Science.gov

Sample records for gland-derived vascular endothelial

  1. Endocrine Gland-Derived Vascular Endothelial Growth Factor/Prokineticin-1 in Cancer Development and Tumor Angiogenesis

    PubMed Central

    Corlan, Ana Silvia; Jitariu, Adriana-Andreea; Melnic, Eugen; Raica, Marius

    2017-01-01

    A lot of data suggests endocrine gland-derived vascular endothelial growth factor (EG-VEGF) to be restricted to endocrine glands and to some endocrine-dependent organs. Many evidences show that EG-VEGF stimulates angiogenesis and cell proliferation, although it is not a member of the VEGF family. At the time, a lot of data regarding the role of this growth factor in normal development are available. However, controversial results have been published in the case of pathological conditions and particularly in malignant tumors. Thus, our present paper has been focused on the role of EG-VEGF in normal tissues and various malignant tumors and their angiogenic processes. PMID:28386275

  2. Role of Endocrine Gland-Derived Vascular Endothelial Growth Factor (EG-VEGF) and Its Receptors in Adrenocortical Tumors.

    PubMed

    Heck, Dorothee; Wortmann, Sebastian; Kraus, Luitgard; Ronchi, Cristina L; Sinnott, Richard O; Fassnacht, Martin; Sbiera, Silviu

    2015-12-01

    Angiogenesis is essential for tumor growth and metastasis. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor predominantly expressed in steroidogenic organs like the adrenal gland, ovary, testes, and placenta. EG-VEGF has antiapoptotic, mitogenic, and chemoattractive properties mediated via the two G protein-coupled receptors prokineticin receptor 1 (PKR1) and prokineticin receptor 2 (PKR2). We investigated the expression of EG-VEGF and its receptors in a large number of normal adrenal glands (NAG), adrenocortical adenomas (ACA), and carcinomas (ACC) using real-time PCR (NAG, n = 12; ACA, n = 24; and ACC, n = 30) and immunohistochemistry (NAG, n = 9; ACA, n = 23; and ACC, n = 163) and evaluated its impact on patients' survival. EG-VEGF, PKR1, and PKR2 mRNA and protein are expressed in NAG and the vast majority of ACA and ACC samples. The mean EG-VEGF mRNA expression was significantly lower in ACC (606.5 ± 77.1 copies) compared to NAG (4,043 ± 1,111) and cortisol-producing adenomas (CPA) (4,433 ± 2,378) (p < 0.01 and p < 0.05, respectively). However, cytoplasmic and nuclear EG-VEGF protein expression was either significantly higher or similar in ACC (H score 2.4 ± 0.05, p < 0.05 and 1.7 ± 0.08, n.s., respectively) compared to NAG (1.8 ± 0.14 and 1.7 ± 0.2). Nuclear protein expression of either EG-VEGF or PKR1 or both is predictive for a higher mortality compared to patients without nuclear expression (hazard ratio (HR) = 5.15; 95% confidence interval (CI) = 1.24-21.36, n = 100, p = 0.02 independent of age, sex, and tumor stage). These findings suggest that EG-VEGF and its receptor PKR1 might play a role in the pathogenesis of adrenocortical tumors and could serve as prognostic markers for this rare malignant disease.

  3. Upregulation of endocrine gland-derived vascular endothelial growth factor in papillary thyroid cancers displaying infiltrative patterns, lymph node metastases, and BRAF mutation.

    PubMed

    Pasquali, Daniela; Santoro, Angela; Bufo, Pantaleo; Conzo, Giovanni; Deery, William J; Renzullo, Andrea; Accardo, Giacomo; Sacco, Valentina; Bellastella, Antonio; Pannone, Giuseppe

    2011-04-01

    Endocrine gland-derived vascular endothelial growth factor (Prok1) and prokineticin 2 (Prok2) are involved in the organ-specific regulation of angiogenesis, which is a crucial step toward cancer progression in most tumors, including those of thyroid gland. The oncogene BRAF V600E mutation is associated with poor clinical outcome of papillary thyroid cancer (PTC) and can independently predict its recurrence. Our hypothesis was that Prok1 and Prok2 expression levels associated with BRAF mutations can be prognostic factors for PTC outcome. Prok1 and Prok2 were examined in PTC, a cell line derived from a human PTC (designated FB-2), euthyroid multinodular goiter (MNG), Graves' disease (GD), and contralateral normal thyroid (NT) tissues from PTC cases. We evaluated BRAF mutation and its relationship with Prok1 expression pattern in PTC. We studied Prok1 and Prok2 mRNAs by real-time polymerase chain reaction and BRAF mutation by mutant allele-specific polymerase chain reaction amplification. Formalin-fixed, paraffin-embedded blocks of PTC and NT were used for the immunohistochemical determination of Prok1 using anti-endocrine gland vascular endothelial growth factor primary antibody. Prok1 and Prok2 transcripts were both present in thyroid tissues, and Prok1 was differentially expressed in PTC compared to MNG, GD, and NT. Prok1 mRNA levels were very low in NT and MNG and significantly higher in PTC, FB-2, and GD (p<0.05). Prok1 protein was almost undetectable in NT but was highly expressed in all PTC samples having an infiltrative pattern of growth and lymph node metastases ( p<0.05). Further, the expression of Prok1 in PTC was associated with 60% of the samples being positive for the BRAF mutation ( p<0.05). We found that Prok1 is significantly increased in PTC, and its expression in PTC is related to BRAF mutation. These results suggest that Prok1 could be a new useful marker for thyroid cancer progression. Prok1 therefore could also be a potential target for novel

  4. Effect of high ovarian response on the expression of endocrine gland-derived vascular endothelial growth factor (EG-VEGF) in peri-implantation endometrium in IVF women

    PubMed Central

    Xu, Li-Zhen; Gao, Min-Zhi; Yao, Li-Hua; Liang, A-Juan; Zhao, Xiao-Ming; Sun, Zhao-Gui

    2015-01-01

    Objective: To investigate the effect of ovarian stimulation on the expression of EG-VEGF mRNA and protein in peri-implantation endometrium in women undergoing IVF and its relation with endometrial receptivity (ER). Design: Prospective laboratory study. Setting: University hospital. Patients: Eighteen women in stimulated cycles (SC) as study subjects and 18 women in natural cycles (NC) as controls. Women in SC group were classified with two subgroups, high ovarian response (SC1, n=9) with peak serum E2>5,000 pg/mL and moderate ovarian response (SC2, n=9) with peak serum E2 1,000-5,000 pg/mL. Intervention(s): Endometrial biopsies were collected 6 days after ovulation in NC or after oocyte retrieval in SC. Main outcome measure(s): Endometrium histological dating was observed with HE staining. EG-VEGF mRNA expression levels determined by real-time polymerase chain reaction analysis, and protein levels by immunohistochemistry. Results: All endometrial samples were in the secretory phase. The endometrial development in SC1 was 1 to 2 days advanced to NC, and with dyssynchrony between glandular and stromal tissue. Immunohistochemistry analysis showed that EG-VEGF protein was predominantly expressed in the glandular epithelial cells and endothelial cells of vessels, and also presented in the stroma. The image analysis confirmed that both the gland and stroma of endometrium in SC1 had a significantly lower EG-VEGF protein expression than that in SC2 and NC endometrium. Moreover, EG-VEGF mRNA levels were significantly lower in SC1 than in NC. Both EG-VEGF protein and mRNA levels had no significant difference between SC2 and NC. Conclusion: Decreased expression of EG-VEGF in the peri-implantation is associated with high ovarian response, which may account for the impaired ER and lower implantation rate in IVF cycles. PMID:26464631

  5. Sustained Endocrine Gland-Derived Vascular Endothelial Growth Factor Levels Beyond the First Trimester of Pregnancy Display Phenotypic and Functional Changes Associated With the Pathogenesis of Pregnancy-Induced Hypertension.

    PubMed

    Sergent, Frédéric; Hoffmann, Pascale; Brouillet, Sophie; Garnier, Vanessa; Salomon, Aude; Murthi, Padma; Benharouga, Mohamed; Feige, Jean-Jacques; Alfaidy, Nadia

    2016-07-01

    Pregnancy-induced hypertension diseases are classified as gestational hypertension, preeclampsia, or eclampsia. The mechanisms of their development and prediction are still to be discovered. Endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is an angiogenic factor secreted by the placenta during the first trimester of human pregnancy that was shown to control trophoblast invasion, to be upregulated by hypoxia, and to be abnormally elevated in pathological pregnancies complicated with preeclampsia and intrauterine growth restriction. These findings suggested that sustaining EG-VEGF levels beyond the first trimester of pregnancy may contribute to pregnancy-induced hypertension. To test this hypothesis, osmotic minipumps delivering EG-VEGF were implanted subcutaneously into gravid OF1 (Oncins France 1) mice on day 11.5 post coitus, which is equivalent to the end of the first trimester of human pregnancy. Mice were euthanized at 15.5 and 18.5 days post coitus to assess (1) litter size, placental, and fetal weights; (2) placental histology and function; (3) maternal blood pressure; (4) renal histology and function; and (5) circulating soluble fms-like tyrosine kinase 1 and soluble endoglin. Increased EG-VEGF levels caused significant defects in placental organization and function. Both increased hypoxia and decreased trophoblast invasion were observed. Treated mice had elevated circulating soluble fms-like tyrosine kinase 1 and soluble endoglin and developed gestational hypertension with dysregulated maternal kidney function. EG-VEGF effect on the kidney function was secondary to its effects on the placenta as similarly treated male mice had normal kidney functions. Altogether, these data provide a strong evidence to confirm that sustained EG-VEGF beyond the first trimester of pregnancy contributes to the development of pregnancy-induced hypertension.

  6. [Vascular endothelial Barrier Function].

    PubMed

    Ivanov, A N; Puchinyan, D M; Norkin, I A

    2015-01-01

    Endothelium is an important regulator of selective permeability of the vascular wall for different molecules and cells. This review summarizes current data on endothelial barrier function. Endothelial glycocalyx structure, its function and role in the molecular transport and leukocytes migration across the endothelial barrier are discussed. The mechanisms of transcellular transport of macromolecules and cell migration through endothelial cells are reviewed. Special section of this article addresses the structure and function of tight and adherens endothelial junction, as well as their importance for the regulation of paracellular transport across the endothelial barrier. Particular attention is paid to the signaling mechanism of endothelial barrier function regulation and the factors that influence on the vascular permeability.

  7. Endothelial cell dynamics in vascular remodelling.

    PubMed

    Barbacena, Pedro; Carvalho, Joana R; Franco, Claudio A

    2016-01-01

    In this ESCHM 2016 conference talk report, we summarise two recently published original articles Franco et al. PLoS Biology 2015 and Franco et al. eLIFE 2016. The vascular network undergoes extensive vessel remodelling to become fully functional. Is it well established that blood flow is a main driver for vascular remodelling. It has also been proposed that vessel pruning is a central process within physiological vessel remodelling. However, despite its central function, the cellular and molecular mechanisms regulating vessel regression, and their interaction with blood flow patterns, remain largely unexplained. We investigated the cellular process governing developmental vascular remodelling in mouse and zebrafish. We established that polarised reorganization of endothelial cells is at the core of vessel regression, representing vessel anastomosis in reverse. Moreover, we established for the first time an axial polarity map for all endothelial cells together with an in silico method for the computation of the haemodynamic forces in the murine retinal vasculature. Using network-level analysis and microfluidics, we showed that endothelial non-canonical Wnt signalling regulates endothelial sensitivity to shear forces. Loss of Wnt5a/11 renders endothelial cells more sensitive to shear, resulting in axial polarisation at lower shear stress levels. Collectively our data suggest that non-canonical Wnt signalling stabilizes forming vascular networks by reducing endothelial shear sensitivity, thus keeping vessels open under low flow conditions that prevail in the primitive plexus.

  8. Vascular endothelial dysfunction and pharmacological treatment

    PubMed Central

    Su, Jin Bo

    2015-01-01

    The endothelium exerts multiple actions involving regulation of vascular permeability and tone, coagulation and fibrinolysis, inflammatory and immunological reactions and cell growth. Alterations of one or more such actions may cause vascular endothelial dysfunction. Different risk factors such as hypercholesterolemia, homocystinemia, hyperglycemia, hypertension, smoking, inflammation, and aging contribute to the development of endothelial dysfunction. Mechanisms underlying endothelial dysfunction are multiple, including impaired endothelium-derived vasodilators, enhanced endothelium-derived vasoconstrictors, over production of reactive oxygen species and reactive nitrogen species, activation of inflammatory and immune reactions, and imbalance of coagulation and fibrinolysis. Endothelial dysfunction occurs in many cardiovascular diseases, which involves different mechanisms, depending on specific risk factors affecting the disease. Among these mechanisms, a reduction in nitric oxide (NO) bioavailability plays a central role in the development of endothelial dysfunction because NO exerts diverse physiological actions, including vasodilation, anti-inflammation, antiplatelet, antiproliferation and antimigration. Experimental and clinical studies have demonstrated that a variety of currently used or investigational drugs, such as angiotensin-converting enzyme inhibitors, angiotensin AT1 receptors blockers, angiotensin-(1-7), antioxidants, beta-blockers, calcium channel blockers, endothelial NO synthase enhancers, phosphodiesterase 5 inhibitors, sphingosine-1-phosphate and statins, exert endothelial protective effects. Due to the difference in mechanisms of action, these drugs need to be used according to specific mechanisms underlying endothelial dysfunction of the disease. PMID:26635921

  9. The function of vascular endothelial growth factor.

    PubMed

    Nieves, Bonnie J; D'Amore, Patricia A; Bryan, Brad A

    2009-01-01

    Vascular endothelial growth factor (VEGF) is considered the master regulator of angiogenesis during growth and development, as well as in disease states such as cancer, diabetes, and macular degeneration. This review details our current understanding of VEGF signaling and discusses the benefits and unexpected side effects of promising anti-angiogenic therapeutics that are currently being used to inhibit neovacularization in tumors.

  10. HUMAN VASCULAR ENDOTHELIAL CELLS IN CULTURE

    PubMed Central

    Gimbrone, Michael A.; Cotran, Ramzi S.; Folkman, Judah

    1974-01-01

    Human endothelial cells, obtained by collagenase treatment of term umbilical cord veins, were cultured using Medium 199 supplemented with 20% fetal calf serum. Small clusters of cells initially spread on plastic or glass, coalesced and grew to form confluent monolayers of polygonal cells by 7 days. Cells in primary and subcultures were identified as endothelium by the presence of Weibel-Palade bodies by electron microscopy. A morphologically distinct subpopulation of cells contaminating some primary endothelial cultures was selectively subcultured, and identified by ultrastructural criteria as vascular smooth muscle. Autoradiography of endothelial cells after exposure to [3H]thymidine showed progressive increases in labeling in growing cultures beginning at 24 h. In recently confluent cultures, labeling indices were 2.4% in central closely packed regions, and 53.2% in peripheral growing regions. 3 days after confluence, labeling was uniform, being 3.5 and 3.9% in central and peripheral areas, respectively. When small areas of confluent cultures were experimentally "denuded," there were localized increases in [3H]thymidine labeling and eventual reconstitution of the monolayer. Liquid scintillation measurements of [3H]thymidine incorporation in primary and secondary endothelial cultures in microwell trays showed a similar correlation of DNA synthesis with cell density. These data indicate that endothelial cell cultures may provide a useful in vitro model for studying pathophysiologic factors in endothelial regeneration. PMID:4363161

  11. Enteric vascular endothelial response to bacterial endotoxin.

    PubMed Central

    Koshi, R.; Mathan, V. I.; David, S.; Mathan, M. M.

    1993-01-01

    The response of enteric vasculature to endotoxin was examined at the ultrastructural level using a murine model of endotoxin-induced acute diarrhoea. Morphological changes indicative of endothelial damage were evident as early as 15 minutes following endotoxin challenge. These changes, characterized by widening of intercellular spaces, increased microvillous projections and the appearance of stress fibres, preceded the leucocytic response. Endothelial damage increased with time, being associated with progressive degenerative changes in the plasma membrane, cytoplasm and organelles, ultimately leading to desquamation. These latter changes were temporally associated with margination of neutrophils and platelet adhesion to the denuded subendothelium. The venules were the primary site of these changes while the capillaries were the least affected. The arterioles were markedly constricted with minimal endothelial damage. These changes suggest that the enteric vascular endothelium may be an important target organ, and the resultant endothelial injury may have implications in host responses to endotoxin. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:8292557

  12. Enhanced vascularization of cultured skin substitutes genetically modified to overexpress vascular endothelial growth factor.

    PubMed

    Supp, D M; Supp, A P; Bell, S M; Boyce, S T

    2000-01-01

    Cultured skin substitutes have been used as adjunctive therapies in the treatment of burns and chronic wounds, but they are limited by lack of a vascular plexus. This deficiency leads to greater time for vascularization compared with native skin autografts and contributes to graft failure. Genetic modification of cultured skin substitutes to enhance vascularization could hypothetically lead to improved wound healing. To address this hypothesis, human keratinocytes were genetically modified by transduction with a replication incompetent retrovirus to overexpress vascular endothelial growth factor, a specific and potent mitogen for endothelial cells. Cultured skin substitutes consisting of collagen-glycosaminoglycan substrates inoculated with human fibroblasts and either vascular endothelial growth factor-modified or control keratinocytes were prepared, and were cultured in vitro for 21 d. Northern blot analysis demonstrated enhanced expression of vascular endothelial growth factor mRNA in genetically modified keratinocytes and in cultured skin substitutes prepared with modified cells. Furthermore, the vascular endothelial growth factor-modified cultured skin substitutes secreted greatly elevated levels of vascular endothelial growth factor protein throughout the entire culture period. The bioactivity of vascular endothelial growth factor protein secreted by the genetically modified cultured skin substitutes was demonstrated using a microvascular endothelial cell growth assay. Vascular endothelial growth factor-modified and control cultured skin substitutes were grafted to full-thickness wounds on athymic mice, and elevated vascular endothelial growth factor mRNA expression was detected in the modified grafts for at least 2 wk after surgery. Vascular endothelial growth factor-modified grafts exhibited increased numbers of dermal blood vessels and decreased time to vascularization compared with controls. These results indicate that genetic modification of

  13. Vascular Endothelial Growth Factor in Eye Disease

    PubMed Central

    Penn, J.S.; Madan, A.; Caldwell, R.B.; Bartoli, M.; Caldwell, R.W.; Hartnett, M.E.

    2012-01-01

    Collectively, angiogenic ocular conditions represent the leading cause of irreversible vision loss in developed countries. In the U.S., for example, retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration are the principal causes of blindness in the infant, working age and elderly populations, respectively. Evidence suggests that vascular endothelial growth factor (VEGF), a 40 kDa dimeric glycoprotein, promotes angiogenesis in each of these conditions, making it a highly significant therapeutic target. However, VEGF is pleiotropic, affecting a broad spectrum of endothelial, neuronal and glial behaviors, and confounding the validity of anti-VEGF strategies, particularly under chronic disease conditions. In fact, among other functions VEGF can influence cell proliferation, cell migration, proteolysis, cell survival and vessel permeability in a wide variety of biological contexts. This article will describe the roles played by VEGF in the pathogenesis of retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration. The potential disadvantages of inhibiting VEGF will be discussed, as will the rationales for targeting other VEGF-related modulators of angiogenesis. PMID:18653375

  14. Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema.

    PubMed

    Kasahara, Y; Tuder, R M; Cool, C D; Lynch, D A; Flores, S C; Voelkel, N F

    2001-03-01

    Emphysema due to cigarette smoking is characterized by a loss of alveolar structures. We hypothesize that the disappearance of alveoli involves apoptosis of septal endothelial cells and a decreased expression of lung vascular endothelial growth factor (VEGF) and its receptor 2 (VEGF R2). By terminal transferase dUTP nick end labeling (TUNEL) in combination with immunohistochemistry, we found that the number of TUNEL+ septal epithelial and endothelial cells/lung tissue nucleic acid (microg) was increased in the alveolar septa of emphysema lungs (14.2 +/- 2.0/microg, n = 6) when compared with normal lungs (6.8 +/- 1.3/microg, n = 7) (p < 0.01) and with primary pulmonary hypertensive lungs (2.3 +/- 0.8/microg, n = 5) (p < 0.001). The cell death events were not significantly different between healthy nonsmoker (7.4 +/- 1.9/microg) and smoker (5.7 +/- 0.7/microg) control subjects. The TUNEL results were confirmed by single-stranded DNA and active caspase-3 immunohistochemistry, and by DNA ligation assay. Emphysema lungs (n = 12) had increased levels of oligonucleosomal-length DNA fragmentation when compared with normal lungs (n = 11). VEGF, VEGF R2 protein, and mRNA expression were significantly reduced in emphysema. We propose that epithelial and endothelial alveolar septal death due to a decrease of endothelial cell maintenance factors may be part of the pathogenesis of emphysema.

  15. Mussel-inspired immobilization of vascular endothelial growth factor (VEGF) for enhanced endothelialization of vascular grafts.

    PubMed

    Shin, Young Min; Lee, Yu Bin; Kim, Seok Joo; Kang, Jae Kyeong; Park, Jong-Chul; Jang, Wonhee; Shin, Heungsoo

    2012-07-09

    Most polymeric vascular prosthetic materials have low patency rate for replacement of small diameter vessels (<5 mm), mainly due to failure to generate healthy endothelium. In this study, we present polydopamine-mediated immobilization of growth factors on the surface of polymeric materials as a versatile tool to modify surface characteristics of vascular grafts potentially for accelerated endothelialization. Polydopamine was deposited on the surface of biocompatible poly(L-lactide-co-ε-caprolactone) (PLCL) elastomer, on which vascular endothelial growth factor (VEGF) was subsequently immobilized by simple dipping. Surface characteristics and composition were investigated by using scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Immobilization of VEGF on the polydopamine-deposited PLCL films was effective (19.8 ± 0.4 and 197.4 ± 19.7 ng/cm(2) for DPv20 and DPv200 films, respectively), and biotin-mediated labeling of immobilized VEGF revealed that the fluorescence intensity increased as a function of the concentration of VEGF solution. The effect of VEGF on adhesion of HUVECs was marginal, which may have been masked by polydopamine layer that also enhanced cell adhesion. However, VEGF-immobilized substrate significantly enhanced proliferation of HUVECs for over 7 days of in vitro culture and also improved their migration. In addition, immobilized VEGF supported robust cell to cell interactions with strong expression of CD 31 marker. The same process was effective for immobilization of basic fibroblast growth factor, demonstrating the robustness of polydopamine layer for secondary ligation of growth factors as a simple and novel surface modification strategy for vascular graft materials.

  16. Ethanol Disrupts Vascular Endothelial Barrier: Implication in Cancer Metastasis

    PubMed Central

    Xu, Mei; Chen, Gang; Fu, Wei; Liao, Mingjun; Frank, Jacqueline A.; Bower, Kimberly A.; Fang, Shengyun; Zhang, Zhuo; Shi, Xianglin; Luo, Jia

    2012-01-01

    Both epidemiological and experimental studies indicate that ethanol exposure enhances tumor progression. Ethanol exposure promotes cancer cell invasion and is implicated in tumor metastasis. Metastasis consists of multiple processes involving intravasation and extravasation of cancer cells across the blood vessel walls. The integrity of the vascular endothelial barrier that lines the inner surface of blood vessels plays a critical role in cancer cell intravasation/extravasation. We examined the effects of ethanol on the endothelial integrity in vitro. Ethanol at physiologically relevant concentrations did not alter cell viability but disrupted the endothelial monolayer integrity, which was evident by a decrease in the electric resistance and the appearance of intercellular gaps in the endothelial monolayer. The effect of ethanol was reversible once ethanol was removed. The disruption of the endothelial monolayer integrity was associated with an increased invasion of cancer cells through the endothelial monolayer. Ethanol induced the formation of stress fibers; stabilization of actin filaments by jasplakinolide prevented ethanol-induced disruption of endothelial integrity and cancer cell invasion. VE-cadherin is a critical component of the adherens junctions, which regulates vascular endothelial integrity. Ethanol induced the endocytosis of VE-cadherin and the effect was blocked by jasplakinolide. Our results indicate that ethanol may facilitate cancer metastasis by disrupting the vascular endothelial barrier. PMID:22331491

  17. Insulin transcriptionally regulates argininosuccinate synthase to maintain vascular endothelial function.

    PubMed

    Haines, Ricci J; Corbin, Karen D; Pendleton, Laura C; Meininger, Cynthia J; Eichler, Duane C

    2012-04-27

    Diminished vascular endothelial cell nitric oxide (NO) production is a major factor in the complex pathogenesis of diabetes mellitus. In this report, we demonstrate that insulin not only maintains endothelial NO production through regulation of endothelial nitric oxide synthase (eNOS), but also via the regulation of argininosuccinate synthase (AS), which is the rate-limiting step of the citrulline-NO cycle. Using serum starved, cultured vascular endothelial cells, we show that insulin up-regulates AS and eNOS transcription to support NO production. Moreover, we show that insulin enhances NO production in response to physiological cues such as bradykinin. To translate these results to an in vivo model, we show that AS transcription is diminished in coronary endothelial cells isolated from rats with streptozotocin (STZ)-induced diabetes. Importantly, we demonstrate restoration of AS and eNOS transcription by insulin treatment in STZ-diabetic rats, and show that this restoration was accompanied by improved endothelial function as measured by endothelium-dependent vasorelaxation. Overall, this report demonstrates, both in cell culture and whole animal studies, that insulin maintains vascular function, in part, through the maintenance of AS transcription, thus ensuring an adequate supply of arginine to maintain vascular endothelial response to physiological cues. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Exosomes derived from endothelial progenitor cells attenuate vascular repair and accelerate reendothelialization by enhancing endothelial function.

    PubMed

    Li, Xiaocong; Chen, Chunyuan; Wei, Liming; Li, Qing; Niu, Xin; Xu, Yanjun; Wang, Yang; Zhao, Jungong

    2016-02-01

    Exosomes, a key component of cell paracrine secretion, can exert protective effects in various disease models. However, application of exosomes in vascular repair and regeneration has rarely been reported. In this study, we tested whether endothelial progenitor cell (EPC)-derived exosomes possessed therapeutic effects in rat models of balloon-induced vascular injury by accelerating reendothelialization. Exosomes were obtained from the conditioned media of EPCs isolated from human umbilical cord blood. Induction of the endothelial injury was performed in the rats' carotid artery, and the pro-re-endothelialization capacity of EPC-derived exosomes was measured. The in vitro effects of exosomes on the proliferation and migration of endothelial cells were investigated. We found that the EPC-derived exosomes accelerated the re-endothelialization in the early phase after endothelial damage in the rat carotid artery. We also demonstrated that these exosomes enhanced the proliferation and migration of endothelial cells in vitro. Moreover, endothelial cells stimulated with these exosomes showed increased expression of angiogenesis-related molecules. Taken together, our results indicate that exosomes are an active component of the paracrine secretion of human EPCs and can promote vascular repair in rat models of balloon injury by up-regulating endothelial cells function. Copyright © 2015. Published by Elsevier Inc.

  19. Endothelial dysfunction - a major mediator of diabetic vascular disease.

    PubMed

    Sena, Cristina M; Pereira, Ana M; Seiça, Raquel

    2013-12-01

    The vascular endothelium is a multifunctional organ and is critically involved in modulating vascular tone and structure. Endothelial cells produce a wide range of factors that also regulate cellular adhesion, thromboresistance, smooth muscle cell proliferation, and vessel wall inflammation. Thus, endothelial function is important for the homeostasis of the body and its dysfunction is associated with several pathophysiological conditions, including atherosclerosis, hypertension and diabetes. Patients with diabetes invariably show an impairment of endothelium-dependent vasodilation. Therefore, understanding and treating endothelial dysfunction is a major focus in the prevention of vascular complications associated with all forms of diabetes mellitus. The mechanisms of endothelial dysfunction in diabetes may point to new management strategies for the prevention of cardiovascular disease in diabetes. This review will focus on the mechanisms and therapeutics that specifically target endothelial dysfunction in the context of a diabetic setting. Mechanisms including altered glucose metabolism, impaired insulin signaling, low-grade inflammatory state, and increased reactive oxygen species generation will be discussed. The importance of developing new pharmacological approaches that upregulate endothelium-derived nitric oxide synthesis and target key vascular ROS-producing enzymes will be highlighted and new strategies that might prove clinically relevant in preventing the development and/or retarding the progression of diabetes associated vascular complications.

  20. Apoptosis and calcification of vascular endothelial cell under hyperhomocysteinemia.

    PubMed

    Fang, Kuaifa; Chen, Zhujun; Liu, Meng; Peng, Jian; Wu, Pingsheng

    2015-01-01

    In recent years, it is found that increase in Hcy level in blood can directly or indirectly cause vascular endothelial cell injury and induce vascular calcification. However, the mechanism of vascular endothelial cell injury and vascular calcification has not been studied thoroughly. This paper carried out experiment for research aiming at discussing the effect and action mechanism of Hhcy on endothelial cells and vascular calcification. Firstly, human umbilical vein endothelial cells (HUVECs) were cultured and then intervened by Hcy of different concentrations (0, 0.01, 0.1, 1.0, 3.0, 5.0 mmol/L) and at different action time (3, 6, 12, 24 h). Then apoptosis rate and reactive oxygen were detected by flow cytometry. At the same time, the model for the culture of rat vascular calcification was set up and induced into Hhcy so as to detect the total plasma Hcy level and judge vascular calcification degree. The results showed that with the increase in Hcy concentration and extension of action period, the apoptosis rate and generation of reactive oxygen of HUVECs all significantly increased, and the differences were all statistically significant (P < 0.01). In animal calcification model, mass of black particle deposition was seen after Von Kossa staining of rat vessels in calcification group. Compared with the control group, the vascular calcium content, alkaline phosphatase activity and osteocalcin content in calcification group all increased (P < 0.01). The content of plasma lipid conjugated olefine from highest to lowest wasas follows: calcification plus homoetheionin, homoetheionin, and calcification group. There was no significant difference between the calcification group and control group. All these findings suggested that Hcy could induce the apoptosis of endothelial cells and its effect degree depended on its concentration and action period; Hhcy could promote the calcification of blood vessels, and its mechanism might relate with the strengthening of

  1. Potential implications of vascular wall resident endothelial progenitor cells.

    PubMed

    Ergün, Süleyman; Tilki, Derya; Hohn, Hans-Peter; Gehling, Ursula; Kilic, Nerbil

    2007-11-01

    A rapidly increasing body of data suggests an essential role of endothelial progenitor cells (EPCs) in vascular regeneration, formation of new vessels in cardiovascular diseases and also in tumor vasculogenesis. Moreover, recent data obtained from clinical studies with anti-angiogenic drugs in tumor therapy or with pro-angiogenic stimuli in ischemic disorders implicate a predictive role of the number of EPCs circulating in the peripheral blood in monitoring of these diseases. However, there is still some controversial data regarding the relevance of the EPCs in vascular formation depending on models used and diseases studied. One of the essential prerequisites for a better understanding of the whole contribution of EPCs to vascular formation in adult, a process called postnatal vasculogenesis, is to identify their exact sources. We could recently discover the existence of EPCs in a distinct zone of the vascular wall of large and middle sized adult blood vessels and showed that these cells are capable to differentiate into mature endothelial cells, to form capillary sprouts in arterial ring assay and to build vasa vasorum-like structures within the vascular wall. They also can be mobilized very rapidly from the vascular wall by tumor cells. This review will discuss the functional implications of these vascular wall resident endothelial progenitor cells (VW-EPCs) in relation to those of EPCs circulating in peripheral blood or derived from the bone marrow in cardiovascular and neoplastic diseases.

  2. Loss of the endothelial glycocalyx links albuminuria and vascular dysfunction.

    PubMed

    Salmon, Andrew H J; Ferguson, Joanne K; Burford, James L; Gevorgyan, Haykanush; Nakano, Daisuke; Harper, Steven J; Bates, David O; Peti-Peterdi, Janos

    2012-08-01

    Patients with albuminuria and CKD frequently have vascular dysfunction but the underlying mechanisms remain unclear. Because the endothelial surface layer, a meshwork of surface-bound and loosely adherent glycosaminoglycans and proteoglycans, modulates vascular function, its loss could contribute to both renal and systemic vascular dysfunction in proteinuric CKD. Using Munich-Wistar-Fromter (MWF) rats as a model of spontaneous albuminuric CKD, multiphoton fluorescence imaging and single-vessel physiology measurements revealed that old MWF rats exhibited widespread loss of the endothelial surface layer in parallel with defects in microvascular permeability to both water and albumin, in both continuous mesenteric microvessels and fenestrated glomerular microvessels. In contrast to young MWF rats, enzymatic disruption of the endothelial surface layer in old MWF rats resulted in neither additional loss of the layer nor additional changes in permeability. Intravenous injection of wheat germ agglutinin lectin and its adsorption onto the endothelial surface layer significantly improved glomerular albumin permeability. Taken together, these results suggest that widespread loss of the endothelial surface layer links albuminuric kidney disease with systemic vascular dysfunction, providing a potential therapeutic target for proteinuric kidney disease.

  3. Loss of the Endothelial Glycocalyx Links Albuminuria and Vascular Dysfunction

    PubMed Central

    Ferguson, Joanne K.; Burford, James L.; Gevorgyan, Haykanush; Nakano, Daisuke; Harper, Steven J.; Bates, David O.; Peti-Peterdi, Janos

    2012-01-01

    Patients with albuminuria and CKD frequently have vascular dysfunction but the underlying mechanisms remain unclear. Because the endothelial surface layer, a meshwork of surface-bound and loosely adherent glycosaminoglycans and proteoglycans, modulates vascular function, its loss could contribute to both renal and systemic vascular dysfunction in proteinuric CKD. Using Munich-Wistar-Fromter (MWF) rats as a model of spontaneous albuminuric CKD, multiphoton fluorescence imaging and single-vessel physiology measurements revealed that old MWF rats exhibited widespread loss of the endothelial surface layer in parallel with defects in microvascular permeability to both water and albumin, in both continuous mesenteric microvessels and fenestrated glomerular microvessels. In contrast to young MWF rats, enzymatic disruption of the endothelial surface layer in old MWF rats resulted in neither additional loss of the layer nor additional changes in permeability. Intravenous injection of wheat germ agglutinin lectin and its adsorption onto the endothelial surface layer significantly improved glomerular albumin permeability. Taken together, these results suggest that widespread loss of the endothelial surface layer links albuminuric kidney disease with systemic vascular dysfunction, providing a potential therapeutic target for proteinuric kidney disease. PMID:22797190

  4. Actin Filament Stress Fibers in Vascular Endothelial Cells in vivo

    NASA Astrophysics Data System (ADS)

    Wong, Albert J.; Pollard, Thomas D.; Herman, Ira M.

    1983-02-01

    Fluorescence microscopy with 7-nitrobenz-2-oxa-3-diazole phallacidin was used to survey vertebrate tissues for actin filament bundles comparable to the stress fibers of cultured cells. Such bundles were found only in vascular endothelial cells. Like the stress fibers of cultured cells, these actin filament bundles were stained in a punctate pattern by fluorescent antibodies to both alpha-actinin and myosin. The stress fibers were oriented parallel to the direction of blood flow and were prominent in endothelial cells from regions exposed to high-velocity flow, such as the left ventricle, aortic valve, and aorta. Actin bundles may help the endothelial cell to withstand hemodynamic stress.

  5. Synergism of matrix stiffness and vascular endothelial growth factor on mesenchymal stem cells for vascular endothelial regeneration.

    PubMed

    Wingate, Kathryn; Floren, Michael; Tan, Yan; Tseng, Pi Ou Nancy; Tan, Wei

    2014-09-01

    Mesenchymal stem cells (MSCs) hold tremendous potential for vascular tissue regeneration. Research has demonstrated that individual factors in the cell microenvironment such as matrix elasticity and growth factors regulate MSC differentiation to vascular lineage. However, it is not well understood how matrix elasticity and growth factors combine to direct the MSC fate. This study examines the combined effects of matrix elasticity and vascular endothelial growth factor (VEGF) on both MSC differentiation into endothelial lineage and MSC paracrine signaling. MSCs were seeded in soft nanofibrous matrices with or without VEGF, and in Petri dishes with or without VEGF. Only MSCs seeded in three-dimensional soft matrices with VEGF showed significant increases in the expression of endothelial markers (vWF, eNOS, Flt-1, and Flk-1), while eliminating the expression of smooth muscle marker (SM-α-actin). MSCs cultured in VEGF alone on two-dimensional dishes showed increased expression of both early-stage endothelial and smooth muscle markers, indicating immature vascular differentiation. Furthermore, MSCs cultured in soft matrices with VEGF showed faster upregulation of endothelial markers compared with MSCs cultured in VEGF alone. Paracrine signaling studies found that endothelial cells cultured in the conditioned media from MSCs differentiated in the soft matrix and VEGF condition exhibited increased migration and formation of capillary-like structures. These results demonstrate that VEGF and soft matrix elasticity act synergistically to guide MSC differentiation into mature endothelial phenotype while enhancing paracrine signaling. Therefore, it is critical to control both mechanical and biochemical factors to safely regenerate vascular tissues with MSCs.

  6. KRIT1 protein depletion modifies endothelial cell behavior via increased vascular endothelial growth factor (VEGF) signaling.

    PubMed

    DiStefano, Peter V; Kuebel, Julia M; Sarelius, Ingrid H; Glading, Angela J

    2014-11-21

    Disruption of endothelial cell-cell contact is a key event in many cardiovascular diseases and a characteristic of pathologically activated vascular endothelium. The CCM (cerebral cavernous malformation) family of proteins (KRIT1 (Krev-interaction trapped 1), PDCD10, and CCM2) are critical regulators of endothelial cell-cell contact and vascular homeostasis. Here we show novel regulation of vascular endothelial growth factor (VEGF) signaling in KRIT1-depleted endothelial cells. Loss of KRIT1 and PDCD10, but not CCM2, increases nuclear β-catenin signaling and up-regulates VEGF-A protein expression. In KRIT1-depleted cells, increased VEGF-A levels led to increased VEGF receptor 2 (VEGFR2) activation and subsequent alteration of cytoskeletal organization, migration, and barrier function and to in vivo endothelial permeability in KRIT1-deficient animals. VEGFR2 activation also increases β-catenin phosphorylation but is only partially responsible for KRIT1 depletion-dependent disruption of cell-cell contacts. Thus, VEGF signaling contributes to modifying endothelial function in KRIT1-deficient cells and microvessel permeability in Krit1(+/-) mice; however, VEGF signaling is likely not the only contributor to disrupted endothelial cell-cell contacts in the absence of KRIT1.

  7. Rab11a Mediates Vascular Endothelial-Cadherin Recycling and Controls Endothelial Barrier Function.

    PubMed

    Yan, Zhibo; Wang, Zhen-Guo; Segev, Nava; Hu, Sanyuan; Minshall, Richard D; Dull, Randal O; Zhang, Meihong; Malik, Asrar B; Hu, Guochang

    2016-02-01

    Vascular endothelial (VE)-cadherin is the predominant component of endothelial adherens junctions essential for cell-cell adhesion and formation of the vascular barrier. Endocytic recycling is an important mechanism for maintaining the expression of cell surface membrane proteins. However, little is known about the molecular mechanism of VE-cadherin recycling and its role in maintenance of vascular integrity. Using calcium-switch assay, confocal imaging, cell surface biotinylation, and flow cytometry, we showed that VE-cadherin recycling required Ras-related proteins in brain (Rab)11a and Rab11 family-interacting protein 2. Yeast 2-hybrid assay and coimmunoprecipitation demonstrated that direct interaction of VE-cadherin with family-interacting protein 2 (at aa 453-484) formed a ternary complex with Rab11a in human endothelial cells. Silencing of Rab11a or Rab11 family-interacting protein 2 in endothelial cells prevented VE-cadherin recycling and VE-cadherin expression at endothelial plasma membrane. Furthermore, inactivation of Rab11a signaling blocked junctional reannealing after vascular inflammation. Selective knockdown of Rab11a in pulmonary microvessels markedly increased vascular leakage in mice challenged with lipopolysaccharide or polymicrobial sepsis. Rab11a/Rab11 family-interacting protein 2-mediated VE-cadherin recycling is required for formation of adherens junctions and restoration of VE barrier integrity and hence a potential target for clinical intervention in inflammatory disease. © 2015 American Heart Association, Inc.

  8. Cerebral Cavernous Malformations: Somatic Mutations in Vascular Endothelial Cells

    PubMed Central

    Gault, Judith; Awad, Issam A.; Recksiek, Peter; Shenkar, Robert; Breeze, Robert; Handler, Michael; Kleinschmidt-DeMasters, Bette Kay

    2009-01-01

    OBJECTIVE Germline mutations in three genes have been found in familial cases of cerebral cavernous malformations (CCM). We previously discovered somatic and germline truncating mutations in the KRIT1 gene supporting the “two-hit” mechanism of CCM lesion formation in a single lesion. The purpose of this study was to screen for somatic, nonheritable, mutations in three more lesions from different patients and identify the cell type(s) in which somatic mutations occur. METHODS Somatic mutations were sought in DNA from three surgically excised, fresh-frozen CCM lesions by cloning and screening PCR products generated from KRIT1 or PDCD10 coding regions. Laser capture microdissection (LCM) was used to isolated endothelial and nonendothelial cells in order to determine if somatic mutations were found in endothelial cells. RESULTS A CCM lesion harbored somatic and germline KRIT1 mutations on different chromosomes and are therefore biallelic. Both mutations are predicted to truncate the protein. The KRIT1 somatic mutations (novel c.1800delG mutation and previously identified 34 nucleotide deletion) in CCMs from two different patients were only found in the vascular endothelial cells lining caverns. No obvious somatic mutations were identified in the two other lesions; however, the results were inconclusive possibly due to the technical limitations or the fact that these specimens had a small proportion of vascular endothelial cells lining pristine caverns. CONCLUSION The “two-hit” mechanism occurs in vascular endothelial cells lining CCM caverns from two patients with somatic and Hispanic-American KRIT1 germline mutations. Methods for somatic mutation detection should focus on vascular endothelial cells lining pristine caverns. PMID:19574835

  9. Critical Endothelial Regulation by LRP5 during Retinal Vascular Development

    PubMed Central

    Huang, Wei; Li, Qing; Amiry-Moghaddam, Mahmood; Hokama, Madoka; Sardi, Sylvia H.; Nagao, Masashi; Warman, Matthew L.; Olsen, Bjorn R.

    2016-01-01

    Vascular abnormalities in the eye are the leading cause of many forms of inherited and acquired human blindness. Loss-of-function mutations in the Wnt-binding co-receptor LRP5 leads to aberrant ocular vascularization and loss of vision in genetic disorders such as osteoporosis-pseudoglioma syndrome. The canonical Wnt-β-catenin pathway is known to regulate retinal vascular development. However, it is unclear what precise role LPR5 plays in this process. Here, we show that loss of LRP5 function in mice causes retinal hypovascularization during development as well as retinal neovascularization in adulthood with disorganized and leaky vessels. Using a highly specific Flk1-CreBreier line for vascular endothelial cells, together with several genetic models, we demonstrate that loss of endothelium-derived LRP5 recapitulates the retinal vascular defects in Lrp5-/- mice. In addition, restoring LRP5 function only in endothelial cells in Lrp5-/- mice rescues their retinal vascular abnormalities. Furthermore, we show that retinal vascularization is regulated by LRP5 in a dosage dependent manner and does not depend on LRP6. Our study provides the first direct evidence that endothelium-derived LRP5 is both necessary and sufficient to mediate its critical role in the development and maintenance of retinal vasculature. PMID:27031698

  10. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.

    PubMed

    Sankrityayan, Himanshu; Majumdar, Anuradha S

    2016-01-01

    Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels.

  11. Endothelial Erg expression is required for embryogenesis and vascular integrity

    PubMed Central

    Han, Rong; Pacifici, Maurizio; Iwamoto, Masahiro; Trojanowska, Maria

    2015-01-01

    abstract Members of the ETS family of transcription factors are involved in several developmental processes including endothelial cell specification and blood vessel formation, but their exact roles remain unclear. The family member Erg is highly expressed in endothelial cells as compared to other developing cell types including chondrocytes, hematopoietic cells and mesodermal cells. To study the specific roles ERG plays in endothelial cell specification and function during early embryogenesis, we conditionally ablated it by mating ErgloxP/loxP and Tie2-Cre mice. We found that mutant embryos died by mid-gestation and that angiogenesis and vascular integrity were highly compromised. Our study reveals that ERG has essential and cell autonomous roles in endothelial cell development and blood vessel maintenance. PMID:26061019

  12. Vascular endothelial growth factors: A comparison between invertebrates and vertebrates.

    PubMed

    Kipryushina, Yulia O; Yakovlev, Konstantin V; Odintsova, Nelly A

    2015-12-01

    This review aims to summarize recent data concerning the structure and role of the members of the vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) families in the context of early development, organogenesis and regeneration, with a particular emphasis on the role of these factors in the development of invertebrates. Homologs of VEGF and/or VEGFR have been found in all Eumetazoa, in both Radiata and Bilateria, where they are expressed in the descendants of different germ layers and play a pivotal role in the development of animals with and without a vascular system. VEGF is a well-known angiogenesis regulator, but this factor also control cell migration during neurogenesis and the development of branching organs (the trachea) in invertebrate and vertebrate species. A possible explanation for the origin of Vegf/Vegfr in the animal kingdom and a pathway of Vegf/Vegfr evolution are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Vascular endothelial cells and dysfunctions: role of melatonin.

    PubMed

    Rodella, Luigi Fabrizio; Favero, Gaia; Foglio, Eleonora; Rossini, Claudia; Castrezzati, Stefania; Lonati, Claudio; Rezzani, Rita

    2013-01-01

    Several pathological conditions, including hypertension, atherosclerosis, diabetes, ischemia/reperfusion injury and nicotine-induced vasculopathy, are associated with vascular endothelial dysfunction characterized by altered secretory output of endothelial cells. Therefore there is a search for molecules and interventions that could restore endothelial function, in particular augmenting NO production, reducing the generation of free radicals and vasoconstrictors and preventing undesired inflammation. The pineal hormone melatonin exhibits several endothelium protective properties: it scavenges free radicals, activates antioxidant defence enzymes, normalizes lipid and blood pressure profile and increases NO bioavailability. Melatonin improved vascular function in experimental hypertension, reducing intimal infiltration and restoring NO production. Melatonin improved the NO pathway also in animal models for the study of diabetes and prevented NO down-regulation and adhesive molecules up-regulation in nicotine-induced vasculopathy. The protection against endothelial damage, vasoconstriction, platelet aggregation and leukocyte infiltration might contribute to the beneficial effects against ischemia-reperfusion injury by melatonin. Therefore, melatonin administration has endothelium-protective potential in several pathological conditions. Nevertheless, it still needs to be established, whether melatonin is able to revert already established endothelial dysfunction in these conditions.

  14. Three phase bone scan interpretation based upon vascular endothelial response

    PubMed Central

    Kumar, Kush

    2015-01-01

    Objectives: A new method of interpretation of Three Phase Bone Scan (TPBS) scan based upon the normal physiological vascular endothelial related response. Materials and Methods: Fifty cases of TPBS were evaluated. Thirteen were normal. In remaining 37 positive studies, 20 showed localized hyperemic response. All localized hyperemic responses except one with vascular endothelial dysfunction were without infection (95.0%). Infection could be ruled out in absence of generalized massive flow and pool response. All 17 cases with generalized massive hyperemic response had infection, consistent with infection or CRPS/RSD. Micro-bacterial or histological confirmation of infection was obtained in 11 cases. All 11 cases with confirmed infection showed generalized massive hyperemic response (100.0%). Two were CRPS/RSD and 2 cases were of cellulitis (100.0%). Among remaining 2, one refused surgery and other was lost to follow-up. Additionally, 20 published cases in the literature of osteomyelitis were also analyzed. Nineteen cases of bone and joint infection, (osteomyelitis/arthritis/cellulitis) except one with endothelial dysfunction showed generalized massive increased flow and pool response (95.0%). All published cases of osteomyelitis in the literature showed generalized massive hyperemic response (100.0%). Results: The data clearly indicated that 100% of the cases of bone infection (osteomyelitis/arthritis/cellulitis) and cases of CRPS/RSD showed generalized massive flow and pool pattern. Infection could be ruled out in absence of generalized massive flow and pool response. All 100% published cases of osteomyelitis in the literature showed positive vascular endothelial response. Conclusion: By incorporating the concept of vascular endothelial related response causing massive vasodilatation in infection, the interpretation of the TPBS can be more précised as it is based upon the normal physiology. Larger studies are recommended. PMID:25829726

  15. Obstructive sleep apnea syndrome, vascular pathology, endothelial function and endothelial cells and circulating microparticles.

    PubMed

    Stiefel, Pablo; Sánchez-Armengol, Maria Angeles; Villar, José; Vallejo-Vaz, Antonio; Moreno-Luna, Rafael; Capote, Francisco

    2013-08-01

    Accelerated atherosclerosis and increased cardiovascular risk are frequently reported in patients with obstructive sleep apnea (OSA) syndrome. In this article the authors attempt a review of the current understanding of the relationship between vascular risk and OSA syndrome based on large cohort studies that related the disease to several cardiovascular risk factors and vascular pathologies. We also discuss the pathophysiological mechanisms that may be involved in this relationship, starting with endothelial dysfunction and its mediators. These include an increased oxidative stress and inflammation as well as several disorders of coagulation and lipid metabolism. Moreover, circulating microparticles from activated leukocytes (CD62L_MPs) are higher in patients with OSA and there is a positive correlation between circulating levels of CD62L_MPs and nocturnal hypoxemia severity. Finally, circulating level of endothelial microparticles and circulating endothelial cells seem to be increased in patients with OSA. Also, endothelial progenitor cells are reduced and plasma levels of the vascular endothelial growth factor are increased.

  16. Endothelial fluid shear stress sensing in vascular health and disease

    PubMed Central

    Baeyens, Nicolas; Bandyopadhyay, Chirosree; Coon, Brian G.; Yun, Sanguk; Schwartz, Martin A.

    2016-01-01

    Endothelial cells transduce the frictional force from blood flow (fluid shear stress) into biochemical signals that regulate gene expression and cell behavior via specialized mechanisms and pathways. These pathways shape the vascular system during development and during postnatal and adult life to optimize flow to tissues. The same pathways also contribute to atherosclerosis and vascular malformations. This Review covers recent advances in basic mechanisms of flow signaling and the involvement of these mechanisms in vascular physiology, remodeling, and these diseases. We propose that flow sensing pathways that govern normal morphogenesis can contribute to disease under pathological conditions or can be altered to induce disease. Viewing atherosclerosis and vascular malformations as instances of pathological morphogenesis provides a unifying perspective that may aid in developing new therapies. PMID:26928035

  17. Nicotine and cotinine up-regulate vascular endothelial growth factor expression in endothelial cells.

    PubMed

    Conklin, Brian S; Zhao, Weidong; Zhong, Dian-Sheng; Chen, Changyi

    2002-02-01

    Cigarette smoking is an important risk factor for both vascular disease and various forms of cancer. Vascular endothelial growth factor (VEGF) is an endothelial-specific mitogen that is normally expressed only in low levels in normal arteries but may be involved in the progression of both vascular disease and cancer. Some clinical evidence suggests that cigarette smoking may increase plasma VEGF levels, but there is a lack of basic science studies investigating this possibility. We show here, using an intact porcine common carotid artery perfusion culture model, that nicotine and cotinine, the major product of nicotine metabolism, cause a significant increase in endothelial cell VEGF expression. VEGF mRNA levels were compared between groups using reverse transcriptase-polymerase chain reaction, whereas protein level changes were demonstrated with Western blotting and immunohistochemistry. Our results showed significant increases in endothelial cell VEGF mRNA and protein levels because of nicotine and cotinine at concentrations representative of plasma concentrations seen in habitual smokers. VEGF immunostaining also paralleled these results. These findings may give a clue as to the mechanisms by which nicotine and cotinine from cigarette smoking increase vascular disease progression and tumor growth and metastasis.

  18. Endothelial Progenitor Cells for the Vascularization of Engineered Tissues.

    PubMed

    Peters, Erica B

    2017-07-03

    Self-assembled microvasculature from cocultures of endothelial cells (ECs) and stromal cells has significantly advanced efforts to vascularize engineered tissues by enhancing perfusion rates in vivo and producing investigative platforms for microvascular morphogenesis in vitro. However, to clinically translate prevascularized constructs, the issue of EC source must be resolved. Endothelial progenitor cells (EPCs) can be noninvasively supplied from the recipient through adult peripheral and umbilical cord blood, as well as derived from induced pluripotent stem cells, alleviating antigenicity issues. EPCs can also differentiate into all tissue endothelium, and have demonstrated potential for therapeutic vascularization. Yet, EPCs are not the standard EC choice to vascularize tissue constructs in vitro. Possible reasons include unresolved issues with EPC identity and characterization, as well as uncertainty in the selection of coculture, scaffold, and culture media combinations that promote EPC microvessel formation. This review addresses these issues through a summary of EPC vascular biology and the effects of tissue engineering design parameters upon EPC microvessel formation. Also included are perspectives to integrate EPCs with emerging technologies to produce functional, organotypic vascularized tissues.

  19. Rac regulates vascular endothelial growth factor stimulated motility.

    PubMed

    Soga, N; Connolly, J O; Chellaiah, M; Kawamura, J; Hruska, K A

    2001-01-01

    During angiogenesis endothelial cells migrate towards a chemotactic stimulus. Understanding the mechanism of endothelial cell migration is critical to the therapeutic manipulation of angiogenesis and ultimately cancer prevention. Vascular endothelial growth factor (VEGF) is a potent chemotactic stimulus of endothelial cells during angiogenesis. The endothelial cell signal transduction pathway of VEGF represents a potential target for cancer therapy, but the mechanisms of post-receptor signal transduction including the roles of rho family GTPases in regulating the cytoskeletal effects of VEGF in endothelial cells are not understood. Here we analyze the mechanisms of cell migration in the mouse brain endothelial cell line (bEND3). Stable transfectants containing a tetracycline repressible expression vector were used to induce expression of Rac mutants. Endothelial cell haptotaxis was stimulated by constitutively active V12Rac on collagen and vitronectin coated supports, and chemotaxis was further stimulated by VEGF. Osteopontin coated supports were the most stimulatory to bEND3 haptotaxis, but VEGF was not effective in further increasing migration on osteopontin coated supports. Haptotaxis on support coated with collagen, vitronectin, and to a lesser degree osteopontin was inhibited by N17 Rac. N17 Rac expression blocked stimulation of endothelial cell chemotaxis by VEGF. As part of the chemotactic stimulation, VEGF caused a loss of actin organization at areas of cell-cell contact and increased stress fiber expression in endothelial cells which were directed towards pores in the transwell membrane. N17 Rac prevented the stimulation of cell-cell contact disruption and the stress fiber stimulation by VEGF. These data demonstrate two pathways of regulating endothelial cell motility, one in which Rac is activated by matrix/integrin stimulation and is a crucial modulator of endothelial cell haptotaxis. The other pathway, in the presence of osteopontin, is Rac independent

  20. Vascular endothelial adrenomedullin-RAMP2 system is essential for vascular integrity and organ homeostasis.

    PubMed

    Koyama, Teruhide; Ochoa-Callejero, Laura; Sakurai, Takayuki; Kamiyoshi, Akiko; Ichikawa-Shindo, Yuka; Iinuma, Nobuyoshi; Arai, Takuma; Yoshizawa, Takahiro; Iesato, Yasuhiro; Lei, Yang; Uetake, Ryuichi; Okimura, Ayano; Yamauchi, Akihiro; Tanaka, Megumu; Igarashi, Kyoko; Toriyama, Yuichi; Kawate, Hisaka; Adams, Ralf H; Kawakami, Hayato; Mochizuki, Naoki; Martínez, Alfredo; Shindo, Takayuki

    2013-02-19

    Revealing the mechanisms underlying the functional integrity of the vascular system could make available novel therapeutic approaches. We previously showed that knocking out the widely expressed peptide adrenomedullin (AM) or receptor activity-modifying protein 2 (RAMP2), an AM-receptor accessory protein, causes vascular abnormalities and is embryonically lethal. Our aim was to investigate the function of the vascular AM-RAMP2 system directly. We generated endothelial cell-specific RAMP2 and AM knockout mice (E-RAMP2(-/-) and E-AM(-/-)). Most E-RAMP2(-/-) mice died perinatally. In surviving adults, vasculitis occurred spontaneously. With aging, E-RAMP2(-/-) mice showed severe organ fibrosis with marked oxidative stress and accelerated vascular senescence. Later, liver cirrhosis, cardiac fibrosis, and hydronephrosis developed. We next used a line of drug-inducible E-RAMP2(-/-) mice (DI-E-RAMP2(-/-)) to induce RAMP2 deletion in adults, which enabled us to analyze the initial causes of the aforementioned vascular and organ damage. Early after the induction, pronounced edema with enhanced vascular leakage occurred. In vitro analysis revealed the vascular leakage to be caused by actin disarrangement and detachment of endothelial cells. We found that the AM-RAMP2 system regulates the Rac1-GTP/RhoA-GTP ratio and cortical actin formation and that a defect in this system causes the disruption of actin formation, leading to vascular and organ damage at the chronic stage after the gene deletion. Our findings show that the AM-RAMP2 system is a key determinant of vascular integrity and homeostasis from prenatal stages through adulthood. Furthermore, our models demonstrate how endothelial cells regulate vascular integrity and how their dysregulation leads to organ damage.

  1. Endothelial C-type natriuretic peptide maintains vascular homeostasis.

    PubMed

    Moyes, Amie J; Khambata, Rayomand S; Villar, Inmaculada; Bubb, Kristen J; Baliga, Reshma S; Lumsden, Natalie G; Xiao, Fang; Gane, Paul J; Rebstock, Anne-Sophie; Worthington, Roberta J; Simone, Michela I; Mota, Filipa; Rivilla, Fernando; Vallejo, Susana; Peiró, Concepción; Sánchez Ferrer, Carlos F; Djordjevic, Snezana; Caulfield, Mark J; MacAllister, Raymond J; Selwood, David L; Ahluwalia, Amrita; Hobbs, Adrian J

    2014-09-01

    The endothelium plays a fundamental role in maintaining vascular homeostasis by releasing factors that regulate local blood flow, systemic blood pressure, and the reactivity of leukocytes and platelets. Accordingly, endothelial dysfunction underpins many cardiovascular diseases, including hypertension, myocardial infarction, and stroke. Herein, we evaluated mice with endothelial-specific deletion of Nppc, which encodes C-type natriuretic peptide (CNP), and determined that this mediator is essential for multiple aspects of vascular regulation. Specifically, disruption of CNP leads to endothelial dysfunction, hypertension, atherogenesis, and aneurysm. Moreover, we identified natriuretic peptide receptor-C (NPR-C) as the cognate receptor that primarily underlies CNP-dependent vasoprotective functions and developed small-molecule NPR-C agonists to target this pathway. Administration of NPR-C agonists promotes a vasorelaxation of isolated resistance arteries and a reduction in blood pressure in wild-type animals that is diminished in mice lacking NPR-C. This work provides a mechanistic explanation for genome-wide association studies that have linked the NPR-C (Npr3) locus with hypertension by demonstrating the importance of CNP/NPR-C signaling in preserving vascular homoeostasis. Furthermore, these results suggest that the CNP/NPR-C pathway has potential as a disease-modifying therapeutic target for cardiovascular disorders.

  2. Endothelial C-type natriuretic peptide maintains vascular homeostasis

    PubMed Central

    Moyes, Amie J.; Khambata, Rayomand S.; Villar, Inmaculada; Bubb, Kristen J.; Baliga, Reshma S.; Lumsden, Natalie G.; Xiao, Fang; Gane, Paul J.; Rebstock, Anne-Sophie; Worthington, Roberta J.; Simone, Michela I.; Mota, Filipa; Rivilla, Fernando; Vallejo, Susana; Peiró, Concepción; Sánchez Ferrer, Carlos F.; Djordjevic, Snezana; Caulfield, Mark J.; MacAllister, Raymond J.; Selwood, David L.; Ahluwalia, Amrita; Hobbs, Adrian J.

    2014-01-01

    The endothelium plays a fundamental role in maintaining vascular homeostasis by releasing factors that regulate local blood flow, systemic blood pressure, and the reactivity of leukocytes and platelets. Accordingly, endothelial dysfunction underpins many cardiovascular diseases, including hypertension, myocardial infarction, and stroke. Herein, we evaluated mice with endothelial-specific deletion of Nppc, which encodes C-type natriuretic peptide (CNP), and determined that this mediator is essential for multiple aspects of vascular regulation. Specifically, disruption of CNP leads to endothelial dysfunction, hypertension, atherogenesis, and aneurysm. Moreover, we identified natriuretic peptide receptor–C (NPR-C) as the cognate receptor that primarily underlies CNP-dependent vasoprotective functions and developed small-molecule NPR-C agonists to target this pathway. Administration of NPR-C agonists promotes a vasorelaxation of isolated resistance arteries and a reduction in blood pressure in wild-type animals that is diminished in mice lacking NPR-C. This work provides a mechanistic explanation for genome-wide association studies that have linked the NPR-C (Npr3) locus with hypertension by demonstrating the importance of CNP/NPR-C signaling in preserving vascular homoeostasis. Furthermore, these results suggest that the CNP/NPR-C pathway has potential as a disease-modifying therapeutic target for cardiovascular disorders. PMID:25105365

  3. Genistein attenuates vascular endothelial impairment in ovariectomized hyperhomocysteinemic rats.

    PubMed

    Zhen, Panpan; Zhao, Qian; Hou, Dandan; Liu, Teng; Jiang, Dongqiao; Duan, Jinhong; Lu, Lingqiao; Wang, Wen

    2012-01-01

    Hyperhomocysteinemia (HHcy) is a well-known independent risk factor for vascular diseases in the general population. This study was to explore the effect of genistein (GST), a natural bioactive compound derived from legumes, on HHcy-induced vascular endothelial impairment in ovariectomized rats in vivo. Thirty-two adult female Wistar rats were assigned randomly into four groups (n = 8): (a) Con: control; (b) Met: 2.5% methionine diet; (c) OVX + Met: ovariectomy + 2.5% methionine diet; (d) OVX + Met + GST: ovariectomy + 2.5% methionine diet + supplementation with genistein. After 12 wk of different treatment, the rats' blood, toracic aortas and liver samples were collected for analysis. Results showed that high-methionine diet induced both elevation of plasma Hcy and endothelial dysfunction, and ovariectomy deteriorated these injuries. Significant improvement of both functional and morphological changes of vascular endothelium was observed in OVX + Met + GST group; meanwhile the plasma Hcy levels decreased remarkably. There were significant elevations of plasma ET-1 and liver MDA levels in ovariectomized HHcy rats, and supplementation with genistein could attenuate these changes. These results implied that genistein could lower the elevated Hcy levels, and prevent the development of endothelial impairment in ovariectomized HHcy rats. This finding may shed a novel light on the anti-atherogenic activities of genistein in HHcy patients.

  4. Endothelial nitric oxide synthase uncoupling: a novel pathway in OSA induced vascular endothelial dysfunction.

    PubMed

    Varadharaj, Saradhadevi; Porter, Kyle; Pleister, Adam; Wannemacher, Jacob; Sow, Angela; Jarjoura, David; Zweier, Jay L; Khayat, Rami N

    2015-02-01

    The mechanism of vascular endothelial dysfunction (VED) and cardiovascular disease in obstructive sleep apnea (OSA) is unknown. We performed a comprehensive evaluation of endothelial nitric oxide synthase (eNOS) function directly in the microcirculatory endothelial tissue of OSA patients who have very low cardiovascular risk status. Nineteen OSA patients underwent gluteal biopsies before, and after effective treatment of OSA. We measured superoxide (O2(•-)) and nitric oxide (NO) in the microcirculatory endothelium using confocal microscopy. We evaluated the effect of the NOS inhibitor l-Nitroarginine-Methyl-Ester (l-NAME) and the NOS cofactor tetrahydrobiopterin (BH4) on endothelial O2(•-) and NO in patient endothelial tissue before and after treatment. We found that eNOS is dysfunctional in OSA patients pre-treatment, and is a source of endothelial O2(•-) overproduction. eNOS dysfunction was reversible with the addition of BH4. These findings provide a new mechanism of endothelial dysfunction in OSA patients and a potentially targetable pathway for treatment of cardiovascular risk in OSA. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Vascular mechanobiology: endothelial cell responses to fluid shear stress.

    PubMed

    Ando, Joji; Yamamoto, Kimiko

    2009-11-01

    Endothelial cells (ECs) lining blood vessel walls respond to shear stress, a fluid mechanical force generated by flowing blood, and the EC responses play an important role in the homeostasis of the circulatory system. Abnormal EC responses to shear stress impair various vascular functions and lead to vascular diseases, including hypertension, thrombosis, and atherosclerosis. Bioengineering approaches in which cultured ECs are subjected to shear stress in fluid-dynamically designed flow-loading devices have been widely used to analyze EC responses at the cellular and molecular levels. Remarkable progress has been made, and the results have shown that ECs alter their morphology, function, and gene expression in response to shear stress. Shear stress affects immature cells, as well as mature ECs, and promotes differentiation of bone-marrow-derived endothelial progenitor cells and embryonic stem cells into ECs. Much research has been done on shear stress sensing and signal transduction, and their molecular mechanisms are gradually coming to be understood. However, much remains uncertain, and many candidates have been proposed for shear stress sensors. More extensive studies of vascular mechanobiology should increase our understanding of the molecular basis of the blood-flow-mediated control of vascular functions.

  6. Correlations of iodide ions with vascular endothelial growth factor and its receptors during the proliferation of vascular endothelial cells.

    PubMed

    Teng, F; Zu, M H; Hua, Q J

    2014-08-25

    The aim of this study was to explore the correlations of iodide ions with vascular endothelial growth factor (VEGF) and its receptors during the proliferation of vascular endothelial cells (VECs). The proliferation rates of VECs in the presence of iodide ions and VEGF inhibitor were determined using the CCK-8 method. The effect of iodide ions on the phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR-2) was observed using Western blot analysis. In the presence of 300 μg/L iodide ions, the application of VEGF inhibitor did not inhibit VEC proliferation (P < 0.05). At a certain concentration, iodide ions upregulated the phosphorylation level of VEGFR-2 at the Tyr1214 site (P < 0.05). Iodide ions did not influence the phosphorylation of VEGFR-2 at the Tyr1175 and Tyr951 sites. At an appropriate concentration, iodide ions serve as an independent VEC proliferation-promoting factor. They mediate VEC migration by stimulating the upregulation of the phosphorylation level of VEGFR-2 (Tyr1214) and do not influence VEGFR-2 phosphorylation at Tyr1175. Therefore, their VEC proliferation-promoting effect is independent of membrane receptors.

  7. Molecular expression of vascular endothelial growth factor, prokineticin receptor-1 and other biomarkers in infiltrating canalicular carcinoma of the breast

    PubMed Central

    Morales, Angélica; Morimoto, Sumiko; Vilchis, Felipe; Taniyama, Natsuko; Bautista, Claudia J.; Robles, Carlos; Bargalló, Enrique

    2016-01-01

    Vascular endothelial growth factor (VEGF) is important in the growth and metastasis of cancer cells. In 2001, another angiogenic factor, endocrine gland-derived VEGF (EG-VEGF), was characterized and sequenced. EG-VEGF activity appears to be restricted to endothelial cells derived from endocrine glands. At the molecular level, its expression is regulated by hypoxia and steroid hormones. Although VEGF and EG-VEGF are structurally different, they function in a coordinated fashion. Since the majority of mammary tumors are hormone-dependent, it was hypothesized that EG-VEGF would be expressed in these tumors, and therefore, represent a potential target for anti-angiogenic therapy. The aim of the present study was to assess the expression of VEGF, EG-VEGF and its receptor (prokineticin receptor-1), as well as that of breast cancer resistant protein, estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, in 50 breast samples of infiltrating canalicular carcinoma (ICC) and their correlation with tumor staging. The samples were analyzed using reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. Both angiogenic growth factors were identified in all samples. However, in 90% of the samples, the expression level of VEGF was significantly higher than that of EG-VEGF (P=0.024). There was no association between the expression of VEGF, EG-VEGF or its receptor with tumor stage. In ICC, the predominant angiogenic factor expressed was VEGF. The expression level of either factor was not correlated with the tumor-node-metastasis stage. Although ICC is derived from endothelial cells, EG-VEGF expression was not the predominant angiogenic/growth factor in ICC. PMID:27703528

  8. Molecular expression of vascular endothelial growth factor, prokineticin receptor-1 and other biomarkers in infiltrating canalicular carcinoma of the breast.

    PubMed

    Morales, Angélica; Morimoto, Sumiko; Vilchis, Felipe; Taniyama, Natsuko; Bautista, Claudia J; Robles, Carlos; Bargalló, Enrique

    2016-10-01

    Vascular endothelial growth factor (VEGF) is important in the growth and metastasis of cancer cells. In 2001, another angiogenic factor, endocrine gland-derived VEGF (EG-VEGF), was characterized and sequenced. EG-VEGF activity appears to be restricted to endothelial cells derived from endocrine glands. At the molecular level, its expression is regulated by hypoxia and steroid hormones. Although VEGF and EG-VEGF are structurally different, they function in a coordinated fashion. Since the majority of mammary tumors are hormone-dependent, it was hypothesized that EG-VEGF would be expressed in these tumors, and therefore, represent a potential target for anti-angiogenic therapy. The aim of the present study was to assess the expression of VEGF, EG-VEGF and its receptor (prokineticin receptor-1), as well as that of breast cancer resistant protein, estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, in 50 breast samples of infiltrating canalicular carcinoma (ICC) and their correlation with tumor staging. The samples were analyzed using reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. Both angiogenic growth factors were identified in all samples. However, in 90% of the samples, the expression level of VEGF was significantly higher than that of EG-VEGF (P=0.024). There was no association between the expression of VEGF, EG-VEGF or its receptor with tumor stage. In ICC, the predominant angiogenic factor expressed was VEGF. The expression level of either factor was not correlated with the tumor-node-metastasis stage. Although ICC is derived from endothelial cells, EG-VEGF expression was not the predominant angiogenic/growth factor in ICC.

  9. Preparation and features of polycaprolactone vascular grafts with the incorporated vascular endothelial growth factor

    SciTech Connect

    Sevostyanova, V. V. Khodyrevskaya, Y. I.; Glushkova, T. V.; Antonova, L. V.; Kudryavtseva, Y. A.; Barbarash, O. L.; Barbarash, L. S.

    2015-10-27

    The development of tissue-engineered small-diameter vascular grafts is an urgent issue in cardiovascular surgery. In this study, we assessed how the incorporation of the vascular endothelial growth factor (VEGF) affects morphological and mechanical properties of polycaprolactone (PCL) vascular grafts along with its release kinetics. Vascular grafts were prepared using two-phase electrospinning. In pursuing our aims, we performed scanning electron microscopy, mechanical testing, and enzyme-linked immunosorbent assay. Our results demonstrated the preservation of a highly porous structure and improvement of PCL/VEGF scaffold mechanical properties as compared to PCL grafts. A prolonged VEGF release testifies the use of this construct as a scaffold for tissue-engineered vascular grafts.

  10. Preparation and features of polycaprolactone vascular grafts with the incorporated vascular endothelial growth factor

    NASA Astrophysics Data System (ADS)

    Sevostyanova, V. V.; Khodyrevskaya, Y. I.; Glushkova, T. V.; Antonova, L. V.; Kudryavtseva, Y. A.; Barbarash, O. L.; Barbarash, L. S.

    2015-10-01

    The development of tissue-engineered small-diameter vascular grafts is an urgent issue in cardiovascular surgery. In this study, we assessed how the incorporation of the vascular endothelial growth factor (VEGF) affects morphological and mechanical properties of polycaprolactone (PCL) vascular grafts along with its release kinetics. Vascular grafts were prepared using two-phase electrospinning. In pursuing our aims, we performed scanning electron microscopy, mechanical testing, and enzyme-linked immunosorbent assay. Our results demonstrated the preservation of a highly porous structure and improvement of PCL/VEGF scaffold mechanical properties as compared to PCL grafts. A prolonged VEGF release testifies the use of this construct as a scaffold for tissue-engineered vascular grafts.

  11. VUV modification promotes endothelial cell proliferation on PTFE vascular grafts

    NASA Astrophysics Data System (ADS)

    Cezeaux, J. L.; Romoser, C. E.; Benson, R. S.; Buck, C. K.; Sackman, J. E.

    1998-05-01

    Small diameter (⩽6 mm ID ) synthetic vascular grafts, used as lower-limb vessel replacements in patients without suitable autologous saphenous veins, have a failure rate of 53% after 4 yr. Graft failure is due to thrombosis and intimal hyperplasia, an increase in smooth muscle cells in the lumen of the vessel which leads to progressive closing and ultimate occlusion of the vessel. In an effort to increase patency rates of synthetic grafts, investigators have seeded vascular grafts with endothelial cells prior to implantation in an attempt to control both thrombosis and smooth muscle proliferation. This technique has been successful for the development of an endothelial monolayer in animal trials, but has met with limited success in humans. The hydrophobicity, low surface energy, and weak electrical charge of expanded polytetrafluoroethylene (ePTFE) provides conditions which are not optimal for endothelial cell attachment. The purpose of this study is to evaluate the effect of vacuum ultraviolet (VUV) modification of ePTFE on endothelial cell adhesion and proliferation. Pieces of ePTFE graft material were exposed to 10, 20 or 40 W VUV radiation for 10, 20 or 40 min using a UV excimer lamp. Prior to cell adhesion and proliferation experiments, the grafts pieces were autoclaved and cut into pledgets. Half of the pledgets were precoated with fibronectin ( 20 μg/ml). Cell adhesion was measured by seeding 3H-thymidine labeled human umbilical vein endothelial cells (HUVEC) onto the pledgets for 60 min. The pledgets were then washed and the remaining radioactivity assayed using scintillation counting. For the cell proliferation experiments, pledgets were seeded with unlabeled HUVEC which were allowed to adhere to the graft material for 18 h. The cells were then exposed to 3H-thymidine ( 1 μCi/ml) for approximately 48 h and then washed to remove any unincorporated 3H-thymidine. Incorporation of 3H-thymidine was measured using scintillation counting. Four replicate

  12. Early responses of vascular endothelial cells to topographic cues.

    PubMed

    Dreier, Britta; Gasiorowski, Joshua Z; Morgan, Joshua T; Nealey, Paul F; Russell, Paul; Murphy, Christopher J

    2013-08-01

    Vascular endothelial cells in vivo are exposed to multiple biophysical cues provided by the basement membrane, a specialized extracellular matrix through which vascular endothelial cells are attached to the underlying stroma. The importance of biophysical cues has been widely reported, but the signaling pathways that mediate cellular recognition and response to these cues remain poorly understood. Anisotropic topographically patterned substrates with nano- through microscale feature dimensions were fabricated to investigate cellular responses to topographic cues. The present study focuses on early events following exposure of human umbilical vein endothelial cells (HUVECs) to these patterned substrates. In serum-free medium and on substrates without protein coating, HUVECs oriented parallel to the long axis of underlying ridges in as little as 30 min. Immunocytochemistry showed clear differences in the localization of the focal adhesion proteins Src, p130Cas, and focal adhesion kinase (FAK) in HUVECs cultured on topographically patterned surfaces and on planar surfaces, suggesting involvement of these proteins in mediating the response to topographic features. Knockdown experiments demonstrated that FAK was not necessary for HUVEC alignment in response to topographic cues, although FAK knockdown did modulate HUVEC migration. These data identify key events early in the cellular response to biophysical stimuli.

  13. Role of the Retinal Vascular Endothelial Cell in Ocular Disease

    PubMed Central

    Bharadwaj, Arpita S.; Appukuttan, Binoy; Wilmarth, Phillip A.; Pan, Yuzhen; Stempel, Andrew J.; Chipps, Timothy J.; Benedetti, Eric E.; Zamora, David O.; Choi, Dongseok; David, Larry L.; Smith, Justine R.

    2012-01-01

    Retinal endothelial cells line the arborizing microvasculature that supplies and drains the neural retina. The anatomical and physiological characteristics of these endothelial cells are consistent with nutritional requirements and protection of a tissue critical to vision. On the one hand, the endothelium must ensure the supply of oxygen and other nutrients to the metabolically active retina, and allow access to circulating cells that maintain the vasculature or survey the retina for the presence of potential pathogens. On the other hand, the endothelium contributes to the blood-retinal barrier that protects the retina by excluding circulating molecular toxins, microorganisms, and pro-inflammatory leukocytes. Features required to fulfill these functions may also predispose to disease processes, such as retinal vascular leakage and neovascularization, and trafficking of microbes and inflammatory cells. Thus, the retinal endothelial cell is a key participant in retinal ischemic vasculopathies that include diabetic retinopathy and retinopathy of prematurity, and retinal inflammation or infection, as occurs in posterior uveitis. Using gene expression and proteomic profiling, it has been possible to explore the molecular phenotype of the human retinal endothelial cell and contribute to understanding of the pathogenesis of these diseases. In addition to providing support for the involvement of well-characterized endothelial molecules, profiling has the power to identify new players in retinal pathologies. Findings may have implications for the design of new biological therapies. Additional progress in this field is anticipated as other technologies, including epigenetic profiling methods, whole transcriptome shotgun sequencing, and metabolomics, are used to study the human retinal endothelial cell. PMID:22982179

  14. Bilirubin is an Endogenous Antioxidant in Human Vascular Endothelial Cells

    PubMed Central

    Ziberna, Lovro; Martelanc, Mitja; Franko, Mladen; Passamonti, Sabina

    2016-01-01

    Bilirubin is a standard serum biomarker of liver function. Inexplicably, it is inversely correlated with cardiovascular disease risk. Given the role of endothelial dysfunction in originating cardiovascular diseases, direct analysis of bilirubin in the vascular endothelium would shed light on these relationships. Hence, we used high-performance liquid chromatography coupled with thermal lens spectrometric detection and diode array detection for the determination of endogenous cellular IXα-bilirubin. To confirm the isomer IXα-bilirubin, we used ultra-performance liquid chromatography coupled with a high-resolution mass spectrometer using an electrospray ionization source, as well as tandem mass spectrometric detection. We measured bilirubin in both arterial and venous rat endothelium (0.9–1.5 pmol mg−1 protein). In the human endothelial Ea.hy926 cell line, we demonstrated that intracellular bilirubin (3–5 pmol mg−1 protein) could be modulated by either extracellular bilirubin uptake, or by up-regulation of heme oxygenase-1, a cellular enzyme related to endogenous bilirubin synthesis. Moreover, we determined intracellular antioxidant activity by bilirubin, with EC50 = 11.4 ± 0.2 nM, in the range of reported values of free serum bilirubin (8.5–13.1 nM). Biliverdin showed similar antioxidant properties as bilirubin. We infer from these observations that intra-endothelial bilirubin oscillates, and may thus be a dynamic factor of the endothelial function. PMID:27381978

  15. Atrial natriuretic peptide prevents cancer metastasis through vascular endothelial cells.

    PubMed

    Nojiri, Takashi; Hosoda, Hiroshi; Tokudome, Takeshi; Miura, Koichi; Ishikane, Shin; Otani, Kentaro; Kishimoto, Ichiro; Shintani, Yasushi; Inoue, Masayoshi; Kimura, Toru; Sawabata, Noriyoshi; Minami, Masato; Nakagiri, Tomoyuki; Funaki, Soichiro; Takeuchi, Yukiyasu; Maeda, Hajime; Kidoya, Hiroyasu; Kiyonari, Hiroshi; Shioi, Go; Arai, Yuji; Hasegawa, Takeshi; Takakura, Nobuyuki; Hori, Megumi; Ohno, Yuko; Miyazato, Mikiya; Mochizuki, Naoki; Okumura, Meinoshin; Kangawa, Kenji

    2015-03-31

    Most patients suffering from cancer die of metastatic disease. Surgical removal of solid tumors is performed as an initial attempt to cure patients; however, surgery is often accompanied with trauma, which can promote early recurrence by provoking detachment of tumor cells into the blood stream or inducing systemic inflammation or both. We have previously reported that administration of atrial natriuretic peptide (ANP) during the perioperative period reduces inflammatory response and has a prophylactic effect on postoperative cardiopulmonary complications in lung cancer surgery. Here we demonstrate that cancer recurrence after curative surgery was significantly lower in ANP-treated patients than in control patients (surgery alone). ANP is known to bind specifically to NPR1 [also called guanylyl cyclase-A (GC-A) receptor]. In mouse models, we found that metastasis of GC-A-nonexpressing tumor cells (i.e., B16 mouse melanoma cells) to the lung was increased in vascular endothelium-specific GC-A knockout mice and decreased in vascular endothelium-specific GC-A transgenic mice compared with control mice. We examined the effect of ANP on tumor metastasis in mice treated with lipopolysaccharide, which mimics systemic inflammation induced by surgical stress. ANP inhibited the adhesion of cancer cells to pulmonary arterial and micro-vascular endothelial cells by suppressing the E-selectin expression that is promoted by inflammation. These results suggest that ANP prevents cancer metastasis by inhibiting the adhesion of tumor cells to inflamed endothelial cells.

