Science.gov

Sample records for glass ionomer ketac

  1. Sealing properties of Ketac-Endo glass ionomer cement and AH26 root canal sealers.

    PubMed

    De Gee, A J; Wu, M K; Wesselink, P R

    1994-09-01

    Sealing capacity, setting shrinkage and setting time of a recently introduced glass ionomer cement Ketac-Endo were compared with that of a conventional sealer AH26. Sixty half-cylinders, 8 mm long, 4 mm in diameter, made from fresh bovine root dentine, had their smear layer removed before being cemented together while separated by 1-mm spacers. This resulted in a group of 15 cylinders cemented with Ketac-Endo and a similar group with AH26. After coating the lateral surface with nail varnish, one end of each cylinder was connected with a tube filled with water under 120 kPa (1.2 atm) pressure. At the other end the fluid leaking through the cemented interface of the cylinders was measured by displacement of an air bubble in an attached standard glass capillary. In this particular set-up where the sealers were used in bulk between two opposing dentine surfaces, Ketac-Endo leaked significantly more than AH26. After shear loading the cemented specimens, it was found that the area of adhesive failure was 88% for Ketac-Endo, and 15% for AH26. The leakage pathways were most probably at the dentine-sealer interface for Ketac-Endo and through cohesive fractures in the sealer for AH26.

  2. Use of glass ionomers as retrofilling materials.

    PubMed

    Barkhordar, R A; Pelzner, R B; Stark, M M

    1989-06-01

    Many materials have been used as retrofillings. Because of the bonding property of glass ionomer cement, this study was conducted to evaluate its possible use as a retrofilling material. Seventy human maxillary anterior teeth were chosen. The root canal systems were cleansed and shaped, and the teeth were assigned to six groups of 10 each. The root canals were obturated with gutta-percha and Grossman sealer, and the apical 2 mm of each root was resected. In all groups a retrofilling preparation was made to a depth of a number 331 bur. The apical preparations were filled in the following manner: silver amalgam (group I), silver amalgam plus two layers of varnish (group II), Ketac-Silver plus two layers of varnish (group III), Ketac-Silver without varnish (group IV), Ketac-Fil plus two layers of varnish (group V), Ketac-Fil without varnish (group VI), and Ketac-Bond (group VII). All the root surfaces with the exception of 2 mm from the resected line were coated with two layers of clear varnish. All the teeth were immersed in methylene blue for 24 hours. After vertical sectioning, dye penetration was measured under a dissecting microscope. The mean apical leakage (in millimeters) was as follows: I = 0.57, II = 0.39, III = 0.22, IV = 0.54, V = 0.11, VI = 0.46, and VII = 0.17. One-way analysis of variance performed on the group means indicated that Ketac-Fil with varnish (group V) and Ketac-Bond (group VII) had significantly less leakage than other groups (p less than 0.05). This study indicates that Ketac-Fil and Ketac-Bond may have potential as retrofilling materials.

  3. The strength of two reinforced glass ionomer materials.

    PubMed

    Mazarakis, E; van der Vyver, P J; Janse van Rensburg, S D; de Wet, F A

    1994-08-01

    Preformed stainless steel crowns survive longer than multi-surface amalgams on deciduous molars. With the use of reinforced glass ionomers the bulk of the lost tooth structure can be replaced and the stainless steel crown cemented simultaneously. The purpose of this study was to compare two glass ionomer cements with regard to their shear bond strength (SBS) to the dentine of extracted primary molars and to their diametral tensile strength (DTS). The results showed that Vitremer was significantly (p < 0.01) stronger (DTS:x = 19.21; SBS:x = 7.63) than Ketac-Silver (DTS:x = 8.94; SBS:x = 2.92).

  4. Dispersive surface properties of glass-ionomer cements determined by inverse gas chromatography

    NASA Astrophysics Data System (ADS)

    Andrzejewska, E.; Voelkel, A.; Andrzejewski, M.; Limanowska-Shaw, H.

    2005-05-01

    The surface properties of several glass-ionomer cements (GIC), restorative dental materials, (GC-Fuji, Chemadent G-J, Ketac Fil and Ketac Molar) were investigated for the first time by means of inverse gas chromatography. This method enables characterization of surface activity in dispersive (non-polar) and acid-base interactions. The ability of the surface of glass-ionomers to participate in dispersive interactions was expressed by the use of the dispersive component of surface free energy γsd. This parameter was determined with satisfactory precision, meaning that the values of γsd can be further used in the discussion of the influence of the type of GIC, its preparation and the storage time on the surface properties. The greatest capacity for dispersive interactions was revealed by Ketac Molar and the lowest by GC-Fuji. Dispersive interactions in the surface activity of glass-ionomers increased with increasing storage time after cement preparation.

  5. Resin-modified glass ionomer cements: fluoride release and influence on Streptococcus mutans growth.

    PubMed

    Friedl, K H; Schmalz, G; Hiller, K A; Shams, M

    1997-02-01

    The aims of the present study were to measure the fluoride release of 1 glass ionomer cement, 1 cermet, 3 resin-modified glass ionomer cements and 1 compomer, and to determine the influence of each material on bacterial growth. Test specimens were eluted in saline for 180 days. Every 2 days, the specimens were transferred into fresh saline and the fluoride content of the solution was measured. Furthermore, 48-h, 14-d, 90-d, and 180-d eluates were inoculated with Streptococcus mutans and bacterial growth was recorded nephelometrically. Fluoride release dropped significantly over time for each material with values between 6.2 (Ketac-Silver) and 29.3 (Photac-Fil) ppm after 48 h to values between 0.6 (Ketac-Silver) and 1.7 (Ketac-Fil, Vitremer) ppm after 180 days. Each material reduced bacterial growth at each time of examination, but the effect decreased significantly over time with a maximum growth of 71.7% (Ketac-Fil) to 85.6% (Ketac-Silver) after 48 h and 94.7 (Vitremer) to 99.0% (Ketac-Silver) after 180 days (growth control = 100%). Both Ketac-Silver and Dyract showed a significantly lower inhibiting effect on bacterial growth than the other materials. The tested materials showed a good correlation between fluoride release and influence on bacterial growth. However, both effects dropped dramatically over the 180-days period.

  6. In vitro comparative fluoride release, and weight and volume change in light-curing and self-curing glass ionomer materials.

    PubMed

    Wandera, A; Spencer, P; Bohaty, B

    1996-01-01

    The purpose of this study was to evaluate and compare in vitro fluoride release from and weight and volume changes of Photac-Fil, a light-curing polymaleinate restorative glass ionomer, with Ketac-Fil, a self-curing glass ionomer, and Ketac-Silver, a metal reinforced glass ionomer. Five discs of each material, measuring 2 mm height and 5 mm diameter, were suspended in separate vials of distilled water and laboratory artificial saliva. Fluoride release into the solutions was measured using a calibrated fluoride-sensitive ion meter initially at 24 hr and then weekly from 1 to 9 weeks. These results were evaluated statistically using repeated measures analysis of variance. Volumes and weights were recorded at the start and end of the experiment and analyzed using the paired t-test. Photac-Fil released similar amounts of fluoride to Ketac-Silver, but significantly less than Ketac-Fil in distilled water (P < or = 0.05). In artificial saliva, Photac-Fil released similar amounts to Ketac-Fil, but significantly more than Ketac-Silver (P < or = 0.05). Photac-Fil volume increased in distilled water and artificial saliva (P < or = 0.05) as did Ketac-Fil and Ketac-Silver in artificial saliva (P < or = 0.05). The only material that demonstrated significant net weight increase was Ketac-Silver in artificial saliva (P < or = 0.05). In summary, differences in fluoride release between these three glass ionomer materials varied as a function of the media in which they were stored. Whereas Ketac-Fil exhibited significantly greater fluoride release than the other materials in distilled water, in artificial saliva Ketac-Fil and Photac-Fil exhibited comparable fluoride release. Dimensional change, as evaluated by volume and weight differences, was also affected by storage media.

  7. Antibacterial effects of glass ionomers.

    PubMed

    DeSchepper, E J; White, R R; von der Lehr, W

    1989-04-01

    Glass ionomer cements have been shown to possess antimicrobial activity. Proposed mechanisms of action include acidity and fluoride. It was the purpose of this study to determine the antimicrobial effect of 11 glass ionomer cements, their individual powder and liquid components and one resin-bonded liner containing high fluoride ionomer glass against Streptococcus mutans #6715. The role of fluoride and pH in the antibacterial activity was also studied. Using agar diffusion assay methodology, the following results were obtained. All of the glass ionomer cements were inhibitory against S. mutans. The antibacterial cements and slurries that were tested for fluoride, released the ion in excess of reported minimum inhibitory values. The antimicrobial activity of the liquid components, that were tested for the effects of pH changes, was totally lost when the pH was adjusted to 5. The resin bonded liner was inactive against S. mutans and did not release inhibitory concentrations of fluoride. These results indicate that freshly-mixed glass ionomer cements are antimicrobial against S. mutans and that the mechanism of action is probably a function of both fluoride and pH although additional factors may be involved.

  8. Microleakage of glass ionomer formulations after erbium:yttrium-aluminium-garnet laser preparation.

    PubMed

    Delmé, Katleen I M; Deman, Peter J; De Bruyne, Mieke A A; Nammour, Samir; De Moor, Roeland J G

    2010-03-01

    The aim of this study was to investigate the microleakage in class V cavities restored with four conventionally setting glass ionomers (CGIs) and one resin-modified glass ionomer (RMGI) following erbium:yttrium-aluminium-garnet (Er:YAG) laser or conventional preparation. Four hundred class V cavities were assigned to four groups: A and B were prepared by an Er:YAG laser; C and D were conventionally prepared. In groups B and D, the surface was additionally conditioned with Ketac conditioner. Each group was divided into five subgroups according to the glass ionomer cement (GIC) used: groups 1 (Ketac Fil), 2 (Ketac Molar), 3 (Ionofil Molar), 4 (Ionofil Molar Quick) and 5 (Photac Fil Quick). After thermocycling, a 2% methylene blue solution was used as dye. Scanning electron microscope (SEM) photographs were taken to show the conditioner's effect. Complete marginal sealing could not be reached. PhotacFil showed less microleakage than the conventionally setting glass ionomer cements (CGICs) investigated. Conditioning laser-prepared cavities did not negatively influence microleakage results except for Ionofil Molar Quick.

  9. Mechanical performance of encapsulated restorative glass-ionomer cements for use with Atraumatic Restorative Treatment (ART)

    PubMed Central

    MOLINA, Gustavo Fabián; CABRAL, Ricardo Juan; MAZZOLA, Ignacio; BRAIN LASCANO, Laura; FRENCKEN, Jo. E.

    2013-01-01

    The Atraumatic Restorative Treatment (ART) approach was suggested to be a suitable method to treat enamel and dentine carious lesions in patients with disabilities. The use of a restorative glass-ionomer with optimal mechanical properties is, therefore, very important. Objective: To test the null-hypotheses that no difference in diametral tensile, compressive and flexural strengths exists between: (1) The EQUIA system and (2) The Chemfil Rock (encapsulated glass-ionomers; test materials) and the Fuji 9 Gold Label and the Ketac Molar Easymix (hand-mixed conventional glass-ionomers; control materials); (3) The EQUIA system and Chemfil Rock. Material and Methods: Specimens for testing flexural (n=240) and diametral tensile (n=80) strengths were prepared according to standardized specifications; the compressive strength (n=80) was measured using a tooth-model of a class II ART restoration. ANOVA and Tukey B tests were used to test for significant differences between dependent and independent variables. Results: The EQUIA system and Chemfil Rock had significantly higher mean scores for all the three strength variables than the Fuji 9 Gold Label and Ketac Molar Easymix (α=0.05). The EQUIA system had significant higher mean scores for diametral tensile and flexural strengths than the Chemfil Rock (α=0.05). Conclusion: The two encapsulated high-viscosity glass-ionomers had significantly higher test values for diametral tensile, flexural and compressive strengths than the commonly used hand-mixed high-viscosity glass-ionomers. PMID:23857657

  10. Influence of air abrasion preparation on microleakage in glass ionomer cement restorations.

    PubMed

    Reis, Lucia da Silva; Chinelatti, Michelle A; Corona, Silmara A M; Palma-Dibb, Regina G; Borsatto, Maria Cristina

    2004-11-01

    The aim of this study was to assess microleakage in class V cavities prepared by air abrasion or high-speed dental bur and restored with different glass ionomer cements. Sixty bovine incisors were equally divided into 6 groups: I, II and III (preparation by high-speed) and IV, V and VI (preparation by air abrasion). Groups I and IV were restored with Fuji IX; groups II and V with Ketac Molar; and groups III and VI with Vitremer. After 24 h (37 degrees C), specimens were thermocycled, isolated with nail varnish, immersed in a 0.2% Rhodamine B solution for 24 hours, sectioned longitudinally and analyzed for microleakage using an optical microscope connected to a digital camera and a computer. The images were digitized and a software allowed the quantitative evaluation of microleakage in millimeters. Data were analyzed by Wilcoxon and Kruskal-Wallis tests. It was observed that there were significant differences (p < 0.05) between incisal (enamel) and cervical (dentine/cementum) margins, mainly for Ketac Molar; there was no difference (p > 0.05) between preparation methods, except for group II (high-speed/Ketac Molar) that showed higher infiltration; regarding the materials, Ketac Molar demonstrated the highest microleakage values (p < 0.05), and only Vitremer sealed completely both margins of restorations. It was concluded that air abrasion preparation did not influence microleakage in class V restorations with the employed glass ionomer cements.

  11. Acid base surface properties of glass-ionomers determined by IGC

    NASA Astrophysics Data System (ADS)

    Voelkel, A.; Andrzejewska, E.; Limanowska-Shaw, H.; Andrzejewski, M.

    2005-05-01

    SummaryThe surface properties of several glass-ionomer restorative dental materials (GC Fuji, Chemadent G-J, Ketac Fil and Ketac Molar) were investigated by means of inverse gas chromatography. The capacity of the surface of glass-ionomers to undergo specific interactions was expressed using the specific component of free energy Δ Gs as well as the parameters KA and KD to describe the ability of the cement to act both as an electron acceptor and an electron donor, respectively. The character of the examined surface was expressed with the use of the SC parameter. All these parameters were determined with a high degree of precision. It was found that the surface of glass-ionomer cements had a well-marked acidic character. The ability of the cement surface to take part in specific interactions differed with the various types of commercial products. The surface activity of the glass-ionomers investigated changed with the storage time (up to 6 months) indicating an on-going setting reaction.

  12. Push-out bond strength of fiber posts to root dentin using glass ionomer and resin modified glass ionomer cements

    PubMed Central

    PEREIRA, Jefferson Ricardo; da ROSA, Ricardo Abreu; SÓ, Marcus Vinícius Reis; AFONSO, Daniele; KUGA, Milton Carlos; HONÓRIO, Heitor Marques; do VALLE, Accácio Lins; VIDOTTI, Hugo Alberto

    2014-01-01

    Objective The purpose of this study was to assess the push-out bond strength of glass fiber posts to root dentin after cementation with glass ionomer (GICs) and resin-modified glass ionomer cements (RMGICs). Material and Methods Fifty human maxillary canines were transversally sectioned at 15 mm from the apex. Canals were prepared with a step back technique until the application of a #55 K-file and filled. Post spaces were prepared and specimens were divided into five groups according to the cement used for post cementation: Luting & Lining Cement; Fuji II LC Improved; RelyX Luting; Ketac Cem; and Ionoseal. After cementation of the glass fiber posts, all roots were stored at 100% humidity until testing. For push-out test, 1-mm thick slices were produced. The push-out test was performed in a universal testing machine at a crosshead speed of 0.5 mm/minute and the values (MPa) were analyzed by Kolmogorov-Smirnov and Levene's tests and by two-way ANOVA and Tukey's post hoc test at a significance level of 5%. Results Fiber posts cemented using Luting & Lining Cement, Fuji II LC Improved, and Ketac Cem presented the highest bond strength to root dentin, followed by RelyX Luting. Ionoseal presented the lowest bond strength values (P>0.05). The post level did not influence the bond strength of fiber posts to root dentin (P=0.148). The major cause of failure was cohesive at the cement for all GICs and RMGICs. Conclusions Except for Ionoseal, all cements provided satisfactory bond strength values. PMID:25004052

  13. Effect of insertion method on knoop hardness of high viscous glass ionomer cements.

    PubMed

    Raggio, Daniela Prócida; Bonifácio, Clarissa Calil; Bönecker, Marcelo; Imparato, José Carlos P; Gee, Anton J de; Amerongen, Willem Evert van

    2010-01-01

    The aim of this study was to assess the Knoop hardness of three high viscous glass ionomer cements: G1 - Ketac Molar; G2 - Ketac Molar Easymix (3M ESPE) and G3 - Magic Glass ART (Vigodent). As a parallel goal, three different methods for insertion of Ketac Molar Easymix were tested: G4 - conventional spatula; G5 - commercial syringe (Centrix) and G6 - low-cost syringe. Ten specimens of each group were prepared and the Knoop hardness was determined 5 times on each specimen with a HM-124 hardness machine (25 g/30 s dwell time) after 24 h, 1 and 2 weeks. During the entire test period, the specimens were stored in liquid paraffin at 37ºC. Significant differences were found between G3 and G1/G2 (two-way ANOVA and Tukey's post hoc test; p<0.01). There was no significant difference in the results among the multiple ways of insertion. The glass ionomer cement Magic Glass ART showed the lowest hardness, while the insertion technique had no significant influence on hardness.

  14. A review of glass-ionomers: From conventional glass-ionomer to bioactive glass-ionomer

    PubMed Central

    Khoroushi, Maryam; Keshani, Fateme

    2013-01-01

    Materials used in the body, especially the materials used in various oral cavity regions should be stable and passive without any interactions with the body tissues or fluids. Dental amalgam, composite resins and dental cements are the materials of choice with such properties. The first attempts to produce active materials, which could interact with the human body tissues and fluids were prompted by the concept that fluoride-releasing materials exert useful effects in the body. The concept of using the “smart” materials in dentistry has attracted a lot of attention in recent years. Conventional glass-ionomer (GI) cements have a large number of applications in dentistry. They are biocompatible with the dental pulp to some extent. GI is predominantly used as cements in dentistry; however, they have some disadvantages, the most important of which is lack of adequate strength and toughness. In an attempt to improve the mechanical properties of the conventional GI, resin-modified glass-ionomers have been marketed, with hydrophilic monomers, such as hydroxyethyl methacrylated (HEMA). Some recent studies have evaluated GI with bioactive glass in its structure to validate the claims that such a combination will improve tooth bioactivity, regeneration capacity and restoration. There is ever-increasing interest in the application of bioactive materials in the dental field in an attempt to remineralize affected dentin. The aim of this review article is to evaluate these materials and their characteristics and applications. PMID:24130573

  15. Glass ionomer restorative cement systems: an update.

    PubMed

    Berg, Joel H; Croll, Theodore P

    2015-01-01

    Glass ionomer cements have been used in pediatric restorative dentistry for more than two decades. Their usefulness in clinical dentistry is preferential to other materials because of fluoride release from the glass component, biocompatibility, chemical adhesion to dentin and enamel, coefficient of thermal expansion similar to that of tooth structure, and versatility. The purpose of this paper was to review the uses of glass ionomer materials in pediatric dentistry, specifically as pit and fissure sealants, dentin and enamel replacement repair materials, and luting cements, and for use in glass ionomer/resin-based composite stratification tooth restoration (the sandwich technique). This article can also be used as a guide to research and clinical references regarding specific aspects of the glass ionomer systems and how they are used for young patients.

  16. Environmental degradation of glass-ionomer cements: a depth-sensing microindentation study.

    PubMed

    Wang, X Y; Yap, Adrian U J; Ngo, H C; Chung, S M

    2007-07-01

    This study investigated the effects of various environmental conditions on the hardness and elastic modulus of restorative glass-ionomer cements (GICs). Two resin-modified GICs (RMGICs) (Fuji II LC [FL]; Photac-Fil Quick [PQ]) and three highly viscous GICs (HVGICs) (Fuji IX Fast [FN]; KetacMolar [KM]; KetacMolar Quick [KQ]) were evaluated in this study. Specimens were fabricated according to the manufacturers' instructions and stored under a variety of conditions (n = 7): 100% humidity, distilled water, pH 5 demineralization solution, and pH 7 remineralization solution. The hardness and elastic modulus were measured using a depth-sensing microindentation test after 4 weeks. The results were analyzed using the independent samples T-test and ANOVA/Scheffe's post hoc test (p < 0.05). HVGICs showed significantly higher hardness and elastic modulus than RMGICs under all storage conditions. Storage in distilled water significantly increased the hardness and elastic modulus of FN, but decreased that of PQ. All HVGICs and RMGICs stored in remineralization solution had hardness values and elastic moduli comparable to those stored in water. Compared to remineralization solution, demineralization solution had no significant effects on the modified GICs with the exception of KQ. The results suggest that the mechanical properties of glass-ionomer restoratives are material-type and storage condition dependent. Therefore, the clinical selection of a glass-ionomer material should be based on the oral environment to which it will be subjected.

  17. Water dynamics in glass ionomer cements

    NASA Astrophysics Data System (ADS)

    Berg, M. C.; Jacobsen, J.; Momsen, N. C. R.; Benetti, A. R.; Telling, M. T. F.; Seydel, T.; Bordallo, H. N.

    2016-07-01

    Glass ionomer cements (GIC) are an alternative for preventive dentistry. However, these dental cements are complex systems where important motions related to the different states of the hydrogen atoms evolve in a confined porous structure. In this paper, we studied the water dynamics of two different liquids used to prepare either conventional or resin-modified glass ionomer cement. By combining thermal analysis with neutron scattering data we were able to relate the water structure in the liquids to the materials properties.

  18. Thermal diffusivity of glass ionomer cement systems.

    PubMed

    Brantley, W A; Kerby, R E

    1993-01-01

    The thermal diffusivity has been measured for 10 glass ionomer and resin-based materials: three conventional (water-hardened) glass ionomer cements, two silver-reinforced glass ionomers, an experimental stainless steel-reinforced glass ionomer, three visible light-cured (VLC) glass ionomer-resin hybrid materials, and a VLC resin-based product developed for the same clinical uses as the hybrid materials. Cube-shaped specimens, c. 10 x 10 x 10 mm, initially at room temperature were immersed in mercury surrounded by an ice-water bath. From the experimental cooling curve a semi-log plot of relative temperature decrease vs. time yielded a straight line whose slope is proportional to the thermal diffusivity. The values ranged from 1.74-5.16 x 10(-3) cm2 s-1, and all of the materials tested would have adequate insulating properties provided normal clinical thickness levels for lining materials are maintained. It was found that the thermal diffusivities for the three metal-reinforced glass ionomers, where composition information is available, do not follow a rule of mixtures applied to the individual components.

  19. Fluoride release of glass ionomer restorations after bleaching with two different bleaching materials

    PubMed Central

    Baroudi, Kusai; Mahmoud, Rasha Said; Tarakji, Bassel

    2013-01-01

    Objective: This study was designed to evaluate the effect of two bleaching agents on the fluoride release of three types of glass ionomer materials. Materials and Methods: A total of 90 specimens of the tested materials (Ketac Fil, Photac Fil and F2000) were prepared by a split Teflon ring with an internal diameter of 5 mm and thickness of 2 mm. The tested materials were applied and bleached according to manufacturer instructions. Fluoride release measurements were made by using specific ion electrode. Results: Results revealed that bleaching with opalescence Xtra caused little increase in fluoride release from Ketac Fil and Photac Fil but has no effect on F2000. However, Opalescence Quick had no significant effect on the three tested materials. Conclusions: Bleaching effect on fluoride release is material dependent and time has a significant role on fluoride release. PMID:24883026

  20. Do conventional glass ionomer cements release more fluoride than resin-modified glass ionomer cements?

    PubMed Central

    Cabral, Maria Fernanda Costa; Martinho, Roberto Luiz de Menezes; Guedes-Neto, Manoel Valcácio; Rebelo, Maria Augusta Bessa; Pontes, Danielson Guedes

    2015-01-01

    Objectives The aim of this study was to evaluate the fluoride release of conventional glass ionomer cements (GICs) and resin-modified GICs. Materials and Methods The cements were grouped as follows: G1 (Vidrion R, SS White), G2 (Vitro Fil, DFL), G3 (Vitro Molar, DFL), G4 (Bioglass R, Biodinâmica), and G5 (Ketac Fil, 3M ESPE), as conventional GICs, and G6 (Vitremer, 3M ESPE), G7 (Vitro Fil LC, DFL), and G8 (Resiglass, Biodinâmica) as resin-modified GICs. Six specimens (8.60 mm in diameter; 1.65 mm in thickness) of each material were prepared using a stainless steel mold. The specimens were immersed in a demineralizing solution (pH 4.3) for 6 hr and a remineralizing solution (pH 7.0) for 18 hr a day. The fluoride ions were measured for 15 days. Analysis of variance (ANOVA) and Tukey's test with 5% significance were applied. Results The highest amounts of fluoride release were found during the first 24 hr for all cements, decreasing abruptly on day 2, and reaching gradually decreasing levels on day 7. Based on these results, the decreasing scale of fluoride release was as follows: G2 > G3 > G8 = G4 = G7 > G6 = G1 > G5 (p < 0.05). Conclusions There were wide variations among the materials in terms of the cumulative amount of fluoride ion released, and the amount of fluoride release could not be attributed to the category of cement, that is, conventional GICs or resin-modified GICs. PMID:26295024

  1. In vitro microleakage of glass-ionomer composite resin hybrid materials.

    PubMed

    Rodrigues, J A; De Magalhães, C S; Serra, M C; Rodrigues Júnior, A L

    1999-01-01

    The purpose of this study was to evaluate the microleakage of six glass-ionomer composite resin hybrid materials compared with a glass-ionomer cement and a composite resin. Standardized class 5 dentin cavities were prepared on root surfaces of 240 extracted human teeth that were randomly assigned to eight groups and restored using the following restorative systems: (I) Vitremer, (II) Compoglass, (III) Photac-Fil Aplicap, (IV) Variglass, (V) Dyract, (VI) Fuji II LC, (VII) Ketac-Fil Aplicap, and (VIII) Z100. The teeth were thermocycled, placed in a 2% methylene blue solution, and sectioned with diamond disks. Dye penetration was scored on a scale of 0-3. Results showed no significant differences among groups VIII, IV, I, V, VI, III, and II. There were also no significant differences among groups VI, III, II, and VII.

  2. Effect of home-use fluoride gels on resin-modified glass-ionomer cements.

    PubMed

    El-Badrawy, W A; McComb, D

    1998-01-01

    Acidic fluoride gels have been found to significantly damage conventional glass-ionomer cements. In this study the effect to acidulated phosphate fluoride (APF) and neutral fluoride gels on the recently introduced resin-modified glass ionomers and a polyacid-modified composite resin (Variglass) was studied using scanning electron microscopy (SEM). Five materials were examined: Photac-Fil, Fuji II LC, Vitremer, Variglass, and Ketac-Fil (control). Groups of five specimens of each material were treated for 24 hours with one of the following: 1) distilled water, 2) neutral fluoride gel, 3) APF gel. Surface micro-structure of treated specimens was examined using SEM, and microphotographs were evaluated using a three-point scale. APF was found to have a deleterious effect on all examined materials, while minimal effects resulted from the neutral fluoride gel compared to the control group. Although showing greater resistance to the APF gel than conventional glass-ionomer cements, resin-modified glass-ionomer materials revealed characteristic immersion and erosion behavior, substantiating their differentiation from a hybrid material containing a preponderance of resin.

  3. In vitro fluoride release from a different kind of conventional and resin modified glass-ionomer cements.

    PubMed

    Selimović-Dragaš, Mediha; Hasić-Branković, Lajla; Korać, Fehim; Đapo, Nermin; Huseinbegović, Amina; Kobašlija, Sedin; Lekić, Meliha; Hatibović-Kofman, Šahza

    2013-08-01

    Fluoride release is important characteristic of glass-ionomer cements. Quantity of fluoride ions released from the glass-ionomer cements has major importance in definition of their biological activity. The objectives of this study were to define the quantity of fluoride ions released from the experimental glass-ionomer cements and to define the effect of fluoride ions released from the experimental glass-ionomer cements on their cytotoxicity. Concentrations of the fluoride ions released in the evaluated glass-ionomer cements were measured indirectly, by the fluoride-selective WTW, F500 electrode potential, combined with reference R503/D electrode. Statistical analyses of F-ion concentrations released by all glass-ionomers evaluated at two time points, after 8 and after 24 hours, show statistically higher fluoride releases from RMGICs: Vitrebond, Fuji II LC and Fuji Plus, when compared to conventional glass-ionomer cements: Fuji Triage, Fuji IX GP Fast and Ketac Silver, both after 8 and after 24 hours. Correlation coefficient between concentrations of fluoride ion released by evaluated glass-ionomer cements and cytotoxic response of UMR-106 osteoblast cell-line are relatively high, but do not reach levels of biological significance. Correlation between concentrations of fluoride ion released and cytotoxic response of NIH3T3 mouse fibroblast cell line after 8 hours is high, positive and statistically significant for conventional GICs, Fuji Triage and Fuji IX GP Fast, and RMGIC, Fuji II LC. Statistically significant Correlation coefficient between concentrations of fluoride ion released and cytotoxic response of NIH3T3 cell line after 24 hours is defined for RMGIC Fuji II LC only.

  4. Shear bond strengths of resin-modified glass-ionomer restorative materials.

    PubMed

    Swift, E J; Pawlus, M A; Vargas, M A

    1995-01-01

    The purpose of this study was to evaluate the shear bond strength of resin-modified glass-ionomer restorative materials to dentin. The materials tested were Fuji II LC, Geristore, Photac-Fil, VariGlass VLC, and Vitremer. Ketac-Fil, a conventional glass ionomer, was used as the control. The occlusal surfaces of 60 extracted molars were ground flat in dentin using 600-grit silicon carbide abrasive paper. Dentin surfaces were treated according to manufacturers' instructions, and restorative materials were applied using gelatin capsule matrices. Shear bond strengths were determined after the specimens were thermocycled 500 times. Mean bond strengths of the resin-modified glass ionomers ranged from 1.4 MPa (Photac-Fil) to 12.3 MPa (Fuji II LC). Except for Photac-Fil, all values were significantly higher than the control. Pairwise comparisons between the means for Fuji II LC and Vitremer, Vitremer and Geristore, and Geristore and VariGlass were not significantly different.

  5. Heat transfer properties and thermal cure of glass-ionomer dental cements.

    PubMed

    Gavic, Lidia; Gorseta, Kristina; Glavina, Domagoj; Czarnecka, Beata; Nicholson, John W

    2015-10-01

    Under clinical conditions, conventional glass-ionomer dental cements can be cured by application of heat from dental cure lamps, which causes acceleration in the setting. In order for this to be successful, such heat must be able to spread sufficiently through the cement to enhance cure, but not transmit heat so effectively that the underlying dental pulp of the tooth is damaged. The current study was aimed at measuring heat transfer properties of modern restorative glass-ionomers to determine the extent to which they meet these twin requirements. Three commercial glass ionomer cements (Ionofil Molar, Ketac Molar and Equia™ Fill) were used in association with three different light emitting diode cure lamps designed for clinical use. In addition, for each cement, one set of specimens was allowed to cure without application of a lamp. Temperature changes were measured at three different depths (2, 3 and 4 mm) after cure times of 20, 40 and 60 s. The difference among the tested groups was evaluated by ANOVA (P < 0.05) and post hoc Newman-Keuls test. All brands of glass-ionomer showed a small inherent setting exotherm in the absence of heat irradiation, but much greater temperature increases when exposed to the cure lamp. However, temperature rises did not exceed 12.9 °C. Application of the cure lamp led to the establishment of a temperature gradient throughout each specimen. Differences were typically significant (P < 0.05) and did not reflect the nominal power of the lamps, because those lamps have variable cooling systems, and are designed to optimize light output, not heating effect. Because the thermal conductivity of glass-ionomers is low, temperature rises at 4 mm depths were much lower than at 2 mm. At no time did the temperature rise sufficiently to cause concern about potential damage to the pulp.

  6. Microleakage on Class V glass ionomer restorations after cavity preparation with aluminum oxide air abrasion.

    PubMed

    Corona, Silmara Aparecida Milori; Borsatto, Maria Cristina; Rocha, Renata Andréa Salvitti de Sá; Palma-Dibb, Regina Guenka

    2005-01-01

    This in vitro study assessed the marginal microleakage on class V cavities prepared with aluminum oxide air abrasion and restored with different glass ionomer cements. The cavities were prepared on the buccal and lingual surfaces of 15 sound third molars with an air- abrasion device (Kreativ Mach 4.1; New Image) using a 27.5-microm aluminum oxide particle stream, and were assigned to 3 groups of 10 cavities each. The restorative materials were: group I, a conventional glass ionomer cement (Ketac-Fil); groups II and III, resin-modified glass ionomer cements (Vitremer R and Fuji II LC, respectively). After placement of the restorations, the teeth were stored in distilled water at 37 degrees C for 24 h, polished and then submitted to a thermocycling regimen of 500 cycles, isolated, immersed in 0.2% Rhodamine B solution for 24 h, included and serially sectioned. Microleakage was assessed by viewing the specimens under an optical microscope connected to a color video camera and a computer. The images obtained were digitized and analyzed for microleakage using software that allows for a standard quantitative assessment of dye penetration in millimeters. Statistical analysis was done using the Kruskall-Wallis and Wilcoxon tests. Means of dye penetration (%) were: occlusal - I: 25.76 +/- 34.35, II: 20.00 +/- 42.16, III: 28.25 +/- 41.67; cervical - I: 23.72 +/- 41.84; II: 44.22 +/- 49.69, III: 39.27 +/- 50.74. No statistically significant differences (p>0.05) were observed among either the glass ionomer cements or the margins. In conclusion, class V cavities restored with either conventional or resin-modified glass ionomer cements after preparation with aluminum oxide air abrasion did not show complete sealing at the enamel and dentin/cementum margins.

  7. Comparative in vitro microradiographic effects of resin-modified and autopolymerizing glass ionomers on demineralization of primary and permanent enamel.

    PubMed

    Wandera, A; Garcia, G

    1998-01-01

    The purpose of this study was to compare in vitro effects of resin-modified and autopolymerizing glass ionomer restorative materials on demineralization of primary and permanent human enamel. Thirty primary and permanent enamel specimens measuring approximately 3 x 4 x 4 mm were sectioned and plano-paralleled before random placement of materials: Photac-Fil, a resin-modified glass ionomer; Ketac-Fil, an autopolymerizing glass ionomer; and Tytin, a silver amalgam. After incubation for twenty-four hours, the samples were pH cycled for eight hours at pH 5.0 and sixteen hours at pH 7.2 for a total of two weeks, all at 37 degrees C. The specimens were then subjected to an artificial caries challenge at pH 5.0 for 196 hours. The specimens were embeded in Epon 812 and incubated at 55 degrees C for thirty-six hours. Microsections were produced from each sample and subjected to microradiography and quantitative microdensitometry. Data on lesion depth and mineral content were analyzed by Two Way ANOVA and Student Newman-Keuls Pairwise Multiple Comparison tests. There were significant differences in lesion depth and mineral content between groups (p < 0.05) and between permanent and primary enamel. This study demonstrates that Photac-Fil and Ketac-Fil prevent in vitro demineralization at varying levels in primary and permanent enamel.

  8. Comparative evaluation of microleakage of nano-filled resin-modified glass ionomer: An in vitro study

    PubMed Central

    Eronat, Nesrin; Yilmaz, Emir; Kara, Nazan; Topaloglu, Ak Asli

    2014-01-01

    Objective: This in vitro study evaluated the microleakage of a nano-filled resin-modified glass ionomer and a high viscosity glass-ionomer restorations in class V cavities. Materials and Methods: Thirty-two class V cavities prepared on the buccal and lingual surfaces of 16 sound, third molar teeth were randomly assigned into two groups and restored by one of the glass ionomer material; Group A: A high viscosity (Ketac Molar, 3M ESPE) Group B: A nano-filled resin-modified (Ketac N100, 3M ESPE) glass ionomer. One clinician prepared all the cavities. The materials were used according to the manufacturers’ recommendations. The restored teeth were then stored in distilled water at 37°C for 24 h, thermocycled at 5-55°C for 1000 cycles. The specimens were immersed in aqueous solution of Indian ink dye for 48 h at room temperature. They were embedded in resin polyester and sectioned longitudinally in a buccolingual direction. Microleakage was assessed according to the depth of dye penetration along the restoration. The extent of dye penetration at the occlusal and gingival margins was assessed using a stereo microscope. Randomly selected samples from each group were prepared for scanning electron microscope evaluation. The data were statistically analyzed with Friedman and Wilcoxon signed ranks tests. Results: There were statistically significant differences between the microleakage scores of the two groups for both occlusal and gingival scores (P = 0.001). Occlusal and gingival scores for high viscosity glass ionomer (P = 0.024) and nanoionomer (P = 0.021) using Wilcoxon signed ranks tests showed statistically significant differences. High viscosity glass ionomer showed significantly less microleakage compared to the nano-filled resin-modified glass-ionomer (RMGIs) at occlusal margin (P = 0.001). No significant differences were found between the groups at gingival margin (P = 0.0317). Conclusion: Within the limitations of this in vitro study, nano-filled RMGIs

  9. The Effect of Lucite Glass Reinforcement on the Properties of Conventional Glass-Ionomer Filling Materials

    PubMed Central

    Kazemi Yazdi, Haleh; Van Noort, Richard; Mansouri, Mona

    2016-01-01

    Statement of the Problem: The usage of glass ionomer cements (GICs) restorative materials are very limited due to lack of flexural strength and toughness. Purpose: The aim of this study was to investigate the effect of using a leucite glass on a range of mechanical and optical properties of commercially available conventional glass ionomer cement. Materials and Method: Ball milled 45μm leucite glass particles were incorporated into commercial conventional GIC, Ketac-Molar Easymix (KMEm). The characteristics of the powder particles were observed under scanning electron microscopy. The samples were made for each experimental group; KMEm and lucite- modified Ketac-Molar easy Mix (LMKMEm) according to manufacturer’s instruction then were collected in damp tissue and stored in incubator for 1 hour. The samples were divided into two groups, one stored in distilled water for 24 hours and the others for 1 week.10 samples were made for testing biaxial flexural strength after 1 day and 1 week, with a crosshead speed of 1mm/min, calculated in MPa. The hardness (Vickers hardness tester) of each experimental group was also tested. To evaluate optical properties, 3 samples were made for each experimental group and evaluated with a spectrophotometer. The setting time of modified GIC was measured with Gillmore machine. Result: The setting time in LMKMEm was 8 minutes. The mean biaxial flexural strength was LMKMEm/ 1day: 24.13±4.14 MPa, LMKMEm/ 1 week: 24.22±4.87 MPa KMEm/1day:28.87±6.31 MPa and KMEm/1 week: 26.65±5.82 MPa which were not statistically different from each other. The mean Vickers hardness was LMKMEm: 403±66 Mpa and KMEm: 358±22 MPa; though not statistically different from each other. The mean total transmittance (Tt) was LMKMEm: 15.9±0.7, KMEm: 22.3±1.2, the mean diffuse transmittance (Td) was LMKMEm: 12.2±0.5, KMEm: 18.0±0.5 which were statistically different from each other. Conclusion: Leucite glass can be incorporated with a conventional GIC without

  10. Effects of etching and adhesive applications on the bond strength between composite resin and glass-ionomer cements

    PubMed Central

    PAMIR, Tijen; ŞEN, Bilge Hakan; EVCIN, Özgür

    2012-01-01

    Objective This study determined the effects of various surface treatment modalities on the bond strength of composite resins to glass-ionomer cements. Material and Methods Conventional (KetacTM Molar Quick ApplicapTM) or resin-modified (PhotacTM Fil Quick AplicapTM) glass-ionomer cements were prepared. Two-step etch-rinse & bond adhesive (AdperTM Single Bond 2) or single-step self-etching adhesive (AdperTM PromptTM L-PopTM) was applied to the set cements. In the etch-rinse & bond group, the sample surfaces were pre-treated as follows: (1) no etching, (2) 15 s of etching with 35% phosphoric acid, (3) 30 s of etching, and (4) 60 s of etching. Following the placement of the composite resin (FiltekTM Z250), the bond strength was measured in a universal testing machine and the data obtained were analyzed with the two-way analysis of variance (ANOVA) followed by the Tukey's HSD post hoc analysis (p=0.05). Then, the fractured surfaces were examined by scanning electron microscopy. Results The bond strength of the composite resin to the conventional glass-ionomer cement was significantly lower than that to the resin-modified glass-ionomer cement (p<0.001). No significant differences were determined between the self-etching and etch-rinse & bond adhesives at any etching time (p>0.05). However, a greater bond strength was obtained with 30 s of phosphoric acid application. Conclusions The resin-modified glass-ionomer cement improved the bond strength of the composite resin to the glass-ionomer cement. Both etch-rinse & bond and self-etching adhesives may be used effectively in the lamination of glass-ionomer cements. However, an etching time of at least 30 s appears to be optimal. PMID:23329245

  11. Effect of triturator speed variation on physical properties of encapsulated glass-ionomer luting cements.

    PubMed

    Rupp, D C; Hermesch, C B; Charlton, D G

    1996-01-01

    This in vitro study evaluated the effect of variation of triturator mixing speed on the physical properties of two encapsulated glass-ionomer luting cements. Physical properties evaluated were working time, setting time, film thickness, and 24-hour and 7-day compressive strengths. Encapsulated glass-ionomer luting cements were mixed at 3000, 3500, 4000 (control), and 4500 cycles per minute (cpm). An oscillating rheometer was used to determine working and setting times. Film thickness and compressive strength were determined using methods described in ANSI/ADA Specification No 66 for dental glass-ionomer cements. Results of the study indicated that decreased mixing speed may prolong working and setting times for Ketac-Cem Maxicap and Fuji Cap I. Within the range of 3500 to 4500 cpm, variations in mixing speed do not significantly affect compressive strength or film thickness values for either cement. Excessively slow mixing speed (3000 cpm) often resulted in the presence of unmixed powder expressed from the capsule nozzle prior to the expression of mixed cement. The presence of this unmixed powder results in a decreased powder/liquid ratio, which may have an adverse effect on the physical properties of the set cement.

  12. Depth microhardness of glass ionomer cements.

    PubMed

    Dupuis, V; Moya, F; Payan, J; Bartala, M

    1996-01-01

    The purpose of this study was to observe the effect of different conditions of storage on the surface and in the depth of luting glass ionomer cement by measuring microhardness. The hardness of a glass ionomer cement was measured after storage in wet and dry conditions and in an atmosphere of 80% relative humidity, for times up to 1000 h. Storage in distilled water produced a softening effect, but the depth hardness increased progressively. The penetration of the water is a surface phenomenon and does not affect the depth of the cement. However, the cement is vulnerable to moisture to a depth of 600 microns and marginal gaps evolve in the range of 40 to 80 microns when the luting cement at the tooth crown margin is always destroyed.

  13. Smooth surface glass ionomer restoration for primary teeth.

    PubMed

    Killian, C M; Croll, T P

    1991-01-01

    Glass ionomer restorative cement offers the clinician an alternative to bonded composite resin for restoration of certain lesions in primary teeth. This article details a step-by-step procedure for restoration of a smooth surface carious lesion in a primary incisor using an encapsulated glass ionomer restorative material and reviews advantages and limitations of the cement. A light-hardened glass ionomer liner/base that has proven useful as an enamel and dentin restorative is also described.

  14. Spheroidization of glass powders for glass ionomer cements.

    PubMed

    Gu, Y W; Yap, A U J; Cheang, P; Kumar, R

    2004-08-01

    Commercial angular glass powders were spheroidized using both the flame spraying and inductively coupled radio frequency plasma spraying techniques. Spherical powders with different particle size distributions were obtained after spheroidization. The effects of spherical glass powders on the mechanical properties of glass ionomer cements (GICs) were investigated. Results showed that the particle size distribution of the glass powders had a significant influence on the mechanical properties of GICs. Powders with a bimodal particle size distribution ensured a high packing density of glass ionomer cements, giving relatively high mechanical properties of GICs. GICs prepared by flame-spheroidized powders showed low strength values due to the loss of fine particles during flame spraying, leading to a low packing density and few metal ions reacting with polyacrylic acid to form cross-linking. GICs prepared by the nano-sized powders showed low strength because of the low bulk density of the nano-sized powders and hence low powder/liquid ratio of GICs.

  15. Evaluation of adhesive and compressive strength of glass ionomer cements.

    PubMed

    Ramashanker; Singh, Raghuwar D; Chand, Pooran; Jurel, Sunit Km; Tripathi, Shuchi

    2011-12-01

    The aim of the study was to assess, compare and evaluate the adhesive strength and compressive strength of different brands of glass ionomer cements to a ceramometal alloy. (A) Glass ionomer cements: GC Fuji II (GC Corporation, Tokyo), Chem Flex (Dentsply DeTrey, Germany), Glass ionomer FX (Shofu-11, Japan), MR dental (MR dental suppliers Pvt Ltd, England). (B) Ceramometal alloy (Ni-Cr: Wiron 99; Bego, Bremen, Germany). (C) Cold cure acrylic resin. (E) Temperature cum humidity control chamber. (F) Instron Universal Testing Machine. Four different types of Glass ionomer cements were used in the study. From each type of the Glass ionomer cements, 15 specimens for each were made to evaluate the compressive strength and adhesive strength, respectively. The 15 specimens were further divided into three subgroups of five specimens. For compressive strength, specimens were tested at 2, 4 and 12 h by using Instron Universal Testing Machine. To evaluate the adhesive strength, specimens were surface treated with diamond bur, silicone carbide bur and sandblasting and tested under Instron Universal Testing Machine. It was concluded from the study that the compressive strength as well as the adhesive bond strength of MR dental glass ionomer cement with a ceramometal alloy was found to be maximum compare to other glass ionomer cements. Sandblasting surface treatment of ceramometal alloy was found to be comparatively more effective for adhesive bond strength between alloy and glass ionomer cement.

  16. Effects of daily fluoride exposures on fluoride release by glass ionomer-based restoratives.

    PubMed

    Freedman, Rick; Diefenderfer, Kim E

    2003-01-01

    It is well documented that glass ionomer cements absorb and release fluoride following single fluoride exposures. This study examined fluoride release among three glass ionomer-based restorative materials following multiple daily exposures to three topical fluoride regimens. Using a Delrin mold, 32 cylindrical specimens, each of a glass ionomer (Ketac-Fil), resin-modified glass ionomer (Photac-Fil) and polyacid-modified resin (Dyract AP) were created. Each specimen was subjected to one of four daily treatments (n = 8): (1) no fluoride treatment (control); (2) application of a fluoride dentifrice (1000 ppm) for one minute once daily; (3) application of the same dentifrice for one minute twice daily; (4) the same regimen as (3), plus immersion in a 0.05% sodium fluoride (NaF) mouth rinse (225 ppm) for one minute immediately following the second dentifrice application. Each specimen was suspended in a polyethylene test tube containing 1.0 ml demineralizing solution (pH 4.3) at 37 degrees C for six hours, then transferred to a new test tube containing 1.0 ml remineralizing solution (pH 7.0) at 37 degrees C for 18 hours. Fluoride treatments were completed at the time of transfer daily for seven days. Media solutions were buffered with equal volumes of TISAB II; fluoride levels were measured using a digital ion analyzer and fluoride electrode. Fluoride release decreased significantly from Day 1 to Day 3 for all materials regardless of fluoride treatment (Repeated Measures ANOVA, Tukey HSD, p < 0.05). All specimens released significantly more fluoride in demineralizing solution than in remineralizing solution. For Days 2-7, Treatment 4 produced greater fluoride release than both the control and Treatment 2 for all three materials (p < 0.05); For each material, the fluoride release produced by Treatments 3 and 4 was statistically similar on most days throughout the study. By Day 7, Photac-Fil demonstrated both the greatest total fluoride release and the greatest

  17. Two-year clinical performance of a resin-modified glass-ionomer restorative material.

    PubMed

    Brackett, W W; Gilpatrick, R O; Browning, W D; Gregory, P N

    1999-01-01

    This study was a 2-year clinical evaluation of a conventional and a resin-modified glass-ionomer restorative material. Thirty-four restorations each of Ketac-Fil and Photac-Fil were placed without tooth preparation in cervical abrasion/abfraction lesions, primarily in premolar teeth. Patients ranged in age from 30 to 73 years, with a median age of 45 years. Isolation for the restorations was accomplished with cotton rolls. Restorations of both materials were retained at the rate of 93%, and both were comparable in appearance, receiving Alfa ratings for more than 85% of the restorations. One occurrence of secondary caries was observed for each material. No significant difference between the materials was observed for any evaluation category (exact binomial test, P > 0.05).

  18. A Review of Glass-Ionomer Cements for Clinical Dentistry.

    PubMed

    Sidhu, Sharanbir K; Nicholson, John W

    2016-06-28

    This article is an updated review of the published literature on glass-ionomer cements and covers their structure, properties and clinical uses within dentistry, with an emphasis on findings from the last five years or so. Glass-ionomers are shown to set by an acid-base reaction within 2-3 min and to form hard, reasonably strong materials with acceptable appearance. They release fluoride and are bioactive, so that they gradually develop a strong, durable interfacial ion-exchange layer at the interface with the tooth, which is responsible for their adhesion. Modified forms of glass-ionomers, namely resin-modified glass-ionomers and glass carbomer, are also described and their properties and applications covered. Physical properties of the resin-modified glass-ionomers are shown to be good, and comparable with those of conventional glass-ionomers, but biocompatibility is somewhat compromised by the presence of the resin component, 2 hydroxyethyl methacrylate. Properties of glass carbomer appear to be slightly inferior to those of the best modern conventional glass-ionomers, and there is not yet sufficient information to determine how their bioactivity compares, although they have been formulated to enhance this particular feature.

  19. A Review of Glass-Ionomer Cements for Clinical Dentistry

    PubMed Central

    Sidhu, Sharanbir K.; Nicholson, John W.

    2016-01-01

    This article is an updated review of the published literature on glass-ionomer cements and covers their structure, properties and clinical uses within dentistry, with an emphasis on findings from the last five years or so. Glass-ionomers are shown to set by an acid-base reaction within 2–3 min and to form hard, reasonably strong materials with acceptable appearance. They release fluoride and are bioactive, so that they gradually develop a strong, durable interfacial ion-exchange layer at the interface with the tooth, which is responsible for their adhesion. Modified forms of glass-ionomers, namely resin-modified glass-ionomers and glass carbomer, are also described and their properties and applications covered. Physical properties of the resin-modified glass-ionomers are shown to be good, and comparable with those of conventional glass-ionomers, but biocompatibility is somewhat compromised by the presence of the resin component, 2 hydroxyethyl methacrylate. Properties of glass carbomer appear to be slightly inferior to those of the best modern conventional glass-ionomers, and there is not yet sufficient information to determine how their bioactivity compares, although they have been formulated to enhance this particular feature. PMID:27367737

  20. Comparative assessment of antibacterial activity of different glass ionomer cements on cariogenic bacteria

    PubMed Central

    Dodamani, Arun Suresh; Jadhav, Harish Chaitram; Deshmukh, Manjiri Abhay

    2016-01-01

    Objectives Glass ionomer cements (GICs), which are biocompatible and adhesive to the tooth surface, are widely used nowadays for tooth restoration. They inhibit the demineralization and promote the remineralization of the tooth structure adjacent to the restoration, as well as interfere with bacterial growth. Hence, the present study was conducted to assess and compare the antimicrobial activity of three commercially available GICs against two cariogenic bacteria. Materials and Methods An agar plate diffusion test was used for evaluating the antimicrobial effect of three different GICs (Fuji IX, Ketac Molar, and d-tech) on Streptococcus mutans (S. mutans) and Lactobacillus acidophilus (L. acidophilus). Thirty plates were prepared and divided into two groups. The first group was inoculated with S. mutans, and the second group was inoculated with L. acidophilus. These plates were then incubated at 37℃ for 24 hours. Zones of bacterial growth inhibition that formed around each well were recorded in millimeters (mm). Results The zones of inhibition for Fuji IX, Ketac Molar, and d-tech on S. mutans were found to be 10.84 ± 0.22 mm, 10.23 ± 0.15 mm, and 15.65 ± 0.31 mm, respectively, whereas those for L. acidophilus were found to be 10.43 ± 0.12 mm, 10.16 ± 0.11 mm, and 15.57 ± 0.13 mm, respectively. Conclusions D-tech cement performed better in terms of the zone of bacterial inhibition against the two test bacteria, than the other two tested glass ionomers. PMID:27847749

  1. Microtensile bond strength of glass ionomer cements to artificially created carious dentin.

    PubMed

    Choi, Kyungho; Oshida, Yoshiki; Platt, Jeffrey A; Cochran, Michael A; Matis, Bruce A; Yi, Keewook

    2006-01-01

    In this laboratory study, the microtensile bond strengths of a conventional glass ionomer cement (GIC) and a resin modified glass ionomer cement (CRMGIC) to artificially created carious dentin and sound dentin were compared, and the ultrastructural morphology of the fractured interface was examined with a low-vacuum scanning electron microscope (SEM). The specimens were divided into 4 groups: 1) a conventional GIC (Ketac-Fil Plus Aplicap) placed on sound dentin; 2) a conventional GIC placed on artificially created carious dentin; 3) an RMGIC (Photac-Fil Aplicap) placed on sound dentin and 4) an RMGIC placed on artificially created carious dentin. Artificial carious lesions were created using a chemical demineralizing solution of 0.1 M/L lactic acid and 0.2% carbopol. GIC buildups were made on the dentin surfaces according to the manufacturer's directions. After storage in distilled water at 37 degrees C for 24 hours, the teeth were sectioned vertically into 1 x 1 x 8-mm beams for the microtensile bond strength test. The microtensile bond strength of each specimen was measured, and failure mode was determined using an optical microscope (40x). The fractured surfaces were further examined with SEM. Two-way analysis of variance showed that the mean microtensile bond strengths of a GIC and an RMGIC to carious dentin were significantly lower than those to sound dentin, and the mean microtensile bond strengths of Photac-Fil to both sound and carious dentin were significantly higher than those of Ketac-Fil Plus. Chi-square tests indicated that there was a significant difference in failure mode between the sound dentin and carious dentin groups. In sound dentin groups, cohesive failure in GIC was pre- dominant; whereas, mixed failure was predominant in carious dentin groups. SEM examination showed that the specimens determined to be cohesive failures under light microscopy in the Photac-Fil/Sound Dentin group were actually mixed failures under high magnification of SEM.

  2. Adhesion of glass-ionomer cement sealers to bovine dentin conditioned with intracanal medications.

    PubMed

    Chung, H A; Titley, K; Torneck, C D; Lawrence, H P; Friedman, S

    2001-02-01

    This in vitro study assessed the adherence of glass-ionomer cement (GIC) root canal sealers to dentin conditioned by three endodontic intracanal medications. Three GIC sealers were used: (i) Ketac-Endo; (ii) KT-308, an experimental GIC sealer; and (iii) ZUT, a combination of KT-308 and a silver-containing zeolite (0.2% by weight). Superficial dentin of 120 bovine incisor crowns was used as a substrate. The dentin was irrigated with 2.6% NaOCI for 30 s and then blotted dry. One of the following conditioning media (n = 30) was maintained in contact with the dentin for 7 days: (i) Ca(OH)2 paste; (ii) chlorhexidine gluconate (CHX) liquid 0.12%; (iii) formocresol (FML) liquid; (iv) distilled water (dH2O) used as control. The GIC sealers were applied to the conditioned dentin, bench set for 90 min, stored in 100% humidity at 37 degrees C for 48 h, then tested to failure for shear bond strength (MPa) in an Instron machine. In the ZUT specimens, the shear bond strength did not differ significantly among those conditioned with Ca(OH)2, CHX, FML, and dH2O. For KT-308, the mean scores were significantly lower (p < 0.05) after conditioning with CHX than with dH2O. For Ketac-Endo, the mean scores were significantly lower after conditioning with Ca(OH)2 and FML than with dH2O (p < 0.05). Furthermore Ketac-Endo demonstrated significantly lower (p < 0.05) shear bond strength than KT-308 or ZUT to the dentin conditioned with Ca(OH)2 or FML. The results suggest that intracanal medications differentially influence the adhesion of various GIC sealers to root canal dentin.

  3. Amino acid containing glass-ionomer cement for orthopedic applications

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    Amino acid containing glass-ionomer cements were synthesized, formulated, and evaluated for orthopedic application. The formulation of different amino acid containing glass-ionomer bone cements was optimized, and conventional and resin-modified glass-ionomer bone cements were compared. Properties of interest included handling characteristics, physical and chemical properties, and mechanical strength of the bone cement. The study was based on the synthesis of different vinyl containing amino acids, different polyelectrolytes containing these amino acid residues, and different resin-modified polyelectrolytes, as well as formulation and evaluation of conventional and resin-modified glass-ionomer bone cements using these polyelectrolytes. Systematic preparation of polyelectrolytes and formulation of glass-ionomer bone cements were essential features of this work, since we anticipated that the mechanical properties of the glass-ionomer bone cements could be strongly affected by the nature of the polyelectrolytes and formulation. Mechanical properties were evaluated in a screw driven mechanical testing machine, and structure-property relationships were determined by scanning electron microscopic (SEM) observation of the fracture surface of the specimens. How the structure of polyelectrolytes, such as different amino acid residues, molecular weight, different modifying resin, and formulation of glass-ionomer bone cement, affected the mechanical properties was also studied.

  4. Radiopacity of resin-modified glass-ionomer restorative cements.

    PubMed

    Sidhu, S K; Shah, P M; Chong, B S; Pitt Ford, T R

    1996-09-01

    This in vitro study compared the relative radiopacities of three commercially available resin-modified glass-ionomer cements (Vitremer, Fuji II LC, and Photac-Fil), an experimental resin-modified glass-ionomer (V-66), two conventional glass-ionomers (ChemFil and Fuji Cap II), and amalgam (as the control). Radiopacity was assessed densitometrically and expressed as equivalent thicknesses of aluminum. All the glass-ionomer cements were more radiopaque than enamel and dentin, with the exception of ChemFil and Photac-Fil. Apart from the control material, the experimental resin-modified glass-ionomer material, V-66, had the highest radiopacity of all the materials tested. Of the three resin-modified glass-ionomer materials tested, Fuji II LC was the most radiopaque and Photac-Fil the least. For the radiopacity of restorative glass-ionomer materials to exceed that of enamel, it should be greater than 1.5 mm of equivalent thickness of aluminum.

  5. Biaxial flexural strength of high-viscosity glass-ionomer cements heat-cured with an LED lamp during setting.

    PubMed

    Fabián Molina, Gustavo; Cabral, Ricardo Juan; Mazzola, Ignacio; Brain Lascano, Laura; Frencken, Jo E

    2013-01-01

    Adding heat to glass ionomers during setting might improve mechanical properties. The aim was to compare the biaxial flexural strength (BFS) between and within four glass ionomers, by time of exposure to a high-intensity LED light-curing unit. Materials and methods. Samples of Fuji 9 Gold Label, Ketac Molar Easymix, ChemFil Rock, and the EQUIA system were divided into three treatment groups (n = 30): without heating (Group 1), heated with LED lamp of 1400 mW/cm(2) for 30 s while setting (Group 2), and heated with LED lamp of 1400 mW/cm(2) for 60 s while setting (Group 3). Samples were stored for 48 hours in distilled water at 37°C until tested. BFS was tested, using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed, using ANOVA test with the Bonferroni correction (α = 0.05). Heating the glass-ionomer cements with an LED curing light of 1400 mW/cm(2) during setting for 30 s increased the BFS value of all GICs. No statistically significant difference in mean BFS scores was found between the EQUIA system and ChemFil Rock at 30 s and 60 s. The mean BFS value was statistically significantly higher for the EQUIA system and ChemFil Rock than for Fuji 9 Gold Label and Ketac Molar Easymix at all exposure times.

  6. Surface finishing of resin-modified glass ionomer.

    PubMed

    Liporoni, Priscila; Paulillo, Luis Alexandre; Cury, Jaime Aparecido; Dos Santos Dias, Carlos Tadeu; Paradella, Thais Cachute

    2003-01-01

    This study utilized spectrophotometry to evaluate in vitro superficial dye deposition on resin-modified glass ionomer, following different surface finishing and polishing treatments. Materials that were photocured adjacent to the mylar strip produced the surfaces with the lowest mean after superficial staining. A restorative technique without excesses resulted in a smoother surface and prolonged the life of the restoration. The resin-modified glass ionomers tested offer adequate clinical performance.

  7. Reinforcement of conventional glass-ionomer restorative material with short glass fibers.

    PubMed

    Hammouda, Ibrahim M

    2009-01-01

    This study investigated the strengthening effect of glass fibers when added to conventional glass-ionomer restorative material. Glass fibers were incorporated into glass-ionomer powder in 3 wt% and 5 wt%. The fibers used had 1 mm length and 10 microm thickness. These criteria of fiber length, diameter, and concentration represent a new approach for reinforcing conventional glass-ionomer [Medifill, conventional restorative glass-ionomer]. The mechanical properties tested were diametral tensile strength, hardness, flexural strength, flexural modulus and fracture toughness after 24-h and 7-days of storage in deionized water. Glass short fibers were mixed thoroughly into the glass-ionomer powder before mixing with the cement liquid. Samples of specific dimensions were prepared for each time interval and fiber loading according to the manufacturer's instructions and international standards. Hardness was measured using a micro-hardness tester at 100 gram applied load for 15 s. The other mechanical properties were measured using a Lloyd universal testing machine. The results showed increased diametral tensile strength, flexural strength, flexural modulus, and fracture toughness by the addition of glass fibers. There was an appreciable increase of the tested mechanical properties of glass-ionomer restorative material as a result of increasing fiber loading and water storage for 1 week. It was concluded that conventional glass-ionomer can be reinforced by the addition of short glass fibers.

  8. Devitrification of ionomer glass and its effect on the in vitro biocompatibility of glass-ionomer cements.

    PubMed

    Hurrell-Gillingham, K; Reaney, I M; Miller, C A; Crawford, A; Hatton, P V

    2003-08-01

    The effects of devitrification of an ionomer glass with a molar composition 4.5SiO(2).3Al(2)O(3).1.5P(2)O(5).3CaO.2CaF(2) on cement formation and in vitro biocompatibility were investigated. Differential thermal analysis was used to study the phase evolution in the glass, and to determine the heat treatments for production of glass-ceramics. X-ray diffraction patterns from glass frit heat-treated at 750 degrees C for 2h contained peaks corresponding to apatite (JCPDS 15-876), whereas for samples heat-treated at 950 degrees C for 2h apatite and mullite (JCPDS 15-776) were the major phases detected. Transmission electron microscopy (TEM) confirmed that apatite and apatite-mullite phases were present after heat treatments at 750 degrees C and 950 degrees C respectively. Glass and glass-ceramics were ground to prepare <45microm powders and glass ionomer cements were produced using a ratio of 1g powder: 0.2g PAA: 0.3g 10% m/v tartaric acid solution in water. In vitro biocompatibility was evaluated using cultured rat osteosarcoma (ROS) cells. Scanning electron microscopy (SEM) showed that cells colonised the surfaces of cements prepared using untreated ionomer glass and glass crystallised to form apatite (750 degrees C/2h). However, quantitative evaluation using MTT and total protein assays indicated that more cell growth occurred in the presence of cements prepared using ionomer glasses crystallised to apatite than cements prepared using untreated glass. The least cell growth and respiratory activity was observed on cements made with crystallised glass containing both apatite and mullite. It was concluded that the controlled devitrification of ionomer glasses could be used to produce GIC bone cements with improved biocompatibility.

  9. New aspects of the setting of glass-ionomer cements.

    PubMed

    Wasson, E A; Nicholson, J W

    1993-02-01

    For many years, glass-ionomer cements have been described as setting by the formation of a poly(acrylate) matrix. Recent research has suggested that a second reaction may be involved, namely, the formation of a silica matrix. So that this hypothesis could be tested, non-polymer cements, based on an ionomer glass plus acetic acid, were prepared and stored for up to six months. They were insoluble in water, and their compressive strength was found to increase rapidly over the period of storage. By contrast, the product of the reaction between ZnO and acetic acid was soluble in water. These results support the idea that there is a secondary setting reaction in glass ionomers and suggest that it is responsible for the increase in strength observed.

  10. Bonding ability of paste-paste glass ionomer systems to tooth structure: in vitro studies.

    PubMed

    Cook, N B; Feitosa, S A; Patel, A; Alfawaz, Y; Eckert, G J; Bottino, M C

    2015-01-01

    This study investigated the effect of nonrinse conditioners (ie, Ketac Nano Primer [KNP] and GC Self Conditioner [SC]) used as substrate pretreatment and their respective paste-paste resin-modified glass-ionomer cement (RMGIC) (ie, Ketac Nano [KN] and Fuji Filling LC [FF]) on microtensile bond strength to dentin and marginal sealing when compared with traditional RMGIC (ie, Photac Fil [PF] and Fuji II LC [FII]) used in association with polyacrylic acid (ie, Ketac Cavity Conditioner [KC] and GC Cavity Conditioner [CC]). A total of 192 extracted human molars were allocated into eight groups: KNP-KN, KC-KN, KNP-PF, KC-PF, SC-FF, CC-FF, SC-FII, and CC-FII. For microtensile bond strength, the teeth were sectioned to expose occlusal dentin and restored according to the group. After 24 hours the teeth were cut to yield nine beams per tooth (±0.8 mm(2)). Testing was done using a universal testing machine followed by failure mode classification. For microleakage testing, standardized cavity preparations were made on the buccal cementoenamel junction and restored according to the group. The teeth were thermocycled (500 cycles, 8°C to 48°C), sealed, immersed in methylene blue for 24 hours, and then assessed for microleakage using a stereomicroscope. Microtensile bond strengths in megapascals (mean±SE) were KNP-KN: 14.9 ± 1.6, KC-KN: 17.2 ± 1.5, KNP-PF: 31.2 ± 1.6, KC-PF: 26.2 ± 1.2, SC-FF: 23.6 ± 1.5, SC-FII: 31.2 ± 1.5, and CC-FII: 21.9 ± 1.5. Cervical margins showed more microleakage compared with occlusal margins. Overall, the use of nonrinse conditioners in association with traditional RMGICs demonstrated superior microtensile bond strengths to dentin when compared with the paste-paste RMGICs. Meanwhile, the association between polyacrylic acid (CC) and a traditional RMGIC (FII) led to the least microleakage for cervical locations when compared with all other groups.

  11. Microleakage evaluation of class V restorations with conventional and resin-modified glass ionomer cements.

    PubMed

    Pontes, Danielson Guedes; Guedes-Neto, Manoel Valcacio; Cabral, Maria Fernanda Costa; Cohen-Carneiro, Flávia

    2014-09-01

    The aim of this study was to evaluate in vitro the marginal microleakage of conventional Glass Ionomer Cements (GIC) and Resin Modified Glass Ionomer Cements (RMGIC). The tested materials were grouped as follows: GIC category - G1 (Vidrion R - SSWhite); G2 (Vitro Fill - DFL); G3 (Vitro Molar - DFL); G4 (Bioglass R - Biodinâmica); and G5 (Ketac Fill - 3M/ESPE); and RMGIC category - G6 (Vitremer - 3M/ESPE); G7 (Vitro Fill LC - DFL); and G8 (Resiglass - Biodinâmica). Therefore, 80 class V cavities (2.0X2.0 mm) were prepared in bovine incisors, either in the buccal face. The samples were randomly divided into 8 groups and restored using each material tested according to the manufacturer. The root apices were then sealed with acrylic resin. The teeth were stored for 24 h in 100% humidity at 37°C. After storage, the specimens were polished with extra-slim burs and silicon disc (Soft-lex - 3M/ESPE), then were isolated with cosmetic nail polish up to 1 mm around the restoration. Then, the samples were immersed in 50% AgNO3 solution for 12 h and in a developing solution for 30 min. They were rinsed and buccal-lingual sectioned. The evaluation of the microleakage followed scores from 0 to 3. The Kruskal-Wallis test and Dunn method test were applied (a=0.05). The results showed that there was no difference between the enamel and dentin margins. However, GIC materials presented more microleakage than RMGIC.

  12. Effect of ultrasound application during setting on the mechanical properties of high viscous glass-ionomers used for ART restorations.

    PubMed

    Daifalla, Lamia E; Mobarak, Enas H

    2015-11-01

    This study was conducted to evaluate the effect of ultrasound application on the surface microhardness (VHN) and diametral tensile strength (DTS) of three high viscous glass-ionomer restorative materials (HVGIRMs). For each test (VHN and DTS), a total of 180 specimens were prepared from three HVGIRMs (Ketac-Molar Aplicap, Fuji IX GP Fast, and ChemFil Rock). Specimens of each material (n = 60) were further subdivided into three subgroups (n = 20) according to the setting modality whether ultrasound (20 or 40 s) was applied during setting or not (control). Specimens within each subgroup were then equally divided (n = 10) and tested at 24 h or 28 days. For the VHN measurement, five indentations, with a 200 g load and a dwell time for 20 s, were made on the top surface of each specimen. The DTS test was done using Lloyd Testing machine at a cross-head speed of 0.5 mm/min. Ultrasound application had no significant effect on the VHN. Fuji IX GP Fast revealed the highest VHN value, followed by Ketac-Molar Aplicap, and the least was recorded for ChemFil Rock. Fuji IX GP Fast and Ketac-Molar Aplicap VHN values were significantly increased by time. ChemFil Rock recorded the highest DTS value at 24 h and was the only material that showed significant improvement with both US application times. However, this improvement did not sustain till 28 days. The ultrasound did not enhance the surface microhardness, but its positive effect on the diametral tensile strength values was material and time dependent.

  13. Effect of ultrasound application during setting on the mechanical properties of high viscous glass-ionomers used for ART restorations

    PubMed Central

    Daifalla, Lamia E.; Mobarak, Enas H.

    2014-01-01

    This study was conducted to evaluate the effect of ultrasound application on the surface microhardness (VHN) and diametral tensile strength (DTS) of three high viscous glass-ionomer restorative materials (HVGIRMs). For each test (VHN and DTS), a total of 180 specimens were prepared from three HVGIRMs (Ketac-Molar Aplicap, Fuji IX GP Fast, and ChemFil Rock). Specimens of each material (n = 60) were further subdivided into three subgroups (n = 20) according to the setting modality whether ultrasound (20 or 40 s) was applied during setting or not (control). Specimens within each subgroup were then equally divided (n = 10) and tested at 24 h or 28 days. For the VHN measurement, five indentations, with a 200 g load and a dwell time for 20 s, were made on the top surface of each specimen. The DTS test was done using Lloyd Testing machine at a cross-head speed of 0.5 mm/min. Ultrasound application had no significant effect on the VHN. Fuji IX GP Fast revealed the highest VHN value, followed by Ketac-Molar Aplicap, and the least was recorded for ChemFil Rock. Fuji IX GP Fast and Ketac-Molar Aplicap VHN values were significantly increased by time. ChemFil Rock recorded the highest DTS value at 24 h and was the only material that showed significant improvement with both US application times. However, this improvement did not sustain till 28 days. The ultrasound did not enhance the surface microhardness, but its positive effect on the diametral tensile strength values was material and time dependent. PMID:26644916

  14. Modification of resin modified glass ionomer cement by addition of bioactive glass nanoparticles.

    PubMed

    Valanezhad, Alireza; Odatsu, Tetsuro; Udoh, Koichi; Shiraishi, Takanobu; Sawase, Takashi; Watanabe, Ikuya

    2016-01-01

    In the present study, sol-gel derived nanoparticle calcium silicate bioactive glass was added to the resin-modified light cure glass-ionomer cement to assess the influence of additional bioactive glass nanoparticles on the mechanical and biological properties of resin-modified glass-ionomer cement. The fabricated bioactive glass nanoparticles added resin-modified glass-ionomer cements (GICs) were immersed in the phosphate buffer solution for 28 days to mimic real condition for the mechanical properties. Resin-modified GICs containing 3, 5 and 10 % bioactive glass nanoparticles improved the flexural strength compared to the resin-modified glass-ionomer cement and the samples containing 15 and 20 % bioactive glass nanoparticles before and after immersing in the phosphate buffer solution. Characterization of the samples successfully expressed the cause of the critical condition for mechanical properties. Cell study clarified that resin-modified glass-ionomer cement with high concentrations of bioactive glass nanoparticles has higher cell viability and better cell morphology compare to control groups. The results for mechanical properties and toxicity approved that the considering in selection of an optimum condition would have been a more satisfying conclusion for this study.

  15. Surface roughening of glass ionomer cements by neutral NaF solutions.

    PubMed

    De Witte, An M J C; De Maeyer, Erna A P; Verbeeck, Ronald M H

    2003-05-01

    The objective of this study was to investigate the effect of repeated applications of a neutral NaF solution on the surface roughness of four conventional glass ionomer cements (GIC) (ChemFil Superior encapsulated, Fuji Cap II, Ketac-Fil and Hi Dense), three resin-modified (RM-) GIC (Fuji II LC encapsulated, Photac-Fil and Vitremer) and one polyacid-modified composite resin (PAM-C) (Dyract). Matured specimens were four times alternately eluted in water and exposed to 2% neutral NaF aqueous solutions for 1h. Control specimens were only subjected to elution in water for the same time period. After the treatment the surface roughness R(a) was determined using non-contact surface profilometry and selected samples were examined with SEM. Except for the PAM-C, R(a) increased drastically for the fluoride-treated samples compared to water-stored samples, the effect being most pronounced for the GIC. Surface roughening apparently is caused by a progressive disintegration or chemical erosion of the polysalt matrix of (RM-)GIC.

  16. Comparative Evaluation of Shear Bond Strength of Three Commercially Available Glass Ionomer Cements in Primary Teeth

    PubMed Central

    Murthy, S Srinivasa; Murthy, Gargi S

    2015-01-01

    Background: This study aims to comparatively evaluate the shear bond strength (SBS) of three commercially available glass ionomer cements - Miracle Mix (MM) (GC America Inc., Alsip, USA), Ketac Molar (KM) (3M Corp., Minnesota, USA) and amalgomer CR (AM) (Advanced Healthcare Ltd., Kent, England) in primary teeth and later examine the mode of the adhesive failure at the interface. Materials and Methods: Totally, 90 extracted sound primary molars were selected, and dentin on the buccal surface of crowns was exposed. Specimens were randomly assigned into three groups according to the restorative materials being tested. SBS tests were performed, and the obtained values were statistically analyzed using ANOVA and Tukey tests (P < 0.05). SBS mean values on were recorded in megapascals (MPa) and the mode of failure was assessed using a scanning electron microscope. Results: SBS (in MPa) was - MM-5.39, KM-4.84, AM-6.38. The predominant failure mode was cohesive. Conclusion: Amalgomer CR exhibited statistically significant higher SBS of 6.38 MPa to primary teeth and has better adhesion to the primary teeth compared to the other test materials and can be considered as a restorative material in pediatric dentistry. However, the results of this study should be corroborated with further investigation to reach a definitive conclusion. PMID:26464550

  17. Removal of amalgam, glass-ionomer cement and compomer restorations: changes in cavity dimensions and duration of the procedure.

