Science.gov

Sample records for glass surface treated

  1. Method of treating the surface of a glass member

    NASA Technical Reports Server (NTRS)

    Rice, S. H.; Spencer, R. S. (Inventor); Fleetwood, C. M., Jr.

    1977-01-01

    A method is described of treating a surface of a glass member intended to abut a transparent element for disrupting the light interference fringes formed between the surfaces. The method involves the steps of grinding the surface to form irregularities thereon; bathing the surface with an aqueous solution containing between substantially 41.3 percent and 45.7 percent by volume of sulfuric acid and between substantially 54.3 percent and 58.7 percent by volume of hydrofluoric acid for a time sufficient to polish the irregularities until the glass member is about 90 percent light transmissive; and washing the glass member with a liquid having a temperature substantially lower than the temperature of the aqueous solution for preventing further reaction between the aqueous solution and the surface.

  2. Surface characterization of silica glass substrates treated by atomic hydrogen

    SciTech Connect

    Inoue, Hiroyuki; Masuno, Atsunobu; Ishibashi, Keiji; Tawarayama, Hiromasa; Zhang, Yingjiu; Utsuno, Futoshi; Koya, Kazuo; Fujinoki, Akira; Kawazoe, Hiroshi

    2013-12-15

    Silica glass substrates with very flat surfaces were exposed to atomic hydrogen at different temperatures and durations. An atomic force microscope was used to measure root-mean-square (RMS) roughness and two-dimensional power spectral density (PSD). In the treatment with atomic hydrogen up to 900 °C, there was no significant change in the surface. By the treatment at 1000 °C, the changes in the RMS roughness and the PSD curves were observed. It was suggested that these changes were caused by etching due to reactions of atomic hydrogen with surface silica. By analysis based on the k-correlation model, it was found that the spatial frequency of the asperities became higher with an increase of the treatment time. Furthermore, the data showed that atomic hydrogen can flatten silica glass surfaces by controlling heat-treatment conditions. - Highlights: • Silica glass surface was treated by atomic hydrogen at various temperatures. • Surface roughness was measured by an atomic force microscope. • Roughness data were analyzed by two-dimensional power spectral density. • Atomic hydrogen can flatten silica glass surfaces.

  3. Laser restoring the glass surface treated with acid-based paint

    NASA Astrophysics Data System (ADS)

    Strusevich, Anastasia V.; Poltaev, Yuriy A.; Sinev, Dmitrii A.

    2013-11-01

    The modern city facilities are often being attacked by graffiti artists, and increasingly vandals leave "tags" using paints, which compound based on acids, hydrofluoric or acetic commonly. These paints not only ink the surface, but also increase the surface roughness, and such impact can not be corrected by conventional cleaning. Thus, it was requested to develop technology that would not only clean the surface, but also to restore its structure by smoothing out irregularities and roughness formed after exposure in acid. In this work we investigated the effect of restoring the surface of the glass, spoiled by acid-based paint and then treated with CO2-laser. During the experiments, it was found that it is real to create the single-step laser surface restoring technology.

  4. Formation and characterization of hydrophobic glass surface treated by atmospheric pressure He/CH4 plasma

    NASA Astrophysics Data System (ADS)

    Noh, Sooryun; Youn Moon, Se

    2014-01-01

    Atmospheric pressure helium plasmas, generated in the open air by 13.56 MHz rf power, were applied for the glass surface wettability modification. The plasma gas temperature, measured by the spectroscopic method, was under 400 K which is low enough to treat the samples without thermal damages. The hydrophobicity of the samples determined by the water droplet contact angle method was dependent on the methane gas content and the plasma exposure time. Adding the methane gas by a small amount of 0.25%, the contact angle was remarkably increased from 10° to 83° after the 10 s plasma treatment. From the analysis of the treated surface and the plasma, it was shown that the deposition of alkane functional groups such as C-H stretch, CH2 bend, and CH3 bend was one of the contributing factors for the hydrophobicity development. In addition, the hydrophobic properties lasted over 2 months even after the single treatment. From the results, the atmospheric pressure plasma treatment promises the fast and low-cost method for the thermally-weak surface modification.

  5. Surface Conductive Glass.

    ERIC Educational Resources Information Center

    Tanaka, John; Suib, Steven L.

    1984-01-01

    Discusses the properties of surface-conducting glass and the chemical nature of surface-conducting stannic (tin) oxide. Also provides the procedures necessary for the preparation of surface-conducting stannic oxide films on glass substrates. The experiment is suitable for the advanced inorganic chemistry laboratory. (JN)

  6. Fluoride glass: Crystallization, surface tension

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.

    1988-01-01

    Fluoride glass was levitated acoustically in the ACES apparatus on STS-11, and the recovered sample had a different microstructure from samples cooled in a container. Further experiments on levitated samples of fluoride glass are proposed. These include nucleation, crystallization, melting observations, measurement of surface tension of molten glass, and observation of bubbles in the glass. Ground experiments are required on sample preparation, outgassing, and surface reactions. The results should help in the development and evaluation of containerless processing, especially of glass, in the development of a contaminent-free method of measuring surface tensions of melts, in extending knowledge of gas and bubble behavior in fluoride glasses, and in increasing insight into the processing and properties of fluoride glasses.

  7. Surface reactions of natural glasses

    SciTech Connect

    White, A.F.

    1986-12-31

    Reactions at natural glass surfaces are important in studies involving nuclear waste transport due to chemical control on ground water in host rocks such as basalt and tuff, to potential diffusion into natural hydrated glass surfaces and as natural analogs for waste glass stability. Dissolution kinetics can be described by linear surface reaction coupled with cation interdiffusion with resulting rates similar to those of synthetic silicate glasses. Rates of Cs diffusion into hydrated obsidian surfaces between 25{sup 0} and 75{sup 0}C were determined by XPS depth profiles and loss rates from aqueous solutions. Calculated diffusion coefficients were ten others of magnitude more rapid than predicted from an Arrhenius extrapolation of high temperature tracer diffusion data due to surface hydration reactions.

  8. Fabrication of glass microspheres with conducting surfaces

    DOEpatents

    Elsholz, W.E.

    1982-09-30

    A method for making hollow glass microspheres with conducting surfaces by adding a conducting vapor to a region of the glass fabrication furnace. As droplets or particles of glass forming material pass through multiple zones of different temperature in a glass fabrication furnace, and are transformed into hollow glass microspheres, the microspheres pass through a region of conducting vapor, forming a conducting coating on the surface of the microspheres.

  9. Fabrication of glass microspheres with conducting surfaces

    DOEpatents

    Elsholz, William E.

    1984-01-01

    A method for making hollow glass microspheres with conducting surfaces by adding a conducting vapor to a region of the glass fabrication furnace. As droplets or particles of glass forming material pass through multiple zones of different temperature in a glass fabrication furnace, and are transformed into hollow glass microspheres, the microspheres pass through a region of conducting vapor, forming a conducting coating on the surface of the microspheres.

  10. Surface self-diffusion of organic glasses.

    PubMed

    Brian, Caleb W; Yu, Lian

    2013-12-19

    Surface self-diffusion coefficients have been determined for the organic glass Nifedipine using the method of surface grating decay. The flattening of 1000 nm surface gratings occurs by viscous flow at 12 K or more above the glass transition temperature and by surface diffusion at lower temperatures. Surface diffusion is at least 10(7) times faster than bulk diffusion, indicating a highly mobile surface. Nifedipine glasses have faster surface diffusion than the previously studied Indomethacin glasses, despite their similar bulk relaxation times. Both glasses exhibit fast surface crystal growth, and its rate scales with surface diffusivity. The observed rate of surface diffusion implies substantial surface rearrangement during the preparation of low-energy glasses by vapor deposition. The Random First Order Transition Theory and the Coupling Model successfully predict the large surface-enhancement of mobility and its increase on cooling, but disagree with the experimental observation of the faster surface diffusion of Nifedipine.

  11. DNA adsorption onto glass surfaces

    NASA Astrophysics Data System (ADS)

    Carlson, Krista Lynn

    Streaming potential measurements were performed on microspheres of silica, lime silicate (SLS) and calcium aluminate (CA) glasses containing silica and iron oxide (CASi and CAFe). The silicate based glasses exhibited acidic surfaces with isoelectric points (IEP) around a pH of 3 while the calcium aluminates displayed more basic surfaces with IEP ranging from 8--9.5. The surface of the calcium aluminate microspheres containing silica reacted with the background electrolyte, altering the measured zeta potential values and inhibiting electrolyte flow past the sample at ˜ pH 4 due to formation of a solid plug. DNA adsorption experiments were performed using the microspheres and a commercially available silicate based DNA isolation filter using a known quantity of DNA suspended in a chaotropic agent free 0.35 wt% Tris(hydroxymethyl)aminomethane (Tris) buffer solution. The microspheres and commercial filter were also used to isolate DNA from macrophage cells in the presence of chaotropic agents. UV absorbance at ˜260 nm and gel electrophoresis were used to quantify the amount and size of the DNA strands that adsorbed to the microsphere surfaces. In both experiments, the 43--106 microm CAFe microspheres adsorbed the largest quantity of DNA. However, the 43--106 microm SLS microspheres isolated more DNA from the cells than the <43 microm CAFe microspheres, indicating that microsphere size contributes to isolation ability. The UV absorbance of DNA at ˜260 nm was slightly altered due to the dissolution of the calcium aluminate glasses during the adsorption process. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) determined that calcium and aluminum ions leached from the CA and CAFe microsphere surfaces during these experiments. Circular dichroism (CD) spectroscopy showed that the leached ions had no effect on the conformation of the DNA, and therefore would not be expected to interfere in downstream applications such as DNA replication. The 0.35 wt

  12. Surface treatment of barium gallogermanate laser glass

    NASA Astrophysics Data System (ADS)

    Yang, Gang; Qian, Qi; Yang, Zhongmin

    2011-01-01

    The surface of barium gallogermanate glass is modified through HCl solution etching to remove the surface defects and contaminations. The etching process and mechanism for barium gallogermanate glass in hydrochloric acid are investigated, and its optimum conditions are determined. However, the HCl etching induces the insoluble etch product containing minute crystal particles on glass surface. By heating BGG glass at the optical fiber drawing temperature, the deposited surface layer turned to be amorphous again and results in the increase of the transmittance of glass. The results indicated that the HCl etching combined with subsequent high-temperature heat treatment is an effective approach to improve the surface quality of barium gallogermanate glass, which would reduce the optical loss of the final optical fiber.

  13. Modification of the glass surface property in PDMS-glass hybrid microfluidic devices.

    PubMed

    Kaneda, Shohei; Ono, Koichi; Fukuba, Tatsuhiro; Nojima, Takahiko; Yamamoto, Takatoki; Fujii, Teruo

    2012-01-01

    This paper presents a simple method to change the hydrophilic nature of the glass surface in a poly(dimethylsiloxane) (PDMS)-glass hybrid microfluidic device to hydrophobic by an extra-heating step during the fabrication process. Glass substrates bonded to a native or oxygen plasma-treated PDMS chip having microchambers (12.5 mm diameter, 110 µm height) were heated at 200°C for 3 h, and then the hydrophobicity of the glass surfaces on the substrate was evaluated by measuring the contact angle of water. By the extra-heating process, the glass surfaces became hydrophobic, and its contact angle was around 109°, which is nearly the same as native PDMS surfaces. To demonstrate the usefulness of this surface modification method, a PDMS-glass hybrid microfluidic device equipped with microcapillary vent structures for pneumatic manipulation of droplets was fabricated. The feasibility of the microcapillary vent structures on the device with the hydrophobic glass surfaces are confirmed in practical use through leakage tests of the vent structures and liquid handling for the electrophoretic separation of DNA molecules.

  14. Surface Coatings on Lunar Volcanic Glasses

    NASA Technical Reports Server (NTRS)

    Wentworth, Susan J.; McKay, D. S.; Thomas,-Keprta, K. L.; Clemett, S. J.

    2007-01-01

    We are undertaking a detailed study of surface deposits on lunar volcanic glass beads. These tiny deposits formed by vapor condensation during cooling of the gases that drove the fire fountain eruptions responsible for the formation of the beads. Volcanic glass beads are present in most lunar soil samples in the returned lunar collection. The mare-composition beads formed as a result of fire-fountaining approx.3.4-3.7 Ga ago, within the age range of large-scale mare volcanism. Some samples from the Apollo 15 and Apollo 17 landing sites are enriched in volcanic spherules. Three major types of volcanic glass bead have been identified: Apollo 15 green glass, Apollo 17 orange glass, and Apollo 17 "black" glass. The Apollo 15 green glass has a primitive composition with low Ti. The high-Ti compositions of the orange and black glasses are essentially identical to each other but the black glasses are opaque because of quench crystallization. A poorly understood feature common to the Apollo 15 and 17 volcanic glasses is the presence of small deposits of unusual materials on their exterior surfaces. For example, early studies indicated that the Apollo 17 orange glasses had surface enrichments of In, Cd, Zn, Ga, Ge, Au, and Na, and possible Pb- and Zn-sulfides, but it was not possible to characterize the surface features in detail. Technological advances now permit us to examine such features in detail. Preliminary FE-TEM/X-ray studies of ultramicrotome sections of Apollo 15 green glass indicate that the surface deposits are heterogeneous and layered, with an inner layer consisting of Fe with minor S and an outer layer of Fe and no S, and scattered Zn enrichments. Layering in surface deposits has not been identified previously; it will be key to defining the history of lunar fire fountaining.

  15. Surface layer effects on waste glass corrosion

    SciTech Connect

    Feng, X.

    1993-12-31

    Water contact subjects waste glass to chemical attack that results in the formation of surface alteration layers. Two principal hypotheses have been advanced concerning the effect of surface alteration layers on continued glass corrosion: (1) they act as a mass transport barrier and (2) they influence the chemical affinity of the glass reaction. In general, transport barrier effects have been found to be less important than affinity effects in the corrosion of most high-level nuclear waste glasses. However, they can be important under some circumstances, for example, in a very alkaline solution, in leachants containing Mg ions, or under conditions where the matrix dissolution rate is very low. The latter suggests that physical barrier effect may affect the long-term glass dissolution rate. Surface layers influence glass reaction affinity through the effects of the altered glass and secondary phases on the solution chemistry. The reaction affinity may be controlled by various precipitates and crystalline phases, amorphous silica phases, gel layer, or all the components of the glass. The surface alteration layers influence radionuclide release mainly through colloid formation, crystalline phase incorporation, and gel layer retention. This paper reviews current understanding and uncertainties.

  16. Ammonia-treated phosphate glasses useful for sealing to metals

    SciTech Connect

    Brow, R.K.; Day, D.E.

    1990-12-31

    A method of improving surface-dependent properties of phosphate glass such as durability and wear resistance without significantly affecting its thermal expansion coefficient is provided which comprises annealing the glass in a dry ammonia atmosphere at temperatures approximating the transition temperature of the glass. The ammonia annealing treatment of the present invention is carried out for a time sufficient to allow incorporation of a thin layer of nitrogen into the surface of the phosphate glass, and the treatment improves the durability of the glass without the reduction in the thermal expansion coefficient that has restricted the effectiveness of prior ammonia treatments. The improved phosphate glass resulting from this method is superior in wear resistance, yet maintains suitable thermal expansion properties so that it may be used effectively in a variety of applications requiring hermetic glass-metal seals.

  17. Ammonia-treated phosphate glasses useful for sealing to metals

    DOEpatents

    Brow, R.K.; Day, D.E.

    1991-09-03

    A method of improving surface-dependent properties of phosphate glass such as durability and wear resistance without significantly affecting its thermal expansion coefficient is provided which comprises annealing the glass in a dry ammonia atmosphere at temperatures approximating the transition temperature of the glass. The ammonia annealing treatment of the present invention is carried out for a time sufficient to allow incorporation of a thin layer of nitrogen into the surface of the phosphate glass, and the treatment improves the durability of the glass without the reduction in the thermal expansion coefficient that has restricted the effectiveness of prior ammonia treatments. The improved phosphate glass resulting from this method is superior in wear resistance, yet maintains suitable thermal expansion properties so that it may be used effectively in a variety of applications requiring hermetic glass-metal seals.

  18. Cytocompatibility assessment of chemical surface treatments for phosphate glass to improve adhesion between glass and polyester.

    PubMed

    S Hasan, M; Ahmed, I; Parsons, A J; Walker, G S; Scotchford, C A

    2013-11-01

    Fully resorbable phosphate glass fiber reinforced polymer composites have shown real potential for replacing some of the existing metallic bone fracture fixation devices. However, some of these composites have not provided suitable mechanical strength profiles over the required healing period for bone. Typically, it has been seen that these composites can lose up to 50% or more of their strength within the first week of degradation. Functionalizing the glass surface to promote polymer adhesion or to introduce hydrophobicity at the glass surface could potentially introduce control over the mechanical properties of the composite and their retention. In this study eight chemical agents namely, Glycerol 2-phosphate disodium salt; 3-phosphonopropionic acid; 3-aminopropyltriethoxy silane; etidronic acid; hexamethylene diisocyanate; sorbitol/sodium ended PLA oligomers and amino phosphonic acid, were selected to functionalise the bulk phosphate glass surface. Selected chemical agents had one functional group (-OH or O C N) to react with the glass and another functionality (either -OH, NH2, or Na) to react with the polymer matrix and/or produce hydrophobicity at the fiber surface. Bulk phosphate glass surface-treated with the above agents were assessed for the cytotoxicity of degradation products cell-material interaction in short- and long-term direct cytocompatibility studies. Results obtained from these cytocompatibility studies (using human osteosarcoma (MG63) and primary human osteoblast cell lines) revealed no cytotoxicity from the degradation products and a response comparable to controls in terms of cell functions (attachment, viability, metabolic activity, proliferation, and differentiation) and morphology.

  19. Glass-Bead Blasting Alters Antenna Surface

    NASA Technical Reports Server (NTRS)

    Fortenberry, James W.; Jilka, Richard L.; Kimmel, Boyce; Garcia, Ramon D.; Cofield, Richard E.; Klose, Gerhardt J.; O'Toole, Thomas

    1987-01-01

    Thermal-emissivity properties improved, and focal length adjusted. Experiments show gentle blasting with glass beads produces beneficial changes in macroscopic surface shapes and in microscopic surface features of lightweight microwave reflectors made of thin metal reflective surfaces on deformable substrates of aluminum honeycomb.

  20. [Surface changes in glass eye prostheses].

    PubMed

    Härting, F; Flörke, O W; Bornfeld, N; Trester, W

    1984-10-01

    The exposed surface of new glass eye protheses becomes rough and is destroyed in use. The changes in the exposed surfaces have been demonstrated by scanning electron microscopy and with thin sections under optical microscopes. The alteration process depends on the length of time the artificial eye is worn. The main cause is chemical attack of the glass surface in the tear fluid, which is usually slightly alkaline. Chronic conjunctival inflammation, appearing after a long period of wearing the same artificial eye, may be caused by mechanical irritation from the surface roughness.

  1. Silane Modification of Glass and Silica Surfaces to Obtain Equally Oil-Wet Surfaces in Glass-Covered Silicon Micromodel Applications

    SciTech Connect

    Grate, Jay W.; Warner, Marvin G.; Pittman, Jonathan W.; Dehoff, Karl J.; Wietsma, Thomas W.; Zhang, Changyong; Oostrom, Martinus

    2013-08-05

    The wettability of silicon and glass surfaces can be modified by silanization. However, similar treatments of glass and silica surfaces using the same silane do not necessarily yield the same wettability as determined by the oil-water contact angle. In this technical note, surface cleaning pretreatments were investigated to determine conditions that would yield oil-wet surfaces on glass with similar wettability to silica surfaces treated with the same silane, and both air-water and oil-water contact angles were determined. Air-water contact angles were less sensitive to differences between silanized silica and glass surfaces, often yielding similar values while the oil-water contact angles were quite different. Borosilicate glass surfaces cleaned with standard cleaning solution 1 (SC1) yield intermediate-wet surfaces when silanized with hexamethyldisilazane, while the same cleaning and silanization yields oil-wet surfaces on silica. However, cleaning glass in boiling concentrated nitric acid creates a surface that can be silanized to obtain oil-wet surfaces using HDMS. Moreover, this method is effective on glass with prior thermal treatment at an elevated temperature of 400oC. In this way, silica and glass can be silanized to obtain equally oil-wet surfaces using HMDS. It is demonstrated that pretreatment and silanization is feasible in silicon-silica/glass micromodels previously assembled by anodic bonding, and that the change in wettability has a significant observable effect on immiscisble fluid displacements in the pore network.

  2. Surface crystallization of a fluoride glass

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Doremus, Robert H.

    1983-01-01

    Growth of crystals on the surface of a Zr-Ba-La fluoride glass was observed by optical and scanning electron microscopy. Small, dark crystal nucleated rapidly and grew to a size of about 10 microns; then they stopped growing, and wrinkled regions emerged, covering the entire crystal surface.

  3. Surface chemistry studies of phosphate glasses

    NASA Astrophysics Data System (ADS)

    Barnes, Amy Suzanne

    This research examined the surface of an undoped and rare-earth doped sodium alumino metaphosphate glass after fracture or surface finishing and subsequent exposure to humid and aqueous environments. In addition, the adsorption of aminopropyl triethoxysilane (APS), and the dominant parameters controlling the structure of the deposited film, were studied. Typically, commercial glasses must be cut and polished into optical components for engineering applications. This process involves a series of aqueous treatments in both acidic and basic media. The experiments performed here on aluminophosphate glass showed that this results in dissolution, surface composition changes (depletion of Na) and surface pitting. In both alkaline detergent and acid etching solution, dissolution at a rate of approximately 4 x 10 -3 mol/m2/hr (0.2 mum/hr) occurs along with a drastic alteration of the surface morphology. When exposed to an environment of elevated humidity and temperature for an extended period of time, this aluminophosphate glass was observed to break down, forming a soluble phosphate gel that dissolves away from the surface. Simultaneously, the surface became enriched in silica, a trace contaminant in the glass, which eventually precipitated and coalesced into a dendritic pattern that covered the surface. The freshly powdered phosphate glass was found to contain surface hydroxyls weakly associated with one another, and some bound by a stronger hydrogen bond, likely to adjacent non-bridging oxygens. Most of these hydroxyls could be desorbed upon heating above the glass transition temperature to leave only a small concentration of weakly associated hydroxyls and free hydroxyls on the surface. The characterization of hydroxyls and water on the phosphate glass surface was used to understand the adsorption of aminopropyl tri-ethoxysilane (APS) also through the use of in-situ DRIFTS. The concentration of adsorbed APS was found to be independent of solution pH, but the measured

  4. Silane modification of glass and silica surfaces to obtain equally oil-wet surfaces in glass-covered silicon micromodel applications

    NASA Astrophysics Data System (ADS)

    Grate, Jay W.; Warner, Marvin G.; Pittman, Jonathan W.; Dehoff, Karl J.; Wietsma, Thomas W.; Zhang, Changyong; Oostrom, Mart

    2013-08-01

    Wettability is a key parameter influencing capillary pressures, permeabilities, fingering mechanisms, and saturations in multiphase flow processes within porous media. Glass-covered silicon micromodels provide precise structures in which pore-scale displacement processes can be visualized. The wettability of silicon and glass surfaces can be modified by silanization. However, similar treatments of glass and silica surfaces using the same silane do not necessarily yield the same wettability as determined by the oil-water contact angle. In this study, surface cleaning pretreatments were investigated to determine conditions that yield oil-wet surfaces on glass with similar wettability to silica surfaces treated with the same silane, and both air-water and oil-water contact angles were determined. Borosilicate glass surfaces cleaned with standard cleaning solution 1 (SC1) yield intermediate-wet surfaces when silanized with hexamethyldisilazane (HMDS), while the same cleaning and silanization yields oil-wet surfaces on silica. However, cleaning glass in boiling concentrated nitric acid creates a surface that can be silanized to obtain oil-wet surfaces using HMDS. Moreover, this method is effective on glass with prior thermal treatment at an elevated temperature of 400°C. In this way, silica and glass can be silanized to obtain equally oil-wet surfaces using HMDS. It is demonstrated that pretreatment and silanization is feasible in silicon-silica/glass micromodels previously assembled by anodic bonding, and that the change in wettability has a significant observable effect on immiscible fluid displacements in the pore network.

  5. Optical and surface properties of oxyfluoride glass

    NASA Astrophysics Data System (ADS)

    Nee, Soe-Mie F.; Johnson, Linda F.; Moran, Mark B.; Pentony, Joni M.; Daigneault, Steven M.; Tran, Danh C.; Billman, Kenneth W.; Siahatgar, Sadegh

    2000-10-01

    Using conventional materials like fused silica and sapphire for critical window components in a high-power laser system can lead to intolerable thermal distortions and optical path difference effects. A new oxyfluoride glass is being developed which has the unique property of possessing a negative thermo-optic coefficient (dn/dT) in the near- and mid-wave infrared. Specifically, the refractive index (n) of oxyfluoride glass decreases as the temperature increases. The distortions caused by thermal expansion of the glass during laser irradiation are partly offset by the negative dn/dT. This paper specifically addresses optical properties and surface finishing of oxyfluoride glass compared to fused silica. Normarski micrographs and surface profiles were measured to inspect the surface quality since smooth surfaces are essential for suppressing surface scattering and absorption. The refractive index and thermo-optic coefficient were measured using null polarimetry near the Brewster angle. Low dn/dT is required for laser windows. Transmittance spectra were measured to deduce the extinction coefficient by comparing with the transmittance calculated from the refractive index and to screen for unwanted absorption from contaminants including hydrocarbon oils, polishing residue, and water or -OH groups. Total integrated scattering was measured for both surface and bulk scattering. All measurements were done on 1.0- and 1.5-inch-diameter witness samples.

  6. Fabrication of Annealed Gold Nanostructures on Pre-Treated Glow-Discharge Cleaned Glasses and Their Used for Localized Surface Plasmon Resonance (LSPR) and Surface Enhanced Raman Spectroscopy (SERS) Detection of Adsorbed (Bio)molecules

    PubMed Central

    Ionescu, Rodica Elena; Aybeke, Ece Neslihan; Bourillot, Eric; Lacroute, Yvon; Lesniewska, Eric; Adam, Pierre-Michel; Bijeon, Jean-Louis

    2017-01-01

    Metallic nanoparticles are considered as active supports in the development of specific chemical or biological biosensors. Well-organized nanoparticles can be prepared either through expensive (e.g., electron beam lithography) or inexpensive (e.g., thermal synthesis) approaches where different shapes of nanoparticles are easily obtained over large solid surfaces. Herein, the authors propose a low-cost thermal synthesis of active plasmonic nanostructures on thin gold layers modified glass supports after 1 h holding on a hot plate (~350 °C). The resulted annealed nanoparticles proved a good reproducibility of localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) optical responses and where used for the detection of low concentrations of two model (bio)chemical molecules, namely the human cytochrome b5 (Cyt-b5) and trans-1,2-bis(4-pyridyl)ethylene (BPE). PMID:28134754

  7. Reduction of Glass Surface Reflectance by Ion Beam Surface Modification

    SciTech Connect

    Mark Spitzer

    2011-03-11

    This is the final report for DOE contract DE-EE0000590. The purpose of this work was to determine the feasibility of the reduction of the reflection from the front of solar photovoltaic modules. Reflection accounts for a power loss of approximately 4%. A solar module having an area of one square meter with an energy conversion efficiency of 18% generates approximately 180 watts. If reflection loss can be eliminated, the power output can be increased to 187 watts. Since conventional thin-film anti-reflection coatings do not have sufficient environmental stability, we investigated the feasibility of ion beam modification of the glass surface to obtain reduction of reflectance. Our findings are generally applicable to all solar modules that use glass encapsulation, as well as commercial float glass used in windows and other applications. Ion implantation of argon, fluorine, and xenon into commercial low-iron soda lime float glass, standard float glass, and borosilicate glass was studied by implantation, annealing, and measurement of reflectance. The three ions all affected reflectance. The most significant change was obtained by argon implantation into both low-iron and standard soda-lime glass. In this way samples were formed with reflectance lower than can be obtained with a single-layer coatings of magnesium fluoride. Integrated reflectance was reduced from 4% to 1% in low-iron soda lime glass typical of the glass used in solar modules. The reduction of reflectance of borosilicate glass was not as large; however borosilicate glass is not typically used in flat plate solar modules. Unlike conventional semiconductor ion implantation doping, glass reflectance reduction was found to be tolerant to large variations in implant dose, meaning that the process does not require high dopant uniformity. Additionally, glass implantation does not require mass analysis. Simple, high current ion implantation equipment can be developed for this process; however, before the process

  8. Physical colors in cultural heritage: Surface plasmons in glass

    NASA Astrophysics Data System (ADS)

    Lafait, Jacques; Berthier, Serge; Andraud, Christine; Reillon, Vincent; Boulenguez, Julie

    2009-09-01

    Gold ruby glass and lustre ceramics are the almost unique examples of physical colors in the cultural heritage. The main physical effect at the origin of their color is the excitation of surface plasmon modes in metal nanoparticles. Moreover, in lustre, interference effects due a multilayer structure add a bright iridescence. The principle of plasmons is recalled in detail and applied to Gold ruby glass. The case of luster ceramics is treated in more detail due to the complexity of the effects involved: plasmon, scattering, interference between specular reflected light beams and also between scattered beams. To cite this article: J. Lafait et al., C. R. Physique 10 (2009).

  9. Coating extracellular matrix proteins on a (3-aminopropyl)triethoxysilane-treated glass substrate for improved cell culture.

    PubMed

    Masuda, Hiro-taka; Ishihara, Seiichiro; Harada, Ichiro; Mizutani, Takeomi; Ishikawa, Masayori; Kawabata, Kazushige; Haga, Hisashi

    2014-01-01

    We demonstrate that a (3-aminopropyl)triethoxysilane-treated glass surface is superior to an untreated glass surface for coating with extracellular matrix (ECM) proteins when used as a cell culture substrate to observe cell physiology and behavior. We found that MDCK cells cultured on untreated glass coated with ECM removed the coated ECM protein and secreted different ECM proteins. In contrast, the cells did not remove the coated ECM protein when seeded on (3-aminopropyl)triethoxysilane-treated (i.e., silanized) glass coated with ECM. Furthermore, the morphology and motility of cells grown on silanized glass differed from those grown on non-treated glass, even when both types of glass were initially coated with laminin. We also found that cells on silanized glass coated with laminin had higher motility than those on silanized glass coated with fibronectin. Based on our results, we suggest that silanized glass is a more suitable cell culture substrate than conventional non-treated glass when coated by ECM for observations of ECM effects on cell physiology.

  10. Incorporation and distribution of rhenium in a borosilicate glass melt heat treated in a sealed ampoule

    SciTech Connect

    Kim, Dong-Sang; Schweiger, Michael J.

    2013-07-25

    We investigated a mass balance of rhenium (used as a surrogate for technetium-99) in a borosilicate glass that was mixed with excess Re source (KReO4) beyond its solubility and heat treated in a vacuum-sealed fused silica ampoule. Distribution of Re in the bulk of the glass, in a salt phase formed on the melt surface, and in condensate material deposited on the ampoule wall was evaluated to understand the Re migration into different phases during the reaction between the molten glass and KReO4. The information gained from this study will contribute to an effort to understand the mechanism of technetium retention in or escape from glass melt during early stages of glass batch melting, which is a goal of the present series of studies.

  11. Surface characteristics of thermally treated titanium surfaces

    PubMed Central

    Lee, Yang-Jin; Cui, De-Zhe; Jeon, Ha-Ra; Chung, Hyun-Ju; Park, Yeong-Joon; Kim, Ok-Su

    2012-01-01

    Purpose The characteristics of oxidized titanium (Ti) surfaces varied according to treatment conditions such as duration time and temperature. Thermal oxidation can change Ti surface characteristics, which affect many cellular responses such as cell adhesion, proliferation, and differentiation. Thus, this study was conducted to evaluate the surface characteristics and cell response of thermally treated Ti surfaces. Methods The samples were divided into 4 groups. Control: machined smooth titanium (Ti-S) was untreated. Group I: Ti-S was treated in a furnace at 300℃ for 30 minutes. Group II: Ti-S was treated at 500℃ for 30 minutes. Group III: Ti-S was treated at 750℃ for 30 minutes. A scanning electron microscope, atomic force microscope, and X-ray diffraction were used to assess surface characteristics and chemical composition. The water contact angle and surface energy were measured to assess physical properties. Results The titanium dioxide (TiO2) thickness increased as the treatment temperature increased. Additional peaks belonging to rutile TiO2 were only found in group III. The contact angle in group III was significantly lower than any of the other groups. The surface energy significantly increased as the treatment temperature increased, especially in group III. In the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, after 24 hours of incubation, the assessment of cell viability showed that the optical density of the control had a higher tendency than any other group, but there was no significant difference. However, the alkaline phosphatase activity increased as the temperature increased, especially in group III. Conclusions Consequently, the surface characteristics and biocompatibility increased as the temperature increased. This indicates that surface modification by thermal treatment could be another useful method for medical and dental implants. PMID:22803009

  12. Surface stress relaxation of oxide glasses: The effects on mechanical strength

    NASA Astrophysics Data System (ADS)

    Lezzi, Peter Joseph

    A new glass strengthening mechanism based upon surface compressive stress formation by surface stress relaxation of glasses that were held under a tensile stress, at a temperature lower than the glass transition temperature, in low water vapor pressure, has been demonstrated. Although glass fibers are traditionally known to become mechanically weaker when heat-treated at a temperature lower than the glass transition temperature in the presence of water vapor, the strength was found to become greater than the as-received fiber strength when fibers were subjected to a sub-critical tensile stress during heat-treatment. The observed strengthening was attributed to surface compressive residual stress formation through surface stress relaxation during the sub-critical tensile stress application in the atmosphere containing water vapor. Surface stress relaxation of the same glass fibers was shown to take place under conditions identical to those experienced by the strengthened mechanical test specimens by observing permanent bending of the fiber. Furthermore, the magnitude and presence of the residual stresses formed during bending or tensile heat-treatments were confirmed by FTIR, fiber etching, and fiber slicing methods. The method can in principle be used to strengthen any oxide glass and is not subjected to the constraints of traditional strengthening methods such as a minimum thickness for tempering, or a glass containing alkali ions for ion-exchange. Thus far, the method has been successful in strengthening silica glass, E-glass, and soda-lime silicate glass by approximately 20-30%.

  13. Sink property of metallic glass free surfaces

    SciTech Connect

    Shao, Lin; Fu, Engang; Price, Lloyd; Chen, Di; Chen, Tianyi; Wang, Yongqiang; Xie, Guoqiang; Lucca, Don A.

    2015-03-16

    When heated to a temperature close to glass transition temperature, metallic glasses (MGs) begin to crystallize. Under deformation or particle irradiation, crystallization occurs at even lower temperatures. Hence, phase instability represents an application limit for MGs. Here, we report that MG membranes of a few nanometers thickness exhibit properties different from their bulk MG counterparts. The study uses in situ transmission electron microscopy with concurrent heavy ion irradiation and annealing to observe crystallization behaviors of MGs. For relatively thick membranes, ion irradiations introduce excessive free volumes and thus induce nanocrystal formation at a temperature linearly decreasing with increasing ion fluences. For ultra-thin membranes, however, the critical temperature to initiate crystallization is about 100 K higher than the bulk glass transition temperature. Molecular dynamics simulations indicate that this effect is due to the sink property of the surfaces which can effectively remove excessive free volumes. These findings suggest that nanostructured MGs having a higher surface to volume ratio are expected to have higher crystallization resistance, which could pave new paths for materials applications in harsh environments requiring higher stabilities.

  14. Sink property of metallic glass free surfaces

    DOE PAGES

    Shao, Lin; Fu, Engang; Price, Lloyd; ...

    2015-03-16

    When heated to a temperature close to glass transition temperature, metallic glasses (MGs) begin to crystallize. Under deformation or particle irradiation, crystallization occurs at even lower temperatures. Hence, phase instability represents an application limit for MGs. Here, we report that MG membranes of a few nanometers thickness exhibit properties different from their bulk MG counterparts. The study uses in situ transmission electron microscopy with concurrent heavy ion irradiation and annealing to observe crystallization behaviors of MGs. For relatively thick membranes, ion irradiations introduce excessive free volumes and thus induce nanocrystal formation at a temperature linearly decreasing with increasing ion fluences.more » For ultra-thin membranes, however, the critical temperature to initiate crystallization is about 100 K higher than the bulk glass transition temperature. Molecular dynamics simulations indicate that this effect is due to the sink property of the surfaces which can effectively remove excessive free volumes. These findings suggest that nanostructured MGs having a higher surface to volume ratio are expected to have higher crystallization resistance, which could pave new paths for materials applications in harsh environments requiring higher stabilities.« less

  15. Determination of Reactive Surface Area of Melt Glass

    SciTech Connect

    Bourcier,W.L.; Roberts, S.; Smith, D.K.; Hulsey, S.; Newton,L.; Sawvel, A.; Bruton, C.; Papelis, C.; Um, W.; Russell, C. E.; Chapman,J.

    2000-10-01

    A comprehensive investigation of natural and manmade silicate glasses, and nuclear melt glass was undertaken in order to derive an estimate of glass reactive surface area. Reactive surface area is needed to model release rates of radionuclides from nuclear melt glass in the subsurface. Because of the limited availability of nuclear melt glasses, natural volcanic glass samples were collected which had similar textures and compositions as those of melt glass. A flow-through reactor was used to measure the reactive surface area of the analog glasses in the presence of simplified NTS site ground waters. A measure of the physical surface area of these glasses was obtained using the BET gas-adsorption method. The studies on analog glasses were supplemented by measurement of the surface areas of pieces of actual melt glass using the BET method. The variability of the results reflect the sample preparation and measurement techniques used, as well as textural heterogeneity inherent to these samples. Based on measurements of analog and actual samples, it is recommended that the hydraulic source term calculations employ a range of 0.001 to 0.01 m{sup 2}/g for the reactive surface area of nuclear melt glass.

  16. Electroless plating of copper on surface-modified glass substrate

    NASA Astrophysics Data System (ADS)

    Su, Wei; Yao, Libei; Yang, Fang; Li, Peiyuan; Chen, Juan; Liang, Lifang

    2011-07-01

    This work focuses on developing a novel convenient method for electroless copper deposition on glass material. This method is relied on the formation of amino (NH2)-terminated film on the surface of glass substrate, by coating polyethylenimine (PEI) on glass matrix and using epichlorohydrin (ECH) as cross-linking agent. The introduced amino groups can effectively adsorb the palladium, the catalysts which could initiate the subsequent Cu electroless plating, onto the glass substrate surface. Finally, a copper film is formed on the palladium-activated glass substrate through copper electroless plating and the surface-coppered glass material is therefore acquired. X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscopy (SEM) images combined with energy diffraction X-ray (EDX) analysis demonstrate the successful copper deposition on the surface of glass substrate.

  17. Composition-dependent metallic glass alloys correlate atomic mobility with collective glass surface dynamics.

    PubMed

    Nguyen, Duc; Zhu, Zhi-Guang; Pringle, Brian; Lyding, Joseph; Wang, Wei-Hua; Gruebele, Martin

    2016-06-22

    Glassy metallic alloys are richly tunable model systems for surface glassy dynamics. Here we study the correlation between atomic mobility, and the hopping rate of surface regions (clusters) that rearrange collectively on a minute to hour time scale. Increasing the proportion of low-mobility copper atoms in La-Ni-Al-Cu alloys reduces the cluster hopping rate, thus establishing a microscopic connection between atomic mobility and dynamics of collective rearrangements at a glass surface made from freshly exposed bulk glass. One composition, La60Ni15Al15Cu10, has a surface resistant to re-crystallization after three heating cycles. When thermally cycled, surface clusters grow in size from about 5 glass-forming units to about 8 glass-forming units, evidence of surface aging without crystal formation, although its bulk clearly forms larger crystalline domains. Such kinetically stable glass surfaces may be of use in applications where glassy coatings stable against heating are needed.

  18. Fast Surface Dynamics of Metallic Glass Enable Superlatticelike Nanostructure Growth.

    PubMed

    Chen, L; Cao, C R; Shi, J A; Lu, Z; Sun, Y T; Luo, P; Gu, L; Bai, H Y; Pan, M X; Wang, W H

    2017-01-06

    Contrary to the formation of complicated polycrystals induced by general crystallization, a modulated superlatticelike nanostructure, which grows layer by layer from the surface to the interior of a Pd_{40}Ni_{10}Cu_{30}P_{20} metallic glass, is observed via isothermal annealing below the glass transition temperature. The generation of the modulated nanostructure can be solely controlled by the annealing temperature, and it can be understood based on the fast dynamic and liquidlike behavior of the glass surface. The observations have implications for understanding the glassy surface dynamics and pave a way for the controllable fabrication of a unique and sophisticated nanostructure on a glass surface to realize the properties' modification.

  19. Fast Surface Dynamics of Metallic Glass Enable Superlatticelike Nanostructure Growth

    NASA Astrophysics Data System (ADS)

    Chen, L.; Cao, C. R.; Shi, J. A.; Lu, Z.; Sun, Y. T.; Luo, P.; Gu, L.; Bai, H. Y.; Pan, M. X.; Wang, W. H.

    2017-01-01

    Contrary to the formation of complicated polycrystals induced by general crystallization, a modulated superlatticelike nanostructure, which grows layer by layer from the surface to the interior of a Pd40Ni10Cu30P20 metallic glass, is observed via isothermal annealing below the glass transition temperature. The generation of the modulated nanostructure can be solely controlled by the annealing temperature, and it can be understood based on the fast dynamic and liquidlike behavior of the glass surface. The observations have implications for understanding the glassy surface dynamics and pave a way for the controllable fabrication of a unique and sophisticated nanostructure on a glass surface to realize the properties' modification.

  20. Glass breaking strength: The role of surface flaws and treatments

    NASA Technical Reports Server (NTRS)

    Moore, D.

    1985-01-01

    Although the intrinsic strength of silicon dioxide glass is of the order of 10 to the 6th power lb/sq in, the practical strength is roughly two orders of magnitude below this theoretical limit, and depends almost entirely on the surface condition of the glass, that is, the number and size of flaws and the residual surface compression (temper) in the glass. Glass parts always fail in tension when these flaws grow under sustained loading to some critical size. Research associated with glass encapsulated crystalline-Si photovoltaic (PV) modules has greatly expanded our knowledge of glass breaking strength and developed sizeable data base for commercially available glass types. A detailed design algorithm is developed for thickness sizing of rectangular glass plates subject to pressure loads. Additional studies examine the strength of glass under impact loading conditions such as that caused by hail. Although the fundamentals of glass breakage are directly applicable to thin film modules, the fracture strength of typical numerical glass must be replaced with data that reflect the high temperature tin oxide processing, laser scribing, and edge processing peculiar to thin film modules. The fundamentals of glass breakage applicable to thin film modules and preliminary fracture strength data for a variety of 1 ft square glass specimens representing preprocessed and post processed sheets from current amorphous-Si module manufacturers are presented.

  1. Glasses crystallize rapidly at free surfaces by growing crystals upward.

    PubMed

    Sun, Ye; Zhu, Lei; Kearns, Kenneth L; Ediger, Mark D; Yu, Lian

    2011-04-12

    The crystallization of glasses and amorphous solids is studied in many fields to understand the stability of amorphous materials, the fabrication of glass ceramics, and the mechanism of biomineralization. Recent studies have found that crystal growth in organic glasses can be orders of magnitude faster at the free surface than in the interior, a phenomenon potentially important for understanding glass crystallization in general. Current explanations differ for surface-enhanced crystal growth, including released tension and enhanced mobility at glass surfaces. We report here a feature of the phenomenon relevant for elucidating its mechanism: Despite their higher densities, surface crystals rise substantially above the glass surface as they grow laterally, without penetrating deep into the bulk. For indomethacin (IMC), an organic glass able to grow surface crystals in two polymorphs (α and γ), the growth front can be hundreds of nanometers above the glass surface. The process of surface crystal growth, meanwhile, is unperturbed by eliminating bulk material deeper than some threshold depth (ca. 300 nm for α IMC and less than 180 nm for γ IMC). As a growth strategy, the upward-lateral growth of surface crystals increases the system's surface energy, but can effectively take advantage of surface mobility and circumvent slow growth in the bulk.

  2. Glasses crystallize rapidly at free surfaces by growing crystals upward

    PubMed Central

    Sun, Ye; Zhu, Lei; Kearns, Kenneth L.; Ediger, Mark D.; Yu, Lian

    2011-01-01

    The crystallization of glasses and amorphous solids is studied in many fields to understand the stability of amorphous materials, the fabrication of glass ceramics, and the mechanism of biomineralization. Recent studies have found that crystal growth in organic glasses can be orders of magnitude faster at the free surface than in the interior, a phenomenon potentially important for understanding glass crystallization in general. Current explanations differ for surface-enhanced crystal growth, including released tension and enhanced mobility at glass surfaces. We report here a feature of the phenomenon relevant for elucidating its mechanism: Despite their higher densities, surface crystals rise substantially above the glass surface as they grow laterally, without penetrating deep into the bulk. For indomethacin (IMC), an organic glass able to grow surface crystals in two polymorphs (α and γ), the growth front can be hundreds of nanometers above the glass surface. The process of surface crystal growth, meanwhile, is unperturbed by eliminating bulk material deeper than some threshold depth (ca. 300 nm for α IMC and less than 180 nm for γ IMC). As a growth strategy, the upward-lateral growth of surface crystals increases the system’s surface energy, but can effectively take advantage of surface mobility and circumvent slow growth in the bulk. PMID:21444775

  3. Effect of bulk aging on surface diffusion of glasses

    NASA Astrophysics Data System (ADS)

    Brian, Caleb W.; Zhu, Lei; Yu, Lian

    2014-02-01

    The effect of physical aging on surface diffusion has been determined for two organic glasses, Indomethacin and Nifedipine. The two systems exhibit similar aging kinetics typical of organic glasses. Surface diffusivity remains unchanged despite significant bulk aging that nearly equilibrates the systems and increases the bulk relaxation time by orders of magnitude. The finding is relevant for understanding the stability of amorphous materials and the formation of low-energy glasses by vapor deposition.

  4. An XPS study on the covalent immobilization of adhesion peptides on a glass surface

    NASA Astrophysics Data System (ADS)

    Iucci, G.; Battocchio, C.; Dettin, M.; Ghezzo, F.; Polzonetti, G.

    2010-11-01

    Covalent attachment of adhesive peptides to biomaterials surfaces can result in the formation of a bioactive and biomimetic surface. We have demonstrated that titanium surfaces grafted with adhesion peptides, reproducing sequences of fibronectin and vitronectin, can increase osteoblast adhesion compared to non-treated surfaces. We now extend our investigation to peptide immobilization on glass for studying human osteoblast adhesion and spreading. Silanization was used to anchor adhesion peptides to the glass surface through a selective or a non-selective immobilization. Investigated samples were analysed by XPS spectroscopy. Comparison between the results obtained using two different peptides and applying selective and non-selective immobilization will be discussed.

  5. Review: emerging developments in the use of bioactive glasses for treating infected prosthetic joints.

    PubMed

    Rahaman, Mohamed N; Bal, B Sonny; Huang, Wenhai

    2014-08-01

    Bacterial contamination of implanted orthopedic prostheses is a serious complication that requires prolonged systemic antibiotic therapy, major surgery to remove infected implants, bone reconstruction, and considerable morbidity. Local delivery of high doses of antibiotics using poly(methyl methacrylate) (PMMA) cement as the carrier, along with systemic antibiotics, is the standard treatment. However, PMMA is not biodegradable, and it can present a surface on which secondary bacterial infection can occur. PMMA spacers used to treat deep implant infections must be removed after resolution of the infection. Alternative carrier materials for antibiotics that could also restore deficient bone are therefore of interest. In this article, the development of bioactive glass-based materials as a delivery system for antibiotics is reviewed. Bioactive glass is osteoconductive, converts to hydroxyapatite, and heals to hard and soft tissues in vivo. Consequently, bioactive glass-based carriers can provide the combined functions of controlled local antibiotic delivery and bone restoration. Recently-developed borate bioactive glasses are of particular interest since they have controllable degradation rates coupled with desirable properties related to osteogenesis and angiogenesis. Such glasses have the potential for providing a new class of biomaterials, as substitutes for PMMA, in the treatment of deep bone infections.

  6. The interfacial chemistry of organic materials on commercial glass surfaces

    NASA Astrophysics Data System (ADS)

    Banerjee, Joy

    The hydrolytic stability of glass is dependent on its composition. Glasses are exposed to water during their processing and in many applications; therefore, their surface or interface with other materials must withstand hydrolytic attack. Multi-component silicate glasses are widely used but have been the least studied. In coatings-based applications, these glasses come in contact with organosilanes and organic molecules where the adsorption may be affected by surface water. For example, the influence of glass composition on the wet strength of a glass/polymer composite material is unclear, but it is presumed to be driven by the hydrolytic stability of the interfacial chemistry. Organosilanes are critical for increasing the performance of composite materials in humid environments but the precise manner by which the improvement occurs has not been verified. The current school of thought is that the application of silane coatings on a multi-component glass surface transforms the chemically heterogeneous surface into a homogenous and hydrolytically stable surface. In this study, multi-component silicate glass surfaces were silanized by both aqueous and non-aqueous methods. The effect of glass composition and surface hydration on silane coverage was quantified by X-ray Photoelectron Spectroscopy (XPS) analysis. The monolayer-level adsorption results showed that the low-sodium content glasses had greater coverage than a high-sodium content glass in dry conditions in contrast to an equivalent coverage in wet conditions. The hydrolytically-stable coverage on multi-component silicate glass surfaces by both silanization methods was found to be sub-monolayer. A thin film model in conjunction with XPS and Infrared Spectroscopy was used to probe the interfacial region of a fiberglass insulation material containing a sodium-rich multi-component silicate glass and an acrylate resin binder. Upon the application of the aqueous binder, the leaching of sodium from the glass promoted

  7. Smooth surface glass ionomer restoration for primary teeth.

    PubMed

    Killian, C M; Croll, T P

    1991-01-01

    Glass ionomer restorative cement offers the clinician an alternative to bonded composite resin for restoration of certain lesions in primary teeth. This article details a step-by-step procedure for restoration of a smooth surface carious lesion in a primary incisor using an encapsulated glass ionomer restorative material and reviews advantages and limitations of the cement. A light-hardened glass ionomer liner/base that has proven useful as an enamel and dentin restorative is also described.

  8. Surface finishing of resin-modified glass ionomer.

    PubMed

    Liporoni, Priscila; Paulillo, Luis Alexandre; Cury, Jaime Aparecido; Dos Santos Dias, Carlos Tadeu; Paradella, Thais Cachute

    2003-01-01

    This study utilized spectrophotometry to evaluate in vitro superficial dye deposition on resin-modified glass ionomer, following different surface finishing and polishing treatments. Materials that were photocured adjacent to the mylar strip produced the surfaces with the lowest mean after superficial staining. A restorative technique without excesses resulted in a smoother surface and prolonged the life of the restoration. The resin-modified glass ionomers tested offer adequate clinical performance.

  9. Measurements of SiO2 glass surface parameters by methods of microscopy

    NASA Astrophysics Data System (ADS)

    Gavars, Eduards; Svagere, Anda; Skudra, Atis; Zorina, Natalia; Poplausks, Raimonds

    2012-08-01

    In this research we compare chemical and plasma treatment methods for surface of SiO2 glass. For chemical treatment of surface tequila and alcohol were used but for plasma treatment - Ar+As and Ar+Se plasmas. Surface topography was analyzed using atomic force microscope. Comparison of chemical and plasma treatment methods shows that surface treated with plasma is smoother. Because of their various chemical compositions tequila and alcohol show different results.

  10. Adsorption of antibody and globulin onto glass surfaces.

    PubMed

    Mizutani, T

    1980-10-01

    The amount of globulin adsorbed onto surfaces (97 m2) of porous glass (1 g) in phospate-buffered saline (pH 7.2) was estimated to be 83 mg by frontal analysis. In the adsorption chromatography of rabbit antiserum (the immunoglobulin G class) to horse serum albumin on a porous glass column, immunoglobulin G was not eluted with saline but was eluted with 0.2 M glycine (pH 9) with a recovery of 12%. The yield of immunoglobulin M antibody to sheep red blood cells recovered by elution with saline was 12.3%, and the total yield of immunoglobulin M was 15.8%. Thus, antibody and globulin were well adsorbed onto glass surfaces in physiological saline; immunoglobulin G had a stronger affinity to glass surfaces than did immunglobulin M. These facts should be considered when glass containers are used for purified antiserum.

  11. Surface modification of bioactive glasses and preparation of PDLLA/bioactive glass composite films.

    PubMed

    Gao, Yuan; Chang, Jiang

    2009-08-01

    In order to improve the homogeneous dispersion of particles in the polymeric matrix, 45S5, mesoporous 58S, and 58S bioactive glasses were surface modified by esterification reactions with dodecyl alcohol at reflux temperature of 260 degrees C (named as m-45S5, m-mesoporous 58S, and m-58S, respectively). The modified particles showed better hydrophobicity and longer time of suspension in organic matrix. The PDLLA/bioactive glass composite films were fabricated using surface modified bioactive glass particles through solvent casting-evaporation method. Surface morphology, mechanical property, and bioactivity were investigated. The results revealed that the inorganic particle distribution and tensile strength of the composite films with modified bioactive glass particles were significantly improved while great bioactive properties were maintained. Scanning electron microscopy (SEM) observation illustrated that the modified bioactive glass particles were homogeneously dispersed in the PDLLA matrix. The maximum tensile strengths of composite films with modified bioactive glass particles were higher than that of composite films with unmodified bioactive glass particles. The bioactivity of the composite films were evaluated by being soaked in the simulated body fluid (SBF) and the SEM observation of the films suggested that the modified composite films were still bioactive in that they could induce the formation of HAp on its surface and the distribution of HAp was even more homogeneous on the film. The results mentioned above indicated that the surface modification of bioactive glasses with dodecyl alcohol was an effective method to prepare PDLLA/bioactive glass composites with enhanced properties. By studying the comparisons of modification effects among the three types of bioactive glasses, we could get the conclusion that the size and morphology of the inorganic particles would greatly affect the modification effects and the properties of composites.

  12. Effects of high-temperature gas dealkalization on surface mechanical properties of float glass

    NASA Astrophysics Data System (ADS)

    Senturk, Ufuk

    The surface topography, and the near-surface structure and mechanical property changes on float glass, that was treated in atmospheres containing SOsb2, HCl, and 1,1 difluoroethane (DFE) gases, at temperatures in the glass transition region, were studied. Structure was investigated using surface sensitive infrared spectroscopy techniques (attenuated total reflectance (ATR) and diffuse reflectance (DRIFT)) and the topography was evaluated using atomic force microscopy (AFM). The results obtained from the two FTIR methods were in agreement with each other. Mechanical property characteristics of the surface were determined by measuring microhardness using a recording microindentation set-up. A simple analysis performed on the three hardness calculation methods-LVH, LVHsb2, and Lsb2VH-indicated that LVH and LVHsb2 are less effected by measurement errors and are better suited for the calculation of hardness. Contact damage characteristics of the treated glass was also studied by monitoring the crack initiation behavior during indentation, using acoustic emission. The results of the studies, aiming for the understanding of the structure, topography, and hardness property changes indicate that the treatment parameters-temperature, time, and treatment atmosphere conditions-are significant factors influencing these properties. The analysis of these results suggest a relation to exist between the three properties. This relation is used in understanding the surface mechanical properties of the treated float glasses. The difference in the thermal expansion coefficients between the dealkalized surface and bulk, the nature of surface structure changes, structural relaxation, surface water content, and glass transformation temperature are identified as the major factors having an influence on the properties. A model connecting these features is suggested. A difference in the structure, hardness, and topography on the air and tin sides of float glass is also shown to exist. The

  13. Surface tension driven flow in glass melts and model fluids

    NASA Technical Reports Server (NTRS)

    Mcneil, T. J.; Cole, R.; Subramanian, R. S.

    1982-01-01

    Surface tension driven flow has been investigated analytically and experimentally using an apparatus where a free column of molten glass or model fluids was supported at its top and bottom faces by solid surfaces. The glass used in the experiments was sodium diborate, and the model fluids were silicone oils. In both the model fluid and glass melt experiments, conclusive evidence was obtained to prove that the observed flow was driven primarily by surface tension forces. The experimental observations are in qualitative agreement with predictions from the theoretical model.

  14. Surface tension driven flow in glass melts and model fluids

    NASA Technical Reports Server (NTRS)

    Mcneil, T. J.; Cole, R.; Subramanian, R. S.

    1982-01-01

    Surface tension driven flow has been investigated analytically and experimentally using an apparatus where a free column of molten glass or model fluids was supported at its top and bottom faces by solid surfaces. The glass used in the experiments was sodium diborate, and the model fluids were silicone oils. In both the model fluid and glass melt experiments, conclusive evidence was obtained to prove that the observed flow was driven primarily by surface tension forces. The experimental observations are in qualitative agreement with predictions from the theoretical model.

  15. Molecular dynamics simulation of silicate glasses and their surfaces

    NASA Astrophysics Data System (ADS)

    Yuan, Xianglong

    1999-12-01

    The bulk and surface structures of vitreous silica and silicate glasses have been modeled using the molecular dynamics technique. An extensive preliminary study, on the influences of different potential models and of different simulation approaches on the final bulk and surface structures, concludes that good result can be obtained using the constant volume simulation with a modified pair-wise potential from van Beest and coworkers, together with alkali-oxygen potential models developed in this study. Glass structures with the reliability factors, Rchi of 7.2% for vitreous silica and 5.6% for sodium silicate have been achieved. The environments of O, Si and Na in silicate glasses have been thoroughly examined. Considerable similarities in local structures exist between crystalline and the simulated glass structures. It is found that our simulated glasses more resemble high-pressured experimental glasses, which is implied by the existence of fivefold silicon species. Based on bulk structures studied, glass surfaces were created by a fracture process. It is speculated that surface defect concentrations depend on the topological characteristics of the network structure, and are essential for the viability of surfaces. Analysis of local structures for difference species implies that the sodium silicate surfaces resemble more the Na-rich regions in the bulk structures. An efficient algorithm for finding primitive rings in a topological network has been developed. Analysis using this algorithm shows that reconstruction of Na-rich regions occurs on extending simulation size, demonstrating simulation size influence on modeled glass structures. Finally, our detailed analysis of Si-O-Si bond angle distributions demonstrates that vitreous silica glass has a broader Si-O-Si BAD, whilst sodium silicate glasses favor narrower distributions.

  16. Polishing slurry induced surface haze on phosphate laser glasses

    SciTech Connect

    Suratwala, T I; Miller, P E; Ehrmann, P R; Steele, R A

    2004-03-12

    The effects of residual polishing slurry on the surface topology of highly-polished, Nd-doped metaphosphate laser glasses are reported. Glass samples were pitched polished using cerium oxide or zirconium oxide slurry at different pHs and then washed by different methods that allowed varying amounts of residual slurry to ''dry'' on the surface. Upon re-washing with water, some of the samples showed surface haze (scatter), which scaled with the amount of residual slurry. Profilometry measurements showed that the haze is the result of shallow surface pits (100 nm - 20 {micro}m wide x {approx}15 nm deep). Chemical analyses of material removed during rewashing, confirmed the removal of glass components as well as the preferential removal of modifier ions (e.g. K{sup 1+} and Mg{sup 2+}). The surface pits appear to result from reaction of the glass with condensed liquid at the slurry particle-glass interface that produces water-soluble phosphate products that dissolves away with subsequent water contact. Aggressive washing, to remove residual slurry immediately following polishing, can minimize surface haze on phosphate glasses. It is desirable to eliminate haze from glass used in high-peak-power lasers, since it can cause scatter-induced optical modulation that can cause damage to downstream optics.

  17. Strength Improvement of Glass Substrates by Using Surface Nanostructures.

    PubMed

    Kumar, Amarendra; Kashyap, Kunal; Hou, Max T; Yeh, J Andrew

    2016-12-01

    Defects and heterogeneities degrade the strength of glass with different surface and subsurface properties. This study uses surface nanostructures to improve the bending strength of glass and investigates the effect of defects on three glass types. Borosilicate and aluminosilicate glasses with a higher defect density than fused silica exhibited 118 and 48 % improvement, respectively, in bending strength after surface nanostructure fabrication. Fused silica, exhibited limited strength improvement. Therefore, a 4-μm-deep square notch was fabricated to study the effect of a dominant defect in low defect density glass. The reduced bending strength of fused silica caused by artificial defect increased 65 % in the presence of 2-μm-deep nanostructures, and the fused silica regained its original strength when the nanostructures were 4 μm deep. In fragmentation tests, the fused silica specimen broke into two major portions because of the creation of artificial defects. The number of fragments increased when nanostructures were fabricated on the fused silica surface. Bending strength improvement and fragmentation test confirm the usability of this method for glasses with low defect densities when a dominant defect is present on the surface. Our findings indicate that nanostructure-based strengthening is suitable for all types of glasses irrespective of defect density, and the observed Weibull modulus enhancement confirms the reliability of this method.

  18. Degradation of glass artifacts: application of modern surface analytical techniques.

    PubMed

    Melcher, Michael; Wiesinger, Rita; Schreiner, Manfred

    2010-06-15

    A detailed understanding of the stability of glasses toward liquid or atmospheric attack is of considerable importance for preserving numerous objects of our cultural heritage. Glasses produced in the ancient periods (Egyptian, Greek, or Roman glasses), as well as modern glass, can be classified as soda-lime-silica glasses. In contrast, potash was used as a flux in medieval Northern Europe for the production of window panes for churches and cathedrals. The particular chemical composition of these potash-lime-silica glasses (low in silica and rich in alkali and alkaline earth components), in combination with increased levels of acidifying gases (such as SO(2), CO(2), NO(x), or O(3)) and airborne particulate matter in today's urban or industrial atmospheres, has resulted in severe degradation of important cultural relics, particularly over the last century. Rapid developments in the fields of microelectronics and computer sciences, however, have contributed to the development of a variety of nondestructive, surface analytical techniques for the scientific investigation and material characterization of these unique and valuable objects. These methods include scanning electron microscopy in combination with energy- or wavelength-dispersive spectrometry (SEM/EDX or SEM/WDX), secondary ion mass spectrometry (SIMS), and atomic force microscopy (AFM). In this Account, we address glass analysis and weathering mechanisms, exploring the possibilities (and limitations) of modern analytical techniques. Corrosion by liquid substances is well investigated in the glass literature. In a tremendous number of case studies, the basic reaction between aqueous solutions and the glass surfaces was identified as an ion-exchange reaction between hydrogen-bearing species of the attacking liquid and the alkali and alkaline earth ions in the glass, causing a depletion of the latter in the outermost surface layers. Although mechanistic analogies to liquid corrosion are obvious, atmospheric

  19. Zirconium fluoride glass - Surface crystals formed by reaction with water

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.; Bansal, N. P.; Bradner, T.; Murphy, D.

    1984-01-01

    The hydrated surfaces of a zirconium barium fluoride glass, which has potential for application in optical fibers and other optical elements, were observed by scanning electron microscopy. Crystalline zirconium fluoride was identified by analysis of X-ray diffraction patterns of the surface crystals and found to be the main constituent of the surface material. It was also found that hydrated zirconium fluorides form only in highly acidic fluoride solutions. It is possible that the zirconium fluoride crystals form directly on the glass surface as a result of its depletion of other ions. The solubility of zirconium fluoride is suggested to be probably much lower than that of barium fluoride (0.16 g/100 cu cm at 18 C). Dissolution was determined to be the predominant process in the initial stages of the reaction of the glass with water. Penetration of water into the glass has little effect.

  20. Zirconium fluoride glass - Surface crystals formed by reaction with water

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.; Bansal, N. P.; Bradner, T.; Murphy, D.

    1984-01-01

    The hydrated surfaces of a zirconium barium fluoride glass, which has potential for application in optical fibers and other optical elements, were observed by scanning electron microscopy. Crystalline zirconium fluoride was identified by analysis of X-ray diffraction patterns of the surface crystals and found to be the main constituent of the surface material. It was also found that hydrated zirconium fluorides form only in highly acidic fluoride solutions. It is possible that the zirconium fluoride crystals form directly on the glass surface as a result of its depletion of other ions. The solubility of zirconium fluoride is suggested to be probably much lower than that of barium fluoride (0.16 g/100 cu cm at 18 C). Dissolution was determined to be the predominant process in the initial stages of the reaction of the glass with water. Penetration of water into the glass has little effect.

  1. Comparison of glass surfaces as a countertop material to existing surfaces

    SciTech Connect

    Turo, Laura A.; Winschell, Abigail E.

    2011-09-01

    Gleen Glass, a small production glass company that creates countertops, was selected for the Technology Assistance Program through Pacific Northwest National Laboratory. Gleen Glass was seeking material property analysis comparing glass as a countertop material to current surfaces (i.e. marble, granite and engineered stone). With samples provided from Gleen Glass, testing was done on granite, marble, and 3 different glass surfaces ('Journey,' 'Pebble,' and 'Gleen'). Results showed the glass surfaces have a lower density, lower water absorption, and are stronger in compressive and flexural tests as compared to granite and marble. Thermal shock tests showed the glass failed when objects with a high thermal mass are placed directly on them, whereas marble and granite did not fracture under these conditions.

  2. Simulations of glass surfaces structure, water adsorption, and bond rupture

    NASA Astrophysics Data System (ADS)

    Garofalini, Stephen H.

    1990-12-01

    Molecular dynamics simulations of the structure of silica glass surfaces formed in a perfect vacuum as well as in the presence of a water vapor show the type, location, and concentration of specific features formed in the surface. A bond rupture mechanism which causes silanol formation far removed from the original reaction site is observed. The 3-membered ring is proposed as a site for H adsorption in the glass.