  16. Regulation of scar formation by vascular endothelial growth factor

    PubMed Central

    Wilgus, Traci A.; Ferreira, Ahalia M.; Oberyszyn, Tatiana M.; Bergdall, Valerie K.; DiPietro, Luisa A.

    2009-01-01

    Vascular endothelial growth factor (VEGF-A) is known for its effects on endothelial cells and as a positive mediator of angiogenesis. VEGF is thought to promote the repair of cutaneous wounds due to its pro-angiogenic properties, but its ability to regulate other aspects of wound repair, such as the generation of scar tissue has not been well studied. We examined the role of VEGF in scar tissue production utilizing models of scarless and fibrotic repair. Scarless fetal wounds had lower levels of VEGF and were less vascular than fibrotic fetal wounds, and the scarless phenotype could be converted to a scar-forming phenotype by adding exogenous VEGF. Similarly, neutralization of VEGF reduced vascularity and decreased scar formation in adult wounds. These results show that VEGF levels have a strong influence on scar tissue formation. Our data suggest that VEGF may not simply function as a mediator of wound angiogenesis, but instead may play a more diverse role in the wound repair process. PMID:18427552

  17. Atrial natriuretic peptide prevents cancer metastasis through vascular endothelial cells

    PubMed Central

    Nojiri, Takashi; Hosoda, Hiroshi; Tokudome, Takeshi; Miura, Koichi; Ishikane, Shin; Otani, Kentaro; Kishimoto, Ichiro; Shintani, Yasushi; Inoue, Masayoshi; Kimura, Toru; Sawabata, Noriyoshi; Minami, Masato; Nakagiri, Tomoyuki; Funaki, Soichiro; Takeuchi, Yukiyasu; Maeda, Hajime; Kidoya, Hiroyasu; Kiyonari, Hiroshi; Shioi, Go; Arai, Yuji; Hasegawa, Takeshi; Takakura, Nobuyuki; Hori, Megumi; Ohno, Yuko; Miyazato, Mikiya; Mochizuki, Naoki; Okumura, Meinoshin; Kangawa, Kenji

    2015-01-01

    Most patients suffering from cancer die of metastatic disease. Surgical removal of solid tumors is performed as an initial attempt to cure patients; however, surgery is often accompanied with trauma, which can promote early recurrence by provoking detachment of tumor cells into the blood stream or inducing systemic inflammation or both. We have previously reported that administration of atrial natriuretic peptide (ANP) during the perioperative period reduces inflammatory response and has a prophylactic effect on postoperative cardiopulmonary complications in lung cancer surgery. Here we demonstrate that cancer recurrence after curative surgery was significantly lower in ANP-treated patients than in control patients (surgery alone). ANP is known to bind specifically to NPR1 [also called guanylyl cyclase-A (GC-A) receptor]. In mouse models, we found that metastasis of GC-A–nonexpressing tumor cells (i.e., B16 mouse melanoma cells) to the lung was increased in vascular endothelium-specific GC-A knockout mice and decreased in vascular endothelium-specific GC-A transgenic mice compared with control mice. We examined the effect of ANP on tumor metastasis in mice treated with lipopolysaccharide, which mimics systemic inflammation induced by surgical stress. ANP inhibited the adhesion of cancer cells to pulmonary arterial and micro-vascular endothelial cells by suppressing the E-selectin expression that is promoted by inflammation. These results suggest that ANP prevents cancer metastasis by inhibiting the adhesion of tumor cells to inflamed endothelial cells. PMID:25775533

  18. Neddylated Cullin 3 is required for vascular endothelial-cadherin-mediated endothelial barrier function.

    PubMed

    Sakaue, Tomohisa; Fujisaki, Ayako; Nakayama, Hironao; Maekawa, Masashi; Hiyoshi, Hiromi; Kubota, Eiji; Joh, Takashi; Izutani, Hironori; Higashiyama, Shigeki

    2017-02-01

    Vascular endothelial (VE)-cadherin, a major endothelial adhesion molecule, regulates vascular permeability, and increased vascular permeability has been observed in several cancers. The aim of this study was to elucidate the role of the NEDD8-Cullin E3 ligase, in maintaining barrier permeability. To this end, we investigated the effects of the inhibition of Cullin E3 ligases, by using inhibitors and knockdown techniques in HUVECs. Furthermore, we analyzed the mRNA and protein levels of the ligases by quantitative RT-PCR and Western blotting, respectively. The results revealed that NEDD8-conjugated Cullin 3 is required for VE-cadherin-mediated endothelial barrier functions. Treatment of HUVECs with MLN4924, a chemical inhibitor of the NEDD8-activating enzyme, led to high vascular permeability due to impaired cell-cell contact. Similar results were obtained when HUVECs were treated with siRNA directed against Cullin 3, one of the target substrates of NEDD8. Immunocytochemical staining showed that both treatments equally depleted VE-cadherin protein localized at the cell-cell borders. However, quantitative RT-PCR showed that there was no significant difference in the VE-cadherin mRNA levels between the treatment and control groups. In addition, cycloheximide chase assay revealed that the half-life of VE-cadherin protein was dramatically reduced by Cullin 3 depletion. Together, these findings suggest that neddylated Cullin 3 plays a crucial role in endothelial cell barrier function by regulating VE-cadherin. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  19. Expression of vascular endothelial growth factor in malignant mesothelioma.

    PubMed

    Aoe, Keisuke; Hiraki, Akio; Tanaka, Takehiro; Gemba, Ken-Ichi; Taguchi, Koji; Murakami, Tomoyuki; Sueoka, Naoko; Kamei, Toshiaki; Ueoka, Hiroshi; Sugi, Kazuro; Yoshino, Tadashi; Kishimoto, Takumi

    2006-01-01

    Malignant mesothelioma is the most common primary pleural neoplasm. Angiogenesis is an important component of a variety of pathological processes, including carcinogenesis and tumor metastases. Vascular endothelial growth factor (VEGF) is the most potent known endothelial, cell specific mitogen. The authors assessed the relation between VEGF expression and clinicopathological variables or overall survival, in malignant mesothelioma. We studied 37 patients with malignant pleural mesothelioma and found that 36 out of 37 (97.3%) malignant mesothelioma samples were stained positively for VEGF. An increased expression of VEGF was observed in the epithelioid type compared with the other histological types of malignant mesothelioma, including the biphasic and sarcomatoid types. No statistically significant association was observed between VEGF expression and gender, age, or clinical stage. Furthermore, the expression of VEGF did not impact on the survival of patients with malignant mesothelioma. Although VEGF expression might be important for tumor development and maintenance, it was not identified as a prognostic factor in malignant mesothelioma.

  20. Mechanisms of vascular endothelial growth factor-induced pathfinding by endothelial sprouts in biomaterials.

    PubMed

    Shamloo, Amir; Xu, Hui; Heilshorn, Sarah

    2012-02-01

    A critical property of biomaterials for use in regenerative medicine applications is the ability to promote angiogenesis, the formation of new vascular networks, to support regenerating tissues. Recent studies have demonstrated that a complex interplay exists between biomechanical and biochemical regulators of endothelial cell sprouting, an early step in angiogenesis. Here, we use a microfluidic platform to study the pathfinding behaviors induced by various stable vascular endothelial growth factor (VEGF) gradients during sprouting morphogenesis within biomaterials. Quantitative, time-lapse analysis of endothelial sprouting demonstrated that the ability of VEGF to regulate sprout orientation during several stages of sprouting morphogenesis (initiation, elongation, and turning navigation) was biomaterial dependent. Identical VEGF gradients induced different types of coordinated cell movements depending on the density of the surrounding collagen/fibronectin matrix. In denser matrices, sprouts were more likely to have an initial orientation aligned parallel to the VEGF gradient. In contrast, in less dense matrices, sprouts were more likely to initially misalign with the VEGF gradient; however, these sprouts underwent significant turning and navigation to eventually reorient to be parallel to the VEGF gradient. These less dense matrices required shallower VEGF gradients and demonstrated lower activating VEGF thresholds to induce proper sprout alignment and pathfinding. These results encourage the future use of microfluidic platforms to probe fundamental aspects of matrix effects on angiogenesis, to screen biomaterials for angiogenic potential, and to design ex vivo tissues with aligned vascular networks.

  1. Mechanisms of Vascular Endothelial Growth Factor-Induced Pathfinding by Endothelial Sprouts in Biomaterials

    PubMed Central

    Shamloo, Amir; Xu, Hui

    2012-01-01

    A critical property of biomaterials for use in regenerative medicine applications is the ability to promote angiogenesis, the formation of new vascular networks, to support regenerating tissues. Recent studies have demonstrated that a complex interplay exists between biomechanical and biochemical regulators of endothelial cell sprouting, an early step in angiogenesis. Here, we use a microfluidic platform to study the pathfinding behaviors induced by various stable vascular endothelial growth factor (VEGF) gradients during sprouting morphogenesis within biomaterials. Quantitative, time-lapse analysis of endothelial sprouting demonstrated that the ability of VEGF to regulate sprout orientation during several stages of sprouting morphogenesis (initiation, elongation, and turning navigation) was biomaterial dependent. Identical VEGF gradients induced different types of coordinated cell movements depending on the density of the surrounding collagen/fibronectin matrix. In denser matrices, sprouts were more likely to have an initial orientation aligned parallel to the VEGF gradient. In contrast, in less dense matrices, sprouts were more likely to initially misalign with the VEGF gradient; however, these sprouts underwent significant turning and navigation to eventually reorient to be parallel to the VEGF gradient. These less dense matrices required shallower VEGF gradients and demonstrated lower activating VEGF thresholds to induce proper sprout alignment and pathfinding. These results encourage the future use of microfluidic platforms to probe fundamental aspects of matrix effects on angiogenesis, to screen biomaterials for angiogenic potential, and to design ex vivo tissues with aligned vascular networks. PMID:21888475

  2. Vascular endothelial-derived semaphorin 3 inhibits sympathetic axon growth.

    PubMed

    Damon, Deborah H

    2006-03-01

    Vascular sympathetic innervation is an important determinant of blood pressure and blood flow. The mechanisms that determine vascular sympathetic innervation are not well understood. Recent studies indicate that vascular endothelial cells (EC) express semaphorin 3A, a repulsive axon guidance cue. This suggests that EC would inhibit the growth of axons to blood vessels. The present study tests this hypothesis. RT-PCR and Western analyses confirmed that rat aortic vascular ECs expressed semaphorin 3A as well as other class 3 semaphorins (sema 3s). To determine the effects of EC-derived sema 3 on sympathetic axons, axon outgrowth was assessed in cultures of neonatal sympathetic ganglia grown for 72 h in the absence and presence of vascular EC. Nerve growth factor-induced axon growth in the presence of ECs was 50 +/- 4% (P < 0.05) of growth in the absence of ECs. ECs did not inhibit axon growth in the presence of an antibody that neutralized the activity of sema 3 (P > 0.05). RT-PCR and Western analyses also indicated that sema 3s were expressed in ECs of intact arteries. To assess the function of sema 3s in arteries, sympathetic ganglia were grown in the presence of arteries for 72 h, and the percentage of axons that grew toward the artery was determined: 44 +/- 4% of axons grew toward neonatal carotid arteries. Neutralization of sema 3s or removal of EC increased the percentage of axons that grew toward the artery (71 +/- 8% and 72 +/- 8%, respectively). These data indicate that vascular EC-derived sema 3s inhibit sympathetic axon growth and may thus be a determinant of vascular sympathetic innervation.

  3. Vascular endothelial growth factor: An important molecular target of curcumin.

    PubMed

    Saberi-Karimian, Maryam; Katsiki, Niki; Caraglia, Michele; Boccellino, Mariarosaria; Majeed, Muhammed; Sahebkar, Amirhossein

    2017-08-30

    The discovery of Vascular Endothelial Growth Factor (VEGF), the key modulator of angiogenesis, has triggered intensive research on anti-angiogenic therapeutic modalities. Although several clinical studies have validated anti-VEGF therapeutics, with few of them approved by the U.S. Food and Drug Administration (FDA), anti-angiogenic therapy is still in its infancy. Phytochemicals are compounds that have several metabolic and health benefits. Curcumin, the yellow pigment derived from turmeric (Curcuma longa L.) rhizomes, has a wide range of pharmaceutical properties. It has also been shown to inhibit VEGF by several studies. In this review, we elaborate the effect of curcumin on VEGF and angiogenesis and its therapeutic application.

  4. Vascular Endothelial growth factor signaling in hypoxia and Inflammation

    PubMed Central

    Ramakrishnan, S.; Anand, Vidhu; Roy, Sabita

    2014-01-01

    Infection, cancer and cardiovascular diseases are the major causes for morbidity and mortality in the United States according to the Center for Disease Control. The underlying etiology that contributes to the severity of these diseases is either hypoxia induced inflammation or inflammation resulting in hypoxia. Therefore, molecular mechanisms that regulate hypoxia-induced adaptive responses in cells are important areas of investigation. Oxygen availability is sensed by molecular switches which regulate synthesis and secretion of growth factors and inflammatory mediators. As a consequence, tissue microenvironment is altered by reprogramming metabolic pathways, angiogenesis, vascular permeability, pH homeostasis to facilitate tissue remodeling. Hypoxia inducible factor (HIF) is the central mediator of hypoxic response. HIF regulates several hundred genes and vascular endothelial growth factor (VEGF) is one of the primary target genes. Understanding the regulation of HIF and its influence on inflammatory response offers unique opportunities for drug development to modulate inflammation and ischemia in pathological conditions. PMID:24610033

  5. Signal Transduction by Vascular Endothelial Growth Factor Receptors

    PubMed Central

    Koch, Sina; Claesson-Welsh, Lena

    2012-01-01

    Vascular endothelial growth factors (VEGFs) are master regulators of vascular development and of blood and lymphatic vessel function during health and disease in the adult. It is therefore important to understand the mechanism of action of this family of five mammalian ligands, which act through three receptor tyrosine kinases (RTKs). In addition, coreceptors like neuropilins (NRPs) and integrins associate with the ligand/receptor signaling complex and modulate the output. Therapeutics to block several of the VEGF signaling components have been developed with the aim to halt blood vessel formation, angiogenesis, in diseases that involve tissue growth and inflammation, such as cancer. In this review, we outline the current information on VEGF signal transduction in relation to blood and lymphatic vessel biology. PMID:22762016

  6. Mesoporous bioactive glass scaffolds for efficient delivery of vascular endothelial growth factor.

    PubMed

    Wu, Chengtie; Fan, Wei; Chang, Jiang; Xiao, Yin

    2013-09-01

    In this article, we, for the first time, investigated mesoporous bioactive glass scaffolds for the delivery of vascular endothelial growth factor. We have found that mesoporous bioactive glass scaffolds have significantly higher loading efficiency and more sustained release of vascular endothelial growth factor than non-mesoporous bioactive glass scaffolds. In addition, vascular endothelial growth factor delivery from mesoporous bioactive glass scaffolds has improved the viability of endothelial cells. The study has suggested that mesopore structures in mesoporous bioactive glass scaffolds play an important role in improving the loading efficiency, decreasing the burst release, and maintaining the bioactivity of vascular endothelial growth factor, indicating that mesoporous bioactive glass scaffolds are an excellent carrier of vascular endothelial growth factor for potential bone tissue engineering applications.

  7. Reprogramming Human Endothelial to Hematopoietic Cells Requires Vascular Induction

    PubMed Central

    Sandler, Vladislav M.; Lis, Raphael; Liu, Ying; Kedem, Alon; James, Daylon; Elemento, Olivier; Butler, Jason M.; Scandura, Joseph M.; Rafii, Shahin

    2014-01-01

    Summary Generating engraftable human hematopoietic cells from autologous tissues promises new therapies for blood diseases. Directed differentiation of pluripotent stem cells yields hematopoietic cells that poorly engraft. Here, we devised a method to phenocopy the vascular-niche microenvironment of hemogenic cells, thereby enabling reprogramming of human endothelial cells (ECs) into engraftable hematopoietic cells without transition through a pluripotent intermediate. Highly purified non-hemogenic human umbilical vein-ECs (HUVECs) or adult dermal microvascular ECs (hDMECs) were transduced with transcription factors (TFs), FOSB, GFI1, RUNX1, and SPI1 (FGRS), and then propagated on serum-free instructive vascular niche monolayers to induce outgrowth of hematopoietic colonies containing cells with functional and immunophenotypic features of multipotent progenitor cells (MPP). These reprogrammed ECs- into human-MPPs (rEC-hMPPs) acquire colony-forming cell (CFC) potential and durably engraft in immune-deficient mice after primary and secondary transplantation, producing long-term rEC-hMPP-derived myeloid (granulocytic/monocytic, erythroid, megakaryocytic) and lymphoid (NK, B) progeny. Conditional expression of FGRS transgenes, combined with vascular-induction, activates endogenous FGRS genes endowing rEC-hMPPs with a transcriptional and functional profile similar to self-renewing MPPs. Our approach underscores the role of inductive cues from vascular-niche in orchestrating and sustaining hematopoietic specification and may prove useful for engineering autologous hematopoietic grafts to treat inherited and acquired blood disorders. PMID:25030167

  8. Regulated Angiogenesis and Vascular Regression in Mice Overexpressing Vascular Endothelial Growth Factor in Airways

    PubMed Central

    Baluk, Peter; Lee, Chun Geun; Link, Holger; Ator, Erin; Haskell, Amy; Elias, Jack A.; McDonald, Donald M.

    2004-01-01

    Angiogenesis and vascular remodeling occurs in many inflammatory diseases, including asthma. In this study, we determined the time course and reversibility of the angiogenesis and vascular remodeling produced by vascular endothelial growth factor (VEGF) in a tet-on inducible transgenic system driven by the CC10 promoter in airway epithelium. One day after switching on VEGF expression, endothelial sprouts arose from venules, grew toward the epithelium, and were abundant by 3 to 5 days. Vessel density reached twice baseline by 7 days. Many new vessels were significantly larger than normal, were fenestrated, and penetrated the epithelium. Despite their mature appearance at 7 days suggested by their pericyte coat and basement membrane, the new vessels started to regress within 3 days when VEGF was switched off, showing stasis and luminal occlusion, influx of inflammatory cells, and retraction and apoptosis of endothelial cells and pericytes. Vessel density returned to normal within 28 days after VEGF withdrawal. Our study showed the dynamic nature of airway angiogenesis and regression. Blood vessels can respond to VEGF by sprouting angiogenesis within a few days, but regress more slowly after VEGF withdrawal, and leave a historical record of their previous extent in the form of empty basement membrane sleeves. PMID:15466375

  9. Growing vascular endothelial cells express somatostatin subtype 2 receptors

    PubMed Central

    Watson, J C; Balster, D A; Gebhardt, B M; O'Dorisio, T M; O'Dorisio, M S; Espenan, G D; Drouant, G J; Woltering, E A

    2001-01-01

    We hypothesized that non-proliferating (quiescent) human vascular endothelial cells would not express somatostatin receptor subtype 2 (sst 2) and that this receptor would be expressed when the endothelial cells begin to grow. To test this hypothesis, placental veins were harvested from 6 human placentas and 2 mm vein disks were cultured in 0.3% fibrin gels. Morphometric analysis confirmed that 50–75% of cultured vein disks developed radial capillary growth within 15 days. Sst 2 gene expression was determined by reverse transcription-polymerase chain reaction (RT-PCR) analysis of the RNA from veins before culture and from tissue-matched vein disks that exhibited an angiogenic response. The sst 2 gene was expressed in the proliferating angiogenic sprouts of human vascular endothelium. The presence of sst 2 receptors on proliferating angiogenic vessels was confirmed by immunohistochemical staining and in vivo scintigraphy. These results suggest that sst 2 may be a unique target for antiangiogenic therapy with sst 2 preferring somatostatin analogues conjugated to radioisotopes or cytotoxic agents. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11461088

  10. Functional CB1 cannabinoid receptors in human vascular endothelial cells.

    PubMed Central

    Liu, J; Gao, B; Mirshahi, F; Sanyal, A J; Khanolkar, A D; Makriyannis, A; Kunos, G

    2000-01-01

    Cannabinoid CB1 receptor mRNA was detected using reverse transcription-polymerase chain reaction (RT-PCR) in endothelial cells from human aorta and hepatic artery and in the ECV304 cell line derived from human umbilical vein endothelial cells. CB1 receptor-binding sites were detected by the high-affinity antagonist radioligand [(125)I]AM-251. In ECV304 cells, both the highly potent synthetic cannabinoid agonist HU-210 and the endogenous ligand anandamide induce activation of mitogen-activated protein (MAP) kinase, and the effect of HU-210 was completely blocked, whereas the effect of anandamide was partially inhibited by SR141716A, a selective CB1 receptor antagonist. Transfection of ECV304 cells with CB1 receptor antisense, but not sense, oligonucleotides caused the same pattern of inhibition as SR141716A. This provides more definitive evidence for the involvement of CB1 receptors in MAP kinase activation and suggests that anandamide may also activate MAP kinase via an additional, CB1 receptor-independent, SR141716A-resistant mechanism. The MAP kinase activation by anandamide in ECV304 cells requires genistein-sensitive tyrosine kinases and protein kinase C (PKC), and anandamide also activates p38 kinase and c-Jun kinase. These findings indicate that CB1 receptors located in human vascular endothelium are functionally coupled to the MAP kinase cascade. Activation of protein kinase cascades by anandamide may be involved in the modulation of endothelial cell growth and proliferation. PMID:10698714

  11. Telmisartan activates endothelial nitric oxide synthase via Ser1177 phosphorylation in vascular endothelial cells.

    PubMed

    Myojo, Masahiro; Nagata, Daisuke; Fujita, Daishi; Kiyosue, Arihiro; Takahashi, Masao; Satonaka, Hiroshi; Morishita, Yoshiyuki; Akimoto, Tetsu; Nagai, Ryozo; Komuro, Issei; Hirata, Yasunobu

    2014-01-01

    Because endothelial nitric oxide synthase (eNOS) has anti-inflammatory and anti-arteriosclerotic functions, it has been recognized as one of the key molecules essential for the homeostatic control of blood vessels other than relaxation of vascular tone. Here, we examined whether telmisartan modulates eNOS function through its pleiotropic effect. Administration of telmisartan to mice significantly increased the phosphorylation level of eNOS (Ser1177) in the aortic endothelium, but administration of valsartan had no effect. Similarly, telmisartan treatment of human umbilical vein endothelial cells significantly increased the phosphorylation levels of AMP-activated protein kinase (Thr172) and eNOS and the concentration of intracellular guanosine 3',5'-cyclic monophosphate (cGMP). Furthermore, pretreatment with a p38 mitogen-activated protein kinase (p38 MAPK) inhibitor suppressed the increased phosphorylation level of eNOS and intracellular cGMP concentration. These data show that telmisartan increases eNOS activity through Ser1177 phosphorylation in vascular endothelial cells mainly via p38 MAPK signaling.

  12. Telmisartan Activates Endothelial Nitric Oxide Synthase via Ser1177 Phosphorylation in Vascular Endothelial Cells

    PubMed Central

    Myojo, Masahiro; Nagata, Daisuke; Fujita, Daishi; Kiyosue, Arihiro; Takahashi, Masao; Satonaka, Hiroshi; Morishita, Yoshiyuki; Akimoto, Tetsu; Nagai, Ryozo; Komuro, Issei; Hirata, Yasunobu

    2014-01-01

    Because endothelial nitric oxide synthase (eNOS) has anti-inflammatory and anti-arteriosclerotic functions, it has been recognized as one of the key molecules essential for the homeostatic control of blood vessels other than relaxation of vascular tone. Here, we examined whether telmisartan modulates eNOS function through its pleiotropic effect. Administration of telmisartan to mice significantly increased the phosphorylation level of eNOS (Ser1177) in the aortic endothelium, but administration of valsartan had no effect. Similarly, telmisartan treatment of human umbilical vein endothelial cells significantly increased the phosphorylation levels of AMP-activated protein kinase (Thr172) and eNOS and the concentration of intracellular guanosine 3′,5′-cyclic monophosphate (cGMP). Furthermore, pretreatment with a p38 mitogen-activated protein kinase (p38 MAPK) inhibitor suppressed the increased phosphorylation level of eNOS and intracellular cGMP concentration. These data show that telmisartan increases eNOS activity through Ser1177 phosphorylation in vascular endothelial cells mainly via p38 MAPK signaling. PMID:24827148

  13. Endothelial dysfunction impairs vascular neurotransmission in tail arteries.

    PubMed

    Sousa, Joana B; Fresco, Paula; Diniz, Carmen

    2015-01-01

    The present study intends to clarify if endothelium dysfunction impairs vascular sympathetic neurotransmission. Electrically-evoked tritium overflow (100 pulses/5 Hz) was evaluated in arteries (intact and denuded) or exhibiting some degree of endothelium dysfunction (spontaneously hypertensive arteries), pre-incubated with [(3)H]-noradrenaline in the presence of enzymes (nitric oxide synthase (NOS); nicotinamide adenine dinucleotide phosphate (NADPH) oxidase; xanthine oxidase; cyclooxygenase; adenosine kinase) inhibitors and a nucleoside transporter inhibitor. Inhibition of endothelial nitric oxide synthase with L-NIO dihydrochloride reduced tritium overflow in intact arteries whereas inhibition of neuronal nitric oxide synthase with Nω-Propyl-L-arginine hydrochloride was devoid of effect showing that only endothelial nitric oxide synthase is involved in vascular sympathetic neuromodulation. Inhibition of enzymes involved in reactive oxygen species or prostaglandins production with apocynin and allopurinol or indomethacin, respectively, failed to alter tritium overflow. A facilitation or reduction of tritium overflow was observed in the presence of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) or of 5-iodotubericidin, respectively, but only in intact arteries. These effects can be ascribed to a tonic inhibitory effect mediated by A1 receptors. In denuded and hypertensive arteries, 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c] pyrimidine (SCH 58261) reduced tritium overflow, suggesting the occurrence of a tonic activation of A2A receptors. When endogenous adenosine bioavailability was increased by the nucleoside transporter inhibitor, S-(4-Nitrobenzyl)-6-thioinosine, tritium overflow increased in intact, denuded and hypertensive arteries. Among the endothelium-derived substances studied that could alter vascular sympathetic transmission only adenosine/adenosine receptor mediated mechanisms were clearly impaired by endothelium injury/dysfunction.

  14. Endothelial Snail Regulates Capillary Branching Morphogenesis via Vascular Endothelial Growth Factor Receptor 3 Expression.

    PubMed

    Park, Jeong Ae; Kim, Dong Young; Kim, Young-Myeong; Lee, In-Kyu; Kwon, Young-Guen

    2015-07-01

    Vascular branching morphogenesis is activated and maintained by several signaling pathways. Among them, vascular endothelial growth factor receptor 2 (VEGFR2) signaling is largely presented in arteries, and VEGFR3 signaling is in veins and capillaries. Recent reports have documented that Snail, a well-known epithelial-to-mesenchymal transition protein, is expressed in endothelial cells, where it regulates sprouting angiogenesis and embryonic vascular development. Here, we identified Snail as a regulator of VEGFR3 expression during capillary branching morphogenesis. Snail was dramatically upregulated in sprouting vessels in the developing retinal vasculature, including the leading-edged vessels and vertical sprouting vessels for capillary extension toward the deep retina. Results from in vitro functional studies demonstrate that Snail expression colocalized with VEGFR3 and upregulated VEGFR3 mRNA by directly binding to the VEGFR3 promoter via cooperating with early growth response protein-1. Snail knockdown in postnatal mice attenuated the formation of the deep capillary plexus, not only by impairing vertical sprouting vessels but also by downregulating VEGFR3 expression. Collectively, these data suggest that the Snail-VEGFR3 axis controls capillary extension, especially in vessels expressing VEGFR2 at low levels.

  15. Interaction between human monocytes and vascular smooth muscle cells induces vascular endothelial growth factor expression.

    PubMed

    Hojo, Y; Ikeda, U; Maeda, Y; Takahashi, M; Takizawa, T; Okada, M; Funayama, H; Shimada, K

    2000-05-01

    The objective of this study was to investigate whether synthesis of vascular endothelial growth factor (VEGF), a major mitogen for vascular endothelial cells, was induced by a cell-to-cell interaction between monocytes and vascular smooth muscle cells (VSMCs). Human VSMCs and THP-1 cells (human monocytoid cell) were cocultured. VEGF levels in the coculture medium were determined by enzyme-linked immunosorbent assay. Northern blot analysis of VEGF mRNA was performed using a specific cDNA probe. Immunohistochemistry was performed to determine which types of cell produce VEGF. Adding THP-1 cells to VSMCs for 24 h increased VEGF levels of the culture media, 8- and 10-fold relative to those of THP-1 cells and VSMCs alone, respectively. Northern blot analysis showed that VEGF mRNA expression was induced in the cocultured cells and peaked after 12 h. Immunohistochemistry disclosed that both types of cell in the coculture produced VEGF. Separate coculture experiments revealed that both direct contact and a soluble factor(s) contributed to VEGF production. Neutralizing anti-interleukin (IL)-6 antibody inhibited VEGF production by the coculture of THP-1 cells and VSMCs. A cell-to-cell interaction between monocytes and VSMCs induced VEGF synthesis in both types of cell. An IL-6 mediated mechanism is at least partially involved in VEGF production by the cocultures. Local VEGF production induced by a monocyte-VSMC interaction may play an important role in atherosclerosis and vascular remodeling.

  16. Preeclampsia does not alter vascular growth and expression of CD31 and vascular endothelial cadherin in human placentas.

    PubMed

    Li, Yan; Zhao, Ying-Jie; Zou, Qing-Yun; Zhang, Kevin; Wu, Yan-Ming; Zhou, Chi; Wang, Kai; Zheng, Jing

    2015-01-01

    Preeclampsia is characterized by maternal endothelial dysfunction (e.g., increased maternal vascular permeability caused by the disassembly of endothelial junction proteins). However, it is unclear if preeclampsia is associated with impaired vascular growth and expression of endothelial junction proteins in human placentas. Herein, we examined vascular growth in placentas from women with normal term (NT) and preeclamptic (PE) pregnancies using two endothelial junction proteins as endothelial markers: CD31 and vascular endothelial-cadherin (VE-Cad). We also compared protein and mRNA expression of CD31 and VE-Cad between NT and PE placentas, and determined the alternatively spliced expression of CD31 using PCR. We found that CD31 and VE-Cad were immunolocalized predominantly in villous endothelial cells. However, capillary number density (total capillary number per unit villous area) and capillary area density (total capillary lumen area per unit villous area) as well as CD31 and VE-Cad protein and mRNA levels were similar between NT and PE placentas. PCR in combination with sequence analysis revealed a single, full-length CD31, suggesting that there are no alternatively spliced isoform of CD31 expressed in placentas. These data indicate that preeclampsia does not significantly affect vascular growth or the expression of endothelial junction proteins in human placentas. © The Author(s) 2014.

  17. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications.

    PubMed

    Ren, Xiangkui; Feng, Yakai; Guo, Jintang; Wang, Haixia; Li, Qian; Yang, Jing; Hao, Xuefang; Lv, Juan; Ma, Nan; Li, Wenzhong

    2015-08-07

    Surface modification and endothelialization of vascular biomaterials are common approaches that are used to both resist the nonspecific adhesion of proteins and improve the hemocompatibility and long-term patency of artificial vascular grafts. Surface modification of vascular grafts using hydrophilic poly(ethylene glycol), zwitterionic polymers, heparin or other bioactive molecules can efficiently enhance hemocompatibility, and consequently prevent thrombosis on artificial vascular grafts. However, these modified surfaces may be excessively hydrophilic, which limits initial vascular endothelial cell adhesion and formation of a confluent endothelial lining. Therefore, the improvement of endothelialization on these grafts by chemical modification with specific peptides and genes is now arousing more and more interest. Several active peptides, such as RGD, CAG, REDV and YIGSR, can be specifically recognized by endothelial cells. Consequently, graft surfaces that are modified by these peptides can exhibit targeting selectivity for the adhesion of endothelial cells, and genes can be delivered by targeting carriers to specific tissues to enhance the promotion and regeneration of blood vessels. These methods could effectively accelerate selective endothelial cell recruitment and functional endothelialization. In this review, recent developments in the surface modification and endothelialization of biomaterials in vascular tissue engineering are summarized. Both gene engineering and targeting ligand immobilization are promising methods to improve the clinical outcome of artificial vascular grafts.

  18. Vascular endothelial growth factor stimulates osteoblastic differentiation of cultured human periosteal-derived cells expressing vascular endothelial growth factor receptors.

    PubMed

    Hah, Young-Sool; Jun, Jin-Su; Lee, Seong-Gyun; Park, Bong-Wook; Kim, Deok Ryong; Kim, Uk-Kyu; Kim, Jong-Ryoul; Byun, June-Ho

    2011-02-01

    Angiogenesis plays an important role in bone development and postnatal bone fracture repair. Vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptors (VEGFRs) are primarily involved in angiogenesis. This study investigated the expression of VEGF isoforms, VEGFR-1, and VEGFR-2 during the osteoblastic differentiation of cultured human periosteal-derived cells. In addition, the effect of exogenous VEGF on the osteoblastic differentiation of cultured human periosteal-derived cells was also examined. The expression of the VEGF isoforms (VEGF(121), VEGF(165), VEGF(189), and VEGF(206)), VEGFR-1, and VEGFR-2 was observed in the periosteal-derived cells. Administration of KRN633, a VEGFR-1 and VEGFR-2 inhibitor, decreased the alkaline phosphatase (ALP) activity during the osteoblastic differentiation of cultured human periosteal-derived cells. However, the administration of VEGFR2 Kinase Inhibitor IV, a VEGFR-2 inhibitor, did not affect the ALP activity. The addition of recombinant human VEGF(165) elevated the ALP activity and increased the calcium content in the periosteal-derived cells. Treating the periosteal-derived cells with recombinant human VEGF(165) resulted in an increase in Runx2 transactivation in the periosteal-derived cells. These results suggest that exogenous VEGF stimulates the osteoblastic differentiation of cultured human periosteal-derived cells and VEGF might act as an autocrine growth factor for the osteoblastic differentiation of cultured human periosteal-derived cells.

  19. A Translocated Bacterial Protein Protects Vascular Endothelial Cells from Apoptosis

    PubMed Central

    Schmid, Michael C; Scheidegger, Florine; Dehio, Michaela; Balmelle-Devaux, Nadège; Schulein, Ralf; Guye, Patrick; Chennakesava, Cuddapah S; Biedermann, Barbara; Dehio, Christoph

    2006-01-01

    The modulation of host cell apoptosis by bacterial pathogens is of critical importance for the outcome of the infection process. The capacity of Bartonella henselae and B. quintana to cause vascular tumor formation in immunocompromised patients is linked to the inhibition of vascular endothelial cell (EC) apoptosis. Here, we show that translocation of BepA, a type IV secretion (T4S) substrate, is necessary and sufficient to inhibit EC apoptosis. Ectopic expression in ECs allowed mapping of the anti-apoptotic activity of BepA to the Bep intracellular delivery domain, which, as part of the signal for T4S, is conserved in other T4S substrates. The anti-apoptotic activity appeared to be limited to BepA orthologs of B. henselae and B. quintana and correlated with (i) protein localization to the host cell plasma membrane, (ii) elevated levels of intracellular cyclic adenosine monophosphate (cAMP), and (iii) increased expression of cAMP-responsive genes. The pharmacological elevation of cAMP levels protected ECs from apoptosis, indicating that BepA mediates anti-apoptosis by heightening cAMP levels by a plasma membrane–associated mechanism. Finally, we demonstrate that BepA mediates protection of ECs against apoptosis triggered by cytotoxic T lymphocytes, suggesting a physiological context in which the anti-apoptotic activity of BepA contributes to tumor formation in the chronically infected vascular endothelium. PMID:17121462

  20. KLF2 and KLF4 control endothelial identity and vascular integrity

    PubMed Central

    Sangwung, Panjamaporn; Zhou, Guangjin; Nayak, Lalitha; Chan, E. Ricky; Kang, Dong-Won; Zhang, Rongli; Lu, Yuan; Sugi, Keiki; Fujioka, Hisashi; Shi, Hong; Lapping, Stephanie D.; Ghosh, Chandra C.; Higgins, Sarah J.; Parikh, Samir M.; Jain, Mukesh K.

    2017-01-01

    Maintenance of vascular integrity in the adult animal is needed for survival, and it is critically dependent on the endothelial lining, which controls barrier function, blood fluidity, and flow dynamics. However, nodal regulators that coordinate endothelial identity and function in the adult animal remain poorly characterized. Here, we show that endothelial KLF2 and KLF4 control a large segment of the endothelial transcriptome, thereby affecting virtually all key endothelial functions. Inducible endothelial-specific deletion of Klf2 and/or Klf4 reveals that a single allele of either gene is sufficient for survival, but absence of both (EC-DKO) results in acute death from myocardial infarction, heart failure, and stroke. EC-DKO animals exhibit profound compromise in vascular integrity and profound dysregulation of the coagulation system. Collectively, these studies establish an absolute requirement for KLF2/4 for maintenance of endothelial and vascular integrity in the adult animal. PMID:28239661

  1. KLF2 and KLF4 control endothelial identity and vascular integrity.

    PubMed

    Sangwung, Panjamaporn; Zhou, Guangjin; Nayak, Lalitha; Chan, E Ricky; Kumar, Sandeep; Kang, Dong-Won; Zhang, Rongli; Liao, Xudong; Lu, Yuan; Sugi, Keiki; Fujioka, Hisashi; Shi, Hong; Lapping, Stephanie D; Ghosh, Chandra C; Higgins, Sarah J; Parikh, Samir M; Jo, Hanjoong; Jain, Mukesh K

    2017-02-23

    Maintenance of vascular integrity in the adult animal is needed for survival, and it is critically dependent on the endothelial lining, which controls barrier function, blood fluidity, and flow dynamics. However, nodal regulators that coordinate endothelial identity and function in the adult animal remain poorly characterized. Here, we show that endothelial KLF2 and KLF4 control a large segment of the endothelial transcriptome, thereby affecting virtually all key endothelial functions. Inducible endothelial-specific deletion of Klf2 and/or Klf4 reveals that a single allele of either gene is sufficient for survival, but absence of both (EC-DKO) results in acute death from myocardial infarction, heart failure, and stroke. EC-DKO animals exhibit profound compromise in vascular integrity and profound dysregulation of the coagulation system. Collectively, these studies establish an absolute requirement for KLF2/4 for maintenance of endothelial and vascular integrity in the adult animal.

  2. Vascular endothelial growth factor signalling in endothelial cell survival: A role for NF{kappa}B

    SciTech Connect

    Grosjean, Jennifer . E-mail: Jennifer.grosjean@imperial.ac.uk; Kiriakidis, Serafim; Reilly, Kerri; Feldmann, Marc; Paleolog, Ewa

    2006-02-17

    Angiogenesis is the development of blood capillaries from pre-existing vessels. Vascular endothelial growth factor (VEGF) is a key regulator of vessel growth and regression, and acts as an endothelial survival factor by protecting endothelial cells from apoptosis. Many genes involved in cell proliferation and apoptosis are regulated by the nuclear factor kappa B (NF{kappa}B) transcription factor family. This study aimed to address the hypothesis that VEGF-mediated survival effects on endothelium involve NF{kappa}B. Using an NF{kappa}B-luciferase reporter adenovirus, we observed activation of NF{kappa}B following VEGF treatment of human umbilical vein endothelial cells. This was confirmed using electrophoretic mobility shift assay and found to involve nuclear translocation of NF{kappa}B sub-unit p65. However, NF{kappa}B activation occurred without degradation of inhibitory I{kappa}B proteins (I{kappa}B{alpha}, I{kappa}B{beta}, and I{kappa}B{epsilon}). Instead, tyrosine phosphorylation of I{kappa}B{alpha} was observed following VEGF treatment, suggesting NF{kappa}B activation was mediated by degradation-independent dissociation of I{kappa}B{alpha} from NF{kappa}B. Adenovirus-mediated over-expression of either native I{kappa}B{alpha}, or of I{kappa}B{alpha} in which tyrosine residue 42 was mutated to phenylalanine, inhibited induction of NF{kappa}B-dependent luciferase activity in response to VEGF. Furthermore, VEGF-induced upregulation of mRNA for the anti-apoptotic protein Bcl-2 and cell survival following serum withdrawal was reduced following I{kappa}B{alpha} over-expression. This study highlights that different molecular mechanisms of NF{kappa}B activation may be involved downstream of stimuli which activate the endothelial lining of blood vessels.

  3. Molecular Docking and Interactions of Pueraria Tuberosa with Vascular Endothelial Growth Factor Receptors

    PubMed Central

    Asthana, S.; Agarwal, T.; Singothu, S.; Samal, A.; Banerjee, I.; Pal, K.; Pramanik, K.; Ray, S. S.

    2015-01-01

    Pueraria tuberosa is known for its therapeutic potentials in cardiovascular disorders, but its effect in angiogenesis has not been studied so far. In this study, a computational approach has been applied to elucidate the role of the phytochemicals in inhibition of angiogenesis through modulation of vascular endothelial growth factor receptors: Vascular endothelial growth factor receptor-1 and vascular endothelial growth factor receptor-2, major factors responsible for angiogenesis. Metabolite structures retrieved from PubChem and KNApSAcK – 3D databases, were docked using AutoDock4.2 tool. Hydrogen bond and molecular docking, absorption, distribution, metabolism and excretion and toxicity predictions were carried out using UCSF Chimera, LigPlot+ and PreADMET server, respectively. From the docking analysis, it was observed that puerarone and tuberostan had significant binding affinity for the intracellular kinase domain of vascular endothelial growth factor receptors-1 and vascular endothelial growth factor receptor-2 respectively. It is important to mention that both the phytochemicals shared similar interaction profile as that of standard inhibitors of vascular endothelial growth factor receptors. Also, both puerarone and tuberostan interacted with Lys861/Lys868 (adenosine 5’-triphosphate binding site of vascular endothelial growth factor receptors-1/vascular endothelial growth factor receptors-2), thus providing a clue that they may enforce their inhibitory effect by blocking the adenosine 5’-triphosphate binding domain of vascular endothelial growth factor receptors. Moreover, these molecules exhibited good drug-likeness, absorption, distribution, metabolism and excretion properties without any carcinogenic and toxic effects. The interaction pattern of the puerarone and tuberostan may provide a hint for a novel drug design for vascular endothelial growth factor tyrosine kinase receptors with better specificity to treat angiogenic disorders. PMID:26664060

  4. Arterial ageing: from endothelial dysfunction to vascular calcification.

    PubMed

    Tesauro, M; Mauriello, A; Rovella, V; Annicchiarico-Petruzzelli, M; Cardillo, C; Melino, G; Di Daniele, N

    2017-05-01

    Complex structural and functional changes occur in the arterial system with advancing age. The aged artery is characterized by changes in microRNA expression patterns, autophagy, smooth muscle cell migration and proliferation, and arterial calcification with progressively increased mechanical vessel rigidity and stiffness. With age the vascular smooth muscle cells modify their phenotype from contractile to 'synthetic' determining the development of intimal thickening as early as the second decade of life as an adaptive response to forces acting on the arterial wall. The increased permeability observed in intimal thickening could represent the substrate on which low-level atherosclerotic stimuli can promote the development of advanced atherosclerotic lesions. In elderly patients the atherosclerotic plaques tend to be larger with increased vascular stenosis. In these plaques there is a progressive accumulation of both lipids and collagen and a decrease of inflammation. Similarly the plaques from elderly patients show more calcification as compared with those from younger patients. The coronary artery calcium score is a well-established marker of adverse cardiovascular outcomes. The presence of diffuse calcification in a severely stenotic segment probably induces changes in mechanical properties and shear stress of the arterial wall favouring the rupture of a vulnerable lesion in a less stenotic adjacent segment. Oxidative stress and inflammation appear to be the two primary pathological mechanisms of ageing-related endothelial dysfunction even in the absence of clinical disease. Arterial ageing is no longer considered an inexorable process. Only a better understanding of the link between ageing and vascular dysfunction can lead to significant advances in both preventative and therapeutic treatments with the aim that in the future vascular ageing may be halted or even reversed. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  5. Histamine Induces Vascular Hyperpermeability by Increasing Blood Flow and Endothelial Barrier Disruption In Vivo.

    PubMed

    Ashina, Kohei; Tsubosaka, Yoshiki; Nakamura, Tatsuro; Omori, Keisuke; Kobayashi, Koji; Hori, Masatoshi; Ozaki, Hiroshi; Murata, Takahisa

    2015-01-01

    Histamine is a mediator of allergic inflammation released mainly from mast cells. Although histamine strongly increases vascular permeability, its precise mechanism under in vivo situation remains unknown. We here attempted to reveal how histamine induces vascular hyperpermeability focusing on the key regulators of vascular permeability, blood flow and endothelial barrier. Degranulation of mast cells by antigen-stimulation or histamine treatment induced vascular hyperpermeability and tissue swelling in mouse ears. These were abolished by histamine H1 receptor antagonism. Intravital imaging showed that histamine dilated vasculature, increased blood flow, while it induced hyperpermeability in venula. Whole-mount staining showed that histamine disrupted endothelial barrier formation of venula indicated by changes in vascular endothelial cadherin (VE-cadherin) localization at endothelial cell junction. Inhibition of nitric oxide synthesis (NOS) by L-NAME or vasoconstriction by phenylephrine strongly inhibited the histamine-induced blood flow increase and hyperpermeability without changing the VE-cadherin localization. In vitro, measurements of trans-endothelial electrical resistance of human dermal microvascular endothelial cells (HDMECs) showed that histamine disrupted endothelial barrier. Inhibition of protein kinase C (PKC) or Rho-associated protein kinase (ROCK), NOS attenuated the histamine-induced barrier disruption. These observations suggested that histamine increases vascular permeability mainly by nitric oxide (NO)-dependent vascular dilation and subsequent blood flow increase and maybe partially by PKC/ROCK/NO-dependent endothelial barrier disruption.

  6. Alternative splicing in angiogenesis: the vascular endothelial growth factor paradigm.

    PubMed

    Ladomery, Michael R; Harper, Steven J; Bates, David O

    2007-05-08

    Alternative splicing, first discovered in the 1970s, has emerged as one of the key generators of proteomic diversity. Not surprisingly, alternative splicing is increasingly linked to the etiology of cancer. This is illustrated by vascular endothelial growth factor (VEGF), the dominant angiogenic factor. Recently, an antiangiogenic family of VEGF isoforms was discovered, and termed VEGF(xxx)b. VEGF(xxx)b isoforms arise from an alternative 3' splice site in exon 8, and differ by a mere six amino acids at the C-terminus. These alternative six amino acids radically change the functional properties of VEGF. VEGF(xxx)b isoform expression is regulated in human tissues and development, and disregulated in many pathological states including cancer. Understanding what regulates VEGF(xxx)b alternative splicing, and therefore the balance of pro- and antiangiogenic isoforms is of great importance and will be explored in detail over the next few years.

  7. Classification of signals for blocking apoptosis in vascular endothelial cells.

    PubMed

    Hase, M; Araki, S; Kaji, K; Hayashi, H

    1994-10-01

    The survival and death of human umbilical vascular endothelial cells in culture are affected by several factors, such as fibroblast growth factor (FGF), serum, phorbol ester (TPA), and vanadate. In order to identify common aspects of the various signal-transduction processes during the course of apoptotic or programmed cell death, we designed experiments to distinguish between these factors in terms of the pathway that is responsible for the processing of each stimulus. We found, for example, that the effect of removal of FGF was specifically overcome by the addition of the phorbol ester. Our results indicated that two distinct pathways were operative, one specific for signal transduction initiated by FGF and phorbol ester and another specific for signal transduction initiated by serum and vanadate. These two pathways merged down-stream of the individual signal-processing pathways.

  8. Anti-Vascular Endothelial Growth Factor Therapy in Breast Cancer

    PubMed Central

    Kristensen, Tina Bøgelund; Knutsson, Malin L. T.; Wehland, Markus; Laursen, Britt Elmedal; Grimm, Daniela; Warnke, Elisabeth; Magnusson, Nils E.

    2014-01-01

    Neo-angiogenesis is a critical process for tumor growth and invasion and has become a promising target in cancer therapy. This manuscript reviews three currently relevant anti-angiogenic agents targeting the vascular endothelial growth factor system: bevacizumab, ramucirumab and sorafenib. The efficacy of anti-angiogenic drugs in adjuvant therapy or as neo-adjuvant treatment has been estimated in clinical trials of advanced breast cancer. To date, the overall observed clinical improvements are unconvincing, and further research is required to demonstrate the efficacy of anti-angiogenic drugs in breast cancer treatments. The outcomes of anti-angiogenic therapy have been highly variable in terms of tumor response. New methods are needed to identify patients who will benefit from this regimen. The development of biomarkers and molecular profiling are relevant research areas that may strengthen the ability to focus anti-angiogenic therapy towards suitable patients, thereby increase the cost-effectiveness, currently estimated to be inadequate. PMID:25514409

  9. Method for in vitro differentiation of bone marrow mesenchymal stem cells into endothelial progenitor cells and vascular endothelial cells

    PubMed Central

    Wang, Qihong; Zhang, Weifeng; He, Guifen; Sha, Huifang; Quan, Zhe

    2016-01-01

    Vascular development is a regulated process and is dependent on the participation and differentiation of many cell types including the proliferation and migration of vascular endothelial cells and differentiation of endothelial progenitor cells (EPCs) to mesodermal precursor cells. Thus, reconstitution of this process in vitro necessitates providing ambient conditions for generating and culturing EPCs in vitro and differentiating them to vascular endothelial cells. In the present study, we developed methods to differentiate bone marrow mesenchymal stem cells (MSC) into EPCs and to vascular endothelial cells. Bone marrow MSC from canines and human sources were differentiated in vitro in to EPCs. These EPCs were able to express a variety of endothelial markers following 7 days in culture. Further culturing led to the appearance of an increased number and proportion of endothelial cells. These cells were stable even after 30 generations in culture. There was a gradual loss of CD31 and increased expression of factor VIII, VEGFR and CD133. VEGF being highly angiogenic, helps in the vascular development. These results provide the basis for the possible development of vasculature in vitro conditions for biomedical applications and in vivo for organ/tissue reconstruction therapies. PMID:27878275

  10. Circulating microparticles enhanced rat vascular wall remodeling following endothelial denudation

    PubMed Central

    Lee, Fan-Yen; Lu, Hung-I; Chai, Han-Tan; Sheu, Jiunn-Jye; Chen, Yi-Ling; Huang, Tein-Hung; Kao, Gour-Shenq; Chen, Sheng-Yi; Chung, Sheng-Ying; Sung, Pei-Hsun; Chang, Hsueh-Wen; Lee, Mel S; Yip, Hon-Kan

    2016-01-01

    This study tested the hypothesis that circulating microparticles (MPs) exacerbated vascular wall (VW) remodeling after endothelial denudation by 0.014 wire in a rat model. Adult male Sprague Dawley rats (n = 40) were equally categorized into group 1 [sham-control (SC); 3.0 mL saline intravenous injection], group 2 [SC + intravenous MPs (1.0 × 107) derived from patients with carotid artery stenosis (CAS)], group 3 [femoral arterial endothelial denudation (FAED)], group 4 (FAED + MPs derived from healthy subjects), and group 5 (FAED + CAS-derived MPs). Animals were euthanized by day 28 after FAED procedure. The results demonstrated that neointimal area (NIA) (mm2), medial area, and number of infiltrated cells in medial layer were highest in group 5 and lowest in groups 1 and 2, and significantly higher in group 4 than those in group 3 (all P<0.0001), but no differences were noted between groups 1 and 2. However, the ratio of luminal area to VW area showed an opposite pattern compared to that of NIA among five groups (P<0.0001). Immunofluorescent study showed an identical pattern of changes in the numbers of inflammatory (F4/80, CD14, CD40, IL-β) and proliferative (Ki-67, Cx43) cells in VW compared to that of NIA among the five groups (all P<0.00). The mNRA expressions of inflammatory (MMP-9, NF-κB, TNF-α, IL-1β, iNOS, PDGF) and cell activation (c-Fos, c-Myc, osteopontin, PCNA) biomarkers showed an identical pattern compared to that of NIA among all groups (all P<0.001). Take altogether, CAS-derived MPs further aggravated MP-mediated VW remodeling after endothelial damage compared to that observed after administration of MPS derived from healthy subjects. PMID:27904658

  11. Biomechanics and Intracellular Dynamics of Vascular Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Ou-Yang, H. Daniel

    2004-03-01

    Understanding the internal mechanical properties of living cells is essential to gain insight to basic cellular functions ranging from cellular signal transduction, intracellular traffics to cell motility. Vascular endothelial cells form a single cell layer that lines all blood vessels and serves to regulate exchanges between the blood stream and the surrounding tissues. Endothelial cells are one of the most studied cell types because of their roles in cardiovascular diseases and the linkage between their growth control and strategies of cancer treatments. This talk reports the application of a novel methodology by which scientists can explore cellular functions and study cytoskeleton dynamics of living cells at the subcellular level with minimal invasion. The methodology is based on the realization that optical tweezers can be used to measure the mechanical properties of the cytoskeleton in the vicinity of organelles and cellular structures. Optical tweezers is a technique based on the physics that dielectric materials, such as silica beads, latex particles or protein aggregates are attracted to and thus trapped at the focal point of a tightly focused laser beam in an aqueous medium. It has been shown that viscoelasticity can be determined from the movements of the trapped object in an oscillating optical tweezers. Applying the oscillating tweezers to intracellular cellular structures, we were able to determine the frequency dependent mechanical properties of the interior of cultured bovine endothelial cells. In contrast to the viscoelastic behavior expected of a network of cytoskelatal proteins, we found unusually large fluctuations in both elastic and loss moduli of the cell interior. More surprisingly, both mechanical moduli showed rhythmic behavior with a periodicity in the range of 20 - 30 seconds in healthy living cells. The rhythm could be altered by drug treatments, and the amplitude of the fluctuations diminished when cells were depleted of nutrients

  12. Vascular Endothelial Growth Factor Receptor -2 in Breast Cancer

    PubMed Central

    Guo, Shanchun; Colbert, Laronna S.; Fuller, Miles; Zhang, Yuanyuan; Gonzalez-Perez, Ruben R.

    2010-01-01

    Investigations over the last decade have established the essential role of growth factors and their receptors during angiogenesis and carcinogenesis. The vascular endothelial growth factor receptor (VEGFR) family in mammals contains three members, VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1) and VEGFR-3 (Flt-4), which are transmembrane tyrosine kinase receptors that regulate the formation of blood and lymphatic vessels. In the early 1990s, the above VEGFR were structurally characterized by cDNA cloning. Among these three receptors, VEGFR-2 is generally recognized to have a principal role in mediating VEGF-induced responses. VEGFR-2 is considered as the earliest marker for endothelial cell development. Importantly, VEGFR-2 directly regulates tumor angiogenesis. Therefore, several inhibitors of VEGFR-2 have been developed and many of them are now in clinical trials. In addition to targeting endothelial cells, the VEGF/VEGFR-2 system works as an essential autocrine/paracrine process for cancer cell proliferation and survival. Recent studies mark the continuous and increased interest in this related, but distinct, function of VEGF/VEGFR-2 in cancer cells: the autocrine/paracrine loop. Several mechanisms regulate VEGFR-2 levels and modulate its role in tumor angiogenesis and physiologic functions, i.e.: cellular localization/trafficking, regulation of cis-elements of promoter, epigenetic regulation and signaling from Notch, cytokines/growth factors and estrogen, etc. In this review, we will focus on updated information regarding VEGFR-2 research with respect to the molecular mechanisms of VEGFR-2 regulation in human breast cancer. Investigations in the activation, function, and regulation of VEGFR-2 in breast cancer will allow the development of new pharmacological strategies aimed at directly targeting cancer cell proliferation and survival. PMID:20462514

  13. Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis

    PubMed Central

    Calvo, Charles-Félix; Fontaine, Romain H.; Soueid, Jihane; Tammela, Tuomas; Makinen, Taija; Alfaro-Cervello, Clara; Bonnaud, Fabien; Miguez, Andres; Benhaim, Lucile; Xu, Yunling; Barallobre, Maria-José; Moutkine, Imane; Lyytikkä, Johannes; Tatlisumak, Turgut; Pytowski, Bronislaw; Zalc, Bernard; Richardson, William; Kessaris, Nicoletta; Garcia-Verdugo, Jose Manuel; Alitalo, Kari; Eichmann, Anne; Thomas, Jean-Léon

    2011-01-01

    Neural stem cells (NSCs) are slowly dividing astrocytes that are intimately associated with capillary endothelial cells in the subventricular zone (SVZ) of the brain. Functionally, members of the vascular endothelial growth factor (VEGF) family can stimulate neurogenesis as well as angiogenesis, but it has been unclear whether they act directly via VEGF receptors (VEGFRs) expressed by neural cells, or indirectly via the release of growth factors from angiogenic capillaries. Here, we show that VEGFR-3, a receptor required for lymphangiogenesis, is expressed by NSCs and is directly required for neurogenesis. Vegfr3:YFP reporter mice show VEGFR-3 expression in multipotent NSCs, which are capable of self-renewal and are activated by the VEGFR-3 ligand VEGF-C in vitro. Overexpression of VEGF-C stimulates VEGFR-3-expressing NSCs and neurogenesis in the SVZ without affecting angiogenesis. Conversely, conditional deletion of Vegfr3 in neural cells, inducible deletion in subventricular astrocytes, and blocking of VEGFR-3 signaling with antibodies reduce SVZ neurogenesis. Therefore, VEGF-C/VEGFR-3 signaling acts directly on NSCs and regulates adult neurogenesis, opening potential approaches for treatment of neurodegenerative diseases. PMID:21498572

  14. Vascular endothelial cells minimize the total force on their nuclei.

    PubMed Central

    Hazel, A L; Pedley, T J

    2000-01-01

    The vascular endothelium is a cellular monolayer that lines the arterial walls. It plays a vital role in the initiation and development of atherosclerosis, an occlusive arterial disease responsible for 50% of deaths in the Western world. The focal nature of the disease suggests that hemodynamic forces are an important factor in its pathogenesis. This has led to the investigation of the effects of mechanical forces on the endothelial cells themselves. It has been found that endothelial cells do respond to stresses induced by the flowing blood; in particular, they elongate and align with an imposed flow direction. In this paper, we calculate the distribution of force exerted on a three-dimensional hump, representing the raised cell nucleus, by a uniform shear flow. It is found that, for a nonaxisymmetric ellipsoidal hump, the least total force is experienced when the hump is aligned with the flow. Furthermore, for a hump of fixed volume, there is a specific aspect ratio combination that results in the least total force upon the hump, (0.38:2.2:1.0; height:length:width). This is approximately the same as the average aspect ratio taken up by the cell nuclei in vivo (0.27:2.23:1.0). It is possible, therefore, that the cells respond to the flow in such a way as to minimize the total force on their nuclei. PMID:10620272

  15. [Garlic compounds protect vascular endothelial cells from oxidant injury].

    PubMed

    Yamasaki, T; Lau, B H

    1997-10-01

    Oxygen radical injury and lipid peroxidation have been suggested as major causes of cancer, atherosclerosis and the aging process. We examined in vitro the effect of garlic on H2O2-induced oxidant injury in bovine pulmonary artery endothelial cells (PAEC). After overnight preincubation with Aged Garlic Extract (AGE, from Wakunaga Pharmaceutical Co., Ltd., Japan) or S-allyl cysteine (SAC), PAEC monolayers were exposed to H2O2 for 3 h. Cell viability (MTT assay), lactate dehydrogenase (LDH) release, and lipid peroxidation (TBA-RS) were measured to assess oxidant injury. AGE (1-4 mg/ml) pretreatment significantly reduced the loss of cell viability induced by 50-100 microM of H2O2. AGE and SAC exhibited dose dependent inhibition of both LDH release and TBA-RS production induced by 50 microM of H2O2. The results show that AGE and SAC can protect vascular endothelial cells from oxidant injury. Numerous garlic compounds could be involved in the antioxidant properties of garlic, while there could be some prooxidant compounds derived from garlic. It is important to keep an array of antioxidant compounds to develop good herbal preparation, like AGE.

  16. Inhibition of proliferation of retinal vascular endothelial cells more effectively than choroidal vascular endothelial cell proliferation by bevacizumab

    PubMed Central

    Mynampati, Bharani Krishna; Sambhav, Kumar; Grover, Sandeep; Chalam, Kakarla V.

    2017-01-01

    AIM To evaluate the differential inhibitory effects of bevacizumab on cell proliferation of vascular endothelial growth factor (VEGF)-stimulated choroidal vascular endothelial cells (CVECs) and retinal vascular endothelial cells (RVECs) in vitro. METHODS VEGF (400 ng/mL) enriched CVECs and RVECs were treated with escalating doses of bevacizumab (0.1, 0.5, 1, 1.5 and 2 mg/mL). Cell proliferation changes were analyzed with WST-1 assay and trypan blue exclusion assay at 48, 72h and 1wk. Morphological changes were recorded with bright field microscopy. RESULTS VEGF enriched RVECs showed significantly more decline of cell viability than CVECs after bevacizumab treatment. One week after treatment, RVEC cell proliferation decreased by 29.7%, 37.5%, 52.8%, 35.9% and 45.6% at 0.1, 0.5, 1.0, 1.5 and 2 mg/mL bevacizumab respectively compared to CVEC proliferation decrease of 4.1%, 7.7%, 2.4%, 4.1% and 17.7% (P<0.05) by WST-1 assay. Trypan blue exclusion assay also revealed similar decrease in RVEC proliferation of 20%, 60%, 73.3%, 80% and 93.3% compared to CVEC proliferation decrease of 4%, 12%, 22.9%, 16.7% and 22.2% respectively (P<0.05). The maximum differential effect between the two cell types was observed at bevacizumab doses of 1.0 and 1.5 mg/mL at all time points. RVECs were 22 fold more sensitive (P<0.01) compared to CVECs (52.8% vs 2.4%) at concentration of 1.0 mg/mL, and 8.7 fold more at 1.5 mg/mL (35.9% vs 4.1%) 1wk after treatment (P<0.05 respectively). CONCLUSION VEGF-enriched RVECs are more susceptible to bevacizumab inhibition than CVECs at clinically used dosage of 1.25 mg and this differential sensitivity between two cell types should be taken into consideration in dosage selection. PMID:28149771

  17. Endothelial Microparticle-Derived Reactive Oxygen Species: Role in Endothelial Signaling and Vascular Function

    PubMed Central

    Burger, Dylan; Turner, Maddison; Munkonda, Mercedes N.; Touyz, Rhian M.

    2016-01-01

    Endothelial microparticles are effectors of endothelial damage; however mechanisms involved are unclear. We examined the effects of eMPs on cultured endothelial cells (ECs) and isolated vessels and investigated the role of eMP-derived reactive oxygen species (ROS) and redox signaling in these processes. eMPs were isolated from EC media and their ability to directly produce ROS was assessed by lucigenin and liquid chromatography. Nicotinamide adenine dinucleotide phosphate oxidase (Nox) subunits were probed by Western blot. ECs were treated with eMPs and effects on kinase signaling, superoxide anion (O2∙−) generation, and nitric oxide (NO) production were examined. Acetylcholine-mediated vasorelaxation was assessed by myography in eMP-treated mesenteric arteries. eMPs contained Nox1, Nox2, Nox4, p47phox, p67phox, and p22phox and they produced ROS which was inhibited by the Nox inhibitor, apocynin. eMPs increased phosphorylation of ERK1/2 and Src, increased O2∙− production, and decreased A23187-induced NO production in ECs. Pretreatment of eMPs with apocynin diminished eMP-mediated effects on ROS and NO production but had no effect on eMP-mediated kinase activation or impairment in vasorelaxation. Our findings identify a novel mechanism whereby eMP-derived ROS contributes to MP bioactivity. These interactions may be important in conditions associated with vascular injury and increased eMP formation. PMID:27313830

  18. Genetic polymorphisms for vascular endothelial growth factor in perinatal complications.

    PubMed

    Bányász, Ilona; Bokodi, Géza; Vásárhelyi, Barna; Treszl, András; Derzbach, László; Szabó, András; Tulassay, Tivadar; Vannay, Adám

    2006-12-01

    Low birth weight (LBW) infants have increased susceptibility to perinatal complications. An immature and impaired vascular system may possibly participate in these complications. There is evidence that supports the notion that vascular endothelial growth factor (VEGF), which is an essential regulator of embryonic angiogenesis, plays a central role in the pathogenesis of perinatal complications. We aimed to test whether functional genetic polymorphisms of VEGF are associated with the risk of preterm birth or perinatal morbidity. We enrolled 128 LBW infants (< or = 1500 grams). VEGF T-460C, VEGF C-2578A and VEGF G+405C polymorphisms were determined by real-time PCR or PCR-RFLP, respectively. Their genotypes were compared with VEGF genotypes of 200 healthy, term neonates. The prevalence of the VEGF+405 C allele was higher in LBW infants than in healthy, term neonates (OR [95% CI]: 1.29 [1.01-1.65]). Carrier state for the VEGF -2578A allele was an independent risk factor for enterocolitis necrotisans (NEC) (adjusted OR [95% CI]: 2.77 [1.00-7.65]). The carrier state for the VEGF -2578AA genotype was associated with a decreased risk of acute renal failure (ARF) (adjusted OR [95% CI]: 0.2 [0.05-0.78]). These results suggest that VEGF G+405C polymorphism might be associated with a higher risk of preterm birth and that VEGF C-2578A polymorphism may participate in the development of perinatal complications such as NEC and ARF.

  19. Vascular endothelial growth factor gene polymorphism prevalence in patients with diabetic macular oedema and its correlation with anti-vascular endothelial growth factor treatment outcomes.

    PubMed

    El-Shazly, Sherien F; El-Bradey, Mohamed H; Tameesh, Mohamed K

    2014-01-01

    To study the possible association between vascular endothelial growth factor gene polymorphism and diabetic macular oedema, and its correlation to the outcomes of anti-vascular endothelial growth factor treatment. Prospective study. 392 diabetic patients were included; 180 patients of them had no retinopathy, 212 patients had diabetic retinopathy. Diabetic retinopathy patients were classified into four groups as defined by the absence or presence of macular oedema or proliferative retinopathy. In all subjects, polymerase chain reaction-restriction fragment length polymorphism was conducted to detect the vascular endothelial growth factor gene C-634G polymorphism. Serum levels of vascular endothelial growth factor were estimated. Changes of visual acuity and central macular thickness after bevacizumab treatment in diabetic macular oedema patients of different genotypes were monitored for 9-12 months. Vascular endothelial growth factor C-634G genotypes distribution in different groups; correlation between genotypes, and changes in visual acuity and central macular thickness after intravitreal bevacizumab treatment. CC genotype was significantly prevalent among diabetic macular oedema patients (P = 0.019). Significant higher serum levels of vascular endothelial growth factor were detected in diabetic retinopathy and diabetic macular oedema patients with CC genotype (P = 0.02, 0.016). After bevacizumab treatment, individuals with genotypes CG and GG have a decreased chance of positive treatment outcomes compared t with CC genotype (P < 0.001). Vascular endothelial growth factor C-634G polymorphism (CC genotype) is a genetic risk factor for diabetic macular oedema, and its presence provides significantly better visual outcome following bevacizumab treatment. © 2013 Royal Australian and New Zealand College of Ophthalmologists.

  20. Rhubarb Antagonizes Matrix Metalloproteinase-9-induced Vascular Endothelial Permeability

    PubMed Central

    Cui, Yun-Liang; Zhang, Sheng; Tian, Zhao-Tao; Lin, Zhao-Fen; Chen, De-Chang

    2016-01-01

    Background: Intact endothelial structure and function are critical for maintaining microcirculatory homeostasis. Dysfunction of the latter is an underlying cause of various organ pathologies. In a previous study, we showed that rhubarb, a traditional Chinese medicine, protected intestinal mucosal microvascular endothelial cells in rats with metastasizing septicemia. In this study, we investigated the effects and mechanisms of rhubarb on matrix metalloproteinase-9 (MMP9)-induced vascular endothelial (VE) permeability. Methods: Rhubarb monomers were extracted and purified by a series of chromatography approaches. The identity of these monomers was analyzed by hydrogen-1 nuclear magnetic resonance (NMR), carbon-13 NMR, and distortionless enhancement by polarization transfer magnetic resonance spectroscopy. We established a human umbilical vein endothelial cell (HUVEC) monolayer on a Transwell insert. We measured the HUVEC permeability, proliferation, and the secretion of VE-cadherin into culture medium using fluorescein isothiocyanate-dextran assay, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, and enzyme-linked immunosorbent assay, respectively, in response to treatment with MMP9 and/or rhubarb monomers. Results: A total of 21 rhubarb monomers were extracted and identified. MMP9 significantly increased the permeability of the HUVEC monolayer, which was significantly reduced by five individual rhubarb monomer (emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2-carboxylic acid, 1-O-caffeoyl-2-(4-hydroxyl-O-cinnamoyl)-β-D-glucose, daucosterol linoleate, and rhein) or a combination of all five monomers (1 μmol/L for each monomer). Mechanistically, the five-monomer mixture at 1 μmol/L promoted HUVEC proliferation. In addition, MMP9 stimulated the secretion of VE-cadherin into the culture medium, which was significantly inhibited by the five-monomer mixture. Conclusions: The rhubarb mixture of emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2

  1. Anesthetic Propofol Overdose Causes Vascular Hyperpermeability by Reducing Endothelial Glycocalyx and ATP Production

    PubMed Central

    Lin, Ming-Chung; Lin, Chiou-Feng; Li, Chien-Feng; Sun, Ding-Ping; Wang, Li-Yun; Hsing, Chung-Hsi

    2015-01-01

    Prolonged treatment with a large dose of propofol may cause diffuse cellular cytotoxicity; however, the detailed underlying mechanism remains unclear, particularly in vascular endothelial cells. Previous studies showed that a propofol overdose induces endothelial injury and vascular barrier dysfunction. Regarding the important role of endothelial glycocalyx on the maintenance of vascular barrier integrity, we therefore hypothesized that a propofol overdose-induced endothelial barrier dysfunction is caused by impaired endothelial glycocalyx. In vivo, we intraperitoneally injected ICR mice with overdosed propofol, and the results showed that a propofol overdose significantly induced systemic vascular hyperpermeability and reduced the expression of endothelial glycocalyx, syndecan-1, syndecan-4, perlecan mRNA and heparan sulfate (HS) in the vessels of multiple organs. In vitro, a propofol overdose reduced the expression of syndecan-1, syndecan-4, perlecan, glypican-1 mRNA and HS and induced significant decreases in the nicotinamide adenine dinucleotide (NAD+)/NADH ratio and ATP concentrations in human microvascular endothelial cells (HMEC-1). Oligomycin treatment also induced significant decreases in the NAD+/NADH ratio, in ATP concentrations and in syndecan-4, perlecan and glypican-1 mRNA expression in HMEC-1 cells. These results demonstrate that a propofol overdose induces a partially ATP-dependent reduction of endothelial glycocalyx expression and consequently leads to vascular hyperpermeability due to the loss of endothelial barrier functions. PMID:26023717

  2. Procyanidins Mitigate Osteoarthritis Pathogenesis by, at Least in Part, Suppressing Vascular Endothelial Growth Factor Signaling

    PubMed Central

    Wang, Angela; Leong, Daniel J.; He, Zhiyong; Xu, Lin; Liu, Lidi; Kim, Sun Jin; Hirsh, David M.; Hardin, John A.; Cobelli, Neil J.; Sun, Hui B.

    2016-01-01

    Procyanidins are a family of plant metabolites that have been suggested to mitigate osteoarthritis pathogenesis in mice. However, the underlying mechanism is largely unknown. This study aimed to determine whether procyanidins mitigate traumatic injury-induced osteoarthritis (OA) disease progression, and whether procyanidins exert a chondroprotective effect by, at least in part, suppressing vascular endothelial growth factor signaling. Procyanidins (extracts from pine bark), orally administered to mice subjected to surgery for destabilization of the medial meniscus, significantly slowed OA disease progression. Real-time polymerase chain reaction revealed that procyanidin treatment reduced expression of vascular endothelial growth factor and effectors in OA pathogenesis that are regulated by vascular endothelial growth factor. Procyanidin-suppressed vascular endothelial growth factor expression was correlated with reduced phosphorylation of vascular endothelial growth factor receptor 2 in human OA primary chondrocytes. Moreover, components of procyanidins, procyanidin B2 and procyanidin B3 exerted effects similar to those of total procyanidins in mitigating the OA-related gene expression profile in the primary culture of human OA chondrocytes in the presence of vascular endothelial growth factor. Together, these findings suggest procyanidins mitigate OA pathogenesis, which is mediated, at least in part, by suppressing vascular endothelial growth factor signaling. PMID:27941690

  3. Procyanidins Mitigate Osteoarthritis Pathogenesis by, at Least in Part, Suppressing Vascular Endothelial Growth Factor Signaling.

    PubMed

    Wang, Angela; Leong, Daniel J; He, Zhiyong; Xu, Lin; Liu, Lidi; Kim, Sun Jin; Hirsh, David M; Hardin, John A; Cobelli, Neil J; Sun, Hui B

    2016-12-09

    Procyanidins are a family of plant metabolites that have been suggested to mitigate osteoarthritis pathogenesis in mice. However, the underlying mechanism is largely unknown. This study aimed to determine whether procyanidins mitigate traumatic injury-induced osteoarthritis (OA) disease progression, and whether procyanidins exert a chondroprotective effect by, at least in part, suppressing vascular endothelial growth factor signaling. Procyanidins (extracts from pine bark), orally administered to mice subjected to surgery for destabilization of the medial meniscus, significantly slowed OA disease progression. Real-time polymerase chain reaction revealed that procyanidin treatment reduced expression of vascular endothelial growth factor and effectors in OA pathogenesis that are regulated by vascular endothelial growth factor. Procyanidin-suppressed vascular endothelial growth factor expression was correlated with reduced phosphorylation of vascular endothelial growth factor receptor 2 in human OA primary chondrocytes. Moreover, components of procyanidins, procyanidin B2 and procyanidin B3 exerted effects similar to those of total procyanidins in mitigating the OA-related gene expression profile in the primary culture of human OA chondrocytes in the presence of vascular endothelial growth factor. Together, these findings suggest procyanidins mitigate OA pathogenesis, which is mediated, at least in part, by suppressing vascular endothelial growth factor signaling.

  4. Nerve growth factor-mediated vascular endothelial growth factor expression of astrocyte in retinal vascular development.

    PubMed

    Kim, You Sun; Jo, Dong Hyun; Lee, Hanjae; Kim, Jin Hyoung; Kim, Kyu-Won; Kim, Jeong Hun

    2013-02-22

    The angiogenic aspect of neurotrophins and their receptors rather than the neuroscientific aspect has been focused. However, their role in retinal vascular development is underdiscovered. The purpose of this study is to understand the role of neurotrophin receptors in retinal vascular development and the mechanisms of their action. To identify the expression of tropomyosin receptor kinase receptor (Trk) in developing retina, tissues of 4, 8, 12, 16 and 26 day-old mice were prepared for experiments. Immunohistochemistry and immunofluorescence double staining against glial fibrillary acidic protein and type IV collagen were performed. TrkA was expressed mainly along the vessel structure in inner part of retina, especially in retinal astrocyte. In cultured primary astrocyte, recombinant nerve growth factor (NGF) was used to activate TrkA. NGF induced the phosphorylation of TrkA, and it also enhanced the level of activated Akt and vascular endothelial growth factor (VEGF) mRNA. Inhibition of phosphoinositide 3-kinase (PI3K) reversed the NGF-induced activation of these two molecules. This study demonstrated that TrkA activation on NGF leads to VEGF elevation by PI3K-Akt pathway and therefore suggested that TrkA could be a stimulator of retinal vascular development. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. [The effects of microgravity on blood vessels and vascular endothelial cells].

    PubMed

    Tang, Na-Ping; Li, Hua; Qiu, Yun-Liang; Zhou, Guo-Mina; Wang, Yan; Ma, Jing; Mei, Qi-Bing

    2014-10-01

    The dysfunction of vascular system is one of the main causes of orthostatic intolerance induced by microgravity. Vascular endothelial cell is a single layer on the inner wall of the blood vessel and is the important component of the blood vessel wall. Vascular endothelial cell plays a pivotal role in the regulation of vascular functions, such as serving as a permeability barrier, regulating vasoconstriction and vasodilatation. Recent studies have demonstrated that microgravity may have different effects on vascular sys- tem and vascular endothelial cells in different parts of the body, such as increasing vasoconstrictor reactivity and decreasing vasodilator reactivity of cerebral arteries, decreasing vasoconstrictor and vasodilator reactivity of carotid and abdominal aortic arteries, decreasing vasoconstrictor reactivity and increasing vasodilator reactivity of pulmonary arteries, decreasing vasoconstrictor reactivity of mesenteric arteries and veins and lower extremity arteries. In addition, microgravity can promote the growth of vascular endothelial cells in the large vessels and inhibit the growth of microvascular endothelial cells. This paper summarized the research progress in the effects of microgravity on blood vessels and vascular endothelial cells.

