MRI) and are capable of conjugation with various cell types, including stem cells. In-depth research has been undertaken to establish these benefits, so that a deeper level of understanding of stem cell migratory pathways and differentiation, tumor migration, and improved drug delivery can be achieved. Stem cells have the ability to treat and cure many debilitating diseases with limited side effects, but a main problem that arises is in the noninvasive tracking and analysis of these stem cells. Recently, researchers have acknowledged the use of SPIONs for this purpose and have set out to establish suitable protocols for coating and attachment, so as to bring MRI tracking of SPION-labeled stem cells into common practice. This review paper explains the manner in which SPIONs are produced, conjugated, and tracked using MRI, as well as a discussion on their limitations. A concise summary of recently researched magnetic particle coatings is provided, and the effects of SPIONs on stem cells are evaluated, while animal and human studies investigating the role of SPIONs in stem cell tracking will be explored.

  3. Stem cells: public policy and ethics.

    PubMed

    Towns, Cindy R; Jones, D Gareth

    2004-02-01

    Debate on the regulation of human stem cells needs to bring together scientific, ethical and policy considerations if it is to be adequately informed. Scientific issues of importance include the relevance of the environment in appreciating the extent of stem cell plasticity, and the relative potential of embryonic and adult stem cells to produce other cell types. An awareness that blastocysts (early embryos) and stem cells in the laboratory are pluripotential and not totipotential has implications for ethical and policy debate. The regulations on stem cell research are reviewed, showing that four positions have emerged. Position A corresponds to the prohibition of all embryo research, position B confines the use of embryonic stem cells to those currently in existence and therefore extracted prior to some specified date, position C allows for the use and ongoing isolation of embryonic stem cells from surplus in vitro fertilization embryos, and position D approves of the creation of human embryos specifically for research. Position B which has been adopted by the United States, Germany, and Australia (with subtle differences between them) and which is regarded as a compromise position, is critiqued. This is principally on the basis that, in spite of claims made about it, the ongoing destruction of human embryos will continue. This is because these countries allow in vitro fertilization programs, inherent within which is embryo destruction. It is argued that position C would be a more consistent ethical position for these countries. The possibility of moving to position D is also raised.

  4. Stem cell applications in military medicine

    PubMed Central

    2011-01-01

    There are many similarities between health issues affecting military and civilian patient populations, with the exception of the relatively small but vital segment of active soldiers who experience high-energy blast injuries during combat. A rising incidence of major injuries from explosive devices in recent campaigns has further complicated treatment and recovery, highlighting the need for tissue regenerative options and intensifying interest in the possible role of stem cells for military medicine. In this review we outline the array of tissue-specific injuries typically seen in modern combat - as well as address a few complications unique to soldiers - and discuss the state of current stem cell research in addressing each area. Embryonic, induced-pluripotent and adult stem cell sources are defined, along with advantages and disadvantages unique to each cell type. More detailed stem cell sources are described in the context of each tissue of interest, including neural, cardiopulmonary, musculoskeletal and sensory tissues, with brief discussion of their potential role in regenerative medicine moving forward. Additional commentary is given to military stem cell applications aside from regenerative medicine, such as blood pharming, immunomodulation and drug screening, with an overview of stem cell banking and the unique opportunity provided by the military and civilian overlap of stem cell research. PMID:22011454

  5. Stem cells as promising therapeutic options for neurological disorders.

    PubMed

    Yoo, Jongman; Kim, Han-Soo; Hwang, Dong-Youn

    2013-04-01

    Due to the limitations of pharmacological and other current therapeutic strategies, stem cell therapies have emerged as promising options for treating many incurable neurologic diseases. A variety of stem cells including pluripotent stem cells (i.e., embryonic stem cells and induced pluripotent stem cells) and multipotent adult stem cells (i.e., fetal brain tissue, neural stem cells, and mesenchymal stem cells from various sources) have been explored as therapeutic options for treating many neurologic diseases, and it is becoming obvious that each type of stem cell has pros and cons as a source for cell therapy. Wise selection of stem cells with regard to the nature and status of neurologic dysfunctions is required to achieve optimal therapeutic efficacy. To this aim, the stem cell-mediated therapeutic efforts on four major neurological diseases, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and stroke, will be introduced, and current problems and future directions will be discussed.

  6. Immunological characteristics of mesenchymal stem cells

    PubMed Central

    Machado, Cíntia de Vasconcellos; Telles, Paloma Dias da Silva; Nascimento, Ivana Lucia Oliveira

    2013-01-01

    Although bone marrow is the main source, mesenchymal stem cells have already been isolated from various other tissues, such as the liver, pancreas, adipose tissue, peripheral blood and dental pulp. These plastic adherent cells are morphologically similar to fibroblasts and have a high proliferative potential. This special group of cells possesses two essential characteristics: self-renewal and differentiation, with appropriate stimuli, into various cell types. Mesenchymal stem cells are considered immunologically privileged, since they do not express costimulatory molecules, required for complete T cell activation, on their surface. Several studies have shown that these cells exert an immunosuppressive effect on cells from both innate and acquired immunity systems. Mesenchymal stem cells can regulate the immune response in vitro by inhibiting the maturation of dendritic cells, as well as by suppressing the proliferation and function of T and B lymphocytes and natural killer cells. These special properties of mesenchymal stem cells make them a promising strategy in the treatment of immune mediated disorders, such as graft-versus-host disease and autoimmune diseases, as well as in regenerative medicine. The understanding of immune regulation mechanisms of mesenchymal stem cells, and also those involved in the differentiation of these cells in various lineages is primordial for their successful and safe application in different areas of medicine. PMID:23580887

  7. [Stem cells in cardiological clinical trials].

    PubMed

    Przybycień, Krzysztof; Kornacewicz Jach, Zdzisława; Machaliński, Bogusław

    2011-01-01

    Stem cell-based therapy is a novel therapeutic strategy introduced into cardiology, although there are not any established standards within the stem/progenitor cell type employed, their preparation, rout of administration as well as methods controlling the pathophysiological and clinical parameters after the cell application. The aim of the present work was a complex meta-analysis of the clinical trials carried out in this field. Over 1000 patients with myocardial infarction as well as circulatory failure have been treated with stem cell-based therapy so far, but the obtained results are not concordant. Progress within cell biology and biotechnology give hopes for development of more effective therapeutic approaches. Identification and isolation of cardiac- -specific stem/progenitor cells may deliver new perspectives for such therapy in the nearest future.

  8. Seeing Stem Cells at Work In Vivo

    PubMed Central

    Srivastava, Amit K.; Bulte, Jeff W. M.

    2013-01-01

    Stem cell based-therapies are novel therapeutic strategies that hold key for developing new treatments for diseases conditions with very few or no cures. Although there has been an increase in the number of clinical trials involving stem cell-based therapies in the last few years, the long-term risks and benefits of these therapies are still unknown. Detailed in vivo studies are needed to monitor the fate of transplanted cells, including their distribution, differentiation, and longevity over time. Advancements in non-invasive cellular imaging techniques to track engrafted cells in real-time present a powerful tool for determining the efficacy of stem cell-based therapies. In this review, we describe the latest approaches to stem cell labeling and tracking using different imaging modalities. PMID:23975604

  9. Technology Advancement for Integrative Stem Cell Analyses

    PubMed Central

    Jeong, Yoon

    2014-01-01

    Scientists have endeavored to use stem cells for a variety of applications ranging from basic science research to translational medicine. Population-based characterization of such stem cells, while providing an important foundation to further development, often disregard the heterogeneity inherent among individual constituents within a given population. The population-based analysis and characterization of stem cells and the problems associated with such a blanket approach only underscore the need for the development of new analytical technology. In this article, we review current stem cell analytical technologies, along with the advantages and disadvantages of each, followed by applications of these technologies in the field of stem cells. Furthermore, while recent advances in micro/nano technology have led to a growth in the stem cell analytical field, underlying architectural concepts allow only for a vertical analytical approach, in which different desirable parameters are obtained from multiple individual experiments and there are many technical challenges that limit vertically integrated analytical tools. Therefore, we propose—by introducing a concept of vertical and horizontal approach—that there is the need of adequate methods to the integration of information, such that multiple descriptive parameters from a stem cell can be obtained from a single experiment. PMID:24874188

  10. Analytical strategies for studying stem cell metabolism

    PubMed Central

    Arnold, James M.; Choi, William T.; Sreekumar, Arun

    2015-01-01

    Owing to their capacity for self-renewal and pluripotency, stem cells possess untold potential for revolutionizing the field of regenerative medicine through the development of novel therapeutic strategies for treating cancer, diabetes, cardiovascular and neurodegenerative diseases. Central to developing these strategies is improving our understanding of biological mechanisms responsible for governing stem cell fate and self-renewal. Increasing attention is being given to the significance of metabolism, through the production of energy and generation of small molecules, as a critical regulator of stem cell functioning. Rapid advances in the field of metabolomics now allow for in-depth profiling of stem cells both in vitro and in vivo, providing a systems perspective on key metabolic and molecular pathways which influence stem cell biology. Understanding the analytical platforms and techniques that are currently used to study stem cell metabolomics, as well as how new insights can be derived from this knowledge, will accelerate new research in the field and improve future efforts to expand our understanding of the interplay between metabolism and stem cell biology. PMID:26213533

  11. Time to Reconsider Stem Cell Induction Strategies

    PubMed Central

    Denker, Hans-Werner

    2012-01-01

    Recent developments in stem cell research suggest that it may be time to reconsider the current focus of stem cell induction strategies. During the previous five years, approximately, the induction of pluripotency in somatic cells, i.e., the generation of so-called ‘induced pluripotent stem cells’ (iPSCs), has become the focus of ongoing research in many stem cell laboratories, because this technology promises to overcome limitations (both technical and ethical) seen in the production and use of embryonic stem cells (ESCs). A rapidly increasing number of publications suggest, however, that it is now possible to choose instead other, alternative ways of generating stem and progenitor cells bypassing pluripotency. These new strategies may offer important advantages with respect to ethics, as well as to safety considerations. The present communication discusses why these strategies may provide possibilities for an escape from the dilemma presented by pluripotent stem cells (self-organization potential, cloning by tetraploid complementation, patenting problems and tumor formation risk). PMID:24710555

  12. Technology advancement for integrative stem cell analyses.

    PubMed

    Jeong, Yoon; Choi, Jonghoon; Lee, Kwan Hyi

    2014-12-01

    Scientists have endeavored to use stem cells for a variety of applications ranging from basic science research to translational medicine. Population-based characterization of such stem cells, while providing an important foundation to further development, often disregard the heterogeneity inherent among individual constituents within a given population. The population-based analysis and characterization of stem cells and the problems associated with such a blanket approach only underscore the need for the development of new analytical technology. In this article, we review current stem cell analytical technologies, along with the advantages and disadvantages of each, followed by applications of these technologies in the field of stem cells. Furthermore, while recent advances in micro/nano technology have led to a growth in the stem cell analytical field, underlying architectural concepts allow only for a vertical analytical approach, in which different desirable parameters are obtained from multiple individual experiments and there are many technical challenges that limit vertically integrated analytical tools. Therefore, we propose--by introducing a concept of vertical and horizontal approach--that there is the need of adequate methods to the integration of information, such that multiple descriptive parameters from a stem cell can be obtained from a single experiment.