    PubMed

    Szep, Susanne; Baum, C; Alamouti, C; Schmidt, D; Gerhardt, T; Heidemann, D

    2002-01-01

    This study investigated changes in the dimensions of Class II cavities following the removal of amalgam, glass ionomer and compomer restorations. In 30 extracted caries-free human molars, preparation for 60 mesio-occlusal and occluso-distal cavities (two cavities per tooth) occurred. With a CEREC 3 laser triangulation sensor and software-based construction analysis, the dimensions of the cavities at seven defined sites were measured. The cavities were randomized into four groups. Group 1 was restored with Ketac-Fil glass-ionomer cement, Group 2 with amalgam and Group 3 with Compoglass F compomer. In Group 4, Compoglass F was used in combination with photochromic Tetric Flow Chroma as a cavity liner. The completed restorations were then removed using 2x magnification and the cavities were once again controlled using the laser system. The duration of the removal procedure was also recorded. Changes in cavity dimensions (depth, height and width) following removal of the restorations were significantly smaller in Groups 1 and 2. Groups 3 and 4 were characterized by a significant overextension of the cavities compared to Groups 1 and 2 in all three dimensions. Group 4, with Tetric Flow Chroma as a cavity liner, showed better results than Group 3, but this improvement was not statistically significant. The duration of the removal procedure was significantly shorter in Group 2 than in the other groups.

  18. Antibacterial Activity and Fluoride Release of Glass-Ionomer Cement, Compomer and Zirconia Reinforced Glass-Ionomer Cement

    PubMed Central

    Kenchappa, Mallikarjuna; Bhayya, Deepak; Gupta, Shilpi; Saxena, Sudhanshu; Satyarth, Saurabh; Singh, Aishwarya; Gupta, Manoj

    2016-01-01

    Introduction The cariostatic property of glass ionomer cement (GIC) stems from its ability to release fluoride into the oral environment. Recently, zirconia reinforced GIC has been launched which promises the protective benefits of glass ionomer while completely eliminating the hazard of mercury. Aim To evaluate invitro antibacterial activity and fluoride release from two conventional glass ionomer cements (GC II and GC IX), compomer (Compoglass) and a zirconia reinforced glass ionomer cement (Zirconomer). Materials and Methods The antibacterial activity of the cement specimens was evaluated against Streptococcus mutans using the agar inhibition test. Zone of inhibition on Mueller-Hinton agar plates was measured after 48 hours. The fluoride release from the cement specimens in ppm were measured at day 1, 7, 14 and 21 using a fluoride ion selective electrode. Data was analysed using one-way and two-way analysis of variance (ANOVA) followed by LSD post-hoc test. A p-value <0.05 was considered statistically significant. Results Statistically significant largest zone of inhibition was observed with Zirconomer. Also, significant differences were seen in fluoride release of different materials. At all the time intervals maximum fluoride release was observed with Zirconomer and minimum with Compoglass. Conclusion This invitro investigation has revealed that zirconia reinforced GIC (Zirconomer) had maximum antibacterial activity against S.mutans and fluoride release. PMID:27190961

  19. Comparison of shear bond strength of resin reinforced chemical cure glass ionomer, conventional chemical cure glass ionomer and chemical cure composite resin in direct bonding systems: an in vitro study.

    PubMed

    Rao, Kolasani Srinivasa; Reddy, T Praveen Kumar; Yugandhar, Garlapati; Kumar, B Sunil; Reddy, S N Chandrasekhar; Babu, Devatha Ashok

    2013-01-01

    The acid pretreatment and use of composite resins as the bonding medium has disadvantages like scratching and loss of surface enamel, decalcification, etc. To overcome disadvantages of composite resins, glass ionomers and its modifications are being used for bonding. The study was conducted to evaluate the efficiency of resin reinforced glass ionomer as a direct bonding system with conventional glass ionomer cement and composite resin. The study showed that shear bond strength of composite resin has the higher value than both resin reinforced glass ionomer and conventional glass ionomer cement in both 1 and 24 hours duration and it increased from 1 to 24 hours in all groups. The shear bond strength of resin reinforced glass ionomer cement was higher than the conventional glass ionomer cement in both 1 and 24 hours duration. Conditioning with polyacrylic acid improved the bond strength of resin reinforced glass ionomer cement significantly but not statistically significant in the case of conventional glass ionomer cement.

  20. The properties of metal-reinforced glass ionomer materials.

    PubMed

    Chung, K H

    1993-01-01

    The physical properties and bond strengths of two glass ionomer materials reinforced with silver and amalgam alloy powders were compared with those of a conventional material from the same manufacture as well as two commercially available products. The diametral tensile strength, hardness and bonding strength are improved with the addition of either commercial available silver particles or fabricated high-copper amalgam alloy powders to the glass. Simple mixture of the metal or alloy powders with the glass ionomer cement seems to be feasible to improve the properties of the regular cement. However, further studies in formulating an optimal composition of metal or alloy, setting characteristics and long-term clinical evaluation are necessary before proposing uses for this new material.

  1. Glass-ionomer cements as restorative and preventive materials.

    PubMed

    Ngo, Hien

    2010-07-01

    This article focuses on glass-ionomer cement (GIC) and its role in the clinical management of caries. It begins with a brief description of GIC, the mechanism of fluoride release and ion exchange, the interaction between GIC and the external environment, and finally the ion exchange between GIC and the tooth at the internal interface. The importance of GIC, as a tool, in caries management, in minimal intervention dentistry (MI), and Caries Management by Risk Assessment (CAMBRA) also will be highlighted.

  2. Clinical applications of glass ionomers in endodontics: a review.

    PubMed

    Mohammadi, Zahed; Shalavi, Sousan

    2012-10-01

    Glass ionomer cements (GICs) are biocompatible and have capacities to release fluoride and to bond to dentine, and thus are appropriate for use in endodontics. This paper reviews the composition and properties of different GICs, including their biocompatibility and antibacterial activity, their applications as intraorifice barriers and root canal sealers, and their use in the repair of root perforations, root-end fillings and temporary coronal restorations.

  3. Secondary caries formation in vitro around glass ionomer-lined amalgam and composite restorations.

    PubMed

    Dionysopoulos, P; Kotsanos, N; Papadogianis, Y

    1996-08-01

    The aim of this in vitro secondary caries study was to examine the glass-ionomer liner's effect on wall-lesion inhibition when a conventional and a light-cured glass ionomer liner was placed under amalgam and composite resin restorations. Class V preparations in extracted upper premolars were used and ten restorations were used for each of the following groups: (i) two layers of copal varnish and amalgam; (ii) conventional glass-ionomer and amalgam; (iii) light-cured glass-ionomer and amalgam; (iv) bonding agent and light-cured composite resin; (v) conventional glass-ionomer, bonding agent and light-cured composite resin; (vi) light-cured glass-ionomer, extended 0.3 mm short of the enamel margin bonding agent and light-cured composite resin; and (vii) light-cured glass-ionomer, extended 1 mm short of the enamel margin, bonding agent and light-cured composite resin. The teeth were thermocycled and artificial caries were created using an acid-gel. The results of this study showed that artificial recurrent caries can be reduced significantly (P < 0.05) with a glass-ionomer liner under amalgam restorations. The results also showed that when the light-cured glass-ionomer liner was placed 0.3 mm from the cavosurface margin under composite resin restoration, the artificial recurrent caries reduced significantly (P < 0.05).

  4. Fluoride Release by Glass Ionomer Cements, Compomer and Giomer

    PubMed Central

    Mousavinasab, Sayed Mostafa; Meyers, Ian

    2009-01-01

    Background: To measure the amounts of fluoride released from fluoride-containing materials, four glass ionomer cements (Fuji IX, Fuji VII, Fuji IX Extra and Fuji II LC), a compomer (Dyract Extra) and a giomer (Beautifil) were used in this study. Methods: Twenty cylindrical specimens were prepared from each material. The amount of released fluoride was measured during the first week and on the days 14 and 21 by using specific fluoride electrode and an ionanalyzer. The results were statistically analyzed using analysis of variance (two-way ANOVA) and Tukey Kramer multiple comparison tests (p=0.05). Results: Significant differences were seen in fluoride release of different days and materials (p<0.05). The maximum cumulative fluoride release of days 1-7 was related to Fuji VII, followed by Fuji IX Extra, Fuji II LC, Fuji IX, Dyract Extra and Beautifil in descending order and this order remained the same until the 21st day. Conclusion: Fuji IX, Fuji VII, Fuji IX Extra, and Fuji II LC released higher amounts of fluoride compared to Beautifil and Dyract Extra in this study. It seems that the extent of the glass ionomer matrix plays an important role in determining the fluoride releasing ability of glass ionomer cement materials. PMID:21528035

  5. Bonding strength of glass ionomers to dense synthetic hydroxyapatite and fluoroapatite ceramics.

    PubMed

    Li, J; Liu, Y; Liu, Y; Söremark, R

    1996-02-01

    The bonding strength of two glass ionomers, a resin-modified and a conventional one, to dense synthetic hydroxyapatite (HA) and fluoroapatite (FA) ceramics was compared by measuring the shear strength between the ionomers and the apatites. Before the glass ionomers were applied on the apatites, the surfaces of HA and FA plates were either fine-polished or acid-etched after fine polishing. Commercially pure titanium (CP Ti) plates were used as a control. The effects of polyacrylic acid (PAA) surface preconditioning on bonding strength were also studied. The results show that the ionomers bind to HA significantly more strongly than to FA in all cases. The resin-modified material showed a significantly higher shear strength to apatites than the conventional one. Acid etching increased the shear strength significantly for the conventional glass ionomer to both HA and FA, and 25% PAA preconditioning increased the shear strength significantly for the resin-modified glass ionomer to both HA and FA. It was concluded that glass ionomers seemed to bind to apatite chemically, and the bonding strength was influenced by the cohesive strength of the ionomers and the surface roughness of the apatites. The dense synthetic apatites seemed to be good test materials for bonding evaluations of glass ionomers to mineral tissue.

  6. Microleakage of high-strength glass ionomer: resin composite restorations in minimally invasive treatment.

    PubMed

    Platt, J A; Rhodes, B

    Atraumatic Restorative Treatment (ART) has been investigated as an alternative caries treatment. The technique involves removal of loose tooth structure with a spoon excavator, followed by placement of an adhesive restorative material, often a high-strength glass ionomer. This study compares the microleakage of a high-strength glass ionomer/resin composite and two occlusal resin composite restoration techniques.

  7. Comparative Evaluation of the Antimicrobial Properties of Glass Ionomer Cements with and without Chlorhexidine Gluconate

    PubMed Central

    Jampanapalli, Sharada Reddy; Konda, Suhasini; Inguva, Hema Chandrika; Chimata, Vamsi Krishna

    2016-01-01

    ABSTRACT Background: Chlorhexidine gluconate is a widely used antimicrobial agent. Adding chlorhexidine and quaternary ammonium compounds to filling materials, such as composite resins, acrylic resins, and glass ionomer cements increases the antibacterial property of restorative materials. This study includes antibacterial property of glass ionomer restorative cements with chlorhexidine gluconate. Aim: The primary objective of our study was to compare the antimicrobial properties of two commercially available glass ionomer cements with and without chlorhexidine gluconate on strains of mutans streptococci. Materials and methods: Two glass ionomers (Fuji II Conventional and Fuji IX) were used. Chlorhexidine gluconate was mixed with glass ionomer cements, and antimicrobial properties against mutans streptococci were assessed by agar diffusion. The tested bacterial strain was inhibited and the antimicrobial properties decreased with time. Results: The highest amount of antimicrobial activity with mean inhibitory zone was found in Fuji II with chlorhexidine gluconate followed by Fuji IX with chlorhexidine gluconate, Fuji II without chlorhexidine gluconate, and Fuji IX without chlorhexidine gluconate. Conclusion: The results of the study confirmed that the addition of 5% chlorhexidine gluconate to Fuji II and Fuji IX glass ionomer cements resulted in a restorative material that had increased antimicrobial properties over the conventional glass ionomer cements alone for Streptococcus mutans. How to cite this article: Yadiki JV, Jampanapalli SR , Konda S, Inguva HC, Chimata VK. Comparative Evaluation of the Antimicrobial Properties of Glass Ionomer Cements with and without Chlorhexidine Gluconate. Int J Clin Pediatr Dent 2016;9(2):99-103. PMID:27365927

  8. Bond strength of Bis-GMA and glass ionomer pit and fissure sealants using cyclic fatigue.

    PubMed

    Dewji, H R; Drummond, J L; Fadavi, S; Punwani, I

    1998-02-01

    The aim of the study was to determine the bond strength of glass ionomer and resin-modified glass ionomer sealants compared to Bis-GMA sealants using both static and cyclic fatigue shear testing. Four materials were evaluated: D, a Bis-GMA sealant with 10% phosphoric acid etchant; FC, a resin-modified glass ionomer sealant with 20% polyacrylic acid etchant; FD, a resin-modified glass ionomer sealant with 10% polyacrylic acid etchant; and FSC, a self-cured glass ionomer sealant with no etchant. Gelatin capsules filled with the sealant material were bonded to the enamel surfaces of bovine teeth after appropriate surface conditioning and then tested in shear static and cyclic fatigue. Static and cyclic shear bond strengths, respectively, for each group were (MPa): FC: 21.1+/-2.8 and 17.1+/-3.1; FD: 14.6+/-5.9 and 8.5+/-3.1; D: 10.8+/-4.9 and 4.7+/-2.6; FSC: 8.7 (1.0 and 2.9+/-0.6. The resin-modified glass ionomer sealants had better fatigue bond strength than both Bis-GMA and self-cured glass ionomer sealants with the surface conditioning affecting the bond strength of the resin-modified glass ionomer sealants.

  9. Bond strength and durability of glass ionomer cements used as bonding agents in the placement of orthodontic brackets.

    PubMed

    Klockowski, R; Davis, E L; Joynt, R B; Wieczkowski, G; MacDonald, A

    1989-07-01

    One potential risk of orthodontic treatment is the development of surface decalcification in association with use of brackets and bands. A bonding agent that could render tooth structure more resistant to the caries process clearly would reduce the negative iatrogenic outcomes of orthodontic therapy and thereby benefit the patient. Glass ionomer cement (GIC) bonds chemically to both enamel and dentin. In addition its high fluoride content makes enamel more resistant to caries. The purpose of this study was to evaluate the bond strength and durability of GIC when used as a bonding agent in the placement of orthodontic brackets. The materials tested were three GICs (Ketac-Fil, Ketac-Cem, and Chelon) and a standard bonding agent currently in widespread use (Rely-A-Bond). Brackets were attached to the facial surface of 96 premolar specimens and half the specimens for each bonding agent were thermocycled. Bond shear strength was determined with an Instron testing device by applying a load to the occlusal margin of each bracket to the point of failure. A two-way ANOVA indicated a significant bonding agent by thermocycling interaction (F = 4.78, p less than 0.01). Thermocycling decreased bond strength significantly for all materials, but had the greatest impact on Rely-A-Bond. However, Rely-A-Bond provided the strongest bond with and without thermocycling. Although bond strength for the standard orthodontic bonding agent deteriorates significantly under thermal stress, these results suggest that it is still greater than the bond strength provided by GIC materials.

  10. Microleakage of Three Types of Glass Ionomer Cement Restorations: Effect of CPP-ACP Paste Tooth Pretreatment

    PubMed Central

    Doozandeh, Maryam; Shafiei, Fereshteh; Alavi, Mostafa

    2015-01-01

    Statement of the Problem Casein phosphopeptide–amorphous calcium phosphate (CPP-ACP) increases the mineral content of tooth structure. This may enhance the chemical bonding of glass ionomer cements (GIC) and marginal sealing of their restorations. Purpose The aim of this study was to evaluate the effect of CPP-ACP paste pretreatment on the microleakage of three types of GIC. Materials and Method In this study, 72 Class V cavities were prepared on the buccal and lingual surfaces of molars with occlusal margins in enamel and gingival margins in root. The cavities were divided into 6 groups. Cavities in group 1 and 2 were restored with Fuji II, group 3 and 4 with Fuji II LC, and group 5 and 6 with Ketac N100 with respect to the manufacturers’ instructions. In groups 2, 4 and 6, CPP-ACP containing paste (MI paste) was placed into the cavities for 3 minutes before being filled with GIC. The teeth were thermocycled, stained with dye, sectioned, and scored for microleakage under stereomicroscope. Kruskall-Wallis and Chi-Square tests were used to analyze the data. Result There were no statistically significant differences between the control and the CPP-ACP pretreatment groups in enamel and dentin margins. In pairwise comparisons, there were no significant differences between the control and the experimental groups in enamel margin, and in dentin margins of G1 and 2, G5 and 6; however, a significant differences was detected in dentin margins between G3 and 4 (p= 0.041). Conclusion CPP-ACP paste pretreatment did not affect the microleakage of Fuji II and Ketac N100 in enamel or dentin, but decreased the microleakage in dentine margins of Fuji II LC when cavity conditioner was applied before surface treatment. PMID:26331147

  11. Enhanced bioactivity of glass ionomer cement by incorporating calcium silicates.

    PubMed

    Chen, Song; Cai, Yixiao; Engqvist, Håkan; Xia, Wei

    2016-01-01

    Glass ionomer cements (GIC) are known as a non-bioactive dental cement. During setting the GIC have an acidic pH, driven by the acrylic acid component. It is a challenge to make GIC alkaline without disturbing its mechanical properties. One strategy was to add slowly reacting systems with an alkaline pH. The aim of the present study is to investigate the possibility of forming a bioactive dental material based on the combination of glass ionomer cement and calcium silicates. Two types of GIC were used as control. Wollastonite (CS also denoted β-CaSiO3) or Mineral Trioxide Aggregate (MTA) was incorporated into the 2 types of GIC. The material formulations' setting time, compressive strength, pH and bioactivity were compared between modified GIC and GIC control. Apatite crystals were found on the surfaces of the modified cements but not on the control GIC. The compressive strength of the cement remained with the addition of 20% calcium silicate or 20% MTA after one day immersion. In addition, the compressive strength of GIC modified with 20% MTA had been increased during the 14 d immersion (p < 0 .05).

  12. Enhanced bioactivity of glass ionomer cement by incorporating calcium silicates

    PubMed Central

    Chen, Song; Cai, Yixiao; Engqvist, Håkan; Xia, Wei

    2016-01-01

    Abstract Glass ionomer cements (GIC) are known as a non-bioactive dental cement. During setting the GIC have an acidic pH, driven by the acrylic acid component. It is a challenge to make GIC alkaline without disturbing its mechanical properties. One strategy was to add slowly reacting systems with an alkaline pH. The aim of the present study is to investigate the possibility of forming a bioactive dental material based on the combination of glass ionomer cement and calcium silicates. Two types of GIC were used as control. Wollastonite (CS also denoted β-CaSiO3) or Mineral Trioxide Aggregate (MTA) was incorporated into the 2 types of GIC. The material formulations’ setting time, compressive strength, pH and bioactivity were compared between modified GIC and GIC control. Apatite crystals were found on the surfaces of the modified cements but not on the control GIC. The compressive strength of the cement remained with the addition of 20% calcium silicate or 20% MTA after one day immersion. In addition, the compressive strength of GIC modified with 20% MTA had been increased during the 14 d immersion (p < 0 .05). PMID:26787304

  13. Crack closure on rehydration of glass-ionomer materials.

    PubMed

    Sidhu, Sharanbir K; Pilecki, Peter; Sherriff, Martyn; Watson, Timothy F

    2004-10-01

    Moisture-sensitivity of immature glass-ionomer cements suggests that hydration-induced volumetric expansion might close and potentially heal established cracks. Crack closure in glass-ionomer cements (GICs) was observed following rehydration. Circular cavities were prepared in 15 teeth: 10 were restored with resin-modified GICs (5 with Fuji II LC and 5 with Photac-Fil) and 5 were restored with a conventional GIC (Fuji IX); all were dehydrated for 1 min with air and imaged immediately by confocal microscopy. Crack formation in each was located, after which water was placed on the surface and observed for 15 min via a CCD camera. Dehydration caused cracks with measurable gaps, while rehydration resulted in varying degrees of closure: closure was limited in the conventional GIC, and complete or near complete along part/s of the crack in the resin-modified GICs. In all, closure movement became imperceptible after the first 10 min. Statistical analysis indicated no significant difference between the closure behavior of all materials. However, the resin-modified GICs appeared to show a greater potential for closure of established cracks than the conventional GIC upon rehydration.

  14. Enhancement effect of pre-reacted glass on strength of glass-ionomer cement.

    PubMed

    Monmaturapoj, Naruporn; Soodsawang, Wiwaporn; Tanodekaew, Siriporn

    2012-02-03

    In this paper, we report on the enhanced strength of glass ionomer cement (GIC) by using the process of pre acid-base reaction and spray drying in glass preparation. The pre acid-base reaction was induced by prior mixing of the glass powder with poly(alkenoic acid). The weight ratios of glass powder to poly(alkenoic acid) were varied to investigate the extent of the pre acid-base reaction of the glass. The effect of the spray drying process which produced spherical glass particles on cement strength was also studied and discussed. The results show that adding 2%-wt of poly(alkenoic acid) liquid in the pre-reacted step improved cement strength. GICs prepared using a mixture of pre-reacted glass with both spherical and irregular powders at 60:40 by weight exhibited the highest compressive strength at 138.64±7.73 MPa. It was concluded that glass ionomer cements containing pre-reacted glass with mixed glass morphology using both spherical and irregular forms are promising as restorative dental materials with improved mechanical properties and handling characteristics.

  15. Bonding of contemporary glass ionomer cements to different tooth substrates; microshear bond strength and scanning electron microscope study

    PubMed Central

    El Wakeel, Aliaa Mohamed; Elkassas, Dina Wafik; Yousry, Mai Mahmoud

    2015-01-01

    Objective: This study was conducted to evaluate the microshear bond strength (μSBS) and ultramorphological characterization of glass ionomer (GI) cements; conventional GI cement (Fuji IX, CGI), resin modified GI (Fuji II LC, RMGI) and nano-ionomer (Ketac N100, NI) to enamel, dentin and cementum substrates. Materials and Methods: Forty-five lower molars were sectioned above the cemento-enamel junction. The occlusal surfaces were ground flat to obtain enamel and dentin substrates, meanwhile the cervical one-third of the root portion were utilized to evaluate the bonding efficacy to cementum substrate. Each substrate received microcylinders from the three tested materials; which were applied according to manufacturer instructions. μSBS was assessed using a universal testing machine. The data were analyzed using two-way analysis of variance (ANOVA) and Tukey's post-hoc test. Modes of failure were examined using stereomicroscope at ×25 magnification. Interfacial analysis of the bonded specimens was carried out using environmental field emission scanning electron microscope. Results: Two-way ANOVA revealed that materials, substrates and their interaction had a statistically significant effect on the mean μSBS values at P values; ˂0.0001, 0.0108 and 0.0037 respectively. RMGI showed statistically significant the highest μSBS values to all examined tooth substrates. CGI and RMGI show substrate independent bonding efficiency, meanwhile; NI showed higher μSBS values to dentin and cementum compared to enamel. Conclusion: Despite technological development of GI materials, mainly the nano-particles use, better results have not been achieved for both investigations, when compared to RMGI, independent of tooth substrate. PMID:26038646

  16. Comparison of the effect of topical fluorides on the commercially available conventional glass ionomers, resin modified glass ionomers and polyacid modified composite resins--an in vitro study.

    PubMed

    Setty, J V; Singh, S; Subba Reddy, V V

    2003-06-01

    This study was undertaken to assess the effect of a single application of three professionally applied topical fluoride agents (Sodium fluoride 2%, Stannous fluoride 8% and APF 1.23%) on the surfaces of six modern esthetic restorative materials used in pediatric dentistry viz., two conventional glass ionomers (Fuji II and Shofu-restorative), two resin modified glass ionomers (Vitremer, with and without glaze, and Photac-fil Quick) and two Polyacid modified composite resins (Luxat and Hytac Aplitip). Mean surface roughness and surface micro hardness (SMH) measurements were the parameters employed for comparison. Results showed that APF gel applications significantly increased the surface roughness measurements and decreased SMH of all tested materials, which was pronounced in conventional glass ionomers when compared with resin modified glass ionomers and polyacid modified composite resins. NaF and SnF2 produced a statistically significant increase in the surface roughness of conventional glass ionomers without any significant change in surface roughness and SMH on rest of the materials tested, except for NaF on SMH values of Fuji II, which was statistically significant.

  17. The effect of glass ionomer cement or composite resin bases on restoration of cuspal stiffness of endodontically treated premolars in vitro.

    PubMed

    Hofmann, N; Just, N; Haller, B; Hugo, B; Klaiber, B

    1998-06-01

    The purpose of the present study was to decide whether composite resin or conventional glass ionomer cement should be preferred as a base material in endodontically treated premolars. Twelve extracted human maxillary premolars were mounted in a universal testing machine at a 35 degrees angle. Cuspal stiffness was determined by applying a load of 75 N to the buccal cusp and recording the displacement of the cusp using inductive displacement transducers. In the same teeth, different cavity preparations and restorations were performed sequentially. Standard MOD cavities were enlarged to allow endodontic access. In addition, the cusps were undermined. Half of the teeth were restored to the level of the previous shallow cavities using conventional glass ionomer cement (Ketac Fil), in the rest of the teeth dentine bonding agent (Syntac) and composite resin (Tetric) were used instead. Finally, composite resin fillings (Tetric) were placed. All restorations were removed and the experiments were repeated twice. For each replication, the assignment of the base materials to the experimental groups was reversed, and ceramic inlays (Empress) were used as final restorations for the last replication. Improvement of cuspal stiffness achieved by conventional glass ionomer bases was very small, whereas composite resin bases increased cuspal stability by more than a factor of two. After placement of the final restorations, however, there was no longer a difference between teeth with different base materials. Nevertheless, composite resin bases might be preferred for two reasons. Firstly, deterioration of adhesive restorations will probably start at the cavosurface margins. The incidence of margin gaps, however, will not only compromise marginal seal but also the stabilizing effect of the restoration. In this situation, the resin base may still stabilize the tooth. Moreover, resin bases may reduce the risk of cusp fracture during the time between cavity preparation and the insertion

  18. Therapeutic effect of glass-ionomers: an overview of evidence.

    PubMed

    Mickenautsch, S; Mount, G; Yengopal, V

    2011-03-01

    The requirements for an ideal restorative material include adhesion to tooth structure (enamel and dentine) and an ability to withstand the traumas of occlusion. However, some level of an anticaries effect is also desirable. After a long history of glass-ionomer cement (GIC) development, an evidence base in support of the therapeutic effect of GIC, particularly with regard to its anticaries effect, is emerging. This evidence is increasingly presented through systematic reviews of clinical GIC application and, to a certain extent, relates to a caries-preventive effect of the material itself. However, the strength of evidence supporting other aspects of GIC, such as a higher remineralizing effect, fluoride uptake in hard tooth tissue and fluoride release of GIC, is limited. Nevertheless, the results of these in situ and laboratory trials provide valuable insights into factors that facilitate understanding of the clinical efficacy of GIC.

  19. Glass-ionomer cement restorative materials: a sticky subject?

    PubMed

    Sidhu, S K

    2011-06-01

    Glass-ionomer cement (GIC) materials have been in clinical use since their inception 40 years ago. They have undergone several permutations to yield different categories of these materials. Although all GICs share the same generic properties, subtle differences between commercial products may occur. They have a wide range of uses such as lining, bonding, sealing, luting or restoring a tooth. In general, GICs are useful for reasons of adhesion to tooth structure, fluoride release and being tooth-coloured although their sensitivity to moisture, inherent opacity, long-term wear and strength are not as adequate as desired. They are useful in situations where they are not disadvantaged by their comparatively lower physical properties, such as where there is adequate remaining tooth structure to support the material and where they are not subject to heavy occlusal loading. The last decade has seen the use of these materials being extended. However, they are likely to retain their specific niches of clinical application.

  20. Glass-ionomer Cements in Restorative Dentistry: A Critical Appraisal.

    PubMed

    Almuhaiza, Mohammed

    2016-04-01

    Glass-ionomer cements (GICs) are mainstream restorative materials that are bioactive and have a wide range of uses, such as lining, bonding, sealing, luting or restoring a tooth. Although the major characteristics of GICs for the wider applications in dentistry are adhesion to tooth structure, fluoride releasing capacity and tooth-colored restorations, the sensitivity to moisture, inherent opacity, long-term wear and strength are not as adequate as desired. They have undergone remarkable changes in their composition, such as the addition of metallic ions or resin components to their composition, which contributed to improve their physical properties and diversified their use as a restorative material of great clinical applicability. The light-cured polymer reinforced materials appear to have substantial benefits, while retaining the advantages of fluoride release and adhesion. Further research should be directed towards improving the properties, such as strength and esthetics without altering its inherent qualities, such as adhesion and fluoride releasing capabilities.

  1. Cytotoxicity of glass ionomer cements containing silver nanoparticles

    PubMed Central

    Magalhães, Ana-Paula-Rodrigues; Pires, Wanessa-Carvalho; Pereira, Flávia-Castro; Silveira-Lacerda, Elisângela-Paula; Carrião, Marcus-Santos; Bakuzis, Andris-Figueiroa; Souza-Costa, Carlos-Alberto; Lopes, Lawrence-Gonzaga; Estrela, Carlos

    2015-01-01

    Background Some studies have investigated the possibility of incorporating silver nanoparticles (NAg) into dental materials to improve their antibacterial properties. However, the potential toxic effect of this material on pulp cells should be investigated in order to avoid additional damage to the pulp tissue. This study evaluated the cytotoxicity of conventional and resin-modified glass ionomer cements (GIC) with and without addition of NAg. Material and Methods NAg were added to the materials at two different concentrations by weight: 0.1% and 0.2%. Specimens with standardized dimensions were prepared, immersed in 400 µL of culture medium and incubated at 37°C and 5% CO2 for 48 h to prepare GIC liquid extracts, which were then incubated in contact with cells for 48 h. Culture medium and 0.78% NAg solution were used as negative and positive controls, respectively. Cell viability was determined by MTT and Trypan Blue assays. ANOVA and the Tukey test (α=0.05) were used for statistical analyses. Results Both tests revealed a significant decrease in cell viability in all groups of resin modified cements (p<0.001). There were no statistically significant differences between groups with and without NAg (p>0.05). The differences in cell viability between any group of conventional GIC and the negative control were not statistically significant (p>0.05). Conclusions NAg did not affect the cytotoxicity of the GIC under evaluation. Key words:Glass ionomer cements, totoxicity, cell culture techniques, nanotechnology, metal nanoparticles. PMID:26644839

  2. Does Addition of Propolis to Glass Ionomer Cement Alter its Physicomechanical Properties? An In Vitro Study.

    PubMed

    Subramaniam, P; Girish Babu, K L; Neeraja, G; Pillai, S

    Propolis is a natural resinous substance produced by honey bees. The antimicrobial effects of glass ionomer cement have been shown to improve with the addition of propolis; however its effect on the physicomechanical properties of the cement is not known.

  3. Toughness, bonding and fluoride-release properties of hydroxyapatite-added glass ionomer cement.

    PubMed

    Lucas, Milanita E; Arita, Kenji; Nishino, Mizuho

    2003-09-01

    Improving the mechanical strength of glass ionomer cement while preserving its favorable clinical properties such as fluoride release, bonding to tooth structure and biocompatibility is desirable. In this study, hydroxyapatite was incorporated into chemically setting glass ionomer cement and its effect on the fracture toughness, bonding to dentin and fluoride release was identified. Commercial glass ionomer cement (Fuji IX GP((R)) ) was the control and base material. Eight weight percent of hydroxyapatite was added into the glass ionomer powder. Specimens were fabricated and the fracture toughness, shear bond strength and eluted fluoride ion concentration were measured. Adding hydroxyapatite into the glass ionomer cement led to significantly higher fracture toughness after 15min and 24h from mixing. The hydroxyapatite-added cement also exhibited bond strength to dentin similar to that of the control from 15min to 56 days and consistent fluoride release for 13 weeks. SEM findings showed a cohesive type of fracture in the material for all specimens in both groups. These results indicate that hydroxyapatite-added glass ionomer cement has a potential as a reliable restorative material with improved fracture toughness, long-term bonding to dentin and unimpeded ability of sustained fluoride release.

  4. Resin-modified glass ionomer cements: fluoride release and uptake.

    PubMed

    Forsten, L

    1995-08-01

    The aim was to study the short- and long-term fluoride release from resin-modified glass ionomer cements (GIC). The aim was also to determine the effect of fluoride treatment of 9-month-old specimens, consistency of the mix, and pH of the environment on the fluoride release. GIC test specimens were continually exposed to running water, and the fluoride release was measured periodically by storing the specimens in 5 ml deionized water for 1 week and measuring the fluoride content of the solution. After 24 h, 1 month, 9 months, and 11 months in running water four of the six resin-modified GICs released as much as or more fluoride than the auto-curing GIC tested for comparison. Fluoride treatment after 9 months also increased the fluoride release of these four brands, as was the case with the conventional GIC. At 24 h and 1 month two of the resin-modified GICs released smaller amounts of fluoride than the other materials, and the fluoride treatment used on those had no or only a minimal effect. Thin consistency of a mix resulted in higher fluoride release for one resin-modified material than a thick mix. Low pH increased the fluoride release for all materials.

  5. Antibacterial and physical properties of resin modified glass-ionomers combined with chlorhexidine.

    PubMed

    Sanders, B J; Gregory, R L; Moore, K; Avery, D R

    2002-06-01

    The purpose of this study was to determine the effect on mechanical properties and antimicrobial activity of the addition of chlorhexidine (CHX) to a resin modified glass-ionomer (Photac-fil, ESPE, Norristown, PA, USA). Chlorhexidine diacetate was combined with a resin modified glass-ionomer material at a concentration of 5%. The samples were tested for hardness, tensile strength and erosion at 24 h and 6-week intervals and for elution of CHX and antimicrobial activity weekly for 6 weeks. At 24 h there was no significant difference in hardness between the two groups, but at 6 weeks the resin modified glass-ionomer group was significantly harder than the CHX groups (P < 0.05). The diametral tensile strength test indicated no difference between the control and CHX groups at 24 h or at 6 weeks. The jet erosion test demonstrated significantly less erosion with the CHX group at 24 h but at 6 weeks the CHX group showed significantly more erosion than the control group. The chemical assay data demonstrated a peak elution of CHX at week 1 with residual amounts at weeks 2 and 3. The microbial data demonstrated that the CHX group had a significant reduction in Streptococcus mutans numbers for weeks 1-3, but after week 4 there was no difference between the glass-ionomer with and without CHX. The addition of CHX to resin modified glass-ionomer altered hardness and erosion of the resin-modified glass-ionomer, but because there are no material specifications, it is difficult to determine clinical implications. Chlorhexidine did significantly improve the antimicrobial effect of the glass-ionomer which was consistent with the chemical assay data. The results indicated that the addition of CHX to resin modified glass-ionomer material (Photac-fil) did not seriously degrade the physical properties during the time period tested and that the addition of CHX resulted in a greater reduction in S. mutans when compared with glass-ionomer alone.

  6. Effect of Vital Bleaching on Disintegration Tendency of Glass Ionomer Restorations

    PubMed Central

    Baroudi, Kusai; Mahmoud, Rasha Said; Tarakji, Bassel; Altamimi, Mohammed Alsakran

    2014-01-01

    Introduction: This study was designed to assess the effect of two bleaching agents on the disintegration tendency of three types of glass ionomers. Materials and Methods: A total of 90 specimens were prepared by using a split Teflon ring with an internal diameter of 5 mm and a thickness of 2 mm. The tested materials were applied and bleached according to manufacturer’s instructions. Dissolution measurements were made by calculating weight loss through different periods of the test; (one week, one month and three months) and they were analyzed by using one-way analysis of variance (ANOVA), followed by Tukey’s post-hoc test. Results: All glass ionomer materials exhibited a degree of dissolution. Opalescence Xtra increased the dissolution of Photac Fil and F2000 significantly, while Opalescence Quick had no effect on dissolution of glass ionomer restoratives. Conclusion: Bleaching effect on dissolution of glass ionomers is material and time dependant. Care should be taken by clinicians When bleaching teeth that are restored by glass ionomer, because this dissolution may affect the physical properties of these restorations. PMID:24701538

  7. Improvement of enamel bond strengths for conventional and resin-modified glass ionomers: acid-etching vs. conditioning*

    PubMed Central

    Zhang, Ling; Tang, Tian; Zhang, Zhen-liang; Liang, Bing; Wang, Xiao-miao; Fu, Bai-ping

    2013-01-01

    Objective: This study deals with the effect of phosphoric acid etching and conditioning on enamel micro-tensile bond strengths (μTBSs) of conventional and resin-modified glass ionomer cements (GICs/RMGICs). Methods: Forty-eight bovine incisors were prepared into rectangular blocks. Highly-polished labial enamel surfaces were either acid-etched, conditioned with liquids of cements, or not further treated (control). Subsequently, two matching pre-treated enamel surfaces were cemented together with one of four cements [two GICs: Fuji I (GC), Ketac Cem Easymix (3M ESPE); two RMGICs: Fuji Plus (GC), RelyX Luting (3M ESPE)] in preparation for μTBS tests. Pre-treated enamel surfaces and cement-enamel interfaces were analyzed by scanning electron microscopy (SEM). Results: Phosphoric acid etching significantly increased the enamel μTBS of GICs/RMGICs. Conditioning with the liquids of the cements produced significantly weaker or equivalent enamel μTBS compared to the control. Regardless of etching, RMGICs yielded stronger enamel μTBS than GICs. A visible hybrid layer was found at certain enamel-cement interfaces of the etched enamels. Conclusions: Phosphoric acid etching significantly increased the enamel μTBSs of GICs/RMGICs. Phosphoric acid etching should be recommended to etch the enamel margins before the cementation of the prostheses such as inlays and onlays, using GICs/RMGICs to improve the bond strengths. RMGICs provided stronger enamel bond strength than GICs and conditioning did not increase enamel bond strength. PMID:24190447

  8. Correlation between the strength of glass ionomer cements and their bond strength to bovine teeth.

    PubMed

    Hibino, Yasushi; Kuramochi, Ken-ichi; Harashima, Atsushi; Honda, Muneaki; Yamazaki, Atsushi; Nagasawa, Yuko; Yamaga, Taniichiro; Nakajima, Hiroshi

    2004-12-01

    This study examined the possible correlation between the strength of glass ionomers and their adhesive strength to bovine teeth. The shear bond strengths of three different brands of glass ionomer mixed at four different P/L ratios to bovine teeth were measured 24 hours after the cement specimens were prepared. The correlation between shear bond strength and mechanical strength reported in our previous study was also examined. No significant (p > 0.05) increases in the bond strength to bovine teeth were found in any of the cements when the mixing ratio increased. The present study showed no significant (p > 0.05) correlation between mechanical strength of cement and its bond strength to bovine teeth. Rather than trying to increase the strength of the cement, it would be more effective to enhance the adhesive bond strength through procedures such as surface conditioning or cleaning of the tooth structure when glass ionomers are used as luting agents.

  9. Review paper: Role of aluminum in glass-ionomer dental cements and its biological effects.

    PubMed

    Nicholson, John W; Czarnecka, Beata

    2009-11-01

    The role of aluminum in glass-ionomers and resin-modified glass-ionomers for dentistry is reviewed. Aluminum is included in the glass component of these materials in the form of Al(2)O(3) to confer basicity on the glass and enable the glass to take part in the acid-base setting reactions. Results of studies of these reactions by FTIR and magic-angle spinning (MAS)-NMR spectroscopy are reported and the role of aluminum is discussed in detail. Aluminum has been shown to be present in the glasses in predominantly 4-coordination, as well as 5- and 6-coordination, and during setting a proportion of this is converted to 6-coordinate species within the matrix of the cement. Despite this, mature cements may contain detectable amounts of both 4- and 5-coordinate aluminum. Aluminum has been found to be leached from glass-ionomer cements, with greater amounts being released under acidic conditions. It may be associated with fluoride, with which it is known to complex strongly. Aluminum that enters the body via the gastro-intestinal tract is mainly excreted, and only about 1% ingested aluminum crosses the gut wall. Calculation shows that, if a glass-ionomer filling dissolved completely over 5 years, it would add only an extra 0.5% of the recommended maximum intake of aluminum to an adult patient. This leads to the conclusion that the release of aluminum from either type of glass-ionomer cement in the mouth poses a negligible health hazard.

  10. Bioactive glass-ionomer cement with potential therapeutic function to dentin capping mineralization.

    PubMed

    Xie, Dong; Zhao, Jun; Weng, Yiming; Park, Jong-Gu; Jiang, Hui; Platt, Jeffrey A

    2008-10-01

    We have developed a novel bioactive resin-modified glass-ionomer cement system with therapeutic function to dentin capping mineralization. In the system, the newly synthesized star-shape poly(acrylic acid) was formulated with water, Fuji II LC filler, and bioactive glass S53P4 to form resin-modified glass-ionomer cement. Compressive strength (CS) was used as a screening tool for evaluation. The commercial glass-ionomer cement Fuji II LC was used as a control. All the specimens were conditioned in simulated body fluid (SBF) at 37 degrees C prior to testing. The effect of aging in SBF on CS and microhardness of the cements was investigated. Scanning electron microscopy was used to examine the in vitro dentin surface changes caused by the incorporation of bioactive glass. The results show that the system not only provided strengths comparable to original commercial Fuji II LC cement but also allowed the cement to help mineralize the dentin in the presence of SBF. It appears that this bioactive glass-ionomer cement system has direct therapeutic impact on dental restorations that require root surface fillings.

  11. Lactic acid jet test: in vitro erosion rates of glass ionomer dental cements containing radiopacifying elements.

    PubMed

    Williams, J A; Billington, R W; Pearson, G J

    1993-06-01

    The lactic acid jet test erosion rates were measured for 13 radiopaque glass ionomer dental materials obtained from a number of manufacturing sources. The erosion rate was compared with that found for the non-radiopaque restorative from the same manufacturer to determine whether the addition of an extra element had affected the resistance to erosion. Six materials were not significantly affected, six showed a significant increase in erosion rate. Only one material showed a reduced erosion rate. Materials containing a high proportion of any additive could show an increased erosion rate. Glass ionomer cements with or without radiopacifying elements had low erosion rates compared with other dental materials.

  12. Orthodontic bracket bonding with a plasma-arc light and resin-reinforced glass ionomer cement.

    PubMed

    Ishikawa, H; Komori, A; Kojima, I; Ando, F

    2001-07-01

    Developments in light-curing technology have led to the introduction of a plasma-arc light-curing unit that delivers high-intensity output for faster curing. The purposes of this study were to determine the shear bond strengths of light-cured resin-reinforced glass ionomer cement cured with a plasma-arc light-curing unit and to evaluate the durability of the resultant bond strength with thermal cycling. Comparisons were made between light-cured resin-reinforced glass ionomer cement and light-cured composite resin. Two light-curing units were used in this study: a plasma-arc light-curing unit and a conventional light-curing unit. The mean shear bond strengths of light-cured resin-reinforced glass ionomer cement with the plasma-arc and the conventional light-curing units were 20.3 MPa and 26.0 MPa, respectively. An analysis of variance showed no statistically significant differences between the plasma-arc and the conventional light-curing units. Light-cured resin-reinforced glass ionomer cement and light-cured composite resin demonstrated similar bond strengths and exhibited no statistical differences. There was no statistical difference in bond strength between the teeth that were thermal cycled and those that were not. Failure sites for the brackets bonded with light-cured resin-reinforced glass ionomer cement appeared to be predominantly at the bracket-adhesive interface. The SDs of light-cured composite resin were high for both light-curing units. Whereas the coefficients of variation for light-cured resin-reinforced glass ionomer cement ranged from 20% to 30%, those of light-cured composite resin ranged from 40% to 60%. The bond strength of light-cured resin-reinforced glass ionomer cement cured with either a conventional light-curing unit or a plasma-arc light-curing unit surpassed the clinically required threshold. The plasma-arc light-curing unit may be an advantageous alternative to the conventional light-curing unit for orthodontic bracket bonding with both

  13. The role of the ionomer glass component in polyacid-modified composite resin dental restorative materials.

    PubMed

    Adusei, Gabriel O; Deb, Sanjukta; Nicholson, John W

    2004-07-01

    In order to model the processes that occur within polyacid-modified composite resin ("compomer") dental restoratives, a series of experiments has been carried out with silanated and silane-free ionomer glass G338, and silanated and silane-free unreactive glass (Raysorb T-4000). In an acid-base reaction with dental grade aqueous maleic acid-acrylic acid copolymer solution, the setting time of the silanted G338 was found to be 9 min, compared with 5 min for the silane-free glass. Inclusion of each glass in an experimental composite resin system showed that the formulations which contained G338 absorbed more water than the formulations which contained Raysorb T-4000, regardless of whether or not the glass was silanted. Biaxial flexure strength was superior for experimental composites containing Raysorb T-4000, with highest results being obtained with the silanated glass. Overall these results demonstrate that silanation of the filler is essential for optimal physical properties but that, for the ionomer glass, it inhibits the acid-base reaction. The presence of ionomer glass led to an increase in water uptake compared with the unreactive glass, regardless of the presence of silane.

  14. The effect of glass synthesis route on mechanical and physical properties of resultant glass ionomer cements.

    PubMed

    Wren, A; Clarkin, O M; Laffir, F R; Ohtsuki, C; Kim, I Y; Towler, M R

    2009-10-01

    Glass ionomer cements (GICs) have potential orthopaedic applications. Solgel processing is reported as having advantages over the traditional melt-quench route for synthesizing the glass phase of GICs, including far lower processing temperatures and higher levels of glass purity and homogeneity. This work investigates a novel glass formulation, BT 101 (0.48 SiO(2)-0.36 ZnO-0.12 CaO-0.04 SrO) produced by both the melt-quench and the solgel route. The glass phase was characterised by X-ray diffraction (XRD) to determine whether the material was amorphous and differential thermal analysis (DTA) to measure the glass transition temperature (T (g)). Particle size analysis (PSA) was used to determine the mean particle size and X-ray photoelectron spectroscopy (XPS) was used to investigate the structure and composition of the glass. Both glasses, the melt-quench BT 101 and the solgel BT 101, were mixed with 50 wt% polyacrylic acid (M (w), 80,800) and water to form a GIC and the working time (T (w)) and the setting time (T (s)) of the resultant cements were then determined. The cement based on the solgel glass had a longer T (w) (78 s) as compared to the cement based on the melt derived glass (19 s). T (s) was also much longer for the cement based on the solgel (1,644 s) glass than for the cement based on the melt-derived glass (25 s). The cements based on the melt derived glass produced higher strengths in both compression (sigma(c)) and biaxial flexure (sigma(f)), where the highest strength was found to be 63 MPa in compression, at both 1 and 7 days. The differences in setting and mechanical properties can be associated to structural differences within the glass as determined by XPS which revealed the absence of Ca in the solgel system and a much greater concentration of bridging oxygens (BO) as compared to the melt-derived system.

  15. Effect of Adhesive Pretreatments on Marginal Sealing of Aged Nano-ionomer Restorations.

    PubMed

    Shafiei, Fereshteh; Akbarian, Sahar; Karim Etminan, Mohammad

    2015-01-01

    Background and aims. Nano-ionomer (NI) interacts with tooth structures superficially, and there is a concern about the enamel bonding ability of mild self-etch Ketac primer. This study compared the effect of different adhesive procedures (self-etching and etch-and-rinse approach) on long-term marginal microleakage of nano-filled resin-modified glass-ionomer (NI) cervical restorations. Materials and methods. Class V cavities were prepared on 72 maxillary premolars. The teeth were divided into six groups: G1: No treatment (NC); G2: Ketac primer (K primer); G3: Etchant + Ketac primer (E+K primer); G4: Self-etch adhesive (Bond Force); G5: Etchant + Bond Force (E+Bond Force); G6: Etchant + Adper Single Bond (Etch and rinse adhesive). All the cavities were restored with Ketac N100. The samples were stored in water for 6 months and thermocycled for 2000 cycles. Marginal sealing was assessed using dye penetration technique. Data were analyzed with non-parametric tests (α=0.05). Results. All the adhesive pretreatments resulted in a lower marginal leakage than that of NC (P≤0.01), except for E+Bond Force at the dentin margin. There was no significant difference between K primer and Bond Force. Microleakage differed significantly between K primer pretreatment and E+K primer (P=0.003), E+Bond Force (P=0.002) and etch-and-rinse adhesive (P=0.001) at the enamel margin, but it did not differ at the dentin margin. E+ Bond Force group showed insignificantly lower leakage at the enamel margin and significantly higher leakage at the dentin margin (P=0.02). Conclusion. Etch-and-rinse adhesive and selective enamel etching along with self-etch adhesive/Ketac primer might improve marginal sealing of aged nano-ionomer restoration.

  16. Effect of Adhesive Pretreatments on Marginal Sealing of Aged Nano-ionomer Restorations

    PubMed Central

    Shafiei, Fereshteh; Akbarian, Sahar; Karim Etminan, Mohammad

    2015-01-01

    Background and aims. Nano-ionomer (NI) interacts with tooth structures superficially, and there is a concern about the enamel bonding ability of mild self-etch Ketac primer. This study compared the effect of different adhesive procedures (self-etching and etch-and-rinse approach) on long-term marginal microleakage of nano-filled resin-modified glass-ionomer (NI) cervical restorations. Materials and methods. Class V cavities were prepared on 72 maxillary premolars. The teeth were divided into six groups: G1: No treatment (NC); G2: Ketac primer (K primer); G3: Etchant + Ketac primer (E+K primer); G4: Self-etch adhesive (Bond Force); G5: Etchant + Bond Force (E+Bond Force); G6: Etchant + Adper Single Bond (Etch and rinse adhesive). All the cavities were restored with Ketac N100. The samples were stored in water for 6 months and thermocycled for 2000 cycles. Marginal sealing was assessed using dye penetration technique. Data were analyzed with non-parametric tests (α=0.05). Results. All the adhesive pretreatments resulted in a lower marginal leakage than that of NC (P≤0.01), except for E+Bond Force at the dentin margin. There was no significant difference between K primer and Bond Force. Microleakage differed significantly between K primer pretreatment and E+K primer (P=0.003), E+Bond Force (P=0.002) and etch-and-rinse adhesive (P=0.001) at the enamel margin, but it did not differ at the dentin margin. E+ Bond Force group showed insignificantly lower leakage at the enamel margin and significantly higher leakage at the dentin margin (P=0.02). Conclusion. Etch-and-rinse adhesive and selective enamel etching along with self-etch adhesive/Ketac primer might improve marginal sealing of aged nano-ionomer restoration. PMID:26697146

  17. Initial sliding wear kinetics of two types of glass ionomer cement: a tribological study.

    PubMed

    Villat, Cyril; Ponthiaux, Pierre; Pradelle-Plasse, Nelly; Grosgogeat, Brigitte; Colon, Pierre

    2014-01-01

    The aim of this work was to characterize the initial wear kinetics of two different types of glass ionomer cement used in dentistry (the conventional glass ionomer cement and the resin-modified glass ionomer cement) under sliding friction after 28-day storing in distilled water or Ringer's solution. Sliding friction was applied through a pin-on-disk tribometer, in sphere-on-plane contact conditions, under 5 N normal load and 120 rotations per minute. The test lasted 7500 cycles and replicas were performed at 2500, 5000 and 7500 cycles. A profilometer was used to evaluate the wear volume. Data were analysed using Student's t-test at a significant level of 5%. There is no statistical significant difference between the results obtained for a given material with the maturation media (P > 0.05). However, for a given maturation medium, there are significant statistical differences between the data obtained for the two materials at each measurement (P < 0.0001). The wear rates of both materials decrease continuously during the running-in period between 0 and 2500 cycles. After 2500 cycles, the wear rate becomes constant and equal for both materials. The resin matrix contained in the resin-modified glass ionomer cement weakens the tribological behaviour of this material.

  18. Glass ionomer as an expander of allograft in revision arthroplasty of the hip.

    PubMed

    Eldridge, J D J; Cunningham, J L; Samuels, A; Blunn, G W; Lawes, T J; Learmonth, I D; Goodship, A E

    2003-02-01

    The use of glass ionomer as a bone graft expander was investigated in an in vivo model of revision hip arthroplasty. Bone grafts of pure allograft and allograft + glass ionomer particles in a 50:50 by weight mixture were implanted in an ovine hemi-arthroplasty model. Post-operative assessments of locomotor function, radiographic appearance and quantitative changes in mineralisation around the graft were made at 2, 4 and 6 months. Post-mortem assessments of radiographic and histologic appearance of the grafts were made at 6 months. No significant differences were noted in any of the measured or assessed parameters between the two graft types. The glass ionomer particles seemed to be well tolerated within the matrix of new bone, smaller sized particles appearing to be better incorporated than larger ones. The use of particles of glass ionomer as a bone graft expander, in this in vivo model of revision hip arthroplasty, would therefore appear to offer no detriment in performance over pure allograft in the short to medium term.

  19. Effects of dentin surface treatments on shear bond strength of glass-ionomer cements

    PubMed Central

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Lombardini, Marco

    2014-01-01

    Summary Aim The aim of this in vitro study was to evaluate the effect of different surface treatments on shear bond strength of a conventional glass-ionomer cement (GIC) and a resin-modified glass-ionomer cement (RMGIC) to dentin. Materials and methods 80 bovine permanent incisors were used. 40 cylindrical specimens of a GIC (Fuji IX GP Extra) and 40 cylindrical specimens of a RMGIC (Fuji II LC) were attached to the dentin. The teeth were then randomly assigned to 8 groups of equal size (n=10), 4 for every type of glass-ionomer cement, corresponding to type of dentin surface treatments. Group 1: GC Cavity Conditioner; Group 2: 37% phosphoric acid gel; Group 3: Clearfil SE Bond; Group 4: no dentin conditioning (control). The specimens were placed in a universal testing machine (Model 3343, Instron Corp., Canton, Mass., USA) and subsequently tested for shear bond strength (MPa). Results ANOVA showed the presence of significant differences among the various groups. Post hoc Tukey test showed different values of shear bond strength for Fuji IX GP Extra and for Fuji II LC. The different conditioners variably influence the adhesion of the glass-ionomer cements tested. Conclusions. RMGIC shear bond to dentin was higher than GIC. The use of a Self-etch adhesive system improved the shear bond strength values of RMGIC and lowered the shear bond strength values of GIC significantly. PMID:24753797

  20. Effect of Zirconia and Alumina Fillers on the Microstructure and Mechanical Strength of Dental Glass Ionomer Cements

    PubMed Central

    Souza, Júlio C. M.; Silva, Joel B.; Aladim, Andrea; Carvalho, Oscar; Nascimento, Rubens M.; Silva, Filipe S.; Martinelli, Antonio E.; Henriques, Bruno

    2016-01-01

    Background: Glass-ionomer cements perform a protective effect on the dentin-pulp complex considering the F ions release and chemical bonding to the dental structures. On the other hand, those materials have poor physic-mechanical properties in comparison with the restorative resin composite. The main aim of this work was to evaluate the influence of zirconia and/or alumina fillers on the microstructure and strength of a resin modified glass-ionomer cement after thermal cycling. Methods: An in vitro experimental study was carried out on 9 groups (n = 10) of cylindrical samples (6 x 4 mm) made from resin modified glass-ionomer (Vitremer, 3M, USA) with different contents of alumina and/or zirconia fillers. A nano-hybrid resin composite was tested as a control group. Samples were mechanically characterized by axial compressive tests and electron scanning microscopy (SEM) coupled to energy dispersive X-ray spectrophotometry (EDS), before and after thermal cycling. Thermal cycling procedures were performed at 3000, 6000 and 10000 cycles in Fusayama´s artificial saliva at 5 and 60 oC. Results: An improvement of compressive strength was noticed on glass-ionomer reinforced with alumina fillers in comparison with the commercial glass ionomer. SEM images revealed the morphology and distribution of alumina or zirconia in the microstructure of glass-ionomers. Also, defects such as cracks and pores were detected on the glass-ionomer cements. The materials tested were not affected by thermal cycling in artificial saliva. Conclusion: Addition of inorganic particles at nano-scale such as alumina can increase the mechanical properties of glass-ionomer cements. However, the presence of cracks and pores present in glass-ionomer can negatively affect the mechanical properties of the material because they are areas of stress concentration. PMID:27053969

  1. Effect of radiant heat on conventional glass ionomer cements during setting by using a blue light diode laser system (445 nm).

    PubMed

    Dionysopoulos, Dimitrios; Tolidis, Kosmas; Strakas, Dimitrios; Gerasimou, Paris; Sfeikos, Thrasyvoulos; Gutknecht, Norbert

    2017-04-01

    The aim of this in vitro study was to evaluate the effect of radiant heat on surface hardness of three conventional glass ionomer cements (GICs) by using a blue diode laser system (445 nm) and a light-emitting diode (LED) unit. Additionally, the safety of the laser treatment was evaluated. Thirty disk-shaped specimens were prepared of each tested GIC (Equia Fil, Ketac Universal Aplicap and Riva Self Cure). The experimental groups (n = 10) of the study were as follows: group 1 was the control group of the study; in group 2, the specimens were irradiated for 60 s at the top surface using a LED light-curing unit; and in group 3, the specimens were irradiated for 60 s at the top surface using a blue light diode laser system (445 nm). Statistical analysis was performed using one-way ANOVA and Tukey post-hoc tests at a level of significance of a = 0.05. Radiant heat treatments, with both laser and LED devices, increased surface hardness (p < 0.05) but in different extent. Blue diode laser treatment was seemed to be more effective compared to LED treatment. There were no alterations in surface morphology or chemical composition after laser treatment. The tested radiant heat treatment with a blue diode laser may be advantageous for the longevity of GIC restorations. The safety of the use of blue diode laser for this application was confirmed.

  2. The Effect of Glass Ionomer and Adhesive Cements on Substance P Expression in Human Dental Pulp

    PubMed Central

    Ariza-Garcia, German; Camelo, Patricia; Mejia, Monica; Ojeda, Karyn; Azuero-Holguin, Maria M.; Abad-Coronel, Dunia; Munoz, Hugo R.

    2013-01-01

    Objectives: The purpose of this study was to quantify the effect of glass ionomer and adhesive cements on SP expression in healthy human dental pulp. Study Design: Forty pulp samples were obtained from healthy premolars where extraction was indicated for orthodontic reasons. In thirty of these premolars a Class V cavity preparation was performed and teeth were equally divided in three groups: Experimental Group I: Glass Ionomer cement was placed in the cavity. Experimental Group II: Adhesive Cement was placed in the cavity. Positive control group: Class V cavities only. The remaining ten healthy premolars where extracted without treatment and served as a negative control group. All pulp samples were processed and SP was measured by radioimmunoassay. Results: Greater SP expression was found in the adhesive cement group, followed by the glass ionomer and the positive control groups. The lower SP values were for the negative control group. ANOVA showed statistically significant differences between groups (p<0.0001). Tukey HSD post hoc tests showed statistically significant differences in SP expression between negative control group and the 3 other groups (p<0.01). Differences between the cavity-only group and the two experimental groups were also statistically significant (p<0.05 and p<0.01 respectively). There is also a statistically significant difference between the two experimental groups (p<0.01). Conclusions: These findings suggest that adhesive cements provoke a greater SP expression when compared with glass ionomer. Key words:Glass Ionomer, adhesive cement, Substance P, human dental pulp. PMID:23722145

  3. The effect of short polyethylene fiber with different weight percentages on diametral tensile strength of conventional and resin modified glass ionomer cements

    PubMed Central

    Sharafeddin, Farahnaz; Ghaboos, Seyed-Ali

    2017-01-01

    Background The aim of this study was to investigate the effect of polyethylene fiber on diametral tensile strength of conventional and resin modified glass ionomer cements. Material and Methods 60 specimens in 6 groups (n=10) were prepared. In group 1 conventional glass ionomer (Fuji GC) and in group 2 resin modified glass ionomer (Fuji LC) were as control groups. In group 3 and 4 conventional glass ionomers mixed with short polyethylene fibers in proportion of 1 wt% and 3 wt%, respectively. In fifth and sixth groups, resin modified glass ionomer and short polyethylene fibers were mixed in 1 and 3% wt, respectively. Samples were prepared in a round brass mold (6.5×2.5 mm). After thermo-cycling, the diametral tensile strength of the specimens were tested and data were analyzed with ANOVA and post-hoc tests (p<0.05). Results Diametral tensile strength of both conventional and resin modified glass ionomer cements increased after mixing with polyethylene fiber (p<0.001). Also, reinforcement occurred as the mixing percentage increased from 1% wt to 3% wt in either conventional and resin modified glass ionomer (p<0.001). Conclusions The polyethylene fiber was shown to have a significant positive influence on diametral tensile strength of two types of glass ionomers. Key words:Conventional glass ionomer, diametral tensile strength, polyethylene fiber, resin modified glass ionomer. PMID:28298993

  4. A three-year clinical trial using a glass ionomer cement for the bonding of orthodontic brackets.

    PubMed

    Miller, J R; Mancl, L; Arbuckle, G; Baldwin, J; Phillips, R W

    1996-01-01

    Recent clinical studies measuring orthodontic bracket failure, when using glass ionomer cement as an adhesive, have reported a wide range of percentages of bracket failure. The present study recorded bracket failure over a 3-year period, longer than had been previously measured. Seventeen participants were randomly assigned to one of two treatment groups, either using glass ionomer cement or composite resin for bonding. In each group, brackets were bonded to incisors, canines, and premolars. Bracket failure was measured over the duration of comprehensive orthodontic treatment for all participants. Brackets bonded with the glass ionomer cement were more likely to fail (log-rank test; P < or = 0.022). This difference was clinically significant. At the present time, the disadvantage of extra bracket failures appears to outweigh potential advantages when considering glass ionomer cement for the routine bonding of orthodontic brackets.

  5. How mobile are protons in the structure of dental glass ionomer cements?

    PubMed Central

    Benetti, Ana R.; Jacobsen, Johan; Lehnhoff, Benedict; Momsen, Niels C. R.; Okhrimenko, Denis V.; Telling, Mark T. F.; Kardjilov, Nikolay; Strobl, Markus; Seydel, Tilo; Manke, Ingo; Bordallo, Heloisa N.

    2015-01-01

    The development of dental materials with improved properties and increased longevity can save costs and minimize discomfort for patients. Due to their good biocompatibility, glass ionomer cements are an interesting restorative option. However, these cements have limited mechanical strength to survive in the challenging oral environment. Therefore, a better understanding of the structure and hydration process of these cements can bring the necessary understanding to further developments. Neutrons and X-rays have been used to investigate the highly complex pore structure, as well as to assess the hydrogen mobility within these cements. Our findings suggest that the lower mechanical strength in glass ionomer cements results not only from the presence of pores, but also from the increased hydrogen mobility within the material. The relationship between microstructure, hydrogen mobility and strength brings insights into the material's durability, also demonstrating the need and opening the possibility for further research in these dental cements. PMID:25754555

  6. How mobile are protons in the structure of dental glass ionomer cements?

    NASA Astrophysics Data System (ADS)

    Benetti, Ana R.; Jacobsen, Johan; Lehnhoff, Benedict; Momsen, Niels C. R.; Okhrimenko, Denis V.; Telling, Mark T. F.; Kardjilov, Nikolay; Strobl, Markus; Seydel, Tilo; Manke, Ingo; Bordallo, Heloisa N.

    2015-03-01

    The development of dental materials with improved properties and increased longevity can save costs and minimize discomfort for patients. Due to their good biocompatibility, glass ionomer cements are an interesting restorative option. However, these cements have limited mechanical strength to survive in the challenging oral environment. Therefore, a better understanding of the structure and hydration process of these cements can bring the necessary understanding to further developments. Neutrons and X-rays have been used to investigate the highly complex pore structure, as well as to assess the hydrogen mobility within these cements. Our findings suggest that the lower mechanical strength in glass ionomer cements results not only from the presence of pores, but also from the increased hydrogen mobility within the material. The relationship between microstructure, hydrogen mobility and strength brings insights into the material's durability, also demonstrating the need and opening the possibility for further research in these dental cements.

  7. [Bonding of glass ionomer cement to dentin. An in vitro study].

    PubMed

    Gonzalez Lopez, S; Perez Gutierrez, I; Navajas Rodriguez de Mondelo, J M

    1991-01-01

    It's been studied "in vitro" the influence of the "Smear Layer" on the cement adhesión of the glass ionomer to the dentin. Using phosphoric acid at 37% and poliacrylic in the dentin during short periods of time, the adhesion between the cement and the dentin is improved because the Smear Layer is removed totally in the case of phosphoric acid and partially in the case of polyacrylic acid.

  8. Development of a novel aluminum-free glass ionomer cement based on magnesium/strontium-silicate glasses.

    PubMed

    Kim, Dong-Ae; Abo-Mosallam, Hany A; Lee, Hye-Young; Kim, Gyu-Ri; Kim, Hae-Won; Lee, Hae-Hyoung

    2014-09-01

    The effects of strontium substitution for magnesium in a novel aluminum-free multicomponent glass composition for glass ionomer cements (GICs) were investigated. A series of glass compositions were prepared based on SiO2-P2O5-CaO-ZnO-MgO(1-X)-SrOX-CaF2 (X=0, 0.25, 0.5 and 0.75). The mechanical properties of GICs prepared were characterized by compressive strength, flexural strength, flexural modules, and microhardness. Cell proliferation was evaluated indirectly by CCK-8 assay using various dilutions of the cement and rat mesenchyme stem cells. Incorporation of strontium instead of magnesium in the glasses has a significant influence on setting time of the cements and the properties. All mechanical properties of the GICs with SrO substitution at X=0.25 were significantly increased, then gradually decreased with further increase of the amount of strontium substitution in the glass. The GIC at X=0.25, also, showed an improved cell viability at low doses of the cement extracts in comparison with other groups or control without extracts. The results of this study demonstrate that the glass compositions with strontium substitution at low levels can be successfully used to prepare aluminum-free glass ionomer cements for repair and regeneration of hard tissues.

  9. In vitro comparison of the shear bond strength of amalgam to tooth structure using two bonding agents--lutting glass ionomer and 4-META.

    PubMed

    Sheela, K; Sudeep, P T; Hegde, V; Francis, R F; Bhat, K S; Sundeep, P T

    1998-01-01

    Bonding dental amalgam to tooth structure using 4-META has become an accepted clinical procedure. Glass ionomer cements possess the ability to bind to tooth structure as well as to the components of dental amalgam. The present in vitro study evaluates the shear bond strength of amalgam to tooth structure using luting glass ionomer as a bond mediating agent, and compares with that obtained using 4-META. Results indicate that it is possible to bond amalgam to tooth structure using a thin layer of glass ionomer cement. The shear bond strength of glass ionomer cement mediated bond is significant and may be adequate for clinical application.

  10. Antimicrobial Effects of Dental Luting Glass Ionomer Cements on Streptococcus mutans

    PubMed Central

    Altenburger, Markus; Spitzmüller, Bettina; Anderson, Annette; Hellwig, Elmar

    2014-01-01

    Objective. To reduce secondary caries, glass ionomer luting cements are often used for cementing of indirect restorations. This is because of their well-known antimicrobial potential through the release of fluoride ions. The aim of this in vitro study was to investigate the antimicrobial effect of five dental luting cements which were based on glass ionomer cement technology. Methods. Five different glass ionomer based luting cements were tested for their antimicrobial effects on Streptococcus mutans in two different experimental setups: (i) determination of colony-forming units (CFUs) in a plate-counting assay; (ii) live/dead staining (LDS) and fluorescence microscopy. All experiments were conducted with or without prior treatment of the materials using sterilized human saliva. Antimicrobial effects were evaluated for adherent and planktonic bacteria. Bovine enamel slabs (BES) were used as negative control. BES covered with 0.2% chlorhexidine (CHX) served as positive control. Results. Each of the tested materials significantly reduced the number of initially adhered CFUs; this reduction was even more pronounced after prior incubation in saliva. Antimicrobial effects on adherent bacteria were confirmed by live-dead staining. Conclusion. All five luting cements showed an antimicrobial potential which was increased by prior incubation with human saliva, suggesting an enhanced effect in vivo. PMID:24795539

  11. Bond strength of a light-cured and two auto-cured glass ionomer liners.

    PubMed

    Holtan, J R; Nystrom, G P; Olin, P S; Rudney, J; Douglas, W H

    1990-10-01

    Ninety-nine extracted human molar teeth were used in this study comparing the shear bond strengths on dentine of one light-cured and two auto-cured polyalkenoate (glass ionomer) cements. Bond strength can be influenced by differences in tooth structure. A balanced-incomplete block design (Hull and Nie, 1981) was used to reduce variation attributable to such differences. Cements were applied to paired dentine surfaces in combinations such that 66 tooth sides were treated with each material. A light-cured dentinal adhesive and composite resin restorative material were then placed and shear bond strength testing was conducted exactly 24 h after the completion of each specimen. Mean forces (MPa) for the three materials were compared using an appropriate analysis of variance model (balanced-incomplete-blocks) The shear bond strengths (MPa) of the light-cured liner (Espe, Seefeld/Oberbay, FRG) was 4.71 +/- 1.16. Vitrabond showed the greatest variance of all three materials tested, however this material's average bond strength was greater than the maximum achieved for the other materials. Student-Newman-Keuls comparison of means showed that all cements differed significantly from each other (alpha = 0.05). It is concluded that the light-cured glass ionomer liner exhibited significantly better shear bond strength performance than the two auto-cured glass ionomers tested.

  12. Comparative Evaluation of Microleakage Between Nano-Ionomer, Giomer and Resin Modified Glass Ionomer Cement in Class V Cavities- CLSM Study

    PubMed Central

    Hari, Archana; Thumu, Jayaprakash; Velagula, Lakshmi Deepa; Bolla, Nagesh; Varri, Sujana; Kasaraneni, Srikanth; Nalli, Siva Venkata Malathi

    2016-01-01

    Introduction Marginal integrity of adhesive restorative materials provides better sealing ability for enamel and dentin and plays an important role in success of restoration in Class V cavities. Restorative material with good marginal adaptation improves the longevity of restorations. Aim Aim of this study was to evaluate microleakage in Class V cavities which were restored with Resin Modified Glass Ionomer Cement (RMGIC), Giomer and Nano-Ionomer. Materials and Methods This in-vitro study was performed on 60 human maxillary and mandibular premolars which were extracted for orthodontic reasons. A standard wedge shaped defect was prepared on the buccal surfaces of teeth with the gingival margin placed near Cemento Enamel Junction (CEJ). Teeth were divided into three groups of 20 each and restored with RMGIC, Giomer and Nano-Ionomer and were subjected to thermocycling. Teeth were then immersed in 0.5% Rhodamine B dye for 48 hours. They were sectioned longitudinally from the middle of cavity into mesial and distal parts. The sections were observed under Confocal Laser Scanning Microscope (CLSM) to evaluate microleakage. Depth of dye penetration was measured in millimeters. Statistical Analysis The data was analysed using the Kruskal Wallis test. Pair wise comparison was done with Mann Whitney U Test. A p-value<0.05 is taken as statistically significant. Results Nano-Ionomer showed less microleakage which was statistically significant when compared to Giomer (p=0.0050). Statistically no significant difference was found between Nano Ionomer and RMGIC (p=0.3550). There was statistically significant difference between RMGIC and Giomer (p=0.0450). Conclusion Nano-Ionomer and RMGIC showed significantly less leakage and better adaptation than Giomer and there was no statistically significant difference between Nano-Ionomer and RMGIC. PMID:27437363

  13. Marginal Integrity of Glass Ionomer and All Ceramic Restorations

    DTIC Science & Technology

    2015-06-01

    irregular microstructure of the glass matrix infused with fillers, they do not possess fracture resistance comparable to natural teeth. This limited ACRs...content and lower glass content, these ceramics have greater fracture resistance. These improved ceramics can be used in areas with significant lateral...Reitz, 1999). The polycrystalline structure has a much 3 higher resistance to fracture than the less dense and irregular composition of glass

  14. A study of the interactions between glass-ionomer cement and S. sanguis biofilms

    NASA Astrophysics Data System (ADS)

    Hengtrakool, Chanotai

    Glass-ionomer cements (GIC) have been used for dental procedures for many years and more recently in other medical applications such as bone cements, for bone reconstruction and also as drug release agents. The postulated caries-preventive activities of GIC are thought to result from their sealing ability, remineralization potential and antibacterial effects. Extensive 'in vitro' investigations have attempted to quantify these effects. In this study, an artificial mouth model, simulating 'in vivo' conditions at the tooth surface, was used to achieve a better understanding of the interaction of oral bacteria with the cements. This study investigated the interaction of Streptococcus sanguis, a common mouth commensal, with two glass-ionomer formulations (one containing fluoride and the other without fluoride ion) with particular reference to bacterial growth, changes in surface roughness and hardness of the glass-ionomer cement with respect to time. Restorative materials with rough surfaces will promote bacterial accumulation 'in vivo' and plaque formation is one factor in surface degradation. The constant depth film fermenter (CDFF) permits the examination of these phenomena and was used to investigate glass-ionomer/S. sanguis biofilm interaction over periods up to 14 days. In conjunction with these studies, surface roughness was measured using a 3-dimension laser profilometer and the surface hardness evaluated using a micro-indenter. Fluoride release from the cement was measured over 84 days. The results showed that autoclaving the CDFF prior to bacterial innoculate did not appear to affect the long-term fluoride release of the GIC. Laser profilometry revealed that the initial roughness and surface area of the GICs was significantly greater than the hydroxyapatite control. S. sanguis viable counts were significantly reduced for both glass-ionomer formulations in the shortterm, the greater reduction being with fluoride-GIC. S. sanguis biofilms produced similar

  15. Marginal ridge fracture resistance, microleakage and pulpal response to glass ionomer/glass cermet partial tunnel restorations.

    PubMed

    Prabhu, N T; Munshi, A K; Shetty, T R

    1997-01-01

    Sixty sound premolars which were to be extracted for orthodontic treatment purposes were restored either with glass ionomer cement or glass cermet cements after partial tunnel preparation, and prior to the extraction after a time interval of 30 and 60 days respectively. The teeth were then subjected to marginal ridge fracture resistance, microleakage study using dye penetration and histological evaluation of the pulpal response to these materials. Both the materials exhibited increase in marginal ridge fracture resistance at 60 days, with minimal degree of microleakage and were biologically compatible with the dental pulp.

  16. Modifications in Glass Ionomer Cements: Nano-Sized Fillers and Bioactive Nanoceramics

    PubMed Central

    Najeeb, Shariq; Khurshid, Zohaib; Zafar, Muhammad Sohail; Khan, Abdul Samad; Zohaib, Sana; Martí, Juan Manuel Nuñez; Sauro, Salvatore; Matinlinna, Jukka Pekka; Rehman, Ihtesham Ur

    2016-01-01

    Glass ionomer cements (GICs) are being used for a wide range of applications in dentistry. In order to overcome the poor mechanical properties of glass ionomers, several modifications have been introduced to the conventional GICs. Nanotechnology involves the use of systems, modifications or materials the size of which is in the range of 1–100 nm. Nano-modification of conventional GICs and resin modified GICs (RMGICs) can be achieved by incorporation of nano-sized fillers to RMGICs, reducing the size of the glass particles, and introducing nano-sized bioceramics to the glass powder. Studies suggest that the commercially available nano-filled RMGIC does not hold any significant advantage over conventional RMGICs as far as the mechanical and bonding properties are concerned. Conversely, incorporation of nano-sized apatite crystals not only increases the mechanical properties of conventional GICs, but also can enhance fluoride release and bioactivity. By increasing the crystallinity of the set matrix, apatites can make the set cement chemically more stable, insoluble, and improve the bond strength with tooth structure. Increased fluoride release can also reduce and arrest secondary caries. However, due to a lack of long-term clinical studies, the use of nano-modified glass ionomers is still limited in daily clinical dentistry. In addition to the in vitro and in vivo studies, more randomized clinical trials are required to justify the use of these promising materials. The aim of this paper is to review the modification performed in GIC-based materials to improve their physicochemical properties. PMID:27428956

  17. Ion leaching of a glass-ionomer glass: an empirical model and effects on setting characteristics and strength.

    PubMed

    Prentice, Leon H; Tyas, Martin J; Burrow, Michael F

    2007-01-01

    The release of ions from a glass-ionomer glass, which in the polyacid matrix effects the cross-linking and setting of a cement, can be modelled and initiated by acid-treatment in a dilute acid. This study examined the effect of time of acetic acid leaching on the working time, setting time, and strength of a model GIC. A reactive fluoride glass was immersed in hot acetic acid for 0 (control), 5, 15, 35, 65, 95 and 125 min, filtered and dried. The glass was mixed with an experimental GI liquid in a capsule system and the mixed pastes assessed for working and initial setting time. Compressive strength testing was undertaken according to ISO9917:2003. Immersion time had a significant effect on both working and setting time of the resultant pastes only up to 65 min of immersion, and corresponded with a thin-film ion diffusion model. Compressive strength did not vary significantly with immersion time. The glass-ionomer setting reaction can be conveniently retarded by immersion of the powder in acetic acid, without affecting strength. A reactivity model was developed, whereby the effects of various changes to the leaching process may be usefully examined.