  6. Isolation of Endothelial Cells and Vascular Smooth Muscle Cells from Internal Mammary Artery Tissue

    PubMed Central

    Moss, Stephanie C.; Bates, Michael; Parrino, Patrick E.; Woods, T. Cooper

    2007-01-01

    Analyses of vascular smooth muscle cell and endothelial cell function through tissue culture techniques are often employed to investigate the underlying mechanisms regulating cardiovascular disease. As diseases such as diabetes mellitus and chronic kidney disease increase a patient's risk of cardiovascular disease, the development of methods for examining the effects of these diseases on vascular smooth muscle cells and endothelial cells is needed. Commercial sources of endothelial cells and vascular smooth muscle cells generally provide minimal donor information and are in limited supply. This study was designed to determine if vascular smooth muscle cells and endothelial cells could be isolated from human internal mammary arteries obtained from donors undergoing coronary artery bypass graft surgery. As coronary artery bypass graft surgery is a commonly performed procedure, this method would provide a new source for these cells that when combined with the donor's medical history will greatly enhance our studies of the effects of complicating diseases on vascular biology. Internal mammary artery tissue was obtained from patients undergoing coronary artery bypass graft surgery. Through a simple method employing two separate tissue digestions, vascular smooth muscle cells and endothelial cells were isolated and characterized. The isolated vascular smooth muscle cells and endothelial cells exhibited the expected morphology and were able to be passaged for further analysis. The vascular smooth muscle cells exhibited positive staining for α-smooth muscle actin and the endothelial cells exhibited positive staining for CD31. The overall purity of the isolations was > 95%. This method allows for the isolation of endothelial cells and vascular smooth muscle cells from internal mammary arteries, providing a new tool for investigations into the interplay of vascular diseases and complicating diseases such as diabetes and kidney disease. PMID:21603530

  7. Vascular endothelial growth factor: an attractive target in the treatment of hypoxic/ischemic brain injury

    PubMed Central

    Guo, Hui; Zhou, Hui; Lu, Jie; Qu, Yi; Yu, Dan; Tong, Yu

    2016-01-01

    Cerebral hypoxia or ischemia results in cell death and cerebral edema, as well as other cellular reactions such as angiogenesis and the reestablishment of functional microvasculature to promote recovery from brain injury. Vascular endothelial growth factor is expressed in the central nervous system after hypoxic/ischemic brain injury, and is involved in the process of brain repair via the regulation of angiogenesis, neurogenesis, neurite outgrowth, and cerebral edema, which all require vascular endothelial growth factor signaling. In this review, we focus on the role of the vascular endothelial growth factor signaling pathway in the response to hypoxic/ischemic brain injury, and discuss potential therapeutic interventions. PMID:26981109

  8. Nitric Oxide Directly Promotes Vascular Endothelial Insulin Transport

    PubMed Central

    Wang, Hong; Wang, Aileen X.; Aylor, Kevin; Barrett, Eugene J.

    2013-01-01

    Insulin resistance strongly associates with decreased nitric oxide (NO) bioavailability and endothelial dysfunction. In the vasculature, NO mediates multiple processes that affect insulin delivery, including dilating both resistance and terminal arterioles in skeletal muscle in vivo. However, whether NO directly regulates vascular endothelial cell (EC) insulin uptake and its transendothelial transport (TET) is unknown. We report in this article that l-NG-nitro-l-arginine methyl ester (l-NAME) pretreatment blocked, whereas l-arginine and sodium nitroprusside (SNP) each enhanced, EC uptake of fluorescein isothiocyanate (FITC)-labeled insulin. SNP also partly or fully reversed the inhibition of EC insulin uptake caused by l-NAME, wortmannin, the Src inhibitor PP1, and tumor necrosis factor-α. In addition, SNP promoted [125I]TyrA14insulin TET by ∼40%. Treatment with insulin with and without SNP did not affect EC cyclic guanosine monophosphate (cGMP) levels, and the cGMP analog 8-bromo-cGMP did not affect FITC-insulin uptake. In contrast, treatment with insulin and SNP significantly increased EC protein S-nitrosylation, the colocalization of S-nitrosothiol (S-NO) and protein-tyrosine phosphatase 1B (PTP1B), and Akt phosphorylation at Ser473 and inhibited PTP1B activity. Moreover, a high-fat diet significantly inhibited EC insulin-stimulated Akt phosphorylation and FITC-insulin uptake that was partially reversed by SNP in rats. Finally, inhibition of S-nitrosylation by knockdown of thioredoxin-interacting protein completely eliminated SNP-enhanced FITC-insulin uptake. We conclude that NO directly promotes EC insulin transport by enhancing protein S-nitrosylation. NO also inhibits PTP1B activity, thereby enhancing insulin signaling. PMID:23863813

  9. [Vascular endothelial dysfunction, oxidative stress--a new topic within the referral section of Orvosi Hetilap].

    PubMed

    Fischer, Tamás

    2008-07-13

    The author describes some of the numerous domains regarding the new topic called "Vascular endothelial dysfunction, oxidative stress". The endothelium is responsible for the constancy and integrity of the milieu interieur by producing various substances. Endothelial dysfunction occurs when there is imbalance between vasodilators and vasoconstrictors, growth factors and their inhibitors, proinflammatory and antiinflammatory agents, prothrombotic and fibrinolytic activities. The reason for this imbalance may be response to vascular endothelial or intimal injury caused by mechanical, physical, chemical, microbiological, immunologic, genetic damage or any of their combination. Endothelial dysfunction occurring on the huge inner surface of the vessels (the endothelium) is responsible for the triggering of atherosclerosis, which is a chronic vascular disease. All the risk factors of vascular pathology are leading to chronic (cardio)vascular diseases by causing endothelial dysfunction. Decreased endogenous antioxidative capacity leads to oxidative stress by free radical reactions of physiological oxidative metabolic processes, ending as the ultimate reason for endothelial dysfunction induced by risk factors. The therapeutic and preventive effects of causal antioxidant treatments having intracellular and mitochondrial effects (statins, angiotensin-converting-enzyme inhibitors, angiotensin-receptor-blockers, acetylsalicylic acid, and third generation beta-blockers) should be emphasized. It is also important to underline the physiological-pathophysiological-therapeutic consubstantiality and systemic nature of human vasculature and to emphasize the preventive-therapeutic significance of the vascular consequence cascade. And finally, there has been large process in the assessment of oxidative stress and consecutive endothelial dysfunction which revolutionized our clinical point of view.

  10. Salvianolic acid B improves vascular endothelial function in diabetic rats with blood glucose fluctuations via suppression of endothelial cell apoptosis.

    PubMed

    Ren, Younan; Tao, Shanjun; Zheng, Shuguo; Zhao, Mengqiu; Zhu, Yuanmei; Yang, Jieren; Wu, Yuanjie

    2016-11-15

    Vascular endothelial cell injury is an initial event in atherosclerosis. Salvianolic acid B (Sal B), a main bioactive component in the root of Salvia miltiorrhiza, has vascular protective effect in diabetes, but the underlying mechanisms remain unclear. The present study investigated the effect of Sal B on vascular endothelial function in diabetic rats with blood glucose fluctuations and the possible mechanisms implicated. The results showed that diabetic rats developed marked endothelial dysfunction as exhibited by impaired acetylcholine induced vasodilation. Supplementation with Sal B resulted in an evident improvement of endothelial function. Phosphorylation (Ser 1177) of endothelial nitric oxide synthase (eNOS) was significantly restored in Sal B treated diabetic rats, accompanied by an evident recovery of NO metabolites. Sal B effectively reduced vascular endothelial cell apoptosis, with Bcl-2 protein up-regulated and Bax protein down-regulated markedly. Treatment with Sal B led to an evident amelioration of oxidative stress in diabetic rats as manifested by enhanced antioxidant capacity and decreased contents of malondialdehyde in aortas. Protein levels of NOX2 and NOX4, two main isoforms of NADPH oxidase known as the major source of reactive oxygen species in the vasculature, were markedly decreased in Sal B treated groups. In addition, treatment with Sal B led to an evident decrease of serum lipids. Taken together, this study indicates that Sal B is capable of improving endothelial function in diabetic rats with blood glucose fluctuations, of which the underlying mechanisms might be related to suppression of endothelial cell apoptosis and stimulation of eNOS phosphorylation (Ser 1177).

  11. Post-transcriptional gene regulation by RNA-binding proteins in vascular endothelial dysfunction.

    PubMed

    Xin, HongBo; Deng, KeYu; Fu, MinGui

    2014-08-01

    Endothelial cell dysfunction is a term which implies the dysregulation of normal endothelial cell functions, including impairment of the barrier functions, control of vascular tone, disturbance of proliferative and migratory capacity of endothelial cells, as well as control of leukocyte trafficking. Endothelial dysfunction is an early step in vascular inflammatory diseases such as atherosclerosis, diabetic vascular complications, sepsis-induced or severe virus infection-induced organ injuries. The expressions of inflammatory cytokines and vascular adhesion molecules induced by various stimuli, such as modified lipids, smoking, advanced glycation end products and bacteria toxin, significantly contribute to the development of endothelial dysfunction. The transcriptional regulation of inflammatory cytokines and vascular adhesion molecules has been well-studied. However, the regulation of those gene expressions at post-transcriptional level is emerging. RNA-binding proteins have emerged as critical regulators of gene expression acting predominantly at the post-transcriptional level in microRNA-dependent or independent manners. This review summarizes the latest insights into the roles of RNA-binding proteins in controlling vascular endothelial cell functions and their contribution to the pathogenesis of vascular inflammatory diseases.

  12. The mTOR/AP-1/VEGF signaling pathway regulates vascular endothelial cell growth.

    PubMed

    Wang, Shuo; Lu, Jiawei; You, Qingsheng; Huang, Hua; Chen, Yingying; Liu, Kun

    2016-08-16

    Vascular restenosis is a common adverse event following percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG). The atypical Ser/Thr protein kinase mammalian target of rapamycin (mTOR) plays an important role in cell differentiation and apoptosis. Vascular restenosis caused by excessive endothelial cell proliferation can be inhibited by local application of the mTOR inhibitor rapamycin (RAPA); however, RAPA can also suppress normal vascular endothelial cell growth by blocking mTOR/VEGF signaling, although the underlying mechanism is still unclear. Here, endogenous mTOR, AP-1, and VEGF were inhibited or overexpressed to investigate the mechanism underlying the effects of RAPA. Inhibition of AP-1 or mTOR with AP-1-siRNA or RAPA treatment respectively, decreased vascular endothelial cell proliferation, upregulation of AP-1 or mTOR increased cell proliferation, and VEGF overexpression increased, while RAPA-induced mTOR inhibition decreased vascular endothelial cell proliferation, the results indicate that combining mTOR downregulation and VEGF upregulation might both inhibit restenosis and maintain normal vascular endothelial cell growth after PCI or CABG, suggest the mTOR/AP-1/VEGF pathway might play a crucial role in regulating vascular endothelial cell growth.

  13. Vascular endothelial growth factor polymorphisms and esophageal cancer prognosis.

    PubMed

    Bradbury, Penelope A; Zhai, Rihong; Ma, Clement; Xu, Wei; Hopkins, Jessica; Kulke, Matthew J; Asomaning, Kofi; Wang, Zhaoxi; Su, Li; Heist, Rebecca S; Lynch, Thomas J; Wain, John C; Christiani, David; Liu, Geoffrey

    2009-07-15

    Vascular endothelial growth factor (VEGF) promotes angiogenesis and vascular permeability. The VEGF gene is polymorphic. We investigated the prognostic significance of three VEGF single nucleotide polymorphisms (SNP) in esophageal cancer. Three hundred sixty-one patients were genotyped for three VEGF SNPs (-460T/C, 405G/C, and 936C/T) using DNA extracted from prospectively collected blood samples. The association of each individual SNP, and haplotypes of the three SNPs, on overall survival (OS) was investigated. The variant allele of 936C/T was associated with improved OS compared with the wild-type genotype (log-rank P < 0.001). This association remained significant for OS after adjustments for age, gender, performance status, and disease stage [VEGF 936C/T: adjusted hazard ratio (AHR), 0.70; 95% confidence interval (95% CI), 0.49-0.99; P = 0.04; VEGF 936T/T: AHR, 0.11; 95% CI, 0.02-0.82; P = 0.03]. No independent associations were found for VEGF -460T/C and VEGF 405G/C. The CGC haplotype of the three VEGF SNPs (-460T/C, 405G/C, and 936C/T) combined was associated with reduced OS compared with all other patients (CGC/CGC: AHR, 1.51; 95% CI, 1.00-2.30; P = 0.05). VEGF 936C/T, and a haplotype of 460T/C, 405G/C, and 936C/T combined, has potential prognostic significance in esophageal cancer.

  14. Endothelial S100A1 modulates vascular function via nitric oxide.

    PubMed

    Pleger, Sven T; Harris, David M; Shan, Changguang; Vinge, Leif E; Chuprun, J Kurt; Berzins, Brett; Pleger, Wiebke; Druckman, Charles; Völkers, Mirko; Heierhorst, Jörg; Øie, Erik; Remppis, Andrew; Katus, Hugo A; Scalia, Rosario; Eckhart, Andrea D; Koch, Walter J; Most, Patrick

    2008-04-11

    S100A1, a Ca(2+)-binding protein of the EF-hand type, is known to modulate sarcoplasmic reticulum Ca(2+) handling in skeletal muscle and cardiomyocytes. Recently, S100A1 has been shown to be expressed in endothelial cells (ECs). Because intracellular Ca(2+) ([Ca(2+)](i)) transients can be involved in important EC functions and endothelial NO synthase activity, we sought to investigate the impact of endothelial S100A1 on the regulation of endothelial and vascular function. Thoracic aortas from S100A1 knockout mice (SKO) showed significantly reduced relaxation in response to acetylcholine compared with wild-type vessels, whereas direct vessel relaxation using sodium nitroprusside was unaltered. Endothelial dysfunction attributable to the lack of S100A1 expression could also be demonstrated in vivo and translated into hypertension of SKO. Mechanistically, both basal and acetylcholine-induced endothelial NO release of SKO aortas was significantly reduced compared with wild type. Impaired endothelial NO production in SKO could be attributed, at least in part, to diminished agonist-induced [Ca(2+)](i) transients in ECs. Consistently, silencing endothelial S100A1 expression in wild type also reduced [Ca(2+)](i) and NO generation. Moreover, S100A1 overexpression in ECs further increased NO generation that was blocked by the inositol-1,4,5-triphosphate receptor blocker 2-aminoethoxydiphenylborate. Finally, cardiac endothelial S100A1 expression was shown to be downregulated in heart failure in vivo. Collectively, endothelial S100A1 critically modulates vascular function because lack of S100A1 expression leads to decreased [Ca(2+)](i) and endothelial NO release, which contributes, at least partially, to impaired endothelium-dependent vascular relaxation and hypertension in SKO mice. Targeting endothelial S100A1 expression may, therefore, be a novel therapeutic means to improve endothelial function in vascular disease or heart failure.

  15. Hepatic Vascular Endothelial Growth Factor Regulates Recruitment of Rat Liver Sinusoidal Endothelial Cell Progenitor Cells

    PubMed Central

    Wang, Lin; Wang, Xiangdong; Wang, Lei; Chiu, Jenny D.; van de Ven, Gijs; Gaarde, William A.; DeLeve, Laurie D.

    2012-01-01

    Background & Aims After liver injury, bone marrow-derived liver sinusoidal endothelial cell progenitor cells (BM SPCs) repopulate the sinusoid as liver sinusoidal endothelial cells (LSECs). After partial hepatectomy, BM SPCs provide hepatocyte growth factor, promote hepatocyte proliferation, and are necessary for normal liver regeneration. We examined how hepatic vascular endothelial growth factor (VEGF) regulates recruitment of BM SPC and their effects on liver injury. Methods Rats were given injections of dimethylnitrosamine to induce liver injury, which was assessed by histology and transaminase assays. Recruitment of SPCs was analyzed by examining BM SPC proliferation, mobilization to the circulation, engraftment in liver, and development of fenestration (differentiation). Results Dimethylnitrosamine caused extensive denudation of LSEC at 24 hours, followed by centrilobular hemorrhagic necrosis at 48 hours. Proliferation of BM SPCs, number of SPCs in the bone marrow, and mobilization of BM SPCs to the circulation increased 2- to 4-fold by 24 hours after injection of dimethylnitrosamine; within 5 days, 40% of all LSEC came from engrafted BM SPC. Allogeneic resident SPCs, infused 24 hours after injection of dimethylnitrosamine, repopulated the sinusoid as LSEC and reduced liver injury. Expression of hepatic VEGF mRNA and protein increased 5-fold by 24 hours after dimethylnitrosamine injection. Knockdown of hepatic VEGF with antisense oligonucleotides completely prevented dimethylnitrosamine-induced proliferation of BM SPCs and their mobilization to the circulation, reduced their engraftment by 46%, completely prevented formation of fenestration after engraftment as LSEC, and exacerbated dimethylnitrosamine injury. Conclusions BM SPC recruitment is a repair response to dimethylnitrosamine liver injury in rats. Hepatic VEGF regulates recruitment of BM SPCs to liver and reduces this form of liver injury. PMID:22902870

  16. Endothelial STAT3 Activation Increases Vascular Leakage Through Downregulating Tight Junction Proteins: Implications for Diabetic Retinopathy.

    PubMed

    Yun, Jang-Hyuk; Park, Sung Wook; Kim, Kyung-Jin; Bae, Jong-Sup; Lee, Eun Hui; Paek, Sun Ha; Kim, Seung U; Ye, Sangkyu; Kim, Jeong-Hun; Cho, Chung-Hyun

    2017-05-01

    Vascular inflammation is characteristic feature of diabetic retinopathy. In diabetic retina, a variety of the pro-inflammatory cytokines are elevated and involved in endothelial dysfunction. STAT3 transcription factor has been implicated in mediating cytokine signaling during vascular inflammation. However, whether and how STAT3 is involved in the direct regulation of the endothelial permeability is currently undefined. Our studies revealed that IL-6-induced STAT3 activation increases retinal endothelial permeability and vascular leakage in retinas of mice through the reduced expression of the tight junction proteins ZO-1 and occludin. In a co-culture model with microglia and endothelial cells under a high glucose condition, the microglia-derived IL-6 induced STAT3 activation in the retinal endothelial cells, leading to increasing endothelial permeability. In addition, IL-6-induced STAT3 activation was independent of ROS generation in the retinal endothelial cells. Moreover, we demonstrated that STAT3 activation downregulates the ZO-1 and occludin levels and increases the endothelial permeability through the induction of VEGF production in retinal endothelial cells. These results suggest the potential importance of IL-6/STAT3 signaling in regulating endothelial permeability and provide a therapeutic target to prevent the pathology of diabetic retinopathy. J. Cell. Physiol. 232: 1123-1134, 2017. © 2016 Wiley Periodicals, Inc.

  17. Vascular endothelial-cadherin downregulation as a feature of endothelial transdifferentiation in monocrotaline-induced pulmonary hypertension.

    PubMed

    Nikitopoulou, Ioanna; Orfanos, Stylianos E; Kotanidou, Anastasia; Maltabe, Violetta; Manitsopoulos, Nikolaos; Karras, Panagiotis; Kouklis, Panos; Armaganidis, Apostolos; Maniatis, Nikolaos A

    2016-08-01

    Increased pulmonary vascular resistance in pulmonary hypertension (PH) is caused by vasoconstriction and obstruction of small pulmonary arteries by proliferating vascular cells. In analogy to cancer, subsets of proliferating cells may be derived from endothelial cells transitioning into a mesenchymal phenotype. To understand phenotypic shifts transpiring within endothelial cells in PH, we injected rats with alkaloid monocrotaline to induce PH and measured lung tissue levels of endothelial-specific protein and critical differentiation marker vascular endothelial (VE)-cadherin. VE-cadherin expression by immonoblotting declined significantly 24 h and 15 days postinjection to rebound to baseline at 30 days. There was a concomitant increase in transcriptional repressors Snail and Slug, along with a reduction in VE-cadherin mRNA. Mesenchymal markers α-smooth muscle actin and vimentin were upregulated by immunohistochemistry and immunoblotting, and α-smooth muscle actin was colocalized with endothelial marker platelet endothelial cell adhesion molecule-1 by confocal microscopy. Apoptosis was limited in this model, especially in the 24-h time point. In addition, monocrotaline resulted in activation of protein kinase B/Akt, endothelial nitric oxide synthase (eNOS), nuclear factor (NF)-κB, and increased lung tissue nitrotyrosine staining. To understand the etiological relationship between nitrosative stress and VE-cadherin suppression, we incubated cultured rat lung endothelial cells with endothelin-1, a vasoconstrictor and pro-proliferative agent in pulmonary arterial hypertension. This resulted in activation of eNOS, NF-κB, and Akt, in addition to induction of Snail, downregulation of VE-cadherin, and synthesis of vimentin. These effects were blocked by eNOS inhibitor N(ω)-nitro-l-arginine methyl ester. We propose that transcriptional repression of VE-cadherin by nitrosative stress is involved in endothelial-mesenchymal transdifferentiation in experimental PH.

  18. Transplanted stem cell-secreted vascular endothelial growth factor effects poststroke recovery, inflammation, and vascular repair.

    PubMed

    Horie, Nobutaka; Pereira, Marta P; Niizuma, Kuniyasu; Sun, Guohua; Keren-Gill, Hadar; Encarnacion, Angelo; Shamloo, Mehrdad; Hamilton, Scott A; Jiang, Kewen; Huhn, Stephen; Palmer, Theo D; Bliss, Tonya M; Steinberg, Gary K

    2011-02-01

    Cell transplantation offers a novel therapeutic strategy for stroke; however, how transplanted cells function in vivo is poorly understood. We show for the first time that after subacute transplantation into the ischemic brain of human central nervous system stem cells grown as neurospheres (hCNS-SCns), the stem cell-secreted factor, human vascular endothelial growth factor (hVEGF), is necessary for cell-induced functional recovery. We correlate this functional recovery to hVEGF-induced effects on the host brain including multiple facets of vascular repair and its unexpected suppression of the inflammatory response. We found that transplanted hCNS-SCns affected multiple parameters in the brain with different kinetics: early improvement in blood-brain barrier integrity and suppression of inflammation was followed by a delayed spatiotemporal regulated increase in neovascularization. These events coincided with a bimodal pattern of functional recovery, with, an early recovery independent of neovascularization, and a delayed hVEGF-dependent recovery coincident with neovascularization. Therefore, cell transplantation therapy offers an exciting multimodal strategy for brain repair in stroke and potentially other disorders with a vascular or inflammatory component. Copyright © 2011 AlphaMed Press.

  19. Role of hypoxia and vascular endothelial growth factors in lymphangiogenesis

    PubMed Central

    Morfoisse, Florent; Renaud, Edith; Hantelys, Fransky; Prats, Anne-Catherine; Garmy-Susini, Barbara

    2014-01-01

    Hypoxia is known to be a major factor in the induction of angiogenesis during tumor development but its role in lymphangiogenesis remains unclear. Blood and lymphatic vasculatures are stimulated by the vascular endothelial family of growth factors – the VEGFs. In this review, we investigate the role of hypoxia in the molecular regulation of synthesis of the lymphangiogenic growth factors VEGF-A, VEGF-C, and VEGF-D. Gene expression can be regulated by hypoxia at either transcriptional or translational levels. In contrast to strong induction of DNA transcription by hypoxia-inducible factors (HIFs), the majority of cellular stresses such as hypoxia lead to inhibition of cap-dependent translation of mRNA and downregulation of protein synthesis. Here, we describe how initiation of translation of VEGF mRNA is induced by hypoxia through an internal ribosome entry site (IRES)-dependent mechanism. Considering the implications of the lymphatic vasculature for metastatic dissemination, it is crucial to understand the molecular regulation of lymphangiogenic growth factors by hypoxia to obtain new insights into cancer therapy. PMID:27308316

  20. Polyelectrolyte complexes stabilize and controllably release vascular endothelial growth factor.

    PubMed

    Huang, Min; Vitharana, Samadhi N; Peek, Laura J; Coop, Tina; Berkland, Cory

    2007-05-01

    Angiogenesis has long been a desired therapeutic approach to improve clinical outcomes of conditions typified by ischemia. Vascular endothelial growth factor (VEGF) has demonstrated the ability to generate new blood vessels in vivo, but trials using intravenous delivery have not yet produced clinical success. Localized, sustained delivery of VEGF has been proven necessary to generate blood vessels as demonstrated by implantable, controlled release devices. Ultimately, nanoparticles delivered by intravenous injection may be designed to accumulate in target tissues and sustain the local VEGF concentration; however, injectable nanosuspensions that control the release of stabilized VEGF must first be developed. In this study, we utilize the heparin binding domain of VEGF to bind the polyanion dextran sulfate, resulting in an enhanced thermal stability of VEGF. Coacervation of the VEGF-bound dextran sulfate with selected polycations (chitosan, polyethylenimine, or poly-L-lysine) produced nanoparticles approximately 250 nm in diameter with high VEGF encapsulation efficiency (50-85%). Release of VEGF from these formulations persisted for >10 days and maintained high VEGF activity as determined by ELISA and a mitogenic bioassay. Chitosan-dextran sulfate complexes were preferred because of their biodegradability, desirable particle size ( approximately 250 nm), entrapment efficiency ( approximately 85%), controlled release (near linear for 10 days), and mitogenic activity.

  1. Viscoelastic properties of vascular endothelial cells exposed to uniaxial stretch

    NASA Astrophysics Data System (ADS)

    Osterday, Kathryn; Chew, Thomas; Loury, Phillip; Haga, Jason; Del Alamo, Juan C.; Chien, Shu

    2011-11-01

    Vascular endothelial cells (VECs) line the interior of blood vessels and regulate a variety of functions in the cardiovascular system. It is widely accepted that VECs will remodel themselves in response to mechanical stimuli, but few studies have analyzed the mechanical properties of these cells under stretch. We hypothesize that uniaxial stretch will cause an anisotropic realignment of actin filaments, and a change in the viscoelastic properties of the cell. To test this hypothesis, VECs were grown on a thin, transparent membrane mounted on a microscope. The membrane was stretched, consequently stretching the cells. Time-lapse sequences of the cells were taken every hour with a time resolution of 10 Hz. The random trajectories of intracellular endogenous particles were tracked using in-house algorithms. These trajectories were analyzed using a novel particle tracking microrheology formulation that takes into account the anisotropy of the cytoplasm of VECs. Supported by NSF CBET-1055697 CAREER Award (JCA) and NIH grants BRP HL064382 (SC), 1R01 HL080518 (SC).

  2. A vascular endothelial growth factor deficiency characterises scleroderma lung disease.

    PubMed

    De Santis, Maria; Bosello, Silvia Laura; Capoluongo, Ettore; Inzitari, Rosanna; Peluso, Giusy; Lulli, Paola; Zizzo, Gaetano; Bocci, Mario; Tolusso, Barbara; Zuppi, Cecilia; Castagnola, Massimo; Ferraccioli, Gianfranco

    2012-09-01

    Vascular endothelial growth factor (VEGF) is thought to play an important role in systemic sclerosis (SSc) pathogenesis. It was found to be upregulated in the serum and in the affected skin of scleroderma patients. However, its involvement in scleroderma lung disease is not clear. This study aimed to evaluate VEGF concentration in the bronchoalveolar lavage fluid (BALF) of scleroderma patients with interstitial lung disease, to correlate the cytokine levels in plasma and in the lung with pulmonary functional, radiological and cellular parameters, and with the progression of lung disease. BALF and plasma VEGF concentrations were analysed by ELISA in 55 SSc patients with lung disease and 17 controls. Cytokine real-time PCR messenger RNA expression in alveolar macrophages was assessed. Lung involvement progression was evaluated after a 1-year follow-up. VEGF was found to be significantly lower in the BALF of scleroderma patients compared with controls. The lowest concentrations were observed in SSc patients with alveolitis. A decreased VEGF expression in alveolar macrophages was found in SSc patients with alveolitis. VEGF concentration in BALF correlated inversely with the ground glass score on high-resolution CT and with BALF neutrophil cell count. Moreover, SSc patients with a lower VEGF concentration showed a worsening in the interstitial score at follow-up. Scleroderma interstitial lung disease is characterised by a VEGF deficiency. Lower concentrations were found in patients with progression of lung disease.

  3. Superficial vimentin mediates DENV-2 infection of vascular endothelial cells

    PubMed Central

    Yang, Jie; Zou, Lingyun; Yang, Yi; Yuan, Jizhen; Hu, Zhen; Liu, Hui; Peng, Huagang; Shang, Weilong; Zhang, Xiaopeng; Zhu, Junmin; Rao, Xiancai

    2016-01-01

    Damage to vascular endothelial cells (VECs) is a critical hallmark of hemorrhagic diseases caused by dengue virus (DENV). However, the precise molecular event involved in DENV binding and infection of VECs has yet to be clarified. In this study, vimentin (55 kDa) was identified to be involved in DENV-2 adsorption into VECs. This protein is located on the surface of VECs and interacts with DENV-2 envelope protein domain III (EDIII). The expression level of the superficial vimentin on VECs was not affected by viral infection or siRNA interference, indicating that the protein exists in a particular mode. Furthermore, the rod domain of the vimentin protein mainly functions in DENV-2 adsorption into VECs. Molecular docking results predicted several residues in vimentin rod and DENV EDIII; these residues may be responsible for cell–virus interactions. We propose that the superficial vimentin could be a novel molecule involved in DENV binding and infection of VECs. DENV EDIII directly interacts with the rod domain of vimentin on the VEC surface and thus mediates the infection. PMID:27910934

  4. Superficial vimentin mediates DENV-2 infection of vascular endothelial cells.

    PubMed

    Yang, Jie; Zou, Lingyun; Yang, Yi; Yuan, Jizhen; Hu, Zhen; Liu, Hui; Peng, Huagang; Shang, Weilong; Zhang, Xiaopeng; Zhu, Junmin; Rao, Xiancai

    2016-12-02

    Damage to vascular endothelial cells (VECs) is a critical hallmark of hemorrhagic diseases caused by dengue virus (DENV). However, the precise molecular event involved in DENV binding and infection of VECs has yet to be clarified. In this study, vimentin (55 kDa) was identified to be involved in DENV-2 adsorption into VECs. This protein is located on the surface of VECs and interacts with DENV-2 envelope protein domain III (EDIII). The expression level of the superficial vimentin on VECs was not affected by viral infection or siRNA interference, indicating that the protein exists in a particular mode. Furthermore, the rod domain of the vimentin protein mainly functions in DENV-2 adsorption into VECs. Molecular docking results predicted several residues in vimentin rod and DENV EDIII; these residues may be responsible for cell-virus interactions. We propose that the superficial vimentin could be a novel molecule involved in DENV binding and infection of VECs. DENV EDIII directly interacts with the rod domain of vimentin on the VEC surface and thus mediates the infection.

  5. Vascular endothelial growth factor enhances macrophage clearance of apoptotic cells

    PubMed Central

    Dalal, Samay; Horstmann, Sarah A.; Richens, Tiffany R.; Tanaka, Takeshi; Doe, Jenna M.; Boe, Darren M.; Voelkel, Norbert F.; Taraseviciene-Stewart, Laimute; Janssen, William J.; Lee, Chun G.; Elias, Jack A.; Bratton, Donna; Tuder, Rubin M.; Henson, Peter M.; Vandivier, R. William

    2012-01-01

    Efficient clearance of apoptotic cells from the lung by alveolar macrophages is important for the maintenance of tissue structure and function. Lung tissue from humans with emphysema contains increased numbers of apoptotic cells and decreased levels of vascular endothelial growth factor (VEGF). Mice treated with VEGF receptor inhibitors have increased numbers of apoptotic cells and develop emphysema. We hypothesized that VEGF regulates apoptotic cell clearance by alveolar macrophages (AM) via its interaction with VEGF receptor 1 (VEGF R1). Our data show that the uptake of apoptotic cells by murine AMs and human monocyte-derived macrophages is inhibited by depletion of VEGF and that VEGF activates Rac1. Antibody blockade or pharmacological inhibition of VEGF R1 activity also decreased apoptotic cell uptake ex vivo. Conversely, overexpression of VEGF significantly enhanced apoptotic cell uptake by AMs in vivo. These results indicate that VEGF serves a positive regulatory role via its interaction with VEGF R1 to activate Rac1 and enhance AM apoptotic cell clearance. PMID:22307908

  6. Roles of Vascular Endothelial Growth Factor in Amyotrophic Lateral Sclerosis

    PubMed Central

    Pronto-Laborinho, Ana Catarina; Pinto, Susana; de Carvalho, Mamede

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal devastating neurodegenerative disorder, involving progressive degeneration of motor neurons in spinal cord, brainstem, and motor cortex. Riluzole is the only drug approved in ALS but it only confers a modest improvement in survival. In spite of a high number of clinical trials no other drug has proved effectiveness. Recent studies support that vascular endothelial growth factor (VEGF), originally described as a key angiogenic factor, also plays a key role in the nervous system, including neurogenesis, neuronal survival, neuronal migration, and axon guidance. VEGF has been used in exploratory clinical studies with promising results in ALS and other neurological disorders. Although VEGF is a very promising compound, translating the basic science breakthroughs into clinical practice is the major challenge ahead. VEGF-B, presenting a single safety profile, protects motor neurons from degeneration in ALS animal models and, therefore, it will be particularly interesting to test its effects in ALS patients. In the present paper the authors make a brief description of the molecular properties of VEGF and its receptors and review its different features and therapeutic potential in the nervous system/neurodegenerative disease, particularly in ALS. PMID:24987705

  7. Evaluation of Bioenergetic Function in Cerebral Vascular Endothelial Cells.

    PubMed

    Rellick, Stephanie L; Hu, Heng; Simpkins, James W; Ren, Xuefang

    2016-11-19

    The integrity of the blood-brain-barrier (BBB) is critical to prevent brain injury. Cerebral vascular endothelial (CVE) cells are one of the cell types that comprise the BBB; these cells have a very high-energy demand, which requires optimal mitochondrial function. In the case of disease or injury, the mitochondrial function in these cells can be altered, resulting in disease or the opening of the BBB. In this manuscript, we introduce a method to measure mitochondrial function in CVE cells by using whole, intact cells and a bioanalyzer. A mito-stress assay is used to challenge the cells that have been perturbed, either physically or chemically, and evaluate their bioenergetic function. Additionally, this method also provides a useful way to screen new therapeutics that have direct effects on mitochondrial function. We have optimized the cell density necessary to yield oxygen consumption rates that allow for the calculation of a variety of mitochondrial parameters, including ATP production, maximal respiration, and spare capacity. We also show the sensitivity of the assay by demonstrating that the introduction of the microRNA, miR-34a, leads to a pronounced and detectable decrease in mitochondrial activity. While the data shown in this paper is optimized for the bEnd.3 cell line, we have also optimized the protocol for primary CVE cells, further suggesting the utility in preclinical and clinical models.

  8. Vascular endothelial growth factor and acute mountain sickness.

    PubMed

    Nilles, Eric; Sayward, Helen; D'Onofrio, Gail

    2009-01-01

    Despite causing significant morbidity throughout the mountainous regions of the world, the pathophysiology of acute mountain sickness (AMS) remains poorly understood. This study aims to improve the understanding of altitude illness by determining if vascular endothelial growth factor (VEGF) plays a role in the development of AMS. The purpose of this study was to determine if elevated plasma VEGF correlates with increased symptoms of AMS at high altitude. This is a prospective study of a cohort of healthy climbers on Denali (Mount McKinley) in Alaska at 14, 200 feet. Baseline demographics, medications, rates of ascent, and AMS scores were recorded. Pulse oximetry measurements and venous blood samples were obtained. Comparisons were made between mountaineers with and without AMS. Seventy-two climbers were approached for participation in the study; 21 (29%) refused. Of the 51 climbers participating in the study, 14 subjects (27.5%) had symptoms of AMS and 37 subjects (72.5%) were free of symptoms of AMS. Plasma VEGF levels were 79.14 pg/dl (SD: 121.44) and 57.57pg/dl (SD: 102.71) in the AMS and non-AMS groups, respectively. These results were nonsignificant. Similarly, comparison of sex, age, rate of ascent, pulse oximetry values, or history of altitude illness did not reveal significant differences between the AMS and non-AMS groups. This study does not provide evidence in support of the theory that plasma VEGF correlates with symptoms of AMS.

  9. Analysis of vascular endothelial dysfunction genes and related pathways in obesity through systematic bioinformatics.

    PubMed

    Zhang, Hui; Wang, Jing; Sun, Ling; Xu, Qiuqin; Hou, Miao; Ding, Yueyue; Huang, Jie; Chen, Ye; Cao, Lei; Zhang, Jianmin; Qian, Weiguo; Lv, Haitao

    2015-01-01

    Obesity has become an increasingly serious health problem and popular research topic. It is associated with many diseases, especially cardiovascular disease (CVD)-related endothelial dysfunction. This study analyzed genes related to endothelial dysfunction and obesity and then summarized their most significant signaling pathways. Genes related to vascular endothelial dysfunction and obesity were extracted from a PubMed database, and analyzed by STRING, DAVID, and Gene-Go Meta-Core software. 142 genes associated with obesity were found to play a role in endothelial dysfunction in PubMed. A significant pathway (Angiotensin system maturation in protein folding and maturation) associated with obesity and endothelial dysfunction was explored. The genes and the pathway explored may play an important role in obesity. Further studies about preventing vascular endothelial dysfunction obesity should be conducted through targeting these loci and pathways.

  10. Value of measuring serum vascular endothelial growth factor levels in diagnosing acute ischemic stroke.

    PubMed

    Dassan, Pooja; Keir, Geoffrey; Jäger, Hans Rolf; Brown, Martin M

    2012-08-01

    It has previously been reported that serum levels of vascular endothelial growth factor are raised after acute ischemic stroke compared to healthy controls. The aim of this prospective study was to ascertain whether serum vascular endothelial growth factor measurements could be used to distinguish between acute ischemic stroke and common stroke mimics in the emergency room. Blood samples were taken on arrival to hospital and daily for six-days, in 44 patients with suspected ischemic stroke (29 acute infarcts and 15 stroke mimics), arriving within 24 h of symptom onset. Vascular endothelial growth factor levels were measured by enzyme-linked immunoassay. The neurological deficit was recorded daily using the National Institute of Health Stroke Scale. Evaluation of infarct volumes was based on diffusion-weighted magnetic resonance imaging. Serum vascular endothelial growth factor levels were significantly raised in acute ischemic stroke patients on the day of symptom onset and at all other time points, compared to healthy controls (P < 0·01). The sensitivity and specificity of vascular endothelial growth factor for diagnosing acute ischemic stroke on admission to hospital were only 69% and 73%, respectively. Vascular endothelial growth factor levels were also elevated in four out of 15 stroke mimics, including three patients presenting with postictal paresis. Vascular endothelial growth factor has limited clinical utility in the diagnosis of acute ischemic stroke in the emergency room because levels are also raised in common stroke mimics. Further studies are required to establish the mechanism of vascular endothelial growth factor elevation in postictal paresis. © 2011 The Authors. International Journal of Stroke © 2011 World Stroke Organization.

  11. Red light, green light: Signals that control endothelial cell proliferation during embryonic vascular development

    USDA-ARS?s Scientific Manuscript database

    The proper regulation of endothelial cell proliferation is critical for vascular development in the embryo. VEGF-A and bFGF, which are important in the induction of mesodermal progenitors to form a capillary plexus, are also key mitogenic signals. Disruption in VEGF-A or bFGF decreases endothelial c...

  12. Circulating endothelial cells, microparticles and progenitors: key players towards the definition of vascular competence

    PubMed Central

    Sabatier, F; Camoin-Jau, L; Anfosso, F; Sampol, J; Dignat-George, F

    2009-01-01

    Abstract The balance between lesion and regeneration of the endothelium is critical for the maintenance of vessel integrity. Exposure to cardiovascular risk factors (CRF) alters the regulatory functions of the endothelium that progresses from a quiescent state to activation, apoptosis and death. In the last 10 years, identification of circulating endothelial cells (CEC) and endothelial-derived microparticles (EMP) in the circulation has raised considerable interest as non-invasive markers of vascular dysfunction. Indeed, these endothelial-derived biomarkers were associated with most of the CRFs, were indicative of a poor clinical outcome in atherothrombotic disorders and correlated with established parameters of endothelial dysfunction. CEC and EMP also behave as potential pathogenic vectors able to accelerate endothelial dysfunction and promote disease progression. The endothelial response to injury has been enlarged by the discovery of a powerful physiological repair process based on the recruitment of circulating endothelial progenitor cells (EPC) from the bone marrow. Recent studies indicate that reduction of EPC number and function by CRF plays a critical role in the progression of cardiovascular diseases. This EPC-mediated repair to injury response can be integrated into a clinical endothelial phenotype defining the ‘vascular competence’ of each individual. In the future, provided that standardization of available methodologies could be achieved, multimarker strategies combining CEC, EMP and EPC levels as integrative markers of ‘vascular competence’ may offer new perspectives to assess vascular risk and to monitor treatment efficacy. PMID:19379144

  13. Placental growth factor and vascular endothelial growth factor receptor-2 in human lung development.

    PubMed

    Janér, Joakim; Andersson, Sture; Haglund, Caj; Karikoski, Riitta; Lassus, Patrik

    2008-08-01

    We examined the pulmonary expression of 2 proangiogenic factors, namely, placental growth factor and vascular endothelial growth factor receptor-2, during lung development and acute and chronic lung injury in newborn infants. Six groups were included in an immunohistochemical study of placental growth factor and vascular endothelial growth factor receptor-2, that is, 9 fetuses, 4 preterm and 8 term infants without lung injury who died soon after birth, 5 preterm infants with respiratory distress syndrome of <2 days and 7 with respiratory distress syndrome of >10 days, and 6 with bronchopulmonary dysplasia. Placental growth factor concentrations in tracheal aspirate fluid were measured in 70 samples from 20 preterm infants during the first postnatal week. In immunohistochemical analyses, placental growth factor staining was seen in bronchial epithelium and macrophages in all groups. Distal airway epithelium positivity was observed mostly in fetuses and in preterm infants who died soon after birth. Vascular endothelial growth factor receptor-2 staining was seen in vascular endothelium in all groups and also in lymphatic endothelium in fetuses. Vascular endothelial growth factor receptor-2 staining in arterial endothelium was associated with higher and staining in venous endothelium with lower gestational age. In capillaries, less vascular endothelial growth factor receptor-2 staining was seen in bronchopulmonary dysplasia. The mean placental growth factor protein concentration in tracheal aspirate fluid during the first postnatal week was 0.64 +/- 0.42 pg/mL per IgA-secretory component unit. Concentrations during the first postnatal week were stable. Lower placental growth factor concentrations correlated with chorioamnionitis and lactosyl ceramide positivity. The vascular endothelial growth factor receptor-2 staining pattern seems to reflect ongoing differentiation and activity of different endothelia. Lower vascular endothelial growth factor receptor-2 expression

  14. Disintegrin Metalloprotease (ADAM) 10 Regulates Endothelial Permeability and T Cell Transmigration by Proteolysis of Vascular Endothelial Cadherin

    PubMed Central

    Schulz, Beate; Pruessmeyer, Jessica; Maretzky, Thorsten; Ludwig, Andreas; Blobel, Carl P.; Saftig, Paul; Reiss, Karina

    2009-01-01

    Vascular endothelial (VE)-cadherin is the major adhesion molecule of endothelial adherens junctions. It plays an essential role in controlling endothelial permeability, vascular integrity, leukocyte transmigration, and angiogenesis. Elevated levels of soluble VE-cadherin are associated with diseases like coronary atherosclerosis. Previous data showed that the extracellular domain of VE-cadherin is released by an unknown metalloprotease activity during apoptosis. In this study, we used gain of function analyses, inhibitor studies and RNA interference experiments to analyze the proteolytic release of VE-cadherin in human umbilical vein endothelial cells (HUVECs). We found that VE-cadherin is specifically cleaved by the disintegrin and metalloprotease ADAM10 in its ectodomain releasing a soluble fragment and generating a carboxyterminal membrane bound stub, which is a substrate for a subsequent γ-secretase cleavage. This ADAM10-mediated proteolysis could be induced by Ca2+-influx and staurosporine treatment, indicating that ADAM10-mediated VE-cadherin cleavage contributes to the dissolution of adherens junctions during endothelial cell activation and apoptosis, respectively. In contrast, protein kinase C activation or inhibition did not modulate VE-cadherin processing. Increased ADAM10 expression was functionally associated with an increase in endothelial permeability. Remarkably, our data indicate that ADAM10 activity also contributes to the thrombin-induced decrease of endothelial cell-cell adhesion. Moreover, knockdown of ADAM10 in HUVECs as well as in T cells by small interfering RNA impaired T cell transmigration. Taken together our data identify ADAM10 as a novel regulator of vascular permeability and demonstrate a hitherto unknown function of ADAM10 in the regulation of VE-cadherin-dependent endothelial cell functions and leukocyte transendothelial migration. PMID:18420943

  15. Vascular endothelial growth factor-dependent angiogenesis and dynamic vascular plasticity in the sensory circumventricular organs of adult mouse brain.

    PubMed

    Morita, Shoko; Furube, Eriko; Mannari, Tetsuya; Okuda, Hiroaki; Tatsumi, Kouko; Wanaka, Akio; Miyata, Seiji

    2015-03-01

    The sensory circumventricular organs (CVOs), which comprise the organum vasculosum of the lamina terminalis (OVLT), the subfornical organ (SFO) and the area postrema (AP), lack a typical blood-brain barrier (BBB) and monitor directly blood-derived information to regulate body fluid homeostasis, inflammation, feeding and vomiting. Until now, almost nothing has been documented about vascular features of the sensory CVOs except fenestration of vascular endothelial cells. We therefore examine whether continuous angiogenesis occurs in the sensory CVOs of adult mouse. The angiogenesis-inducing factor vascular endothelial growth factor-A (VEGF-A) and the VEGF-A-regulating transcription factor hypoxia-inducible factor-1α were highly expressed in neurons of the OVLT and SFO and in both neurons and astrocytes of the AP. Expression of the pericyte-regulating factor platelet-derived growth factor B was high in astrocytes of the sensory CVOs. Immunohistochemistry of bromodeoxyuridine and Ki-67, a nuclear protein that is associated with cellular proliferation, revealed active proliferation of endothelial cells. Moreover, immunohistochemistry of caspase-3 and the basement membrane marker laminin showed the presence of apoptosis and sprouting of endothelial cells, respectively. Treatment with the VEGF receptor-associated tyrosine kinase inhibitor AZD2171 significantly reduced proliferation and filopodia sprouting of endothelial cells, as well as the area and diameter of microvessels. The mitotic inhibitor cytosine-b-D-arabinofuranoside reduced proliferation of endothelial cells and the vascular permeability of blood-derived low-molecular-weight molecules without changing vascular area and microvessel diameter. Thus, our data indicate that continuous angiogenesis is dependent on VEGF signaling and responsible for the dynamic plasticity of vascular structure and permeability.

  16. Vascular endothelial growth factor-B promotes in vivo angiogenesis.

    PubMed

    Silvestre, Jean-Sébastien; Tamarat, Radia; Ebrahimian, Teni G; Le-Roux, Aude; Clergue, Michel; Emmanuel, Florence; Duriez, Micheline; Schwartz, Bertrand; Branellec, Didier; Lévy, Bernard I

    2003-07-25

    Vascular endothelial growth factors (VEGFs) and their receptors have emerged as central regulators of the angiogenic process. However, involvement of VEGF-B, one of these factors, in angiogenesis remains obscure. Mice received subcutaneous injection of Matrigel alone or Matrigel with human recombinant protein rhVEGF-B167 or with rhVEGF-A165. After 14 days, cell ingrowth in the Matrigel plug was increased by 2.0- and 2.5-fold in rhVEGF-B167-treated and rhVEGF-A165-treated mice, respectively (P<0.01), in association with a raise in phospho-Akt/Akt (1.8-fold, P<0.01) and endothelial NO synthase (eNOS) (1.80- and 1.60-fold, respectively; P<0.05) protein levels measured by Western blot. VEGF-B-induced cell ingrowth was impaired by treatment with NOS inhibitor (NG-nitro-l-arginine methyl ester; L-NAME, 10 mg/kg per day). Treatment with neutralizing antibody directed against the VEGF-B receptor VEGF-R1 (anti-VEGFR1, 10 microg) completely abrogated VEGF-B-related effects. Proangiogenic effect of VEGF-B was confirmed in a mouse model of surgically induced hindlimb ischemia. Plasmids containing human form of VEGF-A (phVEGF-A165) or VEGF-B (phVEGF-B167 or phVEGF-B186) were administered by in vivo electrotransfer. Angiographic score at day 28 showed significant improvement in ischemic/nonischemic leg ratio by 1.4- and 1.5-fold in mice treated with phVEGF-B167 and phVEGF-B186, respectively (P<0.05). Laser Doppler perfusion data also evidenced a 1.5-fold increase in phVEGF-B167-treated and phVEGF-B186-treated mice (P<0.05). Such an effect was associated with an upregulation of phospho-Akt/Akt and eNOS protein levels in the ischemic legs and was hampered by treatment with anti-VEGFR1. This study demonstrates for the first time that VEGF-B, in part through its receptor VEGF-R1, promotes angiogenesis in association with an activation of Akt and eNOS-related pathways.

  17. Differentiation of mesenchymal stem cells from human amniotic fluid to vascular endothelial cells.

    PubMed

    Tancharoen, Waleephan; Aungsuchawan, Sirinda; Pothacharoen, Peraphan; Markmee, Runchana; Narakornsak, Suteera; Kieodee, Junjira; Boonma, Nonglak; Tasuya, Witoon

    2017-03-01

    Endothelial dysfunction is a principle feature of vascular-related disease. Endothelial cells have been acquired for the purposes of the restoration of damaged tissue in therapeutic angiogenesis. However, their use is limited by expansion capacity and the small amount of cells that are obtained. Human amniotic fluid mesenchymal stem cells (hAF-MSCs) are considered an important source for vascular tissue engineering. In this study, hAF-MSCs were characterized and then induced in order to differentiate into the endothelial-like cells. Human amniotic fluid cells (hAFCs) were obtained from amniocentesis at the second trimester of gestation. The cells were characterized as mesenchymal stem cells by flow cytometry. The results showed that the cells were positive for mesenchymal stem cell markers CD44, CD73, CD90 and HLA-ABC, and negative for CD31, Amniotic fluid stem cells marker: CD117, anti-human fibroblasts, HLA-DR and hematopoietic differentiation markers CD34 and CD45. The hAF-MSCs were differentiated into endothelial cells under the induction of vascular endothelial growth factor (VEGF) and analyzed for the expression of the endothelial-specific markers and function. The expression of the endothelial-specific markers was determined by reverse transcriptase-quantitative PCR (RT-qPCR), while immunofluorescent analysis demonstrated that the induced hAF-MSCs expressed von Willebrand factor (vWF), vascular endothelial growth factor receptor 2 (VEGFR2), CD31 and endothelial nitric oxide synthase (eNOS). The network formation assay showed that the induced hAF-MSCs formed partial networks. All results indicated that hAF-MSCs have the potential to be differentiated into endothelial-like cells, while human amniotic fluid might be a suitable source of MSCs for vascularized tissue engineering. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Tissue engineering of bladder using vascular endothelial growth factor gene-modified endothelial progenitor cells.

    PubMed

    Chen, Bai-Song; Xie, Hua; Zhang, Sheng-Li; Geng, Hong-Quan; Zhou, Jun-Mei; Pan, Jun; Chen, Fang

    2011-12-01

    This study assessed the use of vascular endothelial growth factor (VEGF) gene-modified endothelial progenitor cells (EPCs) seeded onto bladder acellular matrix grafts (BAMGs), to enhance the blood supply in tissue-engineered bladders in a porcine model. Autologous porcine peripheral EPCs were isolated, cultured, expanded, characterized, and modified with the VEGF gene using an adenovirus vector. The expression of VEGF was examined using reverse transcriptase polymerase chain reaction (RT-PCR) and an enzyme-linked immunosorbent assay (ELISA). VEGF gene modified EPCs were seeded onto BAMG and cultured for 3 days before implantation into pigs for bladder tissue engineering. A partial bladder cystectomy was performed in 12 pigs. The experimental group (6 pigs) received VEGF gene-modified EPC-seeded BAMG. The control group (6 pigs) received BAMG without seeded EPCs. The resulting tissue-engineered bladders were subject to a general and histological analysis. Microvessel density (MVD) was assessed using immunohistochemistry. The ex vivo transfection efficiency of EPCs was greater than 60%-70% when concentrated adenovirus was used. The genetically modified cells expressed both VEGF and green fluorescent protein (GFP). Scanning electron microscopy (SEM) and Masson's trichrome staining of cross sections of the cultured cells seeded to BAMG showed cell attachment and proliferation on the surface of the BAMG. Histological examination revealed bladder regeneration in a time-dependent fashion. Significant increases in MVD were observed in the experimental group, in comparison with the control group. VEGF-modified EPCs significantly enhanced neovascularization, compared with BAMG alone. These results indicate that EPCs, combined with VEGF gene therapy, may be a suitable approach for increasing blood supply in the tissue engineering of bladders. Thus, a useful strategy to achieve a tissue-engineered bladder is indicated.

  19. Phosphorylated endothelial nitric oxide synthase mediates vascular endothelial growth factor-induced penile erection.

    PubMed

    Musicki, Biljana; Palese, Michael A; Crone, Julie K; Burnett, Arthur L

    2004-02-01

    The objective of the present study was to evaluate whether vascular endothelial growth factor (VEGF)-induced penile erection is mediated by activation of endothelial nitric oxide synthase (eNOS) through its phosphorylation. We assessed the role of constitutively activated eNOS in VEGF-induced penile erection using wild-type (WT) and eNOS-knockout (eNOS(-/-)) mice with and without vasculogenic erectile dysfunction. Adult WT and eNOS(-/-) mice were subjected to sham operation or bilateral castration to induce vasculogenic erectile dysfunction. At the time of surgery, animals were injected intracavernosally with a replication-deficient adenovirus expressing human VEGF145 (10(9) particle units) or with empty virus (Ad.Null). After 7 days, erectile function was assessed in response to cavernous nerve electrical stimulation. Total and phosphorylated protein kinase B (Akt) as well as total and phosphorylated eNOS were quantitatively assessed in mice penes using Western immunoblot and immunohistochemistry. In intact WT mice, VEGF145 significantly increased erectile responses, and in WT mice after castration, it completely recovered penile erection. However, VEGF145 failed to increase erectile responses in intact eNOS(-/-) mice and only partially recovered erectile function in castrated eNOS(-/-) mice. In addition, VEGF145 significantly increased phosphorylation of eNOS at Serine 1177 by approximately 2-fold in penes of both intact and castrated WT mice. The data provide a molecular explanation for VEGF stimulatory effect on penile erection, which involves phosphorylated eNOS (Serine 1177) mediation.

  20. Vascular endothelial growth factor mediates corneal nerve repair.

    PubMed

    Yu, Charles Q; Zhang, Min; Matis, Krisztina I; Kim, Charles; Rosenblatt, Mark I

    2008-09-01

    To examine the expression of vascular endothelial growth factor (VEGF) and its receptors in the cornea and the trigeminal ganglion and to characterize the role of VEGF in mediating corneal nerve repair. Regeneration of the corneal subbasal nerve plexus after epithelial debridement was measured. The expression of VEGF and its receptors was examined in the trigeminal ganglia and in the cornea by RT-PCR, immunohistochemistry, and Western blotting. VEGF-mediated nerve growth was measured in a trigeminal ganglia explant assay. Anti-VEGF neutralizing antibody was used to examine the VEGF-dependent growth of neurons in vitro and regeneration of the corneal nerves in vivo. After two distinct patterns of nerve regeneration, the subbasal nerves recovered to 65% of the preinjury density after 28 days. RT-PCR demonstrated gene expression of VEGF and VEGF receptors in the trigeminal ganglia. Immunohistochemistry showed staining for VEGF and its receptors in the trigeminal ganglia and for VEGFR1, VEGFR2, and neuropilin (NRP)-1 in the cornea. Western blot confirmed these results. In vitro, VEGF promoted the growth of explanted trigeminal ganglia by 91%. Blockage of VEGF signaling with anti-VEGF antibody reduced the growth of cultured neurons by 17% and the regeneration of subbasal neurons by 23%. In addition to providing new information on the regeneration of murine corneal nerves, this study presents evidence that VEGF signaling influences the repair of corneal nerves by demonstrating that VEGF and VEGF receptors are present in the trigeminal ganglia and that abrogation of VEGF signaling reduces nerve growth in vitro and in vivo.

  1. Vascular Endothelial Growth Factor Modulates Skeletal Myoblast Function

    PubMed Central

    Germani, Antonia; Di Carlo, Anna; Mangoni, Antonella; Straino, Stefania; Giacinti, Cristina; Turrini, Paolo; Biglioli, Paolo; Capogrossi, Maurizio C.

    2003-01-01

    Vascular endothelial growth factor (VEGF) expression is enhanced in ischemic skeletal muscle and is thought to play a key role in the angiogenic response to ischemia. However, it is still unknown whether, in addition to new blood vessel growth, VEGF modulates skeletal muscle cell function. In the present study immunohistochemical analysis showed that, in normoperfused mouse hindlimb, VEGF and its receptors Flk-1 and Flt-1 were expressed mostly in quiescent satellite cells. Unilateral hindlimb ischemia was induced by left femoral artery ligation. At day 3 and day 7 after the induction of ischemia, Flk-1 and Flt-1 were expressed in regenerating muscle fibers and VEGF expression by these fibers was markedly enhanced. Additional in vitro experiments showed that in growing medium both cultured satellite cells and myoblast cell line C2C12 expressed VEGF and its receptors. Under these conditions, Flk-1 receptor exhibited constitutive tyrosine phosphorylation that was increased by VEGF treatment. During myogenic differentiation Flk-1 and Flt-1 were down-regulated. In a modified Boyden Chamber assay, VEGF enhanced C2C12 myoblasts migration approximately fivefold. Moreover, VEGF administration to differentiating C2C12 myoblasts prevented apoptosis, while inhibition of VEGF signaling either with selective VEGF receptor inhibitors (SU1498 and CB676475) or a neutralizing Flk-1 antibody, enhanced cell death approximately 3.5-fold. Finally, adenovirus-mediated VEGF165 gene transfer inhibited ischemia-induced apoptosis in skeletal muscle. These results support a role for VEGF in myoblast migration and survival, and suggest a novel autocrine role of VEGF in skeletal muscle repair during ischemia. PMID:14507649

  2. In vivo imaging of tumor vascular endothelial cells

    NASA Astrophysics Data System (ADS)

    Zhao, Dawen; Stafford, Jason H.; Zhou, Heling; Thorpe, Philip E.

    2013-02-01

    Phosphatidylserine (PS), normally restricted to the inner leaflet of the plasma membrane, becomes exposed on the outer surface of viable (non-apoptotic) endothelial cells in tumor blood vessels, probably in response to oxidative stresses present in the tumor microenvironment. In the present study, we optically imaged exposed PS on tumor vasculature in vivo using PGN635, a novel human monoclonal antibody that targets PS. PGN635 F(ab')2 was labeled with the near infrared (NIR) dye, IRDye 800CW. Human glioma U87 cells or breast cancer MDA-MB-231 cells were implanted subcutaneously or orthotopically into nude mice. When the tumors reached ~5 mm in diameter, 800CW- PGN635 was injected via a tail vein and in vivo dynamic NIR imaging was performed. For U87 gliomas, NIR imaging allowed clear detection of tumors as early as 4 h later, which improved over time to give a maximal tumor/normal ratio (TNR = 2.9 +/- 0.5) 24 h later. Similar results were observed for orthotopic MDA-MB-231 breast tumors. Localization of 800CW-PGN635 to tumors was antigen specific since 800CW-Aurexis, a control probe of irrelevant specificity, did not localize to the tumors, and pre-administration of unlabeled PGN635 blocked the uptake of 800CW-PGN635. Fluorescence microscopy confirmed that 800CW-PGN635 was binding to PS-positive tumor vascular endothelium. Our studies suggest that tumor vasculature can be successfully imaged in vivo to provide sensitive tumor detection.

  3. Vascular endothelial growth factor and acute mountain sickness

    PubMed Central

    Nilles, Eric; Sayward, Helen; D'Onofrio, Gail

    2009-01-01

    Study Objective: Despite causing significant morbidity throughout the mountainous regions of the world, the pathophysiology of acute mountain sickness (AMS) remains poorly understood. This study aims to improve the understanding of altitude illness by determining if vascular endothelial growth factor (VEGF) plays a role in the development of AMS. The purpose of this study was to determine if elevated plasma VEGF correlates with increased symptoms of AMS at high altitude. Patients and Methods: This is a prospective study of a cohort of healthy climbers on Denali (Mount McKinley) in Alaska at 14, 200 feet. Baseline demographics, medications, rates of ascent, and AMS scores were recorded. Pulse oximetry measurements and venous blood samples were obtained. Comparisons were made between mountaineers with and without AMS. Results: Seventy-two climbers were approached for participation in the study; 21 (29%) refused. Of the 51 climbers participating in the study, 14 subjects (27.5%) had symptoms of AMS and 37 subjects (72.5%) were free of symptoms of AMS. Plasma VEGF levels were 79.14 pg/dl (SD: 121.44) and 57.57pg/dl (SD: 102.71) in the AMS and non-AMS groups, respectively. These results were nonsignificant. Similarly, comparison of sex, age, rate of ascent, pulse oximetry values, or history of altitude illness did not reveal significant differences between the AMS and non-AMS groups. Conclusion: This study does not provide evidence in support of the theory that plasma VEGF correlates with symptoms of AMS. PMID:19561948

  4. Plasma vascular endothelial growth factor in acute mountain sickness.

    PubMed

    Maloney, J; Wang, D; Duncan, T; Voelkel, N; Ruoss, S

    2000-07-01

    To investigate the hypothesis that an increase in circulating vascular endothelial growth factor (VEGF) occurs in mountaineers at high altitude, particularly in association with acute mountain sickness (AMS) and/or low hemoglobin oxygen saturation. : Collection of medical histories, AMS scores, plasma samples, and arterial oxygen saturation (SaO(2)) measurements from mountaineers at 1,500 feet (sea level) and at 14,200 feet. Mount McKinley ("Denali"), AK. Sixty-six mountaineers. None. Plasma VEGF at 14,200 feet was not increased in any group. In fact, plasma VEGF was significantly lower in subjects who did not develop AMS (53 +/- 7.9 pg/mL; mean +/- SEM; n = 47) compared to control subjects at sea level (98.4 +/- 14.3 pg/mL; n = 7; p = 0.005). Plasma VEGF at 14, 200 feet for subjects with AMS (62 +/- 12 pg/mL; n = 15) did not differ significantly from subjects at 14,200 feet without AMS, or from control subjects at sea level. Of a small number of subjects with paired specimens at sea level and at base camp (n = 5), subjects who exhibited a decrease in plasma VEGF at 14,200 feet were those who did not develop AMS. Neither SaO(2), prior AMS, AMS symptom scores, or acetazolamide use were correlated with plasma VEGF. Subjects at high altitude who do not develop AMS have lower plasma VEGF levels compared to control subjects at sea level. Plasma VEGF at high altitude is not elevated in association with AMS or hypoxia. Sustained plasma VEGF at altitude may reflect a phenotype more susceptible to AMS.

  5. Modulation of vascular endothelial cell function by palm oil antioxidants.

    PubMed

    Abeywardena, M Y; Head, R J; Gapor, A

    1997-03-01

    Several cardiovascular risk factors including, hypercholesterolaemia and hypertension, lead to diseased blood vessels due to endothelial cell dysfunction. Recent studies also indicate that such alterations in blood vessel function may involve free radical related mechanism(s). Therefore, in the present study, two different preparations of palm oils with variable antioxidant profiles, as well as a purified antioxidant fraction extracted from unprocessed palm oil (tocotrienol-rich-factor; TRF), were tested for their ability to influence blood vessel dysfunction in the spontaneously hypertensive rat (SHR). Adult SHRs were fed a synthetic diet supplemented (5% w/w) with either physically refined palm oil (PO), golden palm cooking oil (Nutrolein; GPO) or olive oil (OO; control diet). Antioxidant rich diet (TRF diet) was prepared by supplementing the OO diet with 0.2% (w/w) TRF. After 12 weeks of pre-feeding, segments of thoracic aorta were used to evaluate vascular function. Compared to the normotensive Wistar-Kyoto (WKY) control rats, aortic rings from the SHR showed impaired endothelium dependent relaxation to acetylcholine (ACh) which was restored by dietary TRF (p<0.05, ANOVA and Tukey's test). In addition, the paradoxical increase in tension in control hypertensive vessels observed at higher doses of ACh was prevented by TRF and also by the PO and GPO diets. Although the development of thromboxane-like constrictor response, after the inhibition of nitric oxide in hypertensive vessels, was unaffected by test diets, both TRF and GPO feeding prevented the amplification of this unwanted constriction by a threshold dose (7.2x10-10 M) of noradrenaline. Results suggest a modulatory role for minor constituents of edible oils and are in agreement with the recently reported benefits of natural antioxidants against cardiovascular diseases.

  6. Stem cell-derived vascular endothelial cells and their potential application in regenerative medicine

    USDA-ARS?s Scientific Manuscript database

    Although a 'vascular stem cell' population has not been identified or generated, vascular endothelial and mural cells (smooth muscle cells and pericytes) can be derived from currently known pluripotent stem cell sources, including human embryonic stem cells and induced pluripotent stem cells. We rev...

  7. Increased endothelial cell adhesion on plasma modified nanostructured polymeric and metallic surfaces for vascular stent applications.

    PubMed

    Pareta, Rajesh A; Reising, Alexander B; Miller, Tiffany; Storey, Dan; Webster, Thomas J

    2009-06-15

    Techniques to regenerate the vasculature have risen considerably over the last few decades due to the increased clinical diagnosis of artery narrowing and blood vessel blockage. Although initially re-establishing blood flow, current small diameter vascular regenerative materials often eventually cause thrombosis and restenosis due to a lack of initial endothelial cell coverage on such materials. The objective of this in vitro study was to evaluate commonly used vascular materials (specifically, polyethylene terephthalate, polytetrafluoroethylene, polyvinyl chloride, polyurethane, nylon, commercially pure titanium, and a titanium alloy (Ti6Al4V)) modified using an ionic plasma deposition (IPD) process and a nitrogen ion implantation plasma deposition (NIIPD) process. Such surface modifications have been previously shown to create nanostructured surface features which mimic the natural nanostructured surface features of blood vessels. The modified and unmodified surfaces were characterized by scanning electron microscopy, atomic force microscopy and surface energy measurements. Furthermore, in vitro endothelial cell adhesion tests (a key first step for vascular material endothelialization) demonstrated increased endothelial cell adhesion on many modified (with IPD and NIIPD + IPD) compared to unmodified samples. In general, endothelial cell adhesion increased with nanoroughness and surface energy but demonstrated a decreased endothelial cell adhesion trend after an optimal coating surface energy value was reached. Thus, results from this study provided materials and a versatile surface modification process that can potentially increase endothelialization faster than current unmodified (conventional) polymer and metallic vascular materials.

  8. A novel mechanism of diabetic vascular endothelial dysfunction: Hypoadiponectinemia-induced NLRP3 inflammasome activation.

    PubMed

    Zhang, Jinglong; Xia, Linying; Zhang, Fen; Zhu, Di; Xin, Chao; Wang, Helin; Zhang, Fuyang; Guo, Xian; Lee, Yan; Zhang, Ling; Wang, Shan; Guo, Xiong; Huang, Chong; Gao, Feng; Liu, Yi; Tao, Ling

    2017-02-12

    It has been well documented that hypoadiponectinemia is associated with impaired endothelium-dependent vasodilation. However, the exact molecular mechanism which mediates this process has not been fully described. The current study aimed to investigate the role of hypoadiponectinemia-induced NLRP3 inflammasome activation in diabetic vascular endothelial dysfunction and its molecular mechanism. Male adult adiponectin knockout mice and wild type mice were fed with a high fat diet to establish a type 2 diabetic mellitus model. In addition, human umbilical vein endothelial cells (HUVECs) were cultured and subjected to high glucose/high fat (HG/HF). The NLRP3 inflammasome activation was increased in type 2 diabetic mice and treatment of diabetic aortic segments with MCC950, a potent selective inhibitor of NLRP3 inflammasome ex vivo improved endothelial-dependent vasorelaxation. NLRP3 inflammasome activation and vascular endothelial injury were significantly increased in APN-KO mice compared with WT mice in diabetes and MCC950 decreased diabetic vascular endothelial dysfunction to comparable levels in APN-KO mice and WT mice. Adiponectin could decrease NLRP3 inflammasome activation and attenuate endothelial cell injury, which was abolished by NLRP3 inflammasome overexpression. Inhibition of peroxynitrite formation preferentially attenuated NLRP3 inflammasome activation in APN-KO diabetic mice. The current study demonstrated for the first time that hypoadiponectinemia-induced NLRP3 inflammasome activation was a novel mechanism of diabetic vascular endothelial dysfunction.

  9. Evidence of endothelial dysfunction in the development of Alzheimer's disease: Is Alzheimer's a vascular disorder?

    PubMed

    Kelleher, Rory J; Soiza, Roy L

    2013-11-01

    The etiology of Alzheimer's disease (AD) remains unclear. The emerging view is that cerebrovascular dysfunction is a feature not only of cerebrovascular diseases, such as stroke, but also of neurodegenerative conditions, such as AD. In AD, there is impaired structure and function of cerebral blood vessels and cells in the neurovascular unit. These effects are mediated by vascular oxidative stress. Injury to the neurovascular unit alters cerebral blood flow regulation, depletes vascular reserves, disrupts the blood-brain barrier and reduces the brain's repair capacity. Such injury can exacerbate the cognitive dysfunction exerted by incident ischemia and coexisting neurodegeneration. This article summarises data regarding cardiovascular risk factors, vascular abnormalities and brain endothelial damage in AD. In view of accumulating evidence of vascular pathology in AD, we also review the literature (MEDLINE, EMBASE) for clinical evidence of impaired endothelial function in AD. A total of 15 articles investigating endothelial dysfunction in AD were identified. 10 of these articles showed impaired endothelial function in AD patients. The current literature suggests endothelial dysfunction may be involved in the pathogenesis of AD. This aspect of AD pathology is particularly interesting in view of its potential for therapeutic intervention. Future research on endothelial function in AD should concentrate on population-based analysis and combine multiple methods to evaluate endothelial function.

  10. Podocalyxin Regulates Murine Lung Vascular Permeability by Altering Endothelial Cell Adhesion

    PubMed Central

    Debruin, Erin J.; Hughes, Michael R.; Sina, Christina; Liu, Alex; Cait, Jessica; Jian, Zhiqi; Lopez, Martin; Lo, Bernard; Abraham, Thomas; McNagny, Kelly M.

    2014-01-01

    Despite the widespread use of CD34-family sialomucins (CD34, podocalyxin and endoglycan) as vascular endothelial cell markers, there is remarkably little known of their vascular function. Podocalyxin (gene name Podxl), in particular, has been difficult to study in adult vasculature as germ-line deletion of podocalyxin in mice leads to kidney malformations and perinatal death. We generated mice that conditionally delete podocalyxin in vascular endothelial cells (PodxlΔEC mice) to study the homeostatic role of podocalyxin in adult mouse vessels. Although PodxlΔEC adult mice are viable, their lungs display increased lung volume and changes to the matrix composition. Intriguingly, this was associated with increased basal and inflammation-induced pulmonary vascular permeability. To further investigate the etiology of these defects, we isolated mouse pulmonary endothelial cells. PodxlΔEC endothelial cells display mildly enhanced static adhesion to fibronectin but spread normally when plated on fibronectin-coated transwells. In contrast, PodxlΔEC endothelial cells exhibit a severely impaired ability to spread on laminin and, to a lesser extent, collagen I coated transwells. The data suggest that, in endothelial cells, podocalyxin plays a previously unrecognized role in maintaining vascular integrity, likely through orchestrating interactions with extracellular matrix components and basement membranes, and that this influences downstream epithelial architecture. PMID:25303643

  11. Vascular Endothelial Growth Factor Prevents Endothelial-to-Mesenchymal Transition in Hypertrophy.

    PubMed

    Illigens, Ben M-W; Casar Berazaluce, Alejandra; Poutias, Dimitrios; Gasser, Robert; Del Nido, Pedro J; Friehs, Ingeborg

    2017-09-01

    In hypertrophy, progressive loss of function caused by impaired diastolic compliance correlates with advancing cardiac fibrosis. Endothelial cells contribute to this process through endothelial-to-mesenchymal transition (EndMT) resulting from inductive signals such as transforming growth factor (TGF-β). Vascular endothelial growth factor (VEGF) has proven effective in preserving systolic function and delaying the onset of failure. In this study, we hypothesize that VEGF inhibits EndMT and prevents cardiac fibrosis, thereby preserving diastolic function. The descending aorta was banded in newborn rabbits. At 4 and 6 weeks, hypertrophied animals were treated with intrapericardial VEGF protein and compared with controls (n = 7 per group). Weekly transthoracic echocardiography measured peak systolic stress. At 7 weeks, diastolic stiffness was determined through pressure-volume curves, fibrosis by Masson trichrome stain and hydroxyproline assay, EndMT by immunohistochemistry, and activation of TGF-β and SMAD2/3 by quantitative real-time polymerase chain reaction. Peak systolic stress was preserved during the entire observation period, and diastolic compliance was maintained in treated animals (hypertrophied: 20 ± 1 vs treated: 11 ± 3 and controls: 12 ± 2; p < 0.05). Collagen was significantly higher in the hypertrophied group by Masson trichrome (hypertrophied: 3.1 ± 0.9 vs treated: 1.8 ± 0.6) and by hydroxyproline assay (hypertrophied: 2.8 ± 0.6 vs treated: 1.4 ± 0.4; p < 0.05). Fluorescent immunostaining showed active EndMT in the hypertrophied group but significantly less in treated hearts, which was directly associated with a significant increase in TGF-β/SMAD-2 messenger RNA expression. EndMT contributes to cardiac fibrosis in hypertrophied hearts. VEGF treatment inhibits EndMT and prevents the deposition of collagen that leads to myocardial stiffness through TGF-β/SMAD-dependent activation. This presents a therapeutic opportunity to prevent diastolic

  12. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo

    NASA Astrophysics Data System (ADS)

    Plate, Karl H.; Breier, Georg; Weich, Herbert A.; Risau, Werner

    1992-10-01

    CLINICAL and experimental studies suggest that angiogenesis is a prerequisite for solid tumour growth1,2. Several growth factors with mitogenic or chemotactic activity for endothelial cells in vitro have been described, but it is not known whether these mediate tumour vascularization in vivo3,4. Glioblastoma, the most common and most malignant brain tumour in humans, is distinguished from astrocytoma by the presence of necroses and vascular prolifer-ations5'6. Here we show that expression of an endothelial cell-specific mitogen, vascular endothelial growth factor (VEGF), is induced in astrocytoma cells but is dramatically upregulated in two apparently different subsets of glioblastoma cells. The high-affinity tyrosine kinase receptor for VEGF, flt, although not expressed in normal brain endothelium, is upregulated in tumour endothelial cells in vivo. These observations strongly support the concept that tumour angiogenesis is regulated by paracrine mechanisms and identify VEGF as a potential tumour angiogenesis factor in vivo.

  13. Diabetes, Endothelial Dysfunction, and Vascular Repair: What Should a Diabetologist Keep His Eye on?

    PubMed Central

    Altabas, V.

    2015-01-01

    Cardiovascular complications are the most common complications of diabetes mellitus. A prominent attribute of diabetic cardiovascular complications is accelerated atherosclerosis, considered as a still incurable disease, at least at more advanced stages. The discovery of endothelial progenitor cells (EPCs), able to replace old and injured mature endothelial cells and capable of differentiating into healthy and functional endothelial cells, has offered the prospect of merging the traditional theories on the pathogenesis of atherosclerosis with evolving concepts of vascular biology. The literature supports the notion that EPC alterations are involved in the pathogenesis of vascular diseases in diabetics, but at present many questions remain unanswered. In this review the aspects linking endothelial progenitor cells to the altered vascular biology in diabetes mellitus are discussed. PMID:26089898

  14. Biological behaviour and role of endothelial progenitor cells in vascular diseases.

    PubMed

    Zhang, Qiu-hua; She, Ming-peng

    2007-12-20

    To review the biological behaviour of endothelial progenitor cells and their role in vascular diseases. Data sources The data used in this review were mainly from Medline and PubMed for relevant English language articles published from 1985 to March 2007. The search term was "endothelial progenitor cells". Study selection Articles about the biological behaviour of endothelial progenitor cells and their roles in the pathogenesis of vascular diseases such as atherogenesis were used. Progenitor cells in bone marrow, peripheral blood and adventitia can differentiate into mature endothelial cells (ECs). The progenitor cells, which express certain surface markers including AC133, CD34 and KDR, enable restoration of the microcirculation and ECs when injury or ischaemia occurs. Endothelial progenitor cells used in experimental models and clinical trials for ischaemic syndromes could restore endothelial integrity and inhibit neointima development. Moreover, their number and functional properties are influenced by certain cytokines and atherosclerotic risk factors. Impairment of the progenitor cells might limit the regenerative capacity, even lead to the development of atherosclerosis or other vascular diseases. Endothelial progenitor cells have a particular role in prevention and treatment of certain cardiovascular diseases. However, many challenges remain in understanding differentiation of endothelial progenitor cells, their mobilization and revascularization.

  15. [Cultivation and morphological characteristics of rat adipose tissue-derived vascular endothelial cells in vitro].

    PubMed

    Lin, Yunfeng; Chen, Xizhe; Tian, Weidong; Yan, Zhengbin; Zheng, Xiaohui

    2006-08-01

    The subcutaneous adipose tissue from the inguen of four Sprague-Dawley rats was obtained, then digested with one volume of collagenase type I and cultured with BGJb medium. The obtained adipose stromal cells were induced in human endothelial-SFM for 7 d. The cells were observed under inverted microscope every day and identified by transmission electron microscope and immunocytochemical staining with factor VIII antigen. The results showed the induced cells uniformly had characteristic cobblestone morphology of endothelial cells. Factor VIII antigen staining was positive in cytoplasm. Under transmission electron microscope, the cells displayed many finger like microvilli and numerous lysosomes, mitochondria, a few coarse endoplasmic reticulum and Weibel-Palade bodies. The characteristics of the rat adipose tissue-derived endothelial cells were consistent with those of vascular endothelial cells derived from other tissues. It seems that subcutaneous adipose tissue may represent a new alternative source of endogenous vascular endothelial cells.

  16. Vascular Endothelial Growth Factor Induction of Muscle-Derived Stem Cells Enhances Vascular Phenotype While Preserving Myogenic Potential.

    PubMed

    Wang, Howard D; Guo, Qiongyu; Quan, Amy; Lopez, Joseph; Alonso-Escalante, Jose C; Lough, Denver M; Lee, W P Andrew; Brandacher, Gerald; Kumar, Anand R

    2017-10-01

    Previous work by our group and other laboratories have revealed that muscle-derived stem cells (MDSCs) may contain both myogenic and endothelial progenitors, making MDSCs a promising option for skeletal muscle regeneration. The purpose of this study was to investigate the impact of vascular endothelial growth factor (VEGF) induction on the vascular and myogenic potential of MDSCs. Muscle-derived stem cells were isolated from 4- to 8-week-old C57BL/6J mice using a preplate technique and recombinant human VEGFa was used as the induction agent. Cellular proliferation and migration were assessed using serial imaging and wound healing assays, respectively. Myosin heavy chain staining was performed to assess MDSC myotube formation. Vascular potential of MDSCs was measured by expression of CD31 and in vitro capillary tube formation. Vascular endothelial growth factor stimulation led to a dose-dependent increase in MDSC proliferation (P < 0.05) and migration kinetics (P < 0.01). Control MDSCs had low levels of baseline expression of CD31, which was significantly upregulated by VEGF stimulation. Similarly, MDSCs demonstrated a basal capability for capillary tube formation, which was significantly increased after VEGF induction as evidenced by increased branches (5.91 ± 0.58 vs 9.23 ± 0.67, P < 0.01) and total tube length (11.73 ± 0.97 vs 18.62 ± 1.57 mm, P < 0.01). Additionally, the myogenic potential of MDSCs as measured by fusion index remained unchanged with increasing concentration of VEGF up to 250 ng/mL (P = 0.77). Vascular endothelial growth factor induction enhances MDSC proliferation, migration, and endothelial phenotypes without negatively impacting myogenic potential. These results suggest that VEGF stimulation may improve vascularization of MDSC-based strategies for skeletal muscle regeneration.