  13. Stem cell bioprocessing: fundamentals and principles

    PubMed Central

    Placzek, Mark R.; Chung, I-Ming; Macedo, Hugo M.; Ismail, Siti; Mortera Blanco, Teresa; Lim, Mayasari; Min Cha, Jae; Fauzi, Iliana; Kang, Yunyi; Yeo, David C.L.; Yip Joan Ma, Chi; Polak, Julia M.; Panoskaltsis, Nicki; Mantalaris, Athanasios

    2008-01-01

    In recent years, the potential of stem cell research for tissue engineering-based therapies and regenerative medicine clinical applications has become well established. In 2006, Chung pioneered the first entire organ transplant using adult stem cells and a scaffold for clinical evaluation. With this a new milestone was achieved, with seven patients with myelomeningocele receiving stem cell-derived bladder transplants resulting in substantial improvements in their quality of life. While a bladder is a relatively simple organ, the breakthrough highlights the incredible benefits that can be gained from the cross-disciplinary nature of tissue engineering and regenerative medicine (TERM) that encompasses stem cell research and stem cell bioprocessing. Unquestionably, the development of bioprocess technologies for the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic as therapeutics necessitates the application of engineering principles and practices to achieve control, reproducibility, automation, validation and safety of the process and the product. The successful translation will require contributions from fundamental research (from developmental biology to the ‘omics’ technologies and advances in immunology) and from existing industrial practice (biologics), especially on automation, quality assurance and regulation. The timely development, integration and execution of various components will be critical—failures of the past (such as in the commercialization of skin equivalents) on marketing, pricing, production and advertising should not be repeated. This review aims to address the principles required for successful stem cell bioprocessing so that they can be applied deftly to clinical applications. PMID:19033137

  14. Adult Stem Cells and Diseases of Aging

    PubMed Central

    Boyette, Lisa B.; Tuan, Rocky S.

    2014-01-01

    Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan. PMID:24757526

  15. Stem cell bioprocessing: fundamentals and principles.

    PubMed

    Placzek, Mark R; Chung, I-Ming; Macedo, Hugo M; Ismail, Siti; Mortera Blanco, Teresa; Lim, Mayasari; Cha, Jae Min; Fauzi, Iliana; Kang, Yunyi; Yeo, David C L; Ma, Chi Yip Joan; Polak, Julia M; Panoskaltsis, Nicki; Mantalaris, Athanasios

    2009-03-01

    In recent years, the potential of stem cell research for tissue engineering-based therapies and regenerative medicine clinical applications has become well established. In 2006, Chung pioneered the first entire organ transplant using adult stem cells and a scaffold for clinical evaluation. With this a new milestone was achieved, with seven patients with myelomeningocele receiving stem cell-derived bladder transplants resulting in substantial improvements in their quality of life. While a bladder is a relatively simple organ, the breakthrough highlights the incredible benefits that can be gained from the cross-disciplinary nature of tissue engineering and regenerative medicine (TERM) that encompasses stem cell research and stem cell bioprocessing. Unquestionably, the development of bioprocess technologies for the transfer of the current laboratory-based practice of stem cell tissue culture to the clinic as therapeutics necessitates the application of engineering principles and practices to achieve control, reproducibility, automation, validation and safety of the process and the product. The successful translation will require contributions from fundamental research (from developmental biology to the 'omics' technologies and advances in immunology) and from existing industrial practice (biologics), especially on automation, quality assurance and regulation. The timely development, integration and execution of various components will be critical-failures of the past (such as in the commercialization of skin equivalents) on marketing, pricing, production and advertising should not be repeated. This review aims to address the principles required for successful stem cell bioprocessing so that they can be applied deftly to clinical applications.

  16. Hematopoietic stem cell mobilization: updated conceptual renditions

    PubMed Central

    Bonig, H; Papayannopoulou, T

    2013-01-01

    Despite its specific clinical relevance, the field of hematopoietic stem cell mobilization has received broad attention, owing mainly to the belief that pharmacologic stem cell mobilization might provide clues as to how stem cells are retained in their natural environment, the bone marrow ‘niche’. Inherent to this knowledge is also the desire to optimally engineer stem cells to interact with their target niche (such as after transplantation), or to lure malignant stem cells out of their protective niches (in order to kill them), and in general to decipher the niche’s structural components and its organization. Whereas, with the exception of the recent addition of CXCR4 antagonists to the armamentarium for mobilization of patients refractory to granulocyte colony-stimulating factor alone, clinical stem cell mobilization has not changed significantly over the last decade or so, much effort has been made trying to explain the complex mechanism(s) by which hematopoietic stem and progenitor cells leave the marrow. This brief review will report some of the more recent advances about mobilization, with an attempt to reconcile some of the seemingly inconsistent data in mobilization and to interject some commonalities among different mobilization regimes. PMID:22951944

  17. Cancer stem cells, cancer cell plasticity and radiation therapy.

    PubMed

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms.

  18. Cancer Stem Cells, Cancer Cell Plasticity and Radiation Therapy

    PubMed Central

    Vlashi, Erina; Pajonk, Frank

    2014-01-01

    Summary Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms. PMID:25025713

  19. TOPICAL REVIEW: Stem cells engineering for cell-based therapy

    NASA Astrophysics Data System (ADS)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  20. Germline stem cells: origin and destiny.

    PubMed

    Lehmann, Ruth

    2012-06-14

    Germline stem cells are key to genome transmission to future generations. Over recent years, there have been numerous insights into the regulatory mechanisms that govern both germ cell specification and the maintenance of the germline in adults. Complex regulatory interactions with both the niche and the environment modulate germline stem cell function. This perspective highlights some examples of this regulation to illustrate the diversity and complexity of the mechanisms involved.

  1. Telomeres, stem cells, senescence, and cancer

    PubMed Central

    Sharpless, Norman E.; DePinho, Ronald A.

    2004-01-01

    Mammalian aging occurs in part because of a decline in the restorative capacity of tissue stem cells. These self-renewing cells are rendered malignant by a small number of oncogenic mutations, and overlapping tumor suppressor mechanisms (e.g., p16INK4a-Rb, ARF-p53, and the telomere) have evolved to ward against this possibility. These beneficial antitumor pathways, however, appear also to limit the stem cell life span, thereby contributing to aging. PMID:14722605

  2. The Hagfish Gland Thread Cell: A Fiber-Producing Cell Involved in Predator Defense.

    PubMed

    Fudge, Douglas S; Schorno, Sarah

    2016-01-01

    Fibers are ubiquitous in biology, and include tensile materials produced by specialized glands (such as silks), extracellular fibrils that reinforce exoskeletons and connective tissues (such as chitin and collagen), as well as intracellular filaments that make up the metazoan cytoskeleton (such as F-actin, microtubules, and intermediate filaments). Hagfish gland thread cells are unique in that they produce a high aspect ratio fiber from cytoskeletal building blocks within the confines of their cytoplasm. These threads are elaborately coiled into structures that readily unravel when they are ejected into seawater from the slime glands. In this review we summarize what is currently known about the structure and function of gland thread cells and we speculate about the mechanism that these cells use to produce a mechanically robust fiber that is almost one hundred thousand times longer than it is wide. We propose that a key feature of this mechanism involves the unidirectional rotation of the cell's nucleus, which would serve to twist disorganized filaments into a coherent thread and impart a torsional stress on the thread that would both facilitate coiling and drive energetic unravelling in seawater. PMID:27258313

  3. Function of RNA-binding protein Musashi-1 in stem cells

    SciTech Connect

    Okano, Hideyuki . E-mail: hidokano@sc.itc.keio.ac.jp; Kawahara, Hironori; Toriya, Masako; Nakao, Keio; Shibata, Shinsuke; Imai, Takao

    2005-06-10

    Musashi is an evolutionarily conserved family of RNA-binding proteins that is preferentially expressed in the nervous system. The first member of the Musashi family was identified in Drosophila. This protein plays an essential role in regulating the asymmetric cell division of ectodermal precursor cells known as sensory organ precursor cells through the translational regulation of target mRNA. In the CNS of Drosophila larvae, however, Musashi is expressed in proliferating neuroblasts and likely has a different function. Its probable mammalian homologue, Musashi-1, is a neural RNA-binding protein that is strongly expressed in fetal and adult neural stem cells (NSCs). Mammalian Musashi-1 augments Notch signaling through the translational repression of its target mRNA, m-Numb, thereby contributing to the self-renewal of NSCs. In addition to its functions in NSCs, the role of mammalian Musashi-1 protein in epithelial stem cells, including intestinal and mammary gland stem cells, is attracting increasing interest.

  4. Management of thyroid gland invasion in laryngeal and hypopharyngeal squamous cell carcinoma.

    PubMed

    Arslanoğlu, Seçil; Eren, Erdem; Özkul, Yılmaz; Ciğer, Ejder; Kopar, Aylin; Önal, Kazım; Etit, Demet; Tütüncü, G Yazgı

    2016-02-01

    The objective of this study was to determine the incidence of thyroid gland invasion in laryngeal and hypopharyngeal squamous cell carcinoma; and the association between clinicopathological parameters and thyroid gland invasion. Medical records of 75 patients with laryngeal and hypopharyngeal squamous cell carcinoma who underwent total laryngectomy with thyroidectomy were reviewed, retrospectively. Preoperative computed tomography scans, clinical and operative findings, and histopathological data of the specimens were evaluated. There were 73 male and two female patients with an age range of 41-88 years (mean 60.4 years). Hemithyroidectomy was performed in 62 (82.7 %) and total thyroidectomy was performed in 13 patients (17.3 %). Four patients had histopathologically proven thyroid gland invasion (5.3 %). In three patients, thyroid gland involvement was by means of direct invasion. Thyroid gland invasion was significantly correlated with thyroid cartilage invasion. Therefore, prophylactic thyroidectomy should not be a part of the treatment policy for these tumors.