  3. Surface effects on the crystallization of ritonavir glass.

    PubMed

    Kawakami, Kohsaku

    2015-01-01

    In our previous study, initiation time of crystallization was shown to be basically expressed as a function of only the reduced temperature, which was a ratio of storage and glass transition temperatures. This conclusion was obtained using quenched glasses with minimized surface area stored under a dried atmosphere. In this study, the surface effects on the crystallization were investigated using freeze-dried ritonavir (RTV) glass. Although quenched RTV glass exhibited exceptionally long initiation time, the initiation was accelerated by using the freeze-dried glasses. Storage of the samples under humid conditions further accelerated the crystallization. These surface effects eliminated the energetic barrier for nucleation, and the RTV glass exhibited universal initiation time. In contrast, subsequent crystal growth was slower for the freeze-dried glasses relative to the quenched one, presumably because of less condensed and porous structures that would suppress molecular cooperativity. Storage under a humid atmosphere also appeared to inhibit the crystal growth, presumably because of disruption of the molecular network by water. These findings support the existence of the universal initiation time for crystallization and indicated the importance of surface effects in crystallization behavior. Also, the suppression of crystal growth because of the void structure and incorporation of water molecules were indicated. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Improved Glass Surface Passivation for Single-Molecule Nanoarrays.

    PubMed

    Cai, Haogang; Wind, Shalom J

    2016-10-04

    Single-molecule fluorescence techniques provide a critical tool for probing biomolecular and cellular interactions with unprecedented resolution and precision. Unfortunately, many of these techniques are hindered by a common problem, namely, the nonspecific adsorption of target biomolecules. This issue is mostly addressed by passivating the glass surfaces with a poly(ethylene glycol) (PEG) brush. This is effective only at low concentrations of the probe molecule because there are defects inherent to polymer brushes formed on glass coverslips due to the presence of surface impurities. Tween-20, a detergent, is a promising alternative that can improve surface passivation, but it is incompatible with living cells, and it also possesses limited selectivity for glass background over metallic nanoparticles, which are frequently used as anchors for the probe molecules. To address these issues, we have developed a more versatile method to improve the PEG passivation. A thin film of hydrogen silsesquioxane (HSQ) is spin-coated and thermally cured on glass coverslips in order to cover the surface impurities. This minimizes the formation of PEG defects and reduces nonspecific adsorption, resulting in an improvement comparable to Tween-20 treatment. This approach was applied to single-molecule nanoarrays of streptavidin bound to AuPd nanodots patterned by e-beam lithography (EBL). The fluorescence signal to background ratio (SBR) on HSQ-coated glass was improved by ∼4-fold as compared to PEG directly on glass. This improvement enables direct imaging of ordered arrays of single molecules anchored to lithographically patterned arrays of metallic nanodots.

  5. Characterization and reactivity of sodium aluminoborosilicate glass fiber surfaces

    NASA Astrophysics Data System (ADS)

    Ortiz Rivera, Lymaris; Bakaev, Victor A.; Banerjee, Joy; Mueller, Karl T.; Pantano, Carlo G.

    2016-05-01

    Multicomponent complex oxides, such as sodium aluminoborosilicate glass fibers, are important materials used for thermal insulation in buildings and homes. Although the surface properties of single oxides, such as silica, have been extensively studied, less is known about the distribution of reactive sites at the surface of multicomponent oxides. Here, we investigated the reactivity of sodium aluminoborosilicate glass fiber surfaces for better understanding of their interface chemistry and bonding with acrylic polymers. Acetic acid (with and without a 13C enrichment) was used as a probe representative of the carboxylic functional groups in many acrylic polymers and adhesives. Inverse gas chromatography coupled to a mass spectrometer (IGC-MS), and solid state nuclear magnetic resonance (NMR), were used to characterize the fiber surface reactions and surface chemical structure. In this way, we discovered that both sodium ions in the glass surface, as well as sodium carbonate salts that formed on the surface due to the intrinsic reactivity of this glass in humid air, are primary sites of interaction with the carboxylic acid. Surface analysis by X-ray photoelectron spectroscopy (XPS) confirmed the presence of sodium carbonates on these surfaces. Computer simulations of the interactions between the reactive sites on the glass fiber surface with acetic acid were performed to evaluate energetically favorable reactions. The adsorption reactions with sodium in the glass structure provide adhesive bonding sites, whereas the reaction with the sodium carbonate consumes the acid to form sodium-carboxylate, H2O and CO2 without any contribution to chemical bonding at the interface.

  6. Ammonia-treated phosphate glasses useful for sealing to metals metals

    DOEpatents

    Brow, Richard K.; Day, Delbert E.

    1991-01-01

    A method of improving surface-dependent properties of phosphate glass such as durability and wear resistance without significantly affecting its thermal expansion coefficient is provided which comprises annealing the glass in a dry ammonia atmosphere at temperatures approximating the transition temperature of the glass. The ammonia annealing treatment of the present invention is carried out for a time sufficient to allow incorporation of a thin layer of nitrogen into the surface of the phosphate glass, and the treatment improves the durability of the glass without the reduction in the thermal expansion coefficient that has restricted the effectiveness of prior ammonia treatments. The improved phosphate glass resulting from this method is superior in wear resistance, yet maintains suitable thermal expansion properties so that it may be used effectively in a variety of applications requiring hermetic glass-metal seals.

  7. Role of surface in apparent viscosity of glasses

    NASA Astrophysics Data System (ADS)

    Avramov, I.

    2014-03-01

    Two problems have intrigued experts for a long time: The one is within the context of the legend of flowing cathedral glass windows and the second is the inaccuracy appearing in very old thermometers of famous scientists. We relate this with the role of the surface on the apparent viscosity of glasses. The apparent viscosity could deviate from the bulk viscosity if the fraction w of the surface molecules, of small samples, is sufficiently large. The effect is more prominent at low temperatures, correspondingly at high viscosities. The interpretation is within the Avramov and Milchev viscosity model, combined with the predictions of the change of heat capacity for extremely small samples. We find that the apparent glass transition temperature could depend on the sample size, in agreement with experimental observations existing in the literature. In addition to glasses, the present results could be of importance for thin films and foams.

  8. Role of surface in apparent viscosity of glasses.

    PubMed

    Avramov, I

    2014-03-01

    Two problems have intrigued experts for a long time: The one is within the context of the legend of flowing cathedral glass windows and the second is the inaccuracy appearing in very old thermometers of famous scientists. We relate this with the role of the surface on the apparent viscosity of glasses. The apparent viscosity could deviate from the bulk viscosity if the fraction w of the surface molecules, of small samples, is sufficiently large. The effect is more prominent at low temperatures, correspondingly at high viscosities. The interpretation is within the Avramov and Milchev viscosity model, combined with the predictions of the change of heat capacity for extremely small samples. We find that the apparent glass transition temperature could depend on the sample size, in agreement with experimental observations existing in the literature. In addition to glasses, the present results could be of importance for thin films and foams.

  9. Low absorption float glass for back surface solar reflectors

    NASA Astrophysics Data System (ADS)

    Goodyear, J. K.; Lindberg, V. L.

    1980-09-01

    It is shown that low iron float glass with relatively flat surfaces can be fabricated by the float process, and that this glass can make an excellent back surface mirror for solar energy concentrators, such as the heliostats planned for the Solar Ten Megawatt Power Project at Barstow, California. At 3 mm thickness, the low iron glass has a mean solar transmittance of 89.3%, and will produce heliostat mirrors with a calculated solar reflectance of 89.6%. The flatness of Ford 3-mm float glass is approximately 0.4 mrad, which is well below the minimum average slope angle requirement (2.5 mrad) to produce good quality heliostat reflectors.

  10. Hydrogen Bonding Slows Down Surface Diffusion of Molecular Glasses.

    PubMed

    Chen, Yinshan; Zhang, Wei; Yu, Lian

    2016-08-18

    Surface-grating decay has been measured for three organic glasses with extensive hydrogen bonding: sorbitol, maltitol, and maltose. For 1000 nm wavelength gratings, the decay occurs by viscous flow in the entire range of temperature studied, covering the viscosity range 10(5)-10(11) Pa s, whereas under the same conditions, the decay mechanism transitions from viscous flow to surface diffusion for organic glasses of similar molecular sizes but with no or limited hydrogen bonding. These results indicate that extensive hydrogen bonding slows down surface diffusion in organic glasses. This effect arises because molecules can preserve hydrogen bonding even near the surface so that the loss of nearest neighbors does not translate into a proportional decrease of the kinetic barrier for diffusion. This explanation is consistent with a strong correlation between liquid fragility and the surface enhancement of diffusion, both reporting resistance of a liquid to dynamic excitation. Slow surface diffusion is expected to hinder any processes that rely on surface transport, for example, surface crystal growth and formation of stable glasses by vapor deposition.

  11. Imaging polarimetry of glass buildings: why do vertical glass surfaces attract polarotactic insects?

    PubMed

    Malik, Péter; Hegedüs, Ramón; Kriska, György; Horváth, Gábor

    2008-08-20

    Recently it was observed that the Hydropsyche pellucidula caddis flies swarm near sunset at the vertical glass surfaces of buildings standing on the bank of the Danube river in Budapest, Hungary. These aquatic insects emerge from the Danube and are lured to dark vertical panes of glass, where they swarm, land, copulate, and remain for hours. It was also shown that ovipositing H. pellucidula caddis flies are attracted to highly and horizontally polarized light stimulating their ventral eye region and thus have positive polarotaxis. The attraction of these aquatic insects to vertical reflectors is surprising, because after their aerial swarming, they must return to the horizontal surface of water bodies from which they emerge and at which they lay their eggs. Our aim is to answer the questions: Why are flying polarotactic caddis flies attracted to vertical glass surfaces? And why do these aquatic insects remain on vertical panes of glass after landing? We propose that both questions can be partly explained by the reflection-polarization characteristics of vertical glass surfaces and the positive polarotaxis of caddis flies. We measured the reflection-polarization patterns of shady and sunlit, black and white vertical glass surfaces from different directions of view under clear and overcast skies by imaging polarimetry in the red, green, and blue parts of the spectrum. Using these polarization patterns we determined which areas of the investigated glass surfaces are sensed as water by a hypothetical polarotactic insect facing and flying toward or landed on a vertical pane of glass. Our results strongly support the mentioned proposition. The main optical characteristics of "green," that is, environmentally friendly, buildings, considering the protection of polarotactic aquatic insects, are also discussed. Such "green" buildings possess features that attract only a small number of polarotactic aquatic insects when standing in the vicinity of fresh waters. Since vertical

  12. Nondestructive detection of glass vial inner surface morphology with differential interference contrast microscopy.

    PubMed

    Wen, Zai-Qing; Torraca, Gianni; Masatani, Peter; Sloey, Christopher; Phillips, Joseph

    2012-04-01

    Glass particles generated by glass dissolution and delamination of the glass container for pharmaceutical products have become a major issue in the pharmaceutical industry. The observation of glass particles in certain injectable drugs, including several protein therapeutics, has recently resulted in a number of product recalls. Glass vial surface properties have been suggested to play a critical role in glass dissolution and delamination. Surface characterization of glass container, therefore, is important to evaluate the quality of the glass container. In this work, we demonstrate that differential interference contrast (DIC) microscopy is a powerful, effective, and convenient technique to examine the inner surface morphology of glass vials nondestructively. DIC microscopy does not require the cutting of the glass vial for scanning the inner surface and has sufficient spatial resolution to reveal glass pitting, phase separation, delamination scars, and other defects. Typical surface morphology of pharmaceutical glass vials with different alkalinity are compared and discussed. Copyright © 2012 Wiley Periodicals, Inc.

  13. Surface diffusion and surface crystal growth of tris-naphthyl benzene glasses

    NASA Astrophysics Data System (ADS)

    Ruan, Shigang; Zhang, Wei; Sun, Ye; Ediger, M. D.; Yu, Lian

    2016-08-01

    Surface self-diffusion coefficients of α,α,β-tris-naphthyl benzene (TNB) glasses have been measured using the method of surface grating decay. For 1000 nm wavelength gratings, the decay occurs by viscous flow at temperatures above Tg + 15 K, where Tg is the glass transition temperature (347 K), and by surface diffusion at lower temperatures. Surface diffusion of TNB is vastly faster than bulk diffusion, by a factor of 107 at Tg. Comparing TNB with other molecular glasses, each evaluated at its own Tg, we find that surface diffusion has a greater system-to-system variation than bulk diffusion, slowing down with increasing molecular size and intermolecular hydrogen bonding. Experimentally determined surface diffusion coefficients are in reasonable agreement with those from simulations and theoretical predictions. TNB and other molecular glasses show fast crystal growth on the free surface and the growth velocity is nearly proportional to the surface diffusion coefficient, indicating that the process is supported by surface mobility.

  14. Surface or internal nucleation and crystallization of glass-ceramics

    NASA Astrophysics Data System (ADS)

    Höland, W.; Rheinberger, V. M.; Ritzberger, C.; Apel, E.

    2013-07-01

    Fluoroapatite (Ca5(PO4)3F) was precipitated in glass-ceramics via internal crystallization of base glasses. The crystals grew with a needle-like morphology in the direction of the crystallographic c-axis. Two different reaction mechanisms were analyzed: precipitation via a disordered primary apatite crystals and a solid state parallel reaction to rhenanite (NaCaPO4) precipitation. In contrast to the internal nucleation used in the formation of fluoroapatite, surface crystallization was induced to precipitate a phosphate-free oxyapatite of NaY9(SiO4)6O2-type. Internal nucleation and crystallization have been shown to be a very useful tool for developing high-strength lithium disilicate (Li2Si2O5) glass-ceramics. A very controlled process was conducted to transform the lithium metasilicate glass-ceramic precursor material into the final product of the lithium disilicate glass-ceramic without the major phase of the precursor material. The combination of all these methods allowed the driving forces of the internal nucleation and crystallization mechanisms to be explained. An amorphous phosphate primary phase was discovered in the process. Nucleation started at the interface between the amorphous phosphate phase and the glass matrix. The final products of all these glass-ceramics are biomaterials for dental restoration showing special optical properties, e.g. translucence and color close to dental teeth.

  15. Glass on the surfaces of Io and Amalthea

    NASA Astrophysics Data System (ADS)

    Gradie, J.; Ostro, S. J.; Thomas, P. C.; Veverka, J.

    The results of laboratory tests of the spectral reflectances of sulfur and sulfur-silicate glasses are compared with Voyager UV and IR spectral data of Io and Amalthea. Sulfur glasses, without the S8 allotrope, are formed when molten sulfur is quickly quenched to temperatures below 150 K. The trials involved heating sulfur to temperatures from 430-700 K, then quenching and recording the color that resulted. It was observed that the insulating properties of sulfur are so high that the glasses would probably only form in volcanic plumes, yielding particles in the 10-100 micron diameter range. Fumarole droplets could impact cold ground and leave 1 mm glass particles. Basalt-sulfur specimens heated to 1400 K to melt the basalt, then cooled, produced glasses of a color which matches the color of darker areas detected on Io. The surface colors of Amalthea, although definitely contaminated with particles from Io mass loss, exhibited only a few color matches with the basalt-sulfur glasses. More refined spectra of Amalthea are required if the surface constituents are to be identified.

  16. Glass on the surfaces of Io and Amalthea

    NASA Technical Reports Server (NTRS)

    Gradie, J.; Ostro, S. J.; Thomas, P. C.; Veverka, J.

    1984-01-01

    The results of laboratory tests of the spectral reflectances of sulfur and sulfur-silicate glasses are compared with Voyager UV and IR spectral data of Io and Amalthea. Sulfur glasses, without the S8 allotrope, are formed when molten sulfur is quickly quenched to temperatures below 150 K. The trials involved heating sulfur to temperatures from 430-700 K, then quenching and recording the color that resulted. It was observed that the insulating properties of sulfur are so high that the glasses would probably only form in volcanic plumes, yielding particles in the 10-100 micron diameter range. Fumarole droplets could impact cold ground and leave 1 mm glass particles. Basalt-sulfur specimens heated to 1400 K to melt the basalt, then cooled, produced glasses of a color which matches the color of darker areas detected on Io. The surface colors of Amalthea, although definitely contaminated with particles from Io mass loss, exhibited only a few color matches with the basalt-sulfur glasses. More refined spectra of Amalthea are required if the surface constituents are to be identified.

  17. Glass on the surfaces of Io and Amalthea

    NASA Technical Reports Server (NTRS)

    Gradie, J.; Ostro, S. J.; Thomas, P. C.; Veverka, J.

    1984-01-01

    The results of laboratory tests of the spectral reflectances of sulfur and sulfur-silicate glasses are compared with Voyager UV and IR spectral data of Io and Amalthea. Sulfur glasses, without the S8 allotrope, are formed when molten sulfur is quickly quenched to temperatures below 150 K. The trials involved heating sulfur to temperatures from 430-700 K, then quenching and recording the color that resulted. It was observed that the insulating properties of sulfur are so high that the glasses would probably only form in volcanic plumes, yielding particles in the 10-100 micron diameter range. Fumarole droplets could impact cold ground and leave 1 mm glass particles. Basalt-sulfur specimens heated to 1400 K to melt the basalt, then cooled, produced glasses of a color which matches the color of darker areas detected on Io. The surface colors of Amalthea, although definitely contaminated with particles from Io mass loss, exhibited only a few color matches with the basalt-sulfur glasses. More refined spectra of Amalthea are required if the surface constituents are to be identified.

  18. DNA adsorption onto calcium aluminate and silicate glass surfaces.

    PubMed

    Carlson, Krista; Flick, Lisa; Hall, Matthew

    2014-05-01

    A common technique for small-scale isolation of genomic DNA is via adsorption of the DNA molecules onto a silica scaffold. In this work, the isolation capacities of calcium aluminate based glasses were compared against a commercially available silica scaffold. Silica scaffolds exhibit a negative surface at the physiological pH values used during DNA isolation (pH 5-9), while the calcium aluminate glass microspheres exhibit a positive surface charge. Isolation data demonstrates that the positively charged surface enhanced DNA adsorption over the negatively charged surface. DNA was eluted from the calcium aluminate surface by shifting the pH of the solution to above its IEP at pH 8. Iron additions to the calcium aluminate glass improved the chemical durability without compromising the surface charge. Morphology of the glass substrate was also found to affect DNA isolation; 43-106 μm diameter soda lime silicate microspheres adsorbed a greater quantity of genomic DNA than silica fibers with an average diameter of ∼2 μm.

  19. Sub-nanometer glass surface dynamics induced by illumination.

    PubMed

    Nguyen, Duc; Nienhaus, Lea; Haasch, Richard T; Lyding, Joseph; Gruebele, Martin

    2015-06-21

    Illumination is known to induce stress and morphology changes in opaque glasses. Amorphous silicon carbide (a-SiC) has a smaller bandgap than the crystal. Thus, we were able to excite with 532 nm light a 1 μm amorphous surface layer on a SiC crystal while recording time-lapse movies of glass surface dynamics by scanning tunneling microscopy (STM). Photoexcitation of the a-SiC surface layer through the transparent crystal avoids heating the STM tip. Up to 6 × 10(4) s, long movies of surface dynamics with 40 s time resolution and sub-nanometer spatial resolution were obtained. Clusters of ca. 3-5 glass forming units diameter are seen to cooperatively hop between two states at the surface. Photoexcitation with green laser light recruits immobile clusters to hop, rather than increasing the rate at which already mobile clusters hop. No significant laser heating was observed. Thus, we favor an athermal mechanism whereby electronic excitation of a-SiC directly controls glassy surface dynamics. This mechanism is supported by an exciton migration-relaxation-thermal diffusion model. Individual clusters take ∼1 h to populate states differently after the light intensity has changed. We believe the surrounding matrix rearranges slowly when it is stressed by a change in laser intensity, and clusters serve as a diagnostic. Such cluster hopping and matrix rearrangement could underlie the microscopic mechanism of photoinduced aging of opaque glasses.

  20. Sub-nanometer glass surface dynamics induced by illumination

    SciTech Connect

    Nguyen, Duc; Nienhaus, Lea; Haasch, Richard T.; Lyding, Joseph; Gruebele, Martin

    2015-06-21

    Illumination is known to induce stress and morphology changes in opaque glasses. Amorphous silicon carbide (a-SiC) has a smaller bandgap than the crystal. Thus, we were able to excite with 532 nm light a 1 μm amorphous surface layer on a SiC crystal while recording time-lapse movies of glass surface dynamics by scanning tunneling microscopy (STM). Photoexcitation of the a-SiC surface layer through the transparent crystal avoids heating the STM tip. Up to 6 × 10{sup 4} s, long movies of surface dynamics with 40 s time resolution and sub-nanometer spatial resolution were obtained. Clusters of ca. 3-5 glass forming units diameter are seen to cooperatively hop between two states at the surface. Photoexcitation with green laser light recruits immobile clusters to hop, rather than increasing the rate at which already mobile clusters hop. No significant laser heating was observed. Thus, we favor an athermal mechanism whereby electronic excitation of a-SiC directly controls glassy surface dynamics. This mechanism is supported by an exciton migration-relaxation-thermal diffusion model. Individual clusters take ∼1 h to populate states differently after the light intensity has changed. We believe the surrounding matrix rearranges slowly when it is stressed by a change in laser intensity, and clusters serve as a diagnostic. Such cluster hopping and matrix rearrangement could underlie the microscopic mechanism of photoinduced aging of opaque glasses.

  1. Bacterial adhesion to glass and metal-oxide surfaces.

    PubMed

    Li, Baikun; Logan, Bruce E

    2004-07-15

    Metal oxides can increase the adhesion of negatively-charged bacteria to surfaces primarily due to their positive charge. However, the hydrophobicity of a metal-oxide surface can also increase adhesion of bacteria. In order to understand the relative contribution of charge and hydrophobicity to bacterial adhesion, we measured the adhesion of 8 strains of bacteria, under conditions of low and high-ionic strength (1 and 100 mM, respectively) to 11 different surfaces and examined adhesion as a function of charge, hydrophobicity (water contact angle) and surface energy. Inorganic surfaces included three uncoated glass surfaces and eight metal-oxide thin films prepared on the upper (non-tin-exposed) side of float glass by chemical vapor deposition. The Gram-negative bacteria differed in lengths of lipopolysaccharides on their outer surface (three Escherichia coli strains), the amounts of exopolysaccharides (two Pseudomonas aeruginosa strains), and their known relative adhesion to sand grains (two Burkholderia cepacia strains). One Gram positive bacterium was also used that had a lower adhesion to glass than these other bacteria (Bacillus subtilis). For all eight bacteria, there was a consistent increase in adhesion between with the type of inorganic surface in the order: float glass exposed to tin (coded here as Si-Sn), glass microscope slide (Si-m), uncoated air-side float glass surface (Si-a), followed by thin films of (Co(1-y-z)Fe(y)Cr(z))3O4, Ti/Fe/O, TiO2, SnO2, SnO2:F, SnO2:Sb, A1(2)O3, and Fe2O3 (the colon indicates metal doping, a slash indicates that the metal is a major component, while the dash is used to distinguish surfaces). Increasing the ionic strength from 1 to 100 mM increased adhesion by a factor of 2.0 +/- 0.6 (73% of the sample results were within the 95% CI) showing electrostatic charge was important in adhesion. However, adhesion was not significantly correlated with bacterial charge and contact angle. Adhesion (A) of the eight strains was

  2. Mechanical, structural and dissolution properties of heat treated thin-film phosphate based glasses

    NASA Astrophysics Data System (ADS)

    Stuart, Bryan W.; Gimeno-Fabra, Miquel; Segal, Joel; Ahmed, Ifty; Grant, David M.

    2017-09-01

    Here we show the deposition of 2.7 μm thick phosphate based glass films produced by magnetron sputtering, followed by post heat treatments at 500 °C. Variations in degradation properties pre and post heat treatment were attributed to the formation of Hematite crystals within a glass matrix, iron oxidation and the depletion of hydrophilic P-O-P bonds within the surface layer. As deposited and heat treated coatings showed interfacial tensile adhesion in excess of 73.6 MPa; which surpassed ISO and FDA requirements for HA coatings. Scratch testing of coatings on polished substrates revealed brittle failure mechanisms, amplified due to heat treatment and interfacial failure occurring from 2.3 to 5.0 N. Coatings that were deposited onto sandblasted substrates to mimic commercial implant surfaces, did not suffer from tensile cracking or trackside delamination showing substantial interfacial improvements to between 8.6 and 11.3 N. An exponential dissolution rate was observed from 0 to 2 h for as deposited coatings, which was eliminated via heat treatment. From 2 to 24 h ion release rates ordered P > Na > Mg > Ca > Fe whilst all coatings exhibited linear degradation rates, which reduced by factors of 2.4-3.0 following heat treatments.

  3. The glass-liquid transition of water on hydrophobic surfaces.

    PubMed

    Souda, Ryutaro

    2008-09-28

    Interactions of thin water films with surfaces of graphite and vitrified room-temperature ionic liquid [1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)])] were investigated using time-of-flight secondary ion mass spectrometry as a function of temperature and annealing time to elucidate the glass-liquid transition of water at the molecular level. Surface diffusion of water occurs at temperatures higher than 120 K, thereby forming three-dimensional clusters (a two-dimensional layer) on the [bmim][PF(6)] (graphite) surface. The hydrophobic effect of the surface decreases with increasing coverage of water; the bulklike properties evolve up to 40 ML, as evidenced by the occurrence of film dewetting at around the conventional glass transition temperature (140 K). Results also showed that aging is necessary for the water monolayer (a 40 ML water film) to dewet the graphite ([bmim][PF(6)]) surface. The occurrence of aging is explainable by the successive evolution of two distinct liquids during the glass-liquid transition: low density liquid is followed by supercooled liquid water. The water monolayer on graphite is characterized by the preferred orientation of unpaired OH groups toward the surface; this structure is arrested during the aging time despite the occurrence of surface diffusion. However, the water monolayer formed on the [bmim][PF(6)] surface agglomerates immediately after the commencement of surface diffusion. The structure of low density liquid tends to be arrested by the attractive interaction with the neighbors.

  4. NANOFILTRATION FOULANTS FROM A TREATED SURFACE WATER

    EPA Science Inventory

    The foulant from pilot nanofiltration membrane elements fed conventionally-treated surface water for 15 months was analyzed for organic, inorganic, and biological parameters. The foulant responsible for flux loss was shown to be a film layer 20 to 80 um thick with the greatest de...

  5. NANOFILTRATION FOULANTS FROM A TREATED SURFACE WATER

    EPA Science Inventory

    The foulant from pilot nanofiltration membrane elements fed conventionally-treated surface water for 15 months was analyzed for organic, inorganic, and biological parameters. The foulant responsible for flux loss was shown to be a film layer 20 to 80 um thick with the greatest de...

  6. The wettability of PTFE and glass surfaces by nanofluids.

    PubMed

    Chaudhuri, Rajib Ghosh; Paria, Santanu

    2014-11-15

    Wetting of solid surfaces by surfactant solutions is well focused in the literature compared that of nanofluids. Similar to the surfactant solutions nanofluids are also able to reduce the surface tension as well as influence on contact angle at the solid, liquid and gas interface. The surface tension and wettability of two different nanofluids containing hydrophilic (TiO2) and hydrophobic (S) particles have been experimentally studied here. The surface tension reduction of nanofluids strongly depends on material property, particle size and as well as concentration. These parameters also influence the change in contact angle on both hydrophilic (glass) and hydrophobic (PTFE) surfaces. Three important factors such as surface tension, surface hydrophobicity after deposition of particles on a solid surface, and the disjoining pressure influence the final contact angle of nanofluids on a solid surface. Sulfur nanofluids show maximum enhancement in contact angle (30.6°) on the glass surface; on the other hand TiO2 nanofluids show maximum reductions in surface tension (25.4 mN/m) and contact angle on the PTFE surface (17.7°) with respect to pure water.

  7. Changes in surface hardness of conventional restorative glass ionomer cements.

    PubMed

    De Moor, R J; Verbeeck, R M

    1998-12-01

    The effect of a contact with an aqueous solution on the surface hardness of glass ionomers has been investigated in a few studies and for a limited number of formulations. As there is no information on the long-term changes of the surface hardness in this respect, the aim of this study was to determine these long-term changes in 10 conventionally setting glass ionomer formulations after storage in water as compared to maturation in a humid atmosphere (85% RH). After setting for 15 min different series of glass ionomer specimens were stored at 37 degrees C in both experimental media for 1, 7, 28 and 140 days. At the end of the specific maturation times, the mean surface hardness was determined on the basis of Knoop Hardness (KHN). Data were analyzed using ANOVA. In a humid atmosphere the surface hardness generally increases rapidly initially, followed after 1 day by a more gradual increase. In contact with water, the hardness also increases up to one day but not to the same extent. The surface hardness then remains constant or slightly decreases. Evidence of a detrimental softening of the surface ascribed previously to the loss of matrix forming ions was not found. A surface erosion is not likely to occur.

  8. Sorption of polycyclic aromatic hydrocarbons (PAHs) on glass surfaces.

    PubMed

    Qian, Yuan; Posch, Tjorben; Schmidt, Torsten C

    2011-02-01

    Sorption of polycyclic aromatic hydrocarbons (PAHs) to glass commonly used in laboratories was studied. Sorption coefficients (Kd) of five selected PAHs to borosilicate glass surfaces were measured using column chromatography. A linear relationship between log Kd and the corresponding water solubility of the subcooled liquid (log Sw) of the investigated PAHs was observed. Based on the determined sorption coefficients our data revealed that mass loss caused by sorption on glass walls strongly depends on the ratio of solution volume to contacted surface area (V/S). The influence of solution chemistry such as ionic strength, solution pH, presence of cosolvent, and the influence of temperature on the sorption process were investigated. In the presence of ionic strength, sorption coefficients concurrently increased but less than a factor of 2 up to 0.005 M calcium chloride concentration. However, further increasing ionic strength had no influence on Kd. The cosolvent reduced sorption at a concentration of methanol in water above 0.5% (v/v); however, for benzo[a]pyrene even with 10% (v/v) methanol the mass loss would be still higher than 10% (with a V/S ratio less than 0.25). Significant effects of the solution pH and temperature were not observed. These results suggest that van der Waal's forces dominate the sorption process. In the analysis of highly hydrophobic PAHs in aqueous samples, mass loss due to sorption on glass walls should be accounted for in the final result if untreated glass is used. The presented relationship between log Kd and log Sw may help to decide if such a correction is necessary. Furthermore, the frequently used silanization of glass surfaces may not be sufficient to suppress sorption for large PAHs.

  9. Characterization of projected DWPF glasses heat treated to simulate canister centerline cooling

    SciTech Connect

    Marra, S.L.; Jantzen, C.M.

    1992-05-01

    Liquid high-level nuclear waste will be immobilized at the Savannah River Site (SRS) by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Eventually these canistered waste forms will be sent to a geologic repository for final disposal. In order to assure acceptability by the repository, the Department of Energy has defined requirements which DWPF canistered waste forms must meet. These requirements are the Waste Acceptance Preliminary Specifications (WAPS). The WAPS require DWPF to identify the crystalline phases expected to be present in the final glass product. Knowledge of the thermal history of the borosilicate glass during filling and cooldown of the canister is necessary to determine the amount and type of crystalline phases present in the final glass product. Glass samples of seven projected DWPF compositions were cooled following the same temperature profile as that of glass at the centerline of the full-scale DWPF canister. The glasses were characterized by x-ray diffraction and scanning electron microscopy to identify the crystalline phases present The volume percents of each crystalline phase present were determined by quantitative x-ray diffraction. The Product Consistency Test (PCI) was used to determine the durability of the heat-treated glasses.

  10. A micro surface tension pump (MISPU) in a glass microchip.

    PubMed

    Peng, Xing Yue Larry

    2011-01-07

    A non-membrane micro surface tension pump (MISPU) was fabricated on a glass microchip by one-step glass etching. It needs no material other than glass and is driven by digital gas pressure. The MISPU can be seen working like a piston pump inside the glass microchip under a microscope. The design of the valves (MISVA) and pistons (MISTON) was based on the surface tension theory of the micro surface tension alveolus (MISTA). The digital gas pressure controls the moving gas-liquid interface to open or close the input and output MISVAs to refill or drive the MISTON for pumping a liquid. Without any moving parts, a MISPU is a kind of long-lasting micro pump for micro chips that does not lose its water pumping efficiency over a 20-day period. The volumetric pump output varied from 0 to 10 nl s(-1) when the pump cycle time decreased from 5 min to 15 s. The pump head pressure was 1 kPa.

  11. Observations of Nuclear Explosive Melt Glass Textures and Surface Areas

    SciTech Connect

    Kersting, A B; Smith, D K

    2006-01-17

    This memo report summarizes our current knowledge of the appearance of melt glass formed and subsequently deposited in the subsurface after an underground nuclear test. We have collected archived pictures and melt glass samples from a variety of underground nuclear tests that were conducted at the Nevada Test Site (NTS) during the U.S. nuclear testing program. The purpose of our work is to better determine the actual variation in texture and surface area of the melt glass material. This study is motivated by our need to better determine the rate at which the radionuclides incorporated in the melt glass are released into the subsurface under saturated and partially saturated conditions. The rate at which radionuclides are released from the glass is controlled by the dissolution rate of the glass. Glass dissolution, in turn, is a strong function of surface area, glass composition, water temperature and water chemistry (Bourcier, 1994). This work feeds into an ongoing experimental effort to measure the change in surface area of analog glasses as a function of dissolution rate. The conclusions drawn from this study help bound the variation in the textures of analog glass samples needed for the experimental studies. The experimental work is a collaboration between Desert Research Institute (DRI) and Earth and Environmental Sciences-Lawrence Livermore National Laboratory (EES-LLNL). On March 4, 1999 we hosted a meeting at LLNL to present and discuss our findings. The names of the attendees appear at the end of this memo. This memo report further serves to outline and summarize the conclusions drawn from our meeting. The United States detonated over 800 underground nuclear tests at the NTS between 1951 and 1992. In an effort to evaluate the performance of the nuclear tests, drill-back operations were carried out to retrieve samples of rock in the vicinity of the nuclear test. Drill-back samples were sent to Los Alamos National Laboratory (LANL) and Lawrence Livermore

  12. Tensile behavior of laser treated Fe-Si-B metallic glass

    SciTech Connect

    Joshi, Sameehan S.; Samimi, Peyman; Ghamarian, Iman; Katakam, Shravana; Collins, Peter C.; Dahotre, Narendra B.

    2015-10-28

    Fe-Si-B metallic glass foils were treated with a linear laser track using a continuous wave Nd-YAG laser and its effect on the overall tensile behavior was investigated. Microstructure and phase evolutions were evaluated using X-ray diffraction, resistivity measurements, and transmission electron microscopy. Crystallization fraction was estimated via the differential scanning calorimetry technique. Metallic glass foils treated with the lower laser fluences (<0.49 J/mm{sup 2}) experienced structural relaxation, whereas higher laser fluences led to crystallization within the laser treated region. The overall tensile behavior was least impacted by structural relaxation, whereas crystallization severely reduced the ultimate tensile strength of the laser treated metallic glass foils.

  13. Using liquid crystal glasses to treat ambyopia in children.

    PubMed

    Erbağcı, Ibrahim; Okumuş, Seydi; Öner, Veysi; Coşkun, Erol; Çelik, Oğuz; Ören, Burak

    2015-06-01

    To evaluate the effectiveness of liquid crystal glasses (LCG) in the treatment of children with monocular amblyopia. A total of 14 amblyopic eyes of 14 children with monocular amblyopia were enrolled in the study. LCG with appropriate refractive correction were ordered for each patient. Each patient was examined with the new LCG before treatment and monthly thereafter. The parents were informed about the use, care, and charging of the glasses. Best-corrected visual acuity was measured as Snellen decimal notation and converted to logarithm of the minimum angle of resolution (logMAR) for statistical analyses. The mean age of the study population was 7.4 ± 1.4 years. Ten patients (71%) had anisometropic amblyopia; 2 (14%), strabismic amblyopia; and 2 (14%), mixed amblyopia. The mean follow-up period was 4.0 ± 1.2 months (range, 3-7 months). The mean duration of using LCG was 8.2 ± 2.5 hours daily (range, 4-12 hours). All of 14 patients used the LCG as suggested. The mean logMAR best-corrected visual acuity of the amblyopic eyes was 0.6 ± 0.3 at baseline, improving to 0.3 ± 0.2 at final follow-up (P < 0.001). No side effects were observed. The current study demonstrated that LCG wear improved visual acuity in children with monocular amblyopia. Additional studies are needed to determine whether this effect is due to the LCG on/off feature or to refractive correction alone. Copyright © 2015 American Association for Pediatric Ophthalmology and Strabismus. Published by Elsevier Inc. All rights reserved.

  14. Glass formation, chemical properties and surface analysis of Cu-based bulk metallic glasses.

    PubMed

    Qin, Chunling; Zhao, Weimin; Inoue, Akihisa

    2011-01-01

    This paper reviews the influence of alloying elements Mo, Nb, Ta and Ni on glass formation and corrosion resistance of Cu-based bulk metallic glasses (BMGs). In order to obtain basic knowledge for application to the industry, corrosion resistance of the Cu-Hf-Ti-(Mo, Nb, Ta, Ni) and Cu-Zr-Ag-Al-(Nb) bulk glassy alloy systems in various solutions are reported in this work. Moreover, X-ray photoelectron spectroscopy (XPS) analysis is performed to clarify the surface-related chemical characteristics of the alloy before and after immersion in the solutions; this has lead to a better understanding of the correlation between the surface composition and the corrosion resistance.

  15. Glass Formation, Chemical Properties and Surface Analysis of Cu-Based Bulk Metallic Glasses

    PubMed Central

    Qin, Chunling; Zhao, Weimin; Inoue, Akihisa

    2011-01-01

    This paper reviews the influence of alloying elements Mo, Nb, Ta and Ni on glass formation and corrosion resistance of Cu-based bulk metallic glasses (BMGs). In order to obtain basic knowledge for application to the industry, corrosion resistance of the Cu–Hf–Ti–(Mo, Nb, Ta, Ni) and Cu–Zr–Ag–Al–(Nb) bulk glassy alloy systems in various solutions are reported in this work. Moreover, X-ray photoelectron spectroscopy (XPS) analysis is performed to clarify the surface-related chemical characteristics of the alloy before and after immersion in the solutions; this has lead to a better understanding of the correlation between the surface composition and the corrosion resistance. PMID:21731441

  16. Chemical treatment for silica-containing glass surfaces

    DOEpatents

    Grabbe, Alexis; Michalske, Terry Arthur; Smith, William Larry

    1999-01-01

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditons. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating.

  17. Chemical treatment for silica-containing glass surfaces

    DOEpatents

    Grabbe, Alexis; Michalske, Terry Arthur; Smith, William Larry

    1999-01-01

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditions. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating.

  18. Chemical treatment for silica-containing glass surfaces

    DOEpatents

    Grabbe, Alexis; Michalske, Terry Arthur; Smith, William Larry

    1998-01-01

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditions. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating.

  19. Chemical treatment for silica-containing glass surfaces

    DOEpatents

    Grabbe, A.; Michalske, T.A.; Smith, W.L.

    1998-04-07

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditions. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating. 11 figs.

  20. Widespread Weathered Glass on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Horgan, Briony; Bell, James F., III

    2012-01-01

    Low albedo sediments cover >10(exp 7) sq km in the northern lowlands of Mars, but the composition and origin of these widespread deposits have remained ambiguous despite many previous investigations. Here we use near-infrared spectra acquired by the Mars Express OMEGA (Observatoire pour la Mineralogie, l'Eau, les Glaces, et l'Activite') imaging spectrometer to show that these sediments exhibit spectral characteristics that are consistent with both high abundances of iron-bearing glass and silica-enriched leached rinds on glass. This interpretation is supported by observations of low-albedo soil grains with possible rinds at the Phoenix Mars Lander landing site in the northern lowlands. By comparison with the extensive glass-rich dune fields and sand sheets of Iceland, we propose an explosive volcanic origin for these glass-rich sediments. We also propose that the glassy remnant rinds on the sediments are the result of post-depositional alteration, as these rinds are commonly formed in arid terrestrial volcanic environments during water-limited, moderately acidic leaching. These weathered, glass-rich deposits in the northern lowlands are also colocated with the strongest concentrations of a major global compositional surface type previously identified in mid-infrared spectra, suggesting that they may be representative of global processes. Our results provide potential confirmation of models suggesting that explosive volcanism has been widespread on Mars, and also raise the possibilities that glass-rich volcaniclastics are a major source of eolian sand on Mars and that widespread surficial aqueous alteration has occurred under Amazonian climatic conditions.

  1. Widespread Weathered Glass on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Horgan, Briony; Bell, James F., III

    2012-01-01

    Low albedo sediments cover >10(exp 7) sq km in the northern lowlands of Mars, but the composition and origin of these widespread deposits have remained ambiguous despite many previous investigations. Here we use near-infrared spectra acquired by the Mars Express OMEGA (Observatoire pour la Mineralogie, l'Eau, les Glaces, et l'Activite') imaging spectrometer to show that these sediments exhibit spectral characteristics that are consistent with both high abundances of iron-bearing glass and silica-enriched leached rinds on glass. This interpretation is supported by observations of low-albedo soil grains with possible rinds at the Phoenix Mars Lander landing site in the northern lowlands. By comparison with the extensive glass-rich dune fields and sand sheets of Iceland, we propose an explosive volcanic origin for these glass-rich sediments. We also propose that the glassy remnant rinds on the sediments are the result of post-depositional alteration, as these rinds are commonly formed in arid terrestrial volcanic environments during water-limited, moderately acidic leaching. These weathered, glass-rich deposits in the northern lowlands are also colocated with the strongest concentrations of a major global compositional surface type previously identified in mid-infrared spectra, suggesting that they may be representative of global processes. Our results provide potential confirmation of models suggesting that explosive volcanism has been widespread on Mars, and also raise the possibilities that glass-rich volcaniclastics are a major source of eolian sand on Mars and that widespread surficial aqueous alteration has occurred under Amazonian climatic conditions.

  2. Mean field spin glasses treated with PDE techniques

    NASA Astrophysics Data System (ADS)

    Barra, Adriano; Del Ferraro, Gino; Tantari, Daniele

    2013-07-01

    Following an original idea of Guerra, in these notes we analyze the Sherrington-Kirkpatrick model from different perspectives, all sharing the underlying approach which consists in linking the resolution of the statistical mechanics of the model (e.g. solving for the free energy) to well-known partial differential equation (PDE) problems (in suitable spaces). The plan is then to solve the related PDE using techniques involved in their native field and lastly bringing back the solution in the proper statistical mechanics framework. Within this strand, after a streamlined test-case on the Curie-Weiss model to highlight the methods more than the physics behind, we solve the SK both at the replica symmetric and at the 1-RSB level, obtaining the correct expression for the free energy via an analogy to a Fourier equation and for the self-consistencies with an analogy to a Burger equation, whose shock wave develops exactly at critical noise level (triggering the phase transition). Our approach, beyond acting as a new alternative method (with respect to the standard routes) for tackling the complexity of spin glasses, links symmetries in PDE theory with constraints in statistical mechanics and, as a novel result from the theoretical physics perspective, we obtain a new class of polynomial identities (namely of Aizenman-Contucci type, but merged within the Guerra's broken replica measures), whose interest lies in understanding, via the recent Panchenko breakthroughs, how to force the overlap organization to the ultrametric tree predicted by Parisi.

  3. Treating amblyopia with liquid crystal glasses: a pilot study.

    PubMed

    Spierer, Abraham; Raz, Judith; Benezra, Omry; Herzog, Rafi; Cohen, Evelyne; Karshai, Ilana; Benezra, David

    2010-07-01

    PURPOSE. To evaluate the use of liquid crystal glasses (LCG) for the treatment of amblyopia caused by refractive errors, strabismus, or both. METHODS. In this noncomparative, prospective, interventional case series, 28 children (age range, 4-7.8 years) with monocular amblyopia participated, of which 24 completed the study. In the LCG, the occluding and nonoccluding phases of the flicker were electronically set in all patients at a fixed rate. The rate was set so that accumulated occlusion was 5 hours during 8 hours' weartime. Occlusion was applied only to the good eye. All 24 children were followed up regularly for 9 months. Best corrected VA for distance and near, fixation patterns, and binocular function were measured. VA for distance was measured with the Snellen chart and for near with the Rossano/Weiss chart. RESULTS. Mean VA for distance at the end of the study (after 9 months) was 0.59 (SD, 0.16) compared with 0.27 (SD, 0.09) at the beginning (P < 0.001). Most of the children (92%) complied well with the treatment. (Good compliance was defined as wearing the LCG for at least 8 hours per day.) Stereopsis at the end of treatment was good (better than 60 sec arc) in 21% of the children compared with 8% at the beginning. No serious adverse events were recorded. CONCLUSIONS. The use of LCG in patients with amblyopia yielded an improvement in near and distance VA and in stereopsis. Treatment was well accepted by children and parents.

  4. Atomic Oxygen Durability of Second Surface Silver Microsheet Glass Concentrators

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Jaworske, Donald A.; Smith, Daniela C.; Mroz, Thaddeus S.

    1996-01-01

    Second surface silver microsheet glass concentrators are being developed for potential use in future solar dynamic space power systems. Traditional concentrators are aluminum honeycomb sandwich composites with either aluminum or graphite epoxy face sheets, where a reflective aluminum layer is deposited onto an organic leveling layer on the face sheet. To protect the underlying layers, a SiO2 layer is applied on top of the aluminum reflective layer. These concentrators may be vulnerable to atomic oxygen degradation due to possible atomic oxygen attack of the organic layers at defect sites in the protective and reflective coatings. A second surface microsheet glass concentrator would be inherently more atomic oxygen durable than these first surface concentrators. In addition, a second surface microsheet glass concentrator design provides a smooth optical surface and allows for silver to be used as a reflective layer, which would improve the reflectivity of the concentrator and the performance of the system. A potential threat to the performance of second surface microsheet glass concentrators is atomic oxygen attack of the underlying silver at seams and edges or at micrometeoroid and debris (MMD) impacts sites. Second surface silver microsheet glass concentrator samples were fabricated and tested for atomic oxygen durability. The samples were iteratively exposed to an atomic oxygen environment in a plasma asher. Samples were evaluated for potential degradation at fabrication seams, simulated MMD impact sites, and edges. Optical microscopy was used to evaluate atomic oxygen degradation. Reflectance was obtained for an impacted sample prior to and after atomic oxygen exposure. After an initial atomic oxygen exposure to an effective fluence of approx. 1 x 10(exp 21) atoms/cm(exp 2), oxidation of the silver at defect sites and edges was observed. Exposure to an additional approx. 1 x 10(exp 21) atoms/cm(exp 2) caused no observed increase in oxidation. Oxidation at an

  5. A grooved glass surface-plate for making a flat polished surface

    NASA Astrophysics Data System (ADS)

    Miyagi, Isoji

    2017-01-01

    To obtain a flat polished surface for microchemical analyses such as EPMA, SIMS, and ATR micro-FTIR, a glass plate with a grooved surface was developed for hand polishing with an abrasive film. It eases the polishing process by minimizing slipping or sticking, and results in negligible relief in the sample surface.

  6. Surface plasmon resonance assisted rapid laser joining of glass

    SciTech Connect

    Zolotovskaya, Svetlana A.; Tang, Guang; Abdolvand, Amin; Wang, Zengbo

    2014-08-25

    Rapid and strong joining of clear glass to glass containing randomly distributed embedded spherical silver nanoparticles upon nanosecond pulsed laser irradiation (∼40 ns and repetition rate of 100 kHz) at 532 nm is demonstrated. The embedded silver nanoparticles were ∼30–40 nm in diameter, contained in a thin surface layer of ∼10 μm. A joint strength of 12.5 MPa was achieved for a laser fluence of only ∼0.13 J/cm{sup 2} and scanning speed of 10 mm/s. The bonding mechanism is discussed in terms of absorption of the laser energy by nanoparticles and the transfer of the accumulated localised heat to the surrounding glass leading to the local melting and formation of a strong bond. The presented technique is scalable and overcomes a number of serious challenges for a widespread adoption of laser-assisted rapid joining of glass substrates, enabling applications in the manufacture of microelectronic devices, sensors, micro-fluidic, and medical devices.

  7. Laser bioengineering of glass-titanium implants surface

    NASA Astrophysics Data System (ADS)

    Lusquiños, F.; Arias-González, F.; Penide, J.; del Val, J.; Comesaña, R.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pascual, M. J.; Durán, A.; Pou, J.

    2013-11-01

    Osseointegration is the mean challenge when surgical treatments fight against load-bearing bone diseases. Absolute bone replacement by a synthetic implant has to be completed not only from the mechanics point of view, but also from a biological approach. Suitable strength, resilience and stress distribution of titanium alloy implants are spoiled by the lack of optimal biological characteristics. The inert quality of extra low interstitial titanium alloy, which make it the most attractive metallic alloy for biomedical applications, oppose to an ideal surface with bone cell affinity, and capable to stimulate bone attachment bone growth. Diverse laser treatments have been proven as effective tools to modify surface properties, such as wettability in contact to physiological fluids, or osteoblast guided and slightly enhanced attachment. The laser surface cladding can go beyond by providing titanium alloy surfaces with osteoconduction and osteoinduction properties. In this research work, the laser radiation is used to produce bioactive glass coatings on Ti6Al4V alloy substrates. Specific silicate bioactive glass compositions has been investigated to achieve suitable surface tension and viscosity temperature behavior during processing, and to provide with the required release of bone growth gene up regulation agents in the course of resorption mediated by physiological fluids. The produced coatings and interfaces, the surface osteoconduction properties, and the chemical species release in simulated physiological fluid were characterized by scanning electron microscopy (SEM), hot stage microscopy (HSM), X-ray diffraction (XRD), X ray fluorescence (XRF), and Fourier transform infrared spectroscopy (FTIR).

  8. The effects of the glass surface area/solution volume ratio on glass corrosion: A critical review

    SciTech Connect

    Ebert, W.L.

    1995-03-01

    This report reviews and summarizes the present state of knowledge regarding the effects of the glass surface area/solution volume (SA/V) ratio on the corrosion behavior of borosilicate waste glasses. The SA/V ratio affects the rate of glass corrosion through the extent of dilution of corrosion products released from the glass into the leachate solution: glass corrosion products are diluted more in tests conducted at low SA/V ratios than they are in tests conducted at high SA/V ratios. Differences in the solution chemistries generated in tests conducted at different SA/V ratios then affect the observed glass corrosion behavior. Therefore, any testing parameter that affects the solution chemistry will also affect the glass corrosion rate. The results of static leach tests conducted to assess the effects of the SA/V are discussed with regard to the effects of SA/V on the solution chemistry. Test results show several remaining issues with regard to the long-term glass corrosion behavior: can the SA/V ratio be used as an accelerating parameter to characterize the advanced stages of glass corrosion relevant to long disposal times; is the alteration of the glass surface the same in tests conducted at different SA/V, and in tests conducted with monolithic and crushed glass samples; what are the effects of the SA/V and the extent of glass corrosion on the disposition of released radionuclides? These issues will bear on the prediction of the long-term performance of waste glasses during storage. The results of an experimental program conducted at ANL to address these and other remaining issues regarding the effects of SA/V on glass corrosion are described. 288 refs., 59 figs., 16 tabs.

  9. Mechanism of adhesion of Alysiella bovis to glass surfaces.

    PubMed Central

    Irvin, R T; To, M; Costerton, J W

    1984-01-01

    Alysiella bovis adheres to surfaces by means of short, ruthenium red-staining, rod-like fimbriae. The fimbriae remain associated with the cell envelope of A. bovis, even when sonicated or exposed sequentially to toluene, Triton X-100, lysozyme, ribonuclease, and deoxyribonuclease. Adhesion of outer membrane-derived cell wall ghosts of A. bovis to glass was inhibited by IO4-, sodium dodecyl sulfate, urea, pronase, and trypsin. Protease treatment digested the fimbriae from the distal end, and exposure to sodium dodecyl sulfate depolymerized the fimbriae. Exposure of ghosts to 1% sodium dodecyl sulfate preferentially solubilized a 16,500-dalton protein which was subsequently purified by gel filtration and demonstrated to be a glycoprotein (ca. 17% carbohydrate). Antibodies raised against the 16,500-dalton glycoprotein agglutinated whole cells and inhibited adhesion of ghosts to glass. Images PMID:6209260

  10. Geopolymers prepared from DC plasma treated air pollution control (APC) residues glass: properties and characterisation of the binder phase.

    PubMed

    Kourti, Ioanna; Devaraj, Amutha Rani; Bustos, Ana Guerrero; Deegan, David; Boccaccini, Aldo R; Cheeseman, Christopher R

    2011-11-30

    Air pollution control (APC) residues have been blended with glass-forming additives and treated using DC plasma technology to produce a high calcium aluminosilicate glass (APC glass). This has been used to form geopolymer-glass composites that exhibit high strength and density, low porosity, low water absorption, low leaching and high acid resistance. The composites have a microstructure consisting of un-reacted residual APC glass particles imbedded in a complex geopolymer and C-S-H gel binder phase, and behave as particle reinforced composites. The work demonstrates that materials prepared from DC plasma treated APC residues have potential to be used to form high quality pre-cast products.

  11. Glass fibres reinforced polyester composites degradation monitoring by surface analysis

    NASA Astrophysics Data System (ADS)

    Croitoru, Catalin; Patachia, Silvia; Papancea, Adina; Baltes, Liana; Tierean, Mircea

    2015-12-01

    The paper presents a novel method for quantification of the modifications that occur on the surface of different types of gel-coated glass fibre-reinforced polyester composites under artificial UV-ageing at 254 nm. The method implies the adsorption of an ionic dye, namely methylene blue, on the UV-aged composite, and computing the CIELab colour space parameters from the photographic image of the coloured composite's surface. The method significantly enhances the colour differences between the irradiated composites and the reference, in contrast with the non-coloured ones. The colour modifications that occur represent a good indicative of the surface degradation, alteration of surface hydrophily and roughness of the composite and are in good correlation with the ATR-FTIR spectroscopy and optical microscopy results. The proposed method is easier, faster and cheaper than the traditional ones.

  12. Bioactive glass and connective tissue graft used to treat intrabony periodontal defects.

    PubMed

    Deliberador, Tatiana Miranda; Trotta, Daniel Rizzo; Klug, Luis Gustavo; Zielak, Joao Cesar; Giovanini, Allan Fernando

    2013-07-01

    Different techniques and materials can be used to treat intrabony periodontal defects caused by periodontal diseases. This case report presents an intrabony periodontal defect with bioactive glass and connective tissue graft used as a barrier. Probing depth and clinical attachment gain were reduced at 6 and 12 months post-treatment.

  13. Morphological study of borosilicate glass surface irradiated by heavy ions

    SciTech Connect

    Wang, T. S.; Du, X.; Yuan, W.; Duan, B. H.; D. Zhang, J.; Chen, L.; Peng, H. B.; Yang, D.; Zhang, G. F.; Zhu, Z. H.

    2016-11-01

    Borosilicate glass is a candidate material for radiation waste formation and other optical applications in various fields. To understand the radiation effect of borosilicate glass, heavy ion (Arq+, Krq+ and Xeq+) irradiations were used to simulate the alpha and recoiled nuclei irradiations in this study. The surface morphology of glass has been compared to ion irradiation doses and ion energies. The surface topography evolution of irradiated samples is characterized by optical microscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS). Micro-bumps are observed on the sample surface after irradiationwith 5 MeV Xeq+ over 5 × 1013 ions·cm-2. The size and density of the bumps increaseswith increasing irradiation dose. At a lowdose, bumps are on the nanometer (nm) scale and rather rare.While the dose is higher than 9 × 1015 ions·cm-2, the size of bumps is on the scale of a few microns, and the density is saturated. However, the height of the bumps increases froma fewnmto over 150nmwith further irradiation. The distribution of micro-bumps is nearly homogeneous. The bumps are condensed and swell up, and there is no crystallized structure according to the TEMdiffraction pattern. Elementmigration and concentrations are observedwith SIMS imaging. The arrayed micro-bumps are a new finding, and they might be used to change the surface properties. Bump formation is caused by phase separation, and volume swelling is induced by ion irradiation.

  14. Surface coatings of bioactive glasses on high strength ceramic composites

    NASA Astrophysics Data System (ADS)

    Martorana, S.; Fedele, A.; Mazzocchi, M.; Bellosi, A.

    2009-04-01

    Dense and ultrafine alumina-zirconia composites (Al 2O 3-16 wt%ZrO 2 and ZrO 2-20 wt%Al 2O 3) are developed and characterized for load bearing prosthetic applications. The improvement of the ceramic/bone interface, namely of the ceramic bioactivity, is performed by a glass coating on the surface of the composites. A new composition is used to produce the glass powder, by melting at 1550 °C the mixture of oxide raw materials. The processing to obtain a homogeneous and adherent coating on the ceramic substrates is investigated: the optimal temperature for the glazing treatment is 1200 °C. The microstructure of the coating and of the ceramic/coating interface, the adhesion and some mechanical properties of the prepared glass and of the coating are analyzed. Besides, the in vitro bioactive responses, by incubation of osteoblast-like cells on the coated samples, are evaluated: positive results are confirmed after 24 h and 72 h.

  15. Nonlinear propagation of surface plasmon-polaritons in chalcogenide glass

    NASA Astrophysics Data System (ADS)

    Sagor, Rakibul Hasan

    The field of plasmonics has attracted a lot of research in nano-photonics. Surface Plasmon Polaritons (SPPs) are believed to be strong candidates for nano-scale imaging and computing. SPPs are electromagnetic modes which arise from the coupling effect between photons and the free conduction electrons on the interface between a metal and a dielectric. In integrated optical devices based on SPPs, the light can be confined in sub-wavelength scale, and the resultant EM wave propagates along the metal interface. In this thesis, a time-domain simulation algorithm for the investigation of nonlinear propagation properties of SPPs in chalcogenide glasses is developed. Chalcogenide glasses have become attractive in ultrafast nonlinear devices due to their high material non-linearity. The frequency-dependent dispersion relations as well as third-order non-linearity of chalcogenide glass have been modeled using the general polarization algorithm incorporated in the auxiliary differential equation (ADE). The resulting time domain model has been solved numerically using the Finite Difference Time Domain method. The dynamics of SPP propagation in several plasmonic structures containing third-order nonlinearity have been studied. It was found that non-linear SPP propagation leads to significant changes in the spectrum of the propagated pulse. Such changes can be utilized in novel SPP-based switching and other photonic structur.

  16. One-end immobilization of individual DNA molecules on a functional hydrophobic glass surface.

    PubMed

    Matsuura, Shun-ichi; Kurita, Hirofumi; Nakano, Michihiko; Komatsu, Jun; Takashima, Kazunori; Katsura, Shinji; Mizuno, Akira

    2002-12-01

    We demonstrate an effective method for DNA immobilization on a hydrophobic glass surface. The new DNA immobilizing technique is extremely simple compared with conventional techniques that require heterobifunctional crosslinking reagent between DNA and substrate surface that are both modified chemically. In the first process, a coverslip was treated with dichlorodimethylsilane resulting in hydrophobic surface. lambda DNA molecules were ligated with 3'-terminus disulfide-modified 14 mer oligonucleotides at one cohesive end. After reduction of the disulfide to sulfhydryl (thiol) groups the resulting thiol-modified lambda DNA molecules were reacted on silanized coverslip. Fluorescent observation showed that the thiol-modified lambda DNA molecules were anchored specifically to the hydrophobic surface at one terminus, although non-specific binding of the DNA molecules was suppressed. It was observed that the one-end-attached DNA molecule was bound firmly to the surface and stretched reversibly in one direction when a d.c. electric field was applied.

  17. Effect of radiant heat on the surface hardness of glass polyalkenoate (ionomer) cement.

    PubMed

    Woolford, M J

    1994-12-01

    The use of heat to improve mechanical properties of materials is a widely accepted phenomenon. It has been studied in dentistry with a view to improving the properties of resin composite. Dental cements may benefit by the application of heat, in particular with regard to their early surface properties. This study was carried out to examine the effect of the application of radiant heat to the surface hardness of one type of glass polyalkenoate cement. It was found that raising the temperature of the surface of the cement to a maximum of 60 degrees C significantly improved the early surface hardness of the material. The application of a high level of heat also improved the surface hardness of the cement after 24 h compared to cement which had not been heat treated. The use of heat would appear to accelerate the matrix-forming reaction of the material and although further work is necessary this technique may have clinical application.

  18. Optical Properties of Gold Nanoparticle Assemblies on a Glass Surface

    NASA Astrophysics Data System (ADS)

    Stetsenko, M. O.; Rudenko, S. P.; Maksimenko, L. S.; Serdega, B. K.; Pluchery, O.; Snegir, S. V.

    2017-05-01

    The assemblies of cross-linked gold nanoparticles (AuNP) attract lot of scientific attention due to feasible perspectives of their use for development of scaled contact electrodes. Here, we developed and tested method of solid-state formation of dimers created from small AuNP ( 18 nm) cross-linked with 1.9-nonadithiol (NDT) molecules. The morphology of created coating of a glass surface and its optical-polarization properties have been studied in detail by combination of scanning electron microscopy, atomic force microscopy, UV-visible spectroscopy, and modulation-polarization spectroscopy.

  19. Cell/surface interactions and adhesion on bioactive glass 45S5.

    PubMed

    Levy, S; Van Dalen, M; Agonafer, S; Soboyejo, W O

    2007-01-01

    This paper examines the effects of surface texture (smooth versus rough) on cell/surface interactions on the bioactive glass, 45S5. The cell surface interactions associated with cell spreading are studied using cell culture experiments. Subsequent energy dispersive x-ray spectroscopy is also used to reveal the distributions of calcium, phosphorous, sodium and oxygen on the surfaces of the bioactive glasses. The implications of the results are then discussed for the applications of textured bioactive glasses in medicine.

  20. Surface engineering glass-metal coatings designed for induction heating of ceramic components

    NASA Astrophysics Data System (ADS)

    Khan, Amir Azam; Labbe, Jean Claude

    2014-06-01

    The term Surface Engineering is of relatively recent origin and use, however, the use of coatings and treatments to render surfaces of materials more suitable for certain application or environment is not new. With the advent of Vacuum Technology, Surface Engineering has gained a whole new impetus, whereby expensive materials with adequate mechanical, chemical and thermal properties are being coated or treated on their surfaces in order to achieve what is called as Surface Engineered materials. The present paper presents an overview of recent achievements in Surface Engineering and gives a detailed view of a specific application where glass-metal composite coatings were deposited on ceramic components in order to render them sensitive to induction heating. Sintered glaze coatings containing silver particles in appropriate concentration can be used for the induction heating of porcelain. Mixtures of glass ceramic powders with silver are used to prepare self-transfer patterns, which are deposited over porcelain. Several configurations of these coatings, which are aesthetic to start with, are employed and heating patterns are recorded. The microstructure of these coatings is discussed in relation to the heating ability by a classical household induction system. The results show that this technique is practical and commercially viable.

  1. Multifunctional methacrylate-based coatings for glass and metal surfaces

    NASA Astrophysics Data System (ADS)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-03-01

    In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating's upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  2. Decoupling of surface diffusion and relaxation dynamics of molecular glasses.

    PubMed

    Zhang, Yue; Fakhraai, Zahra

    2017-04-03

    Tobacco mosaic virus is used as a probe to measure surface diffusion of ultrathin films of N,N'-Bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD) (12 nm [Formula: see text] 53 nm, where [Formula: see text] is the film thickness) at various temperatures below the glass transition temperature, [Formula: see text], of all films. As the film thickness is decreased, [Formula: see text] decreases rapidly and the average film dynamics are enhanced by 6-14 orders of magnitude. We show that the surface diffusion is invariant of the film thickness decrease and the resulting enhanced overall mobility. The values of the surface diffusion coefficient and its temperature dependence are invariant of film thickness and are the same as the corresponding bulk values ([Formula: see text]400 nm). For the thinnest films ([Formula: see text]20 nm), the effective activation energy for rearrangement (temperature dependence of relaxation times) becomes smaller than the activation energy for surface diffusion. These results suggest that the fast surface diffusion is decoupled from film relaxation dynamics and is a solely free surface property.

  3. Influence of etching and annealing on evolution of surface structure of metallic glass

    NASA Astrophysics Data System (ADS)

    Ushakov, Ivan V.; Feodorov, Victor A.; Permyakova, Inga J.

    2004-04-01

    Evolution of surface structure of metallic glass subjected to etching was investigated. The changes of surface structure of metallic glass 82K3XCP after chemical etching and different modes of annealing were studied. Samples of metallic glass were etched in solutions of sulphurous acid with different concentration. Corrosion-resistance was determined. The dependence of corrosion rate on acid concentration was found. Characteristic concentric circumferences on the etching surface were investigated. Their formation mechanism is discussed. Crystallization on surface stimulated by both acid and annealing was examined. The formation of first dendrites on surface of annealed metallic glass and their evolution were investigated.