  17. Increased endothelial and vascular smooth muscle cell adhesion on nanostructured titanium and CoCrMo

    PubMed Central

    Choudhary, Saba; Berhe, Mikal; Haberstroh, Karen M; Webster, Thomas J

    2006-01-01

    In the body, vascular cells continuously interact with tissues that possess nanostructured surface features due to the presence of proteins (such as collagen and elastin) embedded in the vascular wall. Despite this fact, vascular stents intended to restore blood flow do not have nanoscale surface features but rather are smooth at the nanoscale. As the first step towards creating the next generation of vascular stent materials, the objective of this in vitro study was to investigate vascular cell (specifically, endothelial, and vascular smooth muscle cell) adhesion on nanostructured compared with conventional commercially pure (cp) Ti and CoCrMo. Nanostructured cp Ti and CoCrMo compacts were created by separately utilizing either constituent cp Ti or CoCrMo nanoparticles as opposed to conventional micronsized particles. Results of this study showed for the first time increased endothelial and vascular smooth muscle cell adhesion on nanostructured compared with conventional cp Ti and CoCrMo after 4 hours’ adhesion. Moreover, compared with their respective conventional counterparts, the ratio of endothelial to vascular smooth muscle cells increased on nanostructured cp Ti and CoCrMo. In addition, endothelial and vascular smooth muscle cells had a better spread morphology on the nanostructured metals compared with conventional metals. Overall, vascular cell adhesion was better on CoCrMo than on cp Ti. Results of surface characterization studies demonstrated similar chemistry but significantly greater root-mean-square (rms) surface roughness as measured by atomic force microscopy (AFM) for nanostructured compared with respective conventional metals. For these reasons, results from the present in vitro study provided evidence that vascular stents composed of nanometer compared with micron-sized metal particles (specifically, either cp Ti or CoCrMo) may invoke cellular responses promising for improved vascular stent applications. PMID:17722261

  18. Serum concentration of vascular endothelial growth factor and depth of trophoblastic invasion in ampullary ectopic pregnancy.

    PubMed

    Cabar, Fábio Roberto; Teshima, Décio Roberto Kamio; Pereira, Pedro Paulo; Antonangelo, Leila; Schultz, Regina; Francisco, Rossana Pulcineli

    2016-12-01

    To evaluate the association between the depth of trophoblastic infiltration and serum vascular endothelial growth factorconcentration in patients with an ampullary pregnancy. This prospective cross-sectionalstudy involved 34 patients with an ampullary ectopic pregnancy who underwent salpingectomy between 2012 and 2013. Maternal serum vascular endothelial growth factor concentrations were measured using Luminex technology. Trophoblastic invasion was classified histologically as follows: stage I, limited to the tubal mucosa; stage II, reaching the muscle layer; and stage III,involving the full thickness. The qualitative data were compared using Fisher's exact test. The nonparametric Kruskal-Wallis and Mann-Whitney tests were used to evaluate differences in serum vascular endothelial growth factor among the degrees of trophoblastic invasion. ROC curves were constructed to determine vascular endothelial growth factor cut-off values that predict the degree of tubal invasion based on the best sensitivity and specificity. Eight patients had stage I trophoblastic invasion, seven had stage II, and 19 had stage III. The median serum vascular endothelial growth factorconcentration was 69.88 pg/mL for stage I, 14.53 pg/mL for stage II and 9.08 pg/mL for stage III, with a significant difference between stages I and III. Based on the ROC curve, a serum vascular endothelial growth factor concentration of 25.9 pg/mL best differentiated stage I from stages II and III with asensitivity of 75.0%, specificity of 76.9%, and area under the curve of 0.798. The depth of trophoblastic penetration into the tubal wall isassociated with serum vascular endothelial growth factor concentration in ampullary pregnancies.

  19. Serum concentration of vascular endothelial growth factor and depth of trophoblastic invasion in ampullary ectopic pregnancy

    PubMed Central

    Cabar, Fábio Roberto; Kamio Teshima, Décio Roberto; Pereira, Pedro Paulo; Antonangelo, Leila; Schultz, Regina; Francisco, Rossana Pulcineli

    2016-01-01

    OBJECTIVE: To evaluate the association between the depth of trophoblastic infiltration and serum vascular endothelial growth factorconcentration in patients with an ampullary pregnancy. METHODS: This prospective cross-sectionalstudy involved 34 patients with an ampullary ectopic pregnancy who underwent salpingectomy between 2012 and 2013. Maternal serum vascular endothelial growth factor concentrations were measured using Luminex technology. Trophoblastic invasion was classified histologically as follows: stage I, limited to the tubal mucosa; stage II, reaching the muscle layer; and stage III,involving the full thickness. The qualitative data were compared using Fisher's exact test. The nonparametric Kruskal-Wallis and Mann-Whitney tests were used to evaluate differences in serum vascular endothelial growth factor among the degrees of trophoblastic invasion. ROC curves were constructed to determine vascular endothelial growth factor cut-off values that predict the degree of tubal invasion based on the best sensitivity and specificity. RESULTS: Eight patients had stage I trophoblastic invasion, seven had stage II, and 19 had stage III. The median serum vascular endothelial growth factorconcentration was 69.88 pg/mL for stage I, 14.53 pg/mL for stage II and 9.08 pg/mL for stage III, with a significant difference between stages I and III. Based on the ROC curve, a serum vascular endothelial growth factor concentration of 25.9 pg/mL best differentiated stage I from stages II and III with asensitivity of 75.0%, specificity of 76.9%, and area under the curve of 0.798. CONCLUSIONS: The depth of trophoblastic penetration into the tubal wall isassociated with serum vascular endothelial growth factor concentration in ampullary pregnancies. PMID:28076513

  20. Nanomechanics of the endothelial glycocalyx contribute to Na+-induced vascular inflammation

    PubMed Central

    Schierke, Florian; Wyrwoll, Margot J.; Wisdorf, Martin; Niedzielski, Leon; Maase, Martina; Ruck, Tobias; Meuth, Sven G.; Kusche-Vihrog, Kristina

    2017-01-01

    High dietary salt (NaCl) is a known risk factor for cardiovascular pathologies and inflammation. High plasma Na+ concentrations (high Na+) have been shown to stiffen the endothelial cortex and decrease nitric oxide (NO) release, a hallmark of endothelial dysfunction. Here we report that chronic high Na+ damages the endothelial glycocalyx (eGC), induces release of inflammatory cytokines from the endothelium and promotes monocyte adhesion. Single cell force spectroscopy reveals that high Na+ enhances vascular adhesion protein-1 (VCAM-1)-dependent adhesion forces between monocytes and endothelial surface, giving rise to increased numbers of adherent monocytes on the endothelial surface. Mineralocorticoid receptor antagonism with spironolactone prevents high Na+-induced eGC deterioration, decreases monocyte-endothelium interactions, and restores endothelial function, indicated by increased release of NO. Whereas high Na+ decreases NO release, it induces endothelial release of the pro-inflammatory cytokines IL-1ß and TNFα. However, in contrast to chronic salt load (hours), in vivo and in vitro, an acute salt challenge (minutes) does not impair eGC function. This study identifies the eGC as important mediator of inflammatory processes and might further explain how dietary salt contributes to endothelialitis and cardiovascular pathologies by linking endothelial nanomechanics with vascular inflammation. PMID:28406245

  1. Platelets regulate vascular endothelial stability: assessing the storage lesion and donor variability of apheresis platelets

    PubMed Central

    Baimukanova, Gyulnar; Miyazawa, Byron; Potter, Daniel R.; Muench, Marcus O.; Bruhn, Roberta; Gibb, Stuart L.; Spinella, Philip C.; Cap, Andrew P.; Cohen, Mitchell J.; Pati, Shibani

    2016-01-01

    BACKGROUND In current blood banking practices, platelets (PLTs) are stored in plasma at 22°C, with gentle agitation for up to 5 days. To date, the effects of storage and donor variability on PLT regulation of vascular integrity are not known. STUDY DESIGN AND METHODS In this study, we examined the donor variability of leukoreduced fresh (Day 1) or stored (Day 5) PLTs on vascular endothelial barrier function in vitro and in vivo. In vitro, PLT effects on endothelial cell (EC) monolayer permeability were assessed by analyzing transendothelial electrical resistances (TEER). PLT aggregation, a measure of hemostatic potential, was analyzed by impedance aggregometry. In vivo, PLTs were investigated in a vascular endothelial growth factor A (VEGF-A)-induced vascular permeability model in NSG mice, and PLT circulation was measured by flow cytometry. RESULTS Treatment of endothelial monolayers with fresh Day 1 PLTs resulted in an increase in EC barrier resistance and decreased permeability in a dose-dependent manner. Subsequent treatment of EC monolayers with Day 5 PLTs demonstrated diminished vasculoprotective effects. Donor variability was noted in all measures of PLT function. Day 1 PLT donors were more variable in their effects on TEER than Day 5 PLTs. In mice, while all PLTs regardless of storage time demonstrated significant protection against VEGF-A–induced vascular leakage, Day 5 PLTs exhibited reduced protection when compared to Day 1 PLTs. Day 1 PLTs demonstrated significant donor variability against VEGF-A–challenged vascular leakage in vivo. Systemic circulating levels of Day 1 PLTs were higher than those of Day 5 PLTs CONCLUSIONS In vitro and in vivo, Day 1 PLTs are protective in measures of vascular endothelial permeability. Donor variability is most prominent in Day 1 PLTs. A decrease in the protective effects is found with storage of the PLT units between Day 1 and Day 5 at 22°C, thereby suggesting that Day 5 PLTs are diminished in their ability to

  2. A systematic review of vascular and endothelial function: effects of fruit, vegetable and potassium intake.

    PubMed

    Blanch, N; Clifton, P M; Keogh, J B

    2015-03-01

    To review the relationships between: 1) Potassium and endothelial function; 2) Fruits and vegetables and endothelial function; 3) Potassium and other measures of vascular function; 4) Fruits and vegetables and other measures of vascular function. An electronic search for intervention trials investigating the effect of potassium, fruits and vegetables on vascular function was performed in MEDLINE, EMBASE and the Cochrane Library. Potassium appears to improve endothelial function with a dose of >40 mmol/d, however the mechanisms for this effect remain unclear. Potassium may improve measures of vascular function however this effect may be dependent on the effect of potassium on blood pressure. The effect of fruit and vegetables on endothelial function independent of confounding variables is less clear. Increased fruit and vegetable intake may improve vascular function only in high risk populations. Increasing dietary potassium appears to improve vascular function but the effect of increasing fruit and vegetable intake per se on vascular function is less clear. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. An Antagonistic Vascular Endothelial Growth Factor (VEGF) Variant Inhibits VEGF-Stimulated Receptor Autophosphorylation and Proliferation of Human Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Siemeister, Gerhard; Schirner, Michael; Reusch, Petra; Barleon, Bernhard; Marme, Dieter; Martiny-Baron, Georg

    1998-04-01

    Vascular endothelial growth factor (VEGF) is a potent mitogen with a unique specificity for endothelial cells and a key mediator of aberrant endothelial cell proliferation and vascular permeability in a variety of human pathological situations, such as tumor angiogenesis, diabetic retinopathy, rheumatoid arthritis, or psoriasis. VEGF is a symmetric homodimeric molecule with two receptor binding interfaces lying on each pole of the molecule. Herein we report on the construction and recombinant expression of an asymmetric heterodimeric VEGF variant with an intact receptor binding interface at one pole and a mutant receptor binding interface at the second pole of the dimer. This VEGF variant binds to VEGF receptors but fails to induce receptor activation. In competition experiments, the heterodimeric VEGF variant antagonizes VEGF-stimulated receptor autophosphorylation and proliferation of endothelial cells. A 15-fold excess of the heterodimer was sufficient to inhibit VEGF-stimulated endothelial cell proliferation by 50%, and a 100-fold excess resulted in an almost complete inhibition. By using a rational approach that is based on the structure of VEGF, we have shown the feasibility to construct a VEGF variant that acts as an VEGF antagonist.

  4. [Effects of endothelial lipase on mRNA expression of adhesion molecule of human umbilical vascular endothelial cells].

    PubMed

    Fang, Yu-qiang; Huang, Lan; Zhao, Xiao-hui; Yin, Yang-guang; Kang, Hua-li; Deng, Meng-yang

    2007-12-01

    To explore the relationship between human umbilical vascular endothelial cells (HUVECs) and endothelial lipase (EL), and the effect of EL on expression of endothelial cell adhesion molecule (ICAM). HUVECs was treated with tumor necrosis factor-alpha(TNF-alpha) 10 microg/L and the mRNA of adhesion molecules [intercellular adhesion molecule-1 (ICAM-1), vascular cellular adhesion molecule-1 (VCAM-1) and E-selectin] were detected by reverse transcription-polymerase chain reaction (RT-PCR). Then the effect of 50 microg/L anti-endothelial lipase (anti-EL) antibody on the influence of TNF-alpha on these adhesion molecules was observed. After being treated with TNF-alpha, the mRNA of adhesion molecules expressed by HUVECs were significant up-regulated, there was significant difference compared with control group (all P<0.01). These effects of TNF-alpha were significantly abolished by 50 microg/L anti-EL antibody (P<0.05 or P<0.01). EL can affect the expression of adhesion molecules on endothelial cell adhesion molecule. This effect of EL may play a role in the pathophysiologic process in the pathogenesis progress of atherosclerosis.

  5. Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling

    PubMed Central

    Franco, Claudio A; Jones, Martin L; Bernabeu, Miguel O; Vion, Anne-Clemence; Barbacena, Pedro; Fan, Jieqing; Mathivet, Thomas; Fonseca, Catarina G; Ragab, Anan; Yamaguchi, Terry P; Coveney, Peter V; Lang, Richard A; Gerhardt, Holger

    2016-01-01

    Endothelial cells respond to molecular and physical forces in development and vascular homeostasis. Deregulation of endothelial responses to flow-induced shear is believed to contribute to many aspects of cardiovascular diseases including atherosclerosis. However, how molecular signals and shear-mediated physical forces integrate to regulate vascular patterning is poorly understood. Here we show that endothelial non-canonical Wnt signalling regulates endothelial sensitivity to shear forces. Loss of Wnt5a/Wnt11 renders endothelial cells more sensitive to shear, resulting in axial polarization and migration against flow at lower shear levels. Integration of flow modelling and polarity analysis in entire vascular networks demonstrates that polarization against flow is achieved differentially in artery, vein, capillaries and the primitive sprouting front. Collectively our data suggest that non-canonical Wnt signalling stabilizes forming vascular networks by reducing endothelial shear sensitivity, thus keeping vessels open under low flow conditions that prevail in the primitive plexus. DOI: http://dx.doi.org/10.7554/eLife.07727.001 PMID:26845523

  6. Jujuboside B Reduces Vascular Tension by Increasing Ca2+ Influx and Activating Endothelial Nitric Oxide Synthase.

    PubMed

    Zhao, Yixiu; Zhang, Xin; Li, Jiannan; Bian, Yu; Sheng, Miaomiao; Liu, Bin; Fu, Zidong; Zhang, Yan; Yang, Baofeng

    2016-01-01

    Jujuboside B has been reported to have protective effect on many cardiovascular diseases. However, the effects of Jujuboside B on vascular tension and endothelial function are unknown. The present study investigated the effects of Jujuboside B on reducing vascular tension, protecting endothelial function and the potential mechanisms. The tension of isolated rat thoracic aorta ring was measured by Wire myograph system. The concentration of nitric oxide (NO) and the activity of endothelial nitric oxide synthase (eNOS) in human aortic endothelial cells (HAECs) were determined by Griess reagent method and enzyme-linked immune sorbent assay. The protein levels of eNOS and p-eNOS at Serine-1177 were determined by western blot analysis. Intracellular Ca2+ concentration in HAECs was measured by laser confocal imaging microscopy. Results showed that Jujuboside B reduced the tension of rat thoracic aorta rings with intact endothelium in a dose-dependent manner. L-NAME, KN93, EGTA, SKF96365, iberiotoxin and glibenclamide significantly attenuated Jujuboside B-induced vasodilation in endothelium-intact tissues. In contrast, indometacin and 4-DAMP had no such effects. Jujuboside B also promoted NO generation and increased eNOS activity, which were attenuated by L-NAME, EGTA and SKF96365. Moreover, Jujuboside B increased intracellular Ca2+ concentration dose-dependently, which was inhibited by EGTA and SKF96365. Besides, Jujuboside B induced a rapid Ca2+ influx instantaneously after depleting intracellular Ca2+ store, which was significantly inhibited by SKF96365. In conclusion, this study preliminarily confirmed that Jujuboside B reduced vascular tension endothelium-dependently. The underlying mechanisms involved that Jujuboside B increased extracellular Ca2+ influx through endothelial transient receptor potential cation (TRPC) channels, phosphorylated eNOS and promoted NO generation in vascular endothelial cells. In addition, Jujuboside B-induced vasodilation involved

  7. Jujuboside B Reduces Vascular Tension by Increasing Ca2+ Influx and Activating Endothelial Nitric Oxide Synthase

    PubMed Central

    Zhao, Yixiu; Zhang, Xin; Li, Jiannan; Bian, Yu; Sheng, Miaomiao; Liu, Bin; Fu, Zidong; Zhang, Yan; Yang, Baofeng

    2016-01-01

    Jujuboside B has been reported to have protective effect on many cardiovascular diseases. However, the effects of Jujuboside B on vascular tension and endothelial function are unknown. The present study investigated the effects of Jujuboside B on reducing vascular tension, protecting endothelial function and the potential mechanisms. The tension of isolated rat thoracic aorta ring was measured by Wire myograph system. The concentration of nitric oxide (NO) and the activity of endothelial nitric oxide synthase (eNOS) in human aortic endothelial cells (HAECs) were determined by Griess reagent method and enzyme-linked immune sorbent assay. The protein levels of eNOS and p-eNOS at Serine-1177 were determined by western blot analysis. Intracellular Ca2+ concentration in HAECs was measured by laser confocal imaging microscopy. Results showed that Jujuboside B reduced the tension of rat thoracic aorta rings with intact endothelium in a dose-dependent manner. L-NAME, KN93, EGTA, SKF96365, iberiotoxin and glibenclamide significantly attenuated Jujuboside B-induced vasodilation in endothelium-intact tissues. In contrast, indometacin and 4-DAMP had no such effects. Jujuboside B also promoted NO generation and increased eNOS activity, which were attenuated by L-NAME, EGTA and SKF96365. Moreover, Jujuboside B increased intracellular Ca2+ concentration dose-dependently, which was inhibited by EGTA and SKF96365. Besides, Jujuboside B induced a rapid Ca2+ influx instantaneously after depleting intracellular Ca2+ store, which was significantly inhibited by SKF96365. In conclusion, this study preliminarily confirmed that Jujuboside B reduced vascular tension endothelium-dependently. The underlying mechanisms involved that Jujuboside B increased extracellular Ca2+ influx through endothelial transient receptor potential cation (TRPC) channels, phosphorylated eNOS and promoted NO generation in vascular endothelial cells. In addition, Jujuboside B-induced vasodilation involved

  8. Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury

    PubMed Central

    Friedrich, Jessica L.; Spahic, Jasmina; Knipe, Nicole; Mang, Henry; Leonard, Ellen C.; Changizi-Ashtiyani, Saeed; Bacallao, Robert L.; Molitoris, Bruce A.; Sutton, Timothy A.

    2011-01-01

    Acute kidney injury induces the loss of renal microvessels, but the fate of endothelial cells and the mechanism of potential vascular endothelial growth factor (VEGF)-mediated protection is unknown. Cumulative cell proliferation was analyzed in the kidney of Sprague-Dawley rats following ischemia-reperfusion (I/R) injury by repetitive administration of BrdU (twice daily) and colocalization in endothelial cells with CD31 or cablin. Proliferating endothelial cells were undetectable for up to 2 days following I/R and accounted for only ∼1% of BrdU-positive cells after 7 days. VEGF-121 preserved vascular loss following I/R but did not affect proliferation of endothelial, perivascular cells or tubular cells. Endothelial mesenchymal transition states were identified by localizing endothelial markers (CD31, cablin, or infused tomato lectin) with the fibroblast marker S100A4. Such structures were prominent within 6 h and sustained for at least 7 days following I/R. A Tie-2-cre transgenic crossed with a yellow fluorescent protein (YFP) reporter mouse was used to trace the fate of endothelial cells and demonstrated interstititial expansion of YFP-positive cells colocalizing with S100A4 and smooth muscle actin following I/R. The interstitial expansion of YFP cells was attenuated by VEGF-121. Multiphoton imaging of transgenic mice revealed the alteration of YFP-positive vascular cells associated with blood vessels characterized by limited perfusion in vivo. Taken together, these data indicate that vascular dropout post-AKI results from endothelial phenotypic transition combined with an impaired regenerative capacity, which may contribute to progressive chronic kidney disease. PMID:21123492

  9. Melatonin ameliorates angiotensin II-induced vascular endothelial damage via its antioxidative properties.

    PubMed

    Nakao, Tomoko; Morita, Hiroyuki; Maemura, Koji; Amiya, Eisuke; Inajima, Tsukasa; Saito, Yuichiro; Watanabe, Masafumi; Manabe, Ichiro; Kurabayashi, Masahiko; Nagai, Ryozo; Komuro, Issei

    2013-10-01

    Melatonin is well known to have a beneficial effect on the cardiovascular system, but it remains to be elucidated whether melatonin has a therapeutic effect on the vascular damage induced by the potential vasoactive substance angiotensin II (Ang II). In this study, the effects of melatonin on Ang II-induced vascular endothelial damage were investigated. In cultured vascular endothelial cells, Ang II stimulation increased ROS generation and inhibited eNOS phosphorylation (Ser1177), both of which were clearly restored by pretreatment with melatonin. The translocation of p47(phox) subunit of NADPH oxidase from the cytosol to plasma membrane was promoted in Ang II-treated vascular endothelial cells, which was canceled by melatonin pretreatment. In Ang II-infused rats, increased ROS generation in the aortic wall and impaired endothelial function of the aortic ring were observed, which were rescued by coadministration of melatonin. In vasculature, melatonin receptor agonist ramelteon had the antioxidative effect in the same manner as melatonin by itself. These findings suggest that melatonin directly ameliorates Ang II-induced vascular endothelial damage partly via its antioxidative properties, providing with us the potential rationale for clinical application of melatonin to the prevention from cardiovascular diseases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Hydrogen-Rich Medium Attenuated Lipopolysaccharide-Induced Monocyte-Endothelial Cell Adhesion and Vascular Endothelial Permeability via Rho-Associated Coiled-Coil Protein Kinase.

    PubMed

    Xie, Keliang; Wang, Weina; Chen, Hongguang; Han, Huanzhi; Liu, Daquan; Wang, Guolin; Yu, Yonghao

    2015-07-01

    Sepsis is the leading cause of death in critically ill patients. In recent years, molecular hydrogen, as an effective free radical scavenger, has been shown a selective antioxidant and anti-inflammatory effect, and it is beneficial in the treatment of sepsis. Rho-associated coiled-coil protein kinase (ROCK) participates in junction between normal cells, and regulates vascular endothelial permeability. In this study, we used lipopolysaccharide to stimulate vascular endothelial cells and explored the effects of hydrogen-rich medium on the regulation of adhesion of monocytes to endothelial cells and vascular endothelial permeability. We found that hydrogen-rich medium could inhibit adhesion of monocytes to endothelial cells and decrease levels of adhesion molecules, whereas the levels of transepithelial/endothelial electrical resistance values and the expression of vascular endothelial cadherin were increased after hydrogen-rich medium treatment. Moreover, hydrogen-rich medium could lessen the expression of ROCK, as a similar effect of its inhibitor Y-27632. In addition, hydrogen-rich medium could also inhibit adhesion of polymorphonuclear neutrophils to endothelial cells. In conclusion, hydrogen-rich medium could regulate adhesion of monocytes/polymorphonuclear neutrophils to endothelial cells and vascular endothelial permeability, and this effect might be related to the decreased expression of ROCK protein.

  11. Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development

    PubMed Central

    Jung, Bongnam; Obinata, Hideru; Galvani, Sylvain; Mendelson, Karen; Ding, Bisen; Skoura, Athanasia; Kinzel, Bernd; Brinkmann, Volker; Rafii, Shahin; Evans, Todd; Hla, Timothy

    2012-01-01

    SUMMARY During angiogenesis, nascent vascular sprouts fuse to form vascular networks enabling efficient circulation. Mechanisms that stabilize the vascular plexus are not well understood. Sphingosine 1-phosphate (S1P) is a blood-borne lipid mediator implicated in the regulation of vascular and immune systems. Here we describe a mechanism by which the G protein-coupled S1P receptor-1 (S1P1) stabilizes the primary vascular network. A gradient of S1P1 expression from the mature regions of the vascular network to the growing vascular front was observed. In the absence of endothelial S1P1, adherens junctions are destabilized, barrier function is breached, and flow is perturbed resulting in abnormal vascular hypersprouting. Interestingly, S1P1 responds to S1P as well as laminar shear stress to transduce flow-mediated signaling in endothelial cells both in vitro and in vivo. These data demonstrate that blood flow and circulating S1P activate endothelial S1P1 to stabilize blood vessels in development and homeostasis. PMID:22975328

  12. Mediation of systemic vascular hyperpermeability in severe psoriasis by circulating vascular endothelial growth factor.

    PubMed

    Creamer, Daniel; Allen, Michael; Jaggar, Rhys; Stevens, Richard; Bicknell, Roy; Barker, Jonathan

    2002-06-01

    Severe forms of psoriasis can be complicated by systemic microvascular hyperpermeability. Vascular endothelial growth factor (VEGF) possesses potent vascular permeability activity. We suggest that VEGF enters the systemic circulation and acts on microvessels to mediate hyperpermeability. To quantify renal microvascular permeability and circulating VEGF concentration in severe psoriasis, and to investigate the relationship between plasma VEGF concentration and skin and joint involvement. Inception cohort studies of patients with generalized pustular psoriasis and plaque psoriasis. St John's Institute of Dermatology, London, England. Twenty-two patients (15 men and 7 women) with moderate and severe psoriasis were recruited (age range, 29-77 years; mean age, 47 years); 5 had generalized pustular psoriasis, 2 had erythrodermic psoriasis, and 15 had moderate-severe plaque psoriasis. An age- and sex-matched control group of 17 individuals (10 men and 7 women) was recruited (age range, 29-69 years; mean age, 42 years). There was pathological proteinuria in patients with relapsing generalized pustular psoriasis, (4-fold increase in urinary protein excretion rate in relapse compared with remission). In patients with moderate and severe psoriasis, mean plasma VEGF concentration during relapse was approximately 2.5 times greater than during remission (mean VEGF(relapse) = 257 pg/mL; mean VEGF(remission) = 103 pg/mL; P<.01). There was a correlation between extent of skin involvement and plasma VEGF level (mean VEGF(severe psoriasis) = 365 pg/mL; mean VEGF(moderate psoriasis) = 149 pg/mL; P =.03). There was a correlation between presence of psoriatic arthritis and plasma VEGF level (mean relapse VEGF(arthritis) = 277 pg/mL; mean relapse VEGF(nonarthritis) = 103.5 pg/mL; P =.03). Generalized pustular psoriasis is accompanied by pathological proteinuria and elevated plasma VEGF levels. Plasma VEGF concentration is significantly elevated in patients with extensive skin and joint

  13. Recent advances in understanding the roles of vascular endothelial cells in allergic inflammation.

    PubMed

    Shoda, Tetsuo; Futamura, Kyoko; Orihara, Kanami; Emi-Sugie, Maiko; Saito, Hirohisa; Matsumoto, Kenji; Matsuda, Akio

    2016-01-01

    Allergic disorders commonly involve both chronic tissue inflammation and remodeling caused by immunological reactions to various antigens on tissue surfaces. Due to their anatomical location, vascular endothelial cells are the final responders to interact with various exogenous factors that come into contact with the epithelial surface, such as pathogen-associated molecular patterns (PAMPs) and antigens. Recent studies have shed light on the important roles of endothelial cells in the development and exacerbation of allergic disorders. For instance, endothelial cells have the greatest potential to produce several key molecules that are deeply involved in allergic inflammation, such as periostin and thymus and activation-regulated chemokine (TARC/CCL17). Additionally, endothelial cells were recently shown to be important functional targets for IL-33--an essential regulator of allergic inflammation. Notably, almost all endothelial cell responses and functions involved in allergic inflammation are not suppressed by corticosteroids. These corticosteroid-refractory endothelial cell responses and functions include TNF-α-associated angiogenesis, leukocyte adhesion, IL-33-mediated responses and periostin and TARC production. Therefore, these unique responses and functions of endothelial cells may be critically involved in the pathogenesis of various allergic disorders, especially their refractory processes. Here, we review recent studies, including ours, which have elucidated previously unknown pathophysiological roles of vascular endothelial cells in allergic inflammation and discuss the possibility of endothelium-targeted therapy for allergic disorders.

  14. Peptide-modified PELCL electrospun membranes for regulation of vascular endothelial cells.

    PubMed

    Zhou, Fang; Jia, Xiaoling; Yang, Yang; Yang, Qingmao; Gao, Chao; Zhao, Yunhui; Fan, Yubo; Yuan, Xiaoyan

    2016-11-01

    The efficiency of biomaterials used in small vascular repair depends greatly on their ability to interact with vascular endothelial cells (VECs). Rapid endothelialization of the vascular grafts is a promising way to prevent thrombosis and intimal hyperplasia. In this work, modification of electrospun membranes of poly(ethylene glycol)-b-poly(l-lactide-co-ε-caprolactone) (PELCL) by three different peptides for regulation of VECs were studied in order to obtain ideal bioactive biomaterials as small diameter vascular grafts. QK (a mimetic peptide to vascular endothelial growth factor), Arg-Glu-Asp-Val (REDV, a specific adhesive peptide to VECs) and Val-Ala-Pro-Gly (VAPG, a specific adhesive peptide to vascular smooth muscle cells) were investigated. Surface properties of the modified membranes and the response of VECs were verified. It was found that protein adsorption and platelet adhesion were effectively suppressed with the introduction of QK, REDV or VAPG peptides on the PELCL electrospun membranes. Both QK- and REDV-modified electrospun membranes could accelerate the proliferation of VECs in the first 9days, and the QK-modified electrospun membrane promoted cell proliferation more significantly than the REDV-modified one. The REDV-modified PELCL membrane was the most favorable for VECs adhesion than QK- and VAPG-modified membranes. It was suggested that QK- or REDV-modified PELCL electrospun membranes may have great potential applications in cardiovascular biomaterials for rapid endothelialization in situ. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Identification of blood vascular endothelial stem cells by the expression of protein C receptor

    PubMed Central

    Yu, Qing Cissy; Song, Wenqian; Wang, Daisong; Zeng, Yi Arial

    2016-01-01

    Vascular growth and remodeling are dependent on the generation of new endothelial cells from stem cells and the involvement of perivascular cells to maintain vessel integrity and function. The existence and cellular identity of vascular endothelial stem cells (VESCs) remain unclear. The perivascular pericytes in adult tissues are thought to arise from the recruitment and differentiation of mesenchymal progenitors during early development. In this study, we identified Protein C receptor-expressing (Procr+) endothelial cells as VESCs in multiple tissues. Procr+ VESCs exhibit robust clonogenicity in culture, high vessel reconstitution efficiency in transplantation, long-term clonal expansion in lineage tracing, and EndMT characteristics. Moreover, Procr+ VESCs are bipotent, giving rise to de novo formation of endothelial cells and pericytes. This represents a novel origin of pericytes in adult angiogenesis, reshaping our understanding of blood vessel development and homeostatic process. Our study may also provide a more precise therapeutic target to inhibit pathological angiogenesis and tumor growth. PMID:27364685

  16. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    SciTech Connect

    Zhang, Haimou; Qin, Gangjian; Liang, Gang; Li, Jinan; Chiu, Isaac; Barrington, Robert A.; Liu, Dongxu . E-mail: dxliu001@yahoo.com

    2007-07-13

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanism of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-{kappa}B activation and nuclear translocation in an I{kappa}B{alpha}-dependent manner. The inhibitory effects were associated with reduction of inhibitor I{kappa}B kinase activity and stabilization of the NF-{kappa}B inhibitor I{kappa}B. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations.

  17. Different contributions of clathrin- and caveolae-mediated endocytosis of vascular endothelial cadherin to lipopolysaccharide-induced vascular hyperpermeability.

    PubMed

    Zhang, Ye; Zhang, Lianyang; Li, Yang; Sun, Shijin; Tan, Hao

    2014-01-01

    Vascular hyperpermeability induced by lipopolysaccharide (LPS) is a common pathogenic process in cases of severe trauma and sepsis. Vascular endothelial cadherin (VE-cad) is a key regulatory molecule involved in this process, although the detailed mechanism through which this molecule acts remains unclear. We assessed the role of clathrin-mediated and caveolae-mediated endocytosis of VE-cad in LPS-induced vascular hyperpermeability in the human vascular endothelial cell line CRL-2922 and determined that vascular permeability and VE-cad localization at the plasma membrane were negatively correlated after LPS treatment. Additionally, the loss of VE-cad at the plasma membrane was caused by both clathrin-mediated and caveolae-mediated endocytosis. Clathrin-mediated endocytosis was dominant early after LPS treatment, and caveolae-mediated endocytosis was dominant hours after LPS treatment. The caveolae-mediated endocytosis of VE-cad was activated through the LPS-Toll-like receptor 4 (TLR4)-Src signaling pathway. Structural changes in the actin cytoskeleton, specifically from polymerization to depolymerization, were important reasons for the switching of the VE-cad endocytosis pathway from clathrin-mediated to caveolae-mediated. Our findings suggest that clathrin-mediated and caveolae-mediated endocytosis of VE-cad contribute to LPS-induced vascular hyperpermeability, although they contribute via different mechanism. The predominant means of endocytosis depends on the time since LPS treatment.

  18. Rice bran enzymatic extract restores endothelial function and vascular contractility in obese rats by reducing vascular inflammation and oxidative stress.

    PubMed

    Justo, Maria Luisa; Candiracci, Manila; Dantas, Ana Paula; de Sotomayor, Maria Alvarez; Parrado, Juan; Vila, Elisabet; Herrera, Maria Dolores; Rodriguez-Rodriguez, Rosalia

    2013-08-01

    Rice bran enzymatic extract (RBEE) used in this study has shown beneficial activities against dyslipidemia, hyperinsulinemia and hypertension. Our aim was to investigate the effects of a diet supplemented with RBEE in vascular impairment developed in obese Zucker rats and to evaluate the main mechanisms mediating this action. Obese Zucker rats were fed a 1% and 5% RBEE-supplemented diet (O1% and O5%). Obese and their lean littermates fed a standard diet were used as controls (OC and LC, respectively). Vascular function was evaluated in aortic rings in organ baths. The role of nitric oxide (NO) was investigated by using NO synthase (NOS) inhibitors. Aortic expression of endothelial NOS (eNOS), inducible NOS (iNOS), tumor necrosis factor (TNF)-α and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits and superoxide production in arterial wall were determined. Endothelial dysfunction and vascular hyperreactivity to phenylephrine in obese rats were ameliorated by RBEE treatment, particularly with 1% RBEE. Up-regulation of eNOS protein expression in RBEE-treated aortas should contribute to this activity. RBEE attenuated vascular inflammation by reducing aortic iNOS and TNF-α expression. Aortas from RBEE-treated groups showed a significant decrease of superoxide production and down-regulation of NADPH oxidase subunits. RBEE treatment restored endothelial function and vascular contractility in obese Zucker rats through a reduction of vascular inflammation and oxidative stress. These results show the nutraceutical potential of RBEE to prevent obesity-related vascular complications. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. The matricellular protein CCN1 regulates TNF-α induced vascular endothelial cell apoptosis.

    PubMed

    Zhang, Jin; Wu, Gongxiong; Dai, Haibin

    2016-01-01

    Due to the epidemic obesity and associated diabetes, the incidence of atherosclerosis is increasing worldwide. Atherosclerosis is a chronic inflammatory disease characterized by the hardening and narrowing of arteries with plaques that consist of inflammatory cells, dead endothelial cells, lipids, and often hyper proliferated vascular smooth muscle cells. During the development of atherosclerosis, vascular endothelial cell (EC) apoptosis induced by the adipokine tumor necrosis factor alpha (TNF-α), is an early event in the plaque formation. However, TNF-α alone is not sufficient to induce apoptosis of endothelial cells. Recent studies suggested that the matricellular protein CCN family member 1 (CCN1) involves in endothelial cell dysfunction besides its well-known angiogenic function during tissue repair by promoting vascular smooth muscle cells proliferation and migration. Herein, we explored the possibility and mechanism of CCN1 in TNF-α induced endothelial cells apoptosis. Both mRNA and protein levels of CCN1 are found up-regulated in endothelial cells after TNF-α treatment. In addition, overexpression of CCN1 promoted endothelial cell apoptosis in the presence of TNF-α. Furthermore, CCN1 directly up-regulated the expression of TNF-α-target genes, and this up-regulation required the activation of P53 and NF-κB both in vivo and in vitro. Taken together, CNN1 regulates TNF-α induced endothelial cells apoptosis that may underlie poor response to TNF-α therapy and hence may be a better therapeutic target for preventing vascular dysfunction in obesity.

  20. Leptin-induced transphosphorylation of vascular endothelial growth factor receptor increases Notch and stimulates endothelial cell angiogenic transformation.

    PubMed

    Lanier, Viola; Gillespie, Corey; Leffers, Merle; Daley-Brown, Danielle; Milner, Joy; Lipsey, Crystal; Webb, Nia; Anderson, Leonard M; Newman, Gale; Waltenberger, Johannes; Gonzalez-Perez, Ruben Rene

    2016-10-01

    Leptin increases vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR-2), and Notch expression in cancer cells, and transphosphorylates VEGFR-2 in endothelial cells. However, the mechanisms involved in leptin's actions in endothelial cells are not completely known. Here we investigated whether a leptin-VEGFR-Notch axis is involved in these leptin's actions. To this end, human umbilical vein and porcine aortic endothelial cells (wild type and genetically modified to overexpress VEGFR-1 or -2) were cultured in the absence of VEGF and treated with leptin and inhibitors of Notch (gamma-secretase inhibitors: DAPT and S2188, and silencing RNA), VEGFR (kinase inhibitor: SU5416, and silencing RNA) and leptin receptor, OB-R (pegylated leptin peptide receptor antagonist 2: PEG-LPrA2). Interestingly, in the absence of VEGF, leptin induced the expression of several components of Notch signaling pathway in endothelial cells. Inhibition of VEGFR and Notch signaling significantly decreased leptin-induced S-phase progression, proliferation, and tube formation in endothelial cells. Moreover, leptin/OB-R induced transphosphorylation of VEGFR-1 and VEGFR-2 was essential for leptin's effects. These results unveil for the first time a novel mechanism by which leptin could induce angiogenic features via upregulation/trans-activation of VEGFR and downstream expression/activation of Notch in endothelial cells. Thus, high levels of leptin found in overweight and obese patients might lead to increased angiogenesis by activating VEGFR-Notch signaling crosstalk in endothelial cells. These observations might be highly relevant for obese patients with cancer, where leptin/VEGFR/Notch crosstalk could play an important role in cancer growth, and could be a new target for the control of tumor angiogenesis.

  1. Arsenite induces endothelial cell permeability increase through a reactive oxygen species-vascular endothelial growth factor pathway.

    PubMed

    Bao, Lingzhi; Shi, Honglian

    2010-11-15

    As a potent environmental oxidative stressor, arsenic exposure has been reported to exacerbate cardiovascular diseases and increase vascular endothelial cell monolayer permeability. However, the underlying mechanism of this effect is not well understood. In this paper, we test our hypothesis that reactive oxygen species (ROS)-induced vascular endothelial growth factor (VEGF) expression may play an important role in an arsenic-caused increase of endothelial cell monolayer permeability. The mouse brain vascular endothelial cell bEnd3 monolayer was exposed to arsenite for 1, 3, and 6 days. The monolayer permeability, VEGF protein release, and ROS generation were determined. In addition, VE-cadherin and zonula occludens-1 (ZO-1), two membrane structure proteins, were immunostained to elucidate the effects of arsenite on the cell-cell junction. The roles of ROS and VEGF in arsenite-induced permeability was determined by inhibiting ROS with antioxidants and immuno-depleting VEGF with a VEGF antibody. We observed that arsenite increased bEnd3 monolayer permeability, elevated the production of cellular ROS, and increased VEGF release. VE-cadherin and ZO-1 disruptions were also found in cells treated with arsenite. Furthermore, both antioxidant (N-acetyl cysteine and tempol) and the VEGF antibody treatments significantly lowered the arsenite-induced permeability of the bEnd3 monolayer as well as VEGF expression. VE-cadherin and ZO-1 disruptions were also diminished by N-acetyl cysteine and the VEGF antibody. Our data suggest that the increase in VEGF expression caused by ROS may play an important role in the arsenite-induced increase in endothelial cell permeability.

  2. Curcumin Attenuates Rapamycin-induced Cell Injury of Vascular Endothelial Cells.

    PubMed

    Guo, Ning; Chen, Fangyuan; Zhou, Juan; Fang, Yuan; Li, Hongbing; Luo, Yongbai; Zhang, Yong

    2015-10-01

    Although drug-eluting stents (DES) effectively improve the clinical efficacy of percutaneous coronary intervention, a high risk of late stent thrombosis and in-stent restenosis also exists after DES implantation. Anti-smooth muscle proliferation drugs, such as rapamycin, coating stents, not only inhibit the growth of vascular smooth muscle cells but also inhibit vascular endothelial cells and delay the reendothelialization. Therefore, the development of an ideal agent that protects vascular endothelial cells from rapamycin-eluting stents is of great importance for the next generation of DES. In this study, we demonstrated that rapamycin significantly inhibited the growth of rat aortic endothelial cells in both dose- and time-dependent manner in vitro. Cell apoptosis was increased and migration was decreased by rapamycin treatments in rat aortic endothelial cells in vitro. Surprisingly, treatment with curcumin, an active ingredient of turmeric, significantly reversed these detrimental effects of rapamycin. Moreover, curcumin increased the expression of vascular nitric oxide synthases (eNOS), which was decreased by rapamycin. Furthermore, caveolin-1, the inhibitor of eNOS, was decreased by curcumin. Knockdown of eNOS by small interfering RNA significantly abrogated the protective effects of curcumin. Taken together, our results suggest that curcumin antagonizes the detrimental effect of rapamycin on aortic endothelial cells in vitro through upregulating eNOS. Therefore, curcumin is a promising combined agent for the rescue of DES-induced reendothelialization delay.

  3. Endothelial Domes Encapsulate Adherent Neutrophils and Minimize Increases in Vascular Permeability in Paracellular and Transcellular Emigration

    PubMed Central

    Phillipson, Mia; Kaur, Jaswinder; Colarusso, Pina; Ballantyne, Christie M.; Kubes, Paul

    2008-01-01

    Local edema, a cardinal sign of inflammation associates closely with neutrophil emigration. Neutrophil emigration has been described to occur primarily through endothelial junctions (paracellular) and more rarely directly through endothelial cells (transcellular). Recently, we reported that unlike in wild-type (wt) mice, Mac-1-/- (CD11b) neutrophils predominantly emigrated transcellularly and was significantly delayed taking 20–30 min longer than the paracellular emigration (wt). In the present study we noted significant anatomical disruption of the endothelium and hypothesized that transcellular emigration would greatly increase vascular permeability. Surprisingly, despite profound disruption of the endothelial barrier as the neutrophils moved through the cells, the changes in vascular permeability during transcellular emigration (Mac-1-/-) were not increased more than in wt mice. Instead increased vascular permeability completely tracked the number of emigrated cells and as such, permeability changes were delayed in Mac-1-/- mice. However, by 60 min neutrophils from both sets of mice were emigrating in large numbers. Electron-microscopy and spinning disk multichannel fluorescence confocal microscopy revealed endothelial docking structures that progressed to dome-like structures completely covering wt and Mac-1-/- neutrophils. These domes completely enveloped the emigrating neutrophils in both wt and Mac-1-/- mice making the mode of emigration underneath these structures extraneous to barrier function. In conclusion, predominantly paracellular versus predominantly transcellular emigration does not affect vascular barrier integrity as endothelial dome-like structures retain barrier function. PMID:18297135

  4. Endothelial domes encapsulate adherent neutrophils and minimize increases in vascular permeability in paracellular and transcellular emigration.

    PubMed

    Phillipson, Mia; Kaur, Jaswinder; Colarusso, Pina; Ballantyne, Christie M; Kubes, Paul

    2008-02-20

    Local edema, a cardinal sign of inflammation associates closely with neutrophil emigration. Neutrophil emigration has been described to occur primarily through endothelial junctions (paracellular) and more rarely directly through endothelial cells (transcellular). Recently, we reported that unlike in wild-type (wt) mice, Mac-1-/- (CD11b) neutrophils predominantly emigrated transcellularly and was significantly delayed taking 20-30 min longer than the paracellular emigration (wt). In the present study we noted significant anatomical disruption of the endothelium and hypothesized that transcellular emigration would greatly increase vascular permeability. Surprisingly, despite profound disruption of the endothelial barrier as the neutrophils moved through the cells, the changes in vascular permeability during transcellular emigration (Mac-1-/-) were not increased more than in wt mice. Instead increased vascular permeability completely tracked the number of emigrated cells and as such, permeability changes were delayed in Mac-1-/- mice. However, by 60 min neutrophils from both sets of mice were emigrating in large numbers. Electron-microscopy and spinning disk multichannel fluorescence confocal microscopy revealed endothelial docking structures that progressed to dome-like structures completely covering wt and Mac-1-/- neutrophils. These domes completely enveloped the emigrating neutrophils in both wt and Mac-1-/- mice making the mode of emigration underneath these structures extraneous to barrier function. In conclusion, predominantly paracellular versus predominantly transcellular emigration does not affect vascular barrier integrity as endothelial dome-like structures retain barrier function.

  5. Calcineurin inhibitors cyclosporine A and tacrolimus induce vascular inflammation and endothelial activation through TLR4 signaling

    PubMed Central

    Rodrigues-Diez, Raquel; González-Guerrero, Cristian; Ocaña-Salceda, Carlos; Rodrigues-Diez, Raúl R.; Egido, Jesús; Ortiz, Alberto; Ruiz-Ortega, Marta; Ramos, Adrián M.

    2016-01-01

    The introduction of the calcineurin inhibitors (CNIs) cyclosporine and tacrolimus greatly reduced the rate of allograft rejection, although their chronic use is marred by a range of side effects, among them vascular toxicity. In transplant patients, it is proved that innate immunity promotes vascular injury triggered by ischemia-reperfusion damage, atherosclerosis and hypertension. We hypothesized that activation of the innate immunity and inflammation may contribute to CNI toxicity, therefore we investigated whether TLR4 mediates toxic responses of CNIs in the vasculature. Cyclosporine and tacrolimus increased the production of proinflammatory cytokines and endothelial activation markers in cultured murine endothelial and vascular smooth muscle cells as well as in ex vivo cultures of murine aortas. CNI-induced proinflammatory events were prevented by pharmacological inhibition of TLR4. Moreover, CNIs were unable to induce inflammation and endothelial activation in aortas from TLR4−/− mice. CNI-induced cytokine and adhesion molecules synthesis in endothelial cells occurred even in the absence of calcineurin, although its expression was required for maximal effect through upregulation of TLR4 signaling. CNI-induced TLR4 activity increased O2−/ROS production and NF-κB-regulated synthesis of proinflammatory factors in cultured as well as aortic endothelial and VSMCs. These data provide new insight into the mechanisms associated with CNI vascular inflammation. PMID:27295076

  6. The role of substratum compliance of hydrogels on vascular endothelial cell behavior

    PubMed Central

    Wood, Joshua A.; Shah, Nihar M.; McKee, Clayton T.; Hughbanks, Marissa L.; Liliensiek, Sara J.; Russell, Paul; Murphy, Christopher J.

    2012-01-01

    Cardiovascular disease (CVD) remains a leading cause of death both within the United States (US) as well as globally. In 2006 alone, over one-third of all deaths in the US were attributable to CVD. The high prevalence, mortality, morbidity, and socioeconomic impact of CVD has motivated a significant research effort; however, there remain significant knowledge gaps regarding disease onset and progression as well as pressing needs for improved therapeutic approaches. One critical area of research that has received limited attention is the role of biophysical cues on the modulation of endothelial cell behaviors; specifically, the impact of local compliance, or the stiffness, of the surrounding vascular endothelial extracellular matrix. In this study, the impact of substratum compliance on the modulation of cell behaviors of several human primary endothelial cell types, representing different anatomic sites and differentiation states in vivo, were investigated. Substrates used within our studies span the range of compliance that has been reported for the vascular endothelial basement membrane. Differences in substratum compliance had a profound impact on cell attachment, spreading, elongation, proliferation, and migration. In addition, each cell population responded differentially to changes in substratum compliance, documenting endothelial heterogeneity in the response to biophysical cues. These results demonstrate the importance of incorporating substratum compliance in the design of in vitro experiments as well as future prosthetic design. Alterations in vascular substratum compliance directly influence endothelial cell behavior and may participate in the onset and/or progression of CVDs. PMID:21501863

  7. Aging impairs transcriptional regulation of vascular endothelial growth factor in human microvascular endothelial cells: implications for angiogenesis and cell survival.

    PubMed

    Ahluwalia, A; Jones, M K; Szabo, S; Tarnawski, A S

    2014-04-01

    In some tissues, aging impairs angiogenesis and reduces expression of vascular endothelial growth factor A (VEGF), a fundamental regulator of angiogenesis. We previously examined angiogenesis in aging and young gastric mucosa in vivo and in vitro and showed that an imbalance between expressions of VEGF (pro-angiogenic factor) and endostatin (anti-angiogenic protein) results in an aging-related impairment of angiogenesis in rats. However, the human relevance of these findings, and whether these mechanisms apply to endothelial cells derived from other tissues, is not clear. Since P-STAT3 and P-CREB are transcription factors that, in association with HIF-1α, can activate VEGF gene expression in some cells (e.g., liver cancer cells, vascular smooth muscle cells), we examined the expression of these two proteins in human dermal microvascular endothelial cells (HMVECs) derived from aging and neonatal individuals. We examined and quantified in vitro angiogenesis, expression of VEGF, P-STAT3, P-CREB and importin-α in HMVECs isolated from neonates (neonatal) and a 66 year old subject (aging). We also examined the effects of treatment with exogenous VEGF and endostatin on in vitro angiogenesis in these cells. Endothelial cells isolated from aging individuals had impaired angiogenesis (vs. neonatal endothelial cells) and reduced expression of VEGF mRNA and protein. Aged HMVECs also had reduced importin-α expression, and reduced expression and nuclear translocation of P-STAT3 and P-CREB. Reduced VEGF gene expression in aged HMVECs strongly correlated with the decreased levels of P-STAT3, P-CREB and importin-α in these cells. Our study clearly demonstrates that endothelial cells from aging individuals have impaired angiogenesis and reduced expression of VEGF likely due to impaired nuclear transport of P-STAT3 and P-CREB transcription factors in these cells.

  8. Role of vascular endothelial growth factor inhibitors in the treatment of gynecologic malignancies.

    PubMed

    Burger, Robert A

    2010-03-01

    This article reviews the history and current status of vascular endothelial growth factor targeted therapy for the most common gynecologic malignancies - epithelial ovarian, endometrial and cervical cancers. The biologic rationale for targeting vascular endothelial growth factor (VEGF) for these disease sites is well-founded, and pre-clinical studies have supported the development of anti-VEGF agents. Their classification, known mechanisms of action, unique toxicities and clinical development are herein explored, the latter including issues related to study design, disease site and disease setting.

  9. Anti-vascular endothelial growth factor for neovascular glaucoma

    PubMed Central

    Simha, Arathi; Braganza, Andrew; Abraham, Lekha; Samuel, Prasanna; Lindsley, Kristina

    2014-01-01

    Background Neovascular glaucoma (NVG) is a potentially blinding secondary glaucoma. It is caused by the formation of abnormal new blood vessels which prevent normal drainage of aqueous from the anterior segment of the eye. Anti-vascular endothelial growth factor (anti-VEGF) agents are specific inhibitors of the primary mediators of neovascularization. Studies have reported the effectiveness of anti-VEGFs for the control of intraocular pressure (IOP) in NVG. Objectives To compare the IOP lowering effects of intraocular anti-VEGF agents to no anti-VEGF treatment, as an adjunct to existing modalities for the treatment of NVG. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (The Cochrane Library 2012, Issue 12), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE, (January 1950 to January 2013), EMBASE (January 1980 to January 2013), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to January 2013), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov/) and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 11 January 2013. Selection criteria We included randomized controlled trials (RCTs) and quasi-RCTs of people treated with anti-VEGF agents for NVG. Data collection and analysis Two authors independently assessed the search results for trials to be included in the review. Discrepancies were resolved by discussion with a third author. Since no trial met our inclusion criteria, no assessment of risk of bias or meta-analysis was undertaken. Main results No RCTs were found that met the inclusion criteria for this review. Two RCTs of anti-VEGF agents for treating NVG were not included in the

  10. Electrospun PELCL membranes loaded with QK peptide for enhancement of vascular endothelial cell growth.

    PubMed

    Yang, Yang; Yang, Qingmao; Zhou, Fang; Zhao, Yunhui; Jia, Xiaoling; Yuan, Xiaoyan; Fan, Yubo

    2016-06-01

    One of the major challenges in tissue engineering of small-diameter vascular grafts is to inhibit intimal hyperplasia and keep long-term patency after implantation. Rapid endothelialization of the grafts could be an effective approach. In this study, QK, a peptide mimicking vascular endothelial growth factor, was selected as the bioactive substrate and loaded in electrospun membranes for enhancement of vascular endothelial cell growth. In detail, QK peptide was firstly introduced with poly(ethylene glycol) diacrylate into a thiolated chitosan solution that could transfer into hydrogel. Then, suspensions or emulsions of poly(ethylene glycol)-b-poly(L-lactide-co-ε-caprolactone) (PELCL) containing QK peptide (with or without chitosan hydrogel) were electrospun into fibrous membranes. For comparison, the electrospun PELCL membrane without QK was also fabricated. Results of release behaviors showed that the electrospun membranes, especially that contained chitosan hydrogel prepared by suspension electrospinning, could successfully encapsulate QK peptide and maintain its secondary structure after released. In vitro cell culture studies exhibited that the release of QK peptide could accelerate the proliferation of vascular endothelial cells in the 9 days. It was suggested that the electrospun PELCL membranes loaded with QK peptide might have potential applications in vascular tissue engineering.

  11. Functional interaction of vascular endothelial-protein-tyrosine phosphatase with the angiopoietin receptor Tie-2.

    PubMed

    Fachinger, G; Deutsch, U; Risau, W

    1999-10-21

    During development of the vertebrate vascular system essential signals are transduced via protein-tyrosine phosphorylation. Null-mutations of receptor-tyrosine kinase (RTK) genes expressed in endothelial cells (ECs) display early lethal vascular phenotypes. We aimed to identify endothelial protein-tyrosine phosphatases (PTPs), which should have similar importance in EC-biology. A murine receptor-type PTP was identified by a degenerated PCR cloning approach from endothelial cells (VE-PTP). By in situ hybridization this phosphatase was found to be specifically expressed in vascular ECs throughout mouse development. In experiments using GST-fusion proteins, as well as in transient transfections, trapping mutants of VE-PTP co-precipitated with the Angiopoietin receptor Tie-2, but not with the Vascular Endothelial Growth Factor receptor 2 (VEGFR-2/Flk-1). In addition, VE-PTP dephosphorylates Tie-2 but not VEGFR-2. We conclude that VE-PTP is a Tie-2 specific phosphatase expressed in ECs, and VE-PTP phosphatase activity serves to specifically modulate Angiopoietin/Tie-2 function. Based on its potential role as a regulator of blood vessel morphogenesis and maintainance, VE-PTP is a candidate gene for inherited vascular malformations similar to the Tie-2 gene.

  12. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches

    SciTech Connect

    Baer, Caroline; Squadrito, Mario Leonardo; Iruela-Arispe, M. Luisa; De Palma, Michele

    2013-07-01

    The ability of macrophages to promote vascular growth has been associated with the secretion and local delivery of classic proangiogenic factors (e.g., VEGF-A and proteases). More recently, a series of studies have also revealed that physical contact of macrophages with growing blood vessels coordinates vascular fusion of emerging sprouts. Interestingly, the interactions between macrophages and vascular endothelial cells (ECs) appear to be bidirectional, such that activated ECs also support the expansion and differentiation of proangiogenic macrophages from myeloid progenitors. Here, we discuss recent findings suggesting that dynamic angiogenic vascular niches might also exist in vivo, e.g. in tumors, where sprouting blood vessels and immature myeloid cells like monocytes engage in heterotypic interactions that are required for angiogenesis. Finally, we provide an account of emerging mechanisms of cell-to-cell communication that rely on secreted microvesicles, such as exosomes, which can offer a vehicle for the rapid exchange of molecules and genetic information between macrophages and ECs engaged in angiogenesis. -- Highlights: • Macrophages promote angiogenesis by secreting proangiogenic factors. • Macrophages modulate angiogenesis via cell-to-cell contacts with endothelial cells. • Endothelial cells promote the differentiation of proangiogenic macrophages. • Macrophages and endothelial cells may cooperate to form angiogenic vascular niches.

  13. Nogo-B regulates endothelial sphingolipid homeostasis to control vascular function and blood pressure

    PubMed Central

    Kothiya, Milankumar; Galvani, Sylvain; Obinata, Hideru; Bucci, Mariarosaria; Giordano, Frank J; Jiang, Xian-Cheng; Hla, Timothy; Di Lorenzo, Annarita

    2015-01-01

    Endothelial dysfunction is a critical factor in many cardiovascular diseases, including hypertension. Although lipid signaling has been implicated in endothelial dysfunction and cardiovascular disease, specific molecular mechanisms are poorly understood. Here we report that Nogo-B, a membrane protein of the endoplasmic reticulum, regulates endothelial sphingolipid biosynthesis with direct effects on vascular function and blood pressure. Nogo-B inhibits serine palmitoyltransferase, the rate-limiting enzyme of the de novo sphingolipid biosynthetic pathway, thereby controlling production of endothelial sphingosine 1-phosphate and autocrine, G protein–coupled receptor–dependent signaling by this metabolite. Mice lacking Nogo-B either systemically or specifically in endothelial cells are hypotensive, resistant to angiotensin II–induced hypertension and have preserved endothelial function and nitric oxide release. In mice that lack Nogo-B, pharmacological inhibition of serine palmitoyltransferase with myriocin reinstates endothelial dysfunction and angiotensin II–induced hypertension. Our study identifies Nogo-B as a key inhibitor of local sphingolipid synthesis and shows that autocrine sphingolipid signaling within the endothelium is critical for vascular function and blood pressure homeostasis. PMID:26301690

  14. Testosterone promotes vascular endothelial cell migration via upregulation of ROCK-2/moesin cascade.

    PubMed

    Liao, Weiyong; Huang, Wenjun; Guo, Yanhong; Xin, Min; Fu, Xiaodong

    2013-12-01

    Cross-sectional studies have demonstrated a reverse relationship between serum level of testosterone (T) and the incidence rate of cardiovascular disease in men, indicating that T exerts beneficial effects in cardiovascular system. However, the endothelial effects of T are poorly understood. Actin remodeling is essential for endothelial cell movement and vascular repair and this process is controlled by the actin-binding protein moesin. In the present study, we studied the effects of T on actin remodeling, moesin expression and phosphorylation, as well as cell migration in cultured human umbilical endothelial cells (hUVECs). We found that T provoked the formation of cortical actin complexes and membrane protrusions in endothelial cells. Treatment with T induced dose- and time-dependent increase of moesin expression and phosphorylation, which was inhibited by the addition of androgen receptor antagonist hydroxyflutamide (HF). Moreover, T enhanced ROCK-2 activity. The ROCK-2 inhibitor Y27632 or the transfection of ROCK-2 siRNA largely inhibited T-induced moesin expression and phosphorylation, indicating that ROCK-2 pathway is crucial for these effects. T promoted endothelial cell migration, which was inhibited by the addition of HF or Y27632. In conclusion, T induces actin cytoskeleton remodeling by regulating moesin expression and activation, resulting in enhanced endothelial cell migration. Our work adds new insights into endothelial mechanisms of T, which is relevant for its vascular actions.

  15. Hydrodynamic shear-stress-dependent retention of endothelial and endothelial progenitor cells adhered to vascular endothelial growth factor-fixed surfaces.

    PubMed

    Kawahara, Daigo; Matsuda, Takehisa

    2012-07-01

    The luminal surfaces of small-diameter artificial vascular grafts must be fully endothelialized to be nonthrombogenic following implantation. To achieve this goal, we have attempted to capture circulating endothelial progenitor cells (EPCs) in situ on the luminal surfaces of implanted grafts. We examined potential receptor-ligand pairs that promote selective and tight adhesion of EPCs using a radial flow chamber comprising three regions, each containing a specific protein-bound substrate: fibronectin (FN) for integrin, and vascular endothelial growth factor (VEGF) and anti-Flk-1 antibody for VEGF receptor. In the presence of shear stress, the greatest retention of endothelial cells and EPCs was observed with FN followed by VEGF and then anti-Flk-1 antibody. Regardless of the bound protein, cell adhesion increased with larger areas of cell adhesion and enhanced cell spreading; the latter was also greatest with FN followed by VEGF and then anti-Flk-1 antibody. The distribution of vinculin-a key protein in focal adhesion plaques-in adherent endothelial cells was examined using total internal reflection fluorescence microscopy; FN-bound surfaces resulted in larger areas of adhesion and more focal adhesion plaques compared with surfaces bound with VEGF. On the other hand, examining these parameters relative to the area of cell adhesion revealed that VEGF-bound surfaces resulted in larger focal adhesion areas and greater fluorescence signals, both of which indicate increased resistance to shear stress. We also discuss in situ capturing of EPCs on surfaces bound with VEGF or anti-Flk-1 antibody, with the goal of creating endothelialized small-diameter vascular grafts. Copyright © 2012 Wiley Periodicals, Inc.

  16. Serine Protease Activation Essential for Endothelial-Mesenchymal Transition in Vascular Calcification.

    PubMed

    Yao, Jiayi; Guihard, Pierre J; Blazquez-Medela, Ana M; Guo, Yina; Moon, Jeremiah H; Jumabay, Medet; Boström, Kristina I; Yao, Yucheng

    2015-10-09

    Endothelial cells have the ability to undergo endothelial-mesenchymal transitions (EndMTs), by which they acquire a mesenchymal phenotype and stem cell-like characteristics. We previously found that EndMTs occurred in the endothelium deficient in matrix γ-carboxyglutamic acid protein enabling endothelial cells to contribute cells to vascular calcification. However, the mechanism responsible for initiating EndMTs is not fully understood. To determine the role of specific serine proteases and sex determining region Y-box 2 (Sox2) in the initiation of EndMTs. In this study, we used in vivo and in vitro models of vascular calcification to demonstrate that serine proteases and Sox2 are essential for the initiation of EndMTs in matrix γ-carboxyglutamic acid protein-deficient endothelium. We showed that expression of a group of specific serine proteases was highly induced in endothelial cells at sites of vascular calcification in Mgp null aortas. Treatment with serine protease inhibitors decreased both stem cell marker expression and vascular calcification. In human aortic endothelial cells, this group of serine proteases also induced EndMTs, and the activation of proteases was mediated by Sox2. Knockdown of the serine proteases or Sox2 diminished EndMTs and calcification. Endothelial-specific deletion of Sox2 decreased expression of stem cell markers and aortic calcification in matrix γ-carboxyglutamic acid protein-deficient mice. Our results suggest that Sox2-mediated activation of specific serine proteases is essential for initiating EndMTs, and thus, may provide new therapeutic targets for treating vascular calcification. © 2015 American Heart Association, Inc.

  17. Autoantigens targeted in scleroderma patients with vascular disease are enriched in endothelial lineage cells

    PubMed Central

    McMahan, Zsuzsanna H.; Cottrell, Tricia R.; Wigley, Fredrick M.; Antiochos, Brendan; Zambidis, Elias T.; Park, Tea Soon; Halushka, Marc K.; Gutierrez-Alamillo, Laura; Cimbro, Raffaello; Rosen, Antony; Casciola-Rosen, Livia

    2016-01-01

    Objective Scleroderma patients with autoantibodies to centromere proteins (CENPs) and/or interferon-inducible protein 16 (IFI16) are at increased risk of severe vascular complications. We set out to define whether these autoantigens are enriched in cells of the vasculature. Methods Successive stages of embryoid bodies (EBs) as well as vascular progenitors were used to evaluate the expression of scleroderma autoantigens IFI16 and CENP by immunoblotting. CD31 was included to mark early blood vessels. IFI16 and CD31 expression were defined in skin paraffin sections from scleroderma patients and from healthy controls. IFI16 expression was determined by flow cytometry in circulating endothelial cells (CECs) and circulating progenitor cells (CPCs). Results Expression of CENP-A, IFI16 and CD31 was enriched in EBs at days 10 and 12 of differentiation, and particularly in cultures enriched in vascular progenitors (IFI16, CD31, CENPs A and-B). This pattern was distinct from that of comparator autoantigens. Immunohistochemical staining of skin paraffin sections showed enrichment of IFI16 in CD31-positive vascular endothelial cells in biopsies from scleroderma patients and normal controls. Flow cytometry analysis revealed IFI16 expression in CPCs, but minimal expression in CECs. Conclusion Expression of scleroderma autoantigens IFI16 and CENPs, which are associated with severe vascular disease, is increased in vascular progenitors and mature endothelial cells. High level, lineage-enriched expression of autoantigens may explain the striking association between clinical phenotypes and the immune targeting of specific autoantigens. PMID:27159521

  18. Androgen exposure increases human monocyte adhesion to vascular endothelium and endothelial cell expression of vascular cell adhesion molecule-1.

    PubMed

    McCrohon, J A; Jessup, W; Handelsman, D J; Celermajer, D S

    1999-05-04

    Male sex is an independent risk factor for coronary artery disease. Owing to the importance of monocyte adhesion to endothelial cells in the development of atherosclerosis, we hypothesized that androgens might promote this process. We therefore studied the effects of the nonaromatizable androgen dihydrotestosterone (DHT) on human monocyte adhesion to human endothelial cells and on endothelial cell-surface expression of adhesion molecules. Human umbilical vein endothelial cells (HUVECs) were grown to confluence in media supplemented with postmenopausal female serum, then exposed for 48 hours to either DHT (40 and 400 nmol/L), with or without the androgen receptor blocker hydroxyflutamide (HF) (4 micromol/L); HF alone; or vehicle control (ethanol 0.1%). Human monocytes obtained by elutriation were incubated for 1 hour with the HUVECs at 37 degrees C, and adhesion was measured by light microscopy. Compared with vehicle control, monocyte adhesion was increased in the androgen-treated HUVECs in a dose-dependent manner (116+/-6% and 128+/-3% for DHT 40 and 400 nmol/L respectively; P<0.001). HF blocked this increase (P>/=0.3 compared with control). Surface expression of endothelial cell adhesion molecules was measured by ELISA and revealed an increased expression of vascular cell adhesion molecule-1 (VCAM-1) in the DHT-treated HUVECs (125+/-5% versus 100+/-4% in controls; P=0.002), an effect also antagonized by HF (P>/=0.3 compared with controls). Furthermore, the DHT-related increase in adhesion was completely blocked by coincubation with anti-VCAM-1 antibody. Comparable results were obtained in arterial endothelial cells and in endothelium stimulated with the cytokine tumor necrosis factor-alpha. Androgen exposure is associated with increased human monocyte adhesion to endothelial cells, a proatherogenic effect mediated at least in part by an increased endothelial cell-surface expression of VCAM-1.

  19. Vascular risk factors, endothelial function, and carotid thickness in patients with migraine: relationship to atherosclerosis.

    PubMed

    Hamed, Sherifa A; Hamed, Enas A; Ezz Eldin, Azza M; Mahmoud, Nagia M

    2010-03-01

    Recent studies indicated that migraine is associated with specific vascular risk profile. However, the functional and structural vascular abnormalities in migraine are rarely addressed. We evaluated the vascular risk factors, endothelial function, and carotid artery (CA)-intima-media thickness (IMT), segregators of preclinical atherosclerosis, in migraineurs. This preliminary study included 63 adults with headache (migraine with aura [n=14], migraine without aura [n=24], transformed migraine [n=6], and tension headache [n=19]) and 35 matched healthy subjects. The following vascular risks were assessed: body mass index (BMI), systolic blood pressure (SBP) and diastolic blood pressures (DBP), serum levels of C-reactive protein, fasting glucose, fasting insulin, total cholesterol, and triglycerides. Plasma endothelin (ET)-1, a vasoactive peptide produced by vascular smooth muscle cells and marker for endothelial injury and atherosclerosis, was measured. Endothelial-dependent vasoreactivity was assessed using brachial artery flow-mediated dilatation (FMD) in response to hyperemia. CA-IMT, structural marker of early atherosclerosis, was measured. Compared with control subjects, SBP, DBP, glucose, insulin, ET-1, and CA-IMT were elevated with migraine. FMD% was inversely correlated with SBP (P < .001), DBP (P < .01), glucose (P < .001), and insulin levels (P < .01). CA-IMT was correlated with BMI (P < .05), SBP (P < .01), total cholesterol (P < .01), triglycerides (P < .001), glucose (P < .001), insulin (P < .01), and FMD% (P < .05). In multivariate analysis, ET-1 was correlated with duration of illness, SBP, DBP, glucose, insulin, IMT, and FMD%. We conclude that endothelial injury, impaired endothelial vasoreactivity, and increased CA-IMT occur with migraine and are associated with vascular risk factors that strongly suggest that migraine could be a risk for atherosclerosis.

  20. Human endothelial dihydrofolate reductase low activity limits vascular tetrahydrobiopterin recycling.

    PubMed

    Whitsett, Jennifer; Rangel Filho, Artur; Sethumadhavan, Savitha; Celinska, Joanna; Widlansky, Michael; Vasquez-Vivar, Jeannette

    2013-10-01

    Tetrahydrobiopterin (BH₄) is required for NO synthesis and inhibition of superoxide release from endothelial NO synthase. Clinical trials using BH₄ to treat endothelial dysfunction have produced mixed results. Poor outcomes may be explained by the rapid systemic and cellular oxidation of BH₄. One of the oxidation products of BH₄, 7,8-dihydrobiopterin (7,8-BH₂), is recycled back to BH₄ by dihydrofolate reductase (DHFR). This enzyme is ubiquitously distributed and shows a wide range of activity depending on species-specific factors and cell type. Information about the kinetics and efficiency of BH4 recycling in human endothelial cells receiving BH₄ treatment is lacking. To characterize this reaction, we applied a novel multielectrode coulometric HPLC method that enabled the direct quantification of 7,8-BH₂ and BH₄, which is not possible with fluorescence-based methodologies. We found that basal untreated BH₄ and 7,8-BH₂ concentrations in human endothelial cells (ECs) are lower than in bovine and murine endothelioma cells. Treatment of human ECs with BH₄ transiently increased intracellular BH₄ while accumulating the more stable 7,8-BH₂. This was different from bovine or murine ECs, which resulted in preferential BH₄ increase. Using BH₄ diastereomers, 6S-BH₄ and 6R-BH₄, the narrow contribution of enzymatic DHFR recycling to total intracellular BH₄ was demonstrated. Reduction of 7,8-BH₂ to BH₄ occurs at very slow rates in cells and needs supraphysiological levels of 7,8-BH₂, indicating this reaction is kinetically limited. Activity assays verified that human DHFR has very low affinity for 7,8-BH₂ (DHF7,8-BH₂) and folic acid inhibits 7,8-BH₂ recycling. We conclude that low activity of endothelial DHFR is an important factor limiting the benefits of BH4 therapies, which may be further aggravated by folate supplements.

  1. The effect of astaxanthin on vascular endothelial growth factor (VEGF) levels and peroxidation reactions in the aqueous humor

    PubMed Central

    Hashimoto, Hirotaka; Arai, Kiyomi; Hayashi, Shimmin; Okamoto, Hiroyuki; Takahashi, Jiro; Chikuda, Makoto

    2016-01-01

    We explored the effect of astaxanthin on vascular endothelial growth factor in the aqueous humor, by measuring vascular endothelial growth factor levels and oxidation-related parameters, including O2•− scavenging activity, H2O2 level, and total hydroperoxide level in the aqueous humor, obtained from 35 patients before and after astaxanthin administration. We evaluated the relationship between vascular endothelial growth factor and the oxidation-related parameters as well as the patient’s diabetic status, age, and sex. Vascular endothelial growth factor levels did not change significantly but O2•− scavenging activity and total hydroperoxide level significantly (p<0.05) increased and decreased, respectively. Both pre- and post- astaxanthin intake, vascular endothelial growth factor and total hydroperoxide levels were positively correlated (Pearson: r = 0.42, p<0.05; r = 0.55, p<0.01, respectively). Analysis of vascular endothelial growth factor levels and O2•− scavenging activities gave a negative correlation but only pre-astaxanthin intake (r = −0.37, p<0.05). Differences in levels pre- and post-astaxanthin only showed association between vascular endothelial growth factor and total hydroperoxide (r = 0.49, p<0.01) analyzed by multiple linear regression. Using multivariate analysis, pre-astaxanthin vascular endothelial growth factor level was associated with two factors of total hydroperoxide and O2•− scavenging activity (r = 0.49, p<0.05), and post-astaxanthin vascular endothelial growth factor level with two factors of total hydroperoxide and sex (r = 0.60, p<0.01). Astaxanthin intake may have affected vascular endothelial growth factor level through its antioxidant effects by increasing O2•− scavenging activity and suppressing peroxide production. PMID:27499573

  2. Hyaluronan oligosaccharides perturb lymphocyte slow rolling on brain vascular endothelial cells: Implications for inflammatory demyelinating disease

    PubMed Central

    Winkler, Clayton W.; Foster, Scott C.; Itakura, Asako; Matsumoto, Steven G.; Asari, Akira; McCarty, Owen J.T.; Sherman, Larry S.

    2013-01-01

    Inflammatory demyelinating diseases like multiple sclerosis are characterized by mononuclear cell infiltration into the central nervous system. The glycosaminoglycan hyaluronan and its receptor, CD44, are implicated in the initiation and progression of a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Digestion of hyaluronan tethered to brain vascular endothelial cells by a hyaluronidase blocks the slow rolling of lymphocytes along activated brain vascular endothelial cells and delays the onset of EAE. These effects could be due to the elimination of hyaluronan or the generation of hyaluronan digestion products that influence lymphocytes or endothelial cells. Here, we found that hyaluronan dodecasaccharides impaired activated lymphocyte slow rolling on brain vascular endothelial cells when applied to lymphocytes but not to the endothelial cells. The effects of hyaluronan dodecasaccharides on lymphocyte rolling were independent of CD44 and a receptor for degraded hyaluronan, toll-like receptor-4. Subcutaneous injection of hyaluronan dodecasaccharides or tetrasaccharides delayed the onset of EAE in a manner similar to subcutaneous injection of hyaluronidase. Hyaluronan oligosaccharides can therefore act directly on lymphocytes to modulate the onset of inflammatory demyelinating disease. PMID:23333375

  3. Hyaluronan oligosaccharides perturb lymphocyte slow rolling on brain vascular endothelial cells: implications for inflammatory demyelinating disease.

    PubMed

    Winkler, Clayton W; Foster, Scott C; Itakura, Asako; Matsumoto, Steven G; Asari, Akira; McCarty, Owen J T; Sherman, Larry S

    2013-04-24

    Inflammatory demyelinating diseases like multiple sclerosis are characterized by mononuclear cell infiltration into the central nervous system. The glycosaminoglycan hyaluronan and its receptor, CD44, are implicated in the initiation and progression of a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Digestion of hyaluronan tethered to brain vascular endothelial cells by a hyaluronidase blocks the slow rolling of lymphocytes along activated brain vascular endothelial cells and delays the onset of EAE. These effects could be due to the elimination of hyaluronan or the generation of hyaluronan digestion products that influence lymphocytes or endothelial cells. Here, we found that hyaluronan dodecasaccharides impaired activated lymphocyte slow rolling on brain vascular endothelial cells when applied to lymphocytes but not to the endothelial cells. The effects of hyaluronan dodecasaccharides on lymphocyte rolling were independent of CD44 and a receptor for degraded hyaluronan, Toll-like receptor-4. Subcutaneous injection of hyaluronan dodecasaccharides or tetrasaccharides delayed the onset of EAE in a manner similar to subcutaneous injection of hyaluronidase. Hyaluronan oligosaccharides can therefore act directly on lymphocytes to modulate the onset of inflammatory demyelinating disease. Copyright © 2013 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  4. Contact-mediated and humoral communication between vascular endothelial and smooth muscle cells in vitro

    SciTech Connect

    Davies, P.F.

    1986-03-01

    Vascular endothelial cells (EC) and smooth muscle cells (SMC) co-exist in close apposition to each other in all blood vessels except capillaries. Investigations of the metabolic interactions that may occur between these cells are essential to an understanding of vascular homeostasis and the pathogenesis of atherosclerosis. The authors have developed two in vitro models of co-temporal vascular cell communication. The first facilitates reversible microcarrier-mediated gap junctional communication between EC and SMC monolayers. When either EC or SMC were prelabelled with /sup 3/H-uridine, intracellular nucleotide rapidly transferred across the region of heterocellular attachment to the complementary cell population. Cytoplasmic continuity between EC and SMC allowed metabolic cooperation via ions and small molecules (<1.5 KD). Thus, vascular reactivity, particularly in the microcirculation where myoendothelial gap junctions have been observed, may involve cytoplasmic second messengers transported from EC to SMC. In the second model, humoral communication was established between separated cultures of EC and SMC which shared the same culture medium. Endothelial-specific stimulation of SMC growth and lipoprotein metabolism via soluble factors was demonstrated. Two mechanisms of stimulation of SMC lipoprotein metabolism were identified; one endothelial derived mitogen-dependent, the other mitogen-independent which was mediated via low molecular weight endothelial cell products.

  5. EphrinB reverse signaling contributes to endothelial and mural cell assembly into vascular structures

    PubMed Central

    Maric, Dragan; Economopoulou, Matina; Sakakibara, Shuhei; Merlin, Simone; Follenzi, Antonia; Tosato, Giovanna

    2009-01-01

    EphrinB transmembrane ligands and their cognate EphB receptor tyrosine kinases regulate vascular development through bidirectional cell-to-cell signaling, but little is known about the role of EphrinB during postnatal vascular remodeling. We report that EphrinB is a critical mediator of postnatal pericyte-to-endothelial cell assembly into vascular structures. This function is dependent upon extracellular matrix-supported cell-to-cell contact, engagement of EphrinB by EphB receptors expressed on another cell, and Src-dependent phosphorylation of the intracytoplasmic domain of EphrinB. Phosphorylated EphrinB marks angiogenic blood vessels in the developing and hypoxic retina, the wounded skin, and tumor tissue, and is detected at contact points between endothelial cells and pericytes. Furthermore, inhibition ofEphrinB activity prevents proper assembly of pericytes and endothelial cells into vascular structures. These results reveal a role for EphrinB signaling in orchestrating pericyte/endothelial cell assembly, and suggest that therapeutic targeting of EphrinB may prove useful for disrupting angiogenesis when it contributes to disease. PMID:19411631

  6. Formyl Peptide Receptor Activation Elicits Endothelial Cell Contraction and Vascular Leakage.

    PubMed

    Wenceslau, Camilla F; McCarthy, Cameron G; Webb, R Clinton

    2016-01-01

    The major pathophysiological characteristic of systemic inflammatory response syndrome (SIRS) and sepsis is the loss of control of vascular tone and endothelial barrier dysfunction. These changes are attributed to pro-inflammatory mediators. It has been proposed that in patients and rats without infection, cell components from damaged tissue are the primary instigators of vascular damage. Mitochondria share several characteristics with bacteria, and when fragments of mitochondria are released into the circulation after injury, they are recognized by the innate immune system. N-Formyl peptides are common molecular signatures of bacteria and mitochondria and are known to play a role in the initiation of inflammation by activating the formyl peptide receptor (FPR). We have demonstrated that infusion of mitochondrial N-formyl peptides (F-MIT) leads to sepsis-like symptoms, including vascular leakage. We have also observed that F-MIT, via FPR activation, elicits changes in cytoskeleton-regulating proteins in endothelial cells. Therefore, we hypothesize that these FPR-mediated changes in cytoskeleton can cause endothelial cell contraction and, consequently vascular leakage. Here, we propose that endothelial FPR is a key contributor to impaired barrier function in SIRS and sepsis patients following trauma.