  5. Questionable Necessity for Removing Submandibular Gland in Neck Dissection in Squamous Cell Carcinoma of Oral Cavity.

    PubMed

    Agarwal, Gaurav; Nagpure, Prakash S; Chavan, Sushil S

    2016-09-01

    To assess whether submandibular gland is involved by metastasis in cases of oral cavity squamous cell carcinomas. It was a retrospective study, where we reviewed the records of the patients who underwent neck dissections for Squamous Cell Carcinoma of the oral cavity. It included 112 patients who had undergone 115 neck dissections (three patients had undergone bilateral neck dissection), either therapeutic or prophylactic. No pathologic evidence of metastasis to submandibular gland was seen in any of the case. Preservation of submandibular glands can be a good technique for reducing future complications in a patient undergoing Neck Dissection wherever feasible. Therefore, if there is no need to expose large oral cavity tumors through the submandibular triangle, or when there is no direct extension of the primary and/or regional lymph nodes into the submandibular gland, it may be safe to preserve the submandibular gland. PMID:27508132

  6. MicroRNAs: key regulators of stem cells.

    PubMed

    Gangaraju, Vamsi K; Lin, Haifan

    2009-02-01

    The hallmark of a stem cell is its ability to self-renew and to produce numerous differentiated cells. This unique property is controlled by dynamic interplays between extrinsic signalling, epigenetic, transcriptional and post-transcriptional regulations. Recent research indicates that microRNAs (miRNAs) have an important role in regulating stem cell self-renewal and differentiation by repressing the translation of selected mRNAs in stem cells and differentiating daughter cells. Such a role has been shown in embryonic stem cells, germline stem cells and various somatic tissue stem cells. These findings reveal a new dimension of gene regulation in controlling stem cell fate and behaviour. PMID:19165214

  7. Centre for human development, stem cells & regeneration.

    PubMed

    Oreffo, Richard O C

    2014-01-01

    The Centre for Human Development, Stem Cells and Regeneration (CHDSCR) was founded in 2004 as a cross-disciplinary research and translational program within the Faculty of Medicine at the University of Southampton. The Centre undertakes fundamental research into early development and stem cells together with applied translational research for patient benefit. The Centre has vibrant and thriving multidisciplinary research programs that harness the translational strength of the Faculty together with an innovative Stem Cell PhD program, outstanding clinical infrastructure and enterprise to deliver on this vision.

  8. Autologous Stem Cell Mobilization and Collection.

    PubMed

    Hsu, Yen-Michael S; Cushing, Melissa M

    2016-06-01

    Peripheral blood stem cell collection is an effective approach to obtain a hematopoietic graft for stem cell transplantation. Developing hematopoietic stem/progenitor cell (HSPC) mobilization methods and collection algorithms have improved efficiency, clinical outcomes, and cost effectiveness. Differences in mobilization mechanisms may change the HSPC content harvested and result in different engraftment kinetics and complications. Patient-specific factors can affect mobilization. Incorporating these factors in collection algorithms and improving assays for evaluating mobilization further extend the ability to obtain sufficient HSPCs for hematopoietic repopulation. Technological advance and innovations in leukapheresis have improved collection efficiency and reduced adverse effects. PMID:27112997

  9. Stem cell therapy in oral and maxillofacial region: An overview

    PubMed Central

    Sunil, PM; Manikandhan, R; Muthu, MS; Abraham, S

    2012-01-01

    Cells with unique capacity for self-renewal and potency are called stem cells. With appropriate biochemical signals stem cells can be transformed into desirable cells. The idea behind this article is to shortly review the obtained literature on stem cell with respect to their properties, types and advantages of dental stem cells. Emphasis has been given to the possibilities of stem cell therapy in the oral and maxillofacial region including regeneration of tooth and craniofacial defects. PMID:22434942

  10. Counting human somatic cell replications: methylation mirrors endometrial stem cell divisions.

    PubMed

    Kim, Jung Yeon; Tavaré, Simon; Shibata, Darryl

    2005-12-01

    Cell proliferation may be altered in many diseases, but it is uncertain exactly how to measure total numbers of divisions. Although it is impossible to count every division directly, potentially total numbers of stem cell divisions since birth may be inferred from numbers of somatic errors. The idea is that divisions are surreptitiously recorded by random errors that occur during replication. To test this "molecular clock" hypothesis, epigenetic errors encoded in certain methylation patterns were counted in glands from 30 uteri. Endometrial divisions can differ among women because of differences in estrogen exposures or numbers of menstrual cycles. Consistent with an association between mitotic age and methylation, there was an age-related increase in methylation with stable levels after menopause, and significantly less methylation was observed in lean or older multiparous women. Methylation patterns were diverse and more consistent with niche rather than immortal stem cell lineages. There was no evidence for decreased stem cell survival with aging. An ability to count lifetime numbers of stem cell divisions covertly recorded by random replication errors provides new opportunities to link cell proliferation with aging and cancer. PMID:16314580

  11. The Influence of 13-cis Retinoic Acid on Human Meibomian Gland Epithelial Cells

    PubMed Central

    Ding, Juan; Kam, Wendy R.; Dieckow, Julia; Sullivan, David A.

    2013-01-01

    Purpose. Meibomian gland dysfunction (MGD) is a primary cause of dry eye disease. One of the risk factors for MGD is exposure to 13-cis retinoic acid (13-cis RA), a metabolite of vitamin A. However, the mechanism is not well understood. We hypothesize that 13-cis RA inhibits cell proliferation, promotes cell death, alters gene and protein expressions, and attenuates cell survival pathways in human meibomian gland epithelial cells. Methods. To test our hypotheses, immortalized human meibomian gland epithelial cells were cultured with or without 13-cis RA for varying doses and time. Cell proliferation, cell death, gene expression, and proteins involved in proliferation/survival and inflammation were evaluated. Results. We found that 13-cis RA inhibited cell proliferation, induced cell death, and significantly altered the expression of 6726 genes, including those involved in cell proliferation, cell death, differentiation, keratinization, and inflammation, in human meibomian gland epithelial cells. Further, 13-cis RA also reduced the phosphorylation of Akt and increased the generation of interleukin-1β and matrix metallopeptidase 9. Conclusions. Exposure to 13-cis RA inhibits cell proliferation, increases cell death, alters gene expression, changes signaling pathways, and promotes inflammatory mediator and protease expression in meibomian gland epithelial cells. These effects may be responsible, at least in part, for the 13-cis RA–related induction of MGD. PMID:23722388

  12. Bioprinting and Differentiation of Stem Cells.

    PubMed

    Irvine, Scott A; Venkatraman, Subbu S

    2016-01-01

    The 3D bioprinting of stem cells directly into scaffolds offers great potential for the development of regenerative therapies; in particular for the fabrication of organ and tissue substitutes. For this to be achieved; the lineage fate of bioprinted stem cell must be controllable. Bioprinting can be neutral; allowing culture conditions to trigger differentiation or alternatively; the technique can be designed to be stimulatory. Such factors as the particular bioprinting technique; bioink polymers; polymer cross-linking mechanism; bioink additives; and mechanical properties are considered. In addition; it is discussed that the stimulation of stem cell differentiation by bioprinting may lead to the remodeling and modification of the scaffold over time matching the concept of 4D bioprinting. The ability to tune bioprinting properties as an approach to fabricate stem cell bearing scaffolds and to also harness the benefits of the cells multipotency is of considerable relevance to the field of biomaterials and bioengineering. PMID:27617991

  13. Cancer Stem Cells: Plasticity Works against Therapy

    PubMed Central

    Vinogradova, T. V.; Chernov, I. P.; Monastyrskaya, G. S.; Kondratyeva, L. G.; Sverdlov, E. D.

    2015-01-01

    Great successes in identification and deciphering of mechanisms of the adult stem cells regulation have given rise to the idea that stem cells can also function in tumors as central elements of their development, starting from the initial stage and continuing until metastasis. Such cells were called cancer stem cells (CSCs). Over the course of intense discussion, the CSCs hypothesis gradually began to be perceived as an obvious fact. Recently, the existence of CSCs has been indeed confirmed in a number of works. However, when are CSCs universal prerequisites of tumors and to what extent their role is essential for tumor evolution remains an issue far from resolved. Likewise, the problem of potential use of CSCs as therapeutic targets remains unsolved. The present review attempts to analyze the issue of cancer stem cells and the potential of targeting them in tumor therapy. PMID:26798491

  14. Stem Cell Research and Health Education.

    PubMed

    Eve, David J; Marty, Phillip J; McDermott, Robert J; Klasko, Stephen K; Sanberg, Paul R

    2008-01-01

    Stem cells are being touted as the greatest discovery for the potential treatment of a myriad of diseases in the new millennium, but there is still much research to be done before it will be known whether they can live up to this description. There is also an ethical debate over the production of one of the most valuable types of stem cell: the embryonic form. Consequently, there is public confusion over the benefits currently being derived from the use of stem cells and what can potentially be expected from their use in the future. The health educator's role is to give an unbiased account of the current state of stem cell research. This paper provides the groundwork by discussing the types of cells currently identified, their potential use, and some of the political and ethical pitfalls resulting from such use.

  15. Translational findings from cardiovascular stem cell research.

    PubMed

    Mazhari, Ramesh; Hare, Joshua M

    2012-01-01

    The possibility of using stem cells to regenerate damaged myocardium has been actively investigated since the late 1990s. Consistent with the traditional view that the heart is a "postmitotic" organ that possesses minimal capacity for self-repair, much of the preclinical and clinical work has focused exclusively on introducing stem cells into the heart, with the hope of differentiation of these cells into functioning cardiomyocytes. This approach is ongoing and retains promise but to date has yielded inconsistent successes. More recently, it has become widely appreciated that the heart possesses endogenous repair mechanisms that, if adequately stimulated, might regenerate damaged cardiac tissue from in situ cardiac stem cells. Accordingly, much recent work has focused on engaging and enhancing endogenous cardiac repair mechanisms. This article reviews the literature on stem cell-based myocardial regeneration, placing emphasis on the mutually enriching interaction between basic and clinical research.