  4. Light-induced crawling of crystals on a glass surface

    PubMed Central

    Uchida, Emi; Azumi, Reiko; Norikane, Yasuo

    2015-01-01

    Motion is an essential process for many living organisms and for artificial robots and machines. To date, creating self-propelled motion in nano-to-macroscopic-sized objects has been a challenging issue for scientists. Herein, we report the directional and continuous motion of crystals on a glass surface when irradiated simultaneously with two different wavelengths, using simple azobenzenes as a photoresponsive organic compound. The direction of the motion can be controlled by the position of the light sources, and the crystals can even climb vertical surfaces. The motion is driven by crystallization and melting at the front and rear edges of the crystal, respectively, via photochemical conversion between the crystal and liquid phases induced by the trans–cis isomerization of azobenzenes. This finding could lead to remote-controlled micrometre-sized vehicles and valves on solid substrates. PMID:26084483

  5. Light-induced crawling of crystals on a glass surface

    NASA Astrophysics Data System (ADS)

    Uchida, Emi; Azumi, Reiko; Norikane, Yasuo

    2015-06-01

    Motion is an essential process for many living organisms and for artificial robots and machines. To date, creating self-propelled motion in nano-to-macroscopic-sized objects has been a challenging issue for scientists. Herein, we report the directional and continuous motion of crystals on a glass surface when irradiated simultaneously with two different wavelengths, using simple azobenzenes as a photoresponsive organic compound. The direction of the motion can be controlled by the position of the light sources, and the crystals can even climb vertical surfaces. The motion is driven by crystallization and melting at the front and rear edges of the crystal, respectively, via photochemical conversion between the crystal and liquid phases induced by the trans-cis isomerization of azobenzenes. This finding could lead to remote-controlled micrometre-sized vehicles and valves on solid substrates.

  6. Grain surface features of Apollo 17 orange and black glass

    NASA Technical Reports Server (NTRS)

    Mckay, David S.; Wentworth, Sue J.

    1993-01-01

    Lunar soil sample 74220 and core samples 74001/2 consist mainly of orange glass droplets, droplet fragments, and their crystallized equivalents. These samples are now generally accepted to be pyroclastic ejecta from early lunar volcanic eruptions. It has been known that they contain surface coatings and material rich in volatile condensable phases including S, Zn, F, Cl, and many volatile metals. Meyer summarizes the voluminous published chemical data and calculates the volatile enrichment ratios for most of the surface condensates. In an attempt to more completely understand this enrichment of surface volatiles, we have searched for carbon and carbon-bearing phases on droplet surfaces. We have reviewed many of our existing photomicrographs and energy dispersive analysis (EDX) of grain surfaces and have reexamined some of our older SEM mounts using an improved EDXA system capable of light element detection and analysis (oxygen, nitrogen, and carbon). In addition, we have made fresh mounts using procedures which should minimize carbon contamination or extraneous carbon x-rays and have analyzed for carbon.

  7. Surface alteration and physical properties of glass from the Cretaceous-Tertiary boundary

    USGS Publications Warehouse

    Barkatt, A.; Sang, J.C.; Thorpe, A.N.; Senftle, F.E.; Talmy, I.G.; Norr, M.K.; Mazer, J.J.; Izett, G.; Sigurdsson, Haraldur

    1994-01-01

    The scalloped surface feature on Cretaceous-Tertiary boundary glass is often explained as being due to terrestrial aqueous leaching. Leaching of man-made glass results in a reduction in density of the glass. Also, Fe, because of its relative insolubility, is concentrated by the leaching process. Thus, the Haitian glass specimens which have been heavily altered should have a thin rim of less dense glass in which the Fe is concentrated compared to the core glass. The higher Fe concentration in the rim glass should cause it to have an enhanced Curie constant and a lower density compared to the unaltered glass. The magnetic Curie constant, density, and scanning electron microscopic studies were made on altered specimens of Haitian glass and also on specimens showing a minimum of alteration. The results show that the less altered samples have the highest density and the lowest Curie constant. The data substantiate the terrestrial hypothesis. ?? 1994.

  8. Adsorption of tuberculin PPD to glass and plastic surfaces

    PubMed Central

    Landi, S.; Held, H. R.; Hauschild, A. H. W.; Hilsheimer, R.

    1966-01-01

    For some time it has been known that the adsorption of tuberculin to glass is a source of practical difficulties in tuberculin testing; for example, it leads to a loss of potency in diluted tuberculin PPD preparations used in the intracutaneous method of skin testing. The authors have correlated decreasing biological potency with decreasing radioactivity in solutions of tuberculin PPD labelled with 14C. The decrease in radioactivity is due to adsorption of PPD-14C to the glass or plastic surface of containers; it can be prevented by the addition of 0.0005% Tween 80. The extent of the decrease is affected by the type and size of the containers, the volume of solution used and the storage temperature. It is the same in the presence of 0.3% phenol or 0.01% Chinosol used as preservatives. The concentration of Tween 80 does not affect the size of the tuberculin skin reactions in BCG-sensitized guinea-pigs. It is recommended that an anti-adsorption agent be added to all dilute solutions of tuberculin PPD; in solutions for intracutaneous use containing 50 TU per ml, Tween 80 at a concentration of 0.0005% is satisfactory. PMID:5297556

  9. Invariant Fast Diffusion on the Surfaces of Ultrastable and Aged Molecular Glasses.

    PubMed

    Zhang, Yue; Fakhraai, Zahra

    2017-02-10

    Surface diffusion of molecular glasses is found to be orders of magnitude faster than bulk diffusion, with a stronger dependence on the molecular size and intermolecular interactions. In this study, we investigate the effect of variations in bulk dynamics on the surface diffusion of molecular glasses. Using the tobacco mosaic virus as a probe particle, we measure the surface diffusion on glasses of the same composition but with orders of magnitude of variations in bulk relaxation dynamics, produced by physical vapor deposition, physical aging, and liquid quenching. The bulk fictive temperatures of these glasses span over 35 K, indicating 13 to 20 orders of magnitude changes in bulk relaxation times. However, the surface diffusion coefficients on these glasses are measured to be identical at two temperatures below the bulk glass transition temperature T_{g}. These results suggest that surface diffusion has no dependence on the bulk relaxation dynamics when measured below T_{g}.

  10. Invariant Fast Diffusion on the Surfaces of Ultrastable and Aged Molecular Glasses

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Fakhraai, Zahra

    2017-02-01

    Surface diffusion of molecular glasses is found to be orders of magnitude faster than bulk diffusion, with a stronger dependence on the molecular size and intermolecular interactions. In this study, we investigate the effect of variations in bulk dynamics on the surface diffusion of molecular glasses. Using the tobacco mosaic virus as a probe particle, we measure the surface diffusion on glasses of the same composition but with orders of magnitude of variations in bulk relaxation dynamics, produced by physical vapor deposition, physical aging, and liquid quenching. The bulk fictive temperatures of these glasses span over 35 K, indicating 13 to 20 orders of magnitude changes in bulk relaxation times. However, the surface diffusion coefficients on these glasses are measured to be identical at two temperatures below the bulk glass transition temperature Tg . These results suggest that surface diffusion has no dependence on the bulk relaxation dynamics when measured below Tg.

  11. Electrogenerated indium tin oxide-coated glass surface with photosensitive interfaces: surface analysis.

    PubMed

    Konry, Tania; Bouhifd, Mounir; Cosnier, Serge; Whelan, Maurice; Valsesia, Andrea; Rossi, Francois; Marks, Robert S

    2007-04-15

    We present herein a photo-immobilization technique for the localized and specific conjugation of biochip platforms with different proteinaceous bioreceptors, such as antigen or antibodies. This methodology based on a photoactivable electrogenerated polymer film, pyrrole-benzophenone, allows the covalent immobilization of biomolecules through light mediation. The surface-conductive glass platform electropolymerized with poly(pyrrole-benzophenone) thin film may then be used to affinity-coat the chip with molecular recognition probes. This glass chip electroconductive surface modification is done by the deposition of a thin layer of indium tin oxide (ITO). Thereafter, pyrrole-benzophenone monomers are electropolymerized onto the conductive metal oxide surface and then exposed to an antigen Staphylococcal Enterotoxin B (SEB)) solution and illuminated with UV light (wavelength approximately 345 nm) through a mask. As a result of the photochemical reaction, a pattern thin layer of the antigen was covalently bound to the benzophenone-modified surface. Then the sample to be analyzed, along with its specific target antibody (anti-SEB antibodies), is introduced onto the glass surface and left to react with the previously photo-immobilized antigen. When the immuno-reaction is completed, the specifically attached immunoglobulin analytes are detected by using secondary antibodies conjugated with Fluorescein isothiocyanate (FITC). The fluorescence signal emanating from the biochip surface is then quantified by two methods, using a filtered intensified charge-coupled device (CCD) camera and a grating spectrometer.

  12. IR-ATR investigation of surface anisotropy in silicate glasses

    NASA Astrophysics Data System (ADS)

    Ivanovski, Vladimir; Mayerhöfer, Thomas G.; Kriltz, Antje; Popp, Jürgen

    2017-02-01

    Several samples of flat soda-lime silicate glass were investigated by the Infrared Attenuated Total Reflection (IR-ATR) spectroscopy technique. The specular reflectance spectra together with the results of the performed dispersion analysis and the generated reflectance spectra, using Fresnel equations, suggest that the samples are isotropic. In contrast, spectra recorded by the ATR technique suggest an anisotropic structure on the surface of the specimen different from that in the bulk. This is established through differences in the s- and p-polarized IR-ATR spectra, which cannot be simply transformed into one another employing Fresnel formula for an isotropic case. It appears that this thin film having a structure different from the bulk is larger than the ATR effective penetration depth of the evanescent ray for each incidence angle above the critical one. The investigation suggests C2 symmetry of the SiO4 unit.

  13. Observation on Surface Change of Fragile Glass: Temperature - Time Dependence Studied by X-Ray Reflectivity

    SciTech Connect

    Kikkawa, Hiroyuki; Kitahara, Amane; Takahashi, Isao

    2004-04-30

    The structural change of a fragile glass surface close to the glass transition temperature Tg is studied by using X-ray reflectivity. Measurements were performed on surfaces of maltitol, which is a typical polyalcohol fragile glass with Tg = 320K. Upon both heating and cooling, we find the following features which are also noticed in silicate glass surfaces: (i) On heating, the surface morphology indicates a variation at temperatures below Tg; (ii) A drastic increase in surface roughness occurs at a temperature about 333K on heating, which is 13K higher than Tg; (iii) During the cooling of the sample, formation of a low-density surface layer (3nm at 293K) is observed. Prior to the crystallization, nm - {mu}m sized domains were grown at the surface, which might not be reported for other glasses.

  14. Fracture resistance of endodontically treated teeth restored with glass fiber posts of different lengths.

    PubMed

    Franco, Erico Braga; Lins do Valle, Accacio; Pompéia Fraga de Almeida, Ana Lúcia; Rubo, José Henrique; Pereira, Jefferson Ricardo

    2014-01-01

    Endodontically treated teeth are known to have reduced structural strength. Glass fiber posts may influence fracture resistance and should be evaluated. The purpose of this study was to evaluate the influence of glass fiber post length on the fracture resistance of endodontically treated teeth. Forty intact human maxillary canines were selected and divided into 4 groups, the control group consisting of teeth restored with a custom gold cast post and core, with a length of two-thirds of the root. Other groups received prefabricated glass fiber posts in different lengths: group 1/3, removal of one-third of the sealing material (5 mm); group 1/2, removal of one-half of the sealing material (7.5 mm); and group 2/3, removal of two-thirds of the sealing material (10 mm). All the posts were cemented with resin cement, and the specimens with glass fiber posts received a composite resin core. All the specimens were restored with a metal crown and submitted to a compressive load until failure occurred. The results were evaluated by 1-way ANOVA, and the all pairwise multiple comparison procedures (Tukey honestly significantly difference test) (α=.05). The ANOVA showed significant differences among the groups (P<.002). The Tukey test showed that the control group presented significantly higher resistance to static load than the other groups (control group, 634.94 N; group 1/3, 200.01 N; group 1/2, 212.17 N; and group 2/3, 236.08 N). Although teeth restored with a cast post and core supported a higher compressive load, all of them fractured in a catastrophic manner. For teeth restored with glass fiber posts, the failure occurred at the junction between the composite resin core and the root. The length of glass fiber posts did not influence fracture load, but cast post and cores that extended two-thirds of the root length had significantly greater fracture resistance than glass fiber posts. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published

  15. Mechanical Strength and Broadband Transparency Improvement of Glass Wafers via Surface Nanostructures.

    PubMed

    Kumar, Amarendra; Kashyap, Kunal; Hou, Max T; Yeh, J Andrew

    2016-06-17

    In this study, we mechanically strengthened a borosilicate glass wafer by doubling its bending strength and simultaneously enhancing its transparency using surface nanostructures for different applications including sensors, displays and panels. A fabrication method that combines dry and wet etching is used for surface nanostructure fabrication. Specifically, we improved the bending strength of plain borosilicate glass by 96% using these surface nanostructures on both sides. Besides bending strength improvement, a limited optical transmittance enhancement of 3% was also observed in the visible light wavelength region (400-800 nm). Both strength and transparency were improved by using surface nanostructures of 500 nm depth on both sides of the borosilicate glass without affecting its bulk properties or the glass manufacturing process. Moreover, we observed comparatively smaller fragments during the breaking of the nanostructured glass, which is indicative of strengthening. The range for the nanostructure depth is defined for different applications with which improvements of the strength and transparency of borosilicate glass substrate are obtained.

  16. A literature review of surface alteration layer effects on waste glass behavior

    SciTech Connect

    Feng, X.; Cunnane, J.C.; Bates, J.K.

    1993-01-01

    When in contact with an aqueous solution, nuclear waste glass is subject to a chemical attack that results in progressive alteration. During tills alteration, constituent elements of the glass pass into the solution; elements initially in solution diffuse into, or are adsorbed onto, the solid; and new phases appear. This results in the formation of surface layers on the reacted glass. The glass corrosion and radionuclide release can be better understood by investigating these surface layer effects. In the past decade, there have been numerous studies regarding the effects of surface layers on glass reactions. This paper presents a systematic analysis and summary of the past knowledge regarding the effects of surface layers on glass-water interaction. This paper describes the major formation mechanisms of surface layers; reviews the role of surface layers in controlling mass transport and glass reaction affinity (through crystalline phases, an amorphous silica, a gel layer, or all the components in the glass); and discusses how the surface layers contribute to the retention of radionuclides during glass dissolution.

  17. A literature review of surface alteration layer effects on waste glass behavior

    SciTech Connect

    Feng, X.; Cunnane, J.C.; Bates, J.K.

    1993-05-01

    When in contact with an aqueous solution, nuclear waste glass is subject to a chemical attack that results in progressive alteration. During tills alteration, constituent elements of the glass pass into the solution; elements initially in solution diffuse into, or are adsorbed onto, the solid; and new phases appear. This results in the formation of surface layers on the reacted glass. The glass corrosion and radionuclide release can be better understood by investigating these surface layer effects. In the past decade, there have been numerous studies regarding the effects of surface layers on glass reactions. This paper presents a systematic analysis and summary of the past knowledge regarding the effects of surface layers on glass-water interaction. This paper describes the major formation mechanisms of surface layers; reviews the role of surface layers in controlling mass transport and glass reaction affinity (through crystalline phases, an amorphous silica, a gel layer, or all the components in the glass); and discusses how the surface layers contribute to the retention of radionuclides during glass dissolution.

  18. CO2 laser scribe of chemically strengthened glass with high surface compressive stress

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; Vaddi, Butchi R.

    2011-03-01

    Chemically strengthened glass is finding increasing use in handheld, IT and TV cover glass applications. Chemically strengthened glass, particularly with high (>600MPa) compressive stress (CS) and deeper depth of layer (DOL), enable to retain higher strength after damage than non-strengthened glass when its surface is abraded. Corning Gorilla® Glass has particularly proven to be advantageous over competition in this attribute. However, due to high compressive stress (CS) and Central Tension (CT) cutting ion-exchanged glass is extremely difficult and often unmanageable where ever the applications require dicing the chemically strengthened mother glass into smaller parts. We at Corning have developed a CO2 laser scribe and break method (LSB) to separate a single chemically strengthened glass sheet into plurality of devices. Furthermore, CO2 laser scribe and break method enables debris-free separation of glass with high edge strength due to its mirror-like edge finish. We have investigated laser scribe and break of chemically strengthened glass with surface compressive stress greater than 600 MPa. In this paper we present the results of CO2 scribe and break method and underlying laser scribing mechanisms. We demonstrated cross-scribe repetitively on GEN 2 size chemically strengthened glass substrates. Specimens for edge strength measurements of different thickness and CS/DOL glass were prepared using the laser scribe and break technique. The specimens were tested using the standard 4-point bend method and the results are presented.

  19. Initial adhesion of glass-fiber-reinforced composite to the surface of porcine calvarial bone.

    PubMed

    Tuusa, S M R; Lassila, L V J; Matinlinna, J P; Peltola, M J; Vallittu, P K

    2005-11-01

    The aim of this preliminary study was to compare the initial bond strength of the glass-fiber-reinforced composite veil to the surface of the porcine calvarial compact bone using different adhesives. Fiber-reinforced composite (FRC) made of E-glass fiber veil with the BisGMA-PMMA resin system was used in the study. For the shear bond strength test, porcine calvarial bone cubes were mounted into resin matrix. FRC-veil discs were bonded to compact bone with different types of adhesives: (A) BisGMA-HEMA based (3M-ESPE Scotchbond Multi-Purpose Adhesive), (B) 4-META/UDMA/BisGMA based (Unifil Bond Bonding Agent) and MDP based (Clearfil Se Bond adhesive), (C) UDMA/BisGMA/PMMA-based experimental adhesive, and (D) silane-based (APS, ICS, MPS) experimental adhesives. The surface of the bone was mechanically roughened and was either used as such, treated with dental primers (Unifil Bond Self-etching Primer, Clearfil Se Bond Primer), or treated with an experimental silane mixture (APS, ICS, MPS), or with a mixture of the experimental silane liquid and Clearfil Se Bond Primer. The 3M-ESPE Scotchbond Multi-Purpose Adhesive and UDMA/BisGMA/PMMA experimental adhesive gave poor results in the shear bond test (0.58 and 0.40 MPa, respectively). Unifil Bond Bonding Agent and Clearfil Se Bond adhesive with respective primers markedly improved the shear bond strength; with Unifil the result was 3.40 MPa, and with Clearfil it was 6.19 MPa. When the bone surface was primed with a mixture of Clearfil Se Bond Primer and Clearfil Porcelain Bond Activator, the Clearfil Se Bond adhesive-impregnated FRC veil gave the best adhesion to the bone surface in this test: 9.50 MPa. The addition of bioactive glass granules between the veil and the bone lowered the shear bond strength in the test system described above to 6.72 MPa. The test systems with the silane mixture were also promising. In the SEM study, it was found that the mechanical treatment reveals the pores of the bone surface. Chemical

  20. Tuning apparent friction coefficient by controlled patterning bulk metallic glasses surfaces

    PubMed Central

    Li, Ning; Xu, Erjiang; Liu, Ze; Wang, Xinyun; Liu, Lin

    2016-01-01

    Micro-honeycomb structures with various pitches between adjacent cells were hot-embossed on Zr35Ti30Cu8.25Be26.75 bulk metallic glass surface. The effect of pitch geometry on the frictional behavior of metallic glass surface was systematically investigated. The results revealed that all textured metallic glass surfaces show a reduction in friction coefficient compared to smooth surface. More intriguingly, the friction coefficient first decreased and then increased gradually with increasing pitches. Such unique behavior can be understood fundamentally from the perspective of competing effects between contact area and local stress level with increasing pitches. This finding not only enhance the in-depth understanding of the mechanism of the significant role of surface topography on the frictional behavior of metallic glass surface, but also opens a new route towards other functional applications for bulk metallic glasses. PMID:27991571

  1. Tuning apparent friction coefficient by controlled patterning bulk metallic glasses surfaces

    NASA Astrophysics Data System (ADS)

    Li, Ning; Xu, Erjiang; Liu, Ze; Wang, Xinyun; Liu, Lin

    2016-12-01

    Micro-honeycomb structures with various pitches between adjacent cells were hot-embossed on Zr35Ti30Cu8.25Be26.75 bulk metallic glass surface. The effect of pitch geometry on the frictional behavior of metallic glass surface was systematically investigated. The results revealed that all textured metallic glass surfaces show a reduction in friction coefficient compared to smooth surface. More intriguingly, the friction coefficient first decreased and then increased gradually with increasing pitches. Such unique behavior can be understood fundamentally from the perspective of competing effects between contact area and local stress level with increasing pitches. This finding not only enhance the in-depth understanding of the mechanism of the significant role of surface topography on the frictional behavior of metallic glass surface, but also opens a new route towards other functional applications for bulk metallic glasses.

  2. Improving copper plating adhesion on glass using laser machining techniques and areal surface texture parameters

    NASA Astrophysics Data System (ADS)

    He, Baofeng; Petzing, Jon; Webb, Patrick; Leach, Richard

    2015-12-01

    Glass is a promising substitute substrate material being evaluated for electronic packaging technology. Improving the electroless copper plated layer adhesion of the glass is one of the most important considerations for development of the technology. An excimer laser (248 nm) was used for structured texturing of glass surfaces (to improve adhesion) by changing mask dimensions, laser operating parameters and overlapping pitch spacing, and therefore producing a range of micro-scale features. Electroless plated copper adhesion strength was assessed using quantitative scratch testing, demonstrating that micro-patterned structures can significantly improve copper/glass adhesion. New ISO 25178 Part 2 areal surface texture parameters were used to characterise the surface roughness of ablated glass surfaces, and correlated to the scratch testing results. Highly correlated parameters were identified that could be used as predictive surface design tools, directly linking surface topography to adhesion performance, without the need for destructive adhesion quantification via scratch testing.

  3. Tuning apparent friction coefficient by controlled patterning bulk metallic glasses surfaces.

    PubMed

    Li, Ning; Xu, Erjiang; Liu, Ze; Wang, Xinyun; Liu, Lin

    2016-12-19

    Micro-honeycomb structures with various pitches between adjacent cells were hot-embossed on Zr35Ti30Cu8.25Be26.75 bulk metallic glass surface. The effect of pitch geometry on the frictional behavior of metallic glass surface was systematically investigated. The results revealed that all textured metallic glass surfaces show a reduction in friction coefficient compared to smooth surface. More intriguingly, the friction coefficient first decreased and then increased gradually with increasing pitches. Such unique behavior can be understood fundamentally from the perspective of competing effects between contact area and local stress level with increasing pitches. This finding not only enhance the in-depth understanding of the mechanism of the significant role of surface topography on the frictional behavior of metallic glass surface, but also opens a new route towards other functional applications for bulk metallic glasses.

  4. Comparative Evaluation of Bioactive Glass (Putty) and Platelet Rich Fibrin in Treating Furcation Defects.

    PubMed

    Biswas, Shriparna; Sambashivaiah, Savita; Kulal, Rithesh; Bilichodmath, Shivaprasad; Kurtzman, Gregori M

    2016-10-01

    The aim of this study was to compare a second-generation bioactive glass putty biomaterial against platelet rich fibrin in treating grade II furcation defects. Subjects were 15 systemically healthy patients (10 males and 5 females, ages 20-50 with a mean age of 38.33) with 20 mandibular molar class II furcation defects according to Glickman's classification. The 20 mandibular molar furcation defects were randomly allocated as follows: Group I, 10 furcation defects were treated using bioactive glass (NovaBone) bone graft putty material; Group II, 10 furcation defects were treated using platelet rich fibrin (PRF). Customized acrylic stents were fabricated on study casts and trimmed to the height contour of the teeth to serve as a fixed reference point for measurements. The following measurements were collected: gingival index, plaque index, vertical probing depth (from gingival margin to base of the pocket), clinical attachment level (CEJ to the base of the pocket), and horizontal probing depth of furcation involvement (using stent). Results showed that both groups had improvement in gingival index (GI) and plaque index (PI) at the recall intervals. There was an overall reduction in both vertical and horizontal probing depth in both groups; however, the Putty group (Group I) showed consistently more vertical probing depth reduction than the PRF group (Group II) at the end of third month (P-value = 0.0004), sixth month (P-value = 0.00001), and ninth month (P-value = 0.0004). Our conclusion was that use of bioactive glass osteostimulative biomaterial yields superior clinical results, including increased pocket depth reduction of class II furcation defects as compared to an autologous platelet concentrate. The clinical significance of our findings include the ease of use and superior biologic performance of second-generation putty bioglass biomaterials in furcation defects.

  5. Peptide therapeutics for treating ocular surface infections.

    PubMed

    Brandt, Curtis R

    2014-11-01

    Microbial pathogens-bacteria, viruses, fungi, and parasites-are significant causes of blindness, particularly in developing countries. For bacterial and some viral infections a number of antimicrobial drugs are available for therapy but there are fewer available for use in treating fungal and parasitic keratitis. There are also problems with current antimicrobials, such as limited efficacy and the presence of drug-resistant microbes. Thus, there is a need to develop additional drugs. Nature has given us an example of 1 potential source of new antimicrobials: antimicrobial peptides and proteins that are either present in bodily fluids and tissues constitutively or are induced upon infection. Given the nature of peptides, topical applications are the most likely use to be successful and this is ideal for treating keratitis. Such peptides would also be active against drug-resistant pathogens and might act synergistically if used in combination therapy. Hundreds of peptides with antimicrobial properties have been isolated or synthesized but only a handful have been tested against ocular pathogens and even fewer have been tested in animal models. This review summarizes the currently available information on the use of peptides to treat keratitis, outlines some of the problems that have been identified, and discusses future studies that will be needed. Most of the peptides that have been tested have shown activity at concentrations that do not warrant further development, but 1 or 2 have promising activity raising the possibility that peptides can be developed to treat keratitis.

  6. Peptide Therapeutics for Treating Ocular Surface Infections

    PubMed Central

    2014-01-01

    Abstract Microbial pathogens—bacteria, viruses, fungi, and parasites—are significant causes of blindness, particularly in developing countries. For bacterial and some viral infections a number of antimicrobial drugs are available for therapy but there are fewer available for use in treating fungal and parasitic keratitis. There are also problems with current antimicrobials, such as limited efficacy and the presence of drug-resistant microbes. Thus, there is a need to develop additional drugs. Nature has given us an example of 1 potential source of new antimicrobials: antimicrobial peptides and proteins that are either present in bodily fluids and tissues constitutively or are induced upon infection. Given the nature of peptides, topical applications are the most likely use to be successful and this is ideal for treating keratitis. Such peptides would also be active against drug-resistant pathogens and might act synergistically if used in combination therapy. Hundreds of peptides with antimicrobial properties have been isolated or synthesized but only a handful have been tested against ocular pathogens and even fewer have been tested in animal models. This review summarizes the currently available information on the use of peptides to treat keratitis, outlines some of the problems that have been identified, and discusses future studies that will be needed. Most of the peptides that have been tested have shown activity at concentrations that do not warrant further development, but 1 or 2 have promising activity raising the possibility that peptides can be developed to treat keratitis. PMID:25250986

  7. Effect of cryogenic temperatures on the failure strain and surface morphology of glass fiber

    NASA Astrophysics Data System (ADS)

    Wang, Qingwei; Jian, Chen; Lida, Luo; Wei, Ning

    2017-05-01

    Glass fiber used as reinforced composite presented excellent properties and was used widely in various environment including cryogenic temperature. The failure strain and surface morphology of glass fiber dipped in the liquid nitrogen and room temperature were measured in the study. Through the comparison of two different environment, results showed the glass fiber present better failure strains compared to those at room temperature, and there are no visible defect in the surface of glass fiber after immerged into the liquid nitrogen. The reduction of failure strain in the room temperature would owe dominantly to the relative humidity, but the temperature just exercised less influence on it.

  8. Analysis of the optical surface properties in the indirect glass slumping

    NASA Astrophysics Data System (ADS)

    Winter, Anita; Breunig, Elias; Friedrich, Peter; Proserpio, Laura

    2014-07-01

    The demand for larger collecting areas in X-ray telescopes within the mass limits of the launcher creates the need for light-weight mirror materials. At our institute we develop the technology of indirect thermal slumping of thin glass sheets to manufacture light mirror segments. A crucial part of the development is the measurement of the glass surface, shape and thickness profile in order to evaluate the quality of the reproduction method. We describe the measurement set-up, the analysis method of the surface profile and the evaluation of thickness variations in the glass, as well as their influence on the final glass sheets.

  9. Treating Surfaces To Obtain Narrowband Thermal Emission

    NASA Technical Reports Server (NTRS)

    Burger, Dale R.; Ong, Tiong P.

    1993-01-01

    Surfaces emitting electromagnetic radiation predominantly in desired narrow spectral bands when heated made more durable, and fabricated less expensively, according to proposal. Narrowband thermal emitters made by polishing metal substrates to specularity, then coating specular surfaces with films of rare-earth oxides approximately less than 1 micrometer thick. Metal substrates inherently resistant to mechanical shock. Resistance to thermal shock achieved by choosing metals and rare-earth oxides having equal or nearly equal coefficients of thermal expansion.

  10. Randomized clinical study comparing metallic and glass fiber post in restoration of endodontically treated teeth.

    PubMed

    Gbadebo, Olaide S; Ajayi, Deborah M; Oyekunle, Oyekunle O Dosumu; Shaba, Peter O

    2014-01-01

    Post-retained crowns are indicated for endodontically treated teeth (ETT) with severely damaged coronal tissue. Metallic custom and prefabricated posts have been used over the years, however, due to unacceptable color, extreme rigidity and corrosion, fiber posts, which are flexible, aesthetically pleasing and have modulus of elasticity comparable with dentin were introduced. To compare clinical performance of metallic and glass fiber posts in restoration of ETT. 40 ETT requiring post retained restorations were included. These teeth were randomly allocated into 2 groups. Twenty teeth were restored using a glass fiber-reinforced post (FRP) and 20 others received stainless steel parapost (PP), each in combination with composite core buildups. Patients were observed at 1 and 6 months after post placement and cementation of porcelain fused to metal (PFM) crown. Marginal gap consideration, post retention, post fracture, root fracture, crown fracture, crown decementation and loss of restoration were part of the data recorded. All teeth were assessed clinically and radiographically. Fisher's exact test was used for categorical values while log-rank test was used for descriptive statistical analysis. One tooth in the PP group failed, secondary to decementation of the PFM crown giving a 2.5% overall failure while none in the FRP group failed. The survival rate of FRP was thus 100% while it was 97.5% in the PP group. This however was not statistically significant (log-rank test, P = 0.32). Glass FRPs performed better than the metallic post based on short-term clinical performance.

  11. The influence of cavity design and glass fiber posts on biomechanical behavior of endodontically treated premolars.

    PubMed

    Soares, Carlos Jose; Soares, Paulo Vinicius; de Freitas Santos-Filho, Paulo Cesar; Castro, Carolina Guimaraes; Magalhaes, Denildo; Versluis, Antheunis

    2008-08-01

    The aim of this study was to evaluate the effect of cavity design and glass fiber posts on stress distributions and fracture resistance of endodontically treated premolars. Fifty extracted intact mandibular premolars were divided into 5 groups (n = 10): ST, sound teeth (control); MOD, mesio-occlusal-distal preparation + endodontic treatment (ET) + composite resin restoration (CR); MODP, mesio-occlusal-distal + ET + glass fiber post + CR; MOD2/3, mesio-occlusal-distal + two thirds occlusal-cervical cusp loss + ET + CR; and MODP2/3, mesio-occlusal-distal + two thirds cusp loss + ET + glass fiber post + CR. The specimens were loaded on a cusp slope until fracture. Fracture patterns were classified according to four failure types. Stress distributions were evaluated for each group in a two-dimensional finite element analysis. The fracture resistance of the MODP, MOD2/3, and MODP2/3 groups was significantly lower than the ST and MOD groups (p < 0.05). The loss of dental structure and the presence of fiber post restoration reduced fracture resistance and created higher stress concentrations in the tooth-restoration complex. However, when there was a large loss of dental structure (MODP2/3), the post reduced the incidence of catastrophic fracture types.

  12. Environmental transformation of 1-nitropyrene on glass surfaces

    NASA Astrophysics Data System (ADS)

    Benson, J. M.; Brooks, A. L.; Cheng, Y. S.; Henderson, T. R.; White, J. E.

    We have investigated the photochemical/chemical transformation of solid 1-nitropyrene (NP) in natural light to gain some understanding of the fate of nitroaromatic compounds released into the atmosphere. Glass plates coated with 14C-labeled NP were exposed continuously outdoors for periods of 12-670 h. Samples kept in the dark at ambient temperatures and at -20°C were also studied. Breakdown products were separated from the parent compound by high-pressure liquid chromatography, quantitated by liquid scintillation spectroscopy and identified by standard spectroscopic techniques. The rate of NP breakdown could be fitted with a two-component exponential. Half-times of breakdown for the rapid and slower components of breakdown are 14 and 533 h, respectively. Breakdown appears to have resulted in loss of the nitro group with formation of hydroxypyrene, possibly pyrene dione and dihydroxy pyrene, and several as yet unidentified compounds. Mutagenic activities of nitropyrene and its breakdown products were determined in Salmonella strain TA-98, with and without the addition of rat liver S-9. Mutagenic activities of breakdown products were significantly less than that of NP, probably because of loss of the nitro group. Further work is needed to determine if these results also apply to particle-associated NP that is airborne or deposited on surfaces.

  13. The effect of exposed glass fibers and particles of bioactive glass on the surface wettability of composite implants.

    PubMed

    Abdulmajeed, Aous A; Lassila, Lippo V; Vallittu, Pekka K; Närhi, Timo O

    2011-01-01

    Measurement of the wettability of a material is a predictive index of cytocompatibility. This study was designed to evaluate the effect of exposed E-glass fibers and bioactive glass (BAG) particles on the surface wettability behavior of composite implants. Two different groups were investigated: (a) fiber reinforced composites (FRCs) with different fiber orientations and (b) polymer composites with different wt. % of BAG particles. Photopolymerized and heat postpolymerized composite substrates were made for both groups. The surface wettability, topography, and roughness were analyzed. Equilibrium contact angles were measured using the sessile drop method. Three liquids were used as a probe for surface free energy (SFE) calculations. SFE values were calculated from contact angles obtained on smooth surfaces. The surface with transverse distribution of fibers showed higher (P < 0.001) polar (γ(P)) and total SFE (γ(TOT)) components (16.9 and 51.04 mJ/m(2), resp.) than the surface with in-plane distribution of fibers (13.77 and 48.27 mJ/m(2), resp.). The increase in BAG particle wt. % increased the polar (γ(P)) value, while the dispersive (γ(D)) value decreased. Postpolymerization by heat treatment improved the SFE components on all the surfaces investigated (P < 0.001). Composites containing E-glass fibers and BAG particles are hydrophilic materials that show good wettability characteristics.

  14. Controlling surface energy of glass substrates to prepare superhydrophobic and transparent films from silica nanoparticle suspensions.

    PubMed

    Ogihara, Hitoshi; Xie, Jing; Saji, Tetsuo

    2015-01-01

    We fabricated superhydrophobic and transparent silica nanoparticle (SNP) films on glass plates via spray-coating technique. When suspensions containing 1-propanol and hydrophobic SNPs were sprayed over glass plates that were modified with dodecyl groups, superhydrophobic and transparent SNP films were formed on the substrates. Surface energy of the glass plates had a significant role to obtain superhydrophobic and transparent SNP films. SNP films did not show superhydrophobicity when bare glass plates were used as substrates, because water droplets tend to adhere the exposed part of the hydrophilic glass plate. Glass plates having extreme low surface energy were not also suitable because suspension solution was repelled from the substrates, which resulted in forming non-uniform SNP films. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Topography and Mechanical Property Mapping of International Simple Glass Surfaces with Atomic Force Microscopy

    SciTech Connect

    Pierce, Eric M

    2014-01-01

    Quantitative Nanomechanical Peak Force (PF-QNM) TappingModeTM atomic force microscopy measurements are presented for the first time on polished glass surfaces. The PF-QNM technique allows for topography and mechanical property information to be measured simultaneously at each pixel. Results for the international simple glass which represents a simplified version of SON68 glass suggests an average Young s modulus of 78.8 15.1 GPa is within the experimental error of the modulus measured for SON68 glass (83.6 2 GPa) with conventional approaches. Application of the PF-QNM technique will be extended to in situ glass corrosion experiments with the goal of gaining atomic-scale insights into altered layer development by exploiting the mechanical property differences that exist between silica gel (e.g., altered layer) and pristine glass surface.

  16. Bioactive glass surface for fiber reinforced composite implants via surface etching by Excimer laser.

    PubMed

    Kulkova, Julia; Moritz, Niko; Huhtinen, Hannu; Mattila, Riina; Donati, Ivan; Marsich, Eleonora; Paoletti, Sergio; Vallittu, Pekka K

    2016-07-01

    Biostable fiber-reinforced composites (FRC) prepared from bisphenol-A-glycidyldimethacrylate (BisGMA)-based thermosets reinforced with E-glass fibers are promising alternatives to metallic implants due to the excellent fatigue resistance and the mechanical properties matching those of bone. Bioactive glass (BG) granules can be incorporated within the polymer matrix to improve the osteointegration of the FRC implants. However, the creation of a viable surface layer using BG granules is technically challenging. In this study, we investigated the potential of Excimer laser ablation to achieve the selective removal of the matrix to expose the surface of BG granules. A UV-vis spectroscopic study was carried out to investigate the differences in the penetration of light in the thermoset matrix and BG. Thereafter, optimal Excimer laser ablation parameters were established. The formation of a calcium phosphate (CaP) layer on the surface of the laser-ablated specimens was verified in simulated body fluid (SBF). In addition, the proliferation of MG63 cells on the surfaces of the laser-ablated specimens was investigated. For the laser-ablated specimens, the pattern of proliferation of MG63 cells was comparable to that in the positive control group (Ti6Al4V). We concluded that Excimer laser ablation has potential for the creation of a bioactive surface on FRC-implants. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Effect of composition on the penetration of inert gases adsorbed onto silicate glass surfaces

    SciTech Connect

    Kohler, A.E. Jr.; Garofalini, S.H. )

    1994-12-01

    Molecular dynamics (MD) computer simulations were used to study the adsorption of inert gases (N[sub 2], Ar, Ne) onto glass surfaces. There were four types of surfaces used: silica, sodium trisilicate, sodium disilicate, and sodium aluminosilicate. Unlike the results seen previously in the deposition of metals onto these surfaces, it was found that the inert gas adsorbates had little or no effect on the substrate structure during the adsorption. However the structure of the glasses dramatically altered the adsorption behavior from point to point along the surface for all of the adsorbates. Nitrogen and argon were found to be unable to penetrate the glass surfaces. Individual neon atoms were able to penetrate all of the surfaces except for the sodium aluminosilicate. The reasons for the difference in adsorption behavior are discussed in terms of the compositional effects on the structure of the glasses. 24 refs., 8 figs., 4 tabs.

  18. Surfactant Induced Interfacial Anchoring Transitions in Nematic Liquid Crystal Droplets on Glass Surfaces

    NASA Astrophysics Data System (ADS)

    Kulkarni, Siddharth; Thareja, Prachi

    The interfacial adsorption of surfactants at planar nematic liquid crystal (NLC)-water interface induces an ordering transition from a tilted to perpendicular anchoring with the increase in surfactant concentration at CN=C/Ccmc≪1, where Ccmc is the Critical Micelle Concentration of surfactants in water. In this study, we show that depending upon the surfactant structure a tilted to perpendicular NLC anchoring transition is observed at C/Ccmc≥1 in 5CB droplets of size 50-70μm. Micrometer sized 5CB droplets are deposited on glass surfaces using flow coating of 5CB-in-ethanol solutions. When placed on 5CB drop decorated glass surfaces, the aqueous surfactant solutions of aliphatic chain surfactants (SDS, CTAB and CPBr) at CN<1, result in an optical transition to a bright-cross texture attributed to the tilted anchoring of 5CB molecules at 5CB-water interface. At C/Ccmc≥1, perpendicular anchoring of 5CB molecules at 5CB-water interface results in a droplet texture with a hedgehog defect. In contrast, aqueous solutions of SDBS lead to 5CB droplets with a bright-cross texture regardless of the surfactant concentration in the aqueous phase. These results indicate that the orientation of 5CB molecules is independent of the nature of the surfactant headgroup. In addition, 5CB droplet decorated OTS treated glass substrates show a hedgehog texture which disappears completely on exposure to organic vapors with the response time-dependent on the polarity of the vapor molecules.

  19. Two methods for glass surface modification and their application in protein immobilization.

    PubMed

    Qin, Ming; Hou, Sen; Wang, Likai; Feng, XiZeng; Wang, Rui; Yang, Yanlian; Wang, Chen; Yu, Lei; Shao, Bin; Qiao, MingQiang

    2007-11-15

    Protein immobilization is a crucial step in protein chip, biosensor, etc. Here, two methods to immobilize proteins on glass surface were analyzed, one is silanization method using 3-aminopropyltriethoxysilane (APTES), and the other is hydrophobin HFBI coating. The modified glass surfaces were characterized with X-ray photoelectron spectroscopy (XPS), water contact angle measurement (WCA) and immunoassay. The results of XPS and WCA illustrated that the surface property of glass can be changed by both the two methods. The following immunoassay using microcontact printing (microCP) verified that both methods could help protein immobilization effectively on glass slides. Compared with the amine treatment, it is concluded that hydrophobin self-assemblies is a simple and generic way for protein immobilization on glass slides, which has potential application in protein chips and biosensors.

  20. Adhesion mapping of chemically modified and poly(ethylene oxide)-grafted glass surfaces

    PubMed Central

    Jogikalmath, G.; Stuart, J.K.; Pungor, A.; Hlady, V.

    2012-01-01

    Two-dimensional mapping of the adhesion pull-off forces was used to study the origin of surface heterogeneity in the grafted poly(ethylene oxide) (PEO) layer. The variance of the pull-off forces measured over the μm-sized regions after each chemical step of modifying glass surfaces was taken to be a measure of the surface chemical heterogeneity. The attachment of γ-glycidoxypropyltrimethoxy silane (GPS) to glass decreased the pull-off forces relative to the clean glass and made the surface more uniform. The subsequent hydrolysis of the terminal epoxide groups resulted in a larger surface heterogeneity which was modeled by two populations of the terminal hydroxyl groups, each with its own distribution of adhesion forces and force variance. The activation of the hydroxyls with carbonyldiimmidazole (CDI) healed the surface and lowered its adhesion, however, the force variance remained rather large. Finally, the grafting of the α,ω-diamino poly(ethyleneoxide) chains to the CDI-activated glass largely eliminated adhesion except at a few discrete regions. The adhesion on the PEO grafted layer followed the Poisson distribution of the pull-off forces. With the exception of the glass surface, a correlation between the water contact angles and the mean pull-off forces measured with the Si3N4 tip surfaces was found for all modified glass surfaces. PMID:22267896

  1. Origin and consequences of silicate glass passivation by surface layers

    PubMed Central

    Gin, Stéphane; Jollivet, Patrick; Fournier, Maxime; Angeli, Frédéric; Frugier, Pierre; Charpentier, Thibault

    2015-01-01

    Silicate glasses are durable materials, but are they sufficiently durable to confine highly radioactive wastes for hundreds of thousands years? Addressing this question requires a thorough understanding of the mechanisms underpinning aqueous corrosion of these materials. Here we show that in silica-saturated solution, a model glass of nuclear interest corrodes but at a rate that dramatically drops as a passivating layer forms. Water ingress into the glass, leading to the congruent release of mobile elements (B, Na and Ca), is followed by in situ repolymerization of the silicate network. This material is at equilibrium with pore and bulk solutions, and acts as a molecular sieve with a cutoff below 1 nm. The low corrosion rate resulting from the formation of this stable passivating layer enables the objective of durability to be met, while progress in the fundamental understanding of corrosion unlocks the potential for optimizing the design of nuclear glass-geological disposal. PMID:25695377

  2. Nanoscale topographic changes on sterilized glass surfaces affect cell adhesion and spreading.

    PubMed

    Wittenburg, Gretel; Lauer, Günter; Oswald, Steffen; Labudde, Dirk; Franz, Clemens M

    2014-08-01

    Producing sterile glass surfaces is of great importance for a wide range of laboratory and medical applications, including in vitro cell culture and tissue engineering. However, sterilization may change the surface properties of glass and thereby affect its use for medical applications, for instance as a substrate for culturing cells. To investigate potential effects of sterilization on glass surface topography, borosilicate glass coverslips were left untreated or subjected to several common sterilization procedures, including low-temperature plasma gas, gamma irradiation and steam. Imaging by atomic force microscopy demonstrated that the surface of untreated borosilicate coverslips features a complex landscape of microislands ranging from 1000 to 3000 nm in diameter and 1 to 3 nm in height. Steam treatment completely removes these microislands, producing a nanosmooth glass surface. In contrast, plasma treatment partially degrades the microisland structure, while gamma irradiation has no effect on microisland topography. To test for possible effects of the nanotopographic structures on cell adhesion, human gingival fibroblasts were seeded on untreated or sterilized glass surfaces. Analyzing fibroblast adhesion 3, 6, and 24 h after cell seeding revealed significant differences in cell attachment and spreading depending on the sterilization method applied. Furthermore, single-cell force spectroscopy revealed a connection between the nanotopographic landscape of glass and the formation of cellular adhesion forces, indicating that fibroblasts generally adhere weakly to nanosmooth but strongly to nanorough glass surfaces. Nanotopographic changes induced by different sterilization methods may therefore need to be considered when preparing sterile glass surfaces for cell culture or biomedical applications. © 2013 Wiley Periodicals, Inc.

  3. The analysis of AC/A ratio in nonrefractive accommodative esotropia treated with bifocal glasses.

    PubMed

    Kim, Wook Kyum; Kang, Sung Yong; Rhiu, Soolienah; Chung, Seung Ah; Lee, Jong Bok

    2012-02-01

    To report the long term results of bifocal treatment in nonrefractive accommodative esotropia and to analyze the changes of accommodative convergence to accommodation (AC/A) ratio. Sixteen patients treated with bifocal glasses for at least 5 years were evaluated retrospectively. Angle of deviation at near and distance, refractive error, and AC/A ratio by the lens gradient method were analyzed. The changes of AC/A ratios were also compared after dividing the patients according to continuation or cessation of bifocal therapy. Six patients (38%; bifocal stop group, BSG) were able to stop using bifocal glasses at an average age of 10.8 years (range, 6.5 to 15.4 years) during their follow-up. However, the other ten patients (62%; bifocal continue group, BCG) had to continue using bifocal glasses until the final visit, which was 13.8 years on average (range, 11.3 to 18.5 years). The AC/A ratio decreased from time of bifocal prescription to the last visit in both groups, from 4.4 to 2.7 in the BSG and from 5.9 to 4.5 in the BCG. AC/A ratios were significantly higher (p = 0.03) in the BCG than that of the BSG from the beginning of bifocal treatment and this difference was persistent until the final visit (p = 0.03). The AC/A ratio decreased with age in both groups but was significantly higher throughout the entire follow-up period in the BCG. AC/A ratio at bifocal prescription could be an important factor in predicting response to bifocal treatment.

  4. The Analysis of AC/A Ratio in Nonrefractive Accommodative Esotropia Treated with Bifocal Glasses

    PubMed Central

    Kim, Wook Kyum; Kang, Sung Yong; Rhiu, Soolienah; Chung, Seung Ah

    2012-01-01

    Purpose To report the long term results of bifocal treatment in nonrefractive accommodative esotropia and to analyze the changes of accommodative convergence to accommodation (AC/A) ratio. Methods Sixteen patients treated with bifocal glasses for at least 5 years were evaluated retrospectively. Angle of deviation at near and distance, refractive error, and AC/A ratio by the lens gradient method were analyzed. The changes of AC/A ratios were also compared after dividing the patients according to continuation or cessation of bifocal therapy. Results Six patients (38%; bifocal stop group, BSG) were able to stop using bifocal glasses at an average age of 10.8 years (range, 6.5 to 15.4 years) during their follow-up. However, the other ten patients (62%; bifocal continue group, BCG) had to continue using bifocal glasses until the final visit, which was 13.8 years on average (range, 11.3 to 18.5 years). The AC/A ratio decreased from time of bifocal prescription to the last visit in both groups, from 4.4 to 2.7 in the BSG and from 5.9 to 4.5 in the BCG. AC/A ratios were significantly higher (p = 0.03) in the BCG than that of the BSG from the beginning of bifocal treatment and this difference was persistent until the final visit (p = 0.03). Conclusions The AC/A ratio decreased with age in both groups but was significantly higher throughout the entire follow-up period in the BCG. AC/A ratio at bifocal prescription could be an important factor in predicting response to bifocal treatment. PMID:22323884

  5. Interferon alpha-2a interactions on glass vial surfaces measured by atomic force microscopy.

    PubMed

    Schwarzenbach, Monica S; Reimann, Peter; Thommen, Verena; Hegner, Martin; Mumenthaler, Marco; Schwob, Jacky; Güntherodt, Hans-Joachim

    2002-01-01

    Atomic force microscopy was used to study adsorption and adhesion peculiarities of interferon alpha-2a on glass and mica surfaces. The specific protein adsorption behavior as a function of the pH value was illustrated on mica by single molecule imaging, while adhesion forces between interferon molecules and inner surfaces of borosilicate glass vials were measured directly under aqueous buffer conditions by force microscopy. We found that the adhesion force on Schott FIOLAX Type I plus was reduced by 40% of the total adhesion force measured on Schott FIOLAX, a standard type I borosilicate glass quality. These results reflect the anticipated superiority of the special "Type I plus" coating over undesired protein adsorption to glass. In addition, this study gives insight into a new method to predict unintended protein adsorption to glass container walls and to characterize the adsorption process by force measurement.

  6. Interaction of water vapor with silicate glass surfaces: Mass-spectrometric investigations

    NASA Astrophysics Data System (ADS)

    Kudriavtsev, Yu.; Asomoza-Palacio, R.; Manzanilla-Naim, L.

    2017-05-01

    The secondary ion mass-spectroscopy technique was used to study the results of hydration of borosilicate, aluminosilicate, and soda-lime silicate glasses in 1H2 18O water vapor containing 97% of the isotope 18O. It is shown that hydration of the surface of the soda-lime silicate glass occurs as a result of the ion-exchange reaction with alkali metals. In the case of borosilicate and aluminosilicate glasses, water molecules decompose on the glass surface, with the observed formation of hydrogenated layer in the glass being the result of a solid-state chemical reaction—presumably, with the formation of hydroxides from aluminum and boron oxides.

  7. Enhanced surface patterning of chalcogenide glass via imprinting process using a buffer layer

    NASA Astrophysics Data System (ADS)

    Jin, Byeong Kyou; Choi, Duk-Yong; Chung, Woon Jin; Choi, Yong Gyu

    2017-09-01

    In an effort to enhance transcriptability of quasi-three-dimensional patterns present in silicon stamp onto the surface of 'bulk' chalcogenide glass, a buffer layer was introduced during the replication process via imprinting. Dissimilar patterns with diverse depths along the surface normal direction were imprinted with or without the buffer layer, and the resulting patterns on the glass surface were compared with regard to the transcription quality in both the lateral and vertical directions. After assessing the processing conditions appropriate for imprinting bulk As2S3 glass especially in terms of temperature and duration, candidate materials suitable for the buffer layer were screened: Commercially available polydimethylsiloxane was then chosen, and impact of this buffer layer was elucidated. The imprinted patterns turned out to become more uniform over large surface areas when the buffer layer was inserted. This finding confirmed that the use of buffer layer conspicuously enhanced the transcriptability of imprinting process for bulk chalcogenide glass.

  8. Accurate surface tension measurement of glass melts by the pendant drop method.

    PubMed

    Chang, Yao-Yuan; Wu, Ming-Ya; Hung, Yi-Lin; Lin, Shi-Yow

    2011-05-01

    A pendant drop tensiometer, coupled with image digitization technology and a best-fitting algorithm, was built to accurately measure the surface tension of glass melts at high temperatures. More than one thousand edge-coordinate points were obtained for a pendant glass drop. These edge points were fitted with the theoretical drop profiles derived from the Young-Laplace equation to determine the surface tension of glass melt. The uncertainty of the surface tension measurements was investigated. The measurement uncertainty (σ) could be related to a newly defined factor of drop profile completeness (Fc): the larger the Fc is, the smaller σ is. Experimental data showed that the uncertainty of the surface tension measurement when using this pendant drop tensiometer could be ±3 mN∕m for glass melts.

  9. Durability of SRP Waste Glass - Effects of Pressure and Formation of Surface Layers

    SciTech Connect

    Wicks, G.G.

    2001-10-17

    This report discusses results of an assessment of pressure at anticipated storage temperature on the chemical durability of Savannah River Plant waste glass. Surface interactions were also examined and corrosion mechanisms discussed.

  10. Environmental effects on initiation and propagation of surface defects on silicate glasses: scratch and fracture toughness study

    NASA Astrophysics Data System (ADS)

    Surdyka, Nicholas D.; Pantano, Carlo G.; Kim, Seong H.

    2014-08-01

    The glass composition and surrounding environment can play an important role in the initiation and propagation of surface defects, which affect the practical strength of glass. We have studied how the environment and glass composition affect the tribological and indentation properties of multicomponent silicate glasses. Soda lime silica and aluminosilicate glasses were studied to compare the effects of the alkali ion and glass network type on surface defect formation. Although both glasses contained leachable sodium ions, the surface wear of soda lime glass decreased with increasing humidity while sodium aluminosilicate glass had an observable increase in surface wear. This indicated that sodium ion and water activity on/in glass surfaces vary depending on the glass network structure. The exchange of Na+ with K+ in aluminosilicate glass increased the elastic modulus, hardness, and resistance to fracture substantially; however, it did not improve the surface scratch resistance in humid environments. This suggested that the improved fracture toughness for the K-exchanged aluminosilicate glass is mainly due to the improved bulk properties; surface wear can readily take place regardless of Na/K-exchange.

  11. Glass surface metal deposition with high-power femtosecond fiber laser

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Deng, Cheng; Bai, Shuang

    2016-12-01

    Using femtosecond fiber laser-based additive manufacturing (AM), metal powder is deposited on glass surface for the first time to change its surface reflection and diffuse its transmission beam. The challenge, due to mismatch between metal and glass on melting temperature, thermal expansion coefficient, brittleness, is resolved by controlling AM parameters such as power, scan speed, hatching, and powder thickness. Metal powder such as iron is successfully deposited and demonstrated functions such as diffusion of light and blackening effects.

  12. Effects of PV Module Soiling on Glass Surface Resistance and Potential-Induced Degradation

    SciTech Connect

    Hacke, Peter; Button, Patrick; Hendrickson, Alex; Spataru, Sergiu; Glick, Stephen

    2015-06-14

    The goals of the project were: Determine applicability of transmission line method (TLM) to evaluate sheet resistance of soils on module glass;
    Evaluate various soils on glass for changes in surface resistance and their ability to promote potential-induced degradation with humidity (PID);
    Evaluate PID characteristics, rate, and leakage current increases on full-size mc-Si modules associated with a conductive soil on the surface.

  13. Surface Morphology and Structure of Double-Phase Magnetic Alkali Borosilicate Glasses

    NASA Astrophysics Data System (ADS)

    Andreeva, N. V.; Naberezhnov, A. A.; Tomkovich, M. V.; Nacke, B.; Kichigin, V.; Rudskoy, A. I.; Filimonov, A. V.

    2016-11-01

    The surface morphology of double-phase magnetic alkali borosilicate glasses of four types obtained by induction melting is studied by the methods of atomic-force and scanning electron microscopy. The distribution of elements over the surface and the elemental composition of the glasses are determined. It is shown that a dendritic system of interrelated channels required for formation of porous matrixes with controlled mean pore diameter may be obtained in these objects depending on the heat treatment mode.

  14. The effect of boron oxide on the composition, structure, and adsorptivity of glass surfaces

    NASA Astrophysics Data System (ADS)

    Schaut, Robert A.

    Boron oxide has been added to commercial silicate glasses for many years to aid in lowering melting temperatures, lowering thermal expansion, and controlling chemical durability. The fact that simple borate glasses have rather high thermal expansion and low chemical durability attests to the unique influence of boron oxide additions upon the properties of silicate glasses. However, the impact of boron oxide additions upon surface properties of multicomponent borosilicates such as adsorption and reactivity is not yet well understood. In particular, the presence of multiple coordination states for boron is expected to introduce adsorption sites with different acidic or basic behavior, but their existence is yet unproven. To investigate these effects, multicomponent sodium aluminosilicate glasses have been prepared with varying sodium and boron concentrations and drawn into moderately high-surface-area continuous filament fibers. A relatively new technique, boron K-edge Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy is applied to study the local boron coordination at fracture and melt-derived fiber surfaces of these glasses. This structural information is combined with surface compositional information by X-ray Photoelectron Spectroscopy (XPS) to characterize the local atomic structure of boron at the as-formed glass surface. Finally, this information is used to interpret the adsorptivity of these as-formed and leached surfaces toward short-chain alcohol molecules through a new Inverse Gas Chromatography---Temperature Programmed Desorption (IGC-TPD) experiment. The results clearly show that boron additions to alkali-free glass surfaces introduce a unique adsorption site which is not present on boron-free glass surfaces and is easily removed by leaching in acidic solutions.

  15. Surface roughening of glass ionomer cements by neutral NaF solutions.

    PubMed

    De Witte, An M J C; De Maeyer, Erna A P; Verbeeck, Ronald M H

    2003-05-01

    The objective of this study was to investigate the effect of repeated applications of a neutral NaF solution on the surface roughness of four conventional glass ionomer cements (GIC) (ChemFil Superior encapsulated, Fuji Cap II, Ketac-Fil and Hi Dense), three resin-modified (RM-) GIC (Fuji II LC encapsulated, Photac-Fil and Vitremer) and one polyacid-modified composite resin (PAM-C) (Dyract). Matured specimens were four times alternately eluted in water and exposed to 2% neutral NaF aqueous solutions for 1h. Control specimens were only subjected to elution in water for the same time period. After the treatment the surface roughness R(a) was determined using non-contact surface profilometry and selected samples were examined with SEM. Except for the PAM-C, R(a) increased drastically for the fluoride-treated samples compared to water-stored samples, the effect being most pronounced for the GIC. Surface roughening apparently is caused by a progressive disintegration or chemical erosion of the polysalt matrix of (RM-)GIC.

  16. Bakeable, all-metal demountable vacuum seal to a flat glass surface

    NASA Astrophysics Data System (ADS)

    Ng, N.; Collins, R. E.; Lenzen, M.

    2002-07-01

    A technique is described for making a demountable vacuum seal of reasonably good quality between an all-metal evacuation cup and a flat glass surface. The seal is bakeable to temperatures close to the softening point of glass. The stainless steel evacuation cup has two concentric and coplanar sealing surfaces. The regions defined by these surfaces are differentially pumped. Pressures typically below 1 Torr are achieved in the annular space between the two sealing surfaces using a conventional rotary pump. The center region inside the inner sealing surface is typically evacuated to below 10-4 Torr using conventional diffusion or turbomolecular pumps. copyright 2002 American Vacuum Society.

  17. Influence of surface characteristics of modified glass beads as model carriers in dry powder inhalers (DPIs) on the aerosolization performance.

    PubMed

    Zellnitz, Sarah; Schroettner, Hartmuth; Urbanetz, Nora Anne

    2015-01-01

    The aim of this work is to investigate the effect of surface characteristics (surface roughness and specific surface area) of surface-modified glass beads as model carriers in dry powder inhalers (DPIs) on the aerosolization, and thus, the in vitro respirable fraction often referred to as fine particle fraction (FPF). By processing glass beads in a ball mill with different grinding materials (quartz and tungsten carbide) and varying grinding time (4 h and 8 h), and by plasma etching for 1 min, glass beads with different shades of surface roughness and increased surface area were prepared. Compared with untreated glass beads, the surface-modified rough glass beads show increased FPFs. The drug detachment from the modified glass beads is also more reproducible than from untreated glass beads indicated by lower standard deviations for the FPFs of the modified glass beads. Moreover, the FPF of the modified glass beads correlates with their surface characteristics. The higher the surface roughness and the higher the specific surface area of the glass beads the higher is the FPF. Thus, surface-modified glass beads make an ideal carrier for tailoring the performance of DPIs in the therapy of asthma and chronically obstructive pulmonary diseases.

  18. Micro-structuring the surface reactivity of a borosilicate glass via thermal poling

    NASA Astrophysics Data System (ADS)

    Lepicard, A.; Cardinal, T.; Fargin, E.; Adamietz, F.; Rodriguez, V.; Richardson, K.; Dussauze, M.

    2016-11-01

    Thermal poling was proven successful to induce second order nonlinear properties and concurrent modification of composition, structure and chemical reactivity in glasses. With current efforts to reduce devices sizes in components employing such attributes, means to control changes at the micrometer scale are needed. We present a micro-imprinting poling process to locally tailor surface properties of a glass. Measurements using infrared, Raman and second harmonic generation microscopies confirm that changes in glass structure associated with an induced static electric field are responsible for the enhanced surface reactivity that is successfully controlled at the micrometer scale.

  19. Material, Mechanical, and Tribological Characterization of Laser-Treated Surfaces

    NASA Astrophysics Data System (ADS)

    Yilbas, Bekir Sami; Kumar, Aditya; Bhushan, Bharat; Aleem, B. J. Abdul

    2014-10-01

    Laser treatment under nitrogen assisting gas environment of cobalt-nickel-chromium-tungsten-based superalloy and high-velocity oxygen-fuel thermal spray coating of nickel-chromium-based superalloy on carbon steel was carried out to improve mechanical and tribological properties. Superalloy surface was preprepared to include B4C particles at the surface prior to the laser treatment process. Material and morphological changes in the laser-treated samples were examined using scanning electron microscopy, energy-dispersive spectroscopy, and x-ray diffraction (XRD) analysis. Residual stresses present at the surface region of the laser-treated layer were determined from the XRD data. The microhardness of the laser-treated surface was measured by indentation tests. Fracture toughness of the coating surfaces before and after laser treatment were also measured using overload indentation tests. Macrowear and macrofriction characterization were carried out using pin-on-disk tests.

  20. Tensile strength of glass fiber posts submitted to different surface treatments.

    PubMed

    Faria, Maria Isabel A; Gomes, Érica Alves; Messias, Danielle Cristine; Silva Filho, João Manoel; Souza Filho, Celso Bernardo; Paulino, Silvana Maria

    2013-01-01

    The aim of this in vitro study was to evaluate the tensile strength of glass fiber posts submitted to different surface treatments. Forty-eight maxillary canines had their crowns sectioned and root canals endodontically treated. The roots were embedded in acrylic resin and distributed into 3 groups according to the surface treatment: Group I: the posts were treated with silane agent for 30 s and adhesive; Group II: the posts were cleaned with alcohol before treatment with silane agent and adhesive; Group III: the posts were submitted to conditioning with 37% phosphoric acid for 30 s before treatment with silane agent and adhesive. Each group was divided into 2 subgroups for adhesive polymerization or not before insertion into the canal: A - adhesive was not light cured and B - adhesive was light cured. All posts were cemented with Panavia F and the samples were subjected to tensile strength test in a universal testing machine at crosshead speed of 1 mm/min. Data were submitted to one-way ANOVA and Tukey's test at 5% significance level. There was statistically significant difference (p<0.01) only between group GIII-B and groups GI-A and GI-B. No significant difference was found among the other groups (p>0.05). It was concluded that the products used for cleaning the posts influenced the retention regardless of adhesive light curing.

  1. Surface roughness of glass ionomer cements indicated for uncooperative patients according to surface protection treatment.

    PubMed

    Pacifici, Edoardo; Bossù, Maurizio; Giovannetti, Agostino; La Torre, Giuseppe; Guerra, Fabrizio; Polimeni, Antonella

    2013-01-01

    Even today, use of Glass Ionomer Cements (GIC) as restorative material is indicated for uncooperative patients. The study aimed at estimating the surface roughness of different GICs using or not their proprietary surface coatings and at observing the interfaces between cement and coating through SEM. Forty specimens have been obtained and divided into 4 groups: Fuji IX (IX), Fuji IX/G-Coat Plus (IXC), Vitremer (V), Vitremer/Finishing Gloss (VFG). Samples were obtained using silicone moulds to simulate class I restorations. All specimens were processed for profilometric evaluation. The statistical differences of surface roughness between groups were assessed using One-Way Analysis of Variance (One-Way ANOVA) (p<0.05). The Two-Way Analysis of Variance (Two-Way ANOVA) was used to evaluate the influence of two factors: restoration material and presence of coating. Coated restoration specimens (IXC and VFG) were sectioned perpendicular to the restoration surface and processed for SEM evaluation. No statistical differences in roughness could be noticed between groups or factors. Following microscopic observation, interfaces between restoration material and coating were better for group IXC than for group VFG. When specimens are obtained simulating normal clinical procedures, the presence of surface protection does not significantly improve the surface roughness of GICs.