  7. Exercise-induced Signals for Vascular Endothelial Adaptations: Implications for Cardiovascular Disease

    PubMed Central

    Jenkins, Nathan T.; Martin, Jeffrey S.; Laughlin, M. Harold; Padilla, Jaume

    2012-01-01

    This article reviews recent advances in our understanding of hemodynamic signals, external/compressive forces, and circulating factors that mediate exercise training-induced vascular adaptations, with particular attention to the roles of these signals in prevention and treatment of endothelial dysfunction and cardiovascular (CV) diseases. PMID:22844545

  8. Urea immunoliposome inhibits human vascular endothelial cell proliferation for hemangioma treatment

    PubMed Central

    2013-01-01

    Background Urea injection has been used in hemangioma treatment as sclerotherapy. It shrinks vascular endothelial cells and induces degeneration, necrosis, and fibrosis. However, this treatment still has disadvantages, such as lacking targeting and difficulty in controlling the urea dosage. Thus, we designed a urea immunoliposome to improve the efficiency of treatment. Methods The urea liposome was prepared by reverse phase evaporation. Furthermore, the urea immunoliposome was generated by coupling the urea liposome with a vascular endothelial growth factor receptor (VEGFR) monoclonal antibody using the glutaraldehyde cross-linking method. The influence of the urea immunoliposome on cultured human hemangioma vascular endothelial cells was observed preliminarily. Results Urea immunoliposomes showed typical liposome morphology under a transmission electron microscope, with an encapsulation percentage of 54.4% and a coupling rate of 36.84% for anti-VEGFR. Treatment with the urea immunoliposome significantly inhibited the proliferation of hemangioma vascular endothelial cells (HVECs) in a time- and dose-dependent manner. Conclusions The urea immunoliposome that we developed distinctly and persistently inhibited the proliferation of HVECs and is expected to be used in clinical hemangioma treatment. PMID:24266957

  9. Formyl Peptide Receptor Activation Elicits Endothelial Cell Contraction and Vascular Leakage

    PubMed Central

    Wenceslau, Camilla F.; McCarthy, Cameron G.; Webb, R. Clinton

    2016-01-01

    The major pathophysiological characteristic of systemic inflammatory response syndrome (SIRS) and sepsis is the loss of control of vascular tone and endothelial barrier dysfunction. These changes are attributed to pro-inflammatory mediators. It has been proposed that in patients and rats without infection, cell components from damaged tissue are the primary instigators of vascular damage. Mitochondria share several characteristics with bacteria, and when fragments of mitochondria are released into the circulation after injury, they are recognized by the innate immune system. N-Formyl peptides are common molecular signatures of bacteria and mitochondria and are known to play a role in the initiation of inflammation by activating the formyl peptide receptor (FPR). We have demonstrated that infusion of mitochondrial N-formyl peptides (F-MIT) leads to sepsis-like symptoms, including vascular leakage. We have also observed that F-MIT, via FPR activation, elicits changes in cytoskeleton-regulating proteins in endothelial cells. Therefore, we hypothesize that these FPR-mediated changes in cytoskeleton can cause endothelial cell contraction and, consequently vascular leakage. Here, we propose that endothelial FPR is a key contributor to impaired barrier function in SIRS and sepsis patients following trauma. PMID:27532003

  10. Intraocular and systemic levels of vascular endothelial growth factor in advanced cases of retinopathy of prematurity

    PubMed Central

    Velez-Montoya, Raul; Clapp, Carmen; Rivera, Jose Carlos; Garcia-Aguirre, Gerardo; Morales-Cantón, Virgilio; Fromow-Guerra, Jans; Guerrero-Naranjo, Jose Luis; Quiroz-Mercado, Hugo

    2010-01-01

    Purpose: To measure vitreous, aqueous, subretinal fluid and plasma levels of vascular endothelial growth factor in late stages of retinopathy of prematurity. Methods: Interventional study. We enrolled patients with clinical diagnoses of bilateral stage V retinopathy of prematurity, confirmed by b-scan ultrasound and programmed for vitrectomy. During surgery we took samples from blood, aqueous, vitreous, and subretinal fluids. The vascular endothelial growth factor concentration in each sample was measured by ELISA reaction. A control sample of aqueous, vitreous and blood was taken from patients with congenital cataract programmed for phacoemulsification. For statistical analysis, a Mann–Whitney and a Wilcoxon W test was done with a significant P value of 0.05. Results: We took samples of 16 consecutive patients who met the inclusion criteria. The vascular endothelial growth factor levels in the study group were: aqueous, 76.81 ± 61.89 pg/mL; vitreous, 118.53 ± 65.87 pg/mL; subretinal fluid, 1636.58 ± 356.47 pg/mL; and plasma, 74.64 ± 43.94 pg/mL. There was a statistical difference between the study and the control group (P < 0.001) in the aqueous and vitreous samples. Conclusion: Stage 5 retinopathy of prematurity has elevated intraocular levels of vascular endothelial growth factor, which remains high despite severe retinal lesion. There was no statistical difference in plasma levels of the molecule between the control and study group. PMID:20856587

  11. Vascular endothelial dysfunction and nutritional compounds in early type 1 diabetes.

    PubMed

    Hoffman, Robert P

    2014-05-01

    Cardiovascular disease is the major cause of death in patients with type 1 diabetes. Vascular endothelial dysfunction is an early pathophysiological precursor of cardiovascular disease. There is extensive evidence that hyperglycemia causes acute perturbations in endothelial function likely due to increases in oxidative damage. Interestingly, oscillating hyperglycemia may cause more damage than persistent hyperglycemia. Many, but not all, studies indicate that vascular endothelial dysfunction occurs early in the course of type 1 diabetes and is present even in adolescents. Ascorbic acid has been shown to diminish the acute effects of hyperglycemia on endothelial function in type 1 diabetes and in conjunction with euglycemia to restore endothelial function to normal values in adults with well-controlled diabetes. In vitro and in vivo animal evidence suggests potential benefit from two other small molecule antioxidants, nicotinamide and taurine. Early studies suggested that folate supplementation may improve endothelial function in adolescents with type 1 diabetes but this has not been confirmed by more recent studies. Epidemiological evidence suggests a possible role for vitamin D therapy although intervention studies in type 2 diabetes have yielded varying results and have not been done in type 1 diabetes. Further exploration of these and other compounds is clearly appropriate if we are to reduce cardiovascular risk in type 1 diabetes.

  12. The effects of ginseng radix rubra on human vascular endothelial cells.

    PubMed

    Nakajima, S; Uchiyama, Y; Yoshida, K; Mizukawa, H; Haruki, E

    1998-01-01

    The effect of Ginseng Radix Rubra (Red ginseng) on human vascular endothelial cells was examined. Red ginseng was found to promote the proliferation of vascular endothelial cells, inhibit the production but promote the decomposition of endothelin, which is known to constrict blood vessels and raise blood pressure as well as accelerated the synthesis of nitric oxide, which is known to have an angio-tonic effect. Furthermore, Red ginseng was observed to increase the production of Interleukin 1 beta, which is known to play important roles in the homeostatic activities of the human body such as immunity and inflammation as well as increasing the production of tissue plasminogen activators, which suppress the formation of thrombin in the blood coagulation and fibrinolysis mechanisms. It is suggested that Red ginseng has the effect of accelerating endothelial cells proliferation and of promoting physiological activities.

  13. Endothelial GRK2 regulates vascular homeostasis through the control of free radical oxygen species

    PubMed Central

    Ciccarelli, Michele; Sorriento, Daniela; Franco, Antonietta; Fusco, Anna; Giudice, Carmine Del; Annunziata, Roberto; Cipolletta, Ersilia; Monti, Maria Gaia; Dorn, Gerald W; Trimarco, Bruno; Iaccarino, Guido

    2014-01-01

    Objective The role of endothelial GRK2 was investigated in mice with selective deletion of the kinase in the endothelium (Tie2-CRE/GRK2fl/fl). Approach and Results Aortas from Tie2-CRE/GRK2fl/fl presented functional and structural alterations as compared to control GRK2fl/fl mice. In particular, vasoconstriction was blunted to different agonists, and collagen and elastic rearrangement and macrophage infiltration were observed. In primary cultured endothelial cells deficient for GRK2, mitochondrial reactive oxygen species (ROS) was increased, leading to expression of cytokines. Chronic treatment with a ROS scavenger in mice corrected the vascular phenotype by recovering vasoconstriction, structural abnormalities and reducing macrophage infiltration. Conclusions These results demonstrate that GRK2 removal compromises vascular phenotype and integrity by increasing endothelial ROS production. PMID:23950144

  14. [Biological activities of exogenous polysaccharides via controlling endogenous proteoglycan metabolism in vascular endothelial cells].

    PubMed

    Sato, Tomoko; Yamamoto, Chika; Fujiwara, Yasuyuki; Kaji, Toshiyuki

    2008-05-01

    Proteoglycan contains glycosmainoglycans, which are endogenous sulfated polysaccharides, in the molecule. The metabolism of proteoglycans regulates cell behavior and cellular events. It is possible that exogenous polysaccharide-related molecules exhibit their biological activities by two mechanisms. One is the interaction with cells and the other is the interaction with growth factors/cytokines that regulate proteoglycans. In this review, we describe sodium spirulan, a sulfated polysaccharide obtained from a hot-water extract of the blue-green alga Spirulina platensis, as an exogenous polysaccharide that stimulates the release of proteoglycans from vascular endothelial cells. Factors that regulate endothelial proteoglycan metabolism are also being described as possible target molecules of exogenous polysaccharides. Further research is required to obtain exogenous polysaccharide-related molecules that exhibit useful biological activities through controlling endothelial proteoglycan metabolism for protection against vascular lesions such as atheroslcerosis.

  15. Vascular Endothelial Growth Factor-A165b Is Protective and Restores Endothelial Glycocalyx in Diabetic Nephropathy

    PubMed Central

    Oltean, Sebastian; Qiu, Yan; Ferguson, Joanne K.; Stevens, Megan; Neal, Chris; Russell, Amy; Kaura, Amit; Arkill, Kenton P.; Harris, Kirstie; Symonds, Clare; Lacey, Katja; Wijeyaratne, Lihini; Gammons, Melissa; Wylie, Emma; Hulse, Richard P.; Alsop, Chloe; Cope, George; Damodaran, Gopinath; Betteridge, Kai B.; Ramnath, Raina; Satchell, Simon C.; Foster, Rebecca R.; Ballmer-Hofer, Kurt; Donaldson, Lucy F.; Barratt, Jonathan; Baelde, Hans J.; Harper, Steven J.; Bates, David O.

    2015-01-01

    Diabetic nephropathy is the leading cause of ESRD in high-income countries and a growing problem across the world. Vascular endothelial growth factor-A (VEGF-A) is thought to be a critical mediator of vascular dysfunction in diabetic nephropathy, yet VEGF-A knockout and overexpression of angiogenic VEGF-A isoforms each worsen diabetic nephropathy. We examined the vasculoprotective effects of the VEGF-A isoform VEGF-A165b in diabetic nephropathy. Renal expression of VEGF-A165b mRNA was upregulated in diabetic individuals with well preserved kidney function, but not in those with progressive disease. Reproducing this VEGF-A165b upregulation in mouse podocytes in vivo prevented functional and histologic abnormalities in diabetic nephropathy. Biweekly systemic injections of recombinant human VEGF-A165b reduced features of diabetic nephropathy when initiated during early or advanced nephropathy in a model of type 1 diabetes and when initiated during early nephropathy in a model of type 2 diabetes. VEGF-A165b normalized glomerular permeability through phosphorylation of VEGF receptor 2 in glomerular endothelial cells, and reversed diabetes-induced damage to the glomerular endothelial glycocalyx. VEGF-A165b also improved the permeability function of isolated diabetic human glomeruli. These results show that VEGF-A165b acts via the endothelium to protect blood vessels and ameliorate diabetic nephropathy. PMID:25542969

  16. Vascular Endothelial Growth Factor-A165b Is Protective and Restores Endothelial Glycocalyx in Diabetic Nephropathy.

    PubMed

    Oltean, Sebastian; Qiu, Yan; Ferguson, Joanne K; Stevens, Megan; Neal, Chris; Russell, Amy; Kaura, Amit; Arkill, Kenton P; Harris, Kirstie; Symonds, Clare; Lacey, Katja; Wijeyaratne, Lihini; Gammons, Melissa; Wylie, Emma; Hulse, Richard P; Alsop, Chloe; Cope, George; Damodaran, Gopinath; Betteridge, Kai B; Ramnath, Raina; Satchell, Simon C; Foster, Rebecca R; Ballmer-Hofer, Kurt; Donaldson, Lucy F; Barratt, Jonathan; Baelde, Hans J; Harper, Steven J; Bates, David O; Salmon, Andrew H J

    2015-08-01

    Diabetic nephropathy is the leading cause of ESRD in high-income countries and a growing problem across the world. Vascular endothelial growth factor-A (VEGF-A) is thought to be a critical mediator of vascular dysfunction in diabetic nephropathy, yet VEGF-A knockout and overexpression of angiogenic VEGF-A isoforms each worsen diabetic nephropathy. We examined the vasculoprotective effects of the VEGF-A isoform VEGF-A165b in diabetic nephropathy. Renal expression of VEGF-A165b mRNA was upregulated in diabetic individuals with well preserved kidney function, but not in those with progressive disease. Reproducing this VEGF-A165b upregulation in mouse podocytes in vivo prevented functional and histologic abnormalities in diabetic nephropathy. Biweekly systemic injections of recombinant human VEGF-A165b reduced features of diabetic nephropathy when initiated during early or advanced nephropathy in a model of type 1 diabetes and when initiated during early nephropathy in a model of type 2 diabetes. VEGF-A165b normalized glomerular permeability through phosphorylation of VEGF receptor 2 in glomerular endothelial cells, and reversed diabetes-induced damage to the glomerular endothelial glycocalyx. VEGF-A165b also improved the permeability function of isolated diabetic human glomeruli. These results show that VEGF-A165b acts via the endothelium to protect blood vessels and ameliorate diabetic nephropathy.

  17. Homocysteine injures vascular endothelial cells by inhibiting mitochondrial activity

    PubMed Central

    Yang, Fengyong; Qi, Xiujing; Gao, Zheng; Yang, Xingju; Zheng, Xingfeng; Duan, Chonghao; Zheng, Jian

    2016-01-01

    The aim of the present study was to investigate the role of homocysteine (Hcy) in the pathogenesis of pulmonary embolism (PE) and the associated molecular mechanisms in human umbilical vein endothelial cells (HUVECs). Hcy contents were detected with high-performance liquid chromatography. Apoptosis was detected by flow cytometry using Annexin-V staining. Cytochrome c oxidase (COX) activity was assessed with an enzyme activity assay, and the expression levels of COX 17 were determined by western blot analysis. Intracellular reactive oxygen species levels were measured using a microplate reader with a fluorescence probe. The results demonstrated that, compared with the control group, the serum Hcy levels were significantly elevated in the PE group, suggesting that Hcy may be an indicator for PE. Following treatment with Hcy, the apoptosis rate was markedly elevated in HUVECs. Moreover, Hcy decreased COX activity and downregulated the expression of COX 17 in HUVECs. Furthermore, Hcy increased the ROS levels in these endothelial cells. However, all the above-mentioned physiopathological changes induced by Hcy in HUVECs could be restored by folic acid. In conclusion, the results of the present study demonstrated that Hcy inhibited COX activity, downregulated COX 17 expression, increased intracellular ROS levels and enhanced apoptosis in endothelial cells. PMID:27698720

  18. You're Only as Old as Your Arteries: Translational Strategies for Preserving Vascular Endothelial Function with Aging

    PubMed Central

    Kaplon, Rachelle E.; Gioscia-Ryan, Rachel A.; LaRocca, Thomas J.

    2014-01-01

    Endothelial dysfunction develops with age and increases the risk of age-associated vascular disorders. Nitric oxide insufficiency, oxidative stress, and chronic low-grade inflammation, induced by upregulation of adverse cellular signaling processes and imbalances in stress resistance pathways, mediate endothelial dysfunction with aging. Healthy lifestyle behaviors preserve endothelial function with aging by inhibiting these mechanisms, and novel nutraceutical compounds that favorably modulate these pathways hold promise as a complementary approach for preserving endothelial health. PMID:24985329

  19. Endothelial Cells Inhibit the Angiotensin II Induced Phenotypic Modulation of Rat Vascular Adventitial Fibroblasts.

    PubMed

    Xu, Jia-Ying; Chang, Neng-Bin; Li, Tao; Jiang, Rui; Sun, Xiao-Lei; He, Yan-Zheng; Jiang, Jun

    2017-07-01

    The phenotypic modulation of vascular adventitial fibroblasts plays an important role in vascular remodeling. Evidence have shown that endothelial cells and adventitial fibroblasts interact under certain conditions. In this study, we investigated the influence of endothelial cells on the phenotypic modulation of adventitial fibroblasts. Endothelial cells and adventitial fibroblasts from rat thoracic aorta were cultivated in a co-culture system and adventitial fibroblasts were induced with angiotensin II (Ang II). Collagen I and alpha smooth muscle actin (α-SMA) expression and migration of adventitial fibroblasts were analyzed. Ang II upregulated the expression of collagen I and α-SMA and the migration of adventitial fibroblasts. Adventitial fibroblasts-endothelial cells co-culturing attenuated the effects of Ang II. Homocysteine-treated endothelial cells, which are functionally impaired, were less inhibitory of the phenotypic modulation of adventitial fibroblasts. Supplementation of endothelial cells with L-arginine (L-Arg) or 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP) enhanced the trends, while with L-NG-nitroarginine methyl ester (L-NAME) or 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) the opposite effect was observed. Under the influence of Ang II, adventitial fibroblasts were prone to undergo phenotypic modulation, which was closely related to vascular remodeling. Our study showed that endothelial cells influenced fibroblast phenotypic transformation and such effect would be mediated through the nitric oxide (NO)/cGMP signaling pathway. J. Cell. Biochem. 118: 1921-1927, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Arginase inhibition restores NOS coupling and reverses endothelial dysfunction and vascular stiffness in old rats

    PubMed Central

    Kim, Jae Hyung; Bugaj, Lukasz J.; Oh, Young Jun; Bivalacqua, Trinity J.; Ryoo, Sungwoo; Soucy, Kevin G.; Santhanam, Lakshmi; Webb, Alanah; Camara, Andre; Sikka, Gautam; Nyhan, Daniel; Shoukas, Artin A.; Ilies, Monica; Christianson, David W.; Champion, Hunter C.

    2009-01-01

    There is increasing evidence that upregulation of arginase contributes to impaired endothelial function in aging. In this study, we demonstrate that arginase upregulation leads to endothelial nitric oxide synthase (eNOS) uncoupling and that in vivo chronic inhibition of arginase restores nitroso-redox balance, improves endothelial function, and increases vascular compliance in old rats. Arginase activity in old rats was significantly increased compared with that shown in young rats. Old rats had significantly lower nitric oxide (NO) and higher superoxide (O2−) production than young. Acute inhibition of both NOS, with NG-nitro-l-arginine methyl ester, and arginase, with 2(S)-amino- 6-boronohexanoic acid (ABH), significantly reduced O2− production in old rats but not in young. In addition, the ratio of eNOS dimer to monomer in old rats was significantly decreased compared with that shown in young rats. These results suggest that eNOS was uncoupled in old rats. Although the expression of arginase 1 and eNOS was similar in young and old rats, inducible NOS (iNOS) was significantly upregulated. Furthermore, S-nitrosylation of arginase 1 was significantly elevated in old rats. These findings support our previously published finding that iNOS nitrosylates and activates arginase 1 (Santhanam et al., Circ Res 101: 692–702, 2007). Chronic arginase inhibition in old rats preserved eNOS dimer-to-monomer ratio and significantly reduced O2− production and enhanced endothelial-dependent vasorelaxation to ACh. In addition, ABH significantly reduced vascular stiffness in old rats. These data indicate that iNOS-dependent S-nitrosylation of arginase 1 and the increase in arginase activity lead to eNOS uncoupling, contributing to the nitroso-redox imbalance, endothelial dysfunction, and vascular stiffness observed in vascular aging. We suggest that arginase is a viable target for therapy in age-dependent vascular stiffness. PMID:19661445

  1. Simulated hypogravity stimulates cell spreading and wound healing in cultured human vascular endothelial cells.

    PubMed

    Romanov, Y; Kabaeva, N; Buravkova, L

    2000-07-01

    It is well known that endothelial cells (EC) are highly sensitive to mechanical influences such as hemodynamic conditions or pulsatile stretch. However, it is still unknown, how endothelium responds to the changed gravity. The results of some studies suggest that cellular elements of vascular wall and, particularly, endothelium, may directly participate in development of physiological responces to microgravity. On our suggestion, this is extremely attractive since vascular endothelium is one of the main regulators of vascular tone (via its interaction with vascular smooth muscle cells) and, consequently, can play not last role in maintaining of normal cardiovascular system operation in microgravity. On the other hand, the endothelium itself may be regarded as a widely dispersed organ of approximately 1.5 kg in weight (in the adult human organism). Finally, endothelium is not just a passive barrier between vascular wall and circulating blood but synthesizes, metabolizes, and releases a substances which act on adjacent cell systems or distant cell structures. The main aims of this study were: 1) the development of experimental model, allowing to study functional parameters of human endothelial cells in hypogravity conditions in vitro; 2) the verification of endothelial sensitivity to gravitational micro-environment.

  2. Connexins in endothelial barrier function - novel therapeutic targets countering vascular hyperpermeability.

    PubMed

    Soon, Allyson Shook Ching; Chua, Jia Wang; Becker, David Laurence

    2016-10-28

    Prolonged vascular hyperpermeability is a common feature of many diseases. Vascular hyperpermeability is typically associated with changes in the expression patterns of adherens and tight junction proteins. Here, we focus on the less-appreciated contribution of gap junction proteins (connexins) to basal vascular permeability and endothelial dysfunction. First, we assess the association of connexins with endothelial barrier integrity by introducing tools used in connexin biology and relating the findings to customary readouts in vascular biology. Second, we explore potential mechanistic ties between connexins and junction regulation. Third, we review the role of connexins in microvascular organisation and development, focusing on interactions of the endothelium with mural cells and tissue-specific perivascular cells. Last, we see how connexins contribute to the interactions between the endothelium and components of the immune system, by using neutrophils as an example. Mounting evidence of crosstalk between connexins and other junction proteins suggests that we rethink the way in which different junction components contribute to endothelial barrier function. Given the multiple points of connexin-mediated communication arising from the endothelium, there is great potential for synergism between connexin-targeted inhibitors and existing immune-targeted therapeutics. As more drugs targeting connexins progress through clinical trials, it is hoped that some might prove effective at countering vascular hyperpermeability.

  3. The Endothelial Transcription Factor ERG Promotes Vascular Stability and Growth through Wnt/β-Catenin Signaling

    PubMed Central

    Birdsey, Graeme M.; Shah, Aarti V.; Dufton, Neil; Reynolds, Louise E.; Osuna Almagro, Lourdes; Yang, Youwen; Aspalter, Irene M.; Khan, Samia T.; Mason, Justin C.; Dejana, Elisabetta; Göttgens, Berthold; Hodivala-Dilke, Kairbaan; Gerhardt, Holger; Adams, Ralf H.; Randi, Anna M.

    2015-01-01

    Summary Blood vessel stability is essential for embryonic development; in the adult, many diseases are associated with loss of vascular integrity. The ETS transcription factor ERG drives expression of VE-cadherin and controls junctional integrity. We show that constitutive endothelial deletion of ERG (ErgcEC-KO) in mice causes embryonic lethality with vascular defects. Inducible endothelial deletion of ERG (ErgiEC-KO) results in defective physiological and pathological angiogenesis in the postnatal retina and tumors, with decreased vascular stability. ERG controls the Wnt/β-catenin pathway by promoting β-catenin stability, through signals mediated by VE-cadherin and the Wnt receptor Frizzled-4. Wnt signaling is decreased in ERG-deficient endothelial cells; activation of Wnt signaling with lithium chloride, which stabilizes β-catenin levels, corrects vascular defects in ErgcEC-KO embryos. Finally, overexpression of ERG in vivo reduces permeability and increases stability of VEGF-induced blood vessels. These data demonstrate that ERG is an essential regulator of angiogenesis and vascular stability through Wnt signaling. PMID:25584796

  4. Base structure consisting of an endothelialized vascular-tree network and hepatocytes for whole liver engineering.

    PubMed

    Shirakigawa, Nana; Takei, Takayuki; Ijima, Hiroyuki

    2013-12-01

    Reconstructed liver has been desired as a liver substitute for transplantation. However, reconstruction of a whole liver has not been achieved because construction of a vascular network at an organ scale is very difficult. We focused on decellularized liver (DC-liver) as an artificial scaffold for the construction of a hierarchical vascular network. In this study, we obtained DC-liver and the tubular network structure in which both portal vein and hepatic vein systems remained intact. Furthermore, endothelialization of the tubular structure in DC-liver was achieved, which prevented blood leakage from the tubular structure. In addition, hepatocytes suspended in a collagen sol were injected from the surroundings using a syringe as a suitable procedure for liver cell inoculation. In summary, we developed a base structure consisting of an endothelialized vascular-tree network and hepatocytes for whole liver engineering.

  5. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells

    PubMed Central

    Chen, Qi; Zhang, Hui; Liu, Yang; Adams, Susanne; Eilken, Hanna; Stehling, Martin; Corada, Monica; Dejana, Elisabetta; Zhou, Bin; Adams, Ralf H.

    2016-01-01

    Mural cells of the vessel wall, namely pericytes and vascular smooth muscle cells, are essential for vascular integrity. The developmental sources of these cells and molecular mechanisms controlling their progenitors in the heart are only partially understood. Here we show that endocardial endothelial cells are progenitors of pericytes and vascular smooth muscle cells in the murine embryonic heart. Endocardial cells undergo endothelial–mesenchymal transition and convert into primitive mesenchymal progenitors expressing the platelet-derived growth factor receptors, PDGFRα and PDGFRβ. These progenitors migrate into the myocardium, differentiate and assemble the wall of coronary vessels, which requires canonical Wnt signalling involving Frizzled4, β-catenin and endothelial cell-derived Wnt ligands. Our findings identify a novel and unexpected population of progenitors for coronary mural cells with potential relevance for heart function and disease conditions. PMID:27516371

  6. Vascularization of the embryonic kidney. Detection of endothelial cells with Ulex europaeus I lectin.

    PubMed

    Holthöfer, H

    1987-01-01

    Frozen sections of human fetal kidneys were studied for the appearance of vascular elements to the developing glomeruli using Ulex europaeus (UEA-I) lectin as a marker for endothelial cells. Chains of UEA-I-positive cells, seen to extend from larger vessels, could be observed among the uninduced cells of the nephrogenic mesenchyme. During the S-shaped body stage of nephrogenesis, the cleft of the comma-shaped cluster of epithelial cells was invaded by the UEA-I-positive cells, and during further glomerular development, the UEA-I-positive cells were seen to grow in number, prior to the appearance of visible lumina to the capillaries. The present results show, in addition to revealing the vascularization pattern of developing glomeruli, that endothelial cells obtain some of their characteristic glycoconjugates during early stages of differentiation. Thus, UEA-I seems to be a valuable tool to study in detail the vascularization of various developing human tissues.

  7. Vascular endothelial growth factor a signaling in the podocyte-endothelial compartment is required for mesangial cell migration and survival.

    PubMed

    Eremina, Vera; Cui, Shiying; Gerber, Hanspeter; Ferrara, Napoleone; Haigh, Jody; Nagy, Andras; Ema, Masatsugu; Rossant, Janet; Jothy, Serge; Miner, Jeffrey H; Quaggin, Susan E

    2006-03-01

    The glomerular filtration barrier separates the blood from the urinary space and consists of two major cell types: podocytes and fenestrated endothelial cells. Mesangial cells sit between the capillary loops and provide structural support. Proliferation and loss of mesangial cells both are central findings in a number of renal diseases, including diabetic nephropathy and mesangiolysis, respectively. Using cell-specific gene targeting, it was shown previously that vascular endothelial growth factor A (VEGF-A) production by podocytes is required for glomerular endothelial cell migration, differentiation, and survival. For further investigation of the effect of gene dose and VEGF-A knockdown within the glomerulus, mice that carry one hypomorphic VEGF-A allele and one podocyte-specific null VEGF-A allele (VEGFhypo/loxP,Neph-Cre+/-) were generated; in these mice, the "allelic dose" of VEGF-A is intermediate between glomerular-specific heterozygous and null states. VEGFhypo/loxP,Neph-Cre+/- mice die at 3 wk of age from renal failure. Although endothelial cell defects are observed, striking loss of mesangial cells occurs postnatally. In addition, differentiated mesangial cells cannot be found in glomeruli of podocyte-specific null VEGF-A mice (VEGFloxP/loxP,Cre+/-). Together, these results demonstrate a key role for VEGF-A production in the podocyte for mesangial cell survival and differentiation.

  8. Effects and mechanisms of Fenofibrate on the secretion of vascular endothelial contraction factors in hypertensive rats.

    PubMed

    Zhu, Y; Wang, H-S; Li, X-M; Qu, C

    2014-07-24

    This study investigated the effects of the peroxisome proliferator-activated receptor alpha (PPAR-α) agonist, Fenofibrate, on the secretion of vascular endothelial contraction factors in hypertensive rats to elucidate its possible mechanisms. The vascular ring contraction experiment was used to observe whether rat vascular tension of clean grade spontaneously hypertensive rats (SHR) changes after 1-h incubation of 0.1, 1.0, 10.0 μM Fenofibrate with 10.0 μM Fenofibrate, a PPAR-α antagonist (MK866), and a PPAR-γ antagonist (GW9662) in SHR. The results were compared with Wistar Kyoto rats. Enzyme-linked immunosorbent assay was used to detect the secretion of the serum vascular endothelial contraction factor prostacyclin-1α (PGF-1α), PGF-2α, and thromboxane B2 (TXB2). Western blot was used to detect COX-1 protein expression. A quantity of 10.0 μM Fenofibrate significantly reduced vasoconstriction in SHR compared to the control group (P = 0.013). The PPAR-α antagonist, MK866, significantly improved the vascular contractility of SHR when incubated with 10.0 μM Fenofibrate (P = 0.021). The PPAR-γ antagonist, GW9662, had no significant effect on the vascular contractility of SHR when incubated with 10.0 μM Fenofibrate (P = 0.071). The isolated aorta of SHR released significantly lower PGF- 1α (P = 0.014), PGF-2α (P = 0.023), and TXB2 (P = 0.017) levels in the 10.0 μM Fenofibrate group compared to the control group. COX-1 expression of SHR rat vascular endothelium was significantly depressed in the 10.0 μM Fenofibrate group compared to the control group (P = 0.027). In conclusion, Fenofibrate reduces the secretion of vascular endothelial contraction factors in hypertensive rats, which might arise through the endothelium influencing COX-1 expression.

  9. Expression of vascular endothelial growth factor mRNA in non-small-cell lung carcinomas

    PubMed Central

    Fontanini, G; Boldrini, L; Chinè, S; Pisaturo, F; Basolo, F; Calcinai, A; Lucchi, M; Mussi, A; Angeletti, C A; Bevilacqua, G

    1999-01-01

    The vascular endothelial growth factor (VEGF) has been shown to be strictly related to vascular permeability and endothelial cell growth under physiological and pathological conditions. In tumour development and progression, VEGF plays a pivotal role in the development of the tumoral vascular network, and useful information in the progression of human cancer can be obtained by analysing the vascular endothelial growth factor expression of the tumours. In this study, we investigated the vascular endothelial growth factor transcript expression in non-small-cell lung carcinomas to evaluate the significance of this factor in a group of cancers in which the vascular pattern has been shown to significantly affect progression. Surgical samples of 42 patients with NSCLC were studied using reverse transcription polymerase chain reaction (PCR) analysis and in situ hybridization. Thirty-three out of 42 cases (78.6%) showed VEGF transcript expression predominantly as transcripts for the secretory forms of VEGF (isoforms 121 and 165). In situ hybridization, performed on 24 out of 42 samples, showed that the VEGF transcript expression was in several cases present in the cytoplasm both of neoplastic and normal cells, even if the VEGF mRNA was less expressed in the corresponding non-tumoral part. The VEGF 121 expression was associated with hilar and/or mediastinal nodal involvement (P = 0.02), and, taken together, the VEGF isoforms were shown to significantly influence overall (P = 0.02) and disease-free survival (P = 0.03). As a regulator of tumour angiogenesis, VEGF may represent a useful indicator of progression and poor prognosis in non-small-cell lung carcinomas. © 1999 Cancer Research Campaign PMID:9888482

  10. Strategies and Techniques to Enhance the In Situ Endothelialization of Small-Diameter Biodegradable Polymeric Vascular Grafts

    PubMed Central

    Hibino, Narutoshi; Fisher, John P.

    2013-01-01

    Due to the lack of success in small-diameter (<6 mm) prosthetic vascular grafts, a variety of strategies have evolved utilizing a tissue-engineering approach. Much of this work has focused on enhancing the endothelialization of these grafts. A healthy, confluent endothelial layer provides dynamic control over homeo-stasis, influencing and preventing thrombosis and smooth muscle cell proliferation that can lead to intimal hyperplasia. Strategies to improve endothelialization of biodegradable polymeric grafts have encompassed both chemical and physical modifications to graft surfaces, many focusing on the recruitment of endothelial and endothelial progenitor cells. This review aims to provide a compilation of current and developing strategies that utilize in situ endothelialization to improve vascular graft outcomes, providing a context for the future directions of vascular tissue-engineering strategies that do not require preprocedural cell seeding. PMID:23252992

  11. Strategies and techniques to enhance the in situ endothelialization of small-diameter biodegradable polymeric vascular grafts.

    PubMed

    Melchiorri, Anthony J; Hibino, Narutoshi; Fisher, John P

    2013-08-01

    Due to the lack of success in small-diameter (<6 mm) prosthetic vascular grafts, a variety of strategies have evolved utilizing a tissue-engineering approach. Much of this work has focused on enhancing the endothelialization of these grafts. A healthy, confluent endothelial layer provides dynamic control over homeo-stasis, influencing and preventing thrombosis and smooth muscle cell proliferation that can lead to intimal hyperplasia. Strategies to improve endothelialization of biodegradable polymeric grafts have encompassed both chemical and physical modifications to graft surfaces, many focusing on the recruitment of endothelial and endothelial progenitor cells. This review aims to provide a compilation of current and developing strategies that utilize in situ endothelialization to improve vascular graft outcomes, providing a context for the future directions of vascular tissue-engineering strategies that do not require preprocedural cell seeding.

  12. Interactions between endothelial cells and electrospun methacrylic terpolymer fibers for engineered vascular replacements.

    PubMed

    Veleva, A N; Heath, D E; Johnson, J K; Nam, J; Patterson, C; Lannutti, J J; Cooper, S L

    2009-12-15

    A compliant terpolymer made of hexylmethacrylate (HMA), methylmethacrylate (MMA), and methacrylic acid (MAA) intended for use in small diameter vascular graft applications has been developed. The mechanical properties and in vitro biostability of this terpolymer have been previously characterized. The goal of this investigation was to examine the interactions between endothelial cells and the new terpolymer and to evaluate endothelial cell function. Electrospinning was used to produce both oriented and random terpolymer fiber scaffolds. Smooth solution cast films and tissue culture polystyrene were used as negative and positive controls, respectively. Human blood outgrowth endothelial cells and human umbilical vein endothelial cells were incubated with the test and control samples and characterized with respect to initial cell attachment, proliferation, viability, and maintenance of the endothelial cell phenotype. It was found that the terpolymer is cytocompatible allowing endothelial cell growth, with random fibers being more effective in promoting enhanced cellular activities than oriented fibers. In addition, endothelial cells cultured on these substrates appeared to maintain their phenotype. The results from this study demonstrate that electrospun HMA:MMA:MAA terpolymer has the potential to be used successfully in fabricating small diameter blood vessel replacements.

  13. A novel approach to the assessment of vascular endothelial function

    NASA Astrophysics Data System (ADS)

    Sathasivam, S.; Phababpha, S.; Sengmeuan, P.; Detchaporn, P.; Siddiqui, Z.; Kukongviriyapan, U.; Greenwald, S.

    2011-08-01

    Impaired endothelial function (EF) is associated with atherogenesis, and its quantitative assessment has prognostic value. Currently, methods based on assessing flow-mediated dilation (FMD) are technically difficult and expensive. We tested a novel way of assessing EF by measuring the time difference between pulses arriving at the middle fingers of each hand (f-fΔT), whilst FMD is induced in one arm. We compared f-fΔT with standard methods in healthy and diseased subjects. Our findings suggest that the proposed simple and inexpensive technique gives comparable results and has the potential to qualitatively assess EF in the clinical setting, although further work is required.

  14. Mechanisms in decorin regulation of vascular endothelial growth factor-induced human trophoblast migration and acquisition of endothelial phenotype.

    PubMed

    Lala, Neena; Girish, Gannareddy V; Cloutier-Bosworth, Alia; Lala, Peeyush K

    2012-09-01

    Extravillous trophoblast (EVT) cells of the human placenta invade the uterine decidua and utero-placental arteries to establish an efficient exchange of key molecules between maternal and fetal blood. Trophoblast invasion is stringently regulated in situ both positively and negatively by a variety of factors at the fetal-maternal interface to maintain a healthy utero-placental homeostasis. One such factor, decorin, a transforming growth factor (TGF)-beta binding, leucine-rich proteoglycan produced by the decidua, negatively regulates EVT proliferation, migration, and invasiveness independent of TGF-beta. We reported that these decorin actions were mediated by its binding to multiple tyrosine kinase receptors, including vascular endothelial growth factor receptor (VEGFR)-2. The present study explores the mechanisms underlying decorin antagonism of VEGF (VEGF-A) stimulation of endovascular differentiation of EVT using our EVT cell line, HTR-8/SVneo. We observe that decorin inhibits VEGF-induced EVT cell migration and endothelial-like tube formation on matrigel. VEGF activates MAPKs (p38 MAPK, MEK3/6, and ERK1/2) in EVT cells, and the activation is blocked in both cases by decorin. Employing selective MAPK inhibitors, we show that both p38 and ERK pathways contribute independently to VEGF-induced EVT migration and capillary-like tube formation. VEGF upregulates the vascular endothelial (VE) markers VE-cadherin and beta-catenin in EVT and endothelial cells, and this upregulation is blocked by decorin and MAPK inhibitors. These results suggest that decorin inhibits VEGF-A stimulation of trophoblast migration and endovascular differentiation by interfering with p38 MAPK and ERK1/2 activation. Thus decorin-mediated dual impediment of endovascular differentiation of the EVT and angiogenesis may have implications for pathogenesis of preeclampsia, a hypoinvasive trophoblast disorder in pregnancy.

  15. Quantitative Proteomics Reveals β2 Integrin-mediated Cytoskeletal Rearrangement in Vascular Endothelial Growth Factor (VEGF)-induced Retinal Vascular Hyperpermeability*

    PubMed Central

    Jo, Dong Hyun; Bae, Jingi; Chae, Sehyun; Kim, Jin Hyoung; Han, Jong-Hee; Hwang, Daehee; Lee, Sang-Won; Kim, Jeong Hun

    2016-01-01

    Retinal vascular hyperpermeability causes macular edema, leading to visual deterioration in retinal diseases such as diabetic retinopathy and retinal vascular occlusion. Dysregulation of junction integrity between endothelial cells by vascular endothelial growth factor (VEGF) was shown to cause retinal vascular hyperpermeability. Accordingly, anti-VEGF agents have been used to treat retinal vascular hyperpermeability. However, they can confer potential toxicity through their deleterious effects on maintenance and survival of neuronal and endothelial cells in the retina. Thus, it is important to identify novel therapeutic targets for retinal vascular hyperpermeability other than VEGF. Here, we prepared murine retinas showing VEGF-induced vascular leakage from superficial retinal vascular plexus and prevention of VEGF-induced leakage by anti-VEGF antibody treatment. We then performed comprehensive proteome profiling of these samples and identified retinal proteins for which abundances were differentially expressed by VEGF, but such alterations were inhibited by anti-VEGF antibody. Functional enrichment and network analyses of these proteins revealed the β2 integrin pathway, which can prevent dysregulation of junction integrity between endothelial cells through cytoskeletal rearrangement, as a potential therapeutic target for retinal vascular hyperpermeability. Finally, we experimentally demonstrated that inhibition of the β2 integrin pathway salvaged VEGF-induced retinal vascular hyperpermeability, supporting its validity as an alternative therapeutic target to anti-VEGF agents. PMID:26969716

  16. Endothelial Heparan Sulfate 6-O-Sulfation Levels Regulate Angiogenic Responses of Endothelial Cells to Fibroblast Growth Factor 2 and Vascular Endothelial Growth Factor*

    PubMed Central

    Ferreras, Cristina; Rushton, Graham; Cole, Claire L.; Babur, Muhammad; Telfer, Brian A.; van Kuppevelt, Toin H.; Gardiner, John M.; Williams, Kaye J.; Jayson, Gordon C.; Avizienyte, Egle

    2012-01-01

    Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor 165 (VEGF165) are potent pro-angiogenic growth factors that play a pivotal role in tumor angiogenesis. The activity of these growth factors is regulated by heparan sulfate (HS), which is essential for the formation of FGF2/FGF receptor (FGFR) and VEGF165/VEGF receptor signaling complexes. However, the structural characteristics of HS that determine activation or inhibition of such complexes are only partially defined. Here we show that ovarian tumor endothelium displays high levels of HS sequences that harbor glucosamine 6-O-sulfates when compared with normal ovarian vasculature where these sequences are also detected in perivascular area. Reduced HS 6-O-sulfotransferase 1 (HS6ST-1) or 6-O-sulfotransferase 2 (HS6ST-2) expression in endothelial cells impacts upon the prevalence of HS 6-O-sulfate moieties in HS sequences, which consist of repeating short, highly sulfated S domains interspersed by transitional N-acetylated/N-sulfated domains. 1–40% reduction in 6-O-sulfates significantly compromises FGF2- and VEGF165-induced endothelial cell sprouting and tube formation in vitro and FGF2-dependent angiogenesis in vivo. Moreover, HS on wild-type neighboring endothelial or smooth muscle cells fails to restore endothelial cell sprouting and tube formation. The affinity of FGF2 for HS with reduced 6-O-sulfation is preserved, although FGFR1 activation is inhibited correlating with reduced receptor internalization. These data show that 6-O-sulfate moieties in endothelial HS are of major importance in regulating FGF2- and VEGF165-dependent endothelial cell functions in vitro and in vivo and highlight HS6ST-1 and HS6ST-2 as potential targets of novel antiangiogenic agents. PMID:22927437

  17. Immunocytochemical localization of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 of the human deciduous molar tooth germ development in the human fetus.

    PubMed

    Miwa, Yoko; Fujita, Toshiya; Sunohara, Masataka; Sato, Iwao

    2008-01-01

    Vascular endothelial growth factor (VEGF) is a key regulator of blood vessel endothelial development. We used immunohistochemical methods to demonstrate the localization of VEGF and its receptors, showing the specific expression pattern of VEGF and VEGF receptor in the human deciduous tooth from the cap to late bell stages in the human fetus. Immunoreactivity to VEGF and its receptor VEGF receptor-2 (VEGFR-2) was intensely positive in the inner enamel epithelium at the cap stage and ranged from negative to moderately positive in the bell stage. At the late bell stage, VEGF immunoreactivity was mainly positive but weak for VEGFR-2. The intensity of VEGF and VEGFR-2 in odontoblasts increases from cap stage to late bell stage. We postulate that the dissimilar expression of VEGF in inner enamel epithelium, ameloblast and odontoblast during each stage of human tooth development may affect tooth germ formation.

  18. Generation of Functional Blood Vessels from a Single c-kit+ Adult Vascular Endothelial Stem Cell

    PubMed Central

    Fang, Shentong; Wei, Jing; Pentinmikko, Nalle; Leinonen, Hannele; Salven, Petri

    2012-01-01

    In adults, the growth of blood vessels, a process known as angiogenesis, is essential for organ growth and repair. In many disorders including cancer, angiogenesis becomes excessive. The cellular origin of new vascular endothelial cells (ECs) during blood vessel growth in angiogenic situations has remained unknown. Here, we provide evidence for adult vascular endothelial stem cells (VESCs) that reside in the blood vessel wall endothelium. VESCs constitute a small subpopulation within CD117+ (c-kit+) ECs capable of undergoing clonal expansion while other ECs have a very limited proliferative capacity. Isolated VESCs can produce tens of millions of endothelial daughter cells in vitro. A single transplanted c-kit-expressing VESC by the phenotype lin−CD31+CD105+Sca1+CD117+ can generate in vivo functional blood vessels that connect to host circulation. VESCs also have long-term self-renewal capacity, a defining functional property of adult stem cells. To provide functional verification on the role of c-kit in VESCs, we show that a genetic deficit in endothelial c-kit expression markedly decreases total colony-forming VESCs. In vivo, c-kit expression deficit resulted in impaired EC proliferation and angiogenesis and retardation of tumor growth. Isolated VESCs could be used in cell-based therapies for cardiovascular repair to restore tissue vascularization after ischemic events. VESCs also provide a novel cellular target to block pathological angiogenesis and cancer growth. PMID:23091420

  19. Induction of cysteine-rich motor neuron 1 mRNA expression in vascular endothelial cells.

    PubMed

    Nakashima, Yukiko; Takahashi, Satoru

    2014-08-22

    Cysteine-rich motor neuron 1 (CRIM1) is expressed in vascular endothelial cells and plays a crucial role in angiogenesis. In this study, we investigated the expression of CRIM1 mRNA in human umbilical vein endothelial cells (HUVECs). CRIM1 mRNA levels were not altered in vascular endothelial growth factor (VEGF)-stimulated monolayer HUVECs or in cells in collagen gels without VEGF. In contrast, the expression of CRIM1 mRNA was elevated in VEGF-stimulated cells in collagen gels. The increase in CRIM1 mRNA expression was observed even at 2h when HUVECs did not form tubular structures in collagen gels. Extracellular signal-regulated kinase (Erk) 1/2, Akt and focal adhesion kinase (FAK) were activated by VEGF in HUVECs. The VEGF-induced expression of CRIM1 mRNA was significantly abrogated by PD98059 or PF562271, but was not affected by LY294002. These results demonstrate that CRIM1 is an early response gene in the presence of both angiogenic stimulation (VEGF) and environmental (extracellular matrix) factors, and Erk and FAK might be involved in the upregulation of CRIM1 mRNA expression in vascular endothelial cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Perforin Mediates Endothelial Cell Death and Resultant Transplant Vascular Disease in Cardiac Allografts

    PubMed Central

    Choy, Jonathan C.; Kerjner, Alexandra; Wong, Brian W.; McManus, Bruce M.; Granville, David J.

    2004-01-01

    T cell-induced endothelial injury is an important event in the development of transplant vascular disease (TVD), the leading expression of chronic rejection of vascularized organ transplants. However, the precise contribution of perforin to vascular damage in allografts and resultant TVD has not been addressed in vivo. Minor histocompatability antigen mismatched mouse heterotopic cardiac transplants were performed from 129J donors into C57Bl/6 (wild-type (WT)) or perforin knockout (PKO) recipients. Perforin was abundant in immune infiltrates in the myocardium and vasculature of transplanted hearts in WT mice. Allograft coronary arteries in both WT and PKO mice had considerable vasculitis. There was also marked endothelial disruption, as well as TUNEL-positivity in the endothelial region, in coronary arteries of hearts transplanted into WT mice that was not evident in PKO recipients (P = 0.05). At 30 days post-transplantation, intimal thickening was assessed on elastic Van Gieson-stained ventricular sections. There was an average of 54.2 ± 6.7% luminal narrowing of coronary arteries in allografts from WT mice as compared to 13.4 ± 5.1% luminal narrowing in PKO counterparts (P < 0.00002). In summary, perforin plays a primary role in endothelial damage and the resultant onset and progression of TVD. PMID:15215168

  1. Vascular endothelial growth factor-A mRNA gene expression in clinical phases of multiple sclerosis.

    PubMed

    Rasol, Hoiyda A Abdel; Helmy, Hanan; El-Mously, Sherine; Aziz, Margeret A; El Bahaie, Hossam

    2016-03-01

    Vascular endothelial growth factor A stimulates angiogenesis, but is also pro-inflammatory and plays an important role in the development of neurological disease. This study aimed to investigate whether vascular endothelial growth factor A mRNA expression could be used as a marker for the prediction of susceptibility to multiple sclerosis and relate vascular endothelial growth factor to the clinical phases of multiple sclerosis. This was a cross-sectional study, consisting of a total of 60 subjects with multiple sclerosis and 20 healthy controls. Subjects were subjected to history taking, neurological examination and peripheral blood sampling for vascular endothelial growth factor A mRNA gene expression. Vascular endothelial growth factor A gene expression was measured by real-time polymerase chain reaction using the SYBR Green technique. Vascular endothelial growth factor A mRNA gene expression level was significantly lower in the multiple sclerosis group than in the healthy control group (P < 0.001). Vascular endothelial growth factor A mRNA gene expression level was higher in relapsing remitting multiple sclerosis (RRMS) patients than in those in remission (P < 0.001) and in relapsing remitting multiple sclerosis compared with secondary progressive multiple sclerosis (P < 0.001). There was no correlation between vascular endothelial growth factor A gene expression levels and duration of disease, multiple sclerosis progression index or expanded disability status scale. A lower vascular endothelial growth factor A mRNA gene expression level was independently associated with a higher risk of multiple sclerosis. © The Author(s) 2015.

  2. Perinatal testosterone exposure potentiates vascular dysfunction by ERβ suppression in endothelial progenitor cells.

    PubMed

    Xie, Weiguo; Ren, Mingming; Li, Ling; Zhu, Yin; Chu, Zhigang; Zhu, Zhigang; Ruan, Qiongfang; Lou, Wenting; Zhang, Haimou; Han, Zhen; Huang, Xiaodong; Xiang, Wei; Wang, Tao; Yao, Paul

    2017-01-01

    Recent clinical cohort study shows that testosterone therapy increases cardiovascular diseases in men with low testosterone levels, excessive circulating androgen levels may play a detrimental role in the vascular system, while the potential mechanism and effect of testosterone exposure on the vascular function in offspring is still unknown. Our preliminary results showed that perinatal testosterone exposure in mice induces estrogen receptor β (ERβ) suppression in endothelial progenitor cells (EPCs) in offspring but not mothers, while estradiol (E2) had no effect. Further investigation showed that ERβ suppression is due to perinatal testosterone exposure-induced epigenetic changes with altered DNA methylation on the ERβ promoter. During aging, EPCs with ERβ suppression mobilize to the vascular wall, differentiate into ERβ-suppressed mouse endothelial cells (MECs) with downregulated expression of SOD2 (mitochondrial superoxide dismutase) and ERRα (estrogen-related receptor α). This results in reactive oxygen species (ROS) generation and DNA damage, and the dysfunction of mitochondria and fatty acid metabolism, subsequently potentiating vascular dysfunction. Bone marrow transplantation of EPCs that overexpressed with either ERβ or a SIRT1 single mutant SIRT1-C152(D) that could modulate SIRT1 phosphorylation significantly ameliorated vascular dysfunction, while ERβ knockdown worsened the problem. We conclude that perinatal testosterone exposure potentiates vascular dysfunction through ERβ suppression in EPCs.

  3. Cell-permeable iron inhibits vascular endothelial growth factor receptor-2 signaling and tumor angiogenesis

    PubMed Central

    Kir, Devika; Saluja, Manju; Modi, Shrey; Venkatachalam, Annapoorna; Schnettler, Erica; Roy, Sabita; Ramakrishnan, Sundaram

    2016-01-01

    Angiogenesis is important for tumor growth and metastasis. Hypoxia in tumors drives this angiogenic response by stabilizing Hypoxia Inducible Factors (HIF) and target genes like Vascular Endothelial Growth Factor (VEGF). HIF stability is regulated by Prolylhydroxylases (PHD)-mediated modification. Iron is an important cofactor in regulating the enzymatic activity of PHDs. Reducing intracellular iron, for instance, mimics hypoxia and induces a pro-angiogenic response. It is hypothesized that increasing the intracellular iron levels will have an opposite, anti-angiogenic effect. We tested this hypothesis by perturbing iron homeostasis in endothelial cells using a unique form of iron, Ferric Ammonium Citrate (FAC). FAC is a cell-permeable form of iron, which can passively enter into cells bypassing the transferrin receptor mediated uptake of transferrin-bound iron. Our studies show that FAC does not decrease the levels of HIF-1α and HIF-2α in endothelial cells but inhibits the autocrine stimulation of VEGF-Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) system by blocking receptor tyrosine kinase phosphorylation. FAC inhibits VEGF-induced endothelial cell proliferation, migration, tube formation and sprouting. Finally, systemic administration of FAC inhibits VEGF and tumor cell-induced angiogenesis in vivo. In conclusion, our studies show that cell-permeable iron attenuates VEGFR-2 mediated signaling and inhibits tumor angiogenesis. PMID:27589831

  4. Allicin inhibits lymphangiogenesis through suppressing activation of vascular endothelial growth factor (VEGF) receptor.

    PubMed

    Wang, Weicang; Du, Zheyuan; Nimiya, Yoshiki; Sukamtoh, Elvira; Kim, Daeyoung; Zhang, Guodong

    2016-03-01

    Allicin, the most abundant organosulfur compound in freshly crushed garlic tissues, has been shown to have various health-promoting effects, including anticancer actions. A better understanding of the effects and mechanisms of allicin on tumorigenesis could facilitate development of allicin or garlic products for cancer prevention. Here we found that allicin inhibited lymphangiogenesis, which is a critical cellular process implicated in tumor metastasis. In primary human lymphatic endothelial cells, allicin at 10 μM inhibited capillary-like tube formation and cell migration, and it suppressed phosphorylation of vascular endothelial growth factor receptor 2 and focal adhesion kinase. Using a Matrigel plug assay in mice, addition of 10 μg allicin in Matrigel plug inhibited 40-50% of vascular endothelial growth factor-C-induced infiltration of lymphatic endothelial cells and leukocytes. S-Allylmercaptoglutathione, a major cellular metabolite of allicin, had no effect on lymphangiogenic responses in lymphatic endothelial cells. Together, these results demonstrate the antilymphangiogenic effect of allicin in vitro and in vivo, suggesting a novel mechanism for the health-promoting effects of garlic compounds.

  5. Recombinant pigment epithelium-derived factor PEDF binds vascular endothelial growth factor receptors 1 and 2.

    PubMed

    Johnston, Erin K; Francis, Mary K; Knepper, Janice E

    2015-08-01

    Angiogenesis, or the formation of new blood vessels, is stimulated by angiogenic factors such as vascular endothelial growth factor (VEGF). Pigment epithelium-derived factor (PEDF) is a potent inhibitor of angiogenesis. To explore the mechanism by which PEDF acts, recombinant PEDF was expressed with a 6x-His tag (for purification) and a green fluorescent protein (GFP) tag. The PEDF fusion protein was confirmed to be active in inhibition of endothelial cell proliferation and migration. Direct binding of PEDF to both vascular endothelial growth factor receptor-1 (VEGFR-1) and VEGFR-2 was demonstrated in an in vitro assay similar to an enzyme-linked immunosorbent assay (ELISA). PEDF was shown by immune-confocal microscopy to be localized within treated endothelial cells. When VEGF-stimulated endothelial cells were incubated with PEDF the VEGF receptors showed intracellular localization. These data suggest that the interaction between PEDF and VEGFR-1 or VEGFR-2 may be a possible mechanism for inhibiting angiogenesis. PEDF may be binding to the VEGF receptors to promote their internalization and/or degradation to limit VEGF responses in treated cells.

  6. Cell-permeable iron inhibits vascular endothelial growth factor receptor-2 signaling and tumor angiogenesis.

    PubMed

    Kir, Devika; Saluja, Manju; Modi, Shrey; Venkatachalam, Annapoorna; Schnettler, Erica; Roy, Sabita; Ramakrishnan, Sundaram

    2016-10-04

    Angiogenesis is important for tumor growth and metastasis. Hypoxia in tumors drives this angiogenic response by stabilizing Hypoxia Inducible Factors (HIF) and target genes like Vascular Endothelial Growth Factor (VEGF). HIF stability is regulated by Prolylhydroxylases (PHD)-mediated modification. Iron is an important cofactor in regulating the enzymatic activity of PHDs. Reducing intracellular iron, for instance, mimics hypoxia and induces a pro-angiogenic response. It is hypothesized that increasing the intracellular iron levels will have an opposite, anti-angiogenic effect. We tested this hypothesis by perturbing iron homeostasis in endothelial cells using a unique form of iron, Ferric Ammonium Citrate (FAC). FAC is a cell-permeable form of iron, which can passively enter into cells bypassing the transferrin receptor mediated uptake of transferrin-bound iron. Our studies show that FAC does not decrease the levels of HIF-1α and HIF-2α in endothelial cells but inhibits the autocrine stimulation of VEGF-Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) system by blocking receptor tyrosine kinase phosphorylation. FAC inhibits VEGF-induced endothelial cell proliferation, migration, tube formation and sprouting. Finally, systemic administration of FAC inhibits VEGF and tumor cell-induced angiogenesis in vivo. In conclusion, our studies show that cell-permeable iron attenuates VEGFR-2 mediated signaling and inhibits tumor angiogenesis.

  7. Engineering interaction between bone marrow derived endothelial cells and electrospun surfaces for artificial vascular graft applications.

    PubMed

    Ahmed, Furqan; Dutta, Naba K; Zannettino, Andrew; Vandyke, Kate; Choudhury, Namita Roy

    2014-04-14

    The aim of this investigation was to understand and engineer the interactions between endothelial cells and the electrospun (ES) polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) nanofiber surfaces and evaluate their potential for endothelialization. Elastomeric PVDF-HFP samples were electrospun to evaluate their potential use as small diameter artificial vascular graft scaffold (SDAVG) and compared with solvent cast (SC) PVDF-HFP films. We examined the consequences of fibrinogen adsorption onto the ES and SC samples for endothelialisation. Bone marrow derived endothelial cells (BMEC) of human origin were incubated with the test and control samples and their attachment, proliferation, and viability were examined. The nature of interaction of fibrinogen with SC and ES samples was investigated in detail using ELISA, XPS, and FTIR techniques. The pristine SC and ES PVDF-HFP samples displayed hydrophobic and ultrahydrophobic behavior and accordingly, exhibited minimal BMEC growth. Fibrinogen adsorbed SC samples did not significantly enhance endothelial cell binding or proliferation. In contrast, the fibrinogen adsorbed electrospun surfaces showed a clear ability to modulate endothelial cell behavior. This system also represents an ideal model system that enables us to understand the natural interaction between cells and their extracellular environment. The research reported shows potential of ES surfaces for artificial vascular graft applications.

  8. Endothelial human dihydrofolate reductase low activity limits vascular tetrahydrobiopterin recycling

    PubMed Central

    Whitsett, Jennifer; Filho, Artur Rangel; Sethumadhavan, Savitha; Celinska, Joanna; Widlansky, Michael; Vásquez-Vivar, Jeannette

    2013-01-01

    Tetrahydrobiopterin (BH4) is required for NO synthesis and inhibition of superoxide release from eNOS. Clinical trials using BH4 to treat endothelial dysfunction have produced mixed results. Poor outcomes may be explained by the rapid systemic and cellular oxidation of BH4. One of the oxidation products of BH4, 7,8-dihydrobiopterin (7,8-BH2), is recycled back to BH4 by dihydrofolate reductase (DHFR). This enzyme is ubiquitously distributed and shows a wide range of activity depending on species-specific factors and cell type. Information about the kinetics and efficiency of BH4 recycling in human endothelial cells receiving BH4 treatment is lacking. To characterize this reaction, we applied a novel multi-electrode coulometric HPLC method that enabled the direct quantification of 7,8-BH2 and BH4 which is not possible with fluorescent-based methodologies. We found that basal untreated BH4 and 7,8-BH2 concentrations in human ECs is lower than bovine and murine endothelioma cells. Treatment of human ECs with BH4 transiently increased intracellular BH4 while accumulating the more stable 7,8-BH2. This was different from bovine or murine ECs that resulted in preferential BH4 increase. Using BH4 diastereomers, 6S-BH4 and 6R-BH4, the narrow contribution of enzymatic DHFR recycling to total intracellular BH4 was demonstrated. Reduction of 7,8-BH2 to BH4 occurs at very slow rates in cells and needs supra-physiological levels of 7,8-BH2, indicating this reaction is kinetically limited. Activity assays verified that hDHFR has very low affinity for 7,8-BH2 (DHF7,8-BH2) and folic acid inhibits 7,8-BH2 recycling. We conclude that low activity of endothelial DHFR is an important factor limiting the benefits of BH4 therapies which may be further aggravated by folate supplements. PMID:23707606

  9. Catalase and superoxide dismutase conjugated with platelet-endothelial cell adhesion molecule antibody distinctly alleviate abnormal endothelial permeability caused by exogenous reactive oxygen species and vascular endothelial growth factor.

    PubMed

    Han, Jingyan; Shuvaev, Vladimir V; Muzykantov, Vladimir R

    2011-07-01

    Reactive oxygen species (ROS) superoxide anion (O(2)()) and hydrogen peroxide (H(2)O(2)) produced by activated leukocytes and endothelial cells in sites of inflammation or ischemia cause endothelial barrier dysfunction that may lead to tissue edema. Antioxidant enzymes (AOEs) catalase and superoxide dismutase (SOD) conjugated with antibodies to platelet-endothelial cell adhesion molecule-1 (PECAM-1) specifically bind to endothelium, quench the corresponding ROS, and alleviate vascular oxidative stress and inflammation. In the present work, we studied the effects of anti-PECAM/catalase and anti-PECAM/SOD conjugates on the abnormal permeability manifested by transendothelial electrical resistance decline, increased fluorescein isothiocyanate-dextran influx, and redistribution of vascular endothelial-cadherin in human umbilical vein endothelial cell (HUVEC) monolayers. Anti-PECAM/catalase protected HUVEC monolayers against H(2)O(2)-induced endothelial barrier dysfunction. Polyethylene glycol-conjugated catalase exerted orders of magnitude lower endothelial uptake and no protective effect, similarly to IgG/catalase. Anti-PECAM/catalase, but not anti-PECAM/SOD, alleviated endothelial hyperpermeability caused by exposure to hypoxanthine/xanthine oxidase, implicating primarily H(2)O(2) in the disruption of the endothelial barrier in this model. Thrombin-induced endothelial permeability was not affected by treatment with anti-PECAM/AOEs or the NADPH oxidase inhibitor apocynin or overexpression of AOEs, indicating that the endogenous ROS play no key role in thrombin-mediated endothelial barrier dysfunction. In contrast, anti-PECAM/SOD, but not anti-PECAM/catalase, inhibited a vascular endothelial growth factor (VEGF)-induced increase in endothelial permeability, identifying a key role of endogenous O(2)() in the VEGF-mediated regulation of endothelial barrier function. Therefore, AOEs targeted to endothelial cells provide versatile molecular tools for testing the roles of

  10. Catalase and Superoxide Dismutase Conjugated with Platelet-Endothelial Cell Adhesion Molecule Antibody Distinctly Alleviate Abnormal Endothelial Permeability Caused by Exogenous Reactive Oxygen Species and Vascular Endothelial Growth Factor

    PubMed Central

    Han, Jingyan; Shuvaev, Vladimir V.

    2011-01-01

    Reactive oxygen species (ROS) superoxide anion (O2⨪) and hydrogen peroxide (H2O2) produced by activated leukocytes and endothelial cells in sites of inflammation or ischemia cause endothelial barrier dysfunction that may lead to tissue edema. Antioxidant enzymes (AOEs) catalase and superoxide dismutase (SOD) conjugated with antibodies to platelet-endothelial cell adhesion molecule-1 (PECAM-1) specifically bind to endothelium, quench the corresponding ROS, and alleviate vascular oxidative stress and inflammation. In the present work, we studied the effects of anti-PECAM/catalase and anti-PECAM/SOD conjugates on the abnormal permeability manifested by transendothelial electrical resistance decline, increased fluorescein isothiocyanate-dextran influx, and redistribution of vascular endothelial-cadherin in human umbilical vein endothelial cell (HUVEC) monolayers. Anti-PECAM/catalase protected HUVEC monolayers against H2O2-induced endothelial barrier dysfunction. Polyethylene glycol-conjugated catalase exerted orders of magnitude lower endothelial uptake and no protective effect, similarly to IgG/catalase. Anti-PECAM/catalase, but not anti-PECAM/SOD, alleviated endothelial hyperpermeability caused by exposure to hypoxanthine/xanthine oxidase, implicating primarily H2O2 in the disruption of the endothelial barrier in this model. Thrombin-induced endothelial permeability was not affected by treatment with anti-PECAM/AOEs or the NADPH oxidase inhibitor apocynin or overexpression of AOEs, indicating that the endogenous ROS play no key role in thrombin-mediated endothelial barrier dysfunction. In contrast, anti-PECAM/SOD, but not anti-PECAM/catalase, inhibited a vascular endothelial growth factor (VEGF)-induced increase in endothelial permeability, identifying a key role of endogenous O2⨪ in the VEGF-mediated regulation of endothelial barrier function. Therefore, AOEs targeted to endothelial cells provide versatile molecular tools for testing the roles of specific ROS in

  11. Bioactive baculovirus nanohybrids for stent based rapid vascular re-endothelialization

    NASA Astrophysics Data System (ADS)

    Paul, Arghya; Elias, Cynthia B.; Shum-Tim, Dominique; Prakash, Satya

    2013-08-01

    Present study, for the first time, reports the development of a nanohybridized baculovirus based stent that can locally promote vascular re-endothelialization by efficient delivery of pro-angiogenic vascular endothelial growth factor (Vegf) genes. In vitro data demonstrated rapid expression of functionally active Vegf by the bioactive stent-transduced vascular cells. In vivo site-specific transgene expression was observed at the stented regions of balloon-denuded canine femoral artery, which eventually lead to significant endothelial recovery at the injured sites. A significant reduction in neointima formation (2.23 +/- 0.56 mm2 vs 2.78 +/- 0.49 mm2 and 3.11 +/- 0.23 mm2, p < 0.05; n = 8) and percent stenosis was observed in treated stent group compared to negative control and bare metal stent groups. These findings collectively implicate the potential of this newly developed baculovirus based biotherapeutic stent to ameliorate damaged vascular biology and attenuate re-narrowing of stented artery by inhibiting neointima formation.

  12. Angiogenic Type I Collagen Extracellular Matrix Integrated with Recombinant Bacteriophages Displaying Vascular Endothelial Growth Factors.

    PubMed

    Yoon, Junghyo; Korkmaz Zirpel, Nuriye; Park, Hyun-Ji; Han, Sewoon; Hwang, Kyung Hoon; Shin, Jisoo; Cho, Seung-Woo; Nam, Chang-Hoon; Chung, Seok

    2016-01-21

    Here, a growth-factor-integrated natural extracellular matrix of type I collagen is presented that induces angiogenesis. The developed matrix adapts type I collagen nanofibers integrated with synthetic colloidal particles of recombinant bacteriophages that display vascular endothelial growth factor (VEGF). The integration is achieved during or after gelation of the type I collagen and the matrix enables spatial delivery of VEGF into a desired region. Endothelial cells that contact the VEGF are found to invade into the matrix to form tube-like structures both in vitro and in vivo, proving the angiogenic potential of the matrix. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Oral intra vascular papillary endothelial hyperplasia in the floor of the mouth.

    PubMed

    Devi, M; Nalin Kumar, S; Ranganathan, K; Saraswathi, T R

    2004-01-01

    Intravascular papillary endothelial hyperplasia (IPEH) is an unusual vascular lesion of proliferating endothelial cells. It is more frequently seen in the extremities, particularly in the fingers. Oral IPEH has been reported with the common sites being lip, tongue, and buccal mucosa. In this article, we present a case of oral IPEH of the floor of the mouth, an unusual location, presenting in a 9-month-old male. The histogenesis, histologic features, and ultrastructural features are also reviewed. A misdiagnosis of angiosarcoma can be made in a case of IPEH due to similar histopathologic features. It is imperative to rule out this error by an elaborate histopathologic evaluation ofthese lesions.

  14. Restoring Akt1 activity in outgrowth endothelial cells from South Asian men rescues vascular reparative potential.

    PubMed

    Cubbon, Richard M; Yuldasheva, Nadira Y; Viswambharan, Hema; Mercer, Ben N; Baliga, Vivek; Stephen, Sam L; Askham, Jonathan; Sukumar, Piruthivi; Skromna, Anna; Mughal, Romana S; Walker, Andrew M N; Bruns, Alexander; Bailey, Marc A; Galloway, Stacey; Imrie, Helen; Gage, Matthew C; Rakobowchuk, Mark; Li, Jing; Porter, Karen E; Ponnambalam, Sreenivasan; Wheatcroft, Stephen B; Beech, David J; Kearney, Mark T

    2014-10-01

    Recent data suggest reduced indices of vascular repair in South Asian men, a group at increased risk of cardiovascular events. Outgrowth endothelial cells (OEC) represent an attractive tool to study vascular repair in humans and may offer potential in cell-based repair therapies. We aimed to define and manipulate potential mechanisms of impaired vascular repair in South Asian (SA) men. In vitro and in vivo assays of vascular repair and angiogenesis were performed using OEC derived from SA men and matched European controls, prior defining potentially causal molecular mechanisms. SA OEC exhibited impaired colony formation, migration, and in vitro angiogenesis, associated with decreased expression of the proangiogenic molecules Akt1 and endothelial nitric oxide synthase (eNOS). Transfusion of European OEC into immunodeficient mice after wire-induced femoral artery injury augmented re-endothelialization, in contrast with SA OEC and vehicle; SA OEC also failed to promote angiogenesis after induction of hind limb ischemia. Expression of constitutively active Akt1 (E17KAkt), but not green fluorescent protein control, in SA OEC increased in vitro angiogenesis, which was abrogated by a NOS antagonist. Moreover, E17KAkt expressing SA OEC promoted re-endothelialization of wire-injured femoral arteries, and perfusion recovery of ischemic limbs, to a magnitude comparable with nonmanipulated European OEC. Silencing Akt1 in European OEC recapitulated the functional deficits noted in SA OEC. Reduced signaling via the Akt/eNOS axis is causally linked with impaired OEC-mediated vascular repair in South Asian men. These data prove the principle of rescuing marked reparative dysfunction in OEC derived from these men. © 2014 AlphaMed Press.

  15. Catechin averts experimental diabetes mellitus-induced vascular endothelial structural and functional abnormalities.

    PubMed

    Bhardwaj, Pooja; Khanna, Deepa; Balakumar, Pitchai

    2014-03-01

    Diabetes mellitus is associated with an induction of vascular endothelial dysfunction (VED), an initial event that could lead to the pathogenesis of atherosclerosis and hypertension. Previous studies showed that catechin, a key component of green tea, possesses vascular beneficial effects. We investigated the effect of catechin hydrate in diabetes mellitus-induced experimental vascular endothelial abnormalities (VEA). Streptozotocin (50 mg/kg, i.p., once) administration to rats produced diabetes mellitus, which subsequently induced VEA in 8 weeks by markedly attenuating acetylcholine-induced endothelium-dependent relaxation in the isolated aortic ring preparation, decreasing aortic and serum nitrite/nitrate concentrations and impairing aortic endothelial integrity. These abnormalities in diabetic rats were accompanied with elevated aortic superoxide anion generation and serum lipid peroxidation in addition to hyperglycemia. Catechin hydrate treatment (50 mg/kg/day p.o., 3 weeks) markedly prevented diabetes mellitus-induced VEA and vascular oxidative stress. Intriguingly, in vitro incubation of L-NAME (100 μM), an inhibitor of nitric oxide synthase, or Wortmannin (100 nM), a selective inhibitor of phosphatidylinositol 3-kinase (PI3K), markedly prevented catechin hydrate-induced improvement in acetylcholine-provoked endothelium-dependent relaxation in the diabetic rat aorta. Moreover, catechin hydrate treatment considerably reduced the elevated level of serum glucose in diabetic rats. In conclusion, catechin hydrate treatment prevents diabetes mellitus-induced VED through the activation of endothelial PI3K signal and subsequent activation of eNOS and generation of nitric oxide. In addition, reduction in high glucose, vascular oxidative stress, and lipid peroxidation might additionally contribute to catechin hydrate-associated prevention of diabetic VEA.

  16. Vascular Endothelial Growth Factor/Vascular Permeability Factor Is Temporally and Spatially Correlated with Ocular Angiogenesis in a Primate Model

    PubMed Central

    Miller, Joan W.; Adamis, Anthony P.; Shima, David T.; D'Amore, Patricia A.; Moulton, Rachel S.; O'Reilly, Michael S.; Folkman, Judah; Dvorak, Harold F.; Brown, Lawrence F.; Berse, Brygida; Yeo, Tet-Kin; Yeo, Kiang-Teck

    1994-01-01

    Ischemia often precedes neovascularization. Inocular neovascularization, such as occurs in diabetic retinopathy, a diffusible angiogenic factor has been postulated to be produced by ischemicretina and to lead to neovascularization of theretina, optic nerve, or iris. However, no angiogenic factor has been conclusively identified that satisfies this hypothesis. Vascular endothelial growth factor/vascular permeability factor, hereafter referred to as VEGF, is a likely candidate for an ocular angiogenic factor because it is a secreted mitogen, specific for endothelial cells, and is upregulated by hypoxia. We investigated the association of VEGF with the development of experimental iris neovascularization in the cynomolgus monkey. Following theproduction of retinal ischemia by laser occlusion of all branch retinal veins, VEGF was increased in the aqueous fluid, and the aqueous VEGF levels changed synchronously and proportionally with the severity of iris neovascularization. Northern analysis and in situ hybridization revealed that VEGF messenger RNA is upregulated in the ischemic retina. These observations support the hypothesis that ocular neovascularization is regulated by a diffusible factor and identify VEGF as a likely candidate for a retina-derived vascular permeability and angiogenesis factor in vivo. ImagesFigure 2Figure 4Figure 5 PMID:7521577

  17. Hyperphosphatemia, Phosphoprotein Phosphatases, and Microparticle Release in Vascular Endothelial Cells

    PubMed Central

    Abbasian, Nima; Burton, James O.; Herbert, Karl E.; Tregunna, Barbara-Emily; Brown, Jeremy R.; Ghaderi-Najafabadi, Maryam; Brunskill, Nigel J.; Goodall, Alison H.

    2015-01-01

    Hyperphosphatemia in patients with advanced CKD is thought to be an important contributor to cardiovascular risk, in part because of endothelial cell (EC) dysfunction induced by inorganic phosphate (Pi). Such patients also have an elevated circulating concentration of procoagulant endothelial microparticles (MPs), leading to a prothrombotic state, which may contribute to acute occlusive events. We hypothesized that hyperphosphatemia leads to MP formation from ECs through an elevation of intracellular Pi concentration, which directly inhibits phosphoprotein phosphatases, triggering a global increase in phosphorylation and cytoskeletal changes. In cultured human ECs (EAhy926), incubation with elevated extracellular Pi (2.5 mM) led to a rise in intracellular Pi concentration within 90 minutes. This was mediated by PiT1/slc20a1 Pi transporters and led to global accumulation of tyrosine- and serine/threonine-phosphorylated proteins, a marked increase in cellular Tropomyosin-3, plasma membrane blebbing, and release of 0.1- to 1-μm-diameter MPs. The effect of Pi was independent of oxidative stress or apoptosis. Similarly, global inhibition of phosphoprotein phosphatases with orthovanadate or fluoride yielded a global protein phosphorylation response and rapid release of MPs. The Pi-induced MPs expressed VE-cadherin and superficial phosphatidylserine, and in a thrombin generation assay, they displayed significantly more procoagulant activity than particles derived from cells incubated in medium with a physiologic level of Pi (1 mM). These data show a mechanism of Pi-induced cellular stress and signaling, which may be widely applicable in mammalian cells, and in ECs, it provides a novel pathologic link between hyperphosphatemia, generation of MPs, and thrombotic risk. PMID:25745026

  18. Grape seed proanthocyanidin extract alleviates ouabain-induced vascular remodeling through regulation of endothelial function.

    PubMed

    Liu, Xiangju; Qiu, Jie; Zhao, Shaohua; You, Beian; Ji, Xiang; Wang, Yan; Cui, Xiaopei; Wang, Qian; Gao, Haiqing

    2012-11-01

    Recent studies indicate that chronic ouabain treatment leads to hypertension and hypertensive vascular remodeling. Grape seed proanthocyanidin extract (GSPE) has been reported to be effective in treating arteriosclerosis, while little is known about its effect on systolic blood pressure and vascular remodeling. In this study, the effects of GSPE on systolic blood pressure and vascular remodeling were analyzed by treating ouabain-induced hypertensive rats with GSPE (250 mg/kg·d). The expression of nitric oxide (NO) and endothelin-1 (ET-1) in thoracic aorta was examined by ELISA; the mRNA and protein levels of TGF-β1 were detected using real-time PCR and western blotting, respectively. The results showed that the systolic blood pressure was significantly decreased following treatment with GSPE, with blocked vascular remodeling. The ET-1 content was reduced while NO production was increased in the GSPE group, which showed improved vascular endothelial function. Moreover, GSPE also reduced TGF-β1 expression in the thoracic aorta, which is a determinant in vascular remodeling. In conclusion, GSPE antagonized ouabain-induced hypertension and vascular remodeling and is recommended as a potential anti-hypertensive agent for patients with hypertensive vascular diseases.

  19. Endothelial and Smooth Muscle Cell Ion Channels in Pulmonary Vasoconstriction and Vascular Remodeling

    PubMed Central

    Makino, Ayako; Firth, Amy L.; Yuan, Jason X.-J.

    2017-01-01

    The pulmonary circulation is a low resistance and low pressure system. Sustained pulmonary vasoconstriction and excessive vascular remodeling often occur under pathophysiological conditions such as in patients with pulmonary hypertension. Pulmonary vasoconstriction is a consequence of smooth muscle contraction. Many factors released from the endothelium contribute to regulating pulmonary vascular tone, while the extracellular matrix in the adventitia is the major determinant of vascular wall compliance. Pulmonary vascular remodeling is characterized by adventitial and medial hypertrophy due to fibroblast and smooth muscle cell proliferation, neointimal proliferation, intimal, and plexiform lesions that obliterate the lumen, muscularization of precapillary arterioles, and in situ thrombosis. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) in pulmonary artery smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction, while increased release of mitogenic factors, upregulation (or downregulation) of ion channels and transporters, and abnormalities in intracellular signaling cascades are key to the remodeling of the pulmonary vasculature. Changes in the expression, function, and regulation of ion channels in PASMC and pulmonary arterial endothelial cells play an important role in the regulation of vascular tone and development of vascular remodeling. This article will focus on describing the ion channels and transporters that are involved in the regulation of pulmonary vascular function and structure and illustrating the potential pathogenic role of ion channels and transporters in the development of pulmonary vascular disease. PMID:23733654

  20. Stent coated with antibody against vascular endothelial-cadherin captures endothelial progenitor cells, accelerates re-endothelialization, and reduces neointimal formation.