  16. Translational Findings from Cardiovascular Stem Cell Research

    PubMed Central

    Mazhari, Ramesh; Hare, Joshua M

    2012-01-01

    The possibility of using stem cells to regenerate damaged myocardium has been actively investigated since the late 1990s. Consistent with the traditional view that the heart is a “post-mitotic” organ that possesses minimal capacity for self-repair, much of the preclinical and clinical work has focused exclusively on introducing stem cells into the heart, with the hope of differentiation of these cells into functioning cardiomyocytes. This approach is ongoing and retains promise but to date has yielded inconsistent successes. More recently, it has become widely appreciated that the heart possesses endogenous repair mechanisms that, if adequately stimulated, might regenerate damaged cardiac tissue from in situ cardiac stem cells. Accordingly, much recent work has focused on engaging and enhancing endogenous cardiac repair mechanisms. This article reviews the literature on stem-cell based myocardial regeneration, placing emphasis on the mutually enriching interaction between basic and clinical research. PMID:22940024

  17. HLA Engineering of Human Pluripotent Stem Cells

    PubMed Central

    Riolobos, Laura; Hirata, Roli K; Turtle, Cameron J; Wang, Pei-Rong; Gornalusse, German G; Zavajlevski, Maja; Riddell, Stanley R; Russell, David W

    2013-01-01

    The clinical use of human pluripotent stem cells and their derivatives is limited by the rejection of transplanted cells due to differences in their human leukocyte antigen (HLA) genes. This has led to the proposed use of histocompatible, patient-specific stem cells; however, the preparation of many different stem cell lines for clinical use is a daunting task. Here, we develop two distinct genetic engineering approaches that address this problem. First, we use a combination of gene targeting and mitotic recombination to derive HLA-homozygous embryonic stem cell (ESC) subclones from an HLA-heterozygous parental line. A small bank of HLA-homozygous stem cells with common haplotypes would match a significant proportion of the population. Second, we derive HLA class I–negative cells by targeted disruption of both alleles of the Beta-2 Microglobulin (B2M) gene in ESCs. Mixed leukocyte reactions and peptide-specific HLA-restricted CD8+ T cell responses were reduced in class I–negative cells that had undergone differentiation in embryoid bodies. These B2M−/− ESCs could act as universal donor cells in applications where the transplanted cells do not express HLA class II genes. Both approaches used adeno-associated virus (AAV) vectors for efficient gene targeting in the absence of potentially genotoxic nucleases, and produced pluripotent, transgene-free cell lines. PMID:23629003

  18. Derivation of Neural Stem Cells from Mouse Induced Pluripotent Stem Cells.

    PubMed

    Karanfil, Işıl; Bagci-Onder, Tugba

    2016-01-01

    Neural stem cells (NSCs) derived from induced pluripotent stem cells offer therapeutic tools for neurodegenerative diseases. This review focuses on embryoid body (EB)-mediated stem cell culture techniques used to derive NSCs from mouse induced pluripotent stem cells (iPSCs). Generation of healthy and stable NSCs from iPSCs heavily depends on standardized in vitro cell culture systems that mimic the embryonic environments utilized during neural development. Specifically, the neural induction and expansion methods after EB formation are described in this review.

  19. The Androgen Receptor Bridges Stem Cell-Associated Signaling Nodes in Prostate Stem Cells

    PubMed Central

    Davies, Alastair H.; Zoubeidi, Amina

    2016-01-01

    The therapeutic potential of stem cells relies on dissecting the complex signaling networks that are thought to regulate their pluripotency and self-renewal. Until recently, attention has focused almost exclusively on a small set of “core” transcription factors for maintaining the stem cell state. It is now clear that stem cell regulatory networks are far more complex. In this review, we examine the role of the androgen receptor (AR) in coordinating interactions between signaling nodes that govern the balance of cell fate decisions in prostate stem cells. PMID:26880966

  20. Pleiotrophin (PTN) expression and function and in the mouse mammary gland and mammary epithelial cells.

    PubMed

    Rosenfield, Sonia M; Bowden, Emma T; Cohen-Missner, Shani; Gibby, Krissa A; Ory, Virginie; Henke, Ralf T; Riegel, Anna T; Wellstein, Anton

    2012-01-01

    Expression of the heparin-binding growth factor, pleiotrophin (PTN) in the mammary gland has been reported but its function during mammary gland development is not known. We examined the expression of PTN and its receptor ALK (Anaplastic Lymphoma Kinase) at various stages of mouse mammary gland development and found that their expression in epithelial cells is regulated in parallel during pregnancy. A 30-fold downregulation of PTN mRNA expression was observed during mid-pregnancy when the mammary gland undergoes lobular-alveolar differentiation. After weaning of pups, PTN expression was restored although baseline expression of PTN was reduced significantly in mammary glands of mice that had undergone multiple pregnancies. We found PTN expressed in epithelial cells of the mammary gland and thus used a monoclonal anti-PTN blocking antibody to elucidate its function in cultured mammary epithelial cells (MECs) as well as during gland development. Real-time impedance monitoring of MECs growth, migration and invasion during anti-PTN blocking antibody treatment showed that MECs motility and invasion but not proliferation depend on the activity of endogenous PTN. Increased number of mammospheres with laminin deposition after anti-PTN blocking antibody treatment of MECs in 3D culture and expression of progenitor markers suggest that the endogenously expressed PTN inhibits the expansion and differentiation of epithelial progenitor cells by disrupting cell-matrix adhesion. In vivo, PTN activity was found to inhibit ductal outgrowth and branching via the inhibition of phospho ERK1/2 signaling in the mammary epithelial cells. We conclude that PTN delays the maturation of the mammary gland by maintaining mammary epithelial cells in a progenitor phenotype and by inhibiting their differentiation during mammary gland development.

  1. Basal Cell Adenoma of Parotid Gland: Case Report and Review of Literature.

    PubMed

    Kanaujia, S K; Singh, Ashutosh; Nautiyal, Shivani; Ashutosh, Kumar

    2015-12-01

    Basal cell adenoma (BCA) of the salivary gland is a rare neoplasm consists of a monomorphic population of basaloid epithelial cells, and it accounts for approximately 1-2 % of all salivary gland tumors. Its most frequent location is the parotid gland. It usually appears as a firm and mobile slow-growing mass. Histologically, isomorphic cells in nests and interlaced trabecules with a prominent basal membrane are observed. In contrast to pleomorphic adenoma, it tends to be multiple and its recurrence rate after surgical excision is high. Due to prognostic implications, differential diagnosis with basal cell adenocarcinoma, adenoid cystic carcinoma and basaloid squamous cell carcinoma is mandatory. We report a case of BCA of the parotid gland. We also review the literature and discuss the diagnosis and management of this rare entity. PMID:26693465

  2. Stem cells and somatic cells: reprogramming and plasticity.

    PubMed

    Estrov, Zeev

    2009-01-01

    Recent seminal discoveries have significantly advanced the field of stem cell research and received worldwide attention. Improvements in somatic cell nuclear transfer (SCNT) technology, enabling the cloning of Dolly the sheep, and the derivation and differentiation of human embryonic stem cells raised hopes that normal cells could be generated to replace diseased or injured tissue. At the same time, in vitro and in vivo studies demonstrated that somatic cells of one tissue are capable of generating cells of another tissue. It was theorized that any cell might be reprogrammed, by exposure to a new environment, to become another cell type. This concept contradicts two established hypotheses: (1) that only specific tissues are generated from the endoderm, mesoderm, and ectoderm and (2) that tissue cells arise from a rare population of tissue-specific stem cells in a hierarchical fashion. SCNT, cell fusion experiments, and most recent gene transfer studies also contradict these hypotheses, as they demonstrate that mature somatic cells can be reprogrammed to regain pluripotent (or even totipotent) stem cell capacity. On the basis of the stem cell theory, hierarchical cancer stem cell differentiation models have been proposed. Cancer cell plasticity is an established phenomenon that supports the notion that cellular phenotype and function might be altered. Therefore, mechanisms of cellular plasticity should be exploited and the clinical significance of the cancer stem cell theory cautiously assessed. PMID:19778860

  3. Neural Stem Cells and Ischemic Brain

    PubMed Central

    Zhang, Zhenggang; Chopp, Michael

    2016-01-01

    Stroke activates neural stem cells in the ventricular-subventricular zone (V/SVZ) of the lateral ventricle, which increases neuroblasts and oligodendrocyte progenitor cells (OPCs). Within the ischemic brain, neural stem cells, neuroblasts and OPCs appear to actively communicate with cerebral endothelial cells and other brain parenchymal cells to mediate ischemic brain repair; however, stroke-induced neurogenesis unlikely plays any significant roles in neuronal replacement. In this mini-review, we will discuss recent findings how intercellular communications between stroke-induced neurogenesis and oligodendrogenesis and brain parenchymal cells could potentially facilitate brain repair processes. PMID:27488979

  4. Hematopoietic stem cells: can old cells learn new tricks?

    PubMed

    Ho, Anthony D; Punzel, Michael

    2003-05-01

    Since the establishment of cell lines derived from human embryonic stem (ES) cells, it has been speculated that out of such "raw material," we could some day produce all sorts of replacement parts for the human body. Human pluripotent stem cells can be isolated from embryonic, fetal, or adult tissues. Enormous self-renewal capacity and developmental potential are the characteristics of ES cells. Somatic stem cells, especially those derived from hematopoietic tissues, have also been reported to exhibit developmental potential heretofore not considered possible. The initial evidences for the plasticity potential of somatic stem cells were so encouraging that the opponents of ES cell research used them as arguments for restricting ES cell research. In the past months, however, critical issues have been raised challenging the validity and the interpretation of the initial data. Whereas hematopoietic stem-cell therapy has been a clinical reality for almost 40 years, there is still a long way to go in basic research before novel therapy strategies with stem cells as replacement for other organ systems can be established. Given the present status, we should keep all options open for research in ES cells and adult stem cells to appreciate the complexity of their differentiation pathways and the relative merits of various types of stem cells for regenerative medicine. PMID:12714568

  5. Stem cell systems and regeneration in planaria.

    PubMed

    Rink, Jochen C

    2013-03-01

    Planarians are members of the Platyhelminthes (flatworms). These animals have evolved a remarkable stem cell system. A single pluripotent adult stem cell type ("neoblast") gives rise to the entire range of cell types and organs in the planarian body plan, including a brain, digestive-, excretory-, sensory- and reproductive systems. Neoblasts are abundantly present throughout the mesenchyme and divide continuously. The resulting stream of progenitors and turnover of differentiated cells drive the rapid self-renewal of the entire animal within a matter of weeks. Planarians grow and literally de-grow ("shrink") by the food supply-dependent adjustment of organismal turnover rates, scaling body plan proportions over as much as a 50-fold size range. Their dynamic body architecture further allows astonishing regenerative abilities, including the regeneration of complete and perfectly proportioned animals even from tiny tissue remnants. Planarians as an experimental system, therefore, provide unique opportunities for addressing a spectrum of current problems in stem cell research, including the evolutionary conservation of pluripotency, the dynamic organization of differentiation lineages and the mechanisms underlying organismal stem cell homeostasis. The first part of this review focuses on the molecular biology of neoblasts as pluripotent stem cells. The second part examines the fascinating mechanistic and conceptual challenges posed by a stem cell system that epitomizes a universal design principle of biological systems: the dynamic steady state.