  2. Surface roughness of glass ionomer cements indicated for uncooperative patients according to surface protection treatment

    PubMed Central

    Pacifici, Edoardo; Bossù, Maurizio; Giovannetti, Agostino; La Torre, Giuseppe; Guerra, Fabrizio; Polimeni, Antonella

    2013-01-01

    Summary Background Even today, use of Glass Ionomer Cements (GIC) as restorative material is indicated for uncooperative patients. Aim The study aimed at estimating the surface roughness of different GICs using or not their proprietary surface coatings and at observing the interfaces between cement and coating through SEM. Materials and methods Forty specimens have been obtained and divided into 4 groups: Fuji IX (IX), Fuji IX/G-Coat Plus (IXC), Vitremer (V), Vitremer/Finishing Gloss (VFG). Samples were obtained using silicone moulds to simulate class I restorations. All specimens were processed for profilometric evaluation. The statistical differences of surface roughness between groups were assessed using One-Way Analysis of Variance (One-Way ANOVA) (p<0.05). The Two-Way Analysis of Variance (Two-Way ANOVA) was used to evaluate the influence of two factors: restoration material and presence of coating. Coated restoration specimens (IXC and VFG) were sectioned perpendicular to the restoration surface and processed for SEM evaluation. Results No statistical differences in roughness could be noticed between groups or factors. Following microscopic observation, interfaces between restoration material and coating were better for group IXC than for group VFG. Conclusions When specimens are obtained simulating normal clinical procedures, the presence of surface protection does not significantly improve the surface roughness of GICs. PMID:24611090

  3. Limited surface mobility inhibits stable glass formation for 2-ethyl-1-hexanol.

    PubMed

    Tylinski, M; Beasley, M S; Chua, Y Z; Schick, C; Ediger, M D

    2017-05-28

    Previous work has shown that vapor-deposition can prepare organic glasses with extremely high kinetic stabilities and other properties that would be expected from liquid-cooled glasses only after aging for thousands of years or more. However, recent reports have shown that some molecules form vapor-deposited glasses with only limited kinetic stability when prepared using conditions expected to yield a stable glass. In this work, we vapor deposit glasses of 2-ethyl-1-hexanol over a wide range of deposition rates and test several hypotheses for why this molecule does not form highly stable glasses under normal deposition conditions. The kinetic stability of 2-ethyl-1-hexanol glasses is found to be highly dependent on the deposition rate. For deposition at Tsubstrate = 0.90 Tg, the kinetic stability increases by 3 orders of magnitude (as measured by isothermal transformation times) when the deposition rate is decreased from 0.2 nm/s to 0.005 nm/s. We also find that, for the same preparation time, a vapor-deposited glass has much more kinetic stability than an aged liquid-cooled glass. Our results support the hypothesis that the formation of highly stable 2-ethyl-1-hexanol glasses is inhibited by limited surface mobility. We compare our deposition rate experiments to similar ones performed with ethylcyclohexane (which readily forms glasses of high kinetic stability); we estimate that the surface mobility of 2-ethyl-1-hexanol is more than 4 orders of magnitude less than that of ethylcyclohexane at 0.85 Tg.

  4. A new synthesis route to high surface area sol gel bioactive glass through alcohol washing

    PubMed Central

    M. Mukundan, Lakshmi; Nirmal, Remya; Vaikkath, Dhanesh; Nair, Prabha D.

    2013-01-01

    Bioactive glass is one of the widely used bone repair material due to its unique properties like osteoconductivity, osteoinductivity and biodegradability. In this study bioactive glass is prepared by the sol gel process and stabilized by a novel method that involves a solvent instead of the conventional calcinations process. This study represents the first attempt to use this method for the stabilization of bioactive glass. The bioactive glass stabilized by this ethanol washing process was characterized for its physicochemical and biomimetic property in comparison with similar composition of calcined bioactive glass. The compositional similarity of the two stabilized glass powders was confirmed by spectroscopic and thermogravimetric analysis. Other physicochemical characterizations together with the cell culture studies with L929 fibroblast cells and bone marrow mesenchymal stem cells proved that the stabilization was achieved with the retention of its inherent bioactive potential. However an increase in the surface area of the glass powder was obtained as a result of this ethanol washing process and this add up to the success of the study. Hence the present study exhibits a promising route for high surface area bioactive glass for increasing biomimicity. PMID:23512012

  5. Dispersive surface properties of glass-ionomer cements determined by inverse gas chromatography

    NASA Astrophysics Data System (ADS)

    Andrzejewska, E.; Voelkel, A.; Andrzejewski, M.; Limanowska-Shaw, H.

    2005-05-01

    The surface properties of several glass-ionomer cements (GIC), restorative dental materials, (GC-Fuji, Chemadent G-J, Ketac Fil and Ketac Molar) were investigated for the first time by means of inverse gas chromatography. This method enables characterization of surface activity in dispersive (non-polar) and acid-base interactions. The ability of the surface of glass-ionomers to participate in dispersive interactions was expressed by the use of the dispersive component of surface free energy γsd. This parameter was determined with satisfactory precision, meaning that the values of γsd can be further used in the discussion of the influence of the type of GIC, its preparation and the storage time on the surface properties. The greatest capacity for dispersive interactions was revealed by Ketac Molar and the lowest by GC-Fuji. Dispersive interactions in the surface activity of glass-ionomers increased with increasing storage time after cement preparation.

  6. A structural model for surface-enhanced stabilization in some metallic glass formers

    NASA Astrophysics Data System (ADS)

    Levchenko, Elena V.; Evteev, Alexander V.; Yavari, Alain R.; Louzguine-Luzgin, Dmitri V.; Belova, Irina V.; Murch, Graeme E.

    2013-01-01

    A structural model for surface-enhanced stabilization in some metallic glass formers is proposed. In this model, the alloy surface structure is represented by five-layer Kagomé-net-based lateral ordering. Such surface structure has intrinsic abilities to stabilize icosahedral-like short-range order in the bulk, acting as 'a cloak of liquidity'. In particular, recent experimental observations of surface-induced lateral ordering and a very high glass forming ability of the liquid alloy Au49Ag5.5Pd2.3Cu26.9Si16.3 can be united using this structural model. This model may be useful for the interpretation of surface structure of other liquid alloys with a high glass forming ability. In addition, it suggests the possibility of guiding the design of the surface coating of solid containers for the stabilization of undercooled liquids.

  7. What can we learn about a dynamical length scale in glasses from measurements of surface mobility?

    NASA Astrophysics Data System (ADS)

    Forrest, J. A.

    2013-08-01

    We consider the ability of recent measurements on the size of a liquid-like mobile surface region in glasses to provide direct information on the length scale of enhanced surface mobility. While these quantities are strongly related there are important distinctions that limit the ability of measurements to quantify the actual length over which the surface properties change from surface to bulk-like. In particular, we show that for temperatures near the bulk glass transition, measurements of a liquid-like mobile layer may have very limited predictive power when it comes to determining the temperature dependent length scale of enhanced surface mobility near the glass transition temperature. This places important limitations on the ability of measurements of such enhanced surface dynamics to contribute to discussion on the length scale for dynamical correlation in glassy materials.

  8. Development of an optical inspection platform for surface defect detection in touch panel glass

    NASA Astrophysics Data System (ADS)

    Chang, Ming; Chen, Bo-Cheng; Gabayno, Jacque Lynn; Chen, Ming-Fu

    2016-04-01

    An optical inspection platform combining parallel image processing with high resolution opto-mechanical module was developed for defect inspection of touch panel glass. Dark field images were acquired using a 12288-pixel line CCD camera with 3.5 µm per pixel resolution and 12 kHz line rate. Key features of the glass surface were analyzed by parallel image processing on combined CPU and GPU platforms. Defect inspection of touch panel glass, which provided 386 megapixel image data per sample, was completed in roughly 5 seconds. High detection rate of surface scratches on the touch panel glass was realized with minimum defects size of about 10 µm after inspection. The implementation of a custom illumination source significantly improved the scattering efficiency on the surface, therefore enhancing the contrast in the acquired images and overall performance of the inspection system.

  9. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films

    NASA Astrophysics Data System (ADS)

    Aytug, Tolga; Simpson, John T.; Lupini, Andrew R.; Trejo, Rosa M.; Jellison, Gerald E.; Ivanov, Ilia N.; Pennycook, Stephen J.; Hillesheim, Daniel A.; Winter, Kyle O.; Christen, David K.; Hunter, Scott R.; Haynes, J. Allen

    2013-08-01

    We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie-Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172°. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military.

  10. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films.

    PubMed

    Aytug, Tolga; Simpson, John T; Lupini, Andrew R; Trejo, Rosa M; Jellison, Gerald E; Ivanov, Ilia N; Pennycook, Stephen J; Hillesheim, Daniel A; Winter, Kyle O; Christen, David K; Hunter, Scott R; Haynes, J Allen

    2013-08-09

    We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie-Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172°. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military.

  11. Investigation of contact-induced charging kinetics on variably modified glass surfaces

    NASA Astrophysics Data System (ADS)

    Agnello, G.; Hamilton, J.; Manley, R.; Streltsova, E.; LaCourse, W.; Cormack, A.

    2015-11-01

    The accumulation and dissipation of electrical charge on glass surfaces is of considerable academic and industrial interest. The purpose of the present article, is to report on the differences in charging kinetics of several flat alumina-borosilicate (low alkali content) glass surfaces via a rolling sphere test (RST) [1] that have been physically and/or chemically modified by different approaches and exposed to variable environmental conditions (i.e. relative humidity). Methods used for surface modification include chemical etching (HF based chemistries of variable molarity) and plasma processing/thin film deposition (CH4 via Reactive Ion Etch (RIE) and/or Atmospheric Pressure Plasma Chemical Vapor Deposition (APPCVD)). Trends in glass surface charge rates, along with corresponding surface resistivity, energy and zeta potential measurements indicate that glass surface, and perhaps bulk, chemistry (specifically a surface' reactivity/affinity with/to water) play critical roles in charge dynamics. Based on the results, we propose an ion-based transfer model facilitated by surface-water molecular interactions as the primary mechanism responsible for contact electrification in glass-metal contact systems.

  12. Second-surface silvered glass solar mirrors of very high reflectance

    SciTech Connect

    Butel, Guillaume P.; VanSant, Kaitlyn; Sherif, Raed A.; Coughenour, Blake M.; Macleod, H. Angus; Kennedy, Cheryl E.; Olbert, Blain H.; Angel, J. Roger P.

    2011-09-08

    This paper reports methods developed to maximize the overall reflectance second-surface silvered glass. The reflectance at shorter wavelengths is increased with the aid of a dielectric enhancing layer between the silver and the glass, while at longer wavelengths it is enhanced by use of glass with negligible iron content. The calculated enhancement of reflectance, compared to unenhanced silver on standard low-iron float glass, corresponds to a 4.4% increase in reflectance averaged across the full solar spectrum, appropriate for CSP, and 2.7% for CPV systems using triple junction cells. An experimental reflector incorporating these improvements, of drawn crown glass and a silvered second-surface with dielectric boost, was measured at NREL to have 95.4% solar weighted reflectance. For comparison, non-enhanced, wetsilvered reflectors of the same 4 mm thickness show reflectance ranging from 91.6 - 94.6%, depending on iron content. A potential drawback of using iron-free drawn glass is reduced concentration in high concentration systems because of the inherent surface errors. This effect is largely mitigated for glass shaped by slumping into a concave mold, rather than by bending.

  13. Friction and surface chemistry of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The friction properties of some ferrous-base metallic glasses were measured both in argon and in vacuum to a temperature of 350 C. The alloy surfaces were also analyzed with X-ray photoelectron spectroscopy to identify the compounds and elements present on the surface. The results of the investigation indicate that even when the surfaces of the amorphous alloys, or metallic glasses, are atomically clean, bulk contaminants such as boric oxide and silicon dioxide diffuse to the surfaces. Friction measurements in both argon and vacuum indicate that the alloys exhibit higher coefficients of friction in the crystalline state than they do in the amorphous state.

  14. Studies on visual detection and surface modification testing of glass microfiber filter paper based biosensor.

    PubMed

    Adiguzel, Yekbun; Kulah, Haluk

    2014-04-15

    Glass microfibers are commonly used as biomolecule adsorption media, as structural or disposable components of the optical biosensors. While any improvement in these components are appreciated, utilizing basic tools of traditional approaches may lead to original sensor opportunities as simple, functional designs that can be easily disseminated. Following this pursuit, surface modification of glass microfiber paper surface was performed by 3-aminopropyltriethoxysilane (APTES) and resulting improvement in the cell entrapment capacity could be observed visually, only after Gram staining. Gram staining offered rapid validation of enhanced binding on the glass surface. The same APTES-modified samples were also tested for binding of complementary DNA sequences and the results were less straightforward due to the necessity of DNA visualization by using a fluorescent stain, YOYO-1. Accordingly, when there were no surface modification, DNA and YOYO-1 adsorbed readily on the glass microfiber filter paper, and prolonged the interaction between DNA and YOYO-1. YOYO-1 adsorption on glass could be recognized from the color profile of YOYO-1 emission. This phenomenon can be used to examine suitability of APTES coverage on glass surfaces since YOYO-1 emission can be distinguished by its glass adsorbed versus DNA-bound forms. Aptness of surface coverage is vital to biosensor studies in the sense that it is preceding the forthcoming surface modifications and its precision is imperative for attaining the anticipated interaction kinetics of the surface-immobilized species. The proposed testing scheme offered in this study secures the work, which is aimed to be carried out utilizing such sensing systems and device components. © 2013 Published by Elsevier B.V.

  15. Surface layers on a borosilicate nuclear waste glass corroded in MgCl 2 solution

    NASA Astrophysics Data System (ADS)

    Abdelouas, Abdesselam; Crovisier, Jean-Louis; Lutze, Werner; Grambow, Bernd; Dran, Jean-Claude; Müller, Regina

    1997-01-01

    Surface layers on the French borosilicate nuclear waste glass, R7T7, corroded in MgCl 2 solution were studied to determine the composition, structure and stability of crystalline phases. The characteristics of the phases constituting the surface layer varied with the parameter {S}/{V} × t , the glass surface area ( S) to solution volume ( V) ratio, times time ( t). At low {S}/{V} × t values (< 360 days/m; ≤ 36 d) th surface layer was thin and contained mainly iron hydroxide particles and hydrotalcite crystals. At an intermediate {S}/{V} × t value (2800 d/m; 5.5 y) the surface layer contained hydrotalcite-, chlorite- and saponite-type phases. At the highest {S}/{V} × t value (10 7 d/m; 463 d) the major phases were saponite, powellite, barite and cerianite solid solutions. About 95% of the uranium and > 98% of the neodymium released from the glass were precipitated in the surface layer. In the 463 day experiment, 86% of the neodymium in the surface layer was in solid solution with powellite, the rest with saponite. Uranium was contained exclusively in saponite. High {S}/{V} ratios, typical of disposal conditions for vitrified high-level radioactive waste, favor retention of actinides in fairly insoluble corrosion products. Observation of similar corrosion products on natural glasses as on nuclear waste glasses lend support to the hypothesis that the host phases for actinides observed in the laboratory are stable over geological periods of time.

  16. Functionalization of gold and glass surfaces with magnetic nanoparticles using biomolecular interactions.

    PubMed

    Nidumolu, Bala G; Urbina, Michelle C; Hormes, Josef; Kumar, Challa S S R; Monroe, W Todd

    2006-01-01

    Advances in nanotechnology have enabled the production and characterization of magnetic particles with nanometer-sized features that can be functionalized with biological recognition elements for numerous applications in biotechnology. In the present study, the synthesis of and interactions between self-assembled monolayers (SAMs) on gold and glass surfaces and functionalized magnetic nanoparticles have been characterized. Immobilization of 10-15 nm streptavidin-functionalized nanoparticles to biotinylated gold and glass surfaces was achieved by the strong interactions between biotin and streptavidin. Fluorescent streptavidin-functionalized nanoparticles, biotinylated surfaces, and combinations of the two were characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and electron and fluorescent microscopy to confirm that little or no functionalization occurred in nonbiotinylated regions of the gold and glass surfaces compared to the biotinylated sites. Together these techniques have potential use in studying the modification and behavior of functionalized nanoparticles on surfaces in biosensing and other applications.

  17. Surface diffusion of molecular glasses: Material dependence and impact on physical stability

    NASA Astrophysics Data System (ADS)

    Ruan, Shigang; Zhang, Wei; Yu, Lian

    Surface diffusion coefficients have been measured for molecular glasses tris-naphthylbenzene (TNB) and PMMA oligomers by surface grating decay. Surface diffusion on TNB is vastly faster than bulk diffusion, by a factor of 107 at Tg, while the process is very slow on PMMA. Along with the previous results on o - terphenyl, nifedipine, indomethacin, and polystyrene oligomers, we find that surface diffusion slows down with increasing molecular size and intermolecular forces, whereas bulk diffusion has a weaker material dependence. The molecular glasses studied show fast crystal growth on the free surface. A general correlation is observed between the coefficient of surface diffusion and the velocity of surface crystal growth, indicating surface crystallization is supported by surface mobility. (Zhu, L., et al. Phys. Rev. Lett. 106 (2011): 256103; Zhang, W., et al. J. Phys. Chem. B 119 (2015): 5071-5078) Nsf.

  18. Mechanical Strength and Broadband Transparency Improvement of Glass Wafers via Surface Nanostructures

    PubMed Central

    Kumar, Amarendra; Kashyap, Kunal; Hou, Max T.; Yeh, J. Andrew

    2016-01-01

    In this study, we mechanically strengthened a borosilicate glass wafer by doubling its bending strength and simultaneously enhancing its transparency using surface nanostructures for different applications including sensors, displays and panels. A fabrication method that combines dry and wet etching is used for surface nanostructure fabrication. Specifically, we improved the bending strength of plain borosilicate glass by 96% using these surface nanostructures on both sides. Besides bending strength improvement, a limited optical transmittance enhancement of 3% was also observed in the visible light wavelength region (400–800 nm). Both strength and transparency were improved by using surface nanostructures of 500 nm depth on both sides of the borosilicate glass without affecting its bulk properties or the glass manufacturing process. Moreover, we observed comparatively smaller fragments during the breaking of the nanostructured glass, which is indicative of strengthening. The range for the nanostructure depth is defined for different applications with which improvements of the strength and transparency of borosilicate glass substrate are obtained. PMID:27322276

  19. Rotating lattice single crystal architecture on the surface of glass

    NASA Astrophysics Data System (ADS)

    Savytskii, D.; Jain, H.; Tamura, N.; Dierolf, V.

    2016-11-01

    Defying the requirements of translational periodicity in 3D, rotation of the lattice orientation within an otherwise single crystal provides a new form of solid. Such rotating lattice single (RLS) crystals are found, but only as spherulitic grains too small for systematic characterization or practical application. Here we report a novel approach to fabricate RLS crystal lines and 2D layers of unlimited dimensions via a recently discovered solid-to-solid conversion process using a laser to heat a glass to its crystallization temperature but keeping it below the melting temperature. The proof-of-concept including key characteristics of RLS crystals is demonstrated using the example of Sb2S3 crystals within the Sb-S-I model glass system for which the rotation rate depends on the direction of laser scanning relative to the orientation of initially formed seed. Lattice rotation in this new mode of crystal growth occurs upon crystallization through a well-organized dislocation/disclination structure introduced at the glass/crystal interface. Implications of RLS growth on biomineralization and spherulitic crystal growth are noted.

  20. Rotating lattice single crystal architecture on the surface of glass

    PubMed Central

    Savytskii, D.; Jain, H.; Tamura, N.; Dierolf, V.

    2016-01-01

    Defying the requirements of translational periodicity in 3D, rotation of the lattice orientation within an otherwise single crystal provides a new form of solid. Such rotating lattice single (RLS) crystals are found, but only as spherulitic grains too small for systematic characterization or practical application. Here we report a novel approach to fabricate RLS crystal lines and 2D layers of unlimited dimensions via a recently discovered solid-to-solid conversion process using a laser to heat a glass to its crystallization temperature but keeping it below the melting temperature. The proof-of-concept including key characteristics of RLS crystals is demonstrated using the example of Sb2S3 crystals within the Sb-S-I model glass system for which the rotation rate depends on the direction of laser scanning relative to the orientation of initially formed seed. Lattice rotation in this new mode of crystal growth occurs upon crystallization through a well-organized dislocation/disclination structure introduced at the glass/crystal interface. Implications of RLS growth on biomineralization and spherulitic crystal growth are noted. PMID:27808168

  1. Rotating lattice single crystal architecture on the surface of glass

    SciTech Connect

    Savytskii, D.; Jain, H.; Tamura, N.; Dierolf, V.

    2016-11-03

    Defying the requirements of translational periodicity in 3D, rotation of the lattice orientation within an otherwise single crystal provides a new form of solid. Such rotating lattice single (RLS) crystals are found, but only as spherulitic grains too small for systematic characterization or practical application. Here we report a novel approach to fabricate RLS crystal lines and 2D layers of unlimited dimensions via a recently discovered solid-to-solid conversion process using a laser to heat a glass to its crystallization temperature but keeping it below the melting temperature. The proof-of-concept including key characteristics of RLS crystals is demonstrated using the example of Sb2S3 crystals within the Sb-S-I model glass system for which the rotation rate depends on the direction of laser scanning relative to the orientation of initially formed seed. Lattice rotation in this new mode of crystal growth occurs upon crystallization through a well-organized dislocation/disclination structure introduced at the glass/ crystal interface. Implications of RLS growth on biomineralization and spherulitic crystal growth are noted.

  2. Rotating lattice single crystal architecture on the surface of glass

    DOE PAGES

    Savytskii, D.; Jain, H.; Tamura, N.; ...

    2016-11-03

    Defying the requirements of translational periodicity in 3D, rotation of the lattice orientation within an otherwise single crystal provides a new form of solid. Such rotating lattice single (RLS) crystals are found, but only as spherulitic grains too small for systematic characterization or practical application. Here we report a novel approach to fabricate RLS crystal lines and 2D layers of unlimited dimensions via a recently discovered solid-to-solid conversion process using a laser to heat a glass to its crystallization temperature but keeping it below the melting temperature. The proof-of-concept including key characteristics of RLS crystals is demonstrated using the examplemore » of Sb2S3 crystals within the Sb-S-I model glass system for which the rotation rate depends on the direction of laser scanning relative to the orientation of initially formed seed. Lattice rotation in this new mode of crystal growth occurs upon crystallization through a well-organized dislocation/disclination structure introduced at the glass/ crystal interface. Implications of RLS growth on biomineralization and spherulitic crystal growth are noted.« less

  3. Potential Induced Degradation (PID) of Pre-Stressed Photovoltaic Modules: Effect of Glass Surface Conductivity Disruption

    NASA Astrophysics Data System (ADS)

    Tatapudi, Sai Ravi Vasista

    Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell; encapsulant/backsheet). Previous studies carried out at ASU's Photovoltaic Reliability Laboratory (ASU-PRL) showed that only negative voltage bias (positive grounded systems) adversely affects the performance of commonly available crystalline silicon modules. In previous studies, the surface conductivity of the glass surface was obtained using either conductive carbon layer extending from the glass surface to the frame or humidity inside an environmental chamber. This thesis investigates the influence of glass surface conductivity disruption on PV modules. In this study, conductive carbon was applied only on the module’s glass surface without extending to the frame and the surface conductivity was disrupted (no carbon layer) at 2cm distance from the periphery of frame inner edges. This study was carried out under dry heat at two different temperatures (60°C and 85°C) and three different negative bias voltages (-300V, -400V, and -600V). To replicate closeness to the field conditions, half of the selected modules were pre-stressed under damp heat for 1000 hours (DH 1000) and the remaining half under 200 hours of thermal cycling (TC 200). When the surface continuity was disrupted by maintaining a 2 cm gap from the frame to the edge of the conductive layer, as demonstrated in this study, the degradation was found to be absent or negligibly small even after 35 hours of negative bias at elevated temperatures. This preliminary study appears to indicate that the modules could become immune to PID losses if the continuity of the glass surface conductivity

  4. The degradation of EBSD-patterns as a tool to investigate surface crystallized glasses and to identify glassy surface layers.

    PubMed

    Wisniewski, Wolfgang; Völksch, Günter; Rüssel, Christian

    2011-12-01

    Surface crystallized samples of glass-ceramics containing cordierite, rhombohedral BaAl₂B₂O₇ and fresnoite were analyzed using electron backscatter diffraction (EBSD). The first two materials were chosen because surface crystallized samples of these materials have previously been shown to contain crystals covered by a very thin layer of glass. In all materials, EBSD pattern degradation occurs if the step size of a scan is chosen to be small. It is shown that the minimum step size enabling an evaluable EBSD-scan increases notably, if the crystals are covered by a thin layer of glass. It is also shown that pattern degradation may be utilized to prove the existence of such a thin glass or otherwise thermally sensitive layer. This provides significant information concerning the nucleation process of glasses also with respect to nucleation theory of glass-ceramics. It is also possible to describe the quantity of crystalline surface covered by the thermally sensitive layer. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Dental ceramics coated with bioactive glass: Surface changes after exposure in a simulated body fluid under static and dynamic conditions

    NASA Astrophysics Data System (ADS)

    Papadopoulou, L.; Kontonasaki, E.; Zorba, T.; Chatzistavrou, X.; Pavlidou, E.; Paraskevopoulos, K.; Sklavounos, S.; Koidis, P.

    2003-07-01

    Bioactive materials develop a strong bond with living tissues through a carbonate-containing hydroxyapatite layer, similar to that of bone. The fabrication of a thin bioactive glass coating on dental ceramics used in metal-ceramic restorations, could provide a bioactive surface, which in combination with a tissue regenerative technique could lead to periodontal tissues attachment. The aim of this study was the in vitro investigation of the surface structure changes of dental ceramics used in metal-ceramic restorations, coated with a bioactive glass heat-treated at 950 °C, after exposure in a simulated body fluid (SBF) under two different soaking conditions. Coating of dental ceramics with a bioactive glass resulted in the formation of a stable and well bonded with the ceramic substrate thin layer. The growth of a well-attached carbonate apatite layer on their surface after immersion in a simulated body fluid is well evidenced under both experimental conditions, although in static environment the rate of apatite growth is constant and the grown layers seem to be more dense and compact compared with the respective layers observed on specimens under dynamic conditions.

  6. Glass delamination: a comparison of the inner surface performance of vials and pre-filled syringes.

    PubMed

    Zhao, Jianxiu; Lavalley, Virginie; Mangiagalli, Paolo; Wright, Justin M; Bankston, Theresa E

    2014-12-01

    The occurrence of glass delamination is a serious concern for parenteral drug products. Over the past several years, there has been a series of product recalls involving glass delamination in parenteral drugs stored in vials which has led to heightened industry and regulatory scrutiny. In this study, a two-pronged approach was employed to assess the inner surface durability of vials and pre-filled syringes. Non-siliconized syringes were used in order to directly compare glass to glass performance between vials and syringes. The vial and syringe performance was screened with pharmaceutically relevant formulation conditions. The influence of pH, buffer type, ionic strength, and glass type and source was evaluated. In addition, an aggressive but discriminating formulation condition (glutaric acid, pH 11) was used to ascertain the impact of syringe processing. Advanced analytical tools including inductively coupled plasma/mass spectrometry, scanning electron microscopy, atomic force microscopy, and dynamic secondary ion mass spectroscopy showed significant differences in glass performance between vials and syringes. Pre-filled syringes outperform vials for most tests and conditions. The manufacturing conditions for vials lead to glass defects, not found in pre-filled syringes, which result in a less chemically resistant surface. The screening methodology presented in this work can be applied to assess suitability of primary containers for specific drug applications.

  7. Formation and Properties of Laser-Induced Periodic Surface Structures on Different Glasses.

    PubMed

    Gräf, Stephan; Kunz, Clemens; Müller, Frank A

    2017-08-10

    The formation and properties of laser-induced periodic surface structures (LIPSS) was investigated on different technically relevant glasses including fused silica, borosilicate glass, and soda-lime-silicate glass under irradiation of fs-laser pulses characterized by a pulse duration τ = 300 fs and a laser wavelength λ = 1025 nm. For this purpose, LIPSS were fabricated in an air environment at normal incidence with different laser peak fluence, pulse number, and repetition frequency. The generated structures were characterized by using optical microscopy, scanning electron microscopy, focused ion beam preparation and Fast-Fourier transformation. The results reveal the formation of LIPSS on all investigated glasses. LIPSS formation on soda-lime-silicate glass is determined by remarkable melt-formation as an intra-pulse effect. Differences between the different glasses concerning the appearing structures, their spatial period and their morphology were discussed based on the non-linear absorption behavior and the temperature-dependent viscosity. The findings facilitate the fabrication of tailored LIPSS-based surface structures on different technically relevant glasses that could be of particular interest for various applications.

  8. Experimental study on the surface characteristics of Pd-based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Sun, Bingli; Zhao, Na; Li, Qian; Hou, Jianhua; Feng, Weina

    2014-12-01

    The metallic glass has many unique and desirable physical and chemical characteristics for their long-range disordered atomic structure, among them the interfacial properties of the metallic glasses are crucial for their applications and manufacturing. In this work, the contact wetting angles between the polymer melts and Pd40Cu30Ni10P20 bulk metallic glass (Pd-BMG) with four kinds of roughness were analyzed. Experiments show the order of four polymers wettability on Pd-BMG was PP > HDPE > COC > PC. The surface free energy of Pd-BMG was estimated by Owens-Wendt method using the contact angles of three testing liquids. Neumann method was also used to further evidence the surface free energy of Pd-BMG comparing with PTFE, mold steels NAK80 and LKM2343ESR. The results provide theoretical and technical supports for the fabrication of metallic glass micro mold and the parameter optimization of polymer micro injection molding.

  9. Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses.

    PubMed

    Li, Y; Itoh, K; Watanabe, W; Yamada, K; Kuroda, D; Nishii, J; Jiang, Y

    2001-12-01

    By moving silica glass in a preprogrammed structure, we directly produced three-dimensional holes with femtosecond laser pulses in single step. When distilled water was introduced into a hole drilled from the rear surface of the glass, the effects of blocking and redeposition of ablated material were greatly reduced and the aspect ratio of the depth of the hole was increased. Straight holes of 4-mu;m diameter were more than 200 microm deep. Three-dimensional channels can be micromachined inside transparent materials by use of this method, as we have demonstrated by drilling a square-wave-shaped hole inside silica glass.

  10. Influence of Hydrogen Bonding on the Surface Diffusion of Molecular Glasses: Comparison of Three Triazines.

    PubMed

    Chen, Yinshan; Zhu, Men; Laventure, Audrey; Lebel, Olivier; Ediger, M D; Yu, Lian

    2017-07-27

    Surface grating decay measurements have been performed on three closely related molecular glasses to study the effect of intermolecular hydrogen bonds on surface diffusion. The three molecules are derivatives of bis(3,5-dimethyl-phenylamino)-1,3,5-triazine and differ only in the functional group R at the 2-position, with R being C2H5, OCH3, and NHCH3, and referred to as "Et", "OMe", and "NHMe", respectively. Of the three molecules, NHMe forms more extensive intermolecular hydrogen bonds than Et and OMe and was found to have slower surface diffusion. For Et and OMe, surface diffusion is so fast that it replaces viscous flow as the mechanism of surface grating decay as temperature is lowered. In contrast, no such transition was observed for NHMe under the same conditions, indicating significantly slower surface diffusion. This result is consistent with the previous finding that extensive intermolecular hydrogen bonds slow down surface diffusion in molecular glasses and is attributed to the persistence of hydrogen bonds even in the surface environment. This result is also consistent with the lower stability of the vapor-deposited glass of NHMe relative to those of Et and OMe and supports the view that surface mobility controls the stability of vapor-deposited glasses.

  11. Formation of plasma induced surface damage in silica glass etching for optical waveguides

    NASA Astrophysics Data System (ADS)

    Choi, D. Y.; Lee, J. H.; Kim, D. S.; Jung, S. T.

    2004-06-01

    Ge, B, P-doped silica glass films are widely used as optical waveguides because of their low losses and inherent compatibility with silica optical fibers. These films were etched by ICP (inductively coupled plasma) with chrome etch masks, which were patterned by reactive ion etching (RIE) using chlorine-based gases. In some cases, the etched surfaces of silica glass were very rough (root-mean square roughness greater than 100 nm) and we call this phenomenon plasma induced surface damage (PISD). Rough surface cannot be used as a platform for hybrid integration because of difficulty in alignment and bonding of active devices. PISD reduces the etch rate of glass and it is very difficult to remove residues on a rough surface. The objective of this study is to elucidate the mechanism of PISD formation. To achieve this goal, PISD formation during different etching conditions of chrome etch mask and silica glass was investigated. In most cases, PISD sources are formed on a glass surface after chrome etching, and metal compounds are identified in theses sources. Water rinse after chrome etching reduces the PISD, due to the water solubility of metal chlorides. PISD is decreased or even disappeared at high power and/or low pressure in glass etching, even if PISD sources were present on the glass surface before etching. In conclusion, PISD sources come from the chrome etching process, and polymer deposition on these sources during the silica etching cause the PISD sources to grow. In the area close to the PISD source there is a higher ion flux, which causes an increase in the etch rate, and results in the formation of a pit.

  12. Improved performance of dye-sensitized solar cell based on TiO2 photoanode with FTO glass and film both treated by TiCl4

    NASA Astrophysics Data System (ADS)

    Li, Jinlun; Zhang, Haiyan; Wang, Wenguang; Qian, Yannan; Li, Zhenghui

    2016-11-01

    The dye-sensitized solar cell (DSSC) based on TiO2 photoanode with FTO glass and TiO2 film co-treated by TiCl4 were fabricated. The effects of TiCl4 treatment on the photovoltaic performance of the DSSCs were investigated. TiCl4 treatment of the FTO glass resulted in the formation of a compact TiO2 thin layer on its surface, which could increase the electron collection efficiency. Meanwhile, TiCl4 treatment of the TiO2 film could fill gaps between nanoparticles in the TiO2 film, leading to better electron transfer. These advantages make the DSSC exhibit a highest conversion efficiency of 3.34% under a simulated solar irradiation with an intensity of 100 mW/cm2 (1 sun), increased by 38% compared with that of the untreated DSSC.

  13. Surface treated polypropylene (PP) fibres for reinforced concrete

    SciTech Connect

    López-Buendía, Angel M.; Romero-Sánchez, María Dolores; Climent, Verónica

    2013-12-15

    Surface treatments on a polypropylene (PP) fibre have contributed to the improvement of fibre/concrete adhesion in fibre-reinforced concrete. The treatments to the PP fibre were characterized by contact angle measurements, ATR-IR and XPS to analyse chemical alterations. The surface topography and fibre/concrete interaction were analysed by several microscopic techniques, namely optical petrographic, and scanning electron microscopy. Treatment modified the surface chemistry and topography of the fibre by introducing sodium moieties and created additional fibre surface roughness. Modifications in the fibre surface led to an increase in the adhesion properties between the treated fibres and concrete and an improvement in the mechanical properties of the fibre-reinforced concrete composite as compared to the concrete containing untreated PP fibres. Compatibility with the concrete and increased roughness and mineral surface was also improved by nucleated portlandite and ettringite mineral association anchored on the alkaline PP fibre surface, which is induced during treatment.

  14. Wettability of a glass surface in the presence of two nonionic surfactant mixtures.

    PubMed

    Szymczyk, Katarzyna; Jańczuk, Bronisław

    2008-08-05

    Measurements of the advancing contact angle (theta) were carried out for aqueous solution of p-(1,1,3,3-tetramethylbutyl)phenoxypoly(ethylene glycol), Triton X-100 (TX100), and Triton X-165 (TX165) mixtures on glass. The obtained results indicate that the wettability of glass depends on the concentration and composition of the surfactant mixture. The relationship between the contact angle and concentration suggests that the lowest wettability corresponds to the concentration of TX100 and TX165 and their mixture near the critical micelle concentration (CMC). The minimum of the dependence between the contact angle and composition of the mixtures for each concentration at a monomer mole fraction of TX100, alpha, equals 0.2 and 0.4 points to synergism in the wettability of the glass surface. In contrast to the results of Zisman ( Zisman, W. A. In Contact Angle, Wettability and Adhesion; Gould, R. F., Ed.; Advances in Chemistry Series 43; American Chemical Society Washington, DC, 1964; p 1 ) there was no linear dependence between cos theta and the surface tension of aqueous solutions of TX100 and TX165 mixtures for all studied systems, but a linear dependence exists between the adhesional tension and surface tension for glass, practically, in the whole concentration range of surfactants studied, the slopes of which are positive in the range of 0.43-0.67. These positive slopes indicate that the interactions between the water molecules and glass surface might be stronger than those between the surface and surfactant molecules. So, the surface excess of surfactant concentration at the glass-water interface is probably negative, and the possibility for surfactant to adsorb at the glass/water film-water interface is higher than that at the glass-water interface. This conclusion is confirmed by the values of the work of adhesion of "pure" surfactants, aqueous solutions of surfactants, and aqueous solutions of their mixtures to the glass surface and by the negative values of

  15. Effect of Etching Condition on the Formation of Bioactive Surface of Hydroxyapatite-Glass-Titanium Composite

    NASA Astrophysics Data System (ADS)

    Ban, Seiji; Maruno, Shigeo; Hasegawa, Jiro

    1991-07-01

    X-ray diffraction study shows that an etching solution of 3% HF and 5% HNO3 is the most suitable solution for preparing a bioactive surface layer of HA-glass-titanium composite, since the glass is removed, a great number of HA particles are exposed, and little CaF2 is produced by the etching. Anodic polarization measurement demonstrates that the 3-min etching gives an electrochemically active surface of the composites. These results and SEM observations suggest that this solution provides an adequate surface of the composite for the dental and medical implants.

  16. Superhydrophobic Zr-based metallic glass surface with high adhesive force

    NASA Astrophysics Data System (ADS)

    Li, Ning; Xia, Ting; Heng, Liping; Liu, Lin

    2013-06-01

    Micro/nano hierarchical structures were constructed on Zr35Ti30Be26.75Cu8.25 metallic glass surface by silicon moulding and subsequently chemical etching. The as-formed surface exhibited both superhydrophobicity and high adhesive force towards water. The superhydrophobicity is rationalized based on the modified Cassie-Baxter model [A. B. D. Cassie and S. Baxter, Trans. Faraday Soc. 40, 546 (1944)]. The origin of the robust adhesion is described in terms of intermolecular capillary forces. The present results not only provide a method to fabricate superhydrophobic metallic glasses surface but also explore an important industrial application as dry adhesives and transport of liquid microdroplets.

  17. Three-Layer Model for the Emergence of Ultrastable Glasses from the Surfaces of Supercooled Liquids.

    PubMed

    Mangalara, Jayachandra Hari; Marvin, Michael D; Simmons, David S

    2016-06-02

    Ultrastable glasses produced by vapor deposition exhibit properties consistent with glasses that have been aged for thousands of years or more. These materials' properties are believed to emerge from the presence of a mobile layer at the surface of supercooled liquids that allows access to lower-energy states. However, the precise mechanism by which this enhanced mobility is translated into ultrastable glass behavior remains incompletely understood. Here we show that enhanced densities and stabilities consistent with ultrastable glasses specifically can emerge as a result of a mismatch in the length scales of thermodynamic and dynamic gradients at the surfaces of equilibrium supercooled liquids. In particular, ultrastable glass properties can be understood within a three-layer model of the interface in which a "facilitated layer" intermediate between the surface and bulk exhibits bulk-like liquid-state density but suppressed Tg. This mismatch in length-scale has previously been correlated with the scale of cooperative rearrangements in the supercooled state, suggesting that ultrastable glasses may be a direct consequence of the cooperative nature of dynamics in equilibrium supercooled liquids.

  18. Influence of citric acid on the surface texture of glass ionomer restorative materials.

    PubMed

    Reddy, Dappili Swami Ranga; Kumar, Ramachandran Anil; Venkatesan, Sokkalingam Mothilal; Narayan, Gopal Shankar; Duraivel, Dasarathan; Indra, Rajamani

    2014-09-01

    This study determined the effectiveness of G-coat plus surface protective agent over petroleum jelly on the surface texture of conventional Glass ionomer restorative materials. Three chemically cured conventional glass ionomer restorative materials type II, type IX and ketac molar were evaluated in this study. Sixty specimens were made for each restorative material. They were divided into two groups of thirty specimens each. Of the sixty specimens, thirty were coated with G-coat plus (a nano-filler coating) and the rest with petroleum jelly. Thirty samples of both protective coating agents were randomly divided into six groups of five specimens and conditioned in citric acid solutions of differing pH (pH 2, 3, 4, 5, 6 & 7). Each specimen was kept in citric acid for three hours a day, and the rest of time stored in salivary substitute. This procedure was repeated for 8 days. After conditioning, the surface roughness (Ra, μm) of each specimen was measured using a surface profilometer (Taylor & Habson, UK). Data was analyzed using one-way analysis of variance (ANOVA) and Tukey's HSD test at a significance level of 0.05. The surface textures of all the tested glass ionomer restorative materials protected with G-coat plus were not significantly affected by acids at low pH. The surface textures of all the tested glass ionomer restorative materials protected with petroleum jelly coating were significantly affected by acids at low pH. The effects of pH on the surface texture of glass ionomer restoratives are material dependent. Among all the materials tested the surface texture of Type II GIC (Group I) revealed marked deterioration when conditioned in solutions of low pH and was statistically significant. Hence, a protective coating either with G-coat plus or with light polymerized low viscosity unfilled resin adhesives is mandatory for all the glass ionomer restorations to increase the wear resistance of the restorative materials.

  19. AFM and XPS Study of Glass Surface Coated with Titania Nanofilms by Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Ji, Guo-Jun; Shi, Zhi-Ming

    2010-09-01

    Ce3+ -doped and undoped TiO2 nanofilms are prepared on glass surface using a sol-gel method. Crystal structure, surface morphology, chemical composition and element distribution of both glass substrates and TiO2 films were characterized by x-ray diffractometer (XRD), atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS). The XRD results indicate that the Ce3+-doped TiO2 films are solely composed of the anatase phase whereas in the undoped films a small amount of the rutile phase of TiO2 is present. AFM observations show that there exist many micro-cracks and micro-holes on glass substrate surface. In contrast, the surface of pure titania films is crack-free and the average crystallite size of the films is less than 50 nm. For the films doped with Ce3+, not only does it appear to be more uniform and compact, but also the corresponding crystal size is decreased. XPS results indicate that element interdiffusion occurs between the titania nanofilm and the glass substrate during the sintering process. The film is firmly adhered onto the glass surface through the chemical combination of Ti-O-Si bonds, and the combination is more enhanced by Ce3+-doping.

  20. Biocompatibility Evaluation of Nanosecond Laser Treated Titanium Surfaces

    NASA Astrophysics Data System (ADS)

    Honda, Ryo; Mizutani, Masayoshi; Ohmori, Hitoshi; Komotori, Jun

    We developed surface modification technologies for dental implants in this study. The study contributes to shortening the time required for adhesion between alveolar bone and fixtures which consist of dental implants. A Nd:YVO4 nanosecond laser was used to modify the surfaces of commercially pure titanium (CP Ti) disks, and their biocompatibility was evaluated cytocompatibility and bioactivity. First, rows of 200 µm spaced rectilinear laser treatments were performed on surfaces of CP Ti disks. Osteoblasts derived from rat mesenchymal stem cells were then cultured on the treated surfaces. Cytocompatibility on the laser treated area was evaluated by observing adhesion behavior of cells on these surfaces. The results indicated that the micro-order structure formed by the laser treatment promoted adhesion of osteoblasts and that traces of laser treatment without microstucture didn't affect the adhesion. Second, surfaces of CP Ti disks were completely covered by traces of laser treatment, which created complex microstructures of titania whose crystal structure is rutile and anatase. This phenomenon allowed the creation of hydroxyapatite on the surface of the disks in 1.5-times simulated body fluid (1.5SBF) while no hydroxyapatite was observed on conventional polished surfaces in the same conditions. This result indicates that bioactivity was enabled on CP Ti by the laser treatment. From these two results, laser treatment for CP Ti surfaces is an effective method for enhancing adhesion of osteoblasts and promoting bioactivity, which are highly appreciated properties for dental implants.

  1. Guided evolution of bulk metallic glass nanostructures: A platform for designing three-dimensional electrocatalytic surfaces

    DOE PAGES

    Doubek, Gustavo; Sekol, Ryan C.; Li, Jinyang; ...

    2015-12-22

    Precise control over catalyst surface composition and structure is necessary to improve the function of electrochemical systems. To that end, bulk metallic glass (BMG) alloys with atomically dispersed elements provide a highly processable, nanoscale platform for electrocatalysis and surface modification. Here we report on nanostructures of Pt-based BMGs that are modified with various subtractive and additive processes to improve their electrochemical performance.

  2. Influence of ion beam bombardment on surface roughness of K9 glass substrate

    NASA Astrophysics Data System (ADS)

    Pan, Yongqiang; Huang, Guojun; Hang, Lingxia

    2010-10-01

    Ion beam bombardment optical substrate surface has become an important part of process of optical thin films deposition. In this work, the K9 optical glass is bombarded by the broad beam cold cathode ion source. The dependence of the K9 glass surface roughness on the ion beam bombardment time, the ion energy, the distance and incident angle are all investigated, respectively. Surface roughness of K9 glass is measured using Talysurf CCI. The experimental results show that when the ion energy is 800ev, the bombardment distance of 20cm, with the ion beam bombardment time increased, the K9 substrate surface roughness first increase and then decrease. When the ion beam bombardment distance is 20cm, bombardment time is 10min, with the bombardment energy increases, substrate surface roughness increase first and then decrease, especially in the ion energy greater than 1200ev, the optical substrate surface roughness rapidly increases. When the ion energy is 800 eV, bombardment time is 10min, with the bombardment distance increase, substrate surface roughness decrease gradually. Furthermore, the incident angle of ion beam plays an important role in improving the K9 glass surface roughness.

  3. Smoothing of surface of silica glass by heat treatment in wet atmosphere

    SciTech Connect

    Osawa, Kenta; Katayama, Keiichi; Inoue, Hiroyuki; Masuno, Atsunobu; Zhang Yingjiu; Utsuno, Futoshi; Sugahara, Yoshiyuki; Koya, Kazuo; Fujinoki, Akira; Tawarayama, Hiromasa; Kawazoe, Hiroshi

    2011-05-15

    The effect of heat treatment on the surface morphology of fused silica glass substrates was investigated. It was found that the water vapor pressure during heat treatment had a strong influence on the flattening of the silica glass surface. The surface of the frosted glass changed into a transparent and lustrous surface after heat treatment with water vapor at 1200 deg. C for 48 h, whereas surface irregularities remained for heat treatment under a dry atmosphere. It was suggested that the difference in surface flattening was caused by changes in surface viscosity that depended on the concentration of OH groups on the surface. In order to quantitatively understand the effect of the heat treatment atmosphere, power spectral density (PSD) analysis and a novel peak and valley method were applied to the experimental results. From the PSD analysis, it was found that the Mullins' model could not explain the smoothing behavior by heat treatment. The peak and valley method, which could separate the surface morphology into the surface irregularities and the background undulation, revealed that the Mullins' model limitation was mainly for the surface and the background undulation could be understood within the model. These results indicate that there are different mechanisms between for the surface smoothing and for the relaxation of the background undulation.

  4. The migration of fragments of glass from the pockets to the surfaces of clothing.

    PubMed

    O'Sullivan, S; Geddes, T; Lovelock, T J

    2011-05-20

    During the last decade or so there has been some discussion in the forensic community in the United Kingdom concerning whether it is necessary to search the pockets for glass particles in garments attributed to suspects arrested for glass breaking crimes. The removal of this practice would help expedite the searching and recovery process since examining only the surfaces of clothing would reduce the cost of recovering glass evidence. However, it is believed by many scientists that some glass fragments originally acquired in pockets can migrate to the surfaces of clothing prior to examination by the forensic scientist. As glass fragments have been encountered in the pockets of garments during examinations of casework items in the LGC Laboratories, the implications of this change in practice needs to be assessed. Hence, the aim of this study was to investigate this possibility that fragments of glass migrate from a pocket of a garment to its surfaces during police and laboratory handling after a person is suspected of breaking glass during an offence. If this occurs to a significant extent then it could affect the evaluation of the glass evidence when using a Bayesian approach. Sixty fragments of glass were seeded into a pocket of a fleece jacket and a pair of denim jeans. Three experiments were performed; one examined a searching, recovery and blanking procedure, another examined the pre-laboratory 'handling' process of an item in an evidence bag, and the third experiment looked at the removal of an object from a pocket laden with glass and subsequent removal and packaging of the garment. Up to two (3.3%) fragments were recovered from the surfaces of the fleece jacket and the denim jeans via the searching, recovery and blanking procedure. Similar numbers were also recovered from the insides of the evidence bags. Up to four (6.7%) fragments were recovered from the surface of the fleece jacket and up to five (8.3%) fragments were recovered from the surface of the

  5. Facile creation of bio-inspired superhydrophobic Ce-based metallic glass surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Kesong; Li, Zhou; Wang, Weihua; Jiang, Lei

    2011-12-01

    A bio-inspired synthesis strategy was conducted to fabricate superhydrophobic Ce-based bulk metallic glass (BMG) surfaces with self-cleaning properties. Micro-nanoscale hierarchical structures were first constructed on BMG surfaces and then modified with the low surface energy coating. Surface structures, surface chemical compositions, and wettability were characterized by combining scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and contact angle measurements. Research indicated that both surface multiscale structures and the low surface free energy coating result in the final formation of superhydrophobicity.

  6. Facile creation of bio-inspired superhydrophobic Ce-based metallic glass surfaces

    SciTech Connect

    Liu Kesong; Li Zhou; Wang Weihua; Jiang Lei

    2011-12-26

    A bio-inspired synthesis strategy was conducted to fabricate superhydrophobic Ce-based bulk metallic glass (BMG) surfaces with self-cleaning properties. Micro-nanoscale hierarchical structures were first constructed on BMG surfaces and then modified with the low surface energy coating. Surface structures, surface chemical compositions, and wettability were characterized by combining scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and contact angle measurements. Research indicated that both surface multiscale structures and the low surface free energy coating result in the final formation of superhydrophobicity.

  7. Surface characterization of plasma-treated polypropylene fibers

    SciTech Connect

    Wei, Q.F

    2004-06-15

    Plasma treatment is increasingly being used for surface modification of different materials in many industries. In this study, different techniques were employed to characterize the surface properties of plasma treated polypropylene fibers. The chemical nature of the fiber sufaces has been investigated by X-ray photoelectron spectroscopy (XPS). The XPS examination indicated the presence of oxygen-containing functional groups on fiber surfaces after plasma treatment. The Atomic Force Microscopy (AFM) scans revealed the evolution of surface morphology under different experimental conditions. A Philips Environmental Scanning Electron Microscopy (ESEM) was also used to study the wetting behavior of the fibers. In the ESEM, relative humidity can be raised to 100% to facilitate the water condensation onto fiber surfaces for wetting observation. The ESEM observation revealed that the plasma treatment significantly altered the surface wettability of polypropylene fibers.

  8. Oxygen-Plasma-Treated Indium-Tin-Oxide Films on Nonalkali Glass Deposited by Super Density Arc Plasma Ion Plating

    NASA Astrophysics Data System (ADS)

    Kim, Soo Young; Hong, Kihyon; Son, Jun Ho; Jung, Gwan Ho; Lee, Jong-Lam; Choi, Kyu Han; Song, Kyu Ho; Ahn, Kyung Chul

    2008-02-01

    The effects of O2 plasma treatment on both the chemical composition and work function of an indium-tin-oxide (ITO) film were investigated. ITO films were deposited on non-alkali glass substrate by super density arc plasma ion plating for application in active-matrix organic light-emitting diodes (OLEDs). The water contact angle decreased from 38 to 11° as the ITO films were treated with O2 plasma for 60 s at a plasma power of 150 W, indicating an increase in the hydrophilicity of the surface. It was found that there were no distinct changes in the microstructure or electrical properties of the ITO films with O2 plasma treatment. Synchrotron radiation photoemission spectroscopy data revealed that O2 plasma treatment decreased the amount of carbon contamination and increased the number of unscreened states of In3+ and (O2)2- peroxo species. This played the role of increasing the work function of the ITO films by 1.7 eV. As a result, the turn-on voltage of the OLED decreased markedly from 24 to 8 V and the maximum luminance value of the OLED increased to 2500 cd/m2.

  9. A resin-modified glass ionomer cement barrier for treating degree II furcation defects: a pilot study in dogs.

    PubMed

    Miranda, Letícia Algarves; Gomes, Sabrina Carvalho; Soares, Ilson José; Oppermann, Rui Vicente

    2006-02-01

    The aim of this study was to evaluate in an animal model the healing of degree II furcation defects treated with: an experimental barrier of resin-modified glass-ionomer cement (GIC), a polylactic acid barrier (GUI), and flap surgery (CTR). In 3 beagles, 18 class II furcation defects were surgically produced in mandibular and maxillary premolars and exposed to plaque accumulation for 21 days. Following a full flap, notches were made at the base to the bone defect. GIC barriers were prepared immediately before use from a commercial product and fit to place with the same product. The GIC barriers were removed after 30 days and the dogs euthanized after 120 days. Histologic sections were analyzed in a computer-assisted microscope. Epithelium, new cementum with inserting fibers, and connective tissue lining the root surface in-between notches were measured and medians of percentage values calculated. In the GIC, epithelium constituted 3.5% (median values) of the notch-to-notch root area; new cementum was 83.6% and connective tissue 12.9%. These values were 0%, 73.6%, and 26.4% for the GUI group and 35.6%, 43.2%, and 0% for the CTR group. Bone fill median values were 54.3% for GIC, 20.6% for GUI, and 24.6% for CTR. GIC and GUI prevented epithelial migration and promoted the formation of new periodontal tissues in experimentally induced class II furcation defects in dogs.

  10. 3D printed glass: surface finish and bulk properties as a function of the printing process

    NASA Astrophysics Data System (ADS)

    Klein, Susanne; Avery, Michael P.; Richardson, Robert; Bartlett, Paul; Frei, Regina; Simske, Steven

    2015-03-01

    It is impossible to print glass directly from a melt, layer by layer. Glass is not only very sensitive to temperature gradients between different layers but also to the cooling process. To achieve a glass state the melt, has to be cooled rapidly to avoid crystallization of the material and then annealed to remove cooling induced stress. In 3D-printing of glass the objects are shaped at room temperature and then fired. The material properties of the final objects are crucially dependent on the frit size of the glass powder used during shaping, the chemical formula of the binder and the firing procedure. For frit sizes below 250 μm, we seem to find a constant volume of pores of less than 5%. Decreasing frit size leads to an increase in the number of pores which then leads to an increase of opacity. The two different binders, 2- hydroxyethyl cellulose and carboxymethylcellulose sodium salt, generate very different porosities. The porosity of samples with 2-hydroxyethyl cellulose is similar to frit-only samples, whereas carboxymethylcellulose sodium salt creates a glass foam. The surface finish is determined by the material the glass comes into contact with during firing.

  11. Temporal speckle method for measuring three-dimensional surface of large-sized rough glass

    NASA Astrophysics Data System (ADS)

    Li, Chao; Zhou, Changhe; Wang, Shaoqing; Fan, Xin; Yang, Boquan; Lu, Yancong; Li, Hao; Liu, Zhao

    2016-10-01

    To provide accurate three-dimensional (3-D) data for production and processing, 3-D surface measurement is always an essential step to the production of glass. Profilometry and Interferometry are traditional measurement apparatus, referring to different procedures. Although more precise, Interferometry cannot be used in milling procedure, owing to the scattering property of rough glass. While as a widely used Profilometry, Coordinate Measuring Machine (CMM) employs a probe for measuring by contacting surface directly. It should be noted that such a time-consuming machine is not practical for measuring large-sized rough glass, so a novel designed method called temporal speckle is introduced to a non-contact binocular 3-D measurement system for measuring. Specifically, N band-limited binary patterns are sequentially projected to rough glass from a pattern generation device, such patterns have been proved to depress scattering properties of rough surface. The whole binocular 3-D measurement system can finish a single measurement in one second with a standard deviation less than 73.44um. This system performs fast and accurate 3-D surface measurement for large-sized rough glass block.

  12. Crystalline monolayer surface of liquid Au-Cu-Si-Ag-Pd: Metallic glass former

    SciTech Connect

    Mechler, S; Yahel, E; Pershan, P S; Meron, M; Lin, B

    2012-02-06

    It is demonstrated by means of x-ray synchrotron reflectivity and diffraction that the surface of the liquid phase of the bulk metallic glass forming alloy Au49Cu26.9Si16.3Ag5.5Pd2.3 consists of a two-dimensional crystalline monolayer phase for temperatures of up to about 50 K above the eutectic temperature. The present alloy as well as glass forming Au82Si18 and Au-Si-Ge alloys containing small amounts of Ge are the only metallic liquids to exhibit surface freezing well above the melting temperature. This suggests that the phenomena of surface freezing in metallic liquids and glass forming ability are related and probably governed by similar physical properties.

  13. Structural and compositional modification of a barium boroaluminosilicate glass surface by thermal poling

    NASA Astrophysics Data System (ADS)

    Smith, Nicholas J.; Pantano, Carlo G.

    2014-08-01

    In addition to inducing second-order nonlinear properties, significant structural and compositional alteration can be imparted to glass surfaces during the process of thermal poling. In this work, we focus on how thermal poling affects a structurally complex, nominally alkali-free boroaluminosilicate display glass composition. We provide evidence for electrolysis of the glass network, characterized by the migration of both cations (Ba2+, Na+) and anions (O-, F-) towards opposing electrode interfaces. This process results in oxidation of the positively biased electrode and forms a network-former rich, modifier-depleted glass surface layer adjacent to the anodic interface. The modified glass layer thickness is qualitatively correlated to the oxidation resistance of the electrode material, while extrinsic ions such as H+/H3O+ at not found in the depletion layer to compensate for the migration of modifier cations out of the region. Rather, FTIR spectroscopy suggests a local restructuring of the B2O3-Al2O3-SiO2 network species to accommodate the charge imbalance created by the exodus of network-modifying cations, specifically the conversion of tetrahedral B(4) to trigonal B(3) as Ba or Na ions are removed from B-related sites in the parent network. The resultant poling-induced depletion layer exhibits enhanced hydrolytic resistance under acidic conditions, and the IR spectra are substantially unlike those produced by acid leaching the same glass.

  14. Fluoride-containing bioactive glasses: surface reactivity in simulated body fluids solutions.

    PubMed

    Lusvardi, G; Malavasi, G; Menabue, L; Aina, V; Morterra, C

    2009-11-01

    The issue of the contribution of the addition of F to glass bioactivity is not well resolved. This work reports on the surface reactivity in different solutions (DMEM and Tris) for some potentially bioactive glasses based on the composition of 45S5 glass, in which CaF(2) is substituted alternately for (part of) CaO and Na(2)O. The reactivity of F-containing glasses has been compared with that of the reference 45S5 system. The aim of this study is to explain in detail the mechanism of formation of an apatitic crystalline phase at the interface between the inorganic material and simulated biological media. A multi-technique investigation approach proposes a set of reactions involving Ca-carbonate formation, which are somewhat different from that formerly proposed by Hench for 45S5 bioactive glass, and which occur when a F-containing glass surface is in contact with a SBF. The usefulness of IR spectroscopy in recognizing the starting step of apatite (and/or FA) formation with respect to XRD technique is well established here.

  15. New method for strengthening surfaces of heat treated steel parts

    NASA Astrophysics Data System (ADS)

    Tarelnyk, V.; Martsynkovskyy, V.; Gaponova, O.; Konoplianchenko, Ie; Belous, A.; Gerasimenko, V.; Zakharov, M.

    2017-08-01

    There is described a method for strengthening surfaces of heat-treated steel parts, which includes technological procedures of carburizing by electroerosive alloying process (CEEA) and also nitriding processes. The nitriding process is simultaneously carried out with the CEEA operation for a period of time sufficient to saturate the surface layer of a part with nitrogen to the depth of a heat-affected zone. Thus, the process of so-cold nitro-carburizing process performed by the EEL method (NCEEA) takes place. To reduce a surface roughness, the NCEEA process is carried out in at least two stages, with a decreasing a discharge energy value at each subsequent stage.

  16. A study of the glass transition of polypropylene surfaces by sum-frequency vibrational spectroscopy and scanning force microscopy

    NASA Astrophysics Data System (ADS)

    Gracias, D. H.; Zhang, D.; Lianos, L.; Ibach, W.; Shen, Y. R.; Somorjai, G. A.

    1999-07-01

    Sum-frequency generation (SFG) vibrational spectroscopy and scanning force microscopy (SFM) were used to probe structural changes of atactic polypropylene (APP) and isotactic polypropylene (IPP) surfaces in the glass transition. The results indicate that below the glass transition, the surface polymer chains are better oriented with the CH 2 groups pointing outward and the surface elastic modulus is higher. The SFG and SFM results correlate well in the transition towards the glass phase. No discernible difference between the glass transition temperatures of the bulk and surface was observed.

  17. Identification of surface defects on glass by parallel spectral domain optical coherence tomography.

    PubMed

    Chen, Zhiyan; Shen, Yi; Bao, Wen; Li, Peng; Wang, Xiaoping; Ding, Zhihua

    2015-09-07

    Defects can dramatically degrade glass quality, and automatic inspection is a trend of quality control in modern industry. One challenge in inspection in an uncontrolled environment is the misjudgment of fake defects (such as dust particles) as surface defects. Fortunately, optical changes within the periphery of a surface defect are usually introduced while those of a fake defect are not. The existence of changes within the defect peripheries can be adopted as a criterion for defect identification. However, modifications within defect peripheries can be too small to be noticeable in intensity based optical image of the glass surface, and misjudgments of modifications may occur due to the incorrectness in defect demarcation. Thus, a sensitive and reliable method for surface defect identification is demanded. To this end, a nondestructive method based on optical coherence tomography (OCT) is proposed to precisely demarcate surface defects and sensitively measure surface deformations. Suspected surface defects are demarcated using the algorithm based on complex difference from expectation. Modifications within peripheries of suspected surface defects are mapped by phase information from complex interface signal. In this way, surface defects are discriminated from fake defects using a parallel spectral domain OCT (SD-OCT) system. Both simulations and experiments are conducted, and these preliminary results demonstrate the advantage of the proposed method to identify glass surface defects.

  18. Characterization of a Laser Surface-Treated Martensitic Stainless Steel

    PubMed Central

    Al-Sayed, S. R.; Hussein, A. A.; Nofal, A. A.; Hassab Elnaby, S. I.; Elgazzar, H.

    2017-01-01

    Laser surface treatment was carried out on AISI 416 machinable martensitic stainless steel containing 0.225 wt.% sulfur. Nd:YAG laser with a 2.2-KW continuous wave was used. The aim was to compare the physical and chemical properties achieved by this type of selective surface treatment with those achieved by the conventional treatment. Laser power of different values (700 and 1000 W) with four corresponding different laser scanning speeds (0.5, 1, 2, and 3 m·min−1) was adopted to reach the optimum conditions for impact toughness, wear, and corrosion resistance for laser heat treated (LHT) samples. The 0 °C impact energy of LHT samples indicated higher values compared to the conventionally heat treated (CHT) samples. This was accompanied by the formation of a hard surface layer and a soft interior base metal. Microhardness was studied to determine the variation of hardness values with respect to the depth under the treated surface. The wear resistance at the surface was enhanced considerably. Microstructure examination was characterized using optical and scanning electron microscopes. The corrosion behavior of the LHT samples was also studied and its correlation with the microstructures was determined. The corrosion data was obtained in 3.5% NaCl solution at room temperature by means of a potentiodynamic polarization technique. PMID:28772955

  19. Biologic response to titanium implants with laser-treated surfaces.

    PubMed

    Allegrini, Sergio; Yoshimoto, Marcelo; Salles, Marcos Barbosa; de Almeida Bressiani, Ana Helena

    2014-01-01

    To examine the biologic response to titanium implant surfaces treated with a neodymium:yttrium-aluminum-garnet laser. Sixty mini-implants made of grade 2 titanium were placed in the femora of 30 Wistar rats. Thirty implants had a machined surface and the other 30 had surfaces that were roughened by laser treatment. The animals were subdivided into three groups according to bone repair periods of 15, 30, and 60 days. The samples were observed under light and electron scanning microscopes and analyzed with the Student t test. Formation of new bone trabeculae toward the surface was apparent for the laser-treated implants at 15 days. Thin layers of bone matrix in intimate contact with the surface in the area of the central screw threads were observed, indicating high biocompatibility. Similar results were seen with machined implants after 30 days. A significant difference in bone formation was observed between the implant types at 15 days. Bone-to-implant contact was better on the surfaces subjected to laser treatment than on the machined titanium implants. The development of new laser treatments, which promote alterations in the surface energy as well as in the macro- and microstructures of titanium, may lead to improved bone-to-implant contact and thus better outcomes.

  20. Effects of chemical surface treatments of quartz and glass fiber posts on the retention of a composite resin.

    PubMed

    Yenisey, Murat; Kulunk, Safak

    2008-01-01

    Failure of a fiber post and composite resin core often occurs at the junction between the 2 materials. This failure process requires better characterization. The purpose of this study was to evaluate the effect of 2 chemical solvents, hydrogen peroxide and methylene chloride, on the shear bond strength of quartz and glass fiber posts to a composite resin. Twenty-four posts (3 +/-0.1 mm in length) were prepared for each quartz (LIGHT-POST (LP)) and glass fiber (Cytec blanco (CB)) post. Posts were horizontally embedded in acrylic resin with half of the post diameter exposed. The exposed surfaces were successively ground with 400-, 800-, and 1200-grit silicon carbide papers, to ensure uniform smoothness. The specimens were divided into 3 subgroups (n=8) representing different surface treatment techniques, including application of silane for 60 seconds (S), etching with hydrogen peroxide for 20 minutes (H), and etching with methylene chloride for 5 seconds (M). Silane-treated specimens served as controls. A dual-polymerized composite resin (Tetric EvoCeram) was placed in a polytetrafluoroethylene mold (30 x 2 mm) positioned upon the post specimens and polymerized for 20 seconds with a light-emitting diode (LED) polymerization unit. The specimens were stored in water at 37 degrees C for 24 hours. Shear bond strength values (MPa) of posts and composite resin cores were measured using a universal testing machine with a crosshead speed of 0.5 mm/min. Data were analyzed by 2-way analysis of variance (ANOVA). Post hoc Tukey intervals for comparison among the 2 post materials and 3 surface treatment techniques were calculated (alpha =.05). The effect of the chemical surface treatments on glass and quartz fiber post surfaces were examined with a scanning electron microscope (SEM). There were significant differences between the shear bond strength for LP and CB (P<.001). For all groups, the application of H showed the highest bond strength values. There was no significant

  1. Utilization of surface-treated rubber particles from waste tires

    SciTech Connect

    Smith, F.G. |

    1994-12-01

    During a 12-month program, the author successfully demonstrated commercial applications for surface-treated rubber particles in two major markets: footwear (shoe soles and components) and urethane-foam carpet underlay (padding). In these markets, he has clearly demonstrated the ease of using R-4080 and R-4030 surface-treated rubber particles in existing manufacturing plants and processes and have shown that the material meets or exceeds existing standards for performance, quality, and cost-effectiveness. To produce R-4080 and R-4030, vulcanized rubber, whole-tire material is finely ground to particles of nominal 80 and mesh size respectively. Surface treatment is achieved by reacting these rubber particles with chlorine gas. In this report, the author describes the actual test and evaluations of the participant companies, and identifies other potential end uses.