    PubMed

    Lim, Woo-Hyun; Seo, Won-Woo; Choe, Wonseok; Kang, Chan-Koo; Park, Jonghanne; Cho, Hyun-Ju; Kyeong, San; Hur, Jin; Yang, Han-Mo; Cho, Hyun-Jai; Lee, Yoon-Sik; Kim, Hyo-Soo

    2011-12-01

    In contrast to CD34, vascular endothelial-cadherin (VE-cadherin) is exclusively expressed on the late endothelial progenitor cells (EPC) whereas not on the early or myeloid EPC. Thus, VE-cadherin could be an ideal target surface molecule to capture circulating late EPC. In the present study, we evaluated whether anti-VE-cadherin antibody-coated stents (VE-cad stents) might accelerate endothelial recovery and reduce neointimal formation through the ability of capturing EPC. The stainless steel stents were coated with rabbit polyclonal anti-human VE-cadherin antibodies and exposed to EPC for 30 minutes in vitro. The number of EPC that adhered to the surface of VE-cad stents was significantly higher than bare metal stents (BMS) in vitro, which was obliterated by pretreatment of VE-cad stent with soluble VE-cadherin proteins. We deployed VE-cad stents and BMS in the rabbit right and left iliac arteries, respectively. At 48 hours after stent deployment in vivo, CD-31-positive endothelial cells adhered to VE-cad stent significantly more than to BMS. At 3 days, scanning electron microscopy showed that over 90% surface of VE-cad stents was covered with endothelial cells, which was significantly different from BMS. At 42 days, neointimal area that was filled with smooth muscle cells positive for actin or calponin was significantly smaller in VE-cad stents than in BMS by histological analysis (0.95±0.22 versus 1.34±0.43 mm(2), respectively, P=0.02). Immuno-histochemical analysis revealed that infiltration of inflammatory cells was not significantly different between 2 stents. VE-cad stents captured EPC successfully in vitro, accelerated endothelial recovery on stent, and eventually reduced neointimal formation in vivo.

  1. Conversion of vascular endothelial cells into multipotent stem-like cells

    PubMed Central

    Medici, Damian; Shore, Eileen M.; Lounev, Vitali Y.; Kaplan, Frederick S.; Kalluri, Raghu; Olsen, Bjorn R.

    2011-01-01

    Mesenchymal stem cells can give rise to several cell types, but variations depending on isolation method and tissue source have led to controversies about their usefulness in clinical medicine. Here we show that vascular endothelial cells can transform into multipotent stem-like cells by an ALK2 receptor-dependent mechanism. In lesions from patients with Fibrodysplasia Ossificans Progressiva, a disease where heterotopic ossification occurs as a result of activating ALK2 mutations, or from a mutant ALK2 transgenic mouse model, chondrocytes and osteoblasts express endothelial markers. Tie2-Cre lineage tracing also suggests an endothelial origin of these cells. Expressing mutant ALK2 in endothelial cells, or treatment with the ALK2 ligands TGF-β2 or BMP4, causes endothelial-mesenchymal transition and acquisition of a stem cell-like phenotype. In selective media, these cells differentiate into osteoblasts, chondrocytes, or adipocytes. The process is inhibited by ALK2-specific siRNA. Conversion of endothelial cells to stem-like cells may provide a novel approach to tissue engineering. PMID:21102460

  2. Potential of Food and Natural Products to Promote Endothelial and Vascular Health.

    PubMed

    Auger, Cyril; Said, Amissi; Nguyen, Phuong Nga; Chabert, Philippe; Idris-Khodja, Noureddine; Schini-Kerth, Valérie B

    2016-07-01

    Endothelial dysfunction is now well established as a pivotal early event in the development of major cardiovascular diseases including hypertension, atherosclerosis, and diabetes. The alteration of the endothelial function is often triggered by an imbalance between the endothelial formation of vasoprotective factors including nitric oxide (NO) and endothelium-dependent hyperpolarization, and an increased level of oxidative stress involving several prooxidant enzymes such as NADPH oxidase and, often also, the appearance of cyclooxygenase-derived vasoconstrictors. Preclinical studies have indicated that polyphenol-rich food and food-derived products such as grape-derived products, black and red berries, green and black teas and cocoa, and omega-3 fatty acids can trigger activating pathways in endothelial cells promoting an increased formation of nitric oxide and endothelium-dependent hyperpolarization. Moreover, intake of such food-derived products has been associated with the prevention and/or the improvement of an established endothelial dysfunction in several experimental models of cardiovascular diseases and in humans with cardiovascular diseases. This review will discuss both experimental and clinical evidences indicating that different types of food and natural products are able to promote endothelial and vascular health, as well as the underlying mechanisms.

  3. Expression of endothelial nitric oxide synthase and vascular endothelial growth factor in association with neovascularization in human primary astrocytoma*

    PubMed Central

    Pan, Jian-wei; Zhan, Ren-ya; Tong, Ying; Zhou, Yong-qing; Zhang, Ming

    2005-01-01

    Objective: To investigate the relationship between the expression of endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF) and angiogenesis in primary astrocytoma. Methods: Thirty-seven primary astrocytomas and 4 astrocytic hyperplasia samples were collected and divided into three groups according to histological grade. The expression of eNOS, VEGF and factor VIII related antigen (FVIIIRAg) were assayed by immunohistochemistry. Microvascular density was assessed by FVIIIRAg immunoreactivity. The intensity of immunoreactivity was graded according to the percentage of positive tumor cells. Results: No eNOS and VEGF were expressed in the astrocytes and vascular endothelium in astrocytic hyperplasia. The expression of eNOS or VEGF was light in low-grade astrocytoma and strong in glioblastoma. eNOS expression in astrocytoma was very positively correlated with VEGF. eNOS and VEGF expression in anaplastic astrocytoma was median in contrast to the low grade astrocytoma and glioblastoma. Lower microvascular density was found in low grade astrocytoma than that in higher grade malignant ones. The expressions of eNOS and VEGF were correlated with microvascular density and tumor malignancy. Conclusion: This finding suggests that eNOS and VEGF may have cooperative effect in tumor angiogenesis and play an important role in the pathogenesis of primary astrocytoma. PMID:15973775

  4. Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo.

    PubMed

    Ferreira, Lino S; Gerecht, Sharon; Shieh, Hester F; Watson, Nicki; Rupnick, Maria A; Dallabrida, Susan M; Vunjak-Novakovic, Gordana; Langer, Robert

    2007-08-03

    We report that human embryonic stem cells contain a population of vascular progenitor cells that have the ability to differentiate into endothelial-like and smooth muscle (SM)-like cells. Vascular progenitor cells were isolated from EBs grown in suspension for 10 days and were characterized by expression of the endothelial/hematopoietic marker CD34 (CD34+ cells). When these cells are subsequently cultured in EGM-2 (endothelial growth medium) supplemented with vascular endothelial growth factor-165 (50 ng/mL), they give rise to endothelial-like cells characterized by a cobblestone cell morphology, expression of endothelial markers (platelet endothelial cell-adhesion molecule-1, CD34, KDR/Flk-1, vascular endothelial cadherin, von Willebrand factor), incorporation of acetylated low-density lipoprotein, and formation of capillary-like structures when placed in Matrigel. In contrast, when CD34+ cells are cultured in EGM-2 supplemented with platelet-derived growth factor-BB (50 ng/mL), they give rise to SM-like cells characterized by spindle-shape morphology, expression of SM cell markers (alpha-SM actin, SM myosin heavy chain, calponin, caldesmon, SM alpha-22), and the ability to contract and relax in response to common pharmacological agents such as carbachol and atropine but rarely form capillary-like structures when placed in Matrigel. Implantation studies in nude mice show that both cell types contribute to the formation of human microvasculature. Some microvessels contained mouse blood cells, which indicates functional integration with host vasculature. Therefore, the vascular progenitors isolated from human embryonic stem cells using methods established in the present study could provide a means to examine the mechanisms of endothelial and SM cell development, and they could also provide a potential source of cells for vascular tissue engineering.

  5. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells.

    PubMed Central

    Papapetropoulos, A; García-Cardeña, G; Madri, J A; Sessa, W C

    1997-01-01

    Vascular endothelial growth factor (VEGF) is a regulator of vasculogenesis and angiogenesis. To investigate the role of nitric oxide (NO) in VEGF-induced proliferation and in vitro angiogenesis, human umbilical vein endothelial cells (HUVEC) were used. VEGF stimulated the growth of HUVEC in an NO-dependent manner. In addition, VEGF promoted the NO-dependent formation of network-like structures in HUVEC cultured in three dimensional (3D) collagen gels. Exposure of cells to VEGF led to a concentration-dependent increase in cGMP levels, an indicator of NO production, that was inhibited by nitro-L-arginine methyl ester. VEGF-stimulated NO production required activation of tyrosine kinases and increases in intracellular calcium, since tyrosine kinase inhibitors and calcium chelators attenuated VEGF-induced NO release. Moreover, two chemically distinct phosphoinositide 3 kinase (PI-3K) inhibitors attenuated NO release after VEGF stimulation. In addition, HUVEC incubated with VEGF for 24 h showed an increase in the amount of endothelial NO synthase (eNOS) protein and the release of NO. In summary, both short- and long-term exposure of human EC to VEGF stimulates the release of biologically active NO. While long-term exposure increases eNOS protein levels, short-term stimulation with VEGF promotes NO release through mechanisms involving tyrosine and PI-3K kinases, suggesting that NO mediates aspects of VEGF signaling required for EC proliferation and organization in vitro. PMID:9399960

  6. Enrichment of Scleroderma Vascular Disease-Associated Autoantigens in Endothelial Lineage Cells.

    PubMed

    McMahan, Zsuzsanna H; Cottrell, Tricia R; Wigley, Fredrick M; Antiochos, Brendan; Zambidis, Elias T; Park, Tea Soon; Halushka, Marc K; Gutierrez-Alamillo, Laura; Cimbro, Raffaello; Rosen, Antony; Casciola-Rosen, Livia

    2016-10-01

    Scleroderma patients with autoantibodies to CENPs and/or interferon-inducible protein 16 (IFI-16) are at increased risk of severe vascular complications. This study was undertaken to determine whether these autoantigens are enriched in cells of the vasculature. Successive stages of embryoid bodies (EBs) as well as vascular progenitors were used to evaluate the expression of scleroderma autoantigens IFI-16 and CENP by immunoblotting. CD31 was included to mark early blood vessels. IFI-16 and CD31 expression were defined in paraffin-embedded skin sections from scleroderma patients and from healthy controls. IFI-16 expression was determined by flow cytometric analysis in circulating endothelial cells (CECs) and circulating hematopoietic progenitor cells. Expression of CENP-A, IFI-16, and CD31 was enriched in EBs on days 10 and 12 of differentiation, and particularly in cultures enriched in vascular progenitors (IFI-16, CD31, and CENPs A and B). This pattern was distinct from that of comparator autoantigens. Immunohistochemical staining of paraffin-embedded skin sections showed enrichment of IFI-16 in CD31-positive vascular endothelial cells in biopsy specimens from scleroderma patients and normal controls. Flow cytometric analysis revealed IFI-16 expression in circulating hematopoietic progenitor cells but minimal expression in CECs. Our findings indicate that expression of the scleroderma autoantigens IFI-16 and CENPs, which are associated with severe vascular disease, is increased in vascular progenitors and mature endothelial cells. High level, lineage-enriched expression of autoantigens may explain the striking association between clinical phenotypes and the immune targeting of specific autoantigens. © 2016, American College of Rheumatology.

  7. Inhibitor-κB kinase attenuates Hsp90-dependent endothelial nitric oxide synthase function in vascular endothelial cells

    PubMed Central

    Konopinski, Ryszard; Krishnan, Manickam; Roman, Linda; Bera, Alakesh; Hongying, Zheng; Habib, Samy L.; Mohan, Sumathy

    2015-01-01

    Endothelial nitric oxide (NO) synthase (eNOS) is the predominant isoform that generates NO in the blood vessels. Many different regulators, including heat shock protein 90 (Hsp90), govern eNOS function. Hsp90-dependent phosphorylation of eNOS is a critical event that determines eNOS activity. In our earlier study we demonstrated an inhibitor-κB kinase-β (IKKβ)-Hsp90 interaction in a high-glucose environment. In the present study we further define the putative binding domain of IKKβ on Hsp90. Interestingly, IKKβ binds to the middle domain of Hsp90, which has been shown to interact with eNOS to stimulate its activity. This new finding suggests a tighter regulation of eNOS activity than was previously assumed. Furthermore, addition of purified recombinant IKKβ to the eNOS-Hsp90 complex reduces the eNOS-Hsp90 interaction and eNOS activity, indicating a competition for Hsp90 between eNOS and IKKβ. The pathophysiological relevance of the IKKβ-Hsp90 interaction has also been demonstrated using in vitro vascular endothelial growth factor-mediated signaling and an Ins2Akita in vivo model. Our study further defines the preferential involvement of α- vs. β-isoforms of Hsp90 in the IKKβ-eNOS-Hsp90 interaction, even though both Hsp90α and Hsp90β stimulate NO production. These studies not only reinforce the significance of maintaining a homeostatic balance of eNOS and IKKβ within the cell system that regulates NO production, but they also confirm that the IKKβ-Hsp90 interaction is favored in a high-glucose environment, leading to impairment of the eNOS-Hsp90 interaction, which contributes to endothelial dysfunction and vascular complications in diabetes. PMID:25652452

  8. Portulaca oleracea Ameliorates Diabetic Vascular Inflammation and Endothelial Dysfunction in db/db Mice

    PubMed Central

    Lee, An Sook; Lee, Yun Jung; Lee, So Min; Yoon, Jung Joo; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2012-01-01

    Type 2 diabetes is associated with significantly accelerated rates of micro- and macrovascular complications such as diabetic vascular inflammation and endothelial dysfunction. In the present study, we investigated the protective effect of the aqueous extract of Portulaca oleracea L. (AP), an edible plant used as a folk medicine, on diabetic vascular complications. The db/db mice were treated with AP (300 mg/kg/day, p.o.) for 10 weeks, and AP treatment markedly lowered blood glucose, plasma triglyceride, plasma level of LDL-cholesterol, and systolic blood pressure in diabetic db/db mice. Furthermore, AP significantly increased plasma level of HDL-cholesterol and insulin level. The impairment of ACh- and SNP-induced vascular relaxation of aortic rings were ameliorated by AP treatment in diabetic db/db mice. This study also showed that overexpression of VCAM-1, ICAM-1, E-selectin, MMP-2, and ET-1 were observed in aortic tissues of untreated db/db mice, which were significantly suppressed by treatment with AP. We also found that the insulin immunoreactivity of the pancreatic islets remarkably increased in AP treated db/db mice compared with untreated db/db mice. Taken together, AP suppresses hyperglycemia and diabetic vascular inflammation, and prevents the development of diabetic endothelial dysfunction for the development of diabetes and its vascular complications. PMID:22474522

  9. Endothelial-Mesenchymal Transition in Vascular Calcification of Ins2Akita/+ Mice

    PubMed Central

    Guihard, Pierre J.; Yao, Jiayi; Blazquez-Medela, Ana M.; Iruela-Arispe, Luisa; Boström, Kristina I.; Yao, Yucheng

    2016-01-01

    Endothelial-mesenchymal transition (EndMT) drives endothelium to contribute to normal development and disease processes. Here, we report that EndMTs occur in the diabetic endothelium of Ins2Akita/wt mouse, and show that induction of sex determining region Y-box 2 (Sox2) is a mediator of excess BMP signaling that results in activation of EndMTs and increased vascular calcification. We also find an induction of a complex of serine proteases in the diabetic endothelium, required for the up-regulation of Sox2. Our results suggest that EndMTs contribute to vascular calcification in diabetic arteries. PMID:27936229

  10. Trans Fatty Acids Induce Vascular Inflammation and Reduce Vascular Nitric Oxide Production in Endothelial Cells

    PubMed Central

    Iwata, Naomi G.; Pham, Matilda; Rizzo, Norma O.; Cheng, Andrew M.; Maloney, Ezekiel; Kim, Francis

    2011-01-01

    Intake of trans fatty acids (TFA), which are consumed by eating foods made from partially hydrogenated vegetable oils, is associated with a higher risk of cardiovascular disease. This relation can be explained by many factors including TFA's negative effect on endothelial function and reduced nitric oxide (NO) bioavailability. In this study we investigated the effects of three different TFA (2 common isomers of C18 found in partially hydrogenated vegetable oil and a C18 isomer found from ruminant-derived—dairy products and meat) on endothelial NF-κB activation and nitric oxide (NO) production. Human endothelial cells were treated with increasing concentrations of Elaidic (trans-C18:1 (9 trans)), Linoelaidic (trans-C18:2 (9 trans, 12 trans)), and Transvaccenic (trans-C18:1 (11 trans)) for 3 h. Both Elaidic and Linoelaidic acids were associated with increasing NF-κB activation as measured by IL-6 levels and phosphorylation of IκBα, and impairment of endothelial insulin signaling and NO production, whereas Transvaccenic acid was not associated with these responses. We also measured superoxide production, which has been hypothesized to be necessary in fatty acid-dependent activation of NF-κB. Both Elaidic acid and Linoelaidic acid are associated with increased superoxide production, whereas Transvaccenic acid (which did not induce inflammatory responses) did not increase superoxide production. We observed differential activation of endothelial superoxide production, NF-κB activation, and reduction in NO production by different C18 isomers suggesting that the location and number of trans double bonds effect endothelial NF-κB activation. PMID:22216328

  11. Microtubule Dynamics Control Tail Retraction in Migrating Vascular Endothelial Cells†

    PubMed Central

    Ganguly, Anutosh; Yang, Hailing; Zhang, Hong; Cabral, Fernando; Patel, Kamala D.

    2014-01-01

    Drugs that target microtubules are potent inhibitors of angiogenesis but their mechanism of action is not well understood. To explore this, we treated human umbilical vein endothelial cells with paclitaxel, vinblastine, and colchicine and measured the effects on microtubule dynamics and cell motility. In general, lower drug concentrations suppressed microtubule dynamics and inhibited cell migration whereas higher concentrations were needed to inhibit cell division; but, surprisingly, large drug-dependent differences were seen in the relative concentrations needed to inhibit these two processes. Suppression of microtubule dynamics did not significantly affect excursions of lamellipodia away from the nucleus or prevent cells from elongating; but, it did inhibit retraction of the trailing edges that are normally enriched in dynamic microtubules, thereby limiting cell locomotion. Complete removal of microtubules with a high vinblastine concentration caused a loss of polarity that resulted in roundish rather than elongated cells, rapid but non-directional membrane activity, and little cell movement. The results are consistent with a model in which more static microtubules stabilize the leading edge of migrating cells while more dynamic microtubules locate to the rear where they can remodel and allow tail retraction. Suppressing microtubule dynamics interferes with tail retraction, but removal of microtubules destroys the asymmetry needed for cell elongation and directional motility. The prediction that suppressing microtubule dynamics might be sufficient to prevent angiogenesis was supported by showing that low concentrations of paclitaxel could prevent the formation of capillary-like structures in an in vitro tube formation assay. PMID:24107446

  12. A novel adipocytokine, chemerin exerts anti-inflammatory roles in human vascular endothelial cells

    SciTech Connect

    Yamawaki, Hideyuki; Kameshima, Satoshi; Usui, Tatsuya; Okada, Muneyoshi; Hara, Yukio

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Chemerin is a novel adipocytokine with almost unknown function in vasculature. Black-Right-Pointing-Pointer Chemerin activates Akt/eNOS/NO pathways in endothelial cells. Black-Right-Pointing-Pointer Chemerin inhibits TNF-{alpha}-induced monocyte adhesion to endothelial cells. Black-Right-Pointing-Pointer Chemerin inhibits TNF-induced VCAM-1 via suppressing NF-{kappa}B and p38 signal. Black-Right-Pointing-Pointer Chemerin is anti-inflammatory through producing NO in vascular endothelium. -- Abstract: Chemerin is a recently identified adipocytokine which plays a role on inflammation and adipocytes metabolism. However, its function in vasculature is largely unknown. We examined the effects of chemerin on vascular endothelial inflammatory states. Treatment of human umbilical vein endothelial cells with chemerin (300 ng/ml, 20 min) induced phosphorylation of Akt (Ser473) and endothelial nitric oxide (NO) synthase (eNOS) (Ser1177). Consistently, chemerin increased intracellular cyclic GMP content. Pretreatment with chemerin (1-300 ng/ml, 24 h) significantly inhibited phosphorylation of nuclear factor (NF)-{kappa}B p65 (Ser536) and p38 as well as vascular cell adhesion molecule (VCAM)-1 expression induced by tumor necrosis factor (TNF)-{alpha} (5 ng/ml, 20 min-6 h). Inhibitor of NF-{kappa}B or p38 significantly inhibited the TNF-{alpha}-induced VCAM-1 expression. Chemerin also inhibited TNF-{alpha}-induced VCAM-1 expression in rat isolated aorta. Moreover, chemerin significantly inhibited monocytes adhesion to TNF-{alpha}-stimulated endothelial cells. The inhibitory effect of chemerin on TNF-{alpha}-induced VCAM-1 was reversed by a NOS inhibitor. Conversely, an NO donor, sodium nitroprusside significantly inhibited TNF-{alpha}-induced VCAM-1. The present results for the first time demonstrate that chemerin plays anti-inflammatory roles by preventing TNF-{alpha}-induced VCAM-1 expression and monocytes adhesion in vascular

  13. Elementary Ca2+ Signals Through Endothelial TRPV4 Channels Regulate Vascular Function

    PubMed Central

    Sonkusare, Swapnil K.; Bonev, Adrian D.; Ledoux, Jonathan; Liedtke, Wolfgang; Kotlikoff, Michael I.; Heppner, Thomas J.; Hill-Eubanks, David C.; Nelson, Mark T.

    2013-01-01

    Major features of the transcellular signaling mechanism responsible for endothelium-dependent regulation of vascular smooth muscle tone are unresolved. We identified local calcium (Ca2+) signals (“sparklets”) in the vascular endothelium of resistance arteries that represent Ca2+ influx through single TRPV4 cation channels. Gating of individual TRPV4 channels within a four-channel cluster was cooperative, with activation of as few as three channels per cell causing maximal dilation through activation of endothelial cell intermediate (IK)- and small (SK)-conductance, Ca2+-sensitive potassium (K+) channels. Endothelial-dependent muscarinic receptor signaling also acted largely through TRPV4 sparklet-mediated stimulation of IK and SK channels to promote vasodilation. These results support the concept that Ca2+ influx through single TRPV4 channels is leveraged by the amplifier effect of cooperative channel gating and the high Ca2+ sensitivity of IK and SK channels to cause vasodilation. PMID:22556255

  14. Endothelial Dysfunction and Diabetes: Effects on Angiogenesis, Vascular Remodeling, and Wound Healing

    PubMed Central

    Kolluru, Gopi Krishna; Bir, Shyamal C.; Kevil, Christopher G.

    2012-01-01

    Diabetes mellitus (DM) is a chronic metabolic disorder characterized by inappropriate hyperglycemia due to lack of or resistance to insulin. Patients with DM are frequently afflicted with ischemic vascular disease or wound healing defect. It is well known that type 2 DM causes amplification of the atherosclerotic process, endothelial cell dysfunction, glycosylation of extracellular matrix proteins, and vascular denervation. These complications ultimately lead to impairment of neovascularization and diabetic wound healing. Therapeutic angiogenesis remains an attractive treatment modality for chronic ischemic disorders including PAD and/or diabetic wound healing. Many experimental studies have identified better approaches for diabetic cardiovascular complications, however, successful clinical translation has been limited possibly due to the narrow therapeutic targets of these agents or the lack of rigorous evaluation of pathology and therapeutic mechanisms in experimental models of disease. This paper discusses the current body of evidence identifying endothelial dysfunction and impaired angiogenesis during diabetes. PMID:22611498

  15. Vascular endothelial growth factor is involved in neoangiogenesis in Hirudo medicinalis (Annelida, Hirudinea).

    PubMed

    Tettamanti, G; Grimaldi, A; Valvassori, R; Rinaldi, L; de Eguileor, M

    2003-06-21

    Vascular endothelial growth factor (VEGF) is fundamental in vertebrates for correct development of blood vessels. However, there are only few data about the presence of VEGF in invertebrates. In this study the role of VEGF in neovessel formation is investigated in Hirudo medicinalis. The leech is able to respond to administration of human VEGF by formation of new vessels. The response of H. medicinalis to this growth factor is explained by the presence of two specific VEGF-like receptors (Flt-1/VEGFR-1 and Flk-1/VEGFR-2) as demonstrated by immunohistochemistry and biochemical analysis. The VEGF-like produced by this annelid following surgical stimulation determines not only blood vessel formation, proliferation of vascular endothelial cells but also an increase of cytoplasmic calcium levels. The administration of specific VEGF receptor antibodies can inhibit angiogenesis in leeches previously stimulated with VEGF.

  16. Protective effects of hydrogen-rich medium on lipopolysaccharide-induced monocytic adhesion and vascular endothelial permeability through regulation of vascular endothelial cadherin.

    PubMed

    Yu, Y; Wang, W N; Han, H Z; Xie, K L; Wang, G L; Yu, Y H

    2015-06-11

    We observed the effect of hydrogen-rich medium on lipopolysaccharide (LPS)-induced human umbilical vein endothelial cells (HUVECs), hyaline leukocyte conglutination, and permeability of the endothelium. Endotheliocytes were inoculated on 6-well plates and randomly divided into 4 groups: control, H2, LPS, LPS+H2, H2, and LPS+H2 in saturated hydrogen-rich medium. We applied Wright's stain-ing to observe conglutination of hyaline leukocytes and HUVECs, flow cytometry to determine the content of vascular cell adhesion protein 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1), enzyme-linked immunosorbent assay to measure the E-selectin concentration in the cell liquor, the transendothelial electrical resistance (TEER) to test the permeability of endothelial cells, and Western blot and immunofluorescence to test the expression and distribution of vascular endothelial (VE)-cadherin. Compared with control cells, there was an increase in endothelium-hyaline leukocyte conglutination, a reduction in VCAM-1, ICAM-1, and E-selectin, and the TEER value increased obviously. Compared with LPS, there was an obvious reduction in the conglutination of LPS+H2 cells, a reduction in VCAM-1, ICAM-1, and E-selectin levels, and a reduction in the TEER-resistance value, while the expression of VE-cadherin increased. Fluorescence results showed that, compared with control cells, the VE-cadherin in LPS cells was in-complete at the cell joints. Compared with LPS cells, the VE-cadherin in LPS+H2 cells was even and complete at the cell joints. Liquid rich in hydrogen could reduce LPS-induced production of adhesion molecules and endothelium-hyaline leukocyte conglutination, and influence the expression and distribution of VE-cadherin to regulate the permeability of the endothelium.

  17. Pretreatment with recombinant human vascular endothelial growth factor virus replication and inflammation in a perinatal lamb model of RSV infection

    USDA-ARS?s Scientific Manuscript database

    Vascular endothelial growth factor (VEGF) is increasingly recognized as a perinatal regulator of lung maturation and surfactant protein expression. Innate immune components including surfactant proteins A and D, and beta defensins have putative antimicrobial activity against pulmonary pathogens inc...

  18. Biomimetic modification of polyurethane-based nanofibrous vascular grafts: A promising approach towards stable endothelial lining.

    PubMed

    Davoudi, Parivash; Assadpour, Shiva; Derakhshan, Mohammad Ali; Ai, Jafar; Solouk, Atefeh; Ghanbari, Hossein

    2017-11-01

    The emerging demand for small caliber vascular grafts to replace damaged vessels has attracted research attention. However, there is no perfect replacement in clinical use yet, mainly due to low patency rate of synthetic small caliber grafts. The main pathology behind low patency rate include thrombosis and graft/vessel hemodynamic mismatch, leading to intimal hyperplasia. Rapid in-situ endothelialization of vascular grafts is considered as one of the best strategies to overcome these complications. In the present study, Heparin and VEGF were immobilized via self-polymerization and deposition of polydopamine (PDA) on polyurethane (PU) nanofibrous scaffolds to improve endothelialization. Polyurethane nanofibrous scaffold (PUNF) that mimics vascular extracellular matrix (ECM) was chosen owing to its biocompatibility, biodegradability. Scanning electron microscopy (SEM), water contact angle (CA) measurement and Raman spectroscopy were used to characterize the surface, and tensile test was used to analyze mechanical properties before and after surface modification of the scaffolds. It was found that tensile strength and young's modulus were significantly increased after PDA coating on PUNF membranes. The hemocompatibility tests revealed that surface heparinization significantly inhibited the adhesion of platelet on the scaffolds. Immobilization of VEGF on the scaffolds significantly enhanced the proliferation of human umbilical vein endothelial cells (HUVECs) through enhanced cells adhesion and improved cell-scaffold interactions. The results suggest that dual-factor immobilization resulted in not only confluent monolayer of endothelial cells but also conferred excellent antithrombotic properties to the surface. This method of surface modification (immobilization of Heparin, VEGF by PDA layer) is suggested as a promising modification technique to increase hemocompatibility of small-diameter vascular grafts. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Differential Effects of Bartonella henselae on Human and Feline Macro- and Micro-Vascular Endothelial Cells

    PubMed Central

    Berrich, Moez; Kieda, Claudine; Grillon, Catherine; Monteil, Martine; Lamerant, Nathalie; Gavard, Julie; Boulouis, Henri Jean; Haddad, Nadia

    2011-01-01

    Bartonella henselae, a zoonotic agent, induces tumors of endothelial cells (ECs), namely bacillary angiomatosis and peliosis in immunosuppressed humans but not in cats. In vitro studies on ECs represent to date the only way to explore the interactions between Bartonella henselae and vascular endothelium. However, no comparative study of the interactions between Bartonella henselae and human (incidental host) ECs vs feline (reservoir host) ECs has been carried out because of the absence of any available feline endothelial cell lines. To this purpose, we have developed nine feline EC lines which allowed comparing the effects of Bartonella strains on human and feline micro-vascular ECs representative of the infection development sites such as skin, versus macro-vascular ECs, such as umbilical vein. Our model revealed intrinsic differences between human (Human Skin Microvascular ECs –HSkMEC and Human Umbilical Vein ECs – iHUVEC) and feline ECs susceptibility to Bartonella henselae infection. While no effect was observed on the feline ECs upon Bartonella henselae infection, the human ones displayed accelerated angiogenesis and wound healing. Noticeable differences were demonstrated between human micro- and macro-vasculature derived ECs both in terms of pseudo-tube formation and healing. Interestingly, Bartonella henselae effects on human ECs were also elicited by soluble factors. Neither Bartonella henselae-infected Human Skin Microvascular ECs clinically involved in bacillary angiomatosis, nor feline ECs increased cAMP production, as opposed to HUVEC. Bartonella henselae could stimulate the activation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) in homologous cellular systems and trigger VEGF production by HSkMECs only, but not iHUVEC or any feline ECs tested. These results may explain the decreased pathogenic potential of Bartonella henselae infection for cats as compared to humans and strongly suggest that an autocrine secretion of VEGF by human

  20. Differential effects of Bartonella henselae on human and feline macro- and micro-vascular endothelial cells.

    PubMed

    Berrich, Moez; Kieda, Claudine; Grillon, Catherine; Monteil, Martine; Lamerant, Nathalie; Gavard, Julie; Boulouis, Henri Jean; Haddad, Nadia

    2011-01-01

    Bartonella henselae, a zoonotic agent, induces tumors of endothelial cells (ECs), namely bacillary angiomatosis and peliosis in immunosuppressed humans but not in cats. In vitro studies on ECs represent to date the only way to explore the interactions between Bartonella henselae and vascular endothelium. However, no comparative study of the interactions between Bartonella henselae and human (incidental host) ECs vs feline (reservoir host) ECs has been carried out because of the absence of any available feline endothelial cell lines.To this purpose, we have developed nine feline EC lines which allowed comparing the effects of Bartonella strains on human and feline micro-vascular ECs representative of the infection development sites such as skin, versus macro-vascular ECs, such as umbilical vein.Our model revealed intrinsic differences between human (Human Skin Microvascular ECs -HSkMEC and Human Umbilical Vein ECs - iHUVEC) and feline ECs susceptibility to Bartonella henselae infection.While no effect was observed on the feline ECs upon Bartonella henselae infection, the human ones displayed accelerated angiogenesis and wound healing.Noticeable differences were demonstrated between human micro- and macro-vasculature derived ECs both in terms of pseudo-tube formation and healing. Interestingly, Bartonella henselae effects on human ECs were also elicited by soluble factors.Neither Bartonella henselae-infected Human Skin Microvascular ECs clinically involved in bacillary angiomatosis, nor feline ECs increased cAMP production, as opposed to HUVEC.Bartonella henselae could stimulate the activation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) in homologous cellular systems and trigger VEGF production by HSkMECs only, but not iHUVEC or any feline ECs tested.These results may explain the decreased pathogenic potential of Bartonella henselae infection for cats as compared to humans and strongly suggest that an autocrine secretion of VEGF by human skin

  1. Endothelial cell tetrahydrobiopterin deficiency attenuates LPS-induced vascular dysfunction and hypotension☆

    PubMed Central

    Chuaiphichai, Surawee; Starr, Anna; Nandi, Manasi; Channon, Keith M.; McNeill, Eileen

    2016-01-01

    Overproduction of nitric oxide (NO) is thought to be a key mediator of the vascular dysfunction and severe hypotension in patients with endotoxaemia and septic shock. The contribution of NO produced directly in the vasculature by endothelial cells to the hypotension seen in these conditions, vs. the broader systemic increase in NO, is unclear. To determine the specific role of endothelium derived NO in lipopolysaccharide (LPS)-induced vascular dysfunction we administered LPS to mice deficient in endothelial cell tetrahydrobiopterin (BH4), the essential co-factor for NO production by NOS enzymes. Mice deficient in endothelial BH4 production, through loss of the essential biosynthesis enzyme Gch1 (Gch1fl/flTie2cre mice) received a 24 hour challenge with LPS or saline control. In vivo LPS treatment increased vascular GTP cyclohydrolase and BH4 levels in aortas, lungs and hearts, but this increase was significantly attenuated in Gch1fl/flTie2cre mice, which were also partially protected from the LPS-induced hypotension. In isometric tension studies, in vivo LPS treatment reduced the vasoconstriction response and impaired endothelium-dependent and independent vasodilatations in mesenteric arteries from wild-type mice, but not in Gch1fl/flTie2cre mesenteric arteries. Ex vivo LPS treatment decreased vasoconstriction response to phenylephrine in aortic rings from wild-type and not in Gch1fl/flTie2cre mice, even in the context of significant eNOS and iNOS upregulation. These data provide direct evidence that endothelial cell NO has a significant contribution to LPS-induced vascular dysfunction and hypotension and may provide a novel therapeutic target for the treatment of systemic inflammation and patients with septic shock. PMID:26276526

  2. Identification of inhibitors for vascular endothelial growth factor receptor by using dynamic combinatorial chemistry.

    PubMed

    Yang, Zhao; Fang, Zheng; He, Wei; Wang, Zhixiang; Gan, Haifeng; Tian, Qitao; Guo, Kai

    2016-04-01

    The novel analysis method consisting of size-exclusion chromatography (SEC) and HRMS analysis was firstly applied in the discovery of potential inhibitors towards cancer drug targets. With vascular endothelial growth factor receptor (VEGFR-2) as a target, dynamic combinatorial libraries (DCLs) were prepared by reacting aldehydes with amines. Four sensitive binders targeted VEGFR-2 were directly isolated from the library. Antitumor activity test in vitro and inhibition experiments toward angiogenesis were also carried out.

  3. Endothelial cell tetrahydrobiopterin deficiency attenuates LPS-induced vascular dysfunction and hypotension.

    PubMed

    Chuaiphichai, Surawee; Starr, Anna; Nandi, Manasi; Channon, Keith M; McNeill, Eileen

    2016-02-01

    Overproduction of nitric oxide (NO) is thought to be a key mediator of the vascular dysfunction and severe hypotension in patients with endotoxaemia and septic shock. The contribution of NO produced directly in the vasculature by endothelial cells to the hypotension seen in these conditions, vs. the broader systemic increase in NO, is unclear. To determine the specific role of endothelium derived NO in lipopolysaccharide (LPS)-induced vascular dysfunction we administered LPS to mice deficient in endothelial cell tetrahydrobiopterin (BH4), the essential co-factor for NO production by NOS enzymes. Mice deficient in endothelial BH4 production, through loss of the essential biosynthesis enzyme Gch1 (Gch1(fl/fl)Tie2cre mice) received a 24hour challenge with LPS or saline control. In vivo LPS treatment increased vascular GTP cyclohydrolase and BH4 levels in aortas, lungs and hearts, but this increase was significantly attenuated in Gch1(fl/fl)Tie2cre mice, which were also partially protected from the LPS-induced hypotension. In isometric tension studies, in vivo LPS treatment reduced the vasoconstriction response and impaired endothelium-dependent and independent vasodilatations in mesenteric arteries from wild-type mice, but not in Gch1(fl/fl)Tie2cre mesenteric arteries. Ex vivo LPS treatment decreased vasoconstriction response to phenylephrine in aortic rings from wild-type and not in Gch1(fl/fl)Tie2cre mice, even in the context of significant eNOS and iNOS upregulation. These data provide direct evidence that endothelial cell NO has a significant contribution to LPS-induced vascular dysfunction and hypotension and may provide a novel therapeutic target for the treatment of systemic inflammation and patients with septic shock.

  4. Resveratrol improves endothelial function: role of TNF{alpha} and vascular oxidative stress.

    PubMed

    Zhang, Hanrui; Zhang, Jing; Ungvari, Zoltan; Zhang, Cuihua

    2009-08-01

    Oxidative stress plays an important role in type 2 diabetes-related endothelial dysfunction. We hypothesized that resveratrol protects against oxidative stress-induced endothelial dysfunction in aortas of diabetic mice by inhibiting tumor necrosis factor alpha (TNFalpha)-induced activation of NAD(P)H oxidase and preserving phosphorylation of endothelial nitric oxide synthase (eNOS). We examined endothelial-dependent vasorelaxation to acetylcholine (ACh) in diabetic mice (Lepr(db)) and normal controls (m Lepr(db)). Relaxation to ACh was blunted in Lepr(db) compared with m Lepr(db), whereas endothelial-independent vasorelaxation to sodium nitroprusside (SNP) was comparable. Resveratrol improved ACh-induced vasorelaxation in Lepr(db) without affecting dilator response to SNP. Impaired relaxation to ACh in Lepr(db) was partially reversed by incubating the vessels with NAD(P)H oxidase inhibitor apocynin and a membrane-permeable superoxide dismutase mimetic TEMPOL. Dihydroethidium (DHE) staining showed an elevated superoxide (O(2)(.-)) production in Lepr(db), whereas both resveratrol and apocynin significantly reduced O(2)(.-) signal. Resveratrol increased nitrite/nitrate levels and eNOS (Ser1177) phosphorylation, and attenuated H(2)O(2) production and nitrotyrosine (N-Tyr) content in Lepr(db) aortas. Furthermore, resveratrol attenuated the mRNA and protein expression of TNFalpha. Genetic deletion of TNFalpha in diabetic mice (db(TNF-)/db(TNF-)) was associated with a reduced NAD(P)H oxidase activity and vascular O(2)(.-) production and an increased eNOS (Ser1177) phosphorylation, suggesting that TNFalpha plays a pivotal role in aortic dysfunction in diabetes by inducing oxidative stress and reducing NO bioavailability. Resveratrol restored endothelial function in type 2 diabetes by inhibiting TNFalpha-induced activation of NAD(P)H oxidase and preserving eNOS phosphorylation, suggesting the potential for new treatment approaches to promote vascular health in metabolic

  5. Improving hemocompatibility and accelerating endothelialization of vascular stents by a copper-titanium film.

    PubMed

    Liu, Hengquan; Pan, Changjiang; Zhou, Shijie; Li, Junfeng; Huang, Nan; Dong, Lihua

    2016-12-01

    Bio-inorganic films and drug-eluting coatings are usually used to improve the hemocompatibility and inhibit restenosis of vascular stent; however, above bio-performances couldn't combine together with single materials. In the present study, we reported a simple approach to fabricate a metal film with the aim of imparting the stent with good blood compatibility and accelerating endothelialization. The films with various ratios of Cu and Ti were prepared through the physical vapor deposition. Phase structure and element composition were investigated by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. The releasing volume of copper ion in Cu/Ti film was determined by immersing test. The hemolysis ratio, platelet adhesion and clotting time were applied to evaluate the hemocompatibility. The proliferative behaviors of endothelial cells and smooth muscle cells under certain copper concentration were investigated in vitro and in vivo. Results indicated that copper-titanium films exhibited good hemocompatibility in vitro; however, the increase of Cu/Ti ratio could lead to increasing hemolysis ratio. Endothelial cells displayed more proliferative than smooth muscle cells when the copper concentration was <7.5μg/ml, however both cells tended to apoptosis to some degree when the copper concentration was increased. The complete endothelialization of the film with low copper in vivo was observed at the 2nd week, indicating that the copper-titanium film with the lower copper concentration could promote endothelialization. Therefore, the inorganic copper-titanium film could be potential biomaterials to improve blood compatibility and accelerating endothelialization of vascular stents. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Spatial patterning of endothelial cells and vascular network formation using ultrasound standing wave fields.

    PubMed

    Garvin, Kelley A; Dalecki, Diane; Yousefhussien, Mohammed; Helguera, Maria; Hocking, Denise C

    2013-08-01

    The spatial organization of cells is essential for proper tissue assembly and organ function. Thus, successful engineering of complex tissues and organs requires methods to control cell organization in three dimensions. In particular, technologies that facilitate endothelial cell alignment and vascular network formation in three-dimensional tissue constructs would provide a means to supply essential oxygen and nutrients to newly forming tissue. Acoustic radiation forces associated with ultrasound standing wave fields can rapidly and non-invasively organize cells into distinct multicellular planar bands within three-dimensional collagen gels. Results presented herein demonstrate that the spatial pattern of endothelial cells within three-dimensional collagen gels can be controlled by design of acoustic parameters of the sound field. Different ultrasound standing wave field exposure parameters were used to organize endothelial cells into either loosely aggregated or densely packed planar bands. The rate of vessel formation and the morphology of the resulting endothelial cell networks were affected by the initial density of the ultrasound-induced planar bands of cells. Ultrasound standing wave fields provide a rapid, non-invasive approach to pattern cells in three-dimensions and direct vascular network formation and morphology within engineered tissue constructs.

  7. Folic Acid Supplementation Improves Vascular Function in Professional Dancers With Endothelial Dysfunction

    PubMed Central

    Hoch, Anne Z.; Papanek, Paula; Szabo, Aniko; Widlansky, Michael E.; Gutterman, David D.

    2012-01-01

    Objective To determine if folic acid supplementation improves vascular function (brachial artery flow-mediated dilation [FMD]) in professional dancers with known endothelial dysfunction. Design Prospective cross-sectional study. Setting Academic institution in the Midwestern United States. Subjects Twenty-two professional ballet dancers volunteered for this study. Main Outcome Measures Subjects completed a 3-day food record to determine caloric and micronutrient intake. Menstrual status was determined by interview and questionnaire. Endothelial function was determined as flow-induced vasodilation measured by high-frequency ultrasound of the brachial artery. A change in brachial diameter of <5% to hyperemic flow stimulus was defined a priori as endothelial dysfunction. Subjects with abnormal FMD took 10 mg of folic acid daily for 4 weeks, and FMD testing was then repeated. Serum whole blood was measured for folic acid levels before and after supplementation. Results Sixty-four percent of dancers (n = 14) had abnormal brachial artery FMD (<5%) (mean ± standard deviation, 2.9% ± 1.5%). After 4 weeks of folic acid supplementation (10 mg/day), FMD improved in all the subjects (7.1% ± 2.3%; P < .0001). Conclusions This study reveals that vascular endothelial function improves in dancers after supplementation with folic acid (10 mg/day) for at least 4 weeks. This finding may have clinically important implications for future cardiovascular disease risk prevention. PMID:21715240

  8. Folic acid supplementation improves vascular function in professional dancers with endothelial dysfunction.

    PubMed

    Hoch, Anne Z; Papanek, Paula; Szabo, Aniko; Widlansky, Michael E; Gutterman, David D

    2011-11-01

    To determine if folic acid supplementation improves vascular function (brachial artery flow-mediated dilation [FMD]) in professional dancers with known endothelial dysfunction. Prospective cross-sectional study. Academic institution in the Midwestern United States. Twenty-two professional ballet dancers volunteered for this study. Subjects completed a 3-day food record to determine caloric and micronutrient intake. Menstrual status was determined by interview and questionnaire. Endothelial function was determined as flow-induced vasodilation measured by high-frequency ultrasound of the brachial artery. A change in brachial diameter of <5% to hyperemic flow stimulus was defined a priori as endothelial dysfunction. Subjects with abnormal FMD took 10 mg of folic acid daily for 4 weeks, and FMD testing was then repeated. Serum whole blood was measured for folic acid levels before and after supplementation. Sixty-four percent of dancers (n = 14) had abnormal brachial artery FMD (<5%) (mean ± standard deviation, 2.9% ± 1.5%). After 4 weeks of folic acid supplementation (10 mg/day), FMD improved in all the subjects (7.1% ± 2.3%; P < .0001). This study reveals that vascular endothelial function improves in dancers after supplementation with folic acid (10 mg/day) for at least 4 weeks. This finding may have clinically important implications for future cardiovascular disease risk prevention. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  9. Angiogenesis and radiation response modulation after vascular endothelial growth factor receptor-2 (VEGFR2) blockade

    SciTech Connect

    Li Jing; Huang Shyhmin; Armstrong, Eric A.; Fowler, John F.; Harari, Paul M. . E-mail: harari@humonc.wisc.edu

    2005-08-01

    The formation of new blood vessels (angiogenesis) represents a critical factor in the malignant growth of solid tumors and metastases. Vascular endothelial cell growth factor (VEGF) and its receptor VEGFR2 represent central molecular targets for antiangiogenic intervention, because of their integral involvement in endothelial cell proliferation and migration. In the current study, we investigated in vitro and in vivo effects of receptor blockade on various aspects of the angiogenic process using monoclonal antibodies against VEGFR2 (cp1C11, which is human specific, and DC101, which is mouse specific). Molecular blockade of VEGFR2 inhibited several critical steps involved in angiogenesis. VEGFR2 blockade in endothelial cells attenuated cellular proliferation, reduced cellular migration, and disrupted cellular differentiation and resultant formation of capillary-like networks. Further, VEGFR2 blockade significantly reduced the growth response of human squamous cell carcinoma xenografts in athymic mice. The growth-inhibitory effect of VEGFR2 blockade in tumor xenografts seems to reflect antiangiogenic influence as demonstrated by vascular growth inhibition in an in vivo angiogenesis assay incorporating tumor-bearing Matrigel plugs. Further, administration of VEGFR2-blocking antibodies in endothelial cell cultures, and in mouse xenograft models, increased their response to ionizing radiation, indicating an interactive cytotoxic effect of VEGFR2 blockade with radiation. These data suggest that molecular inhibition of VEGFR2 alone, and in combination with radiation, can enhance tumor response through molecular targeting of tumor vasculature.

  10. PCB 77 dechlorination products modulate pro-inflammatory events in vascular endothelial cells.

    PubMed

    Eske, Katryn; Newsome, Bradley; Han, Sung Gu; Murphy, Margaret; Bhattacharyya, Dibakar; Hennig, Bernhard

    2014-05-01

    Persistent organic pollutants such as polychlorinated biphenyls (PCBs) are associated with detrimental health outcomes including cardiovascular diseases. Remediation of these compounds is a critical component of environmental policy. Although remediation efforts aim to completely remove toxicants, little is known about the effects of potential remediation byproducts. We previously published that Fe/Pd nanoparticles effectively dechlorinate PCB 77 to biphenyl, thus eliminating PCB-induced endothelial dysfunction using primary vascular endothelial cells. Herein, we analyzed the toxic effects of PCB congener mixtures (representative mixtures of commercial PCBs based on previous dechlorination data) produced at multiple time points during the dechlorination of PCB 77 to biphenyl. Compared with pure PCB 77, exposing endothelial cells to lower chlorinated PCB byproducts led to improved cellular viability, decreased superoxide production, and decreased nuclear factor kappa B activation based on duration of remediation. Presence of the parent compound, PCB 77, led to significant increases in mRNA and protein inflammatory marker expression. These data implicate that PCB dechlorination reduces biological toxicity to vascular endothelial cells.

  11. Spatial patterning of endothelial cells and vascular network formation using ultrasound standing wave fields

    PubMed Central

    Garvin, Kelley A.; Dalecki, Diane; Yousefhussien, Mohammed; Helguera, Maria; Hocking, Denise C.

    2013-01-01

    The spatial organization of cells is essential for proper tissue assembly and organ function. Thus, successful engineering of complex tissues and organs requires methods to control cell organization in three dimensions. In particular, technologies that facilitate endothelial cell alignment and vascular network formation in three-dimensional tissue constructs would provide a means to supply essential oxygen and nutrients to newly forming tissue. Acoustic radiation forces associated with ultrasound standing wave fields can rapidly and non-invasively organize cells into distinct multicellular planar bands within three-dimensional collagen gels. Results presented herein demonstrate that the spatial pattern of endothelial cells within three-dimensional collagen gels can be controlled by design of acoustic parameters of the sound field. Different ultrasound standing wave field exposure parameters were used to organize endothelial cells into either loosely aggregated or densely packed planar bands. The rate of vessel formation and the morphology of the resulting endothelial cell networks were affected by the initial density of the ultrasound-induced planar bands of cells. Ultrasound standing wave fields provide a rapid, non-invasive approach to pattern cells in three-dimensions and direct vascular network formation and morphology within engineered tissue constructs. PMID:23927188

  12. Effect of angiotensin-converting enzyme inhibitors on vascular endothelial function in hypertensive patients after intensive periodontal treatment.

    PubMed

    Rubio, María C; Lewin, Pablo G; De la Cruz, Griselda; Sarudiansky, Andrea N; Nieto, Mauricio; Costa, Osvaldo R; Nicolosi, Liliana N

    2016-04-01

    There is a relation between vascular endothelial function, atherosclerotic disease, and inflammation. Deterioration of endothelial function has been observed twenty-four hours after intensive periodontal treatment. This effect may be counteracted by the action of angiotensin-converting enzyme inhibitors, which improve endothelial function. The aim of the present study was to evaluate vascular endothelial function after intensive periodontal treatment, in hypertensive patients treated with angiotensinconverting enzyme inhibitors. A prospective, longitudinal, comparative study involving repeated measurements was conducted. Fifty-two consecutive patients with severe periodontal disease were divided into two groups, one comprising hypertensive patients treated with converting enzyme inhibitors and the other comprising patients with no clinical signs of pathology and not receiving angiotensin-converting enzyme inhibitors. Endothelial function was assessed by measuring postischemic dilation of the humeral artery (baseline echocardiography Doppler), and intensive periodontal treatment was performed 24h later. Endothelial function was re-assessed 24h and 15 days after periodontal treatment.

  13. Epigallocatechin Gallate (EGCG) Stimulates Autophagy in Vascular Endothelial Cells

    PubMed Central

    Kim, Hae-Suk; Montana, Vedrana; Jang, Hyun-Ju; Parpura, Vladimir; Kim, Jeong-a

    2013-01-01

    Epigallocatechin gallate (EGCG) is a major polyphenol in green tea that has beneficial effects in the prevention of cardiovascular disease. Autophagy is a cellular process that protects cells from stressful conditions. To determine whether the beneficial effect of EGCG is mediated by a mechanism involving autophagy, the roles of the EGCG-stimulated autophagy in the context of ectopic lipid accumulation were investigated. Treatment with EGCG increased formation of LC3-II and autophagosomes in primary bovine aortic endothelial cells (BAEC). Activation of calmodulin-dependent protein kinase kinase β was required for EGCG-induced LC3-II formation, as evidenced by the fact that EGCG-induced LC3-II formation was significantly impaired by knockdown of calmodulin-dependent protein kinase kinase β. This effect is most likely due to cytosolic Ca2+ load. To determine whether EGCG affects palmitate-induced lipid accumulation, the effects of EGCG on autophagic flux and co-localization of lipid droplets and autophagolysosomes were examined. EGCG normalized the palmitate-induced impairment of autophagic flux. Accumulation of lipid droplets by palmitate was markedly reduced by EGCG. Blocking autophagosomal degradation opposed the effect of EGCG in ectopic lipid accumulation, suggesting the action of EGCG is through autophagosomal degradation. The mechanism for this could be due to the increased co-localization of lipid droplets and autophagolysosomes. Co-localization of lipid droplets with LC3 and lysosome was dramatically increased when the cells were treated with EGCG and palmitate compared with the cells treated with palmitate alone. Collectively, these findings suggest that EGCG regulates ectopic lipid accumulation through a facilitated autophagic flux and further imply that EGCG may be a potential therapeutic reagent to prevent cardiovascular complications. PMID:23754277

  14. Endothelial Cords Promote Tumor Initial Growth prior to Vascular Function through a Paracrine Mechanism

    PubMed Central

    Zhao, Chengjian; Zhang, Wei; Zhao, Yuwei; Yang, Yun; Luo, Hui; Ji, Gaili; Dong, E; Deng, Hongxing; Lin, Shuo; Wei, Yuquan; Yang, Hanshuo

    2016-01-01

    The angiogenic switch is an important oncogenic step that determines whether microtumors remain dormant or progresses further. It has been generally perceived that the primary function of this tumorgenic event is to supply oxygen and nutrients through blood circulation. Using in vivo imaging of zebrafish and mouse tumor models, we showed that endothelial cords aggressively penetrated into microtumors and remained non-circulatory for several days before undergoing vascular blood perfusion. Unexpectedly, we found that initial tumor growth in both models was significantly reduced if endothelial cords were removed by blocking VEGF-VEGFR2 signaling or using a vascular deficient zebrafish mutant. It was further shown that soluble factors including IL-8, secreted by endothelial cells (ECs) were responsible for stimulating tumor cells proliferation. These findings establish that tumor angiogenesis play a much earlier and broader role in promoting tumor growth, which is independent of vascular circulation. Understanding this novel mechanism of angiogenic tumor progression offers new entry points for cancer therapeutics. PMID:26762853

  15. Vascular endothelial growth factor acts as an osteolytic factor in breast cancer metastases to bone

    PubMed Central

    Aldridge, S E; Lennard, T W J; Williams, J R; Birch, M A

    2005-01-01

    Vascular endothelial growth factor (VEGF) is a proangiogenic cytokine that is expressed highly in many solid tumours often correlating with a poor prognosis. In this study, we investigated the expression of VEGF and its receptors in bone metastases from primary human breast tumours and further characterised its effects on osteoclasts in vitro. Breast cancer metastases to bone were immunohistochemically stained for VEGF, its receptors VEGFR1 and 2 (vascular endothelial growth factor receptor 1 and 2), demonstrating that breast cancer metastases express VEGF strongly and that surrounding osteoclasts express both VEGFR1 and VEGFR2. RAW 264.7 cells (mouse monocyte cell line) and human peripheral blood mononuclear cells (PBMCs) were cultured with VEGF, RANKL and M-CSF. VEGF and RANKL together induced differentiation of multinucleated, tartrate-resistant acid phophatase (TRAP)-positive cells in similar numbers to M-CSF and RANKL. The PBMCs were also able to significantly stimulate resorption of mineralised matrix after treatment with M-CSF with RANKL and VEGF with RANKL. We have shown that VEGF in the presence of RANKL supports PBMC differentiation into osteoclast-like cells, able to resorb substrate. Vascular endothelial growth factor may therefore play a role in physiological bone resorption and in pathological situations. Consequently, VEGF signalling may be a therapeutic target for osteoclast inhibition in conditions such as tumour osteolysis. PMID:15812559

  16. Microvesicles from the plasma of elderly subjects and from senescent endothelial cells promote vascular calcification.

    PubMed

    Alique, Matilde; Ruíz-Torres, María Piedad; Bodega, Guillermo; Noci, María Victoria; Troyano, Nuria; Bohórquez, Lourdes; Luna, Carlos; Luque, Rafael; Carmona, Andrés; Carracedo, Julia; Ramírez, Rafael

    2017-03-08

    Vascular calcification is commonly seen in elderly people, though it can also appear in middle-aged subjects affected by premature vascular aging. The aim of this work is to test the involvement of microvesicles (MVs) produced by senescent endothelial cells (EC) and from plasma of elderly people in vascular calcification. The present work shows that MVs produced by senescent cultured ECs, plus those found in the plasma of elderly subjects, promote calcification in vascular smooth muscle cells. Only MVs from senescent ECs, and from elderly subjects' plasma, induced calcification. This ability correlated with these types of MVs' carriage of: a) increased quantities of annexins (which might act as nucleation sites for calcification), b) increased quantities of bone-morphogenic protein, and c) larger Ca contents. The MVs of senescent, cultured ECs, and those present in the plasma of elderly subjects, promote vascular calcification. The present results provide mechanistic insights into the observed increase in vascular calcification-related diseases in the elderly, and in younger patients with premature vascular aging, paving the way towards novel therapeutic strategies.

  17. Microvesicles from the plasma of elderly subjects and from senescent endothelial cells promote vascular calcification

    PubMed Central

    Bodega, Guillermo; Noci, María Victoria; Troyano, Nuria; Bohórquez, Lourdes; Luna, Carlos; Luque, Rafael; Carmona, Andrés; Carracedo, Julia; Ramírez, Rafael

    2017-01-01

    Vascular calcification is commonly seen in elderly people, though it can also appear in middle-aged subjects affected by premature vascular aging. The aim of this work is to test the involvement of microvesicles (MVs) produced by senescent endothelial cells (EC) and from plasma of elderly people in vascular calcification. The present work shows that MVs produced by senescent cultured ECs, plus those found in the plasma of elderly subjects, promote calcification in vascular smooth muscle cells. Only MVs from senescent ECs, and from elderly subjects' plasma, induced calcification. This ability correlated with these types of MVs' carriage of: a) increased quantities of annexins (which might act as nucleation sites for calcification), b) increased quantities of bone-morphogenic protein, and c) larger Ca contents. The MVs of senescent, cultured ECs, and those present in the plasma of elderly subjects, promote vascular calcification. The present results provide mechanistic insights into the observed increase in vascular calcification-related diseases in the elderly, and in younger patients with premature vascular aging, paving the way towards novel therapeutic strategies. PMID:28278131

  18. Regulation of vascular endothelial junction stability and remodeling through Rap1-Rasip1 signaling.

    PubMed

    Wilson, Christopher W; Ye, Weilan

    2014-01-01

    The ability of blood vessels to sense and respond to stimuli such as fluid flow, shear stress, and trafficking of immune cells is critical to the proper function of the vascular system. Endothelial cells constantly remodel their cell-cell junctions and the underlying cytoskeletal network in response to these exogenous signals. This remodeling, which depends on regulation of the linkage between actin and integral junction proteins, is controlled by a complex signaling network consisting of small G proteins and their various downstream effectors. In this commentary, we summarize recent developments in understanding the small G protein RAP1 and its effector RASIP1 as critical mediators of endothelial junction stabilization, and the relationship between RAP1 effectors and modulation of different subsets of endothelial junctions.   The vasculature is a dynamic organ that is constantly exposed to a variety of signaling stimuli and mechanical stresses. In embryogenesis, nascent blood vessels form via a process termed vasculogenesis, wherein mesodermally derived endothelial precursor cells aggregate into cords, which subsequently form a lumen that permits trafficking of plasma and erythrocytes. (1)(,) (2) Angiogenesis occurs after establishment of this primitive vascular network, where new vessels sprout from existing vessels, migrate into newly expanded tissues, and anastomose to form a functional and complex circulatory network. (1)(,) (2) In the mouse, this process occurs through the second half of embryogenesis and into postnatal development in some tissues, such as the developing retinal vasculature. (3) Further, angiogenesis occurs in a variety of pathological conditions, such as diabetic retinopathy, age-related macular degeneration, inflammatory diseases such as rheumatoid arthritis, wound healing, and tumor growth. (1)(,) (2)(,) (4) Both vasculogenesis and angiogenesis are driven through signaling by vascular endothelial growth factor (VEGF), and therapeutic

  19. Applying gold nanoparticles as tumor-vascular disrupting agents during brachytherapy: estimation of endothelial dose enhancement

    NASA Astrophysics Data System (ADS)

    Ngwa, Wilfred; Makrigiorgos, G. Mike; Berbeco, Ross I.

    2010-11-01

    Tumor vascular disrupting agents (VDAs) represent a promising approach to the treatment of cancer, in view of the tumor vasculature's pivotal role in tumor survival, growth and metastasis. VDAs targeting the tumor's dysmorphic endothelial cells can cause selective and rapid occlusion of the tumor vasculature, leading to tumor cell death from ischemia and extensive hemorrhagic necrosis. In this study, the potential for applying gold nanoparticles (AuNPs) as VDAs, during brachytherapy, is examined. Analytic calculations based on the electron energy loss formula of Cole were carried out to estimate the endothelial dose enhancement caused by radiation-induced photo/Auger electrons originating from AuNPs targeting the tumor endothelium. The endothelial dose enhancement factor (EDEF), representing the ratio of the dose to the endothelium with and without gold nanoparticles was calculated for different AuNP local concentrations, and endothelial cell thicknesses. Four brachytherapy sources were investigated, I-125, Pd-103, Yb-169, as well as 50 kVp x-rays. The results reveal that, even at relatively low intra-vascular AuNP concentrations, ablative dose enhancement to tumor endothelial cells due to photo/Auger electrons from the AuNPs can be achieved. Pd-103 registered the highest EDEF values of 7.4-271.5 for local AuNP concentrations ranging from 7 to 350 mg g-1, respectively. Over the same concentration range, I-125, 50 kVp and Yb-169 yielded values of 6.4-219.9, 6.3-214.5 and 4.0-99.7, respectively. Calculations of the EDEF as a function of endothelial cell thickness showed that lower energy sources like Pd-103 reach the maximum EDEF at smaller thicknesses. The results also reveal that the highest contribution to the EDEF comes from Auger electrons, apparently due to their shorter range. Overall, the data suggest that ablative dose enhancement to tumor endothelial cells can be achieved by applying tumor vasculature-targeted AuNPs as adjuvants to brachytherapy, with lower

  20. ER Alpha Rapid Signaling Is Required for Estrogen Induced Proliferation and Migration of Vascular Endothelial Cells

    PubMed Central

    Lu, Qing; Schnitzler, Gavin R.; Ueda, Kazutaka; Iyer, Lakshmanan K.; Diomede, Olga I.; Andrade, Tiffany; Karas, Richard H.

    2016-01-01

    Estrogen promotes the proliferation and migration of vascular endothelial cells (ECs), which likely underlies its ability to accelerate re-endothelialization and reduce adverse remodeling after vascular injury. In previous studies, we have shown that the protective effects of E2 (the active endogenous form of estrogen) in vascular injury require the estrogen receptor alpha (ERα). ERα transduces the effects of estrogen via a classical DNA binding, “genomic” signaling pathway and via a more recently-described “rapid” signaling pathway that is mediated by a subset of ERα localized to the cell membrane. However, which of these pathways mediates the effects of estrogen on endothelial cells is poorly understood. Here we identify a triple point mutant version of ERα (KRR ERα) that is specifically defective in rapid signaling, but is competent to regulate transcription through the “genomic” pathway. We find that in ECs expressing wild type ERα, E2 regulates many genes involved in cell migration and proliferation, promotes EC migration and proliferation, and also blocks the adhesion of monocytes to ECs. ECs expressing KRR mutant ERα, however, lack all of these responses. These observations establish KRR ERα as a novel tool that could greatly facilitate future studies into the vascular and non-vascular functions of ERα rapid signaling. Further, they support that rapid signaling through ERα is essential for many of the transcriptional and physiological responses of ECs to E2, and that ERα rapid signaling in ECs, in vivo, may be critical for the vasculoprotective and anti-inflammatory effects of estrogen. PMID:27035664

  1. Vascular endothelial growth factor is upregulated by l-dopa in the parkinsonian brain: implications for the development of dyskinesia

    PubMed Central

    Francardo, Veronica; Lindgren, Hanna S.; Sillivan, Stephanie E.; O’Sullivan, Sean S.; Luksik, Andrew S.; Vassoler, Fair M.; Lees, Andrew J.; Konradi, Christine

    2011-01-01

    Angiogenesis and increased permeability of the blood–brain barrier have been reported to occur in animal models of Parkinson’s disease and l-dopa-induced dyskinesia, but the significance of these phenomena has remained unclear. Using a validated rat model of l-dopa-induced dyskinesia, this study demonstrates that chronic treatment with l-dopa dose dependently induces the expression of vascular endothelial growth factor in the basal ganglia nuclei. Vascular endothelial growth factor was abundantly expressed in astrocytes and astrocytic processes in the proximity of blood vessels. When co-administered with l-dopa, a small molecule inhibitor of vascular endothelial growth factor signalling significantly attenuated the development of dyskinesia and completely blocked the angiogenic response and associated increase in blood–brain barrier permeability induced by the treatment. The occurrence of angiogenesis and vascular endothelial growth factor upregulation was verified in post-mortem basal ganglia tissue from patients with Parkinson’s disease with a history of dyskinesia, who exhibited increased microvascular density, microvascular nestin expression and an upregulation of vascular endothelial growth factor messenger ribonucleic acid. These congruent findings in the rat model and human patients indicate that vascular endothelial growth factor is implicated in the pathophysiology of l-dopa-induced dyskinesia and emphasize an involvement of the microvascular compartment in the adverse effects of l-dopa pharmacotherapy in Parkinson’s disease. PMID:21771855

  2. Lessons From Anti–Vascular Endothelial Growth Factor and Anti–Vascular Endothelial Growth Factor Receptor Trials in Patients With Glioblastoma

    PubMed Central

    Lu-Emerson, Christine; Duda, Dan G.; Emblem, Kyrre E.; Taylor, Jennie W.; Gerstner, Elizabeth R.; Loeffler, Jay S.; Batchelor, Tracy T.; Jain, Rakesh K.

    2015-01-01

    Treatment of glioblastoma (GBM), the most common primary malignant brain tumor in adults, remains a significant unmet need in oncology. Historically, cytotoxic treatments provided little durable benefit, and tumors recurred within several months. This has spurred a substantial research effort to establish more effective therapies for both newly diagnosed and recurrent GBM. In this context, antiangiogenic therapy emerged as a promising treatment strategy because GBMs are highly vascular tumors. In particular, GBMs overexpress vascular endothelial growth factor (VEGF), a proangiogenic cytokine. Indeed, many studies have demonstrated promising radiographic response rates, delayed tumor progression, and a relatively safe profile for anti-VEGF agents. However, randomized phase III trials conducted to date have failed to show an overall survival benefit for antiangiogenic agents alone or in combination with chemoradiotherapy. These results indicate that antiangiogenic agents may not be beneficial in unselected populations of patients with GBM. Unfortunately, biomarker development has lagged behind in the process of drug development, and no validated biomarker exists for patient stratification. However, hypothesis-generating data from phase II trials that reveal an association between increased perfusion and/or oxygenation (ie, consequences of vascular normalization) and survival suggest that early imaging biomarkers could help identify the subset of patients who most likely will benefit from anti-VEGF agents. In this article, we discuss the lessons learned from the trials conducted to date and how we could potentially use recent advances in GBM biology and imaging to improve outcomes of patients with GBM who receive antiangiogenic therapy. PMID:25713439

  3. Vascular endothelial cells cultured from patients with cerebral or uncomplicated malaria exhibit differential reactivity to TNF

    PubMed Central

    Wassmer, Samuel Crocodile; Moxon, Christopher Alan; Taylor, Terrie; Grau, Georges Emile; Molyneux, Malcolm Edward; Craig, Alister Gordon

    2011-01-01

    Plasmodium falciparum malaria is a major cause of morbidity and mortality in African children, and factors that determine the development of uncomplicated (UM) versus cerebral malaria (CM) are not fully understood. We studied the ex vivo responsiveness of microvascular endothelial cells to pro-inflammatory stimulation and compared the findings between CM and UM patients. In patients with fatal disease we compared the properties of vascular endothelial cells cultured from brain tissue to those cultured from subcutaneous tissue, and found them to be very similar. We then isolated, purified and cultured primary endothelial cells from aspirated subcutaneous tissue of patients with CM (ECCM) or UM (ECUM) and confirmed the identity of the cells before analysis. Upon TNF stimulation in vitro, ECCM displayed a significantly higher capacity to upregulate ICAM-1, VCAM-1 and CD61 and to produce IL-6 and MCP-1 but not RANTES compared with ECUM. The shedding of endothelial microparticles, a recently described parameter of severity in CM, and the cellular level of activated caspase-3 were both significantly greater in ECCM than in ECUM. These data suggest that inter-individual differences in the endothelial inflammatory response to TNF may be an additional factor influencing the clinical course of malaria. PMID:21029292

  4. Cord blood-circulating endothelial progenitors for treatment of vascular diseases.

    PubMed

    Lavergne, M; Vanneaux, V; Delmau, C; Gluckman, E; Rodde-Astier, I; Larghero, J; Uzan, G

    2011-04-01

    Adult peripheral blood (PB) endothelial progenitor cells (EPC) are produced in the bone marrow and are able to integrate vascular structures in sites of neoangiogenesis. EPCs thus represent a potential therapeutic tool for ischaemic diseases. However, use of autologous EPCs in cell therapy is limited by their rarity in adult PB. Cord blood (CB) contains more EPCs than PB, and they are functional after expansion. They form primary colonies that give rise to secondary colonies, each yielding more than 10(7) cells after few passages. The number of endothelial cells obtained from one unit of CB is compatible with potential clinical application. EPC colonies can be securely produced, expanded and cryopreserved in close culture devices and endothelial cells produced in these conditions are functional as shown in different in vitro and in vivo assays. As CB EPC-derived endothelial cells would be allogeneic to patients, it would be of interest to prepare them from ready-existing CB banks. We show that not all frozen CB units from a CB bank are able to generate EPC colonies in culture, and when they do so, number of colonies is lower than that obtained with fresh CB units. However, endothelial cells derived from frozen CB have the same phenotypical and functional properties than those derived from fresh CB. This indicates that CB cryopreservation should be improved to preserve integrity of stem cells other than haematopoietic ones. Feasibility of using CB for clinical applications will be validated in porcine models of ischaemia.

  5. Vascular Bed–specific Expression of an Endothelial Cell Gene Is Programmed by the Tissue Microenvironment

    PubMed Central

    Aird, William C.; Edelberg, Jay M.; Weiler-Guettler, Hartmut; Simmons, William W.; Smith, Thomas W.; Rosenberg, Robert D.

    1997-01-01

    The endothelium is morphologically and functionally adapted to meet the unique demands of the underlying tissue. At the present time, little is known about the molecular basis of endothelial cell diversity. As one approach to this problem, we have chosen to study the mechanisms that govern differential expression of the endothelial cell–restricted von Willebrand factor (vWF) gene. Transgenic mice were generated with a fragment of the vWF gene containing 2,182 bp of 5′ flanking sequence, the first exon and first intron coupled to the LacZ reporter gene. In multiple independent lines of mice, β-galactosidase expression was detected within endothelial cells in the brain, heart, and skeletal muscle. In isogeneic transplantation models, LacZ expression in host-derived auricular blood vessels was specifically induced by the microenvironment of the heart. In in vitro coculture assays, expression of both the transgene and the endogenous vWF gene in cardiac microvascular endothelial cells (CMEC) was upregulated in the presence of cardiac myocytes. In contrast, endothelial cell levels of thrombomodulin protein and mRNA were unchanged by the addition of ventricular myocytes. Moreover, CMEC expression of vWF was not influenced by the addition of 3T3 fibroblasts or mouse hepatocytes. Taken together, the results suggest that the vWF gene is regulated by vascular bed–specific pathways in response to signals derived from the local microenvironment. PMID:9281588

  6. Mononuclear Phagocyte-Derived Microparticulate Caspase-1 Induces Pulmonary Vascular Endothelial Cell Injury

    PubMed Central

    Mitra, Srabani

    2015-01-01

    Lung endothelial cell apoptosis and injury occurs throughout all stages of acute lung injury (ALI/ARDS) and impacts disease progression. Lung endothelial injury has traditionally been focused on the role of neutrophil trafficking to lung vascular integrin receptors induced by proinflammatory cytokine expression. Although much is known about the pathogenesis of cell injury and death in ALI/ARDS, gaps remain in our knowledge; as a result of which there is currently no effective pharmacologic therapy. Enzymes known as caspases are essential for completion of the apoptotic program and secretion of pro-inflammatory cytokines. We hypothesized that caspase-1 may serve as a key regulator of human pulmonary microvascular endothelial cell (HPMVEC) apoptosis in ALI/ARDS. Our recent experiments confirm that microparticles released from stimulated monocytic cells (THP1) induce lung endothelial cell apoptosis. Microparticles pretreated with the caspase-1 inhibitor, YVAD, or pan-caspase inhibitor, ZVAD, were unable to induce cell death of HPMVEC, suggesting the role of caspase-1 or its substrate in the induction of HPMVEC cell death. Neither un-induced microparticles (control) nor direct treatment with LPS induced apoptosis of HPMVEC. Further experiments showed that caspase-1 uptake into HPMVEC and the induction of HPMVEC apoptosis was facilitated by caspase-1 interactions with microparticulate vesicles. Altering vesicle integrity completely abrogated apoptosis of HPMVEC suggesting an encapsulation requirement for target cell uptake of active caspase-1. Taken together, we confirm that microparticle centered caspase-1 can play a regulator role in endothelial cell injury. PMID:26710067

  7. Filamin B Plays a Key Role in Vascular Endothelial Growth Factor-induced Endothelial Cell Motility through Its Interaction with Rac-1 and Vav-2*

    PubMed Central

    del Valle-Pérez, Beatriz; Martínez, Vanesa Gabriela; Lacasa-Salavert, Cristina; Figueras, Agnès; Shapiro, Sandor S.; Takafuta, Toshiro; Casanovas, Oriol; Capellà, Gabriel; Ventura, Francesc; Viñals, Francesc

    2010-01-01

    Actin-binding proteins filamin A (FLNA) and B (FLNB) are expressed in endothelial cells and play an essential role during vascular development. In order to investigate their role in adult endothelial cell function, we initially confirmed their expression pattern in different adult mouse tissues and cultured cell lines and found that FLNB expression is concentrated mainly in endothelial cells, whereas FLNA is more ubiquitously expressed. Functionally, small interfering RNA knockdown of endogenous FLNB in human umbilical vein endothelial cells inhibited vascular endothelial growth factor (VEGF)-induced in vitro angiogenesis by decreasing endothelial cell migration capacity, whereas FLNA ablation did not alter these parameters. Moreover, FLNB-depleted cells increased their substrate adhesion with more focal adhesions. The molecular mechanism underlying this effect implicates modulation of small GTP-binding protein Rac-1 localization and activity, with altered activation of its downstream effectors p21 protein Cdc42/Rac-activated kinase (PAK)-4/5/6 and its activating guanine nucleotide exchange factor Vav-2. Moreover, our results suggest the existence of a signaling complex, including FLNB, Rac-1, and Vav-2, under basal conditions that would further interact with VEGFR2 and integrin αvβ5 after VEGF stimulation. In conclusion, our results reveal a crucial role for FLNB in endothelial cell migration and in the angiogenic process in adult endothelial cells. PMID:20110358

  8. Adaptive response of vascular endothelial cells to an acute increase in shear stress frequency.

    PubMed

    Zhang, Ji; Friedman, Morton H

    2013-09-15

    Local shear stress sensed by arterial endothelial cells is occasionally altered by changes in global hemodynamic parameters, e.g., heart rate and blood flow rate, as a result of normal physiological events, such as exercise. In a recently study (41), we demonstrated that during the adaptive response to increased shear magnitude, porcine endothelial cells exhibited an unique phenotype featuring a transient increase in permeability and the upregulation of a set of anti-inflammatory and antioxidative genes. In the present study, we characterize the adaptive response of these cells to an increase in shear frequency, another important hemodynamic parameter with implications in atherogenesis. Endothelial cells were preconditioned by a basal-level sinusoidal shear stress of 15 ± 15 dyn/cm(2) at 1 Hz, and the frequency was then elevated to 2 Hz. Endothelial permeability increased slowly after the frequency step-up, but the increase was relatively small. Using microarrays, we identified 37 genes that are sensitive to the frequency step-up. The acute increase in shear frequency upregulates a set of cell-cycle regulation and angiogenesis-related genes. The overall adaptive response to the increased frequency is distinctly different from that to a magnitude step-up. However, consistent with the previous study, our data support the notion that endothelial function during an adaptive response is different than that of fully adapted endothelial cells. Our studies may also provide insights into the beneficial effects of exercise on vascular health: transient increases in frequency may facilitate endothelial repair, whereas similar increases in shear magnitude may keep excessive inflammation and oxidative stress at bay.

  9. Geraniol Suppresses Angiogenesis by Downregulating Vascular Endothelial Growth Factor (VEGF)/VEGFR-2 Signaling

    PubMed Central

    Wittig, Christine; Scheuer, Claudia; Parakenings, Julia; Menger, Michael D.; Laschke, Matthias W.

    2015-01-01

    Geraniol exerts several direct pharmacological effects on tumor cells and, thus, has been suggested as a promising anti-cancer compound. Because vascularization is a major precondition for tumor growth, we analyzed in this study the anti-angiogenic action of geraniol. In vitro, geraniol reduced the migratory activity of endothelial-like eEND2 cells. Western blot analyses further revealed that geraniol downregulates proliferating cell nuclear antigen (PCNA) and upregulates cleaved caspase-3 (Casp-3) expression in eEND2 cells. Moreover, geraniol blocked vascular endothelial growth factor (VEGF)/VEGFR-2 signal transduction, resulting in a suppression of downstream AKT and ERK signaling pathways. In addition, geraniol significantly reduced vascular sprout formation in a rat aortic ring assay. In vivo, geraniol inhibited the vascularization of CT26 tumors in dorsal skinfold chambers of BALB/c mice, which was associated with a smaller tumor size when compared to vehicle-treated controls. Immunohistochemical analyses confirmed a decreased number of Ki67-positive cells and CD31-positive microvessels with reduced VEGFR-2 expression within geraniol-treated tumors. Taken together, these findings indicate that geraniol targets multiple angiogenic mechanisms and, therefore, is an attractive candidate for the anti-angiogenic treatment of tumors. PMID:26154255

  10. Arterial endothelial function in a porcine model of early stage atherosclerotic vascular disease

    PubMed Central

    Turk, James R; Henderson, Kyle K; Vanvickle, Gregory D; Watkins, Justin; Laughlin, M Harold

    2005-01-01

    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the United States and is projected to become the leading cause of mortality in the world. Atherosclerosis is the most important single factor contributing to this disease burden. In this study, we characterize relationships between endothelial dysfunction and vascular disease in an animal model of diet-induced, early-stage atherosclerotic vascular disease. We tested the hypothesis that hypercholesterolaemia induces vascular disease and impairs endothelium-dependent relaxation (EDR) in conduit arteries of adult male Yucatan pigs. Pigs were fed a normal fat (NF) or high fat cholesterol (HFC) diet for 20–24 weeks. Results indicate that, while the HFC diet did not alter EDR in femoral or brachial arteries, EDR was significantly decreased in both carotid and coronary arteries. Sudanophilic fatty streaks were significantly present in the abdominal aorta and common carotid artery. Histopathology revealed increased intima-media thickness (IMT) and foam cell accumulation in Stary Stage I–III lesions in the abdominal aorta, common carotid artery and femoral arteries. In the coronary arteries, the accumulation of foam cells in Stary Stage I and II lesions resulted in a trend for increased IMT. There was no evidence of vascular disease in the brachial arteries. These results indicate that early stages of CVD (Stary Stage I–III) precede decreases in EDR induced by HFC diet, because femoral arteries exhibited foam cell accumulation and an increased IMT but no change in endothelial function. PMID:16191105

  11. Effect of ruthenium red, a ryanodine receptor antagonist in experimental diabetes induced vascular endothelial dysfunction and associated dementia in rats.