  18. IR and NMR analyses of hardening and maturation of glass-ionomer cement.

    PubMed

    Matsuya, S; Maeda, T; Ohta, M

    1996-12-01

    It has been reported that the silicate phase as well as the cross-linking of the polycarboxylic acid by aluminum and calcium ions played an important role in the hardening of glass-ionomer cement. The objective of this study was to investigate the structural change during hardening of the cements by means of infrared (IR) spectroscopy and solid-state nuclear magnetic resonance (NMR) spectroscopy and to confirm the role of the silica phase in the hardening of the cement. For that purpose, we measured the change in compressive strength of an experimental glass-ionomer cement, two commercial glass-ionomer cements, and a polycarboxylate cement and carried out 29Si and 27Al NMR analyses of the cement samples after the strength measurement. In the IR spectra during hardening, a characteristic band of the silicate network around 1000 cm-1 shifted toward high frequency with time. The spectrum after hardening was similar to that for a hydrated amorphous silica structure. The 27Al NMR analysis showed that Al3+ ion was tetrahedrally coordinated by oxygen in the original glass, but a part of the Al3+ ion was octahedrally coordinated after hardening to form Al polyacrylate gel. The chemical shift of Si in the 29Si NMR spectra also changed during hardening. The variation in the chemical shift reflected the structural change in the silicate network. The initial increase in compressive strength of the cement was mainly caused by polycarboxylate gel formation. However, it was concluded that the reconstruction of the silicate network contributed to the increase in strength with time during the period after the gelation by cross-linking was completed.

  19. Two-year clinical performance of glass ionomer and resin composite restorations in xerostomic head- and neck-irradiated cancer patients.

    PubMed

    De Moor, Roeland J G; Stassen, Inge G; van 't Veldt, Yoke; Torbeyns, Dries; Hommez, Geert M G

    2011-02-01

    The aim of this study was to evaluate the clinical performance of adhesive filling materials in class V cavities in xerostomic head- and neck-irradiated cancer patients, in terms of marginal adaptation, anatomical form and recurrent caries. We selected 35 high-caries-risk, post-radiation, xerostomic adults with ≥3 cervical carious lesions in the same arch. Every patient received a KetacFil (KF), PhotacFil (PF) and Herculite XRV (HX) restoration. Patients were instructed to use a neutral 1% sodium fluoride gel in custom trays, on a daily basis. After 6, 12, 18 and 24 months, the restorations were examined for material loss, marginal integrity and recurrent caries. Fluoride compliance was determined at each recall appointment and recorded as the percentage of recommended use during that interval [compliance of ≤50% = NFUs, >50% = FUs]. Only 30 patients were available for recall at 6 months, with 28 patients at 12 and 18 months, and 27 patients at 24 months. In the NFU group, differences in recurrent caries were found between KF and HX at all observation times (p < 0.05). Differences (p < 0.05) in adaptation and/or anatomical form were found between KF and PF in NFUs after 18 and 24 months. In FUs, significant differences were observed between KF and PF, and KF and HX after 6 and 12 months, between KF and HX, PF and HX after 18 and 24 months. In summary, glass ionomers (especially the conventionally setting formulation) provide clinical caries inhibition but erode easily, while composite resin provides greater structural integrity.

  20. Composition-structure-property relationships for non-classical ionomer cements formulated with zinc-boron germanium-based glasses.

    PubMed

    Zhang, Xiaofang; Werner-Zwanziger, Ulrike; Boyd, Daniel

    2015-04-01

    Non-classical ionomer glasses like those based on zinc-boron-germanium glasses are of special interest in a variety of medical applications owning to their unique combination of properties and potential therapeutic efficacy. These features may be of particular benefit with respect to the utilization of glass ionomer cements for minimally invasive dental applications such as the atruamatic restorative treatment, but also for expanded clinical applications in orthopedics and oral-maxillofacial surgery. A unique system of zinc-boron-germanium-based glasses (10 compositions in total) has been designed using a Design of Mixtures methodology. In the first instance, ionomer glasses were examined via differential thermal analysis, X-ray diffraction, and (11)B MAS NMR spectroscopy to establish fundamental composition - structure-property relationships for the unique system. Secondly, cements were synthesized based on each glass and handling characteristics (working time, Wt, and setting time, St) and compression strength were quantified to facilitate the development of both experimental and mathematical composition-structure-property relationships for the new ionomer cements. The novel glass ionomer cements were found to provide Wt, St, and compression strength in the range of 48-132 s, 206-602 s, and 16-36 MPa, respectively, depending on the ZnO/GeO2 mol fraction of the glass phase. A lower ZnO mol fraction in the glass phase provides higher glass transition temperature, higher N4 rate, and in combination with careful modulation of GeO2 mol fraction in the glass phase provides a unique approach to extending the Wt and St of glass ionomer cement without compromising (in fact enhancing) compression strength. The data presented in this work provide valuable information for the formulation of alternative glass ionomer cements for applications within and beyond the dental clinic, especially where conventional approaches to modulating working time and strength exhibit co

  1. The effects of glass ionomer and flowable composite liners on the fracture resistance of open-sandwich class II restorations.

    PubMed

    Güray Efes, Begüm; Yaman, Batu Can; Gümüştaş, Burak; Tıryakı, Murat

    2013-01-01

    This in vitro study aimed to investigate the effects of glass-ionomer and flowable composite liners on the fracture resistance of Class II amalgam and composite restorations. Group 1 cavities were restored with amalgam and Group 4 cavities with nanofill composite after the application of a dentin-bonding agent. For the remaining groups, light-cured-glass-ionomer liner was used in a gingival floor proximal box (Groups 2, 5) or flowable composite was used as a liner (Groups 3, 6), the remainder of the cavity was restored with amalgam (Groups 2, 3) or composite (Groups 5, 6). The restorations were loaded in compression to failure. The data was analyzed using Tukey's multiple comparison test. The fracture resistance was significantly higher (p<0.05) in Group 3 than in all other groups, except Group 2 (p>0.05). Flowable composite, glass-ionomer liners increased the fracture resistance of open-sandwich Class II amalgam restorations.

  2. Bond strength of resin-reinforced glass ionomer cements after enamel etching.

    PubMed

    Cortes, O; Garcia-Godoy, F; Boj, J R

    1993-12-01

    This study evaluated the shear bond strength of resin-reinforced glass ionomers to enamel etched or unetched. Human, non-carious extracted permanent molars stored in distilled water were used. Flat buccal and lingual enamel surfaces were ground wet on 600-grit silicon carbide paper. The teeth were then distributed at random into six groups of 5 teeth (10 surfaces) each: Group 1: Fuji II LC, no enamel etching; Group 2: Fuji II LC, enamel etched with 10% phosphoric acid for 10 seconds; Group 3: Dyract, no enamel etching; Group 4: Dyract, enamel etched with 10% phosphoric acid for 10 seconds; Group 5: Photac-Fil, no enamel etching; Group 6: Photac-Fil, enamel etched with 10% phosphoric acid for 10 seconds. Cylindrical samples of the glass ionomers were prepared in plastic molds and bonded to the enamel surface according to the manufacturers' instructions. All samples were placed in distilled water for 24 hours, and sheared with an Instron at a crosshead speed of 0.5 mm/minute. The results (in MPa) were: Group 1: 11.29 +/- 4.84; Group 2: 19.64 +/- 5.43; Group 3: 8.26 +/- 3.61; Group 4: 22.04 +/- 5.40; Group 5: 2.05 +/- 3.05; Group 6: 9.12 +/- 6.61. ANOVA and Student-Newman-Keuls procedure revealed that on etched enamel, Fuji II LC and Dyract had a significantly higher bond strength than all the other groups tested (P < 0.0001), but not significantly different between each other. With these two groups, cohesive failure within the material was recorded in all samples while in the unetched samples, all specimens displayed an adhesive failure (glass ionomer-enamel interface). All samples with Photac-Fil, with or without enamel etching had adhesive failures.

  3. Effect of Self-etching Adhesives on the Bond Strength of Glass-Ionomer Cements

    PubMed Central

    Jaberi Ansari, Zahra; Panahandeh, Narges; Tabatabaei Shafiei, Zahra Sadat; Akbarzadeh Baghban, Alireza

    2014-01-01

    Objective: Statement of Problem: Adequate bond strength between glass ionomer cements and composite resin is necessary for the success of the sandwich technique. Purpose of Study: This study assessed the micro-shear bond strength of composite resin to glass-ionomer cements (GIC) using self-etch adhesives with different pH values. Materials and Methods: One hundred specimens (6×4×2 mm) were made using Fuji II and Fuji II LC GICs and treated with different adhesives as follows: Group 1:Fuji II+ Adper Prompt L-Pop, Group-2: Fuji II+SE bond, Group-3: Fuji II + AdheSE, Group-4:Fuji II+ Protect bond, Group-5: Fuji II + Single bond, Group-6:Fuji II LC+ Adper Prompt LPop, Group-7: Fuji II LC+SE bond, Group-8:Fuji II LC+ AdheSE, Group-9: Fuji II LC+ Protect bond, and Group-10: Fuji II LC+ Single bond. Each group consisted of 10 specimens. A cylinder of Z100 composite resin was placed on each sample and light cured. After 24 hours of water storage (37°C), the specimens were subjected to micro-shear bond strength tests (0.5 mm/min). Data were analyzed using two-way ANOVA and Tukey’s test. Results: The mean micro-shear bond strength of groups 1–10 was 11.66±1.79, 16.50±1.85, 18.47±1.77, 13.95±1.77, 15.27±1.49, 15.14±0.90, 20.03±1.19, 17.48±3.00, 16.24±1.98 and 16.03±1.49 MPa, respectively. There were significant differences between groups 1 and 7 (P<0.05). No significant difference was observed between other groups (P>0.05). Fuji II LC showed higher bond strength than Fuji II (P<0.05). Conclusion: Type of self-etch adhesive had no significant effect on micro-shear bond strength of glass-ionomer to composite resin. Resin modified glass ionomer cement (RMGIC) exhibited higher bond strength than the conventional GIC. PMID:25628698

  4. Effects of cyclic stressing on attachment bond strength using glass ionomer cement and composite resin.

    PubMed

    Moseley, H C; Horrocks, E N; Pearson, G J; Davies, E H

    1995-02-01

    Bonded orthodontic brackets were subjected to cyclic loading in order to simulate the effect of occlusal forces. The subsequent effect on bond strength was determined. Stainless steel, mesh-based brackets were bonded to extracted teeth with either composite resin or glass ionomer cement. A jig was designed to subject each bracket to a preselected loading level and the 24-hour shear/peel bond strength of both stressed and unstressed brackets was subsequently measured. Cyclic loading brought about a comparative decrease in bond strength when using both types of material. The potential implications of selecting these different types of bonding material for clinical use are discussed.

  5. Influence of an alloy addition on the physical and clinical behaviour of glass ionomer cement

    NASA Astrophysics Data System (ADS)

    Abour, Mohamed Abour Bashir

    These in vitro studies compared the various properties of an experimental high powder liquid content glass ionomer cement (EXPT) with those of a metal addition GIC (Hi-Dense) and disperse phase amalgam (Dispersalloy). Bi-axial, four point flexural and compressive tests were used to evaluate strength. Six groups of ten specimens were constructed for each test for each material and allowed to set in an oven at 37°C for 60 minutes. Specimens were stored in distilled water at 37°C until testing at one day, one week, one, three, six months and year. It was found that the strength of Hi-Dense increased and then maintained over extended time, whereas the strength of EXPT showed a declined at 3 months. The bond strengths of the materials to both enamel and dentine were also evaluated. Ten groups of ten teeth, five for each surface for each glass ionomer materials, were prepared. Teeth were aligned leaving the enamel and dentine surfaces exposed. The mixed material was condensed into a cylinder placed on the appropriate surface. These specimens were also stored in distilled water at 37°C. It was found that Hi-Dense had a higher bond strength to enamel that increased with time. The bond strength to dentine was maintained over the test period. The erosion rate of the materials was evaluated using the lactic acid erosion test. Three groups of six specimens for each material were constructed and tested after one hour, one day and at six months. Each specimen was subjected to an impinging jet of lactic acid solution. The erosion rate was determined by weight loss and dimensional change. It was found that Hi-Dense had a high erosion resistance which was slightly better than the experimental material. The microleakage, around restorations prepared, using the glass ionomer materials, was evaluated after cyclical loading the restoration-tooth complex. It was found that there was less leakage around Hi-Dense than EXPT at both the cervical and occlusal margins. In a clinical

  6. Influence of the retention of antiseptic solution dyes on the translucence of glass-ionomer cements.

    PubMed

    Catirse, A B; Dinelli, W; Garcia, P P; Corona, S A

    2001-01-01

    Due to the great importance that antiseptic solutions have on the control and prevention of oral diseases and their influence on the translucence of esthetic restorative materials, the present study evaluated the effect of antiseptic solutions on the translucence of two glass-ionomer cements, Vidrion R and Chelon Fil, at eight time periods. Four antiseptic solutions were used: Listerine, Malvona, Flogoral and Plax. Vidrion R was less translucent than Chelon Fil. Translucence decreased with longer observation time and Malvona caused the lowest translucence.

  7. Dental repair material: a resin-modified glass-ionomer bioactive ionic resin-based composite.

    PubMed

    Croll, Theodore P; Berg, Joel H; Donly, Kevin J

    2015-01-01

    This report documents treatment and repair of three carious teeth that were restored with a new dental repair material that features the characteristics of both resin-modified glass-ionomer restorative cement (RMGI) and resin-based composite (RBC). The restorative products presented are reported by the manufacturer to be the first bioactive dental materials with an ionic resin matrix, a shock-absorbing resin component, and bioactive fillers that mimic the physical and chemical properties of natural teeth. The restorative material and base/liner, which feature three hardening mechanisms, could prove to be a notable advancement in the adhesive dentistry restorative materials continuum.

  8. Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability.

    PubMed

    Gomes, Filipa O; Pires, Ricardo A; Reis, Rui L

    2013-04-01

    Al-free glasses of general composition 0.340SiO2:0.300ZnO:(0.250-a-b)CaO:aSrO:bMgO:0.050Na2O:0.060P2O5 (a, b=0.000 or 0.125) were synthesized by melt quenching and their ability to form glass-ionomer cements was evaluated using poly(acrylic acid) and water. We evaluated the influence of the poly(acrylic acid) molecular weight and glass particle size in the cement mechanical performance. Higher compressive strength (25±5 MPa) and higher compressive elastic modulus (492±17 MPa) were achieved with a poly(acrylic acid) of 50 kDa and glass particle sizes between 63 and 125 μm. Cements prepared with glass formulation a=0.125 and b=0.000 were analyzed after immersion in simulated body fluid; they presented a surface morphology consistent with a calcium phosphate coating and a Ca/P ratio of 1.55 (similar to calcium-deficient hydroxyapatite). Addition of starch to the cement formulation induced partial degradability after 8 weeks of immersion in phosphate buffer saline containing α-amylase. Micro-computed tomography analysis revealed that the inclusion of starch increased the cement porosity from 35% to 42%. We were able to produce partially degradable Al-free glass-ionomer bone cements with mechanical performance, bioactivity and biodegradability suitable to be applied on non-load bearing sites and with the appropriate physical characteristics for osteointegration upon partial degradation. Zn release studies (concentrations between 413 μM and 887 μM) evidenced the necessity to tune the cement formulations to reduce the Zn concentration in the surrounding environment.

  9. Microleakage of glass-ionomer cement placed in association with non-setting calcium hydroxide.

    PubMed

    Mahmood, S A; Wood, D J; Boyle, E L; Jarad, F D; Youngson, C C

    2005-05-01

    The purpose of this investigation was to determine whether non-setting calcium hydroxide [Ca (OH)2] cement placed in the root canal system of premolar teeth would affect the subsequent microleakage of a glass-ionomer restoration (GIC). Following selection, 62 human premolar teeth extracted for orthodontic reasons were accessed and root canals prepared according to a standardized procedure. The specimens were then allocated randomly into two major groups each of 30 teeth. Two other teeth were used as a positive and a negative control. The control group was restored with glass-ionomer cement following drying of the canal and placement of a cotton wool pledget. The test group had all canals dressed with non-setting Ca(OH)2 and then was subdivided, one set (n = 22) being restored following conditioning of the access cavity margins, the other (n = 8) having the margins cleaned with a hand excavator. Samples were assessed for microleakage using a two-point scoring system (leakage or no leakage) in conjunction with a clearing technique using AgNO3. Using Fisher's exact test, a statistically significant difference was found between the control and test groups (P < 0.05) but there was no significant difference between the excavated and conditioned cavities (P=0.55). It is concluded that contamination of access cavity margins with Ca(OH)2 during medication of a root canal interferes with the bond of GIC, resulting in increased microleakage in vitro.

  10. Calcium polyphosphate as an additive to zinc-silicate glass ionomer cements.

    PubMed

    Valliant, Esther Mae; Gagnier, David; Dickey, Brett Thomas; Boyd, Daniel; Filiaggi, Mark Joseph

    2015-07-01

    Aluminum-free glass ionomer cements (GICs) are under development for orthopedic applications, but are limited by their insufficient handling properties. Here, the addition of calcium polyphosphate (CPP) was investigated as an additive to an experimental zinc-silicate glass ionomer cement. A 50% maximum increase in working time was observed with CPP addition, though this was not clinically significant due to the short working times of the starting zinc-silicate GIC. Surprisingly, CPP also improved the mechanical properties, especially the tensile strength which increased by ∼33% after 30 days in TRIS buffer solution upon CPP addition up to 37.5 wt%. This strengthening may have been due to the formation of ionic crosslinks between the polyphosphate chains and polyacrylic acid. Thus, CPP is a potential additive to future GIC compositions as it has been shown to improve handling and mechanical properties. In addition, CPP may stimulate new bone growth and provide the ability for drug delivery, which are desirable modifications for an orthopedic cement.

  11. Translationally controlled tumor protein supplemented chitosan modified glass ionomer cement promotes osteoblast proliferation and function.

    PubMed

    Sangsuwan, Jiraporn; Wanichpakorn, Supreya; Kedjarune-Leggat, Ureporn

    2015-09-01

    The objective of this study was to evaluate the effect of translationally controlled tumor protein (TCTP) supplemented in a novel glass ionomer cement (BIO-GIC) on normal human osteoblasts (NHost cells). BIO-GIC was a glass ionomer cement (GIC) modified by adding chitosan and albumin to promote the release of TCTP. NHost cells were seeded on specimens of GIC, GIC+TCTP, BIO-GIC and BIO-GIC+TCTP. Cell proliferation was determined by BrdU assay. It was found that BIO-GIC+TCTP had significantly higher proliferation of cells than other specimens. Bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN) gene expressions assessed by quantitative real time PCR and alkaline phosphatase (ALP) activity were used to determine cell differentiation. Bone cell function was investigated by calcium deposition using alizarin assay. Both BMP-2 and OPN gene expressions of cells cultured on specimens with added TCTP increased gradually up-regulation after day 1 and reached the highest on day 3 then down-regulation on day 7. The ALP activity of cells cultured on BIO-GIC+TCTP for 7 days and calcium content after 14 days were significantly higher than other groups. BIO-GIC+TCTP can promote osteoblast cells proliferation, differentiation and function.

  12. Chemical and structural characterization of glass ionomer cements indicated for atraumatic restorative treatment.

    PubMed

    Guedes, Orlando Aguirre; Borges, Álvaro Henrique; Bandeca, Matheus Coelho; Nakatani, Mariana Kyosen; de Araújo Estrela, Cyntia Rodrigues; de Alencar, Ana Helena Gonçalves; Estrela, Carlos

    2015-01-01

    Glass ionomer cements (GICs) are restorative materials, which clinical use has increased significantly during the last decade. The aim of the present study was to analyze the chemical constitution and surface morphology of four glass ionomer cements: Maxxion R, VitroFill, Vidrion R and Vitremer. Twelve polyethylene tubes with an internal diameter of 3 and 3 mm in length were prepared, filled and then transferred to a chamber with 95% relative humidity and a temperature of 37°C. The surface morphology of the tested materials was examined by scanning electron microscopy (SEM) and main components were investigated by energy-dispersive X-ray microanalysis (EDX). Scanning electron microscopy revealed irregular and rough external surface. Cracking was not observed. The main constituents were found to be aluminum, silicon, calcium, sodium and fluoride. Phosphorus, sulfur and barium were only observed in Vidrion R, while chlorine were only observed in Maxxion R. Elemental mapping of the outer surface revealed high concentration of aluminum and silicon. Significant irregularities on the surface of the tested materials were observed. The chemical constitution of all GIC was similar.

  13. Reactions in glass-ionomer cements: IV. Effect of chelating comonomers on setting behavior.

    PubMed

    Wilson, A D; Crisp, S; Ferner, A J

    1976-01-01

    The oscillating rheometer is a valuable instrument for studying the effects of additives on the setting behavior of a cement system. Using this instrument, it was found that certain chelating comonomers, the hydroxycarboxylic acids, could improve the setting characteristics of the glass-ionomer cement system when added to the PAA solution. The acid chelates probably assign the extraction of metal ions from the glass and also tend to hold them in solution, preventing premature ion binding of the polyanion chains. The effect is to increase the rate of hardening without reducing the working time, which may indeed by slightly increased. Tartaric acid, the most effective of the comonomers, can form a chelate bridge between aluminum atoms, and this metal complex probably acts as a flexible bridge structure linking polyanion chains. This mechanism offers some steric advantages over a simple salt bridge.

  14. Water Absorption and HEMA Release of Resin-Modified Glass-Ionomers

    PubMed Central

    Beriat, Nilufer Celebi; Nalbant, Dilek

    2009-01-01

    Objectives The aim of this study was to evaluate the water absorption and the amount of hydroxyethyl metacrylate (HEMA) level released from various resin modified glass ionomer cements. Methods Advance, Vitremer and Protec-Cem resin modified glass ionomer cements were used to evaluate the HEMA release. Ten specimens were fabricated from each cement in 10 x 1 mm height. Thirty specimens were immersed in glass containers filled with 20 ml deionized water. 1 ml solution was taken from the container at 10 minutes, 1 hour, 24 hour and 7 days intervals from each group and analyzed with high performance liquid chromatography (HPLC) machine and the results are presented in ppm. The data were subjected to Kruskal-Wallis, Mann-Whitney and Wilcoxon tests at a 0.05 significance level. Results At all time intervals Vitremer showed highest HEMA release ( 10 min: 54.2 ppm; 1 h: 86.8 ppm; 24 h: 93.4 ppm) (P=0.0001). At the end of 10 minutes and first hour, following Vitremer, HEMA release was highest for Protec-Cem (10 min: 14.8 ppm; 1 h: 23.6 ppm) and then Advance (10 min: 5.5 ppm; 1 h: 18.8 ppm) (P<.05). Water absorption tests were performed according to the specifications of ISO 4049. Water absorption was highest for Vitremer and lowest for the Protec-Cem and the difference among cement groups was significant (P<.005). Conclusions Vitremer showed the highest HEMA release and water absorption values and Protec-Cem showed the lowest values. HEMA release by time was significant for Advance cement. This release may be relevant both to the risk of adverse pulpal responses in patients and to the risk of allergy in patients and dental personnel. PMID:19826597

  15. An evaluation of commercial and experimental resin-modified glass-ionomer cements

    NASA Astrophysics Data System (ADS)

    Kanchanavasita, Widchaya

    Glass-ionomer cement (GIG) has become widely accepted as a restorative material due to its bonding ability and sustained release of fluoride. The cement is, however, sensitive to moisture imbalance and lacks toughness. Recently, resin-modified glass-ionomer cements (RMGIC) have been introduced. These materials contain monomeric species, such as 2-hydroxyethyl methacrylate (HEMA) in addition to the components of the conventional glass-ionomer cements. Disadvantages of RMGICs include a relatively high contraction and exotherm on polymerisation. HEMA is known to be cytotoxic, leading to problems of biocompatibility, and polyHEMA swells on exposure to water, leading to dimensional instability of the cements. Addressing these problems is important in the development of the RMGICs. Using alternative monomers to replace or reduce the amount of HEMA used in the current RMGIC formulations would be appropriate. This study was divided into two parts. Initially certain properties such as water sorption, micro-hardness, flexural strength and polymerisation exotherm of commercially available RMGICs were evaluated. Long-term storage of RMGICs in aqueous solutions resulted in their high water uptakes and solubilities and large volumetric expansions. However, the surface hardness and strengths of the restorative grade RMGICs were not affected on storage in distilled water. When the materials were immersed in artificial saliva, significantly higher water uptake were obtained; the equilibrium water uptake were not reached after 20 months. As a consequence, plastic behaviour and reduced surface hardness were observed. The RMGICs also produced high exotherm during polymerisation. The second part of the study investigated the use of an experimental resin as an alternative to HEMA. The experimental resin has the advantage of low toxicity to the pulp and relatively low polymerisation shrinkage. This study compared the polymerisations of the resin and HEMA, and of mixtures of these two

  16. Failure of resin-modified glass-ionomers subjected to shear loading.

    PubMed

    Sidhu, S K; Sherriff, M; Watson, T F

    1999-07-01

    The mechanism of bond failure of resin-modified glass-ionomers is unknown. This study examined the failure on shear loading at the dentine interface of these materials. Twenty-five teeth (embedded in acrylic blocks) were sectioned longitudinally to expose a flat dentine surface. Cylinders of materials were made by injecting into a tube placed on the dentine of each section surface. The materials used were Fuji Cap II and Fuji II LC (GC Corp., Japan), Vitremer (3M Dental Products, USA), Photac-Fil (original) and Photac-Fil* (new) (ESPE Dental-AG, Germany). After a week, a fluorescent dye was placed in the pulp chamber of each tooth and left for 3 h. The specimens were sectioned through the cylinders before both halves were tested in shear. The failure was observed using a confocal microscope, with video rate images (stored) digitally. The shear load at failure and locus of failure were recorded. All specimens had intact interfaces before testing, except the original Photac-Fil specimens which dislodged from their tooth surfaces even before testing, while being mounted on the device. An amorphous zone or absorption layer was noted at the dentine interface of 60% of Fuji II LC, 22% of Vitremer and all of the Photac-Fil* (new) specimens, but not in Fuji Cap II. Failure was cohesive in Fuji II LC, adhesive in Vitremer, cohesive/adhesive in Photac-Fil* (new) and cohesive in Fuji Cap II. In specimens with the absorption layer present, the failure was at the material/absorption layer interface, leaving it behind on the dentine surface. The mean stresses at failure (MPa) and standard deviations were 5.60, 2.46 (Fuji II LC); 4.82, 0.99 (Vitremer); 4.97, 2.10 MPa (Photac-Fil*); and 3.48, 1.06 (Fuji Cap II). All data were normally distributed as tested by the Shapiro-Francia test. One-way analysis of variance using exact inferential statistics indicated no significant difference between the mean failure stress for all the systems, p = 0.08. The mechanism of failure of resin

  17. Effects of porous-hydroxyapatite incorporated into glass-ionomer sealants.

    PubMed

    Shinonaga, Yukari; Arita, Kenji; Nishimura, Takako; Chiu, Szu-Yu; Chiu, Hsiu-Hui; Abe, Yoko; Sonomoto, Mie; Harada, Kyoko; Nagaoka, Noriyuki

    2015-01-01

    The purpose of the present study was to evaluate the mechanical and chemical properties of a novel glass ionomer cement for use as a pit and fissure sealant containing a porous hydroxyapatite, namely, apatite ionomer cement (AIC). Control sealant samples were used Fuji III (GIC-S). The experiment sealant samples (AIC-S) consisted of porous spherical hydroxyapatite (HApS) particles added at 28 wt% to GIC-S powder. The GIC-S and AIC-S samples were evaluated through mechanical strength measurements, scanning electron microscopy observations, energy dispersive X-ray spectroscopy analysis, fluoride ion release tests, and antibacterial tests. The flexural strength of the AIC-S was significantly higher than that of GIC-S for each period, 1 h, 24 h and 1 year. The fluoride release dose for AIC-S was consistently higher than that for GIC-S. In addition, the antibacterial properties of AIC-S were superior to those of GIC-S. The novel AIC-S may be a more suitable sealant material for pits and fissures with intact and/or infected enamel.

  18. Evaluation of the mechanical properties of dental adhesives and glass-ionomer cements.

    PubMed

    Magni, Elisa; Ferrari, Marco; Hickel, Reinhard; Ilie, Nicoleta

    2010-02-01

    Adhesives and lining/base materials should relieve the stresses concentrated at the tooth/restoration interface. The study aimed at comparing the mechanical properties of eight adhesives and six glass-ionomer cements (GICs). The adhesives were applied on dentin disks, whereas 2 mm x 3 mm x 2 mm GICs specimens were prepared in a teflon mold. Vicker's hardness (VH), elastic modulus (E), creep (Cr) and elastic work (We/Wtot) were measured with a micro hardness indenter. One-way ANOVA and Tukey's test were used to compare the mechanical properties within each materials' type and among the materials' classes. Enamel and dentin were used as references. Significant differences were detected within each materials' type and among the materials' classes and enamel and dentin. GICs were superior to adhesives in VH and E and showed a VH similar to dentin. GICs presented mechanical properties more similar to enamel and dentin than adhesives.

  19. Powder-liquid ratio and properties of two restorative glass ionomer cements.

    PubMed

    Zahra, Vivian N; Kohen, Sergio G; Macchi, Ricardo L

    2011-01-01

    Changes in the powder-liquid ratio of glass ionomer cements may affect some of its physical properties and acid erosion. The aim of this study was to evaluate the physical properties and acid erosion of two conventional restorative glass ionomer cements against ISO 9917-1:2007 standards after changing the powder-liquid ratio to an adequate consistency for luting indirect restorations. The methodology of ISO Specification 9917-1:2007 was applied to the powder-liquid ratio indicated by the manufacturer and to a modified ratio. Two restorative glass ionomer cements, ChemFil (Ch) (Dentsply) and lonofil Plus (IP) (Voco), were used to evaluate film thickness, compressive strength, net setting time and acid erosion. Thickness was measured three times with a digital micrometer (Digimatic Mitutoyo Corporation). Sample size was five for each cement or condition. Compressive strength (Instron 1011, crosshead speed of 1 mm/min) was evaluated after 24 h immersion in water at 37 degreesC. Sample size was five for each cement or condition. Setting time was evaluated for Ch and IP at 37 degreesC. Sample size was three for each cement or condition. Specimen moulds (30 x 30 x 5 mm) with a central perforation of 5 mm in diameter and 2 mm depth were usedfor acid erosion tests. Erosion depth was measured with a micrometer gauge with a precision of 0. 001 mm, before and after 24-hour immersion in a lactic acid-sodium lactate solution with pH 2.74 at 370C. Sample size wasfivefor each condition. Student's t test was performed with a level of significance ofp< O.05 for each material and condition tested. Arithmetic mean (Standard Deviation). Powder-liquid ratio according to manufacturers: film thickness (in pm): Ch 220 (40), IP: 382 (5); compressive strength (in MPa) at 24 hs: Ch 166.3 (16,6), IP: 100 (10); net setting time (in min.) at 370C: Ch 3.44 (0.3), IP: 5.26 (0.1) ; depth of acid erosion (in mm): Ch 0.15 (0.02), IP: 0.17 (0.02). Modified powder-liquid ratio: film thickness (in pm

  20. Reinforcing effect of a resin glass ionomer in the restoration of immature roots in vitro.

    PubMed

    Goldberg, Fernando; Kaplan, Andrea; Roitman, Marcela; Manfré, Susana; Picca, Mariana

    2002-04-01

    Fifty-six extracted maxillary central incisors were used for this study. The crown of each tooth was removed in order to obtain a standard length of 13 mm. Root canals were enlarged to simulate immature teeth after apexification. The apical 2 mm of the root canal was obturated with gutta-percha and AH26 sealer. The specimens were divided into two groups. Group A was unrestored and served as positive control. In group B, the canal walls were reinforced with a resin modified glass ionomer using a translucent curing post. All teeth were subjected to compressive force using an Instron testing machine until fracture occurred. Group B showed an increased resistance to fracture (456.02 +/- 172.47 N) compared with group A (263.46 +/- 98.00 N). The difference between groups was statistically significant (P < 0.005).

  1. Glass ionomer cement as an occlusive barrier in Class III furcation defect.

    PubMed

    Singhal, Rameshwari

    2011-01-01

    Predicting the prognosis of molars that have experienced furcation invasion, is often a frustrating experience to the dental clinician and disappointing report to the patient involved. Although multiple treatment modalities have been attempted to retain teeth with severe furcation invasion, clinical success has not been predictable. A case report involving the use of glass ionomer cement (GIC) as an occlusive barrier in the management of Class III furcation defect involving mandibular first molar is presented. A literature review on the subject matter was conducted using Medline, Google search engines, and manual library search. GIC restoration of Class III furcation invasion gives a satisfactory result. Surgical and nonsurgical treatment options are available for the management of the condition. GIC as an occlusive barrier in Class III furcation invasion is an economical and less invasive treatment option. It also makes home care easy for the patient.

  2. Apical sealing ability of a new glass ionomer root canal sealer.

    PubMed

    Goldberg, F; Artaza, L P; De Silvio, A

    1995-10-01

    This study compared the sealing ability of Ketac Endo with and without smear layer and Tubli Seal. Thirty upper central incisors and canines with straight canals were instrumented and randomly divided into three equal groups of 10. All teeth were obturated with laterally condensed gutta-percha. An additional group of five teeth with unobturated++ root canals served as positive controls. The sealers were Tubli Seal (group A), Ketac Endo (group B), and Ketac Endo preceded by the removal of the smear layer (group C). The teeth were immersed in India ink for 7 days, centrifuged for 5 min at 3000 rpm, cleared, and then examined under a light microscope at X 50 magnification. The mean value of ink penetration for group A was 0.14 mm, for group B 0.24 mm, and for group C 0.48 mm. No statistically significant differences were observed among groups (p > 0.05).

  3. N-vinylpyrrolidone modified glass-ionomer resins for improved dental restoratives

    NASA Astrophysics Data System (ADS)

    Xie, Dong

    The studies described in this dissertation focus on improvement of mechanical properties of current glass-ionomer cements. Thermal properties and microstructures of the cements were correlated with their mechanical strengths. The first study evaluated mechanical properties of selected commercial glass-ionomer cements and examined their microstructures. The results showed that resin-modified glass-ionomer cements (RM GICs) exhibited much higher flexural (FS) and diametral tensile strengths (DTS), compared to conventional GICs (C GICs). In addition, they exhibited comparable compressive strength (CS), relatively low microhardness and less wear resistance than C GICs. The C GICs exhibited brittle behavior, whereas the RM GICs underwent substantial plastic deformation in compression. The mechanical properties of the GICs were closely related to their microstructures. Factors such as the density of the microstructure, the integrity of the interface between the glass particles and polymer matrix, particle size and the number and size of voids have important roles in determining the mechanical properties. The second study evaluated thermal properties of these GICs. The results showed that the RM GICs exhibited higher thermal transition temperatures than those of the C GICs, thermal expansion coefficients of these cements were close to those of human teeth, and the indentation creep of the RM GICs were higher than the C GICs. The third study explored and evaluated the effect of a water-soluble monomer, N-vinylpyrrolidone (NVP), on the performance of current C GICs, indicating a significant improvement in both mechanical and working properties. The fourth study demonstrated the process of determining the optimal molar ratio of the NVP-containing copolymers, using design of experiment. The results showed that the optimal molar ratio for these copolymers was 7:1:3 for poly(acrylic acid-co-itaconic acid-co-N-vinylpyrrolidone), based on the FS test. The molar ratio of 8:2:1 (AA

  4. An assessment of encapsulated versus hand-mixed glass ionomer restoratives.

    PubMed

    Fleming, Garry J P; Zala, Dillon M

    2003-01-01

    Capsulation should enable uniform proportioning and mixing of dental restoratives so that functional properties of the cementitious mass will not be susceptible to clinically induced variability. Mechanical mixing induces a definite pore distribution determined by the viscosity of the system. This study evaluated the mixing process on the performance of a range of glass ionomer dental restoratives. Mean compressive fracture strengths and standard deviations and the associated Weibull Moduli (m) were determined for six glass ionomer restoratives that were either encapsulated or mixed by hand. Working characteristics were assessed using an oscillating rheometer. Scanning electron microscopy and image analysis was used to investigate the influence of the mixing method on pore distribution. The fracture strength data for some encapsulated restoratives resulted in significant differences compared with hand-mixing. Rotomix (compared with the Capmix mechanical agitator) resulted in increased Weibull moduli and 10% failure stress for the two restoratives that were investigated. Encapsulated restoratives that were prepared utilizing Rotomix or Capmix resulted in no significant differences for working characteristics; however, the setting time for the ChemFlex in Caps was extended compared with the hand-mixed ChemFlex. Not all restoratives had reduced porosity and improved performance following mixing with a Rotomix. This suggested that optimization of the initial viscosity of the system by manipulating the individual proportions of the constituents may not have been appropriate for all the restoratives investigated. The increased viscosity for hand-mixed ChemFlex prepared to a consistency of 3.8 g/ml compared with encapsulated ChemFlex in Caps prepared to a consistency of 3.5 g/ml was responsible for the reduced setting time.

  5. Effect of time on the flexural strength of glass ionomer and composite orthodontic adhesives.

    PubMed

    Azevedo, Christophe; Forestier, Jean-Paul; Tavernier, Bruno

    2005-01-01

    The purpose of this study was to compare the effects of time on the flexural strength of a resin-reinforced glass ionomer and a composite adhesive system, specifically at three time frames corresponding to the three stages of polymerization of Fuji Ortho LC. Ten rectangular specimens of each material were prepared in a metal mold (25 x 2 x 2 mm) and then stored at 37 degrees C and 100% humidity in an incubator. Six test groups were created, in which each specimen was fractured using a 3-point-bending test at a crosshead speed of 0.5 mm/min. The test results indicated that there were significant differences among the groups (P = .0001). The flexural strengths were significantly higher in the two groups (III and VI) that were fractured after seven days. This was true for both the Fuji Ortho LC (x = 77 +/- 6.1 MPa) and the Concise (x = 103.9 +/- 4.2 MPa). The flexural strength of the resin-modified glass ionomer adhesive was significantly lower than that for the composite whatever the time of fracture, 10 minutes, one hour, or seven days. The analysis of the strength-deformation curve of the group of Fuji Ortho LC, which was fractured within 10 minutes after setting (group I), showed viscoplastic behavior, whereas that of all the others groups showed elastic behavior. According to this study, clinicians must consider the mechanics of Fuji Ortho LC setting and, when this material is used, wait for at least one hour to ligate initial or repaired arch wires.

  6. Effects of enamel deproteinization on bracket bonding with conventional and resin-modified glass ionomer cements.

    PubMed

    Pereira, Tatiana Bahia Junqueira; Jansen, Wellington Corrêa; Pithon, Matheus Melo; Souki, Bernardo Quiroga; Tanaka, Orlando Motohiro; Oliveira, Dauro Douglas

    2013-08-01

    The objective of this study was to test the effects of enamel deproteinization on bracket bonding with conventional and resin-modified glass ionomer cement (RMGIC). One hundred premolars, extracted for orthodontic reasons, were divided into five groups (n = 20). Group 1 (control): enamel was etched with 35 per cent phosphoric acid, a thin layer of adhesive was applied, and the brackets were bonded with Transbond XT. Group 2: enamel was etched with 10 per cent polyacrylic acid and the brackets were bonded with conventional glass ionomer cement (GIC). Group 3: enamel was treated with 5.25 per cent NaOCl, etched with 10 per cent polyacrylic acid, and the brackets were bonded with conventional GIC. Group 4: enamel was etched with 10 per cent polyacrylic acid and the brackets were bonded with RMGIC. Group 5: enamel was treated with 5.25 per cent NaOCl, etched with 10 per cent polyacrylic acid, and the brackets were bonded with RMGIC. The teeth were stored in distilled water for 24 hours before they were submitted to shear testing. The results demonstrated that bond strength values of group 1 (17.08 ± 6.39 MPa) were significantly higher in comparison with the other groups. Groups 2 (3.43 ± 1.94 MPa) and 3 (3.92 ± 1.57 MPa) presented values below the average recommended in the literature. With regard to adhesive remnant index, the groups in which the enamel was treated with NaOCl showed a behaviour similar to that of the resin composite. It is conclude with enamel treatment with NaOCl increased bonding strength of brackets bonded with GIC and RMGIC, but increased bond strength was not statistically significant when compared to the untreated groups.

  7. Bonded amalgam restorations: using a glass-ionomer as an adhesive liner.

    PubMed

    Chen, R S; Liu, C C; Cheng, M R; Lin, C P

    2000-01-01

    Due to the lack of adhesiveness of amalgam to tooth structure, several adhesive cements have been utilized in bonded amalgam restorations. This study evaluated whether Fuji-II glass-ionomer cement is an appropriate adhesive liner in bonded amalgam restorations. Two adhesive composite luting cements (Amalgambond Plus and Panavia-21) and Copalite cavity liner were compared. The study was conducted in two phases. In the first part, we quantitatively assessed the tensile bond strengths as well as the failure modes of amalgam bonded to human dentin, using different adhesive liners. In each group, the flat dentin surface was treated with the assigned adhesive cement with a Teflon mold, followed by condensation of amalgam (Valiant PhD) onto it. Each group's mean tensile bond strengths were recorded and the statistical analysis by one way ANOVA showed no significant differences among groups (p > 0.05). Similar to the fracture patterns of the Amalgambond Plus and Panavia-21 groups, the failure mode of Fuji-II group was predominantly adhesive fracture. In the second part, the fracture strengths of amalgam restored teeth were measured using different adhesive liners. Standard MOD cavities were prepared in each tooth except for the intact tooth group. After treatment with the assigned adhesives or varnish, the cavities were restored with amalgam. Fracture strengths were then measured and the fractured interfaces examined using a scanning electron microscope. The fracture strengths of the intact tooth, Amalgambond Plus, Panavia-21 and Fuji-II groups were significantly higher than those of the Copalite and prepared cavity without restoration groups (p < 0.01). Accordingly, Fuji-II glass-ionomer cement, when used as an adhesive liner of amalgam restoration, may effectively reinforce the remaining tooth structure and, therefore, enhance the fracture resistance of the amalgam-restored teeth.

  8. Comparative Evaluation of Fluoride Recharge Ability of Conventional and Hydroxyapatite Modified Glass Ionomer Cement with Daily Low Fluoride Exposure- An Invitro Study

    PubMed Central

    Sudeep, S.; Sharma, Shalini; Mohanty, Susant

    2016-01-01

    Introduction Glass ionomer cement (GIC) has best suited paediatric dentists and is well recognised in the preventive era of dentistry. However its use is affected by its inferior mechanical properties. Hydroxyapatite whiskers have been lately introduced as strengthening additive without affecting its fluoride releasing property, but literature lacks data related to its effect on recharging ability of glass ionomer cement. Aim To evaluate and compare fluoride release from hydroxyapatite incorporated glass ionomer cement following recharging with low fluoride dentifrices. Materials and Methods An 8% Hydroxyapatite whiskers were added to Conventional Glass ionomer powder and 40 specimens each of conventional and Hydroxyapatite Glass ionomer cement were prepared using customised Teflon mould (5mm x 2mm) and were suspended in deionised water. Recharging of aged specimens was done using low fluoridated dentifrices containing 500ppm fluoride, twice daily and water was replenished every 24 hours. Fluoride release was analysed daily for 7 days and then weekly till 21 days using Sension 4 pH/ion selective electrode. Data thus obtained was statistically analysed by descriptive analysis followed by repeated measures ANOVA. Results Significant (p<0.01) increase in fluoride release was observed in both the materials following recharging regimen. Recharge pattern of hydroxyapatite glass ionomer was found to be similar to conventional glass ionomer cement. Conclusion Within the limitations of this study it can be evinced that fluoride rechargability and re-release remains unaffected by the addition of hydroxyapatite whiskers and hence proves to be more acceptable additive to glass ionomer cement to improve its mechanical properties widening its arena of usage by clinicians. PMID:27042586

  9. Therapeutic ion-releasing bioactive glass ionomer cements with improved mechanical strength and radiopacity

    NASA Astrophysics Data System (ADS)

    Fuchs, Maximilian; Gentleman, Eileen; Shahid, Saroash; Hill, Robert; Brauer, Delia

    2015-10-01

    Bioactive glasses (BG) are used to regenerate bone, as they degrade and release therapeutic ions. Glass ionomer cements (GIC) are used in dentistry, can be delivered by injection and set in situ by a reaction between an acid-degradable glass and a polymeric acid. Our aim was to combine the advantages of BG and GIC, and we investigated the use of alkali-free BG (SiO2-CaO-CaF2-MgO) with 0 to 50% of calcium replaced by strontium, as the beneficial effects of strontium on bone formation are well documented. When mixing BG and poly(vinyl phosphonic-co-acrylic acid), ions were released fast (up to 90% within 15 minutes at pH 1), which resulted in GIC setting, as followed by infrared spectroscopy. GIC mixed well and set to hard cements (compressive strength up to 35 MPa), staying hard when in contact with aqueous solution. This is in contrast to GIC prepared with poly(acrylic acid), which were shown previously to become soft in contact with water. Strontium release from GIC increased linearly with strontium for calcium substitution, allowing for tailoring of strontium release depending on clinical requirements. Furthermore, strontium substitution increased GIC radiopacity. GIC passed ISO10993 cytotoxicity test, making them promising candidates for use as injectable bone cements.

  10. Comparative Evaluation of Shear Bond Strength and Fluoride Release of Conventional Glass Ionomer with 1% Ethanolic Extract of Propolis Incorporated Glass Ionomer Cement –Invitro Study

    PubMed Central

    Prabhakar, Attiguppe Ramashetty; Basappa, Nadig

    2016-01-01

    Introduction Atraumatic restorative treatment is a minimal intervention approach which involves manual removal of caries followed by restoration using adhesive restorative material. Due to incomplete manual caries excavation, there is a high chance of secondary caries under the restoration. Hence, many antibacterial agents have been incorporated in cement to enhance their antibacterial effect. Propolis is one of the natural medicines that has highlighted application in dentistry. Aim The current study evaluated the shear bond strength and fluoride release of Glass Ionomer Cement (GIC) combined with 1% Ethanolic Extract of Propolis (EEP). The research hypothesis was that the incorporation of 1% EEP in GIC has an effect on shear bond strength and fluoride release. Materials and Methods A study was conducted among two groups. Group A conventional GIC (control), Group B GIC incorporated with 1% EEP (experimental). Shear bond strength: Thirty samples were prepared. Dentinal surface was restored and bond strength was assessed using a universal testing machine. Fluoride release: Thirty samples were prepared and stored in distilled water at a constant temperature until the time of measurement. The fluoride release was assessed by ion selective electrode after 1st day and 7th day. Data obtained by shear bond strength analysis was subjected to statistical analysis using an unpaired t-test and the data obtained by the fluoride release analysis was subjected to an unpaired t-test and paired t-test. Results Result showed that there was no statistically significant difference in shear bond strength between the groups (p-value 0.77). A statistically significant difference was noticed in fluoride release among the groups after 1st and 7th day (p-0.001). However, the release was lesser in both the groups after the 1st day. Conclusion A 1% EEP incorporated GIC enhanced the fluoride release without causing a significant effect on shear bond strength of GIC. PMID:27437368

  11. Compressive strength and setting time determination of glass-ionomer cements incorporated with cetylpyridinium chloride and benzalkonium chloride.

    PubMed

    Dimkov, A; Nicholson, W J; Gjorgievska, E; Booth, S

    2012-01-01

    Because of the relatively frequent occurrence of recurrent caries after a restorative treatment, and because of the huge number of cariogenic microorganisms present in the oral cavity, which present a potential risk factor regarding the development of new carious lesions, attention has increasingly been directed towards the therapeutic antimicrobial effects of restorative materials. The glass ionomer cements distinguish themselves as the most acceptable restorative materials possessing the positive characteristics of fluorine in the processes of remineralisation and antimicrobial action. In addition to the release of fluoride ions, GICs can potentially be used as templates for the release of other active antimicrobial components. The addition of antimicrobial compounds in the glass ionomer cements and analysis of their physical characteristics are very important especially for use in the posterior region of milk teeth. The aim of this study was to analyse the physical characteristics of ChemFlex and Fuji IX, conventional glass ionomer cements incorporated with the antimicrobial components Cetylpyridinium Chloride and Benzalkonium Chloride, through measurements of their setting times, and determination of their compressive strengths. Five samples of each glass ionomer with no antimicrobial compounds added were prepared--to serve as a control group; and collections of five samples of each cement with different concentrations of Cetylpyridinium Chloride and Benzalkonium Chloride--1%, 2% and 3%--added to them were also prepared--a total of 60 samples. The results of the analysis point out that it is possible to incorporate these antimicrobial agents in conventional GICs, and this is especially true when the added amount of the antimicrobial agents is 1%.

  12. Effect of mixing process on microleakage of glass ionomer cements used in atraumatic restorative treatment on primary molars.

    PubMed

    Ferreira, Fernanda de Morais; do Vale, Miriam Pimenta Parreira; Jansen, Wellington Corrêa; Paiva, Saul Martins; Pordeus, Isabela Almeida

    2007-01-01

    Aiming to assess the effect of mixing process on microleakage, 40 primary molars were filled with encapsulated glass ionomer cements (GICs) (Vidrion, RCaps and Fuji, IXGPFAST) or with GICs stored in bottles (Vidrion, R and Fuji, IX). Dye penetration was assessed using scores. Encapsulation and mechanical mixing have reduced significantly marginal microleakage levels in class II restorations performed with conventional GICs if compared to the values obtained by their bottled correspondents (p=0.000).

  13. Restoration of endodontically treated anterior teeth: an evaluation of coronal microleakage of glass ionomer and composite resin materials.

    PubMed

    Diaz-Arnold, A M; Wilcox, L R

    1990-12-01

    A glass ionomer material was evaluated for coronal microleakage in permanent lingual access restorations of endodontically treated anterior teeth. The material was tested as a restoration, placed over a zinc oxide-eugenol base, and as a base with an acid-etched composite resin veneer and a dentinal bonding agent. Restored teeth were thermocycled, immersed in silver nitrate, developed, and sectioned to assess microleakage. Significant coronal leakage was observed with all materials used.

  14. Effect of Nanoclay Dispersion on the Properties of a Commercial Glass Ionomer Cement

    PubMed Central

    Fareed, Muhammad A.; Stamboulis, Artemis

    2014-01-01

    Objective. The reinforcement effect of polymer-grade montmorillonite (PGV and PGN nanoclay) on Fuji-IX glass ionomer cement was investigated. Materials and Method. PGV and PGV nanoclays (2.0 wt%) were dispersed in the liquid portion of Fuji-IX. Fourier-transform infrared (FTIR) spectroscopy and gel permeation chromatography (GPC) were used to quantify acid-base reaction and the liquid portion of GIC. The mechanical properties (CS, DTS, FS, and Ef) of cements (n = 20) were measured at 1 hour, 1 day, and 1 month. The microstructure was examined by cryo-SEM and TEM. Results. FTIR shows that the setting reaction involves the neutralisation of PAA by the glass powder which was linked with the formation of calcium and aluminium salt-complexes. The experimental GICs (C-V and C-N) exhibited mechanical properties in compliance to ISO standard requirement have higher values than Fuji-IX cement. There was no significant correlation of mechanical properties was found between C-V and C-N. The average Mw of Fuji-IX was 15,700 and the refractive index chromatogram peak area was 33,800. TEM observation confirmed that nanoclays were mostly exfoliated and dispersed in the matrix of GIC. Conclusion. The reinforcement of nanoclays in GICs may potentially produce cements with better mechanical properties without compromising the nature of polyacid neutralisation. PMID:25210518

  15. The incorporation of nanoparticles into conventional glass-ionomer dental restorative cements.

    PubMed

    Gjorgievska, Elizabeta; Van Tendeloo, Gustaaf; Nicholson, John W; Coleman, Nichola J; Slipper, Ian J; Booth, Samantha

    2015-04-01

    Conventional glass-ionomer cements (GICs) are popular restorative materials, but their use is limited by their relatively low mechanical strength. This paper reports an attempt to improve these materials by incorporation of 10 wt% of three different types of nanoparticles, aluminum oxide, zirconium oxide, and titanium dioxide, into two commercial GICs (ChemFil® Rock and EQUIA™ Fil). The results indicate that the nanoparticles readily dispersed into the cement matrix by hand mixing and reduced the porosity of set cements by filling the empty spaces between the glass particles. Both cements showed no significant difference in compressive strength with added alumina, and ChemFil® Rock also showed no significant difference with zirconia. By contrast, ChemFil® Rock showed significantly higher compressive strength with added titania, and EQUIA™ Fil showed significantly higher compressive strength with both zirconia and titania. Fewer air voids were observed in all nanoparticle-containing cements and this, in turn, reduced the development of cracks within the matrix of the cements. These changes in microstructure provide a likely reason for the observed increases in compressive strength, and overall the addition of nanoparticles appears to be a promising strategy for improving the physical properties of GICs.

  16. An evaluation of microleakage of various glass ionomer based restorative materials in deciduous and permanent teeth: An in vitro study

    PubMed Central

    Singla, Teena; Pandit, I.K.; Srivastava, Nikhil; Gugnani, Neeraj; Gupta, Monika

    2011-01-01

    Aim To evaluate the microleakage of recently available glass ionomer based restorative materials (GC Fuji IX GP, GC Fuji VII, and Dyract) and compare their microleakage with the previously existing glass ionomer restorative materials (GC Fuji II LC) in primary and permanent teeth. Method One hundred and fifty (75 + 75) non-carious deciduous and permanent teeth were restored with glass ionomer based restorative materials after making class I cavities. Samples were subjected to thermocycling after storing in distilled water for 24 h. Two coats of nail polish were applied 1 mm short of restorative margins and samples sectioned buccolingually after storing in methylene blue dye for 24 h. Microleakage was assessed using stereomicroscope. Result Significant differences (P < 0.05) were found when inter group comparisons were done. Except when GC Fuji VII (Group III) was compared with GC Fuji II LC (Group II) and Dyract (Group IV), non-significant differences (P > 0.05) were observed. It was found that there was no statistically significant difference when the means of microleakage of primary teeth were compared with those of permanent teeth. Conclusions GC Fuji IX GP showed maximum microleakage and GC Fuji VII showed least microleakage. PMID:23960526

  17. A Twofold Comparison between Dual Cure Resin Modified Cement and Glass Ionomer Cement for Orthodontic Band Cementation

    PubMed Central

    Attar, Hanaa El; Elhiny, Omnia; Salem, Ghada; Abdelrahman, Ahmed; Attia, Mazen

    2016-01-01

    AIM: To test the solubility of dual cure resin modified resin cement in a food simulating solution and the shear bond strength compared to conventional Glass ionomer cement. MATERIALS AND METHOD: The materials tested were self-adhesive dual cure resin modified cement and Glass Ionomer (GIC). Twenty Teflon moulds were divided into two groups of tens. The first group was injected and packed with the modified resin cement, the second group was packed with GIC. To test the solubility, each mould was weighed before and after being placed in an analytical reagent for 30 days. The solubility was measured as the difference between the initial and final drying mass. To measure the Shear bond strength, 20 freshly extracted wisdom teeth were equally divided into two groups and embedded in self-cure acrylic resin. Four mm sections of stainless steel bands were cemented to the exposed buccal surfaces of teeth under a constant load of 500 g. Shear bond strength was measured using a computer controlled materials testing machine and the load required to deband the samples was recorded in Newtons. RESULTS: GIC showed significantly higher mean weight loss and an insignificant lower Shear bond strength, compared to dual cure resin Cement. CONCLUSION: It was found that dual cure resin modified cement was less soluble than glass ionomer cement and of comparable bond strength rendering it more useful clinically for orthodontic band cementation. PMID:28028417

  18. Fluoride release and uptake by aged resin-modified glass ionomers and a polyacid-modified resin composite.

    PubMed

    Ylp, H K; Smales, R J

    1999-08-01

    Little has been reported of the relationship of fluoride release and weight loss, and the effects of use of different fluoride agents on restorations, for the new generation of glass ionomer cements. The objectives of this study were to compare fluoride release of fresh and aged specimens of a polyacid-modified resin composite (Dyract), and of three resin-modified glass ionomer cements (Fuji II LC, Photac-Fil, Vitremer); and to correlate fluoride release and weight loss of aged specimens after recharging with three different fluoride agents. All materials showed high initial fluoride release immediately after uptake when using the agents. However, the levels of fluoride release dropped rapidly soon afterwards. Although initial fluoride release was significantly different between Dyract and the three resin-modified glass ionomers, when different fluoride agents were used on aged specimens after recharging, no significant differences were found after the first few hours. Linear regression analyses also showed no correlation between cumulative fluoride release and weight loss. Possible beneficial oral health effects may only be expected by frequent exposure of these materials to fluoride agents.

  19. Effects of incorporation of HA/ZrO(2) into glass ionomer cement (GIC).

    PubMed

    Gu, Y W; Yap, A U J; Cheang, P; Khor, K A

    2005-03-01

    Glass ionomer cements (GICs) are a class of bioactive cements that bond directly to bone. In this paper, a new bioactive hydroxyapatite (HA)/zirconia (ZrO(2))-filled GIC composite was developed to improve the biocompatibility and bioactivity of the GICs with the surrounding bone and connective tissues. Nano-sized HA/30 wt% ZrO(2) powders were heat treated at 700 degrees Celsius and 800 degrees Celsius for 3 h to elucidate the influence of the crystallinity of composite powders on the performance of HA/ZrO(2)-GICs. The effects of different volume percentages of HA/ZrO(2) powders (4, 12, 28 and 40 vol%) substituted within GICs were investigated based on their microhardness, compressive strength and diametral tensile strength. The HA/ZrO(2)-GICs composite was soaked in distilled water for 1 day and 1 week before subjecting the samples to mechanical testing. Results showed that the glass and HA/ZrO(2) particles were distributed uniformly in the GIC matrix. The substitution of highly crystalline HA/ZrO(2) improved the mechanical properties of the HA/ZrO(2)-GICs due to the slow resorption rate for highly crystalline powders in distilled water. The mechanical properties of HA/ZrO(2)-GICs increased with increasing soak time due to the continuous formation of aluminium salt bridges, which improved the final strength of the cements. The compositions 4 and 12 vol% HA/ZrO(2)-GICs exhibited superior mechanical properties than the original GICs. The mechanical properties of HA/ZrO(2)-GICs were found to be much better than those of HA-GICs because ZrO(2) has the attributes of high strength, high modulus, and is significantly harder than glass and HA particles. Furthermore, ZrO(2) does not dissolve with increasing soaking time.

  20. Characteristics of glass ionomer cements composed of glass powders in CaO-SrO-ZnO-SiO₂ system prepared by two different synthetic routes.

    PubMed

    Kim, Ill Yong; Ohtsuki, Chikara; Coughlan, Aisling; Placek, Lana; Wren, Anthony W; Towler, Mark R

    2013-12-01

    Glass ionomer cements (GICs) are composed of an acid degradable glass, polyacrylic acid and water. Sol-gel processing to prepare the glass phase has certain advantages, such as the ability to employ lower synthesis temperatures than melt quenching and glasses that are reported to have higher purity. A previous study reported the effects of glass synthesis route on GIC fabrication. However, in that study, the sol-gel derived glass exhibited a reduced concentration of cations. This study investigates increasing the cation content of a sol-gel derived glass, 12CaO.4SrO.36ZnO.48SiO2 (molar ratio) by heating before aging to reduce dissolution of cations. This glass was prepared by both sol-gel and melt-quenched routes. GICs were subsequently prepared using both glasses. The resultant cement based on the sol-gel derived glass had a shorter working time than the cement based on the melt-quenched one. Contrary to this, setting time was considerably longer for the cement based on the sol-gel derived glass than for the cement based on the melt-quenched one. The cements based on the sol-gel derived glass were stronger in both compression and biaxial flexure than the cements prepared from the melt-quenched glass. The differences in setting and mechanical properties were associated with both cation content in the glass phase and the different surface area of the resultant cements.

  1. Conventional glass ionomers as posterior restorations. A status report for the American Journal of Dentistry.

    PubMed

    Naasan, M A; Watson, T F

    1998-02-01

    The search for a material to replace amalgam continues as a major quest in materials science. Resin composites may offer one solution but an alternative class of material, the glass ionomer cements (GICs) may have some potential for fulfilling this role. GICs were first introduced to the dental profession in 1976, and have now become an accepted part of the dental armamentarium, especially for use in low load bearing situations. They possess a low coefficient of thermal expansion similar to that of tooth structure, physicochemical bonding to both enamel and dentin, and the release of fluoride ions into the adjacent tooth tissue. These properties help to reduce marginal leakage and may contribute to a reduced incidence of recurrent decay in the restored tooth. Fluoride released into the ambient fluids has a caries-preventive effect in neighboring teeth by enhancing remineralization and inhibiting demineralization of the dental hard tissues. The main criticisms of the GICs are their brittleness, poor surface polish, porosity and surface wear. To overcome some of these deficiencies, considerable attention has been directed at improving their physical properties, especially with the addition of metal powders, the metal-modified GICs. Different metal powders have been tried, including alloys of silver and tin, pure silver, gold, titanium, palladium and stainless steel. There is conflicting data as to whether or not these materials are sufficiently strong for use in high stress restorations, especially their potential use as replacement materials for amalgam fillings.

  2. Preparation and evaluation of an experimental luting glass ionomer cement to be used in dentistry.

    PubMed

    Bertolini, M J; Zaghete, M A; Gimenes, R; Padovani, G C; Cruz, C A S

    2009-09-01

    The aim of this paper is to compare the fluoride-releasing and mechanical properties of an experimental luting glass ionomer cement, which has a modified composition and a commercial luting cement. The experimental powder was obtained by sol-gel process and then, it was used to prepare the experimental cements. The properties of cement pastes, such as setting time and working time, microhardness and diametral tensile strength were determined. Fluoride release from GICs was evaluated at time intervals of 1, 7, 14, 21 and 28 days in deionized water. Atomic force microscopy (AFM) analyses showed that the surface of the experimental cements is more homogeneous than commercial GICs. The mechanical properties and the measure of liberation of fluoride of the two cements were influenced by ratio powder:liquid and chemical composition of the precursor powders. Experimental cements released less fluoride than commercial cements. However, this liberation was more constant during the analyzed period. Thus, the results obtained in this study indicated that the composition of the experimental powder modified by the niobium can lead the formation of the polysalt matrix with good mechanical properties. In other words, we can say that experimental powder offered considerable promise for exploitation in dental field.

  3. Surface hardness properties of resin-modified glass ionomer cements and polyacid-modified composite resins.

    PubMed

    Bayindir, Yusuf Ziya; Yildiz, Mehmet

    2004-11-15

    In this study the top and bottom surface hardness of two polyacid-modified composite resins (PMCRs), one resin-modified glass ionomer cement (RMGIC), and one composite resin were evaluated. The affect of water storage on their hardness was also investigated. The study was conducted using four different groups, each having five specimens obtained from fiberglass die molds with a diameter of 5 mm and a height of 2 mm. Measurements were made on the top and bottom surface of each specimen and recorded after 24 hours and again at 60 days. All tested materials showed different hardness values, and the values of top surfaces of the specimens were found to be higher than the bottom surface in all test groups. There was no statistical difference in the Vickers hardness (HV) values when the test specimens were kept in water storage. In conclusion Hytac displayed microhardness values higher than Vitremer and Dyract. We found the order of HV values to be Surfil > Hytac > Dyract > Vitremer, respectively. Vitremer presented the lowest microhardness level and Surfil the highest.

  4. Effects of adding silica particles on certain properties of resin-modified glass-ionomer cement

    PubMed Central

    Felemban, Nayef H.; Ebrahim, Mohamed I.

    2016-01-01

    Objective: This study was conducted to evaluate the effect of incorporation of silica particles with different concentrations on some properties of resin-modified glass ionomer cement (RMGIC): Microleakage, compressive strength, tensile strength, water sorption, and solubility. Materials and Methods: Silica particle was incorporated into RMGIC powder to study its effects, one type of RMGIC (Type II visible light-cured) and three concentrations of silica particles (0.06, 0.08, and 0.1% weight) were used. One hundred and twenty specimens were fabricated for measuring microleakage, compressive strength, tensile strength, water sorption, and solubility. Statistical Analysis: One-way analysis of variance and Tukey's tests were used for measuring significance between means where P ≤ 0.05. Results: RMGIC specimens without any additives showed significantly highest microleakage and lowest compressive and tensile strengths. Conclusion: Silica particles added to RMGIC have the potential as a reliable restorative material with increased compressive strength, tensile strength, and water sorption but decreased microleakage and water solubility. PMID:27095901

  5. Curing depth of a resin-modified glass ionomer and two resin-based luting agents.

    PubMed

    Sigemori, Ricardo Massao; Reis, André Figueiredo; Giannini, Marcelo; Paulillo, Luís Alexandre M S

    2005-01-01

    The degree of conversion of resin-based luting agents used for retention of prefabricated posts has been questioned due to the difficulty of light penetration into the resin-filled root canal. This study evaluated the depth of cure of a resin-modified glass ionomer cement (Rely X--3M ESPE) and two resin-based luting agents (Rely X ARC--3M ESPE and Enforce-Dentsply). Twenty-four 14x2x2mm3 specimens were prepared in a Teflon split mold with the three luting agents (n=8). After preparation, the specimens were stored at 37 degrees C in a dark box for 24 hours prior to microhardness testing. Measurements of Knoop hardness were performed at three different depths: superficial, medium and deep thirds. The results (KHN) were statistically analyzed by repeated measures ANOVA and Tukey test (0.05), which showed that resin-based luting agents presented the highest Knoop hardness values within the superficial third. Within the medium third, there were no significant differences among luting materials. However, within the deep third, Rely X presented the highest values. KHN values of resin-based luting agents decreased remarkably as depth increased.

  6. Effectiveness of surface protection of resin modified glass ionomer cements evaluated spectrophotometrically.

    PubMed

    Cefaly, D F; Seabra, B G; Tapety, C M; Taga, E M; Valera, F; Navarro, M F

    2001-01-01

    The effectiveness of four surface protectors for resin-modified glass ionomer cements was evaluated by spectrophotometrically determining dye uptake. Ninety specimens, 3.0 mm in diameter and 1.0 mm in height, were made with Photac-Fil, Fuji II LC and Vitremer and divided into six groups for each material. Positive and negative controls were not protected while experimental specimens were protected with proprietary glaze, nail varnish, flowable resin and glaze. The discs were immersed in 0.1% methylene blue solution for 10 minutes after mixing, except for those negative control specimens that were immersed in deionized-water. After 24 hours, the specimens were washed and the protectors trimmed with Sof-Lex discs. The specimens were then removed from the matrixes and individually placed in 1.5 mL of 65% nitric acid for five hours. The absorbance was determined spectrophotometrically at 590 nm. Dye uptake was expressed in microgram dye/specimen. The data were analyzed by two-way ANOVA and Tukey-Kramer tests. All surface protectors tested were effective. For Fuji II LC and Vitremer no differences were observed among tested protections. For Photac-Fil, nail varnish showed better performance than the proprietary glaze.

  7. Surface texture of resin-modified glass ionomer cements: effects of finishing/polishing time.

    PubMed

    Yap, A U J; Ong, S B; Yap, W Y; Tan, W S; Yeo, J C

    2002-01-01

    This study compared the surface texture of resin-modified glass ionomer cements after immediate and delayed finishing with different finishing/polishing systems. Class V preparations were made on the buccal and lingual/palatal surfaces of 64 freshly extracted teeth. The cavities on each tooth were restored with Fuji II LC (GC) and Photac-Fil Quick (3M-ESPE) according to manufacturers' instructions. Immediately after light-polymerization, gross finishing was done with 8-fluted tungsten carbide burs. The teeth were then randomly divided into four groups of 16 teeth. Half of the teeth in each group were finished immediately, while the remaining half were finished after one-week storage in distilled water at 37 degrees C. The following finishing/polishing systems were employed: (a) Robot Carbides; (b) Super-Snap system; (c) OneGloss and (d) CompoSite Polishers. The mean surface roughness (microm; n=8) in vertical (RaV) and horizontal (RaH) axis was measured using a profilometer. Data was subjected to ANOVA/Scheffe's tests and Independent Samples t-test at significance level 0.05. Ra values were generally lower in both vertical and horizontal axis with delayed finishing/polishing. Although significant differences in RaV and RaH values were observed among several systems with immediate finishing/polishing, only one (Fuji II LC: RaH - Super-Snap < Robot Carbides) was observed with delayed finishing.

  8. Dental glass ionomer cement reinforced by cellulose microfibers and cellulose nanocrystals.

    PubMed

    Silva, Rafael M; Pereira, Fabiano V; Mota, Felipe A P; Watanabe, Evandro; Soares, Suelleng M C S; Santos, Maria Helena

    2016-01-01

    The aim of this work was to evaluate if the addition of cellulose microfibers (CmF) or cellulose nanocrystals (CNC) would improve the mechanical properties of a commercial dental glass ionomer cement (GIC). Different amounts of CmF and CNC were previously prepared and then added to reinforce the GIC matrix while it was being manipulated. Test specimens with various concentrations of CmF or CNC in their total masses were fabricated and submitted to mechanical tests (to evaluate their compressive and diametral tensile strength,modulus, surface microhardness and wear resistance) and characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The incorporation of CmF in the GIC matrix did not greatly improve the mechanical properties of GIC. However, the addition of a small amount of CNC in the GIC led to significant improvements in all of the mechanical properties evaluated: compressive strength (increased up to 110% compared with the control group), elastic modulus increased by 161%, diametral tensile strength increased by 53%, and the mass loss decreased from 10.95 to 3.87%. Because the composites presented a considerable increase in mechanical properties, the modification of the conventional GIC with CNC can represent a new and promising dental restorative material.

  9. Comparative evaluation of microleakage of three restorative glass ionomer cements: An in vitro study

    PubMed Central

    Diwanji, Amish; Dhar, Vineet; Arora, Ruchi; Madhusudan, A.; Rathore, Ambika Singh

    2014-01-01

    Purpose: The aim of this study was to compare the microleakage of glass ionomers (conventional and resin modified) with that of recently introduced nanoionomers. Materials and Methods: Standardized class I and class V cavities were prepared on 120 young permanent teeth. Samples were equally divided into group I (class I restorations) and group II (class V restorations), and further divided into subgroups. The subgroups were restored with Fuji IX, Fuji II LC, and newly introduced Ketac™ N 100 (KN 100). Samples were thermocycled and submerged in Acridine dye for 24 h. Samples were sectioned to view under fluorescent microscope and marginal leakage was evaluated by Chi-square and Kruskal — Wallis test. Results: Fuji IX showed the maximum leakage, followed by LC II and the least was observed in KN 100. In class I restorations, there was significant difference while comparing Fuji IX with Fuji LC II and KN 100 and nonsignificant difference between LC II and KN100. In class V restorations, Fuji IX and KN100, KN 100 and LC II showed significant difference. Fuji IX and LC II showed nonsignificant difference. Conclusion: Within the limitations of this study, Fuji IX showed the maximum microleakage. KN 100 showed minimum leakage, better sealing ability, and was more consistent. PMID:25097418

  10. A Comparative Evaluation of Sorption, Solubility, and Compressive Strength of Three Different Glass Ionomer Cements in Artificial Saliva: An in vitro Study

    PubMed Central

    Bhatia, Hind P; Sood, Shveta; Sharma, Naresh

    2017-01-01

    Aim To evaluate and compare the sorption, solubility, and compressive strength of three different glass ionomer cements in artificial saliva - type IX glass ionomer cement, silver-reinforced glass ionomer cement, and zirconia-reinforced glass ionomer cement, so as to determine the material of choice for stress-bearing areas. Materials and methods A total of 90 cylindrical specimens (4 mm diameter and 6 mm height) were prepared for each material following the manufacturer’s instructions. After subjecting the specimens to thermocycling, 45 specimens were immersed in artificial saliva for 24 hours for compressive strength testing under a universal testing machine, and the other 45 were evaluated for sorption and solubility, by first weighing them by a precision weighing scale (W1), then immersing them in artificial saliva for 28 days and weighing them (W2), and finally dehydrating in an oven for 24 hours and weighing them (W3). Results Group III (zirconomer) shows the highest compressive strength followed by group II (Miracle Mix) and least compressive strength is seen in group I (glass ionomer cement type IX-Extra) with statistically significant differences between the groups. The sorption and solubility values in artificial saliva were highest for glass ionomer cement type IX - Extra-GC (group I) followed by zirconomer-Shofu (group III), and the least value was seen for Miracle Mix-GC (group II). Conclusion Zirconia-reinforced glass ionomer cement is a promising dental material and can be used as a restoration in stress-bearing areas due to its high strength and low solubility and sorption rate. It may be a substitute for silver-reinforced glass ionomer cement due to the added advantage of esthetics. Clinical significance This study provides vital information to pediatric dental surgeons on relatively new restorative materials as physical and mechanical properties of the new material are compared with conventional materials to determine the best suited material in

  11. Repairability of three resin-modified glass-ionomer restorative materials.

    PubMed

    Shaffer, R A; Charlton, D G; Hermesch, C B

    1998-01-01

    The purpose of this study was to evaluate the repair shear bond strengths of three resin-modified glass-ionomer restorative materials repaired at two different times. Thirty specimens of Fuji II LC, Vitremer, and Photac-Fil were prepared in cavities (2 mm x 7 mm) cut into acrylic resin cylinders. After the initial fill, half of the specimens were repaired 5 minutes later and half 1 week later. The specimens were stored in 37 degrees C distilled water when not being repaired or tested. Repairs were made without any surface preparation of the initial fill. Each specimen was mixed according to the manufacturer's directions, placed in the preparation in 1-mm increments and photocured for 40 seconds. The last increment was covered with a plastic strip and a glass slide before curing to create a smooth surface. Repairs were accomplished by drying the specimen for 10 seconds, then adding the new material to the unprepared surface using a 3-mm-thick polytetrafluoroethylene mold. The specimens were thermocycled 500 times, stored in 37 degrees C distilled water for 1 week, then loaded to failure in shear at a rate of 0.5 mm/min. Data were analyzed using a one-way ANOVA and Z-value multiple comparison test to determine significant differences at the 0.05 significance level. Vitremer showed no significant difference in shear bond strength for 5-minute and 1-week repair periods, while Fuji II LC and Photac-Fil did. Repair bond strength of Vitremer was significantly greater than Fuji II LC and Photac-Fil at both repair times. This study showed that time of repair significantly affected the bond strength of two of the materials tested.