  2. Glass transition temperatures and fermentative activity of heat-treated commercial active dry yeasts.

    PubMed

    Schebor, C; Galvagno, M; del Pilar Buera, M; Chirife, J

    2000-01-01

    Differential scanning calorimetry thermograms of various samples of commercial instant active dry yeasts revealed a clear glass transition typical of amorphous carbohydrates and sugars. The resulting glass transition temperatures were found to decrease with increasing moisture content. The observed glass curve was similar to that of pure trehalose, which is known to accumulate in large amounts in baker's yeast. The effect of heat treatment at various temperatures on the fermentative activity (as measured by the metabolic production of CO(2)) of dry yeast was studied. First-order plots were obtained representing the loss of fermentative activity as a function of heating time at the various temperatures assayed. Significant losses of fermentative activity were observed in vitrified yeast samples. The dependence of rate constants with temperature was found to follow Arrhenius behavior. The relationship between the loss of fermentative activity and glass transition was not verified, and the glass transition was not reflected on the temperature dependence of fermentative activity loss.

  3. Acid base surface properties of glass-ionomers determined by IGC

    NASA Astrophysics Data System (ADS)

    Voelkel, A.; Andrzejewska, E.; Limanowska-Shaw, H.; Andrzejewski, M.

    2005-05-01

    SummaryThe surface properties of several glass-ionomer restorative dental materials (GC Fuji, Chemadent G-J, Ketac Fil and Ketac Molar) were investigated by means of inverse gas chromatography. The capacity of the surface of glass-ionomers to undergo specific interactions was expressed using the specific component of free energy Δ Gs as well as the parameters KA and KD to describe the ability of the cement to act both as an electron acceptor and an electron donor, respectively. The character of the examined surface was expressed with the use of the SC parameter. All these parameters were determined with a high degree of precision. It was found that the surface of glass-ionomer cements had a well-marked acidic character. The ability of the cement surface to take part in specific interactions differed with the various types of commercial products. The surface activity of the glass-ionomers investigated changed with the storage time (up to 6 months) indicating an on-going setting reaction.

  4. A factorial analysis of silanization conditions for the immobilization of oligonucleotides on glass surfaces.

    PubMed

    Halliwell, C M; Cass, A E

    2001-06-01

    The modification of glass surfaces with (3-mercaptopropyl)trimethoxysilane and the application of this to DNA chip technology are described. A range of factors influencing the silanization method, and hence the number of surface-bound, chemically active thiol groups, were investigated using a design of experiment approach based on analysis of variance. The number of thiol groups introduced on glass substrates were measured directly using a specific radiolabel, [14C]cysteamine hydrochloride. For liquid-phase silanization, the number of surface-bound thiol groups was found to be dependent on both postsilanization thermal curing and silanization time and relatively independent of silane concentration, reaction temperature, and sample pretreatment. Depending on the conditions used in liquid-phase silanization, (1.3-9.0) x 10(12) thiol groups/cm2 on the glass samples were bound. The reliability and repeatability of liquid- and vacuum-phase silanization were also investigated. Eighteen-base oligonucleotide probes were covalently attached to the modified surfaces via a 3'-amino modification on the DNA and subsequent reaction with the cross-linking reagent N-(gamma-maleimidobutyryloxy) succinimide ester (GMBS). The resulting probe levels were determined and found to be stoichiometric with that of the introduced thiol groups. These results demonstrate that silanization of glass surfaces under specific conditions, prior to probe attachment, is of great importance in the development of DNA chips that use the simple concept of the covalent attachment of presynthesized oligonucleotides to silicon oxide surfaces.

  5. Surface-tension-driven flow in a glass melt

    NASA Technical Reports Server (NTRS)

    Mcneil, Thomas J.; Cole, Robert; Shankar Subramanian, R.

    1985-01-01

    Motion driven by surface tension gradients was observed in a vertical capillary liquid bridge geometry in a sodium borate melt. The surface tension gradients were introduced by maintaining a temperature gradient on the free melt surface. The flow velocities at the free surface of the melt, which were measured using a tracer technique, were found to be proportional to the applied temperature difference and inversely proportional to the melt viscosity. The experimentally observed velocities were in reasonable accord with predictions from a theoretical model of the system.

  6. Adhesion mechanisms on solar glass: Effects of relative humidity, surface roughness, and particle shape and size

    DOE PAGES

    Moutinho, Helio R.; Jiang, Cun -Sheng; To, Bobby; ...

    2017-07-27

    To better understand and quantify soiling rates on solar panels, we are investigating the adhesion mechanisms between dust particles and solar glass. In this work, we report on two of the fundamental adhesion mechanisms: van der Waals and capillary adhesion forces. The adhesion was determined using force versus distance (F-z) measurements performed with an atomic force microscope (AFM). To emulate dust interacting with the front surface of a solar panel, we measured how oxidized AFM tips, SiO2 glass spheres, and real dust particles adhered to actual solar glass. The van der Waals forces were evaluated by measurements performed with zeromore » relative humidity in a glove box, and the capillary forces were measured in a stable environment created inside the AFM enclosure with relative humidity values ranging from 18% to 80%. To simulate topographic features of the solar panels caused by factors such as cleaning and abrasion, we induced different degrees of surface roughness in the solar glass. As a result, we were able to 1) identify and quantify both the van der Waals and capillary forces, 2) establish the effects of surface roughness, relative humidity, and particle size on the adhesion mechanisms, and 3) compare adhesion forces between well-controlled particles (AFM tips and glass spheres) and real dust particles.« less

  7. Measuring Surface Diffusion of Organic Glasses Using Tobacco Mosaic Virus as Probe Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Potter, Richard; Fakhraai, Zahra

    Recent studies have shown that diffusion on the surface of organic glasses can be many orders of magnitude faster than bulk diffusion, with lower activation barrier. Developing new probes that can readily measure the diffusion at the surface of an organic glass can help study the effect of chemical structure and molecule's size on the enhanced surface diffusion. In this study, surface diffusion coefficient of molecular glass (TPD) is measured using tobacco mosaic virus (TMV) as probe particles. TMV is placed on the surface of bulk TPD films. The evolution of the meniscus formed around TMV, driven by curvature gradient, is probed at various temperatures. TMV has a well-defined cylindrical shape, with a large aspect ratio (18 nm wide, 300 nm long). As such, the shape of the meniscus around the center of TMV is semi-one dimensional. Based on the self-similarity nature of surface diffusion flow in one dimension, the surface diffusion coefficient and its temperature dependence are measured. It is found that the surface diffusion is greatly enhanced and has weak temperature dependence compared to bulk counterpart, consistent with previous studies, showing that TMV probes serve as an efficient method of measuring surface diffusion. NSF-CAREER DMR-1350044.

  8. Hydrophobicity, surface tension, and zeta potential measurements of glass-reinforced hydroxyapatite composites.

    PubMed

    Lopes, M A; Monteiro, F J; Santos, J D; Serro, A P; Saramago, B

    1999-06-15

    Wettability and zeta potential studies were performed to characterize the hydrophobicity, surface tension, and surface charge of P2O5-glass-reinforced hydroxyapatite composites. Quantitative phase analysis was performed by the Rietveld method using GSAS software applied to X-ray diffractograms. Surface charge was assessed by zeta potential measurements. Protein adsorption studies were performed using vitronectin. Contact angles and surface tensions variation with time were determined by the sessile and pendent drop techniques, respectively, using ADSA-P software. The highest (-18.1 mV) and lowest (-28.7 mV) values of zeta potential were found for hydroxyapatite (HA) and beta-tricalcium phosphate (beta-TCP), respectively, with composite materials presenting values in between. All studied bioceramic materials showed similar solid surface tension. For HA and beta-TCP, solid surface tensions of 46.7 and 45.3 mJ/m2, respectively, were obtained, while composites presented intermediate surface tension values. The dispersive component of surface tension was the predominant one for all materials studied. Adhesion work values between the vitronectin solution and HA and beta-TCP were found to be 79.8 and 88.0 mJ/m2, respectively, while the 4.0 wt % glass composites showed slightly lower values than the 2.5 wt % ones. The presence of beta-TCP influenced surface charge, hydrophobicity, and protein adsorption of the glass-reinforced HA composites, and therefore indirectly affected cell-biomaterial interactions.

  9. Bonding strength of resin cement to silicate glass ceramics for dental CAD/CAM systems is enhanced by combination treatment of the bonding surface.

    PubMed

    Shimakura, Yusuke; Hotta, Yasuhiro; Fujishima, Akihiro; Kunii, Jun; Miyazaki, Takashi; Kawawa, Tadaharu

    2007-09-01

    To increase the bond strength of CAD/CAM-fabricated, leucite-reinforced glass ceramics with a resin cement, the effects of the following were investigated: surface modification by tribochemical (TBC) treatment, followed by combined application of a silane coupling agent and a functional monomer as a primer. Bond strength was evaluated by a shear bond test. It was found that a silane coupling agent was useful for all the surfaces, particularly for the TBC-treated surface. This was because of the presence of a silica layer on the modified surface. The combination of a silane coupling agent and a functional monomer on the TBC surface allowed marked improvement in bonding, whereby the bonding endured 20,000 cycles of thermal cycling. Therefore, TBC treatment in combination with a silane coupling agent and a functional monomer as a primer substantially increased the bond strength of CAD/CAM-fabricated glass ceramics with resin cement, if the treatment conditions were appropriate.

  10. Liquefaction and dechlorination of hydrothermally treated waste mixture containing plastics with glass powder.

    PubMed

    Sugano, Motoyuki; Shimizu, Takayuki; Komatsu, Akihiro; Kakuta, Yusuke; Hirano, Katsumi

    2011-03-15

    Additive effects of glass powder upon the product yields and chlorine distribution after liquefaction of hydrothermally pretreated mixed waste (HMW) are compared with liquefaction of HMW with any one of water, quartz sand, or glass powder plus water. As a result, addition of either water or quartz sand did not affect liquefaction and dechlorination of HMW. Further, water (5 g) addition did not enhance liquefaction and dechlorination of HMW with glass powder. On the other hand, after liquefaction of HMW with glass powder, the yields of chlorine in the gas and water insoluble constituents decreased and the chlorine yield in the water-soluble constituent increased significantly. Because sodium in glass powder dissolved in a small amount (0.5 g) of water resulted from dehydration of HMW during liquefaction. Further, hydrogen chloride derived from polyvinylchloride in HMW was neutralized by ion exchange between H(+) and Na(+) dissolved in a small amount of water forming NaCl in the Residue (water-soluble) constituent. Therefore, most of chlorine in HMW was removed easily by water extraction of the Residue constituent after liquefaction of HMW with glass powder. Further, upgrading of HMW into the oil constituent was enhanced due to inhibition of production of chlorine containing organic compounds. Accordingly, it was clarified that glass powder was the most effective additive for liquefaction and dechlorination of HMW.

  11. Fracture resistance of dental nickel-titanium rotary instruments with novel surface treatment: Thin film metallic glass coating.

    PubMed

    Chi, Chih-Wen; Deng, Yu-Lun; Lee, Jyh-Wei; Lin, Chun-Pin

    2017-05-01

    Dental nickel-titanium (NiTi) rotary instruments are widely used in endodontic therapy because they are efficient with a higher success rate. However, an unpredictable fracture of instruments may happen due to the surface characteristics of imperfection (or irregularity). This study assessed whether a novel surface treatment could increase fatigue fracture resistance of dental NiTi rotary instruments. A 200- or 500-nm thick Ti-zirconium-boron (Ti-Zr-B) thin film metallic glass was deposited on ProTaper Universal F2 files using a physical vapor deposition process. The characteristics of coating were analyzed by scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry. In cyclic fatigue tests, the files were performed in a simulated root canal (radius=5 mm, angulation=60°) under a rotating speed of 300rpm. The fatigue fractured cross sections of the files were analyzed with their fractographic performances through scanning electron microscopy images. The amorphous structure of the Ti-Zr-B coating was confirmed by transmission electron microscopy and X-ray diffractometry. The surface of treated files presented smooth morphologies without grinding irregularity. For the 200- and 500-nm surface treatment groups, the coated files exhibited higher resistance of cyclic fatigue than untreated files. In fractographic analysis, treated files showed significantly larger crack-initiation zone; however, no significant differences in the areas of fatigue propagation and catastrophic fracture were found compared to untreated files. The novel surface treatment of Ti-Zr-B thin film metallic glass on dental NiTi rotary files can effectively improve the fatigue fracture resistance by offering a smooth coated surface with amorphous microstructure. Copyright © 2016. Published by Elsevier B.V.

  12. Stability of plasma treated superhydrophobic surfaces under different ambient conditions.

    PubMed

    Chen, Faze; Liu, Jiyu; Cui, Yao; Huang, Shuai; Song, Jinlong; Sun, Jing; Xu, Wenji; Liu, Xin

    2016-05-15

    Plasma hydrophilizing of superhydrophobic substrates has become an important area of research, for example, superhydrophobic-(super)hydrophilic patterned surfaces have significant practical applications such as lab-on-chip systems, cell adhesion, and control of liquid transport. However, the stability of plasma-induced hydrophilicity is always considered as a key issue since the wettability tends to revert back to the untreated state (i.e. aging behavior). This paper focuses on the stability of plasma treated superhydrophobic surface under different ambient conditions (e.g. temperature and relative humidity). Water contact angle measurement and X-ray photoelectron spectroscopy are used to monitor the aging process. Results show that low temperature and low relative humidity are favorable to retard the aging process and that pre-storage at low temperature (-10°C) disables the treated surface to recover superhydrophobicity. When the aging is performed in water, a long-lasting hydropholicity is obtained. As the stability of plasma-induced hydrophilcity over a desired period of time is a very important issue, this work will contribute to the optimization of storage conditions of plasma treated superhydrophobic surfaces. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Acid Etching and Surface Coating of Glass-Fiber Posts: Bond Strength and Interface Analysis.

    PubMed

    Cecchin, Doglas; Farina, Ana Paula; Vitti, Rafael Pino; Moraes, Rafael Ratto; Bacchi, Ataís; Spazzin, Aloísio Oro

    2016-01-01

    The aim of this study was to evaluate the bond strength of a composite resin to glass-fiber post (GFP) treated or not with phosphoric acid, silane coupling agent, and unfilled resin. GFPs were etched or not with 37% phosphoric acid and different surface coating applied: silane coupling agent, unfilled resin, or both. Composite resin blocks were built around a 4-mm height on the GFP. Unfilled resin (20 s) and composite resin (40 s) were light activated by a light-emitting diode unit. The specimens were stored in distilled water at 37 °C for 24 h. Microtensile bond test was performed using a mechanical testing machine until failure (n=10). The data were analyzed using two-way ANOVA followed by Student-Newman-Keuls' test (p<0.05). Failure modes were classified as adhesive, mixed, or cohesive failures. Additional specimens (n=3) were made to analyze the bonded interfaces by scanning electron microscopy. The statistical analysis showed the factor 'surface coating' was significant (p<0.05), whereas the factor 'HP etching' (p=0.131) and interaction between the factors (p=0.171) were not significant. The highest bond strength was found for the silane and unfilled resin group (p<0.05). A predominance of adhesive and cohesive failures was found. Differences regarding the homogeneity and thickness of the unfilled resin layer formed by different GFP surface treatments were observed. The application of silane and unfilled resin can improve the bond strength between GFP and resin composite.

  14. Reductive surface synthesis of gold nanoparticles on silicate glass and their biochemical sensor applicationsa

    PubMed Central

    Li, M.; Kim, D.-P.; Jeong, G.-Y.; Seo, D.-K.; Park, C.-P.

    2012-01-01

    Gold nanoparticles (Au NPs) were directly synthesized on the surface of polyvinylsilazane (PVSZ, -[(vinyl)SiH-NH2]-) without use of extra reductive additives. The reductive Si-H functional groups on the surface of cured PVSZ acted as surface bound reducing agents to form gold metal when contacted with an aqueous Au precursor (HAuCl4) solution, leading to formation of Au NPs adhered to silicate glass surface. The Au NPs-silicate platforms were preliminarily tested to detect Rhodamine B (1 μM) by surface enhanced Raman scattering. Furthermore, gold microelectrode obtained by post-chemical plating was used as an integrated amperometric detection element in the polydimethylsilane-glass hybrid microfluidic chip. PMID:24324531

  15. Reductive surface synthesis of gold nanoparticles on silicate glass and their biochemical sensor applications.

    PubMed

    Li, M; Kim, D-P; Jeong, G-Y; Seo, D-K; Park, C-P

    2012-01-01

    Gold nanoparticles (Au NPs) were directly synthesized on the surface of polyvinylsilazane (PVSZ, -[(vinyl)SiH-NH2]-) without use of extra reductive additives. The reductive Si-H functional groups on the surface of cured PVSZ acted as surface bound reducing agents to form gold metal when contacted with an aqueous Au precursor (HAuCl4) solution, leading to formation of Au NPs adhered to silicate glass surface. The Au NPs-silicate platforms were preliminarily tested to detect Rhodamine B (1 μM) by surface enhanced Raman scattering. Furthermore, gold microelectrode obtained by post-chemical plating was used as an integrated amperometric detection element in the polydimethylsilane-glass hybrid microfluidic chip.

  16. Predictive Surface Roughness Model for End Milling of Machinable Glass Ceramic

    NASA Astrophysics Data System (ADS)

    Mohan Reddy, M.; Gorin, Alexander; Abou-El-Hossein, K. A.

    2011-02-01

    Advanced ceramics of Machinable glass ceramic is attractive material to produce high accuracy miniaturized components for many applications in various industries such as aerospace, electronics, biomedical, automotive and environmental communications due to their wear resistance, high hardness, high compressive strength, good corrosion resistance and excellent high temperature properties. Many research works have been conducted in the last few years to investigate the performance of different machining operations when processing various advanced ceramics. Micro end-milling is one of the machining methods to meet the demand of micro parts. Selecting proper machining parameters are important to obtain good surface finish during machining of Machinable glass ceramic. Therefore, this paper describes the development of predictive model for the surface roughness of Machinable glass ceramic in terms of speed, feed rate by using micro end-milling operation.

  17. Surface microstructures of silica glass by laser-induced backside wet etching

    NASA Astrophysics Data System (ADS)

    Niino, H.; Kawaguchi, Y.; Sato, T.; Narazaki, A.; Kurosaki, R.

    2008-02-01

    We have investigated a one-step method to fabricate a microstructure on a silica glass plate using laser-induced backside wet etching (LIBWE) upon irradiation with DPSS (diode-pumped solid state) lasers. Well-defined deep microtrenches without crack formations on a fused silica glass plate were fabricated by LIBWE method. As the laser beam of DPSS UV laser at a high repetition rate up to 5 - 100 kHz is scanned on the sample surface with the galvanometer controlled by a computer for flexible operations, galvanometer-based point scanning system is suitable for a rapid prototyping process according to electronic design data in the computer. The behavior of liquid ablation (explosive vaporization) was monitored by impulse pressure detection with a fast-response piezoelectric pressure gauge. LIBWE method is suitable for rapid prototyping and rapid manufacturing of surface microstructuing of silica glass as mask-less exposure system in a conventional atmospheric environment.

  18. Communication: Surface-facilitated softening of ordinary and vapor-deposited glasses

    NASA Astrophysics Data System (ADS)

    Cubeta, Ulyana; Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2017-08-01

    A common distinction between the ordinary glasses formed by melt cooling and the stable amorphous films formed by vapor deposition is the apparent mechanism of their devitrification. Using quasi-adiabatic, fast scanning calorimetry that is capable of heating rates in excess of 105 K s-1, we have investigated the softening kinetics of micrometer-scale, ordinary glass films of methylbenzene and 2-propanol. At the limit of high heating rates, the transformation mechanism of ordinary glasses is identical to that of their stable vapor-deposited counterparts. In both cases, softening is likely to begin at the sample surface and progress into its bulk via a transformation front. Furthermore, such a surface-facilitated mechanism complies with zero-order, Arrhenius rate law. The activation energy barriers for the softening transformation imply that the kinetics must be defined, at least in part, by the initial thermodynamic and structural state of the samples.

  19. Control of Montmorillonite Surface Coatings on Quartz Grains in Bentonite by Precursor Volcanic Glass

    NASA Astrophysics Data System (ADS)

    Wendlandt, R. F.; Harrison, W. J.

    2008-12-01

    The pathogenic tendencies of respirable-sized quartz grains may be dependent on inherent characteristics of the quartz as well as external factors. Surface coatings on quartz are of particular interest as they modify both physical and chemical properties of quartz grain surfaces and sequester the grain from contact with reactive lung fluids. Wendlandt et al. (Appl. Geochem. 22, 2007) investigated the surface properties of respirable-sized quartz grains in bentonites and recognized pervasive montmorillonite surface coatings on the quartz that resisted removal by repeated vigorous washings and reaction with HCl. To understand the persistence of montmorillonite coatings on quartz grains of igneous origin, volcanic ash deposits of varying age and degree of alteration to montmorillonite were sampled in Utah, including the distal Lava Creek (c. 0.64 Ma) and Bishop Tuffs (c. 0.74 Ma), and SW Colorado (Conejos Fm, San Juan Volcanic Field) for comparison with commercial grade Cretaceous-age "western" and "southern" bentonites. Quartz grains, hand-picked from these samples, were analyzed using FE-SEM and HRTEM. Continuous coatings of volcanic glass occur on quartz grains from the distal volcanic ash samples. As glass alteration to montmorillonite becomes more extensive, quartz grain surfaces start to display patches of montmorillonite. These patches become continuous in extent on quartz grains from the bentonites. Late precipitation of opal- CT lepispheres is consistent with the alteration reaction for volcanic glass: Volcanic glass + H2O = montmorillonite + SiO2(am) + ions(aq). HRTEM of quartz grains reveals an amorphous surface layer, consistent with a volcanic glass coating. Our results indicate that persistent montmorillonite coatings on quartz grains in bentonites are related to precursor volcanic glass coatings on these grains. The absence of glass coatings on other mineral grains in bentonite (feldspar, biotite) may be a consequence of the presence of strong cleavage

  20. Development of drug adsorbates onto soluble inorganic silicate glass surface: example with acetaminophen.

    PubMed

    Hristova, Yoanna; Djambaski, Peter; Samuneva, Biserka; Rangelova, Nadya; Bogdanova, Svetla

    2008-02-01

    A ternary melt-derived inorganic glass system (Igl) of composition corresponding to 62SiO(2), 35Na(2)O, 3Al(2)O(3 )(wt.%) has been formulated and studied as a drug carrier. The [Al(2)O(3)/Na(2)O] ratio is less than one and the aluminium ion is a network former that retards the glass dissolution. The processing conditions lead to a brittle, easily grinding, amorphous product. The Igl structure was proven by IR-spectroscopy, energy-dispersive spectrometry, X-ray diffraction, scanning electron microscopy. A very important fact established is that the Igl corrosion (dissolution) is pH-dependent. Inorganic glass system was transformed into model acetaminophen (APH) adsorbate (APH/Igla 1:1(w/w)) with mild experimental conditions and evaluated as a drug carrier. No interactions between Igl and APH during the processing were proven. Besides, APH settles onto the glass surface as crystalline phase. A lower extent of corrosion, apparent solubility and delayed in vitro APH release from the adsorbate in water and artificial gastric juice in comparison to the samples untreated drug and APH/Iglm physical mixture were established. It is hypothesized that the glass decomposition products, formed into contact with a solvent, initiate interactions with APH at the glass/solution interface. Similar behaviour of the Igl and its drug adsorbates could be expected in gastro-intestinal tract.

  1. Monte Carlo Simulations of Coupled Diffusion and Surface Reactions during the Aqueous Corrosion of Borosilicate Glasses

    SciTech Connect

    Kerisit, Sebastien N.; Pierce, Eric M.; Ryan, Joseph V.

    2015-01-01

    Borosilicate nuclear waste glasses develop complex altered layers as a result of coupled processes such as hydrolysis of network species, condensation of Si species, and diffusion. However, diffusion has often been overlooked in Monte Carlo models of the aqueous corrosion of borosilicate glasses. Therefore, three different models for dissolved Si diffusion in the altered layer were implemented in a Monte Carlo model and evaluated for glasses in the compositional range (75-x) mol% SiO2 (12.5+x/2) mol% B2O3 and (12.5+x/2) mol% Na2O, where 0 ≤ x ≤ 20%, and corroded in static conditions at a surface-to-volume ratio of 1000 m-1. The three models considered instantaneous homogenization (M1), linear concentration gradients (M2), and concentration profiles determined by solving Fick’s 2nd law using a finite difference method (M3). Model M3 revealed that concentration profiles in the altered layer are not linear and show changes in shape and magnitude as corrosion progresses, unlike those assumed in model M2. Furthermore, model M3 showed that, for borosilicate glasses with a high forward dissolution rate compared to the diffusion rate, the gradual polymerization and densification of the altered layer is significantly delayed compared to models M1 and M2. Models M1 and M2 were found to be appropriate models only for glasses with high release rates such as simple borosilicate glasses with low ZrO2 content.

  2. Surface modifications of nitrogen-plasma-treated stainless steels

    NASA Astrophysics Data System (ADS)

    Gröning, P.; Nowak, S.; Schlapbach, L.

    1993-03-01

    Using X-ray photoelectron spectroscopy (XPS) and optical microscopy we have investigated the chemical composition and the morphology of stainless steel surfaces after low-pressure nitrogen-plasma treatment. AISI 440C and AISI 316L steels were treated at room temperature and at 600°C in an electron cyclotron resonance (ECR)N 2 plasma with different negative RF-bias potentials (in the range of 0 to 200 V). The formation of CrN on the steel surface was observed at high treatment temperature as well as at room temperature. Already at room temperature, a bias higher than 20 V results in preferential Fe sputtering and the formation of a surface rich in CrN. At high temperature ( T = 600°C) treatment the N 2 plasma changes the morphology of the steel surface completely, etching in some crystallographic orientation increases the roughness of the surface dramatically. The segregation of Cr, Mo, Mn, and Si forms a top surface layer with practically no Fe. To obtain pure CrN on the steel surface a negative bias is necessary to remove Mn and Si compounds from the surface. Since CrN has a NaCl structure like TiN with a lattice mismatch of only 2.1%, we believe that a N 2 plasma treatment improves the adhesion of TiN coatings on stainless steels, by the formation of a CrN interface compound.

  3. Restoration of endodontically treated anterior teeth: an evaluation of coronal microleakage of glass ionomer and composite resin materials.

    PubMed

    Diaz-Arnold, A M; Wilcox, L R

    1990-12-01

    A glass ionomer material was evaluated for coronal microleakage in permanent lingual access restorations of endodontically treated anterior teeth. The material was tested as a restoration, placed over a zinc oxide-eugenol base, and as a base with an acid-etched composite resin veneer and a dentinal bonding agent. Restored teeth were thermocycled, immersed in silver nitrate, developed, and sectioned to assess microleakage. Significant coronal leakage was observed with all materials used.

  4. Enamel Surface with Pit and Fissure Sealant Containing 45S5 Bioactive Glass.

    PubMed

    Yang, S-Y; Kwon, J-S; Kim, K-N; Kim, K-M

    2016-05-01

    Enamel demineralization adjacent to pit and fissure sealants leads to the formation of marginal caries, which can necessitate the replacement of existing sealants. Dental materials with bioactive glass, which releases ions that inhibit dental caries, have been studied. The purpose of this study was to evaluate the enamel surface adjacent to sealants containing 45S5 bioactive glass (BAG) under simulated microleakage between the material and the tooth in a cariogenic environment. Sealants containing 45S5BAG filler were prepared as follows: 0% 45S5BAG + 50.0% glass (BAG0 group), 12.5% 45S5BAG + 37.5% glass (BAG12.5 group), 25.0% 45S5BAG + 25.0% glass (BAG25.0 group), 37.5% 45S5BAG + 12.5% glass (BAG37.5 group), and 50.0% 45S5BAG + 0% glass (BAG50.0 group). A cured sealant disk was placed over a flat bovine enamel disk, separated by a 60-µm gap, and immersed in lactic acid solution (pH 4.0) at 37 °C for 15, 30, and 45 d. After the storage period, each enamel disk was separated from the cured sealant disk, and the enamel surface was examined with optical 3-dimensional surface profilometer, microhardness tester, and scanning electron microscopy. The results showed a significant increase in roughness and a decrease in microhardness of the enamel surface as the proportion of 45S5BAG decreased (P< 0.05). In the scanning electron microscopy images, enamel surfaces with BAG50.0 showed a smooth surface, similar to those in the control group with distilled water, even after prolonged acid storage. Additionally, an etched pattern was observed on the surface of the demineralized enamel with a decreasing proportion of 45S5BAG. Increasing the 45S5BAG filler contents of the sealants had a significant impact in preventing the demineralization of the enamel surface within microgaps between the material and the tooth when exposed to a cariogenic environment. Therefore, despite some marginal leakage, these novel sealants may be effective preventive dental materials for inhibiting

  5. Treating ocular surface disease: new agents in development

    PubMed Central

    Fahmy, Ahmad M; Hardten, David R

    2011-01-01

    This paper reviews recent advances and investigation in the treatment of ocular surface pathology. There is significant investment in this area, paralleling the growing demand for more effective alternatives to current treatments. Clinicians are becoming more aware of surface pathology, yet the ability to treat the most common forms of ocular pathology are still limited to the few medications approved by the US Food and Drug Administration. Medicines and devices currently under investigation are very promising. It is absolutely critical to understand the emerging options and think of their role in the treatment paradigm. PMID:21573093

  6. Differences in Radiation Activity Between Glass and Resin 90Y Microspheres in Treating Unresectable Hepatic Cancer.

    PubMed

    James, Trent; Hill, Jacqueline; Fahrbach, Thomas; Collins, Zachary

    2017-03-01

    The purpose of this study was to compare the difference in prescribed radiation activity between glass and resin yttrium-90 (Y) microspheres for radioembolization of unresectable hepatocellular carcinoma (HCC) or liver metastases at a tertiary care teaching institution. The authors performed a retrospective analysis on 126 patients with primary HCC and hepatic metastatic disease from extrahepatic primary cancers who underwent radioembolization with glass or resin particles between 2008 and 2013 at their institution. Radiation activity estimates for prescribed treatments, as well as for the alternate embolization particles, were calculated using commonly employed formulae for both glass and resin particles for all treatments. A total of 217 treatments were performed on 126 patients, with 136 (62.7%) using glass particles and 81 (37.3%) using resin particles. Forty-six (36.5%) patients had metastatic colorectal cancer (CRC), 51 (40.5%) had primary HCC, while 11 (8.7%) had neuroendocrine carcinoma, and 18 (14.3%) had metastases from other primary tumors. The average prescribed activity was 2.66 GBq for glass treatments and 1.06 GBq for resin treatments across all cancer types. When the alternative treatment activity was calculated, activities were projected to decrease by an average of 1.52 GBq per treatment if resin microspheres were used instead of glass microspheres (-52.5%), while activities were projected to increase by an average of 1.57 GBq per treatment if glass microspheres were used instead of resin microspheres (148.9%; p < 0.001). Similar results were seen within each malignancy type and all projected changes were statistically significant (p < 0.001). In conclusion, prescribed radiation activity for radioembolization of unresectable hepatic cancer was significantly lower for resin compared to glass microspheres.

  7. Alternate protection concepts for second surface silver/glass solar mirrors

    SciTech Connect

    Buckwalter, C.Q.; Dake, L.S.; Hartman, J.S.; Lind, M.A.

    1980-10-01

    Investigations into three technologies having the potential of significantly enhancing the durability of solar mirrors are reported. The approaches are based on the assumption that sealing the silver layer on second surface mirrors from the external environment with protective overcoats will significantly extend their useful service life. Considered are: (1) edge sealing a second sheet of glass over the silver layer using solder glasses, (2) overcoating the silver layer with liquid applied SiO/sub 2/ or TiO/sub 2/ coatings, and (3) overcoating the silver layer with an electroless nickel film. Preliminary experiments were performed using Sb/sub 2/O/sub 5/-K/sub 2/O and PbO based solder glasses to edge seal a second sheet of glass over the silver mirror surface. Problems encountered in the formulation of the Sb/sub 2/O/sub 5/-K/sub 2/O glasses forced abandonment of these low melting point solder glass experiments. Materials compatibility problems were encountered when using several of the commercially available PbO based solder glasses alternatives. A cursory evaluation of liquid SiO/sub 2/ and TiO/sub 2/ coatings was also undertaken. The films were applied as direct overcoats on both silver only and silver/copper mirror substrates. Although the process appeared to yield visually acceptable coatings, under microscopic examination the films were found to be porous and pinhole riddled after the final curing step. Consequently, they did not stand up well to salt spray and HCl vapor tests. Background data were collected in an investigation of overcoating the silver or silver/copper mirrors with an electroless deposited nickel film. Two formulations, one a basic solution, the other a commercial acidic solution, were attempted. Film integrity problems were encountered for fairly thick films in the feasibility experiments attempted. Nevertheless, the concept appears sound and merits further investigation.

  8. Influence of Energy Beverages on the Surface Texture of Glass lonomer Restorative Materials.

    PubMed

    Al-Samadani, Khalid H

    2017-10-01

    The objective of the study was to find whether energy beverages have an erosive effect, leading to a risk in the clinical performance of glass ionomer restorative materials. This study evaluated the influence of energy beverages on the surface texture of glass ionomer restorative materials. Glass ionomer materials used were Ionofil Plus AC, GC EQUIA, and Ketac Molar; energy beverages are Code Red, Red Bull, and Power Horse. Specimens prepared were discs of 8 mm diameter and 3 mm thickness; specimens from each material were evaluated following aging with Code Red, Red Bull, and Power Horse energy beverages. Distilled water was used as a control. The surface roughness (Ra) was assessed by surface scanning interferometry. The surface roughness values (ΔRa and Ra) were measured for each specimen. The data were analyzed statistically using multiple repeated measures [analysis of variance (ANOVA)] and paired data t-test (p < 0.05 was considered as the significance level). The surface roughness (ΔRa and Ra) values before and after aging using Code Red, Red Bull, and Power Horse energy beverages differ significantly for all the materials regardless of the immersion time (p < 0.05). All the materials showed roughness changes after immersion periods of 1 day, 1 week, and 1 month. It can be concluded that all energy beverage solutions used in this study had an adverse effect on the surface roughness degradation of the tested glass ionomers with increasing immersion time. Energy beverages have an erosive effect on glass ionomer, which influences the clinical importance of the material; it also has anticarious property because it releases the fluoride.

  9. Surface characterization and cell response of a PLA/CaP glass biodegradable composite material.

    PubMed

    Navarro, M; Engel, E; Planell, J A; Amaral, I; Barbosa, M; Ginebra, M P

    2008-05-01

    Bioabsorbable materials are of great interest for bone regeneration applications, since they are able to degrade gradually as new tissue is formed. In this work, a fully biodegradable composite material containing polylactic acid (PLA) and calcium phosphate (CaP) soluble glass particles has been characterized in terms of surface properties and cell response. Cell cultures were performed in direct contact with the materials and also with their extracts, and were evaluated using the MTT assay, alkaline phosphatase activity, and osteocalcin measurements. The CaP glass and PLA were used as reference materials. No significant differences were observed in cell proliferation with the extracts containing the degradation by-products of the three materials studied. A relation between the materials wettability and the material-cell interactions at the initial stages of contact was observed. The most hydrophilic material (CaP glass) presented the highest cell adhesion values as well as an earlier differentiation, followed by the PLA/glass material. The incorporation of glass particles into the PLA matrix increased surface roughness. SEM images showed that the heterogeneity of the composite material induced morphological changes in the cells cytoskeleton.

  10. A spectroscopic study of the near-surface layers of a glass modified by ion implantation

    SciTech Connect

    Deshkovskaya, A.A.; Komar, V.P.; Skornyakov, I.V.

    1985-07-01

    The mechanism of the complex physiocochemical processes leading to the structural changes in glass under ion implantation is discussed in this paper. Specimens of Pyrex-type silicate glasses manufactured in the form of polished, plane-parallel plates 10 x 10 x 1 mm were studied. As the doping impurities singly charged ions B/sup +/, N/sup +/, O/sup +/, P/sup +/, Ar/sup +/, BF/sub 2//sup +/, As/sup +/, Sb/sup +/, and Pb/sup +/ were used and also the double charged P/sup + +/ ions. The implantation was done at room temperature on a ''Vesuvius-1'' type of equipment with an attachment that makes it possible to obtain high-energy ions beams. When studying the structural damage, the implanted glasses and the mechanism by which it is caused, the authors used infrared spectroscopy of the multiple frustrated total internal reflection (MFTIR) which makes it possible to analyze the deeper surface layers of the material in addition to the use of IR spectroscopy which gives information on the surface of the glass. Of all the possible reasons for the structural damage in a Pyrex glass caused by ion implantation, the dominant role is shown to itself is not so important as its capacity for interaction with its environment.

  11. Effects of fiber-glass-reinforced composite restorations on fracture resistance and failure mode of endodontically treated molars.

    PubMed

    Nicola, Scotti; Alberto, Forniglia; Riccardo, Michelotto Tempesta; Allegra, Comba; Massimo, Saratti Carlo; Damiano, Pasqualini; Mario, Alovisi; Elio, Berutti

    2016-10-01

    The study evaluated the fracture resistance and fracture patterns of endodontically treated mandibular first molars restored with glass-fiber-reinforced direct composite restorations. In total, 60 extracted intact first molars were treated endodontically; a mesio-occluso-distal (MOD) cavity was prepared and specimens were then divided into six groups: sound teeth (G1), no restoration (G2), direct composite restoration (G3), fiber-post-supported direct composite restoration (G4), direct composite reinforced with horizontal mesio-distal glass-fibers (G5), and buccal-palatal glass-fibers (G6). Specimens were subjected to 5000 thermocycles and 20,000 cycles of 45° oblique loading force at 1.3Hz and 50N; they were then loaded until fracture. The maximum fracture loads were recorded in Newtons (N) and data were analyzed with one-way ANOVA and post-hoc Tukey tests (p<0.05). Fractured specimens were analyzed with a scanning electron microscope (SEM). The mean static loads (in Newtons) were: G1, 831.83; G2, 282.86; G3, 364.18; G4, 502.93; G5, 499.26; and G6, 582.22. Fracture resistance did not differ among G4, G5, and G6, but was significantly higher than G3 (p=0.001). All specimens fractured in a catastrophic way. In G6, glass fibers inducted a partial deflection of the fracture, although they were not able to stop crack propagation. For the direct restoration of endodontically treated molars, reinforcement of composite resins with glass-fibers or fiber posts can enhance fracture resistance. The SEM analysis showed a low ability of horizontal glass-fibers to deviate the fracture, but this effect was not sufficient to lead to more favorable fracture patterns above the cement-enamel junction (CEJ). The fracture resistance of endodontically treated molars restored with direct composite restorations seems to be increased by reinforcement with fibers, even if it is insufficient to restore sound molar fracture resistance and cannot avoid vertical fractures. Copyright © 2016

  12. Synthesis in situ of gold nanoparticles by a dialkynyl Fischer carbene complex anchored to glass surfaces

    NASA Astrophysics Data System (ADS)

    Bertolino, María Candelaria; Granados, Alejandro Manuel

    2016-10-01

    In this work we present a detailed study of classic reactions such as ;click reaction; and nucleophilic substitution reaction but on glass solid surface (slides). We used different reactive center of a dialkynylalcoxy Fischer carbene complex of tungsten(0) to be anchored to modified glass surface with amine, to obtain aminocarbene, and azide terminal groups. These cycloaddition reaction showed regioselectivity to internal triple bond of dialkynyl Fischer carbene complex without Cu(I) as catalyst. Anyway the carbene anchored was able to act as a reducing agent to produce in situ very stable gold nanoparticles fixed on surface. We showed the characterization of modified glasses by contact angle measurements and XPS. Synthesized nanoparticles were characterized by SEM, XPS, EDS and UV-vis. The modified glasses showed an important enhancement Raman-SERS. This simple, fast and robust method to create a polifunctional and hybrid surfaces can be valuable in a wide range of applications such as Raman-SERS substrates and other optical fields.

  13. Outstanding Antibiofilm Features of Quanta-CuO Film on Glass Surface.

    PubMed

    Tripathy, Nirmalya; Ahmad, Rafiq; Bang, Seung Hyuck; Khang, Gilson; Min, Jiho; Hahn, Yoon-Bong

    2016-06-22

    Intelligently designed surface nanoarchitecture provides defined control over the behavior of cells and biomolecules at the solid-liquid interface. In this study, CuO quantum dots (quanta-CuO; ∼3-5 nm) were synthesized by a simple, low-temperature solution process and further formulated as paint to construct quanta-CuO thin film on glass. Surface morphological characterizations of the as-coated glass surface reveal a uniform film thickness (∼120 ± 10 nm) with homogeneous distribution of quanta-CuO. The antibiofilm assay showed a very high contact bacteria-killing capacity of as-coated quanta-CuO glass surfaces toward Staphylococcus aureus and Escherichia coli. This efficient antibacterial/antibiofilm activity was ascribed to the intracellular reactive oxygen species (ROS) generated by the quanta-CuO attached to the bacterial cells, which leads to an oxidative assault and finally results in bacterial cell death. Although there is a significant debate regarding the CuO nanostructure's antibacterial mode of action, we propose both contact killing and/or copper ion release killing mechanisms for the antibiofilm activity of quanta-CuO paint. Moreover, synergism of quanta-CuO with conventional antibiotics was also found to further enhance the antibacterial efficacy of commonly used antibiotics. Collectively, this state-of-the-art design of quanta-CuO coated glass can be envisioned as promising candidates for various biomedical and environmental device coatings.

  14. Surface Treated Natural Fibres as Filler in Biocomposites

    NASA Astrophysics Data System (ADS)

    Schwarzova, I.; Stevulova, N.; Singovszka, E.; Terpakova, E.

    2015-11-01

    Biocomposites based on natural fibres as organic filler have been studied for several years because traditional building materials such as concrete are increasingly being replaced by advanced composite materials. Natural fibres are a potential replacement of glass fibres in composite materials. Inherent advantages such as low density, biodegradability and comparable specific mechanical properties make natural fibres an attractive option. However, limitations such as poor thermal stability, moisture absorption and poor compatibility with matrix are challenges that need to be resolved. The primary objective of this research was to study the effect of surface treatment on properties of hemp hurds like a natural lignocellulosic material and composites made thereof. Industrial hemp fibre is the one of the most suitable fibres for use in composite materials because of its good specific properties, as well as it being biologically degradable and CO2 neutral. Improving interfacial bonding between fibres and matrix is an important factor in using hemp fibres as reinforcement in composites. In order to improve interfacial bonding, modifications can be made to the hemp fibres to remove non- cellulosic compounds, separate hemp fibres from their bundles, and modify the fibre surface. This paper contains the comparison of FTIR spectra caused by combination of physical and chemical treatment of hemp material with unmodified sample. Modification of hemp hurds was carried out by NaOH solution and by ultrasonic treatment (deionized water and NaOH solution were used as the cleaning mediums).

  15. Evaluation and comparison of the effect of different surface preparations on bond strength of glass ionomer cement with nickel-chrome metal-ceramic alloy: a laboratory study.

    PubMed

    Hasti, Kalpana; Jagadeesh, H G; Patil, Narendra P

    2011-03-01

    Retention of fixed partial dentures is mostly dependent upon the bond between metal and cement as well as cement and tooth structure. However, most of the time clinical failure of bond has been observed at metal and cement interface. The treatment of metal surface, prior to luting, plays a crucial role in bonding cement with the metal. This study is conducted to evaluate and compare the effect of different surface preparations on the bond strength of resin-modified glass ionomer cement with nickel-chromium metal ceramic alloy. Fifty caries-free extracted molar teeth were made flat until the dentin of the occlusal surface was exposed. After fabrication of the wax patterns and subsequent castings, the castings were subjected to porcelain firing cycles. The nickel-chromium metal ceramic alloy discs were also divided into five groups and subjected to various surface treatments: (1) Unsandblasted (U), (2) sandblasted (S), (3) sandblasted and treated with 10% aqueous solution of KMnO4 (SK), (4) unsandblasted and roughened with diamond abrasive points (UD) and (5) unsandblasted and roughened with diamond abrasive points and treated with 10% aqueous solution of KMnO(4) (UDK). After surface treatments, the castings were cemented using Fuji PLUS encapsulated resin-modified glass ionomer cement. The obtained values of all the groups were subjected to statistical analysis for Tensile and Shear bond strength. Different surface treatments of the metal affects the bond strength values of resin-modified glass ionomer cement when used as luting agent.

  16. Conducting polymers as electron glasses: surface charge domains and slow relaxation

    PubMed Central

    Ortuño, Miguel; Escasain, Elisa; Lopez-Elvira, Elena; Somoza, Andres M.; Colchero, Jaime; Palacios-Lidon, Elisa

    2016-01-01

    The surface potential of conducting polymers has been studied with scanning Kelvin probe microscopy. The results show that this technique can become an excellent tool to really ‘see’ interesting surface charge interaction effects at the nanoscale. The electron glass model, which assumes that charges are localized by the disorder and that interactions between them are relevant, is employed to understand the complex behavior of conducting polymers. At equilibrium, we find surface potential domains with a typical lateral size of 50 nm, basically uncorrelated with the topography and strongly fluctuating in time. These fluctuations are about three times larger than thermal energy. The charge dynamics is characterized by an exponentially broad time distribution. When the conducting polymers are excited with light the surface potential relaxes logarithmically with time, as usually observed in electron glasses. In addition, the relaxation for different illumination times can be scaled within the full aging model. PMID:26911652

  17. Evaluation of the surface strength of glass plates shaped by hot slumping process

    NASA Astrophysics Data System (ADS)

    Proserpio, Laura; Basso, Stefano; Borsa, Francesco; Citterio, Oberto; Civitani, Marta; Ghigo, Mauro; Pareschi, Giovanni; Salmaso, Bianca; Sironi, Giorgia; Spiga, Daniele; Tagliaferri, Gianpiero; D'Este, Alberto; Dall'Igna, Roberto; Silvestri, Mirko; Parodi, Giancarlo; Martelli, Francesco; Bavdaz, Marcos; Wille, Eric

    2014-08-01

    Hot slumping technology is under development by several research groups in the world for the realization of grazing-incidence segmented mirrors for x-ray astronomy, based on thin glass plates shaped over a mold at temperatures above the transformation point. The performed thermal cycle and related operations might have effects on the strength of the glass, with consequences for the structural design of the elemental optical modules and, consequently, on the entire x-ray optic for large astronomical missions such as IXO and ATHENA. The mechanical strength of glass plates after they underwent the slumping process was tested through destructive double-ring tests in the context of a study performed by the Astronomical Observatory of Brera with the collaboration of Stazione Sperimentale del Vetro and BCV Progetti. The entire study was done on more than 200 D263 Schott borosilicate glass specimens of dimensions 100 mm×100 mm and a thickness 0.4 mm, either flat or bent at a radius of curvature of 1000 mm through the pressure-assisted hot slumping process developed by INAF-OAB. The collected experimental data have been compared with nonlinear finite element model analyses and treated with the Weibull statistic to assess the current IXO glass x-ray telescope design, in terms of survival probability, when subjected to static and acoustic loads characteristic of the launch phase. The paper describes the activities performed and presents the obtained results.

  18. Multicomponent glass surfaces: Structure and adsorption. Progress report, April 1, 1993--October 1993

    SciTech Connect

    Garofalini, S.H.

    1993-12-31

    The intent of the research is to study the compositions and surface structure of complex multicomponent silicate glasses and the effect that these surfaces have on adsorption behavior, thin film formation, and adhesion. Classical molecular dynamics (MD) simulations, quantum molecular dynamics simulations using the Car-Parrinello (CP) MD technique, and XPS and UHV-AFM Force-Distance (FD) experiments are being used in this program.

  19. Practical significance and calculation of surface tension of glass, enamels and glazes

    NASA Technical Reports Server (NTRS)

    Dietzel, A.

    1987-01-01

    Surface tension is important in the formation of streaks in the whole procedure of enameling and glazing., in the action of TiO2 as opacifier, in the addition of borax to enamels, or metals to glasses, and in the corrosion of refractories by molten charges. By the use of known methods for measuring surface tension additive constants are found which give correct results within 1% with no discrepancy due to B2O3.

  20. Effect of Loading Rates and Surface Conditions on the Flexural Strength of Borosilicate Glass

    DTIC Science & Technology

    2009-01-01

    quality level required for this transition increased with decreasing loading rate. This could be attributed to the fact that the ultimate tensile strength ...code) 20-03-2011 Journal Paper 01-10-2008 - 30-09-2009 Effects of Surface Treatment and Interfacial Strength on the Damage Propagation in Layered...Transparent Armor Under Impact ---Effects of Loading Rates and Surface Conditions on Flexural Strength of Borosilicate Glass 54666EG W911NF0810533

  1. [Comparative research for micro-push-out bond strengths of glass fiber posts treated by poly-dopamine or silane coupling agent].

    PubMed

    Chen, Qian; Su, Yong-liang; Cai, Qing; Bai, Yun-yang; Su, Jing; Wang, Xin-zhi

    2015-12-18

    To evaluate the micro-push-out bond strengths of prefabricated glass fiber posts with poly-dopamine functionalized to root dentin using resin cements, contrasted with silane treatment. In the study, 30 glass fiber posts were randomly divided into 3 groups (10 posts in each group) for different surface treatments. Group 1, treated with poly-dopa; Group 2, treated with silane coupling agent for 60s; Group 3, no surface treatment (Control group). The 30 extracted human, single-rooted teeth were endodontically treated and a 9 mm post space was prepared in each tooth with post drills provided by the manufacturer. Following post cementation, the specimens were stored in distilled water at 37 °C for 7 days. The micro-push-out bond strengths were tested using a universal testing machine (0.5 mm/min), and the failure modes were examined with a stereomicroscope. The data of the three groups were statistically analyzed using the one-way ANOVA test(α= 0.05). The bond strengths were (7.909 ± 1.987) MPa for Group 1, (5.906 ± 0.620) MPa for Group 2, and 4.678 ± 0.910 MPa for Group 3. The bond strength of poly-dopamine group was significantly higher than that of the silane group (P<0.05). Contrasted with silane treatment, surface poly-dopamine functionalization was confirmed to be a more reliable method for improving the bond strength of resin luting agents to fiber posts.

  2. Flame retardant polypropylene nanocomposites reinforced with surface treated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Guleria, Abhishant

    Polypropylene nanocomposites are prepared by reinforcing carbon nanotubes by ex-situ solution mixing method. Interfacial dispersion of carbon nanotubes in polypropylene have been improved by surface modification of CNTs and adding surfactants. Polypropylene nanocomposites fabrication was done after treating CNTs. Firstly, oxidation of CNTs followed by silanization for addition of functionalized groups on the surface of CNTs. Maleic anhydride grafted PPs were used as surfactants. Maleic anhydrides with two different molecular weights were LAMPP and HMAPP. Successful oxidation of CNTs by nitric acid and functionalized CNTs by 3-Aminopropyltriethoxysilane was confirmed by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) with evidence of absorption peak at 1700 and 1100-1000 cm-1. Scanning electron microscopy (SEM) micrographs revealed that the CNTs dispersion quality was improved by directly adding LMAPP/HMAPP into PP/CNTs system and the PP-CNTs adhesion was enhanced through both the CNTs surface treatment and the addition of surfactant. Thermal gravimetric analysis (TGA) revealed an enhanced thermal stability in the PP/CNTs and PP/CNTs/MAPP. Differential scanning calorimetry (DSC) characterization demonstrated that the crystalline temperature, fusion heat and crystalline fraction of hosting PP were decreased with the introduction of CNTs and surface treated CNTs; however, melting temperature was only slightly changed. Melting rheological behaviors including complex viscosity, storage modulus, and loss modulus indicated significant changes in the PP/MAPP/CNTs system before and after functionalization of CNTs, and the mechanism were also discussed in details.

  3. In vitro evaluation of the fracture resistance of anterior endodontically treated teeth restored with glass fiber and zircon posts.

    PubMed

    Qing, Hai; Zhu, ZhiMin; Chao, YongLie; Zhang, WeiQun

    2007-02-01

    The published information is equivocal regarding the fracture resistance of endodontically treated teeth restored with fiber posts. Additionally, little is known about the biomechanical performance of glass fiber and zircon posts. This in vitro study investigated the fracture resistance of anterior endodontically treated teeth prepared with a 2-mm ferrule, restored with glass fiber and zircon posts and composite resin cores or cast posts and cores. Twelve matched pairs of teeth were obtained from 4 cadavers, and all were endodontically treated and prepared with a standardized 2-mm ferrule. According to a random number table, the 2 teeth from each matched pair were randomly divided into 2 groups. The test group consisted of 12 specimens restored with a glass fiber and zircon post (Fibio) and composite resin (Durafil) core. Twelve matching specimens restored with a nickel-chromium (NiCr) cast post and core served as the control. Specimens in both groups were cemented with resin cement (Panavia F). After cementation of cast NiCr complete crowns with zinc polycarboxylate cement (ShangChi), the specimens were loaded with an incremental static force at an angle of 135 degrees to the long axis of the root until failure occurred. A paired sample t test was used to compare the fracture resistance (N) of teeth restored with the 2 post-and-core systems (alpha=.05). The mean failure load of paired differences between the 2 groups was -261.3+/-237.3 N. The test group exhibited significantly lower failure loads than the control group (P=.004). All specimens displayed root fractures, most of which were oblique, with cracks initiating from the palatal cervical margin and propagating in a labial-apical direction. Within the limitations of this study, the teeth restored with glass fiber and zircon posts demonstrated significantly lower failure loads than those with cast NiCr post and cores. All specimens failed via root fractures.

  4. The effect of silane applied to glass ceramics on surface structure and bonding strength at different temperatures.

    PubMed

    Yavuz, Tevfik; Eraslan, Oguz

    2016-04-01

    To evaluate the effect of various surface treatments on the surface structure and shear bond strength (SBS) of different ceramics. 288 specimens (lithium-disilicate, leucite-reinforced, and glass infiltrated zirconia) were first divided into two groups according to the resin cement used, and were later divided into four groups according to the given surface treatments: G1 (hydrofluoric acid (HF)+silane), G2 (silane alone-no heat-treatment), G3 (silane alone-then dried with 60℃ heat-treatment), and G4 (silane alone-then dried with 100℃ heat-treatment). Two different adhesive luting systems were applied onto the ceramic discs in all groups. SBS (in MPa) was calculated from the failure load per bonded area (in N/mm(2)). Subsequently, one specimen from each group was prepared for SEM evaluation of the separated-resin-ceramic interface. SBS values of G1 were significantly higher than those of the other groups in the lithium disilicate ceramic and leucite reinforced ceramic, and the SBS values of G4 and G1 were significantly higher than those of G2 and G3 in glass infiltrated zirconia. The three-way ANOVA revealed that the SBS values were significantly affected by the type of resin cement (P<.001). FIN ceramics had the highest rate of cohesive failure on the ceramic surfaces than other ceramic groups. AFM images showed that the surface treatment groups exhibited similar topographies, except the group treated with HF. The heat treatment was not sufficient to achieve high SBS values as compared with HF acid etching. The surface topography of ceramics was affected by surface treatments.

  5. The effect of silane applied to glass ceramics on surface structure and bonding strength at different temperatures

    PubMed Central

    Eraslan, Oguz

    2016-01-01

    PURPOSE To evaluate the effect of various surface treatments on the surface structure and shear bond strength (SBS) of different ceramics. MATERIALS AND METHODS 288 specimens (lithium-disilicate, leucite-reinforced, and glass infiltrated zirconia) were first divided into two groups according to the resin cement used, and were later divided into four groups according to the given surface treatments: G1 (hydrofluoric acid (HF)+silane), G2 (silane alone-no heat-treatment), G3 (silane alone-then dried with 60℃ heat-treatment), and G4 (silane alone-then dried with 100℃ heat-treatment). Two different adhesive luting systems were applied onto the ceramic discs in all groups. SBS (in MPa) was calculated from the failure load per bonded area (in N/mm2). Subsequently, one specimen from each group was prepared for SEM evaluation of the separated-resin–ceramic interface. RESULTS SBS values of G1 were significantly higher than those of the other groups in the lithium disilicate ceramic and leucite reinforced ceramic, and the SBS values of G4 and G1 were significantly higher than those of G2 and G3 in glass infiltrated zirconia. The three-way ANOVA revealed that the SBS values were significantly affected by the type of resin cement (P<.001). FIN ceramics had the highest rate of cohesive failure on the ceramic surfaces than other ceramic groups. AFM images showed that the surface treatment groups exhibited similar topographies, except the group treated with HF. CONCLUSION The heat treatment was not sufficient to achieve high SBS values as compared with HF acid etching. The surface topography of ceramics was affected by surface treatments. PMID:27141250

  6. Shape- and size-controllable microstructure on glass surface induced by femtosecond laser irradiation.

    PubMed

    Teng, Yu; Zhou, Jiajia; Luo, Fangfang; Ma, Zhijun; Lin, Geng; Qiu, Jianrong

    2010-07-01

    Controllable microstructures are formed on a glass surface after irradiation of a focused 800 nm, 250 KHz femtosecond laser beam. Field-emission scanning electron microscope and 3D measuring laser microscope images reveal that the induced structures are circular and linear protuberances and can be controlled from 10 microm to hundreds of micrometers in width, and from 1 microm to tens of micrometers in height. The protuberance structure is proposed to be formed as a consequence of the laser-induced high temperature and pressure owing to linear and nonlinear absorption near the laser focal point, and low softening and melting temperature of the glass sample.

  7. Evaluation of flexural strength of resin interim restorations impregnated with various types of silane treated and untreated glass fibres

    PubMed Central

    Naveen, K.S.; Singh, J.P.; Viswambaran, M.; Dhiman, R.K.

    2015-01-01

    Background Flexural strength is an important mechanical property that determines the long-term prognosis of interim restorations. Studies are lacking regarding the effect of silanation of the various types of glass fibre impregnation on the flexural strength of resin interim restorations. Methods A customized metal die was milled to simulate the prepared abutments of a three-unit fixed dental prosthesis. A total of seventy five samples of interim fixed dental prostheses were prepared using autopolymerizing tooth colour acrylic resin. Unidirectional and woven forms of glass fibres (Stick and Stick Net), which were silane treated and untreated were used to reinforce the resin matrix. Fifteen samples were prepared for each group along with unreinforced group serving as control. The flexural strength was evaluated with universal testing machine. Results The means and standard deviations of flexural strength for different groups were 13.90 ± 2.96 (control), 61.58 ± 5.26 (unidirectional fibres), 30.89 ± 3.60 (woven fibres), 112.05 ± 5.51 (silane treated unidirectional fibres) and 73.85 ± 4.10 (silane treated woven fibres) respectively. The mean flexural strength of silane treated unidirectional fibres (112.05 MPa) was highest and statistically highly significant (P < 0.0001) compared to all other groups. Conclusions Within the limitations of the current study, flexural strength of the reinforced PMMA interim fixed dental prosthesis was significantly higher (P < 0.0001) when compared to the unreinforced PMMA interim fixed dental prosthesis. The use of silane treated unidirectional glass fibres is an effective method of reinforcing interim fixed restorations made of PMMA resins. PMID:26843742

  8. Surface reaction rate and probability of ozone and alpha-terpineol on glass, polyvinyl chloride, and latex paint surfaces.

    PubMed

    Shu, Shi; Morrison, Glenn C

    2011-05-15

    Ozone can react homogeneously with unsaturated organic compounds in buildings to generate undesirable products. However, these reactions can also occur on indoor surfaces, especially for low-volatility organics. Conversion rates of ozone with α-terpineol, a representative low-volatility compound, were quantified on surfaces that mimic indoor substrates. Rates were measured for α-terpineol adsorbed to beads of glass, polyvinylchloride (PVC), and dry latex paint, in a plug flow reactor. A newly defined second-order surface reaction rate coefficient, k(2), was derived from the flow reactor model. The value of k(2) ranged from 0.68 × 10(-14) cm(4)s(-1)molecule(-1) for α-terpineol adsorbed to PVC to 3.17 × 10(-14) cm(4)s(-1)molecule(-1) for glass, but was insensitive to relative humidity. Further, k(2) is only weakly influenced by the adsorbed mass but instead appears to be more strongly related to the interfacial activity α-terpineol. The minimum reaction probability ranged from 3.79 × 10(-6) for glass at 20% RH to 6.75 × 10(-5) for PVC at 50% RH. The combination of high equilibrium surface coverage and high reactivity for α-terpineol suggests that surface conversion rates are fast enough to compete with or even overwhelm other removal mechanisms in buildings such as gas-phase conversion and air exchange.

  9. Influence of citric acid on the surface texture of glass ionomer restorative materials

    PubMed Central

    Reddy, Dappili Swami Ranga; Kumar, Ramachandran Anil; Venkatesan, Sokkalingam Mothilal; Narayan, Gopal Shankar; Duraivel, Dasarathan; Indra, Rajamani

    2014-01-01

    Aim: This study determined the effectiveness of G-coat plus surface protective agent over petroleum jelly on the surface texture of conventional Glass ionomer restorative materials. Materials and Methods: Three chemically cured conventional glass ionomer restorative materials type II, type IX and ketac molar were evaluated in this study. Sixty specimens were made for each restorative material. They were divided into two groups of thirty specimens each. Of the sixty specimens, thirty were coated with G-coat plus (a nano-filler coating) and the rest with petroleum jelly. Thirty samples of both protective coating agents were randomly divided into six groups of five specimens and conditioned in citric acid solutions of differing pH (pH 2, 3, 4, 5, 6 & 7). Each specimen was kept in citric acid for three hours a day, and the rest of time stored in salivary substitute. This procedure was repeated for 8 days. After conditioning, the surface roughness (Ra, μm) of each specimen was measured using a surface profilometer (Taylor & Habson, UK). Data was analyzed using one-way analysis of variance (ANOVA) and Tukey's HSD test at a significance level of 0.05. Results: The surface textures of all the tested glass ionomer restorative materials protected with G-coat plus were not significantly affected by acids at low pH. The surface textures of all the tested glass ionomer restorative materials protected with petroleum jelly coating were significantly affected by acids at low pH. Conclusion: The effects of pH on the surface texture of glass ionomer restoratives are material dependent. Among all the materials tested the surface texture of Type II GIC (Group I) revealed marked deterioration when conditioned in solutions of low pH and was statistically significant. Hence, a protective coating either with G-coat plus or with light polymerized low viscosity unfilled resin adhesives is mandatory for all the glass ionomer restorations to increase the wear resistance of the restorative

  10. Surface treatment of glass fiber and carbon fiber posts: SEM characterization.

    PubMed

    Naves, Lucas Zago; Santana, Fernanda Ribeiro; Castro, Carolina Guimarães; Valdivia, Andréa Dolores Correia Miranda; Da Mota, Adérito Soares; Estrela, Carlos; Correr-Sobrinho, Lourenço; Soares, Carlos José

    2011-12-01

    Morphology, etching patterns, surface modification, and characterization of 2 different fiber posts: Gfp, Glass fiber post; and Cfp, carbon fiber were investigated by SEM analysis, after different surface treatments. Thirty fiber posts, being 15 Gfp and 15 Cfp were divided into a 5 surface treatments (n = 3): C-alcohol 70% (control); HF 4%-immersion in 4% hydrofluoric acid for 1min; H(3) PO(4) 37%-immersion in 37% phosphoric acid for 30s; H(2) O(2) 10%-immersion in 10% hydrogen peroxide for 20 min; H(2) O(2) 24%-immersion in 24% hydrogen peroxide for 10 min. Morphology, etching patterns, surface modification and surface characterization were acessed by SEM analysis. SEM evaluation revealed that the post surface morphology was modified following all treatment when compared with a control group, for both type of reinforced posts. HF seems to penetrate around the fibers of Gfp and promoted surface alterations. The Cfp surface seems to be inert to treatment with HF 4%. Dissolution of epoxy resin and exposure of the superficial fiber was observed in both post groups, regardless the type of reinforcing fiber, H(2) O(2) in both concentrations. Relative smooth surface area was produced by H(3) PO(4) 37% treatment, but with similar features to untreated group. Surface treatment of fiber post is a determinant factor on micromechanical entanglement to resin composite core. Post treatment with hydrogen peroxide resulted strength of carbon and glass/epoxy resin fiber posts to resin composite core. Copyright © 2011 Wiley Periodicals, Inc.

  11. Terahertz Bandpass Frequency Selective Surfaces on Glass Substrates Using a Wet Micromachining Process

    NASA Astrophysics Data System (ADS)

    Ramzan, Mehrab; Khan, Talha Masood; Bolat, Sami; Nebioglu, Mehmet Ali; Altan, Hakan; Okyay, Ali Kemal; Topalli, Kagan

    2017-08-01

    This paper presents terahertz (THz) frequency selective surfaces (FSS) implemented on glass substrate using standard microfabrication techniques. These FSS structures are designed for frequencies around 0.8 THz. A fabrication process is proposed where a 100-μm-thick glass substrate is formed through the HF etching of a standard 500-μm-thick low cost glass wafer. Using this fabrication process, three separate robust designs consisting of single-layer FSS are investigated using high-frequency structural simulator (HFSS). Based on the simulation results, the first design consists of a circular ring slot in a square metallic structure on top of a 100-μm-thick Pyrex glass substrate with 70% transmission bandwidth of approximately 0.07 THz, which remains nearly constant till 30° angle of incidence. The second design consists of a tripole structure on top of a 100-μm-thick Pyrex glass substrate with 65% transmission bandwidth of 0.035 THz, which remains nearly constant till 30° angle of incidence. The third structure consists of a triangular ring slot in a square metal on top of a 100-μm-thick Pyrex glass substrate with 70% transmission bandwidth of 0.051 THz, which remains nearly constant up to 20° angle of incidence. These designs show that the reflections from samples can be reduced compared to the conventional sample holders used in THz spectroscopy applications, by using single layer FSS structures manufactured through a relatively simple fabrication process. Practically, these structures are achieved on a fabricated 285-μm-thick glass substrate. Taking into account the losses and discrepancies in the substrate thickness, the measured results are in good agreement with the electromagnetic simulations.