  6. The Hagfish Gland Thread Cell: A Fiber-Producing Cell Involved in Predator Defense

    PubMed Central

    Fudge, Douglas S.; Schorno, Sarah

    2016-01-01

    Fibers are ubiquitous in biology, and include tensile materials produced by specialized glands (such as silks), extracellular fibrils that reinforce exoskeletons and connective tissues (such as chitin and collagen), as well as intracellular filaments that make up the metazoan cytoskeleton (such as F-actin, microtubules, and intermediate filaments). Hagfish gland thread cells are unique in that they produce a high aspect ratio fiber from cytoskeletal building blocks within the confines of their cytoplasm. These threads are elaborately coiled into structures that readily unravel when they are ejected into seawater from the slime glands. In this review we summarize what is currently known about the structure and function of gland thread cells and we speculate about the mechanism that these cells use to produce a mechanically robust fiber that is almost one hundred thousand times longer than it is wide. We propose that a key feature of this mechanism involves the unidirectional rotation of the cell’s nucleus, which would serve to twist disorganized filaments into a coherent thread and impart a torsional stress on the thread that would both facilitate coiling and drive energetic unravelling in seawater. PMID:27258313

  7. Adult Stem Cell Therapy for Stroke: Challenges and Progress

    PubMed Central

    Bang, Oh Young; Kim, Eun Hee; Cha, Jae Min; Moon, Gyeong Joon

    2016-01-01

    Stroke is one of the leading causes of death and physical disability among adults. It has been 15 years since clinical trials of stem cell therapy in patients with stroke have been conducted using adult stem cells like mesenchymal stem cells and bone marrow mononuclear cells. Results of randomized controlled trials showed that adult stem cell therapy was safe but its efficacy was modest, underscoring the need for new stem cell therapy strategies. The primary limitations of current stem cell therapies include (a) the limited source of engraftable stem cells, (b) the presence of optimal time window for stem cell therapies, (c) inherited limitation of stem cells in terms of growth, trophic support, and differentiation potential, and (d) possible transplanted cell-mediated adverse effects, such as tumor formation. Here, we discuss recent advances that overcome these hurdles in adult stem cell therapy for stroke. PMID:27733032

  8. A Short Review: Research progress of bovine stem cells.

    PubMed

    Gao, Y-H; Guan, W-J; Ma, Y-H

    2015-10-23

    All bodies rely on stem cells to grow from a single cell into an adult. Stem cells allow our bodies to build new tissue, such as new muscle when we exercise. Domestic livestock stem cells offer a unique opportunity to study developmental biology, serve as a resource to screen for harmful toxins or lifesaving drugs or even regenerative therapies for a number of diseases. This review provides information on bovine stem cells, emphasizing different sources of stem cells and current methods for isolation and culture of pluripotent stem cells from cattle. We also review the application of bovine stem cell in future.

  9. Cancer stem cell targeted therapy: progress amid controversies

    PubMed Central

    Wang, Tao; Shigdar, Sarah; Gantier, Michael P.; Hou, Yingchun; Wang, Li; Li, Yong; Shamaileh, Hadi Al; Yin, Wang; Zhou, Shu-Feng; Zhao, Xinhan; Duan, Wei

    2015-01-01

    Although cancer stem cells have been well characterized in numerous malignancies, the fundamental characteristics of this group of cells, however, have been challenged by some recent observations: cancer stem cells may not necessary to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo reversible phenotypic changes; and the cancer stem cells phenotype can vary substantially between patients. Here the current status and progresses of cancer stem cells theory is illustrated and via providing a panoramic view of cancer therapy, we addressed the recent controversies regarding the feasibility of cancer stem cells targeted anti-cancer therapy. PMID:26496035

  10. Human T-Cell Clones from Autoimmune Thyroid Glands: Specific Recognition of Autologous Thyroid Cells

    NASA Astrophysics Data System (ADS)

    Londei, Marco; Bottazzo, G. Franco; Feldmann, Marc

    1985-04-01

    The thyroid glands of patients with autoimmune diseases such as Graves' disease and certain forms of goiter contain infiltrating activated T lymphocytes and, unlike cells of normal glands, the epithelial follicular cells strongly express histocompatability antigens of the HLA-DR type. In a study of such autoimmune disorders, the infiltrating T cells from the thyroid glands of two patients with Graves' disease were cloned in mitogen-free interleukin-2 (T-cell growth factor). The clones were expanded and their specificity was tested. Three types of clones were found. One group, of T4 phenotype, specifically recognized autologous thyroid cells. Another, also of T4 phenotype, recognized autologous thyroid or blood cells and thus responded positively in the autologous mixed lymphocyte reaction. Other clones derived from cells that were activated in vivo were of no known specificity. These clones provide a model of a human autoimmune disease and their analysis should clarify mechanisms of pathogenesis and provide clues to abrogating these undesirable immune responses.

  11. Role of liver stem cells in hepatocarcinogenesis

    PubMed Central

    Xu, Lei-Bo; Liu, Chao

    2014-01-01

    Liver cancer is an aggressive disease with a high mortality rate. Management of liver cancer is strongly dependent on the tumor stage and underlying liver disease. Unfortunately, most cases are discovered when the cancer is already advanced, missing the opportunity for surgical resection. Thus, an improved understanding of the mechanisms responsible for liver cancer initiation and progression will facilitate the detection of more reliable tumor markers and the development of new small molecules for targeted therapy of liver cancer. Recently, there is increasing evidence for the “cancer stem cell hypothesis”, which postulates that liver cancer originates from the malignant transformation of liver stem/progenitor cells (liver cancer stem cells). This cancer stem cell model has important significance for understanding the basic biology of liver cancer and has profound importance for the development of new strategies for cancer prevention and treatment. In this review, we highlight recent advances in the role of liver stem cells in hepatocarcinogenesis. Our review of the literature shows that identification of the cellular origin and the signaling pathways involved is challenging issues in liver cancer with pivotal implications in therapeutic perspectives. Although the dedifferentiation of mature hepatocytes/cholangiocytes in hepatocarcinogenesis cannot be excluded, neoplastic transformation of a stem cell subpopulation more easily explains hepatocarcinogenesis. Elimination of liver cancer stem cells in liver cancer could result in the degeneration of downstream cells, which makes them potential targets for liver cancer therapies. Therefore, liver stem cells could represent a new target for therapeutic approaches to liver cancer in the near future. PMID:25426254

  12. Regulation of breast cancer stem cell features.

    PubMed

    Czerwinska, Patrycja; Kaminska, Bozena

    2015-01-01

    Cancer stem cells (CSCs) are rare, tumour-initiating cells that exhibit stem cell properties: capacity of self-renewal, pluripotency, highly tumorigenic potential, and resistance to therapy. Cancer stem cells have been characterised and isolated from many cancers, including breast cancer. Developmental pathways, such as the Wnt/β-catenin, Notch/γ-secretase/Jagged, Shh (sonic hedgehog), and BMP signalling pathways, which direct proliferation and differentiation of normal stem cells, have emerged as major signalling pathways that contribute to the self-renewal of stem and/or progenitor cells in a variety of organs and cancers. Deregulation of these signalling pathways is frequently linked to an epithelial-mesenchymal transition (EMT), and breast CSCs often possess properties of cells that have undergone the EMT process. Signalling networks mediated by microRNAs and EMT-inducing transcription factors tie the EMT process to regulatory networks that maintain "stemness". Recent studies have elucidated epigenetic mechanisms that control pluripotency and stemness, which allows an assessment on how embryonic and normal tissue stem cells are deregulated during cancerogenesis to give rise to CSCs. Epigenetic-based mechanisms are reversible, and the possibility of "resetting" the abnormal cancer epigenome by applying pharmacological compounds targeting epigenetic enzymes is a promising new therapeutic strategy. Chemoresistance of CSCs is frequently driven by various mechanisms, including aberrant expression/activity of ABC transporters, aldehyde dehydrogenase and anti-oncogenic proteins (i.e. BCL2, B-cell lymphoma-2), enhanced DNA damage response, activation of pro-survival signalling pathways, and epigenetic deregulations. Despite controversy surrounding the CSC hypothesis, there is substantial evidence for their role in cancer, and a number of drugs intended to specifically target CSCs have entered clinical trials. PMID:25691826

  13. In vitro transformation of cell lines from human salivary gland tumors.

    PubMed

    Queimado, L; Lopes, C; Du, F; Martins, C; Fonseca, I; Bowcock, A M; Soares, J; Lovett, M

    1999-05-31

    Explanted cells from salivary gland tumors are particularly difficult to propagate in vitro and not efficiently immortalized by agents such as simian virus 40. Human papillomavirus 16 (HPV16) has been widely used to transform cells of epithelial origin, but its use for salivary gland cell transformation has not been described. In this study, we employed viral constructs containing the E6/E7 genes of HPV16 to infect and stably transform 9 salivary gland tumor cell cultures. Four of the tumor cell cultures were derived from benign tumors and 5 from malignant tumors. All of the original cell cultures were diploid; however, 6 contained subpopulations of cells with structural abnormalities. All 9 cell cultures were successfully transformed, and 8 were immortalized. The resulting cell lines have decreased serum requirements, exhibit a high proliferation rate, are E6/E7-positive and form colonies in soft agar. Immuno-histochemical and molecular studies confirmed that the transformed cells were indeed epithelial/myoepithelial in origin. All of the transformed cell lines had a diploid or near-diploid karyotype, and 2 contained the original translocated chromosomes in all cells. Our report represents a new application of the E6/E7 system in immortalizing salivary gland cell cultures, resulting in retention of the cellular features found in the native tissue without a general destabilization of the karyotype. These types of tissue culture resources should prove useful for positional cloning and functional studies of genes involved in salivary gland oncogenesis.