    PubMed

    Jain, Swati; Sharma, Bhupesh

    2016-10-01

    Diabetes mellitus is considered as a main risk factor for vascular dementia. In the past, we have reported the induction of vascular dementia by experimental diabetes. This study investigates the efficacy of a ruthenium red, a ryanodine receptor antagonist and pioglitazone in the pharmacological interdiction of pancreatectomy diabetes (PaD) induced vascular endothelial dysfunction and subsequent vascular dementia in rats. Attentional set shifting and Morris water-maze test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. PaD rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with an increase in brain inflammation, oxidative stress and calcium. Administration of ruthenium red and pioglitazone has significantly attenuated PaD induced impairment of learning, memory, blood brain barrier permeability, endothelial function and biochemical parameters. It may be concluded that ruthenium red, a ryanodine receptor antagonist and pioglitazone, a PPAR-γ agonist may be considered as potent pharmacological agent for the management of PaD induced endothelial dysfunction and subsequent vascular dementia. Ryanodine receptor may be explored further for their possible benefits in vascular dementia.

  12. Vascular endothelial growth factor co-ordinates proper development of lung epithelium and vasculature.

    PubMed

    Zhao, Liqing; Wang, Ke; Ferrara, Napoleone; Vu, Thiennu H

    2005-07-01

    The vasculature forms an intrinsic functional component of the lung and its development must be tightly regulated and coordinated with lung epithelial morphogenesis. Vascular endothelial growth factor (VEGF) and its receptors are highly expressed in a complementary pattern in the lungs during embryonic development. VEGF is expressed by epithelium and the receptors in the surrounding mesenchyme. To determine the function of VEGF in lung formation, we inhibited its activity using a soluble receptor in lung renal capsule grafts. Inhibition of VEGF results in inhibition of vascular development and significant alteration in epithelial development. Epithelial proliferation is inhibited, sacculation is impaired, and the epithelium undergoes apoptosis. Interestingly, when VEGF is attenuated, epithelial differentiation still proceeds, as shown by acquisition of both proximal and distal markers. These data show that VEGF co-ordinates epithelial and vascular development. It is required for the development of the lung vasculature and the vasculature is necessary for epithelial proliferation and morphogenesis, but not for cell differentiation.

  13. Systemic sclerosis induces pronounced peripheral vascular dysfunction characterized by blunted peripheral vasoreactivity and endothelial dysfunction

    PubMed Central

    Frech, Tracy; Walker, Ashley E.; Barrett-O’Keefe, Zachary; Hopkins, Paul N.; Richardson, Russell S.; Wray, D. Walter; Donato, Anthony J.

    2016-01-01

    Systemic sclerosis (SSc) vasculopathy can result in a digital ulcer (DU) and/or pulmonary arterial hypertension (PAH). We hypothesized that bedside brachial artery flow-mediated dilation (FMD) testing with duplex ultrasound could be used in SSc patients to identify features of patients at risk for DU or PAH. Thirty-eight SSc patients were compared to 52 age-matched healthy controls from the VAMC Utah Vascular Research Laboratory. Peripheral hemodynamics, arterial structure, and endothelial function were assessed by duplex ultrasound. A blood pressure cuff was applied to the forearm and 5-min ischemia was induced. Post-occlusion, brachial artery vascular reactivity (peak hyperemia/area under the curve [AUC]), shear rate, and endothelial function (FMD) were measured. SSc patients had smaller brachial artery diameters (p<0.001) and less reactive hyperemia (p<0.001), peak shear rate (p= 0.03), and brachial artery FMD (p<0.001) compared with healthy controls. Brachial artery FMD was lower (p<0.05) in SSc patients with DU. Tertile analysis suggested the 2 lower FMD tertiles (<5.40 %) had a 40–50 % chance of presenting with DU while the SSc patients with highest FMD tertile (>5.40 %) had less than 15 % chance of DU. All brachial artery FMD measurements were similar between SSc patients with and without PAH (all p>0.05). Compared to healthy controls, SSc patients had significantly smaller brachial artery diameter and blunted peripheral vascular reactivity and endothelial function. SSc patients with DU have even greater impairments in endothelial function compared to those without DU. FMD testing has clinical utility to identify SSc patients at risk for DU. PMID:25511849

  14. Matrix metalloproteinase-1 expression by interaction between monocytes and vascular endothelial cells.

    PubMed

    Hojo, Y; Ikeda, U; Takahashi, M; Sakata, Y; Takizawa, T; Okada, K; Saito, T; Shimada, K

    2000-08-01

    There is accumulating evidence of complicated interactions among vascular cells, i.e. endothelial cells, smooth muscle cells and monocytes/macrophages, in the regulation of vascular function and remodeling. We have investigated the mechanisms responsible for matrix metalloproteinase (MMP)-1 expression by interactions between monocytes and vascular endothelial cells. THP-1 cells (human monocytic cell line) and human umbilical vein endothelial cells (HUVECs) were cocultured. MMP-1 levels in the culture medium were measured by enzyme-linked immunosorbent assays. Collagenolytic activity in the culture medium was measured by fluorescence labeled-collagen digestion. Immunohistochemistry using an anti-MMP antibody was carried out to determine which types of cell produce MMP-1. The addition of THP-1 cells to HUVECs for 48 h induced increases in MMP-1 levels and collagenolytic activity, which were 5- and 2-fold relative to those of HUVECs alone, respectively. A separate coculture experiment revealed that direct contact of THP-1 cells and HUVECs contributed to enhanced MMP-1 production in the cocolture. Immunohistochemical analysis revealed that both types of cell produce MMP-1 in the coculture. Neutralizing anti-interleukin-1 beta and tumor necrosis factor- alpha antibodies inhibited MMP-1 production by the coculture. The Src kinase and MEK inhibitors significantly inhibited MMP-1 production by the coculture. Coculture of THP-1 cells and HUVECs induced significant increases in Src and mitogen activated protein (MAP) kinase activities. Enhanced MMP-1 expression induced by monocyte-endothelial cell interactions may play an important role in the pathogenesis of atherosclerosis and plaque rupture.

  15. Acute Effect of High-Intensity Eccentric Exercise on Vascular Endothelial Function in Young Men.

    PubMed

    Choi, Youngju; Akazawa, Nobuhiko; Zempo-Miyaki, Asako; Ra, Song-Gyu; Shiraki, Hitoshi; Ajisaka, Ryuichi; Maeda, Seiji

    2016-08-01

    Choi, Y, Akazawa, N, Zempo-Miyaki, A, Ra, S-G, Shiraki, H, Ajisaka, R, and Maeda, S. Acute effect of high-intensity eccentric exercise on vascular endothelial function in young men. J Strength Cond Res 30(8): 2279-2285, 2016-Increased central arterial stiffness is as an independent risk factor for cardiovascular disease. Evidence regarding the effects of high-intensity resistance exercise on vascular endothelial function and central arterial stiffness is conflicting. The purpose of this study was to examine the effects of acute high-intensity eccentric exercise on vascular endothelial function and central arterial stiffness. We evaluated the acute changes in endothelium-dependent flow-mediated dilation (FMD), low-flow-mediated constriction (L-FMC), and arterial stiffness after high-intensity eccentric exercise. Seven healthy, sedentary men (age, 24 ± 1 year) performed maximal eccentric elbow flexor exercise using their nondominant arm. Before and 45 minutes after eccentric exercise, carotid arterial compliance and brachial artery FMD and L-FMC in the nonexercised arm were measured. Carotid arterial compliance was significantly decreased, and β-stiffness index significantly increased after eccentric exercise. Brachial FMD was significantly reduced after eccentric exercise, whereas there was no significant difference in brachial L-FMC before and after eccentric exercise. A positive correlation was detected between change in arterial compliance and change in FMD (r = 0.779; p ≤ 0.05), and a negative correlation was detected between change in β-stiffness index and change in FMD (r = -0.891; p < 0.01) with eccentric exercise. In this study, acute high-intensity eccentric exercise increased central arterial stiffness; this increase was accompanied by a decrease in endothelial function caused by reduced endothelium-dependent vasodilation but not by a change in endothelium-dependent vasoconstriction.

  16. Gene Therapy Inhibiting Neointimal Vascular Lesion: In vivo Transfer of Endothelial Cell Nitric Oxide Synthase Gene

    NASA Astrophysics Data System (ADS)

    von der Leyen, Heiko E.; Gibbons, Gary H.; Morishita, Ryuichi; Lewis, Neil P.; Zhang, Lunan; Nakajima, Masatoshi; Kaneda, Yasufumi; Cooke, John P.; Dzau, Victor J.

    1995-02-01

    It is postulated that vascular disease involves a disturbance in the homeostatic balance of factors regulating vascular tone and structure. Recent developments in gene transfer techniques have emerged as an exciting therapeutic option to treat vascular disease. Several studies have established the feasibility of direct in vivo gene transfer into the vasculature by using reporter genes such as β-galactosidase or luciferase. To date no study has documented therapeutic effects with in vivo gene transfer of a cDNA encoding a functional enzyme. This study tests the hypothesis that endothelium-derived nitric oxide is an endogenous inhibitor of vascular lesion formation. After denudation by balloon injury of the endothelium of rat carotid arteries, we restored endothelial cell nitric oxide synthase (ec-NOS) expression in the vessel wall by using the highly efficient Sendai virus/liposome in vivo gene transfer technique. ec-NOS gene transfection not only restored NO production to levels seen in normal untreated vessels but also increased vascular reactivity of the injured vessel. Neointima formation at day 14 after balloon injury was inhibited by 70%. These findings provide direct evidence that NO is an endogenous inhibitor of vascular lesion formation in vivo (by inhibiting smooth muscle cell proliferation and migration) and suggest the possibility of ec-NOS transfection as a potential therapeutic approach to treat neointimal hyperplasia.

  17. Vascular Endothelial Growth Factor Receptor Expression During Embryogenesis and Tissue Repair Suggests a Role in Endothelial Differentiation and Blood Vessel Growth

    NASA Astrophysics Data System (ADS)

    Peters, Kevin G.; de Vries, Carlie; Williams, Lewis T.

    1993-10-01

    Vascular endothelial growth factor (VEGF) is a polypeptide mitogen that stimulates the growth of endothelial cells in vitro and promotes the growth of blood vessels in vivo. We have recently shown that the fms-like receptor tyrosine kinase (flt) is a receptor for VEGF. Here we used in situ hybridization to show that, in adult mouse tissues, the pattern of flt expression was consistent with localization in endothelium. We also show that flt was expressed in endothelium during neovascularization of healing skin wounds and during early vascular development in mouse embryos. Moreover, flt was expressed in populations of embryonic cells from which endothelium is derived such as early yolk sac mesenchyme. The expression of flt in the endothelium of both developing and mature blood vessels suggests that VEGF might regulate endothelial differentiation, blood vessel growth, and vascular repair.

  18. SIRT-1 and vascular endothelial dysfunction with ageing in mice and humans.

    PubMed

    Donato, Anthony J; Magerko, Katherine A; Lawson, Brooke R; Durrant, Jessica R; Lesniewski, Lisa A; Seals, Douglas R

    2011-09-15

    We tested the hypothesis that reductions in the cellular deacetylase, sirtuin-1 (SIRT-1), contribute to vascular endothelial dysfunction with ageing via modulation of endothelial nitric oxide synthase (eNOS) acetylation/activation-associated nitric oxide (NO) production. In older (30 months, n = 14) vs. young (5-7 months, n = 16) B6D2F1 mice, aortic protein expression of SIRT-1 and eNOS phosphorylated at serine 1177 were lower (both P < 0.05), and acetylated eNOS was 6-fold higher (P < 0.05), whereas total eNOS did not differ (P = 0.65). Acetylcholine (ACh)-induced peak endothelium-dependent dilatation (EDD) was lower in isolated femoral arteries with ageing (P < 0.001). Incubation with sirtinol, a SIRT-1 inhibitor, reduced EDD in both young and older mice, abolishing age-related differences, whereas co-administration with l-NAME, an eNOS inhibitor, further reduced EDD similarly in both groups. Endothelium-independent dilatation to sodium nitroprusside (EID), was not altered by age or sirtinol treatment. In older (64 ± 1 years, n = 22) vs. young (25 ± 1 years, n = 16) healthy humans, ACh-induced forearm EDD was impaired (P = 0.01) and SIRT-1 protein expression was 37% lower in endothelial cells obtained from the brachial artery (P < 0.05), whereas EID did not differ. In the overall group, EDD was positively related to endothelial cell SIRT-1 protein expression (r = 0.44, P < 0.01). Reductions in SIRT-1 may play an important role in vascular endothelial dysfunction with ageing. SIRT-1 may be a key therapeutic target to treat arterial ageing.

  19. Role of vascular peroxidase 1 in senescence of endothelial cells in diabetes rats.

    PubMed

    Liu, Si-Yu; Yuan, Qiong; Li, Xiao-Hui; Hu, Chang-Ping; Hu, Rong; Zhang, Guo-Gang; Li, Dai; Li, Yuan-Jian

    2015-10-15

    Reactive oxygen species (ROS) is thought as a major reason of vascular injury in diabetes. Vascular peroxidase 1 (VPO1) is a newly found peroxidase playing an important role in inducing oxidative stress. In the present experiment, we tested the role of VPO1 in senescence of endothelial cells in streptozotocin (STZ)-induced diabetic rats and cultured endothelial cells. Blood samples were collected from carotid arteries. Vasodilator responses to acetylcholine (Ach) in the isolated aortic rings were measured, serum concentration of glucose, tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) and the expression of VPO1 in the aorta were determined. Endothelial cells were treated with high glucose or H2O2, the concentrations of MCP-1, TNF-α and hypochlorous acid (HOCl) and the expression of VPO1 were determined. shRNA of VPO1 was used for mechanism research in cultured cells. Vasodilator responses to Ach were impaired markedly and the serum concentrations of glucose, TNF-α and MCP-1 were significantly increased in diabetic rats. The expression of VPO1 in the aorta was upregulated in diabetic rats. High glucose treatment significantly decreased cell viability and elevated the levels of MCP-1, TNF-α and HOCl and upregulated the expression of VPO1. H2O2 treatment significantly induced cellular senescence, inhibited eNOS expression and NO production. The effects of high glucose and H2O2 were attenuated by shRNA interference of VPO1. VPO1 plays an important role in senescence of endothelial cells and endothelial dysfunction by induction of oxidative stress and inflammatory reaction in type 2 diabetic rats. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. SIRT-1 and vascular endothelial dysfunction with ageing in mice and humans

    PubMed Central

    Donato, Anthony J; Magerko, Katherine A; Lawson, Brooke R; Durrant, Jessica R; Lesniewski, Lisa A; Seals, Douglas R

    2011-01-01

    Abstract We tested the hypothesis that reductions in the cellular deacetylase, sirtuin-1 (SIRT-1), contribute to vascular endothelial dysfunction with ageing via modulation of endothelial nitric oxide synthase (eNOS) acetylation/activation-associated nitric oxide (NO) production. In older (30 months, n = 14) vs. young (5–7 months, n = 16) B6D2F1 mice, aortic protein expression of SIRT-1 and eNOS phosphorylated at serine 1177 were lower (both P < 0.05), and acetylated eNOS was 6-fold higher (P < 0.05), whereas total eNOS did not differ (P = 0.65). Acetylcholine (ACh)-induced peak endothelium-dependent dilatation (EDD) was lower in isolated femoral arteries with ageing (P < 0.001). Incubation with sirtinol, a SIRT-1 inhibitor, reduced EDD in both young and older mice, abolishing age-related differences, whereas co-administration with l-NAME, an eNOS inhibitor, further reduced EDD similarly in both groups. Endothelium-independent dilatation to sodium nitroprusside (EID), was not altered by age or sirtinol treatment. In older (64 ± 1 years, n = 22) vs. young (25 ± 1 years, n = 16) healthy humans, ACh-induced forearm EDD was impaired (P = 0.01) and SIRT-1 protein expression was 37% lower in endothelial cells obtained from the brachial artery (P < 0.05), whereas EID did not differ. In the overall group, EDD was positively related to endothelial cell SIRT-1 protein expression (r = 0.44, P < 0.01). Reductions in SIRT-1 may play an important role in vascular endothelial dysfunction with ageing. SIRT-1 may be a key therapeutic target to treat arterial ageing. PMID:21746786

  1. Expression of Vascular Endothelial Growth Factor in Odontogenic Cysts: Is There Any Impression on Clinical Outcome?

    PubMed Central

    Sadri, Donia; Farhadi, Sareh; Shahabi, Zahra; Sarshar, Samaneh

    2016-01-01

    Background: The recent scientific reports have shown that angiogenesis can affect biological behavior of pathologic lesions. Objective: Regarding unique clinical outcome of Odontogenic keratocyst (OKC), the present study was aimed to compare angiogenesis in Odontogenic keratocyst and Dentigerous cyst (DC). Method: In this experimental study, tissue sections of 46 samples of OKC and DC were stained through immunohistochemical method using Vascular Endothelial Growth Factor (VEGF) antibody. VEGF expression was evaluated in epithelial cells, fibroblasts and endothelial cells. The average percentage of stained cells in any samples was categorized to 3 groups as follows: SCORE 0: 10% of cells or less are positive. SCORE 1: 10 to 50% of cells are positive. SCORE 2: more than 50% of cells are positive. Mann-U-Whitney, T-test and chi-square was used for statistical analysis. Result: The average of VEGF expression in 24 samples of DC was 20.2% and in 22 samples of OKC was 52.6%, respectively. The average of VEGF expression in these two cysts had statistical significant differences. (PV= 0.045). There was significant statistical differences between two cysts in the terms of VEGF SCORE (PV= 0.000). OKC samples had significantly higher SCORE for the purpose of VEGF incidence than DC. Also, there were no differences between VEGF expression in epithelial cells of two cysts (PV= 0.268) there were significant statistical differences between two cysts in terms of endothelial cell staining. The endothelial cell staining was significantly higher in OKC than DC (PV= 0.037%). Conclusion: Regarding higher expression of Vascular Endothelial Growth factor in OKC than DC, it seems that angiogenesis may have great impression on clinical outcome of OKC. PMID:28217191

  2. Functional modification of vascular endothelial cells by cytokines during septic shock.

    PubMed

    Endo, S; Inada, K; Yamada, Y; Takakuwa, T; Nakae, H; Kasai, T; Koike, S; Inoue, Y; Niimi, M; Wakabayashi, G; Taniguchi, S

    1996-10-01

    The function of vascular endothelial cells is to adjust blood vessel tonus, which contributes to maintaining homeostasis within blood vessels. However, inflammatory cytokines are produced in response to invasion by stimulating vascular endothelial cells and sometimes lead to shock or multiple organ failure. In the present study, we assessed cytokines in sepsis and septic shock, and various factors that are said to have a damaging effect on vascular endothelium. Endotoxin was measured by endotoxin-specific methods. Tumor necrosis factor-alpha (TNF-alpha), interleukin 6 (IL-6), and interleukin 8 (IL-8) were measured by enzyme-linked immunosorbent assay (ELISA). Endothelin-I was measured by radioimmunoassay (RIA). Nitric oxide was measured as metabolites of nitrite and nitrate oxides (NOx) by a method based on the Griess method. Thromboxane B2 (TXB2) and 6-keto-prostaglandin F1 alpha (PGF 1 alpha) were both measured by RIA. All of the factors except endotoxin were significantly higher in the septic shock group than in the non-shock group and significantly higher in the non-survivor group than in the survivor group. Significant correlations were also found between endothelin-1 and NOx and between TXB2 and PG1 alpha. Significant correlations were also found between TNF-alpha and IL-6, endothelin-1, NOx and TXB2, but no significant correlations were detected between any of them and endotoxin. In serious diseases such as septic shock, the vascular endothelial constricting factors, endothelin and TXB2, and the blood vessel relaxing factors NOx and PGF1 alpha increase almost simultaneously. This suggests that the body's regulating mechanisms are disrupted in these serious conditions. The results of this study also suggest that inflammatory cytokines may be involved in stimulating the production of these factors.

  3. Exercise training improves vascular endothelial function in patients with type 1 diabetes.

    PubMed

    Fuchsjäger-Mayrl, Gabriele; Pleiner, Johannes; Wiesinger, Günther F; Sieder, Anna E; Quittan, Michael; Nuhr, Martin J; Francesconi, Claudia; Seit, Hans-Peter; Francesconi, Mario; Schmetterer, Leopold; Wolzt, Michael

    2002-10-01

    OBJECTIVE-Impaired endothelial function of resistance and conduit arteries can be detected in patients with type 1 diabetes. We studied whether a persistent improvement of endothelial function can be achieved by regular physical training. RESEARCH DESIGN AND METHODS-The study included 26 patients with type 1 diabetes of 20 +/- 10 years' duration and no overt angiopathy; 18 patients (42 +/- 10 years old) participated in a bicycle exercise training program, and 8 patients with type 1 diabetes (33 +/- 11 years old) served as control subjects. Vascular function of conduit arteries was assessed by flow-mediated and endothelium-independent dilation of the brachial artery and of resistance vessels by the response of ocular fundus pulsation amplitudes to intravenous N(G)-monomethyl-L-arginine (L-NMMA) at baseline, after 2 and 4 months of training, and 8 months after cessation of regular exercise. RESULTS-Training increased peak oxygen uptake (VO(2max)) by 13% after 2 months and by 27% after 4 months (P = 0.04). Flow-mediated dilation (FMD) of the brachial artery increased from 6.5 +/- 1.1 to 9.8 +/- 1.1% (P = 0.04) by training. L-NMMA administration decreased fundus pulsation amplitude (FPA) by 9.1 +/- 0.9% before training and by 13.4 +/- 1.5% after 4 months of training (P = 0.02). VO(2max), FMD, and FPA were unchanged in the control group. Vascular effects from training were abrogated 8 months after cessation of exercise. CONCLUSIONS-Our study demonstrates that aerobic exercise training can improve endothelial function in different vascular beds in patients with long-standing type 1 diabetes, who are at considerable risk for diabetic angiopathy. However, the beneficial effect on vascular function is not maintained in the absence of exercise.

  4. Expression and regulation of endothelial nitric oxide synthase by vascular endothelial growth factor in ECV 304 cells.

    PubMed Central

    Park, Jong Seon; Hong, Gu Ru; Baek, Suk Whan; Shin, Dong Gu; Kim, Young Jo; Shim, Bong Sup

    2002-01-01

    Nitric oxide (NO) seems to play a pivotal role in the vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation. This study was designed to investigate the role and intracellular signal pathway of endothelial nitric oxide synthase (eNOS) activation induced by VEGF. ECV 304 cells were treated with VEGF(165) and then cell proliferation, eNOS protein and mRNA expression levels were analyzed to elucidate the functional role of eNOS in cell proliferation induced by VEGF. After exposure of cells to VEGF(165), eNOS activity and cell growth were increased by approximately two-fold in the VEGF(165) -treated cells compared to the untreated cells. In addition, VEGF stimulated eNOS expression at both the mRNA and protein levels in a dose-dependent manner. Phosphatidylinositol-3 kinase (PI-3K) inhibitors were used to assess PI-3K involvement in eNOS regulation. LY294002 was found to attenuate VEGF-stimulated eNOS expression. Wortmannin was not as effective as LY294002, but the reduction effect was detectable. Cells activated by VEGF showed increased ERK1/2 levels. Moreover, the VEGF-induced eNOS expression was reduced by the PD98059, MAPK pathway inhibitor. This suggests that eNOS expression might be regulated by PI-3K and the ERK1/2 signaling pathway. In conclusion, VEGF(165) induces ECV 304 cell proliferation via the NO produced by eNOS. In addition, eNOS may be regulated by the PI-3K or mitogen-activated protein kinase pathway. PMID:11961297

  5. Ten-fold augmentation of endothelial uptake of vascular endothelial growth factor with ultrasound after systemic administration

    NASA Technical Reports Server (NTRS)

    Mukherjee, D.; Wong, J.; Griffin, B.; Ellis, S. G.; Porter, T.; Sen, S.; Thomas, J. D.

    2000-01-01

    OBJECTIVES: In this study, the feasibility of delivering and enhancing the uptake of vascular endothelial growth factor (VEGF) into the intact endothelium by using ultrasound (US) facilitation was determined. BACKGROUND: A limitation of tissue-targeted drug delivery is the need for direct arterial cannulation. We postulate a mechanism by which agents injected intravenously may be targeted to a tissue using US and ultrasonic contrast agents. METHODS: We used a rat model to test the ability of US and an ultrasonic contrast agent perflurocarbon exposed sonicated dextrose albumin (PESDA) to increase uptake of VEGF in the myocardium. Continuous wave Doppler US (0.6 W/cm2 at 1 MHz for 15 min) was applied to the chest wall overlying the myocardium during intravenous injection with either VEGF (100 microg/kg) alone or a combination of VEGF and PESDA (0.1%). Control rats had VEGF infused without US or PESDA. The VEGF uptake was measured quantitatively in the heart, lung, liver and kidneys by enzyme-linked immunosorbent assay (ng/g of tissue) and morphologically by fluorescence microscopy. RESULTS: There was an eight-fold increase in VEGF uptake in the heart by US alone (16.86 +/- 1.56 vs. 2.11 +/- 0.953 ng/g of tissue, p < 0.0001) and a 13-fold increase with US + PESDA (26.78 +/- 2.88 vs. 2.11 +/- 0.953 ng/g of tissue, p < 0.0001) compared with control rats. Fluorescence microscopy revealed deposition of VEGF in the endothelium of small intramyocardial arterioles. CONCLUSIONS: These results show a marked increase in endothelial VEGF uptake with US and US + PESDA. Thus, US may be used to augment endothelial VEGF uptake 10-fold to 13-fold.

  6. Ten-fold augmentation of endothelial uptake of vascular endothelial growth factor with ultrasound after systemic administration

    NASA Technical Reports Server (NTRS)

    Mukherjee, D.; Wong, J.; Griffin, B.; Ellis, S. G.; Porter, T.; Sen, S.; Thomas, J. D.

    2000-01-01

    OBJECTIVES: In this study, the feasibility of delivering and enhancing the uptake of vascular endothelial growth factor (VEGF) into the intact endothelium by using ultrasound (US) facilitation was determined. BACKGROUND: A limitation of tissue-targeted drug delivery is the need for direct arterial cannulation. We postulate a mechanism by which agents injected intravenously may be targeted to a tissue using US and ultrasonic contrast agents. METHODS: We used a rat model to test the ability of US and an ultrasonic contrast agent perflurocarbon exposed sonicated dextrose albumin (PESDA) to increase uptake of VEGF in the myocardium. Continuous wave Doppler US (0.6 W/cm2 at 1 MHz for 15 min) was applied to the chest wall overlying the myocardium during intravenous injection with either VEGF (100 microg/kg) alone or a combination of VEGF and PESDA (0.1%). Control rats had VEGF infused without US or PESDA. The VEGF uptake was measured quantitatively in the heart, lung, liver and kidneys by enzyme-linked immunosorbent assay (ng/g of tissue) and morphologically by fluorescence microscopy. RESULTS: There was an eight-fold increase in VEGF uptake in the heart by US alone (16.86 +/- 1.56 vs. 2.11 +/- 0.953 ng/g of tissue, p < 0.0001) and a 13-fold increase with US + PESDA (26.78 +/- 2.88 vs. 2.11 +/- 0.953 ng/g of tissue, p < 0.0001) compared with control rats. Fluorescence microscopy revealed deposition of VEGF in the endothelium of small intramyocardial arterioles. CONCLUSIONS: These results show a marked increase in endothelial VEGF uptake with US and US + PESDA. Thus, US may be used to augment endothelial VEGF uptake 10-fold to 13-fold.

  7. Impaired integration of endothelial progenitor cells in capillaries of diabetic wounds is reversible with vascular endothelial growth factor infusion.

    PubMed

    Singh, Ashok K; Gudehithlu, Krishnamurthy P; Patri, Shreya; Litbarg, Natalia O; Sethupathi, Perianna; Arruda, Jose A L; Dunea, George

    2007-05-01

    To understand impaired angiogenesis in diabetic wounds, polyvinyl tubes were implanted subcutaneously in rats to form a granulation tissue for 2 weeks and the granulation tissue was studied after inducing diabetes with streptozotocin. By 1 week of diabetes, the granulation tissue was bloody and thinner than controls, its medial layer was depleted of microvessels, and the surviving vessels appeared dehisced. Vascular endothelial growth factor (VEGF) in the diabetic granulation tissue was reduced by 50% compared with control granulation tissue. After 3 days of diabetes, the diabetic tissue showed a greater degree of apoptosis in the microvessels. Chemotactic factors [stromal cell-derived factor-1alpha and chemokine receptor-4 (CXCR-4)], responsible for attracting bone marrow cells, showed equal intensity in control and diabetic tissues. As expected, progenitor endothelial CD-34 cells were observed in abundance in both the control and the diabetic granulation tissues. However, although the CD-34-positive cells appeared mostly to be integrated in the blood vessels of the control tissue, fewer such cells were present in the blood vessels of the diabetic tissues, suggesting that CD-34 failed to integrate into new blood vessels. Infusion of VEGF in the granulation tissue of diabetic rats for 1 week resulted in complete prevention of the microvascular defect compared with the contralateral granulation tissue that showed the typical diabetic changes. It was concluded that diabetes causes reduction of VEGF in the wound, resulting in loss of blood vessels by apoptosis and possible failure of CD-34 cells to integrate into the vessel structure.

  8. Adenoviral modification of mouse brain derived endothelial cells, bEnd3, to induce apoptosis by vascular endothelial growth factor.

    PubMed

    Mitsuuchi, Y; Powell, D R; Gallo, J M

    2006-02-09

    A second generation genetically-engineered cell-based drug delivery system, referred to as apoptotic-induced drug delivery (AIDD), was developed using endothelial cells (ECs) that undergo apoptosis upon binding of vascular endothelial growth factor (VEGF) to a Flk-1:Fas fusion protein (FF). This new AIDD was redesigned using mouse brain derived ECs, bEnd3 cells, and an adenovirus vector in order to enhance and control the expression of FF. The FF was tagged with a HA epitope (FFHA) and designed to be coexpressed with green fluorescence protein (GFP) by the regulation of cytomegalovirus promoters in the adenovirus vector. bEnd3 cells showed favorable coexpression of FFHA and GFP consistent with the multiplicity of infection of the adenovirus. Immunofluorescence analysis demonstrated that FFHA was localized at the plasma membrane, whereas GFP was predominantly located in the cytoplasm of ECs. Cell death was induced by VEGF, but not by platelet derived growth factor or fibroblast growth factor in a dose-dependent manner (range 2-20 ng/ml), and revealed caspase-dependent apoptotic profiles. The FFHA expressing bEnd3 cells underwent apoptosis when cocultured with a glioma cell (SF188V+) line able to overexpress VEGF. The combined data indicated that the FFHA adenovirus system can induce apoptotic signaling in ECs in response to VEGF, and thus, is an instrumental modification to the development of AIDD.

  9. Endothelial Cell Migration and Vascular Endothelial Growth Factor Expression Are the Result of Loss of Breast Tissue Polarity

    SciTech Connect

    Chen, Amy; Cuevas, Ileana; Kenny, Paraic A; Miyake, Hiroshi; Mace, Kimberley; Ghajar, Cyrus; Boudreau, Aaron; Bissell, Mina; Boudreau, Nancy

    2009-05-26

    Recruiting a new blood supply is a rate-limiting step in tumor progression. In a three-dimensional model of breast carcinogenesis, disorganized, proliferative transformed breast epithelial cells express significantly higher expression of angiogenic genes compared with their polarized, growth-arrested nonmalignant counterparts. Elevated vascular endothelial growth factor (VEGF) secretion by malignant cells enhanced recruitment of endothelial cells (EC) in heterotypic cocultures. Significantly, phenotypic reversion of malignant cells via reexpression of HoxD10, which is lost in malignant progression, significantly attenuated VEGF expression in a hypoxia-inducible factor 1{alpha}-independent fashion and reduced EC migration. This was due primarily to restoring polarity: forced proliferation of polarized, nonmalignant cells did not induce VEGF expression and EC recruitment, whereas disrupting the architecture of growth-arrested, reverted cells did. These data show that disrupting cytostructure activates the angiogenic switch even in the absence of proliferation and/or hypoxia and restoring organization of malignant clusters reduces VEGF expression and EC activation to levels found in quiescent nonmalignant epithelium. These data confirm the importance of tissue architecture and polarity in malignant progression.

  10. Mussel-inspired coating of polydopamine directs endothelial and smooth muscle cell fate for re-endothelialization of vascular devices.

    PubMed

    Yang, Zhilu; Tu, Qiufen; Zhu, Ying; Luo, Rifang; Li, Xin; Xie, Yichu; Maitz, Manfred F; Wang, Jin; Huang, Nan

    2012-09-01

    Polydopamine (PDAM), a mussel adhesive protein inspired coating that can be easily deposited onto a wide range of metallic, inorganic, and organic materials, gains interest also in the field of biomaterials. In this work, PDAM is applied as coating on 316L stainless steel (SS) stents and the response of cells of the blood vessel wall, human umbilical vein endothelial cell (HUVEC), and human umbilical artery smooth muscle cell (HUASMC) as predictors for re-endothelialization is tested. It is found that the PDAM-modified surface significantly enhances HUVEC adhesion, proliferation, and migration, release of nitric oxide (NO), and secretion of prostaglandin I(2) (PGI(2) ). Additionally, the PDAM-modified surface shows a remarkable ability to decrease the adhesion and proliferation of HUASMCs. As a blood-contacting material, the PDAM tends to improve the hemocompatibility compared with the substrate 316L SS. It is noteworthy that the PDAM coating shows good resistance to the deformation behavior of compression and expansion of a stent. These data suggest the potential of PDAM as a blood-contacting material for the application in vascular stents or grafts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Evidence of endothelial dysfunction in the development of Alzheimer’s disease: Is Alzheimer’s a vascular disorder?

    PubMed Central

    Kelleher, Rory J; Soiza, Roy L

    2013-01-01

    The etiology of Alzheimer’s disease (AD) remains unclear. The emerging view is that cerebrovascular dysfunction is a feature not only of cerebrovascular diseases, such as stroke, but also of neurodegenerative conditions, such as AD. In AD, there is impaired structure and function of cerebral blood vessels and cells in the neurovascular unit. These effects are mediated by vascular oxidative stress. Injury to the neurovascular unit alters cerebral blood flow regulation, depletes vascular reserves, disrupts the blood-brain barrier and reduces the brain’s repair capacity. Such injury can exacerbate the cognitive dysfunction exerted by incident ischemia and coexisting neurodegeneration. This article summarises data regarding cardiovascular risk factors, vascular abnormalities and brain endothelial damage in AD. In view of accumulating evidence of vascular pathology in AD, we also review the literature (MEDLINE, EMBASE) for clinical evidence of impaired endothelial function in AD. A total of 15 articles investigating endothelial dysfunction in AD were identified. 10 of these articles showed impaired endothelial function in AD patients. The current literature suggests endothelial dysfunction may be involved in the pathogenesis of AD. This aspect of AD pathology is particularly interesting in view of its potential for therapeutic intervention. Future research on endothelial function in AD should concentrate on population-based analysis and combine multiple methods to evaluate endothelial function. PMID:24224133

  12. Fibroblast growth factor-2 and vascular endothelial growth factor mediated augmentation of angiogenesis and bone formation in vascularized bone allotransplants.

    PubMed

    Larsen, Mikko; Willems, Wouter F; Pelzer, Michael; Friedrich, Patricia F; Dadsetan, Mahrokh; Bishop, Allen T

    2014-05-01

    We previously demonstrated recipient-derived neoangiogenesis to maintain viability of living bone allogeneic transplants without long-term immunosuppression. The effect of cytokine delivery to enhance this process is studied. Vascularized femur transplantation was performed from Dark Agouti to Piebald Virol Glaxo rats. Poly(d,l-lactide-co-glycolide) microspheres loaded with buffer (N = 11), basic fibroblast growth factor (FGF2) (N = 10), vascular endothelial growth factor (VEGF) (N = 11), or both (N = 11) were inserted intramedullarly alongside a recipient-derived arteriovenous bundle. FK-506 was administered for 2 weeks. At 18 weeks, bone blood flow, microangiography, histologic, histomorphometric, and alkaline phosphatase measurements were performed. Bone blood flow was greater in the combined group than control and VEGF groups (P = 0.04). Capillary density was greater in the FGF2 group than in the VEGF and combined groups (P < 0.05). Bone viability, growth, and alkaline phosphatase activity did not vary significantly between groups. Neoangiogenesis in vascularized bone allotransplants is enhanced by angiogenic cytokine delivery, with results using FGF2 that are comparable to isotransplant from previous studies. Further studies are needed to achieve bone formation similar to isotransplants. Copyright © 2013 Wiley Periodicals, Inc.

  13. Immunohistochemical expression of vascular endothelial growth factor and vascular endothelial growth factor receptor associated with tumor cell proliferation in canine cutaneous squamous cell carcinomas and trichoepitheliomas.

    PubMed

    Al-Dissi, A N; Haines, D M; Singh, B; Kidney, B A

    2007-11-01

    The expression of 5 markers associated with angiogenesis was studied in canine squamous cell carcinomas (SCCs) (n = 19) and canine trichoepitheliomas (TCPs) (n = 24). SCCs were assigned histologic grades, and tissue sections from both tumor types were immunohistochemially stained for the expression of vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor-2 (VEGFR-2), as well as intratumoral microvessel density (iMVD), tumor proliferation index (PI), and tumor apoptotic index (AI), using antibodies against VEGF, VEGFR-2, von Willebrand's factor, Ki-67 antigen, and the terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate end-labeling method (TUNEL), respectively. VEGF and VEGFR-2 were detected in 17/19 (89.4%) and 19/19 (100%) SCCs and in 17/24 (70.8%) and 20/24 (83.3%) TCPs, respectively. In SCCs, there was substantial correlation between histologic grade and PI (r = 0.51); and moderate correlation between VEGF and histologic grade (r = 0.43), VEGFR-2 and histologic grade (r = 0.47), VEGF and PI (r = 0.47), and VEGFR-2 and PI (r = 0.47) (Spearman rank correlation coefficient). In TCPs, there was substantial correlation between VEGF and PI (r = 0.51) and a moderate correlation between VEGFR-2 and iMVD (r = 0.36). The median iMVD of SCCs (15.5) was significantly higher than the median iMVD of TCPs (9.05) (P value < .05). It was concluded that VEGF and VEGFR-2 may promote tumor cell proliferation in TCPs and SCCs. An autocrine pathway for VEGF probably operates in canine SCCs and TCPs, as VEGF and VEGFR-2 expression was found in most tumors and was associated with evidence for tumor cell proliferation.

  14. Adrenomedullin and Adrenomedullin Binding Protein-1 Attenuate Vascular Endothelial Cell Apoptosis in Sepsis

    PubMed Central

    Zhou, Mian; Simms, H Hank; Wang, Ping

    2004-01-01

    Objective: To determine whether vascular endothelial cell apoptosis occurs in the late stage of sepsis and, if so, whether administration of a potent vasodilatory peptide adrenomedullin and its newly reported specific binding protein (AM/AMBP-1) prevents sepsis-induced endothelial cell apoptosis. Summary Background Data: Polymicrobial sepsis is characterized by an early, hyperdynamic phase followed by a late, hypodynamic phase. Our recent studies have shown that administration of AM/AMBP-1 delays or even prevents the transition from the hyperdynamic phase to the hypodynamic phase of sepsis, attenuates tissue injury, and decreases sepsis-induced mortality. However, the mechanisms responsible for the beneficial effects of AM/AMBP-1 in sepsis remain unknown. Methods: Polymicrobial sepsis was induced by cecal ligation and puncture in adult male rats. Human AMBP-1 (40 μg/kg body weight) was infused intravenously at the beginning of sepsis for 20 minutes and synthetic AM (12 μg/kg body weight) was continuously administered for the entire study period using an Alzert micro-osmotic pump, beginning 3 hours prior to the induction of sepsis. The thoracic aorta and pulmonary tissues were harvested at 20 hours after cecal ligation and puncture (ie, the late stage of sepsis). Apoptosis was determined using TUNEL assay, M30 Cytodeath immunostaining, and electromicroscopy. In addition, anti-apoptotic Bcl-2 and pro-apoptotic Bax gene expression and protein levels were assessed by RT-PCR and Western blot analysis, respectively. Results: Vascular endothelial cells underwent apoptosis formation at 20 hours after cecal ligation and puncture as determined by three different methods. Moreover, partial detached endothelial cell in the aorta was observed. Bcl-2 mRNA and protein levels decreased significantly at 20 hours after the onset of sepsis while Bax was not altered. Administration of AM/AMBP-1 early after sepsis, however, significantly reduced the number of apoptotic endothelial

  15. Update on vascular endothelial Ca2+ signalling: A tale of ion channels, pumps and transporters

    PubMed Central

    Moccia, Francesco; Berra-Romani, Roberto; Tanzi, Franco

    2012-01-01

    A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and forms a multifunctional transducing organ that mediates a plethora of cardiovascular processes. The activation of ECs from as state of quiescence is, therefore, regarded among the early events leading to the onset and progression of potentially lethal diseases, such as hypertension, myocardial infarction, brain stroke, and tumor. Intracellular Ca2+ signals have long been know to play a central role in the complex network of signaling pathways regulating the endothelial functions. Notably, recent work has outlined how any change in the pattern of expression of endothelial channels, transporters and pumps involved in the modulation of intracellular Ca2+ levels may dramatically affect whole body homeostasis. Vascular ECs may react to both mechanical and chemical stimuli by generating a variety of intracellular Ca2+ signals, ranging from brief, localized Ca2+ pulses to prolonged Ca2+ oscillations engulfing the whole cytoplasm. The well-defined spatiotemporal profile of the subcellular Ca2+ signals elicited in ECs by specific extracellular inputs depends on the interaction between Ca2+ releasing channels, which are located both on the plasma membrane and in a number of intracellular organelles, and Ca2+ removing systems. The present article aims to summarize both the past and recent literature in the field to provide a clear-cut picture of our current knowledge on the molecular nature and the role played by the components of the Ca2+ machinery in vascular ECs under both physiological and pathological conditions. PMID:22905291

  16. Curcumin ingestion and exercise training improve vascular endothelial function in postmenopausal women.

    PubMed

    Akazawa, Nobuhiko; Choi, Youngju; Miyaki, Asako; Tanabe, Yoko; Sugawara, Jun; Ajisaka, Ryuichi; Maeda, Seiji

    2012-10-01

    Vascular endothelial function is declines with aging and is associated with an increased risk of cardiovascular disease. Lifestyle modification, particularly aerobic exercise and dietary adjustment, has a favorable effect on vascular aging. Curcumin is a major component of turmeric with known anti-inflammatory and anti-oxidative effects. We investigated the effects of curcumin ingestion and aerobic exercise training on flow-mediated dilation as an indicator endothelial function in postmenopausal women. A total of 32 postmenopausal women were assigned to 3 groups: control, exercise, and curcumin groups. The curcumin group ingested curcumin orally for 8 weeks. The exercise group underwent moderate aerobic exercise training for 8 weeks. Before and after each intervention, flow-mediated dilation was measured. No difference in baseline flow-mediated dilation or other key dependent variables were detected among the groups. Flow-mediated dilation increased significantly and equally in the curcumin and exercise groups, whereas no changes were observed in the control group. Our results indicated that curcumin ingestion and aerobic exercise training can increase flow-mediated dilation in postmenopausal women, suggesting that both can potentially improve the age-related decline in endothelial function.

  17. Secrets of the code: do vascular endothelial cells use ion channels to decipher complex flow signals?

    PubMed

    Barakat, Abdul I; Lieu, Deborah K; Gojova, Andrea

    2006-02-01

    The ability of vascular endothelial cells (ECs) to respond to changes in blood flow is essential for both vasoregulation and arterial wall remodelling, while abnormalities in endothelial responsiveness to flow play an important role in the development of atherosclerosis. Endothelial flow responses also have important implications for the field of vascular tissue engineering. In response to changes in fluid dynamic shear stress, ECs exhibit humoral, metabolic, and structural responses. Significantly, ECs respond differently to different types of shear stress. For instance, steady shear stress elicits a profile of responses that differs drastically from oscillatory shear stress. Although our understanding of flow-induced signaling has advanced greatly over the past two decades, how ECs sense shear forces remains to be established. Furthermore, the mechanisms by which ECs discriminate among different flow waveforms are unknown. Activation of flow-sensitive ion channels is one of the most rapid known responses to flow in ECs. In this paper, we argue in favor of an important role for ion channels in shear stress sensing in ECs and propose that these channels may endow ECs with the ability to resolve components of a complex flow signal and hence distinguish among different types of flow.

  18. Enhanced Viability of Endothelial Colony Forming Cells in Fibrin Microbeads for Sensor Vascularization.

    PubMed

    Gandhi, Jarel K; Zivkovic, Lada; Fisher, John P; Yoder, Mervin C; Brey, Eric M

    2015-09-18

    Enhanced vascularization at sensor interfaces can improve long-term function. Fibrin, a natural polymer, has shown promise as a biomaterial for sensor coating due to its ability to sustain endothelial cell growth and promote local vascularization. However, the culture of cells, particularly endothelial cells (EC), within 3D scaffolds for more than a few days is challenging due to rapid loss of EC viability. In this manuscript, a robust method for developing fibrin microbead scaffolds for long-term culture of encapsulated ECs is described. Fibrin microbeads are formed using sodium alginate as a structural template. The size, swelling and structural properties of the microbeads were varied with needle gauge and composition and concentration of the pre-gel solution. Endothelial colony-forming cells (ECFCs) were suspended in the fibrin beads and cultured within a perfusion bioreactor system. The perfusion bioreactor enhanced ECFCs viability and genome stability in fibrin beads relative to static culture. Perfusion bioreactors enable 3D culture of ECs within fibrin beads for potential application as a sensor coating.

  19. Effects of Vascular Endothelial Growth Factor in Recovery Phase of Acute Lung Injury in Mice.

    PubMed

    Song, Junfeng; Lu, Hui; Zheng, Xuyang; Huang, Xianmei

    2015-12-01

    To test the hypothesis that exogenous administration of vascular endothelial growth factor (VEGF) promotes lung repair in acute lung injury (ALI). ALI was induced by intranasal lipopolysaccharide (LPS) administration in mice, followed by different treatment protocols for 7 days in 3 groups (n = 6, each) including the LPS, the VEGF and the anti-VEGF group. At day 7, peripheral blood and lungs were collected. Lung wet-to-dry (W/D) ratio and lung injury score were measured. Immunohistochemistry assay was employed to detect the number of pulmonary vessels. Circulating endothelial progenitor cells (EPCs) was detected using flow cytometric analysis, and the apoptosis of lung cells was determined by TUNEL staining. VEGF treatment reduced W/D ratio and pulmonary neutrophil infiltration in the VEGF group compared with the LPS group. The treatment of VEGF increased the number of pulmonary vessels, and significantly increased the number of circulating EPC cells. Moreover, administration of VEGF decreased the percentage of apoptotic cells in the VEGF group. Our results suggest that VEGF may contribute to vascular endothelial repair and function as a protective factor against ALI.

  20. Inhibitive effects of anti-oxidative vitamins on mannitol-induced apoptosis of vascular endothelial cells.

    PubMed

    Pan, Kai-yu; Shen, Mei-ping; Ye, Zhi-hong; Dai, Xiao-na; Shang, Shi-qiang

    2006-10-01

    Study blood vessel injury and gene expression indicating vascular endothelial cell apoptosis induced by mannitol with and without administration of anti-oxidative vitamins. Healthy rabbits were randomly divided into four groups. Mannitol was injected into the vein of the rabbit ear in each animal. Pre-treatment prior to mannitol injection was performed with normal saline (group B), vitamin C (group C) and vitamin E (group D). Blood vessel injury was assessed under electron and light microscopy. In a second experiment, cell culture specimen of human umbilical vein endothelial cells were treated with mannitol. Pre-treatment was done with normal saline (sample B), vitamin C (sample C) and vitamin E (sample D). Total RNA was extracted with the original single step procedure, followed by hybridisation and analysis of gene expression. In the animal experiment, serious blood vessel injury was seen in group A and group B. Group D showed light injury only, and normal tissue without pathological changes was seen in group C. Of all 330 apoptosis-related genes analysed in human cell culture specimen, no significant difference was seen after pre-treatment with normal saline, compared with the gene chip without pre-treatment. On the gene chip pre-treated with vitamin C, 45 apoptosis genes were down-regulated and 34 anti-apoptosis genes were up-regulated. Pre-treatment with vitamin E resulted in the down-regulation of 3 apoptosis genes. Vitamin C can protect vascular endothelial cells from mannitol-induced injury.

  1. Cultivation of endothelial progenitor cells on fibrin matrix and layering on dacron/polytetrafluoroethylene vascular grafts.

    PubMed

    Sreerekha, Perumcherry Raman; Krishnan, Lissy K

    2006-04-01

    Completely biological tissue-engineered vascular graft is an upcoming substitute for damaged blood vessel, but its clinical use is currently limited due to poor mechanical strength. Therefore, at present, polymeric small-diameter vascular grafts lined with endothelial cells (ECs) to reduce graft thrombosis may be a more viable option. Successful construction of EC-seeded artificial grafts faces some challenges such as (i) retention of endothelial lining; and (ii) availability of differentiated autologous cells. Biomaterial surfaces that are modified by depositing extracellular matrix (ECM) components may stabilize cells in the lumen against forces of blood flow. Adult stem cells such as endothelial progenitor cells (EPCs) circulate in the blood and they usually attach to the exposed matrix at the injured blood vessel site. Depending on the signaling capabilities of ECM, cells may differentiate into ECs,, and if a similar composition of the matrix is provided in vitro, EPCs isolated from blood might get differentiated and thus autologous cells for tissue engineering may be obtained. In this in vitro study, ECM scaffold consisting of biomolecules such as fibrin, fibronectin, and gelatin along with growth factors is found to have supported differentiation of EPC into EC. Further, the ECM precoated on Dacron and polytetrafluoroethylene is found to have supported the formation of EC monolayer that synthesized nitric oxide, and resisted shear stress. Thus, biomimetic fibrin composite is found to be suitable not only to seed cells on currently available artificial grafts but also to obtain differentiated EC from EPC.

  2. Cloning and Optimization of Soluble Vascular Endothelial Growth Factor165 Expression in Escherichia coli

    PubMed Central

    Salimi, Ali; Babashamsi, Mohammad

    2016-01-01

    Background: Vascular Endothelial Growth Factor (VEGF) is a coordinate regulator of physiological angiogenesis during embryogenesis, skeletal growth and reproductive functions. There are several types of VEGF, including VEGF165. VEGFs stimulate endothelial cell growth, angiogenesis, and capillary permeability. Low induction temperature is a major factor for expression of the recombinant VEGF165 in soluble form. The purpose of this study was cloning and optimization of soluble vascular endothelial growth factor165 expression in Escherichia coli (E. coli). Methods: In this study, total RNA of HeLa cell [cervix epithelium] was extracted. The VEGF165 gene was amplified by reverse transcription polymerase chain reaction (RTPCR), and then VEGF165 was subcloned into prokaryotic expression vectors pET-32a(+) and transformed into BL21 (DE3) E. coli strain. VEGF165 expression was optimized by fine adjustments such as induction time and incubation temperature. VEGF165 was analyzed by DNA sequencing prior to expression and the protein was further characterized by SDS-PAGE and immunoblotting using His•tag specific polyclonal antibody. Results: Our results demonstrated that VEGF165 was successfully cloned and expressed in pET-32a(+) vector. Optimization of the expression procedure showed that, induction by 1 mM IPTG at OD600=0.7 and overnight incubation at 22°C resulted in the highest expression levels of soluble VEGF165. Conclusion: In this study, the expression of VEGF165 in a high soluble level was successfully cloned and optimized. PMID:26855732

  3. Endothelial PECAM-1 and its function in vascular physiology and atherogenic pathology.

    PubMed

    Chistiakov, Dimitry A; Orekhov, Alexander N; Bobryshev, Yuri V

    2016-06-01

    Platelet endothelial cell adhesion molecule (PECAM-1) is highly expressed in vascular cells such as endothelial cells (ECs) and blood-borne cells like platelets and leukocytes. In ECs, this molecule controls junctional and adhesive properties. In physiological conditions, PECAM-1 supports the endothelial barrier function. In inflammation that is observed in vessels affected by atherosclerosis, the function of PECAM-1 is impaired, an event that leads to increased adhesion of neutrophils and other leukocytes to ECs, decreased vascular integrity, and higher leukocyte transmigration to the intima media. PECAM-1 has six extracellular immunoglobulin (Ig)-like domains that support attraction and adhesion of leukocytes to ECs. The cytoplasmic tail of PECAM-1 contains two tyrosine residues (Tyr-663 and Tyr-686) that could be phosphorylated by Src family protein kinases is involved in the intracellular signaling. Actually, those tyrosines are the part of the immunoreceptor tyrosine-based inhibition motifs (ITIMs) that inhibit inflammation. However, in atherosclerosis, the PECAM-1-dependent immune suppression is disturbed. This in turn facilitates recruitment of leukocytes and supports proatherogenic inflammation.

  4. Update on vascular endothelial Ca(2+) signalling: A tale of ion channels, pumps and transporters.

    PubMed

    Moccia, Francesco; Berra-Romani, Roberto; Tanzi, Franco

    2012-07-26

    A monolayer of endothelial cells (ECs) lines the lumen of blood vessels and forms a multifunctional transducing organ that mediates a plethora of cardiovascular processes. The activation of ECs from as state of quiescence is, therefore, regarded among the early events leading to the onset and progression of potentially lethal diseases, such as hypertension, myocardial infarction, brain stroke, and tumor. Intracellular Ca(2+) signals have long been know to play a central role in the complex network of signaling pathways regulating the endothelial functions. Notably, recent work has outlined how any change in the pattern of expression of endothelial channels, transporters and pumps involved in the modulation of intracellular Ca(2+) levels may dramatically affect whole body homeostasis. Vascular ECs may react to both mechanical and chemical stimuli by generating a variety of intracellular Ca(2+) signals, ranging from brief, localized Ca(2+) pulses to prolonged Ca(2+) oscillations engulfing the whole cytoplasm. The well-defined spatiotemporal profile of the subcellular Ca(2+) signals elicited in ECs by specific extracellular inputs depends on the interaction between Ca(2+) releasing channels, which are located both on the plasma membrane and in a number of intracellular organelles, and Ca(2+) removing systems. The present article aims to summarize both the past and recent literature in the field to provide a clear-cut picture of our current knowledge on the molecular nature and the role played by the components of the Ca(2+) machinery in vascular ECs under both physiological and pathological conditions.

  5. Novel vascular endothelial growth factor blocker improves cellular viability and reduces hypobaric hypoxia-induced vascular leakage and oedema in rat brain.

    PubMed

    Saraswat, Deepika; Nehra, Sarita; Chaudhary, Kamal; CVS, Siva Prasad

    2015-05-01

    Vascular endothelial growth factor (VEGF) is an important cerebral angiogenic and permeability factor under hypoxia. There is a need to find effective molecules that may ameliorate hypoxia-induced cerebral oedema. In silico identification of novel candidate molecules that block VEGF-A site were identified and validated with a Ramachandran plot. The active site residues of VEGF-A were detected by Pocketfinder, CASTp, and DogSiteScorer. Based on in silico data, three VEGF-A blocker (VAB) candidate molecules (VAB1, VAB2, and VAB3) were checked for improvement in cellular viability and regulation of VEGF levels in N2a cells under hypoxia (0.5% O2 ). Additionally, the best candidate molecule's efficacy was assessed in male Sprague-Dawley rats for its ameliorative effect on cerebral oedema and vascular leakage under hypobaric hypoxia 7260 m. All experimental results were compared with the commercially available VEGF blocker sunitinib. Vascular endothelial growth factor-A blocker 1 was found most effective in increasing cellular viability and maintaining normal VEGF levels under hypoxia (0.5% oxygen) in N2a cells. Vascular endothelial growth factor-A blocker 1 effectively restored VEGF levels, decreased cerebral oedema, and reduced vascular leakage under hypobaric hypoxia when compared to sunitinib-treated rats. Vascular endothelial growth factor-A blocker 1 may be a promising candidate molecule for ameliorating hypobaric hypoxia-induced vasogenic oedema by regulating VEGF levels. © 2015 Wiley Publishing Asia Pty Ltd.

  6. A novel vascular targeting strategy for brain-derived endothelial cells using a TCR mimic antibody

    PubMed Central

    Bhattacharya, Raktima; Xu, Yan; Rahman, Md. Ashequr; Couraud, Pierre-Olivier; Romero, Ignacio A.; Weksler, Babette B.; Weidanz, Jon A.; Bickel, Ulrich

    2010-01-01

    Organ-specific vascular targeting, for example to the blood-brain barrier, requires the identification of unique molecular addresses on a subset of endothelial cells. The present study describes a crucial step towards tapping the exquisite specificity of the peptide/HLA class I system for this goal. We utilized a novel T-cell receptor (TCR) mimic antibody of high affinity and specificity, which is restricted by HLA-A2 and has been generated to recognize a peptide epitope derived from p68 RNA helicase (YLLPAIVHI). The parent protein is highly expressed by brain endothelial cells. Flow cytometry and confocal imaging showed that the antibody binds to HLA-A2 positive human brain derived endothelial cells, both immortalized hCMEC/D3 cells and primary cells. The TCR mimic antibody undergoes internalization into vesicles, where significant colocalization occurs with the early endosomal marker EEA-1, but barely with caveolin-1. To our knowledge internalization of neither MHC class I protein nor TCR mimics by brain endothelial cells has been previously observed. Knockdown of p68 protein expression by siRNA reduced the presentation of YLLPAIVHI-peptide/HLA-A2 complexes on the cell membrane by half as measured by flow cytometry 48h later. We also found that brain endothelial cells isolated from HLA-A2 transgenic mouse strains express the A2 transgene, and brain endothelial cells of one of these strains also present YLLPAIVHI-peptide/HLA-A2, making these mouse strains suitable models for studying TCR mimic antibodies in vivo. In conclusion, these data strongly support the notion that TCR mimic antibodies could be a new class of therapeutic targeting agents in a wide variety of diseases. PMID:20506235

  7. High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation.

    PubMed

    Jansen, Felix; Yang, Xiaoyan; Franklin, Bernardo S; Hoelscher, Marion; Schmitz, Theresa; Bedorf, Jörg; Nickenig, Georg; Werner, Nikos

    2013-04-01

    Diabetes is a major risk factor for cardiovascular diseases. Circulating endothelial microparticles (EMP) are increased in diabetic patients, but their potential contribution in atherogenesis is unclear. We sought to determine the role of EMP derived under high glucose conditions in the development of atherosclerosis. EMP were generated from human coronary endothelial cells (HCAEC) exposed to high glucose concentrations in order to mimic diabetic conditions. These EMP were defined as 'injured' EMP (iEMP) and their effects were compared with EMP generated from 'healthy' untreated HCAEC. iEMP injection significantly impaired endothelial function in ApoE(-/-) mice compared with EMP and vehicle treatment. Immunofluorescent experiments showed increased macrophage infiltration and adhesion protein expression in atherosclerotic lesions of iEMP-treated ApoE(-/-) mice compared with controls. To further investigate the underlying mechanism of iEMP-induced vascular inflammation, additional in vitro experiments were performed. iEMP, but not EMP, induced activation of HCAEC in a time- and dose-dependent manner and increased monocyte adhesion. Further experiments demonstrated that iEMP induced activation of HCAEC by phosphorylation of p38 into its biologically active form phospho-p38. Inhibition of p38 activation abrogated iEMP-dependent induction of adhesion proteins and monocyte adhesion on HCAEC. Moreover, we could demonstrate that iEMP show increased NADPH oxidase activity and contain significantly higher level of reactive oxygen species (ROS) than EMP. iEMP triggered ROS production in HCAEC and thereby activate p38 in an ROS-dependent manner. High glucose condition increases NADPH oxidase activity in endothelial microparticles that amplify endothelial inflammation and impair endothelial function by promoting activation of the endothelium. These findings provide new insights into the pathogenesis of diabetes-associated atherosclerosis.

  8. Early activation of vascular endothelial cells and platelets in obese children.

    PubMed

    Desideri, Giovambattista; De Simone, Michele; Iughetti, Lorenzo; Rosato, Teresa; Iezzi, Maria Laura; Marinucci, Maria Contina; Cofini, Vincenza; Croce, Giuseppe; Passacquale, Gabriella; Necozione, Stefano; Ferri, Claudio

    2005-06-01

    Obesity in adulthood is combined with vascular endothelial cell and platelet activation. In this study we evaluated whether or not such activation is already present in obese children. Forty obese (10.3 +/- 2.5 yr) and 40 nonobese (10.3 +/- 2.3 yr) children were studied. Circulating levels of soluble (s) intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin, as indices of vascular endothelial cell activation, were assessed in both groups. Plasma concentrations of sP-selectin and sCD40 ligand, as indices of platelet activation, were also measured. Circulating levels of highly sensitive C-reactive protein (hs-CRP) and the lipid peroxidation product 8-iso-prostaglandin (PG)F(2alpha) were evaluated because of their ability to promote vascular endothelial cell and platelet activation. Circulating levels of all of the assessed markers were higher in obese than in nonobese children (sICAM-1, +38.8 +/- 13.3%; sVCAM-1, +26.5 +/- 13.7%; sE-selectin, +31.3 +/- 17.3%; sP-selectin, +31.7 +/- 16.9%; sCD40 ligand, +36.9 +/- 22.1%; total 8-iso-PGF(2alpha), +24.0 +/- 20.2%; hs-CRP, +76.6 +/- 12.9%; P < 0.0001). Significant correlations (P < 0.004) between plasma total 8-iso-PGF(2alpha) levels and circulating sICAM-1 (r = 0.485), sVCAM-1 (r = 0.506), sP-selectin (r = 0.449), sCD40 ligand (r = 0.498), and hs-CRP (r = 0.520) concentrations were found in obese children. In conclusion, an early activation of vascular endothelial cells and platelets was present in obese children. Increased lipid peroxidation was also present in these children and likely contributed to the observed proinflammatory phenotype.

  9. Relationship between endothelial progenitor cells and vascular endothelial growth factor and its variation with exercise.

    PubMed

    Gagliardi, Juan A; Maciel, Neiva; Castellano, José L; Masoli, Osvaldo; Miksztowicz, Verónica; Berg, Gabriela; Bermejo, Emilse; Lazzari, María; Gelpi, Ricardo J

    2016-01-01

    The aim of our study was to evaluate the effect of programmed physical activity and a single exercise test on the number of CD309+ circulating endothelial progenitor cell (EPC) and their relation to the variation in plasma levels of VEGF in chronic coronary patients. 21 patients <75 years with chronic stable coronary artery disease were included. All patients underwent exercise myocardial perfusion SPECT. Then, participants were divided into two groups: one group (11 patients) underwent cardiac rehabilitation program and the other (10 patients) continued with the standard treatment. Blood samples were obtained at baseline, 30 min after exercise ended and at one and three months during follow-up. VEGF values decreased significantly after exercise SPECT test. After one month, there was a significant increase in VEGF levels compared to those measured immediately after exercise. All patients showed a decrease in the values of EPC at 1 and 3-month follow-up. There was an inverse and statistically significant relation between change of EPC and VEGF between the baseline and 1 month. The increase of VEGF at 1-month, with respect to baseline values correlated with decreased levels of EPC. This association was independent of the onset of ischemia in the perfusion study.

  10. The impact of endothelial progenitor cells on restenosis after percutaneous angioplasty of hemodialysis vascular access.

    PubMed

    Wu, Chih-Cheng; Huang, Po-Hsun; Lai, Chao-Lun; Leu, Hsin-Bang; Chen, Jaw-Wen; Lin, Shing-Jong

    2014-01-01

    We prospectively investigate the relation between baseline circulating endothelial progenitor cells and the subsequent development of restenosis after angioplasty of hemodialysis vascular access. Effect of angioplasty for hemodialysis vascular access is greatly attenuated by early and frequent restenosis. Circulating endothelial progenitor cells (EPCs) play a key role in vascular repair but are deficient in hemodialysis patients. After excluding 14 patients due to arterial stenosis, central vein stenosis, and failed angioplasty, 130 patients undergoing angioplasty for dysfunctional vascular access were prospectively enrolled. Flow cytometry with quantification of EPC markers (defined as CD34+, CD34+KDR+, CD34+KDR+CD133+) in peripheral blood immediately before angioplasty procedures was used to assess circulating EPC numbers. Patients were followed clinically for up to one year after angioplasty. During the one-year follow-up, 95 patients (73%) received interventions for recurrent access dysfunction. Patients in the lower tertile of CD34+KDR+ cell count had the highest restenosis rates (46%) at three month (early restenosis), compared with patients in the medium and upper tertiles of CD34+KDR+ cell count (27% and 12% respectively, p = 0.002). Patients in the lower tertile of CD34+KDR+ cell count received more re-interventions during one year. Patients with early restenosis had impaired EPC adhesive function and increased senescence and apoptosis. In multivariate analysis, the CD34+KDR+ and CD34+KDR+CD133+ cell counts were independent predictors of target-lesion early restenosis. Our results suggest that the deficiency of circulating EPCs is associated with early and frequent restenosis after angioplasty of hemodialysis vascular access.

  11. The effect and action mechanism of resveratrol on the vascular endothelial cell by high glucose treatment.

    PubMed

    Liu, Xun; Tian, Jie; Bai, Quanhao; Ashraf, Muhammad Aqeel; Sarfraz, Maliha; Zhao, Bojun

    2016-01-01

    To investigate the effect and action mechanism of resveratrol on the vascular endothelial cell by high glucose treatment. Primarily cultured human umbilical vein endothelial cells (HUVECs) were pretreated by resveratrol (0.2 μmol/L) and holding for 6 h, and then cultured in Dulbecco Modified Eagle Medium (DMEM) within 0.45 mmol/L of palmimte acid and 32.8 mmol/L of glucose, which is holding for 12 h. The cells were collected to analyze the expression of E-selected element. Supernatant of cultured cells, induced by 100 nmol/L insulin for 30 min, was used to analyze the nitric oxide content. Compared with normal control cells, the secretion of nitric oxide is stimulated by insulin decrease, however, the expression of E-selected element increased in HUVEC. Resveratrol treatment increased the secretion of nitric oxide stimulated by insulin and decreased the expression of E-selected element and partly counteracts the impairment of high glucose and palmitate acid on the function of endothelial cells. Resveratrol can improve and protect the function of high glucose and fatty acid cultured endothelial cell, and therefore may be a promising medicine in the prevention or therapy of diabetic macrovascular diseases.

  12. Pyridostigmine prevents peripheral vascular endothelial dysfunction in rats with myocardial infarction.

    PubMed

    Qin, Fangfang; Lu, Yi; He, Xi; Zhao, Ming; Bi, Xueyuan; Yu, Xiaojiang; Liu, Jinjun; Zang, Weijin

    2014-03-01

    1. Myocardial infarction (MI) is characterized by the withdrawal of vagal activity and increased sympathetic activity. We have shown previously that pyridostigmine (PYR), an acetylcholinesterase inhibitor, was able to improve vagal activity and ameliorate cardiac dysfunction following MI. However, the effect of PYR on endothelial dysfunction in peripheral arteries after MI remains unclear. 2. In the present study, MI was induced by coronary artery ligation in adult Sprague-Dawley rats. Rats were treated intragastrically with saline or PYR (approximately 31 mg/kg per day) for 2 weeks, at which time haemodynamic and parasympathetic parameters and the vascular reactivity of isolated mesenteric arteries were measured and the ultrastructure of the endothelium evaluated. 3. Compared with the MI group, PYR not only improved cardiac function, vagal nerve activity and endothelial impairment, but also reduced intravascular superoxide anion and malondialdehyde. In addition, in the PYR-treated MI group, nitric oxide (NO) bioavailability was increased and attenuated endothelium-dependent relaxations were improved, whereas restored vasodilator responses were inhibited by N(G)-nitro-L-arginine methyl ester. 4. Based on our results, PYR is able to attenuate the impairment of peripheral endothelial function and maintain endothelial ultrastructural integrity in MI rats by inhibiting reactive oxygen species production, enhancing NO bioavailability and improving vagal activity. © 2014 Wiley Publishing Asia Pty Ltd.

  13. Role of vascular and lymphatic endothelial cells in hantavirus pulmonary syndrome suggests targeted therapeutic approaches.

    PubMed

    Mackow, Erich R; Gorbunova, Elena E; Dalrymple, Nadine A; Gavrilovskaya, Irina N

    2013-09-01

    Hantaviruses in the Americas cause a highly lethal acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). Hantaviruses nonlytically infect microvascular and lymphatic endothelial cells and cause dramatic changes in barrier functions without disrupting the endothelium. Hantaviruses cause changes in the function of infected endothelial cells that normally regulate fluid barrier functions. The endothelium of arteries, veins, and lymphatic vessels are unique and central to the function of vast pulmonary capillary beds that regulate pulmonary fluid accumulation. We have found that HPS-causing hantaviruses alter vascular barrier functions of microvascular and lymphatic endothelial cells by altering receptor and signaling pathway responses that serve to permit fluid tissue influx and clear tissue edema. Infection of the endothelium provides several mechanisms for hantaviruses to cause acute pulmonary edema, as well as potential therapeutic targets for reducing the severity of HPS disease. Here we discuss interactions of HPS-causing hantaviruses with the endothelium, roles for unique lymphatic endothelial responses in HPS, and therapeutic targeting of the endothelium as a means of reducing the severity of HPS disease.

  14. Role of folic acid in nitric oxide bioavailability and vascular endothelial function.

    PubMed

    Stanhewicz, Anna E; Kenney, W Larry

    2017-01-01

    Folic acid is a member of the B-vitamin family and is essential for amino acid metabolism. Adequate intake of folic acid is vital for metabolism, cellular homeostasis, and DNA synthesis. Since the initial discovery of folic acid in the 1940s, folate deficiency has been implicated in numerous disease states, primarily those associated with neural tube defects in utero and neurological degeneration later in life. However, in the past decade, epidemiological studies have identified an inverse relation between both folic acid intake and blood folate concentration and cardiovascular health. This association inspired a number of clinical studies that suggested that folic acid supplementation could reverse endothelial dysfunction in patients with cardiovascular disease (CVD). Recently, in vitro and in vivo studies have begun to elucidate the mechanism(s) through which folic acid improves vascular endothelial function. These studies, which are the focus of this review, suggest that folic acid and its active metabolite 5-methyl tetrahydrofolate improve nitric oxide (NO) bioavailability by increasing endothelial NO synthase coupling and NO production as well as by directly scavenging superoxide radicals. By improving NO bioavailability, folic acid may protect or improve endothelial function, thereby preventing or reversing the progression of CVD in those with overt disease or elevated CVD risk. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Oxidative stress affects processing of amyloid precursor protein in vascular endothelial cells.

    PubMed

    Muche, Abebe; Arendt, Thomas; Schliebs, Reinhard

    2017-01-01

    Oxidative stress is thought to be a key player in the pathogenesis of neurodegenerative dementia, including Alzheimer's disease (AD). It has been assumed that oxidative stress contributes to the ß-amyloid deposition in cerebral blood vessels. In order to prove this hypothesis, we examined the effect of oxidative stress on the processing of amyloid precursor protein (APP) in primary endothelial cells (EC) derived from cerebral cortical tissue of transgenic Tg2576 mice. Following exposure of EC by 1 μM hydrogen peroxide for up to 48 hours, formation and secretion of APP cleavage products sAPPα and sAPPß into the culture medium as well as the expression of endothelial APP were assessed. Oxidative stress resulted in enhanced secretion of sAPPß into the culture medium as compared to controls (absence of hydrogen peroxide), which was accompanied by an increased APP expression, induction of VEGF synthesis, nitric oxide and oxygen free radicals productions, and differential changes of endothelial phospo-p42/44 MAPK expression. The data suggest that oxidative stress may represent a major risk factor in causing Aß deposition in the brain vascular system by initiating the amyloidogenic route of endothelial APP processing. The enhanced β-secretase activity following oxidative stress exposure, possibly promoted by phosphorylation of p42/44 MAPK.

  16. Heparan sulfate chains potentiate cadmium cytotoxicity in cultured vascular endothelial cells.

    PubMed

    Fujiwara, Yasuyuki; Yamamoto, Chika; Yoshida, Eiko; Kumagai, Yoshito; Kaji, Toshiyuki

    2016-02-01

    The monolayer of vascular endothelial cells, which is rich in heparan sulfate chains, is an important target of cadmium cytotoxicity. To investigate the effects of heparan sulfate chains on cadmium cytotoxicity, bovine aortic endothelial cells were cultured in the presence of cadmium, with or without exogenous heparan sulfate. The following results were obtained: (1) Heparan sulfate chains potentiated cadmium cytotoxicity. (2) Such a potentiation did not occur in bovine aortic smooth muscle cells. (3) Heparin chains as well as heparan sulfate chains potentiated cadmium cytotoxicity, while other glycosaminoglycan chains failed to exhibit such an activity. (4) The disaccharide units of heparan sulfate chains did not potentiate cadmium cytotoxicity in the endothelial cells. (5) Heparan sulfate chains did not potentiate mercury and arsenite cytotoxicity. (6) Fibroblast growth factor-2 (FGF-2) also potentiated cadmium cytotoxicity in the endothelial cells. (7) Heparan sulfate chains significantly increased intracellular cadmium accumulation by inducing the expression of metallothionein. Taken together, these results suggest that heparan sulfate chains activate FGF-2, which in turn elevates the expression and/or activity of metal transporter(s) that facilitate cadmium influx from the extracellular space into the cytoplasm.

  17. [Medical significance of endothelial glycocalyx. Part 2: Its role in vascular diseases and in diabetic complications].

    PubMed

    Frati Munari, Alberto C

    2014-01-01

    Endothelial glycocalyx is a layer composed by glycosaminoglycans, proteoglycans and glycoproteins attached to the vascular endothelial luminal surface. Shredding of glycocalyx appears as an essential initial step in the pathophysiology of atherosclerosis and microangiopathic complications of diabetes mellitus, as well as in chronic venous disease. Atherosclerosis risk factors, as hypercholesterolemia (LDL), hyperglycemia, inflammation, salt excess and altered shear stress can damage glycocalyx. This lead to endothelial dysfunction and allows LDL and leukocytes to filtrate to the subendothelial space initiating atheroma plaque formation. Degradation of glycocalyx in diabetes mellitus is mainly due to oxidative stress and enables protein filtration (albuminuria) and endothelial disorder of microangiopathy. Chronic venous hypertension brings to altered shears stress which results in shredded glycocalyx, this allows leukocytes to migrate into venous wall and initiate inflammation leading to morphologic and functional venous changes of the chronic venous disease. Treatment with glycosaminoglycans (sulodexide) prevents or recovers the damaged glycocalyx and several of its consequences. This drug improves chronic venous disease and promotes healing of chronic venous ulcers. It has also been useful in peripheral arterial obstructive disease and in diabetic nephropathy with albuminuria.

  18. Chronic Embolic Pulmonary Hypertension Caused by Pulmonary Embolism and Vascular Endothelial Growth Factor Inhibition.

    PubMed

    Neto-Neves, Evandro M; Brown, Mary B; Zaretskaia, Maria V; Rezania, Samin; Goodwill, Adam G; McCarthy, Brian P; Persohn, Scott A; Territo, Paul R; Kline, Jeffrey A

    2017-04-01

    Our understanding of the pathophysiological basis of chronic thromboembolic pulmonary hypertension (CTEPH) will be accelerated by an animal model that replicates the phenotype of human CTEPH. Sprague-Dawley rats were administered a combination of a single dose each of plastic microspheres and vascular endothelial growth factor receptor antagonist in polystyrene microspheres (PE) + tyrosine kinase inhibitor SU5416 (SU) group. Shams received volume-matched saline; PE and SU groups received only microspheres or SU5416, respectively. PE + SU rats exhibited sustained pulmonary hypertension (62 ± 13 and 53 ± 14 mmHg at 3 and 6 weeks, respectively) with reduction of the ventriculoarterial coupling in vivo coincident with a large decrement in peak rate of oxygen consumption during aerobic exercise, respectively. PE + SU produced right ventricular hypokinesis, dilation, and hypertrophy observed on echocardiography, and 40% reduction in right ventricular contractile function in isolated perfused hearts. High-resolution computed tomographic pulmonary angiography and Ki-67 immunohistochemistry revealed abundant lung neovascularization and cellular proliferation in PE that was distinctly absent in the PE + SU group. We present a novel rodent model to reproduce much of the known phenotype of CTEPH, including the pivotal pathophysiological role of impaired vascular endothelial growth factor-dependent vascular remodeling. This model may reveal a better pathophysiological understanding of how PE transitions to CTEPH in human treatments.

  19. The mechanism of vascular leakage induced by leukotriene E4. Endothelial contraction.

    PubMed Central

    Joris, I.; Majno, G.; Corey, E. J.; Lewis, R. A.

    1987-01-01

    This study identifies the microvascular target of leukotriene E4 (LTE4) by vascular labeling with carbon black and establishes the mechanism of its action at the cellular level by electron microscopy. LTE4 and its tripeptide precursor, leukotriene C4 (LTC4) were injected subcutaneously in guinea pigs. With LTE4, venular labeling was intense at 1000 and 100 ng and slight at 10 ng, with extinction at 1 ng. LTC4 induced a ring of labeled venules around a blank central area, suggestive of vasospasm. The nonpeptidyl leukotriene LTB4 induced no labeling. Histamine (1000 ng) induced an area of vascular labeling about equal to that by 1000 ng LTE4, but the labeling of individual venules was more intense. By electron microscopy, LTE4 was found to induce gaps in the endothelium of the venules; the endothelial cells adjacent to the gaps bulged into the lumen and showed wrinkled nuclei, consistent with cellular contraction. This ultrastructural evidence suggests that LTE4 increases vascular permeability by contraction of endothelial cells selectively, in the postcapillary venules, as was previously demonstrated for other inflammatory mediators, including histamine, serotonin, and bradykinin. Images Figure 2 Figure 3 Figure 4 PMID:3028143

  20. [An experimental study on the differentiation of bone marrow mesenchymal stem cells into vascular endothelial cells].

    PubMed

    Fang, Li-Jun; Fu, Xiao-Bing; Sun, Tong-Zhu; Li, Jian-Fu; Cheng, Biao; Yang, Yin-Hui; Wang, Yu-Xin

    2003-02-01

    To investigate the feasibility of differentiation of bone marrow mesenchymal stem cells (MSCs) into vascular endothelial cells and the mechanism of its involvement in wound healing. Porcine MSCs were harvested from porcine marrow, and they were isolated and purified by density gradient centrifugation. After being cultured and amplified in vitro, the MSCs were labelled with BrdU (5-bromodeoxy-uridine). Full skin loss wound was created on the back of the mini-swine whose bone marrow was obtained. The labelled MSCs with fibrin glue as the vector were regrafted back to the donor animal wound. The wound tissue specimens were harvested at 2, 4, 6, 8 and 12 post-operation weeks and were immunohistochemically stained by BrdU and factor VIII (FVIII) for comparative study. Most BrdU positive cells aggregated around small blood vessels in the granulation tissue of the wounds. Only individual vascular endothelial cells were BrdU positive. There was FVIII expression in the cytoplasm of BrdU positive cells. MSCs were closely correlated with the formation of small blood vessels in granulation tissue during wound healing process. The porcine MSCs possessed the potential to differentiate into vascular entoehelial cells and to participate in wound healing under the micro-enviroment of the wound.