  12. Teicoplanin-loaded borate bioactive glass implants for treating chronic bone infection in a rabbit tibia osteomyelitis model.

    PubMed

    Zhang, Xin; Jia, Weitao; Gu, Yifei; Xiao, Wei; Liu, Xin; Wang, Deping; Zhang, Changqing; Huang, Wenhai; Rahaman, Mohamed N; Day, Delbert E; Zhou, Nai

    2010-08-01

    The treatment of chronic osteomyelitis (bone infection) remains a clinical challenge. In this work, pellets composed of a chitosan-bonded mixture of borate bioactive glass particles (<50microm) and teicoplanin powder (antibiotic), were evaluated in vitro and in vivo for treating chronic osteomyelitis induced by methicillin-resistant Staphylococcus aureus (MRSA) in a rabbit model. When immersed in phosphate-buffered saline, the pellets showed sustained release of teicoplanin over 20-30 days, while the bioactive glass converted to hydroxyapatite (HA) within 7 days, eventually forming a porous HA structure. Implantation of the teicoplanin-loaded pellets in a rabbit tibia osteomyelitis model resulted in the detection of teicoplanin in the blood for about 9 days. The implants converted to a bone-like HA graft, and supported the ingrowth of new bone into the tibia defects within 12 weeks of implantation. Microbiological, histological and scanning electron microscopy techniques showed that the implants provided a cure for the bone infection. The results indicate that the teicoplanin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone ingrowth, could provide a method for treating chronic osteomyelitis.

  13. Fracture resistance of endodontically treated teeth: effect of tooth coloured post material and surface conditioning.

    PubMed

    Toman, Muhittin; Toksavul, Suna; Sarikanat, Mehmet; Nergiz, Ibrahim; Schmage, Petra

    2010-03-01

    This in vitro study evaluated the effects of the different endodontic posts and surface conditioning on the fracture resistance and fracture modes of endodontically treated teeth. The experimental groups consisted of zirconia ceramic post with a glasss-ceramic core [A], zirconia ceramic post with a composite core [B], glass fiber composite post (FRC) with a composite core [C], and titanium post with a composite core [D]. All posts in these groups were cemented with self-adhesive resin cement (Rely X Unicem Aplicap) combination with tribochemical silica coating (TSC). Groups E, F, G and H comprised the same post-and-core materials as the first 4 groups but cemented with the same resin cement without TSC. Specimens were subjected to thermal cycling between 5 degrees C and 55 degrees C for a total of 5000 cycles with 30s per cycle. Static load was applied to the palatal surface of each specimen until they were fractured. Statistical analysis was conducted using analysis of variance (ANOVA) followed by post-hoc comparisons (Tukey). The fracture resistance was significantly affected by the post material (P < 0.001) and surface conditioning (P < 0.001; two-way ANOVA). The application of TSC to post surface decreased the fracture resistance of zirconia ceramic post with composite core (p=0.002; Tukey) and glass FRC post with composite core (p=0.029; Tukey). No catastrophic failure was observed for groups B, C, D, E, F and G. Under the testing conditions used, the titanium post/composite core that had been silicoated exhibited the highest fracture resistance.

  14. Fe-based metallic glass catalyst with nanoporous surface for azo dye degradation.

    PubMed

    Deng, Z; Zhang, X H; Chan, K C; Liu, L; Li, T

    2017-05-01

    In this work, porous structures were introduced to the surface of Fe-based metallic glass ribbons for the first time by chemical treatment in order to increase the catalytic activity in the degradation of azo dyes. The results show that etching treatment in an HF solution with a volume concentration of 20% for 40 min leads to a porous structure on the FeSiBNb metallic glass with a dramatic increase in the specific surface area by 25 times. The much higher specific surface area of the porous ribbons greatly improves the catalytic activity in the degradation of Direct Blue 15 when compared with as-spun metallic ribbons. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Surface energy increase of oxygen-plasma-treated PET

    SciTech Connect

    Cioffi, M.O.H.; Voorwald, H.J.C.; Mota, R.P

    2003-03-15

    Prosthetic composite is a widely used biomaterial that satisfies the criteria for application as an organic implant without adverse reactions. Polyethylene therephthalate (PET) fiber-reinforced composites have been used because of the excellent cell adhesion, biodegradability and biocompatibility. The chemical inertness and low surface energy of PET in general are associated with inadequate bonds for polymer reinforcements. It is recognized that the high strength of composites, which results from the interaction between the constituents, is directly related to the interfacial condition or to the interphase. A radio frequency plasma reactor using oxygen was used to treat PET fibers for 5, 20, 30 and 100 s. The treatment conditions were 13.56 MHz, 50 W, 40 Pa and 3.33x10{sup -7} m{sup 3}/s. A Rame-Hart goniometer was used to measure the contact angle and surface energy variation of fibers treated for different times. The experimental results showed contact angle values from 47 deg. to 13 deg. and surface energies from 6.4x10{sup -6} to 8.3x10{sup -6} J for the range of 5 to 100 s, respectively. These results were confirmed by the average ultimate tensile strength of the PET fiber/ polymethylmethacrylate (PMMA) matrix composite tested in tensile mode and by scanning electron microscopy.

  16. Surface transport mechanisms in molecular glasses probed by the exposure of nano-particles

    NASA Astrophysics Data System (ADS)

    Ruan, Shigang; Musumeci, Daniele; Zhang, Wei; Gujral, Ankit; Ediger, M. D.; Yu, Lian

    2017-05-01

    For a glass-forming liquid, the mechanism by which its surface contour evolves can change from bulk viscous flow at high temperatures to surface diffusion at low temperatures. We show that this mechanistic change can be conveniently detected by the exposure of nano-particles native in the material. Despite its high chemical purity, the often-studied molecular glass indomethacin contains low-concentration particles approximately 100 nm in size and 0.3% in volume fraction. Similar particles are present in polystyrene, another often-used model. In the surface-diffusion regime, particles are gradually exposed in regions vacated by host molecules, for example, the peak of a surface grating and the depletion zone near a surface crystal. In the viscous-flow regime, particle exposure is not observed. The surface contour around an exposed particle widens over time in a self-similar manner as 3 (Bt)1/4, where B is a surface mobility constant and the same constant obtained by surface grating decay. This work suggests that in a binary system composed of slow- and fast-diffusing molecules, slow-diffusing molecules can be stranded in surface regions vacated by fast-diffusing molecules, effectively leading to phase separation.

  17. XPS and SAM studies of the surface chemistry of lunar impact glasses including 12054

    NASA Technical Reports Server (NTRS)

    Housley, R. M.; Grant, R. W.; Cirlin, E. H.

    1979-01-01

    We report and discuss quantitative X-ray photoemission (XPS) analyses of mm size areas and qualitative scanning Auger microprobe (SAM) analyses of micron size areas on the surfaces of impact glass coatings found on fragments in the 14161 coarse fines and on the top surface, and a reentrant crack surface of rock 12054. The data suggest that some segregation occurs during impact glass formation leading to surface enrichments in Si and depletions in Mg, Al, Ca, and Ti. The magnitude of the effect appears fairly small, although the complexity of the surfaces severely complicates the data analysis. Because of the complexity of the surfaces, both XPS and SAM data were essential. A search for direct evidence of either solar wind sputter erosion or vapor deposition on the exposed top surface of 12054 provided interesting results which we cannot yet fully interpret. Both this surface and the surface from the re-entrant crack showed enrichments of more than a factor of two in Fe with respect to the bulk.

  18. Fracture resistance of endodontically treated teeth restored with glass fiber reinforced posts and cast gold post and cores cemented with three cements.

    PubMed

    Torres-Sánchez, Carlos; Montoya-Salazar, Vanessa; Córdoba, Paola; Vélez, Claudia; Guzmán-Duran, Andrés; Gutierrez-Pérez, José-Luis; Torres-Lagares, Daniel

    2013-08-01

    Dental fractures can occur in endodontically treated teeth restored with glass fiber reinforced posts and cast gold posts. The objective of this study was to record the fracture strength of endodontically treated teeth restored with glass fiber reinforced or cast gold post and cores cemented with 3 cements. Forty-two single-rooted premolars with standardized weakened roots were endodontically treated and allocated to 6 experimental groups (n=7) defined by the 2 factors investigated: post system and cement. Three groups were restored with glass fiber posts and resin-modified glass ionomer cement, dual-polymerizing resin cement, or chemically active autopolymerizing resin cement. The other 3 groups were restored with cast gold post and cores and the same 3 cements. The cores of the glass fiber post groups were fabricated with composite resin core material. Metal crowns were cemented on the cores in the 6 groups. The entire system was subjected to continuous compression in a universal testing machine, and fracture limit and location (cervical third, middle third, or apical third) were noted. Two-way ANOVA and the Scheffé test were used to analyze the data and compare the groups (α=.05). Two-way ANOVA showed significant differences in the post type (P<.001) and the cements (P<.001). The interaction between them (P<.001) was statistically significant in the fracture resistance of the endodontically treated teeth. The greatest interaction between post and cement was the glass fiber post with resin-modified glass ionomer cement, followed by the cast gold post and core with resin-modified glass ionomer cement. The use of a glass fiber reinforced post and resin-modified glass ionomer cement increased the fracture resistance of endodontically treated teeth. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  19. Cyclic loading of endodontically treated teeth restored with glass fibre and titanium alloy posts: fracture resistance and failure modes.

    PubMed

    Abdul Salam, Saridatun Nur; Banerjee, Avijit; Mannocci, Francesco; Pilecki, Peter; Watson, Timothy F

    2006-09-01

    The aims of this in-vitro investigation were to compare the fracture resistance and the failure modes of endodontically treated teeth restored with glass fibre-reinforced posts with those of teeth restored with titanium-alloy posts. A total of 60 single-rooted human mandibular premolars were endodontically treated. The teeth were divided into two experimental and one control group. Post spaces 9mm long were prepared in the roots of the experimental groups in which glass fibre-reinforced posts (Group A) and titanium-alloy posts (Group B) were cemented. In the control group (Group C), no post was inserted. The specimens were stored in normal saline for a period of three weeks before being intermittently loaded at an angle of 30 degrees degrees to the long axis of the tooth at a frequency of two loads of 40N per second. Log-rank test used for the overall analysis revealed that there was no significant difference of fracture resistance between teeth restored with glass fibre-reinforced posts (Group A) and titanium-alloy posts (Group B). The survival of the control group was found to be significantly inferior to that of the experimental groups. There was no significant difference in the number of failures between the two experimental groups. There was significantly more core and post failure for the glass fibre-reinforced posts, root and core failure for the titanium-alloy posts and core failure for the control group. The results suggest that post failures are more frequent in teeth restored with quartz fibre posts and root fractures are more frequent in teeth restored with titanium posts.

  20. Effects of dentin surface treatments on shear bond strength of glass-ionomer cements

    PubMed Central

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Lombardini, Marco

    2014-01-01

    Summary Aim The aim of this in vitro study was to evaluate the effect of different surface treatments on shear bond strength of a conventional glass-ionomer cement (GIC) and a resin-modified glass-ionomer cement (RMGIC) to dentin. Materials and methods 80 bovine permanent incisors were used. 40 cylindrical specimens of a GIC (Fuji IX GP Extra) and 40 cylindrical specimens of a RMGIC (Fuji II LC) were attached to the dentin. The teeth were then randomly assigned to 8 groups of equal size (n=10), 4 for every type of glass-ionomer cement, corresponding to type of dentin surface treatments. Group 1: GC Cavity Conditioner; Group 2: 37% phosphoric acid gel; Group 3: Clearfil SE Bond; Group 4: no dentin conditioning (control). The specimens were placed in a universal testing machine (Model 3343, Instron Corp., Canton, Mass., USA) and subsequently tested for shear bond strength (MPa). Results ANOVA showed the presence of significant differences among the various groups. Post hoc Tukey test showed different values of shear bond strength for Fuji IX GP Extra and for Fuji II LC. The different conditioners variably influence the adhesion of the glass-ionomer cements tested. Conclusions. RMGIC shear bond to dentin was higher than GIC. The use of a Self-etch adhesive system improved the shear bond strength values of RMGIC and lowered the shear bond strength values of GIC significantly. PMID:24753797

  1. RBS, PIXE and NDP study of erbium incorporation into glass surface for photonics applications

    NASA Astrophysics Data System (ADS)

    Macková, Anna; Havránek, Vladimír; Vacík, Jiří; Salavcová, Linda; Špirková, Jarmila

    2006-08-01

    This paper reports on the fabrication and the characterisation of successful erbium in-diffusion into silicate glass surface for potential use in photonics active structures through ion beam analytical methods. The erbium doping occurred by ion exchange of erbium ions from a molten source for lithium ions from the specially designed glass substrates. Composition of the optical layers was studied by ion beam analytical techniques: RBS (Rutherford backscattering spectroscopy) characterized depth distribution of the incorporated Er3+ ions and PIXE (particle induced X-ray emission spectroscopy) gave information on the total amount of erbium incorporated in the samples. The NDP (neutron depth profiling) method was used to evaluate changes in distribution of Li+ ions in the surfaces of the fabricated samples. We observed shallow Er profiles that were accompanied by more mobile Cs+, Rb+ ions incorporated in the much deeper layer as compared to the Er. The Li concentration in the glass substrate occurs as the most important parameter for Er diffusion into the glass substrate.

  2. The long-term Global LAnd Surface Satellite (GLASS) product suite and applications

    NASA Astrophysics Data System (ADS)

    Liang, S.

    2015-12-01

    Our Earth's environment is experiencing rapid changes due to natural variability and human activities. To monitor, understand and predict environment changes to meet the economic, social and environmental needs, use of long-term high-quality satellite data products is critical. The Global LAnd Surface Satellite (GLASS) product suite, generated at Beijing Normal University, currently includes 12 products, including leaf area index (LAI), broadband shortwave albedo, broadband longwave emissivity, downwelling shortwave radiation and photosynthetically active radiation, land surface skin temperature, longwave net radiation, daytime all-wave net radiation, fraction of absorbed photosynetically active radiation absorbed by green vegetation (FAPAR), fraction of green vegetation coverage, gross primary productivity (GPP), and evapotranspiration (ET). Most products span from 1981-2014. The algorithms for producing these products have been published in the top remote sensing related journals and books. More and more applications have being reported in the scientific literature. The GLASS products are freely available at the Center for Global Change Data Processing and Analysis of Beijing Normal University (http://www.bnu-datacenter.com/), and the University of Maryland Global Land Cover Facility (http://glcf.umd.edu). After briefly introducing the basic characteristics of GLASS products, we will present some applications on the long-term environmental changes detected from GLASS products at both global and local scales. Detailed analysis of regional hotspots, such as Greenland, Tibetan plateau, and northern China, will be emphasized, where environmental changes have been mainly associated with climate warming, drought, land-atmosphere interactions, and human activities.

  3. Antibacterial and bioactive composite bone cements containing surface silver-doped glass particles.

    PubMed

    Miola, Marta; Fucale, Giacomo; Maina, Giovanni; Verné, Enrica

    2015-10-20

    A bioactive silica-based glass powder (SBA2) was doped with silver (Ag(+)) ions by means of an ion-exchange process. Scanning electron microscopy (SEM), energy dispersion spectrometry (EDS) and x-ray diffraction (XRD) evidenced that the glass powder was enriched with Ag(+) ions. However, a small amount of Ag2CO3 precipitated with increased Ag concentrations in the exchange solution. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of Ag-SBA2 towards Staphylococcus aureus were also evaluated and were respectively 0.05 mg ml(-1) and 0.2 mg ml(-1). Subsequently, Ag-SBA2 glass was used as filler (30%wt) in a commercial formulation of bone cement (Simplex(™) P) in order to impart both antibacterial and bioactive properties. The composite bone cement was investigated in terms of morphology (using SEM) and composition (using EDS); the glass powder was well dispersed and exposed on the cement surface. Bioactivity tests in simulated body fluid (SBF) evidenced the precipitation of hydroxyapatite on sample surfaces. Composite cement demonstrated antibacterial properties and a compressive strength comparable to the commercial formulation.

  4. Synthesis of sub-10 nm VO2 nanoparticles films with plasma-treated glass slides by aqueous sol-gel method

    NASA Astrophysics Data System (ADS)

    Lan, Shi-Di; Cheng, Chih-Chia; Huang, Chi-Hsien; Chen, Jem-Kun

    2015-12-01

    This paper describes an aqueous sol-gel synthesis of thermochromic thin films consisted of vanadium dioxide nanoparticles (VNPs) on glass slides. The glass slides were treated by argon/oxygen plasma to generate dispersedly negative charge sites on the surface to attract VO2+ from a sol-gel solution. After heat treatment in a low-pressure carbon monoxide/carbon dioxide (CO/CO2) atmosphere, the VNPs could be generated in sub-10 nm of particle size on the surface. Various levels of doping were achieved by adding small quantities of a water-soluble tungsten compound to the sol; however, the particle size increased slightly with the tungsten doping levels. The change in electrical conductivity with temperature for VNP films were measured and compared to VO2 crystalline films. VNP films exhibited the lower transition temperature of the semiconductor to metal phase change; at a doping level of 4 wt% the transition temperature was measured at 32.2 ± 1.2 and 24.1 ± 1.2 °C for the VO2 and VNP films, respectively. The VNP films showed excellent visible transparency and a large change in transmittance at near-infrared (NIR) wavelengths before and after the metal-insulator phase transition (MIT). The current method is a landmark in the development of nanostructured material toward applications in energy-saving smart windows.

  5. Non-textured laser modification of silica glass surface: Wettability control and flow channel formation

    NASA Astrophysics Data System (ADS)

    Aono, Yuko; Hirata, Atsushi; Tokura, Hitoshi

    2016-05-01

    Local wettability of silica glass surface is modified by infrared laser irradiation. The silica glass surface exhibits hydrophobic property in the presence of sbnd CF3 or sbnd (CH3)2 terminal functional groups, which are decomposed by thermal treatment, and degree of the decomposition depends on the applied heat. Laser irradiation can control the number of remaining functional groups according to the irradiation conditions; the contact angle of deionized water on the laser modified surfaces range from 100° to 40°. XPS analysis confirms that the variation in wettability corresponds to the number of remaining sbnd CF3 groups. The laser irradiation achieves surface modification without causing any cracks or damages to the surface, as observed by SEM and AFM; moreover, surface transparency to visible light and surface roughness remains unaffected. The proposed method is applied to plane flow channel systems. Dropped water spreads only on the hydrophilic and invisible line modified by the laser irradiation without formation of any grooves. This indicates that the modified line can act as a surface channel. Furthermore, self-transportation of liquid is also demonstrated on a channel with gradually-varied wettability along its length. A water droplet on a hydrophobic side is self-transported to a hydrophilic side due to contact-angle hysteresis force without any actuators or external forces.

  6. Study on surface modification of porous apatite-wollastonite bioactive glass ceramic scaffold

    NASA Astrophysics Data System (ADS)

    Cao, Bin; Zhou, Dali; Xue, Ming; Li, Guangda; Yang, Weizhong; Long, Qin; Ji, Li

    2008-11-01

    Chitosan (CS) was used to modify the surface of apatite-wollastonite bioactive glass ceramic (AW GC) scaffold to prepare AW/CS composite scaffold. The in vitro bioactivity of the AW/CS composite scaffold was investigated by simulated body fluid (SBF) soaking experiment. Cell growth on the surface of the material was evaluated by co-culturing osteogenic marrow stromal cells (MSCs) of rabbits with the scaffold. The results showed that the compressive strength of AW GC scaffold was improved dramatically after being modified by CS, whereas the mineralization rate was delayed. MSCs can attach well on the surface of the composite scaffold.

  7. Surface spin-glass in cobalt ferrite nanoparticles dispersed in silica matrix

    NASA Astrophysics Data System (ADS)

    Zeb, F.; Sarwer, W.; Nadeem, K.; Kamran, M.; Mumtaz, M.; Krenn, H.; Letofsky-Papst, I.

    2016-06-01

    Surface effects in cobalt ferrite (CoFe2O4) nanoparticles dispersed in a silica (SiO2) matrix were studied by using AC and DC magnetization. Nanoparticles with different concentration of SiO2 were synthesized by using sol-gel method. Average crystallite size lies in the range 25-34 nm for different SiO2 concentration. TEM image showed that particles are spherical and elongated in shape. Nanoparticles with higher concentration of SiO2 exhibit two peaks in the out-of-phase ac-susceptibility. First peak lies in the high temperature regime and corresponds to average blocking temperature of the nanoparticles. Second peak lies in the low temperature regime and is attributed to surface spin-glass freezing in these nanoparticles. Low temperature peak showed SiO2 concentration dependence and was vanished for large uncoated nanoparticles. The frequency dependence of the AC-susceptibility of low temperature peak was fitted with dynamic scaling law which ensures the presence of spin-glass behavior. With increasing applied DC field, the low temperature peak showed less shift as compared to blocking peak, broaden, and decreased in magnitude which also signifies its identity as spin-glass peak for smaller nanoparticles. M-H loops showed the presence of more surface disorder in nanoparticles dispersed in 60% SiO2 matrix. All these measurements revealed that surface effects become strengthen with increasing SiO2 matrix concentration and surface spins freeze in to spin-glass state at low temperatures.

  8. Electron Emission from Cross-Sectional Surface of Porous Si on Glass Substrate

    NASA Astrophysics Data System (ADS)

    Higa, Katsuya

    2010-02-01

    The measurement of electron emission from the cross-sectional surface of porous Si layer on a glass substrate is demonstrated. The porous Si is formed by anodization, and subsequently bonded on a glass substrate with an Al electrode by anodic bonding. The electron emission device structure is composed of a Au electrode, a porous Si layer, and a glass substrate with an Al electrode. This structure is cut into two pieces during the formation of the cross-sectional surface of porous Si. The measurement of electron emission is carried out using a diode configuration in a vacuum chamber. A collector is placed close to the cross-sectional surface of porous Si. The negative voltages are applied at the Au electrode and electron emission from the cross-sectional surface of porous Si layer occurs. The characteristics of emission current are measured using the variation of applied negative voltage, the stability of electron emission, and the change in location of the Au electrode at the edge of the cross section of porous Si layer.

  9. Near-surface leaching studies of Pb-implanted Savannah River waste glass

    SciTech Connect

    Arnold, G.W.; Northrup, C.J.M.; Bibler, N.E.

    1982-01-01

    The present experiments with Savannah River Plant simulated nuclear waste glass implanted with Pb ions, used Rutherford backscattering spectrometry and elastic recoil detection to follow in detail the changes in composition which occur in the near-surface region upon leaching in deionized water at 90/sup 0/C. Analyses of the leach solutions were made in an attempt to correlate the actual leach rates with the observed near-surface compositional changes. These experiments show that radiation damage can cause changes in the composition of the near-surface of the leached glass. We also find that a critical fluence is reached where abrupt changes of the surface elemental composition occur as a result of leaching. This fluence is near the value observed by both Dran, et al. and Primak. Solution analyses were not made for all the leaching experiments. However, those analyses which were made indicate that the amount of material actually leaving the glass is not significantly increased as a result of the radiation damage.

  10. Clinical and experimental study on regional administration of phosphorus 32 glass microspheres in treating hepatic carcinoma

    PubMed Central

    Liu, Lu; Jiang, Zao; Teng, Gao-Jun; Song, Ji-Zhi; Zhang, Dong-Sheng; Guo, Qing-Ming; Fang, Wen; He, Shi-Cheng; Guo, Jin-He

    1999-01-01

    AIM: To study the therapeutical effectiveness, dosage range an d toxic adverse effects of domestic phosphorus 32 glass microsphere and evaluate its clinical significance. METHODS: I. Fifty-two BALB/c tumor bearing male nude mice w ere allocated into treatment group ( n = 38) and control group ( n = 14). In the former group different doses of 32P-GMS were injected into the tumor mass, while in the latter 31P-GMS or no treatment was given. The experimental animals were sacrificed in batches, and then the tumors and their nearby tissues were examined by light and electron microscopy. II. Through selective catheterizati on of hepatic artery, 32P-GMS was infused to 5 healthy domestic pigs in a dosage equivalent to the therapeutic dose for human being, and 31P-GMS was infused to another 5 healthy domestic pigs. Two pigs infused with con trast medium served as whole course blank controls. One pig from each group was surrendered to euthanasia at week 1, 4, 8 and 16 respectively. The ultrastructur al histopath-ological changes in liver tissues taken from different sites were evaluated semiquan-titatively. III. One hundred and twenty-seven times of 32P-GMS intrahepatic artery interventional therapies were performed on 93 patients with hepatic carcinoma, including 79 cases of primary hepatic carcinoma and 14 cases of secondary hepati c carcinoma. 32P-GMS ( n = 30), and group B, 32P-GMS and half-dose of trans-hepatic artery embolization ( TAE ) ( n = 49), and 18 patients with HCC by TAE only as control group C. Fourteen patients with secondary hepatic carcinoma were treated in the same way as group B or C. RESULTS: I. Comparing with the control group, the treatment group of tumor bearing nude mice attained the tumor inhibition rates of 59.7%-93.7% (F = 579.62, P < 0.01) at 14d. At an absorbed dose of 7320Gy, the tumor cells were completely destroyed. When the absorbed doses ranged from 1830Gy to 3660Gy, most of the tumor cells showed the evidences of injury or necrosis, but

  11. Monte Carlo simulations of coupled diffusion and surface reactions during the aqueous corrosion of borosilicate glasses

    SciTech Connect

    Kerisit, Sebastien; Pierce, Eric M.; Ryan, Joseph V.

    2014-09-19

    Borosilicate nuclear waste glasses develop complex altered layers as a result of coupled processes such as hydrolysis of network species, condensation of Si species, and diffusion. However, diffusion has often been overlooked in Monte Carlo models of the aqueous corrosion of borosilicate glasses. Therefore, in this paper three different models for dissolved Si diffusion in the altered layer were implemented in a Monte Carlo model and evaluated for glasses in the compositional range (75 - x) mol% SiO2 (12.5 + x/2) mol% B2O3 and (12.5 + x/2) mol% Na2O, where 0 ≤ x ≤ 20%, and corroded in static conditions at a surface-area-to-volume ratio of 1000 m-1. The three models considered instantaneous homogenization (M1), linear concentration gradients (M2), and concentration profiles determined by solving Fick's 2nd law using a finite difference method (M3). Model M3 revealed that concentration profiles in the altered layer are not linear and show changes in shape and magnitude as corrosion progresses, unlike those assumed in model M2. Furthermore, model M3 showed that, for borosilicate glasses with a high forward dissolution rate compared to the diffusion rate, the gradual polymerization and densification of the altered layer is significantly delayed compared to models M1 and M2. Finally, models M1 and M2 were found to be appropriate models only for glasses with high release rates such as simple borosilicate glasses with low ZrO2 content.

  12. Monte Carlo simulations of coupled diffusion and surface reactions during the aqueous corrosion of borosilicate glasses

    DOE PAGES

    Kerisit, Sebastien; Pierce, Eric M.; Ryan, Joseph V.

    2014-09-19

    Borosilicate nuclear waste glasses develop complex altered layers as a result of coupled processes such as hydrolysis of network species, condensation of Si species, and diffusion. However, diffusion has often been overlooked in Monte Carlo models of the aqueous corrosion of borosilicate glasses. Therefore, in this paper three different models for dissolved Si diffusion in the altered layer were implemented in a Monte Carlo model and evaluated for glasses in the compositional range (75 - x) mol% SiO2 (12.5 + x/2) mol% B2O3 and (12.5 + x/2) mol% Na2O, where 0 ≤ x ≤ 20%, and corroded in static conditionsmore » at a surface-area-to-volume ratio of 1000 m-1. The three models considered instantaneous homogenization (M1), linear concentration gradients (M2), and concentration profiles determined by solving Fick's 2nd law using a finite difference method (M3). Model M3 revealed that concentration profiles in the altered layer are not linear and show changes in shape and magnitude as corrosion progresses, unlike those assumed in model M2. Furthermore, model M3 showed that, for borosilicate glasses with a high forward dissolution rate compared to the diffusion rate, the gradual polymerization and densification of the altered layer is significantly delayed compared to models M1 and M2. Finally, models M1 and M2 were found to be appropriate models only for glasses with high release rates such as simple borosilicate glasses with low ZrO2 content.« less

  13. Influence of ferrule preparation with or without glass fiber post on fracture resistance of endodontically treated teeth

    PubMed Central

    de LIMA, Alexandra Furtado; SPAZZIN, Aloísio Oro; GALAFASSI, Daniel; CORRER-SOBRINHO, Lourenço; CARLINI-JÚNIOR, Bruno

    2010-01-01

    Objective This study evaluated the effect of ferrule preparation (Fp) on the fracture resistance of endodontically treated teeth, restored with composite resin cores with or without glass fiber posts. Material and Methods Forty-four bovine teeth were sectioned 19 or 17 mm (2 mm ferrule) from the apex, endodontically treated and assigned to four groups (n = 11): Group 1: Fp and post; Group 2: Fp and without post; Group 3: without Fp and with post; Group 4: without Fp and without post. All specimens were restored with composite resin core and metal crown. Specimens were subjected to fracture resistance testing in a universal testing machine at a crosshead speed of 0.5 mm/min. The data were analyzed by two-way ANOVA and Tukey’s tests (α=0.05). Results The mean fracture resistance values were as follows: Group 1: 573.3 N; Group 2: 552.5 N; Group 3: 275.3 N; Group 4: 258.6 N. Significantly higher fracture resistance was found for the groups with Fp (p<0.001). Conclusion There was no statistically significant interaction between the "Fp" and "post" factors (p = 0.954). The ferrule preparation increased the fracture resistance of endodontically treated teeth. However, the use of glass fiber post showed no significant influence on the fracture resistance. PMID:20835570

  14. Influence of ferrule preparation with or without glass fiber post on fracture resistance of endodontically treated teeth.

    PubMed

    Lima, Alexandra Furtado de; Spazzin, Aloísio Oro; Galafassi, Daniel; Correr-Sobrinho, Lourenço; Carlini-Júnior, Bruno

    2010-01-01

    This study evaluated the effect of ferrule preparation (Fp) on the fracture resistance of endodontically treated teeth, restored with composite resin cores with or without glass fiber posts. Forty-four bovine teeth were sectioned 19 or 17 mm (2 mm ferrule) from the apex, endodontically treated and assigned to four groups (n = 11): Group 1: Fp and post; Group 2: Fp and without post; Group 3: without Fp and with post; Group 4: without Fp and without post. All specimens were restored with composite resin core and metal crown. Specimens were subjected to fracture resistance testing in a universal testing machine at a crosshead speed of 0.5 mm/min. The data were analyzed by two-way ANOVA and Tukey's tests (α=0.05). The mean fracture resistance values were as follows: Group 1: 573.3 N; Group 2: 552.5 N; Group 3: 275.3 N; Group 4: 258.6 N. Significantly higher fracture resistance was found for the groups with Fp (p<0.001). There was no statistically significant interaction between the "Fp" and "post" factors (p = 0.954). The ferrule preparation increased the fracture resistance of endodontically treated teeth. However, the use of glass fiber post showed no significant influence on the fracture resistance.

  15. Gold-rich ligament nanostructure by dealloying Au-based metallic glass ribbon for surface-enhanced Raman scattering.

    PubMed

    Chao, Bo-Kai; Xu, Yi; Ho, Hsin-Chia; Yiu, Pakman; Lai, Yi-Chen; Shek, Chan-Hung; Hsueh, Chun-Hway

    2017-08-08

    A new method to fabricate an Au-rich interconnected ligament substrate by dealloying the Au-based metallic glass ribbon for surface-enhanced Raman scattering (SERS) applications was investigated in this study. Specifically, three substrates, Au film, Au-based metallic glass ribbon, and dealloyed Au-based metallic glass ribbon, were studied. The dealloyed surface showed ligament nanostructure with protruding micro-islands. Based on the field emission scanning electron microscopy, reflection and scattering measurements, the dealloyed Au-based metallic glass provided a large surface area, multiple reflections, and numerous fine interstices to produce hot spots for SERS enhancements. The SERS signal of analyte, p-aminothiophenol, in the micro-island region of dealloyed Au-based metallic glass was about 2 orders of magnitude larger than the flat Au film. Our work provides a new method to fabricate the inexpensive and high SERS enhancements substrates.

  16. Absorbed dose measurements on external surface of Kosmos-satellites with glass thermoluminescent detectors.

    PubMed

    Akatov YuA; Arkhangelsky, V V; Kovalev, E E; Spurny, F; Votochkova, I

    1989-01-01

    In this paper we present absorbed dose measurements with glass thermoluminescent detectors on external surface of satellites of Kosmos-serie flying in 1983-87. Experiments were performed with thermoluminescent aluminophosphate glasses of thicknesses 0.1, 0.3, 0.4, 0.5, and 1 mm. They were exposed in sets of total thickness between 5 and 20 mm, which were protected against sunlight with thin aluminized foils. In all missions, extremely high absorbed dose values were observed in the first layers of detectors, up to the thickness of 0.2 to 0.5 gcm-2. These experimental results confirm that, during flights at 250 to 400 km, doses on the surface of the satellites are very high, due to the low energy component of the proton and electron radiation.

  17. Surface microfabrication of silica glass by LIBWE using DPSS-UV laser

    NASA Astrophysics Data System (ADS)

    Niino, H.; Kawaguchi, Y.; Sato, T.; Narazaki, A.; Kurosaki, R.

    2006-02-01

    Surface micro-structuring of silica glass plates was performed by using laser-induced backside wet etching (LIBWE) upon irradiation with a single-mode laser beam from a diode-pumped solid-state UV laser at 266 nm. We have succeeded in a well-defined micro-pattern formation without debris and microcrack formations around the etched area on the basis of galvanometer-based point scanning system with the laser beam. The behavior of liquid ablation (explosive vaporization) was monitored by impulse pressure detection with a fast-response piezoelectric pressure gauge. LIBWE method is suitable for rapid prototyping and rapid manufacturing of surface microstructuing of silica glass as mask-less exposure system in a conventional atmospheric environment.

  18. Effects of PV Module Soiling on Glass Surface Resistance and Potential-Induced Degradation: Preprint

    SciTech Connect

    Hacke, Peter; Burton, Patrick; Hendrickson, Alex; Spartaru, Sergiu; Glick, Stephen; Terwilliger, Kent

    2015-12-03

    The sheet resistance of three soil types (Arizona road dust, soot, and sea salt) on glass were measured by the transmission line method as a function of relative humidity (RH) between 39% and 95% at 60 degrees C. Sea salt yielded a 3.5 order of magnitude decrease in resistance on the glass surface when the RH was increased over this RH range. Arizona road dust showed reduced sheet resistance at lower RH, but with less humidity sensitivity over the range tested. The soot sample did not show significant resistivity change compared to the unsoiled control. Photovoltaic modules with sea salt on their faces were step-stressed between 25% and 95% RH at 60 degrees C applying -1000 V bias to the active cell circuit. Leakage current from the cell circuit to ground ranged between two and ten times higher than that of the unsoiled controls. Degradation rate of modules with salt on the surface increased with increasing RH and time.

  19. Effects of Photovoltaic Module Soiling on Glass Surface Resistance and Potential-Induced Degradation

    SciTech Connect

    Hacke, Peter; Burton, Patrick; Hendrickson, Alex; Spataru, Sergiu; Glick, Stephen; Terwilliger, Kent

    2015-06-14

    The sheet resistance of three soil types (Arizona road dust, soot, and sea salt) on glass were measured by the transmission line method as a function of relative humidity (RH) between 39% and 95% at 60 degrees C. Sea salt yielded a 3.5 orders of magnitude decrease in resistance on the glass surface when the RH was increased over this RH range. Arizona road dust showed reduced sheet resistance at lower RH, but with less humidity sensitivity over the range tested. The soot sample did not show significant resistivity change compared to the unsoiled control. Photovoltaic modules with sea salt on their faces were step-stressed between 25% and 95% RH at 60 degrees C applying -1000 V bias to the active cell circuit. Leakage current from the cell circuit to ground ranged between two and ten times higher than that of the unsoiled controls. Degradation rate of modules with salt on the surface increased with increasing RH and time.

  20. Local Adaptive Calibration of the GLASS Surface Incident Shortwave Radiation Product Using Smoothing Spline

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Liang, S.; Wang, G.

    2015-12-01

    Incident solar radiation (ISR) over the Earth's surface plays an important role in determining the Earth's climate and environment. Generally, can be obtained from direct measurements, remotely sensed data, or reanalysis and general circulation models (GCMs) data. Each type of product has advantages and limitations: the surface direct measurements provide accurate but sparse spatial coverage, whereas other global products may have large uncertainties. Ground measurements have been normally used for validation and occasionally calibration, but transforming their "true values" spatially to improve the satellite products is still a new and challenging topic. In this study, an improved thin-plate smoothing spline approach is presented to locally "calibrate" the Global LAnd Surface Satellite (GLASS) ISR product using the reconstructed ISR data from surface meteorological measurements. The influences of surface elevation on ISR estimation was also considered in the proposed method. The point-based surface reconstructed ISR was used as the response variable, and the GLASS ISR product and the surface elevation data at the corresponding locations as explanatory variables to train the thin plate spline model. We evaluated the performance of the approach using the cross-validation method at both daily and monthly time scales over China. We also evaluated estimated ISR based on the thin-plate spline method using independent ground measurements at 10 sites from the Coordinated Enhanced Observation Network (CEON). These validation results indicated that the thin plate smoothing spline method can be effectively used for calibrating satellite derived ISR products using ground measurements to achieve better accuracy.

  1. Mathematical modeling of surface roughness in magnetic abrasive finishing of BK7 optical glass.

    PubMed

    Pashmforoush, Farzad; Rahimi, Abdolreza; Kazemi, Mehdi

    2015-10-01

    Magnetic abrasive finishing (MAF) is one of the advanced machining processes efficiently used to finish hard-to-machine materials. Simulation and modeling of the process is of particular importance to understand the mechanics of material removal and consequently achieve a high-quality surface with a minimum of surface defects. Hence, in this paper, we performed a numerical-experimental study to mathematically model the surface roughness during the MAF of BK7 optical glass. For this purpose, the initial roughness profile was estimated using fast Fourier transform (FFT) and a Gaussian filter. We obtained the final surface profile based on the material removal mechanisms and the corresponding chipping depth values evaluated by finite element analysis. We then validated experimentally the simulation results in terms of the arithmetic average surface roughness (R(a ). The comparison between the obtained results demonstrates that the theoretical and experimental findings are in good agreement when predicting the parameters' effect on surface roughness behavior.

  2. The role of adsorption of sodium bis(2-ethylhexyl) sulfosuccinate in wetting of glass and poly(methyl methacrylate) surface

    NASA Astrophysics Data System (ADS)

    Harkot, Joanna; Jańczuk, Bronisław

    2008-02-01

    Advancing contact angles, θ, for aqueous solutions of the anionic surfactant, sodium bis(2-ethylhexyl) sulfosuccinate (AOT) were measured on glass and poly(methyl methacrylate) (PMMA) surface. Using the obtained results we determined the properties of aqueous AOT solutions in wetting of these surfaces. It occurs that the wettability of glass and PMMA by these solutions depends on the concentration of AOT in solution. There is almost linear dependence between the contact angle ( θ) and concentration of AOT (log C) in the range from 5 × 10 -4 to 2.5 × 10 -3 M/dm 3 (value of the critical micelle concentration of AOT—CMC) both for glass and PMMA surface. For calculations of AOT adsorption at solid (glass, PMMA)-solution drop-air system interfaces the relationship between the adhesion tension ( γLV cos θ) and surface tension ( γLV) and the Gibbs and Young equations were taken into account. From the measurement and calculation results the slope of the γLV cos θ - γ LV curve was found to be constant and equal 0.7 for glass and -0.1 for PMMA over the whole range of AOT concentration in solution. From this fact it can be concluded that if ΓSV is equal zero then ΓSL > 0 for the PMMA-solution and ΓSL < 0 for glass-solution systems. It means that surfactant concentration excess at PMMA-solution interface is considerably lower than at solution-air interface, but this excess of AOT concentration at glass-solution interface is lower than in the bulk phase. By extrapolating the linear dependence between the adhesion and surface tension the value of the critical surface tension ( γc) of wetting for glass and PMMA was also determined, that equaled 25.9 and 25.6 mN/m for glass and PMMA, respectively. Using the value of the glass and PMMA surface tension as well as the measured surface tension of aqueous AOT solutions in Young equation, the solid-liquid interface tension ( γSL) was found. There was a linear dependence between the γSL and γLV both for glass and PMMA

  3. Succession of Periphytic Microorganisms on Metal and Glass Surfaces in Natural Seawater

    DTIC Science & Technology

    1976-06-01

    Table I. Nine genera of filamentous fungi were isolated from the surfaces. Three of these, Aspergillus, Penicillium and Nigrospora were found on both...Rhodotorula glutinis 50 98 (To be identified) Penicillium spp. Candida spp. 34 17 glass specimens. This may have been a result of the isolation method...was isolated in large numbers from corroded concrete structures at widely separate localities (Parker, 1945a). Furthermore, he found that in an

  4. Nonlinear optical effects on the surface of acridine yellow-doped lead-tin fluorophosphate glass

    NASA Technical Reports Server (NTRS)

    He, K. X.; Bryant, William; Venkateswarlu, Putcha

    1991-01-01

    The second- and third-order nonlinear optical properties of acridine yellow-doped lead-tin fluorophosphate (LTF) glass have been directly studied by measurement of surface enhanced second harmonic generation and third harmonic generation. The three photon excitation fluorescence is also observed. Based on these results, the large nonlinearities of the acridine LTF system which is a new nonlinear optical material are experimentally demonstrated.

  5. Nonlinear optical effects on the surface of acridine yellow-doped lead-tin fluorophosphate glass

    NASA Technical Reports Server (NTRS)

    He, K. X.; Bryant, William; Venkateswarlu, Putcha

    1991-01-01

    The second- and third-order nonlinear optical properties of acridine yellow-doped lead-tin fluorophosphate (LTF) glass have been directly studied by measurement of surface enhanced second harmonic generation and third harmonic generation. The three photon excitation fluorescence is also observed. Based on these results, the large nonlinearities of the acridine LTF system which is a new nonlinear optical material are experimentally demonstrated.

  6. Study on surface roughness evolvement of Nd-doped phosphate glass after IBF

    NASA Astrophysics Data System (ADS)

    Li, Furen; Xie, Xuhui; Zhou, Lin; Tie, Guipeng; Hu, Hao

    2016-10-01

    Nd doped phosphate glass is widely used as gain media in high power laser system. It is traditionally polished with the annular polishing technology. The edge effect is inevitable in annular polishing process and it results in the low manufacturing efficiency. Ion Beam Figuring (IBF) is a highly deterministic, non-contact method for the ultra-precision optics fabrication. So the edge effect is avoided. Nanometer and sub-nanometer precision is realizable in IBF. In this paper, Nd doped phosphate glass was polished with IBF, and the evolvement of surface roughness was emphasized. The roughness of surface polished with ion beam at normal and oblique incidence was researched. The oblique incident angle was 45°. The surface roughness was measured with the white light interferometer. No evident change was observed. This means that the pre-finish roughness can be preserved in IBF. The results denote that IBF is a feasible method to correct the contour errors of Nd doped phosphate glass, and the roughness will not be coarsened.

  7. Fluoride glass-based surface plasmon resonance sensor in infrared region: performance evaluation

    NASA Astrophysics Data System (ADS)

    Pandey, Ankit Kumar; Sharma, Anuj K.; Basu, Rikmantra

    2017-05-01

    Excitation parameters shown by a plasmonic structure are different in the near infrared (NIR) region as compared with that of the visible region. Fluoride-based glass materials show high transparency in the infrared (IR) region, which plays an important role from an experimental point of view. In order to explore optical sensors based on a heavy metal doped fluoride substrate, performance of a surface plasmon resonance (SPR) based sensor having HBL glass as the substrate material to couple direct light in the NIR region is discussed. The proposed sensor’s structure is based on Kretschmann configuration with gold (Au) deposited on an HBL glass substrate. Experimental refractive index values of water samples containing different NaCl concentrations are taken as the sensing medium for design and modelling of the sensor. The analysis was carried out for some different samples also. An HBL-based SPR sensor is able to provide significantly enhanced sensing performance compared with other conventional glass substrates operated in different spectral regions (SF10 in visible and SiO2 in NIR). The study paves the way for designing SPR sensor probes based on fluoride optical fibers in the IR region for different biological and chemical applications.

  8. Surface glass transition temperature characterized by metal-atom deposition/desorption on organic films

    NASA Astrophysics Data System (ADS)

    Tsujioka, Tsuyoshi; Okuda, Masaki

    2017-12-01

    Surfaces and interfaces play an important role in obtaining high-performance organic devices. An essential property of organic films is the surface glass transition temperature (surface-Tg) and many methods for characterizing surface-Tg have been studied. We propose a novel method for characterizing surface-Tg based on metal-vapor atom deposition and desorption. We monitored metal-vapor deposition and desorption on organic surfaces using double quartz crystal microbalances. Mg vapor is not deposited on organic surfaces with a low bulk-Tg such as a colorless photochromic diarylethene (DAE) film. This deposition phenomenon is caused by Mg-atom desorption from the surface based on active surface molecular motion. However, Mg deposition began after a certain time of continuous evaporation (deposition-threshold time). The threshold time elongated with increased substrate temperature and elongated dramatically at a substrate temperature several degrees below the bulk-Tg for DAE. The surface molecular motion becomes active and the metal-atom desorption accelerates as the temperature neared the surface-Tg. Thus a temperature with a dramatic elongation of the threshold time indicates the surface-Tg. This method can be applied to a variety of organic films.

  9. Biofilm formation affects surface properties of novel bioactive glass-containing composites.

    PubMed

    Hyun, Hong-Keun; Salehi, Satin; Ferracane, Jack L

    2015-12-01

    This study investigated the effects of bacterial biofilm on the surface properties of novel bioactive glass (BAG)-containing composites of different initial surface roughness. BAG (65 mol% Si; 4% P; 31% Ca) and BAG-F (61% Si; 31% Ca; 4% P; 3% F; 1% B) were synthesized by the sol-gel method and micronized (size ∼0.1-10 μm). Composites with 72wt% total filler load were prepared by replacing 15% of the silanized Sr glass with BAG, BAG-F, or silanized silica. Specimens (n=10/group) were light-cured and divided into 4 subgroups of different surface roughness by wet polishing with 600 and then up to 1200, 2400, or 4000 grit SiC. Surface roughness (SR), gloss, and Knoop microhardness were measured before and after incubating in media with or without a Streptococcus mutans (UA 159) biofilm for 2 weeks. Results were analyzed with ANOVA/Tukey's test (α=0.05). The SR of the BAG-containing composites with the smoothest surfaces (2400/4000 grit) increased in media or bacteria; the SR of the roughest composites (600 grit) decreased. The gloss of the smoothest BAG-containing composites decreased in bacteria and media-only, but more in media-alone. The microhardness of all of the composites decreased with exposure to media or bacteria, with BAG-containing composites affected more than the control. Exposure to bacterial biofilm and its media produced enhanced roughness and reduced gloss and surface microhardness of highly polished dental composites containing a bioactive glass additive, which could affect further biofilm formation, as well as the esthetics, of restorations made from such a material. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Superhydrophobic films on glass surface derived from trimethylsilanized silica gel nanoparticles.

    PubMed

    Goswami, Debmita; Medda, Samar Kumar; De, Goutam

    2011-09-01

    The paper deals with the fabrication of sol-gel-derived superhydrophobic films on glass based on the macroscopic silica network with surface modification. The fabricated transparent films were composed of a hybrid -Si(CH(3))(3)-functionalized SiO(2) nanospheres exhibiting the desired micro/nanostructure, water repellency, and antireflection (AR) property. The wavelength selective AR property can be tuned by controlling the physical thickness of the films. Small-angle X-ray scattering (SAXS) studies revealed the existence of SiO(2) nanoparticles of average size ∼9.4 nm in the sols. TEM studies showed presence of interconnected SiO(2) NPs of ∼10 nm in size. The films were formed with uniformly packed SiO(2) aggregates as observed by FESEM of film surface. FTIR of the films confirmed presence of glasslike Si-O-Si bonding and methyl functionalization. The hydrophobicity of the surface was depended on the thickness of the deposited films. A critical film thickness (>115 nm) was necessary to obtain the air push effect for superhydrophobicity. Trimethylsilyl functionalization of SiO(2) and the surface roughness (rms ≈30 nm as observed by AFM) of the films were also contributed toward the high water contact angle (WCA). The coated glass surface showed WCA value of the droplet as high as 168 ± 3° with 6 μL of water. These superhydrophobic films were found to be stable up to about 230-240 °C as confirmed by TG/DTA studies, and WCA measurements of the films with respect to the heat-treatment temperatures. These high water repellant films can be deposited on relatively large glass surfaces to remove water droplets immediately without any mechanical assistance.

  11. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films

    SciTech Connect

    Aytug, Tolga; Simpson, John T.; Lupini, Andrew R.; Trejo, Rosa M.; Jellison, Gerald E.; Ivanov, Ilia N.; Pennycook, Stephen J.; Hillesheim, Daniel A.; Winter, Kyle O.; Christen, David K.; Hunter, Scott R.; Allen Haynes, J.

    2013-07-15

    Inspired by highly non-wetting natural biological surfaces (e.g., lotus leaves and water strider legs), artificial superhydrophobic surfaces that exhibit water droplet contact angles exceeding 150o have previously been constructed by utilizing various synthesis strategies.[ , , ] Such bio-inspired, water-repellent surfaces offer significant potential for numerous uses ranging from marine applications (e.g., anti-biofouling, anti-corrosion), anti-condensation (e.g., anti-icing, anti-fogging), membranes for selective separation (e.g., oil-water, gas-liquid), microfluidic systems, surfaces requiring reduced maintenance and cleaning, to applications involving glasses and optical materials.[ ] In addition to superhydrophobic attributes, for integration into device systems that have extended operational limits and overall improved performance, surfaces that also possess multifunctional characteristics are desired, where the functionality should match to the application-specific requirements.

  12. Suppression of surface crystallization on borosilicate glass using RF plasma treatment

    NASA Astrophysics Data System (ADS)

    Yoo, Sunghyun; Ji, Chang-Hyeon; Jin, Joo-Young; Kim, Yong-Kweon

    2014-10-01

    Surface crystallization on a commercial grade borosilicate glass wafer, Borofloat® 33, is effectively prevented against 3 h of thermal reflow process at 850 °C. Surface plasma treatment with three different reactive gases, CF4, SF6, and Cl2, has been performed prior to the annealing. The effect of plasma treatment on surface ion concentration and nucleation of cristobalite were examined through optical microscope and x-ray photoemission spectroscopy. The dominant cause that suppresses crystallization was verified to be the increase of surface ion concentration of alumina during the plasma treatment. Both CF4 and SF6 treatment of no less than 30 s showed significant efficacy in suppressing crystallization by a factor of more than 112. Average surface roughness and the optical transparency were also enhanced by a factor of 15 and 3, respectively, compared to untreated sample.

  13. Spectra of volcanic rocks glasses as analogues of Mercury surface spectra

    NASA Astrophysics Data System (ADS)

    Carli, C.; Capaccioni, F.; de Sanctis, M.; Filacchione, G.; Sgavetti, M.; di Genova, D.; Vona, A.; Visonà, D.; Ammannito, E.

    2010-12-01

    Remote-sensing studies have revealed that most of the inner planets surfaces are composed by magmatic effusive rocks as lava flows or pyroclastic deposits, that are the natural products of magma-rock dynamic systems controlled by T, P, oxygen fugacity and time. These materials generally contain a fair amount of volcanic glass, due to the magma rapid cooling once effused on the surface. The VNIR reflectance spectroscopy is one of the most relevant tools for remote-sensing studies and in the last decades gave important results identifying the presence of different Fe-Mg silicates, such as olivine and pyroxenes, on the planets surfaces. However, the mineralogical interpretation of the observed spectral features of several volcanic areas on the inner Solar System bodies is still matter of debate. In particular the presence of dark volcanic glass, which can dominate or not the rock texture, influences the spectra signatures. In fact samples with a glass-bearing groundmass have lower albedo and reduced band intensity of the spectra of samples with comparable mineral composition and intergranular texture. As a consequence, an important goal for studying the planetary crusts is to understand the spectral behavior of volcanic material, where chemical or physical parameters are different depending on geologic context and effusive processes. We present here preliminary laboratory activity to investigate VNIR reflectance spectra of several volcanic glasses. Reflectance spectra, in the wavelength range between 0.35- 2.50 μm, are measured on powders of magmatic rocks, having different composition and textures, at fine (<60 μm in diameter) and very fine (<10 μm) grain sizes. For each rock sample a corresponding “thermal shocked-sample” is produced by heating at 1300°C and P=1 atm and a glass-sample was produced by melting at 1500°C and P=1 atm, than quenching it in air. Reflectance spectra of powders of shocked and glass-samples were acquired at the same grain size, and

  14. A novel application of quaternary ammonium compounds as antibacterial hybrid coating on glass surfaces.

    PubMed

    Saif, Muhammad Jawwad; Anwar, Jamil; Munawar, Munawar Ali

    2009-01-06

    A hybrid coating is prepared on a glass surface by a sol-gel process using tetraethoxysilane (TEOS) and Q(4)N(+)-Si(OR)(3). Transparent coatings with smooth surfaces were investigated against both Gram-positive (Escherichia coli) and Gram-negative bacteria (Staphylococcus aureus). A rapid decrease of the count for both strains was observed within 72 h. A significant correlation has been observed between the concentration of Q(4)N(+)-Si(OR)(S) and the antibacterial activity which has been thoroughly investigated.

  15. Shape and curvature error estimation in polished surfaces of ground glass molds

    NASA Astrophysics Data System (ADS)

    Savio, Gianpaolo; Pal, Raj Kumar; Meneghello, Roberto; D'Angelo, Luciano; Concheri, Gianmaria

    2017-02-01

    In the fabrication process of aspheric glass lens and molds, shape characterization is a fundamental task to control geometrical errors. Nevertheless, the more significant geometrical functional aspect related to the optical properties is the curvature, which is rarely investigated in the manufacturing process of lenses. Algorithms for the assessment of shape and curvature errors on aspheric surface profile are presented. The method has been investigated on profiles measured before and at different steps of the membrane polishing process. The results show how surface roughness, shape, and curvature change during the polishing process as a function of the machining time.

  16. Lobar hepatocellular carcinoma with ipsilateral portal vein tumor thrombosis treated with yttrium-90 glass microsphere radioembolization: preliminary results.

    PubMed

    Pracht, M; Edeline, J; Lenoir, L; Latournerie, M; Mesbah, H; Audrain, O; Rolland, Y; Clément, B; Raoul, J L; Garin, E; Boucher, E

    2013-01-01

    Portal vein tumor thrombosis (PVTT) is a common complication of hepatocellular carcinoma (HCC) and has a negative impact on prognosis. This characteristic feature led to the rationale of the present trial designed to assess the efficacy and the safety of yttrium-90 glass-microsphere treatment for advanced-stage lobar HCC with ipsilateral PVTT. 18 patients with unresectable lobar HCC and ipsilateral PVTT were treated in our institution with (90)Y-microS radioembolization. Patients were evaluated every 3 to 6 months for response, survival, and toxicity. Mean follow-up was 13.0 months (2.2-50.6). Outcomes were: complete response (n = 2), partial response (n = 13), stable disease (n = 1), and progressive disease (n = 2) giving a disease control rate of 88.9%. Four patients were downstaged. Treating lobar hepatocellular carcinoma with ipsilateral portal vein thrombosis with yttrium-90 glass-microsphere radioembolization is safe and efficacious. Further clinical trials are warranted to confirm these results and to compare (90)Y-microS with sorafenib, taking into account not only survival but also the possibility of secondary surgery for putative curative intention after downstaging.

  17. Effect of free surface roughness on the apparent glass transition temperature in thin polymer films measured by ellipsometry.

    PubMed

    Efremov, Mikhail Yu

    2014-12-01

    Ellipsometry is one of the standard methods for observation of glass transition in thin polymer films. This work proposes that sensitivity of the method to surface morphology can complicate manifestation of the transition in a few nm thick samples. Two possible mechanisms of free surface roughening in the vicinity of glass transition are discussed: roughening due to lateral heterogeneity and roughening associated with thermal capillary waves. Both mechanisms imply an onset of surface roughness in the glass transition temperature range, which affects the experimental data in a way that shifts apparent glass transition temperature. Effective medium approximation models are used to introduce surface roughness into optical calculations. The results of the optical modeling for a 5 nm thick polystyrene film on silicon are presented.

  18. Osteoblast response on Ti- and Zr-based bulk metallic glass surfaces after sand blasting modification.

    PubMed

    Li, H F; Wang, Y B; Zheng, Y F; Lin, J P

    2012-10-01

    The present study aimed to evaluate the osteoblast response on Ti- and Zr-based BMG surfaces sand blasted with different grit corundums for implant application, with mechanically polished disks before sand blasting as control groups. The surface properties were characterized by scanning electron microscopy (SEM), contact angle, and roughness measurements. Further evaluation of the surface bioactivity was conducted by MG63 cell attachment, proliferation, morphology, and alkaline phosphatase (ALP) activity on the sample surfaces. It was found that corundum sand blasting surfaces significantly increased the surface wettability and MG63 cell attachment, cell proliferation, and ALP activity in comparison with the control group surfaces. Besides, the sample surface treated by large grit corundum is more favorable for cell attachment, proliferation, and differentiation than samples treated by small grit corundum, indicating that it might be effective for improving implant osseointegration in vivo. Copyright © 2012 Wiley Periodicals, Inc.

  19. Surface functionalization of 3D glass-ceramic porous scaffolds for enhanced mineralization in vitro

    NASA Astrophysics Data System (ADS)

    Ferraris, Sara; Vitale-Brovarone, Chiara; Bretcanu, Oana; Cassinelli, Clara; Vernè, Enrica

    2013-04-01

    Bone reconstruction after tissue loosening due to traumatic, pathological or surgical causes is in increasing demand. 3D scaffolds are a widely studied solution for supporting new bone growth. Bioactive glass-ceramic porous materials can offer a three-dimensional structure that is able to chemically bond to bone. The ability to surface modify these devices by grafting biologically active molecules represents a challenge, with the aim of stimulating physiological bone regeneration with both inorganic and organic signals. In this research work glass ceramic scaffolds with very high mechanical properties and moderate bioactivity have been functionalized with the enzyme alkaline phosphatase (ALP). The material surface was activated in order to expose hydroxyl groups. The activated surface was further grafted with ALP both via silanization and also via direct grafting to the surface active hydroxyl groups. Enzymatic activity of grafted samples were measured by means of UV-vis spectroscopy before and after ultrasonic washing in TRIS-HCl buffer solution. In vitro inorganic bioactivity was investigated by soaking the scaffolds after the different steps of functionalization in a simulated body fluid (SBF). SEM observations allowed the monitoring of the scaffold morphology and surface chemical composition after soaking in SBF. The presence of ALP enhanced the in vitro inorganic bioactivity of the tested material.

  20. Mid-infrared surface plasmon polariton chemical sensing on fiber-coupled ITO coated glass.

    PubMed

    Martínez, Javier; Ródenas, Airán; Aguiló, Magdalena; Fernandez, Toney; Solis, Javier; Díaz, Francesc

    2016-06-01

    A novel fiber-coupled indium tin oxide (ITO) coated glass slide sensor for performing surface plasmon polariton chemical monitoring in the ∼3.5  μm mid-infrared (IR) range is reported. Efficient mid-IR fiber coupling is achieved with 3D laser written waveguides, and the coupling of glass waveguide modes to ITO surface plasmon polaritons (SPPs) is driven by the varying phase matching conditions of different aqueous analytes across the anomalous dispersion range determined by their molecular fingerprints. By means of using both a mid-IR fiber supercontinuum source and a diode laser, the excitation of SPPs is demonstrated. The sensor sensitivity is tested by discriminating CH from OH features of ethanol in water solutions, demonstrating an instrumental ethanol limit of detection of 0.02% in a wide concentration range of at least 0%-50%. The efficient optical monitoring of mid-IR SPPs in smart glass could have a broad range of applications in biological and chemical sensing.

  1. Radio frequency shielding behaviour of silane treated Fe2O3/E-glass fibre reinforced epoxy hybrid composite

    NASA Astrophysics Data System (ADS)

    Arun prakash, V. R.; Rajadurai, A.

    2016-10-01

    In this work, radio frequency shielding behaviour of polymer (epoxy) matrixes composed of E-glass fibres and Fe2O3 fillers have been studied. The principal aim of this project is to prepare suitable shielding material for RFID application. When RFID unit is pasted on a metal plate without shielding material, the sensing distance is reduced, resulting in a less than useful RFID system. To improve RF shielding of epoxy, fibres and fillers were utilized. Magnetic behaviour of epoxy polymer composites was measured by hysteresis graphs (B-H) followed by radio frequency identifier setup. Fe2O3 particles of sizes 800, 200 and 100 nm and E-glass fibre woven mat of 600 g/m2 were used to make composites. Particle sizes of 800 nm and 200 nm were prepared by high-energy ball milling, whereas particles of 100 nm were prepared by sol-gel method. To enhance better dispersion of particles within the epoxy matrix, a surface modification process was carried out on fillers by an amino functional coupling agent called 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized Fe2O3 particles were characterized by XRD and FTIR spectroscopy analysis. Variable quantity of E-glass fibre (25, 35, and 45 vol%) was laid down along with 0.5 and 1.0 vol% of 800, 200, and 100 nm size Fe2O3 particles into the matrix, to fabricate the hybrid composites. Scanning electron microscopy and transmission electron microscopy images reveal the shape and size of Fe2O3 particles for different milling times and particle dispersion in the epoxy matrix. The maximum improved sensing distance of 45.2, 39.4 and 43.5 % was observed for low-, high-, and ultra-high radio frequency identifier setup along with shielding composite consist of epoxy, 1 vol% 200 nm Fe2O3 particles and 45 vol% of E-glass fibre.

  2. Surface plasmon resonance induced Er{sup 3+} photoluminescence enhancement in tellurite glass

    SciTech Connect

    Fares, Hssen Férid, Mokhtar; Elhouichet, Habib; Gelloz, Bernard

    2015-05-21

    The melt quenching method is used to prepare tellurite glasses co-activated with erbium ions and silver nanoparticles (Ag NPs). The glass samples are characterized by x-ray diffraction, UV-vis-NIR absorption, transmission electron microscopy (TEM) imaging, and photoluminescence spectroscopy. The XRD pattern shows no sharp peak indicating an amorphous nature of the glasses. The presence of Ag NPs is confirmed from TEM micrograph. The absorption spectra reveal not only the peaks due to Er{sup 3+} ions, but also the surface plasmon resonance band of silver NPs in the 510–535 nm range. The J-O model has been applied to the room temperature absorption intensities of Er{sup 3+} (4f{sup 11}) transitions to establish the so-called J-O intensity parameters: Ω{sub 2}, Ω{sub 4}, and Ω{sub 6}. The intensity parameters are used to determine the radiative decay rates (emission probabilities of transitions) and branching ratios of the Er{sup 3+} transitions from the excited state J manifolds to the lower-lying J' manifolds. Intensified of 1.53 μm band is obtained for the sample containing 0.5 mol. % of AgNO{sub 3} (Ag0.5 glass) using for excitation a laser operating at 980 nm. The simultaneous influence of the Ag NPs → Er{sup 3+} energy transfer and the contribution of the intensified local field effect due to the silver NPs give origin to the enhancement of both the Photoluminescence (PL) intensity and the PL lifetime relative to the {sup 4}I{sub 13/2} → {sup 4}I{sub 15/2} transition, whereas the quenching is ascribed to the energy transfer from Er{sup 3+} ions to silver NPs. Based on the analysis of the temperature dependence of the PL intensity and decay time, we identified a weak back transfer process from Er to the glass host that makes the quenching of the PL intensity weak. Large magnitudes of calculated emission cross-section (σ{sub e}), effective bandwidth (Δλ{sub eff}), and bandwidth quality factor (FWHM × σ{sub e}) relatives to {sup 4}I{sub 13

  3. Adsorption of cationic peptides to solid surfaces of glass and plastic.

    PubMed

    Kristensen, Kasper; Henriksen, Jonas R; Andresen, Thomas L

    2015-01-01

    Cationic membrane-active peptides have been studied for years in the hope of developing them into novel types of therapeutics. In this article, we investigate an effect that might have significant experimental implications for investigators who wish to study these peptides, namely, that the peptides adsorb to solid surfaces of glass and plastic. Specifically, we use analytical HPLC to systematically quantify the adsorption of the three cationic membrane-active peptides mastoparan X, melittin, and magainin 2 to the walls of commonly used glass and plastic sample containers. Our results show that, at typical experimental peptide concentrations, 90% or more of the peptides might be lost from solution due to rapid adsorption to the walls of the sample containers. Thus, our results emphasize that investigators should always keep these adsorption effects in mind when designing and interpreting experiments on cationic membrane-active peptides. We conclude the article by discussing different strategies for reducing the experimental impact of these adsorption effects.