  12. Shear Bond Strength of Two Types of Glass Ionomer to Bleached Dentin: Effect of Delayed Bonding and Antioxidant Agent

    PubMed Central

    Omrani, Ladan Ranjbar; Sabouri, Parastoo; Abbasi, Mehdi; Ahmadi, Elham; Ghavam, Maryam

    2016-01-01

    Background: Studies have shown a reduction in bond strength of composites and glass ionomer to bleached enamel and dentin. Several methods have been proposed to reverse compromised bond strength. Objective: The aim of this study was to evaluate the effect of delayed bonding and application of antioxidant agent on the bond strength of reinforced self-cured (Fuji IX) and light-cured glass ionomers (Fuji II LC) to bleached dentin. Material: Eighty extracted third molars were randomly divided into 8 groups. Buccal dentin surfaces received different treatments: Two control groups: no treatment + bonding Fuji IX or Fuji II LC. Two immediate bonding groups: bleaching + bonding Fuji IX or Fuji II LC. Two delayed bonding groups: bleaching + 7 days delay + bonding Fuji IX or Fuji II LC. Two sodium ascorbate application groups: Bleaching + application of 10% sodium ascorbate + bonding Fuji IX or Fuji II LC. All samples were tested for shear bond strength. Two-way analysis of variance (ANOVA) was used to compare the mean and standard deviations among groups, followed by the Tukey’s test for significant interaction. Results: No statistically significant difference was detected in shear bond strength of Fuji IX to bleached or normal dentin. Although a significant reduction was found shear bond strength values of Fuji II LC to bleached dentin, no significant difference was observed between no bleaching group and those treated with 10% sodium ascorbate or 7 days of delay in bonding for both types of glass ionomer. Conclusion: Bleaching had no significant effect on shear bond strength of Fuji IX to dentin; this type of GI can be used immediately after bleaching. PMID:28217187

  13. The effect of Coca-Cola and fruit juices on the surface hardness of glass-ionomers and 'compomers'.

    PubMed

    Aliping-McKenzie, M; Linden, R W A; Nicholson, J W

    2004-11-01

    The interaction of tooth-coloured dental restorative materials (a conventional glass-ionomer, two resin-modified glass-ionomers and two compomers) with acidic beverages has been studied with the aim of investigating how long-term contact affects solution pH and specimen surface hardness. For each material (ChemFil Superior, ChemFlex, Vitremer Core Build-Up/Restorative, Fuji II LC, Dyract AP and F2000) disc-shaped specimens were prepared and stored in sets of six in the following storage media: 0.9% NaCl (control), Coca-Cola, apple juice and orange juice. After time intervals of 1 day, 1 week, 1 month, 3 months, 4 months, 6 months and 1 year, solution pH and Vickers Hardness Number were determined for each individual specimen. Differences were analysed by anova followed by Student-Newman-Keuls post hoc analysis. All materials were found to reduce the pH of the 0.9% NaCl, but to increase the pH of the acidic beverages. The conventional glass-ionomers dissolved completely in apple juice and orange juice, but survived in Coca-Cola, albeit with a significantly reduced hardness after 1 year. The other materials survived in apple juice and orange juice, but showed greater reductions in surface hardness in these beverages than in Coca-Cola. Fruit juices were thus shown to pose a greater erosive threat to tooth coloured materials than Coca-Cola, a finding which is similar to those concerning dentine and enamel towards these drinks.

  14. Effect of two prophylaxis methods on marginal gap of Cl Vresin-modified glass-ionomer restorations

    PubMed Central

    Kimyai, Soodabeh; Pournaghi-Azar, Fatemeh; Daneshpooy, Mehdi; Abed Kahnamoii, Mehdi; Davoodi, Farnaz

    2016-01-01

    Background. This study evaluated the effect of two prophylaxis techniques on the marginal gap of CI V resin-modified glass-ionomer restorations. Methods. Standard Cl V cavities were prepared on the buccal surfaces of 48 sound bovine mandibular incisors in this in vitro study. After restoration of the cavities with GC Fuji II LC resin-modified glass-ionomer, the samples were randomly assigned to 3 groups of 16. In group 1, the prophylactic procedures were carried out with rubber cup and pumice powder and in group 2 with air-powder polishing device (APD). In group 3 (control), the samples did not undergo any prophylactic procedures. Then the marginal gaps were measured. Two-way ANOVA was used to compare marginal gaps at the occlusal and gingival margins between the groups. Post hoc Tukey test was used for two-by-two comparisons. Statistical significance was set at P < 0.05. Results. There were significant differences in the means of marginal gaps in terms of prophylactic techniques (P < 0.001), with significantly larger marginal gaps in the APD group compared to the pumice and rubber cup group, which in turn exhibited significantly larger marginal gaps compared to the control group (P < 0.0005). In addition, the means of marginal gaps were significant in terms of the margin type (P < 0.001), with significantly larger gaps at gingival margins compared to the occlusal margins (P < 0.0005). Conclusion. The prophylactic techniques used in this study had a negative effect on the marginal gaps of Cl V resin-modified glass-ionomer restorations. PMID:27092211

  15. Effect of addition of Nano hydroxyapatite particles on wear of resin modified glass ionomer by tooth brushing simulation

    PubMed Central

    Poorzandpoush, Kiana; Jafarnia, Shiva H.; Golkar, Parisa; Atai, Mohammad

    2017-01-01

    Background Recently, incorporation of nanohydroxyapatite (NHA) has been suggested to improve the mechanical properties of glass ionomers (GIs). This study aimed to assess the effect of addition of NHA on wear of resin modified glass ionomer (RMGI) by tooth brushing simulation. Material and Methods In this in vitro, experimental study, NHA in 1, 2, 5, 7 and 10wt% concentrations was added to Fuji II LC RMGI powder, and 48 samples (5×5mm) in five experimental and one control group (n=8) were fabricated. After polishing, cleaning and incubation at 37°C for three weeks, the samples were weighed and subjected to tooth brushing simulation in a toothpaste slurry according to ISO14569-1. Then, they were weighed again and the weight loss was calculated. The data were analyzed using one-way ANOVA and Tukey’s test. Results The highest and the lowest weight loss was found in the 0% NHA (-1.052±0.176) and 5% NHA (-0.370±0.143) groups, respectively. Wear was significantly higher in 0% NHA group (P<0.05). No difference was detected in wear between 2 and 5wt% NHA or among 1, 7 and 10wt% NHA groups. Significant differences were noted in wear between 2 and 5wt% NHA and 1, 7 and 10wt% NHA groups (P<0.001). Conclusions Incorporation of up to 10wt% of NHA increases the wear resistance of Fuji II LC RMGI. This increase was the highest when 2 and 5wt% NHA were added. Key words:Glass ionomer, hydroxyapatites, nanoparticles, dental restoration wear. PMID:28298977

  16. Development of a novel antimicrobial-releasing glass ionomer cement functionalized with chlorhexidine hexametaphosphate nanoparticles

    PubMed Central

    2014-01-01

    Background Glass ionomer cements (GICs) are a class of dental biomaterials. They have a wide range of uses including permanent restorations (fillings), cavity linings, fissure sealants and adhesives. One of the most common reasons for replacing a dental restoration is recurrent bacterial tooth decay around the margins of the biomaterial. Therefore, a dental biomaterial which creates a sustained antimicrobial environment around the restoration would be of considerable clinical benefit. In this manuscript, the formulation of a GIC containing novel antimicrobial nanoparticles composed of chlorhexidine hexametaphosphate at 1, 2, 5, 10 and 20% powder substitution by mass is reported. The aim is to create GICs which contain chlorhexidine-hexametaphosphate nanoparticles and characterize the nanoparticle size, morphology and charge and the release of chlorhexidine and fluoride, tensile strength and morphology of the GICs. Results The GICs released chlorhexidine, which is a broad spectrum antimicrobial agent effective against a wide range of oral bacteria, over the duration of the experiment in a dose-dependent manner. This was not at the expense of other properties; fluoride release was not significantly affected by the substitution of antimicrobial nanoparticles in most formulations and internal structure appeared unaffected up to and including 10% substitution. Diametral tensile strength decreased numerically with substitutions of 10 and 20% nanoparticles but this difference was not statistically significant. Conclusion A series of GICs functionalized with chlorhexidine-hexametaphosphate nanoparticles were created for the first time. These released chlorhexidine in a dose-dependent manner. These materials may find application in the development of a new generation of antimicrobial dental nanomaterials. PMID:24456793

  17. Mechanical, antibacterial and bond strength properties of nano-titanium-enriched glass ionomer cement

    PubMed Central

    GARCIA-CONTRERAS, Rene; SCOUGALL-VILCHIS, Rogelio Jose; CONTRERAS-BULNES, Rosalía; SAKAGAMI, Hiroshi; MORALES-LUCKIE, Raul Alberto; NAKAJIMA, Hiroshi

    2015-01-01

    The use of nanoparticles (NPs) has become a significant area of research in Dentistry. Objective The aim of this study was to investigate the physical, antibacterial activity and bond strength properties of conventional base, core build and restorative of glass ionomer cement (GIC) compared to GIC supplemented with titanium dioxide (TiO2) nanopowder at 3% and 5% (w/w). Material and Methods Vickers microhardness was estimated with diamond indenter. Compressive and flexural strengths were analyzed in a universal testing machine. Specimens were bonded to enamel and dentine, and tested for shear bond strength in a universal testing machine. Specimens were incubated with S. mutans suspension for evaluating antibacterial activity. Surface analysis of restorative conventional and modified GIC was performed with SEM and EDS. The analyses were carried out with Kolmogorov-Smirnov, ANOVA (post-hoc), Tukey test, Kruskal-Wallis, and Mann Whitney. Results Conventional GIC and GIC modified with TiO2 nanopowder for the base/liner cement and core build showed no differences for mechanical, antibacterial, and shear bond properties (p>0.05). In contrast, the supplementation of TiO2 NPs to restorative GIC significantly improved Vickers microhardness (p<0.05), flexural and compressive strength (p<0.05), and antibacterial activity (p<0.001), without interfering with adhesion to enamel and dentin. Conclusion GIC supplemented with TiO2 NPs (FX-II) is a promising material for restoration because of its potential antibacterial activity and durable restoration to withstand the mastication force. PMID:26221928

  18. Effect of different root caries treatments on the sealing ability of conventional glass ionomer cement restorations.

    PubMed

    Geraldo-Martins, Vinicius R; Lepri, Cesar P; Palma-Dibb, Regina G

    2012-01-01

    In this study we compared the microleakage of conventional glass ionomer cement (GIC) restorations following the use of different methods of root caries removal. In vitro root caries were induced in 75 human root dentin samples that were divided in five groups of 15 each according to the method used for caries removal: in group 1 spherical carbide burs at low speed were used, in group 2 a hand-held excavator was used, and in groups 3 to 5 an Er,Cr:YSGG laser was used at 2.25 W, 40.18 J/cm(2) (group 3), 2.50 W, 44.64 J/cm(2) (group 4) and 2.75 W, 49.11 J/cm(2) (group 5). The air/water cooling during irradiation was set to 55%/65% respectively. All cavities were filled with GIC. Five samples from each group were evaluated by scanning electron microscopy (SEM) and the other ten samples were thermocycled and submitted to a microleakage test. The data obtained were compared by ANOVA followed by Fisher's test (p≤0.05). Group 4 showed the lowest microleakage index (56.65 6.30; p<0.05). There were no significant differences among the other groups. On SEM images samples of groups 1 and 2 showed a more regular interface than the irradiated samples. Demineralized dentin below the restoration was observed, that was probably affected dentin. Group 4 showed the lowest microleakage values compared to the other experimental groups, so under the conditions of the present study the method that provided the lowest microleakage was the Er,Cr:YSGG laser with a power output of 2.5 W yielding an energy density of 44.64 J/cm(2).

  19. Surface texture of resin-modified glass ionomer cements: effects of finishing/polishing systems.

    PubMed

    Yap, Adrian U J; Tan, W S; Yeo, J C; Yap, W Y; Ong, S B

    2002-01-01

    This study investigated the surface texture of two resin-modified glass ionomer cements (RMGICs) in the vertical and horizontal axis after treatment with different finishing/polishing systems. Class V preparations were made on the buccal and lingual/palatal surfaces of freshly extracted teeth. The cavities on each tooth were restored with Fuji II LC (GC) and Photac-Fil Quick (ESPE) according to manufacturers' instructions. Immediately after light-polymerization, gross finishing was done with 8-flute tungsten carbide burs. The teeth were then randomly divided into four groups and finished/polished with (a) Robot Carbides (RC); (b) Super-Snap system (SS); (c) OneGloss (OG) and (d) CompoSite Points (CS). The sample size for each material-finishing/polishing system combination was eight. The mean surface roughness (microm) in vertical (RaV) and horizontal (RaH) axis was measured using a profilometer. Data was subjected to ANOVA/Scheffe's tests and Independent Samples t-test at significance level 0.05. Mean RaV ranged from 0.59-1.31 and 0.83-1.52, while mean RaH ranged from 0.80-1.43 and 0.85-1.58 for Fuji II LC and Photac-Fil, respectively. Results of statistical analysis were as follows: Fuji II LC: RaV-RC, SS

  20. Effects of instrumentation time on microleakage of resin-modified glass ionomer cements.

    PubMed

    Yap, Adrian U J; Yeo, Egwin J C; Yap, W Y; Ong, Debbie S B; Tan, Jane W S

    2003-01-01

    This study investigated the effect of instrumentation time on the microleakage of resin-modified glass ionomer cements (RMGICs). Class V cavities were prepared on buccal and lingual/ palatal surfaces of 64 freshly extracted non-carious premolars. The cavities on each tooth were restored with Fuji II LC (FT [GC]) and Photac-Fil Quick (PF [3M-ESPE]). The restored teeth were randomly divided into two groups of 32 teeth. Finishing/polishing was done immediately after light-polymerization in one group and was delayed for one week in the other group. The following finishing/polishing systems were evaluated: (a) Robot Carbides (RC); (b) SuperSnap (SS); (c) OneGloss (OG) and (d) CompoSite Polishers (CS). The sample size for each instrumentation time, material and finishing/polishing system combination was 8. Storage medium for both immediate and delayed instrumentation groups was distilled water at 37 degrees C during the hiatus period. The teeth were subsequently subjected to dye penetration testing (0.5% basic fushcin), sectioned and scored. Data were analyzed using Kruskal-Wallis and Mann-Whitney U tests at significance level 0.05. For PF, significant difference in enamel leakage was observed between immediate and delayed instrumentation with SS and CS. Significant differences in dentin leakage were also observed between the two instrumentation times for SS. For FT, significant differences in leakage between instrumentation times were observed only in dentin and with RC. Where significant differences in dye penetration scores existed, delayed finishing/polishing resulted in less microleakage.

  1. Nanoclay addition to a conventional glass ionomer cements: Influence on physical properties

    PubMed Central

    Fareed, Muhammad A.; Stamboulis, Artemis

    2014-01-01

    Objective: The objective of the present study is to investigate the reinforcement effect of polymer-grade montmorillonite (PGN nanoclay) on physical properties of glass ionomer cement (GIC). Materials and Methods: The PGN nanoclay was dispersed in the liquid portion of GIC (HiFi, Advanced Healthcare, Kent, UK) at 1%, 2% and 4% (w/w). Fourier-transform infrared (FTIR) spectroscopy was used to quantify the polymer liquid of GICs after dispersion of nanoclay. The molecular weight (Mw) of HiFi liquid was determined by gel permeation chromatography. The compressive strength (CS), diametral-tensile strength, flexural strength (FS) and flexural modulus (Ef) of cements (n = 20) were measured after storage for 1 day, 1 week and 1 month. Fractured surface was analyzed by scanning electron microscopy. The working and setting time (WT and ST) of cements was measured by a modified Wilson's rheometer. Results: The FTIR results showed a new peak at 1041 cm−1 which increased in intensity with an increase in the nanoclay content and was related to the Si-O stretching mode in PGN nanoclay. The Mw of poly (acrylic acid) used to form cement was in the range of 53,000 g/mol. The nanoclay reinforced GICs containing <2% nanoclays exhibited higher CS and FS. The Ef cement with 1% nanoclays was significantly higher. The WT and ST of 1% nanoclay reinforced cement were similar to the control cement but were reduced with 2% and 4% nanoclay addition. Conclusion: The dispersion of nanoclays in GICs was achieved, and GIC containing 2 wt% nanoclay is a promising restorative materials with improved physical properties. PMID:25512724

  2. Effect of antibacterial agents on the surface hardness of a conventional glass-ionomer cement

    PubMed Central

    TÜZÜNER, Tamer; ULUSU, Tezer

    2012-01-01

    In atraumatic restorative treatment (ART), caries removal with hand excavation instruments is not as efficient as that with rotary burs in eliminating bacteria under the glass ionomer cements (GICs). Thus, different antibacterial agents have been used in recent studies to enhance the antibacterial properties of the GICs, without jeopardizing their basic physical properties. Objective The objective of this study was to evaluate the effect of antibacterial agents on the surface hardness of a conventional GIC (Fuji IX) using Vickers microhardness [Vickers hardness number (VHN)] test. Material and Methods Cetrimide (CT), cetylpyridinium chloride (CPC) and chlorhexidine (CHX) were added to the powder and benzalkonium chloride (BC) was added to the liquid of Fuji IX in concentrations of 1% and 2%, and served as the experimental groups. A control group containing no additive was also prepared. After the completion of setting reaction, VHN measurements were recorded at 1, 7, 15, 30, 60, and 90 days after storage in 37ºC distilled water. A one-way ANOVA was performed followed by a Dunnett t test and Tamhane T2 tests and also repeated measurements ANOVA was used for multiple comparisons in 95% confidence interval. Results VHN results showed significant differences between the control and the experimental groups at all time periods (p<0.05 for all). Significant differences were observed between all study periods for individual groups (p<0.05). After 7 days, VHNs were decreased in all experimental groups while they continued to increase in the control group. BC and CHX groups demonstrated the least whereas CT and CPC groups exhibited most adverse effect on the hardness of set cements. Conclusions Despite the decreased microhardness values in all experimental groups compared to the controls after 7 up to 90 days, incorporating certain antibacterial agents into Fuji IX GIC showed tolerable microhardness alterations within the limitations of this in vitro study. PMID:22437677

  3. Effects of delayed polymerization time and bracket manipulation on orthodontic resin modified glass ionomer adhesive

    NASA Astrophysics Data System (ADS)

    Gilbert, Danielle Wiggins

    This study examined the effect of varying delayed polymerization times in combination with bracket manipulation on shear bond strength (SBS), degree of conversion (DC), and adhesive remnant index (ARI) score when using a resin modified glass ionomer (RMGI) adhesive. Specimens were divided into three groups of clinically relevant delay times (0.5, 2, and 4-min) to simulate the delay that frequently occurs between bracket placement and manipulation and subsequent light curing. Based on an analysis of variance (alpha=.05), the SBS was not significantly different between the three groups. While one of the goals of this study was to be the first study to quantify DC of RMGI using Raman microspectroscopy, several challenges, including weak peak signal with and without fluorescence, were encountered and as a result, DC could not be determined. A significant difference (p<0.05) in ARI score was detected between the 0.5-min and 4.0-min delay groups with more adhesive remaining on the bracket with increasing delay time. A Spearman correlation between SBS and ARI indicated no positive association between SBS and ARI measures across delay times. The results of this study suggest that clinically relevant delay times of 0.5, 2, and 4-min do not negatively impact the SBS of a RMGI adhesive. However, with increasing delay time, the results suggest that more adhesive might remain on the bracket during debonding. With more adhesive remaining on the bracket, this could be beneficial in that less adhesive needs to be removed from enamel by grinding at the time of bracket removal when orthodontic treatment is completed.

  4. Effect of acid etching of glass ionomer cement surface on the microleakage of sandwich restorations.

    PubMed

    Bona, Alvaro Della; Pinzetta, Caroline; Rosa, Vinícius

    2007-06-01

    The purposes of this study were to evaluate the sealing ability of different glass ionomer cements (GICs) used for sandwich restorations and to assess the effect of acid etching of GIC on microleakage at GIC-resin composite interface. Forty cavities were prepared on the proximal surfaces of 20 permanent human premolars (2 cavities per tooth), assigned to 4 groups (n=10) and restored as follows: Group CIE - conventional GIC (CI) was applied onto the axial and cervical cavity walls, allowed setting for 5 min and acid etched (E) along the cavity margins with 35% phosphoric acid for 15 s, washed for 30 s and water was blotted; the adhesive system was applied and light cured for 10 s, completing the restoration with composite resin light cured for 40 s; Group CIN - same as Group CIE, except for acid etching of the CI surface; Group RME - same as CIE, but using a resin modified GIC (RMGIC); Group RMN - same as Group RME, except for acid etching of the RMGIC surface. Specimens were soaked in 1% methylene blue dye solution at 24 degrees C for 24 h, rinsed under running water for 1 h, bisected longitudinally and dye penetration was measured following the ISO/TS 11405-2003 standard. Results were statistically analyzed by Kruskal-Wallis and chi-square tests (a=0.05). Dye penetration scores were as follow: CIE - 2.5; CIN - 2.5; RME - 0.9; and RMN - 0.6. The results suggest that phosphoric acid etching of GIC prior to the placement of composite resin does not improve the sealing ability of sandwich restorations. The RMGIC was more effective in preventing dye penetration at the GIC-resin composite-dentin interfaces than CI.

  5. Mechanical, antibacterial and bond strength properties of nano-titanium-enriched glass ionomer cement.

    PubMed

    Garcia-Contreras, Rene; Scougall-Vilchis, Rogelio Jose; Contreras-Bulnes, Rosalía; Sakagami, Hiroshi; Morales-Luckie, Raul Alberto; Nakajima, Hiroshi

    2015-01-01

    The use of nanoparticles (NPs) has become a significant area of research in Dentistry. Objective The aim of this study was to investigate the physical, antibacterial activity and bond strength properties of conventional base, core build and restorative of glass ionomer cement (GIC) compared to GIC supplemented with titanium dioxide (TiO2) nanopowder at 3% and 5% (w/w). Material and Methods Vickers microhardness was estimated with diamond indenter. Compressive and flexural strengths were analyzed in a universal testing machine. Specimens were bonded to enamel and dentine, and tested for shear bond strength in a universal testing machine. Specimens were incubated with S. mutans suspension for evaluating antibacterial activity. Surface analysis of restorative conventional and modified GIC was performed with SEM and EDS. The analyses were carried out with Kolmogorov-Smirnov, ANOVA (post-hoc), Tukey test, Kruskal-Wallis, and Mann Whitney. Results Conventional GIC and GIC modified with TiO2 nanopowder for the base/liner cement and core build showed no differences for mechanical, antibacterial, and shear bond properties (p>0.05). In contrast, the supplementation of TiO2 NPs to restorative GIC significantly improved Vickers microhardness (p<0.05), flexural and compressive strength (p<0.05), and antibacterial activity (p<0.001), without interfering with adhesion to enamel and dentin. Conclusion GIC supplemented with TiO2 NPs (FX-II) is a promising material for restoration because of its potential antibacterial activity and durable restoration to withstand the mastication force.

  6. Retention of a resin-based sealant and a glass ionomer used as a fissure sealant in children with special needs

    PubMed Central

    Nualart-Grollmus, Zacy-Carola

    2014-01-01

    Objectives: The aim of this research is to evaluate the retention of sealants of resin and resin-modified ionomeric glass pits and fissures, on first permanent molars of special patients. Material and Methods: The sample was comprised by 32 children. The ages were between 7 and 18 years. The sealing procedure was made with the relative isolation of the molars to be sealed, through the use of cotton rolls. Two molars were sealed with Clinpro Sealant 3M Dental and the others with Vitremer. Checking of the sealants was made after 3 and 6 months of their placement, evaluating with 3 values: TR: Totally Restrained; PR: Partially Restrained; and CL: Completely Lost. Results: 67.18% of the resinous sealants, and 70.31% of the glass ionomer sealants were successful after three months. After six months, 57.81% of the resin-based sealants and 51.56% of the glass ionomer sealants were successful. When performing the Chi-square statistical analysis (P<0.05) no statistical significance was observed after 6 months. Conclusions: The retention of the resin sealant was similar to that of the glass ionomer cement at the end of six months and the retention of sealants on maxillary teeth was higher than on mandibular teeth. Key words:Sealant, glass ionomer, retention, caries, special needs. PMID:25674325

  7. Comparative Evaluation of Shear Bond Strength of Various Glass Ionomer Cements to Dentin of Primary Teeth: An in vitro Study

    PubMed Central

    Jaidka, Shipra; Singh, Deepti J; Sibal, Gurleen K

    2016-01-01

    Aim To evaluate and compare shear bond strength of various glass ionomer cements (GICs) to dentin of primary teeth. Materials and methods Sample size taken for the study was 72 deciduous molars with intact buccal or lingual surfaces. Samples were randomly divided into three groups, i.e., groups A, B, and C and were restored with conventional type II GIC, type II light cure (LC) GIC, and type IX GIC respectively. Thermocycling was done to simulate oral conditions. After 24 hours, shear bond strength was determined using Instron Universal testing Machine at crosshead speed of 0.5 mm/ minute until fracture. Results were tabulated and statistically analyzed. Results It was found that the shear bond strength was highest in group B (LC GIC) 9.851 ± 1.620 MPa, followed by group C (type IX GIC) 7.226 ± 0.877 MPa, and was lowest in group A (conventional GIC) 4.931 ± 0.9735 MPa. Conclusion Light cure GIC was significantly better than type IX GIC and conventional GIC in terms of shear bond strength. How to cite this article Somani R, Jaidka S, Singh DJ, Sibal GK. Comparative Evaluation of Shear Bond Strength of Various Glass Ionomer Cements to Dentin of Primary Teeth: An in vitro Study. Int J Clin Pediatr Dent 2016;9(3):192-196. PMID:27843248

  8. Effect of different cavity conditioners on microleakage of glass ionomer cement with a high viscosity in primary teeth

    PubMed Central

    Mazaheri, Romina; Pishevar, Leila; Shichani, Ava Vali; Geravandi, Sanas

    2015-01-01

    Background: Glass ionomer cement is a common material used in pediatric dentistry. The aim of this study was to evaluate the microleakage of high-viscosity glass ionomer restorations in deciduous teeth after conditioning with four different conditioners. Materials and Methods: Fifty intact primary canines were collected. Standard Class V cavities (2 mm × 1.5 mm × 3 mm) were prepared by one operator on all buccal tooth surfaces, including both enamel and dentin. The samples were divided into five groups with different conditioners (no conditioner, 20% acrylic acid, 35% phosphoric acid, 12% citric acid, and 17% ethylenediaminetetraacetic acid [EDTA]). Two-way — ANOVA, Kruskal–Wallis and Mann–Whitney tests were used to compare the means of microleakage between the five groups. The significance level was set at P < 0.05. Results: There was no significant difference between the means of microleakage in incisal (enamel) and gingival (dentin) margins (P = 0.34). Furthermore, there was no significant difference between the means of microleakage in enamel and dentin margins (P = 0.4). There was a significant difference between the means of microleakage in different groups (P = 0.03). Conclusion: Within the limitations of this study, it is suggested that 20% acrylic acid and 17% EDTA be used for cavity conditioning which can result in better chemical and micromechanical adhesion. PMID:26288623

  9. A study on the radiopacity of different shades of resin-modified glass-ionomer restorative materials.

    PubMed

    Marouf, N; Sidhu, S K

    1998-01-01

    There are several resin-modified glass-ionomer restorative materials available to the dental profession today. The commercially available brands are presented in a range of shades. There is little information on their radiopacity and whether this varies with differences in shade. While the general radiopacity of various products may have been studied, only assumptions are available regarding their consistency between shades. The purpose of this study was to investigate if there were any significant differences in the radiopacity of the shades available within each commercial product. The products evaluated were Fuji II LC, Vitremer, and Photac-Fil. The optical densities of standardized radiographs of samples of these materials were determined and radiopacity values of materials expressed in millimeter equivalents of aluminum. Of the three resin-modified glass-ionomer restorative materials tested, Fuji II LC was the most radiopaque and Photac-Fil the least. Fuji II LC and Vitremer showed radiopacity values equivalent to > 2.5 mm and > 1.5 mm aluminum respectively; Photac-Fil demonstrated very low radiopacity values (equivalent to < 0.6 mm aluminum). Statistical analysis revealed that there was no significant difference in radiopacity among the shades within each of these brands.

  10. Degree of conversion and hardness of two different systems of the Vitrebond™ glass ionomer cement light cured with blue LED.

    PubMed

    Calixto, Luiz Rafael; Tonetto, Mateus Rodrigues; Pinto, Shelon Cristina Souza; Barros, Erico Damasceno; Borges, Alvaro Henrique; Lima, Fabricio Viana Pereira; de Andrade, Marcelo Ferrarezi; Bandéca, Matheus Coelho

    2013-03-01

    This study investigated the physicochemical properties of the new formulation of the glass ionomer cements through hardness test and degree of conversion by infrared spectroscopy (FTIR). Forty specimens (n = 40) were made in a metallic mold (4 mm diameter x 2 mm thickness) with two resin-modified glass ionomer cements, Vitrebond™ and Vitrebond™ Plus (3M/ ESPE). Each specimen was light cured with blue LED with power density of 500 mW/cm(2) during 30 s. Immediately after light curing, 24h, 48h and 7 days the hardness and degree of conversion was determined. The Vickers hardness was performed by the MMT-3 microhardness tester using load of 50 gm force for 30 seconds. For degree of conversion, the specimens were pulverized, pressed with KBr and analyzed with FT-IR (Nexus 470). The statistical analysis of the data by ANOVA showed that the Vitrebond™ and Vitrebond™ Plus were no difference significant between the same storage times (p > 0.05). For degree of conversion, the Vitrebond™ and Vitrebond™ Plus were statistically different in all storage times after light curing. The Vitrebond™ showed higher values than Vitrebond™ Plus (p < 0.05). The performance of Vitrebond™ had greater results for degree of conversion than Vitrebond™ Plus. The correlation between hardness and degree of conversion was no evidence in this study.

  11. The influence of dicarboxylic acids: Oxalic acid and tartaric acid on the compressive strength of glass ionomer cements

    NASA Astrophysics Data System (ADS)

    Permana, Ahmadi Jaya; Setyawati, Harsasi; Hamami, Murwani, Irmina Kris

    2016-03-01

    Glass ionomer cement (GIC) has limitation on the mechanical properties especially compressive strength. The change of compressive strength of GIC by adding oxalic acid and tartaric acid has been investigated. Oxalic acid and tartaric acid was added to the liquid components at concentrations of 0 - 15% (w/w). Powder component of GIC was made from optimum experimental powder glass SiO2-Al2O3-CaF2. GIC was characterized by compressive strength test, SEM-EDX and FTIR. The addition of tartaric acid to GIC has greater improvement than addition of oxalic acid. The addition of tartaric acid at 10 % (w/w) to GIC has greatest value of compressive strength.

  12. The effect of polishing systems on microleakage of tooth coloured restoratives: Part 1. Conventional and resin-modified glass-ionomer cements.

    PubMed

    Yap, A U; Tan, S; Teh, T Y

    2000-02-01

    The purpose of this in vitro study was to investigate the effect of polishing systems on the microleakage of conventional and resin-modified glass-ionomer cements. Class V cavities were prepared at the cemento-enamel junction of 80 freshly extracted posterior teeth. The prepared teeth were randomly divided into two groups and restored with conventional or resin-modified glass-ionomer cements. The restored teeth were stored in distilled water at 37 degrees C for 1 week after removal of excess restorative with diamond finishing burs. The restored teeth were then divided into four groups of 10 and finished and polished using the following systems: Two Striper MFS; Sof-Lex XT; Enhance Composite Finishing and Polishing System; Shofu Composite Finishing Kit. The finished restorations were subjected to dye penetration testing. Results showed that the microleakage at dentin margins of conventional glass-ionomer cements and enamel margins of resin-modified glass-ionomer cements are significantly affected by the different polishing systems.

  13. Influence of powder/liquid ratio on the radiodensity and diametral tensile strength of glass ionomer cements

    PubMed Central

    FONSECA, Rodrigo Borges; BRANCO, Carolina Assaf; QUAGLIATTO, Paulo Sérgio; GONÇALVES, Luciano de Souza; SOARES, Carlos José; CARLO, Hugo Lemes; CORRER-SOBRINHO, Lourenço

    2010-01-01

    Objective To determine the influence of P/L ratio on the radiodensity and diametral tensile strength (DTS) of glass ionomer cements. Material and Methods There were 2 factors under study: P/L ratio (manufacturer's recommended P/L ratio and a 50% reduced P/L ratio), and materials (Vitro Molar, Vitro Fil, Vitro Cem conventional GICs and Vitro Fil LC, Ortho Glass LC RMGICs). Five 1-mm-thick samples of each material-P/L ratio were produced for radiodensity evaluation. Samples were x-ray exposed onto Digora phosphor plate and radiodensity was obtained using the software Digora for Windows 2.5 Rev 0. For DTS, five (4.0x8.0 mm) cylinder samples of each material were tested (0.5 mm/min). Data were subjected to one- and two-way ANOVA (5x2) followed by Tukey's HSD test, or Kruskal-Wallis and Dunn's method. For paired comparisons, t-test or Mann-Whitney test were used (a=0.05). Results There was a significant interaction (P=0.001) for the studied factors (materials vs. P/L ratio). Reduced P/L ratio resulted in significantly lower DTS for the RMGICs, but radiodensity was affected for all materials (P<0.05). Conclusions Reduced P/L ratio affected properties of the tested glass ionomer cements. RMGICs were more susceptible to lower values of DTS, but radiodensity decreased for all materials following P/L ratio reduction. PMID:21308288

  14. The use of laser-induced breakdown spectroscopy for the determination of fluorine concentration in glass ionomer cement

    NASA Astrophysics Data System (ADS)

    Kratochvíl, T.; Pouzar, M.; Novotný, K.; Havránek, V.; Černohorský, T.; Zvolská, M.

    2013-10-01

    The influence of He atmosphere and gate width in laser-induced breakdown spectroscopy (LIBS) determination of fluorine concentration was investigated in detail. The measurements were realized on two double pulse LIBS devices featuring different parameters. Calibration curves, describing the relationship between the fluorine concentration and the corresponding intensity of the LIBS signal, were constructed for both LIBS devices, with and without He flow, respectively. Detection limits achieved were in the range 1.18-0.47 wt.%. The best LOD value was obtained in He atmosphere. The LIBS measurement of fluorine content is influenced by different gate widths and the atmosphere in the working chamber. The proposed method was successfully applied to the determination of fluorine concentration in glass ionomer cements.

  15. Effect of time on the diametral tensile strength of resin-modified restorative glass ionomer cements and compomer.

    PubMed

    Cefaly, D F; Valarelli, F P; Seabra, B G; Mondelli, R F; Navarro, M F

    2001-01-01

    The aim of this study was to analyze the diametral tensile strengths of three resin-modified restorative glass ionomer cements--Vitremer, Fuji II LC and Photac Fil and one compomer--Dyract. They were tested at 1 hour, 1 day and 1 week. Kratos testing machine was used to load the specimens at a cross-head speed of 0.5 mm/min. The data were analyzed by two-way ANOVA and Tukey's test that showed statistically significant differences among the materials. The tested materials presented an increase in strength from 1 hour to 1 week and were as follows for each material respectively: Vitremer (19.22-27.29), Fuji II LC (23.91-28.67), Photac Fil (19.35-22.86), Dyract (28.83-46.95). Dyract presented the highest strengths.

  16. Clinical evaluation of resin-modified glass-ionomer restorative cements in cervical 'abrasion' lesions: one-year results.

    PubMed

    Maneenut, C; Tyas, M J

    1995-10-01

    Sixty non-undercut Class V "abrasion" lesions in 13 patients were restored with light-cured Type IIa glass-ionomer cements in accordance with the manufacturer's instructions, 20 each with Fuji II LC, Photac-Fil, and Vitremer. Patients were recalled for examination and photographs 1 week, 6 months, and 1 year posttreatment. Color, marginal discoloration, and retention of the restorations were assessed at each recall period. At 1 year, no loss of restorations was found. Analysis revealed statistically significant darkening in color of the Vitremer restorations, no significant change in color of the Fuji II LC and Photac-Fil restorations, and statistically significant but clinically negligible development of marginal discoloration of all materials.

  17. Predicting composition-property relationships for glass ionomer cements: a multifactor central composite approach to material optimization.

    PubMed

    Kiri, Lauren; Boyd, Daniel

    2015-06-01

    Adjusting powder-liquid ratio (P/L) and polyacrylic acid concentration (AC) has been documented as a means of tailoring the handling and mechanical properties of glass ionomer cements (GICs). This work implemented a novel approach in which the interactive effects of these two factors on three key GIC properties (working time, setting time, and compressive strength) were investigated using a central composite design of experiments. Using nonlinear regression analysis, formulation-property relationships were derived for each property, which enabled prediction of an optimal formulation (P/L and AC) through application of the desirability approach. A novel aluminum free GIC was investigated, as this material may present the first clinically viable GIC for use in injectable spinal applications, such as vertebroplasty. Ultimately, this study presents the first series of predictive regression models that explain the formulation-dependence of a GIC, and the first statistical method for optimizing both P/L and AC depending on user-defined inputs.

  18. Structural integrity of resin-modified glass ionomers as affected by the delay or omission of light activation.

    PubMed

    de Gee, A J; Leloup, G; Werner, A; Vreven, J; Davidson, C L

    1998-08-01

    Since light activation of resin-modified glass ionomers as a means of polymerizing the HEMA is usually done shortly after mixing occurs, the acid-base reaction will proceed mainly within a formed HEMA-polymer matrix. Delaying or omitting light activation may alter the structure and consequently its integrity. The aim of this study was to investigate the effect on the structural integrity of Fuji II LC, Photac-Fil, and Vitremer by delaying or omitting light initiation as compared with the integrity when light activation is performed 2 min after mixing occurs. We evaluated integrity by three-body wear experiments, conducted 8 hrs after sample preparation, to establish the integrity in the early phase of hardening, as well as after 1 wk and after 4 mos, to follow the materials throughout the process of maturation. When light activation was delayed for 1 hr, the structural integrity of Fuji II LC and Photac-Fil improved significantly in the early stages of hardening. In the case of Vitremer, an hour's delay of light activation significantly decreased integrity, which declined further when light activation was omitted. Fuji II LC was not affected by the omission of light activation, while Photac-Fil was markedly weakened. After 4 mos of aging, most of the samples of each product which had been cured by the different methods attained equal integrity, with the exception of the non-light-activated Vitremer samples, which remained weaker. We concluded that the structural integrity of resin-modified glass-ionomer cements benefits from a chemical integration of the polyalkenoate and poly-HEMA networks, as in Vitremer. Improvement in the structural integrity in the early phase for cements with a mechanical entanglement of the matrices, as in Fuji II LC and Photac-Fil, requires an acid-base reaction, a considerable portion of which may take place before activation of the HEMA polymerization.

  19. Evaluation of surface roughness and hardness of different glass ionomer cements

    PubMed Central

    Bala, Oya; Arisu, Hacer Deniz; Yikilgan, Ihsan; Arslan, Seda; Gullu, Abdulkadir

    2012-01-01

    Objectives: The aim of this study was to evaluate surface roughness and hardness of a nanofiller GIC, a resin-modified GIC, three conventional GICs, and a silver-reinforced GIC. Methods: For each material, 11 spcecimens were prepared and then stored in distilled water at 37 °C for 24 h. The surface roughness of 5 specimens was measured using a surface profilometer before polishing and after polishing with coarse, medium, fine, superfine aluminum oxide abrasive Sof-Lex discs respectively. The hardness of the upper surfaces of the remaining 6 specimens was measured with a Vickers microhardness measuring instrument. Results: All tested GICs showed lower surface roughness values after the polishing procedure. Surface finish of nanofiller GIC was smoother than the other tested GICs after polishing. This was followed by resin-modified GIC, Fuji II LC; then silver-reinforced GIC, Argion Molar, conventional GICs, Aqua Ionofil Plus, Fuji IX, and Ionofil Molar, respectively. The result of the hardness test indicated that the microhardness value of silver-reinforced GIC was greater than that of the other GICs. When the hardness values of all tested GICs were compared, the differences between materials (except Aqua Ionofil Plus with Ionofil Molar and Ketac N100 with Fuji II LC (P>.05)) were found statistically significant (P<.05). Conclusions: According to the results of this study, it can be concluded that the differences in the composition of GICs may affect their surface roughness and hardness. PMID:22229011

  20. Shear bond strength of resin-modified glass ionomer cements to Er:YAG laser-treated tooth structure.

    PubMed

    de Souza-Gabriel, Aline Evangelista; do Amaral, Flávia Lucisano Botelho; Pécora, Jesus Djalma; Palma-Dibb, Regina Guenka; Corona, Silmara Aparecida Milori

    2006-01-01

    This study evaluated the effect of Er:YAG laser irradiation of enamel and dentin on the shear bond strength of resin-modified glass ionomer cements (RMGIC). Twenty molars were selected and the roots removed. The crowns were bisected, embedded in polyester resin and ground to plane the enamel or expose the dentin. The bonding site was delimited, and samples were randomly assigned according to the cavity preparation device: I--Er.YAG laser (350mJ/2Hz); II--Carbide bur (control group). They were subdivided according to the restorative material employed: A) Fuji II LC (GC); B) Vitremer (3M). Samples were then fixed to a metallic device where ionomer cylinders were prepared. Sequentially, the molars were stored for 24 hours and subjected to a shear bond strength test (50Kgf at 0.5 mm/minute). Means in MPa were: Enamel--IA) 4.77 (+/- 1.12); IB) 4.36 (+/- 1.50); IIA) 7.70 (+/- 1.53); IIB) 7.34 (+/- 1.52) and Dentin--IA) 3.13 (+/- 1.15); IB) 2.67 (+/- 0.74); IIA) 6.38 (+/- 1.44); IIB) 5.58 (+/-2.09). Data were submitted to statistical analysis by ANOVA. Adhesion for enamel was more efficient than for dentin (p < 0.01). The cavities prepared with a conventional bur (control group) presented higher bond strength values than those recorded for Er:YAG laser (p < 0.01). No significant differences were observed between the restorative materials. Based on these results, it was concluded that Er:YAG laser adversely affected the shear bond strength of RMGIC for both enamel and dentin.

  1. Energy dispersive X-ray microanalysis, fluoride release, and antimicrobial properties of glass ionomer cements indicated for atraumatic restorative treatment

    PubMed Central

    Saxena, Sudhanshu; Tiwari, Sonia

    2016-01-01

    Aim: The aim of this study was to compare constituents of glass powder, fluoride release, and antimicrobial properties of new atraumatic restorative treatment material with zirconia fillers and conventional glass ionomer cement (GIC) type IX. Materials and Methods: Thisin vitro study comparing Zirconomer and Fuji IX was executed in three parts: (1) energy dispersive X-ray microanalysis of glass powders (2) analysis of fluoride release at 1st, 3rd, 7th, 15th, and 30th day, and (3) antimicrobial activity against Streptococcus mutans, Lactobacillus casei, and Candida albicans at 48 hours. Data was analyzed using unpaired t-test and two way analysis of variance followed by least significant difference post hoc test. A P value of < 0.05 was considered statistically significant. Results: Energy dispersive X-ray microanalysis revealed that, in both Zirconomer and Fuji IX glass powders, mean atomic percentage of oxygen was more than 50%. According to the weight percentage, zirconium in Zirconomer and silica in Fuji IX were the second main elements. Calcium, zinc, and zirconium were observed only in Zirconomer. At all the time intervals, statistically significant higher amount of fluoride release was observed with Zirconomer than Fuji IX. At 48 hours, mean ± standard deviation (SD) of zone of inhibition against Streptococcus mutans was 11.14 ± 0.77 mm and 8.51 ± 0.43 mm for Zirconomer and Fuji IX, respectively. Against Lactobacillus casei, it was 14.06 ± 0.71 mm for Zirconomer and 11.70 ± 0.39 mm for Fuji IX. No antifungal activity was observed against Candida albicans by Zirconomer and Fuji IX. Conclusion: Zirconomer had higher antibacterial activity against Streptococcus mutans and Lactobacillus casei, which may be attributed to its composition and higher fluoride release. However, it failed to show antifungal effect againstCandida albicans. PMID:27583226

  2. Failure Rate of Direct High-Viscosity Glass-Ionomer Versus Hybrid Resin Composite Restorations in Posterior Permanent Teeth - a Systematic Review

    PubMed Central

    Mickenautsch, Steffen; Yengopal, Veerasamy

    2015-01-01

    Purpose Traditionally, resin composite restorations are claimed by reviews of the dental literature as being superior to glass-ionomer fillings in terms of restoration failures in posterior permanent teeth. The aim of this systematic review is to answer the clinical question, whether conventional high-viscosity glass-ionomer restorations, in patients with single and/or multi-surface cavities in posterior permanent teeth, have indeed a higher failure rate than direct hybrid resin composite restorations. Methods Eight databases were searched until December 02, 2013. Trials were assessed for bias risks, in-between datasets heterogeneity and statistical sample size power. Effects sizes were computed and statistically compared. A total of 55 citations were identified through systematic literature search. From these, 46 were excluded. No trials related to high-viscosity glass-ionomers versus resin composite restorations for direct head-to-head comparison were found. Three trials related to high-viscosity glass-ionomers versus amalgam and three trials related to resin composite versus amalgam restorations could be included for adjusted indirect comparison, only. Results The available evidence suggests no difference in the failure rates between both types of restoration beyond the play of chance, is limited by lack of head-to-head comparisons and an insufficient number of trials, as well as by high bias and in-between-dataset heterogeneity risk. The current clinical evidence needs to be regarded as too poor in order to justify superiority claims regarding the failure rates of both restoration types. Sufficiently large-sized, parallel-group, randomised control trials with high internal validity are needed, in order to justify any clinically meaningful judgment to this topic. PMID:26962372

  3. The physical properties of conventional and resin-modified glass-ionomer dental cements stored in saliva, proprietary acidic beverages, saline and water.

    PubMed

    McKenzie, M A; Linden, R W A; Nicholson, J W

    2003-10-01

    Specimens of three conventional and one resin-modified glass-ionomer cement were prepared for both compressive strength and biaxial flexure strength determination. They were stored either in neutral media (water, saline, unstimulated whole saliva or stimulated parotid saliva) or in acidic beverages (apple juice, orange juice or Coca-Cola) for time periods ranging from 1 day to 1 year. In neutral media, the compressive and biaxial flexural strengths of all cements studied showed similar results, with significant increases apparent in compressive strengths at 6 months and which continued to 1 year, but no significant differences between the media; and no significant differences with time for biaxial flexure strength in all media. These findings show that interactions of these cements with saliva, which are known to result in deposition of calcium and phosphate, do not affect strength. Results for specimens stored in Coca-Cola were the same as for those stored in neutral media. By contrast, in orange and apple juice specimens underwent severe erosion resulting in dissolution of the conventional glass-ionomers after 3-6 months, and/or significant loss of strength at 1-3 months. Erosion of the resin-modified glass-ionomer, Vitremer, led to a significant reduction in strength, but not in dissolution, even after 12 months. The chelating carboxylic acids in these fruit juices were assumed to be responsible for these effects.

  4. In vitro study of 24-hour and 30-day shear bond strengths of three resin-glass ionomer cements used to bond orthodontic brackets.

    PubMed

    Lippitz, S J; Staley, R N; Jakobsen, J R

    1998-06-01

    Interest in using composite resin-glass ionomer hybrid cements as orthodontic bracket adhesives has grown because of their potential for fluoride release. The purpose of this pilot study was to compare shear bond strengths of three resin-glass ionomer cements (Advance, Fuji Duet, Fuji Ortho LC) used as bracket adhesives with a composite resin 24 hours and 30 days after bonding. The amount of adhesive remaining on the debonded enamel surface was scored for each adhesive. Mesh-backed stainless-steel brackets were bonded to 100 extracted human premolars, which were stored in artificial saliva at 37 degrees C until being tested to failure in a testing machine. The hybrid cements, with one exception, had bond strengths similar to those of the composite resin at 24 hours and 30 days. Fuji Ortho LC had significantly lower bond strengths (ANOVA p < or = 0.05) than the other adhesives at 24 hours and 30 days when it was bonded to unetched, water-moistened enamel. Adhesive-remnant scores were similar for all cements, except for cement Fuji Ortho LC when it was bonded to unetched enamel. The resin-glass ionomer cements we tested appear to have bond strengths suitable for routine use as orthodontic bracket-bonding adhesives.

  5. Comparative evaluation of sealing ability of glass ionomer-resin continuum as root-end filling materials: An in vitro study

    PubMed Central

    Chohan, Hitesh; Dewan, Harisha; Annapoorna, B. M.; Manjunath, M. K.

    2015-01-01

    Background and Objectives: Root-end filling is a prudent procedure aimed at sealing the root canal to prevent penetration of tissue fluids into the root canals. An ideal root-end filling material should produce a complete apical seal. Therefore, the aim of this study is to compare the leakage behavior of four different root-end filling materials. Materials and Methods: Sixty-eight maxillary central incisors were obturated with laterally condensed gutta-percha and AH plus sealer. The roots were resected at the level of 3 mm perpendicular to the long axis of the tooth. Root-end cavities were prepared with straight fissure stainless steel bur. The teeth were then divided into four experimental and two control groups, and cavities restored as per the groupings. The teeth were immersed in methylene blue for 48 h, split longitudinally, and dye penetration was measured. Results: A highly significant difference existed in the mean dye penetration of Group I (conventional glass ionomer) and the other groups (resin-modified glass ionomer, polyacid-modified composite, and composite resin). There was no statistically significant difference among the three groups. Conclusions: (1) Significant difference was found in the dye penetration values of conventional glass ionomer cement and other groups. (2) No statistically significant difference was found in the dye penetration values of groups II, III, and IV. PMID:26759803

  6. One year comparative clinical evaluation of EQUIA with resin-modified glass ionomer and a nanohybrid composite in noncarious cervical lesions

    PubMed Central

    Vaid, Deepa Sunil; Shah, Nimisha Chinmay; Bilgi, Priyanka Shripad

    2015-01-01

    Aims: Comparative evaluation of EQUIA with a resin-modified glass ionomer cement (RMGIC; GC Gold Label glass ionomer light cured universal restorative cement) and a nanohybrid composite (Tetric N-Ceram) in noncarious cervical lesions (NCCLs). Background: To establish the most suitable material for the restoration of NCCLs. Settings and Design: In vivo study. Materials and Methods: Eighty-seven NCCLs were randomly restored with EQUIA, a RMGIC, and a nanohybrid composite. Clinical evaluation of the restorations was done following the Unites States Public Health criteria by a single-blinded investigator. Data were formulated, and statistical analysis was done by Chi-square test. Statistical Analysis Used: Chi-square test. Results: No significant difference was found between EQUIA, RMGIC, and nanohybrid composite at 1-month, at 6 months, and at 1-year (P > 0.05). Conclusions: EQUIA, resin-modified glass ionomer, and nanohybrid composite performed equally at 1-month, 6 months, and 1-year follow-up periods. PMID:26752837

  7. Evaluation and comparison of the effect of different surface preparations on bond strength of glass ionomer cement with nickel-chrome metal-ceramic alloy: a laboratory study.

    PubMed

    Hasti, Kalpana; Jagadeesh, H G; Patil, Narendra P

    2011-03-01

    Retention of fixed partial dentures is mostly dependent upon the bond between metal and cement as well as cement and tooth structure. However, most of the time clinical failure of bond has been observed at metal and cement interface. The treatment of metal surface, prior to luting, plays a crucial role in bonding cement with the metal. This study is conducted to evaluate and compare the effect of different surface preparations on the bond strength of resin-modified glass ionomer cement with nickel-chromium metal ceramic alloy. Fifty caries-free extracted molar teeth were made flat until the dentin of the occlusal surface was exposed. After fabrication of the wax patterns and subsequent castings, the castings were subjected to porcelain firing cycles. The nickel-chromium metal ceramic alloy discs were also divided into five groups and subjected to various surface treatments: (1) Unsandblasted (U), (2) sandblasted (S), (3) sandblasted and treated with 10% aqueous solution of KMnO4 (SK), (4) unsandblasted and roughened with diamond abrasive points (UD) and (5) unsandblasted and roughened with diamond abrasive points and treated with 10% aqueous solution of KMnO(4) (UDK). After surface treatments, the castings were cemented using Fuji PLUS encapsulated resin-modified glass ionomer cement. The obtained values of all the groups were subjected to statistical analysis for Tensile and Shear bond strength. Different surface treatments of the metal affects the bond strength values of resin-modified glass ionomer cement when used as luting agent.

  8. Sealing Ability of Nano-ionomer in Primary Teeth: An ex vivo Study

    PubMed Central

    Karkare, Swati

    2016-01-01

    Introduction Microleakage is an important consideration in primary dentition because the floor of the cavity preparation may be close to the pulp. The added insult to the pulp caused by seepage of irritants around the restoration and through the thin dentin may produce irreversible pulp damage. Aim The objective of this study was to evaluate and compare the sealing ability of three light cured (LC) resin-modified glass-ionomer cements (RMGICs) in primary anterior teeth. Materials and methods Class V cavity was prepared on the labial surface of extracted primary anterior teeth which were then grouped and restored with Ketac N100, Fuji II LC, or Vitremer. Dye penetration test with methylene blue stain was used to record the microleakage. Depth of dye penetration was recorded in millimeters at the incisal and gingival margin using computer software. Results The depth of dye penetration at the incisal margin in the three groups was comparable, but at the gingival margin, Vitremer showed the least dye penetration, followed by Fuji II LC, and Ketac N100. The depth of dye penetration at the gingival margin was higher than the incisal margins in all the three groups. Conclusion Among the three RMGICs, Vitremer can be considered as the material of choice for restoring class V cavities in primary anterior teeth. Periodic recall and recare is necessary when any of the three materials are used in clinical practice. How to cite this article Siddiqui F, Karkare S. Sealing Ability of Nano-ionomer in Primary Teeth: An ex vivo Study. Int J Clin Pediatr Dent 2016;9(3):209-213. PMID:27843251

  9. A comparison study on the flexural strength and compressive strength of four resin-modified luting glass ionomer cements.

    PubMed

    Li, Yuan; Lin, Hong; Zheng, Gang; Zhang, Xuehui; Xu, Yongxiang

    2015-01-01

    The purpose of this study is to compare the differences in flexural strength and compressive strength between four resin-modified luting glass ionomer cements that are commonly used in clinics. Furthermore, this study investigates the influence of curing mode on the flexural strength and compressive strength of dual-cured resin-modified glass ionomer cements. Initially, flexural strength and compressive strength test specimens were prepared for RL, NR, GCP, and GCC. The RL group and NR group were cured by the light-curing mode and chemical-curing mode. Five specimens were prepared for each test group, and the flexural strength and compressive strength of each were measured. Data were analyzed by one-way ANOVA with SPSS 13.0. Furthermore, the fracture morphology of the flexural specimens was observed by SEM. The result of the mean flexural strength of each group is as follows: the NR light-cured group > NR chemically-cured group > GCP > RL light-cured group > GCC > RL chemically-cured group. More specifically, the flexural strength of the NR light-cured group ((42.903±4.242) MPa) is significantly higher (P<0.05) than those of the other groups, and in addition, the flexural strength of the light-curing mode is significantly higher (P<0. 05) than that of both the NR and RL chemically-cured groups. The result of the mean compressive strength of each group is as follows: GCP > NR chemically-cured group > NR light-cured group > GCC > RL light-cured group > RL chemically-cured group. Although the compressive strengths of the NR and GCP groups are higher than those of the GCC and RL groups, there are no significant differences (P>0.05) between NR and GCP, and no significant differences between GCC and RL. Furthermore, there are no significant differences (P>0.05) between the two curing modes on NR and RL. From the present study, it can be concluded that NR has superior flexural strength and compressive strength compared to the other three materials. Additionally, the

  10. Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO.

    PubMed

    Kim, Dong-Ae; Abo-Mosallam, Hany; Lee, Hye-Young; Lee, Jung-Hwan; Kim, Hae-Won; Lee, Hae-Hyoung

    2015-01-01

    Some weaknesses of conventional glass ionomer cement (GIC) as dental materials, for instance the lack of bioactive potential and poor mechanical properties, remain unsolved.Objective The purpose of this study was to investigate the effects of the partial replacement of CaO with MgO or ZnO on the mechanical and biological properties of the experimental glass ionomer cements.Material and Methods Calcium fluoro-alumino-silicate glass was prepared for an experimental glass ionomer cement by melt quenching technique. The glass composition was modified by partial replacement (10 mol%) of CaO with MgO or ZnO. Net setting time, compressive and flexural properties, and in vitrorat dental pulp stem cells (rDPSCs) viability were examined for the prepared GICs and compared to a commercial GIC.Results The experimental GICs set more slowly than the commercial product, but their extended setting times are still within the maximum limit (8 min) specified in ISO 9917-1. Compressive strength of the experimental GIC was not increased by the partial substitution of CaO with either MgO or ZnO, but was comparable to the commercial control. For flexural properties, although there was no significance between the base and the modified glass, all prepared GICs marked a statistically higher flexural strength (p<0.05) and comparable modulus to control. The modified cements showed increased cell viability for rDPSCs.Conclusions The experimental GICs modified with MgO or ZnO can be considered bioactive dental materials.

  11. Biological and mechanical properties of an experimental glass-ionomer cement modified by partial replacement of CaO with MgO or ZnO

    PubMed Central

    Dong-Ae, KIM; Hany, ABO-MOSALLAM; Hye-Young, LEE; Jung-Hwan, LEE; Hae-Won, KIM; Hae-Hyoung, LEE

    2015-01-01

    Some weaknesses of conventional glass ionomer cement (GIC) as dental materials, for instance the lack of bioactive potential and poor mechanical properties, remain unsolved. Objective The purpose of this study was to investigate the effects of the partial replacement of CaO with MgO or ZnO on the mechanical and biological properties of the experimental glass ionomer cements. Material and Methods Calcium fluoro-alumino-silicate glass was prepared for an experimental glass ionomer cement by melt quenching technique. The glass composition was modified by partial replacement (10 mol%) of CaO with MgO or ZnO. Net setting time, compressive and flexural properties, and in vitro rat dental pulp stem cells (rDPSCs) viability were examined for the prepared GICs and compared to a commercial GIC. Results The experimental GICs set more slowly than the commercial product, but their extended setting times are still within the maximum limit (8 min) specified in ISO 9917-1. Compressive strength of the experimental GIC was not increased by the partial substitution of CaO with either MgO or ZnO, but was comparable to the commercial control. For flexural properties, although there was no significance between the base and the modified glass, all prepared GICs marked a statistically higher flexural strength (p<0.05) and comparable modulus to control. The modified cements showed increased cell viability for rDPSCs. Conclusions The experimental GICs modified with MgO or ZnO can be considered bioactive dental materials. PMID:26398508

  12. Morphological Changes Of The Root Surface And Fracture Resistance After Treatment Of Root Fracture By CO2 Laser And Glass Ionomer Or Mineral Trioxide Aggregates

    NASA Astrophysics Data System (ADS)

    Badr, Y. A.; Abd El-Gawad, L. M.; Ghaith, M. E.

    2009-09-01

    This in vitro study evaluates the morphological changes of the root surface and fracture resistance after treatment of root cracks by CO2 laser and glass Ionomer or mineral trioxide aggregates (MTA). Fifty freshly extracted human maxillary central incisor teeth with similar dimension were selected. Crowns were sectioned at the cemento-enamel junction, and the lengths of the roots were adjusted to 13 mm. A longitudinal groove with a dimension of 1×5 mm2 and a depth of 1.5 mm was prepared by a high speed fissure bur on the labial surface of the root. The roots were divided into 5 groups: the 10 root grooves in group 1 were remained unfilled and were used as a control group. The 10 root grooves in group 2 were filled with glass Ionomer, 10 root grooves in group 3 were filled with MTA, the 10 root grooves in group 4 were filled with glass Ionomer and irradiated by CO2 laser and the 10 root grooves in group 5 were filled with MTA and irradiated with CO2 laser. Scanning electron microscopy was performed for two samples in each group. Tests for fracture strength were performed using a universal testing machine and a round tip of a diameter of 4 mm. The force was applied vertically with a constant speed of 1 mm min 1. For each root, the force at the time of fracture was recorded in Newtons. Results were evaluated statistically with ANOVA and Turkey's Honestly Significant Difference (HSD) tests. SEM micrographs revealed that the melted masses and the plate-like crystals formed a tight Chemical bond between the cementum and glass Ionomer and melted masses and globular like structure between cementum and MTA. The mean fracture resistance was the maximum fracture resistance in group 5 (810.8 N). Glass Ionomer and MTA with the help of CO2 laser can be an alternative to the treatment of tooth crack or fracture. CO2 laser increase the resistance of the teeth to fracture.

  13. A comparison of tissue reactions to Ketac-Fil and amalgam.

    PubMed

    DeGrood, M E; Oguntebi, B R; Cunningham, C J; Pink, R

    1995-02-01

    The objective of this study was to compare the bone tissue reactions of Ketac-Fil to the most commonly used retrograde filling material, amalgam, in a rat model. Forty-eight Harlan rats were divided into three groups: amalgam, Ketac-Fil, and controls. Following anesthesia, the right lower incisor was extracted from each animal. A 3-mm long x 1-mm diameter polyethylene tube filled with amalgam or Ketac-Fil was implanted in the extraction site. The animals were killed at 14, 42, and 90 days; and the mandibles were dissected en block and processed histologically. The inflammatory reaction was assessed by the number of plasma cells, lymphocytes, polymorphonuclear neutrophils, giant cells, and osteoclasts within 100 microns of the implant. Bone formation was determined as either present or absent in the same area. There was no statistically significant bone apposition within 100 microns of the Ketac material, and there was a statistically significant increase in inflammation in the amalgam group. This study indicates that both Ketac-Fil and amalgam are relatively biocompatible, and provides support for clinical usage tests of Ketac-Fil as a retrograde filling material.

  14. Preferential attachment of human gingival fibroblasts to the resin ionomer Geristore.

    PubMed

    Al-Sabek, Fuwad; Shostad, Sandra; Kirkwood, Keith L

    2005-03-01

    The resin ionomer Geristore has been used extensively for root perforation repairs. The purpose of this study was to evaluate oral in vitro biocompatibility of the resin ionomer Geristore compared to two other dental perforation repair materials, Ketac-Fil and Immediate Restorative Material (IRM). Growth and morphology of human gingival fibroblasts (HGFs) was determined using scanning electron microscopy (SEM) of HGFs cells grown on test materials as well as cytotoxicity assays using eluates from test materials. SEM analysis showed that HGFs attached and spread well over Geristore with relatively normal morphology. SEM showed that fibroblasts did not attach and spread well over Ketac-Fil or IRM as cells appeared much fewer with rounded and different morphology than fibroblasts grown on Geristore. Cytotoxicity assays indicated that HGFs proliferated in the presence of Geristore eluates and not in the presence of Ketac-Fil or IRM eluates. In vitro interpretation indicates that Geristore is less cytotoxic to gingival fibroblasts.

  15. Cytotoxicity evaluation of a new fast set highly viscous conventional glass ionomer cement with L929 fibroblast cell line

    PubMed Central

    Ahmed, Hany Mohamed Aly; Omar, Nor Shamsuria; Luddin, Norhayati; Saini, Rajan; Saini, Deepti

    2011-01-01

    Aim: This study aims to evaluate the cytotoxicity of a new fast set highly viscous conventional glass ionomer cement (GIC) with L929 fibroblasts. Materials and Methods: The cement capsule was mixed and introduced into a paraffin wax mould. After setting, the cement was incubated in Dulbecco's Modified Eagle's Medium. Six replicates of the material extract were added to the culture medium in 96-well plates. L929 mouse fibroblast cells were added into the wells and then incubated for 48 h. Dimethylthiazol diphenyltetrazolium bromide test was performed for cytotoxicity evaluation. Results: The results showed that this GIC brand did not yield a half-maximal inhibitory concentration value, IC50, as the cell viability was above 50% at all concentrations. Cell viability over 90% was observed at the concentrations of 3.125 and 1.5625 mg/ml. Maximum concentration of the material showed cell viability of 59.4%. Conclusions: This new fast set highly viscous conventional GIC showed low cytotoxicity to mouse fibroblast cells, and it can be suggested as a substitute for dental cements exhibiting a long setting time. PMID:22144813

  16. Comparative study of fluoride released and recharged from conventional pit and fissure sealants versus surface prereacted glass ionomer technology

    PubMed Central

    Salmerón-Valdés, Elias Nahum; Scougall-Vilchis, Rogelio J; Alanis-Tavira, Jorge; Morales-Luckie, Raúl Alberto

    2016-01-01

    Context: The fluoride release of sealants in vitro shows a marked decrease. Giomers are distinguishable from manufactured resin-based sealants and contain prereacted glass-ionomer particles (PRG). Aims: To compare the amounts of fluoride released from the main pit and fissure of a resin-based sealant with that from a Giomer and to assess the abilities of the sealant and the Giomer to recharge when exposed to regular use of fluoride rinse. Materials and Methods: The readings for the fluoride concentration were carried out for 60 days using a fluoride ion-specific electrode. After this period, the samples were recharged using a fluoride mouth rinse. The amount of fluoride released after this recharge was determined for 5 days. The data were analyzed using Student's t- and analysis of variance tests. Results: In general, all materials presented higher fluoride release in the first 24 h; G1 and G4 showed a higher fluoride release in this period. On the other hand, G3 and G1 presented the most constant fluoride release until the 8th day, wherein all the sealants considerably decreased in the amount of fluoride released. Conclusion: G1 and G3 released higher concentrations of fluoride, although no significant differences were found. Giomers recharged in the first 24 h after polymerization presented an improved and sustained fluoride release. PMID:26957792

  17. A novel star-shaped poly(carboxylic acid) for resin-modified glass-ionomer restoratives.

    PubMed

    Weng, Y; Howard, L; Xie, D

    2014-07-01

    We have developed a novel glass-ionomer cement (GIC) system composed of photo-curable star-shaped poly(acrylic acid-co-itaconic acid)s. These polyacids were synthesized via a chain-transfer radical polymerization using a newly synthesized multi-arm chain-transfer agent. The star-shaped polyacids showed significantly lower viscosities in water as compared to the linear polyacids. Due to the lower viscosities, the molecular weight (MW) of the polyacids can be significantly increased for enhancing the mechanical strengths while keeping the ease of mixing and handling. The effects of MW, GM-tethering ratio, P/L ratio, and aging on the compressive properties of the experimental cements were significant. The light-cured experimental cements showed significantly improved mechanical strengths i.e. 49% in yield strength, 41% in modulus, 25% in CS, 20% in DTS, and 36% in FS, higher than commercial Fuji II LC. After aging in water for 1 month, the compressive strength of the novel light-cured experimental cement reached 343 MPa, which was 34% and 42% higher than Fuji II and Fuji II LC, respectively. This one-month aged experimental cement was also 23% higher than itself after one day aging, indicating that aging in water can significantly enhance salt-bridge formation for this novel star-shaped polyacid-comprised GIC.

  18. Fluoride release and recharge characteristics of denture base resins containing surface pre-reacted glass-ionomer filler.

    PubMed

    Kamijo, Kazuko; Mukai, Yoshiharu; Tominaga, Takatoshi; Iwaya, Izumi; Fujino, Fukue; Hirata, Yukio; Teranaka, Toshio

    2009-03-01

    The flexural strength, flexural modulus, and the amount of fluoride released from four experimental denture base resins containing 5, 10, 20 and 30 wt% surface pre-reacted glass-ionomer (S-PRG) filler added to the powder were evaluated. The mean flexural strength of the experimental resins, except the 30 wt%, and the flexural modulus of all the resins, complied with ISO 1567 requirements. In the 20 wt% resin, the amount of fluoride released in the initial phase was 1.88 microg/cm2/day, after which the level decreased. After recharging in a 9000 ppm fluoride solution for eight hours, the level of released fluoride increased markedly to 40.21 microg/cm2/16 hrs. Our results show that fluoride levels increased as a function of the S-PRG filler content. After the almost completely discharged resins were recharged, similar fluoride release occurred again. These results suggest that denture base resins containing S-PRG filler have great recharge and release capabilities which may assist in preventing root caries of abutment teeth.

  19. Evaluation of micro-shear bond strength of resin modified glass-ionomer to composite resins using various bonding systems

    PubMed Central

    Kasraie, Shahin; Shokripour, Mohadese; Safari, Mahin

    2013-01-01

    Aim: The aim was to compare the micro-shear bond strength between composite and resin-modified glass-ionomer (RMGI) by different adhesive systems. Materials and Methods: A total of 16 discs of RMGI with a diameter of 15 mm and a thickness of 2 mm were randomly divided into four groups (n = 4). Four cylinders of composite resin (z250) were bonded to the RMGI discs with Single Bond, Clearfil SE Bond and Clearfil S3 Bond in Groups 1-3, respectively. The fourth group was the control. Samples were tested by a mechanical testing machine with a strain rate of 0.5 mm/min. Failure mode was assessed under a stereo-microscope. Results: The means of micro-shear bond strength values for Groups 1-4 were 14.45, 23.49, 16.23 and 5.46 MPa, respectively. Using a bonding agent significantly increased micro-shear bond strength (P = 0.0001). Conclusion: Micro-shear bond strength of RMGI to composite increased significantly with the use of adhesive resin. The bond strength of RMGI to composite resin could vary depending upon the type of adhesive system used. PMID:24347892

  20. Evaluation of antibacterial and antifungal activity of new calcium-based cement (Biodentine) compared to MTA and glass ionomer cement

    PubMed Central

    Bhavana, Vankayala; Chaitanya, Krishna Popuri; Gandi, Padma; Patil, Jayaprakash; Dola, Binoy; Reddy, Rahul B.

    2015-01-01

    Objective: To evaluate the antibacterial and antifungal properties of calcium-based cement, Biodentine (Ca3SiO2), compared to commercial glass ionomer cements (GICs) and mineral trioxide aggregate (MTA). Materials and Methods: Pellets of GICs, ProRoot MTA, and Biodentine were prepared to test the influence of these cements on the growth of four oral microbial strains: Streptococcus mutans, Enterococcus faecalis, Escherichia coli, and Candida albicans; using agar diffusion method. Wells were formed by removing the agar and the manipulated materials were immediately placed in the wells. The pellets were lodged in seeded plates and the growth inhibition diameter around the material was measured after 24-72 h incubation at 37°C. The data were analyzed using analysis of variance (ANOVA) test to compare the differences among the three cements at different concentrations. Results: Test indicates that the antimicrobial activity of Biodentine, on all the microorganisms tested, was very strong, showing a mean inhibition zone of 3.2 mm, which extends over time towards all the strains. For Biodentine, GIC, and MTA, the diameters of the inhibition zones for S. mutans were significantly larger than for E. faecalis, Candida, and E. coli (P < 0.05). Conclusion: All materials showed antimicrobial activity against the tested strains except for GIC on Candida. Largest inhibition zone was observed for Streptococcus group. Biodentine created larger inhibition zones than MTA and GIC. PMID:25657526

  1. Streptococcus mutans-induced secondary caries adjacent to glass ionomer cement, composite resin and amalgam restorations in vitro.

    PubMed

    Gama-Teixeira, Adriana; Simionato, Maria Regina Lorenzeti; Elian, Silvia Nagib; Sobral, Maria Angela Pita; Luz, Maria Aparecida Alves de Cerqueira

    2007-01-01

    The aim of this study was to define, in vitro, the potential to inhibit secondary caries of restorative materials currently used in dental practice. Standard cavities were prepared on the buccal and lingual surfaces of fifty extracted human third molars. The teeth were randomly divided into five groups, each one restored with one of the following materials: glass ionomer cement (GIC); amalgam; light-cured composite resin; ion-releasing composite; and light-cured, fluoride-containing composite resin. The teeth were thermocycled, sterilized with gamma irradiation, exposed to a cariogenic challenge using a bacterial system using Streptococcus mutans, and then prepared for microscopic observation. The following parameters were measured in each lesion formed: extension, depth, and caries inhibition area. The outer lesions developed showed an intact surface layer and had a rectangular shape. Wall lesions were not observed inside the cavities. After Analysis of Variance and Component of Variance Models Analysis, it was observed that the GIC group had the smallest lesions and the greatest number of caries inhibition areas. The lesions developed around Amalgam and Ariston pHc restorations had an intermediate size and the largest lesions were observed around Z-100 and Heliomolar restorations. It may be concluded that the restorative materials GIC, amalgam and ion-releasing composites may reduce secondary caries formation.

  2. Methotrexate-loaded glass ionomer cements for drug release in the skeleton: An examination of composition-property relationships.

    PubMed

    Kiri, Lauren; Filiaggi, Mark; Boyd, Daniel

    2016-01-01

    Chemotherapeutic-loaded bone cement may be an effective method of drug delivery for the management of cancer-related vertebral fractures that require cement injection for pain relief. Recent advancements in the development of aluminum-free glass ionomer cements (GICs) have rendered this class of biomaterials clinically viable for such applications. To expand the therapeutic benefits of these materials, this study examined, for the first time, their drug delivery potential. Through incrementally loading the GIC with methotrexate (MTX) by up to 10-wt%, composition-property relationships were established, correlating MTX loading with working time and setting time, as well as compressive strength, drug release, and cytotoxic effect over 31 days. The most significant finding of this study was that MTX was readily released from the GIC, while maintaining cytotoxic activity. Release correlated linearly with initial loading and appeared to be diffusion mediated, delivering a total of 1-2% of the incorporated drug. MTX loading in this range exerted minimal effects to handling and strength, indicating the clinical utility of the material was not compromised by MTX loading. The MTX-GIC systems examined herein are promising materials for combined structural delivery applications.

  3. Comparative evaluation of intracanal sealing ability of mineral trioxide aggregate and glass ionomer cement: An in vitro study

    PubMed Central

    Malik, Gauri; Bogra, Poonam; Singh, Simranjeet; Samra, Rupandeep K

    2013-01-01

    Aims: The purpose of this study was to compare the sealing ability of Mineral Trioxide Aggregate (MTA) and Glass Ionomer Cement (GIC) when used over gutta-percha as intracanal sealing materials. The study also evaluated the sealing ability of Zinc oxide eugenol (ZOE) cement and Acroseal sealer. Materials and Methods: Teeth were obturated with gutta-percha using sealer ZOE (group A, C, D) and Acroseal (group B). The groups were further divided into 2 subgroups (15 premolars each) on the basis of intracanal sealing material used: GIC subgroups (A1, B1) and MTA in subgroups (A2, B2). The clearing technique was used in this study for leakage evaluation. Seventy mandibular premolars were prepared using step-back technique and divided into experimental groups A and B (30 premolars each) and the positive and negative control groups C and D (5 premolars each). Statistical analysis used: Coronal microleakage was determined under stereomicroscope using 15X magnification. Data was statistically analyzed using one-way ANOVA followed by Post-Hoc Multiple comparison (Bonferroni). Results: MTA group leaked significantly less than GIC group (P < 0.05). Acroseal exhibited better sealing ability than ZOE sealer. Teeth with no intracanal barrier showed almost complete leakage. Conclusions: MTA may be preferred over GIC as an intracanal barrier. PMID:24347890

  4. Microhardness of glass ionomer cements indicated for the ART technique according to surface protection treatment and storage time.

    PubMed

    Shintome, Luciana Keiko; Nagayassu, Marcos Paulo; Di Nicoló, Rebeca; Myaki, Silvio Issáo

    2009-01-01

    The aim of this study was to assess the microhardness of 5 glass ionomer cements (GIC) - Vidrion R (V, SS White), Fuji IX (F, GC Corp.), Magic Glass ART (MG, Vigodent), Maxxion R (MR, FGM) and ChemFlex (CF, Dentsply) - in the presence or absence of a surface protection treatment, and after different storage periods. For each GIC, 36 test specimens were made, divided into 3 groups according to the surface protection treatment applied - no protection, varnish or nail varnish. The specimens were stored in distilled water for 24 h, 7 and 30 days and the microhardness tests were performed at these times. The data obtained were submitted to the ANOVA for repeated measures and Tukey tests (alpha = 5%). The results revealed that the mean microhardness values of the GICs were, in decreasing order, as follows: F > CF = MR > MG > V; that surface protection was significant for MR, at 24 h, without protection (64.2 + or - 3.6a), protected with GIC varnish (59.6 + or - 3.4b) and protected with nail varnish (62.7 + or - 2.8ab); for F, at 7 days, without protection (97.8 + or - 3.7ab), protected with varnish (95.9 + or - 3.2b) and protected with nail varnish (100.8 + or - 3.4a); and at 30 days, for F, without protection (98.8 + or - 2.6b), protected with varnish (103.3 + or - 4.4a) and protected with nail varnish (101 + or - 4.1ab) and, for V, without protection (46 + or - 1.3b), protected with varnish (49.6 + or - 1.7ab) and protected with nail varnish (51.1 + or - 2.6a). The increase in storage time produced an increase in microhardness. It was concluded that the different GICs, surface protection treatments and storage times could alter the microhardness values.