  14. Manipulation of pancreatic stem cells for cell replacement therapy.

    PubMed

    Peshavaria, M; Pang, K

    2000-01-01

    The demonstration of the existence of tissue-specific adult stem cells has had a great impact on our understanding of stem cell biology and its application in clinical medicine. Their existence has revolutionized the implications for the treatment of many degenerative diseases characterized by either the loss or malfunction of discrete cell types. However, successful exploitation of this opportunity requires that we have sufficient know-how of stem cell manipulation. Because stem cells are the founders of virtually all tissues during embryonic development, we believe that understanding the cellular and molecular mechanisms of embryogenesis and organogenesis will ultimately serve as a platform to identify factors and conditions that regulate stem cell behavior. Discovery of stem cell regulatory factors will create potential pharmaceutical opportunities for treatment of degenerative diseases, as well as providing critical knowledge of the processes by which stem cells can be expanded in vitro, differentiated, and matured into desired functional cells for implantation into humans. A well-characterized example of this is the hematopoietic system where the discovery of erythropoietin (EPO) and granulocyte-colony stimulating factor (G-CSF), which regulate hematopoietic progenitor cell behavior, have provided significant clinical success in disease treatment as well as providing important insights into hematopoiesis. In contrast, little is known about the identity of pancreatic stem cells, the focus of this review. Recent reports of the potential existence of pancreatic stem cells and their utility in rescuing the diabetic state now raise the same possibilities of generating insulin-producing beta cells as well as other cell types of the pancreatic islet from a stem cell. In this review, we will focus on the potential of these new developments and how our understanding of pancreas development can help design strategies and approaches by which a cell replacement therapy

  15. Stemming the Degeneration: IVD Stem Cells and Stem Cell Regenerative Therapy for Degenerative Disc Disease

    PubMed Central

    Sivakamasundari, V; Lufkin, Thomas

    2013-01-01

    The intervertebral disc (IVD) is immensely important for the integrity of vertebral column function. The highly specialized IVD functions to confer flexibility and tensile strength to the spine and endures various types of biomechanical force. Degenerative disc disease (DDD) is a prevalent musculoskeletal disorder and is the major cause of low back pain and includes the more severe degenerative lumbar scoliosis, disc herniation and spinal stenosis. DDD is a multifactorial disorder whereby an imbalance of anabolic and catabolic factors, or alterations to cellular composition, or biophysical stimuli and genetic background can all play a role in its genesis. However, our comprehension of IVD formation and theetiology of disc degeneration (DD) are far from being complete, hampering efforts to formulate appropriate therapies to tackle DD. Knowledge of the stem cells and various techniques to manipulate and direct them to particular fates have been promising in adopting a stem-cell based regenerative approach to DD. Moreover, new evidence on the residence of stem/progenitor cells within particular IVD niches has emerged holding promise for future therapeutic applications. Existing issues pertaining to current therapeutic approaches are also covered in this review. PMID:23951558

  16. Mesenchymal stem cells in regenerative rehabilitation

    PubMed Central

    Nurkovic, Jasmin; Dolicanin, Zana; Mustafic, Fahrudin; Mujanovic, Rifat; Memic, Mensur; Grbovic, Vesna; Skevin, Aleksandra Jurisic; Nurkovic, Selmina

    2016-01-01

    [Purpose] Regenerative medicine and rehabilitation contribute in many ways to a specific plan of care based on a patient’s medical status. The intrinsic self-renewing, multipotent, regenerative, and immunosuppressive properties of mesenchymal stem cells offer great promise in the treatment of numerous autoimmune, degenerative, and graft-versus-host diseases, as well as tissue injuries. As such, mesenchymal stem cells represent a therapeutic fortune in regenerative medicine. The aim of this review is to discuss possibilities, limitations, and future clinical applications of mesenchymal stem cells. [Subjects and Methods] The authors have identified and discussed clinically and scientifically relevant articles from PubMed that have met the inclusion criteria. [Results] Direct treatment of muscle injuries, stroke, damaged peripheral nerves, and cartilage with mesenchymal stem cells has been demonstrated to be effective, with synergies seen between cellular and physical therapies. Over the past few years, several researchers, including us, have shown that there are certain limitations in the use of mesenchymal stem cells. Aging and spontaneous malignant transformation of mesenchymal stem cells significantly affect the functionality of these cells. [Conclusion] Definitive conclusions cannot be made by these studies because limited numbers of patients were included. Studies clarifying these results are expected in the near future. PMID:27390452

  17. Stem cells: tissue regeneration and cancer.

    PubMed

    Tataria, Monika; Perryman, Scott V; Sylvester, Karl G

    2006-11-01

    Regenerative medicine is the promised paradigm of replacement and repair of damaged or senescent tissues. As the building blocks for organ development and tissue repair, stem cells have unique and wide-ranging capabilities, thus delineating their potential application to regenerative medicine. The recognition that consistent patterns of molecular mechanisms drive organ development and postnatal tissue regeneration has significant implications for a variety of pediatric diseases beyond replacement biology. The observation that organ-specific stem cells derive all of the differentiated cells within a given tissue has led to the acceptance of a stem cell hierarchy model for tissue development, maintenance, and repair. Extending the tissue stem cell hierarchical model to tissue carcinogenesis may revolutionize the manner in which we conceptualize cancer therapeutics. In this review, the clinical promise of these technologies and the emerging concept of "cancer stem cells" are examined. A basic understanding of stem cell biology is paramount to stay informed of this emerging technology and the accompanying research in this area with the potential for clinical application. PMID:17055959

  18. Stem cell platforms for regenerative medicine.

    PubMed

    Nelson, Timothy J; Behfar, Atta; Yamada, Satsuki; Martinez-Fernandez, Almudena; Terzic, Andre

    2009-06-01

    The pandemic of chronic degenerative diseases associated with aging demographics mandates development of effective approaches for tissue repair. As diverse stem cells directly contribute to innate healing, the capacity for de novo tissue reconstruction harbors a promising role for regenerative medicine. Indeed, a spectrum of natural stem cell sources ranging from embryonic to adult progenitors has been recently identified with unique characteristics for regeneration. The accessibility and applicability of the regenerative armamentarium has been further expanded with stem cells engineered by nuclear reprogramming. Through strategies of replacement to implant functional tissues, regeneration to transplant progenitor cells or rejuvenation to activate endogenous self-repair mechanisms, the overarching goal of regenerative medicine is to translate stem cell platforms into practice and achieve cures for diseases limited to palliative interventions. Harnessing the full potential of each platform will optimize matching stem cell-based biologics with the disease-specific niche environment of individual patients to maximize the quality of long-term management, while minimizing the needs for adjunctive therapy. Emerging discovery science with feedback from clinical translation is therefore poised to transform medicine offering safe and effective stem cell biotherapeutics to enable personalized solutions for incurable diseases. PMID:19779576

  19. Ethical issues in stem cell research.

    PubMed

    Lo, Bernard; Parham, Lindsay

    2009-05-01

    Stem cell research offers great promise for understanding basic mechanisms of human development and differentiation, as well as the hope for new treatments for diseases such as diabetes, spinal cord injury, Parkinson's disease, and myocardial infarction. However, human stem cell (hSC) research also raises sharp ethical and political controversies. The derivation of pluripotent stem cell lines from oocytes and embryos is fraught with disputes about the onset of human personhood. The reprogramming of somatic cells to produce induced pluripotent stem cells avoids the ethical problems specific to embryonic stem cell research. In any hSC research, however, difficult dilemmas arise regarding sensitive downstream research, consent to donate materials for hSC research, early clinical trials of hSC therapies, and oversight of hSC research. These ethical and policy issues need to be discussed along with scientific challenges to ensure that stem cell research is carried out in an ethically appropriate manner. This article provides a critical analysis of these issues and how they are addressed in current policies.

  20. Cell therapy using induced pluripotent stem cells or somatic stem cells: this is the question.

    PubMed

    Somoza, Rodrigo A; Rubio, Francisco J

    2012-05-01

    A lot of effort has been developed to bypass the use of embryonic stem cells (ES) in human therapies, because of several concerns and ethical issues. Some unsolved problems of using stem cells for human therapies, excluding the human embryonic origin, are: how to regulate cell plasticity and proliferation, immunological compatibility, potential adverse side-effects when stem cells are systemically administrated, and the in vivo signals to rule out a specific cell fate after transplantation. Currently, it is known that almost all tissues of an adult organism have somatic stem cells (SSC). Whereas ES are primary involved in the genesis of new tissues and organs, SSC are involved in regeneration processes, immuno-regulatory and homeostasis mechanisms. Although the differentiating potential of ES is higher than SSC, several studies suggest that some types of SSC, such as mesenchymal stem cells (MSC), can be induced epigenetically to differentiate into tissue-specific cells of different lineages. This unexpected pluripotency and the variety of sources that they come from, can make MSC-like cells suitable for the treatment of diverse pathologies and injuries. New hopes for cell therapy came from somatic/mature cells and the discovery that could be reprogrammed to a pluripotent stage similar to ES, thus generating induced pluripotent stem cells (iPS). For this, it is necessary to overexpress four main reprogramming factors, Sox2, Oct4, Klf4 and c-Myc. The aim of this review is to analyze the potential and requirements of cellular based tools in human therapy strategies, focusing on the advantage of using MSC over iPS.

  1. Nuclear receptors in stem cell biology.

    PubMed

    Shi, Yanhong; Sun, Guoqiang; Stewart, Richard

    2006-01-01

    Batteries of transcription factors have been proposed to control stem cell self-renewal and lineage progression by eliciting cascades of gene expression. Nuclear receptors provide an ideal model to study the transcriptional regulation of gene expression because they can activate as well as repress gene expression through ligand binding and recruitment of transcriptional coactivators or corepressors. Recent progress in defining specific roles of some nuclear receptors and their coregulators in stem cell self-renewal and differentiation provides a first glimpse of the regulatory events involved and is the beginning of a very promising area of research. This review summarizes the current state of knowledge regarding nuclear receptors and their roles in stem cell biology. These studies not only facilitate an understanding of stem cell biology but also provide a basis for the development of therapeutic drugs for the treatment of a variety of diseases.