  4. Preparation of Hydroxyapatite Coating on the Surface of Hollow Glass Microspheres Using a Biomimetic Process

    NASA Astrophysics Data System (ADS)

    Jiao, Yan; Yang, Hai-Ying; Zhang, Ying-Long; Duan, Rong-Shuai; Lu, Yu-Peng

    2014-07-01

    Microcarrier culture technology has attached more attention, especially for scale-up cell culture in the filed of tissue engineering. The present work introduces a microcarrier with hydroxyapatite (HA) on hollow glass microsphere. Hollow glass microspheres with a main composition of SiO2 (55-65 wt.%), Al2O3 (26-35 wt.%), were pretreated by NaOH, on which hydroxyapatite coating was deposited by biomimetic process. The phase composition and morphology were characterized by X-ray diffractometer (XRD), Fourier transform infrared (FTIR) spectroscope, field emission scanning electron microscope (FE-SEM) and high resolution transmission electron microscope (HRTEM), respectively. The results showed that after immersion for 15 days in 1.5 SBF, the uniform and dense HA coating was formed and it has porous surface and low crystallinity.

  5. Perfect surface crystallization and parasitic structures in nonstoichiometric glass-ceramics: Micro-/nanoscopic aspects

    NASA Astrophysics Data System (ADS)

    Takahashi, Yoshihiro; Yamazaki, Yoshiki; Ihara, Rie; Fujiwara, Takumi

    2013-05-01

    Uniform and highly oriented crystalline layers with submillimeter thickness have been demonstrated recently by crystallization in nonstoichiometric precursor glass, i.e., perfectly surface-crystallized glass-ceramics (PSC-GCs). Although the origin of PSC in the SrO-TiO2-SiO2 system was interpreted by the presence of SiO2-rich amorphous nanoparasites on the crystalline domains [Takahashi et al., Sci. Rep. 3, 1147 (2013)], an essential question arose: Is the parasitic structure in PSC-GCs special or natural? To answer it, we prepared PSC samples from other ternary titanosilicate systems and conducted micro- and nanoscopic observations. We found the conditions necessary for PSC by combining our results with previous PSC studies.

  6. Surface characteristics of metallic glass spheres of Au(55)Pb(22.5)Sb(22.5)

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Kendall, J. M.

    1983-01-01

    It is pointed out that the production of metallic glasses of high atomic number is currently of considerable importance for inertial confinement fusion (ICF) target applications. In connection with the present investigation, spherules of the alloy Au(55)Pb(22.5)Sb(22.5) were produced. Metallic glass was formed on solidification. With the aid of X-ray diffraction studies, it was established that the spheres were completely amorphous. A near-surface phase separation on spheres of the metallic glass could be observed. Energy dispersive spectroscopy (EDS) measurements showed that the average composition of the surface differed from that of the bulk.

  7. In-situ atomic force microscopy observation revealing gel-like plasticity on a metallic glass surface

    NASA Astrophysics Data System (ADS)

    Lu, Y. M.; Zeng, J. F.; Huang, J. C.; Kuan, S. Y.; Nieh, T. G.; Wang, W. H.; Pan, M. X.; Liu, C. T.; Yang, Y.

    2017-03-01

    It has been decade-long and enduring efforts to decipher the structural mechanism of plasticity in metallic glasses; however, it still remains a challenge to directly reveal the structural change, if any, that precedes; and dominant plastics flow in them. Here, by using the dynamic atomic force microscope as an "imaging" as well as a "forcing" tool, we unfold a real-time sequence of structural evolution occurring on the surface of an Au-Si thin film metallic glass. In sharp contrast to the common notion that plasticity comes along with mechanical softening in bulk metallic glasses, our experimental results directly reveal three types of nano-sized surface regions, which undergo plasticity but exhibit different characters of structural evolution following the local plasticity events, including stochastic structural rearrangement, unusual local relaxation and rejuvenation. As such, yielding on the metallic-glass surface manifests as a dynamic equilibrium between local relaxation and rejuvenation as opposed to shear instability in bulk metallic-glasses. Our finding demonstrates that plasticity on the metallic glass surface of Au-Si metallic glass bears much resemblance to that of the colloidal gels, of which nonlinear rheology rather than shear instability governs the constitutive behavior of plasticity.

  8. Surface modification of plastic, glass and titanium by photoimmobilization of polyethylene glycol for antibiofouling.

    PubMed

    Ito, Yoshihiro; Hasuda, Hirokazu; Sakuragi, Makoto; Tsuzuki, Saki

    2007-11-01

    Photoreactive poly(ethylene glycol) (PEG) was prepared and the polymer was photoimmobilized on organic, inorganic and metal surfaces to reduce their interaction with proteins and cells. The photoreactive PEG was synthesized by co-polymerization of methacrylate-PEG and acryloyl 4-azidobenzene. Surface modification was carried in the presence and the absence of a micropatterned photomask. It was then straightforward to confirm the immobilization using the micropatterning. Using the micropatterning method, immobilization of the photoreactive PEG on plastic (Thermanox), glass and titanium was confirmed by time-of-flight secondary ion mass spectroscopy and atomic force microscopy observations. The contact angle on an unpatterned surface was measured. Although the original surfaces have different contact angles, the contact angle on PEG-immobilized surfaces was the same on all surfaces. This result demonstrated that the surface was completely covered with PEG by the photoimmobilization. To assess non-specific protein adsorption on the micropatterned surface, horseradish peroxidase (HRP)-conjugated proteins were adsorbed. Reduced protein adsorption was confirmed by vanishingly small staining of HRP substrates on the immobilized regions. COS-7 cells were cultured on the micropatterned surface. The cells did not adhere to the PEG-coated regions. In conclusion, photoreactive PEG was immobilized on various surfaces and tended to reduce interactions with proteins and cells.

  9. Soil and glass surface photodegradation of etofenprox under simulated california rice growing conditions.

    PubMed

    Vasquez, Martice; Cahill, Thomas; Tjeerdema, Ronald

    2011-07-27

    Photolysis is an important degradation process to consider when evaluating a pesticide's persistence in a rice field environment. To simulate both nonflooded and flooded California rice field conditions, the photolytic degradation of etofenprox, an ether pyrethroid, was characterized on an air-dried rice soil and a flooded rice soil surface by determination of its half-life (t(1/2)), dissipation rate constant (k) and identification and quantitation of degradation products using LC/MS/MS. Photodegradation was also characterized on a glass surface alone to rule out confounding soil factors. Measured photolytic dissipation rates were used as input parameters into a multimedia environmental fate model to predict etofenprox persistence in a rice field environment. Photolytic degradation proceeded at a faster rate (0.23/day, t(1/2) = 3.0 days) on the flooded soil surface compared to the air-dried surface (0.039/day, t(1/2) = 18 days). Etofenprox degradation occurred relatively quickly on the glass surface (3.1/day, t(1/2) = 0.23 days or 5.5 h) compared to both flooded and air-dried soil layers. Oxidation of the ether moiety to the ester was the major product on all surfaces (max % yield range = 0.2 ± 0.1% to 9.3 ± 2.3%). The hydroxylation product at the 4' position of the phenoxy phenyl ring was detected on all surfaces (max % yield range = 0.2 ± 0.1% to 4.1 ± 1.0%). The air-dried soil surface did not contain detectable residues of the ester cleavage product, whereas it was quantitated on the flooded soil (max % yield = 0.6 ± 0.3%) and glass surface (max % yield = 3.6 ± 0.6%). Dissipation of the insecticide in dark controls was significantly different (p < 0.05) compared to the light-exposed surfaces indicating that degradation was by photolysis. Laboratory studies and fate model predictions suggest photolysis will be an important process in the overall degradation of etofenprox in a rice field environment.

  10. Formation of cylindrical micro-lens array on fused silica glass surface using CO2 laser assisted reshaping technique

    NASA Astrophysics Data System (ADS)

    Choi, Hun-Kook; Ahsan, Md. Shamim; Yoo, Dongyoon; Sohn, Ik-Bu; Noh, Young-Chul; Kim, Jin-Tae; Jung, Deok; Kim, Jin-Hyeok; Kang, Ho-Min

    2015-12-01

    This paper demonstrates the laser assisted formation of plano-convex cylindrical and flat-top curved micro-lens array on fused silica glass surface. Initially, femtosecond laser pulses are irradiated on the sample glass to fabricate periodic linear micro-gratings on the glass surface. Afterwards, we reshape the micro-gratings by several times irradiation of a CO2 laser beam by focusing the laser beam on top of the micro-gratings. As a consequence, plano-convex cylindrical micro-lens array with a period varying from 20 to 40 μm are formed on fused silica glass surface. However, flat-top curved gratings' array is observed on the glass surface for a gratings' period of 50 μm. The fabricated micro-lenses show great consistency in size and shape throughout the sample area. Furthermore, we analyze the formation mechanism of micro-lens array on glass surface using the CO2 laser assisted reshaping technique. The proposed reshaping technique exhibits great potential for forming a large variety of micro-lens arrays on the surface of various transparent materials.

  11. Modifying glass fiber surface with grafting acrylamide by UV-grafting copolymerization for preparation of glass fiber reinforced PVDF composite membrane.

    PubMed

    Luo, Nan; Zhong, Hui; Yang, Min; Yuan, Xing; Fan, Yaobo

    2016-01-01

    Experimental design and response surface methodology (RSM) were used to optimize the modification of conditions for glass surface grafting with acrylamide (AM) monomer for preparation of a glass fiber reinforced poly(vinylidene fluoride) (PVDF) composite membrane (GFRP-CM). The factors considered for experimental design were the UV (ultraviolet)-irradiation time, the concentrations of the initiator and solvent, and the kinds and concentrations of the silane coupling agent. The optimum operating conditions determined were UV-irradiation time of 25 min, an initiator concentration of 0-0.25 wt.%, solvent of N-Dimethylacetamide (DMAC), and silane coupling agent KH570 with a concentration of 7 wt.%. The obtained optimal parameters were located in the valid region and the experimental confirmation tests conducted showed good accordance between predicted and experimental values. Under these optimal conditions, the water absorption of the grafted modified glass fiber was improved from 13.6% to 23%; the tensile strength was enhanced and the peeling strength of the glass fiber reinforced PVDF composite membrane was improved by 23.7% and 32.6% with an AM concentration at 1 wt.% and 2 wt.%. The surface composition and microstructure of AM grafted glass fiber were studied via several techniques including Field Emission Scanning Electron Microscopy (FESEM), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and energy dispersive X-ray spectroscopy (EDX). The analysis of the EDX and FTIR-ATR results confirmed that the AM was grafted to the glass fiber successfully by detecting and proving the existence of nitrogen atoms in the GFRP-CM. Copyright © 2015. Published by Elsevier B.V.

  12. Structuring of glass fibre surfaces by laser-induced front side etching

    NASA Astrophysics Data System (ADS)

    Lorenz, Pierre; Ehrhardt, Martin; Zimmer, Klaus

    2014-05-01

    The fabrication of sub-μm structures on glass fibre surfaces poses a big challenge for the laser processing. However, the laser-induced front side etching (LIFE) method has a great potential for the fast, nm-precision, and cost-effective production of surface structures. LIFE is a method for laser etching of transparent materials using thin absorber layers with a high absorption coefficient like metal layers. The LIFE process of the front surface of a fused silica wafer as well as of a glass fibre is studied in dependence on the laser parameters. A KrF excimer laser with a wavelength of 248 nm and a pulse duration of 25 ns was used. The resultant structures were analysed with microscopic methods (white light interferometry, scanning electron microscopy (SEM)). The analysing of the surface structures presented that the LIFE methods allow the fabrication of well-defined periodic sub-μm structures. Furthermore, the structuring process was simulated by a thermodynamic equation including an approach of the laser-plasma interaction. The theoretically predicted results presented a good agreement with the experimental results.

  13. A new synthesis route to high surface area sol gel bioactive glass through alcohol washing: a preliminary study.

    PubMed

    Mukundan, Lakshmi M; Nirmal, Remya; Vaikkath, Dhanesh; Nair, Prabha D

    2013-01-01

    Bioactive glass is one of the widely used bone repair material due to its unique properties like osteoconductivity, osteoinductivity and biodegradability. In this study bioactive glass is prepared by the sol gel process and stabilized by a novel method that involves a solvent instead of the conventional calcinations process. This study represents the first attempt to use this method for the stabilization of bioactive glass. The bioactive glass stabilized by this ethanol washing process was characterized for its physicochemical and biomimetic property in comparison with similar composition of calcined bioactive glass. The compositional similarity of the two stabilized glass powders was confirmed by spectroscopic and thermogravimetric analysis. Other physicochemical characterizations together with the cell culture studies with L929 fibroblast cells and bone marrow mesenchymal stem cells proved that the stabilization was achieved with the retention of its inherent bioactive potential. However an increase in the surface area of the glass powder was obtained as a result of this ethanol washing process and this add up to the success of the study. Hence the present study exhibits a promising route for high surface area bioactive glass for increasing biomimicity.

  14. The effects of oxygen plasma and humidity on surface roughness, water contact angle and hardness of silicon, silicon dioxide and glass

    NASA Astrophysics Data System (ADS)

    Alam, A. U.; Howlader, M. M. R.; Deen, M. J.

    2014-03-01

    For heterogeneous integration in many More-than-Moore applications, surface preparation is the key step to realizing well-bonded multiple substrates for electronics, photonics, fluidics and/or mechanical components without a degradation in performance. Therefore, it is critical to understand how various processing and environmental conditions affect their surface properties. In this paper, we investigate the effects of oxygen plasma and humidity on some key surface properties such as the water contact angle, roughness and hardness of three materials: silicon (Si), silicon dioxide (SiO2) and glass, and their impact on bondability. The low surface roughness, high surface reactivity and high hydrophilicity of Si, SiO2 and glass at lower activation times can result in better bondability. Although, the surface reactivity of plasma-ambient-humidity-treated Si and SiO2 is considerably reduced, their reduction of roughness and increase of hydrophilicity may enable good bonding at low temperature heating due to augmented hydroxyl groups. The decrease of hardness of Si and SiO2 with increased activation time is attributed to higher surface roughness and the formation of amorphous layers of Si. While contact angle and surface roughness results show a correlation with bondability, the role of hardness on bondability requires further investigation.

  15. Covalent Immobilization of Microtubules on Glass Surfaces for Molecular Motor Force Measurements and Other Single-Molecule Assays

    PubMed Central

    Nicholas, Matthew P.; Rao, Lu; Gennerich, Arne

    2014-01-01

    Rigid attachment of microtubules (MTs) to glass cover slip surfaces is a prerequisite for a variety of microscopy experiments in which MTs are used as substrates for MT-associated proteins, such as the molecular motors kinesin and cytoplasmic dynein. We present an MT-surface coupling protocol in which aminosilanized glass is formylated using the cross-linker glutaraldehyde, fluorescence-labeled MTs are covalently attached, and the surface is passivated with highly pure beta-casein. The technique presented here yields rigid MT immobilization while simultaneously blocking the remaining glass surface against nonspecific binding by polystyrene optical trapping microspheres. This surface chemistry is straightforward and relatively cheap and uses a minimum of specialized equipment or hazardous reagents. These methods provide a foundation for a variety of optical tweezers experiments with MT-associated molecular motors and may also be useful in other assays requiring surface-immobilized proteins. PMID:24633798

  16. [The effect of H2O2 surface treatment of posts on the bond strength between glass fiber posts and the resin cement].

    PubMed

    Wang, Jing; Wang, Jian-hong; Guo, Jing; Zhu, Hong-shui

    2013-10-01

    To evaluate the effect of H2O2 on the push-out bond strength between glass fiber posts and the resin cement. Eighteen Tenax glass fiber posts and 18 Macthpost glass fiber posts were randomly assigned to 6 groups according to the surface treatments. Group A, no surface treatment (control group); Group B, treated with silane agent; Group C, treated with 3% H2O2, then with silane agent; Group D, treated with10% H2O2, then with silane agent; Group E, treated with20% H2O2, then with silane agent; Group F, treated with 30% H2O2, then with silane agent. The posts were adhered using the resin cement to form cylindrical resin block. Each resin block was sectioned to 7 sections of 1 mm thick. A push-out test was performed on other sections of each post to measure bond strengths. The date was recorded and analyzed with SPSS13.0 software package. The failure modes were examined with stereomicroscope. The bond strengths of Tenax post from A1 to F1 were (22.35±3.43) MPa, (22.75±1.92) MPa, (27.21±3.60) MPa, (32.32±2.19) MPa, (36.15±2.32) MPa and (40.51±2.37) MPa, respectively. The bond strengths of Macthpost post from A2 to F2 were (17.29±3.23) MPa, (17.01±3.18) MPa, (20.48±2.11) MPa, (23.60±2.60) MPa, (27.65±3.77) MPa and (30.52±2.99) MPa, respectively. No significantly difference (P>0.05) was found between Group A and Group B, except other groups. Treatment with H2O2 followed with silane agent can significantly improve the bond strength between Tenax and Macthpost glass fiber posts and resin cement. The group treated with 30% H2O2 has the highest bond strength, and the treatment procedure is more useful to improve the adhesion of the glass fiber post. Supported by Science and Technology Plan Project of Department of Health of Jiangxi Province (20131084).

  17. Chip PCR. I. Surface passivation of microfabricated silicon-glass chips for PCR.

    PubMed Central

    Shoffner, M A; Cheng, J; Hvichia, G E; Kricka, L J; Wilding, P

    1996-01-01

    The microreaction volumes of PCR chips (a microfabricated silicon chip bonded to a piece of flat glass to form a PCR reaction chamber) create a relatively high surface to volume ratio that increases the significance of the surface chemistry in the polymerase chain reaction (PCR). We investigated several surface passivations in an attempt to identify 'PCR friendly' surfaces and used those surfaces to obtain amplifications comparable with those obtained in conventional PCR amplification systems using polyethylene tubes. Surface passivations by a silanization procedure followed by a coating of a selected protein or polynucleotide and the deposition of a nitride or oxide layer onto the silicon surface were investigated. Native silicon was found to be an inhibitor of PCR and amplification in an untreated PCR chip (i.e. native slicon) had a high failure rate. A silicon nitride (Si(3)N(4) reaction surface also resulted in consistent inhibition of PCR. Passivating the PCR chip using a silanizing agent followed by a polymer treatment resulted in good amplification. However, amplification yields were inconsistent and were not always comparable with PCR in a conventional tube. An oxidized silicon (SiO(2) surface gave consistent amplifications comparable with reactions performed in a conventional PCR tube. PMID:8628665

  18. Fracture Strength of Endodontically Treated Teeth Restored with Casting Post and Core and Glass-Fiber with Composite Core

    PubMed Central

    Saatian, Sedigheh

    2006-01-01

    INTRODUCTION: Prefabricated metal and ceramic posts can be used with different kinds of core materials as an alternative to the conventional casting post and cores. It is unclear how these post and core systems can withstand different kind of forces in the mouth. The purpose of this study was to compare the fracture strength of endodontically treated, crowned maxillary incisors restored with casting post and cores and glass- fiber post with composite core and to evaluate their mode of fractures. MATERIALS AND METHODS: Thirty caries free, human maxillary central incisors with incisoapical length of 23 ± 1 mm were divided into two groups. After root canal treatment procedures and decronation of teeth 2mm above cementoenamel junction, Grope 1 was restored with glass- fiber posts and composite cores and group 2 received casting post and cores. Teeth were prepared with a circumferential shoulder including a 1-2 mm ferrule and 0.5 mm bevel; all posts were cemented with an adhesive resin and teeth were restored with complete coverage crowns. Loads were applied at an angle of 135 degrees using a universal testing machine. Compression force was applied until the specimens fractured. RESULTS: The median fracture strengths of groups 1 and 2 were 459 and 686 respectively (p<0.5). In group I, all fractures occurred in incisal third of roots. In groups II, 40% of fractures were in apical third and middle of roots. CONCLUSION: Within the limitation of this study, the results suggested that glass fiber with composite cores can be used as an alternative to cast posts and cores in anterior teeth when creating 2mm ferrule effect was possible in normal occlusion. Clinical trial is required to verify these in vitro results. PMID:24470803

  19. Bioactive glass coupling with natural polyphenols: Surface modification, bioactivity and anti-oxidant ability

    NASA Astrophysics Data System (ADS)

    Cazzola, Martina; Corazzari, Ingrid; Prenesti, Enrico; Bertone, Elisa; Vernè, Enrica; Ferraris, Sara

    2016-03-01

    Polyphenols are actually achieving an increasing interest due to their potential health benefits, such as antioxidant, anticancer, antibacterial and bone stimulation abilities. However their poor bioavailability and stability hamper an effective clinical application as therapeutic principles. The opportunity to couple these biomolecules with synthetic biomaterials, in order to obtain local delivery at the site of interest, improve their bioavailability and stability and combine their properties with the ones of the substrate, is a challenging opportunity for the biomedical research. A silica based bioactive glass, CEL2, has been successfully coupled with gallic acid and natural polyphenols extracted from red grape skins and green tea leaves. The effectiveness of grafting has been verified by means of XPS analyses and the Folin&Ciocalteu tests. In vitro bioactivity has been investigated by soaking in simulated body fluid (SBF). Surface modification after functionalization and early stage reactivity in SBF have been studied by means of zeta potential electrokinetic measurements in KCl and SBF. Finally the antioxidant properties of bare and modified bioactive glasses has been investigated by means of the evaluation of free radical scavenging activity by Electron Paramagnetic Resonance (EPR)/spin trapping technique after UV photolysis of H2O2 highlighting scavenging activity of the bioactive glass.

  20. Structure and nano-mechanical characteristics of surface oxide layers on a metallic glass.

    PubMed

    Caron, A; Qin, C L; Gu, L; González, S; Shluger, A; Fecht, H-J; Louzguine-Luzgin, D V; Inoue, A

    2011-03-04

    Owing to their low elastic moduli, high specific strength and excellent processing characteristics in the undercooled liquid state, metallic glasses are promising materials for applications in micromechanical systems. With miniaturization of metallic mechanical components down to the micrometer scale, the importance of a native oxide layer on a glass surface is increasing. In this work we use TEM and XPS to characterize the structure and properties of the native oxide layer grown on Ni(62)Nb(38) metallic glass and their evolution after annealing in air. The thickness of the oxide layer almost doubled after annealing. In both cases the oxide layer is amorphous and consists predominantly of Nb oxide. We investigate the friction behavior at low loads and in ambient conditions (i.e. at T = 295 K and 60% air humidity) of both as-cast and annealed samples by friction force microscopy. After annealing the friction coefficient is found to have significantly increased. We attribute this effect to the increase of the mechanical stability of the oxide layer upon annealing.

  1. Subnanometric Roughness Affects the Deposition and Mobile Adhesion of Escherichia coli on Silanized Glass Surfaces.

    PubMed

    Sharma, Sumedha; Jaimes-Lizcano, Yuly Andrea; McLay, Ryan B; Cirino, Patrick C; Conrad, Jacinta C

    2016-05-31

    We investigate the deposition and transient adhesion of Escherichia coli on alkyl and fluoroalkyl silanized glass surfaces of different carbon chain lengths. The rate at which bacteria deposit onto these surfaces decreases as the shear stress is increased from 3 to 67 mPa, but trends in the deposition rate across all surfaces cannot be predicted from extended DLVO calculations of the interaction potential. As the surface root-mean-square (rms) roughness increases, the deposition rate increases and the percentage of motile tethered cells decreases. Furthermore, on surfaces of root-mean-square roughness of less than 0.2 nm, bacteria exhibit mobile adhesion, for which surface-associated cells linearly translate distances greater than approximately 1.5 times their average body length along the flow direction. E. coli bacteria with and without flagella exhibit mobile adhesion, indicating that this behavior is not driven by these appendages. Cells that express fimbriae do not exhibit mobile adhesion. These results suggest that even subnanoscale roughness can influence the deposition and transient adhesion of bacteria and imply that strategies to reduce frictional interactions by making cells or surfaces smoother may help to control the initial fouling of surfaces by E. coli bacteria.

  2. Surface modification of glass plates and silica particles by phospholipid adsorption.

    PubMed

    Chibowski, Emil; Delgado, Angel V; Rudzka, Katarzyna; Szcześ, Aleksandra; Hołysz, Lucyna

    2011-01-01

    The effect of phospholipid adsorption on the hydrophobicity of glass plates and on the surface charge of silica particles using contact angle and electrophoretic mobility measurements, respectively, was investigated. Deposition of successive statistical monolayers of dipalmitoylphosphatidylcholine (DPPC) on the glass surface showed zig-zag changes of water contact angle, especially on the first few monolayers. This behavior is qualitatively coherent with the oscillations observed in zeta potential values for increasing DPPC concentration. The results indicate that the phospholipid is adsorbed vertically on the plates, exposing alternately its polar head and non-polar hydrocarbon chains in successive layers. On the other hand, experiments conducted on glass plates prior hydrophobized by contact with n-tetradecane suggest that DPPC molecules may to some extent dissolve in the relatively thick n-alkane film and then expose their polar heads over the film surface thus producing polar electron-donor interactions. The effect of both DPPC and dioleoylphosphatidylcholine (DOPC) on the electrokinetic potential of silica spheres confirms adsorption of the phospholipids, leading to a decrease in the (originally negative) zeta potential of silica and even reversal of its sign to positive at acidic pH. Hydrophobic interactions between phospholipid molecules in the medium and those already adsorbed may explain the overcharging. The adsorption of neutral phospholipids may reduce the zeta potential as a consequence of the shift of the electrokinetic or slip plane. The effect is more evident in the case of DOPC, suggesting a less efficient packing of this phospholipid because of the presence of double bonds in its molecule, which in fact is well known.

  3. Compositional and structural changes at the anodic surface of thermally poled soda-lime float glass

    SciTech Connect

    Ziemath, E. C.; Araujo, V. D.; Escanhoela, C. A. Jr.

    2008-09-01

    Applying high dc electric fields at elevated temperatures on silicate glasses results in displacement of ions, causing compositional and structural changes in the anodic surface. In this work, the ionic displacement was accompanied by electric current measurements during poling. The thickness of the Na{sup +} depletion layer calculated from the current curves agrees with the thickness measured by EDS only if displacement of Ca{sup 2+} and O{sup -} are also taken into account. A depletion of Ca{sup 2+} in the anodic surface has in fact been observed. Structural changes were confirmed by infrared diffuse and specular reflectance spectroscopies. A narrowing of the band at about 1070 cm{sup -1} can be attributed to an increase in the structural ordering degree. Refractive index measurements confirm compositional changes and contact angle measurements indicate the existence of a negative charge density at the anodic surface.

  4. Method and system for treating an interior surface of a workpiece using a charged particle beam

    DOEpatents

    Swenson, David Richard

    2007-05-23

    A method and system of treating an interior surface on an internal cavity of a workpiece using a charged particle beam. A beam deflector surface of a beam deflector is placed within the internal cavity of the workpiece and is used to redirect the charged particle beam toward the interior surface to treat the interior surface.

  5. Comparison of removal torques between laser-treated and SLA-treated implant surfaces in rabbit tibiae

    PubMed Central

    Kang, Nam-Seok; Li, Lin-Jie

    2014-01-01

    PURPOSE The purpose of this study was to compare removal torques and surface topography between laser treated and sandblasted, large-grit, acid-etched (SLA) treated implants. MATERIALS AND METHODS Laser-treated implants (experimental group) and SLA-treated implants (control group) 8 mm in length and 3.4 mm in diameter were inserted into both sides of the tibiae of 12 rabbits. Surface analysis was accomplished using a field emission scanning electron microscope (FE-SEM; Hitachi S-4800; Japan) under ×25, ×150 and ×1,000 magnification. Surface components were analyzed using energy dispersive spectroscopy (EDS). Rabbits were sacrificed after a 6-week healing period. The removal torque was measured using the MGT-12 digital torque meter (Mark-10 Co., Copiague, NY, USA). RESULTS In the experimental group, the surface analysis showed uniform porous structures under ×25, ×150 and ×1,000 magnification. Pore sizes in the experimental group were 20-40 mm and consisted of numerous small pores, whereas pore sizes in the control group were 0.5-2.0 mm. EDS analysis showed no significant difference between the two groups. The mean removal torque in the laser-treated and the SLA-treated implant groups were 79.4 Ncm (SD = 20.4; range 34.6-104.3 Ncm) and 52.7 Ncm (SD = 17.2; range 18.7-73.8 Ncm), respectively. The removal torque in the laser-treated surface implant group was significantly higher than that in the control group (P=.004). CONCLUSION In this study, removal torque values were significantly higher for laser-treated surface implants than for SLA-treated surface implants. PMID:25177474

  6. Comparison of removal torques between laser-treated and SLA-treated implant surfaces in rabbit tibiae.

    PubMed

    Kang, Nam-Seok; Li, Lin-Jie; Cho, Sung-Am

    2014-08-01

    The purpose of this study was to compare removal torques and surface topography between laser treated and sandblasted, large-grit, acid-etched (SLA) treated implants. Laser-treated implants (experimental group) and SLA-treated implants (control group) 8 mm in length and 3.4 mm in diameter were inserted into both sides of the tibiae of 12 rabbits. Surface analysis was accomplished using a field emission scanning electron microscope (FE-SEM; Hitachi S-4800; Japan) under ×25, ×150 and ×1,000 magnification. Surface components were analyzed using energy dispersive spectroscopy (EDS). Rabbits were sacrificed after a 6-week healing period. The removal torque was measured using the MGT-12 digital torque meter (Mark-10 Co., Copiague, NY, USA). In the experimental group, the surface analysis showed uniform porous structures under ×25, ×150 and ×1,000 magnification. Pore sizes in the experimental group were 20-40 mm and consisted of numerous small pores, whereas pore sizes in the control group were 0.5-2.0 mm. EDS analysis showed no significant difference between the two groups. The mean removal torque in the laser-treated and the SLA-treated implant groups were 79.4 Ncm (SD = 20.4; range 34.6-104.3 Ncm) and 52.7 Ncm (SD = 17.2; range 18.7-73.8 Ncm), respectively. The removal torque in the laser-treated surface implant group was significantly higher than that in the control group (P=.004). In this study, removal torque values were significantly higher for laser-treated surface implants than for SLA-treated surface implants.

  7. Guided Evolution of Bulk Metallic Glass Nanostructures: A Platform for Designing 3D Electrocatalytic Surfaces.

    PubMed

    Doubek, Gustavo; Sekol, Ryan C; Li, Jinyang; Ryu, Won-Hee; Gittleson, Forrest S; Nejati, Siamak; Moy, Eric; Reid, Candy; Carmo, Marcelo; Linardi, Marcelo; Bordeenithikasem, Punnathat; Kinser, Emily; Liu, Yanhui; Tong, Xiao; Osuji, Chinedum O; Schroers, Jan; Mukherjee, Sundeep; Taylor, André D

    2016-03-09

    Electrochemical devices such as fuel cells, electrolyzers, lithium-air batteries, and pseudocapacitors are expected to play a major role in energy conversion/storage in the near future. Here, it is demonstrated how desirable bulk metallic glass compositions can be obtained using a combinatorial approach and it is shown that these alloys can serve as a platform technology for a wide variety of electrochemical applications through several surface modification techniques. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Surface roughness mediated adhesion forces between borosilicate glass and gram-positive bacteria.

    PubMed

    Preedy, Emily; Perni, Stefano; Nipiĉ, Damijan; Bohinc, Klemen; Prokopovich, Polina

    2014-08-12

    It is well-known that a number of surface characteristics affect the extent of adhesion between two adjacent materials. One of such parameters is the surface roughness as surface asperities at the nanoscale level govern the overall adhesive forces. For example, the extent of bacterial adhesion is determined by the surface topography; also, once a bacteria colonizes a surface, proliferation of that species will take place and a biofilm may form, increasing the resistance of bacterial cells to removal. In this study, borosilicate glass was employed with varying surface roughness and coated with bovine serum albumin (BSA) in order to replicate the protein layer that covers orthopedic devices on implantation. As roughness is a scale-dependent process, relevant scan areas were analyzed using atomic force microscope (AFM) to determine Ra; furthermore, appropriate bacterial species were attached to the tip to measure the adhesion forces between cells and substrates. The bacterial species chosen (Staphylococci and Streptococci) are common pathogens associated with a number of implant related infections that are detrimental to the biomedical devices and patients. Correlation between adhesion forces and surface roughness (Ra) was generally better when the surface roughness was measured through scanned areas with size (2 × 2 μm) comparable to bacteria cells. Furthermore, the BSA coating altered the surface roughness without correlation with the initial values of such parameter; therefore, better correlations were found between adhesion forces and BSA-coated surfaces when actual surface roughness was used instead of the initial (nominal) values. It was also found that BSA induced a more hydrophilic and electron donor characteristic to the surfaces; in agreement with increasing adhesion forces of hydrophilic bacteria (as determined through microbial adhesion to solvents test) on BSA-coated substrates.

  9. Comparative Evaluation of the Remineralizing Effects and Surface Micro hardness of Glass Ionomer Cements Containing Bioactive Glass (S53P4):An in vitro Study

    PubMed Central

    Paul M, Jibi; Basappa, N

    2010-01-01

    ABSTRACT Dental cements including the glass ionomer cement (GIC) have found widespread use in restoring tooth structures. In this study, modifications of glass ionomer cements (GICs) were made by adding bioactive glass (BAG) to GIC to obtain bioactive restorative materials. This study used polarized light microscopy (PLM) to examine the remineralization effects of the study materials on dentin. It also evaluated the Vickers microhardness of the experimental materials. Experimental glass ionomer cement (GIC)-BAG materials were made by mixing 10 wt% of BAG particles with conventional cure and resin-modified GIC powders. Class V restorations were made in 80 extracted mandibular teeth which included 4 groups of 20 teeth each. 100 |jm sections of the teeth were examined under polarized light microscope after undergoing pH cycling. Materials were also processed into 80 cylindrical specimens and immersed in water for 7 and 30 days before mechanical tests. Resin-modified GIC containing BAG showed a thick uniform layer of mineralization on the restoration-dentin interface. The conventional cure GIC-based materials had higher surface microhardness than the resin-modified materials. Significance: The addition of BAG to GIC compromises the mechanical properties of the materials to some extent. Thus, their clinical use ought to be restricted to applications where their bioactivity can be beneficial, such as root surface fillings and liners in dentistry. PMID:27507915

  10. Surface roughness and bond strengths of glass-infiltrated alumina-ceramics prepared using various surface treatments.

    PubMed

    Ersu, Bahadir; Yuzugullu, Bulem; Ruya Yazici, A; Canay, Senay

    2009-11-01

    To compare and evaluate effects of CO(2) laser and conventional surface treatments on surface roughness and shear bond strengths of glass-infiltrated alumina-ceramics to dentin. One hundred fifty ceramic discs of In-Ceram Spinell, In-Ceram Alumina and In-Ceram Zirconia (n=50) were prepared. Specimens which were divided into 5 groups (n=10) were untreated (control group), sandblasted, airborne particle abraded, etched with 9.6% hydrofluoric acid or irradiated with CO(2) laser. Scanning electron microscope was used at 1000x magnification for qualitative examination. Following surface roughness (Ra) determination by profilometry, discs were cemented on extracted-human-molar teeth. Cemented specimens were stored in distilled water at 37 degrees C for 1 week. Shear bond strength (MPa) test was performed using a universal testing machine at a crosshead speed of 1mm/min. Statistical comparisons were made with Wilcoxon signed ranked test, Kruskall Wallis test and Spearman's correlation coefficient. All surface treatments produced rougher surfaces than the untreated groups of all ceramics (P<.05). Sandblasting demonstrated a rougher surface on In-Ceram Spinell than In-Ceram Alumina and In-Ceram Zirconia (P<.05). While CO(2) laser irradiation showed significantly higher bond strength for In-Ceram Spinell (P<.05), both airborne particle abrasion and CO(2) laser irradiation showed higher bond strengths for In-Ceram Zirconia (P<.05). Airborne particle abrasion demonstrated higher bond strength for In-Ceram Alumina and In-Ceram Zirconia (P<.05). No significant relationship was determined between surface roughness (Ra) and shear bond strength values (MPa) among ceramic groups. Sandblasting is an effective surface treatment for roughening surfaces of In-Ceram Spinell. Although CO(2) laser irradiation does not increase surface roughness, it reveals the highest bond strength.

  11. Gold nanoparticles assisted characterization of amine functionalized polystyrene multiwell plate and glass slide surfaces

    NASA Astrophysics Data System (ADS)

    Dharanivasan, Gunasekaran; Rajamuthuramalingam, Thangavelu; Michael Immanuel Jesse, Denison; Rajendiran, Nagappan; Kathiravan, Krishnan

    2015-01-01

    We demonstrated citrate-capped gold nanoparticles assisted characterization of amine functionalized polystyrene plate and glass slide surfaces through AuNPs staining method. The effect of AuNPs concentration on the characterization of amine modified surfaces was also studied with different concentration of AuNPs (ratios 1.0-0.0). 3-Aminopropylyl triethoxy silane has been used as amine group source for the surface modification. The interactions of AuNPs on modified and unmodified surfaces were investigated using atomic force microscopy and the dispersibility, and the aggregation of AuNPs was analyzed using UV-visible spectrophotometer. Water contact angle measurement and X-ray photoelectron spectroscopy (XPS) were used to further confirmation of amine modified surfaces. The aggregation of AuNPs in modified multiwell plate leads to the color change from red to purple and they are found to be adsorped on the modified surfaces. Aggregation and adsorption of AuNPs on the modified surfaces through the electrostatic interactions and the hydrogen bonds were revealed by XPS analysis. Remarkable results were found even in the very low concentration of AuNPs (ratio 0.2). This AuNPs staining method is simple, cost-effective, less time consuming, and required very low concentration of AuNPs. These results can be read out through the naked eye without the help of sophisticated equipments.

  12. Influence of Surface Modification on Tribo-Performance of Hybrid Glass/PTFE Fabric Composite with Phenolic Resin Binder

    NASA Astrophysics Data System (ADS)

    Su, Fenghua; Zhang, Zhaozhu

    2007-05-01

    The fabric/phenolic composites with the pure and silanized hybrid glass/PTFE fabric were prepared by dip-coating of the hybrid glass/PTFE fabrics in a phenolic resin. The friction and wear performances of the resulting fabric composites were evaluated using pin-on-disc wear tester. The composition change of the glass fabric in hybrid glass/PTFE fabric after silanization was analyzed by FTIR spectroscopy. The morphologies of the composite structures and the worn surfaces of the composites were analyzed by means of scanning electron microscopy (SEM). The results show that the fabric/phenolic composite with the β-aminoethyltrimethoxylsilane silanized hybrid glass/PTFE fabric can obtain the highest load-carrying capacity and the best wear-resistance, followed by the composite with γ-glycidoxypropyltrimethoxysilane silanized hybrid glass/PTFE fabric. Chemical reactions have achieved as the hybrid glass/PTFE fabric was silanized with β-aminoethyltrimethoxyl silane or γ-glycidoxypropyltrimethoxy silane, which contribute to strengthen the bonding strength between the fabric and the adhesive and hence to improve the tribological properties of the hybrid glass/PTFE fabric composites.

  13. Structural and mechanical modifications induced on Cu47.5Zr47.5Al5 metallic glass by surface laser treatments

    NASA Astrophysics Data System (ADS)

    Fornell, J.; Pellicer, E.; Garcia-Lecina, E.; Nieto, D.; Suriñach, S.; Baró, M. D.; Sort, J.

    2014-01-01

    We have investigated the effects of surface laser treatment (SLT) on the structure, mechanical properties and wettability of Cu47.5Zr47.5Al5 metallic glass alloy. SLT has been carried out at three different intensities with the aim of inducing variable surface damage and tuneable changes in the resulting properties. X-ray diffraction characterization and scanning electron microscopy observations reveal that the alloy laser treated at 28.5 A remains amorphous while the alloy treated at 29 A becomes partially crystalline (CuZr B2 phase). When the alloy is treated at 30 A, it is mainly composed of copper and zirconium oxides. Nanoindentation tests, carried out on-top of the as-cast and laser-treated surfaces, reveal that SLT at 28.5 A causes an increase in hardness, which can be attributed to annihilation of free volume (i.e. structural relaxation). Conversely, hardness values of the alloy laser-treated at 29 A are almost the same as those of the as-cast alloy. This could be ascribed to the counterbalance effect between the softer nature of the CuZr B2 phase and the harder nature of the remaining relaxed amorphous phase. Larger hardness values are observed for the alloy laser treated at 30 A as a result of oxide phase formation.

  14. Influence of the bulk diffusion of rubidium and sodium atoms in glass on their surface dwell time

    NASA Astrophysics Data System (ADS)

    Atutov, S. N.; Benimetskii, F. A.; Makarov, A. O.

    2017-05-01

    This paper presents the results of measurement of the surface potential and the dwell time of Rb and Na atoms on the surface of S-52 molybdenum glass. It is found that at temperatures below the glass transition temperature, the temperature dependence of the dwell time of Rb atoms is well described by the Arrhenius formula. The surface potentials for Rb and Na are measured to be 0.67 and 1.37 eV, respectively. At temperatures above the glass transition temperature, the dwell time of these atoms increases abnormally. The reason for this is that during impact of an atom on the surface of molten glass, it can penetrate into the volume of the window and then return by diffusion and desorb from the surface. In this case, the dwell time of the atom on the glass is determined by the diffusion time and can be very significant, despite the relatively low potential barrier at the surface and high temperature.

  15. Regulation of arsenic mobility on basaltic glass surfaces by speciation and pH.

    PubMed

    Sigfusson, Bergur; Meharg, Andrew A; Gislason, Sigurdur R

    2008-12-01

    The importance of geothermal energy as a source for electricity generation and district heating has increased over recent decades. Arsenic can be a significant constituent of the geothermal fluids pumped to the surface during power generation. Dissolved As exists in different oxidation states, mainly as As(III) and As(V), and the charge of individual species varies with pH. Basaltic glass is one of the most important rock types in many high-temperature geothermal fields. Static batch and dynamic column experiments were combined to generate and validate sorption coefficients for As(III) and As(V) in contact with basaltic glass at pH 3-10. Validation was carried out by two empirical kinetic models and a surface complexation model (SCM). The SCM provided a better fit to the experimental column data than kinetic models at high pH values. However, in certain circumstances, an adequate estimation of As transport in the column could not be attained without incorporation of kinetic reactions. The varying mobility with pH was due to the combined effects of the variable charge of the basaltic glass with the pH point of zero charge at 6.8 and the individual As species as pH shifted, respectively. The mobility of As(III) decreased with increasing pH. The opposite was true for As(V), being nearly immobile at pH 3 to being highly mobile at pH 10. Incorporation of appropriate sorption constants, based on the measured pH and Eh of geothermal fluids, into regional groundwater-flow models should allow prediction of the As(III) and As(V) transport from geothermal systems to adjacent drinking water sources and ecosystems.

  16. Induced rupture of vesicles adsorbed on glass by pore formation at the surface-bilayer interface.

    PubMed

    Kataoka-Hamai, Chiho; Yamazaki, Tomohiko

    2015-02-03

    Supported lipid bilayers (SLBs) are often formed by spontaneous vesicle rupture and fusion on a solid surface. A well-characterized rupture mechanism for isolated vesicles is pore nucleation and expansion in the solution-exposed nonadsorbed area. In contrast, pore formation in the adsorbed bilayer region has not been investigated to date. In this work, we studied the detailed mechanisms of asymmetric rupture of giant unilamellar vesicles (GUVs) adsorbed on glass using fluorescence microscopy. Asymmetric rupture is the pathway where a rupture pore forms in a GUV near the edge of the glass-bilayer interface with high curvature and then expansion of the pore yields a planar bilayer patch. We show that asymmetric rupture occasionally resulted in SLB patches bearing a defect pore. The defect formation probability depended on lipid composition, salt concentration, and pH. Approximately 40% of negatively charged GUVs under physiological conditions formed pore-containing SLB patches, while negatively charged GUVs at low salt concentration or pH 4.0 and positively charged GUVs exhibited a low probability of defect inclusion. The edge of the defect pore was either in contact with (on-edge) or away from (off-edge) the edge of the planar bilayer. On-edge pores were predominantly formed over off-edge defects. Pores initially formed in the glass-adsorbed region before rupture, most frequently in close contact with the edge of the adsorbed region. When a pore formed near the edge of the adsorbed area or when the edge of a pore reached that of the adsorbed area by pore expansion, asymmetric rupture was induced from the defect site. These induced rupture mechanisms yielded SLB patches with an on-edge pore. In contrast, off-edge pores were produced when defect pore generation and subsequent vesicle rupture were uncoupled. The current results demonstrate that pore formation in the surface-adsorbed region of GUVs is not a negligible event.

  17. Controllable surface morphology and properties via mist polymerization on a plasma-treated polymethyl methacrylate surface.

    PubMed

    Wan, S J; Wang, L; Xu, X J; Zhao, C H; Liu, X D

    2014-02-14

    Surface modification by grafting polymers on solid materials is an important strategy used to improve surface properties. This article reports that under appropriate conditions, very thin layers with desired morphologies may be constructed on a plasma-treated substrate by feeding a small quantity of a monomer with a mist stream carrying droplets produced from monomer solutions. We investigate the effects of process parameters that affect layer morphology, including exposure time to the mist stream, concentration of the monomer solution, and solvent selectivity. For a methyl methacrylate solution in ethanol, nanoparticles are uniformly grown with increasing monomer concentration or exposure time and finally form a porous layer at 3.65 mol L(-1) for 30 min. Decreasing solvent polarity not only affects surface morphology, but also increases hydrophobicity of the resulting surface. With 2,2,3,4,4,4-hexafluorobutyl methacrylate as the monomer, SEM and AFM micrographs indicated that mist polymerization results in numerous microspheres on the activated surface. These experimental results were interpreted by a mechanism in terms of an in situ polymerization accompanied by a phase transformation of the resulting polymer. Specifically, plasma treatment provides highly active cations and radicals to initiate very rapid polymerization, and the resulting polymers are consequently deposited from the liquid onto the surface under phase transition mechanisms.

  18. Characterizing the fluorescence intermittency and photobleaching kinetics of dye molecules immobilized on a glass surface.

    PubMed

    Yeow, Edwin K L; Melnikov, Sergey M; Bell, Toby D M; De Schryver, Frans C; Hofkens, Johan

    2006-02-09

    The blinking behavior of single Atto565 molecules on a glass surface is studied under air or nitrogen atmospheres using confocal microscopy. The broad distributions for both on- and off-time durations obey power law kinetics that are rationalized using a charge tunneling model. In this case, a charge is transferred from the Atto565 molecule to localized states found on the glass surface. Subsequent charge recombination by back charge tunneling from trap to Atto565 cation (i.e., dark state) restores the fluorescence. The off-time distribution is independent of excitation intensity (I), whereas the on-time distribution exhibits a power law exponent that varies with I. Two pathways have been identified to lead to the formation of the radical dark state. The first involves direct charge tunneling from the excited singlet S1 state to charge traps in the surrounding matrix, and the second requires charge ejection from the triplet T1 state after intersystem crossing from S1. Monte Carlo simulation studies complement the two-pathway model. Photobleaching curves of both single and ensemble molecules do not exhibit monoexponential decays suggesting complex bleaching dynamics arising from triplet and radical states.

  19. Femtosecond laser structuring of silver-containing glass: Silver redistribution, selective etching, and surface topology engineering

    SciTech Connect

    Desmoulin, Jean-Charles; Petit, Yannick; Cardinal, Thierry; Canioni, Lionel; Dussauze, Marc; Lahaye, Michel; Gonzalez, Hernando Magallanes; Brasselet, Etienne

    2015-12-07

    Femtosecond direct laser writing in silver-containing phosphate glasses allows for the three-dimensional (3D) implementation of complex photonic structures. Sample translation along or perpendicular to the direction of the beam propagation has been performed, which led to the permanent formation of fluorescent structures, either corresponding to a tubular shape or to two parallel planes at the vicinity of the interaction voxel, respectively. These optical features are related to significant modifications of the local material chemistry. Indeed, silver depletion areas with a diameter below 200 nm were evidenced at the center of the photo-produced structures while photo-produced luminescence properties are attributed to the formation of silver clusters around the multiphoton interaction voxel. The laser-triggered oxidation-reduction processes and the associated photo-induced silver redistribution are proposed to be at the origin of the observed original 3D luminescent structures. Thanks to such material structuring, surface engineering has been also demonstrated. Selective surface chemical etching of the glass has been obtained subsequently to laser writing at the location of the photo-produced structures, revealing features with nanometric depth profiles and radial dimensions strongly related to the spatial distributions of the silver clusters.

  20. Surface roughness and morphology evolution of optical glass with micro-cracks during chemical etching.

    PubMed

    Xiao, Huapan; Wang, Hairong; Fu, Guanglong; Chen, Zhi

    2017-01-20

    Chemical etching is usually utilized to measure, reduce, and remove the subsurface micro-cracks in optical components, which makes it significant to study the surface evolution of optical components during the etching process. Etching experiments were carried out for glass with artificial cracks and micro-cracks under different etching conditions. The etching rate was obtained, which is linear with the hydrofluoric acid (HF) concentration and greatly affected by etching temperature. By measuring the surface roughness (SR) and morphology of glasses after etching, it is found that the crack width always increases with etching time, while the crack depth remains unchanged after the crack is completely exposed. Meanwhile, the SR increases sharply at first, then increases slowly, and finally decreases with the increase of etching time. Considering the influence of HF concentration, etching temperature, and the diffusion coefficient on the etching rate, simulation models were established for etching trailing indent cracks (TICs) to further analyze the evolution of SR and morphology. The simulation results were compared with the experimental ones, also indicating that the maximum SR (Ra) increases greatly with the crack's aspect ratio and the model for analyzing the crack's morphology evolution is more reasonable.

  1. Surface micro-structuring of glassy carbon for precision glass molding of diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans Peter; Hermerschmidt, Andreas

    2014-09-01

    Glassy carbon is used nowadays for a variety of applications because of its mechanical strength, thermal stability and non-sticking adhesion properties. This makes it also a suitable candidate as mold material for precision compression molding of low and high glass-transition temperature materials. To fabricate molds for diffractive optics a highresolution structuring technique is needed. We introduce a process that allows the micro-structuring of glassy carbon by reactive ion etching. Key parameters such as uniformity, surface roughness, edge definition and lateral resolution are discussed. They are the most relevant parameters for a stamp in optical applications. The use of titanium as a hard mask makes it possible to achieve a reasonable selectivity of 4:1, which has so far been one of the main problems in microstructuring of glassy carbon. We investigate the titanium surface structure with its 5-10 nm thick layer of TiO2 grains and its influence on the shape of the hard mask. In our fabrication procedure we were able to realize optically flat diffractive structures with slope angles of more than 80° at typical feature sizes of 5 μm and at 700 nm depth. The fabricated glassy carbon molds were applied to thermal imprinting onto different glasses. Glassy carbon molds with 1 mm thickness were tested with binary optical structures. Our experiments show the suitability of glassy carbon as molds for cost efficient mass production with a high quality.

  2. Laser gas assisted treatment of steel 309: Corrosion and scratch resistance of treated surface

    NASA Astrophysics Data System (ADS)

    Toor, Ihsan-ul-Haq; Yilbas, B. S.; Ahmed, Junaid; Karatas, C.

    2017-10-01

    Laser gas assisted surface treatment of steel 309 is carried out and the characteristics of the resulting surface are analyzed using the analytical tools. Scanning electron and 3-D optical microscopes are used to assess the morphological and metallurgical changes in the laser treated layer. Energy spectroscopy and X-ray diffraction are carried out to determine the elemental composition and compounds formed on the laser treated surface. The friction coefficient of the laser treated surface is measured using the micro-tribometer and compared to that of the as received surface. The corrosion resistance of the laser treated and as received surfaces is measured incorporating the electrochemical tests. It is found that laser treatment results in a dense layer and formation of nitride compounds at the surface. This enhances the microhardness at the laser treated surface. The friction coefficient attains lower values at the laser treated surface than that corresponding to the as received surface. The corrosion rate of the surface reduces significantly after the laser treatment process, which can be attributed to the passive layer at the surface via formation of a dense layer and nitride compounds in the surface vicinity. In addition, the number of pit sites decreased for the laser treated surface than that of as received surface.

  3. Isolation of the ocular surface to treat dysfunctional tear syndrome associated with computer use.

    PubMed

    Yee, Richard W; Sperling, Harry G; Kattek, Ashballa; Paukert, Martin T; Dawson, Kevin; Garcia, Marcie; Hilsenbeck, Susan

    2007-10-01

    Dysfunctional tear syndrome (DTS) associated with computer use is characterized by mild irritation, itching, redness, and intermittent tearing after extended staring. It frequently involves foreign body or sandy sensation, blurring of vision, and fatigue, worsening especially at the end of the day. We undertook a study to determine the effectiveness of periocular isolation using microenvironment glasses (MEGS) alone and in combination with artificial tears in alleviating the symptoms and signs of dry eye related to computer use. At the same time, we evaluated the relative ability of a battery of clinical tests for dry eye to distinguish dry eyes from normal eyes in heavy computer users. Forty adult subjects who used computers 3 hours or more per day were divided into dry eye sufferers and controls based on their scores on the Ocular Surface Disease Index (OSDI). Baseline scores were recorded and ocular surface assessments were made. On four subsequent visits, the subjects played a computer game for 30 minutes in a controlled environment, during which one of four treatment conditions were applied, in random order, to each subject: 1) no treatment, 2) artificial tears, 3) MEGS, and 4) artificial tears combined with MEGS. Immediately after each session, subjects were tested on: a subjective comfort questionnaire, tear breakup time (TBUT), fluorescein staining, lissamine green staining, and conjunctival injection. In this study, a significant correlation was found between cumulative lifetime computer use and ocular surface disorder, as measured by the standardized OSDI index. The experimental and control subjects were significantly different (P<0.05) in the meibomian gland assessment and TBUT; they were consistently different in fluorescein and lissamine green staining, but with P>0.05. Isolation of the ocular surface alone produced significant improvements in comfort scores and TBUT and a consistent trend of improvement in fluorescein staining and lissamine green

  4. Boron Diffusion in Surface-Treated Framing Lumber

    Treesearch

    Patricia K. Lebow; Stan T. Lebow; Steven A. Halverson

    2013-01-01

    The extent of boron penetration in framing lumber treated by spray applications during construction is not well quantified. This study evaluated the effect of formulation and concentration on diffusion of boron in lumber specimens that were equilibrated in conditions that produced wood moisture contents of 18 to 21 percent. One set of specimens was pressure treated...

  5. Surface-dependent transitions during self-assembly of phospholipid membranes on mica, silica, and glass.

    PubMed

    Benes, Martin; Billy, Didier; Benda, Ales; Speijer, Han; Hof, Martin; Hermens, Wim Th

    2004-11-09

    Formation of supported membranes by exposure of solid surfaces to phospholipid vesicles is a much-used technique in membrane research. Freshly cleaved mica, because of its superior flatness, is a preferred support, and we used ellipsometry to study membrane formation kinetics on mica. Neutral dioleoyl-phosphatidylcholine (DOPC) and negatively charged dioleoyl-phosphatidylserine/dioleoyl-phosphatidylcholine (20% DOPS/80% DOPC) vesicles were prepared by sonication. Results were compared with membrane formation on silica and glass, and the influence of stirring, buffer, and calcium was assessed. Without calcium, DOPC vesicles had a low affinity (Kd approximately 30 microM) for mica, and DOPS/DOPC vesicles hardly adsorbed. Addition of calcium promptly caused condensation of the adhering vesicles, with either loss of excess lipid or rapid additional lipid adsorption up to full surface coverage. Vesicle-mica interactions dominate the adsorption process, but vesicle-vesicle interactions also seem to be required for the condensation process. Membranes on mica proved unstable in Tris-HCl buffer. For glass, transport-limited adsorption of DOPC and DOPS/DOPC vesicles with immediate condensation into bilayers was observed, with and without calcium. For silica, vesicle adsorption was also rapid, even in the absence of calcium, but the transition to condensed layers required a critical surface coverage of about 50% of bilayer mass, indicating vesicle-vesicle interaction. For all three surfaces, additional adsorption of DOPC (but not DOPS/DOPC) vesicles to condensed membranes was observed. DOPC membranes on mica were rapidly degraded by phospholipase A2 (PLA2), which pleads against the role of membrane defects as initial PLA2 targets. During degradation, layer thickness remained unchanged while layer density decreased, in accordance with recent atomic force microscopy measurements of gel-phase phospholipid degradation by PLA2.

  6. Self-structured surface patterns on molecular azo glass films induced by laser light irradiation.

    PubMed

    Yin, Jianjun; Ye, Gang; Wang, Xiaogong

    2010-05-04

    In this work, formation of photoinduced self-structured surface pattern and its correlation with chromophoric structures were studied by using a series of star-shaped azo compounds, which exist as stable molecular glass at room temperature. For the synthesis, a star-shaped precursor (Tr-AN) was prepared by a ring-open reaction between 1, 3, 5-triglycidyl isocyanurate and N-methylaniline. The star-shaped azo compounds were then synthesized through azo-coupling reactions between the precursor and diazonium salts of 4-nitroaniline, 2-methyl-4-nitroaniline, and 4-aminobenzonitrile, respectively. Through these steps, three azo compounds were obtained to bear different donor-acceptor type azo chromophores at the peripheral positions. The formation of the photoinduced self-structured patterns was investigated by irradiating solid thin films of the molecular azo glass with a uniform laser beam (532 nm, 200 mW/cm(2)) at normal incidence. For comparison, formation of surface-relief-gratings (SRGs) was also investigated by exposing the thin films to an interference pattern of the laser beams (532 nm, 80 mW/cm(2)). The results show that SRGs can be inscribed on the films of all three star-shaped azo compounds, but self-structured surface patterns is only observed on film of the azo compound containing 4-cyanoazobenzene moieties (Tr-AZ-CN) under the same irradiation condition. The electron-withdrawing groups, which control the absorption band position, show a significant influence on both the self-structured pattern formation and SRG inscription rate. Under proper experimental conditions, both self-structured surface pattern and SRG can simultaneously be observed on the Tr-AZ-CN films. The observations can lead to a deeper understanding of the photoinduced effects, especially their correlation with molecular structures.

  7. Recognizing impact glass on Mars using surface texture, mechanical properties, and mid-infrared spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Bradley, James Thomson

    A primary goal of future Mars sample return missions is to obtain samples whose isotopic ages can be used to place absolute time constraints on the relative Martian crater chronology. Thus, identifying the origin of surface material as impact or volcanic prior to its return to Earth will be critical. This dissertation focuses on four strategies for identifying and characterizing impact melt breccias from both landed and orbital perspectives. In Part 1, the geology of Viking 2 Landing (VL2) site is re-evaluated using recently acquired orbital data. Measurements of relict landform topography indicate that a layer of sedimentary material at least 120 m thick has been eroded from the site. Crater counts indicate an extreme deficiency of small-diameter craters (<500 m), indicating that resurfacing has continued up to the present. Thermal inertia data over the site is consistent with some rocks being impact-emplaced and possibly impact-derived. In Part 2, three textural characteristics were identified as potential discriminants between vesicular impact and volcanic glasses: vesicle shape (elongation), orientation, and spatial density. Additionally, a theoretical model was developed to constrain the conditions necessary for the preservation of deformed bubble textures. The results suggest that deformed bubbles are unlikely to be preserved in typical Martian basalts or basaltic andesites. Part 3 is an endeavor to extract science from mission support operations. First, a method for determining the bulk density of rocks via a pushing (i.e., by a robotic spacecraft arm) was developed and applied to VL2 rock-pushing data. Although the large measurement uncertainties preclude drawing firm conclusions, the results demonstrate the feasibility of the technique. Second, results from the Rock Abrasion Tool (RAT) on the Spirit rover were analyzed to infer the mechanical strength of ground surfaces. Rocks in the Columbia Hills were found to be mechanically consistent with impact melt

  8. Evaluation of various substances to prevent adsorption of tuberculin purified protein derivative (PPD) to glass surfaces*

    PubMed Central

    Landi, S.; Held, H. R.; Tseng, M. C.

    1970-01-01

    It is well known that a dilute tuberculin PPD solution (1 IU or 5 IU per dose) very rapidly loses its potency owing to adsorption of tuberculoprotein to the wall of the container into which it is dispensed. The amount of tuberculoprotein adsorbed per cm2 of glass surface has been measured for phosphate-buffered saline over a wide pH range (pH 1 to pH 10). The maximum adsorption was found at pH 4 (0.31 μg/cm2) and the least at between pH 6 and pH 10 (0.15 μg/cm2). The rate of adsorption of tuberculoprotein to glass was not changed when the phosphate-buffered saline was replaced by borate-buffered saline. Tuberculin PPD prepared by the ammonium sulfate precipitation method, by the trichloroacetic acid precipitation method and by a combination of both methods adsorbed equally well to glass and no difference in the rate of adsorption for these tuberculoproteins was found. Forty-two substances in addition to Tween 80 were tested for their property to prevent adsorption of tuberculoprotein to glass in dilute tuberculin PPD solutions (50 IU/ml of 14C-labelled PPD). The most efficient anti-adsorption agents were found to be nonionic surfactants, some ionic surfactants and some colloidal substances; polypeptides and non-surface-active substances of low molecular weight showed little or no anti-adsorption property. The labelling of PPD with 14C has proved to be a valuable tool, particularly for long-term adsorption studies and for screening substances to be used as efficient anti-adsorption agents. These studies have permitted the selection of agents which could be added to dilute solutions of tuberculin PPD (10 IU/ml to 500 IU/ml or 0.2 μg/ml to 10 μg/ml respectively) in order to avoid loss of potency due to adsorption. PMID:5312323

  9. Effect of ferrule height and glass fibre post length on fracture resistance and failure mode of endodontically treated teeth.

    PubMed

    Abdulrazzak, Shurooq S; Sulaiman, Eshamsul; Atiya, Basim K; Jamaludin, Marhazlinda

    2014-08-01

    The purpose of this study was to evaluate the combined effect of ferrule height and post length on fracture resistance and failure mode of endodontically treated teeth restored with glass fibre posts, composite resin cores and crowns. Ninety human maxillary central incisors were endodontically treated and divided into three groups (n = 30) according to the ferrule heights: 4, 2 and 0 mm, respectively. Post spaces in each group were prepared at 2/3, 1/2 and 1/3 of the root length (n = 10). The specimens were received fibre posts, composite resin core build up and cast metal crowns. After thermocycling, compressive static load was applied at an angle of 135° to the crowns. Two-way analysis of variance showed significant differences in the failure load in the ferrule height groups, no significant differences in post length groups and no significant interaction between ferrule heights and post lengths. More restorable failure modes were observed. © 2013 Australian Society of Endodontology.

  10. Nuclear quadrupole interaction of highly polarized gas phase 131Xe with a glass surface

    NASA Astrophysics Data System (ADS)

    Butscher, R.; Wäckerle, G.; Mehring, M.

    1994-05-01

    We report nuclear magnetic resonance (NMR) experiments on 131Xe (I=3/2) gas-phase atoms which exhibit nuclear quadrupole interaction with the surface of the sample cell. Nuclear quadrupole coupling constants and quadrupole relaxation rates are obtained from the time-domain signal of the freely precessing nuclear magnetization in weak magnetic fields. The nuclear spin species is polarized by spin-exchange collisions with optically pumped ground-state spins of Rb gas atoms. The Rb atoms also present in the sample are used as a magnetometer to probe the free-induction decay of the nuclear-spin ensemble. The temperature dependence of both the effective quadrupole splittings and the relaxation rates are explained by a model for the surface interactions of a Xe atom adsorbed on the glass surface. The desorption is thermally activated with an activation energy of EA=0.12 eV. The surface diffusion of an adsorbed atom is characterized by an activation energy ED for thermally activated hopping between neighboring surface sites. Both energies enter the spectral density function governing wall-induced nuclear quadrupole relaxation. Our experimental results lead to the conclusion that they are on the same order of magnitude.

  11. Favorable Influence of Hydrophobic Surfaces on Protein Structure in Porous Organically-modified Silica Glasses

    PubMed Central

    Menaa, Bouzid; Herrero, Mar; Rives, Vicente; Lavrenko, Mayya; Eggers, Daryl K.

    2008-01-01

    Organically-modified siloxanes were used as host materials to examine the influence of surface chemistry on protein conformation in a crowded environment. The sol-gel materials were prepared from tetramethoxysilane and a series of monosubstituted alkoxysilanes, RSi(OR′)3, featuring alkyl groups of increasing chain length in the R-position. Using circular dichroism spectroscopy in the far-UV region, apomyoglobin was found to transit from an unfolded state to a native-like helical state as the content of the hydrophobic precursor increased from 0–15%. At a fixed molar content of 5% RSi(OR’)3, the helical structure of apomyoglobin increased with the chain length of the R-group, i.e. methyl < ethyl < n-propyl < n-butyl < n-hexyl. This trend also was observed for the tertiary structure of ribonuclease A, suggesting that protein folding and biological activity are sensitive to the hydrophilic/hydrophobic balance of neighboring surfaces. The observed changes in protein structure did not correlate with total surface area or the average pore size of the modified glasses, but scanning electron microscopy images revealed an interesting relationship between surface morphology and alkyl chain length. The unexpected benefit of incorporating a low content of hydrophobic groups into a hydrophilic surface may lead to materials with improved biocompatibility for use in biosensors and implanted devices. PMID:18359512

  12. Surface modification of apatite-wollastonite glass ceramic by synthetic coupling agent

    NASA Astrophysics Data System (ADS)

    Long, Qin; Zhou, Da-Li; Zhang, Xiang; Zhou, Jia-Bei

    2014-06-01

    In this study, lysine was introduced into the surface of apatite—wollastonite glass ceramic (AW-GC) to improve its cytocompatibility by two steps reaction procedure. Firstly, lysine connected to N-β-(aminoethyl)-γ-aminopropyl trimethoxy silane (A-1120) by covalent binding of amide group. Secondly, the lysine-functionalized A-1120 was deposited on the surface of AW-GC through a silanization reaction involving a covalent attachment. FTIR spectra indicated that lysine had been immobilized onto the surface of AW-GC successfully. Bioactivity of the surface modified AW-GC was investigated by simulated body fluid (SBF), and the in vitro cytocompatibility was evaluated by coculturing with human osteosarcoma cell MG63. The results showed that the process of hydroxyapatite layer formed on the modified material was similar to AW-GC while the mode of hydroxyapatite deposition was changed. The growth of MG63 cells showed that modifying the AW-GC surface with lysine enhances the cell adhesion and proliferation.