  5. Reactions in glass ionomer cements: V. Effect of incorporating tartaric acid in the cement liquid.

    PubMed

    Crisp, S; Wilson, A D

    1976-01-01

    A description is give of the effect on the ASPA cement reaction of tartaric acid incorporated in the cement liquid. Tartaric acid acts as an accelerator that aids in the extraction of ions from the aluminosilicate glass and facilitates their binding to the polyanion chains. Postgelation hardening is significantly increased. Working time is unaffected possibly because cations are initially present as complexes.

  6. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: Biophotonics-based interfacial analyses in health and disease

    PubMed Central

    Watson, Timothy F.; Atmeh, Amre R.; Sajini, Shara; Cook, Richard J.; Festy, Frederic

    2014-01-01

    Objective Since their introduction, calcium silicate cements have primarily found use as endodontic sealers, due to long setting times. While similar in chemistry, recent variations such as constituent proportions, purities and manufacturing processes mandate a critical understanding of service behavior differences of the new coronal restorative material variants. Of particular relevance to minimally invasive philosophies is the potential for ion supply, from initial hydration to mature set in dental cements. They may be capable of supporting repair and remineralization of dentin left after decay and cavity preparation, following the concepts of ion exchange from glass ionomers. Methods This paper reviews the underlying chemistry and interactions of glass ionomer and calcium silicate cements, with dental tissues, concentrating on dentin–restoration interface reactions. We additionally demonstrate a new optical technique, based around high resolution deep tissue, two-photon fluorescence and lifetime imaging, which allows monitoring of undisturbed cement–dentin interface samples behavior over time. Results The local bioactivity of the calcium-silicate based materials has been shown to produce mineralization within the subjacent dentin substrate, extending deep within the tissues. This suggests that the local ion-rich alkaline environment may be more favorable to mineral repair and re-construction, compared with the acidic environs of comparable glass ionomer based materials. Significance The advantages of this potential re-mineralization phenomenon for minimally invasive management of carious dentin are self-evident. There is a clear need to improve the bioactivity of restorative dental materials and these calcium silicate cement systems offer exciting possibilities in realizing this goal. PMID:24113131

  7. Efficacy of Glass Ionomer Cements for Prevention of White Spot Lesions During Orthodontic Banding: A Randomized Clinical Trial

    PubMed Central

    Fallahinejad Ghajari, Masoud; Eslamian, Ladan; Naji Rad, Azam; Morovati, Seyyedeh Pouya

    2015-01-01

    Objectives: This study aimed to compare the incidence of white spot lesions (WSLs) around orthodontic bands following the application of two glass ionomer (GI) cements namely GC Gold Label and GC Fuji Plus for six to 12 months. Materials and Methods: A total of 186 permanent first molars of orthodontic patients requiring banding of at least two permanent first molars were chosen. The teeth were examined for caries and presence of WSLs by visual inspection and by DIAGNOdent (scores 0–29). Orthodontic bands were randomly cemented to the right or left molars using GC Gold Label or GC Fuji Plus GI cements. Samples were randomly divided into three groups and bands were removed after six, nine and 12 months in groups 1, 2 and 3, respectively. The teeth were then examined for caries and presence of WSLs by visual inspection. DIAGNOdent was used on the buccal and lingual surfaces to determine the presence of WSLs. The data were statistically analyzed using one-way ANOVA, multivariate repeated measures ANOVA, the Kruskal Wallis and the Mann-Whitney tests. Results: Totally 174 teeth were evaluated. DIAGNOdent scores were not significantly different before cementation and after removal of bands in buccal and lingual surfaces of the teeth in the two cement groups. Lesions simulating WSLs were seen in 21 out of 174 teeth but DIAGNOdent scores were not indicative of caries. Conclusion: Remarkable WSLs were not detected visually or by DIAGNOdent at six, nine or 12 months following the cementation of bands with two GI cements. PMID:27559351

  8. Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms

    PubMed Central

    Liu, Sze-Wei; Myroforidis, Helen; Zalizniak, Ilya; Palamara, Joseph E. A.; Huq, N. Laila; Reynolds, Eric C.

    2016-01-01

    Glass ionomer cements (GIC) are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm) formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge. PMID:27589264

  9. Characterization of the Mineral Trioxide Aggregate–Resin Modified Glass Ionomer Cement Interface in Different Setting Conditions

    PubMed Central

    Eid, Ashraf A.; Komabayashi, Takashi; Watanabe, Etsuko; Shiraishi, Takanobu; Watanabe, Ikuya

    2012-01-01

    Introduction Mineral trioxide aggregate (MTA) has been used successfully for perforation repair, vital pulpotomies, and direct pulp capping. However, little is known about the interactions between MTA and glass ionomer cement (GIC) in final restorations. In this study, 2 null hypotheses were tested: (1) GIC placement time does not affect the MTA-GIC structural interface and hardness and (2) moisture does not affect the MTA-GIC structural interface and hardness. Methods Fifty cylinders were half filled with MTA and divided into 5 groups. The other half was filled with resin-modified GIC either immediately after MTA placement or after 1 or 7 days of temporization in the presence or absence of a wet cotton pellet. The specimens were then sectioned, carbon coated, and examined using a scanning electron microscope and an electron probe micro-analyzer (SEM-EPMA) for interfacial adaptation, gap formation, and elemental analysis. The Vickers hardness numbers of the interfacial MTA were recorded 24 hours after GIC placement and 8 days after MTA placement and analyzed using the analysis of variance test. Results Hardness testing 24 hours after GIC placement revealed a significant increase in hardness with an increase of temporization time but not with a change of moisture conditions (P < .05). Hardness testing 8 days after MTA placement indicated no significant differences among groups. SEM-EPMA showed interfacial adaptation to improve with temporization time and moisture. Observed changes were limited to the outermost layer of MTA. The 2 null hypotheses were not rejected. Conclusions GIC can be applied over freshly mixed MTA with minimal effects on the MTA, which seemed to decrease with time. PMID:22794220

  10. Shear Bond Strength of Self-Adhering Flowable Composite and Resin-modified Glass Ionomer to Two Pulp Capping Materials

    PubMed Central

    Doozaneh, Maryam; Koohpeima, Fatemeh; Firouzmandi, Maryam; Abbassiyan, Forugh

    2017-01-01

    Introduction: The aim of this study was to compare the shear bond strength of a self-adhering flowable composite (SAFC) and resin-modified glass ionomer (RMGI) to mineral trioxide aggregate (MTA) and calcium-enriched mixture (CEM) cement. Methods and Materials: A total of 72 acrylic blocks with a central hole (4 mm in diameter and 2 mm in depth) were prepared. The holes were filled with MTA (sub group A) and CEM cement. The specimens of both restorative materials were divided into 6 groups; overall there were 12 groups. In groups 1 and 4, SAFC was used without bonding while in groups 2 and 5 SAFC was used with bonding agent. In all these groups the material was placed into the plastic mold and light cured. In groups 3 and 6, after surface conditioning with poly acrylic acid and rinsing, RMGI was placed into the mold and photo polymerized. After 24 h, the shear bond strength values were measured and fracture patterns were examined by a stereomicroscope. Data were analyzed using the two-way ANOVA and student’s t-test. Results: The use of bonding agent significantly increased the shear bond strength of FC to MTA and CEM cement (P=0.008 and 0.00, respectively). In both materials, RMGI had the lowest shear bond strength values (2.25 Mpa in MTA and 1.32 Mpa in CEM). The mean shear bond strength were significantly higher in MTA specimen than CEM cement (P=0.003). There was a significant differences between fracture patterns among groups (P=0.001). Most failures were adhesive/mix in MTA specimen but in CEM cement groups the cohesive failures were observed in most of the samples. Conclusion: The bond strength of self-adhering flowable composite resin to MTA and CEM cement was higher than RMGI which was improved after the additional application of adhesive. PMID:28179935

  11. Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms.

    PubMed

    Dashper, Stuart G; Catmull, Deanne V; Liu, Sze-Wei; Myroforidis, Helen; Zalizniak, Ilya; Palamara, Joseph E A; Huq, N Laila; Reynolds, Eric C

    2016-01-01

    Glass ionomer cements (GIC) are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm) formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge.

  12. Marginal gap, cement thickness, and microleakage of 2 zirconia crown systems luted with glass ionomer and MDP-based cements.

    PubMed

    Sener, Isil; Turker, Begum; Valandro, Luiz Felipe; Ozcan, Mutlu

    2014-01-01

    This in vitro study evaluated the marginal gap, cement thickness, and microleakage of glass-ionomer cement (GIC) and phosphate monomer-containing resin cement (MDP-RC) under 2 zirconia crown systems (Cercon and DC-Zirkon). Forty human premolars were prepared for all-ceramic zirconia crowns with a 1 mm circumferential finish line and a 1.5 mm occlusal reduction. The crowns (n = 10 per group) from each zirconia system were randomly divided into 2 groups and cemented either with GIC (Vivaglass CEM) or MDP-RC (Panavia F 2.0) cement. The cemented crowns were thermocycled 5000 times (5°-55°C). The crowns were immersed in 0.5% basic fuchsine dye solution for 24 hours and sectioned buccolingually and mesiodistally. Specimens were examined under optical microscope (100X). Data were analyzed using Student t-test and chi-square tests (α = 0.05). Mean marginal gap values for Cercon (85 ± 11.4 μm) were significantly higher than for DC-Zircon (75.3 ± 13.2 μm) (P = 0.018). The mean cement thickness values of GIC (81.7 ± 13.9 μm) and MDP-RC (78.5 ± 12.5 μm) were not significantly different (P = 0.447). Microleakage scores did not demonstrate significant difference between GIC (P = 0.385) and MDP-RC (P = 0.631) under Cercon or DC-Zircon. Considering the cement thickness values and microleakage scores obtained, both zirconia crown systems could be cemented in combination with either GIC or MDP-RC.

  13. Effect of novel chitosan-fluoroaluminosilicate resin modified glass ionomer cement supplemented with translationally controlled tumor protein on pulp cells.

    PubMed

    Wanachottrakul, Nattaporn; Chotigeat, Wilaiwan; Kedjarune-Leggat, Ureporn

    2014-04-01

    Dental materials that can promote cell proliferation and function is required for regenerative pulp therapy. Resin modified glass ionomer cement (RMGIC), a broadly used liner or restorative material, can cause apoptosis to pulp cells mainly due to HEMA (2-hydroxyethyl methacrylate), the released residual monomer. Recent studies found that chitosan and albumin could promote release of protein in GIC while translationally controlled tumor protein (TCTP) has an anti-apoptotic activity against HEMA. The aim of this study was to examine the effect of chitosan and albumin modified RMGIC (Exp-RMGIC) supplemented with TCTP on pulp cell viability and mineralization. Exp-RMGIC+TCTP was composed of RMGIC powder incorporated with 15 % of chitosan, 5 % albumin and supplemented with TCTP mixed with the same liquid components of RMGIC. The effect of each specimen on pulp cells was examined using the Transwell plate. From the MTT assay, Exp-RMGIC+TCTP had the highest percentages of viable cells (P < 0.05) at both 24 and 74 h. Flow cytometry revealed that, after 24 h, Exp-RMGIC+TCTP gave the lowest percentages of apoptotic cells compared to other groups. There was no difference in alkaline phosphatase (ALP) activity among different formula of the specimens, while cells cultured in media with TCTP had higher ALP activity. Von Kossa staining revealed that RMGIC+TCTP, and Exp-RMGIC+TCTP had higher percentages of calcium deposit area compared to those without TCTP. It was concluded that Exp-RMGIC supplemented with TCTP had less cytotoxicity than RMGIC and can protect cells from apoptosis better than RMGIC supplemented with TCTP.

  14. In-vitro Study on Temperature Changes in the Pulp Chamber Due to Thermo-Cure Glass Ionomer Cements.

    PubMed

    van Duinen, Raimond Nb; Shahid, Saroash; Hill, Robert; Glavina, Domagoj

    2016-12-01

    The application of the Glass Ionomer Cements in clinical dentistry is recommended due to properties such as fluoride release, chemical adhesion to tooth, negligible setting shrinkage, and coefficient of thermal expansion close to tooth, low creep, and good color stability. However, the cement is vulnerable to early exposure to moisture due to slow setting characteristics. The uses of external energy such as ultrasound and radiant heat (Thermo-curing) have been reported to provide acceleration of the setting chemistry and enhance physical properties. Aim: The aim of this in vitro study was to analyze temperature changes in the pulpal chamber when using radiant heat to accelerate the setting of GICs. Material and Methods:The encapsulated GIC Equia Forte was used for this study. The temperature changes in the pulp were measured using thermocouple in the cavities which were 2,6 and 4,7mm deep with and without filling. Results:The results showed that a temperature rise (ΔT) in the pulp chamber was 3,7°C. ΔT for the 2.6mm and 4.7mm deep cavity and without placing any restoration the temperature was 4,2°C and 2,6°C respectively. After the restoration has been placed, the ΔT range in the pulp chamber was lower ranging from 1.9°C to 2.4°C. Conclusion: It could be concluded that Thermo-curing of the GIC during the setting is safe for the pulp and can be recommended in clinical practice.

  15. BOND STRENGTH OF RESIN MODIFIED GLASS IONOMER CEMENT TO PRIMARY DENTIN AFTER CUTTING WITH DIFFERENT BUR TYPES AND DENTIN CONDITIONING

    PubMed Central

    Nicoló, Rebeca Di; Shintome, Luciana Keiko; Myaki, Silvio Issáo; Nagayassu, Marcos Paulo

    2007-01-01

    The aim of this in vitro study was to evaluate the effect of different bur types and acid etching protocols on the shear bond strength (SBS) of a resin modified glass ionomer cement (RM-GIC) to primary dentin. Forty-eight clinically sound human primary molars were selected and randomly assigned to four groups (n=12). In G1, the lingual surface of the teeth was cut with a carbide bur until a 2.0-mm-diameter dentin area was exposed, followed by the application of RM-GIC (Vitremer – 3M/ESPE) prepared according to the manufacturer’s instructions. The specimens of G2, received the same treatment of G1, however the dentin was conditioned with phosphoric acid. In groups G3 and G4 the same procedures of G1 and G2 were conducted respectively, nevertheless dentin cutting was made with a diamond bur. The specimens were stored in distilled water at 37°C for 24h, and then tested in a universal testing machine. SBS. data were submitted to 2-way ANOVA (= 5%) and indicated that SBS values of RM-GIC bonded to primary dentin cut with different burs were not statistically different, but the specimens that were conditioned with phosphoric acid presented SBS values significantly higher that those without conditioning. To observe micromorphologic characteristics of the effects of dentin surface cut by diamond or carbide rotary instruments and conditioners treatment, some specimens were examined by scanning electron microscopy. Smear layer was present in all specimens regardless of the type of rotary instrument used for dentin cutting, and specimens etched with phosphoric acid presented more effective removal of smear layer. It was concluded that SBS of a RM-GIC to primary dentin was affected by the acid conditioning but the bur type had no influence. PMID:19089179

  16. Adhesion of Streptococcus Mutans to Glass Ionomer, BisCem Cement and Enamel: An in Vitro Study

    PubMed Central

    Jalalian, Ezzatollah; Ahmadpour, Sogol

    2015-01-01

    Objectives: Considering the adhesion of some microorganisms such as Streptococcus mutans (S. mutans) to restorative materials and the unrecognized consequences of this phenomenon, and due to the controversies in this regard, it is important to discover the materials to which the lowest adhesion of S. mutans occurs. The objective of this study was to assess the level of adhesion of S. mutans to glass ionomer (GI), BisCem Cement and enamel. Materials and Methods: In this in vitro experimental study, 12 specimens including five GI blocks (GC America Inc., Alsip, IL, USA), five BisCem blocks (Bisco Inc., Schaumburg, IL, USA) and two enamel blocks were exposed to a bacterial suspension (1×106 mg/mL). After incubation for one hour at 37°C, the swab samples were taken and cultured in blood agar. The S. mutans colonies were counted by unaided vision after 48 hours of incubation. The results were analyzed using ANOVA followed by the Tukey’s test. Results: The number of colonies attributed to enamel, GI, and BisCem blocks was 24±2, 24.2±2.7 and 14.8±1.7 colonies/mm2, respectively. There was no difference between enamel and GI in terms of adhesion of S. mutans (P=0.08 and P>0.001, respectively); however, the difference between these two and BisCem was statistically significant (P= 0.00075 and P<0.001, respectively). Conclusion: Within the limitations of this study, BisCem cement is superior to GI for the cementation of indirect restorations. PMID:27148379

  17. Absence of carious lesions at margins of glass-ionomer cement and amalgam restorations: An update of systematic review evidence

    PubMed Central

    2011-01-01

    Background This article aims to update the existing systematic review evidence elicited by Mickenautsch et al. up to 18 January 2008 (published in the European Journal of Paediatric Dentistry in 2009) and addressing the review question of whether, in the same dentition and same cavity class, glass-ionomer cement (GIC) restored cavities show less recurrent carious lesions on cavity margins than cavities restored with amalgam. Methods The systematic literature search was extended beyond the original search date and a further hand-search and reference check was done. The quality of accepted trials was assessed, using updated quality criteria, and the risk of bias was investigated in more depth than previously reported. In addition, the focus of quantitative synthesis was shifted to single datasets extracted from the accepted trials. Results The database search (up to 10 August 2010) identified 1 new trial, in addition to the 9 included in the original systematic review, and 11 further trials were included after a hand-search and reference check. Of these 21 trials, 11 were excluded and 10 were accepted for data extraction and quality assessment. Thirteen dichotomous datasets of primary outcomes and 4 datasets with secondary outcomes were extracted. Meta-analysis and cumulative meta-analysis were used in combining clinically homogenous datasets. The overall results of the computed datasets suggest that GIC has a higher caries-preventive effect than amalgam for restorations in permanent teeth. No difference was found for restorations in the primary dentition. Conclusion This outcome is in agreement with the conclusions of the original systematic review. Although the findings of the trials identified in this update may be considered to be less affected by attrition- and publication bias, their risk of selection- and detection/performance bias is high. Thus, verification of the currently available results requires further high-quality randomised control trials. PMID

  18. Interfacial characteristics of resin-modified glass-ionomer materials: a study on fluid permeability using confocal fluorescence microscopy.

    PubMed

    Sidhu, S K; Watson, T F

    1998-09-01

    The tooth interface with resin-modified glass-ionomer cements (RM GICs) is poorly understood. This study examined the interface, especially with dentin. Cervical cavities in extracted teeth were restored with Fuji II LC, Vitremer, Photac-Fil, or a conventional GIC, Fuji Cap II. Fluorescent dye was placed in the pulp chambers for 3 hrs before the specimens were sectioned. Examination of the tooth/material interface with a confocal microscope showed that dye uptake by the restoration varied among materials. A "structureless", non-particulate, highly-stained layer of GIC was observed next to dentin in Fuji II LC. This layer varied in width, was prominent where the dentin tubules were cut "end-on" and in areas closer to the pulp, and was not seen adjacent to enamel. Vitremer showed minimal dye uptake, and the "structureless" layer was barely discernible. Photac-Fil showed more uniform uptake and absence of this layer. Cracking of enamel was also noted with these materials. The conventional GIC did not show any dye uptake, presence of a "structureless" layer, or enamel cracking. We elucidated the potential mechanisms involved in the formation of a "structureless" interfacial layer in Fuji II LC by studying the variables of cavity design, surface pre-treatment, water content of the tooth, time for it to develop, early finishing, and coating of the restoration. This layer, the "absorption layer", is probably related to water flux within the maturing cement, depending on environmental moisture changes and communication with the pulp in a wet tooth. The "micropermeability model" was useful in this study of the interfacial characteristics of RM GICs.

  19. Antimicrobial Capacity of Casein Phosphopeptide/Amorphous Calcium Phosphate and Enzymes in Glass Ionomer Cement in Dentin Carious Lesions

    PubMed Central

    PINHEIRO, SÉRGIO LUIZ; AZENHA, GIULIANA RODRIGUES; DE MILITO, FLÁVIA; DEMOCH, YASMIN MARIALVA

    2015-01-01

    Objective To evaluate the ability of casein phosphopeptide/amorphous calcium phosphate (CPP/ACP) and lysozyme, lactoferrin, and lactoperoxidase (LLL) added to glass ionomer cement (GIC) to inhibit the growth of S. mutans in a caries model. Material and methods Eighty permanent third molars were selected. The dentin of these teeth was exposed and flattened. Except for the coronal dentin, the specimens were waterproofed, autoclaved, and submitted to cariogenic challenge with standard strain of S. mutans. The carious lesions were sealed as follows: group 1 (n=20): GIC without additives; group 2 (n=20): GIC + CPP/ACP; group 3 (n=20): GIC + LLL; group 4 (n=20): GIC + CPP/ACP + LLL. S. mutans counts were performed before the caries were sealed (n=5), after 24 hours (n=5), at 1 month (n=5), and at 6 months (n=5). The results were analyzed using descriptive statistical analysis and the Kruskal-Wallis test (Student-Newman-Keuls test). Results GIC + LLL caused a significant reduction of S. mutans 1 month after sealing (p<0.01); however, there was a significant growth of S. mutans 6 months after sealing. GIC, GIC + CPP/ACP, and GIC + CPP/ACP + LLL showed similar behavior with significant reduction of S. mutans after 24 hours (p<0.05) and increase after 1 and 6 months. Conclusion The addition of LLL to GIC increases the antimicrobial action of GIC on S. mutans. This leads to control of bacterial biofilm for 1 month, thus stopping the progression of carious lesions. PMID:27688392

  20. In-vitro Study on Temperature Changes in the Pulp Chamber Due to Thermo-Cure Glass Ionomer Cements

    PubMed Central

    van Duinen, Raimond NB; Shahid, Saroash; Hill, Robert

    2016-01-01

    The application of the Glass Ionomer Cements in clinical dentistry is recommended due to properties such as fluoride release, chemical adhesion to tooth, negligible setting shrinkage, and coefficient of thermal expansion close to tooth, low creep, and good color stability. However, the cement is vulnerable to early exposure to moisture due to slow setting characteristics. The uses of external energy such as ultrasound and radiant heat (Thermo-curing) have been reported to provide acceleration of the setting chemistry and enhance physical properties. Aim: The aim of this in vitro study was to analyze temperature changes in the pulpal chamber when using radiant heat to accelerate the setting of GICs. Material and Methods:The encapsulated GIC Equia Forte was used for this study. The temperature changes in the pulp were measured using thermocouple in the cavities which were 2,6 and 4,7mm deep with and without filling. Results:The results showed that a temperature rise (ΔT) in the pulp chamber was 3,7°C. ΔT for the 2.6mm and 4.7mm deep cavity and without placing any restoration the temperature was 4,2°C and 2,6°C respectively. After the restoration has been placed, the ΔT range in the pulp chamber was lower ranging from 1.9°C to 2.4°C. Conclusion: It could be concluded that Thermo-curing of the GIC during the setting is safe for the pulp and can be recommended in clinical practice. PMID:28275275

  1. Evaluation of the effect of adding micro-hydroxyapatite and nano-hydroxyapatite on the microleakage of conventional and resin-modified Glass-ionomer Cl V restorations

    PubMed Central

    Sharafeddin, Farahnaz

    2017-01-01

    Background Pulpal reaction to restorative materials depends on marginal microleakage, which is a dynamic phenomenon that allows bacteria and fluids to traverse across the tooth-restoration interface. Glass-ionomer cement (GIC) exhibits low microleakage due to direct bonding to tooth structures. Hydroxyapatite (HAP) based on the similarity with tooth structure may decrease the microleakage. The aim of this in vitro study was to evaluate marginal microleakage of a mixture of conventional and resin-modified glass-ionomer (RMGI) with micro- and nano-HAP. Material and Methods In this in vitro study, 30 non-carious extracted human third molar teeth were used. Standard Cl V cavities were prepared on the buccal and lingual surfaces. The cavities were restored in six experimental groups as follows: group 1, conventional glass-ionomer cement (CGIC); group 2, CGIC with micro-HAP; group 3, CGIC with nano-HAP; group 4, RMGI; group 5, RMGI with micro-HAP; group 6, RMGI with nano-HAP. The restorations were finished and polished. The teeth were coated with nail polish, sealed with sticky wax, thermocycled and placed in a solution of 2% basic fuchsine for 24 hours. The teeth were sectioned and microleakage was measured. Kruskal-Wallis, Man-Whitney and Wilcoxon tests were used for data analysis (P<0.05). Results The data analysis revealed significantly lower microleakage in groups 5 and 6 at both occlusal and gingival margins. Also in these two groups the gingival microleakage was significantly lower than occlusal margin (P=0.009 and P=0.001 respectively), but in groups 1(CGIC) and 3(CGIC+ nano-HAP) and 4(RMGI) the microleakage of occlusal margin were significantly lower than that of gingival margin (P=0.001, P=0.007 and P=0.001 respectively). Conclusions Mixing RMGI with nano-HAP and micro-HAP resulted in lower microleakage. Key words:Glass-ionomer, micro-hydroxyapatite, microleakage, nano-hydroxyapatite. PMID:28210443

  2. An in vitro comparative SEM study of marginal adaptation of IRM, light- and chemically-cured glass ionomer, and amalgam in furcation perforations.

    PubMed

    Rajablou, N; Azimi, S

    2001-12-01

    The furcation regions of 30 human mandibular molars were perforated and sealed using four different materials: IRM, light- and chemically-cured glass ionomer cement (GIC), and amalgam. The materials were compared for marginal gaps in coronal, mid, and apical regions after routine SEM processing. While light-cured GIC showed the smallest gaps in the three regions, in mid and coronal regions chemically-cured GIC, and in apical regions amalgam, showed the largest gaps. IRM cases showed the highest rate of fillings with a good "fit", whereas the majority of amalgam cases and none of the chemically-cured GIC cases were overfilled.

  3. Effect of radiant heat on the surface hardness of glass polyalkenoate (ionomer) cement.

    PubMed

    Woolford, M J

    1994-12-01

    The use of heat to improve mechanical properties of materials is a widely accepted phenomenon. It has been studied in dentistry with a view to improving the properties of resin composite. Dental cements may benefit by the application of heat, in particular with regard to their early surface properties. This study was carried out to examine the effect of the application of radiant heat to the surface hardness of one type of glass polyalkenoate cement. It was found that raising the temperature of the surface of the cement to a maximum of 60 degrees C significantly improved the early surface hardness of the material. The application of a high level of heat also improved the surface hardness of the cement after 24 h compared to cement which had not been heat treated. The use of heat would appear to accelerate the matrix-forming reaction of the material and although further work is necessary this technique may have clinical application.

  4. Comparison of shear bond strength of resin-modified glass ionomer to conditioned and unconditioned mineral trioxide aggregate surface: An in vitro study

    PubMed Central

    Gulati, Shikha; Shenoy, Vanitha Umesh; Margasahayam, Sumanthini Venkatasubramanyam

    2014-01-01

    Introduction: The aim of this study was to compare the shear bond strength of resin modified glass ionomer cement to conditioned and unconditioned mineral trioxide aggregate surface. Materials and Method: White Mineral Trioxide Aggregate (WMTA) and Resin Modified Glass Ionomer Cement (RMGIC) were used for the study. 60 WMTA specimens were prepared and stored in an incubator at 37° C and 100% humidity for 72 hrs. The specimens were then divided into two groups- half of the specimens were conditioned and remaining half were left unconditioned, subsequent to which RMGIC was placed over MTA. The specimens were then stored in an incubator for 24 hrs at 37° C and 100% humidity. The shear bond strength value of RMGIC to conditioned and unconditioned WMTA was measured and compared using unpaired 't  ’ test. Results: The mean shear bond strength of value of RMGIC to conditioned and unconditioned WMTA was 6.59 MPa and 7.587 MPa respectively. Statistical analysis using unpaired t-test revealed that the difference between values of two groups was not statistically significant (P > 0.05). Conclusions: During clinical procedures like pulp capping and furcal repair, if RMGIC is placed as a base over MTA, then conditioning should be done to increase the bond strength between RMGIC and dentin and any inadvertent contact of conditioner with MTA will not significantly affect the shear bond strength value of RMGIC to MTA. PMID:25298644

  5. [Effect of the application of fluoride on the superficial roughness of vitremer glass ionomer cement and microbial adhesion to this material].

    PubMed

    Pedrini, D; Gaetti-Jardim Júnior, E; Mori, G G

    2001-01-01

    Glass ionomer cements are important options in restorative and preventive dentistry due to their adhesion to the tooth surface and to fluoride release, which can decrease the risk of recurrent caries. The topical use of acidulated and neutral fluoride gels has been frequent in dentistry. However, this procedure can adversely affect the surface of restorative materials, increasing their roughness and the retention of dental plaque. Thus, this study evaluated the period in which Vitremer glass ionomer cement maintains its antimicrobial activity over Streptococcus mutans ATCC 25175, as well as the effects of topical application of acidulated and neutral fluoride gels on these microbiological parameters and on the superficial characteristics of the restorative material. It was verified that the antimicrobial activity of Vitremer is very transient, decreasing to an undetectable level after four days, and the topical application of fluoride gel did not restore this activity. It was observed that S. mutans ATCC 25175 adheres to this restorative material, and the topical fluorides did not affect this event. The surface of Vitremer was not altered by the application of fluoride gels.

  6. Clinical performance of Class I nanohybrid composite restorations with resin-modified glass-ionomer liner and flowable composite liner: A randomized clinical trial

    PubMed Central

    Suhasini, Krishtipati; Madhusudhana, Koppolu; Suneelkumar, Chinni; Lavanya, Anumula; Chandrababu, K. S.; Kumar, Perisetty Dinesh

    2016-01-01

    Background: Liners play a vital role in minimizing polymerization shrinkage stress by elastic bonding concept and increase the longevity and favorable outcome for composite restorations. Aims: The aim of this study was to evaluate the clinical performance of nanohybrid composite restorations using resin-modified glass-ionomer and flowable composite liners. Settings and Design: A single-centered, double-blinded randomized clinical trial, with split-mouth design and equal allocation ratio that was conducted in the Department of Conservative Dentistry and Endodontics. Materials and Methods: In forty patients, a total of eighty Class I restorations were placed with resin-modified glass-ionomer cement (RMGIC) liner (FUJI II LC, GC America) in one group and flowable composite liner (smart dentin replacement/SDR, Dentsply Caulk, Milford, DE, USA) in another group. All restorations were clinically evaluated by two examiners, immediately (baseline), 3, 6, and 12 months using US Public Health Service modified criteria. Statistical Analysis Used: Statistical analysis was performed using McNemar's test (P < 0.05). Results: There was no significant difference in the color match, marginal discoloration, surface roughness, and marginal adaptation. Restorations with RMGIC liner group show 20% Bravo scores on anatomic form at 12 months but are still clinically acceptable. Conclusion: Nanohybrid composite restorations with RMGIC (Fuji II LC) and flowable composite liner (SDR) demonstrated clinically acceptable performance after 12 months. PMID:27994310

  7. Effect of blood contamination on shear bond strength of brackets bonded with a self-etching primer combined with a resin-modified glass ionomer.

    PubMed

    Cacciafesta, Vittorio; Sfondrini, Maria Francesca; Scribante, Andrea; De Angelis, Marco; Klersy, Catherine

    2004-12-01

    This study assessed the effect of blood contamination on the shear bond strength and bond failure site of a resin-modified glass ionomer (Fuji Ortho LC, GC Europe, Leuven, Belgium) used with 3 enamel conditioners (10% polyacrylic acid, 37% phosphoric acid, and self-etching primer). One hundred twenty bovine permanent mandibular incisors were randomly divided into 8 groups; each group consisted of 15 specimens. Two enamel surface conditions were studied: dry and contaminated with blood. One hundred twenty stainless steel brackets were bonded with the resin-modified glass ionomer. After bonding, all samples were stored in distilled water for 24 hours and then tested in shear mode on a testing machine. The groups conditioned with self-etching primer and 37% phosphoric acid had the highest bond strengths for both dry and blood-contaminated enamel. The groups conditioned with 10% polyacrylic acid showed significantly lower shear bond strength value, and the unconditioned groups had the lowest bond strengths. For each enamel conditioner, no significant difference was reported between dry and blood-contaminated groups. Significant differences in debond locations were found among the groups bonded with the different conditioners. Blood contamination of enamel during the bonding procedure of Fuji Ortho LC did not affect its bond strength values, no matter which enamel conditioner was used.

  8. Marginal microleakage of a resin-modified glass-ionomer restoration: Interaction effect of delayed light activation and surface pretreatment

    PubMed Central

    Shafiei, Fereshteh; Yousefipour, Bahareh; Farhadpour, Hajar

    2015-01-01

    Background: Despite widespread clinical uses of resin-modified glass-ionomers (RMGIs), their sealing ability is still a concern. This study evaluated the effect of delayed light activation (DLA) of RMGI on marginal sealing in differently pretreated cavities. Materials and Methods: In this in vitro study, two standardized Class V cavities were prepared on the buccal and lingual surfaces of 56 sound maxillary premolars at the cementoenamel junction. The cavities were randomly divided into eight equal groups. In groups 1-4 (immediate light activation [ILA]), no pretreatment (negative control [NC]) and three surface pretreatments were used, respectively as follows: Cavity conditioner, Vitremer primer, cavity conditioner plus and casein phosphopeptide-amorphous calcium phosphate (CPP-ACP). Fuji II LC (GC, Japan) was prepared and placed in the cavities and immediately light-cured according to manufacturer's instructions. In groups 5-8 (DLA), the same pretreatments were applied, respectively. After placing Fuji II LC in the cavities, the restorations were light-cured after a 3-min delay. After finishing the restorations, the specimens were placed in water for 1-week and thermocycled. Microleakage scores were determined using the dye penetration technique. Kruskal–Wallis test and Mann–Whitney U-test were used to analyze the obtained data (α = 0.05). Results: At the dentin margins, DLA resulted in a lower microleakage for no treatment (NC), cavity conditioner and cavity conditioner plus ACP-CPP pretreatments groups (P ≤ 0.004); however, no difference was observed for Vitremer group (P > 0.05). At the enamel margins, no difference was observed between DLA and ILA for all groups (P > 0.05); only NC group exhibited a lower microleakage in case of DLA (P = 0.007). Conclusion: Delayed light activation of RMGI may lead to different effects on marginal sealing, depending on pretreatment procedures used in the cavity. It might improve dentin sealing when no treatment and

  9. TRANSMISSION OF COMPOSITE POLYMERIZATION CONTRACTION FORCE THROUGH A FLOWABLE COMPOSITE AND A RESIN-MODIFIED GLASS IONOMER CEMENT

    PubMed Central

    Castañeda-Espinosa, Juan Carlos; Pereira, Rosana Aparecida; Cavalcanti, Ana Paula; Mondelli, Rafael Francisco Lia

    2007-01-01

    The purpose of this study was to evaluate the individual contraction force during polymerization of a composite resin (Z-250), a flowable composite (Filtek Flow, FF) and a resin-modified glass ionomer cement (Vitrebond, VB), and the transmission of Z-250 composite resin polymerization contraction force through different thicknesses of FF and VB. The experiment setup consisted of two identical parallel steel plates connected to a universal testing machine. One was fixed to a transversal base and the other to the equipment's cross head. The evaluated materials were inserted into a 1-mm space between the steel plates or between the inferior steel plate and a previously polymerized layer of an intermediate material (either FF or VB) adhered to the upper steel plate. The composite resin was light-cured with a halogen lamp with light intensity of 500 mW/cm2 for 60 s. A force/time graph was obtained for each sample for up to 120 s. Seven groups of 10 specimens each were evaluated: G1: Z-250; G2: FF; G3: VB; G4: Z-250 through a 0.5-mm layer of FF; G5: Z-250 through a 1-mm layer of FF; G6: Z-250 through a 0.5-mm of VB; G7: Z-250 through a 1-mm layer of VB. They were averaged and compared using one-way ANOVA and Tukey test at a = 0.05. The obtained contraction forces were: G1: 6.3N ± 0.2N; G2: 9.8 ± 0.2N; G3: 1.8 ± 0.2N; G4: 6.8N ± 0.2N; G5: 6.9N ± 0.3N; G6: 4.0N ± 0.4N and G7: 2.8N ± 0.4N. The use of VB as an intermediate layer promoted a significant decrease in polymerization contraction force values of the restorative system, regardless of material thickness. The use of FF as an intermediate layer promoted an increase in polymerization contraction force values with both material thicknesses. PMID:19089187

  10. Effects of conventional and high-intensity light-curing on enamel shear bond strength of composite resin and resin-modified glass-ionomer.

    PubMed

    Sfondrini, M F; Cacciafesta, V; Pistorio, A; Sfondrini, G

    2001-01-01

    The purpose of this study was to evaluate the shear bond strengths of a composite resin (Transbond XT; 3M/Unitek, Monrovia, Calif) and a resin-modified glass ionomer (Fuji Ortho LC; GC America Inc, Alsip, Ill) cured with 2 different light-curing units: a conventional visible light unit (Ortholux XT; 3M Dental Products, St Paul, Minn) and a xenon arc light unit (Plasma Arc Curing [PAC] System; American Dental Technologies, Corpus Christi, Texas). One hundred twenty freshly extracted bovine permanent mandibular incisors were randomly divided into 1 of 8 groups; each group consisted of 15 specimens. Two groups (1 group for each type of adhesive) were exposed to the visible light for 20 seconds (Transbond XT) and 40 seconds (Fuji Ortho LC), respectively, and used as control groups. The remaining 6 groups (3 for each adhesive) were cured with the xenon arc light for 2, 5, and 10 seconds. After bonding, all samples were stored in distilled water at room temperature for 24 hours and subsequently tested in a shear mode on an Instron universal testing machine (Instron Corp, Canton, Mass). For the groups bonded with Transbond XT, no statistically significant differences (P =.868) were found between the shear bond strength of the control group cured with Ortholux XT and those of the groups cured with the PAC System for 2, 5, or 10 seconds. When the shear bond strengths of the groups bonded with Fuji Ortho LC were evaluated, no statistically significant differences (P =.087) were found between the control group that was cured with Ortholux XT and those cured with the PAC System. The bond strength of the composite resin was significantly higher than that of the resin-modified glass ionomer in all the groups tested (P <.0001). The present findings indicate that, compared with visible light-curing, the xenon arc light enables the clinician to significantly reduce the curing time of both bonding agents, without affecting their shear bond strengths. Therefore, xenon arc light

  11. In vitro Evaluation of Stainless Steel Crowns cemented with Resin-modified Glass Ionomer and Two New Self-adhesive Resin Cements

    PubMed Central

    Shashibhushan, KK; Poornima, P; Reddy, VV Subba

    2016-01-01

    Aims To assess and compare the retentive strength of two dual-polymerized self-adhesive resin cements (RelyX U200, 3M ESPE & SmartCem2, Dentsply Caulk) and a resin-modified glass ionomer cement (RMGIC; RelyX Luting 2, 3M ESPE) on stainless steel crown (SSC). Materials and methods Thirty extracted teeth were mounted on cold cured acrylic resin blocks exposing the crown till the cemento-enamel junction. Pretrimmed, precontoured SSC was selected for a particular tooth. Standardized tooth preparation for SSC was performed by single operator. The crowns were then luted with either RelyX U200 or SmartCem2 or RelyX Luting 2 cement. Retentive strength was tested using Instron universal testing machine. The retentive strength values were recorded and calculated by the formula: Load/Area. Statistical analysis One-way analysis of variance was used for multiple comparisons followed by post hoc Tukey’s test for groupwise comparisons. Unpaired t-test was used for intergroup comparisons. Results RelyX U200 showed significantly higher retentive strength than rest of the two cements (p < 0.001). No significant difference was found between the retentive strength of SmartCem2 and RelyX Luting 2 (p > 0.05). Conclusion The retentive strength of dual-polymerized self-adhesive resin cements was better than RMGIC, and RelyX U200 significantly improved crown retention when compared with SmartCem2 and RelyX Luting 2. How to cite this article Pathak S, Shashibhushan KK, Poornima P, Reddy VVS. In vitro Evaluation of Stainless Steel Crowns cemented with Resin-modified Glass Ionomer and Two New Self-adhesive Resin Cements. Int J Clin Pediatr Dent 2016;9(3):197-200. PMID:27843249

  12. Shear Bond Strength of Acidic Primer, Light-Cure Glass Ionomer, Light-Cure and Self Cure Composite Adhesive Systems - An In Vitro Study

    PubMed Central

    D, Krishnakanth Reddy; V, Kishore M S; Safeena, Safeena

    2013-01-01

    Background: The purpose of this study was to determine shear bond strength and the effect on the bracket/ adhesive failure mode when an acidic primer and other etchants were used to condition the enamel surface before bonding. Materials & Methods: Group I: Brackets bonded with Ultimate cure-on-light Light-cure composite adhesive system. Group II: Brackets bonded with Ortho-one no-mix. Self-cure composite adhesive system. Group III: Brackets bonded with Light-cure glass ionomer adhesive system. Group IV: Brackets bonded with Transbond plus self etching primer. Results: The results of this study indicated that the shear bond strength when using Transbond plus self etching primer showed the highest bond strength Group- IV(8.69 2.54 MPa) followed by Ultimate cure-on-light Group-I (8.62 1.84 MPa), Ortho-one no-mix (Bisco Inc. USA)Group-II (8.07 1.72 MPa), and least bond strength was seen in G.C. Fuji Ortho L.C. Group-III (6.01 1.6) MPa Conclusion: Use of self etching primer saves chairside time and satisfactory high bond strength was obtained. Care should be taken during debonding of ceramic brackets How to cite this article: Reddy K D, Kishore M S V, Safeena S. Shear Bond Strength of Acidic Primer, Light-Cure Glass Ionomer, Light-Cure and Self Cure Composite Adhesive Systems - An In Vitro Study. J Int Oral Health 2013; 5(3):73-78. PMID:24155606

  13. The effect of CO2 laser irradiation plus fluoride dentifrice on the inhibition of secondary caries on root surfaces adjacent to glass ionomer cement or composite resin restorations

    NASA Astrophysics Data System (ADS)

    Rodrigues, S. R.; Moraes, M.; Hanashiro, F. S.; Youssef, M. N.; Brugnera Junior, A.; Nobre-dos-Santos, M.; de Souza-Zaroni, W. C.

    2016-02-01

    Although the cariostatic effects of CO2 laser on the root surface have been shown, there is scarce information regarding its effects on root secondary caries. The objective of this research was to investigate the effect of the association of CO2 laser and a fluoride dentifrice on the inhibition of secondary caries on root surfaces adjacent to composite-resin or glass-ionomer-cement restorations. Dental blocks of human roots were divided into two groups: composite resin (CR) or glass ionomer cement (GIC). Subsequently, the blocks were divided into four subgroups (n  =  10): C, non-fluoride dentifrice; FD, fluoride dentifrice; L, CO2 laser with an energy density of 6.0 J cm-2  +  non-fluoride dentifrice; and L  +  FD, CO2 laser  +  fluoride dentifrice. The blocks were subjected to pH cycling to simulate a high cariogenic challenge. Dental demineralization around the restorations was quantified by microhardness analysis. The results were subjected to analysis of variance (ANOVA) and the Tukey-Kramer test (p  ⩽  0.05). As for mineral loss, it can be observed that all the groups that were treated with a fluoride dentifrice and laser, used alone or not, were statistically similar and superior to the RC-C group. It was concluded that CO2 laser irradiation and a fluoride dentifrice used alone or combined with each other are efficient surface treatments for preventing secondary root caries, regardless of the restorative material used.

  14. Methods and preliminary findings of a cost-effectiveness study of glass-ionomer-based and composite resin sealant materials after 2 yr.

    PubMed

    Goldman, Ann S; Chen, Xi; Fan, Mingwen; Frencken, Jo E

    2014-06-01

    The cost-effectiveness of glass-carbomer, conventional high-viscosity glass-ionomer cement (HVGIC) [without or with heat (light-emitting diode (LED) thermocuring) application], and composite resin sealants were compared after 2 yr in function. Estimated net costs per sealant were obtained from data on personnel time (measured with activity sampling), transportation, materials, instruments and equipment, and restoration costs for replacing failed sealants from a community trial involving 7- to 9-yr-old Chinese children. Cost data were standardized to reflect the placement of 1,000 sealants per group. Outcomes were the differences in the number of dentine caries lesions that developed between groups. The average sealant application time ranged from 5.40 min (for composite resin) to 8.09 min (for LED thermocured HVGIC), and the average cost per sealant for 1,000 performed per group (simulation sample) ranged from $US3.73 (for composite resin) to $US7.50 (for glass-carbomer). The incremental cost-effectiveness of LED thermocured HVGIC to prevent one additional caries lesion per 1,000 sealants performed was $US1,106 compared with composite resin. Sensitivity analyses showed that differences in the cost of materials across groups had minimal impact on the overall cost. Cost and effectiveness data enhance policymakers' ability to address issues of availability, access, and compliance associated with poor oral-health outcomes, particularly when large numbers of children are excluded from care, in economies where oral health services are still developing.

  15. Studies of Glassy Dynamics in Ionomer melts

    NASA Astrophysics Data System (ADS)

    Goswami, Monojoy; Kumar, Sanat; Bhattacharya, Aniket

    2006-03-01

    In this work we investigate one of the challenging problems, the dynamics of ionomer aggregates using Molecular Dynamics simulations. Experimental results show that the glass transition temperature (Tg), diffusion and relaxation mechanisms can be influenced dramatically by ion-incorporation or by changing temperature of the system e.g., increase in ion content raises the Tg. In this work we show the dynamical behavior of ionomer melts as it goes from liquid to glass/gel state. In the context of ionomers, we investigated the analogy between reversible gelation and the glass transition, and show that many of the beneficial properties of ionomers and difficulties in understanding them can be understood in this framework.

  16. Effects of incorporation of nano-fluorapatite particles on microhardness, fluoride releasing properties, and biocompatibility of a conventional glass ionomer cement (GIC).

    PubMed

    Moshaverinia, Maryam; Borzabadi-Farahani, Ali; Sameni, Abdi; Moshaverinia, Alireza; Ansari, Sahar

    2016-01-01

    Present study evaluated effects of addition of Nanoparticles fluorapatite (Nano-FA) on microhardness and fluoride release of a Glass Ionomer Cement (GIC, Fuji IX GP Fast). Forty-eight specimens prepared, divided equally into 4 groups (2 with Nano-FA); after 24 h and one week Vickers microhardness (HV) was measured. Nano-FA specimens were made from addition of nano-FA to Fuji IX powder (glass powder/Nano-FA ratio=20:1 wt/wt, 3.6:1 P/L ratio). At 24 h, mean (95% CI) HV for GIC and Nano-FA GIC were 40.59 (39.51-41.66) and 46.89 (45.95-47.82) kg/mm(2), and at one week 44.98 (44.23-45.72), 53.29 (52.58-53.99) kg/mm(2), respectively. Findings indicated higher HV in Nano-FA specimens (F=221.088, p<0.001). Twenty-eight days weekly cumulative fluoride release in both groups was not different (p>0.05). MTT assay exhibited no inhibition of cell proliferation or reduction in metabolic activity in experimental [84.0 (3.3)] or control groups [85.1 (4.7)] with no difference between groups (p>0.05). New nano-FA GIC was biocompatible and showed improved surface hardness. Future clinical trials can verify the usefulness of Nano-FA GIC.

  17. Caries-Preventive Effect of High-Viscosity Glass Ionomer and Resin-Based Fissure Sealants on Permanent Teeth: A Systematic Review of Clinical Trials

    PubMed Central

    Mickenautsch, Steffen; Yengopal, Veerasamy

    2016-01-01

    Background Glass-ionomers are traditionally regarded to be inferior to resin as fissure sealants in protecting teeth from dental caries, due to their comparatively lower retention rate. Unlike low-viscosity glass-ionomers, high-viscosity glass-ionomer cements (HVGIC) are placed as sealants by pressing the material into pits and fissures with a petroleum-jelly-coated index finger. Hence, HVGIC sealants are assumed to penetrate pits and fissures deeper, resulting in a higher material retention rate, which may increase its caries-preventive effect. Methods The aim of this review was to answer the question as to whether, in patients with fully erupted permanent molar teeth, HVGIC based fissure sealants are less effective to protect against dental carious lesions in occlusal pits and fissures than resin-based fissure sealants? A systematic literature search in eight databases was conducted. Heterogeneity of accepted trials and imprecision of the established evidence were assessed. Extracted sufficiently homogenous datasets were pooled by use of a random-effects meta-analysis. Internal trial validity was evaluated. The protocol of this systematic review was registered with the International Prospective Register of Systematic Reviews (PROSPERO / Nr.: CRD42015016007). Results Seven clinical trials were provisionally included for further review. Of these, one was excluded. Seven trial reports reporting on six trials were accepted. From these, 11 datasets were extracted and pooled in four meta-analyses. The results suggest no statistically significant differences after up to 48 months and borderline significant differences in favour of HVGIC sealants after 60 months (RR 0.29; 95% CI: 0.09–0.95; p = 0.04 / RD -0.07; 95% CI: -0.14, -0.01). The point estimates and upper confidence levels after 24, 36, 48 and 60 months of RR 1.36; RR 0.90; RR 0.62; RR 0.29 and 2.78; 1.67; 1.21; 0.95, respectively, further suggest a chronological trend in favour of HVGIC above resin

  18. Evaluation of Shear Bond Strength of Methacrylate- and Silorane-based Composite Resin Bonded to Resin-Modified Glass-ionomer Containing Micro- and Nano-hydroxyapatite

    PubMed Central

    Sharafeddin, Farahnaz; Moradian, Marzie; Motamedi, Mehran

    2016-01-01

    Statement of the Problem The adhesion of resin-modified glass-ionomer (RMGI) to composite resin has a very important role in the durability of sandwich restorations. Hydroxyapatite is an excellent candidate as a filler material for improving the mechanical properties of glass ionomer cement. Purpose The aim of this study was to assess the effect of adding micro- and nano-hydroxyapatite (HA) powder to RMGI on the shear bond strength (SBS) of nanofilled and silorane-based composite resins bonded to RMGI containing micro- and nano-HA. Materials and Method Sixty cylindrical acrylic blocks containing a hole of 5.5×2.5 mm (diameter × height) were prepared and randomly divided into 6 groups as Group 1 with RMGI (Fuji II LC) plus Adper Single Bond/Z350 composite resin (5.5×3.5 mm diameter × height); Group 2 with RMGI containing 25 wt% of micro-HA plus Adper Single Bond/Z350 composite resin; Group3 with RMGI containing 25 wt% of nano-HA plus Adper Single Bond/Z350 composite resin; Group 4 with RMGI plus P90 System Adhesive/P90 Filtek composite resin (5.5×3.5 mm diameter × height); Group 5 with RMGI containing 25 wt% of micro-HA plus P90 System Adhesive/P90Filtek composite resin; and Group 6 with RMGI containing 25 wt% of nano-HA plus P90 System Adhesive/P90 Filtek composite resin. The specimens were stored in water (37° C, 1 week) and subjected to 1000 thermal cycles (5°C/55°C). SBS test was performed by using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed by two-way ANOVA and Tukey test (p< 0.05). Results There were significant differences between groups 1 and 4 (RMGI groups, p= 0.025), and groups 3 and 6 (RMGI+ nano-HA groups, p= 0.012). However, among Z350 and P90 specimens, no statistically significant difference was detected in the SBS values (p= 0.19, p= 0.083, respectively). Conclusion RMGI containing HA can improve the bond strength to methacrylate-based in comparison to silorane-based composite resins. Meanwhile, RMGI

  19. Observation of Cluster Growth in an Ionomer.

    DTIC Science & Technology

    1987-07-22

    CLASSIFICATiON OF THIS PAGE All otter e0,t On$ 3re obsolete OBSERVATION OF CLUSTER FORMATION IN AN IONOMER A. F. Galambos, W. B. Stockton, J. T. Koberstein A...jim film was prepared by casting a 10% solution of the ionomer in a mixed solvent of 90% THF and 10% deionized water onto glass . The solvent was...ELE0 7 1E R&T Code 4132013 AU05O Technical Report No. 1 Observation of Cluster Growth in an Ionomer t) 00 A. F. Galambos, W. B. Stocktcn, J. T

  20. A novel glass ionomer cement containing MgCO(3 )apatite induced the increased proliferation and differentiation of human pulp cells in vitro.

    PubMed

    Laiteerapong, Arunee; Lochaiwatana, Yossakit; Hirata, Isao; Okazaki, Masayuki; Mori, Kenta; Murakami, Shinya; Poolthong, Suchit

    2012-01-01

    This study aimed to investigate the in vitro biological response of human dental pulp cells to glass ionomer cement (GIC, Fuji IX GP(®)) containing 2.5% magnesium carbonate apatite (MgCO(3)Ap). MgCO(3)Ap was synthesized by wet method and characterized using FT-IR, XPS, and SEM. Fuji IX GP(®) served as a control. Test and control cements were prepared by encapsulated mixing the powder with Fuji IX-liquid (P/L=3.6:1). Eluates from cements extracted by 1 mL culture medium were collected at day 1, 7 and 14, and used for WST-1 proliferation assay. For ALPase activity, cells were maintained with cements in transwells, harvested and enzyme activity was measured at day 1, 4, 7, 14, and 21. We found a higher cell proliferation and increased ALPase activity by pulp cells in the test group compared to the control. This suggests the potential of GIC containing this novel biological apatite as a restorative material for pulp-dentin regeneration.

  1. Casein phosphopeptide-amorphous calcium phosphate and glass ionomer show distinct effects in the remineralization of proximal artificial caries lesion in situ.

    PubMed

    Thepyou, Rathapong; Chanmitkul, Wanvipa; Thanatvarakorn, Ornnicha; Hamba, Hidenori; Chob-Isara, Wanwalai; Trairatvorakul, Chutima; Tagami, Junji

    2013-01-01

    This study aimed to compare the ability of casein-phosphopeptide amorphous-calcium-phosphate (CPP-ACP) and glass-ionomer (GI) in remineralizing proximal artificial caries lesions (ACLs). Molar enamel-slabs were divided into: original-lesion control, intra-oral controls, and experimental (CPP-ACP or GI) groups. Specimens received ACLs and were bonded on subject maxillary first molars. After 4-weeks, mineral density (MD) was analyzed by μCT. Compared to control, CPP-ACP increased MD at 0-38/68-84 microns and the GI group had an increase at 0-68 microns, with a greater increase in MD compared to the CPP-ACP group from 0-53 microns. The mean percent remineralization (%R) showed differences between the GI, CPP-ACP groups and their paired controls. GI tended to increase remineralization more than CPP-ACP. In conclusion, CPP-ACP and GI demonstrated distinct remineralizing ability. GI induced greater remineralization in the superficial lesion, while CPP-ACP remineralized the lesion body. Their effects on percent remineralization and reducing lesion depth of proximal ACLs were similar.

  2. Influence of air-abrasion executed with polyacrylic acid-Bioglass 45S5 on the bonding performance of a resin-modified glass ionomer cement.

    PubMed

    Sauro, Salvatore; Watson, Timothy F; Thompson, Ian; Toledano, Manuel; Nucci, Cesare; Banerjee, Avijit

    2012-04-01

    The aim of this study was to test the microtensile bond strength (μTBS), after 6 months of storage in PBS, of a resin-modified glass ionomer cement (RMGIC) bonded to dentine pretreated with Bioglass 45S5 (BAG) using various etching and air-abrasion techniques. The RMGIC (GC Fuji II LC) was applied onto differently treated dentine surfaces followed by light curing for 30 s. The specimens were cut into matchsticks with cross-sectional areas of 0.9 mm(2). The μTBS of the specimens was measured after 24 h or 6 months of storage in PBS and the results were statistically analysed using two-way anova and the Student-Newman-Keuls test (α = 0.05). Further RMCGIC-bonded dentine specimens were used for interfacial characterization, micropermeability, and nanoleakage analyses by confocal microscopy. The RMGIC-dentine interface layer showed no water absorption after 6 months of storage in PBS except for the interdiffusion layer of the silicon carbide (SiC)-abraded/polyacrylic acid (PAA)-etched bonded dentine. The RMGIC applied onto dentine air-abraded with BAG/H(2)O only or with BAG/PAA-fluid followed by etching procedures (10% PAA gel) showed no statistically significant reduction in μTBS after 6 months of storage in PBS. The abrasion procedures performed using BAG in combination with PAA might be a suitable strategy to enhance the bonding durability and the healing ability of RMGIC bonded to dentine.

  3. Effect of light-cure initiation time on polymerization and orthodontic bond strength with a resin-modified glass-ionomer

    NASA Astrophysics Data System (ADS)

    Thomas, Jess

    Introduction: The polymerization and acid-base reactions in resin-modified glass-ionomers (RMGI) are thought to compete with and inhibit one another. The objective of this study was to examine the effect of visible light-cure (VLC) delay on the polymerization efficiency and orthodontic bond strength of a dual-cured RMGI. Methods: An RMGI light-cured immediately, 2.5, 5, or 10 minutes after mixing comprised the experimental groups. Isothermal and dynamic temperature scan differential scanning calorimetry (DSC) analysis of the RMGI was performed to determine extents of VLC polymerization and acid-base reaction exotherms. Human premolars (n = 18/group) were bonded with the RMGI. Shear bond strength and adhesive remnant index (ARI) scores were determined. Results: DSC results showed the 10 minute delay RMGI group experienced significantly (P <0.05) lower VLC polymerization compared to the other groups. Acid-base reaction exotherms were undetected in all groups except the 10 minute delay group. No significant differences (P >0.05) were noted among the groups for mean shear bond strength. A chi-square test showed no significant difference (P = 0.428) in ARI scores between groups. Conclusions: Delay in light-curing may reduce polymerization efficiency and alter the structure of the RMGI, but orthodontic shear bond strength does not appear to be compromised.

  4. Effects of the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on mechanical properties of luting and lining glass ionomer cement

    NASA Astrophysics Data System (ADS)

    Heravi, Farzin; Bagheri, Hossein; Rangrazi, Abdolrasoul; Mojtaba Zebarjad, Seyed

    2016-07-01

    Recently, the addition of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into glass ionomer cements (GICs) has attracted interest due to its remineralization of teeth and its antibacterial effects. However, it should be investigated to ensure that the incorporation of CPP-ACP does not have significant adverse effects on its mechanical properties. The purpose of this study was to evaluate the effects of the addition of CPP-ACP on the mechanical properties of luting and lining GIC. The first step was to synthesize the CPP-ACP. Then the CPP-ACP at concentrations of 1%, 1.56% and 2% of CPP-ACP was added into a luting and lining GIC. GIC without CPP-ACP was used as a control group. The results revealed that the incorporation of CPP-ACP up to 1.56%(w/w) increased the flexural strength (29%), diametral tensile strength (36%) and microhardness (18%), followed by a reduction in these mechanical properties at 2%(w/w) CPP-ACP. The wear rate was significantly decreased (23%) in 1.56%(w/w) concentration of CPP-ACP and it was increased in 2%(w/w). Accordingly, the addition of 1.56%(w/w) CPP-ACP into luting and lining GIC had no adverse effect on the mechanical properties of luting and lining GIC and could be used in clinical practice.

  5. Effect of the CO2 laser on the microleakage of conventional and laser apicetomized teeth retrofilled with glass ionomer: in vitro study

    NASA Astrophysics Data System (ADS)

    Pinheiro, Antonio L. B.; Martorelli, Sergio B. F.

    2000-03-01

    There is a need for further improvement on the level of apical sealing. The use of lasers on apical surgery is still not fully understood, however some good results have been reported. The aim of this study was to assess the effect of the use of the CO2 laser following conventional apicoectomy and retrofilling with glass ionomer using different combinations of power and types of emission 'In Vitro.' Seventy extracted human upper anterior teeth were used on this study. The teeth after conventional apicoectomy were retrofilled with VitremerTM. The samples were randomized into seven groups of 10, Group I acted as negative control. Groups II, III and IV were lased on defocused mode with superpulsed CO2 laser on CW with power output of 0,5; 3 and 7 Watts during 5 seconds respectively. Groups V, VI e VII were lased on defocused mode with continuous emission on CW mode with power output of 1, 10 and 20 Watts during 5 seconds respectively. All specimens were immersed on 2% Methylene Blue solution during 48 h, washed in running tap water and longitudinally sectioned. Three calibrated examiners regarding apical infiltration graded the samples. The results showed difference between groups, where Group II showed smaller level of apical infiltration. It is concluded that improving on apical sealing is better achieved by using 0.5 W on superpulsed on CW.

  6. Characterization of a novel light-cured star-shape poly(acrylic acid)-composed glass-ionomer cement: fluoride release, water sorption, shrinkage, and hygroscopic expansion.

    PubMed

    Zhao, Jun; Platt, Jeffrey A; Xie, Dong

    2009-12-01

    This study evaluated the fluoride release, water sorption, curing shrinkage, and hygroscopic expansion of a novel experimental light-cured glass-ionomer cement. The effects of glycidyl methacrylate (GM) grafting, polymer : water (P : W) and powder : liquid (P : L) ratios were investigated. Commercial Fuji II and Fuji II LC cements were used as controls for comparison. All the specimens were conditioned in deionized water at 37 degrees C before testing. The results demonstrated that the experimental cement showed lower burst and slower bulk fluoride release than Fuji II and Fuji II LC. The experimental cement absorbed more water than Fuji II and Fuji II LC as a result of its hydroxyl and carboxyl functional group content. The lower water-diffusion rate and reduced hygroscopic expansion of the experimental cement suggest that it had a highly crosslinked network. Both Fuji II and Fuji II LC exhibited much higher shrinkage values (2.8% and 4.7%) than the experimental cement (0.8%). It appears that this novel cement will be a clinically attractive dental restorative because not only has it shown superior mechanical strength, it has also demonstrated satisfactory physical properties.

  7. Effect of Rebonding on the Bond Strength of Orthodontic Tubes: A Comparison of Light Cure Adhesive and Resin-Modified Glass Ionomer Cement In Vitro

    PubMed Central

    Aleksiejunaite, Monika; Sidlauskas, Antanas

    2017-01-01

    The purpose of this study was to determine the impact of different enamel preparation procedures and compare light cure composite (LCC) and resin-modified glass ionomer (RMGI) on the bond strength of orthodontic metal tubes rebonded to the enamel. Twenty human molars were divided into two groups (n = 10). Tubes were bonded using LCC (Transbond XT) in group 1 and RMGI (Fuji Ortho LC) in group 2. The tubes in each group were bonded following manufacturers' instructions (experiment I) and then debonded using testing machine. Then, the same brackets were sandblasted and rebonded twice. Before the first rebonding, the enamel was cleaned using carbide bur (experiment II) and before second rebonding, it was cleaned using carbide bur and soda blasted (experiment III). Mann–Whitney and Wilcoxon signed-rank tests showed no significant difference between RMGI and LCC bond strengths in case of normal bonding and rebonding, when enamel was cleaned using carbide bur before rebonding. Enamel soda blasting before rebonding significantly increased RMGI tensile bond strength value compared to LLC (p < 0.05). LCC and RMGI (especially RMGI) provide sufficient bond strengths for rebonding of molar tubes, when residual adhesive from previous bonding is removed and enamel soda blasted. PMID:28386279

  8. [Clinical examination of the gingival effects of three glass ionomer restorative materials (GC Fuji IX GP, GC Fuji IX GP EXTRA és GC EQUIA)].

    PubMed

    Horváth, Attila; Papp, Zsuzsanna; Dobó-Nagy, Csaba; Gera, István

    2014-12-01

    The restoration of cervical abrasions, erosions or cervical carious lesions is still challenging because of their unpredictable adhesion and possible negative effects on the marginal plaque accumulation. The impact of three different glass ionomer cements (GIC) on the marginal gingiva and root sensitivity was studied. Furthermore, it was investigated in details, whether or not a recently developed light curing varnish (GC Coat - EQUIA) had any additional effect on the gingival tissue. A total number of 30 non-smokers with healthy gingiva having at least one cervical supra/paragingival abrasion/erosion/abfraction defects were enrolled in the present study. The cervical defects were randomly restored by using one of the three GIC and the gingival parameters were recorded and evaluated at baseline, 6 weeks and 6 months. According to our results root sensitivity were substantially decreased in all the three groups. Plaque scores were also reduced in all groups with the greatest improvement at the sites where the new varnish were applied. Although this improvement was not reflected by the gingival parameters, such as bleeding on probing and crevicular fluid flow, since both were slightly increased in the varnish group. However, neither the intra-group, nor the intergroup differences reached statistical significance. Consequently, the three investigated GIC did not significantly affect the gingival health, therefore they might serve as alternative for the treatment of such cervical lesions. Nevertheless, the new light cure varnish-coated GIC did not seem to be either clinically or statistical significantly more favorable.

  9. Clinical performance of a resin-modified glass-ionomer and two polyacid-modified resin composites in cervical lesions restorations: 1-year follow-up.

    PubMed

    Chinelatti, M A; Ramos, R P; Chimello, D T; Palma-Dibb, R G

    2004-03-01

    The aim of this study was to assess the clinical performance of a resin-modified glass-ionomer cement (Vitremer) and two polyacid-modified resin composites (F2000 and Freedom) over 1 year. Nineteen patients with at least three cervical lesions were selected, providing an initial sample size of 87 restorations (29 per material), being 78 to non-carious and nine to carious lesions. Restorations were evaluated at baseline, 6 months and 1 year after placement, using modified US Public Health Service criteria: colour match, marginal discoloration, caries, anatomical form, marginal integrity and surface texture. At baseline, restorations were considered as acceptable for all criteria. At 1-year recall, 21 restorations per material were re-examined. Freedom was rated Bravo or Charlie for all the examined criteria and Vitremer earned an Alfa rating solely for the criterion caries. On the contrary, F2000 showed the best overall results, although presenting significant alteration in colour match. Statistical analysis of data was performed using chi-square and Mc Nemar tests. As to the evaluated periods, significant difference was observed solely between baseline and 1-year recall. Freedom and Vitremer were statistically different (P < 0.01) as to anatomical form and surface texture. For F2000, significant difference (P < 0.05) was noticed as to colour match and anatomical form. After 1-year follow-up, F2000 showed the most acceptable results as to the analysed criteria.

  10. Effect of a CO2 Laser on the Inhibition of Root Surface Caries Adjacent to Restorations of Glass Ionomer Cement or Composite Resin: An In Vitro Study

    PubMed Central

    Daniel, L. C.; Araújo, F. C.; Zancopé, B. R.; Hanashiro, F. S.; Nobre-dos-Santos, M.; Youssef, M. N.; Souza-Zaroni, W. C.

    2015-01-01

    This study investigated the effect of CO2 laser irradiation on the inhibition of secondary caries on root surfaces adjacent to glass ionomer cement (GIC) or composite resin (CR) restorations. 40 dental blocks were divided into 4 groups: G1 (negative control): cavity preparation + adhesive restoration with CR; G2: (positive control) cavity preparation + GIC restoration; G3: equal to group 1 + CO2 laser with 6 J/cm2; G4: equal to group 2 + CO2 laser. The blocks were submitted to thermal and pH cycling. Dental demineralization around restorations was quantified using microhardness analyses and Light-Induced Fluorescence (QLF). The groups showed no significant differences in mineral loss at depths between 20 μm and 40 μm. At 60 μm, G2 and G3 ≠ G1, but G4 = G1, G2 and G3. At 80 μm, G4 ≠ G1, and at 100 μm, G4 = G2 = G1. At 140 and 220 μm, G2, G3, and G4 = G1. The averages obtained using QFL in groups 1, 2, 3, and 4 were 0.637, 0.162, 0.095, and 0.048, respectively. QLF and microhardness analyses showed that CO2 laser irradiation reduced mineral loss around the CR restorations but that it did not increase the anticariogenic effect of GIC restorations. PMID:26347900

  11. Effect of glass-ionomer cement as an intra-canal barrier in post space prepared teeth: An in vitro study

    PubMed Central

    Vijay, Rajakumar; Indira, R

    2009-01-01

    Aim: To evaluate the bacterial microleakage across remaining Gutta-percha in teeth prepared for post space with and without the use of an intracanal glass ionomer barrier. Materials and Methods: Forty freshly extracted intact human mandibular premolars with single canal were instrumented, obturated with Gutta-percha and AH plus sealer and post spaces were created. Teeth were assigned into experimental groups as follows: Group I – 3 mm of Gutta-percha, Group II – 4 mm of Gutta-percha, Group III – 3 mm of Gutta-percha with 1 mm of Vitrebond as barrier, Group IV – 4 mm of Gutta-percha with 1mm of Vitrebond as barrier. The roots were suspended in Rogosa SL broth and 50 μl of lyophilized Lactobacilli Casei was inoculated as the microbial marker. The mean days taken for the broth to turn turbid were tabulated. The values were statistically analyzed using one way ANOVA and Tukey's HSD test. Results: At the end of 64 days, the mean and standard deviation of the number of days for the broth to turn turbid was: Group I – 20.50, (SD - 3.96). Group II – 25.43, (SD - 4.83), Group III – 38.63, (SD - 9.36), and Group IV – 53.50, (SD - 11.15) Conclusion: Vitrebond could be used as an intracanal barrier to provide a superior coronal seal in teeth requiring post and core. PMID:20617069

  12. Nano-ionomer tooth repair in pediatric dentistry.

    PubMed

    Killian, Constance Marie; Croll, Theodore P

    2010-01-01

    Resin-modified glass ionomer cements have shown their reliability and durability in various applications in young dental patients. The latest generation of these materials, the nano-ionomer, has been introduced, and its improved properties make it an effective alternative for restoring primary and permanent teeth. The purpose of this paper was to describe the properties of the nano-ionomer, provide indications for its use, and illustrate the technique for applying the material. Representative clinical cases are presented.

  13. Dielectric properties of conductive ionomers

    NASA Astrophysics Data System (ADS)

    Klein, Robert James

    plasticized PEO-based ionomer were also studied in comparison to conductivity, with the conclusion that the glass transition temperature (a manifestation of the segmental segments) is the primary property governing conduction behavior in single-phase ionomers. Consideration of the solvent quality parameters yielded a similar result, that the plasticization effect on the glass transition is far stronger than the dielectric constant, donor number, or viscosity of the solvents.

  14. Effect of Silver Diamine Fluoride and Potassium Iodide Treatment on Secondary Caries Prevention and Tooth Discolouration in Cervical Glass Ionomer Cement Restoration

    PubMed Central

    Zhao, Irene Shuping; Mei, May Lei; Burrow, Michael F.; Lo, Edward Chin-Man; Chu, Chun-Hung

    2017-01-01

    This study investigated the effect of silver diamine fluoride (SDF) and potassium iodide (KI) treatment on secondary caries prevention and tooth discolouration in glass ionomer cement (GIC) restoration. Cervical GIC restorations were done on 30 premolars with: Group 1, SDF + KI; Group 2, SDF (positive control); Group 3, no treatment (negative control). After cariogenic biofilm challenge, the demineralisation of dentine adjacent to the restoration was evaluated using micro-computed tomography (micro-CT) and Fourier transform infrared (FTIR) spectroscopy. The colour of dentine adjacent to the restoration was assessed using CIELAB system at different time points. Total colour change (∆E) was calculated and was visible if ∆E > 3.7. Micro-CT showed the outer lesion depths for Groups 1, 2 and 3 were 91 ± 7 µm, 80 ± 7 µm and 119 ± 8 µm, respectively (p < 0.001; Group 2 < Group 1 < Group 3). FTIR found that there was a significant difference in amide I-to-hydrogen phosphate ratio among the three groups (p < 0.001; Group 2 < Group 1 < Group 3). ∆E of Groups 1, 2 and 3 after biofilm challenge were 22.5 ± 4.9, 70.2 ± 8.3 and 2.9 ± 0.9, respectively (p < 0.001; Group 3 < Group 1 < Group 2). SDF + KI treatment reduced secondary caries formation on GIC restoration, but it was not as effective as SDF treatment alone. Moreover, a perceptible staining on the restoration margin was observed, but the intensity of discolouration was less than that with solely SDF treatment. PMID:28178188

  15. Effect of resin-modified glass-ionomer cement lining and composite layering technique on the adhesive interface of lateral wall

    PubMed Central

    AZEVEDO, Larissa Marinho; CASAS-APAYCO, Leslie Carol; VILLAVICENCIO ESPINOZA, Carlos Andres; WANG, Linda; NAVARRO, Maria Fidela de Lima; ATTA, Maria Teresa

    2015-01-01

    Interface integrity can be maintained by setting the composite in a layering technique and using liners. Objective The aim of this in vitro study was to verify the effect of resin-modified glass-ionomer cement (RMGIC) lining and composite layering technique on the bond strength of the dentin/resin adhesive interface of lateral walls of occlusal restorations. Material and Methods Occlusal cavities were prepared in 52 extracted sound human molars, randomly assigned into 4 groups: Group 2H (control) – no lining + two horizontal layers; Group 4O: no lining + four oblique layers; Group V-2H: RMGIC lining (Vitrebond) + two horizontal layers; and Group V-4O: RMGIC lining (Vitrebond) + four oblique layers. Resin composite (Filtek Z250, 3M ESPE) was placed after application of an adhesive system (Adper™ Single Bond 2, 3M ESPE) dyed with a fluorescent reagent (Rhodamine B) to allow confocal microscopy analysis. The teeth were stored in deionized water at 37oC for 24 hours before being sectioned into 0.8 mm slices. One slice of each tooth was randomly selected for Confocal Laser Scanning Microscopy (CLSM) analysis. The other slices were sectioned into 0.8 mm x 0.8 mm sticks to microtensile bond strength test (MPa). Data were analyzed by two-way ANOVA and Fisher’s test. Results There was no statistical difference on bond strength among groups (p>0.05). CLSM analysis showed no significant statistical difference regarding the presence of gap at the interface dentin/resin among groups. Conclusions RMGIC lining and composite layering techniques showed no effect on the microtensile bond strength and gap formation at the adhesive interface of lateral walls of high C-factor occlusal restorations. PMID:26221927

  16. Evaluation of shear bond strength of two resin-based composites and glass ionomer cement to pure tricalcium silicate-based cement (Biodentine®)

    PubMed Central

    CANTEKİN, Kenan; AVCİ, Serap

    2014-01-01

    Objectives Tricalcium silicate is the major constituent phase in mineral trioxide aggregate (MTA). It is thus postulated that pure tricalcium silicate can replace the Portland cement component of MTA. The aim of this study was to evaluate bond strength of methacrylate-based (MB) composites, silorane-based (SB) composites, and glass ionomer cement (GIC) to Biodentine® and mineral trioxide aggregate (MTA). Material and Methods Acrylic blocks (n=90, 2 mm high, 5 mm diameter central hole) were prepared. In 45 of the samples, the holes were fully filled with Biodentine® and in the other 45 samples, the holes were fully filled with MTA. The Biodentine® and the MTA samples were randomly divided into 3 subgroups of 15 specimens each: Group-1: MB composite; Group-2: SB composite; and Group-3: GIC. For the shear bond strength (SBS) test, each block was secured in a universal testing machine. Results The highest (17.7±6.2 MPa) and the lowest (5.8±3.2 MPa) bond strength values were recorded for the MB composite-Biodentine® and the GIC-MTA, respectively. Although the MB composite showed significantly higher bond strength to Biodentine (17.7±6.2) than it did to MTA (8.9±5.7) (p<0.001), the SB composite (SB and MTA=7.4±3.3; SB and Biodentine®=8.0±3,6) and GIC (GIC and MTA=5.8±3.2; GIC and Biodentine=6.7±2.6) showed similar bond strength performance with MTA compared with Biodentine (p=0.73 and p=0.38, respectively). Conclusions The new pure tricalcium-based pulp capping, repair, and endodontic material showed higher shear bond scores compared to MTA when used with the MB composite. PMID:25141202

  17. The Effect of the Pre-Conditioning Step on the Shear Bond Strength of Nano-Filled Resin-Modified Glass-Ionomer to Dentin

    PubMed Central

    El-Askary, Farid S; Nassif, Mohammed S

    2011-01-01

    Objectives: The purpose of this study was to evaluate the effect of the pre-conditioning step using different dentin conditioners on the shear bond strength (SBS) of the nano-filled resin-modified glass ionomer (RMGI) to dentin. Methods: Twenty-four human molars were used in this study. Subsequent to teeth sectioning in the mesio-distal direction and creation of the smear layer, the teeth were divided into six groups with and without the pre-conditioning step. Dentin surfaces were restored with RMGI cylinders and the specimens were stored in distilled water at 37ºC for 24 hours. SBS test were performed using a Universal Testing Machine at a crosshead speed of 0.5 mm/minute. Statistical analysis was performed using One-Way ANOVA followed by Duncan’s Multiple Range Test. RMGI/dentin interface was evaluated using SEM operated at 12 Kv at 2000X magnification. Results: 35% phosphoric acid and EDTA yielded significantly higher SBS (12.0±1.8 and 11.9±4.4 MPa, respectively), compared to all tested groups. In addition, 25% polyacrylic acid (8.6±3.1 MPa) reported significantly higher SBS than the nano-filled RMGI when applied according to manufacturer instructions (5.5±2.2 MPa). When nano-filled RMGI was applied without its nano-primer, or directly over 25% polyacrylic acid conditioned dentin exhibited 100% pre-test failure, and their SBS were expressed as 0.0±0.0 MPa. SEM revealed that the nano-primer was unable to decalcify and hybridize the dentin surface. Conclusions: Based on the results of the current study, the pre-conditioning step effectively improves the SBS of nano-filled RMGI to dentin. The self-adhesiveness of nano-filled RMGI was not proved in this study. PMID:21494381

  18. A comparative evaluation of the retention of metallic brackets bonded with resin-modified glass ionomer cement under different enamel preparations: A pilot study

    PubMed Central

    Sharma, Padmaja; Valiathan, Ashima; Arora, Ankit; Agarwal, Sachin

    2013-01-01

    Introduction: For orthodontists, the ideal bonding material should be less moisture-sensitive and should release fluoride, thereby reducing unfavorable iatrogenic decalcification. Resin-Modified Glass Ionomer Cements (RMGICs), due to their ability to bond in the presence of saliva and blood can be a very good bonding agent for orthodontic attachments especially in the areas of mouth, which are difficult to access. Moreover, their fluoride releasing property makes them an ideal bonding agent for patients with poor oral hygiene. However, their immediate bond strength is said to be too low to immediately ligate the initial wire, which could increase the total number of appointments. The effect of sandblasting and the use of sodium hypochlorite (NaOCL) on the immediate bond failure of RMGIC clinically have not been reported in the literature until the date. This investigation intended to assess the effect of sandblasting (of the bracket base and enamel) and NaOCL on the rate of bond failure (with immediate ligation at 30 min) of Fuji Ortho LC and its comparison with that of conventional light cured composite resin over a period of 1 year. Materials and Methods: 400 sample teeth were further divided into 4 groups of 100 each and bonded as follows: (1) Group 1: Normal metallic brackets bonded with Fuji Ortho LC. (2) Group 2: Sandblasted bracket base and enamel surface, brackets bonded with Fuji Ortho LC. (3) Group 3: Deproteinized enamel surface using sodium hypochlorite and brackets bonded with Fuji Ortho LC. (4) Group 4: Normal metallic bracket bonded with Transbond XT after etching enamel with 37% phosphoric acid. This group served as control group. Results and Conclusion: Results showed that sandblasting the bracket base and enamel, can significantly reduce the bond failure rate of RMGIC. PMID:24014999

  19. Effect of Silver Diamine Fluoride and Potassium Iodide Treatment on Secondary Caries Prevention and Tooth Discolouration in Cervical Glass Ionomer Cement Restoration.