  2. Will embryonic stem cells change health policy?

    PubMed

    Sage, William M

    2010-01-01

    Embryonic stem cells are actively debated in political and public policy arenas. However, the connections between stem cell innovation and overall health care policy are seldom elucidated. As with many controversial aspects of medical care, the stem cell debate bridges to a variety of social conversations beyond abortion. Some issues, such as translational medicine, commercialization, patient and public safety, health care spending, physician practice, and access to insurance and health care services, are core health policy concerns. Other issues, such as economic development, technologic progress, fiscal politics, and tort reform, are only indirectly related to the health care system but are frequently seen through a health care lens. These connections will help determine whether the stem cell debate reaches a resolution, and what that resolution might be. PMID:20579256

  3. Embryonic and adult stem cell therapy.

    PubMed

    Brignier, Anne C; Gewirtz, Alan M

    2010-02-01

    There are many types of stem cells. All share the characteristics of being able to self-renew and to give rise to differentiated progeny. Over the last decades, great excitement has been generated by the prospect of being able to exploit these properties for the repair, improvement, and/or replacement of damaged organs. However, many hurdles, both scientific and ethical, remain in the path of using human embryonic stem cells for tissue-engineering purposes. In this report we review current strategies for isolating, enriching, and, most recently, inducing the development of human pluripotent stem cells. In so doing, we discuss the scientific and ethical issues associated with this endeavor. Finally, progress in the use of stem cells as therapies for type 1 diabetes mellitus, congestive heart failure, and various neurologic and immunohematologic disorders, and as vehicles for the delivery of gene therapy, is briefly discussed. PMID:20061008

  4. Hematopoietic stem cell engineering at a crossroads.

    PubMed

    Rivière, Isabelle; Dunbar, Cynthia E; Sadelain, Michel

    2012-02-01

    The genetic engineering of hematopoietic stem cells is the basis for potentially treating a large array of hereditary and acquired diseases, and stands as the paradigm for stem cell engineering in general. Recent clinical reports support the formidable promise of this approach but also highlight the limitations of the technologies used to date, which have on occasion resulted in clonal expansion, myelodysplasia, or leukemogenesis. New research directions, predicated on improved vector designs, targeted gene delivery or the therapeutic use of pluripotent stem cells, herald the advent of safer and more effective hematopoietic stem cell therapies that may transform medical practice. In this review, we place these recent advances in perspective, emphasizing the solutions emerging from a wave of new technologies and highlighting the challenges that lie ahead.

  5. Will embryonic stem cells change health policy?

    PubMed

    Sage, William M

    2010-01-01

    Embryonic stem cells are actively debated in political and public policy arenas. However, the connections between stem cell innovation and overall health care policy are seldom elucidated. As with many controversial aspects of medical care, the stem cell debate bridges to a variety of social conversations beyond abortion. Some issues, such as translational medicine, commercialization, patient and public safety, health care spending, physician practice, and access to insurance and health care services, are core health policy concerns. Other issues, such as economic development, technologic progress, fiscal politics, and tort reform, are only indirectly related to the health care system but are frequently seen through a health care lens. These connections will help determine whether the stem cell debate reaches a resolution, and what that resolution might be.

  6. Hematopoietic stem cell engineering at a crossroads

    PubMed Central

    Rivière, Isabelle; Dunbar, Cynthia E.

    2012-01-01

    The genetic engineering of hematopoietic stem cells is the basis for potentially treating a large array of hereditary and acquired diseases, and stands as the paradigm for stem cell engineering in general. Recent clinical reports support the formidable promise of this approach but also highlight the limitations of the technologies used to date, which have on occasion resulted in clonal expansion, myelodysplasia, or leukemogenesis. New research directions, predicated on improved vector designs, targeted gene delivery or the therapeutic use of pluripotent stem cells, herald the advent of safer and more effective hematopoietic stem cell therapies that may transform medical practice. In this review, we place these recent advances in perspective, emphasizing the solutions emerging from a wave of new technologies and highlighting the challenges that lie ahead. PMID:22096239

  7. CD117+ amniotic fluid stem cells

    PubMed Central

    Cananzi, Mara; De Coppi, Paolo

    2012-01-01

    Broadly multipotent stem cells can be isolated from amniotic fluid by selection for the expression of the membrane stem cell factor receptor c-Kit, a common marker for multipotential stem cells. They have clonogenic capability and can be directed into a wide range of cell types representing the three primary embryonic lineages. Amniotic fluid stem cells maintained for over 250 population doublings retained long telomeres and a normal karyotype. Clonal human lines verified by retroviral marking were induced to differentiate into cell types representing each embryonic germ layer, including cells of adipogenic, osteogenic, myogenic, endothelial, neuronal and hepatic lineages. AFS cells could be differentiate toward cardiomyogenic lineages, when co-cultured with neonatal cardiomyocytes, and have the potential to generate myogenic and hematopoietic lineages both in vitro and in vivo. Very recently first trimester AFS cells could be reprogrammed without any genetic manipulation opening new possibilities in the field of fetal/neonatal therapy and disease modeling. In this review we are aiming to summarize the knowledge on amniotic fluid stem cells and highlight the most promising results. PMID:23037870

  8. Autophagy in stem and progenitor cells.

    PubMed

    Rodolfo, Carlo; Di Bartolomeo, Sabrina; Cecconi, Francesco

    2016-02-01

    Autophagy is a highly conserved cellular process, responsible for the degradation and recycling of damaged and/or outlived proteins and organelles. This is the major cellular pathway, acting throughout the formation of cytosolic vesicles, called autophagosomes, for the delivering to lysosome. Recycling of cellular components through autophagy is a crucial step for cell homeostasis as well as for tissue remodelling during development. Impairment of this process has been related to the pathogenesis of various diseases, such as cancer and neurodegeneration, to the response to bacterial and viral infections, and to ageing. The ability of stem cells to self-renew and differentiate into the mature cells of the body renders this unique type of cell highly crucial to development and tissue renewal, not least in various diseases. During the last two decades, extensive knowledge about autophagy roles and regulation in somatic cells has been acquired; however, the picture about the role and the regulation of autophagy in the different types of stem cells is still largely unknown. Autophagy is a major player in the quality control and maintenance of cellular homeostasis, both crucial factors for stem cells during an organism's life. In this review, we have highlighted the most significant advances in the comprehension of autophagy regulation in embryonic and tissue stem cells, as well as in cancer stem cells and induced pluripotent cells.

  9. Multiple myeloma cancer stem cells

    PubMed Central

    Gao, Minjie; Kong, Yuanyuan; Yang, Guang; Gao, Lu; Shi, Jumei

    2016-01-01

    Multiple myeloma (MM) remains incurable despite much progress that has been made in the treatment of the disease. MM cancer stem cell (MMSC), a rare subpopulation of MM cells with the capacity for self-renewal and drug resistance, is considered to lead to disease relapse. Several markers such as side population (SP) and ALDH1+ have been used to identify MMSCs. However, ideally and more precisely, the identification of the MMSCs should rely on MMSCs phenotype. Unfortunately the MMSC phenotype has not been properly defined yet. Drug resistance is the most important property of MMSCs and contributes to disease relapse, but the mechanisms of drug resistance have not been fully understood. The major signaling pathways involved in the regulation of self-renewal and differentiation of MMSCs include Hedgehog (Hh), Wingless (Wnt), Notch and PI3K/Akt/mTOR. However, the precise role of these signaling pathways needs to be clarified. It has been reported that the microRNA profile of MMSCs is remarkably different than that of non-MMSCs. Therefore, the search for targeting MMSCs has also been focused on microRNAs. Complex and mutual interactions between the MMSC and the surrounding bone marrow (BM) microenvironment sustain self-renewal and survival of MMSC. However, the required molecules for the interaction of the MMSC and the surrounding BM microenvironment need to be further identified. In this review, we summarize the current state of knowledge of MMSCs regarding their phenotype, mechanisms of drug resistance, signaling pathways that regulate MMSCs self-renewal and differentiation, abnormal microRNAs expression, and their interactions with the BM microenvironment. PMID:27007154

  10. Helicobacter pylori infection induced gastric cancer; advance in gastric stem cell research and the remaining challenges

    PubMed Central

    2012-01-01

    Helicobacter pylori infection is the major cause of gastric cancer, which remains an important health care challenge. Recent investigation in gastric stem cell or progenitor cell biology has uncovered valuable information in understanding the gastric gland renewal and maintenance of homeostasis, they also provide clues for further defining the mechanisms by which gastric cancer may originate and progress. Lgr5, Villin-promoter, TFF2-mRNA and Mist have recently been identified as gastric stem/progenitor cell markers; their identification enriched our understanding on the gastric stem cell pathobiology during chronic inflammation and metaplasia. In addition, advance in gastric cancer stem cell markers such as CD44, CD90, CD133, Musashi-1 reveal novel information on tumor cell behavior and disease progression implicated for therapeutics. However, two critical questions remain to be of considerable challenges for future exploration; one is how H. pylori or chronic inflammation affects gastric stem cell or their progenitors, which give rise to mucus-, acid-, pepsinogen-, and hormone-secreting cell lineages. Another one is how bacterial infection or inflammation induces oncogenic transformation and propagates into tumors. Focus on the interactions of H. pylori with gastric stem/progenitor cells and their microenvironment will be instrumental to decipher the initiation and origin of gastric cancer. Future studies in these areas will be critical to uncover molecular mechanisms of chronic inflammation-mediated oncogenic transformation and provide options for cancer prevention and intervention. We review recent progress and discuss future research directions in these important research fields. PMID:23217022

  11. Hyalinizing clear cell carcinoma of the oral cavity and of the parotid gland.

    PubMed

    Rinaldo, A; McLaren, K M; Boccato, P; Maran, A G

    1999-01-01

    Hyalinizing clear cell carcinoma (HCCC) is a rare, recently described tumor of salivary gland origin. Differential diagnosis includes benign lesions as clear cell change in a pleomorphic adenoma or in oncocytoma and malignant tumors - i.e. epithelial-myoepithelial carcinoma, polymorphous low-grade adenocarcinoma, mucoepidermoid carcinoma, clear cell acinic carcinoma, clear cell squamous carcinoma, clear cell malignant melanoma, clear cell odontogenic carcinoma, clear cell rhabdomyosarcoma, sebaceous carcinoma and metastasis of renal carcinoma. A favorable prognosis after wide local excision has been evidenced. Three new cases of HCCC (2 in the oral cavity and 1 in the parotid gland) are presented.

  12. The ultrastructural aspects of neoplastic myoepithelial cell in pleomorphic adenomas of salivary glands.

    PubMed

    Margaritescu, C; Raica, M; Florescu, Maria; Simionescu, Cristiana; Surpateanu, M; Jaubert, F; Bogdan, F

    2004-01-01

    The purpose of this study has been to establish the major ultrastructural aspects of the myoepithelial cell and the myoepithelial-like cells proliferated in the pleomorphic adenomas of salivary glands. Thus, twelve benign pleomorphic adenomas of salivary glands have been studied by electron-microscopy transmission techniques. Our analysis has proved the proliferation of two major cellular populations, one of ductal type and one of myoepithelial type, which tried to reproduce the tubulo-acinar cytoarchitecture from the normal salivary glands. We have also noticed the key role of the so-called 'modified' myoepithelial cells from the periphery of the proliferating epithelial units in the genesis of the myxoid and chondromyxoid tumoral stromal areas. All these ultrastructural aspects have explained the great histological diversity of these salivary gland neoplasms as well as the key role of the myoepithelial cell in its histogenesis.