  1. Mechanical properties of endothelialized fibroblast-derived vascular scaffolds stimulated in a bioreactor.

    PubMed

    Tondreau, Maxime Y; Laterreur, Véronique; Gauvin, Robert; Vallières, Karine; Bourget, Jean-Michel; Lacroix, Dan; Tremblay, Catherine; Germain, Lucie; Ruel, Jean; Auger, François A

    2015-05-01

    There is an ongoing clinical need for tissue-engineered small-diameter (<6mm) vascular grafts since clinical applications are restricted by the limited availability of autologous living grafts or the lack of suitability of synthetic grafts. The present study uses our self-assembly approach to produce a fibroblast-derived decellularized vascular scaffold that can then be available off-the-shelf. Briefly, scaffolds were produced using human dermal fibroblasts sheets rolled around a mandrel, maintained in culture to allow for the formation of cohesive and three-dimensional tubular constructs, and then decellularized by immersion in deionized water. Constructs were then endothelialized and perfused for 1week in an appropriate bioreactor. Mechanical testing results showed that the decellularization process did not influence the resistance of the tissue and an increase in ultimate tensile strength was observed following the perfusion of the construct in the bioreactor. These fibroblast-derived vascular scaffolds could be stored and later used to deliver readily implantable grafts within 4weeks including an autologous endothelial cell isolation and seeding process. This technology could greatly accelerate the clinical availability of tissue-engineered blood vessels.

  2. Understanding the effects of mature adipocytes and endothelial cells on fatty acid metabolism and vascular tone in physiological fatty tissue for vascularized adipose tissue engineering.

    PubMed

    Huber, Birgit; Volz, Ann-Cathrin; Kluger, Petra J

    2015-11-01

    Engineering of large vascularized adipose tissue constructs is still a challenge for the treatment of extensive high-graded burns or the replacement of tissue after tumor removal. Communication between mature adipocytes and endothelial cells is important for homeostasis and the maintenance of adipose tissue mass but, to date, is mainly neglected in tissue engineering strategies. Thus, new co-culture strategies are needed to integrate adipocytes and endothelial cells successfully into a functional construct. This review focuses on the cross-talk of mature adipocytes and endothelial cells and considers their influence on fatty acid metabolism and vascular tone. In addition, the properties and challenges with regard to these two cell types for vascularized tissue engineering are highlighted.

  3. [Role of vascular endothelial growth factor and monocyte chemoattractant protein-1 in the development of endothelial dysfunction in types 1 and 2 diabetes mellitus complicated by diabetic retinopathy].

    PubMed

    Nikitina, V V; Zakharova, N B; Kamenskikh, T G

    2011-06-01

    The paper presents the results of a study of the serum levels of monocyte chemoattractant protein-1 (MCP-1) and vascular endothelial growth factor (VEGF) in 120 patients with types 1 and 2 diabetes mellitus complicated by diabetic retinopathy. All the patients with diabetes have been ascertained to show a rise in the levels of MCP-1 and VEGF. Calculation of VEGF/MCP-1 ratio is proposed to evaluate vascular bed lesion in diabetic patients.

  4. Expression of the vascular permeability factor/vascular endothelial growth factor gene in central nervous system neoplasms.

    PubMed Central

    Berkman, R A; Merrill, M J; Reinhold, W C; Monacci, W T; Saxena, A; Clark, W C; Robertson, J T; Ali, I U; Oldfield, E H

    1993-01-01

    Expression of the vascular permeability factor/vascular endothelial growth factor (VEGPF) gene was investigated in human central nervous system (CNS) neoplasms and normal brain. Adsorption of capillary permeability activity from human glioblastoma multiforme (GBM) cell conditioned medium and GBM cyst fluids by anti-VEGPF antibodies demonstrated that VEGPF is secreted by GBM cells and is present in sufficient quantities in vivo to induce vascular permeability. Cloning and sequencing of polymerase chain reaction-amplified GBM and normal brain cDNA demonstrated three forms of the VEGPF coding region (567, 495, and 363 nucleotides), corresponding to mature polypeptides of 189, 165, and 121 amino acids, respectively. VEGPF mRNA levels in CNS tumors vs. normal brain were investigated by the RNase protection assay. Significant elevation of VEGPF gene expression was observed in 81% (22/27) of the highly vascular and edema-associated CNS neoplasms (6/8 GBM, 8/8 capillary hemangioblastomas, 6/7 meningiomas, and 2/4 cerebral metastases). In contrast, only 13% (2/15) of those CNS tumors that are not commonly associated with significant neovascularity or cerebral edema (2/10 pituitary adenomas and 0/5 nonastrocytic gliomas) had significantly increased levels of VEGPF mRNA. The relative abundance of the forms of VEGPF mRNA was consistent in tumor and normal brain: VEGPF495 > VEGPF363 > VEGPF567. In situ hybridization confirmed the presence of VEGPF mRNA in tumor cells and its increased abundance in capillary hemangioblastomas. Our results suggest a significant role for VEGPF in the development of CNS tumor neovascularity and peritumoral edema. Images PMID:8380810

  5. A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them

    PubMed Central

    Carman, Christopher V.; Springer, Timothy A.

    2004-01-01

    The basic route and mechanisms for leukocyte migration across the endothelium remain poorly defined. We provide definitive evidence for transcellular (i.e., through individual endothelial cells) diapedesis in vitro and demonstrate that virtually all, both para- and transcellular, diapedesis occurs in the context of a novel “cuplike” transmigratory structure. This endothelial structure was comprised of highly intercellular adhesion molecule-1– and vascular cell adhesion molecule-1–enriched vertical microvilli-like projections that surrounded transmigrating leukocytes and drove redistribution of their integrins into linear tracks oriented parallel to the direction of diapedesis. Disruption of projections was highly correlated with inhibition of transmigration. These findings suggest a novel mechanism, the “transmigratory cup”, by which the endothelium provides directional guidance to leukocytes for extravasation. PMID:15504916

  6. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal.

    PubMed

    Benjamin, L E; Golijanin, D; Itin, A; Pode, D; Keshet, E

    1999-01-01

    Features that distinguish tumor vasculatures from normal blood vessels are sought to enable the destruction of preformed tumor vessels. We show that blood vessels in both a xenografted tumor and primary human tumors contain a sizable fraction of immature blood vessels that have not yet recruited periendothelial cells. These immature vessels are selectively obliterated as a consequence of vascular endothelial growth factor (VEGF) withdrawal. In a xenografted glioma, the selective vulnerability of immature vessels to VEGF loss was demonstrated by downregulating VEGF transgene expression using a tetracycline-regulated expression system. In human prostate cancer, the constitutive production of VEGF by the glandular epithelium was suppressed as a consequence of androgen-ablation therapy. VEGF loss led, in turn, to selective apoptosis of endothelial cells in vessels devoid of periendothelial cells. These results suggest that the unique dependence on VEGF of blood vessels lacking periendothelial cells can be exploited to reduce an existing tumor vasculature.

  7. Effect of cerium oxide nanoparticles on inflammation in vascular endothelial cells.

    PubMed

    Gojova, Andrea; Lee, Jun-Tae; Jung, Heejung S; Guo, Bing; Barakat, Abdul I; Kennedy, Ian M

    2009-07-01

    Because vascular endothelial cell inflammation is critical in the development of cardiovascular pathology, we hypothesized that direct exposure of human aortic endothelial cells (HAECs) to ultrafine particles induces an inflammatory response. To test the hypothesis, we incubated HAECs for 4 h with different concentrations (0.001-50 microg/ml) of CeO(2) nanoparticles and subsequently measured mRNA levels of the three inflammatory markers intercellular adhesion molecule 1 (ICAM-1), interleukin (IL)-8, and monocyte chemotactic protein (MCP-1) using real-time polymerase chain reaction (PCR). Ceria nanoparticles caused very little inflammatory response in HAECs, even at the highest dose. This material is apparently rather benign in comparison with Y(2)O(3) and ZnO nanoparticles that we have studied previously. These results suggest that inflammation in HAECs following acute exposure to metal oxide nanoparticles depends strongly on particle composition.

  8. Effect of cerium oxide nanoparticles on inflammation in vascular endothelial cells

    PubMed Central

    Gojova, Andrea; Lee, Jun-Tae; Jung, Heejung S.; Guo, Bing; Barakat, Abdul I.; Kennedy, Ian M.

    2010-01-01

    Because vascular endothelial cell inflammation is critical in the development of cardiovascular pathology, we hypothesized that direct exposure of human aortic endothelial cells (HAECs) to ultrafine particles induces an inflammatory response. To test the hypothesis, we incubated HAECs for 4 h with different concentrations (0.001–50 μg/ml) of CeO2 nanoparticles and subsequently measured mRNA levels of the three inflammatory markers intercellular adhesion molecule 1 (ICAM-1), interleukin (IL)-8, and monocyte chemotactic protein (MCP-1) using real-time polymerase chain reaction (PCR). Ceria nanoparticles caused very little inflammatory response in HAECs, even at the highest dose. This material is apparently rather benign in comparison with Y2O3 and ZnO nanoparticles that we have studied previously. These results suggest that inflammation in HAECs following acute exposure to metal oxide nanoparticles depends strongly on particle composition. PMID:19558244

  9. The role of cytoskeleton in the regulation of vascular endothelial barrier function.

    PubMed

    Bogatcheva, Natalia V; Verin, Alexander D

    2008-11-01

    The cytoskeleton is vital to the function of virtually all cell types in the organism as it is required for cell division, cell motility, endo- or exocytosis and the maintenance of cell shape. Endothelial cells, lining the inner surface of the blood vessels, exploit cytoskeletal elements to ensure the integrity of cell monolayer in quiescent endothelium, and to enable the disintegration of the formed barrier in response to various agonists. Vascular permeability is defined by the combination of transcellular and paracellular pathways, with the latter being a major contributor to the inflammation-induced barrier dysfunction. This review will analyze the cytoskeletal elements, which reorganization affects endothelial permeability, and emphasize signaling mechanisms with barrier-protective or barrier-disruptive potential.

  10. Chronic in vitro shear stress stimulates endothelial cell retention on prosthetic vascular grafts and reduces subsequent in vivo neointimal thickness.

    PubMed

    Dardik, A; Liu, A; Ballermann, B J

    1999-01-01

    The absence of endothelial cells at the luminal surface of a prosthetic vascular graft potentiates thrombosis and neointimal hyperplasia, which are common causes of graft failure in humans. This study tested the hypothesis that pretreatment with chronic in vitro shear stress enhances subsequent endothelial cell retention on vascular grafts implanted in vivo. Cultured endothelial cells derived from Fischer 344 rat aorta were seeded onto the luminal surface of 1.5-mm internal diameter polyurethane vascular grafts. The seeded grafts were treated for 3 days with 1 dyne/cm2 shear stress and then for an additional 3 days with 1 or 25 dyne/cm2 shear stress in vitro. The grafts then were implanted as aortic interposition grafts into syngeneic rats in vivo. Grafts that were similarly seeded with endothelial cells but not treated with shear stress and grafts that were not seeded with endothelial cells served as controls. The surgical hemostasis time was monitored. Endothelial cell identity, density, and graft patency rate were evaluated 24 hours after implantation. Endothelial cell identity in vivo was confirmed with cells transduced in vitro with beta-galactosidase complementary DNA in a replication-deficient adenoviral vector. Histologic, scanning electron microscopic, and immunohistochemical analyses were performed 1 week and 3 months after implantation to establish cell identity and to measure neointimal thickness. The pretreatment with 25 dyne/cm2 but not with 0 or 1 dyne/cm2 shear stress resulted in the retention of fully confluent endothelial cell monolayers on the grafts 24 hours after implantation in vivo. Retention of seeded endothelial cells was confirmed by the observation that beta-galactosidase transduced cells were retained as a monolayer 24 hours after implantation in vivo. In the grafts with adherent endothelial cells that were pretreated with shear stress, immediate graft thrombosis was inhibited and surgical hemostasis time was significantly prolonged

  11. A PROSPECTIVE, OBSERVATIONAL STUDY OF SOLUBLE FLT-1 AND VASCULAR ENDOTHELIAL GROWTH FACTOR IN SEPSIS

    PubMed Central

    Shapiro, Nathan I.; Yano, Kiichiro; Okada, Hitomi; Fischer, Christopher; Howell, Michael; Spokes, Katherine C.; Ngo, Long; Angus, Derek C.; Aird, William C.

    2012-01-01

    Prior murine and human studies suggest that vascular endothelial growth factor (VEGF) contributes to endothelial cell activation and severity of illness in sepsis. Furthermore, circulating levels of soluble VEGF receptor 1 (sFLT) levels were found to increase as part of the early response to sepsis in mice. The objective of the study was to evaluate the blood levels of free VEGF-A and sFLT in patients presenting to the emergency department (ED) with suspected infection and to assess the relationship of these levels with severity of illness and inflammation. It was a prospective, observational study initiated in the ED of an urban, tertiary care, university hospital. Inclusion criteria were (1) ED patients aged 18 years or older and (2) clinical suspicion of infection. Eighty-three patients were enrolled in the study. The major findings were that (1) the mean VEGF and sFLT levels were increasingly higher across the following groups: noninfected control patients, infected patients without shock, and septic shock patients; (2) initial and 24-h VEGF levels had a significant correlation with the presence of septic shock at 24 h; (3) initial and 24-h sFLT levels correlated with Acute Physiology Age Chronic Health Evaluation II and Sepsis-related Organ Failure Assessment scores initially and at 24 h; and (4) VEGF and sFLT levels correlated with inflammatory cascade activation. This is the first report of sFLT as a potential new marker of severity in patients with sepsis. Vascular endothelial cell growth factor and its signaling axis are important in the endothelial cell response to sepsis, and further elucidation of these mechanisms may lead to advances in future diagnostic and therapeutic opportunities. PMID:18598002

  12. Treatment of denture-related stomatitis improves endothelial function assessed by flow-mediated vascular dilation.

    PubMed

    Osmenda, Grzegorz; Maciąg, Joanna; Wilk, Grzegorz; Maciąg, Anna; Nowakowski, Daniel; Loster, Jolanta; Dembowska, Elżbieta; Robertson, Douglas; Guzik, Tomasz; Cześnikiewicz-Guzik, Marta

    2017-02-01

    The presence of oral inflammation has recently been linked with the pathogenesis of cardiovascular diseases. While numerous studies have described links between periodontitis and endothelial dysfunction, little is known about the influence of denture-related stomatitis (DRS) on cardiovascular risk. Therefore, the aim of this study was to determine whether the treatment of DRS can lead to improvement of the clinical measures of vascular dysfunction. The DRS patients were treated with a local oral antifungal agent for 3 weeks. Blood pressure, flow-mediated dilatation (FMD) and nitroglycerine-mediated vascular dilatation (NMD) were measured during three study visits: before treatment, one day and two months after conclusion of antifungal therapy. Flow-mediated dilatation measurements showed significant improvement of endothelial function 2 months after treatment (FMD median 5%, 95 CI: 3-8.3 vs. 11%, 95% CI: 8.8-14.4; p < 0.01), while there was no difference in control, endothelium-independent vasorelaxations (NMD; median = 15.3%, 95% CI: 10.8-19.3 vs. 12.7%, 95% CI: 10.6-15; p = 0.3). Other cardiovascular parameters such as systolic (median = 125 mm Hg; 95% CI: 116-129 vs. 120 mm Hg, 95% CI: 116-126; p = 0.1) as well as diastolic blood pressure and heart rate (median = 65.5 bpm, 95% CI: 56.7-77.7 vs. 71 bpm, 95% CI: 66.7-75; p = 0.5) did not change during or after the treatment. Treatment of DRS is associated with improvement of endothelial function. Since endothelial dysfunction is known to precede the development of severe cardiovascular disorders such as atherosclerosis and hypertension, patients should be more carefully screened for DRS in general dental practice, and immediate DRS treatment should be advised.

  13. Treatment of denture-related stomatitis improves endothelial function assessed by flow-mediated vascular dilation

    PubMed Central

    Osmenda, Grzegorz; Maciąg, Joanna; Wilk, Grzegorz; Maciąg, Anna; Nowakowski, Daniel; Loster, Jolanta; Dembowska, Elżbieta; Robertson, Douglas; Guzik, Tomasz

    2016-01-01

    Introduction The presence of oral inflammation has recently been linked with the pathogenesis of cardiovascular diseases. While numerous studies have described links between periodontitis and endothelial dysfunction, little is known about the influence of denture-related stomatitis (DRS) on cardiovascular risk. Therefore, the aim of this study was to determine whether the treatment of DRS can lead to improvement of the clinical measures of vascular dysfunction. Material and methods The DRS patients were treated with a local oral antifungal agent for 3 weeks. Blood pressure, flow-mediated dilatation (FMD) and nitroglycerine-mediated vascular dilatation (NMD) were measured during three study visits: before treatment, one day and two months after conclusion of antifungal therapy. Results Flow-mediated dilatation measurements showed significant improvement of endothelial function 2 months after treatment (FMD median 5%, 95 CI: 3–8.3 vs. 11%, 95% CI: 8.8–14.4; p < 0.01), while there was no difference in control, endothelium-independent vasorelaxations (NMD; median = 15.3%, 95% CI: 10.8–19.3 vs. 12.7%, 95% CI: 10.6–15; p = 0.3). Other cardiovascular parameters such as systolic (median = 125 mm Hg; 95% CI: 116–129 vs. 120 mm Hg, 95% CI: 116–126; p = 0.1) as well as diastolic blood pressure and heart rate (median = 65.5 bpm, 95% CI: 56.7–77.7 vs. 71 bpm, 95% CI: 66.7–75; p = 0.5) did not change during or after the treatment. Conclusions Treatment of DRS is associated with improvement of endothelial function. Since endothelial dysfunction is known to precede the development of severe cardiovascular disorders such as atherosclerosis and hypertension, patients should be more carefully screened for DRS in general dental practice, and immediate DRS treatment should be advised. PMID:28144257

  14. Impaired vascular endothelial function in patients with restless legs syndrome: a new aspect of the vascular pathophysiology.

    PubMed

    Koh, Seung Yon; Kim, Min Seung; Lee, Sun Min; Hong, Ji Man; Yoon, Jung Han

    2015-12-15

    Restless legs syndrome (RLS) is a common sleep disorder in which patients feel unpleasant leg sensations and the urge to move their legs during rest, particularly at night. Leg movement improves these symptoms. Although several studies have demonstrated an association between cardiovascular disease and RLS, the mechanisms underlying this relationship remain unclear. Recent studies have shown changes in the peripheral microvasculature, including altered blood flow and capillary tortuosity, and peripheral hypoxia. Vascular endothelial dysfunction can be assessed noninvasively with ultrasound measurements of brachial artery flow-mediated dilatation (FMD). Therefore, this study investigated FMD in RLS patients to determine the involvement of microvascular alterations in this disorder. The study enrolled 25 drug-naïve RLS patients and 25 sex- and age-matched controls and compared the FMD values of the two groups. RLS was diagnosed according to the criteria of the International Restless Legs Syndrome Study Group. FMD was significantly lower in the RLS patients (6.6 ± 1.2%) compared to the controls (8.4 ± 1.8%; p<0.05) and the RLS patients showed a weak, negative correlation between RLS severity and FMD (r=-0.419, p=0.04). Multivariate linear regression analysis revealed that RLS (B=-1.87, 95% confidence interval [CI] -2.72 to -1.02; p<0.001) and age (B=-0.06; 95% CI -0.12 to -0.02; p<0.001) were significantly and inversely correlated with FMD. This study demonstrated that RLS patients have poorer vascular endothelial function than normal healthy subjects and provides further evidence supporting the involvement of peripheral systems in the generation of RLS. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. New proangiogenic activity on vascular endothelial cells for C-terminal mechano growth factor.

    PubMed

    Deng, Moyuan; Wang, Yuanliang; Zhang, Bingbing; Liu, Peng; Xiao, Hualiang; Zhao, Jianhua

    2012-04-01

    Angiogenesis is crucial in wound healing. The administration of the C-terminal 24-a.a. peptide of mechano growth factor (MGF24E) has been previously demonstrated to induce more blood vessels in regenerating bone around defective areas compared with the control. Accordingly, this study aims to determine whether MGF24E promotes bone defect healing through MGF24E-increased angiogenesis and whether MGF24E has positive effects on angiogenesis in vitro. The roles of MGF24E on angiogenesis and the underlying mechanisms were investigated. The cell proliferation, migration, and tubulogenesis of the human vascular endothelial EA.hy926 cells co-treated with 2% serum and MGF24E were determined to assess angiogenesis in comparison with 100 ng/ml of vascular endothelial growth factor 165 (VEGF(165))-positive control or vehicle control (phosphate-buffered saline). MGF24E treatment (10 ng/ml) significantly promoted the biological processes of angiogenesis on EA.hy926 cells compared with the vehicle control. The suppression of vascular endothelial growth factor and angiopoietin-I expressions by 2% serum starvation was reversed by the addition of 10 ng/ml of MGF24E in 2% serum medium. This result suggests that MGF24E has a protective effect on angiogenesis. Moreover, the inhibition of ERK due to PD98050 pretreatment completely abolished and mostly blocked MGF24E-induced proliferation and migration, respectively, whereas the MGF24-induced tubulogenesis and the angiogenic factor expression were only partially inhibited. These new findings suggest that MGF24E promotes angiogenesis by enhancing the expression of angiogenic cytokines which involves the MAPK/ERK-signaling pathway.

  16. Copper diethyldithiocarbamate as an activator of Nrf2 in cultured vascular endothelial cells.

    PubMed

    Fujie, Tomoya; Murakami, Masaki; Yoshida, Eiko; Tachinami, Tadashi; Shinkai, Yasuhiro; Fujiwara, Yasuyuki; Yamamoto, Chika; Kumagai, Yoshito; Naka, Hiroshi; Kaji, Toshiyuki

    2016-04-01

    The interest in organic-inorganic hybrid molecules as molecular probes for biological systems has been growing rapidly. Such hybrid molecules exhibit unique biological activities. Herein, copper(II) bis(diethyldithiocarbamate) (Cu10) was found to activate the transcription factor NF-E2-related factor 2 (Nrf2), which is responsible for regulating antioxidant and phase II xenobiotic enzymes, in vascular endothelial cells. The copper complex rapidly accumulated within cells and induced nuclear translocation of Nrf2, leading to upregulation of the expression of downstream proteins without cytotoxic effects. However, while copper bis(2-hydroxyethyl)dithiocarbamate activated Nrf2, copper ion, diethyldithiocarbamate ligand with or without zinc or iron failed to exhibit this activity. Intracellular accumulation of Cu10 was higher than that of Cu(II) and Cu(I). While the accumulation of copper(II) bis(dimethyldithiocarbamate) was reduced by small interfering RNA (siRNA)-mediated knockdown of the copper transporter CTR1, the knockdown did not affect Cu10 accumulation, indicating that Cu10 rapidly enters vascular endothelial cells via CTR1-independent mechanisms. In addition, copper and iron complexes with other ligands tested could not activate Nrf2, suggesting that the intramolecular interaction between copper and dithiocarbamate ligand is important for the activation of the transcription factor. Cu10 induced the expression of heme oxygenase-1, NAD(P)H quinone oxidoreductase 1, and γ-glutamylcysteine synthetase, downstream proteins of Nrf2. It was suggested that Cu10-induced activation of Nrf2 was due to proteasome inhibition as well as binding to Kelch-like ECH-associated protein 1. Since the effects of Cu10 on vascular endothelial cells are unique and diverse, the copper complex may be a good molecular probe to analyze the functions of the cells.

  17. Platelet Vascular Endothelial Growth Factor is a Potential Mediator of Transfusion-Related Acute Lung Injury

    PubMed Central

    Maloney, James P; Ambruso, Daniel R; Voelkel, Norbert F; Silliman, Christopher C

    2015-01-01

    Objective The occurrence of non-hemolytic transfusion reactions is highest with platelet and plasma administration. Some of these reactions are characterized by endothelial leak, especially transfusion related acute lung injury (TRALI). Elevated concentrations of inflammatory mediators secreted by contaminating leukocytes during blood product storage may contribute to such reactions, but platelet-secreted mediators may also contribute. We hypothesized that platelet storage leads to accumulation of the endothelial permeability mediator vascular endothelial growth factor (VEGF), and that intravascular administration of exogenous VEGF leads to extensive binding to its lung receptors. Methods Single donor, leukocyte-reduced apheresis platelet units were sampled over 5 days of storage. VEGF protein content of the centrifuged supernatant was determined by ELISA, and the potential contribution of VEGF from contaminating leukocytes was quantified. Isolated-perfused rat lungs were used to study the uptake of radiolabeled VEGF administered intravascularly, and the effect of unlabeled VEGF on lung leak. Results There was a time-dependent release of VEGF into the plasma fraction of the platelet concentrates (62 ± 9 pg/ml on day one, 149 ± 23 pg/ml on day 5; mean ± SEM, p<0.01, n=8) and a contribution by contaminating leukocytes was excluded. Exogenous 125I-VEGF bound avidly and specifically to the lung vasculature, and unlabeled VEGF in the lung perfusate caused vascular leak. Conclusion Rising concentrations of VEGF occur during storage of single donor platelet concentrates due to platelet secretion or disintegration, but not due to leukocyte contamination. Exogenous VEGF at these concentrations rapidly binds to its receptors in the lung vessels. At higher VEGF concentrations, VEGF causes vascular leak in uninjured lungs. These data provide further evidence that VEGF may contribute to the increased lung permeability seen in TRALI associated with platelet products. PMID

  18. Role of endothelial TRPV4 channels in vascular actions of the endocannabinoid, 2-arachidonoylglycerol.

    PubMed

    Ho, W S V; Zheng, X; Zhang, D X

    2015-11-01

    Metabolites of the endocannabinoid, 2-arachidonoylglycerol (2-AG) have been postulated to act as endogenous activators of TRPV4, a Ca(2+) -permeable cation channel that plays a critical role in endothelium-dependent relaxation. However, it is unclear if TRPV4 contributes to the vascular actions of 2-AG. Isometric tension recording of rat small mesenteric arteries and aortae were used to assess the effect of 2-AG and the synthetic TRPV4 activator, GSK1016790A (GSK) on vascular reactivity. Changes in intracellular Ca(2+) concentration and single-channel currents were measured in TRPV4-expressing human coronary endothelial cells. In mesenteric arteries, endothelium-dependent relaxation to both 2-AG and GSK was attenuated by structurally distinct TRPV4 antagonists, HC067047, RN1734 and ruthenium red. The responses were inhibited by KCa inhibitors (apamin + charybdotoxin) and a gap junction inhibitor (18α-glycyrrhetinic acid). In contrast to GSK, 2-AG elicited considerable relaxation independently of the endothelium or TRPV4. Inhibition of 2-AG metabolism via monoacylglycerol lipase and COX (by MAFP and indomethacin) caused potentiation, while cytochrome P450 and lipoxygenase inhibitors had no effect on 2-AG relaxation. In coronary endothelial cells, 2-AG (with and without MAFP) induced HC067047-sensitive increases in intracellular Ca(2+) concentration. 2-AG also increased TRPV4 channel opening in inside-out patches. However, in aortae, GSK induced a relaxation sensitive to HC067047 and ruthenium red, whereas 2-AG induced contractions. These data suggest that 2-AG can directly activate endothelial TRPV4, which partly contributes to the relaxant response to 2-AG. However, the functional role of TRPV4 is highly dependent on the vascular region. © 2015 The British Pharmacological Society.

  19. [Influence of n-hexane on vascular endothelial active substances in brain tissue in mice].

    PubMed

    Lin, L; Zhang, Z Q; Zhang, C Z

    2017-01-20

    Objective: To investigate the influence of n-hexane on vascular endothelial active substances in brain tissue in mice and its significance. Methods: A total of 48 healthy Kunming mice were randomly divided into high-dose exposure group, middle-dose exposure group, low-dose exposure group, and control group, with 12 mice in each group. All groups except the control group were exposed to n-hexane via static inhalation (0.035 g/L, 0.018 g/L, and 0.009 g/L for the high-, middle-, and low-dose exposure groups, respectively) 4 hours a day for 21 days. the mice in the control groups were not exposed to n-hexane. After the exposure, the lev-els of endothelin-1 (ET-1) , nitric oxide (NO) , and angiotensin II (Ang II) in brain tissue were measured in all groups. Results: There were significant differences in the levels of ET-1, NO, and Ang II between the three ex-posure groups and the control group (P<0.05). Compared with the control group, the high-and middle-dose expo-sure group had significant increases in the levels of ET-1 and Ang II and the high-dose exposure group had a sig-nificant reduction in the level of NO (P<0.05 or P<0.01). Conclusion: n-Hexane can affect the vascular endothe-lial active substances in brain tissue in mice, and the changes and imbalance in vascular endothelial active sub-stances may be one of the reasons for central nervous system impairment caused by n-hexane.

  20. Patterns of brain angiogenesis after vascular endothelial growth factor administration in vitro and in vivo

    PubMed Central

    Rosenstein, Jeffrey M.; Mani, Nina; Silverman, William F.; Krum, Janette M.

    1998-01-01

    Vascular endothelial growth factor (VEGF) is a secreted endothelial cell mitogen that has been shown to induce vasculogenesis and angiogenesis in many organ systems and tumors. Considering the importance of VEGF to embryonic vascularization and survival, the effects of administered VEGF on developing or adult cerebrovasculature are unknown: can VEGF alter brain angiogenesis or mature cerebrovascular patterns? To examine these questions we exposed fetal, newborn, and adult rat cortical slice explants to graduated doses of recombinant VEGF. The effects of another known angiogenic factor, basic fibroblast growth factor (bFGF), were evaluated in a comparable manner. In addition, we infused VEGF via minipump into the adult cortex. Significant angiogenic effects were found in all VEGF experiments in a dose-responsive manner that were abolished by the addition of VEGF neutralizing antibody. Fetal and newborn explants had a highly complex network of branched vessels that immunoexpressed the flt-1 VEGF receptor, and flk-1 VEGF receptor expression was determined by reverse transcription–PCR. Adult explants had enlarged, dilated vessels that appeared to be an expansion of the existing network. All bFGF-treated explants had substantially fewer vascular profiles. VEGF infusions produced both a remarkable localized neovascularization and, unexpectedly, the expression of flt-1 on reactive astrocytes but not on endothelial cells. The preponderance of neovascularization in vitro and in vivo, however, lacked the blood–brain barrier (BBB) phenotype marker, GLUT-1, suggesting that in brain the angiogenic role of VEGF may differ from a potential BBB functional role, i.e., transport and permeability. VEGF may serve an important capacity in neovascularization or BBB alterations after brain injury. PMID:9618543

  1. Spironolactone Prevents Endothelial Nitric Oxide Synthase Uncoupling and Vascular Dysfunction Induced by β-Adrenergic Overstimulation

    PubMed Central

    Victorio, Jamaira A.; Clerici, Stefano P.; Palacios, Roberto; Alonso, María J.; Vassallo, Dalton V.; Jaffe, Iris Z.; Rossoni, Luciana V.

    2016-01-01

    Sustained stimulation of β-adrenoceptors (β-ARs) and activation of renin–angiotensin–aldosterone system are common features of cardiovascular diseases with rising sympathetic activation, including essential hypertension, myocardial infarction, and heart failure. In this study, we investigated the role of AT1 receptor and mineralocorticoid receptor (MR) in the vascular alterations caused by β-AR overstimulation. β-AR overstimulation with associated cardiac hypertrophy and increased vasoconstrictor response to phenylephrine in aorta were modeled in rats by 7-day isoproterenol treatment. The increased vasoconstrictor response to phenylephrine in this model was blunted by the MR antagonist spironolactone, but not by the AT1 receptor antagonist losartan, despite the blunting of cardiac hypertrophy with both drugs. Spironolactone, but not losartan, restored NO bioavailability in association with lower endothelial nitric oxide synthase–derived superoxide production, increased endothelial nitric oxide synthase dimerization, and aortic HSP90 upregulation. MR genomic and nongenomic functions were activated in aortas from isoproterenol-treated rats. Isoproterenol did not modify plasma levels of MR ligands aldosterone and corticosterone but rather increased perivascular adipose tissue–derived corticosterone in association with increased expression of 11β-hydroxysteroid dehydrogenase type 1. The anticontractile effect of aortic perivascular adipose tissue was impaired by β-AR overstimulation and restored by MR blockade. These results suggest that activation of vascular MR signaling contributes to the vascular dysfunction induced by β-AR overstimulation associated with endothelial nitric oxide synthase uncoupling. These findings reveal an additional explanation for the protective effects of MR antagonists in cardiovascular disorders with sympathetic activation. PMID:27432866

  2. Vascular lipoxygenase activity: synthesis of 15-hydroxyeicosatetraenoic acid from arachidonic acid by blood vessels and cultured vascular endothelial cells.

    PubMed

    Takayama, H; Gimbrone, M A; Schafer, A I

    1987-03-15

    Although indirect pharmacologic evidence has suggested the presence of a lipoxygenase pathway of arachidonic acid (AA) metabolism in blood vessels, direct biochemical evidence has been difficult to demonstrate. We have investigated lipoxygenase metabolism in both fresh vessel preparations and cultured vascular cells from various sources and species. Lipoxygenase-derived [3H] HETE (composed of 12-HETE, 15-HETE and 5-HETE), which was abolished by ETYA but not by aspirin, was formed when [3H]AA was incubated with fresh sections of rat aorta. Lipoxygenase activity was lost following deendothelialization. A single peak of [3H] 15-HETE was produced by cultured bovine aortic and human umbilical vein endothelial cells (EC) in response to exogenous [3H]AA or from [3H]AA released by ionophore A23187 from endogenous EC membrane phospholipid pools. Cultured bovine, rabbit or rat aorta smooth muscle cells had no detectable 15-lipoxygenase activity. [14C] Linoleic acid was converted by EC to its 15-lipoxygenase metabolite, [14C] 13-hydroxyoctadecadienoic acid. These results indicate that blood vessels from different sources and species have a 15-lipoxygenase system, and this activity resides predominantly in the endothelial cells.

  3. Activation of adenosine A2A receptors by polydeoxyribonucleotide increases vascular endothelial growth factor and protects against testicular damage induced by experimental varicocele in rats.

    PubMed

    Minutoli, Letteria; Arena, Salvatore; Bonvissuto, Giulio; Bitto, Alessandra; Polito, Francesca; Irrera, Natasha; Arena, Francesco; Fragalà, Eugenia; Romeo, Carmelo; Nicotina, Piero Antonio; Fazzari, Carmine; Marini, Herbert; Implatini, Alessandra; Grimaldi, Silvia; Cantone, Noemi; Di Benedetto, Vincenzo; Squadrito, Francesco; Altavilla, Domenica; Morgia, Giuseppe

    2011-03-15

    In rat experimental varicocele, polydeoxyribonucleotide (PDRN) induces vascular endothelial growth factor (VEGF) production, thereby enhancing testicular function. This may point to a new therapeutic approach in human varicocele.

  4. The Role of Vascular Endothelial Growth Factor A Polymorphisms in Breast Cancer

    PubMed Central

    Sa-nguanraksa, Doonyapat; O-charoenrat, Pornchai

    2012-01-01

    Breast cancer is the most common cancer in females and the leading cause of cancer death in women worldwide. Angiogenesis, the formation of new blood vessels, plays an important role in the development and progression of breast cancer. Vascular endothelial growth factor A (VEGFA), the key modulator of angiogenesis, is highly expressed in cancer tissue and correlates with its more aggressive features. Polymorphisms of VEGFA alter the levels of expression and subsequently influence the susceptibility and aggressiveness of breast cancer. Assessment of VEGFA polymorphisms may be used for the identification of patients suitable for anti-VEGFA therapy. PMID:23203097

  5. The role of vascular endothelial growth factor a polymorphisms in breast cancer.

    PubMed

    Sa-Nguanraksa, Doonyapat; O-Charoenrat, Pornchai

    2012-11-13

    Breast cancer is the most common cancer in females and the leading cause of cancer death in women worldwide. Angiogenesis, the formation of new blood vessels, plays an important role in the development and progression of breast cancer. Vascular endothelial growth factor A (VEGFA), the key modulator of angiogenesis, is highly expressed in cancer tissue and correlates with its more aggressive features. Polymorphisms of VEGFA alter the levels of expression and subsequently influence the susceptibility and aggressiveness of breast cancer. Assessment of VEGFA polymorphisms may be used for the identification of patients suitable for anti-VEGFA therapy.

  6. In vitro effects of waterpipe smoke condensate on endothelial cell function: a potential risk factor for vascular disease.

    PubMed

    Rammah, Mayyasa; Dandachi, Farah; Salman, Rola; Shihadeh, Alan; El-Sabban, Marwan

    2013-05-23

    Despite its increasing popularity, little is known about the health effects of waterpipe smoking (WPS), particularly on the cardiovascular system. To investigate the role of WPS as a risk factor for vascular disease, we evaluated its effect on endothelial cell function, which is an early event in vascular disease pathogenesis. We assessed the changes in cell viability, ROS generation, inflammatory and vasodilatory markers and in vitro angiogenesis of human aortic endothelial cells in response to waterpipe smoke condensate exposure. Mainstream waterpipe smoke condensate (WSC) was generated using a standard laboratory machine protocol. Compared to control, WSC induced cell cycle arrest, apoptosis, and oxidative stress in human primary endothelial cells. In addition, we assayed for impaired endothelium-dependent vasodilation and induced inflammation by studying the effect of WPS on the content and activity of AMPK, eNOS proteins and NF-κB p65 ser536 phosphorylation, respectively. WSC inhibited AMPK/eNOS phosphorylation and induced phosphorylation of p65. Moreover, we evaluated endothelial cells repair mechanism related properties that include migration/invasion and in vitro tube formation upon treatment with WSC. WSC reduced the motility and inhibited angiogenic potential of HAEC cells. WPS induced endothelial cell dysfunction as evident by exerting oxidative stress, inflammation, and impaired endothelial vasodilatory function and repair mechanisms. All together these data provide evidence for the potential contribution of WPS to endothelial dysfunction and thus to vascular disease. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. In vitro effects of waterpipe smoke condensate on endothelial cell function: A potential risk factor for vascular disease

    PubMed Central

    Rammah, Mayyasa; Dandachi, Farah; Salman, Rola; Shihadeh, Alan; El-Sabban, Marwan

    2013-01-01

    Aim Despite its increasing popularity, little is known about the health effects of waterpipe smoking (WPS), particularly on the cardiovascular system. To investigate the role of WPS as a risk factor for vascular disease, we evaluated its effect on endothelial cell function, which is an early event in vascular disease pathogenesis. We assessed the changes in cell viability, ROS generation, inflammatory and vasodilatory markers and in vitro angiogenesis of human aortic endothelial cells in response to waterpipe smoke condensate exposure. Methods and results Mainstream waterpipe smoke condensate (WSC) was generated using a standard laboratory machine protocol. Compared to control, WSC induced cell cycle arrest, apoptosis, and oxidative stress in human primary endothelial cells. In addition, we assayed for impaired endothelium-dependent vasodilation and induced inflammation by studying the effect of WPS on the content and activity of AMPK, eNOS proteins and NF-κB p65 ser536 phosphorylation, respectively. WSC inhibited AMPK/eNOS phosphorylation and induced phosphorylation of p65. Moreover, we evaluated endothelial cells repair mechanism related properties that include migration/invasion and in vitro tube formation upon treatment with WSC. WSC reduced the motility and inhibited angiogenic potential of HAEC cells. Conclusions WPS induced endothelial cell dysfunction as evident by exerting oxidative stress, inflammation, and impaired endothelial vasodilatory function and repair mechanisms. All together these data provide evidence for the potential contribution of WPS to endothelial dysfunction and thus to vascular disease. PMID:23454654

  8. Activation of AP-1 Transcription Factors Differentiates FGF2 and Vascular Endothelial Growth Factor Regulation of Endothelial Nitric-oxide Synthase Expression in Placental Artery Endothelial Cells*

    PubMed Central

    Mata-Greenwood, Eugenia; Liao, Wu-xiang; Wang, Wen; Zheng, Jing; Chen, Dong-bao

    2010-01-01

    FGF2 (fibroblast growth factor 2), but not vascular endothelial growth factor (VEGF), stimulates sustained activation of ERK2/1 for endothelial NOS3 (nitric-oxide synthase 3) protein expression in ovine fetoplacental artery endothelial cells (oFPAEC). We deciphered herein the downstream signaling of ERK2/1 responsible for NOS3 expression by FGF2 in oFPAEC. FGF2, but not VEGF, increased NOS3 mRNA levels without altering its degradation. FGF2, but not VEGF, trans-activated sheep NOS3 promoter, and this was dependent on ERK2/1 activation. FGF2 did not trans-activate NOS3 promoters with deletions upstream of the consensus AP-1 site (TGAGTC A, −678 to −685). Trans-activation of wild-type NOS3 promoter by FGF2 was significantly inhibited when either the AP-1 or the cAMP-response element (CRE)-like sequence (TGCGTCA, −752 to −758) was mutated and was completely blocked when both were mutated. EMSA analyses showed that FGF2, but not VEGF, stimulated AP-1 and CRE DNA-protein complexes primarily composed of JunB and Fra1. Chromatin immunoprecipitation assays confirmed JunB/Fra1 binding to NOS3 promoter AP-1 and CRE elements in intact cells. FGF2, but not VEGF, stimulated JunB and Fra1 expressions; all preceded NOS3 up-regulation and were inhibited by PD98059. Down-regulation of JunB or Fra-1, but not c-Jun, blocked FGF2 stimulation of NOS3 expression and NO production. AP-1 inhibition suppressed FGF2 stimulation of NOS3 expression in human umbilical vein EC and uterine artery endothelial cells. Thus, FGF2 induction of NOS3 expression is mainly mediated by AP-1-dependent transcription involving JunB and Fra1 up-regulation via sustained ERK2/1 activation in endothelial cells. PMID:20371606

  9. [Effect of cryotherapy over the expression of vascular endothelial growth factor and pigment epithelium-derived factor].

    PubMed

    Toscano-Garibay, Julia Dolores; Quiroz-Mercado, Hugo; Espitia-Pinzón, Clara; Gil-Carrasco, Félix; Flores-Estrada, José Javier

    2014-01-01

    Cryotherapy is a no invasive technique that uses intense cold to freeze and destroy cancer tissues. There are no descriptions of its effects over the expression of vascular endothelial growth factor and pigment epithelium-derived factor. Experimental study in cryogenic spot were applied in the right sclera of twelve pigs for ten minutes. Other 3 pigs were used as normal controls. Animals were sacrificed at 7, 14 and 21 and the tissues of choriodes and retina were dissected in areas of approximately 1 cm2 surrounding cryogenic spots. Expression levels of vascular endothelial growth factor and pigment epithelium-derived factor were determined analyzed using polymerase chain reaction coupled to reverse-transcription. Vascular endothelial growth factor was significantly downregulated (24%, p< 0.05) seven days post-treatment meanwhile pigment epithelium-derived factor levels increased 44.8% (p< 0.05) as compared to normal controls (untreated). Both vascular endothelial growth factor and pigment epithelium-derived factor levels remain the same until day 14 but returned to basal expression at day 21. This work expose the relation of cryotherapy with the expression of two factors related to angiogenesis. RESULTS showed significant changes on the expression of vascular endothelial growth factor and pigment epithelium-derived factor illustrating that both proteins are regulated in response to cryogenic treatment in relatively short periods (21 days).

  10. Glomus tumors of the fingers: Expression of vascular endothelial growth factor

    PubMed Central

    Honsawek, Sittisak; Kitidumrongsook, Pravit; Luangjarmekorn, Pobe; Pataradool, Kawee; Thanakit, Voranuch; Patradul, Adisorn

    2016-01-01

    Glomus tumors are uncommon, benign, small neurovascular neoplasms derived from glomus bodies in the reticular dermis. Glomus bodies are found throughout the body to regulate body temperature and skin circulation; however, they are concentrated in the fingers and the sole of the foot. The typical presentation is a solitary nodule in the subungual or periungual area of the distal phalanx. The primary treatment of choice is surgical removal. We investigated expression of vascular endothelial growth factor (VEGF) using immunohistochemistry in glomus tumors of the fingers. All five glomus tumor samples were positive for VEGF expression. VEGF immunoreactivity was largely localized to the cytoplasm of tumor cells, suggesting a contribution of VEGF to the vascularization of glomus tumors. PMID:28032039

  11. Protection against vascular endothelial dysfunction by polyphenols in sea buckthorn berries in rats with hyperlipidemia.

    PubMed

    Yang, Fang; Suo, Yourui; Chen, Dongli; Tong, Li

    2016-07-19

    Chronic hyperlipemia increases the incidence of vascular endothelial dysfunction and can even induce cardiovascular disease. Sea buckthorn contains a host of bioactives such as flavonoids and polyphenols that can prevent the development of cardiovascular disease. The current study isolated active ingredients, polyphenols, from sea buckthorn berries (SVP) and orally administered SVP at a dose of 7-28 mg/kg. This treatment significantly reduced serum lipids, it enhanced the activity of antioxidant enzymes, and it decreased the level of serum TNF-α and IL-6. SVP also alleviate vascular impairment by decreasing the expression of eNOS, ICAM-1, and LOX-1 mRNA and proteins in aortas of rats with hyperlipidemia. Based on these findings, SVP has antioxidant action and it protects endothelium.

  12. Vascular endothelial growth factor levels in dobrava/belgrade virus infections.

    PubMed

    Tsergouli, Katerina; Papa, Anna

    2013-12-10

    The levels of vascular endothelial growth factor-A (VEGF) were estimated in 102 serum samples from 63 hospitalized Greek patients with hemorrhagic fever with renal syndrome (HFRS) caused by Dobrava/Belgrade virus. Significantly higher VEGF levels were seen in the severe when compared with non-severe cases (mean values 851.96 pg/mL and 326.75 pg/mL, respectively; p = 0.003), while a significant difference was observed among groups based on the day after the onset of illness. In both severe and non-severe cases, VEGF peaked in the second week of illness; however, elevation of VEGF in the severe cases started later and remained high until convalescence, suggesting that the role of VEGF was associated with repair of vascular damage rather than with increased permeability.

  13. Albumin-derived advanced glycation end-products trigger the disruption of the vascular endothelial cadherin complex in cultured human and murine endothelial cells.

    PubMed Central

    Otero, K; Martínez, F; Beltrán, A; González, D; Herrera, B; Quintero, G; Delgado, R; Rojas, A

    2001-01-01

    Endothelial cell (EC) junctions regulate in large part the integrity and barrier function of the vascular endothelium. Advanced glycation end-products (AGEs), the irreversibly formed reactive derivatives of non-enzymic glucose-protein condensation reactions, are strongly implicated in endothelial dysfunction that distinguishes diabetes- and aging-associated vascular complications. The aim of the present study was to determine whether AGEs affect EC lateral junction proteins, with particular regard to the vascular endothelial cadherin (VE-cadherin) complex. Our results indicate that AGE-modified BSA (AGE-BSA), a prototype of advanced glycated proteins, disrupts the VE-cadherin complex when administered to ECs. AGE-BSA, but not unmodified BSA, was found to induce decreases in the levels of VE-cadherin, beta-catenin and gamma-catenin in the complex and in total cell extracts, as well as a marked reduction in the amount of VE-cadherin present at the cell surface. In contrast, the level of platelet endothelial cell adhesion molecule-1 (PECAM-1), which is located at lateral junctions, was not altered. Supplementation of the cellular antioxidative defences abolished these effects. Finally, the loss of components of the VE-cadherin complex was correlated with increases in vascular permeability and in EC migration. These findings suggest that some of the AGE-induced biological effects on the endothelium could be mediated, at least in part, by the weakening of intercellular contacts caused by decreases in the amount of VE-cadherin present. PMID:11672430

  14. IL-4 Causes Hyperpermeability of Vascular Endothelial Cells through Wnt5A Signaling

    PubMed Central

    Skaria, Tom; Burgener, Julia; Bachli, Esther; Schoedon, Gabriele

    2016-01-01

    Microvascular leakage due to endothelial barrier dysfunction is a prominent feature of T helper 2 (Th2) cytokine mediated allergic inflammation. Interleukin-4 (IL-4) is a potent Th2 cytokine, known to impair the barrier function of endothelial cells. However, the effectors mediating IL-4 induced cytoskeleton remodeling and consequent endothelial barrier dysfunction remain poorly defined. Here we have used whole genome transcriptome profiling and gene ontology analyses to identify the genes and processes regulated by IL-4 signaling in human coronary artery endothelial cells (HCAEC). The study revealed Wnt5A as an effector that can mediate actin cytoskeleton remodeling in IL-4 activated HCAEC through the regulation of LIM kinase (LIMK) and Cofilin (CFL). Following IL-4 treatment, LIMK and CFL were phosphorylated, thereby indicating the possibility of actin stress fiber formation. Imaging of actin showed the formation of stress fibers in IL-4 treated live HCAEC. Stress fiber formation was notably decreased in the presence of Wnt inhibitory factor 1 (WIF1). Non-invasive impedance measurements demonstrated that IL-4 increased the permeability and impaired the barrier function of HCAEC monolayers. Silencing Wnt5A significantly reduced permeability and improved the barrier function of HCAEC monolayers upon IL-4 treatment. Our study identifies Wnt5A as a novel marker of IL-4 activated vascular endothelium and demonstrates a critical role for Wnt5A in mediating IL-4 induced endothelial barrier dysfunction. Wnt5A could be a potential therapeutic target for reducing microvascular leakage and edema formation in Th2 driven inflammatory diseases. PMID:27214384

  15. Fibroblast Growth Factor-2 (FGF-2) Induces Vascular Endothelial Growth Factor (VEGF) Expression in the Endothelial Cells of Forming Capillaries: An Autocrine Mechanism Contributing to Angiogenesis

    PubMed Central

    Seghezzi, Graziano; Patel, Sundeep; Ren, Christine J.; Gualandris, Anna; Pintucci, Giuseppe; Robbins, Edith S.; Shapiro, Richard L.; Galloway, Aubrey C.; Rifkin, Daniel B.; Mignatti, Paolo

    1998-01-01

    FGF-2 and VEGF are potent angiogenesis inducers in vivo and in vitro. Here we show that FGF-2 induces VEGF expression in vascular endothelial cells through autocrine and paracrine mechanisms. Addition of recombinant FGF-2 to cultured endothelial cells or upregulation of endogenous FGF-2 results in increased VEGF expression. Neutralizing monoclonal antibody to VEGF inhibits FGF-2–induced endothelial cell proliferation. Endogenous 18-kD FGF-2 production upregulates VEGF expression through extracellular interaction with cell membrane receptors; high-Mr FGF-2 (22–24-kD) acts via intracellular mechanism(s). During angiogenesis induced by FGF-2 in the mouse cornea, the endothelial cells of forming capillaries express VEGF mRNA and protein. Systemic administration of neutralizing VEGF antibody dramatically reduces FGF-2-induced angiogenesis. Because occasional fibroblasts or other cell types present in the corneal stroma show no significant expression of VEGF mRNA, these findings demonstrate that endothelial cell-derived VEGF is an important autocrine mediator of FGF-2-induced angiogenesis. Thus, angiogenesis in vivo can be modulated by a novel mechanism that involves the autocrine action of vascular endothelial cell-derived FGF-2 and VEGF. PMID:9647657

  16. Knockout of the vascular endothelial glucocorticoid receptor abrogates dexamethasone-induced hypertension

    PubMed Central

    GOODWIN, Julie E.; ZHANG, Junhui; GONZALEZ, David; ALBINSSON, Sebastian; GELLER, David S.

    2012-01-01

    Glucocorticoid-mediated hypertension is incompletely understood. Recent studies have suggested the primary mechanism of this form of hypertension may be through the effects of glucocorticoids on vascular tissues and not to excess sodium and water reabsorption as traditionally believed. Objective The goal of this study was to better understand the role of the vasculature in the generation and maintenance of glucocorticoid-mediated hypertension. Methods We created a mouse model with a tissue-specific knockout of the glucocorticoid receptor in the vascular endothelium. Results We show that these mice are relatively resistant to dexamethasone-induced hypertension. After one week of dexamethasone treatment, control animals have a mean blood pressure increase of 13.1 mm Hg while knockout animals have only a 2.7 mm Hg increase (p<0.001). Interestingly, the knockout mice have slightly elevated baseline BP compared to the controls (112.2 ± 2.5 mm Hg vs. 104.6 ± 1.2 mm Hg, p = 0.04), a finding which is not entirely explained by our data. Furthermore, we demonstrate that the knockout resistance arterioles have a decreased contractile response to dexamethasone with only 6.6% contraction in knockout vessels compared to 13.4% contraction in control vessels (p=0.034). Finally, we show that in contrast to control animals, the knockout animals are able to recover a significant portion of their normal circadian blood pressure rhythm suggesting that the vascular endothelial glucocorticoid receptor may function as a peripheral circadian clock. Conclusions Our study highlights the importance of the vascular endothelial GR in several fundamental physiologic processes, namely blood pressure homeostasis and circadian rhythm. PMID:21659825

  17. Estradiol inhibits vascular endothelial cells pro-inflammatory activation induced by C-reactive protein.

    PubMed

    Cossette, Émilie; Cloutier, Isabelle; Tardif, Kim; DonPierre, Geneviève; Tanguay, Jean-François

    2013-01-01

    In addition of being an important inflammatory biomarker and a risk factor for cardiovascular disease, much evidence indicates that the C-reactive protein (CRP) contributes to the atherosclerosis development process. This plasmatic protein synthesized by hepatocytes in response to inflammation and tissue injury induces pro-inflammatory molecules' expression by endothelial cells (ECs). Previous studies showed that the 17β-estradiol (E2) has beneficial effects on vascular cells by reducing in vitro pro-inflammatory molecules expressions in EC. Therefore, we hypothesize that E2 blocks or reduces CRP-mediated inflammatory responses by modulating endogenous production of CRP in EC and/or activation mechanisms. Using human aortic ECs (HAECs), we first evaluated CRP production by vascular EC and second demonstrated its self-induction. Indeed, recombinant human CRP stimulation induces a fivefold increase of CRP expression. A 1-h pre-treatment of E2 at a physiologic dose (10(-9 )M) leads to an important decrease of CRP production suggesting a partial blockage of its amplification loop mechanism. Furthermore, in HAEC, E2 reduces the secretion of the most potent agonist of CRP induction, the IL-6, by 21 %. E2 pre-treatment also decreased the expression of pro-inflammatory molecules IL-8, VCAM-1, and ICAM-1 induced by CRP and involved in leukocytes recruitment. In addition, we demonstrated that E2 could restore vascular endothelial growth factor-mediated EC migration response impaired by CRP suggesting another pro-angiogenic property of this hormone. These findings suggest that E2 can interfere with CRP pro-inflammatory effects via activation signals using its rapid, non-genomic pathway that may provide a new mechanism to improve vascular repair.

  18. Azelnidipine, Not Amlodipine, Induces Secretion of Vascular Endothelial Growth Factor From Smooth Muscle Cells and Promotes Endothelial Tube Formation

    PubMed Central

    Kawamura, Akira; Miura, Shin-ichiro; Matsuo, Yoshino; Tanigawa, Hiroyuki; Saku, Keijiro

    2014-01-01

    Background We previously reported that the calcium channel blocker (CCB) nifedipine-induced secretion of vascular endothelial growth factor (VEGF) from human coronary smooth muscle cells (HCSMCs) promoted human coronary endothelial cell (HCEC) tube formation. Therefore, we analyzed whether other CCBs, azelnidipine and amlodipine, also induced the secretion of VEGF and promoted HCEC tube formation, and the underlying molecular mechanisms. Methods To evaluate the tube formation, HCECs were grown on Matrigel for 18 hours in the supernatants from HCSMCs that had been treated with different kinds of reagents. Concentrations of VEGF in cultured HCSMCs were determined by specific enzyme immunoassays. Nuclear extracts from HCSMCs were prepared, and nuclear factor-kappa B (NF-κB) activation was measured by EZ-DetectTM Transcription Factor Kits for NF-κB p50 or p65. Results Although azelnidipine dose-dependently stimulated the significant secretion of VEGF from HCSMCs and this stimulation was abolished by a protein kinase C inhibitor, amlodipine-induced secretion of VEGF was significantly lower than that induced by azelnidipine. The medium derived from azelnidipine (at up to 2 μM)-treated HCSMCs led to HCEC tube formation, whereas that obtained with amlodipine did not. Azelnidipine-induced tube formation was blocked by an inhibitor of kinase insert domain-containing receptor/fetal liver kinase-1 tyrosine kinase. Azelnidipine at up to 2 μM induced NF-κB activation. Conclusions Azelnidipine, but not amlodipine, stimulated the secretion of VEGF from HCSMCs and induced HCEC tube formation. This secretion is mediated at least in part via the activation of NF-κB. Azelnidipine may have a novel beneficial effect in improving coronary microvascular blood flow in addition to its main effect of lowering blood pressure.

  19. The Antifungal Drug Itraconazole Inhibits Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) Glycosylation, Trafficking, and Signaling in Endothelial Cells*

    PubMed Central

    Nacev, Benjamin A.; Grassi, Paola; Dell, Anne; Haslam, Stuart M.; Liu, Jun O.

    2011-01-01

    Itraconazole is a safe and widely used antifungal drug that was recently found to possess potent antiangiogenic activity. Currently, there are four active clinical trials evaluating itraconazole as a cancer therapeutic. Tumor growth is dependent on angiogenesis, which is driven by the secretion of growth factors from the tumor itself. We report here that itraconazole significantly inhibited the binding of vascular endothelial growth factor (VEGF) to VEGF receptor 2 (VEGFR2) and that both VEGFR2 and an immediate downstream substrate, phospholipase C γ1, failed to become activated after VEGF stimulation. These effects were due to a defect in VEGFR2 trafficking, leading to a decrease in cell surface expression, and were associated with the accumulation of immature N-glycans on VEGFR2. Small molecule inducers of lysosomal cholesterol accumulation and mammalian target of rapamycin (mTOR) inhibition, two previously reported itraconazole activities, failed to recapitulate itraconazole's effects on VEGFR2 glycosylation and signaling. Likewise, glycosylation inhibitors did not alter cholesterol trafficking or inhibit mTOR. Repletion of cellular cholesterol levels, which was known to rescue the effects of itraconazole on mTOR and cholesterol trafficking, was also able to restore VEGFR2 glycosylation and signaling. This suggests that the new effects of itraconazole occur in parallel to those previously reported but are downstream of a common target. We also demonstrated that itraconazole globally reduced poly-N-acetyllactosamine and tetra-antennary complex N-glycans in endothelial cells and induced hypoglycosylation of the epidermal growth factor receptor in a renal cell carcinoma line, suggesting that itraconazole's effects extend beyond VEGFR2. PMID:22025615

  20. F-actin-rich contractile endothelial pores prevent vascular leakage during leukocyte diapedesis through local RhoA signalling.

    PubMed

    Heemskerk, Niels; Schimmel, Lilian; Oort, Chantal; van Rijssel, Jos; Yin, Taofei; Ma, Bin; van Unen, Jakobus; Pitter, Bettina; Huveneers, Stephan; Goedhart, Joachim; Wu, Yi; Montanez, Eloi; Woodfin, Abigail; van Buul, Jaap D

    2016-01-27

    During immune surveillance and inflammation, leukocytes exit the vasculature through transient openings in the endothelium without causing plasma leakage. However, the exact mechanisms behind this intriguing phenomenon are still unknown. Here we report that maintenance of endothelial barrier integrity during leukocyte diapedesis requires local endothelial RhoA cycling. Endothelial RhoA depletion in vitro or Rho inhibition in vivo provokes neutrophil-induced vascular leakage that manifests during the physical movement of neutrophils through the endothelial layer. Local RhoA activation initiates the formation of contractile F-actin structures that surround emigrating neutrophils. These structures that surround neutrophil-induced endothelial pores prevent plasma leakage through actomyosin-based pore confinement. Mechanistically, we found that the initiation of RhoA activity involves ICAM-1 and the Rho GEFs Ect2 and LARG. In addition, regulation of actomyosin-based endothelial pore confinement involves ROCK2b, but not ROCK1. Thus, endothelial cells assemble RhoA-controlled contractile F-actin structures around endothelial pores that prevent vascular leakage during leukocyte extravasation.

  1. Increased expression of the sonic hedgehog and vascular endothelial growth factor with co-localization in varicocele veins.

    PubMed

    Wang, Shih-Ho; Yang, Wen-Kai; Lee, Jane-Dar

    2017-03-01

    Objectives Varicocele is characterized by dilatation and tortuosity of the internal spermatic vein. Sonic hedgehog plays an important role in angiogenesis and vascular remodeling under hypoxic stress. We studied the relationship and distribution of SHH and vascular endothelial growth factor in internal spermatic vein in patients diagnosed with varicocele. Methods Specimens of 1 cm were taken from the internal spermatic vein during left varicocele repair (N = 20). The control samples of ISV were obtained from eight male patients who underwent left inguinal herniorrhaphy. We analyzed the sonic hedgehog and vascular endothelial growth factor expression and distribution by immunoblotting, immunohistochemistry, immunofluorescent staining, and confocal laser scanning microscopy. The data were analyzed using the Student's t test. Results Immunoblotting showed higher expression of sonic hedgehog and vascular endothelial growth factor proteins in varicocele veins than in the control group ( P < 0.05) which located over muscle layer and endothelium was demonstrated by immunohistochemical staining. Both proteins with co-localization in the muscle layer and especially distributed in endothelium of varicocele veins were revealed under confocal microscopy. Conclusions These findings showed the upexpression of sonic hedgehog and vascular endothelial growth factor with co-localization in varicocele veins which imply that the reducing hypoxia or using sonic hedgehog antagonists may be helpful for this vascular disease.

  2. Vascular Endothelial Growth Factor (VEGF) and Platelet (PF-4) Factor 4 Inputs Modulate Human Microvascular Endothelial Signaling in a Three-Dimensional Matrix Migration Context*

    PubMed Central

    Hang, Ta-Chun; Tedford, Nathan C.; Reddy, Raven J.; Rimchala, Tharathorn; Wells, Alan; White, Forest M.; Kamm, Roger D.; Lauffenburger, Douglas A.

    2013-01-01

    The process of angiogenesis is under complex regulation in adult organisms, particularly as it often occurs in an inflammatory post-wound environment. As such, there are many impacting factors that will regulate the generation of new blood vessels which include not only pro-angiogenic growth factors such as vascular endothelial growth factor, but also angiostatic factors. During initial postwound hemostasis, a large initial bolus of platelet factor 4 is released into localized areas of damage before progression of wound healing toward tissue homeostasis. Because of its early presence and high concentration, the angiostatic chemokine platelet factor 4, which can induce endothelial anoikis, can strongly affect angiogenesis. In our work, we explored signaling crosstalk interactions between vascular endothelial growth factor and platelet factor 4 using phosphotyrosine-enriched mass spectrometry methods on human dermal microvascular endothelial cells cultured under conditions facilitating migratory sprouting into collagen gel matrices. We developed new methods to enable mass spectrometry-based phosphorylation analysis of primary cells cultured on collagen gels, and quantified signaling pathways over the first 48 h of treatment with vascular endothelial growth factor in the presence or absence of platelet factor 4. By observing early and late signaling dynamics in tandem with correlation network modeling, we found that platelet factor 4 has significant crosstalk with vascular endothelial growth factor by modulating cell migration and polarization pathways, centered around P38α MAPK, Src family kinases Fyn and Lyn, along with FAK. Interestingly, we found EphA2 correlational topology to strongly involve key migration-related signaling nodes after introduction of platelet factor 4, indicating an influence of the angiostatic factor on this ambiguous but generally angiogenic signal in this complex environment. PMID:24023389

  3. Direct endothelial junction restoration results in significant tumor vascular normalization and metastasis inhibition in mice

    PubMed Central

    Agrawal, Vijayendra; Maharjan, Sony; Kim, Kyeojin; Kim, Nam-Jung; Son, Jimin; Lee, Keunho; Choi, Hyun-Jung; Rho, Seung-Sik; Ahn, Sunjoo; Won, Moo-Ho; Ha, Sang-Jun; Koh, Gou Young; Kim, Young-Myeong; Suh, Young-Ger; Kwon, Young-Guen

    2014-01-01

    Tumor blood vessels are leaky and immature, which causes inadequate blood supply to tumor tissues resulting in hypoxic microenvironment and promotes metastasis. Here we have explored tumor vessel modulating activity of Sac-1004, a recently developed molecule in our lab, which directly potentiates VE-cadherin-mediated endothelial cell junction. Sac-1004 could enhance vascular junction integrity in tumor vessels and thereby inhibit vascular leakage and enhance vascular perfusion. Improved perfusion enabled Sac-1004 to have synergistic anti-tumor effect on cisplatin-mediated apoptosis of tumor cells. Interestingly, characteristics of normalized blood vessels namely reduced hypoxia, improved pericyte coverage and decreased basement membrane thickness were readily observed in tumors treated with Sac-1004. Remarkably, Sac-1004 was also able to inhibit lung and lymph node metastasis in MMTV and B16BL6 tumor models. This was in correlation with a reduction in epithelial-to-mesenchymal transition of tumor cells with considerable diminution in expression of related transcription factors. Moreover, cancer stem cell population dropped substantially in Sac-1004 treated tumor tissues. Taken together, our results showed that direct restoration of vascular junction could be a significant strategy to induce normalization of tumor blood vessels and reduce metastasis. PMID:24811731

  4. Characterization of nicardipine hydrochloride-induced cell injury in human vascular endothelial cells.

    PubMed

    Ochi, Masanori; Kawai, Yoshiko; Tanaka, Yoshiyuki; Toyoda, Hiromu

    2015-02-01

    Nicardipine hydrochloride (NIC), a dihydropyridine calcium-channel blocking agent, has been widely used for the treatment of hypertension. Especially, nicardipine hydrochloride injection is used as first-line therapy for emergency treatment of abnormally high blood pressure. Although NIC has an attractive pharmacological profile, one of the dose-limiting factors of NIC is severe peripheral vascular injury after intravenous injection. The goal of this study was to better understand and thereby reduce NIC-mediated vascular injury. Here, we investigated the mechanism of NIC-induced vascular injury using human dermal microvascular endothelial cells (HMVECs). NIC decreased cell viability and increased percent of dead cells in a dose-dependent manner (10-30 μg/mL). Although cell membrane injury was not significant over 9 hr exposure, significant changes of cell morphology and increases in vacuoles in HMVECs were observed within 30 min of NIC exposure (30 μg/mL). Autophagosome labeling with monodansylcadaverine revealed increased autophagosomes in the NIC-treated cells, whereas caspase 3/7 activity was not increased in the NIC-treated cells (30 μg/mL). Additionally, NIC-induced reduction of cell viability was inhibited by 3-methyladenine, an inhibitor of autophagosome formation. These findings suggest that NIC causes severe peripheral venous irritation via induction of autophagic cell death and that inhibition of autophagy could contribute to the reduction of NIC-induced vascular injury.

  5. TRAF6 inhibits proangiogenic signals in endothelial cells and regulates the expression of vascular endothelial growth factor

    SciTech Connect

    Bruneau, Sarah; Datta, Dipak; Flaxenburg, Jesse A.; Pal, Soumitro; Briscoe, David M.

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer TNF-receptor associated factors (TRAFs) function in the angiogenesis response. Black-Right-Pointing-Pointer TRAF6 regulates basal and inducible expression of VEGF in endothelial cells (EC). Black-Right-Pointing-Pointer TRAF6 is an endogenous inhibitor of EC proliferation and migration in EC. Black-Right-Pointing-Pointer TRAF6 inhibits VEGF expression in part via its ability to regulate Src signaling. -- Abstract: TNF-family molecules induce the expression Vascular Endothelial Growth Factor (VEGF) in endothelial cells (EC) and elicit signaling responses that result in angiogenesis. However, the role of TNF-receptor associated factors (TRAFs) as upstream regulators of VEGF expression or as mediators of angiogenesis is not known. In this study, HUVEC were cotransfected with a full-length VEGF promoter-luciferase construct and siRNAs to TRAF 1, -2, -3, -5, -6, and promoter activity was measured. Paradoxically, rather than inhibiting VEGF expression, we found that knockdown of TRAF6 resulted in a 4-6-fold increase in basal VEGF promoter activity compared to control siRNA-transfected EC (P < 0.0001). In addition, knockdown of TRAF 1, -2, -3 or -5 resulted in a slight increase or no change in VEGF promoter activation. Using [{sup 3}H]thymidine incorporation assays as well as the in vitro wound healing assay, we also found that basal rates of EC proliferation and migration were increased following TRAF6 knockdown; and this response was inhibited by the addition of a blocking anti-VEGF antibody into cell cultures. Using a limited protein array to gain insight into TRAF6-dependent intermediary signaling responses, we observed that TRAF6 knockdown resulted in an increase in the activity of Src family kinases. In addition, we found that treatment with AZD-0530, a pharmacological Src inhibitor, reduced the regulatory effect of TRAF6 knockdown on VEGF promoter activity. Collectively, these findings define a novel pro-angiogenic signaling

  6. Vascular endothelial growth factor (VEGF), produced by feline infectious peritonitis (FIP) virus-infected monocytes and macrophages, induces vascular permeability and effusion in cats with FIP.

    PubMed

    Takano, Tomomi; Ohyama, Taku; Kokumoto, Aiko; Satoh, Ryoichi; Hohdatsu, Tsutomu

    2011-06-01

    Feline infectious peritonitis virus (FIPV) causes a fatal disease called FIP in Felidae. The effusion in body cavity is commonly associated with FIP. However, the exact mechanism of accumulation of effusion remains unclear. We investigated vascular endothelial growth factor (VEGF) to examine the relationship between VEGF levels and the amounts of effusion in cats with FIP. Furthermore, we examined VEGF production in FIPV-infected monocytes/macrophages, and we used feline vascular endothelial cells to examine vascular permeability induced by the culture supernatant of FIPV-infected macrophages. In cats with FIP, the production of effusion was related with increasing plasma VEGF levels. In FIPV-infected monocytes/macrophages, the production of VEGF was associated with proliferation of virus. Furthermore, the culture supernatant of FIPV-infected macrophages induced hyperpermeability of feline vascular endothelial cells. It was suggested that vascular permeability factors, including VEGF, produced by FIPV-infected monocytes/macrophages might increase the vascular permeability and the amounts of effusion in cats with FIP. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Deregulation of Flk-1/vascular endothelial growth factor receptor-2 in fibroblast growth factor receptor-1-deficient vascular stem cell development.

    PubMed

    Magnusson, Peetra; Rolny, Charlotte; Jakobsson, Lars; Wikner, Charlotte; Wu, Yan; Hicklin, Daniel J; Claesson-Welsh, Lena

    2004-03-15

    We have employed embryoid bodies derived from murine embryonal stem cells to study effects on vascular development induced by fibroblast growth factor (FGF)-2 and FGF receptor-1, in comparison to the established angiogenic factor vascular endothelial growth factor (VEGF)-A and its receptor VEGF receptor-2. Exogenous FGF-2 promoted formation of morphologically distinct, long slender vessels in the embryoid bodies, whereas VEGF-A-treated bodies displayed a compact plexus of capillaries. FGF-2 stimulation of embryonal stem cells under conditions where VEGF-A/VEGFR-2 function was blocked, led to formation of endothelial cell clusters, which failed to develop into vessels. FGFR-1(-/-) embryoid bodies responded to VEGF-A by establishment of the characteristic vascular plexus, but FGF-2 had no effect on vascular development in the absence of FGFR-1. The FGFR-1(-/-) embryoid bodies displayed considerably increased basal level of vessel formation, detected by immunohistochemical staining for platelet-endothelial cell adhesion molecule (PECAM)/CD31. This basal vascularization was blocked by neutralizing antibodies against VEGFR-2 or VEGF-A and biochemical analyses indicated changes in regulation of VEGFR-2 in the absence of FGFR-1 expression. We conclude that VEGF-A/VEGFR-2-dependent vessel formation occurs in the absence of FGF-2/FGFR-1, which, however, serve to modulate vascular development.

  8. Anti-TNF-α Activity of Portulaca oleracea in Vascular Endothelial Cells

    PubMed Central

    Lee, An Sook; Kim, Jin Sook; Lee, Yun Jung; Kang, Dae Gill; Lee, Ho Sub

    2012-01-01

    Vascular inflammation plays a key role in the pathogenesis and progression of atherosclerosis, a main complication of diabetes. The present study investigated whether an aqueous extract of Portulaca oleracea (AP) prevents the TNF-α-induced vascular inflammatory process in the human umbilical vein endothelial cell (HUVEC). The stimulation of TNF-α induced overexpression of adhesion molecules affects vascular cell adhesion molecule (VCAM)-1, intercellular adhesion molecule (ICAM)-1 and E-selectin for example. However, AP significantly suppressed TNF-α-induced over-expression of these adhesion molecules in a dose-dependent manner. In addition, pretreatment with AP dose-dependently reduced an increase of the adhesion of HL-60 cells to TNF-α-induced HUVEC. Furthermore, we observed that stimulation of TNF-α significantly increased intracellular reactive oxygen species (ROS) production. However, pretreatment with AP markedly blocked TNF-α-induced ROS production in a dose-dependent manner. The western blot and immunofluorescence analysis showed that AP inhibited the translocation of p65 NF-κB to the nucleus. In addition, AP suppressed the TNF-α-induced degradation of IκB-α and attenuated the TNF-α-induced NF-κB binding. AP also effectively reduced TNF-α-induced mRNA expressions of monocyte chemoattractant protein (MCP)-1 and interleukin (IL)-8 in a dose-dependent manner. Taken together, AP prevents the vascular inflammatory process through the inhibition of intracellular ROS production and NF-κB activation as well as the reduction of adhesion molecule expression in TNF-α-induced HUVEC. These results suggested that AP might have a potential therapeutic effect by inhibiting the vascular inflammation process in vascular diseases such as atherosclerosis. PMID:22754320

  9. Anti-TNF-α activity of Portulaca oleracea in vascular endothelial cells.

    PubMed

    Lee, An Sook; Kim, Jin Sook; Lee, Yun Jung; Kang, Dae Gill; Lee, Ho Sub

    2012-01-01

    Vascular inflammation plays a key role in the pathogenesis and progression of atherosclerosis, a main complication of diabetes. The present study investigated whether an aqueous extract of Portulaca oleracea (AP) prevents the TNF-α-induced vascular inflammatory process in the human umbilical vein endothelial cell (HUVEC). The stimulation of TNF-α induced overexpression of adhesion molecules affects vascular cell adhesion molecule (VCAM)-1, intercellular adhesion molecule (ICAM)-1 and E-selectin for example. However, AP significantly suppressed TNF-α-induced over-expression of these adhesion molecules in a dose-dependent manner. In addition, pretreatment with AP dose-dependently reduced an increase of the adhesion of HL-60 cells to TNF-α-induced HUVEC. Furthermore, we observed that stimulation of TNF-α significantly increased intracellular reactive oxygen species (ROS) production. However, pretreatment with AP markedly blocked TNF-α-induced ROS production in a dose-dependent manner. The western blot and immunofluorescence analysis showed that AP inhibited the translocation of p65 NF-κB to the nucleus. In addition, AP suppressed the TNF-α-induced degradation of IκB-α and attenuated the TNF-α-induced NF-κB binding. AP also effectively reduced TNF-α-induced mRNA expressions of monocyte chemoattractant protein (MCP)-1 and interleukin (IL)-8 in a dose-dependent manner. Taken together, AP prevents the vascular inflammatory process through the inhibition of intracellular ROS production and NF-κB activation as well as the reduction of adhesion molecule expression in TNF-α-induced HUVEC. These results suggested that AP might have a potential therapeutic effect by inhibiting the vascular inflammation process in vascular diseases such as atherosclerosis.

  10. Additive effect of red blood cell rigidity and adherence to endothelial cells in inducing vascular resistance.

    PubMed

    Kaul, D K; Koshkaryev, A; Artmann, G; Barshtein, G; Yedgar, S

    2008-10-01

    To explore the contribution of red blood cell (RBC) deformability and interaction with endothelial cells (ECs) to circulatory disorders, these RBC properties were modified by treatment with hydrogen peroxide (H(2)O(2)), and their effects on vascular resistance were monitored following their infusion into rat mesocecum vasculature. Treatment with 0.5 mM H(2)O(2) increased RBC/EC adherence without significant alteration of RBC deformability. At 5.0 mM H(2)O(2), RBC deformability was considerably reduced, inducing a threefold increase in the number of undeformable cells, whereas RBC/EC adherence was not further affected by the increased H(2)O(2) concentration. This enabled the selective manipulation of RBC adherence and deformability and the testing of their differential effect on vascular resistance. Perfusion of RBCs with enhanced adherence and unchanged deformability (treatment with 0.5 mM H(2)O(2)) increased vascular resistance by about 35% compared with untreated control RBCs. Perfusion of 5.0 mM H(2)O(2)-treated RBCs, with reduced deformability (without additional increase of adherence), further increased vascular resistance by about 60% compared with untreated control RBCs. These results demonstrate the specific effects of elevated adherence and reduced deformability of oxidized RBCs on vascular resistance. These effects can be additive, depending on the oxidation conditions. The oxidation-induced changes applied in this study are moderate compared with those observed in RBCs in pathological states. Yet, they caused a considerable increase in vascular resistance, thus demonstrating the potency of RBC/EC adherence and RBC deformability in determining resistance to blood flow in vivo.

  11. Simvastatin combined with antioxidant attenuates the cerebral vascular endothelial inflammatory response in a rat traumatic brain injury.

    PubMed

    Wang, Kuo-Wei; Wang, Hao-Kuang; Chen, Han-Jung; Liliang, Po-Chou; Liang, Cheng-Loong; Tsai, Yu-Duan; Cho, Chung-Lung; Lu, Kang

    2014-01-01

    Traumatic brain injury (TBI) leads to important and deleterious neuroinflammation, as evidenced by indicators such as edema, cytokine production, induction of nitric oxide synthase, and leukocyte infiltration. After TBI, cerebral vascular endothelial cells play a crucial role in the pathogenesis of inflammation. In our previous study, we proved that simvastatin could attenuate cerebral vascular endothelial inflammatory response in a rat traumatic brain injury. This purpose of this study was to determine whether simvastatin combined with an antioxidant could produce the same effect or greater and to examine affected surrogate biomarkers for the neuroinflammation after traumatic brain injury in rat. In our study, cortical contusions were induced, and the effect of acute and continuous treatment of simvastatin and vitamin C on behavior and inflammation in adult rats following experimental TBI was evaluated. The results demonstrated that simvastatin combined with an antioxidant could provide neuroprotection and it may be attributed to a dampening of cerebral vascular endothelial inflammatory response.

  12. PRIMING EFFECT OF HOMOCYSTEINE ON INDUCIBLE VASCULAR CELL ADHESION MOLECULE-1 EXPRESSION IN ENDOTHELIAL CELLS

    PubMed Central

    Séguin, Chantal; Abid, Md. Ruhul; Spokes, Katherine C.; Schoots, Ivo G; Brkovic, Alexandre; Sirois, Martin G.; Aird, William C.

    2017-01-01

    Hyperhomocysteinemia is an independent risk factor for the development of atheroscl