    PubMed

    Zhao, Irene Shuping; Mei, May Lei; Burrow, Michael F; Lo, Edward Chin-Man; Chu, Chun-Hung

    2017-02-06

    This study investigated the effect of silver diamine fluoride (SDF) and potassium iodide (KI) treatment on secondary caries prevention and tooth discolouration in glass ionomer cement (GIC) restoration. Cervical GIC restorations were done on 30 premolars with: Group 1, SDF + KI; Group 2, SDF (positive control); Group 3, no treatment (negative control). After cariogenic biofilm challenge, the demineralisation of dentine adjacent to the restoration was evaluated using micro-computed tomography (micro-CT) and Fourier transform infrared (FTIR) spectroscopy. The colour of dentine adjacent to the restoration was assessed using CIELAB system at different time points. Total colour change (∆E) was calculated and was visible if ∆E > 3.7. Micro-CT showed the outer lesion depths for Groups 1, 2 and 3 were 91 ± 7 µm, 80 ± 7 µm and 119 ± 8 µm, respectively (p < 0.001; Group 2 < Group 1 < Group 3). FTIR found that there was a significant difference in amide I-to-hydrogen phosphate ratio among the three groups (p < 0.001; Group 2 < Group 1 < Group 3). ∆E of Groups 1, 2 and 3 after biofilm challenge were 22.5 ± 4.9, 70.2 ± 8.3 and 2.9 ± 0.9, respectively (p < 0.001; Group 3 < Group 1 < Group 2). SDF + KI treatment reduced secondary caries formation on GIC restoration, but it was not as effective as SDF treatment alone. Moreover, a perceptible staining on the restoration margin was observed, but the intensity of discolouration was less than that with solely SDF treatment.

  20. Effect of Ascorbic Acid on Shear Bond Strength of Orthodontic Brackets Bonded with Resin-modified Glass-ionomer Cement to Bleached Teeth

    PubMed Central

    Khosravanifard, Behnam; Rakhshan, Vahid; Araghi, Solmaz; Parhiz, Hadi

    2012-01-01

    Background and aims Bleaching can considerably reduce shear bond strength (SBS) of orthodontic brackets bonded with composite adhesives. Application of antioxidants is a method to reverse the negative effect of bleaching on composite-to-enamel bond. However, the efficacy of antioxidants in increasing the SBS of brackets bonded using resin-modified glass-ionomer cement (RMGIC) has not been studied, which was the aim of this study. Materials and methods Fifty freshly extracted human maxillary first premolars were bleached with 35% hydrogen peroxide (Pola Office Bleaching, SDI). Sodium ascorbate 10% was applied to the experimental specimens (n=25). All the specimens were etched with 37% phosphoric acid (Ivoclar/Vivadent) and bonded using RMGIC (Fuji Ortho LC, GC). The specimens were subjected to incubation (37°C, 24h) and thermocycling (1000 cycles, 5-55°C, dwell time = 1 min). The SBS was measured at 0.5 mm/min debonding crosshead speed. The adhesive remnant index (ARI) was scored under ×10 magni-fication. Data were analyzed using Mann-Whitney U test, one- and independent-samples t-test, and Fisher’sexact test (α=0.05). Results The mean SBS of experimental and control groups were 11.97 ± 4.49 and 7.7 ± 3.19 MPa, respectively. The dif-ference was statistically significant (P=0.000 by t-test). SBS of both control (P=0.014) and experimental (P=0.000) groups were significantly higher than the minimum acceptable SBS of 6 MPa, according to one-sample t-test. Conclusion Application of ascorbic acid can guarantee a strong bond when RMGIC is to be used. However, RMGIC might tolerate the negative effect of bleaching with minimum SA treatments (or perhaps without treatments), which de-serves further studies. PMID:22991638

  1. Effect of 10% sodium ascorbate hydrogel and delayed bonding on shear bond strength of composite resin and resin-modified glass ionomer to bleached enamel

    PubMed Central

    Danesh-Sani, Seyed Amir; Esmaili, Maryam

    2011-01-01

    Objective: The aim of this study was to comparatively investigate the neutralizing effect of antioxidant treatment and delayed bonding after bleaching with hydrogen peroxide on the shear bond strength of a composite resin (CR) and resin-modified glass ionomer (RmGI) to enamel. Materials and Methods: Ninety-six freshly extracted human 3rd molars with flat enamel surfaces were divided into six experimental groups (n=12/group) and two control groups (n=12/group). After initial preparation, specimens in Groups 1 and 5 (control groups) were not bleached and the buccal enamel surface of specimens were bonded immediately with CR and RmGI. The samples of the remaining groups were all bleached six hours a day for seven days consecutively. Immediately after bleaching, groups two and six specimens were bonded with CR and RmGI. Groups 3 and 7 specimens were immersed in distilled water at 37°C for 7 days and the specimens in Groups 4 and 8 were treated with 10% sodium ascorbate as an antioxidant agent after bleaching. Specimens in Groups 3 and 4 were bonded with CR and Groups 7 and 8 specimens were bonded with RmGI immediately. After specimens were bonded, the shear bond strength (SBS) was measured. The SBS data analyses were subjected to one-way analysis of variance (ANOVA) followed by Tukey test for comparison of specific mean values. Results: The mean SBS value in Group 2 (immediately bonded with CR after bleaching) was significantly lower than other CR groups (P=0.045). RmGI did not bond to buccal enamel surface of specimens in group 6. There was no significant difference between other groups bonded with RmGI (P>0.05). Conclusions: Applying 10% sodium ascorbate hydrogel and one week delay before bonding resulted in reversal of reduced bond strength of CR and RmGI to bleached enamel. PMID:22025826

  2. Efficiency of Amorphous Calcium Phosphate–Containing Orthodontic Composite and Resin Modified Glass Ionomer on Demineralization Evaluated By a New Laser Fluorescence Device

    PubMed Central

    Uysal, Tancan; Amasyali, Mihri; Koyuturk, Alp Erdin; Sagdic, Deniz

    2009-01-01

    Objectives: The aim of this in vitro study was to compare the efficacy of Amorphous Calcium Phosphate (ACP)-containing orthodontic composite and resin-modified glass ionomer cement (RMGIC) on enamel demineralization adjacent to orthodontic brackets evaluated by a new laser fluorescence device. Methods: Sixty extracted maxillary premolars were used in the present study. Twenty orthodontic brackets were bonded with ACP-containing orthodontic adhesive (Aegis-Ortho), 20 were bonded with RMGIC (Fuji Ortho LC) and 20 were bonded with Transbond XT composite as the control. All samples were then cycled for 21 days through a daily procedure of demineralization for 6 hours and remineralization for 17 hours. After this procedure, demineralization evaluations were undertaken by a pen-type laser fluorescence device (DIAGNO-dent Pen). Analysis of variance (ANOVA) and Tukey test was used for statistical evaluation, at P<.05 level. Results: According to ANOVA, significant demineralization variations (ΔD) were determined among groups (F=6.650; P<.01). The ACP-containing composite showed the lowest (mean: 8.98±2.38) and the control composite showed the highest (mean:12.15±3.83) ΔD, during 21 days demineralization process (P<.01). Significant difference was also observed between the ΔD scores of the RMGIC (mean: 9.24±2.73) and control (P<.05). No significant differences was found in preventive effects of ACP-containing composite and RMGIC (P<.05) against demineralization. Conclusions: The use of both ACP-containing orthodontic composite and RMGIC should be recommended for any at-risk orthodontic patient to provide preventive actions and potentially remineralize subclinical enamel demineralization. PMID:19421393

  3. The effects of ambient temperature and mixing time of glass ionomer cement material on the survival rate of proximal ART restorations in primary molars

    PubMed Central

    Kemoli, Arthur M

    2014-01-01

    Objective: Temperature fluctuations and material mixing times are likely to affect the consistency and integrity of the material mixture, and hence the restoration made out of it. The purpose of the present study was to determine the influence of the ambient temperature and the mixing time of glass ionomer cement (GIC) restorative material on the survival rate of proximal atraumatic restorative treatment (ART) restorations placed in primary molars. Materials and Methods: A total of 804 restorations were placed in the primary molars of 6-8-year-olds using the ART approach. The restorations were then followed for a period of 2 years and evaluated at given intervals. The data collected were analyzed using SPSS computer statistical program, and the results tested and compared using the Chi-square, Kaplan Meier survival analysis and Cox Proportional hazard statistical tests. Results: The cumulative survival rate of the restorations dropped from the initial 94.4% to 30.8% at the end of 2 years. The higher survival rate of the restorations was associated with the experienced operators and assistants when using the rubber dam isolation method. However, there was no statistically significant difference in the survival rate of the restorations when related to the room temperature and the mixing time of the GIC materials used in spite of the variations in the temperature recoded and the methods used in mixing the materials. Conclusion: The ambient temperature and mixing time of GIC did not have a significant effect on the survival of the proximal ART restorations. PMID:24808692

  4. Comparative evaluation of the calcium release from mineral trioxide aggregate and its mixture with glass ionomer cement in different proportions and time intervals – An in vitro study

    PubMed Central

    Sawhney, Surbhi; Vivekananda Pai, A.R.

    2015-01-01

    Background Addition of glass ionomer cement (GIC) has been suggested to improve the setting time and handling characteristics of mineral trioxide aggregate (MTA). This study evaluated the effect of adding GIC to MTA in terms of calcium release, an issue that has not been previously studied. Materials and methods The study comprised four groups with five samples each: a control group of MTA alone and experimental groups I (1MTA:1GIC), II (2MTA:1GIC), and III (1MTA:2GIC) based on the mixture of MTA and GIC powders in the respective proportions by volume. Calcium release from the samples was measured by atomic absorption spectrophotometry at 15 min, 6 h, 24 h, and 1 week after setting. The level of statistical significance was set at p < 0.05. Results Groups I (1MTA:1GIC) and III (1MTA:2GIC) released significantly less calcium than the control group at all time periods, except at 15 min for group I. Group II (2MTA:1GIC) showed no significant difference in calcium release compared to the control at any time period. Group II exhibited greater calcium release than group I or III at all time periods, with significant differences between groups I and II at 1 week and between groups I and III at 24 h and 1 week. There were no statistical differences in calcium release between groups I and III. Conclusions Adding GIC to improve the setting time and handling properties of the MTA powder can be detrimental to the calcium-releasing ability of the resultant mixture, depending on the proportion of GIC added. Adding MTA and GIC at a proportion of 2:1 by volume did not impact calcium release from the mixture. These findings should be verified through further clinical studies. PMID:26644757

  5. Evaluation of the Effect of Different Food Media on the Marginal Integrity of Class V Compomer, Conventional and Resin-Modified Glass-Ionomer Restorations: An In Vitro Study

    PubMed Central

    Dinakaran, Shiji

    2015-01-01

    Background: Cervical lesions of anterior and posterior teeth are a common finding in routine dental practice. They are of much concern to the patient, if present in esthetically sensitive regions. Adhesive tooth-colored restorative materials are generally recommended for treating such lesions. The aim of the present study was to evaluate and compare the effect of various food media (lime juice, tea, coffee, and Coca-Cola) on the marginal integrity of Class V compomer (Dyract®), conventional glass-ionomer (Fuji II) and resin-modified glass-ionomer (Fuji II LC improved) restorations along their cemental and enamel margins with saline as control media. Materials and Methods: After restoration of prepared Class V cavities in human premolars with the three different materials (n = 8), they were immersed in the test media for 7 days and then stained with methylene blue dye. Buccolingual sections were prepared and examined under stereomicroscope and scores (0-2) were given. Results: Data were analyzed statistically using one-way analysis of variance in SPSS version 16.0. P < 0.05 were considered statistically significant. Conclusions: Among the three tested materials Compomer (Dyract®) showed more marginal integrity than the other two. Micro leakage values of Fuji II and Fuji II LC improved were statistically significant in acidic media (lime juice and Coca-Cola) compared to saline. Enamel margins showed more marginal adaptation than cemental margins. PMID:25878480

  6. Do Laboratory Results Concerning High-Viscosity Glass-Ionomers versus Amalgam for Tooth Restorations Indicate Similar Effect Direction and Magnitude than that of Controlled Clinical Trials? - A Meta-Epidemiological Study

    PubMed Central

    Mickenautsch, Steffen; Yengopal, Veerasamy

    2015-01-01

    Background A large percentage of evidence concerning dental interventions is based on laboratory research. The apparent wealth of laboratory evidence is sometimes used as basis for clinical inference and recommendations for daily dental practice. In this study two null-hypotheses are tested: whether trial results from laboratory and controlled clinical trials concerning the comparison of high-viscosity glass-ionomer cements (HVGIC) to amalgam for restorations placed in permanent posterior teeth have: (i) similar effect direction and (ii) similar effect magnitude. Methods 7 electronic databases were searched, as well as reference lists. Odds ratios (OR) and Standardised Mean Differences (SMD) with 95% Confidence intervals were computed for extracted dichotomous and continuous data, respectively. Pooled effect estimates for laboratory and clinical data were computed to test for effect direction. Odds ratios were converted into SMDs. SMDs from laboratory and clinical data were statistically compared to test for differences in effect magnitude. The analysed results were further investigated within the context of potential influencing or confounding factors using a Directed acyclic graph. Results Of the accepted eight laboratory and nine clinical trials, 13 and 21 datasets could be extracted, respectively. The pooled results of the laboratory datasets were highly statistically significant in favor of amalgam. No statistically significant differences, between HVGICs and amalgam, were identified for clinical data. For effect magnitude, statistically significant differences between clinical and laboratory trial results were found. Both null-hypotheses were rejected. Conclusion Laboratory results concerning high-viscosity glass-ionomers versus amalgam for tooth restorations do not indicate similar effect direction and magnitude than that of controlled clinical trials. PMID:26168274

  7. Viscoelastic properties of Ionomer Melt

    NASA Astrophysics Data System (ADS)

    Goswami, Monojoy; Kumar, Sanat

    2007-03-01

    Viscoelastic prperties of a model telechelic ionomer, i.e., a melt of non-polar polymers with a charge at each chain end along with neutralizing counterions, have been examined using molecular dynamics simulation. Equlibrium calculation of the loss modulus G^''(φ) and storage modulus G^'(φ) shows plateau at lower temperatures when the systems are not relaxed. In this situation the specific heat (Cv) peak corresponds to the self-assembly of the system, at lower temperatures the specific heat begins to plateau. Similarities of the dynamic features found for telechelic melts with those observed in glass-forming liquids and entangled polymers have been shown. Furthremore, using an athermal 'probe', the properties of these materials is being distinctly classified as 'strong' glass or physical gels.

  8. Effect of cement type and water storage time on the push-out bond strength of a glass fiber post.

    PubMed

    Reis, Kátia Rodrigues; Spyrides, George Miguel; Oliveira, Jonas Alves de; Jnoub, Alexandre Abrão; Dias, Kátia Regina Hostilio Cervantes; Bonfantes, Gerson

    2011-01-01

    This study investigated the effects of the cement type and the water storage time on the push-out bond strength of a glass fiber post. Glass fiber posts (Fibrekor, Jeneric Pentron) were luted to post spaces using a self-cured resin cement (C&B Cement [CB]), a glass ionomer cement (Ketac Cem [KC]) or a resin-modified glass ionomer cement (GC FujiCEM [FC]) according to the manufacturers' instructions. For each luting agent, the specimens were exposed to one of the following water storage times (n=5): 1 day (T1), 7 days (T7), 90 days (T90) and 180 days (T180). Push-out tests were performed after the storage times. Control specimens were not exposed to water storage, but subjected to the push-out test 10 min after post cementation. Data (in MPa) were analyzed by Kruskal-Wallis and Dunn`s test (α=0.05). Cement type and water storage time had a significant effect (p<0.05) on the push-out bond strength. CB showed significantly higher values of retention (p<0.05) than KC and FC, irrespective of the water storage time. Water storage increased significantly the push-out bond strength in T7 and T90, regardless of the cement type (p<0.05). The results showed that fiber posts luted to post spaces with the self-cured resin cement exhibited the best bonding performance throughout the 180-day water storage period. All cements exhibited a tendency to increase the bond strength after 7 and 90 days of water storage, decreasing thereafter.

  9. Ionomer Design Principles for Single Ion-Conducting Energy Materials

    NASA Astrophysics Data System (ADS)

    Colby, Ralph; Liang, Siwei; Liu, Wenjuan; Hyeok Choi, U.; Runt, James; Shiau, Huai-Suen; Janik, Michael

    2012-02-01

    Single-ion conducting ionomers with low glass transition temperature, high dielectric constant and containing bulky ions with diffuse charge, are needed for polymer membranes that transport small counterions. Overarching design principles emerging from quantum chemistry calculations suggest that diffuse charge can be attained from simple considerations of atomic electronegativity. For lithium or sodium batteries, perfluorinated tetraphenyl borate ionomers with solvating polar comonomers are proposed. For fluoride or hydroxide batteries and for iodide transporting solar cells, tetra-alkyl phosphonium ionomers with anion receptors are proposed. First attempts to construct such ionomers to test these ideas will be discussed, with results from dielectric spectroscopy to measure conductivity, dielectric constant and number density of simultaneously conducting ions.

  10. Plasticizer Influence on Ionic Morphology and Transport in PEO Ionomers

    NASA Astrophysics Data System (ADS)

    O'Reilly, Michael; Masser, Hanqing; King, Daniel; Painter, Paul; Colby, Ralph; Runt, James; Winey, Karen

    2013-03-01

    Sulfonated poly(ethylene oxide) ionomers have been blended with a miscible, oligomeric poly(ethylene glycol) in order to study the effect of plasticizers on ionomer performance. Plasticizers can increase ionic conductivity in ionomers by depressing the glass transition temperature and dissolving ionic aggregates. In this study, the relative volume fractions of ionic aggregates in various blend compositions is investigated by curve fitting the X-ray scattering aggregate peak. Two fitting parameters are utilized to quantify aggregate composition, peak area and peak position. Fitting results conclude that plasticizer content dilutes and dissolves ionic aggregates, providing higher conducting ion density than comparable neat ionomers. Dielectric relaxation spectroscopy data confirms that ionic conductivity improves with plasticizer content. Similar curve fitting methods were executed for FT-IR signals, and quantification of aggregate structure is compared with X-ray scattering.

  11. Comparison of marginal adaptation of mineral trioxide aggregate, glass ionomer cement and intermediate restorative material as root-end filling materials, using scanning electron microscope: An in vitro study

    PubMed Central

    Gundam, Sirisha; Patil, Jayaprakash; Venigalla, Bhuvan Shome; Yadanaparti, Sravanthi; Maddu, Radhika; Gurram, Sindhura Reddy

    2014-01-01

    Aim: The present study compares the marginal adaption of Mineral Trioxide Aggregate (MTA), Glass Ionomer Cement (GIC) and Intermediate Restorative Material (IRM) as root-end filling materials in extracted human teeth using Scanning Electron Microscope (SEM). Materials and Methods: Thirty single rooted human teeth were obturated with Gutta-percha after cleaning and shaping. Apical 3 mm of roots were resected and retrofilled with MTA, GIC and IRM. One millimeter transverse section of the retrofilled area was used to study the marginal adaptation of the restorative material with the dentin. Mounted specimens were examined using SEM at approximately 15 Kv and 10-6 Torr under high vacuum condition. At 2000 X magnification, the gap size at the material-tooth interface was recorded at 2 points in microns. Statistical Analysis: One way ANOVA Analysis of the data from the experimental group was carried out with gap size as the dependent variable, and material as independent variable. Results: The lowest mean value of gap size was recorded in MTA group (0.722 ± 0.438 μm) and the largest mean gap in GIC group (1.778 ± 0.697 μm). Conclusion: MTA showed least gap size when compared to IRM and GIC suggesting a better marginal adaptation. PMID:25506146

  12. Shear bond strength evaluation of resin composite bonded to three different liners: TheraCal LC, Biodentine, and resin-modified glass ionomer cement using universal adhesive: An in vitro study

    PubMed Central

    Deepa, Velagala L; Dhamaraju, Bhargavi; Bollu, Indira Priyadharsini; Balaji, Tandri S

    2016-01-01

    Aims: To compare and evaluate the bonding ability of resin composite (RC) to three different liners: TheraCal LC™ (TLC), a novel resin-modified (RM) calcium silicate cement, Biodentine™ (BD), and resin-modified glass ionomer cement (RMGIC) using an universal silane-containing adhesive and characterizing their failure modes. Materials and Methods: Thirty extracted intact human molars with occlusal cavity (6-mm diameter and 2-mm height) were mounted in acrylic blocks and divided into three groups of 10 samples each based on the liner used as Group A (TLC), Group B (BD), and Group C (RMGIC). Composite post of 3 mm diameter and 3 mm height was then bonded to each sample using universal adhesive. Shear bond strength (SBS) analysis was performed at a cross-head speed of 1 mm/min. Statistical Analysis Used: Statistical analysis was performed with one-way analysis of variance (ANOVA) and post hoc test using Statistical Package for the Social Sciences (SPSS) version 20. Results: No significant difference was observed between group A and group C (P = 0.573) while group B showed the least bond strength values with a highly significant difference (P = 0.000). The modes of failure were predominantly cohesive in Groups A and B (TLC and BD) while RMGIC showed mixed and adhesive failures. Conclusions: Hence, this present study concludes that the bond strength of composite resin to TLC and RMGIC was similar and significantly higher than that of BD following application of universal adhesive. PMID:27099425

  13. The influence of using vacuum-dried poly(alkenoic) acids upon the physical properties of a glass polyalkenoate (ionomer) cement.

    PubMed

    Walls, A W; McCabe, J F; Murray, J J

    1989-06-01

    Some of the physical characteristics of two glass polyalkenoate cements have been measured. The two cements differ in terms of the presentation of the poly(alkenoic) acid used to form the cement and in the method of mixing of the materials. The 'conventional' cement uses an aqueous solution of poly(acid) and is an encapsulated mechanically mixed material. The alternative material contains a vacuum-dried poly(acid) powder with the ion-leachable glass, and is mixed by hand with a 15 per cent aqueous solution of tartaric acid. There were some minor differences between the two products, including a delay in the onset of the setting reaction for the material containing the vacuum-dried poly(acid) powder. These differences would probably have little significant effect upon the clinical performance of the materials.

  14. The preparation and investigation into properties of ionomer fiber

    NASA Astrophysics Data System (ADS)

    Ejigiri, Everest Emmanuel

    The purpose of this study was to demonstrate the preparation and characterization of ionomer fiber. Two outstanding features of oriented-fiber composites are their high strength-to- weight ratio and controlled anisotropy which is because fibers are formed when polymer chains (in case of polymeric materials) are all lined up in the same direction. And the chains can pack together tightly. Materials can be made into fiber for the purpose of getting better properties and to make the application flexible. In this study, ionomer fiber was prepared. The physical and mechanical properties were examined through a variety of tests- including tensile test, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), free shape recovery test, and constrained stress recovery test. The ionomer fibers were made into muscles fiber, and the tensile actuation behavior of the muscle was studied. From the DMA, Storage modulus, loss modulus, tan delta and glass transition temperature were obtained. DSC was also used to obtain the glass transition temperature which also closely aligned with glass transition obtained from DMA. Also according to the test results, ionomer fiber (filament) demonstrated considerable stress recovery, high ductility and however, the filament did not produce high recovery ratio. The fiber was made into artificial muscle and actuation test was also carried out, which indicated that because the fiber being too much elastic - the fiber was not able to expand and contract when heat was applied to it. Instead it showed continuous expansion.

  15. The role of glass composition in the behaviour of glass acetic acid and glass lactic acid cements.

    PubMed

    Shahid, Saroash; Billington, R W; Pearson, G J

    2008-02-01

    Cements have recently been described, made from glass ionomer glass reacted with acetic and lactic acid instead of polymeric carboxylic acid. From their behaviour a theory relating to a possible secondary setting mechanism of glass ionomer has been adduced. However, only one glass (G338) was used throughout. In this study a much simpler glass ionomer glass (MP4) was compared with G338. This produced very different results. With acetic acid G338 formed cement which became resistant to water over a period of hours, as previously reported, MP4 formed cement which was never stable to water. With lactic acid G338 behaved similarly to G338 with acetic acid, again as reported, but MP4 produced a cement which was completely resistant to water at early exposure and unusually became slightly less resistant if exposure was delayed for 6 h or more. These findings indicate that the theories relating to secondary setting in glass ionomer maturation may need revision.

  16. Assessment of the Shear Bond Strength between Nanofilled Composite Bonded to Glass-ionomer Cement Using Self-etch Adhesive with Different pHs and Total-Etch Adhesive

    PubMed Central

    Sharafeddin, Farahnaz; Choobineh, Mohammad Mehdi

    2016-01-01

    Statement of the Problem In the sandwich technique, the undesirable bond between the composite resin and glass-ionomer cement (GIc) is one of the most important factors which lead to the failure of restoration. Total-etch and self-etch adhesives may improve the bond strength based on their pH. Purpose The purpose of this study was to evaluate the shear bond strength between the nanofilled composite resin and GIc using different adhesives. Materials and Method In this experimental study, 40 specimens (6×6mm) in 4 groups (n=10) were prepared in acrylic mold. Each specimen contained conventional GI ChemFil Superior with a height of 3mm, bonded to Z350 composite resin with a height measured 3mm. In order to bond the composite to the GI, the following adhesives were used, respectively: A: mild Clearfil SE Bond self-etch (pH=2), B: intermediate OptiBond self-etch (pH=1.4), C: strong Adper Prompt L-Pop (pH=1), and D: Adper Single Bond 2 total-etch (pH=7.2). The shear bond strength was measured by using universal testing machine with a crosshead speed of 1mm/min. One-way ANOVA and Tukey’s test were used to analyze the data (p< 0.05). Results The shear bond strength in group A was significantly higher than group B (p= 0.002), C (p< 0.001), and D (p< 0.001). Moreover, the shear bond strength of groups A and B (self-etch) was significantly different from group D (total-etch) (p< 0.001); and C (self-etch) with D (p= 0.024). Conclusion The results of this study showed that applying the mild self-etch adhesive between the composite and the GIc results in stronger shear bond strength compared to intermediate and strong self-etch adhesives. Moreover, the self-etch adhesive increased the shear bond strength between composite resin and GIc more significantly than total-etch adhesive. PMID:26966701

  17. Fracture frequency and longevity of fractured resin composite, polyacid-modified resin composite, and resin-modified glass ionomer cement class IV restorations: an up to 14 years of follow-up.

    PubMed

    van Dijken, Jan W V; Pallesen, Ulla

    2010-04-01

    The aim of this study was to evaluate the fracture frequency and longevity of fractured class IV resin composite (RC), polyacid-modified resin composite (compomer; PMRC), and resin-modified glass ionomer cement (RMGIC) restorations in a longitudinal long-term follow-up. Eighty-five class IV RC (43: Pekafil), PMRC (24: Dyract (D), Hytac (H)), and RMGIC (18: Fuji II LC (F), Photac Fil (P)) restorations were placed in ongoing longitudinal follow-ups in 45 patients (mean age 54.5 years). The restorations were evaluated during 14 years by slightly modified USPHS criteria at yearly recalls especially for their fracture behavior. For all restorations, 36.5% were fractured, with a Kaplan-Meier (KM) estimate of 8.8 years (standard error (SE) 0.5, confidence interval (CI) 7.9-9.8). The number of fractures per material was 11 RC (25.6%; KM 9.9 years, CI 8.7-11.0), 13 PMRC (54.2%; D 66.6%; H 50.0%; KM 7.5 years, CI 5.8-9.2), and seven RMGIC (36.5%; F 22.2%, P 71.4%; KM 6.9 years, CI 7.9-9.8). Significant differences were seen between RC and PMRC (p = 0.043). A significant higher fracture rate was observed in teeth 12 + 22 compared to teeth 11 + 21. No significant differences were observed between male and female patients. Restorations in bruxing patients (45) showed 22 fractures (KM 8 years; CI 6.9-9.3) and in non-bruxing patients (39) nine fractures (KM 9.9 years, CI 8.7-11.1; p = 0.017). With regard to the longevity of the replaced failed restorations, for RC, the mean age was 4.5 years; for PMRC, 4.3 years; and for RMGIC, 3.3 years. It can be concluded that fracture was the main reason for failure of class IV restorations. An improved longevity was observed for class IV restorations compared to those presented in earlier studies. RC restorations showed the lowest failure frequency and the highest longevity.

  18. Viscoelastic Behavior of Low Molecular Weight Sulfonated Polystyrene Ionomers

    NASA Astrophysics Data System (ADS)

    Zhao, Hongying

    Ionomers are those hydrophobic polymers having small amounts of bonded ionic groups. The introduction of the ionic groups into polymer chain produces large changes in the physical, mechanical and rheological properties of the parent polymer. Characterization of the effect of the ionic interactions on the rheology is complicated by the difficulty in separating effects due to molecular entanglements and the ionic interactions. In this study, low molecular weight (Mw=4000) sulfonated polystyrene (SPS) was used to study the dynamic and steady shear rheology of SPS ionomers. The polymer chain length used was far below the entanglement molecular weight of polystyrene and effects of molecular entanglements will be absent. Any polymer chain entanglements or lengthening behavior on the melt rheology should be due to the ionic interactions. Random SPS ionomers with two sulfonation levels were examined, 2.5 and 4.8 mol%, which corresponded, respectively, to one and two sulfonate groups per chain on average. The metal counterions was varied across the alkali metal series of the periodic table. Morphology of the ionomer was characterized by using small angle x-ray scattering (SAXS) analysis, and dynamic and steady shear measurements were performed to investigate rheological behavior of the ionomers. Glass transition temperatures of the ionomers increased with increasing ion concentration but were insensitive to cation used. The scattering peak in SAXS indicates the existence of the nanophase separated ionic clusters. The strong ionic nanophase persist up to very high temperatures and is not sensitive to the external stress. Time-temperature superposition (TTS) of G' worked reasonably well while TTS of G" failed for most ionomers. Ionic interactions increased the terminal relaxation time of the melts as much as seven orders of magnitude greater than the unentangled PS melt. The zero shear viscosity and first normal stress coefficients scaled with cq/a, where c was the

  19. Encapsulant Material For Solar Cell Module And Laminated Glass Applications

    DOEpatents

    Hanoka, Jack I.

    2000-09-05

    An encapsulant material includes a layer of metallocene polyethylene disposed between two layers of ionomer. More specifically, the layer of metallocene polyethylene is disposed adjacent a rear surface of the first ionomer layer, and a second layer of ionomer is disposed adjacent a rear surface of the layer of metallocene polyethylene. The encapsulant material can be used in solar cell module and laminated glass applications.

  20. Influence of dentin conditioning on bond strength of light-cured ionomer restorative materials and polyacid-modified composite resins.

    PubMed

    Buchalla, W; Attin, T; Hellwig, E

    1996-01-01

    The purpose of the study was to evaluate the dentin bond strength of restorative materials containing both glass ionomer and composite resin components. Three resin-modified glass ionomer restorative materials (Fuji II LC, Photac-Fil, Vitremer), three polyacid-modified composite resins (Dyract, Ionosit Fil, VariGlass VLC), a hybrid composite (blend-a-lux) and a chemical-cured glass ionomer cement (ChemFil Superior) were investigated for dentin tensile bond strength with and without conditioning of the tooth surfaces. For each material, tensile bond strength was determined using five conditioned and five unconditioned bovine tooth specimens. Conditioning of the specimens was performed according to the manufacturers' instructions. The tensile bond strength was tested with a universal testing machine. Statistical analysis was performed with analysis of variance, the Scheffe's-test and the Student's t-test. All materials showed higher adhesion to conditioned dentin than to unconditioned specimens. Except for Photac-Fil, the bond strength to conditioned dentin of all resin-modified glass ionomer restorative materials and polyacid-modified composite resins was higher as compared to the chemical-cured glass ionomer and the hybrid composite. However, these differences were not statistically significant. All polyacid-modified composite resins resulted in higher bond strengths to conditioned dentin as compared to the resin-modified glass ionomer restorative materials. These differences were statistically significant only for VariGlass VLC as compared to Photac-Fil. In order to improve adhesion of the tested materials to dentin it is highly recommended to follow the manufacturers' instructions concerning dentin conditioning.

  1. Polysiloxane-graft-PEG/Phosphonium Ionomer Morphology and Ion Transport

    NASA Astrophysics Data System (ADS)

    O'Reilly, Michael; Liang, Siwei; Bartels, Joshua; Runt, James; Colby, Ralph; Winey, Karen

    2013-03-01

    A series of random polysiloxane-based copolymer single ion conductors with phosphonium and polyethylene glycol side chains have been synthesized at various compositions and counterions. Morphology is investigated via X-ray scattering, and reveals microphase separation on extremely small length scales. Despite the low molecular weight of the PEG side chain, polysiloxane and PEG assemble into microdomains with covalently bound phosphonium cations at the interface. Exceptionally low glass transition temperatures in these microphase separated ionomers allow for high ionic mobility for both bulky, charge delocalized counterions as well as small, electronegative counterions. Morphology interpretation is complemented by measurement of ion transport properties via dielectric relaxation spectroscopy.

  2. Influence of Neutralization on Amorphous-Phase Properties in Semicrystalline Ionomers

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Katsuyuki

    2005-03-01

    Ethylene-methacrylic acid (E-MAA) ionomers contain lamellar polyethylene crystallites, amorphous copolymer segments and ionic aggregates, each of which affects the mechanical properties of the material. For a quantitative assessment of the contributions from each of the three structural motifs, we measured the ionomer modulus at 70 ^oC, where the materials still contain substantial crystallinity, and applied a two-phase composite treatment (Davies Model) to extract the modulus of the amorphous phase. The amorphous phase modulus at 70 ^oC increases with neutralization level as a consequence of physical crosslinking by the ionic aggregates; amorphous phase moduli for ionomers with varying comonomer content and neutralization levels approximately collapsed when plotted against the number density of ionic groups, with the modulus increasing with ion content in general agreement with simple rubber elasticity theory. Between 25 and 70 ^oC, the relaxation behavior of ionomers differs substantially from that for unneutralized E-MAA copolymers. The ionomers exhibit two-step drops in the storage modulus prior to primary crystal melting, which we attribute to melting of secondary crystallites and devitrification of the amorphous phase, whose glass transition is elevated by neutralization.

  3. Proton exchange membranes based on the short-side-chain perfluorinated ionomer

    NASA Astrophysics Data System (ADS)

    Ghielmi, A.; Vaccarono, P.; Troglia, C.; Arcella, V.

    Due to the renovated availability of the base monomer for the synthesis of the short-side-chain (SSC) perfluorinated ionomer, fuel cell membrane development is being pursued using this well known ionomer structure, which was originally developed by Dow in the 1980s. The new membranes under development have the trade name Hyflon Ion. After briefly reviewing the literature on the Dow ionomer, new characterization data are reported on extruded Hyflon Ion membranes. The data are compared to those available in the literature on the Dow SSC ionomer and membranes. Comparison is made also with data obtained in this work or available in the literature on the long-side-chain (LSC) perfluorinated ionomer (Nafion). Thermal, visco-elastic, water absorption and mechanical properties of Hyflon Ion are studied. While the general behavior is similar to that shown in the past by the Dow membranes, slight differences are evident in the hydration behavior at equivalent weight (EW) < 900, probably due to different EW distributions. Measurements on dry membranes confirm that Hyflon Ion has a higher glass transition temperature compared to Nafion, which makes it a more promising material for high temperature proton exchange membrane (PEM) fuel cell operation ( T > 100 °C). Beginning of life fuel cell performance has also been confirmed to be higher than that given by a Nafion membrane of equal thickness.

  4. Ionomers and methods of making same and uses thereof

    SciTech Connect

    Coates, Geoffrey W.; Kostalik, IV, Henry A.; Clark, Timothy J.; Robertson, Nicholas J.

    2016-11-15

    Ionomers comprising ionic groups such as, for example, tetraalkylammonium groups and methods of making such ionomers. For example, the ionomers can be produced by ring opening metathesis polymerization of alkene-containing monomers with tetraalkylammonium groups and, optionally, alkene-containing monomers without tetraalkylammonium groups. The ionomers can be used in applications such as, for example, fuel cell applications.

  5. Next-generation ionomer encapsulants for thin film technology

    NASA Astrophysics Data System (ADS)

    Czyzewicz, Robin; Smith, C. Anthony

    2011-09-01

    The characteristic properties of newly developed ionomer-based encapsulants are highlighted along with an in-depth analysis of moisture ingress, electrical and mechanical properties. The mechanical properties of these encapsulants with their high stiffness and strength have been found to allow the use of thinner glass and a possible shift from tempered to annealed glass. Lower-cost mounting options may be explored through full-module stress/deflection measurement capability and competencies developed in world-class finite-element modeling of system parameters. The superior electrical and moisture properties may allow modules to be produced without the use of an additional edge seal. These new materials have improved melt flow properties when compared to other encapsulant families such as EVA or PVB. This allows for faster processing which reduces production cost by shortening the lamination cycle. During the lamination process the sheets show excellent dimensional stability and low shrinkage behavior; and there is no need for curing, thus energy costs are lower due to lower lamination temperature. As advancement of technology proceeds across the entire PV industry, next generation ionomer encapsulants have been developed to keep up with the pace.

  6. Morphological interface between hybrid ionomers and dentin with and without smear-layer removal.

    PubMed

    Abdalla, A I

    2000-09-01

    To evaluate the micromorphological interface between dentin and several hybrid ionomer restoratives, a flat dentin surface was obtained on the occlusal surfaces of extracted human molar teeth after sectioning the enamel with an Isomet saw. Three poly-acid-modified composite resins, Compoglass, Dyract and F2000, and two resin-modified glass-ionomer cements, Fuji II LC and Photac-Fil were applied to the dentin surface. A second section, 2 mm apical from the first one, was made to produce a dentin segment containing the tested materials. Each disc was then split fractured along the dentin/material interface. For the poly-acid-modified composites, one half of the disc was stored in 6 mol/L HCl for 48 h to remove the dentin. The other was gently decalcified and deprotenized at the interface between the hybrid ionomer and the dentin. Both halves were then sputtered with gold and examined using SEM. For resin-modified glass-ionomer, samples were only evaluated at the interface. The three poly-acid-modified composite resins showed the formation of hybrid layers and resin tags at the interface to the dentin. Removal of the smear layer significantly improves hybridization of these materials. Also, Fuji II LC produced a hybrid layer while the Photac-Fil showed no evidence of hybridization.

  7. The Effects of Confinement of Thin Spin Cast Films of Perfluorinated Ionomers

    NASA Astrophysics Data System (ADS)

    Perahia, Dvora; Hill, Teresa

    2003-03-01

    The surface structure and its response to annealing upon confinement of spin coated perfluorinated ion-containing polymer have been studied by atomic force microscopy, X-ray scattering, and non-polarized neutron reflectometry. Similar to self- assembled films, the spin coated ionomers form structured films consisting of bundles of micelles. In contrast to self-assembled films, in spin coated ones hexagonal arrangements of the basic structural units are observed. Films with thickness ranging from 350 Å to 1050 Å have been investigated as a function of annealing time above the glass transition temperature of the fluorinated backbones. The films remain intact and do not de-wet when heated above the glass transition temperature of the polymer, contrary to what has been observed in thin di-block copolymers. The film thickness affects the ability of the ionomer to rearrange and releases constraints imposed by the spin coating procedure.

  8. Nature and properties of ionomer assemblies. II.

    PubMed

    Capek, Ignác

    2005-12-30

    The principle subject in the current paper is to summarize and characterize the ionomers based on polymers and copolymers such as polystyrene (PSt), polyisoprene (PIP), polybutadiene (PB), poly(styrene-b-isobutylene-b-styrene) (PSt-PIB-PSt), poly(butadiene-styrene) (PB-PSt), poly(ethylene terephthalate) (PET), poly(butylene adipate) (PBA), poly(butylene succinate) (PBSi), poly(dimethylcarbosiloxanes), polyurethane, etc. The self-assembly of ionomers, models concerning ionomer morphologies, physical and rheological properties of ionomer phase and percolation behavior of ionomers were discussed. The ionomer phase materials and dispersions have been characterized by differential scanning calorimetry (DSC), small-angle X-ray catering (SAXS), small-angle neutron scattering (SANS), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), etc. The wide range of compositions, molecular architectures, and morphologies present in ionomeric disperse systems are of great interest. The research is particularly devoted to the potential application of these materials and an understanding of the fundamental principles of the ionomers. They are extremely complex systems, sensitive to changes in structure and composition, and therefore not easily amenable to modeling and to the derivation of general patterns of behavior. The reviewed data indicate that a large number of parameters are important in influencing multiplet formation and clustering in random ionomers. Among these are the ion content, size of the polyion and counterion, dielectric constant of the host, T(g) of the polymer, rigidity or persistence length of the backbone, position of the ion pair relative to the backbone, steric constraints, amount and nature of added additive (plasticizer), thermal history, etc.

  9. Effect of Ion Content on Conductivity and Morphology of Single-Ion Conducting Ionomers

    NASA Astrophysics Data System (ADS)

    Wang, Jing-Han Helen; Colby, Ralph H.

    2013-03-01

    Ionomers based on short poly(ethylene oxide) side chains and sodium sulfonated styrene are synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization, to systematically study the effect of ion content and counterion species on ionic conductivity. Glass transition temperature increases gradually as ions are incorporated at low ion content then sharply as the ion content reaches 1:4 ions to ether oxygen (EO) ratio. Dielectric relaxation spectroscopy is used to measure the conductivity, dielectric constant and segmental relaxations in these ionomers. The ionomer with 1:80 ions to EO ratio shows highest room temperature conductivity that results from the best combination of number density of simultaneously conducting ions and their mobility, assessed by an electrode polarization model. The micro-phase separation that is anticipated in the ionomers with higher ion contents is probed by x-ray scattering. Sodium counterions are mostly trapped in ionic aggregates while larger counterions, such as tetramethylammonium, exhibit higher conductivity and conducting ion concentration.

  10. Oxygen reduction at platimun/ionomer interface: effects of phase separation of ionomer

    SciTech Connect

    Chlistunoff, Jerzy

    2008-01-01

    Oxygen reduction reaction (ORR) at the interface between platinum and recast ionomers (Nafion EW 1100 and 950 and 6F-40) was studied at different temperatures (20--80{sup o}C) and humidities (10--100%) employing smooth Pt and Pt-black-covered ultramicroelectrodes. ORR was strongly inhibited on smooth electrodes. The inhibition increased with the reduction time, temperature and humidity, but was absent for Nafion EW 1100 in contact with liquid water. It was attributed to the hydrophobic component of ionomer blocking both active sites and oxygen transport. It was postulated that the dynamic changes in interfacial phase separation of ionomer are facilitated by the attractive interactions between the hydrophobic component of ionomer and bare platinum and between oxide-covered Pt and the hydrophilic component of ionomer. These interactions were also proposed to be responsible for the differences in ORR voltammetry for films prepared and equilibrated under different conditions. The decrease in ORR inhibition, Nafion EW 950> Nafion EW 1100> 6F-40, was correlated with physical and molecular properties of the ionomers. The lack of inhibition for Pt-black-covered electrodes was attributed to the more random distribution of ionomer chains and the high activation barriers for the ionomer restructuring at rough interfaces.

  11. Synthesis, morphology and dynamics of polyureas and their lithium ionomers

    NASA Astrophysics Data System (ADS)

    Chuayprakong, Sunanta

    Electrolytes currently used in commercial lithium ion batteries have led to leakage and safety issues. Solvent-free solid polymer electrolytes (SPEs) offering high energy density are promising materials for lithium battery applications. SPEs require high modulus to separate the electrodes and suppress lithium dendrite growth. Microphase separation of the hard segments in amorphous polyureas (PUs) yields materials with higher moduli than typical low glass transition temperature (Tg) polymers. In this dissertation, several families of solution polymerized polyether-based PU ionomers were synthesized and their thermal, morphology and dynamic properties characterized as a function of chemical composition. In the initial phase of this investigation, polyethylene oxide (PEO) diamines (with molecular weights = 200, 600, 1050, 2000, 3000 and 6000 g/mol) were polymerized with 4,4' methylene diphenyl diisocyanate (MDI). PUs with 200 and 600 g/mol PEO soft segments are amorphous and single phase. The amorphous PU having 1050 g/mol PEO segments exhibits a small degree of phase separation, as demonstrated by X-ray scattering. PUs with 2000, 3000 and 6000 g/mol PEO soft segments are semicrystalline and their melting points and degrees of crystallinity are lower than those of the precursor PEO diamines due to their attachment to rigid hard segments. Even though polypropylene oxide (PPO) does not dissolve cations as efficiently as PEO, PPO is not crystallizable and was chosen to create a second family of amorphous PUs. PPO-containing diamines ((Jeff400 (MW = 400 g/mol) and Jeff2000 (MW = 2000 g/mol)) and MDI were chosen as the neutral soft segment and the hard segment, respectively. 2,5-diaminobenzene sulfonate was successfully synthesized and used for preparing ionomers. The amount of ionic species in these ionomers was varied and quantified using 1H-NMR. Single Tgs were observed and they increased with increasing ionic content. No X-ray scattering peaks corresponding to

  12. Fabrication technology to increase surface area of ionomer membrane material and its application towards high surface area electric double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Chang, Alberto A.; Patel, Jasbir N.; Cordoba, Cristina; Kaminska, Bozena; Kavanagh, Karen

    2014-03-01

    An application friendly technique to increase the surface area of the ionomer membrane such as Aquivion™ has been developed. By utilizing existing micro-fabrication technologies, square pillars were fabricated onto glass and silicon substrates. In combination with a low cost heat press, the glass and silicon stamps were used to successfully hot emboss micro-features onto the ionomer membrane. Consequently, the surface area of the Aquivion™ membrane was drastically increased enabling potential improvement of sensing and energy storage technologies. Preliminary results show successful fabrication of devices with systematic higher surface area and an improved capacitance.

  13. Molecular mobility, morphology, and ion conduction in ionomers for electroactive devices

    NASA Astrophysics Data System (ADS)

    Tudryn, Gregory J.

    A sequential study of ion-containing polymers capable of ion solvation with varied ion content, dielectric constant, and counterions is presented in this dissertation in order to compare ion transport properties in ionomers with various ionic interactions. Structure-property relationships in these ion containing polymers are defined using x-ray scattering, rheology and dielectric spectroscopy, enabling the quantification of ion transport dynamics. Poly(ethylene oxide), (PEO) based ionomers are investigated in order to probe the relation between ion conduction and segmental relaxation, and copolymers of PEO and Poly(tetramethylene oxide), (PTMO) further develop an understanding of the trade-off between ion solvation and segmental dynamics. Ionomers with ionic liquid counterions probe diffuse charge interactions and steric effects on ion transport, and incorporation of ionic liquids into ionomer membranes such as Nafion provides desirable thermal and ion conducting properties which extend the use of such membranes for electroactive devices. PEO ionomers exhibit a strong relation between ionic conductivity and segmental dynamics, providing insight that the glass transition temperature, Tg, dominates the ion conduction mechanism. Increasing temperature induces aggregation of ionic groups as evidenced by the static dielectric constant and X-ray scattering as a function of temperature, revealing the contribution of ionic dipoles in the measured dielectric constant. The trade-off between ion solvation and fast polymer segmental dynamics are quantified in copolymer ionomers of PEO and lower Tg PTMO. While conducting ion content remains nearly unchanged, conductivity is lowered upon incorporation of PTMO, because the vast majority of the PTMO microphase separates from the PEO-rich microdomain that remains continuous and contributes most of the ion conduction. Dielectric constants and X-ray scattering show consistent changes with temperature that suggest a cascading

  14. The Ionomic Study of Vegetable Crops

    PubMed Central

    Watanabe, Toshihiro; Maejima, Eriko; Yoshimura, Tomoko; Urayama, Masaru; Yamauchi, Aiko; Owadano, Masako; Okada, Ryosuke; Osaki, Mitsuru; Kanayama, Yoshinori; Shinano, Takuro

    2016-01-01

    Soil contains various essential and nonessential elements, all of which can be absorbed by plants. Plant ionomics is the study of the accumulation of these elements (the ionome) in plants. The ionomic profile of a plant is affected by various factors, including species, variety, organ, and environment. In this study, we cultivated various vegetable crop species and cultivars under the same field conditions and analyzed the level of accumulation of each element in the edible and nonedible parts using ionomic techniques. The concentration of each element in the edible parts differed between species, which could be partly explained by differences in the types of edible organs (root, leaf, seed, and fruit). For example, the calcium concentration was lower in seeds and fruit than in other organs because of the higher dependency of calcium accumulation on xylem transfer. The concentration of several essential microelements and nonessential elements in the edible parts also varied greatly between cultivars of the same species, knowledge of which will help in the breeding of vegetables that are biofortified or contain lower concentrations of toxic elements. Comparison of the ionomes of the fruit and leaves of tomato (Solanum lycopersicum) and eggplant (S. melongena) indicated that cadmium and boron had higher levels of accumulation in eggplant fruit, likely because of their effective transport in the phloem. We also found that homologous elements that have been reported to share the same uptake/transport system often showed significant correlation only in a few families and that the slopes of these relationships differed between families. Therefore, these differences in the characteristics of mineral accumulation are likely to affect the ionomic profiles of different families. PMID:27478901

  15. Comparison of a SiO(2)-CaO-ZnO-SrO glass polyalkenoate cement to commercial dental materials: glass structure and physical properties.

    PubMed

    Wren, A W; Coughlan, A; Laffir, F R; Towler, M R

    2013-02-01

    Glass polyalkenoate cements (GPCs) have previously been considered for orthopedic applications. A Zn-GPC (BT 101) was compared to commercial GPCs (Fuji IX and Ketac Molar) which have a setting chemistry analogous to BT 101. Handling properties (working, T (w) and setting, T (s) times) for BT 101 were shorter than the commercial GPCs. BT 101 also had a higher setting exotherm (S (x) -34 °C) than the commercial GPCs (29 °C). The maximum strengths for BT 101, Fuji IX, and Ketac Molar were 75, 238, and 216 MPa (compressive, σ (c)), and 34, 54, and 62 MPa (biaxial flexural strengths, σ (f)), respectively. The strengths of BT 101 are more suitable for spinal applications than commercial GPCs.

  16. Inorganic backbone ionomers: Design and dielectric response of single-ion conducting polymers

    NASA Astrophysics Data System (ADS)

    Bartels, Joshua

    analysis of the static dielectric constant and show excellent agreement with x-ray scattering and DFT calculations, each ionomer strongly favoring the formation of quadrupoles. Finally a polysiloxane ionomer was considered and was mixed with three anion and/or cation solvating additives, tetraglyme, tetraethylene glycol, and branched poly(ethylenimine). The EP model of the dielectric response gives the conducting ion concentration and the mobility of conducting ions and shows an increase in conducting ion concentration with both anion solvating and cation solvating additives. The static dielectric constant indicates an increased preference for ion pairs when anion receptors are present. Most interestingly, the additive that best decreased the glass transition temperature and increased the static dielectric constant did not result in the best dc conductivity. The best dc conductivity resulted from tetraglyme because it solvated cations without interacting with the polymer. High ion conductivities have not been observed in polymer systems that decouple charge transport from polymer motion, and therefore low Tg ionomers are the natural path forward for commercially viable ionomers. Inorganic backbone polymers impart a low Tg without bringing any strong disadvantage to ionomers. These materials are very important for developing superior ion conductors and should be pursued in future ionomer research.

  17. Ionomer-Membrane Water Processing Apparatus

    NASA Technical Reports Server (NTRS)

    MacCallum, Taber K. (Inventor); Kelsey, Laura (Inventor)

    2016-01-01

    This disclosure provides water processing apparatuses, systems, and methods for recovering water from wastewater such as urine. The water processing apparatuses, systems, and methods can utilize membrane technology for extracting purified water in a single step. A containment unit can include an ionomer membrane, such as Nafion(Registered Trademark), over a hydrophobic microporous membrane, such as polytetrafluoroethylene (PTFE). The containment unit can be filled with wastewater, and the hydrophobic microporous membrane can be impermeable to liquids and solids of the wastewater but permeable to gases and vapors of the wastewater, and the ionomer membrane can be permeable to water vapor but impermeable to one or more contaminants of the gases and vapors. The containment unit can be exposed to a dry purge gas to maintain a water vapor partial pressure differential to drive permeation of the water vapor, and the water vapor can be collected and processed into potable water.

  18. Ionomer-Membrane Water Processing Methods

    NASA Technical Reports Server (NTRS)

    MacCallum, Taber K. (Inventor); Kelsey, Laura (Inventor)

    2016-01-01

    This disclosure provides water processing apparatuses, systems, and methods for recovering water from wastewater such as urine. The water processing apparatuses, systems, and methods can utilize membrane technology for extracting purified water in a single step. A containment unit can include an ionomer membrane, such as Nafion(TradeMark) over a hydrophobic microporous membrane, such as polytetrafluoroethylene (PTFE). The containment unit can be filled with wastewater, and the hydrophobic microporous membrane can be impermeable to liquids and solids of the wastewater but permeable to gases and vapors of the wastewater, and the ionomer membrane can be permeable to water vapor but impermeable to one or more contaminants of the gases and vapors. The containment unit can be exposed to a dry purge gas to maintain a water vapor partial pressure differential to drive permeation of the water vapor, and the water vapor can be collected and processed into potable water.

  19. Simulation study of proton transport in ionomers

    NASA Astrophysics Data System (ADS)

    Taylor, Philip; Allahyarov, Elshad

    2008-03-01

    Coarse-grained molecular-dynamics simulations were used to study the morphological changes induced in a Nafion-like ionomer by the imposition of a strong electric field. We observe that proton transport through this polymer electrolyte membrane is accompanied by morphological changes that include the formation of structures aligned along the direction of the applied field. The polar head groups of the ionomer side chains assemble into clusters, which then form rod-like formations, and these cylindrical structures then assemble into a hexagonally ordered array aligned with the direction of current flow. For dry ionomers, at current densities in excess of 1 A/cm^2 these rod-like clusters undergo an inner micro-phase separation, in which distinct wire-like lines of sulfonate head groups are accompanied by similar wire-like alignments of bound protons. The clusters appear to be of two types. If there are two, four, or five lines of sulfonates then there is an equal number of lines of protons, but if there are three lines of sulfonates then they are accompanied by four lines of protons. Occasionally these lines of sulfonates and protons form a helical structure. Upon removal of the electric field, the hexagonal array of rod-like structures remains, but the microphase separation disappears below the threshold current of 1 A/cm^2.

  20. Ionomer Degradation in Electrodes of PEM Fuel Cell

    SciTech Connect

    Borup, Rodney L.

    2011-01-01

    Although PEMFC Membrane Electrode Assembly (MEA) durability related studies have increased dramatically since 2004, studies on ionomer degradation of the composite electrodes has received far less attention than that of the proton exchange membranes, electrocatalysts, and catalyst supports. The catalyst layer ionomer unavoidably gets involved in other components degradation processes since it is subjected to exposure to different operating effects, including the presence of the catalyst, catalyst support, and the porous nature of the electrode layer which includes 2-phase flow. PEMFC durability issues cannot be fully resolved without understanding the contribution of ionomer degradation in electrode to the performance decay in life time. However, addressing the impact of changes to the catalyst layer ionomer during durability tests is experimentally difficult mainly because of the need to separate the ionomer in the electrode from other components during chemical, electrical and materials characterization. The catalyst layer ionomer is essentially chemically identical to the membrane ionomeric material, and is composed of low atomic number elements, making characterization difficult. In the present work, MEAs with different Nafion ionomer types: stabilized and non-stablized ionomer in the electrode layer (Type I) and mixed membrane/ionomer MEAs (Type II) were designed to separate ionomer degradation from membrane degradation, as shown in Figure (1a) and (b) respectively. Stabilized and non stabilized ionomers were 5% Nafion{reg_sign} solutions (Ion Power, New Castle, Delaware). The non-stabilized version is the typical Nafion chemical structure with carboxylic acid (-COOH) end groups; these end groups are thought to be a susceptible point of degradative peroxide attack. The stabilized version replaces the -COOH end groups with -CF{sub 3} end groups to prevent peroxide attack at the end groups. Type I MEAs were designed to compare ionomer degradation and its effect

  1. Ionomer Design, Synthesis and Characterization for Ion-Conducting Energy Materials

    NASA Astrophysics Data System (ADS)

    Colby, Ralph H.

    2013-03-01

    For ionic actuators and battery separators, it is vital to utilize single-ion conductors that avoid the detrimental polarization of other ions; the commonly studied dual-ion conductors simply will not be used in the next generation of materials for these applications. Ab initio quantum chemistry calculations at 0 K in vacuum characterize ion interactions and ion solvation by various functional groups, allowing identification of constituents with weak interactions to be incorporated in ionomers for facile ion transport. Simple ideas for estimating the ion interactions and solvation at practical temperatures and dielectric constants are presented that indicate the rank ordering observed at 0 K in vacuum should be preserved. Hence, such ab initio calculations are useful for screening the plethora of combinations of polymer-ion, counterion and polar functional groups, to decide which are worthy of synthesis for new ionomers. Single-ion conducting ionomers are synthesized based on these calculations, with low glass transition temperatures (facile dynamics) to prepare ion-conducting membranes for ionic actuators and battery separators. Characterization by X-ray scattering, dielectric spectroscopy, NMR and linear viscoelasticity collectively develop a coherent picture of ionic aggregation and both counterion and polymer dynamics. Examples are shown of how ab initio calculations can be used to understand experimental observations of dielectric constant, glass transition temperature and conductivity of polymerized ionic liquids with counterions being either lithium, sodium, fluoride, hydroxide (for batteries) or bulky ionic liquids (for ionic actuators). This work was supported by the Department of Energy under Grant BES-DE-FG02-07ER46409.

  2. A pilot study of the marginal adaptation and surface morphology of glass-cermet cements.

    PubMed

    Chu, C H; King, N M; Lee, A M; Yiu, C K; Wei, S H

    1996-07-01

    This study investigated changes in the marginal adaptation and surface morphology of Ketac-Silver and Chelon-Silver glass-current cements over time. Dispersalloy amalgam was used as a control. Contralateral pairs of carious primary molars were restored with the test materials and amalgam. Clinical evaluations were scheduled at 12, 18, and 24 months after placement. Gold-plated replicas of the restorations were observed with scanning electron microscopy. Fractures and cracks in the surface of the Dispersalloy and Chelon-Silver increased the surface roughness; however, the damage was superficial and self-limiting in the Dispersalloy restorations, while in Chelon-Silver the fractures caused the material to break down in layers. A substantial quantity of pores, usually smaller than 50 microns in diameter, were observed throughout the surface of the Chelon-Silver restorations. The pores in the surface of Ketac-Silver were fewer and smaller. The incidence of cavomarginal breakdown increased with time. Chelon-Silver restorations had a higher rate of cavomarginal breakdown than did Ketac-Silver and Dispersalloy restorations up to 18 months. However, there was no statistically significant difference in the marginal adaptation of the three groups at 24 months.

  3. Morphological analysis of ionomers. Progress report, August 1, 1987--December 31, 1991

    SciTech Connect

    Not Available

    1991-12-31

    Anomalous small-angle x-ray scattering (SAXS) investigations were carried out on amorphous and semi-crystalline ionomers (Ni- neutralized sulfonated polystyrene ionomers, polyurethane ionomer). Ionomers with semicrystalline matrices (three-phase materials) were also studied with SAXS (poly(ethylene-co-methacrylic acid) ionomer). Ethylene oxide units were incorporated into the backbone of sulfonated polyurethane ionomers in an attempt to induce aggregate dissociation. Small-angle neutron scattering was used to study the effect of ionic aggregation on ionomer chain dimensions in telechelic and model polyurethane ionomers. Studies have been completed on carboxylated and sulfonated model polyurethane ionomers in order to determine the effect of the pendant ionic group on ionomer structure- property relationships (mechanical properties). (DLC)

  4. Microleakage of intermediate restorative materials.

    PubMed

    Lim, K C

    1990-03-01

    This study compares the microleakage of a glass ionomer cement, Ketac Fil, used without cavity conditioning, with the established intermediate restorative materials, Cavit-W, and a reinforced zinc oxide-eugenol cement, Kalzinol. Microleakage was assessed using an electrochemical technique. At the end of 30 days, the materials tested, listed in decreasing order of microleakage, were Cavit-W, Ketac Fil inserted without cavity conditioning, Kalzinol, and the control group of Ketac Fil inserted into conditioned cavities. There was no significant difference in the microleakage observed in Ketac Fil restorations inserted without cavity conditioning and Kalzinol (p = 0.450), while the differences between the other groups were highly significant (p less than 0.001).

  5. Fractography of glasses and ceramics II

    SciTech Connect

    Frechette, V.D.; Varner, J.R.

    1991-01-01

    Topics addressed include finite element stress analysis and crack path prediction of imploding CRT; fractography and fracture mechanics of combustion growth diamond thin films; the fracture behavior of machineable hydroxyapatite; a fractal approach to crack branching (bifurcation) in glass; the fracture of glass-ionomer cements; the effect of quartz particle size on the strength and toughness of whitewares; and a proposed standard practice for fractographic analysis of monolithic advanced ceramics. Also treated are thermal exposure effects on ceramic matrix composites, fractography applied to rock core analysis, fractography of flexurally fractured glass rods, the fractographic determination of K(IC) and effects of microstructural effects in ceramics.

  6. Effects of ionomer morphology on oxygen reduction on Pt

    SciTech Connect

    Chlistunoff, Jerzy; Pivovar, Bryan

    2015-05-21

    In this paper, the oxygen reduction reaction (ORR) at the interface between platinum and Nafion 1100 equivalent weight was studied as a function of temperature (20–80 °C), humidity (10–100%), scan rate, the manner in which Nafion film was deposited, and the state of the Pt surface using ultramicroelectrodes employing cyclic voltammetry and chronoamperometry. ORR on smooth electrodes was strongly inhibited under specific conditions dependent on temperature, humidity, and scan rate. From the data presented, we postulate that dynamic changes in the molecular structure of the ionomer at the platinum interface result in differences in ORR voltammetry for films prepared and equilibrated under different conditions. The lack of similar changes for rough, platinized electrodes has been attributed to differences in initial ionomer structure and a higher energy barrier for ionomer restructuring. Finally, these model system studies yield insight into the ionomer-catalyst interface of particular interest for polymer electrolyte fuel cells.

  7. [Ionomer cement as bone substitute in the middle ear of the rabbit].

    PubMed

    Geyer, G

    1997-04-01

    Ionomer-based cements are obtained by the reaction of an aluminum-fluoro-silicate glass with a polyalcenoic acid. During setting and hardening the cement bonds closely with adjacent hard tissue. The previous implantation of this material in the baboon tibia has held great promise as a possible use in bone replacement. In the present study the cement was tested concerning its biocompatibility and biostability in the middle ears of 64 rabbits. Viscid cement paste was inserted into the epitympanic space of each animal. A preformed cement strut was then placed to serve as a columella between the eardrum and stapes footplate. During a subsequent interval of 28 days up to 2 years middle ear specimens were evaluated under a surgical microscope, following which histologic sections were studied under light microscopic conditions. Findings demonstrated that after insertion of freshly mixed cement a firm adhesion to bone developed that proved to be biocompatible and biostable over time. After 28 days the preformed and fully hardened implants were overgrown by a delicate mucosa normally present in the middle ear. No evidence for any rejection of the implants could be found. The experience available to date indicates that ionomer cement is biocompatible and biostable, easy to handle and workable without splintering. With appropriate use it represents a useful implant material in surgery of the head and neck.

  8. Tuning the modulus of nanostructured ionomer films of core-shell nanoparticles based on poly(n-butyl acrylate).

    PubMed

    Musa, Muhamad S; Milani, Amir H; Shaw, Peter; Simpson, Gareth; Lovell, Peter A; Eaves, Elizabeth; Hodson, Nigel; Saunders, Brian R

    2016-10-04

    In this study we investigate the structure-mechanical property relationships for nanostructured ionomer films containing ionically crosslinked core-shell polymer nanoparticles based on poly(n-butyl acrylate) (PBA). Whilst nanostructured ionomer films of core-shell nanoparticles have been previously shown to have good ductility [Soft Matter, 2014, 10, 4725], the modulus values were modest. Here, we used BA as the primary monomer to construct core-shell nanoparticles that provided films containing nanostructured polymers with much higher glass transition temperature (Tg) values. The core-shell nanoparticles were synthesised using BA, acrylonitrile (AN), methacrylic acid (MAA) and 1,4-butanediol diacrylate (BDDA). Nanostructured ionomer films were prepared by casting aqueous core-shell nanoparticle dispersions in which the shell -COOH groups were neutralised with KOH and ZnO. The film mechanical properties were studied using dynamic mechanical analysis and tensile stress-strain measurements. The use of BA-based nanoparticles increased the Tg values to close to room temperature which caused a strong dependence of the film mechanical properties on the AN content and extent of neutralisation of the -COOH groups. The Young's modulus values for the films ranged from 1.0 to 86.0 MPa. The latter is the highest modulus reported for cast films of nanostructured ionomer films prepared from core-shell nanoparticles. The films had good ductility with strain-at-break values of at least 200%. The mechanical properties of the films were successfully modelled using the isostrain model. From comparison with an earlier butadiene-based system this study demonstrates that the nature of the primary monomer used to construct the nanoparticles can profoundly change the film mechanical properties. The aqueous nanoparticle dispersion approach used here provides a simple and versatile method to prepare high modulus elastomer films with tuneable mechanical properties.

  9. Structure-property relationships in semicrystalline copolymers and ionomers

    NASA Astrophysics Data System (ADS)

    Wakabayashi, Katsuyuki

    Many outstanding physical properties of ethylene/(meth)acrylic acid (E/(M)AA) copolymers and ionomers are associated with their nanometer-scale morphology, which consists of ethylene crystallites, amorphous segments, and acid/ionic functional groups. The goal of this dissertation is a fundamental understanding of the interplay between these structural motifs and the consequent effects on the material properties. We identify small-strain modulus as a key mechanical property and investigate its dependence upon material structure through X-ray scattering, calorimetry, and mechanical property measurements. We first treat E/(M)AA copolymers as composites of polyethylene crystallites and amorphous regions, and establish a quantitative combining rule to describe the copolymer modulus. At temperatures above the Tg of the copolymers, a monotonic increase in modulus with crystallinity is quantitatively described by the Davies equation for two-phase composites, which serves as the basis for separating the effects of amorphous and crystalline phases throughout this dissertation. The room-temperature modulus of E/(M)AA copolymers is concurrently affected by ethylene crystallinity and proximity to the amorphous phase Tg, which rises through room temperature with increasing comonomer content. In E/(M)AA ionomers, phase separation and aggregation of ionic groups provide additional stiffness and toughness. Ionomers are modeled as composites of crystallites and ionically crosslinked rubber, whose amorphous phase modulus far above the ionomer Tg is satisfactorily described by simple rubber elasticity theory. Thermomechanical analyses probe the multi-step relaxation behavior of E/(M)AA ionomers and lead to the development of a new semicrystalline ionomer morphological model, wherein secondary crystallites and ionic aggregates together form rigid percolated pathways throughout the amorphous phase. Metal soaps are oligomeric analogs of E/(M)AA ionomers, which can be blended into

  10. Nonequilibrium Simulations of Ion Dynamics in Ionomer Melts

    NASA Astrophysics Data System (ADS)

    Frischknecht, Amalie

    Ionomers, polymers containing a small fraction of covalently bound ionic groups, are of interest as possible electrolytes in batteries. However, to date ionomers do not have sufficiently high conductivities for practical application, most likely because the ions tend to form aggregates, leading to slow ion transport. To build a better understanding of the relationships among ionomer chemistry, morphology, and ion transport, we have performed a series of molecular dynamics simulations and connected aspects of these simulations with experiment. In previous work using both atomistic and coarse-grained models, we showed that precise ionomers (with a fixed spacing between ionic groups along the polymer backbone) exhibit a range of ionic aggregate morphologies, from discrete clusters to percolated aggregates. In this talk I will describe recent simulations of our coarse-grained ionomer melts in an applied electric field. From a constant applied field, we are able to extract the ion mobilities and hence conductivities. We find that ionomers with percolated ionic aggregate morphologies have higher ion mobilities and hence higher conductivities. Application of an oscillating electric field enables us to calculate the frequency-dependent conductivity of the model ionomer melts. The real part of the conductivity has a high frequency peak associated with plasma oscillations, and a very broad low frequency peak associated with ion motions in ionic aggregates. I will end with comments on the connections to atomistic simulations and to experimental probes of ion dynamics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  11. Catalyst-layer ionomer imaging of fuel cells

    SciTech Connect

    Guetaz, Laure; Lopez-Haro, M.; Escribano, S.; Morin, A.; Gebel, G.; Cullen, D. A.; More, K. L.; Borup, Rodney L.

    2015-09-14

    Investigation of membrane/electrode assembly (MEA) microstructure has become an essential step to optimize the MEA components and manufacturing processes or to study the MEA degradation. For these investigations, transmission electron microscopy (TEM) is a tool of choice as it provides direct imaging of the different components. TEM is then widely used for analyzing the catalyst nanoparticles and their carbon support. However, the ionomer inside the electrode is more difficult to be imaged. The difficulties come from the fact that the ionomer forms an ultrathin layer surrounding the carbon particles and in addition, these two components, having similar density, present no difference in contrast. In this paper, we show how the recent progresses in TEM techniques as spherical aberration (Cs) corrected HRTEM, electron tomography and X-EDS elemental mapping provide new possibilities for imaging this ionomer network and consequently to study its degradation.

  12. Catalyst-layer ionomer imaging of fuel cells

    DOE PAGES

    Guetaz, Laure; Lopez-Haro, M.; Escribano, S.; ...

    2015-09-14

    Investigation of membrane/electrode assembly (MEA) microstructure has become an essential step to optimize the MEA components and manufacturing processes or to study the MEA degradation. For these investigations, transmission electron microscopy (TEM) is a tool of choice as it provides direct imaging of the different components. TEM is then widely used for analyzing the catalyst nanoparticles and their carbon support. However, the ionomer inside the electrode is more difficult to be imaged. The difficulties come from the fact that the ionomer forms an ultrathin layer surrounding the carbon particles and in addition, these two components, having similar density, present nomore » difference in contrast. In this paper, we show how the recent progresses in TEM techniques as spherical aberration (Cs) corrected HRTEM, electron tomography and X-EDS elemental mapping provide new possibilities for imaging this ionomer network and consequently to study its degradation.« less

  13. Nonequilibrium simulations of model ionomers in an oscillating electric field

    DOE PAGES

    Ting, Christina L.; Sorensen-Unruh, Karen E.; Stevens, Mark J.; ...

    2016-07-25

    Here, we perform molecular dynamics simulations of a coarse-grained model of ionomer melts in an applied oscillating electric field. The frequency-dependent conductivity and susceptibility are calculated directly from the current density and polarization density, respectively. At high frequencies, we find a peak in the real part of the conductivity due to plasma oscillations of the ions. At lower frequencies, the dynamic response of the ionomers depends on the ionic aggregate morphology in the system, which consists of either percolated or isolated aggregates. We show that the dynamic response of the model ionomers to the applied oscillating field can be understoodmore » by comparison with relevant time scales in the systems, obtained from independent calculations.« less

  14. Nonequilibrium simulations of model ionomers in an oscillating electric field

    SciTech Connect

    Ting, Christina L.; Sorensen-Unruh, Karen E.; Stevens, Mark J.; Frischknecht, Amalie L.