  13. Basal cell adenoma in the parotid gland: CT and MR findings.

    PubMed

    Jang, Mijung; Park, Dongwoo; Lee, Seung Ro; Hahm, Chang Kok; Kim, Youngsun; Kim, Yongsoo; Park, Choong Ki; Tae, Kyung; Park, Moon Hyang; Park, Yong Wook

    2004-04-01

    Basal cell adenoma is a rare benign salivary gland epithelial tumor, usually involving the parotid gland. We report CT and MR findings of three cases with basal cell adenoma occurring in the parotid gland. The three cases presented here demonstrate a well-circumscribed tumor, which showed a cystic and solid, or the pure solid mass. They were well enhanced after contrast matter injection. The solid portion of the mass was isoattenuated at CT, with intermediate signal intensity on T1- and T2-weighted MR images. Its cystic portion was hyperintense on both T1- and T2-weighted MR images. It had a hypointense rim on T2-weighted image.

  14. Development in intracerebral stem cell grafts

    PubMed Central

    Reyes, Stephanny; Tajiri, Naoki; Borlongan, Cesar V.

    2015-01-01

    The field of stem cell therapy has emerged as a promising research area for brain repair. Optimizing the safety and efficacy of the therapy for clinical trials will require revisiting transplantation protocols. The cell delivery route stands as a key translational item that warrants careful consideration in facilitating the success of stem cell therapy in the clinic. Intracerebral administration, compared to peripheral route, requires an invasive procedure to directly implant stem cells into injured brain. Although invasive, intracerebral transplantation circumvents the prohibitive blood brain barrier in allowing grafted cells when delivered peripherally to penetrate the brain and reach the discreet damaged brain tissues. This review will highlight milestone discoveries in cell therapy for neurological disorders, with emphasis on intracerebral transplantation in relevant animal models and provide insights necessary to optimize the safety and efficacy of cell therapy for the treatment of Parkinson’s disease, Huntington’s disease, stroke, and traumatic brain injury. PMID:25739415

  15. 3 CFR - Guidelines for Human Stem Cell Research

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Guidelines for Human Stem Cell Research Presidential Documents Other Presidential Documents Memorandum of July 30, 2009 Guidelines for Human Stem Cell Research..., scientifically worthy human stem cell research, including human embryonic stem cell research, to the...

  16. When stem cells grow old: phenotypes and mechanisms of stem cell aging.

    PubMed

    Schultz, Michael B; Sinclair, David A

    2016-01-01

    All multicellular organisms undergo a decline in tissue and organ function as they age. An attractive theory is that a loss in stem cell number and/or activity over time causes this decline. In accordance with this theory, aging phenotypes have been described for stem cells of multiple tissues, including those of the hematopoietic system, intestine, muscle, brain, skin and germline. Here, we discuss recent advances in our understanding of why adult stem cells age and how this aging impacts diseases and lifespan. With this increased understanding, it is feasible to design and test interventions that delay stem cell aging and improve both health and lifespan.

  17. Perlecan domain IV peptide stimulates salivary gland cell assembly in vitro.

    PubMed

    Pradhan, Swati; Zhang, Chu; Jia, Xinqiao; Carson, Daniel D; Witt, Robert; Farach-Carson, Mary C

    2009-11-01

    Treatment of xerostomia would benefit from development of a functional implantable artificial salivary gland. Salivary gland tissue from surgical patients was assessed by histology and immunohistochemistry to establish the phenotype of normal salivary gland cells including the native basement membranes. Ductal and acinar cells were identified in tissue and cultured cells from dispersed tissue. High levels of laminin and perlecan/HSPG2 (heparan sulfate proteoglycan 2) were noted in basement membranes, and perlecan also was secreted and organized by cultured acinar populations, which formed lobular structures that mimicked intact glands when cultured on Matrigel or a bioactive peptide derived from domain IV of perlecan. On either matrix, large acini-like lobular structures grew and formed connections between the lobes. alpha-Amylase secretion was confirmed by staining and activity assay. Biomarkers, including tight junction protein E-cadherin and water channel protein aquaporin 5 found in tissue, were expressed in cultured acinar cells. Cells cultured on Matrigel or domain IV of perlecan peptide organized stress fibers and activated focal adhesion kinase. We report a novel technique to isolate acinar cells from human salivary gland and identify a human peptide sequence in perlecan that triggers differentiation of salivary gland cells into self-assembling acini-like structures that express essential biomarkers and which secrete alpha-amylase.

  18. Prostate Cancer Stem Cells: Research Advances

    PubMed Central

    Jaworska, Dagmara; Król, Wojciech; Szliszka, Ewelina

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease. PMID:26593898

  19. Imaging Stem Cells Implanted in Infarcted Myocardium

    PubMed Central

    Zhou, Rong; Acton, Paul D.; Ferrari, Victor A.

    2008-01-01

    Stem cell–based cellular cardiomyoplasty represents a promising therapy for myocardial infarction. Noninvasive imaging techniques would allow the evaluation of survival, migration, and differentiation status of implanted stem cells in the same subject over time. This review describes methods for cell visualization using several corresponding noninvasive imaging modalities, including magnetic resonance imaging, positron emission tomography, single-photon emission computed tomography, and bioluminescent imaging. Reporter-based cell visualization is compared with direct cell labeling for short- and long-term cell tracking. PMID:17112999

  20. Prostate Cancer Stem Cells: Research Advances.

    PubMed

    Jaworska, Dagmara; Król, Wojciech; Szliszka, Ewelina

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease.

  1. Murine amniotic fluid stem cells contribute mesenchymal but not epithelial components to reconstituted mammary ducts

    PubMed Central

    2010-01-01

    Introduction Amniotic fluid harbors cells indicative of all three germ layers, and pluripotent fetal amniotic fluid stem cells (AFSs) are considered potentially valuable for applications in cellular therapy and tissue engineering. We investigated whether it is possible to direct the cell fate of AFSs in vivo by transplantation experiments into a particular microenvironment, the mammary fat pad. This microenvironment provides the prerequisites to study stem cell function and the communication between mesenchymal and epithelial cells. On clearance of the endogenous epithelium, the ductal tree can be reconstituted by the transfer of exogenously provided mammary stem cells. Analogously, exogenously provided stem cells from other tissues can be investigated for their potential to contribute to mammary gland regeneration. Methods We derived pluripotent murine AFSs, measured the expression of stem cell markers, and confirmed their in vitro differentiation potential. AFSs were transplanted into cleared and non cleared fat pads of immunocompromised mice to evaluate their ability to assume particular cell fates under the instructive conditions of the fat-pad microenvironment and the hormonal stimulation during pregnancy. Results Transplantation of AFSs into cleared fat pads alone or in the presence of exogenous mammary epithelial cells caused their differentiation into stroma and adipocytes and replaced endogenous mesenchymal components surrounding the ducts in co-transplantation experiments. Similarly, transplantation of AFSs into fat pads that had not been previously cleared led to AFS-derived stromal cells surrounding the elongating endogenous ducts. AFSs expressed the marker protein α-SMA, but did not integrate into the myoepithelial cell layer of the ducts in virgin mice. With pregnancy, a small number of AFS-derived cells were present in acinar structures. Conclusions Our data demonstrate that the microenvironmental cues of the mammary fat pad cause AFSs to

  2. Basal cell adenocarcinoma of the parotid gland with rare scalp metastasis: a case report.

    PubMed

    Eroglu, Ahmet; Cuce, Ferhat; Simsek, Hakan; Topuz, Ali Kıvanc; Duz, Bulent

    2015-01-01

    Salivary gland tumors constitute 3% of tumors in the body. Salivary gland tumors constitute 4% to 10.80% of all tumors in the head and neck tumors and most of them originate from the parotid gland. Most salivary gland tumors are benign. Basal cell adenocarcinoma is a rare salivary gland tumour. Most appear to be benign clinically. Metastases have occurred in less than 10% of patients. A 58-year-old female patient was admitted with the complaint of a growing mass at the top of her head. She was operated for parotid adenocarcinoma two years ago. Computed Tomography (CT) was performed to clarify the relationship between the mass with the calvarium and intracranial region. There is a risk of malignancy in scalp and calvarium lesions. Patients must be subjected to preoperative radiological evaluations.

  3. Comparison of the transcriptpmes of long-tern label retaining-cells and C cells microdissected from mammary epithelium: an initial study to character potential stem/progenitor cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mammary stem cells (MaSC) account for the cell lineage of mammary epithelia and provide for mammary growth, development and tissue homeostasis. The presence of MaSC was clearly demonstrated by the generation of an entire mammary gland from a single cell implanted into epithelium-ablated mammary fat...

  4. Perspectives and controversies in the field of stem cell research.

    PubMed

    Romano, Gaetano

    2006-09-01

    The fourth annual meeting of the International Society for Stem Cell Research focused on a number of pressing issues, including: (I) the need to better characterize the biology of stem cells; (II) the need to exploit and optimize the great therapeutic potential of stem cells in tissue regeneration; (III) ethical and safety considerations related to the use of human embryonic stem cells; (IV) the contribution of adult stem cells to carcinogenesis; (V) the need to investigate the biology of cancer stem cells. The purpose of this report is to summarize the current status of stem cell research, as surmised by the proceedings of this meeting.

  5. The bioethics of stem cell research and therapy.

    PubMed

    Hyun, Insoo

    2010-01-01

    Discussion of the bioethics of human stem cell research has transitioned from controversies over the source of human embryonic stem cells to concerns about the ethical use of stem cells in basic and clinical research. Key areas in this evolving ethical discourse include the derivation and use of other human embryonic stem cell-like stem cells that have the capacity to differentiate into all types of human tissue and the use of all types of stem cells in clinical research. Each of these issues is discussed as I summarize the past, present, and future bioethical issues in stem cell research.

  6. Stem cell technologies: regulation, patents and problems.

    PubMed

    Then, Shih-Ning

    2004-11-01

    Human embryonic stem cell research promises to deliver in the future a whole range of therapeutic treatments, but currently governments in different jurisdictions must try to regulate this burgeoning area. Part of the problem has been, and continues to be, polarised community opinion on the use of human embryonic stem cells for research. This article compares the approaches of the Australian, United Kingdom and United States governments in regulating human embryonic stem cell research. To date, these governments have approached the issue through implementing legislation or policy to control research. Similarly, the three jurisdictions have viewed the patentability of human embryonic stem