    2016-07-25

    Here, we perform molecular dynamics simulations of a coarse-grained model of ionomer melts in an applied oscillating electric field. The frequency-dependent conductivity and susceptibility are calculated directly from the current density and polarization density, respectively. At high frequencies, we find a peak in the real part of the conductivity due to plasma oscillations of the ions. At lower frequencies, the dynamic response of the ionomers depends on the ionic aggregate morphology in the system, which consists of either percolated or isolated aggregates. We show that the dynamic response of the model ionomers to the applied oscillating field can be understood by comparison with relevant time scales in the systems, obtained from independent calculations.

  15. Nonequilibrium simulations of model ionomers in an oscillating electric field

    NASA Astrophysics Data System (ADS)

    Ting, Christina L.; Sorensen-Unruh, Karen E.; Stevens, Mark J.; Frischknecht, Amalie L.

    2016-07-01

    We perform molecular dynamics simulations of a coarse-grained model of ionomer melts in an applied oscillating electric field. The frequency-dependent conductivity and susceptibility are calculated directly from the current density and polarization density, respectively. At high frequencies, we find a peak in the real part of the conductivity due to plasma oscillations of the ions. At lower frequencies, the dynamic response of the ionomers depends on the ionic aggregate morphology in the system, which consists of either percolated or isolated aggregates. We show that the dynamic response of the model ionomers to the applied oscillating field can be understood by comparison with relevant time scales in the systems, obtained from independent calculations.

  16. The effect of pressure changes during simulated diving on the pull out strength of glass fiber posts

    PubMed Central

    Gulve, Meenal Nitin; Gulve, Nitin Dilip

    2013-01-01

    Background: Scuba diving is one of the fastest growing sports in the world. The objective of this study was to evaluate the effect of pressure variations to which divers are exposed on the pull out strength of glass fiber post luted with different cements. Materials and Methods: In this in vitro study, 120 extracted, single-rooted lower premolars were endodontically treated. They were randomly divided into six groups and restored using the glass fiber post (Ivoclar Vivadent AG) and the following luting agents: Zinc phosphate, conventional glass ionomer, resin reinforced glass ionomer, resin cement with etch-and-rinse adhesive, resin cement with self-etching adhesive, and self-adhesive resin cement. Each group was randomly divided into two equal subgroups, one as a control, and the other to be used experimentally. After 7 days of storage, experimental groups were pressure cycled. The force required to dislodge each post was recorded in Newton (N) on Universal testing machine (Star Testing System) at a crosshead speed of 1 mm/min. Data were statistically analyzed using the ANOVA and Student's t-test (P < 0.001). Results: The pull out strength of posts cemented with zinc phosphate and conventional glass ionomer in pressure cycle group was significantly less than their control group. Although, no significant difference was found between pressure cycle and control group using resin reinforced glass ionomer cement and resin cements. Conclusion: Dentist should consider using resin reinforced glass ionomer or resin cement, for the cementation of glass fiber post, for the patients such as divers, who are likely to be exposed to pressure cycling. PMID:24379861

  17. Confinement-driven increase in ionomer thin-film modulus.

    PubMed

    Page, Kirt A; Kusoglu, Ahmet; Stafford, Christopher M; Kim, Sangcheol; Kline, R Joseph; Weber, Adam Z

    2014-05-14

    Ion-conductive polymers, or ionomers, are critical materials for a wide range of electrochemical technologies. For optimizing the complex heterogeneous structures in which they occur, there is a need to elucidate the governing structure-property relationships, especially at nanoscale dimensions where interfacial interactions dominate the overall materials response due to confinement effects. It is widely acknowledged that polymer physical behavior can be drastically altered from the bulk when under confinement and the literature is replete with examples thereof. However, there is a deficit in the understanding of ionomers when confined to the nanoscale, although it is apparent from literature that confinement can influence ionomer properties. Herein we show that as one particular ionomer, Nafion, is confined to thin films, there is a drastic increase in the modulus over the bulk value, and we demonstrate that this stiffening can explain previously observed deviations in materials properties such as water transport and uptake upon confinement. Moreover, we provide insight into the underlying confinement-induced stiffening through the application of a simple theoretical framework based on self-consistent micromechanics. This framework can be applied to other polymer systems and assumes that as the polymer is confined the mechanical response becomes dominated by the modulus of individual polymer chains.

  18. Effects of ionomer morphology on oxygen reduction on Pt

    DOE PAGES

    Chlistunoff, Jerzy; Pivovar, Bryan

    2015-05-21

    In this paper, the oxygen reduction reaction (ORR) at the interface between platinum and Nafion 1100 equivalent weight was studied as a function of temperature (20–80 °C), humidity (10–100%), scan rate, the manner in which Nafion film was deposited, and the state of the Pt surface using ultramicroelectrodes employing cyclic voltammetry and chronoamperometry. ORR on smooth electrodes was strongly inhibited under specific conditions dependent on temperature, humidity, and scan rate. From the data presented, we postulate that dynamic changes in the molecular structure of the ionomer at the platinum interface result in differences in ORR voltammetry for films prepared andmore » equilibrated under different conditions. The lack of similar changes for rough, platinized electrodes has been attributed to differences in initial ionomer structure and a higher energy barrier for ionomer restructuring. Finally, these model system studies yield insight into the ionomer-catalyst interface of particular interest for polymer electrolyte fuel cells.« less

  19. Some Recent Studies With the Solid-Ionomer Electrochemical Capacitor

    NASA Technical Reports Server (NTRS)

    Sarangapani, S.; Forchione, J.; Griffith, A.; LaConti, A.; Baldwin, R.

    1991-01-01

    Giner, Inc., has developed a high-energy-density, all-solid-ionomer electro-chemical capacitor, completely free of liquid electrolyte. The novel features of this device include: (1) a three-dimensional metal oxide-particulate-ionomer composite electrode structure and (2) a unitized repeating cell element. The composite electrode structures are bonded to opposite sides of a thin sheet of a solid proton-conducting ionomer membrane and form an integrally bonded membrane and electrode assembly (MEA). Individual MEAs can be stacked in series as bipolar elements to form a multiple cell device. The discharge characteristics and energy storage properties of these devices are described. Typical capacitance measured for a unit cell is 1 F/cm. Life testing of a multicell capacitor on an intermittent basis has shown that, over a 10,000-hour period, the capacitance and resistance of the cell has remained invariant. There has been no maintenance required on the device since it was fabricated. Other multicell units of shorter life duration have exhibited similar reliable performance characteristics. Recent work has focused on increasing the capacitance of the unitized structure and improving the low-temperature characteristics. The approaches and experimental results will be presented. Some possible advanced NASA applications for these unique all-solid-ionomer devices will be discussed.

  20. Damage initiated self-healing in ionomer blends

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Arifur; Penco, Maurizio; Spagnoli, Gloria; Peroni, Isabella; Ramorino, Giorgio; Sartore, Luciana; Bignotti, Fabio; Landro, Luca Di

    2012-07-01

    The development and understanding of self-healing mechanisms have been investigated in blends of ionomers (Poly(ethyelene-co-methacrylic acid), sodium & zinc ions) (EMNa & EMZn) containing both elastomers (Epoxidized natural rubbers (ENR) and cis-1,4-Polyisoprene (PISP)) and crystalline component (Poly(vinly alcohol-co-ethylene) [PVAcE]) as secondary phases. All the blends were prepared by melt-blending and self-healing behavior was studied in ballistic puncture tests. Self-healing behavior of each material was evaluated by observing the impact zones under a stereo-optical microscope and the micrographic results were further supported by the fluid flow test in the punctured zones. Interestingly, ENR50 blends of sodium ion containing ionomers exhibited complete self-repairing behavior while zinc ion containing ionomer showed limited mending but EMNa/ENR25 and EMNa/PISP blends did not show any self-healing behavior following the damage. On the other hand, a composition dependent healing behavior was observed in the EMNa/PVAcE blends where healing was observed up to 30wt% PVAcE containing blends. The chemical structure studied by FTIR analysis showed that both ion content of ionomer and functionality of ENR have significant influence on the self-repairing behavior of blends. TEM analysis revealed that self-healing occurs in the blends when the dispersed phase has a dimension of 100 to 400 nm.

  1. Self-Healing Behavior of Ethylene-Based Ionomers

    NASA Technical Reports Server (NTRS)

    Kalista, Stephen J., Jr.; Ward, Thomas C.; Oyetunji, Zainab

    2004-01-01

    The self-healing behavior of poly(ethylene-co-methacrylic acid) (EMAA)-based ionomers holds tremendous potential for use in a wide variety of unique applications. However, to effectively utilize this self-healing behavior and to design novel materials which possess this ability, the mechanism by which they heal must first be understood ionomers are a class of polymers that can be described as copolymers containing less than 15 mol% ionic content whereby the bulk properties are governed by ionic interactions within the polymer. These ionic groups aggregate into discrete regions known as multiplets which overlap forming clusters that act as physical cross-links profoundly influencing the bulk physical properties. These clusters possess an order-disorder transition (T(sub i)) where the clustered regions may rearrange themselves given time and stimuli. Recognizing the strong influence of these ionic regions on other well understood ionomer properties, their role in self-heating behavior will be assessed. The self-healing behavior is observed following projectile puncture. It has been suggested that during impact energy is passed to the ionomer material, heating it to the melt state. After penetration, it is proposed that the ionic regions maintain their attractions and flow together patching the hole. Thus, the importance of this ionic character and is unique interaction must be established. This will be accomplished through examination of materials with varying ionic content and through the analysis of the T(sub i). The specific ionomer systems examined include a number of ethylene-based materials. Materials of varying ionic content, including the non-ionic base copolymers, will be examined by peel tests, projectile impact and DSC analysis. The information will also be compared with some basic data on LDPE material.

  2. Infrared spectrometric study of acid-degradable glasses.

    PubMed

    De Maeyer, E A P; Verbeeck, R M H; Vercruysse, C W J

    2002-08-01

    The composition of glasses used in glass-ionomer cements affects their leaching behavior and hence the properties of the cement. The aim of this study was to correlate the composition and leaching behavior of these glasses with their infrared absorption characteristics. The wavenumber of the absorption band of the Si-O asymmetric stretching vibration shifts to a higher value with decreasing content of mono- and bivalent cations in the glass. This effect can be ascribed to the influence of these extraneous ions on the glass network order and connectivity. Preferential leaching of these ions induces an increase of asymmetric stretching vibration and a general modification of the band profile. The results can be correlated with the x-ray diffraction characteristics of the glass.

  3. Counterion Effects on Ion Mobility and Mobile Ion Concentration of Doped Polyphosphazenes and Polyphosphazene Ionomers

    NASA Astrophysics Data System (ADS)

    Runt, Jim; Klein, Robert

    2007-03-01

    Previous investigations have shed some light on the ion conduction process in polymer electrolytes, yet ion transport is still not well understood. Here, upon the application of a physical model of electrode polarization to two systems with nearly identical chemical structure, one composed of an ionomer (MI) with a single mobile cation, and the other a salt-doped polymer (M+S) with mobile cation and mobile anion, quantitative comparison of the conductivity parameters is achieved. The polymer electrolyte chemistries of both MI and M+S are based on poly(methoxyethoxy-ethoxy phosphazene) (MEEP). The glass transition was found to be an important factor governing the conductivity and ion mobility. However, even accounting for the glass transition, the mobility of ions in the M+S system is 10 times larger than that in the MI system, which must arise from faster diffusion of the anion than the cation. Values for mobile ion concentration are also approximately 10 times higher in M+S than MI. These differences originate from free volume available for diffusion and local environment surrounding the ion pairs, demonstrating that the location of the ion pairs in the polymer matrix has a crucial effect on both conductivity parameters. Research supported by NSF Polymers Program.

  4. Radiopacity Evaluation of Contemporary Luting Cements by Digitization of Images

    PubMed Central

    Reis, José Maurício dos Santos Nunes; Jorge, Érica Gouveia; Ribeiro, João Gustavo Rabelo; Pinelli, Ligia Antunes Pereira; Abi-Rached, Filipe de Oliveira; Tanomaru-Filho, Mário

    2012-01-01

    Objective. The aim of this study was to evaluate the radiopacity of two conventional cements (Zinc Cement and Ketac Cem Easymix), one resin-modified glass ionomer cement (RelyX Luting 2) and six resin cements (Multilink, Bistite II DC, RelyX ARC, Fill Magic Dual Cement, Enforce and Panavia F) by digitization of images. Methods. Five disc-shaped specimens (10 × 1.0 mm) were made for each material, according to ISO 4049. After setting of the cements, radiographs were made using occlusal films and a graduated aluminum stepwedge varying from 1.0 to 16 mm in thickness. The radiographs were digitized, and the radiopacity of the cements was compared with the aluminum stepwedge using the software VIXWIN-2000. Data (mmAl) were submitted to one-way ANOVA and Tukey's test (α = 0.05). Results. The Zinc Cement was the most radiopaque material tested (P < 0.05). The resin cements presented higher radiopacity (P < 0.05) than the conventional (Ketac Cem Easymix) or resin-modified glass ionomer (RelyX Luting 2) cements, except for the Fill Magic Dual Cement and Enforce. The Multilink presented the highest radiopacity (P < 0.05) among the resin cements. Conclusion. The glass ionomer-based cements (Ketac Cem Easymix and RelyX Luting 2) and the resin cements (Fill Magic Dual Cement and Enforce) showed lower radiopacity values than the minimum recommended by the ISO standard. PMID:23008777

  5. Gradual surface degradation of restorative materials by acidic agents.

    PubMed

    Hengtrakool, Chanothai; Kukiattrakoon, Boonlert; Kedjarune-Leggat, Ureporn

    2011-01-01

    The aim of this study was to investigate the effect of acidic agents on surface roughness and characteristics of four restorative materials. Fifty-two discs were created from each restorative material: metal-reinforced glass ionomer cement (Ketac-S), resin-modified glass ionomer cement (Fuji II LC), resin composite (Filtek Z250), and amalgam (Valiant-PhD); each disc was 12 mm in diameter and 2.5 mm thick. The specimens were divided into four subgroups (n=13) and immersed for 168 hours in four storage media: deionized water (control); citrate buffer solution; green mango juice; and pineapple juice. Surface roughness measurements were performed with a profilometer, both before and after storage media immersion. Surface characteristics were examined using scanning electron microscopy (SEM). Statistical significance among each group was analyzed using two-way repeated ANOVA and Tukey's tests. Ketac-S demonstrated the highest roughness changes after immersion in acidic agents (p<0.05), followed by Fuji II LC. Valiant-PhD and Filtek Z250 illustrated some minor changes over 168 hours. The mango juice produced the greatest degradation effect of all materials tested (p<0.05). SEM photographs demonstrated gradual surface changes of all materials tested after immersions. Of the materials evaluated, amalgam and resin composite may be the most suitable for restorations for patients with tooth surface loss.

  6. Neutron reflectivity studies of ionomer blends

    NASA Astrophysics Data System (ADS)

    Gabrys, B. J.; Bhutto, A. A.; Bucknall, D. G.; Braiewa, R.; Vesely, D.; Weiss, R. A.

    Preliminary results are presented of a neutron reflectivity study of the interfacial width between lithium- and zinc-sulphonated deuterated polystyrene with polycarbonate (PC). Both systems are partially miscible and exhibit an upper critical solution temperature behaviour. The interdiffusion in these systems was measured by annealing at a temperature above the glass-transition temperature of both polymers. The interfacial profiles obtained for these systems were described by symmetric Gaussian interfaces. No significant diffusion was observed.

  7. Control and characterization of textured, hydrophobic ionomer surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Xueyuan

    Polymer thin films are of increasing interest in many industrial and technological applications. Superhydrophobic, self-cleaning surfaces have attracted a lot of attention for their application in self-cleaning, anti-sticking coatings, stain resistance, or anti-contamination surfaces in diverse technologies, including medical, transportation, textiles, electronics and paints. This thesis focuses on the preparation of nanometer to micrometer-size particle textured surfaces which are desirable for super water repellency. Textured surfaces consisting of nanometer to micrometer-sized lightly sulfonated polystyrene ionomer (SPS) particles were prepared by rapid evaporation of the solvent from a dilute polymer solution cast onto silica. The effect of the solvent used to spin coat the film, the molecular weight of the ionomer, and the rate of solvent evaporation were investigated. The nano-particle or micron-particle textured ionomer surfaces were prepared by either spin coating or solution casting ionomer solutions at controlled evaporation rates. The surface morphologies were consistent with a spinodal decomposition mechanism where the surface first existed as a percolated-like structure and then ripened into droplets if molecular mobility was retained for sufficient time. The SPS particles or particle aggregates were robust and resisted deformation even after annealing at 120°C for one week. The water contact angles on as-prepared surfaces were relatively low, ~ 90° since the polar groups in ionomer reduce the surface hydrophobicity. After chemical vapor deposition of 1H,1H,2H,2H-perfluorooctyltrichlorosilane, the surface contact angles increased to ~ 109° on smooth surfaces and ~140° on the textured surfaces. Water droplets stuck to these surfaces even when tilted 90 degrees. Superhydrophobic surfaces were prepared by spraying coating ionomer solutions and Chemical Vapor Deposition (CVD) of 1H,1H,2H,2H-perfluorooctyltrichlorosilane onto textured surfaces. The

  8. Tuning polymer glass formation with additives and ions

    NASA Astrophysics Data System (ADS)

    Simmons, David

    2015-03-01

    A polymer's glass transition and associated dynamic and mechanical properties are among the most important factors determining its performance in engineering applications. For this reason, decades of research have aimed to establish methods of tuning polymers' glass formation behavior. Here I describe molecular simulations providing new insight into two approaches to altering a polymer's glass formation behavior: introduction of small-molecule diluents; and introduction of charged moieties to form an ionomer. In the first case, we explore how diluent molecular properties control modifications to the host polymer's glass transition and mechanical response. Results indicate that diluents can induce a rich array of effects, necessitating development of an expanded classification beyond the usual plasticizer/antiplasticizer dichotomy. In the second case, simulations indicate that ionomer glass formation is indistinguishable from that in polymer nanocomposites, in contrast to the longstanding assumption that covalent grafting of chains to ionic aggregates in these systems leads to a qualitatively distinct effect. Taken together, these results provide new guidance towards the rational understanding and control of polymer glass-formation in a range of materials. In collaboration with Jayachandra Hari Mangalara and Dihui Ruan, The University of Akron. This material is based in part on work supported by the W.M. Keck Foundation.

  9. Physical and conductivity properties of poly (vinyl chloride) ionomers

    NASA Astrophysics Data System (ADS)

    Misra, Nira; Panda, H. S.; Kapusetti, Govinda; Jaiswal, Shilpa; Bhattacharya, Subhratanu

    2011-02-01

    Poly (vinyl chloride)(PVC) is a cheapest plastic. Importance of PVC based ionomer has been gradually being popularizing due to compatibility of PVC with a number of salts to replace polyethylene oxide based ionomer. Under present investigation few of chloride group of PVC chain have been replaced by basic thiouronium group and these thiouronium groups are further oxidized to sulfonate group. Introduction of thiouronium group in PVC is confirmed through FTIR and further its oxidation to sulfonate group is also confirmed by FTIR. Conductivity in different stoichiometric ratio of PVCTU and PVCSO3H was studied and found that PVCTU: PVCSO3H in 1:1 ratio has conductivity near to pure PVC (10-9 Ohm-1 cm-1) and increases with proportion of PVCSO3Na in the mixture (10-6 Ohm-1 cm-1) for pure PVC, PVCTU has less conductivity not much significant.

  10. Some recent studies with the solid-ionomer electrochemical capacitor

    NASA Technical Reports Server (NTRS)

    Sarangapani, S.; Forchione, J.; Griffith, A.; Laconti, A. B.; Baldwin, R.

    1991-01-01

    A high energy density, all solid ionomer electrochemical capacitor was developed, which is completely free of liquid electrolyte. The novel features of this device include a three dimensional metal oxide particulate ionomer composite electrode structure, and a unitized repeating cell element. The composite electrode structures are bonded to opposite sides of a thin sheet of a solid proton conducting ionomer membrane and form an integrally bonded membrane and electrode assembly (MEA). Individual MEAs can be stacked in series as bipolar elements to form a multiple cell device. The discharge characteristics and energy storage properties of these devices are described. Typical capacitance measured for a unit cell is 1 F/sq cm. Life testing of a multicell capacitor on an intermittent basis has shown, that over a 10,000 hour period, the capacitance and resistance of the cell has remained invariant. There has been no maintenance required on the device since it was fabricated. Other multicell units of shorter life duration have exhibited similar reliable performance characteristics.

  11. In vivo disintegration of four different luting agents.

    PubMed

    Gemalmaz, Deniz; Pameijer, Cornelis H; Latta, Mark; Kuybulu, Ferah; Alcan, Toros

    2012-01-01

    The purpose of this study was to evaluate the disintegration of luting agents. An intraoral sample holder was made having four holes of 1.4 mm diameter and 2 mm depth. The holder was soldered onto the buccal surface of an orthodontic band, which was cemented to the first upper molar in 12 patients, average age 26 years. The holes were filled with a zinc phosphate (Phosphate Kulzer), a glass ionomer (Ketac Cem), a resin-modified-glass ionomer (Fuji Plus), and a resin cement (Calibra). Impressions were made at baseline, and 6, 12, and 18 months from which epoxy replicas were made, which were scanned with an optical scanner. Total volume loss was calculated. The rank order of mean volume loss was as follows: Phosphate cement > Ketac Cem = Fuji Plus = Calibra. Cement type and time had statistically significant effects on volume loss of cements (P < 0.001). Under in vivo conditions, zinc phosphate cement disintegrated the most, whereas no significant difference was observed for glass ionomer and resin-based cements. As intraoral conditions are considerably less aggressive than experimental laboratory conditions, the erosion behavior of glass ionomer cement was found to be similar to the resin-based cements in contradiction to previous laboratory results.

  12. Compressive strength, fluoride release and recharge of fluoride-releasing materials.

    PubMed

    Xu, Xiaoming; Burgess, John O

    2003-06-01

    The compressive strength, fluoride releases and recharge profiles of 15 commercial fluoride-releasing restorative materials have been studied. The materials include glass ionomers (Fuji IX, Ketac Molar, Ketac Silver, and Miracle Mix), resin-modified glass ionomers (Fuji II LC Improved, Photac-Fil, and Vitremer), compomers (Compoglass, Dyract AP, F2000, and Hytac) and composite resins (Ariston pHc, Solitaire, Surefil and Tetric Ceram). A negative linear correlation was found between the compressive strength and fluoride release (r(2)=0.7741), i.e., restorative materials with high fluoride release have lower mechanical properties. The fluoride-releasing ability can be partially regenerated or recharged by using a topical fluoride agent. In general, materials with higher initial fluoride release have higher recharge capability (r(2)=0.7088). Five equations have been used in curve fitting to describe the cumulative fluoride release from different materials. The equation [F](c)=[F](I)(1-e(-bt))+betat best describes the cumulative fluoride release for most glass ionomers, resin-modified glass ionomers, and some high fluoride-releasing compomers and composites, whereas [F](c)=[F](I)/(t(1/2)+t)+alphat best describes the cumulative fluoride release for most compomers and composite resins. The clinic applications of different fluoride-releasing materials have also been discussed.

  13. Glass sealing

    SciTech Connect

    Brow, R.K.; Kovacic, L.; Chambers, R.S.

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  14. Capillary flow porometry to assess the seal provided by root-end filling materials in a standardized and reproducible way.

    PubMed

    De Bruyne, Mieke A A; De Bruyne, Roger J E; De Moor, Roeland J G

    2006-03-01

    This in vitro study evaluated the root-end sealing ability of gutta-percha + AH26 (GP), Ketac-Fil, Fuji IX (FIX), tooth-colored MTA (MTA), IRM, Ketac-Fil + conditioner (Ketac-FilC), and Fuji IX + conditioner (FIXC). A total of 140 standardized bovine root sections were divided into seven groups, filled with the mentioned root-end filling materials, and, at 48 h, submitted to capillary flow porometry to assess minimum, mean flow and maximum pore diameters. Results were statistically analyzed using nonparametric Kruskal-Wallis and Dunn tests. Level of significance was set at 0.05. Using the Kruskal-Wallis tests we found that there was no significant difference between the minimum pore diameters of the different materials, but significant differences between the mean flow (p < 0.001) and maximum (p < 0.001) pore diameters could be demonstrated. For the mean flow pore diameters, there was a significant difference between FIX and all other materials, between Ketac-Fil and IRM and between Ketac-FilC and IRM. Concerning maximum pore diameters, there was a significant difference between FIX and all other materials, between Ketac-Fil and MTA, GP and IRM, FIXC and IRM, and Ketac-FilC and IRM. The data showed that each sample had leaked. Glass ionomer cements leaked more than other materials, although dentin conditioning diminished the maximum through pore diameters. This maximum pore diameter, which corresponds to the largest leak in the sample, together with the size of bacteria and their metabolites, will be indicative of the eventual leakage along the root-end filling materials.

  15. Enhanced ionic diffusion in ionomer-filled nanopores

    SciTech Connect

    Allahyarov, Elshad; Taylor, Philip L.; Löwen, Hartmut

    2015-12-28

    Coarse-grained simulations in the united-atom-model approximation are used to investigate confinement-induced morphological changes in Nafion-like ionomers. The system we study models a cylindrical pore in a hydrophobic matrix of supporting material with pore diameters that vary from 0.7 to 3.96 nm. Simulation results indicate a strong dependence of the equilibrium ionomer structures both on the pore diameter and on the sulfonate concentration in the pore. In the case of larger pores, the ionic clustering has the shape of a branched wire-like network oriented parallel to the pore axis. In the case of narrow pores, the ionic clusters occupy the pore center and exhibit strong density modulations both along the pore axis and across the pore diameter. The calculated diffusion coefficients for the ions indicate a sharp increase within the narrow pores. This finding is explained by ballistic-type ionic motion at shorter times and by the collective motion of ions in hydrophilic clusters. The influence of the hydrophobic walls on the distribution of ions and solvent molecules is discussed.

  16. Associations between Ionomic Profile and Metabolic Abnormalities in Human Population

    PubMed Central

    An, Peng; Yu, Danxia; Yu, Zhijie; Li, Huaixing; Sheng, Hongguang; Cai, Lu; Xue, Jun; Jing, Miao; Li, Yixue; Lin, Xu; Wang, Fudi

    2012-01-01

    Background Few studies assessed effects of individual and multiple ions simultaneously on metabolic outcomes, due to methodological limitation. Methodology/Principal Findings By combining advanced ionomics and mutual information, a quantifying measurement for mutual dependence between two random variables, we investigated associations of ion modules/networks with overweight/obesity, metabolic syndrome (MetS) and type 2 diabetes (T2DM) in 976 middle-aged Chinese men and women. Fasting plasma ions were measured by inductively coupled plasma mass spectroscopy. Significant ion modules were selected by mutual information to construct disease related ion networks. Plasma copper and phosphorus always ranked the first two among three specific ion networks associated with overweight/obesity, MetS and T2DM. Comparing the ranking of ion individually and in networks, three patterns were observed (1) “Individual ion,” such as potassium and chrome, which tends to work alone; (2) “Module ion,” such as iron in T2DM, which tends to act in modules/network; and (3) “Module-individual ion,” such as copper in overweight/obesity, which seems to work equivalently in either way. Conclusions In conclusion, by using the novel approach of the ionomics strategy and the information theory, we observed potential associations of ions individually or as modules/networks with metabolic disorders. Certainly, these findings need to be confirmed in future biological studies. PMID:22719963

  17. Structure of Secondary Crystals in Ethylene-Based Ionomers

    NASA Astrophysics Data System (ADS)

    Wakabayashi, K.; Loo, Y.-L.; Huang, Y. E.; Lee, L.-B. W.; Register, R. A.

    2003-03-01

    A typical DSC thermogram of an ethylene-(meth)acrylic acid ionomer displays two melting endotherms: one near 100^oC reflecting the melting of primary ethylene crystals, and one at 40-60^oC which we have shown via simultaneous SAXS/WAXS/DSC to arise from the melting of interlamellar secondary crystals. Dynamic DSC (DDSC) confirms that the two peaks reflect a bimodal crystal thickness distribution, rather than a superposition of melting and recrystallization events. The melting temperature of these secondary crystals, estimated to be 2.5-3.5 nm thick, is sensitive to annealing history. DDSC also indicates that these secondary crystals melt irreversibly, as expected if each must be individually nucleated. The 2-D SAXS patterns of highly-oriented blown films of such ionomers show intense peaks, arising from the polyethylene lamellar crystallites, along the direction of principal orientation. Comparing the azimuthal variation in SAXS peak intensity at temperatures below and above the low-temperature endotherm reveals that the secondary crystallites are significantly oriented, but less so than the primary lamellae. Thus, the secondary interlamellar crystals also have a lamellar (anisotropic) habit, rather than resembling fringed micelles (isotropic).

  18. Simulations reveal the role of composition into the atomic-level flexibility of bioactive glass cements.

    PubMed

    Tian, Kun Viviana; Chass, Gregory A; Di Tommaso, Devis

    2016-01-14

    Bioactive glass ionomer cements (GICs), the reaction product of a fluoro-alumino-silicate glass and polyacrylic acid, have been in effective use in dentistry for over 40 years and more recently in orthopaedics and medical implantation. Their desirable properties have affirmed GIC's place in the medical materials community, yet are limited to non-load bearing applications due to the brittle nature of the hardened composite cement, thought to arise from the glass component and the interfaces it forms. Towards helping resolve the fundamental bases of the mechanical shortcomings of GICs, we report the 1st ever computational models of a GIC-relevant component. Ab initio molecular dynamics simulations were employed to generate and characterise three fluoro-alumino-silicate glasses of differing compositions with focus on resolving the atomic scale structural and dynamic contributions of aluminium, phosphorous and fluorine. Analyses of the glasses revealed rising F-content leading to the expansion of the glass network, compression of Al-F bonding, angular constraint at Al-pivots, localisation of alumino-phosphates and increased fluorine diffusion. Together, these changes to the structure, speciation and dynamics with raised fluorine content impart an overall rigidifying effect on the glass network, and suggest a predisposition to atomic-level inflexibility, which could manifest in the ionomer cements they form.

  19. Temperature- and humidity-controlled SAXS analysis of proton-conductive ionomer membranes for fuel cells.

    PubMed

    Mochizuki, Takashi; Kakinuma, Katsuyoshi; Uchida, Makoto; Deki, Shigehito; Watanabe, Masahiro; Miyatake, Kenji

    2014-03-01

    We report herein temperature- and humidity-controlled small-angle X-ray scattering (SAXS) analyses of proton-conductive ionomer membranes. The morphological changes of perfluorosulfonic acid polymers (Nafion and Aquivion) and sulfonated aromatic block copolymers (SPE-bl-1 and SPK-bl-1) were investigated and compared under conditions relevant to fuel cell operation. For the perfluorinated ionomer membranes, water molecules were preferentially incorporated into ionic clusters, resulting in phase separation and formation of ion channels. In contrast, for the aromatic ionomer membranes, wetting led to randomization of the ionic clusters. The results describe the differences in the proton-conducting behavior between the fluorinated and nonfluorinated ionomer membranes, and their dependence on the humidity.

  20. Biocompatibility of a flowable composite bonded with a self-etching adhesive compared with a glass lonomer cement and a high copper amalgam.

    PubMed

    Shimada, Yasushi; Seki, Yuichi; Sasafuchi, Yasutaka; Arakawa, Makoto; Burrow, Michael F; Otsuki, Masayuki; Tagami, Junji

    2004-01-01

    This study evaluated the pulpal response and in-vivo microleakage of a flowable composite bonded with a self-etching adhesive and compared the results with a glass ionomer cement and amalgam. Cervical cavities were prepared in monkey teeth. The teeth were randomly divided into three groups. A self-etching primer system (Imperva FluoroBond, Shofu) was applied to the teeth in one of the experimental groups, and the cavities were filled with a flowable composite (SI-BF-2001-LF, Shofu). In the other groups, a glass ionomer cement (Fuji II, GC) or amalgam (Dispersalloy, Johnson & Johnson) filled the cavity. The teeth were then extracted after 3, 30 and 90 days, fixed in 10% buffered formalin solution and prepared according to routine histological techniques. Five micrometer sections were stained with hematoxylin and eosin or Brown and Brenn gram stain for bacterial observation. No serious inflammatory reaction of the pulp, such as necrosis or abscess formation, was observed in any of the experimental groups. Slight inflammatory cell infiltration was the main initial reaction, while deposition of reparative dentin was the major long-term reaction in all groups. No bacterial penetration along the cavity walls was detected in the flowable composite or glass ionomer cement except for one case at 30 days in the glass ionomer cement. The flowable composite bonded with self-etching adhesive showed an acceptable biological com- patibility to monkey pulp. The in vivo sealing ability of the flowable composite in combination with the self-etching adhesive was considered comparable to glass ionomer cement. Amalgam restorations without adhesive liners showed slight bacterial penetration along the cavity wall.

  1. Piezoelectric and mechanical properties of fatigue resistant, self-healing PZT-ionomer composites

    NASA Astrophysics Data System (ADS)

    James, N. K.; Lafont, U.; van der Zwaag, S.; Groen, W. A.

    2014-05-01

    Piezoelectric ceramic-polymer composites with 0-3 connectivity were fabricated using lead zirconium titanate (PZT) powder dispersed in an ionomer (Zn ionomer) and its reference ethylene methacrylic acid copolymer (EMAA) polymer matrix. The PZT-Zn ionomer and PZT-EMAA composites were prepared by melt extrusion followed by hot pressing. The effects of poling conditions such as temperature, time and electric field on the piezoelectric properties of the composites were investigated. The experimentally observed piezoelectric charge coefficient and dielectric constant of the composites were compared with theoretical models. The results show that PZT-Zn ionomer composites have better piezoelectric properties compared to PZT-EMAA composites. The static and fatigue properties of the composites were investigated. The PZT-Zn ionomer composites were found to have excellent fatigue resistance even at strain levels of 4%. Due to the self-healing capabilities of the ionomer matrix, the loss of piezoelectric properties after high strain tensile cyclic loading could be partially recovered by thermal healing.

  2. Glass recycling

    SciTech Connect

    Dalmijn, W.L.; Houwelingen, J.A. van

    1995-12-31

    Glass recycling in the Netherlands has grown from 10,000 to 300,000 tonnes per annum. The various advantages and problems of the glass cycle with reference to the state of the art in the Netherlands is given. Special attention is given to new technologies for the automated sorting of cullet with detection systems. In Western Europe the recycling of glass has become a success story. Because of this, the percentage of glass cullet used in glass furnaces has increased. To meet the quality demands of the glass industry, automated sorting for the removal of stones, non-ferrous metals and other impurities had to be developed and incorporated in glass recycling plants. In Holland, Germany and other countries, the amount of glass collected has reached a level that color-sorting becomes necessary to avoid market saturation with mixed cullet. Recently, two systems for color-sorting have been developed and tested for the separation of bottles and cullet in the size range of 20--50 mm. With the increased capacity of the new glass recycling plants, 120,000--200,000 tpy, the quality systems have also to be improved and automated. These quality control systems are based on the automated sorting technology developed earlier for the glass recycling plants. The data obtained are automatically processed and printed. The sampling system and its relation to the theory of Gy will be described. Results of both developments in glass recycling plants will be described.

  3. Glass Artworks

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Several NASA technologies have played part in growth and cost containment of studio glass art, among them a foam type insulation developed to meet a need for lightweight material that would reduce flame spread in aircraft fire. Foam comes in several forms and is widely used by glass artists, chiefly as an insulator for the various types of ovens used in glass working. Another Spinoff is alumina crucibles to contain molten glass. Before alumina crucibles were used, glass tanks were made of firebrick which tended to erode under high temperatures and cause impurities; this not only improved quality but made the process more cost effective. One more NASA technology that found its way into glass art working is a material known as graphite board, a special form of graphite originally developed for rocket motor applications. This graphite is used to exact compound angles and creates molds for poured glass artworks of dramatic design.

  4. Synthesis of indium sulphide quantum dots in perfluoronated ionomer membrane

    NASA Astrophysics Data System (ADS)

    Sumi, R.; Warrier, Anita R.; Vijayan, C.

    2014-01-01

    In this paper, we demonstrate a simple and efficient method for synthesis of β-indium sulphide (In2S3) nanoparticles embedded in an ionomer matrix (nafion membrane). The influence of reaction temperature on structural, compositional and optical properties of these films were analysed using X-Ray Diffraction, EDAX, UV-Vis absorption spectroscopy and photoluminescence studies. Average particle diameter was estimated using modified effective mass approximation method. Absorption spectra of In2S3 nanoparticles show blue shift compared to bulk In2S3, indicating strong quantum size confinement effects. PL emission in the wavelength range 530-600 nm was recorded using a 488 nm line from an Ar+ laser as the excitation source.

  5. Simulation study of sulfonate cluster swelling in ionomers

    NASA Astrophysics Data System (ADS)

    Allahyarov, Elshad; Taylor, Philip L.; Löwen, Hartmut

    2009-12-01

    We have performed simulations to study how increasing humidity affects the structure of Nafion-like ionomers under conditions of low sulfonate concentration and low humidity. At the onset of membrane hydration, the clusters split into smaller parts. These subsequently swell, but then maintain constant the number of sulfonates per cluster. We find that the distribution of water in low-sulfonate membranes depends strongly on the sulfonate concentration. For a relatively low sulfonate concentration, nearly all the side-chain terminal groups are within cluster formations, and the average water loading per cluster matches the water content of membrane. However, for a relatively higher sulfonate concentration the water-to-sulfonate ratio becomes nonuniform. The clusters become wetter, while the intercluster bridges become drier. We note the formation of unusual shells of water-rich material that surround the sulfonate clusters.

  6. Synthesis of indium sulphide quantum dots in perfluoronated ionomer membrane

    SciTech Connect

    Sumi, R.; Warrier, Anita R.; Vijayan, C.

    2014-01-28

    In this paper, we demonstrate a simple and efficient method for synthesis of β-indium sulphide (In{sub 2}S{sub 3}) nanoparticles embedded in an ionomer matrix (nafion membrane). The influence of reaction temperature on structural, compositional and optical properties of these films were analysed using X-Ray Diffraction, EDAX, UV-Vis absorption spectroscopy and photoluminescence studies. Average particle diameter was estimated using modified effective mass approximation method. Absorption spectra of In{sub 2}S{sub 3} nanoparticles show blue shift compared to bulk In{sub 2}S{sub 3}, indicating strong quantum size confinement effects. PL emission in the wavelength range 530–600 nm was recorded using a 488 nm line from an Ar{sup +} laser as the excitation source.

  7. Investigation of the room temperature annealing peak in ionomers

    SciTech Connect

    Goddard, R.J.; Grady, B.P.; Cooper, S.L.

    1993-12-31

    A number of studies appearing in the literature have documented an endothermic peak in differential scanning calorimetry (DSC) scans for ethylene-methacrylic acid copolymer ionomers which appears only upon annealing at room temperature. This peak has been attributed to either polyethylene crystallites, ionic crystallite, or water absorption. In a novel polyurethane cationomer with a quarternized amine contained in hard segment, the same phenomena has been found in DSC scans when the neutralizing anion is bromine or iodine. Since this material does not crystallize, the authors were able to conclusively eliminate crystallization as the cause of the endotherm. The extended x-ray absorption fine structure (EXAFS) of bromine has been measured to differentiate between water absorption and ionic crystallites. Spectra were collected above and below the temperature corresponding to the endothermic peak. The results of the EXAFS analysis will be presented.

  8. Nuclear magnetic resonance investigation of dynamics in poly(ethylene oxide) based polyether-ester-sulfonate ionomers

    NASA Astrophysics Data System (ADS)

    Roach, David J.

    Nuclear magnetic resonance (NMR) spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. 1H and 7Li spin-lattice relaxation times (T1) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T1 values along with the presence of minima in T1 as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similar activation energies for motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though lithium hopping is about ten times slower than the segmental motion. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and Quasi Elastic Neutron Scattering experiments. Polymer backbone dynamics of single ion conducting poly(ethylene oxide) (PEO)-based ionomer samples with low glass transition temperatures (T g) have been investigated using solid-state nuclear magnetic resonance (NMR). Experiments detecting 13C with 1H decoupling under magic angle spinning (MAS) conditions identified the different components and relative mobilities of the polymer backbone of a suite of. lithium- and sodium-containing ionomer samples with varying cation contents. Variable temperature (203-373 K) 1H-13C cross-polarization MAS (CP-MAS) experiments also provided qualitative assessment of the differences in the motions of the polymer backbone components as a function of

  9. Glass Research

    NASA Technical Reports Server (NTRS)

    Weinberg, M. C.

    1985-01-01

    Research efforts span three general areas of glass science: glass refining, gel-derived glasses, and nucleation and crystallization of glasses. Gas bubbles which are present in a glass product are defects which may render the glass totally useless for the end application. For example, optical glasses, laser host glasses, and a variety of other specialty glasses must be prepared virtually defect free to be employable. Since a major mechanism of bubble removal, buoyant rise, is virtually inoperative in microgravity, glass fining will be especially difficult in space. On the other hand, the suppression of buoyant rise and the ability to perform containerless melting experiments in space allows the opportunity to carry out several unique bubble experiments in space. Gas bubble dissolution studies may be performed at elevated temperatures for large bubbles with negligible bubble motion. Also, bubble nucleation studies may be performed without the disturbing feature of heterogeneous bubble nucleation at the platinum walls. Ground based research efforts are being performed in support of these potential flight experiments.

  10. Evaluation of a Glass Ionomer Restoration to Treat Hypersensitive Cervical Anatomic Deficiencies.

    DTIC Science & Technology

    1983-03-01

    Braun, R.J., and Gerstein, H. Endodontic involvement resulting from dental abrasion or erosion. Am. Dent. A. J., 101(4):651-3, Oct. 1980. 18. Tronstad... Endodont ., 6(l):405-12, Jan. 1980. 46. Roane, J.B., et al. An ultrastructural study of dentinal innervation in the adult human tooth. Oral Surg., Oral Med...teachinr p~arposes as educational material, and for publiration in s-ientifir journals . I understand that I am free to withdraw my consent and to

  11. Bond Strength of Silorane- and Methacrylate-Based Composites to Resin-Modified Glass Ionomers

    DTIC Science & Technology

    2012-01-13

    Mine et al., 2010). Yaman et al. (2010) examined premolars marked for extraction due to orthodontics , bonded either Filtek Supreme XT with Adper...337-44. Li Y, Lee S, Zhang W, Zunt S, Rohrer M. Dentin/ Pulp Biocompatibility of an Adhesive System for Silorane Restorative. IADR 2008, abstract

  12. Microleakage and shear bond strength of a new sealant containing prereacted glass ionomer particles.

    PubMed

    Durham, Samuel N; Meyers, Erik J; Bailey, Clifton W; Vandewalle, Kraig S

    2017-01-01

    A new fluoride-releasing sealant system is claimed to allow easier and faster placement while providing high bond strengths without the need for phosphoric acid etching. A study was designed to compare the microleakage and shear bond strength of a self-etching, Giomer-based sealant system with those of a traditional resin sealant. Group 1 received traditional sealant applied after use of a 35% phosphoric acid etchant; group 2 received Giomer sealant after use of a self-etching primer; and group 3 received Giomer sealant after the addition of an initial phosphoric acid etching step and placement of the primer. The sealants were placed in the occlusal pits and fissures of extracted human third molars, thermocycled, placed in dye, and sectioned. The extent of microleakage (dye penetration) was expressed as a percentage of the cross-sectional length of the sealed interface. The sealants were also bonded to the facial enamel of bovine incisors. Specimens were thermocycled and tested in shear mode in a universal testing machine. The new self-etching sealant demonstrated significantly greater microleakage (P < 0.017) and lower bond strength (P < 0.05) than both the traditional sealant system and the new system when placed with phosphoric acid etchant. Phosphoric acid etching significantly improved the shear bond strength and reduced the microleakage of the new sealant.

  13. Investigation into the Depth of Cure of Resin-Modified Glass-Ionomer Restorative Materials

    DTIC Science & Technology

    2006-08-01

    cure of RMGI materials has not received the attention that has been directed to the resin composite restorations. The main cause for this lack of...temperature span of the specific heat determination (20 9 - 60 Q C) would not be sufficient to cause reasonable loss of any HEMA methacrylate components (BP...UD I C? c::i cr) All c:j c:i c::i CKD C--) A" ai 40’. C::3 c=j c=D. cri n 5 43 Table 41. Scheffe Multi Two-way ANOVA analysis of the Vitremer

  14. The comparative radiopacity of Fuji IX-GP, an intermediate restorative material.

    PubMed

    DuBois, D J; Reichl, R B; Hondrum, S O

    2000-04-01

    The radiopacity of intermediate restorative materials should be sufficient to enable the clinician to distinguish the material from normal and decalcified tooth structure. The purpose of this study was to determine the relative radiopacities of intermediate restorative materials, including a newly introduced high-viscosity, self-cured, condensable glass ionomer material. Radiographs were made of six intermediate restorative materials: two reinforced zinc oxide-eugenol materials (IRM and Zinroc), a conventional glass ionomer material (Ketac-fil), a synthetic resin material (Cavit), a eugenol-free zinc oxide material (Tempit), and a new, general-purpose, condensable glass ionomer material (Fuji IX-GP). Optical density was measured using a densitometer. The optical density of dentin and enamel were used for radiographic comparison. Statistical analysis revealed significant differences among materials: Cavit = IRM = Tempit > Zinroc = Fuji IX-GP > Ketac-fil = enamel > dentin (where > indicates a statistical difference at p < or = 0.05). Although not as radiopaque as some other intermediate materials tested, the radiopacity of Fuji IX-GP appears sufficient to aid diagnosis.

  15. Testing the distinctness of shoot ionomes of angiosperm families using the Rothamsted Park Grass Continuous Hay Experiment.

    PubMed

    White, Philip J; Broadley, Martin R; Thompson, Jacqueline A; McNicol, James W; Crawley, Mick J; Poulton, Paul R; Johnston, A E

    2012-10-01

    • The ionome is the elemental composition of a tissue or organism. Phylogenetic variation in the ionomes of plant shoots has been widely reported based on controlled experiments, vegetation surveys and literature meta-analyses. However, environmental effects on phylogenetic variation in shoot ionomes have not been quantified. This study tests the hypothesis that phylogenetic variation in shoot ionomes is robust to environmental perturbation and that plant families can be distinguished by their shoot ionomes. • Herbage was sampled from six subplots of the Rothamsted Park Grass Experiment. Subplots had received contrasting fertilizer treatments since 1856. Herbage was separated into its constituent species (n = 21) and concentrations of eleven mineral elements were determined in dried shoot material. • Shoot concentrations of calcium (Ca), zinc (Zn), manganese (Mn), magnesium (Mg) and sodium (Na) showed significant variation associated with plant species, and responded similarly to fertilizer treatments in diverse plant species. Species × treatment interactions were indicated for phosphorus (P), potassium (K), nickel (Ni), copper (Cu) and iron (Fe). Plant families could be distinguished by their shoot ionomes. The most informative elements for discriminant analysis were Ca > Mg > Ni > S > Na > Zn > K > Cu > Fe > Mn > P. • Whilst shoot ionomes were sensitive to fertilizer treatment, phylogenetic variation in a subset of the shoot ionome (Ca, Zn, Mn, Mg) was robust to this environmental perturbation.

  16. Puncture-Healing Properties of Carbon Nanotube-Filled Ionomers

    NASA Technical Reports Server (NTRS)

    Ward, Thomas C.

    2003-01-01

    Ionomers are polymers that contain ionic groups in relatively low concentrations along the polymer backbone. These ionic groups, in the presence of oppositely charged ions, form aggregates that lead to novel physical properties of the polymer. React-A-Seal(trademark) and Surlyn(trademark) are poly(ethylene-co-methacrylic acid) (EMAA) ionomer-based materials and Nucrel(trademark) is the EMAA acid copolymer neutralized to produce Surlyn(trademark). React-A-Seal(trademark), Surlyn(trademark), and Nucrel(trademark) recover into their original shapes following a high impact puncture at velocities ranging from 300 to 1200 ft/s ('self-healing'). This self-healing process may be of great benefit in space applications where structures are exposed to matter impacts. A thermal IR camera indicated a temperature increase to 98 C for Nucrel(trademark) 925, Surlyn(trademark) 8940, React-A-Seal(trademark), and Surlyn(trademark) 8920 after initial penetration. To understand and generalize the observed phenomena, questions concerning the mechanism of the puncture resealing must be answered. One suggestion is that the elastic character of the melt created by the puncture drives the self-healing. This inference is based on the observed temperature rise of approx. 3 C above the melting temperature of the samples (approx. 95 C) during the impact. With the expectation of gaining additional insight into the self-healing phenomenon, a thermodynamic and viscoelastic investigation was conducted using primarily DSC and DMA. Surlyn(trademark) and React-A-Seal(trademark) showed the characteristic order-disorder transition at approx. 52 C that has been reported in literature. Master curves were constructed from the creep isotherms for the four EMAA samples. An aging study was performed to investigate the irreproducibility and "tailing effect" observed in the creep data. The aging study indicated that, with increased aging time and temperature, changes in the polyethylene matrix lead to

  17. Water sorption and expansion of an ionomer membrane constrained by fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Goulet, Marc-Antoni; Arbour, Spencer; Lauritzen, Michael; Kjeang, Erik

    2015-01-01

    This article reveals that catalyst coated membranes (CCM) and membrane electrode assemblies (MEA) expand and contract differently than pure ionomer membranes during hydration and dehydration. Pure membranes are shown to generate twice as much longitudinal peak and residual stress during dehydration than CCMs, reflecting the higher modulus of the pure ionomer material. Moreover, the stronger confinement imposed by the lamination of relatively stiff gas diffusion layers to the CCM prevents the ionomer membrane from expanding in the in-plane direction. This is shown to lead to a significant increase in the through-plane stress and strain during hydration of MEAs versus CCMs and pure ionomer membranes. Supplementary measurements indicate that the water sorption properties of the ionomer (at equilibrium) are not altered by the lamination of catalyst layers and gas diffusion layers; hence, the changes in expansion behavior in the MEA are attributed to the mechanical confinement provided by the other layers. These features should be captured by finite element modeling of fuel cell stacks for accurate cell design and may have important implications for fuel cell durability.

  18. Conjugated ionomers for photovoltaic applications: electric field driven charge separation in organic photovoltaics. Final Technical report

    SciTech Connect

    Lonergan, Mark

    2015-05-29

    Final technical report for Conjugated ionomers for photovoltaic applications, electric field driven charge separation in organic photovoltaics. The central goal of the work we completed was been to understand the photochemical and photovoltaic properties of ionically functionalized conjugated polymers (conjugated ionomers or polyelectrolytes) and energy conversion systems based on them. We primarily studied two classes of conjugated polymer interfaces that we developed based either upon undoped conjugated polymers with an asymmetry in ionic composition (the ionic junction) or doped conjugated polymers with an asymmetry in doping type (the p-n junction). The materials used for these studies have primarily been the polyacetylene ionomers. We completed a detailed study of p-n junctions with systematically varying dopant density, photochemical creation of doped junctions, and experimental and theoretical work on charge transport and injection in polyacetylene ionomers. We have also completed related work on the use of conjugated ionomers as interlayers that improve the efficiency or organic photovoltaic systems and studied several important aspects of the chemistry of ionically functionalized semiconductors, including mechanisms of so-called "anion-doping", the formation of charge transfer complexes with oxygen, and the synthesis of new polyfluorene polyelectrolytes. We also worked worked with the Haley group at the University of Oregon on new indenofluorene-based organic acceptors.

  19. Water-ionomer interfacial interactions investigated by infrared spectroscopy and computational methods.

    PubMed

    Liu, Shu; Aquino, Adelia J A; Korzeniewski, Carol

    2013-11-12

    Structures for interfacial water condensed in pores and channels of the fluorinated ionomer Nafion from low relative humidity atmosphere were probed through the use of Fourier transform infrared (FTIR) spectroscopy and support from classical and quantum chemical calculations. Modern FTIR spectra of H2O and the O-H stretching region for the deuterium-substituted HOD species interacting at the water-ionomer interface in Nafion exchanged by sodium cations are reported and compared to characteristics observed in the earlier studies that employed a dispersive infrared spectrometer and unspecified spectral resolution. Molecular simulations that examine the orientations of water molecules in the vicinity of ionomer were applied to understand the appearance of multiple free O-H stretching bands and the effect of HOD addition. One computational approach was based on a classical force field model, and the other employed density functional theory (DFT) to investigate atomic-scale interactions of water with regions of different hydrophobicity and charge on a perfluorosulfonate ionomer segment. The results suggest hydrogen bonding stabilizes the types of water-ionomer environments that can lead to multiple free O-H stretching vibrational features in experimental spectra. The studies shed light on the structure of H2O at interfaces inside ion conducting membrane materials and have potential for application in elucidating structure at different types of water interfaces.

  20. Magnetic cellulose ionomer/layered double hydroxide: An efficient anion exchange platform with enhanced diclofenac adsorption property.

    PubMed

    Hossein Beyki, Mostafa; Mohammadirad, Mosleh; Shemirani, Farzaneh; Saboury, Ali Akbar

    2017-02-10

    Polymeric ionomers with anion exchange capability are considered to be classes of environmentally friendly compounds as combination of them with anionic layered hydroxides constitute emerging advance materials. Biosorption by polymeric ionomer - layered double hydroxide (LDH) hybrid material exhibits an attractive green, low cost and low toxic - clean way. As a result, a novel anion exchange platform has been developed by the reaction of CaAl - LDH with Fe(2+), cellulose solution, epichlorohydrin and pyridine. Magnetite cellulose - LDH (MCL) and the ionomer were used for efficient biosorption of diclofenac sodium (DF). Results showed that ionomer has more efficiency for DF adsorption relative to MCL. Magnetite ionomer showed fast equilibrium time (2min) with maximum uptake of 268mgg(-1). Isotherm and Kinetic models were also studied. Regeneration of the sorbent was performed with a mixture of methanol -NaOH (2.0molL(-1)) solution.

  1. Ionome changes in Xylella fastidiosa-infected Nicotiana tabacum correlate with virulence and discriminate between subspecies of bacterial isolates.

    PubMed

    Oliver, J E; Sefick, S A; Parker, J K; Arnold, T; Cobine, P A; De La Fuente, L

    2014-10-01

    Characterization of ionomes has been used to uncover the basis of nutrient utilization and environmental adaptation of plants. Here, ionomic profiles were used to understand the phenotypic response of a plant to infection by genetically diverse isolates of Xylella fastidiosa, a gram-negative, xylem-limited bacterial plant pathogen. In this study, X. fastidiosa isolates were used to infect a common model host (Nicotiana tabacum 'SR1'), and leaf and sap concentrations of eleven elements together with plant colonization and symptoms were assessed. Multivariate statistical analysis revealed that changes in the ionome were significantly correlated with symptom severity and bacterial populations in host petioles. Moreover, plant ionome modification by infection could be used to differentiate the X. fastidiosa subspecies with which the plant was infected. This report establishes host ionome modification as a phenotypic response to infection.

  2. Nuclear magnetic resonance investigation of dynamics in poly(ethylene oxide)-based lithium polyether-ester-sulfonate ionomers

    SciTech Connect

    Roach, David J.; Dou, Shichen; Colby, Ralph H.; Mueller, Karl T.

    2012-01-06

    Nuclear magnetic resonance (NMR) spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. 1H and 7Li spin-lattice relaxation times (T1) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T1 values along with the presence of minima in T1 as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similar activation energies for motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though their respective correlation times differ significantly. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and Quasi Elastic Neutron Scattering experiments.

  3. Nuclear magnetic resonance investigation of dynamics in poly(ethylene oxide)-based lithium polyether-ester-sulfonate ionomers

    NASA Astrophysics Data System (ADS)

    Roach, David J.; Dou, Shichen; Colby, Ralph H.; Mueller, Karl T.

    2012-01-01

    Nuclear magnetic resonance spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. 1H and 7Li spin-lattice relaxation times (T1) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T1 values along with the presence of minima in T1 as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similar activation energies for motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though lithium hopping is about ten times slower than the segmental motion. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and quasi-elastic neutron scattering experiments.

  4. Nuclear magnetic resonance investigation of dynamics in poly(ethylene oxide)-based lithium polyether-ester-sulfonate ionomers

    DOE PAGES

    Roach, David J.; Dou, Shichen; Colby, Ralph H.; ...

    2012-01-06

    Nuclear magnetic resonance (NMR) spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. 1H and 7Li spin-lattice relaxation times (T1) of the bulk polymer and lithium ions, respectively, were measured and analyzed in samples with a range of ion contents. The temperature dependence of T1 values along with the presence of minima in T1 as a function of temperature enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similar activation energies formore » motion of both the polymer and lithium ions in the samples with lower ion content indicate that the polymer segmental motion and lithium ion hopping motion are correlated in these samples, even though their respective correlation times differ significantly. A divergent trend is observed for correlation times and activation energies of the highest ion content sample with 100% lithium sulfonation due to the presence of ionic aggregation. Details of the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and Quasi Elastic Neutron Scattering experiments.« less

  5. In silico ionomics segregates parasitic from free-living eukaryotes.

    PubMed

    Greganova, Eva; Steinmann, Michael; Mäser, Pascal; Fankhauser, Niklaus

    2013-01-01

    Ion transporters are fundamental to life. Due to their ancient origin and conservation in sequence, ion transporters are also particularly well suited for comparative genomics of distantly related species. Here, we perform genome-wide ion transporter profiling as a basis for comparative genomics of eukaryotes. From a given predicted proteome, we identify all bona fide ion channels, ion porters, and ion pumps. Concentrating on unicellular eukaryotes (n = 37), we demonstrate that clustering of species according to their repertoire of ion transporters segregates obligate endoparasites (n = 23) on the one hand, from free-living species and facultative parasites (n = 14) on the other hand. This surprising finding indicates strong convergent evolution of the parasites regarding the acquisition and homeostasis of inorganic ions. Random forest classification identifies transporters of ammonia, plus transporters of iron and other transition metals, as the most informative for distinguishing the obligate parasites. Thus, in silico ionomics further underscores the importance of iron in infection biology and suggests access to host sources of nitrogen and transition metals to be selective forces in the evolution of parasitism. This finding is in agreement with the phenomenon of iron withholding as a primordial antimicrobial strategy of infected mammals.

  6. Zinc stress affects ionome and metabolome in tea plants.

    PubMed

    Zhang, Yinfei; Wang, Yu; Ding, Zhaotang; Wang, Hui; Song, Lubin; Jia, Sisi; Ma, Dexin

    2017-02-01

    The research of physiological responses to Zn stress in plants has been extensively studied. However, the ionomics and metabolomics responses of plants to Zn stress remain largely unknown. In present study, the nutrient elements were identified involved in ion homeostasis and metabolomics changes related to Zn deficiency or excess in tea plants. Nutrient element analysis demonstrated that the concentrations of Zn affected the ion-uptake in roots and the nutrient element transportation to leaves, leading to the different distribution of P, S, Al, Ca, Fe and Cu in the tea leaves or roots. Metabolomics analysis revealed that Zn deficiency or excess differentially influenced the metabolic pathways in the tea leaves. More specifically, Zn deficiency affected the metabolism of carbohydrates, and Zn excess affected flavonoids metabolism. Additionally, the results showed that both Zn deficiency and Zn excess led to reduced nicotinamide levels, which speeded up NAD(+) degradation and thus reduced energy metabolism. Furthermore, element-metabolite correlation analysis illustrated that Zn contents in the tea leaves were positively correlated with organic acids, nitrogenous metabolites and some carbohydrate metabolites, and negatively correlated with the metabolites involved in secondary metabolism and some other carbohydrate metabolites. Meanwhile, metabolite-metabolite correlation analysis demonstrated that organic acids, sugars, amino acids and flavonoids played dominant roles in the regulation of the tea leaf metabolism under Zn stress. Therefore, the conclusion should be drawn that the tea plants responded to Zn stress by coordinating ion-uptake and regulation of metabolism of carbohydrates, nitrogenous metabolites, and flavonoids.

  7. Block ionomer complexes as prospective nanocontainers for drug delivery.

    PubMed

    Oh, Kyung T; Bronich, Tatiana K; Bromberg, Lev; Hatton, T Alan; Kabanov, Alexander V

    2006-09-28

    Nanosized environmentally responsive materials are of special interest for various applications, including drug delivery. Block ionomer complexes (BIC) composed of graft-comb copolymers of Pluronic and poly(acrylic acid) (Pluronic-PAA) and a model cationic surfactant, hexadecyltrimethylammonium bromide (HTAB), were synthesized by mixing the polymer and surfactant in aqueous media. According to TEM, the resulting BIC represented spherical particles of nanoscale size (50 to 100 nm). The stability of the BIC in the aqueous dispersion depended on the lengths of the hydrophilic poly(ethylene oxide) and hydrophobic poly(propylene oxide) chains in Pluronic molecules as well as on the surface charge of the resulting complexes. The latter was controlled by changing the ratio of the Pluronic-PAA and HTAB in the BIC and by changing the pH due to reversible ionization of the PAA chains. The acidification of the media below pH 6.0 resulted in the appearance of a strong positive charge on the BIC, which in the intracellular environment can trigger interaction of such BIC with the cell membranes. An efficient solubilization of a model hydrophobic molecule, Sudan III, and a drug, Etoposide, in such BIC was demonstrated with the loading capacities of about 6 to 15% by weight of the dispersed complex. Overall, these BIC wield a promise as environmentally responsive nanocarriers for pharmaceuticals.

  8. In Silico Ionomics Segregates Parasitic from Free-Living Eukaryotes

    PubMed Central

    Greganova, Eva; Steinmann, Michael; Mäser, Pascal; Fankhauser, Niklaus

    2013-01-01

    Ion transporters are fundamental to life. Due to their ancient origin and conservation in sequence, ion transporters are also particularly well suited for comparative genomics of distantly related species. Here, we perform genome-wide ion transporter profiling as a basis for comparative genomics of eukaryotes. From a given predicted proteome, we identify all bona fide ion channels, ion porters, and ion pumps. Concentrating on unicellular eukaryotes (n = 37), we demonstrate that clustering of species according to their repertoire of ion transporters segregates obligate endoparasites (n = 23) on the one hand, from free-living species and facultative parasites (n = 14) on the other hand. This surprising finding indicates strong convergent evolution of the parasites regarding the acquisition and homeostasis of inorganic ions. Random forest classification identifies transporters of ammonia, plus transporters of iron and other transition metals, as the most informative for distinguishing the obligate parasites. Thus, in silico ionomics further underscores the importance of iron in infection biology and suggests access to host sources of nitrogen and transition metals to be selective forces in the evolution of parasitism. This finding is in agreement with the phenomenon of iron withholding as a primordial antimicrobial strategy of infected mammals. PMID:24048281

  9. Mixed hydrocarbon/fluoropolymer membrane/ionomer MEAs for durability studies

    SciTech Connect

    Li, Bo; Kim, Yu Seung; Mukundan, Rangachary; Borup, Rodney L; Wilson, Mahlon S; Welch, Cynthia; Fenton, James

    2010-01-01

    The durability of polymer electrolyte membrane (PEM) fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Commercial viability depends on improving the durability of the fuel cell components to increase the system reliability. The aim of this work is to separate ionomer degradation from membrane degradation via mixed membrane/ionomer MEA experiments. The challenges of mixed MEA fabrication due to the incompatibility of the membrane and the electrode are addressed. OCV accelerated testing experiment (AST) were performed. Development of in situ diagnostics and unique experiments to characterize the performance and properties of the ionomer in the electrode as a function of time is reported. These measurements, along with extensive ex situ and post-mortem characterization, can delineate the degradation mechanisms in order to develop more durable fuel cells and fuel cell components.

  10. GLASS FIBER REINFORCED PLASTICS,

    DTIC Science & Technology

    Contents: Fibrous glass fillers Binders used in the glass plastic industry Method of manufacturing glass plastics and glass plastic articles Properties of fiberglass Primary areas for use of glass fibre reinforced plastics

  11. Tempered glass

    SciTech Connect

    Bunnell, L.R.

    1991-11-01

    This document describes a demonstration for making tempered glass using minimal equipment. The demonstration is intended for a typical student of materials science, at the high school level or above. (JL)

  12. Lithium Polymer Electrolytes Based On PMMA / PEG And Penetrant Diffusion In Kraton Penta-Block Ionomer

    NASA Astrophysics Data System (ADS)

    Meng, Yan

    The study of diffusion in polymeric material is critical to many research fields and applications, such as polymer morphology, protective coatings (paints and varnishes), separation membranes, transport phenomena, polymer electrolytes, polymer melt, and controlled release of drugs from polymer carriers [1-9]. However, it is still a challenge to understand, predict and control the diffusion of molecules and ions of different sizes in polymers [2]. This work studied the medium to long range diffusion of species (i.e., ions and molecules) in solid polymer electrolytes based on poly(ethylene glycol)/poly(methyl methacrylate) (PEG/PMMA) for Li-based batteries, and polymeric permselective membranes via pulsed-field gradient NMR and a.c. impedance. Over the past decades polymer electrolytes have attracted much attention because of their promising technological application as an ion-conducting medium in solid-state batteries, fuel cells, electrochromic displays, and chemical sensors [10, 11]. However, despite numerous studies related to ionic transport in these electrolytes the understanding of the migration mechanism is still far from being complete, and progress in the field remains largely empirical [10, 12-15]. Among various candidates for solid polymer electrolyte (SPE) material, the miscible polymer pair, poly(ethylene oxide)/poly(methyl methacrylate) (PEO/PMMA), is an attractive one, because there is a huge difference in mobility between PEO and PMMA in their blends, and PEO chains remain exceptionally mobile in the blend even at temperature below the glass transition temperature of the blend [ 16]. Thus the mechanical strength and dimensional stability is maintained by PMMA component, while the chain motions or rearrangements of the PEO component virtually contribute to the ion transport [17]. The current work prepared two types of SPE based on poly(ethylene glycol) (PEG) /PMMA (40/60 by weight) for Li-based batteries: lithium bis(trifluoromethylsulfonylimide) (Li

  13. Self-assembly and structural relaxation in a model ionomer melt

    SciTech Connect

    Goswami, Monojoy; Borreguero, Jose M.; Sumpter, Bobby G.

    2015-02-26

    Molecular dynamics simulations are used to understand the self-assembly and structural relaxation in ionomer melts containing less than 10% degree of ionization on the backbone. We study the self-assembly of charged sites and counterions that show structural ordering and agglomeration with a range of structures that can be achieved by changing the dielectric constant of the medium. The intermediate scattering function shows a decoupling of charge and counterion relaxation at longer length scales for only high dielectric constant and at shorter length scales for all dielectric constants. Finally, the slow structural decay of counterions in the strongly correlated ionomer system closely resembles transport properties of semi-flexible polymers.

  14. Predicted electric-field-induced hexatic structure in an ionomer membrane

    NASA Astrophysics Data System (ADS)

    Allahyarov, Elshad; Taylor, Philip L.

    2009-08-01

    Coarse-grained molecular-dynamics simulations were used to study the morphological changes induced in a Nafion®-like ionomer by the imposition of a strong electric field. We observe the formation of structures aligned along the direction of the applied field. The polar head groups of the ionomer sidechains aggregate into clusters, which then form rodlike formations which assemble into a hexatic array aligned with the direction of the field. Occasionally these lines of sulfonates and protons form a helical structure. Upon removal of the electric field, the hexatic array of rodlike structures persists and has a lower calculated free energy than the original isotropic morphology.

  15. Should we treat the ionome as a combination of individual elements, or should we be deriving novel combined traits?

    PubMed Central

    Baxter, Ivan

    2015-01-01

    It has been more than 10 years since the concept of the ionome, all of the mineral nutrients in a cell tissue or organism, was introduced. In the intervening years, ionomics, high throughput elemental profiling, has been used to analyse over 400 000 samples from at least 10 different organisms. There are now multiple published examples where an ionomics approach has been used to find genes of novel function, find lines or environments that produce foods with altered nutritional profiles, or define gene by environmental effects on elemental accumulation. In almost all of these studies, the ionome has been treated as a collection of independent elements, with the analysis repeated on each measured element. However, many elements share chemical properties, are known to interact with each other, or have been shown to have similar interactions with biological molecules. Accordingly, there is strong evidence from ionomic studies that the elements of the ionome do not behave independently and that combinations of elements should be treated as the phenotypes of interest. In this review, I will consider the evidence that we have for the interdependence of the ionome, some of its causes, methods for incorporating this interdependence into analyses and the benefits, drawbacks, and challenges of taking these approaches. PMID:25711709

  16. Should we treat the ionome as a combination of individual elements, or should we be deriving novel combined traits?

    PubMed

    Baxter, Ivan

    2015-04-01

    It has been more than 10 years since the concept of the ionome, all of the mineral nutrients in a cell tissue or organism, was introduced. In the intervening years, ionomics, high throughput elemental profiling, has been used to analyse over 400,000 samples from at least 10 different organisms. There are now multiple published examples where an ionomics approach has been used to find genes of novel function, find lines or environments that produce foods with altered nutritional profiles, or define gene by environmental effects on elemental accumulation. In almost all of these studies, the ionome has been treated as a collection of independent elements, with the analysis repeated on each measured element. However, many elements share chemical properties, are known to interact with each other, or have been shown to have similar interactions with biological molecules. Accordingly, there is strong evidence from ionomic studies that the elements of the ionome do not behave independently and that combinations of elements should be treated as the phenotypes of interest. In this review, I will consider the evidence that we have for the interdependence of the ionome, some of its causes, methods for incorporating this interdependence into analyses and the benefits, drawbacks, and challenges of taking these approaches.

  17. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes

    PubMed Central

    Kumari, Asha; Das, Paromita; Parida, Asish Kumar; Agarwal, Pradeep K.

    2015-01-01

    Halophytes are plants which naturally survive in saline environment. They account for ∼1% of the total flora of the world. They include both dicots and monocots and are distributed mainly in arid, semi-arid inlands and saline wet lands along the tropical and sub-tropical coasts. Salinity tolerance in halophytes depends on a set of ecological and physiological characteristics that allow them to grow and flourish in high saline conditions. The ability of halophytes to tolerate high salt is determined by the effective coordination between various physiological processes, metabolic pathways and protein or gene networks responsible for delivering salinity tolerance. The salinity responsive proteins belong to diverse functional classes such as photosynthesis, redox homeostasis; stress/defense, carbohydrate and energy metabolism, protein metabolism, signal transduction and membrane transport. The important metabolites which are involved in salt tolerance of halophytes are proline and proline analog (4-hydroxy-N-methyl proline), glycine betaine, pinitol, myo-inositol, mannitol, sorbitol, O-methylmucoinositol, and polyamines. In halophytes, the synthesis of specific proteins and osmotically active metabolites control ion and water flux and support scavenging of oxygen radicals under salt stress condition. The present review summarizes the salt tolerance mechanisms of halophytes by elucidating the recent studies that have focused on proteomic, metabolomic, and ionomic aspects of various halophytes in response to salinity. By integrating the information from halophytes and its comparison with glycophytes could give an overview of salt tolerance mechanisms in halophytes, thus laying down the pavement for development of salt tolerant crop plants through genetic modification and effective breeding strategies. PMID:26284080

  18. Intrapulpal Thermal Changes during Setting Reaction of Glass Carbomer® Using Thermocure Lamp

    PubMed Central

    Tosun, Gül

    2016-01-01

    Objectives. To measure the temperature increase induced during thermocure lamp setting reaction of glass carbomer and to compare it with those induced by visible light curing of a resin-modified glass ionomer and a polyacid-modified composite resin in primary and permanent teeth. Materials and Methods. Nonretentive class I cavities were prepared in extracted primary and permanent molars. Glass carbomer (GC) was placed in the cavity and set at 60°C for 60 sn using a special thermocure lamp. Resin-modified glass ionomer (RMGIC) and polyacid-modified composite resin (PMCR) were placed in the cavities and polymerized with an LED curing unit. Temperature increases during setting reactions were measured with a J-type thermocouple wire connected to a data logger. Data were examined using two-way analysis of variance and Tukey's honestly significant difference tests. Results. The use of GC resulted in temperature changes of 5.17 ± 0.92°C and 5.32 ± 0.90°C in primary and permanent teeth, respectively (p > 0.05). Temperature increases were greatest in the GC group, differing significantly from those in the PMCR group (p < 0.05). Conclusion. Temperature increases during polymerization and setting reactions of the materials were below the critical value in all groups. No difference was observed between primary and permanent teeth, regardless of the material used. PMID:28097136

  19. Solid state nuclear magnetic resonance investigation of polymer backbone dynamics in poly(ethylene oxide) based lithium and sodium polyether-ester-sulfonate ionomers

    NASA Astrophysics Data System (ADS)

    Roach, David J.; Dou, Shichen; Colby, Ralph H.; Mueller, Karl T.

    2013-05-01

    Polymer backbone dynamics of single ion conducting poly(ethylene oxide) (PEO)-based ionomer samples with low glass transition temperatures (Tg) have been investigated using solid-state nuclear magnetic resonance. Experiments detecting 13C with 1H decoupling under magic angle spinning (MAS) conditions identified the different components of the polymer backbone (PEO spacer and isophthalate groups) and their relative mobilities for a suite of lithium- and sodium-containing ionomer samples with varying cation contents. Variable temperature (203-373 K) 1H-13C cross-polarization MAS (CP-MAS) experiments also provided qualitative assessment of the differences in the motions of the polymer backbone components as a function of cation content and identity. Each of the main backbone components exhibit distinct motions, following the trends expected for motional characteristics based on earlier Quasi Elastic Neutron Scattering and 1H spin-lattice relaxation rate measurements. Previous 1H and 7Li spin-lattice relaxation measurements focused on both the polymer backbone and cation motion on the nanosecond timescale. The studies presented here assess the slower timescale motion of the polymer backbone allowing for a more comprehensive understanding of the polymer dynamics. The temperature dependences of 13C linewidths were used to both qualitatively and quantitatively examine the effects of cation content and identity on PEO spacer mobility. Variable contact time 1H-13C CP-MAS experiments were used to further assess the motions of the polymer backbone on the microsecond timescale. The motion of the PEO spacer, reported via the rate of magnetization transfer from 1H to 13C nuclei, becomes similar for T ˜x 1{.1} Tg in all ionic samples, indicating that at similar elevated reduced temperatures the motions of the polymer backbones on the microsecond timescale become insensitive to ion interactions. These results present an improved picture, beyond those of previous findings, for the

  20. Solid State Nuclear Magnetic Resonance Investigation of Polymer Backbone Dynamics in Poly(Ethylene Oxide) Based Lithium and Sodium Polyether-ester-sulfonate Ionomers

    SciTech Connect

    Roach, David J.; Dou, Shichen; Colby, Ralph H.; Mueller, Karl T.

    2013-01-01

    Polymer backbone dynamics of single ion conducting poly(ethylene oxide) (PEO)-based ionomer samples with low glass transition temperatures (Tg) have been investigated using solid-state nuclear magnetic resonance (NMR). Experiments detecting 13C with 1H decoupling under magic angle spinning (MAS) conditions identified the different components of the polymer backbone (PEO spacer and isophthalate groups) and their relative mobilities for a suite of lithium- and sodium-containing ionomer samples with varying cation contents. Variable temperature (203-373 K) 1H-13C cross-polarization MAS (CP-MAS) experiments also provided qualitative assessment of the differences in the motions of the polymer backbone components as a function of cation content and identity. Each of the main backbone components exhibit distinct motions, following the trends expected for motional characteristics based on earlier Quasi Elastic Neutron Scattering and 1H spin-lattice relaxation rate measurements. Previous 1H and 7Li spin-lattice relaxation measurements focused on both the polymer backbone and cation motion on the nanosecond timescale. The studies presented here assess the slower timescale motion of the polymer backbone allowing for a more comprehensive understanding of the polymer dynamics. The temperature dependences of 13C linewidths were used to both qualitatively and quantitatively examine the effects of cation content and identity on PEO spacer mobility. Variable contact time 1H-13C CP-MAS experiments were used to further assess the motions of the polymer backbone on the microsecond timescale. The motion of the PEO spacer, reported via the rate of magnetization transfer from 1H to 13C nuclei, becomes similar for T ≳ 1.1 Tg in all ionic samples, indicating that at similar elevated reduced temperatures the motions of the polymer backbones on the microsecond timescale become insensitive to ion interactions. These results present an improved picture, beyond those of previous findings, for

  1. Alkaline membrane fuel cells with in-situ cross-linked ionomers

    SciTech Connect

    Leng, YJ; Wang, LZ; Hickner, MA; Wang, CY

    2015-01-10

    Improving cell performance and durability through both new materials and membrane electrode processing optimization is needed for the commercialization of alkaline membrane fuel cell (AMFC) technologies. In this work, we adopted an in-situ cross-linking strategy of an anion-conducting block copolymer to prepare durable ionomers for use in alkaline membrane fuel cells (AMFCs). Our goal was to use new ionomers and binders with an aim at improving long-term stability of AMFCs, especially at high operation temperatures. At 80 degrees C, AMFCs with in-situ cross-linked ionomers showed promising stability with an operating life time of more than 350 hours at 100 mA/cm(2). We found that the optimized electrode fabrication process and operating conditions can significantly improve the durability performance of AMFCs. For example, a suitable electrode binder in addition to the ion-conducting ionomer can greatly enhance the durability performance of AMFCs. Operating fuel cells under a cathode over-humification condition can also enhance the long-term stability of AMFCs. (C) 2014 Elsevier Ltd. All rights reserved.

  2. Phenotypic and ionome profiling of Triticum aestivum x Aegiolps tauschii introgression lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eighty-four single homozygous introgressions of the Aegilops tauschii D-genome in the ‘Chinese Spring’ genetic background were used to study phenotypic and ionome profiles during two years of field experiments. An augmented design was used with a repeated check of a local bread wheat cultivar was im...

  3. Investigating ionomer morphologies with STEM and SAXS: Toward rigorous processing-structure-property relationships

    NASA Astrophysics Data System (ADS)

    Benetatos, Nicholas M.

    Due to their extraordinary chemical and physical properties, ionomers have found wide-ranging applications including chemically resistant thermoplastics, robust coatings, and selectively permeable ion-transport membranes. The unique properties of ionomers result directly from the self-assembly/organization of ionic functional groups and counterions into nanoscale aggregates which act as transient physical crosslinks. For more than a half century, significant effort has been devoted toward understanding these structurally complex multi-component polymers, however, a complete description of their processing-structure-property relationships remains elusive. Quantifying these relationships will provide an important step toward the rational design, synthesis, and preparation of superior ionomeric materials. In order to rigorously advance the study of ionomer morphology, we combine traditional small angle X-ray scattering (SAXS) approaches with cutting-edge real space imaging via scanning transmission electron microscopy (STEM). This technique has provides high resolution imaging capability in which the image contrast is generated by differences in local average atomic number. Our work has shown that these characterization methods can be used to obtain complementary morphological information regarding the size, shape, and spatial distribution of the nanoscale ionic aggregates that control the physical properties of ionomers. With this information, we evaluate the validity of prevalent structural/morphological models and systematically explore how the nanoscale morphology is affected by changes in polymer backbone structure, materials chemistry, and processing.

  4. Coronal microleakage of permanent lingual access restorations in endodontically treated anterior teeth.

    PubMed

    Wilcox, L R; Diaz-Arnold, A

    1989-12-01

    Forty-six intact extracted human anterior teeth were treated endodontically with laterally condensed gutta-percha and sealer. The teeth were restored with a base of either zinc phosphate or temporary stopping and a permanent restoration of either acid etched composite resin with GLUMA as the dentin bonding agent or with Ketac-Fil glass ionomer. The teeth were thermocycled, coated with nail varnish (except for the access), immersed in silver nitrate, developed, and sectioned longitudinally. The linear dye penetration was measured. All restorations permitted leakage into the base. All groups had specimens which leaked into the gutta-percha. There was a tendency for the glass ionomer/zinc phosphate group to leak least, but there were no statistically significant differences among the groups.

  5. Synthesis and characterization of polyurethane ionomers, blends and urethane-urea aerogel hybrids

    NASA Astrophysics Data System (ADS)

    Wang, Mingzhe

    The chemical and physical properties of alkali, alkaline metal and selected transition metal polyurethane ionomers were investigated. A new synthesis was developed for carboxylated polyurethane anionomers, and it was employed to synthesize a range of ionomers. Thus, a series of polyurethane ionomers was prepared in which the molecular weight of a constituent diol, the concentration of carboxylic acid sites, and the nature of the cations was varied. The analogous materials with equivalent nominal stoichiometries were synthesized by the standard method of preparing the acid-form polymer and of replacing the protons for metal ions. The novel synthesis employs a multiphase reaction between isocyanate-terminated prepolymers and solid, anhydrous microcrystalline metal salts of a carboxylic acid diol. This required the development of new synthesis of these starting materials. The materials studied are based on polyether diols, acid-containing diols and a saturated diisocyanate. The novel synthesis is more than twenty times as fast as the standard method under the same conditions. The spectroscopic and mechanical properties of the polyurethane ionomers synthesized in both ways were studied and contrasted. Those prepared by the new method have greater spatial homogeneity, resulting in lower scattering loss in the ultraviolet-visible range. They also exhibited values of E ' (the real elastic modulus) that are as much as an order of magnitude greater than those made by the standard method. In addition, the temperature dependence of Fin the -25 ˜ +75°C range is remarkably low. Studies of the structural properties by infrared spectroscopy, small angle x-ray scattering, thermal analysis, gel permeation chromatography and scanning electron microscopy were used to elucidate their molecular structures and intermolecular interactions. The rates of key synthetic reactions and the thermal stability of the metal containing polyurethane ionomers were studied by thermal analysis. The

  6. Pinhole Glasses

    ERIC Educational Resources Information Center

    Colicchia, Giuseppe; Hopf, Martin; Wiesner, Hartmut; Zollman, Dean

    2008-01-01

    Eye aberrations are commonly corrected by lenses that restore vision by altering rays before they pass through the cornea. Some modern promoters claim that pinhole glasses are better than conventional lenses in correcting all kinds of refractive defects such as myopia (nearsighted), hyperopia (farsighted), astigmatisms, and presbyopia. Do pinhole…

  7. Effect of desiccation on microleakage of five Class 5 restorative materials.

    PubMed

    Bouschlicher, M R; Vargas, M A; Denehy, G E

    1996-01-01

    Resin-modified glass ionomers, combinations of resin and glass-ionomer chemistry, have resulted in materials with longer working times and command set by visible light activation. These materials are easier to use and more resistant to early moisture contamination and fracture. A glass-ionomer or resin-modified glass-ionomer restoration may be inadvertently desiccated by isolation of the same quadrant for subsequent restorative procedures. The present study is an assessment of the effects of desiccation on microleakage of three resin-modified glass-ionomers: Vitremer, Photac-Fil, Fuji II LC; a glass-ionomer, Ketac-Fil; and a microfill resin, Silux Plus. Fifty extracted molars were prepared with class 5 preparations buccal and lingual and randomly assigned to 10 groups (n = 10). Restorations were placed according to the manufacturers' specifications and finished wet after the manufacturers' specified setting interval. All samples were thermocycled 300 cycles between 50 and 500 degrees C. Samples were stored in water at all times until the five groups to be desiccated were air dried and stored dry for 45 minutes. Desiccated groups were then rehydrated for 24 hours prior to AgNO3 staining. Teeth were sectioned mesiodistally and four buccolingual sections (0.6 mm thick) through each class 5 restoration were obtained with a Silverstone-Taylor hard tissue microtome. Each section was scored on a scale of 0-4 for microleakage, and the highest score for dye penetration was used as the score for that restoration. An increase in microleakage was observed in all desiccated groups. Three materials showed a statistically significant increase in microleakage (P < 0.05) following desiccation. Microleakage increases following a brief period of desiccation corresponding to typical treatment times indicate that clinicians need to protect previously placed restorations from undue drying during subsequent dental treatment.

  8. Electrochromic Glasses.

    DTIC Science & Technology

    1980-07-31

    Li20-B203 and Na20-B203 or Te02 . These glasses exhibit for the first time, electrochromic and photochromic behaviour and have potential for use in...the complete spectral distribution of the absorption at levels of 10- cm- I for the first time. In the past, it was only possible to measure low...distribution of the absorption at levels at 10 -cm it was possible, for the first time, to identify extrinsic impurities in highly transparent solids. This

  9. Self-assembly and structural relaxation in a model ionomer melt

    DOE PAGES

    Goswami, Monojoy; Borreguero, Jose M.; Sumpter, Bobby G.

    2015-02-26

    Molecular dynamics simulations are used to understand the self-assembly and structural relaxation in ionomer melts containing less than 10% degree of ionization on the backbone. We study the self-assembly of charged sites and counterions that show structural ordering and agglomeration with a range of structures that can be achieved by changing the dielectric constant of the medium. The intermediate scattering function shows a decoupling of charge and counterion relaxation at longer length scales for only high dielectric constant and at shorter length scales for all dielectric constants. Finally, the slow structural decay of counterions in the strongly correlated ionomer systemmore » closely resembles transport properties of semi-flexible polymers.« less

  10. Interdiffusion of long alcohols into thin ionomer films; In situ Neutron Reflectivity study

    NASA Astrophysics Data System (ADS)

    Etampawala, Thusitha; Ratnaweera, Dilru; Shrestha, Umesh; Perahia, Dvora; Cornelius, Christopher; Majewski, Jaroslaw

    2010-03-01

    Transport of solvents and ions within ionic polymers controls their many current and potential applications from energy related to drug delivery systems. The transport is determined by the phase structure and the interaction of the diffusing species with the polymers, coupled with interfacial effects. The current work presents the kinetics of penetration of long chain alcohols diffusing into rigid ionomer thin films formed by a rigid polyphenylene sulfonated ionomer, using in situ neutron reflectivity. The penetration of deuterated n-octanol and n-hexanol into ˜20nm thick films was followed as a function of time for different sulfonation levels of the polymer. As for shorter molecules, the diffusion process consists of two stages, a relatively fast one in which the film thickness increases linearly with time followed by a slow phase in which structural changes take place. With increasing sulfonation levels, the diffusion first increases and then decreases; a trend that is attributed to hydrophilic/hydrophobic balance.

  11. Depletion attraction of sheet-like ion aggregates in low-dielectric ionomer melts

    NASA Astrophysics Data System (ADS)

    Lu, Keran; Maranas, Janna K.; Milner, Scott T.

    2017-02-01

    Ionomers are polymers in which an ionic group is covalently bonded to the polymer backbone. Ion aggregates in ionomers have morphologies that allow for the packing of the attached polymer backbone. Using ion-only coarse-grained molecular dynamics, we observe that string-like ion aggregates become flat and sheet-like at lower dielectric constants. A consequence of the changing morphology is that the sheet-like aggregates self-assemble to form ordered, lamellar structures. We use a simple thermodynamic model to demonstrate that depletion attraction mediated by small aggregates can explain the observed order. Our results suggest that depletion attraction can drive ions to form structures that have the size scale suggested by direct visualization, produce the commonly observed experimental correlation peak from X-ray and neutron scattering, and satisfy chain-packing constraints that have been demonstrated to be important in simulations.

  12. Plant ionome diagnosis using sound balances: case study with mango (Mangifera Indica).

    PubMed

    Parent, Serge-Étienne; Parent, Léon E; Rozane, Danilo Eduardo; Natale, William

    2013-01-01

    Plant ionomes and soil nutrients are commonly diagnosed in agronomy using concentration and nutrient ratio ranges. However, both diagnoses are biased by redundancy of information, subcompositional incoherence and non-normal distribution inherent to compositional data, potentially leading to conflicting results and wrong inferences. Our objective was to present an unbiased statistical approach of plant nutrient diagnosis using a balance concept and mango (Mangifera indica) as test crop. We collected foliar samples at flowering stage in 175 mango orchards. The ionomes comprised 11 nutrients (S, N, P, K, Ca, Mg, B, Cu, Zn, Mn, Fe). Traditional multivariate methods were found to be biased. Ionomes were thus represented by unbiased balances computed as isometric log ratios (ilr). Soil fertility attributes (pH and bioavailable nutrients) were transformed into balances to conduct discriminant analysis. The orchards differed more from genotype than soil nutrient signatures. A customized receiver operating characteristic (ROC) iterative procedure was developed to classify tissue ionomes between balanced/misbalanced and high/low-yielders. The ROC partitioning procedure showed that the critical Mahalanobis distance of 4.08 separating balanced from imbalanced specimens about yield cut-off of 128.5 kg fruit tree(-1) proved to be a fairly informative test (area under curve = 0.84-0.92). The [P | N,S] and [Mn | Cu,Zn] balances were found to be potential sources of misbalance in the less productive orchards, and should thus be further investigated in field experiments. We propose using a coherent pan balance diagnostic method with median ilr values of top yielders centered at fulcrums of a mobile and the critical Mahalanobis distance as a guide for global nutrient balance. Nutrient concentrations in weighing pans assisted appreciating nutrients as relative shortage, adequacy or excess in balances.

  13. Plant ionome diagnosis using sound balances: case study with mango (Mangifera Indica)

    PubMed Central

    Parent, Serge-Étienne; Parent, Léon E.; Rozane, Danilo Eduardo; Natale, William

    2013-01-01

    Plant ionomes and soil nutrients are commonly diagnosed in agronomy using concentration and nutrient ratio ranges. However, both diagnoses are biased by redundancy of information, subcompositional incoherence and non-normal distribution inherent to compositional data, potentially leading to conflicting results and wrong inferences. Our objective was to present an unbiased statistical approach of plant nutrient diagnosis using a balance concept and mango (Mangifera indica) as test crop. We collected foliar samples at flowering stage in 175 mango orchards. The ionomes comprised 11 nutrients (S, N, P, K, Ca, Mg, B, Cu, Zn, Mn, Fe). Traditional multivariate methods were found to be biased. Ionomes were thus represented by unbiased balances computed as isometric log ratios (ilr). Soil fertility attributes (pH and bioavailable nutrients) were transformed into balances to conduct discriminant analysis. The orchards differed more from genotype than soil nutrient signatures. A customized receiver operating characteristic (ROC) iterative procedure was developed to classify tissue ionomes between balanced/misbalanced and high/low-yielders. The ROC partitioning procedure showed that the critical Mahalanobis distance of 4.08 separating balanced from imbalanced specimens about yield cut-off of 128.5 kg fruit tree−1 proved to be a fairly informative test (area under curve = 0.84–0.92). The [P | N,S] and [Mn | Cu,Zn] balances were found to be potential sources of misbalance in the less productive orchards, and should thus be further investigated in field experiments. We propose using a coherent pan balance diagnostic method with median ilr values of top yielders centered at fulcrums of a mobile and the critical Mahalanobis distance as a guide for global nutrient balance. Nutrient concentrations in weighing pans assisted appreciating nutrients as relative shortage, adequacy or excess in balances. PMID:24273548

  14. Ionomer-Liquid Electrolyte Hybrid Ionic Conductor for High Cycling Stability of Lithium Metal Electrodes

    PubMed Central

    Song, Jongchan; Lee, Hongkyung; Choo, Min-Ju; Park, Jung-Ki; Kim, Hee-Tak

    2015-01-01

    The inhomogeneous Li electrodeposition of lithium metal electrode has been a major impediment to the realization of rechargeable lithium metal batteries. Although single ion conducting ionomers can induce more homogeneous Li electrodeposition by preventing Li+ depletion at Li surface, currently available materials do not allow room-temperature operation due to their low room temperature conductivities. In the paper, we report that a highly conductive ionomer/liquid electrolyte hybrid layer tightly laminated on Li metal electrode can realize stable Li electrodeposition at high current densities up to 10 mA cm−2 and permit room-temperature operation of corresponding Li metal batteries with low polarizations. The hybrid layer is fabricated by laminating few micron-thick Nafion layer on Li metal electrode followed by soaking 1 M LiPF6 EC/DEC (1/1) electrolyte. The Li/Li symmetric cell with the hybrid layer stably operates at a high current density of 10 mA cm−2 for more than 2000 h, which corresponds to more than five-fold enhancement compared with bare Li metal electrode. Also, the prototype Li/LiCoO2 battery with the hybrid layer offers cycling stability more than 350 cycles. These results demonstrate that the hybrid strategy successfully combines the advantages of bi-ionic liquid electrolyte (fast Li+ transport) and single ionic ionomer (prevention of Li+ depletion). PMID:26411701

  15. Shape-Memory Polymers Based on Fatty Acid-Filled Elastomeric Ionomers

    NASA Astrophysics Data System (ADS)

    Izzo, Elise; Weiss, Robert

    2009-03-01

    Shape memory polymers (SMPs) have applications as medical devices, actuators, sensors, artificial muscles, switches, smart textiles, and self-deployable structures. All previous design of SMPs has involved synthesizing new polymers or modifying existing polymers. This paper describes a new type of SMP based on blends of an elastomeric ionomer and low molar mass fatty acids or their salts (FAS). Shape memory elastomers were prepared from mixtures of a sulfonated EPDM ionomer and various amounts of a FAS (e.g., zinc stearate, zinc oleate, and various aliphalic acids). Nanophase separation of the metal sulfonate groups provided the ``permanent'' crosslinks, while sub-microscopic crystals of the low molecular weight FAS provided a physical crosslink needed for the temporary shape. The material was deformed above the melting point of the FAS and the new shape was fixed by cooling the material while under stress to below the melting point of the FAS. Polar interactions between the ionomer and the FAS stabilized the dispersion of the FAS in the polymer and provided the continuity between the phases that allowed the crystals of the FAS to provide a second network of physical crosslinks. The temporary shape was erased and the material returned to the primary shape by heating above the melting point of the FAS.

  16. Influence of ionomer content on the structure and performance of PEFC membrane electrode assemblies

    SciTech Connect

    Xie, Jian; Xu, Fan; WoodIII, David L; More, Karren Leslie; Zawodzinski, Thomas; Smith, Wayne H

    2010-01-01

    Nafion ionomer content of the cathode catalyst-layer of a polymer electrolyte fuel cell (PEFC), made by the decal hot pressing method, has been investigated for its effect on performance and structure of the membrane electrode assembly (MEA). Varying Nafion content was shown to have an effect on performance within the entire range of polarization curves (i.e. kinetic, ohmic, and mass-transport regions) as well as on the structure. AFM analysis shows the effect of Nafion on the dispersion of carbon aggregates. Further analysis using TEM demonstrates the effect of Nafion on both the dispersion of carbon aggregates and the distribution and thickness of the Nafion ionomer films surrounding the catalyst/carbon aggregates. The MEA structure change correlates well with the MEA performance on both kinetics and mass-transport region. The determining factors on the performance of MEA are the interfacial zone (between the ionomer and catalyst particle), the dispersion of catalyst/carbon aggregates and the distribution/thickness of Nafion films. An optimized Nafion content in the range of 27 6 wt.% for the cathode was determined for an E-TEK 20% Pt3Cr/C catalyst at a loading of 0.20mg Pt/cm2.

  17. The Bacterial Pathogen Xylella fastidiosa Affects the Leaf Ionome of Plant Hosts during Infection

    PubMed Central

    De La Fuente, Leonardo; Parker, Jennifer K.; Oliver, Jonathan E.; Granger, Shea; Brannen, Phillip M.; van Santen, Edzard; Cobine, Paul A.

    2013-01-01

    Xylella fastidiosa is a plant pathogenic bacterium that lives inside the host xylem vessels, where it forms biofilm believed to be responsible for disrupting the passage of water and nutrients. Here, Nicotiana tabacum was infected with X. fastidiosa, and the spatial and temporal changes in the whole-leaf ionome (i.e. the mineral and trace element composition) were measured as the host plant transitioned from healthy to diseased physiological status. The elemental composition of leaves was used as an indicator of the physiological changes in the host at a specific time and relative position during plant development. Bacterial infection was found to cause significant increases in concentrations of calcium prior to the appearance of symptoms and decreases in concentrations of phosphorous after symptoms appeared. Field-collected leaves from multiple varieties of grape, blueberry, and pecan plants grown in different locations over a four-year period in the Southeastern US showed the same alterations in Ca and P. This descriptive ionomics approach characterizes the existence of a mineral element-based response to X. fastidiosa using a model system suitable for further manipulation to uncover additional details of the role of mineral elements during plant-pathogen interactions. This is the first report on the dynamics of changes in the ionome of the host plant throughout the process of infection by a pathogen. PMID:23667547

  18. Autonomous healing materials based on epoxidized natural rubber and ethylene methacrylic acid ionomers

    NASA Astrophysics Data System (ADS)

    Arifur Rahman, Md; Penco, Maurizio; Peroni, Isabella; Ramorino, Giorgio; Janszen, Gerardus; Di Landro, Luca

    2012-03-01

    The development of autonomous healing material has an enormous scientific and technological interest. In this context, this research work deals with the investigation of autonomous healing behavior of epoxidized natural rubber (ENR) and its blends with ethylene methacrylic acid ionomers. The autonomous healing behavior of ENR and its blends containing two different ionomers [poly(ethylene-co-methacrylic acid sodium salt) (EMNa) and poly(ethylene-co-methacrylic acid zinc salt) (EMZn)] has been studied by ballistic puncture tests. Interestingly, EMNa/ENR blends exhibit complete healing just after the ballistic test but EMZn/ENR blends do not show full self-repairing. The healing efficiency has been evaluated by optical microscopy and a depressurized air-flow test. The healing mechanism has been investigated by characterizing thermal and mechanical properties of the blends. The chemical structure studied by FTIR and thermal analysis show that the ion content of ionomers and functionality of ENR has a significant influence on the self-healing behavior.

  19. The diffusion and conduction of lithium in poly(ethylene oxide)-based sulfonate ionomers

    NASA Astrophysics Data System (ADS)

    LaFemina, Nikki H.; Chen, Quan; Colby, Ralph H.; Mueller, Karl T.

    2016-09-01

    Pulsed field gradient nuclear magnetic resonance spectroscopy and dielectric relaxation spectroscopy have been utilized to investigate lithium dynamics within poly(ethylene oxide) (PEO)-based lithium sulfonate ionomers of varying ion content. The ion content is set by the fraction of sulfonated phthalates and the molecular weight of the PEO spacer, both of which can be varied independently. The molecular level dynamics of the ionomers are dominated by either Vogel-Fulcher-Tammann or Arrhenius behavior depending on ion content, spacer length, temperature, and degree of ionic aggregation. In these ionomers the main determinants of the self-diffusion of lithium and the observed conductivities are the ion content and ionic states of the lithium ion, which are profoundly affected by the interactions of the lithium ions with the ether oxygens of the polymer. Since many lithium ions move by segmental polymer motion in the ion pair state, their diffusion is significantly larger than that estimated from conductivity using the Nernst-Einstein equation.

  20. Ionomic and physiological responses to low nitrogen stress in Tibetan wild and cultivated barley.

    PubMed

    Quan, Xiaoyan; Zeng, Jianbin; Han, Zhigang; Zhang, Guoping

    2017-02-01

    In a previous study, we identified the low-nitrogen (LN) tolerant accessions from the Tibetan wild barley (Hordeum vulgare subsp. spontaneum). In this study, two wild barley genotypes (XZ149, LN-tolerant and XZ56, LN-sensitive) and a barley cultivar ZD9 (H. vulgare) were used to determine the LN tolerant mechanism underlying the wild barley in the ionomic and physiological aspects. XZ149 exhibited higher LN tolerance with highest relative dry weight and N accumulation among three barley genotypes under LN stress. When exposed to LN stress, XZ149 had more N transportation from roots to leaves, and remained relatively higher activities of nitrate reductase (NR, EC.1.7.1.1) and glutamine synthetase (GS, EC.6.3.1.2) in leaves than other two genotypes, ensuring its higher capacity of N assimilation and utilization. The ionome analysis showed that LN stress had a significant effect on tissue ionome and the effect was genotypic and tissue-specific difference. On the whole, XZ149 maintained more stable Mn and Cu contents in roots, and less reduction of root P, K and Ca contents than XZ56 and ZD9 when exposed to LN stress. It may be assumed that more N movement into shoots, greater N assimilating capacity and specific rearrangement of nutrient element levels in tissues under LN stress are attributed to LN tolerance in XZ149.

  1. The bacterial pathogen Xylella fastidiosa affects the leaf ionome of plant hosts during infection.

    PubMed

    De La Fuente, Leonardo; Parker, Jennifer K; Oliver, Jonathan E; Granger, Shea; Brannen, Phillip M; van Santen, Edzard; Cobine, Paul A

    2013-01-01

    Xylella fastidiosa is a plant pathogenic bacterium that lives inside the host xylem vessels, where it forms biofilm believed to be responsible for disrupting the passage of water and nutrients. Here, Nicotiana tabacum was infected with X. fastidiosa, and the spatial and temporal changes in the whole-leaf ionome (i.e. the mineral and trace element composition) were measured as the host plant transitioned from healthy to diseased physiological status. The elemental composition of leaves was used as an indicator of the physiological changes in the host at a specific time and relative position during plant development. Bacterial infection was found to cause significant increases in concentrations of calcium prior to the appearance of symptoms and decreases in concentrations of phosphorous after symptoms appeared. Field-collected leaves from multiple varieties of grape, blueberry, and pecan plants grown in different locations over a four-year period in the Southeastern US showed the same alterations in Ca and P. This descriptive ionomics approach characterizes the existence of a mineral element-based response to X. fastidiosa using a model system suitable for further manipulation to uncover additional details of the role of mineral elements during plant-pathogen interactions. This is the first report on the dynamics of changes in the ionome of the host plant throughout the process of infection by a pathogen.

  2. GlassForm

    SciTech Connect

    2011-09-16

    GlassForm is a software tool for generating preliminary waste glass formulas for a given waste stream. The software is useful because it reduces the number of verification melts required to develop a suitable additive composition. The software includes property models that calculate glass properties of interest from the chemical composition of the waste glass. The software includes property models for glass viscosity, electrical conductivity, glass transition temperature, and leach resistance as measured by the 7-day product consistency test (PCT).

  3. Water, proton, and oxygen transport in high IEC, short side chain PFSA ionomer membranes: consequences of a frustrated network.

    PubMed

    Luo, Xiaoyan; Holdcroft, Steven; Mani, Ana; Zhang, Yongming; Shi, Zhiqing

    2011-10-28

    The effect of ion exchange capacity (IEC) on the water sorption properties of high IEC, short side chain (SSC) PFSA ionomer membranes, and the relationships between water content, proton conductivity, proton mobility, water permeation, oxygen diffusion, and oxygen permeation are investigated. SSC PFSA ionomer membranes possessing 1.3, 1.4, and 1.5 mmol g(-1) IEC are compared to a series of long side chain (LSC) PFSA ionomer membranes ranging in IEC from 0.9 to 1.13 mmol g(-1). At 25 °C, fully-hydrated SSC ionomer membranes are characterized as possessing higher water contents (56-75 vol%), moderate λ values (15-18), high analytical acid concentrations (2-2.8 M), and moderate conductivity (88-115 mS/cm); but lower than anticipated effective proton mobility. Complementary measurements of water permeability, oxygen diffusion, and oxygen permeability also yield lower than expected values given their much higher water contents. Potential benefits afforded by reducing the side chain length of PFSA ionomer membranes, such as increased crystallinity, higher IEC, and high hydrated acid concentration are offset by a less-developed, frustrated hydrophilic percolation network, which provides a motivation for future improvements of transport properties for this class of material.

  4. Strength of inorganic glass

    SciTech Connect

    Kurkjian, C.R.

    1985-01-01

    This book presents information on the following topics: a look at the history of glass strength; atomistic theory of fracture; surface chemistry in relation to the strength and fracture of silicate glasses; high-speed photographic investigations of the dynamic localized loading of some oxide glasses; a correction for measurements of contact area using Newton's rings; envionmentally enhanced crack growth; fatigue in glass; behavior of flaws in fused silica fibers; fracture toughness of chalcogenide glasses and glass-ceramics; fracture analysis of glass surfaces; and fracture mechanics parameters for glasses - a compilation and correlation.

  5. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    SciTech Connect

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  6. IMPACT STRENGTH OF GLASS AND GLASS CERAMIC

    SciTech Connect

    Bless, S.; Tolman, J.

    2009-12-28

    Strength of glass and glass ceramic was measured with a bar impact technique. High-speed movies show regions of tensile and compressive failure. The borosilicate glass had a compressive strength of at least 2.2 GPa, and the glass ceramic at least 4 GPa. However, the BSG was much stronger in tension than GC. In ballistic tests, the BSG was the superior armor.

  7. Clinical evaluation of glass ceramic inlays (Dicor).

    PubMed

    Stenberg, R; Matsson, L

    1993-04-01

    The purpose of the study was to evaluate the clinical behavior of ceramic class-II inlays (Dicor) in the first 2 years after placement. As a reference, a similar number of dental amalgam restorations were followed up during the same period. Twenty-five inlays and 25 dental amalgams were placed on premolars and first molars of 20 and 19 patients (15-19 years old), respectively. The inlay preparations were made in accordance with the manufacturer's recommendations, and the inlays were produced by a licensed Dicor laboratory. The inlays were luted, using a glass ionomer cement. The dental amalgam preparations were made using standard class-II preparation techniques and filled with ANA 2000. The inlays were evaluated after 6, 12, and 24 months, and the dental amalgam restorations after 24 months, using the criteria suggested by Ryge. In addition, the 24-month examination included proximal recording of dental plaque and gingivitis. With the exception of two inlays that fractured during the observation period, all ceramic inlays showed excellent ratings for anatomic form, marginal discoloration, and marginal caries at all examinations. Two inlays showed minor marginal defects but were classified within the range of acceptance with no need for replacement. The two fractured inlays were replacements of earlier fractured dental amalgams. The clinical behavior of the dental amalgam restorations was in most respects similar to that of the ceramic inlays. Unlike the inlays, however, no dental amalgams fractured during the observation period.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. The effect of three finishing systems on four esthetic restorative materials.

    PubMed

    Hoelscher, D C; Neme, A M; Pink, F E; Hughes, P J

    1998-01-01

    Previous studies have investigated the finishing and smoothness of composite and traditional glass-ionomer restorations, but few have included resin-modified glass-ionomer cements or more recent finishing systems. The results of using three different finishing systems (Sof-Lex, Enhance, finishing burs) on two composites (Silux, Prisma TPH), a traditional glass ionomer (Ketac-Fil), and a resin-modified glass ionomer (Fuji II LC) were studied. Sixty samples were condensed into sectioned acrylic tubes, covered with a Mylar matrix plus a glass slide at each surface, then cured as per the manufacturers' instructions. Samples were randomized to three groups of five for each material and testing with a Surfanalyzer 4000 of unfinished samples (cured with Mylar matrix) was done to obtain baseline average surface roughness (Ra). Samples were then finished as per the manufacturers' instructions using polishing disks, abrasive impregnated disks, and finishing burs before further surface testing. Samples finished with burs and with abrasive impregnated disks were further polished using polishing paste (Prisma Gloss) and again tested. Data were analyzed with ANOVA testing and Tukey's HSD pairwise comparison. Initial testing after randomization to groups showed no significant difference in surface roughness (P = 0.24). Two-factor analysis revealed no significant difference between materials (P = 0.34), a significant difference in method of finish (P < or = 0.00), with no significant interaction between type of material and method of finish (P = 0.11). Aluminum oxide disk and impregnated disk systems provided the best finish for microfilled composite and both glass-ionomer materials (P < or = 0.00). No significant difference in method of finish existed with the hybrid composite (P = 0.07). Overall, esthetic restorative material finishing is best accomplished using abrasive impregnated disks or aluminum oxide disks. Finishing burs gave a significantly rougher surface than the

  9. Chemical Principles Revisited: The Chemistry of Glass.

    ERIC Educational Resources Information Center

    Kolb, Doris; Kolb, Kenneth E.

    1979-01-01

    Presents a detailed discussion on the chemistry of glass. Topics discussed include: natural glass, early history, modern glass composition, raw materials for glass melting, chemically modified glasses, modern glass forming, glass ceramics, and new developments in glass research. (BT)

  10. Morphological and physical characterization of poly(styrene-isobutylene-styrene) block copolymers and ionomers thereof

    NASA Astrophysics Data System (ADS)

    Baugh, Daniel Webster, III

    Poly(styrene-isobutylene-styrene) block copolymers made by living cationic polymerization using a difunctional initiator and the sequential monomer addition technique were analyzed using curve-resolution software in conjunction with high-resolution GPC. Fractional precipitation and selective solvent extraction were applied to a representative sample in order to confirm the identity of contaminating species. The latter were found to be low molecular weight polystyrene homopolymer, diblock copolymer, and higher molecular weight segmented block copolymers formed by intermolecular electrophilic aromatic substitution linking reactions occurring late in the polymerization of the styrene outer blocks. Solvent-cast films of poly(styrene-isobutylene-styrene) (PS-PIB-PS) block copolymers and block ionomers were analyzed using small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Four block copolymer samples with center block molecular weights of 52,000 g/mol and PS volume fractions (o sbPS) ranging from 0.17 to 0.31 were studied. All samples exhibited hexagonally packed cylinders of PS within the PIB matrix. Cylinder spacing was in the range 32 to 36 nm for most samples, while cylinder diameters varied from 14 to 21 nm. Porod analysis of the scattering data indicated the presence of isolated phase mixing and sharp phase boundaries. PS-PIB-PS block copolymers and ionomers therefrom were analyzed using dynamic mechanical analysis (DMA) and tensile testing. The study encompassed five block copolymer samples with similar PIB center blocks with molecular weights of approx52,000 g/mol and PS weight fractions ranging from 0.127 to 0.337. Ionomers were prepared from two of these materials by lightly sulfonating the PS outer blocks. Sulfonation levels varied from 1.7 to 4.7 mol % and the sodium and potassium neutralized forms were compared to the parent block copolymers. Dynamic mechanical analysis (DMA) of the block copolymer films indicated the existence

  11. Inverted glass harp

    NASA Astrophysics Data System (ADS)

    Quinn, Daniel B.; Rosenberg, Brian J.

    2015-08-01

    We present an analytical treatment of the acoustics of liquid-filled wine glasses, or "glass harps." The solution is generalized such that under certain assumptions it reduces to previous glass harp models, but also leads to a proposed musical instrument, the "inverted glass harp," in which an empty glass is submerged in a liquid-filled basin. The versatility of the solution demonstrates that all glass harps are governed by a family of solutions to Laplace's equation around a vibrating disk. Tonal analyses of recordings for a sample glass are offered as confirmation of the scaling predictions.

  12. Glass-silicon column

    DOEpatents

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  13. Tissue response to experimental dental cements prepared from a modified powder glass composition.

    PubMed

    Boaventura, Juliana Maria Capelozza; Bertolini, Marcio José; Padovani, Gislaine Cristina; de Oliveira, Maria Rita Brancini; Zaghete, Maria Aparecida; de Oliveira Júnior, Osmir Batista; de Andrade, Marcelo Ferrarezi

    2012-01-01

    The present work seeks to evaluate the biocompatibility of experimental glass ionomer cements (GIC) prepared from niobium-calcium fluoro-alumino-silicate glass powder and two commercial GICs. The GICs were implanted into the subcutaneous connective tissue of sixty rats. The rats were sacrificed during four varying time periods: 7, 15, 30, and 60 days and histopathological examinations were then performed. The Kruskal-Wallis test was performed to evaluate any significant differences between the materials. Additionally, multiple comparisons of the mean rank were also carried out using the Dunn test (p<0.05). No significant differences were observed that one GIC was superior to the other. The tissue response for all of the GICs tested was similar in all the periods examined.

  14. The role of acrylonitrile in controlling the structure and properties of nanostructured ionomer films.

    PubMed

    Tungchaiwattana, Somjit; Musa, Muhamad Sharan; Yan, Junfeng; Lovell, Peter A; Shaw, Peter; Saunders, Brian R

    2014-07-14

    Ionomers are polymers which contain ionic groups that are covalently bound to the main chain. The presence of a small percentage of ionic groups strongly affects the polymer's mechanical properties. Here, we examine a new family of nanostructured ionomer films prepared from core-shell polymer nanoparticles containing acrylonitrile (AN), 1,3-butadiene (Bd) and methacrylic acid (MAA). Three new AN-containing dispersions were investigated in this study. The core-shell nanoparticles contained a PBd core. The shells contained copolymerised Bd, AN and MAA, i.e., PBd-AN-MAA. Three types of crosslinking were present in these films: covalent crosslinks (from Bd); strong physical crosslinks (involving ionic bonding of RCOO(-) and Zn(2+)) and weaker physical crosslinks (from AN). We examined and compared the roles of AN and ionic crosslinking (from added Zn(2+)) on the structure and mechanical properties of the films. The FTIR spectroscopy data showed evidence for RCOOH-nitrile hydrogen bonding with tetrahedral geometry. DMTA studies showed that AN copolymerised within the PBd-AN-MAA phase uniformly. Tensile stress-strain data showed that inclusion of AN increased elasticity and toughness. Analysis showed that about 33 AN groups were required to provide an elastically-effective chain. However, only 1.5 to 2 ionically bonded RCOO(-) groups were required to generate an elastically-effective chain. By contrast to ionic bonding, AN inclusion increased the modulus without compromising ductility. Our results show that AN is an attractive, versatile, monomer for increasing the toughness of nanostructured ionomers and this should also be the case for other nanostructured polymer elastomers.

  15. Purdue Ionomics Information Management System. An Integrated Functional Genomics Platform1[C][W][OA

    PubMed Central

    Baxter, Ivan; Ouzzani, Mourad; Orcun, Seza; Kennedy, Brad; Jandhyala, Shrinivas S.; Salt, David E.

    2007-01-01

    The advent of high-throughput phenotyping technologies has created a deluge of information that is difficult to deal with without the appropriate data management tools. These data management tools should integrate defined workflow controls for genomic-scale data acquisition and validation, data storage and retrieval, and data analysis, indexed around the genomic information of the organism of interest. To maximize the impact of these large datasets, it is critical that they are rapidly disseminated to the broader research community, allowing open access for data mining and discovery. We describe here a system that incorporates such functionalities developed around the Purdue University high-throughput ionomics phenotyping platform. The Purdue Ionomics Information Management System (PiiMS) provides integrated workflow control, data storage, and analysis to facilitate high-throughput data acquisition, along with integrated tools for data search, retrieval, and visualization for hypothesis development. PiiMS is deployed as a World Wide Web-enabled system, allowing for integration of distributed workflow processes and open access to raw data for analysis by numerous laboratories. PiiMS currently contains data on shoot concentrations of P, Ca, K, Mg, Cu, Fe, Zn, Mn, Co, Ni, B, Se, Mo, Na, As, and Cd in over 60,000 shoot tissue samples of Arabidopsis (Arabidopsis thaliana), including ethyl methanesulfonate, fast-neutron and defined T-DNA mutants, and natural accession and populations of recombinant inbred lines from over 800 separate experiments, representing over 1,000,000 fully quantitative elemental concentrations. PiiMS is accessible at www.purdue.edu/dp/ionomics. PMID:17189337

  16. Phase inversion of ionomer-stabilized emulsions to form high internal phase emulsions (HIPEs).

    PubMed

    Zhang, Tao; Xu, Zhiguang; Cai, Zengxiao; Guo, Qipeng

    2015-06-28

    Herein, we report the phase inversion of ionomer-stabilized emulsions to form high internal phase emulsions (HIPEs) induced by salt concentration and pH changes. The ionomers are sulfonated polystyrenes (SPSs) with different sulfonation degrees. The emulsion types were determined by conductivity measurements, confocal microscopy and optical microscopy, and the formation of HIPE organogels was verified by the tube-inversion method and rheological measurements. SPSs with high sulfonation degrees (water-soluble) and low sulfonation degrees (water-insoluble) can stabilize oil-in-water emulsions; these emulsions were transformed into water-in-oil HIPEs by varying salt concentrations and/or changing the pH. SPS, with a sulfonation degree of 11.6%, is the most efficient, and as low as 0.2 (w/v)% of the organic phase is enough to stabilize the HIPEs. Phase inversion of the oil-in-water emulsions occurred to form water-in-oil HIPEs by increasing the salt concentration in the aqueous phase. Two phase inversion points from oil-in-water emulsions to water-in-oil HIPEs were observed at pH 1 and 13. Moreover, synergetic effects between the salt concentration and pH changes occurred upon the inversion of the emulsion type. The organic phase can be a variety of organic solvents, including toluene, xylene, chloroform, dichloroethane, dichloromethane and anisole, as well as monomers such as styrene, butyl acrylate, methyl methacrylate and ethylene glycol dimethacrylate. Poly(HIPEs) were successfully prepared by the polymerization of monomers as the continuous phase in the ionomer-stabilized HIPEs.

  17. Synthesis and characterization of ionomers as polymer electrolytes for energy conversion devices

    NASA Astrophysics Data System (ADS)

    Oh, Hyukkeun

    Single-ion conducting electrolytes present a unique alternative to traditional binary salt conductors used in lithium-ion batteries. Secondary lithium batteries are considered as one of the leading candidates to replace the combustible engines in automotive technology, however several roadblocks are present which prevent their widespread commercialization. Power density, energy density and safety properties must be improved in order to enable the current secondary lithium battery technology to compete with existing energy technologies. It has been shown theoretically that single-ion electrolytes can eliminate the salt concentration gradient and polarization loss in the cell that develops in a binary salt system, resulting in substantial improvements in materials utilization for high power and energy densities. While attempts to utilize single-ion conducting electrolytes in lithium-ion battery systems have been made, the low ionic conductivities prevented the successful operation of the battery cells in ambient conditions. This work focuses on designing single-ion conducting electrolytes with high ionic conductivities and electrochemical and mechanical stability which enables the stable charge-discharge performance of battery cells. Perfluorosulfonate ionomers are known to possess exceptionally high ionic conductivities due to the electron-withdrawing effect caused by the C-F bonds which stabilizes the negative charge of the anion, leading to a large number of free mobile cations. The effect of perfluorinated sulfonic acid side chains on transport properties of proton exchange membrane polymers was examinated via a comparison of three ionomers, having different side chain structures and a similar polymer backbone. The three different side chain structures were aryl-, pefluoro alkyl-, and alkyl-sulfonic acid groups, respectively. All ionomers were synthesized and characterized by 1H and 19F NMR. A novel ionomer synthesized with a pendant perfluorinated sulfonic acid

  18. Simulation study of poled low-water ionomers with different architectures

    NASA Astrophysics Data System (ADS)

    Allahyarov, Elshad; Taylor, Philip L.; Löwen, Hartmut

    2011-11-01

    The role of the ionomer architecture in the formation of ordered structures in poled membranes is investigated by molecular dynamics computer simulations. It is shown that the length of the sidechain Ls controls both the areal density of cylindrical aggregates Nc and the diameter of these cylinders in the poled membrane. The backbone segment length Lb tunes the average diameter Ds of cylindrical clusters and the average number of sulfonates Ns in each cluster. A simple empirical formula is noted for the dependence of the number density of induced rod-like aggregates on the sidechain length Ls within the parameter range considered in this study.

  19. In Vitro Comparison of Zinc Phosphate and Glass Ionomers Ability to Inhibit Decalcification under and Adjacent to Orthodontic Bands.

    DTIC Science & Technology

    1985-08-01

    higher incidence of car- ies in patients undergoing orthodontic treatment . Areas of ena- mel demineralization are often observed after removal of...producing latic acid play a major role in enamel decalcification during orthodontic treatment . The scoring method used for visual observation was partly... orthodontic treatment . Am J. Ortho 75: 416-420 4. Tillery, T.J., Hembree,J.H., and Weber, F.N. 1976, Preventing enamel decalcification during orthodontic

  20. Picture Wall (Glass Structures)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Photo shows a subway station in Toronto, Ontario, which is entirely glass-enclosed. The all-glass structure was made possible by a unique glazing concept developed by PPG Industries, Pittsburgh, Pennsylvania, one of the largest U.S. manufacturers of flat glass. In the TVS glazing system, transparent glass "fins" replace conventional vertical support members used to provide support for wind load resistance. For stiffening, silicone sealant bonds the fins to adjacent glass panels. At its glass research center near Pittsburgh, PPG Industries uses the NASTRAN computer program to analyze the stability of enclosures made entirely of glass. The company also uses NASTRAN to simulate stresses on large containers of molten glass and to analyze stress effects of solar heating on flat glass.

  1. Bioactive glasses and glass-ceramics.

    PubMed

    Rawlings, R D

    1993-01-01

    Bioactive materials are designed to induce a specific biological activity; in most cases the desired biological activity is one that will give strong bonding to bone. A range of materials has been assessed as being capable of bonding to bone, but this paper is solely concerned with bioactive glasses and glass-ceramics. Firstly, the structure and processing of glasses and glass-ceramics are described, as a basic knowledge is essential for the understanding of the development and properties of the bioactive materials. The effect of composition and structure on the bioactivity is then discussed, and it will be shown that bioactivity is associated with the formation of an apatite layer on the surface of the implant. A survey of mechanical performance demonstrates that the structure and mechanical properties of glass-ceramics depend upon whether the processing involves casting or sintering and that the strength and toughness of glass-ceramics are superior to those of glasses. Attempts to further improve the mechanical performance by the use of non-monolithic components, i.e. bioactive coatings on metal substrates and glass and glass-ceramic matrix composites, are also reviewed and are shown to have varying degrees of success. Finally, some miscellaneous applications, namely bioactive bone cements and bone fillers, are briefly covered.

  2. Reaction cured glass and glass coatings

    NASA Technical Reports Server (NTRS)

    Goldstein, H. E.; Leiser, D. B.; Katvala, V. W. (Inventor)

    1978-01-01

    The invention relates to reaction cured glass and glass coatings prepared by reacting a compound selected from the group consisting of silicon tetraboride, silicon hexaboride, other boron silicides, boron and mixtures with a reactive glass frit composed of a porous high silica borosilicate glass and boron oxide. The glassy composites of the present invention are useful as coatings on low density fibrous porous silica insulations used as heat shields and for articles such as reaction vessels that are subjected to high temperatures with rapid heating and cooling and that require resistance to temperature and repeated thermal shock at temperatures up to about 1482C (2700PF).

  3. Protective effect of resin coating on the microleakage of Class V restorations following treatment with carbamide peroxide in vitro.

    PubMed

    Yu, Hao; Li, Qing; Attin, Thomas; Wang, Yining

    2010-01-01

    This in vitro study evaluated the effects of a resin coating on the microleakage of Class V restorations due to bleaching. One-hundred and sixty Class V cavities were randomly restored with one of four different restorative materials (n = 40): a compomer (Dyract AP), a conventional glass-ionomer cement (Ketac Molar Easymix), a resin modified glass-ionomer cement (Fuji II LC) and a resin composite (Filtek Z350). For each kind of material, 40 restorations were divided into four subgroups: bleached with resin coating (group BC), bleached without resin coating (group B), immersed in artificial saliva with resin coating (group SC), immersed in artificial saliva without resin coating (group S). In groups B and BC, the specimens were bleached with 10% carbamide peroxide gel for eight hours daily, while groups SC and S were stored in artificial saliva instead. After 28-day treatment, all the samples were subjected to a dye penetration test using the multiple-sectioning technique. In addition, one more test was performed to investigate the color difference between the coated and uncoated tooth surface after bleaching. There was a statistically significant increase in cervical microleakage in the group B specimens of Fuji II LC and Ketac Molar Easymix compared to their respective control specimen (group S). These effects on microleakage were not found in the bleached specimens with resin coating (group BC). There was also no visually-detectable color difference between the coated and uncoated tooth surface. In conclusion, resin coating is an effective method for avoiding the bleaching-induced microleakage of glass-ionomer cement.

  4. Comparative metabolomic and ionomic approach for abundant fishes in estuarine environments of Japan

    PubMed Central

    Yoshida, Seiji; Date, Yasuhiro; Akama, Makiko; Kikuchi, Jun

    2014-01-01

    Environmental metabolomics or ionomics is widely used to characterize the effects of environmental stressors on the health of aquatic organisms. However, most studies have focused on liver and muscle tissues of fish, and little is known about how the other organs are affected by environmental perturbations and effects such as metal pollutants or eutrophication. We examined the metabolic and mineral profiles of three kinds of abundant fishes in estuarine ecosystem, yellowfin goby, urohaze-goby, and juvenile Japanese seabass sampled from Tsurumi River estuary, Japan. Multivariate analyses, including nuclear magnetic resonance-based metabolomics and inductively coupled plasma optical emission spectrometry-based ionomics approaches, revealed that the profiles were clustered according to differences among body tissues rather than differences in body size, sex, and species. The metabolic and mineral profiles of the muscle and fin tissues, respectively, suggest that these tissues are most appropriate for evaluating environmental perturbations. Such analyses will be highly useful in evaluating the environmental variation and diversity in aquatic ecosystems. PMID:25387575

  5. Exploring Li+ Potential Energy Surface in Poly(ethylene oxide)-based Sulfonate Ionomers

    NASA Astrophysics Data System (ADS)

    Shiau, Huai-Suen; Janik, Michael J.; Colby, Ralph H.

    2012-02-01

    Ion-containing polymers are of interest as single-ion conductors for use as electrolytes in electrochemical devices, including lithium ion batteries. Current ion conductivities of the best ionomers are roughly 100X too small for practical applications and have a small fraction of their Li+ counterions participating in conduction. We are using ab initio methods to investigate the Li+ conduction mechanism, and specifically the role of transient positive triple ions (Li+A-Li+) in the conduction process. The positive triple ion has a lower energy separated state that allows for facile transport, if there is a pair within 1.4 nm. We will discuss the competition between cation solvation with ether oxygen atoms and cation-anion interaction. The importance of anion-anion separation in altering Li+ hopping barriers will be examined, as well as the variation in hopping rates with solvent identity. Ab initio calculations are used to evaluate the relative energy of ion states (contact and separated states), and this analysis is used to explain experimental phenomena of Li+ mobility in ionomers.

  6. Ionomers of intrinsic microporosity: in silico development of ionic-functionalized gas-separation membranes.

    PubMed

    Hart, Kyle E; Colina, Coray M

    2014-10-14

    This work presents the predictive molecular simulations of a functionalized polymer of intrinsic microporosity (PIM) with an ionic backbone (carboxylate) and extra-framework counterions (Na(+)) for CO2 gas storage and separation applications. The CO2-philic carboxylate-functionalized polymers are predicted to contain similar degrees of free volume to PIM-1, with Brunauer-Emmett-Teller (BET) surface areas from 510 to 890 m(2)/g, depending on concentration of ionic groups from 100% to 17%. As a result of ionic groups enhancing the CO2 enthalpy of adsorption (to 42-50 kJ/mol), the uptake of the proposed polymers at 293 K exceeded 1.7 mmol/g at 10 kPa and 3.3 mmol/g at 100 kPa for the polymers containing 100% and 50% ionic functional groups, respectively. In addition, CO2/CH4 and CO2/N2 mixed-gas separation performance was evaluated under several industrially relevant conditions, where the IonomIMs are shown to increase both the working capacity and selection performance in certain pressure swing applications (e.g., natural gas separations). These simulations reveal that intrinsically microporous ionomers show great potential as the future of energy-efficient gas-separation polymeric materials.

  7. Toward Reconciliation of STEM and SAXS Data from Ionomers by Investigating Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Benetatos, Nicholas; Smith, Brian; Heiney, Paul; Winey, Karen

    2005-03-01

    We have recently pioneered the use of scanning transmission electron microscopy (STEM) for direct, model independent imaging of the nano-scale morphology of ionomers. To date, the sizes of ionic aggregates determined in STEM experiments are inconsistent with SAXS data interpreted by the Yarusso-Cooper model. To address this discrepancy we have investigated a pair of model nanoparticles (11 and 55 atom Au clusters) with both STEM and SAXS. Using this model system we have improved our method of measuring nanometer scale objects and evaluated the importance of STEM probe size and specimen thickness. While the size of the STEM probe was inconsequential, specimen thicker than 50 nm showed significant depreciation of image quality, which limits our ability to accurately measure particle size. SAXS was performed on dilute suspensions of nanoparticles and fit using a monodisperse, hard-sphere form factor model. For Au11, STEM finds a diameter of 1.3 nm + .14 and SAXS finds a diameter of 1.4 nm. Similarly, both STEM and SAXS determine a diameter of 1.7 nm for Au55. Analysis of these model systems have allowed us to evaluate several factors of potential importance in reconciling STEM and SAXS data from ionomers.

  8. 6. Looking glass aircraft in the project looking glass historic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Looking glass aircraft in the project looking glass historic district. View to north. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Avenue between Comstat Drive & Nightwatch Avenue, Offutt Air Force Base, Bellevue, Sarpy County, NE

  9. Oxynitride glass fibers

    NASA Technical Reports Server (NTRS)

    Patel, Parimal J.; Messier, Donald R.; Rich, R. E.

    1991-01-01

    Research at the Army Materials Technology Laboratory (AMTL) and elsewhere has shown that many glass properties including elastic modulus, hardness, and corrosion resistance are improved markedly by the substitution of nitrogen for oxygen in the glass structure. Oxynitride glasses, therefore, offer exciting opportunities for making high modulus, high strength fibers. Processes for making oxynitride glasses and fibers of glass compositions similar to commercial oxide glasses, but with considerable enhanced properties, are discussed. We have made glasses with elastic moduli as high as 140 GPa and fibers with moduli of 120 GPa and tensile strengths up to 2900 MPa. AMTL holds a U.S. patent on oxynitride glass fibers, and this presentation discusses a unique process for drawing small diameter oxynitride glass fibers at high drawing rates. Fibers are drawn through a nozzle from molten glass in a molybdenum crucible at 1550 C. The crucible is situated in a furnace chamber in flowing nitrogen, and the fiber is wound in air outside of the chamber, making the process straightforward and commercially feasible. Strengths were considerably improved by improving glass quality to minimize internal defects. Though the fiber strengths were comparable with oxide fibers, work is currently in progress to further improve the elastic modulus and strength of fibers. The high elastic modulus of oxynitride glasses indicate their potential for making fibers with tensile strengths surpassing any oxide glass fibers, and we hope to realize that potential in the near future.

  10. Glass tube splitting tool

    NASA Technical Reports Server (NTRS)

    Klein, J. A.; Murray, C. D.; Stein, J. A.

    1971-01-01

    Tool accurately splits glass tubing so cuts are aligned 180 deg apart and reassembled tube forms low pressure, gastight enclosure. Device should interest industries using cylindrical closed glass containers.

  11. Failure in glass

    NASA Technical Reports Server (NTRS)

    Keeton, S. C.

    1972-01-01

    Review of state of the art concerning glass failure mechanisms and fatigue theories discusses brittle fracture in glass, fatigue mechanisms, fatigue behavior, environmental effects on failure rate, and aging.

  12. Weakly supervised glasses removal

    NASA Astrophysics Data System (ADS)

    Wang, Zhicheng; Zhou, Yisu; Wen, Lijie

    2015-03-01

    Glasses removal is an important task on face recognition, in this paper, we provide a weakly supervised method to remove eyeglasses from an input face image automatically. We choose sparse coding as face reconstruction method, and optical flow to find exact shape of glasses. We combine the two processes iteratively to remove glasses more accurately. The experimental results reveal that our method works much better than these algorithms alone, and it can remove various glasses to obtain natural looking glassless facial images.

  13. Technique for Machining Glass

    NASA Technical Reports Server (NTRS)

    Rice, S. H.

    1982-01-01

    Process for machining glass with conventional carbide tools requires a small quantity of a lubricant for aluminum applied to area of glass to be machined. A carbide tool is then placed against workpiece with light pressure. Tool is raised periodically to clear work of glass dust and particles. Additional lubricant is applied as it is displaced.

  14. Glass in Class

    ERIC Educational Resources Information Center

    Greaves, Neville

    2005-01-01

    Glass is reviewed from fabrication to application, laying emphasis on the wide-ranging physics involved. This begins with liquids and solids and the way in which glasses are defined and can be demonstrated in the classroom. At the atomic level the regular structure of crystals and their irregular counterparts in glasses are explained through…

  15. Surface roughness and weight loss of esthetic restorative materials related to fluoride release and uptake.

    PubMed

    Yip, H K; Lam, W T; Smales, R J

    1999-01-01

    The objective of this study was to assess the surface roughness of eight esthetic restorative materials and the relationship with weight changes during fluoride release and uptake. Five specimens each of ChemFil Superior, Fuji IX Dyract, Fuji II LC, Vitremer, Photac-Fil, Ketac-Silver, and Z100 (control) were prepared and immersed in 2 ml of artificial saliva at 37 degrees C. The changes in specimen weight and fluoride release were monitored for 12 weeks. This protocol was repeated after recharging the specimens with 1.23% APF gel for 12 more weeks. The immersed and fresh specimens for each material were then examined with SEM and surface profilometry. There was a significant weight loss for all glass ionomer cements following APF gel application (P < 0.01), which correlated with fluoride release (r = 0.89-0.98). Mean roughness (Ra) measurements and SEM showed that roughness increased from the resin composite to the conventional glass ionomer cements. The marked erosive effect of APF gel on glass ionomer restorations could increase surface colonization by plaque micro-organisms, and reduce the longevity of the restorations.

  16. Eroded dentin does not jeopardize the bond strength of adhesive restorative materials.

    PubMed

    Cruz, Janaina Barros; Lenzi, Tathiane Larissa; Tedesco, Tamara Kerber; Guglielmi, Camila de Almeida Brandão; Raggio, Daniela Prócida

    2012-01-01

    This in vitro study evaluated the bond strength of adhesive restorative materials to sound and eroded dentin. Thirty-six bovine incisors were embedded in acrylic resin and ground to obtain flat buccal dentin surfaces. Specimens were randomly allocated in 2 groups: sound dentin (immersion in artificial saliva) and eroded dentin (pH cycling model - 3× / cola drink for 7 days). Specimens were then reassigned according to restorative material: glass ionomer cement (KetacTM Molar Easy Mix), resin-modified glass ionomer cement (VitremerTM) or adhesive system with resin composite (Adper Single Bond 2 + Filtek Z250). Polyethylene tubes with an internal diameter of 0.76 mm were placed over the dentin and filled with the material. The microshear bond test was performed after 24 h of water storage at 37ºC. The failure mode was evaluated using a stereomicroscope (400×). Bond strength data were analyzed with two-way ANOVA and Tukey's post hoc tests (α = 0.05). Eroded dentin showed bond strength values similar to those for sound dentin for all materials. The adhesive system showed the highest bond strength values, regardless of the substrate (p < 0.0001). For all groups, the adhesive/mixed failure prevailed. In conclusion, adhesive materials may be used in eroded dentin without jeopardizing the bonding quality. It is preferable to use an etch-and-rinse adhesive system because it shows the highest bond strength values compared with the glass ionomer cements tested.

  17. Synthesis and nonlinear optical properties of semiconductor nanoparticles within ionomer solutions

    NASA Astrophysics Data System (ADS)

    Jia, Wenling

    For the first time, optical limiting performance of semiconductor nanoparticles was investigated thoroughly against particle size and composition with nanosecond laser pulses at 532 nm as well as picosecond laser pulses in the wavelength range between 680 and 900 nm. Measurement from degenerate four-wave mixing showed the dominance of third-order optical nonlinearity. A combination of optical limiting and DFWM measurements was used to extract the bound electronic nonlinear refraction. CdS(2), core-shell CdS(2)/Ag2S and ternary Cd1-xAgxS nanoparticles were prepared and stabilized within random/block ionomer solutions with a particle diameter range between 2 to 9 nm. UV-visible absorption spectra indicated the shift of absorption edge with respect to bulk materials. Selected area diffraction results showed for the first time that cubic CdS2 formed in solutions at room temperature. The results from the factorial experimental design revealed that---for CdS(2) in random ionomer solutions---the neutralization level and S:Cd ratio are two important factors influencing CdS(2) particle size, while the ionomer concentration and polymer composition are not significant factors. Free-carrier absorption (FCA) and two-photon absorption (TPA) are responsible for the optical limiting performance towards ns and ps pulses respectively. The derived free-carrier absorption cross section of nanoparticle solutions is about 10-18˜10-19 cm 2. The lowest limiting threshold is 0.4 J/cm2. Two-photon absorption coefficients were determined to be tens or a few hundreds cm/GW, which is significantly greater than the reported value for corresponding bulk materials. The determined nonlinear refractive indices are on the order of 10-8 esu, at least 1˜2 orders larger than that of bulk materials. These enhancements are attributed to the quantum confinement which results in different mechanisms of nonlinearity for semiconductor nanoparticles compared to bulk materials. Particles with larger size

  18. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, M.; Watson, E.B.; Acocella, J.

    1986-11-04

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10[sup 7] rad, the coloration resistant glass does not lose transparency. 3 figs.

  19. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, Minoru; Watson, E. Bruce; Acocella, John

    1986-01-01

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.

  20. Oxynitride glass production procedure

    DOEpatents

    Weidner, Jerry R.; Schuetz, Stanley T.; O'Brien, Michael H.

    1991-01-01

    The invention is a process for the preparation of high quality oxynitride glasses without resorting to high pressures. Nitrogen-containing compounds such as Si.sub.3 N.sub.4 are first encapsulated in a low melting temperature glass. Particles of the encapsulated nitrogen-containing compound are mixed with other oxide glass-formers and melted in an atmosphere of flowing nitrogen and in the presence of buffering gas to form the oxynitride glass. Glasses containing up to 15 at % nitrogen have been prepared by this method.

  1. Developing photorefractive glass composites

    NASA Astrophysics Data System (ADS)

    Duignan, Jason P.; Taylor, Lesley L.; Cook, Gary

    2002-01-01

    The production of a transparent photorefractive glass composite would offer a useful alternative to bulk crystal materials. We aim to produce such a material by incorporating single domain photorefractive Fe:LiNbO3 particles into a refractive index matched glass host. This glass host is also required to be chemically compatible with the photorefractive material. This compatibility will ensure that the Fe:LiNbO3 particles added to the host glass will remain in the intended crystalline phase and not simply dissolve in the glass. Due to the high refractive index of the Fe:LiNbO3 (no equals 2.35 532 nm), producing a chemically compatible and refractive index matched glass host is technically challenging. By examining common Tellurite, Bismuthate, and Gallate glasses as a starting point and then developing new and hybrid glasses, we have succeeded in producing a chemically compatible glass host and also a refractive index matched glass host. We have produced preliminary glass composite samples which contain a large amount of Fe:LiNbO3. We are currently able to retain nearly 90% of the incorporated Fe:LiNbO3 in the correct crystalline phase, a substantial improvement over previous work conducted in this area in recent years. In this paper we present our progress and findings in this area.

  2. Acoustics of glass harmonicas

    NASA Astrophysics Data System (ADS)

    Rossing, Thomas D.

    2004-05-01

    Glass musical instruments are probably as old as glassmaking. At least as early as the 17th century it was discovered that wine glasses, when rubbed with a wet finger, produced a musical tone. A collection of glasses played in this manner is called a glass harp. Another type of glass harmonica, called the armonica by its inventor Benjamin Franklin, employs glass bowls or cups turned by a horizontal axle, so the performer need only touch the rim of the bowls as they rotate to set them into vibration. We discuss the modes of vibration of both types of glass harmonica, and describe the different sounds that are emitted by rubbing, tapping, or bowing them. Rubbing with a wet finger tends to excite only the (2,0) mode and its harmonics through a ``stick-slip'' process, while tapping excites the other modes as well.

  3. Simulation of a small molecule analogue of a lithium ionomer in an external electric field

    SciTech Connect

    Waters, Sara M.; McCoy, John D. Brown, Jonathan R.; Frischknecht, Amalie L.

    2014-01-07

    We have investigated the ion dynamics in lithium-neutralized 2-pentylheptanoic acid, a small molecule analogue of a precise poly(ethylene-co-acrylic acid) lithium ionomer. Atomistic molecular dynamics simulations were performed in an external electric field. The electric field causes alignment of the ionic aggregates along the field direction. The energetic response of the system to an imposed oscillating electric field for a wide range of frequencies was tracked by monitoring the coulombic contribution to the energy. The susceptibility found in this manner is a component of the dielectric susceptibility typically measured experimentally. A dynamic transition is found and the frequency associated with this transition varies with temperature in an Arrhenius manner. The transition is observed to be associated with rearrangements of the ionic aggregates.

  4. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers

    SciTech Connect

    Tsai, Tsung-Han; Ertem, S. Piril; Maes, Ashley M.; Seifert, Soenke; Herring, Andrew M; Coughlin, E. Bryan

    2015-01-28

    Random copolymers of isoprene and 4-vinylbenzyl chloride (VBCl) with varying compositions were synthesized via nitroxide-mediated polymerization. Subsequent quaternization afforded solvent processable and cross-linkable ionomers with a wide range of ion exchange capacities (IECs). Solution cast membranes were thermally cross-linked to form anion exchange membranes. Cross-linking was achieved by taking advantage of the unsaturations on the polyisoprene backbone, without added cross-linkers. A strong correlation was found between water uptake and ion conductivity of the membranes: conductivities of the membranes with IECs beyond a critical value were found to be constant related to their high water absorption. Environmentally controlled small-angle X-ray scattering experiments revealed a correlation between the average distance between ionic clusters and the ion conductivity, indicating that a well-connected network of ion clusters is necessary for efficient ion conduction and high ion conductivity.

  5. Suppression of oxygen reduction reaction activity on Pt-based electrocatalysts from ionomer incorporation

    SciTech Connect

    Shinozaki, Kazuma; Morimoto, Yu; Pivovar, Bryan S.; Kocha, Shyam S.

    2016-09-01

    The impact of Nafion on the oxygen reduction reaction (ORR) activity is studied for Pt/C and Pt-alloy/C catalysts using thin-film rotating disk electrode (TF-RDE) methods in 0.1 M HClO4. Ultrathin uniform catalyst layers and standardized activity measurement protocols are employed to obtain accurate and reproducible ORR activity. Nafion lowers the ORR activity which plateaus with increasing loading on Pt catalysts. Pt particle size is found not to have significant influence on the extent of the SA decrease upon Nafion incorporation. Catalysts using high surface area carbon (HSC) support exhibit attenuated activity loss resulting from lower ionomer coverage on catalyst particles located within the deep pores. The impact of metallic composition on the activity loss due to Nafion incorporation is also discussed.

  6. Contaminant Permeation in the Ionomer-Membrane Water Processor (IWP) System

    NASA Technical Reports Server (NTRS)

    Kelsey, Laura K.; Finger, Barry W.; Pasadilla, Patrick; Perry, Jay

    2016-01-01

    The Ionomer-membrane Water Processor (IWP) is a patented membrane-distillation based urine brine water recovery system. The unique properties of the IWP membrane pair limit contaminant permeation from the brine to the recovered water and purge gas. A paper study was conducted to predict volatile trace contaminant permeation in the IWP system. Testing of a large-scale IWP Engineering Development Unit (EDU) with urine brine pretreated with the International Space Station (ISS) pretreatment formulation was then conducted to collect air and water samples for quality analysis. Distillate water quality and purge air GC-MS results are presented and compared to predictions, along with implications for the IWP brine processing system.

  7. The room temperature annealing peak in ionomers: Ionic crystallites or water absorption

    SciTech Connect

    Goddard, R.J.; Grady, B.P.; Cooper, S.L. . Dept. of Chemical Engineering)

    1994-03-28

    A quaternized diol, 3-(trimethylammonio)-1,2-propanediol neutralized with either bromine or iodine, was used to produce a polyurethane cationomer with a poly(tetramethylene oxide) soft segment and a 4,4[prime]-diphenylmethane diisocyanate hard segment. If those cationomers were annealed at room temperature for a period of approximately 1 month in a desiccator filled with dry CaSO[sub 4], differential scanning calorimetry (DSC) studies showed an endotherm centered near 70 C which was not present in the unannealed polymer and did not reappear upon subsequent cooling and heating cycles in the DSC. Some authors have suggested that a very similar endotherm found in other ionomers, most notably ethylene-methacrylic acid (E-MAA) copolymer ionomers, was due to an order-disorder transition within the ionic aggregates, i.e. ionic crystallite melting. In order to isolate the origin of this endotherm, the local environment around the anion in compression molded bromine neutralized samples was measured using the extended X-ray absorption fine-structure (EXAFS) technique. By measuring the change in the local environment over the temperature range corresponding to the DSC endotherm, it has been shown that this endotherm corresponds to water leaving the bromine coordination shell, rather than ionic crystallite melting. Other studies which include thoroughly drying the material in a vacuum oven below the transition temperature to remove the water suggest that the endotherm is due to the energetic change associated with water leaving the coordination environment of the anion in combination with water vaporization.

  8. Reversing Glass Wettability

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Smith, J. E., Jr.; Kaukler, W. F.

    1985-01-01

    Treatment reverses wettability of glassware: Liquids that normally wet glass no longer do, and those that do not wet glass are made to do so. Useful in research on container effects in nucleation and growth of secondary phase from solution. Treatment consists of spreading 3 percent (by weight) solution of silicone oil in hexane isomers over glass, drying in air, and curing at 300 degrees C in vacuum for one hour.

  9. Diamond turning of glass

    SciTech Connect

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  10. Drugstore Reading Glasses

    NASA Astrophysics Data System (ADS)

    Erlichson, Herman

    2006-03-01

    The occasion for this paper was my reading of a paper in the February 2005 issue of TPT. As one gets older the near point of the eye begins to recede.2 This is called presbyopia.3 An alternative to purchasing glasses from an optometrist is to purchase an inexpensive pair of reading glasses in a pharmacy. The pharmacy has these glasses ordered by diopters corresponding to the strength of the lens needed for a particular presbyopic eye. The glasses are, of course, not available for myopic eyes.

  11. Chalcogenide glass microsphere laser.

    PubMed

    Elliott, Gregor R; Murugan, G Senthil; Wilkinson, James S; Zervas, Michalis N; Hewak, Daniel W

    2010-12-06

    Laser action has been demonstrated in chalcogenide glass microsphere. A sub millimeter neodymium-doped gallium lanthanum sulphide glass sphere was pumped at 808 nm with a laser diode and single and multimode laser action demonstrated at wavelengths between 1075 and 1086 nm. The gallium lanthanum sulphide family of glass offer higher thermal stability compared to other chalcogenide glasses, and this, along with an optimized Q-factor for the microcavity allowed laser action to be achieved. When varying the pump power, changes in the output spectrum suggest nonlinear and/or thermal effects have a strong effect on laser action.

  12. Photoprotection: clothing and glass.

    PubMed

    Almutawa, Fahad; Buabbas, Hanan

    2014-07-01

    Ultraviolet (UV) radiation (UVR) has well-known adverse effects on the skin and eyes. Little attention is given to physical means of photoprotection, namely glass, window films, sunglasses, and clothing. In general, all types of glass block UV-B. For UV-A, the degree of transmission depends on the type, thickness, and color of the glass. Adding window films to glass can greatly decrease the transmission of UV-A. Factors that can affect the transmission of UVR through cloth include tightness of weave, thickness, weight, type of fabrics, laundering, hydration, stretch, fabric processing, UV absorbers, color, and fabric-to-skin distance.

  13. Apollo 15 green glasses.

    NASA Technical Reports Server (NTRS)

    Ridley, W. I.; Reid, A. M.; Warner, J. L.; Brown, R. W.

    1973-01-01

    The samples analyzed include 28 spheres, portions of spheres, and angular fragments from soil 15101. Emerald green glasses from other soils are identical to those from 15101. The composition of the green glass is unlike that of any other major lunar glass group. The Fe content is comparable to that in mare basalts, but Ti is much lower. The Mg content is much higher than in most lunar materials analyzed to date, and the Cr content is also high. The low Al content is comparable to that of mare basalt glasses.

  14. Glass--Sand + Imagination

    NASA Astrophysics Data System (ADS)

    Kolb, Kenneth E.; Kolb, Doris K.

    2000-07-01

    Glass is older than recorded history, and yet it is as new as tomorrow! How, when, or where man first learned to make glass is not known, but we do know that the ancient Egyptians were making glass articles as early as 2,600 B.C.E. (The making of glass beads may have begun as much as 3000 years earlier.) They used it to make jewelry and luxury items, such as decorative bowls and perfume bottles, available only to the wealthy.

  15. Homogeneous coating of ionomer on electrocatalyst assisted by polybenzimidazole as an adhesive layer and its effect on fuel cell performance

    NASA Astrophysics Data System (ADS)

    Yang, Zehui; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2015-12-01

    The fabrication of homogeneous ionomer distribution in fuel cell catalyst layers is necessary and important to improve the platinum utilization as well as the power density. Here, we focus on the effect of poly[2,2‧-(2,6-pyridine)-5,5‧-bibenzimidazole] (PyPBI) wrapped on multi-walled carbon nanotubes (MWNTs) for anchoring Nafion ionomer to the electrocatalyst, in which PyPBI functions as the binding sites for platinum nanoparticles (Pt-NPs) used as a catalyst. Based on the result using a control composite without having PyPBI, a strong interaction of the Nafion onto the PyPBI layer is recognized. Importantly, we find that the membrane-electrode assembly (MEA) shows a much higher maximum power density than that of the MEA without PyPBI. A homogeneous coating of Nafion on the electrocatalyst using the PyPBI forms a long-range network of the ionomer, leading to an improved Pt-NP utilization efficiency as well as an enhanced power density of the MEA.

  16. Species- and genome-wide dissection of the shoot ionome in Brassica napus and its relationship to seedling development

    PubMed Central

    Bus, Anja; Körber, Niklas; Parkin, Isobel A. P.; Samans, Birgit; Snowdon, Rod J.; Li, Jinquan; Stich, Benjamin

    2014-01-01

    Knowing the genetic basis of the plant ionome is essential for understanding the control of nutrient transport and accumulation. The aim of this research was to (i) study mineral nutrient concentrations in a large and diverse set of Brassica napus, (ii) describe the relationships between the shoot ionome and seedling development, and (iii) identify genetic regions associated with variation of the shoot ionome. The plant material under study was a germplasm set consisting of 509 inbred lines that was genotyped by a 6K single nucleotide polymorphism (SNP) array and phenotyped by analyzing the concentrations of eleven mineral nutrients in the shoots of 30 days old seedlings. Among mineral concentrations, positive correlations were found, whereas mineral concentrations were mainly negatively correlated with seedling development traits from earlier studies. In a genome-wide association mapping approach, altogether 29 significantly associated loci were identified across seven traits after correcting for multiple testing. The associations included a locus with effects on the concentrations of Cu, Mn, and Zn on chromosome C3, and a genetic region with multiple associations for Na concentration on chromosome A9. This region was situated within an association hotspot close to SOS1, a key gene for Na tolerance in plants. PMID:25324847

  17. Soil ionomic and enzymatic responses and correlations to fertilizations amended with and without organic fertilizer in long-term experiments

    NASA Astrophysics Data System (ADS)

    Feng, Xumeng; Ling, Ning; Chen, Huan; Zhu, Chen; Duan, Yinghua; Peng, Chang; Yu, Guanghui; Ran, Wei; Shen, Qirong; Guo, Shiwei

    2016-04-01

    To investigate potential interactions between the soil ionome and enzyme activities affected by fertilization with or without organic fertilizer, soil samples were collected from four long-term experiments over China. Irrespective of variable interactions, fertilization type was the major factor impacting soil ionomic behavior and accounted for 15.14% of the overall impact. Sampling site was the major factor affecting soil enzymatic profile and accounted for 34.25% of the overall impact. The availabilities of Pb, La, Ni, Co, Fe and Al were significantly higher in soil with only chemical fertilizer than the soil with organic amendment. Most of the soil enzyme activities, including α-glucosidase activity, were significantly activated by organic amendment. Network analysis between the soil ionome and the soil enzyme activities was more complex in the organic-amended soils than