  13. A pilot study of the marginal adaptation and surface morphology of glass-cermet cements.

    PubMed

    Chu, C H; King, N M; Lee, A M; Yiu, C K; Wei, S H

    1996-07-01

    This study investigated changes in the marginal adaptation and surface morphology of Ketac-Silver and Chelon-Silver glass-current cements over time. Dispersalloy amalgam was used as a control. Contralateral pairs of carious primary molars were restored with the test materials and amalgam. Clinical evaluations were scheduled at 12, 18, and 24 months after placement. Gold-plated replicas of the restorations were observed with scanning electron microscopy. Fractures and cracks in the surface of the Dispersalloy and Chelon-Silver increased the surface roughness; however, the damage was superficial and self-limiting in the Dispersalloy restorations, while in Chelon-Silver the fractures caused the material to break down in layers. A substantial quantity of pores, usually smaller than 50 microns in diameter, were observed throughout the surface of the Chelon-Silver restorations. The pores in the surface of Ketac-Silver were fewer and smaller. The incidence of cavomarginal breakdown increased with time. Chelon-Silver restorations had a higher rate of cavomarginal breakdown than did Ketac-Silver and Dispersalloy restorations up to 18 months. However, there was no statistically significant difference in the marginal adaptation of the three groups at 24 months.

  14. Single and multiple molecular beacon probes for DNA hybridization studies on a silica glass surface

    NASA Astrophysics Data System (ADS)

    Fang, Xiaohong; Liu, Xiaojing; Tan, Weihong

    1999-05-01

    Surface immobilizable molecular beacons have been developed for DNA hybridization studies on a silica glass plate. Molecular beacons are a new class of oligonucleotide probes that have a loop-and-stem structure with a fluorophore and a quencher attached to the two ends of the stem. They only emit intense fluorescence when hybridize to their target molecules. This provides an excellent selectivity for the detection of DNA molecules. We have designed biotinylated molecular beacons which can be immobilized onto a solid surface. The molecular beacon is synthesized using DABCYL as the quencher and an optical stable dye, tetramethylrhodamine, as the fluorophore. Mass spectrometry is used to confirm the synthesized molecular beacon. The molecular beacons have been immobilized onto a silica surface through biotin-avidin binding. The surface immobilized molecular beacons have been used for the detection of target DNA with subnanomolar analytical sensitivity. have also immobilized two different molecular beacons on a silica surface in spatially resolved microscopic regions. The hybridization study of these two different molecular beacon probes has shown excellent selectivity for their target sequences. The newly designed molecular beacons are intended for DNA molecular interaction studies at an interface and for the development of ultrasensitive DNA sensors for a variety of applications including disease diagnosis, disease mechanism studies, new drug development, and in the investigation of molecular interactions between DNA molecules and other interesting biomolecules.

  15. Integrated Cooling-Vacuum-Assisted Non-Fractional 1540 nm Erbium:Glass Laser is Effective in Treating Acne Scars.

    PubMed

    Politi, Yael; Levi, Assi; Lapidoth, Moshe

    2016-11-01

    Acne scars are a common result of in ammatory acne, affecting many patients worldwide. Among which, atrophic scars are the most prevalent form, presenting as dermal depressions caused by inflammatory degeneration of dermal collagen. Mid-infrared laser skin interaction is characterized by its modest absorption in water and nite penetration to the mid-dermis. Since collagen is a desirable laser target, 1540-nm wavelength is amenable for collagen remodeling within the depressed area of atrophic scars. To evaluate the safety and efficacy of acne scars treatment using an integrated cooling-vacuum-assisted 1540 nm Erbium: Glass Laser. This interventional prospective study included 25 volunteers (10 men, 15 women) with post acne atrophic scars. Patients were treated with a mid-infrared non-fractional 1540 nm Er:Glass laser (Alma Lasers Ltd. Caesarea, Israel) with integrat- ed cooling- vacuum assisted technology. Acne scars were exposed to 3 stacked laser pulses (400-600 mJ/pulse, 4 mm spot size, frequency of 3 Hz). Patients underwent 3-6 treatment sessions with a 2-3 week interval and were followed-up 1 month and 3 months after the last treatment. Clinical photographs were taken by high resolution digital camera before and after treatment. Clinical evaluation was performed by two independent dermatologists and results were graded on a scale of 0 (exacerbation) to 4 (76%-100% improvement). Patients' and physicians' satisfaction were also recorded (on a 1-5 scale). Pain perception and adverse effects were evaluated as well. Almost all patients (24/25) demonstrated a moderate to significant improvement. Average improvement was 3.9 and 4.1 points on the quartile scale used for outcome assessment 1 and 3 months following the last session, respectively. Patient satisfaction rate was 4.2. Side effects were minimal and transient: erythema, mild transient vesicles, and mild pain or inconvenience. CONCLUSION Cooling-Vacuum-Assisted mid-infrared non-fractional Er:Glass 1540 nm laser

  16. Fractal characterization and wettability of ion treated silicon surfaces

    NASA Astrophysics Data System (ADS)

    Yadav, R. P.; Kumar, Tanuj; Baranwal, V.; Vandana, Kumar, Manvendra; Priya, P. K.; Pandey, S. N.; Mittal, A. K.

    2017-02-01

    Fractal characterization of surface morphology can be useful as a tool for tailoring the wetting properties of solid surfaces. In this work, rippled surfaces of Si (100) are grown using 200 keV Ar+ ion beam irradiation at different ion doses. Relationship between fractal and wetting properties of these surfaces are explored. The height-height correlation function extracted from atomic force microscopic images, demonstrates an increase in roughness exponent with an increase in ion doses. A steep variation in contact angle values is found for low fractal dimensions. Roughness exponent and fractal dimensions are found correlated with the static water contact angle measurement. It is observed that after a crossover of the roughness exponent, the surface morphology has a rippled structure. Larger values of interface width indicate the larger ripples on the surface. The contact angle of water drops on such surfaces is observed to be lowest. Autocorrelation function is used for the measurement of ripple wavelength.

  17. Adhesion and chemical vapor testing of second surface silver/glass solar mirrors

    SciTech Connect

    Dake, L.S.; Lind, M.A.

    1980-09-01

    Second surface silvered glass mirrors supplied by four different commercial manufacturers were evaluated for silver-to-glass adhesion and resistance to chemical vapor attack. The mirrors were chemically silvered on identical substrates of low iron float glass. Experiments were performed in order to assess the viability of using adhesion and chemical attack as screening tests for predicting the relative long-term durability of solar mirrors. The results of these tests will be compared at a future time with the survivability of field mirrors deployed in stationary exposure racks at ten locations throughout the United States. The adhesion tests were performed using a commercially-available thin film tensile pull tester in which a stud bonded to the film is pulled and the yield load recorded. Numerous subtleties regarding the selection of the adhesive used to bond the study and the validity of the testing procedure are discussed. Several different methods of normalizing the results were attempted in an effort to reduce the scatter in the data. The same set of samples were exposed to salt spray, water, HCl, H/sub 2/SO/sub 4/, and HNO/sub 3/ vapors and then ranked according to their performance. Visual comparison of tested samples did not yield consistent results; however, definite trends were observed favoring one of the manufacturers. Some SEM/EDX analysis was performed on these mirrors subject to accelerated degradation in order to compare them to mirrors subject to natural degradation. However, insufficient data has been collected to show that any of the tests performed will accurately predict the relative life expectancy of the mirrors in an outdoor environment.

  18. Thermal properties and surface reactivity in simulated body fluid of new strontium ion-containing phosphate glasses.

    PubMed

    Massera, J; Petit, L; Cardinal, T; Videau, J J; Hupa, M; Hupa, L

    2013-06-01

    In this paper, we investigate the effect of SrO substitution for CaO in 50P₂O₅-10Na₂-(40-x)CaO-xSrO glass system (x from 0 to 40) on the thermal and structural properties and also on the glass reactivity in simulated body fluid (SBF) in order to find new glass candidates for biomedical glass fibers. The addition of SrO at the expense of CaO seems to restrain the leaching of phosphate ions in the solution limiting the reduction of the solution pH. We observed the formation of an apatite layer at the surface of the glasses when in contact with SBF. SrO and MgO were found in the apatite layer of the strontium ion-containing glasses, the concentration of which increases with an increase of SrO content. We think that it is the presence of MgO and SrO in the layer which limits the leaching of phosphate in the solution and thus the glass dissolution in SBF.

  19. [Adhesion loss of syrups in a metering glass which consists of a low surface free energy material].

    PubMed

    Yamamoto, Yoshihisa; Suzuki, Toyofumi; Hashizaki, Kaname; Ogura, Masao; Umeda, Yukiko; Hidaka, Shinji; Fukami, Toshiro; Tomono, Kazuo

    2010-08-01

    We previously reported a strong positive correlation between syrup viscosity and the rate of syrup loss due to adhesion to a glass metering device. In this study, we examined differences in the surface free energies of metering devices made of different polymeric materials, since reducing adhesion loss to metering devices could improve the efficiency of drug preparation involving highly viscous syrups. Among metering devices made of glass only, glass with a silicone coating (SLC), polypropylene (PP), and polymethylpentene (PMP) the surface free energy of the glass-only metering device was the highest (49.2 mN/m). The adhesion loss obtained for highly viscous syrups in the PP and PMP metering devices was significantly lower than that of the glass metering device. Measurements of syrup contact angles suggested that in metering devices made of PP and PMP, which have low surface free energies, a decrease in the spreading wetting of syrups was a factor in reducing the rate of adhesion loss. Thus irrespective of the syrup viscosity being measured, metering devices produced from materials with low surface free energies can reduce the time required to prepare prescriptions without compromising the accuracy of drug preparation.

  20. The effect of glass fiber distribution on the transverse strength and surface smoothness of two denture resins.

    PubMed

    Ozdemir, Ali Kemal; Polat, Nilüfer Tülin

    2003-12-01

    The aim of this study was to evaluate the effect of glass fiber distribution on the transverse strength and surface smoothness of conventional heat cured acrylic and autopolymerizing acrylic of an injection-molding system. Forty rectangular (65x10x2.5 mm) acrylic test specimens were prepared from both acrylic types: 10 with 5% (w/w) 6 mm length fiber and 10 without fiber for both groups. Transverse strength test was applied to these specimens. Surface samples were taken from the broken and polished surfaces of these specimens and evaluated using SEM. The addition of fiber was found to cause a statistically significant increase in the transverse strength of the injection system's acrylic. In SEM observation it was revealed that there was good adhesion between glass fiber and both acrylic resins. The glass fibers distribution was more even in the injection system's acrylic. It is suggested that injection system's acrylic be fiber-reinforced to reduce denture fractures.

  1. Surface functionalization of porous glass networks: effects on bovine serum albumin and porcine insulin immobilization.

    PubMed

    Mansur, H S; Lobato, Z P; Oréfice, R L; Vasconcelos, W L; Oliveira, C; Machado, L J

    2000-01-01

    Biomolecules can be immobolized in many different ways. They can also be entrapped or tightly adsorbed within porous gels, clays, membranes, resins, and several other materials, but it is crucial that they retain their active conformation after the incorporation procedure. Porous gel matrixes with functionalized surfaces offer unlimited possibilities to control the protein-substrate interaction behavior. In the present work, we have studied the adsorption and the relative stability of bovine serum albumin (BSA) and porcine insulin(PI) incorporated in gels of SiO2 glass matrixes. The porous gel matrixes were obtained using tetramethoxysilane (TMOS)/metanol and functionalized with (3-mercaptopropyl) trimethoxysilane and (3-aminopropyl) triethoxysilane. The relative adsorption kinetics and stability of BSA and PI incorporated in glass networks were evaluated by immersion in phosphate buffer saline (PBS) and alkaline elution media for different periods of time. The kinetics of protein release from the gel matrix was monitored by UV-visible spectroscopy. A significantly larger PI release was observed compared to BSA in PBS solutions. We believe this is mainly associated with the difference on protein interactions with the modified surface, according to the characterization results of porosity, surface area, and contact angle of different functionalized gel matrixes. We could not observe any evidence of denaturation with either proteins after their desorption from gel matrixes using the ultraviolet spectroscopy technique. These results have also been confirmed with the strong bioactivity response from "in vivo" test conducted in rats, where porous gels with PI incorporated were implanted, showing that released proteins retained their native conformation.

  2. Enhanced bone regeneration in rat calvarial defects implanted with surface-modified and BMP-loaded bioactive glass (13-93) scaffolds.

    PubMed

    Liu, Xin; Rahaman, Mohamed N; Liu, Yongxing; Bal, B Sonny; Bonewald, Lynda F

    2013-07-01

    The repair of large bone defects, such as segmental defects in the long bones of the limbs, is a challenging clinical problem. Our recent work has shown the ability to create porous scaffolds of silicate 13-93 bioactive glass by robocasting which have compressive strengths comparable to human cortical bone. The objective of this study was to evaluate the capacity of those strong porous scaffolds with a grid-like microstructure (porosity=50%; filament width=330μm; pore width=300μm) to regenerate bone in a rat calvarial defect model. Six weeks post-implantation, the amount of new bone formed within the implants was evaluated using histomorphometric analysis. The amount of new bone formed in implants composed of the as-fabricated scaffolds was 32% of the available pore space (area). Pretreating the as-fabricated scaffolds in an aqueous phosphate solution for 1, 3 and 6days to convert a surface layer to hydroxyapatite prior to implantation enhanced new bone formation to 46%, 57% and 45%, respectively. New bone formation in scaffolds pretreated for 1, 3 and 6days and loaded with bone morphogenetic protein-2 (BMP-2) (1μg per defect) was 65%, 61% and 64%, respectively. The results show that converting a surface layer of the glass to hydroxyapatite or loading the surface-treated scaffolds with BMP-2 can significantly improve the capacity of 13-93 bioactive glass scaffolds to regenerate bone in an osseous defect. Based on their mechanical properties evaluated previously and their capacity to regenerate bone found in this study, these 13-93 bioactive glass scaffolds, pretreated or loaded with BMP-2, are promising in structural bone repair.

  3. Enhanced bone regeneration in rat calvarial defects implanted with surface-modified and BMP-loaded bioactive glass (13-93) scaffolds

    PubMed Central

    Liu, Xin; Rahaman, Mohamed N.; Liu, Yongxing; Bal, B. Sonny; Bonewald, Lynda F.

    2013-01-01

    The repair of large bone defects, such as segmental defects in the long bones of the limbs, is a challenging clinical problem. Our recent work has shown the ability to create porous scaffolds of silicate 13-93 bioactive glass by robocasting which have compressive strengths comparable to human cortical bone. The objective of this study was to evaluate the capacity of those strong porous scaffolds with a grid-like microstructure (porosity = 50%; filament width = 330 μm; pore width = 300 μm) to regenerate bone in a rat calvarial defect model. Six weeks postimplantation, the amount of new bone formed within the implants was evaluated using histomorphometric analysis. The amount of new bone formed in implants composed of the as-fabricated scaffolds was 32% of the available pore space (area). Pretreating the as-fabricated scaffolds in an aqueous phosphate solution for 1, 3, and 6 days, to convert a surface layer to hydroxyapatite prior to implantation, enhanced new bone formation to 46%, 57%, and 45%, respectively. New bone formation in scaffolds pretreated for 1, 3, and 6 days and loaded with bone morphogenetic protein-2 (BMP-2) (1 μg/defect) was 65%, 61%, and 64%, respectively. The results show that converting a surface layer of the glass to hydroxyapatite or loading the surface-treated scaffolds with BMP-2 can significantly improve the capacity of 13-93 bioactive glass scaffolds to regenerate bone in an osseous defect. Based on their mechanical properties evaluated previously and their capacity to regenerate bone found in this study, these 13-93 bioactive glass scaffolds, pretreated or loaded with BMP-2, are promising in structural bone repair. PMID:23567939

  4. Laser micro-machinability of borosilicate glass surface-modified by electric field-assisted ion-exchange method

    NASA Astrophysics Data System (ADS)

    Matsusaka, S.; Kobayakawa, T.; Hidai, H.; Morita, N.

    2012-08-01

    In order to improve the laser micro-machinability of borosilicate glass, the glass surface was doped with metal (silver or copper) ions by an electric field-assisted ion-exchange method. Doped ions drifted and diffused into the glass substrate under a DC electric field. The concentration of metal ions within the doped area was approximately constant because the ion penetration was caused by substitution between dopant metal and inherent sodium ions. Nanosecond ultraviolet laser irradiation of metal-containing regions produced flat, smooth and defect-free holes. However, the shapes of holes were degraded when the processed hole bottoms reached ion penetration depths. A numerical analysis of ionic drift-diffusion behaviour in glass material under an electric field was also carried out. The calculated results for penetration depth and ionic flux showed good agreement with the measured values.

  5. Fill volume as an indicator of surface heterogeneity in glass vials for parenteral packaging.

    PubMed

    Kucko, Nathan W; Keenan, Tim; Coughlan, Aisling; Hall, Matthew M

    2013-06-01

    The chemical durability of glass vials for parenteral packaging is typically assessed by completely filling the vial with a medium of interest. This testing approach can mask the heterogeneous dissolution behavior of vials produced by conversion of glass tubing. In this study, the corrosion behavior of vials provided by four suppliers was evaluated as a function of fill volume. Vials were filled with incrementally increasing volumes of water for injection (WFI) up to near-maximum capacity and then autoclaved. The pH and levels of extracted ions were measured. The pH of autoclaved WFI generally increased for low fill volumes relative to pure WFI, presumably because of extraction of alkali from the heel region. The pH was found to generally decrease with increasing fill volume as the concentration of extractables was diluted. Analysis of dissolution profiles supports the altered surface chemistry of the heel region relative to the body. The results of this study demonstrate the potential limitations of conventional hydrolytic resistance tests and the susceptibility of the heel region to aqueous corrosion.

  6. Adsorption of Cationic Peptides to Solid Surfaces of Glass and Plastic

    PubMed Central

    Kristensen, Kasper; Henriksen, Jonas R.; Andresen, Thomas L.

    2015-01-01

    Cationic membrane-active peptides have been studied for years in the hope of developing them into novel types of therapeutics. In this article, we investigate an effect that might have significant experimental implications for investigators who wish to study these peptides, namely, that the peptides adsorb to solid surfaces of glass and plastic. Specifically, we use analytical HPLC to systematically quantify the adsorption of the three cationic membrane-active peptides mastoparan X, melittin, and magainin 2 to the walls of commonly used glass and plastic sample containers. Our results show that, at typical experimental peptide concentrations, 90% or more of the peptides might be lost from solution due to rapid adsorption to the walls of the sample containers. Thus, our results emphasize that investigators should always keep these adsorption effects in mind when designing and interpreting experiments on cationic membrane-active peptides. We conclude the article by discussing different strategies for reducing the experimental impact of these adsorption effects. PMID:25932639

  7. Suppression effects of dental glass-ceramics with polarization-induced highly dense surface charges against bacterial adhesion.

    PubMed

    Nozaki, Kosuke; Koizumi, Hiroki; Horiuchi, Naohiro; Nakamura, Miho; Okura, Toshinori; Yamashita, Kimihiro; Nagai, Akiko

    2015-01-01

    This study investigated the surface characteristics and antibacterial ability capacity of surface-improved dental glass-ceramics by an electrical polarization process. Commercially available dental glass-ceramic materials were electrically polarized to induce surface charges in a direct current field by heating. The surface morphology, chemical composition, crystal structure, and surface free energy (SFE) were evaluated using scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, and water droplet methods, respectively. The antibacterial capacity was assessed by a bacterial adhesion test using Streptococcus mutans. Although the surface morphology, chemical composition, and crystal structure were not affected by electrical polarization, the polar component and total SFE were enhanced. After 24 h incubation at 37ºC, bacterial adhesion to the polarized samples was inhibited. The electrical polarization method may confer antibacterial properties on prosthetic devices, such as porcelain fused to metal crowns or all ceramic restorations, without any additional bactericidal agents.

  8. Surface hardness properties of resin-modified glass ionomer cements and polyacid-modified composite resins.

    PubMed

    Bayindir, Yusuf Ziya; Yildiz, Mehmet

    2004-11-15

    In this study the top and bottom surface hardness of two polyacid-modified composite resins (PMCRs), one resin-modified glass ionomer cement (RMGIC), and one composite resin were evaluated. The affect of water storage on their hardness was also investigated. The study was conducted using four different groups, each having five specimens obtained from fiberglass die molds with a diameter of 5 mm and a height of 2 mm. Measurements were made on the top and bottom surface of each specimen and recorded after 24 hours and again at 60 days. All tested materials showed different hardness values, and the values of top surfaces of the specimens were found to be higher than the bottom surface in all test groups. There was no statistical difference in the Vickers hardness (HV) values when the test specimens were kept in water storage. In conclusion Hytac displayed microhardness values higher than Vitremer and Dyract. We found the order of HV values to be Surfil > Hytac > Dyract > Vitremer, respectively. Vitremer presented the lowest microhardness level and Surfil the highest.

  9. Modification of epoxy resin, silicon and glass surfaces with alkyl- or fluoroalkylsilanes for hydrophobic properties

    NASA Astrophysics Data System (ADS)

    Marczak, Jacek; Kargol, Marta; Psarski, Maciej; Celichowski, Grzegorz

    2016-09-01

    Preparation of superhydrophobic materials inspired by nature has attracted a great scientific interest in recent decades. Some of these materials have hierarchical lotus-like structures, i.e. micro- and nano-objects coated by hydrophobic compounds. A major challenge of applying the superhydrophobic surfaces for the self-cleaning coatings preparation is their improved efficiency in varying atmospheric conditions, e.g. UV light. The objective of this research work was to investigate the effect of the different chemical structure and the surface free energy on the hydrophobic and tribological properties of the alkylsilanes and fluoroalkylsilanes deposited on silicon wafers, glass slides and epoxy resin. Tribological and hydrophobic properties of the modified surfaces were correlated with their chemical structures. Chemical structures of the deposited materials were examined by using Fourier transform infrared (FT-IR) spectroscopy and hydrophobic properties were investigated by water contact angle (WCA) and surface free energy (SFE) measurements. The modified surfaces exhibited water contact angles of above 100° for the selected modifiers. It was noticed that the replacement of hydrogen atoms by fluorine atoms in alkyl chain caused an increase in the water contact angle values and a decrease in friction coefficients. The obtained results showed that the carbon chain length of a modifier and its chemical structure can strongly affect the hydrophobic and tribological properties of the modified surfaces. The highest values of WCA, lowest values of SFE and coefficient of friction were obtained for samples covered by fluorinated compounds. Moreover, some preliminary aging test was performed to give an insight into the effectiveness of deposited alkylsilanes and fluoroalkylsilanes coatings. After accelerated UV exposure, no significant changes in the chemical structure, hydrophobic and tribological properties of the modified surfaces were noticed. The samples degradation

  10. Understanding the creation of & reducing surface microroughness during polishing & post-processing of glass optics

    SciTech Connect

    Suratwala, Tayyab

    2016-09-22

    In the follow study, we have developed a detailed understanding of the chemical and mechanical microscopic interactions that occur during polishing affecting the resulting surface microroughness of the workpiece. Through targeted experiments and modeling, the quantitative relationships of many important polishing parameters & characteristics affecting surface microroughness have been determined. These behaviors and phenomena have been described by a number of models including: (a) the Ensemble Hertzian Multi Gap (EHMG) model used to predict the removal rate and roughness at atomic force microscope (AFM) scale lengths as a function of various polishing parameters, (b) the Island Distribution Gap (IDG) model used to predict the roughness at larger scale lengths, (c) the Deraguin-Verwey-Landau-Overbeek (DLVO) 3-body electrostatic colloidal model used to predict the interaction of slurry particles at the interface and roughness behavior as a function of pH, and (d) a diffusion/chemical reaction rate model of the incorporation of impurities species into the polishing surface layer (called the Bielby layer). Based on this improved understanding, novel strategies to polish the workpiece have been developed simultaneously leading to both ultrasmooth surfaces and high material removal rates. Some of these strategies include: (a) use of narrow PSD slurries, (b) a novel diamond conditioning recipe of the lap to increase the active contact area between the workpiece and lap without destroying its surface figure, (c) proper control of pH for a given glass type to allow for a uniform distribution of slurry particles at the interface, and (d) increase in applied load just up to the transition between molecular to plastic removal regime for a single slurry particle. These techniques have been incorporated into a previously developed finishing process called Convergent Polishing leading to not just economical finishing process with improved surface figure control, but also

  11. Surface modification of amorphous substrates by disulfide derivatives: A photo-assisted route to direct functionalization of chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Amalric, Julien; Marchand-Brynaert, Jacqueline

    2011-12-01

    A novel route for chalcogenide glass surface modification is disclosed. The formation of an organic monolayer from disulfide derivatives is studied on two different glasses of formula GexAsySez by water contact angle measurement, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR). The potential anchoring group is the disulfide functionality. Since thioctic acid derivatives absorb around 335 nm, an irradiation step is included, in order to favor S-S disruption. Three types of disulfide compounds are grafted onto small glass breaks for contact angle and XPS analyses. The results show effective changes of surface state. According to contact angle measurement, the deposited organic layer functionalized by a small polyethylene glycol chain leads to a more hydrophilic surface, long alkyl chain or a perfluorinated carbon chain leads to a more hydrophobic surface. XPS shows the presence at the surface of an organic layer with sulfur and ethylene oxide chains, or augmentation of organic carbons or fluorine and Csbnd F bonds. The photo-assisted grafting of the disulfides onto an ATR prism made of chalcogenide glass shows that this surface modification process does not affect infrared transparency, despite UV treatment, and accurate structural analysis can be performed.

  12. Detection of harmful algal bloom causing microalgae using covalently immobilised capture oligonucleotide probes on glass and poly(dimethylsiloxane) surfaces

    NASA Astrophysics Data System (ADS)

    Bruce, Karen L.; Ellis, Amanda V.; Leterme, Sophie C.; Khodakov, Dmitriy A.; Lenehan, Claire E.

    2013-12-01

    Harmful algal bloom (HAB) events have been on the rise in the last few decades with some of the causative microalgae exhibiting toxic properties. Therefore, detection is essential in order to prevent mortality of aquatic life and poisoning events from consumption of these biotoxins. Here, oligonucleotide modified glass and poly(dimethylsiloxane) (PDMS) surfaces have been developed for the detection of the HAB causing microalgae, Alexandrium catenella, in a model system. Our preliminary studies show that the glass surface offers superior stability and analytical response when compared to those prepared from PDMS.

  13. Surface plasmon assisted optical nonlinearities of uniformly oriented metal nano-ellipsoids in glass.

    PubMed

    Mohan, Sabitha; Lange, Jens; Graener, Heinrich; Seifert, Gerhard

    2012-12-17

    The nonlinear optical properties of nanocomposites consisting of non-spherical silver nanoparticles in glass matrix have been studied using the femtosecond Z-scan technique. The spheroidal nanoparticles were uniformly oriented along a common direction. By polarization sensitive studies, longitudinal and transverse plasmon resonances can be addressed separately. A sign reversal in optical nonlinearity from negative to positive is observed while switching the light interaction from near to non-resonant regime, which can be done by simply rotating the light polarization by 90°. Studying samples with different aspect ratio, we obtained the dispersion of third-order nonlinearity in the near-resonant regime, showing an enhancement of the nonlinear processes by more than two orders of magnitude due to the electric field enhancement at the surface plasmon resonance.

  14. Preparation and catalytic application of Ag/polydopamine composite on surface of glass substrates

    NASA Astrophysics Data System (ADS)

    Yu, Jianying; Sun, Chengyi; Lu, Shixiang; Xu, Wenguo; Liu, Zhehan; He, Dongsheng

    2017-01-01

    In this work, Ag/polydopamine composite on glass substrates (Ag/PDA@slides) were formed by using polydopamine (PDA) as both reducing and stabilizing agent to reduce silver salts to silver nanoparticles (NPs) and adhesive them to slides. The morphology and chemical composition of the composite material was characterized by scanning electron microscopy (SEM) and X-ray diffraction pattern (XRD). The prepared Ag/PDA@slide was a highly active catalyst for the reduction of 4-nitrophenol (4-NP) in the presence of sodium borohydride (NaBH4) aqueous solution at room temperature. The reduction rate of the optimal catalyst was as fast as 10 s and it was stable up to 6 cycles without a significant loss of its catalytic activity. By measuring the UV-Vis absorption bonds of Ag/PDA@slides, it proved that condition of the strongest surface plasmon resonance of Ag/PDA@slides is the optimal condition of catalytic reduction of 4-NP.

  15. Supramolecular adhesives to hard surfaces: adhesion between host hydrogels and guest glass substrates through molecular recognition.

    PubMed

    Takashima, Yoshinori; Sahara, Taiga; Sekine, Tomoko; Kakuta, Takahiro; Nakahata, Masaki; Otsubo, Miyuki; Kobayashi, Yuichiro; Harada, Akira

    2014-10-01

    Supramolecular materials based on host-guest interactions should exhibit high selectivity and external stimuli-responsiveness. Among various stimuli, redox and photo stimuli are useful for its wide application. An external stimuli-responsive adhesive system between CD host-gels (CD gels) and guest molecules modified glass substrates (guest Sub) is focused. Here, the selective adhesion between host gels and guest substrates where adhesion depends on molecular complementarity is reported. Initially, it is thought that adhesion of a gel material onto a hard material might be difficult unless many guest molecules modified linear polymers immobilize on the surface of hard materials. However, reversible adhesion of the CD gels is observed by dissociating and re-forming inclusion complex in response to redox and photo stimuli.

  16. Design and validation of guarded hot plate instruments for measuring heat flow between evacuated plane-parallel glass surfaces

    NASA Astrophysics Data System (ADS)

    Dey, C. J.; Simko, T. M.; Collins, R. E.; Zhang, Q.-C.

    1998-08-01

    This article discusses the design and construction of guarded hot plate instruments for measuring the heat flow through an evacuated space between plane-parallel glass surfaces. In this structure, the insulating region is surrounded by two pieces of relatively highly conducting material. High resolution measurements of heat flow using these instruments therefore requires the detection of quite small temperature differences (10-4 K) between the metering piece and the guard. The instruments are calibrated, and the linearity evaluated, by measuring radiative heat transfer through the evacuated space between uncoated soda lime glass sheets; this is because this heat flow can be calculated to high accuracy from the infrared optical properties of the glass. The level of parasitic heat flow in the instruments is estimated by measuring radiative heat flow between glass surfaces coated with very low emittance layers, such as evaporated gold. These instruments operate over a range of temperatures from 0 to about 70 °C. It is shown that the heat flow between evacuated glass surfaces can be measured with these instruments to high resolution (˜10 μW) and high accuracy (˜1%) over an area of ˜1 cm2. The departures from linearity, and the level of parasitic heat flow, are within the measurement resolution. For a temperature difference across the sample of 20 K, the measurement resolution corresponds to an uncertainty in the thermal conductance of the sample of ˜0.005 W m-2 K-1.

  17. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-08-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effects of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that after a 20-s 9:1 HF dip without rinse, the Si(100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si(100) surface was observed, in an ultrahigh vacuum (UHV) chamber, and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface-layer, after being heated to approximately 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  18. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Astrophysics Data System (ADS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-06-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effect of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that, after a 20-sec 9:1 HF dip without rinse, the Si (100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si (100) surface was observed, in an ultrahigh vacuum chamber (UHV), and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface layer, after being heated to about 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  19. Spectroscopic ellipsometry studies of HF treated Si (100) surfaces

    NASA Technical Reports Server (NTRS)

    Yao, Huade; Woollam, John A.; Alterovitz, Samuel A.

    1993-01-01

    Both ex situ and in situ spectroscopic ellipsometry (SE) measurements were employed to investigate the effects of HF cleaning on Si surfaces. The hydrogen-terminated (H-terminated) Si surface was modeled as an equivalent dielectric layer, and monitored in real time by SE measurements. The SE analyses indicate that after a 20-s 9:1 HF dip without rinse, the Si(100) surface was passivated by the hydrogen termination and remained chemically stable. Roughness of the HF-etched bare Si(100) surface was observed, in an ultrahigh vacuum (UHV) chamber, and analyzed by the in situ SE. Evidence for desorption of the H-terminated Si surface-layer, after being heated to approximately 550 C in the UHV chamber, is presented and discussed. This is the first use of an ex situ and in situ real-time, nondestructive technique capable of showing state of passivation, the rate of reoxidation, and the surface roughness of the H-terminated Si surfaces.

  20. Surface nitridation improves bone cell response to melt-derived bioactive silicate/borosilicate glass composite scaffolds.

    PubMed

    Orgaz, Felipe; Dzika, Alexandra; Szycht, Olga; Amat, Daniel; Barba, Flora; Becerra, José; Santos-Ruiz, Leonor

    2016-01-01

    Novel bioactive amorphous glass-glass composite scaffolds (ICIE16/BSG) with interconnected porosity have been developed. Hierarchically interconnected porous glass scaffolds were prepared from a mixture of two melt-derived glasses: a ICIE16 bioactive glass that was previously developed by Wu et al. (2011) to prevent crystallization, and a borosilicate glass of composition 73.48 SiO2-11.35 B2O3-15.15 Na2O (wt%). The resulting melt derived glass-glass composite scaffolds (ICIE16/BSG) were subject to surface functionalization to further improve its interaction with biological systems. Surface functionalization was performed by a nitridation process with hot gas N2/ammonia at 550°C for 2h, obtaining the ICIE16/BSG-NITRI. Evaluation of the degradation rate and the conversion to hydroxyapatite after immersion in simulated body fluid predicted a good biological activity of all the scaffolds, but particularly of the nitrided ones. In vitro evaluation of osteoblastic cells cultured onto the nitrided and non-nitrided scaffolds showed cell attachment, proliferation and differentiation on all scaffolds, but both proliferation and differentiation were improved in the nitrided ICIE16/BSG-NITRI. Biomaterials are often required in the clinic to stimulate bone repair. We have developed a novel bioglass (ICIE16/SBG-NITRI) that can be sintered into highly porous 3D scaffolds, and we have further improved its bioactivity by nitridation. ICIE16/SBG-NITRI was synthesized from a mixture of two melt-derived glasses through combined gel casting and foam replication techniques, followed by nitridation. To mimic bone, it presents high-interconnected porosity while being mechanically stable. Nitridation improved its reactivity and bioactivity facilitating its resorption and the deposition of apatite (bone-like mineral) on its surface and increasing its degradation rate. The nitrided surface also improved the bioglass' interaction with bone cells, which were found to attach better to ICIE16

  1. Effect of heat-treated titanium surfaces on protein adsorption and osteoblast precursor cell initial attachment.

    PubMed

    Kern, Travis; Yang, Yunzhi; Glover, Renee; Ong, Joo L

    2005-03-01

    The clinical success of dental implants is governed in part by surface properties of implants and their interactions with the surrounding tissues. The objective of this study was to investigate the effect of heat-treated titanium surfaces on protein adsorption and osteoblast precursor cell attachment in vitro. Passivated titanium samples used in this study were either non heat treated or heat treated at 750 degrees C for 90 minutes. It was observed that the contact angle on heat-treated titanium surfaces was statistically lower compared with the non-heat-treated titanium surfaces. The non-heat-treated titanium surface was also observed to be amorphous oxide, whereas heat treatment of titanium resulted in the conversion of amorphous oxide to crystalline anatase oxide. No significant difference in albumin and fibronectin adsorption was observed between the heat-treated and non-heat-treated titanium surfaces. In addition, no significant difference in initial cell attachment was observed between the two groups. It was concluded that heat treatment of titanium resulted in significantly more hydrophilic surfaces compared to non-heat-treated titanium surfaces. However, differences in oxide crystallinity and wettability were not observed to affect protein adsorption and initial osteoblast precursor cell attachment.

  2. The effects of lubrication on the temperature rise and surface finish of glass-ionomer cements.

    PubMed

    Jones, C S; Billington, R W; Pearson, G J

    2006-09-01

    Previous work [Jones CS. Factors influencing the finishing of direct filling materials. PhD Thesis, University of London; 2002] has shown that there is an optimum load, speed and time that produced the smoothest surface when finishing glass-ionomer cement using each of four grades of a disc system. This study looks at the effects of lubrication on the temperature produced in samples of GIC when finished dry and with different lubricants using these optimal loads, speeds and times. It also compares the surface finish produced using different lubricants. A thermocouple connected so that it permitted the display and recording of temperature against time was inserted 1mm into the base of samples of a glass-ionomer cement. The samples were finished and polished using each of the grades of a disc system in a specially constructed jig that mimicked oral finishing. After roughening, the pre-determined optimum loads, speeds and times were used sequentially for each of the four grades of disc. Five samples were tested for each method of finishing. Firstly run dry, then in turn lubricated with water, walnut oil and petroleum jelly. After the use of each abrasive disc the surface roughness was measured using a profilometer. One of the five samples was selected at random and prepared for examination in the scanning electron microscope. All results were subjected to non-parametric statistically analyses. Walnut oil and petroleum jelly produced significant temperature increases compared to both dry and with water finishing. Lubricated with water significantly reduced the temperature rise compared to dry. The Ra values of 0.5 microm was obtained for the coarse and a value of 0.3 microm for the medium discs run without lubrication. With lubrication the Ra increased although there was little difference between the lubricants. However the photomicrographs showed that walnut oil and petroleum jelly caused gross morphological changes indicating major surface destruction. The practice

  3. Measuring the specific surface area of natural and manmade glasses: effects of formation process, morphology, and particle size

    SciTech Connect

    Papelis, Charalambos; Um, Wooyong; Russel, Charles E.; Chapman, Jenny B.

    2003-03-28

    The specific surface area of natural and manmade solid materials is a key parameter controlling important interfacial processes in natural environments and engineered systems, including dissolution reactions and sorption processes at solid-fluid interfaces. To improve our ability to quantify the release of trace elements trapped in natural glasses, the release of hazardous compounds trapped in manmade glasses, or the release of radionuclides from nuclear melt glass, we measured the specific surface area of natural and manmade glasses as a function of particle size, morphology, and composition. Volcanic ash, volcanic tuff, tektites, obsidian glass, and in situ vitrified rock were analyzed. Specific surface area estimates were obtained using krypton as gas adsorbent and the BET model. The range of surface areas measured exceeded three orders of magnitude. A tektite sample had the highest surface area (1.65 m2/g), while one of the samples of in situ vitrified rock had the lowest surf ace area (0.0016 m2/g). The specific surface area of the samples was a function of particle size, decreasing with increasing particle size. Different types of materials, however, showed variable dependence on particle size, and could be assigned to one of three distinct groups: (1) samples with low surface area dependence on particle size and surface areas approximately two orders of magnitude higher than the surface area of smooth spheres of equivalent size. The specific surface area of these materials was attributed mostly to internal porosity and surface roughness. (2) samples that showed a trend of decreasing surface area dependence on particle size as the particle size increased. The minimum specific surface area of these materials was between 0.1 and 0.01 m2/g and was also attributed to internal porosity and surface roughness. (3) samples whose surface area showed a monotonic decrease with increasing particle size, never reaching an ultimate surface area limit within the particle

  4. Surface composition of Pt-Pd alloys treated in hydrogen

    NASA Astrophysics Data System (ADS)

    Szabo, A.; Paál, Z.; Szász, A.; Kojnok, J.; Fabian, D. J.

    1989-11-01

    Pd enrichment is observed in Pd-Pt alloy sheets when heated in He and in H 2. The surface composition was monitored by soft X-ray emission spectroscopy (SXES) and by work function measurements. A regular solution model is used to calculate the expected composition of the surface atomic layers, with and without adsorbed hydrogen, and the calculated and measured values for Pd-enrichment are compared. The possible effect of subsurface adsorbed hydrogen is discussed.

  5. FE-SEM, FIB and TEM Study of Surface Deposits of Apollo 15 Green Glass Volcanic Spherules

    NASA Technical Reports Server (NTRS)

    Ross, Daniel K.; Thomas-Keprta, K. L.; Rahman, Z.; Wentworth, S. J.; McKay, D. S.

    2011-01-01

    Surface deposits on lunar pyroclastic green (Apollo 15) and orange (Apollo 17) glass spherules have been attributed to condensation from the gas clouds that accompanied fire-fountain eruptions. The fire fountains cast molten lava high above the lunar surface and the silicate melt droplets quenched before landing producing the glass beads. Early investigations showed that these deposits are rich in sulfur and zinc. The deposits are extremely fine-grained and thin, so that it was never possible to determine their chemical compositions cleanly by SEM/EDX or electron probe x-ray analysis because most of the excited volume was in the under-lying silicate glass. We are investigating the surface deposits by TEM, using focused ion beam (FIB) microscopy to extract and thin the surface deposits. Here we report on chemical mapping of a FIB section of surface deposits of an Apollo green glass bead 15401using the ultra-high resolution JEOL 2500 STEM located at NASA Johnson Space Center.

  6. The effect of glass fiber-reinforced epoxy resin dowel diameter on the fracture resistance of endodontically treated teeth.

    PubMed

    Tey, Kuan Chuan; Lui, Joo Loon

    2014-10-01

    To determine the effect of glass fiber-reinforced epoxy resin (FRC) dowels of different diameters on the failure load of endodontically treated teeth with different remaining dentine and reinforcing resin composite (RRC) thicknesses and the mode of failure in each group. Fifty extracted intact human maxillary central incisors were decoronated 2 mm incisal to the buccal cementoenamel junction and endodontically treated. The teeth were randomly assigned to one of five groups (n = 10): group B, dowel space prepared with size 0 dowel drill/size 0 FRC dowel/no RRC; group W, size 1 dowel space/size 1 FRC dowel/no RRC; group R, size 3 dowel space/size 3 FRC dowel/no RRC; group WR, size 3 dowel space/size 1 FRC dowel/RRC; group BR, size 3 dowel space/size 0 FRC dowel/RRC. Ferrules of 2 and 0.5 mm were prepared at the facio-lingual and proximal margin respectively. All specimens were restored with a Ni-Cr crown, thermocycled and loaded at 135° from the long axis in a universal testing machine at a 0.5 mm/min crosshead speed until fracture. Data were analyzed using ANOVA followed by post hoc comparisons (Bonferroni) with α = 0.05. Mean failure loads (N) for groups B, W, R, WR, and BR were as follows: 1406 (SD = 376), 1259 (379), 1085 (528), 959 (200), and 816 (298). Significant differences were found between groups B and BR. Group B had the highest favorable failure mode. Within the limitations of this study, the use of a smaller FRC dowel and RRC is recommended rather than enlargement of dowel spaces to accurately fit larger FRC dowels, as the enlargement of dowel space may increase the risk of unfavorable failure. © 2014 by the American College of Prosthodontists.

  7. An in vitro comparative evaluation of fracture resistance of custom made, metal, glass fiber reinforced and carbon reinforced posts in endodontically treated teeth.

    PubMed

    Sonkesriya, Subhash; Olekar, Santosh T; Saravanan, V; Somasunderam, P; Chauhan, Rashmi Singh; Chaurasia, Vishwajit Rampratap

    2015-05-01

    Posts are used to enhance crown buildup in pulpless teeth with destructed crown portion. Different types of post are used in endodontically treated teeth. The aim of the present in vitro study was to evaluate fracture resistance of custom made, metal, glass fiber reinforced and carbon reinforced posts in endodontically treated teeth. An in vitro study was carried out on extracted 40 human maxillary central incisor teeth, which was divided into four groups with 10 samples in each group with custom made, metal post, glass fiber reinforced, and carbon reinforced posts. The samples were decoronated at cemento-enamel junction and endodontically treated. Post space was prepared and selected posts were cemented. The composite cores were prepared at the height of 5 mm and samples mounted on acrylic blocks. Later fracture resistance to the compressive force of samples was measured using Universal Testing Machine. The maximum resistance to the compressive force was observed in carbon reinforced and glass fiber reinforced posts compared others which is statistically significant (P > 0.001) and least was seen in custom fabricated post. It is concluded that carbon reinforced fiber post and glass fiber posts showed good fracture resistance compared to custom made and metal posts.

  8. An In Vitro Comparative Evaluation of Fracture Resistance of Custom Made, Metal, Glass Fiber Reinforced and Carbon Reinforced Posts in Endodontically Treated Teeth

    PubMed Central

    Sonkesriya, Subhash; Olekar, Santosh T; Saravanan, V; Somasunderam, P; Chauhan, Rashmi Singh; Chaurasia, Vishwajit Rampratap

    2015-01-01

    Background: Posts are used to enhance crown buildup in pulpless teeth with destructed crown portion. Different types of post are used in endodontically treated teeth. The aim of the present in vitro study was to evaluate fracture resistance of custom made, metal, glass fiber reinforced and carbon reinforced posts in endodontically treated teeth. Materials and Methods: An in vitro study was carried out on extracted 40 human maxillary central incisor teeth, which was divided into four groups with 10 samples in each group with custom made, metal post, glass fiber reinforced, and carbon reinforced posts. The samples were decoronated at cemento-enamel junction and endodontically treated. Post space was prepared and selected posts were cemented. The composite cores were prepared at the height of 5 mm and samples mounted on acrylic blocks. Later fracture resistance to the compressive force of samples was measured using Universal Testing Machine. Results: The maximum resistance to the compressive force was observed in carbon reinforced and glass fiber reinforced posts compared others which is statistically significant (P > 0.001) and least was seen in custom fabricated post. Conclusion: It is concluded that carbon reinforced fiber post and glass fiber posts showed good fracture resistance compared to custom made and metal posts. PMID:26028904

  9. Surface chemistry of dihydromyrcenol (2,6-dimethyl-7-octen-2-ol) with ozone on silanized glass, glass, and vinyl flooring tiles

    NASA Astrophysics Data System (ADS)

    Ham, Jason E.; Raymond Wells, J.

    The surface-phase reaction products of dihydromyrcenol (2,6-dimethyl-7-octen-2-ol) with ozone (O 3), air, or nitrogen (N 2) on silanized glass, glass and vinyl flooring tile were investigated using the recently published FACS (FLEC (Field and Laboratory Emission Cell) Automation and Control System). The FACS was used to deliver ozone (100 ppb), air, or N 2 to the surface at a specified flow rate (300 mL min -1) and relative humidity (50%) after application of a 2.0% dihydromyrcenol solution in methanol. Oxidation products were detected using the derivatization agents: O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) and N, O-bis(trimethysilyl)trifluoroacetamide (BSTFA). The positively identified reaction products were glycolaldehyde, 2,6-dimethyl-5-heptenal, and glyoxal. The proposed oxidation products based on previously published VOC/O 3 reaction mechanisms were: 2,6-dimethyl-4-heptenal, 6-methyl-7-octen-2-one and the surface-specific reaction products: 6-methyl-6-hepten-2-one, 6-methyl-5-hepten-2-one, and 6-hydroxy-6-methylheptan-2-one. Though similar products were observed in gas-phase dihydromyrcenol/O 3 reactions, the ratio, based on peak area, of the reaction products was different suggesting stabilization of larger molecular weight species by the surface. Emission profiles of these oxidation products over 72 h are also reported.

  10. Effects of neutral polymers on the mechanics of red blood cell adhesion onto coated glass surfaces.

    PubMed

    Zhengwen, Zhang; Meiselman, Herbert J; Neu, Björn

    2015-01-01

    Cell-cell and cell-surface adhesion modulated by water-soluble polymers continues to be of current interest, especially since prior reports have indicated a role for depletion-mediated attractive forces. To determine the effects of concentration and molecular mass of the neutral polymer dextran (40 kDa to 28 MDa) on the adhesion of human red blood cells (RBC) to coated glass coverslips. Confocal-reflection interference contrast microscopy (C-IRM), in conjunction with phase contrast imaging, was utilized to measure the adhesion dynamics and contact mechanics of RBC during the initial stages of cell contact with several types of substrates. Adhesion is markedly increased in the presence of dextran with a molecular mass ⩾ 70 kDa. This increased adhesiveness is attributed to reduced surface concentration of the large polymers and hence increased attractive forces due to depletion interaction. The equilibrium deformation of adhering RBC was modeled as a truncated sphere and the calculated adhesion energies were in close agreement with theoretical results. These results clearly demonstrate that polymer depletion can promote RBC adhesion to artificial surfaces and suggest that this phenomenon may play a role in other specific and non-specific cell-cell interactions, such as rouleau formation and RBC-endothelial cell adhesion.

  11. Surface texture of resin-modified glass ionomer cements: effects of finishing/polishing time.

    PubMed

    Yap, A U J; Ong, S B; Yap, W Y; Tan, W S; Yeo, J C

    2002-01-01

    This study compared the surface texture of resin-modified glass ionomer cements after immediate and delayed finishing with different finishing/polishing systems. Class V preparations were made on the buccal and lingual/palatal surfaces of 64 freshly extracted teeth. The cavities on each tooth were restored with Fuji II LC (GC) and Photac-Fil Quick (3M-ESPE) according to manufacturers' instructions. Immediately after light-polymerization, gross finishing was done with 8-fluted tungsten carbide burs. The teeth were then randomly divided into four groups of 16 teeth. Half of the teeth in each group were finished immediately, while the remaining half were finished after one-week storage in distilled water at 37 degrees C. The following finishing/polishing systems were employed: (a) Robot Carbides; (b) Super-Snap system; (c) OneGloss and (d) CompoSite Polishers. The mean surface roughness (microm; n=8) in vertical (RaV) and horizontal (RaH) axis was measured using a profilometer. Data was subjected to ANOVA/Scheffe's tests and Independent Samples t-test at significance level 0.05. Ra values were generally lower in both vertical and horizontal axis with delayed finishing/polishing. Although significant differences in RaV and RaH values were observed among several systems with immediate finishing/polishing, only one (Fuji II LC: RaH - Super-Snap < Robot Carbides) was observed with delayed finishing.

  12. Characterizing the adsorption of proteins on glass capillary surfaces using electrospray-differential mobility analysis.

    PubMed

    Guha, Suvajyoti; Wayment, Joshua R; Li, Mingdong; Tarlov, Michael J; Zachariah, Michael R

    2011-11-01

    We quantify the adsorption and desorption of a monoclonal immunoglobulin-G antibody, rituxamab (RmAb), on silica capillary surfaces using electrospray-differential mobility analysis (ES-DMA). We first develop a theory to calculate coverages and desorption rate constants from the ES-DMA data for proteins adsorbing on glass capillaries used to electrospray protein solutions. This model is then used to study the adsorption of RmAb on a bare silica capillary surface. A concentration-independent coverage of ≈4.0 mg/m(2) is found for RmAb concentrations ranging from 0.01 to 0.1 mg/mL. A study of RmAb adsorption to bare silica as a function of pH shows maximum adsorption at its isoelectric point (pI of pH 8.5) consistent with literature. The desorption rate constants are determined to be ≈10(-5) s(-1), consistent with previously reported values, thus suggesting that shear forces in the capillary may not have a considerable effect on desorption. We anticipate that this study will allow ES-DMA to be used as a "label-free" tool to study adsorption of oligomeric and multicomponent protein systems onto fused silica as well as other surface modifications.

  13. Effect of nanosecond pulse laser ablation on the surface morphology of Zr-based metallic glass

    NASA Astrophysics Data System (ADS)

    Zhu, Yunhu; Fu, Jie; Zheng, Chao; Ji, Zhong

    2016-09-01

    In this study, we investigated the ripple patterns formation on the surface of Zr41.2Ti13.8Cu12.5Ni10Be22.5 (vit1) bulk metallic glass using a nanosecond pulse laser ablation in air with a wavelength of 1064 nm. The strong thermal ablation phenomenon could be observed on vit1 BMG surface at laser energy of 200 mJ as a result of the adhibition of confining overlay. Many periodic ripples had formed on the edge of the ablated area at laser energy of 400 mJ because of the high intensity pulsed laser beam. The underlying mechanism of the periodic ripples formation could be explained by the K-H hydrodynamic instability theory. It had been shown that laser ablation with 600 mJ and 200 pulses results in the formation of many micro-cracks on the ablated area. Further analysis showed that the spatial occupation of the laser ablated area and the spacing between two adjacent ripples increased as the laser energy and the number of incident laser pulses increasing. The surface ripples feature on the edge of ablated area became more obvious with increasing laser pulses, but it was not correlated closely with the laser energies variation.

  14. Surfaces and interfaces of glass and ceramics; Proceedings of the International Symposium on Special Topics in Ceramics, Alfred University, Alfred, N.Y., August 27-29, 1973

    NASA Technical Reports Server (NTRS)

    Frechette, V. D. (Editor); Lacourse, W. C.; Burdick, V. L.

    1974-01-01

    The characterization of surfaces and interfaces is considered along with the infrared spectra of several N-containing compounds absorbed on montmorillonites, applications of surface characterization techniques to glasses, the observation of electronic spectra in glass and ceramic surfaces, a method for determining the preferred orientation of crystallites normal to a surface, and the friction and wear behavior of glasses and ceramics. Attention is given to the wear behavior of cast surface composites, an experimental investigation of the dynamic and thermal characteristics of the ceramic stock removal process, a dynamic elastic model of ceramic stock removal, and the structure and properties of solid surfaces. Individual items are announced in this issue.

  15. Mechanical Strength and Surface Roughness of Magnesium-Based Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Fernandes, Daniel Jogaib; Elias, Carlos Nelson; de Souza Resende, Celso Renato; Bolfarini, Claudemiro

    2016-06-01

    This work evaluated the mechanical strength and surface roughness of MgZn30Ca5 ribbon manufactured via a melt spinning technique for applications in the biomedical field. Annealing was performed at 280°C. The inner side (in contact with the wheel) and the outer side (not in contact with the wheel) of the ribbons were mechanically evaluated using nanoindentation, and its surfaces were analyzed by an optical profilometer. Differential scanning calorimeter (DSC) and X-ray diffraction (XRD) analyses were also performed to identify the structure and devitrification of the magnesium metallic glass (MgMG). The nanohardness and elastic modulus increased after annealing (p < 0.0001). No differences were seen in the strength between the two sides of the ribbons (p > 0.05). Although both sides of the ribbons showed different surface profiles (p < 0.0001), no statistical difference was detected in roughness parameters on either ribbon side before (p = 0.3094) and after (p = 0.8742) annealing. DSC curves showed disturbances in enthalpy attributed to a relaxation in the MgMG structure and free volume annihilation. The DRX diffractogram showed sharp peaks after annealing, with MgZn and Ca2Mg5Zn13 phases being identified. Although the use of MgMG in biomedical applications is promising, the ribbons displayed limited ductility, toughness, and a relevant embrittlement after the annealing procedure. There were significant changes in the surface profile of both sides of the ribbons. Nevertheless, neither annealing nor the ribbon side had influenced surface roughness parameters.

  16. Influence of surface finishing on fracture load and failure mode of glass ceramic crowns.

    PubMed

    Mores, Rafael Tagliari; Borba, Márcia; Corazza, Pedro Henrique; Della Bona, Álvaro; Benetti, Paula

    2017-03-23

    Ceramic restorations often require adjustments using diamond rotary instruments, which damage the glazed surface. The effect of these adjustments on the fracture behavior of these restorations is unclear. The purpose of this in vitro study was to evaluate the influence of induced surface defects on the fracture load and mode of failure of lithium disilicate-based (LDS) glass ceramic restorations. Premolar crowns were obtained from LDS computer-aided design and computer-aided manufacturing blocks (n=60) and glazed. The crowns were bonded to dentin analog dies and divided into 5 groups (n=12), as follows: glaze; abrasion (diamond rotary instrument 2135); abrasion and reglaze; abrasion and polishing (diamond rotary instrument 2135F, 2135 FF, and polishing devices); and polishing. The topography of the crowns was examined by scanning electron microscopy, and roughness was measured. A compressive load (0.5 mm/min) was applied by a piston to the center of the lingual cusp until fracture. The fracture load was recorded and data were statistically analyzed by ANOVA and the Tukey HSD test (α=.05). Fractured crowns were examined to determine the fracture origin. Polishing and/or reglazing resulted in lower roughness than for the abraded group (P<.05), which did not affect the fracture loads (P=.696). Catastrophic fracture with origin at the intaglio surface was the mode of failure for all the crowns. The experiment design successfully submitted the crowns to a clinical stress state, resulting in a clinically relevant failure. Reglazing or polishing were effective in reducing surface defects. Surface treatments had no effect on the immediate catastrophic failure of LDS crowns. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Mechanical Strength and Surface Roughness of Magnesium-Based Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Fernandes, Daniel Jogaib; Elias, Carlos Nelson; de Souza Resende, Celso Renato; Bolfarini, Claudemiro

    2017-07-01

    This work evaluated the mechanical strength and surface roughness of MgZn30Ca5 ribbon manufactured via a melt spinning technique for applications in the biomedical field. Annealing was performed at 280°C. The inner side (in contact with the wheel) and the outer side (not in contact with the wheel) of the ribbons were mechanically evaluated using nanoindentation, and its surfaces were analyzed by an optical profilometer. Differential scanning calorimeter (DSC) and X-ray diffraction (XRD) analyses were also performed to identify the structure and devitrification of the magnesium metallic glass (MgMG). The nanohardness and elastic modulus increased after annealing ( p < 0.0001). No differences were seen in the strength between the two sides of the ribbons ( p > 0.05). Although both sides of the ribbons showed different surface profiles ( p < 0.0001), no statistical difference was detected in roughness parameters on either ribbon side before ( p = 0.3094) and after ( p = 0.8742) annealing. DSC curves showed disturbances in enthalpy attributed to a relaxation in the MgMG structure and free volume annihilation. The DRX diffractogram showed sharp peaks after annealing, with MgZn and Ca2Mg5Zn13 phases being identified. Although the use of MgMG in biomedical applications is promising, the ribbons displayed limited ductility, toughness, and a relevant embrittlement after the annealing procedure. There were significant changes in the surface profile of both sides of the ribbons. Nevertheless, neither annealing nor the ribbon side had influenced surface roughness parameters.

  18. Effect of surface treatments on the flexural properties and adhesion of glass fiber-reinforced composite post to self-adhesive luting agent and radicular dentin.

    PubMed

    Elnaghy, Amr M; Elsaka, Shaymaa E

    2016-01-01

    This study evaluated the effect of different surface treatments on the flexural properties and adhesion of glass fiber post to self-adhesive luting agent and radicular dentin. Seventy-five single-rooted human teeth were prepared to receive a glass fiber post (Reblida). The posts were divided into five groups according to the surface treatment: Gr C (control; no treatment), Gr S (silanization for 60 s), Gr AP (airborne-particle abrasion), Gr HF (etching with 9 % hydrofluoric acid for 1 min), and Gr M10 (etching with CH2Cl2 for 10 min). Dual-cure self-adhesive luting agent (Rely X Unicem) was applied to each group for testing the adhesion using micropush-out test. Failure types were examined with stereomicroscope and surface morphology of the posts was characterized using a scanning electron microscopy (SEM). Flexural properties of posts were assessed using a three-point bending test. Data were analyzed using ANOVA and Tukey's HSD test. Statistical significance was set at the 0.05 probability level. Groups treated with M10 showed significantly higher bond strength than those obtained with other surface treatments (P < 0.05). In general, improvements in bond strength (MPa) were found in the following order: M10 > C > S > AP > HF. Most failure modes were adhesive type of failures between dentin and luting agent (48.2%). SEM analysis revealed that the fiber post surfaces were modified after surface treatments. The surface treatments did not compromise the flexural properties of fiber posts. Application of M10 to the fiber post surfaces enhanced the adhesion to self-adhesive luting agent and radicular dentin.

  19. Optimization of surface morphology and scattering properties of TCO/AIT textured glass front electrode for thin film solar cells

    NASA Astrophysics Data System (ADS)

    Addonizio, M. L.; Fusco, L.; Antonaia, A.; Cominale, F.; Usatii, I.

    2015-12-01

    Aluminium induced texture (AIT) method has been used for obtaining highly textured glass substrate suitable for silicon based thin film solar cell technology. Wet etch step parameters of AIT process have been varied and effect of different etchants and different etching times on morphological and optical properties has been analyzed. The resulting morphology features (shape, size distribution, inclination angle) have been optimized in order to obtain the best scattering properties. ZnO:Ga (GZO) films have been deposited by sputtering technique on AIT-processed glass. Two different ZnO surface morphologies have been obtained, strongly depending on the underlying glass substrate morphology induced by different etching times. Very rough and porous texture (σrms ∼ 150 nm) was obtained on glass etched 2 min showing cauliflower-like structure, whereas a softer texture (σrms ∼ 78 nm) was obtained on glass etched 7 min giving wider and smoother U-shaped craters. The effect of different glass textures on optical confinement has been tested in amorphous silicon based p-i-n devices. Devices fabricated on GZO/high textured glass showed a quantum efficiency enhancement due to both an effective light trapping phenomenon and an effective anti-reflective optical behaviour. Short etching time produce smaller cavities (<1 μm) with deep U-shape characterized by high roughness, high inclination angle and low autocorrelation length. This surface morphology promoted a large light scattering phenomenon, as evidenced by haze value and by angular resolved scattering (ARS) behaviour, into a large range of diffraction angles, giving high probability of effective light trapping inside a PV device.

  20. Antibacterial effect of gallium and silver on Pseudomonas aeruginosa treated with gallium-silver-phosphate-based glasses.

    PubMed

    Valappil, Sabeel P; Higham, Susan M

    2014-01-01

    Gallium and silver incorporated phosphate-based glasses were evaluated for antibacterial effect on the growth of Pseudomonas aeruginosa, which is a leading cause of opportunistic infections. The glasses were produced by conventional melt quenching methods at 1100°C for 1 h. Glass degradation studies were conducted by weight loss method. Disc diffusion assay and cell viability assay displayed statistically significant (p ≤ 0.0005) effect on P. aeruginosa growth which increased with decreasing calcium content in the glasses. The gallium ion release rates (1.83, 0.69 and 0.48 ppm·h(-1)) and silver ion release rates (2.97, 2.84 and 2.47 ppm·h(-1)) were found to account for this variation. Constant depth film fermentor was used to evaluate the anti-biofilm properties of the glasses. Both gallium and silver in the glass contributed to biofilm growth inhibitory effect on P. aeruginosa (up to 2.68 reduction in log 10 values of the viable counts compared with controls). The glasses were found to deliver gallium and silver in a controlled way and exerted cumulative antibacterial action on planktonic and biofilm growth of P. aeruginosa. The antibacterial, especially anti-biofilm, properties of the gallium and silver incorporated phosphate-based glasses make them a potential candidate to combat infections caused by P. aeruginosa.

  1. Strength of inorganic glass

    SciTech Connect

    Kurkjian, C.R.

    1985-01-01

    This book presents information on the following topics: a look at the history of glass strength; atomistic theory of fracture; surface chemistry in relation to the strength and fracture of silicate glasses; high-speed photographic investigations of the dynamic localized loading of some oxide glasses; a correction for measurements of contact area using Newton's rings; envionmentally enhanced crack growth; fatigue in glass; behavior of flaws in fused silica fibers; fracture toughness of chalcogenide glasses and glass-ceramics; fracture analysis of glass surfaces; and fracture mechanics parameters for glasses - a compilation and correlation.

  2. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles

    DOE PAGES

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; ...

    2015-10-27

    Disorder among surface spins largely dominates the magnetic response of ultrafine magnetic particle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8±0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and becomes frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point tomore » highly frustrated surface spins that rearrange much more slowly than interior spins with bulk coordination. Monte Carlo simulations of a hollow particle reproducing the experimental morphology corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Lastly, our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures.« less

  3. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; Alonso, Javier; Phan, Manh-Huong; Sun, Cheng-Jun; Saboungi, Marie-Louise; Srikanth, Hariharan

    2015-10-01

    Disorder among surface spins is a dominant factor in the magnetic response of magnetic nanoparticle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8 ± 0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and become frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins. Monte Carlo simulations of a hollow particle corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures.

  4. Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles

    PubMed Central

    Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; Alonso, Javier; Phan, Manh-Huong; Sun, Cheng-Jun; Saboungi, Marie-Louise; Srikanth, Hariharan

    2015-01-01

    Disorder among surface spins is a dominant factor in the magnetic response of magnetic nanoparticle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8 ± 0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and become frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins. Monte Carlo simulations of a hollow particle corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures. PMID:26503506

  5. A novel anatomical short glass fiber reinforced post in an endodontically treated premolar mechanical resistance evaluation using acoustic emission under fatigue testing.

    PubMed

    Wang, Hsuan-Wen; Chang, Yen-Hsiang; Lin, Chun-Li

    2017-01-01

    This study evaluates the fracture resistance in an endodontically treated tooth using circular fiber-reinforced composite (FRC) and innovated anatomical short glass fiber reinforced (SGFR) posts under fatigue testing, monitored using the acoustic emission (AE) technique. An anatomical SGFR fiber post with an oval shape and slot/notch design was manufactured using an injection-molding machine. Crown/core maxillary second premolar restorations were executed using the anatomical SGFR and commercial cylindrical fiber posts under fatigue test to understand the mechanical resistances. The load versus AE signals in the fracture and fatigue tests were recorded to evaluate the restored tooth failure resistance. The static fracture resistance results showed that teeth restored using the anatomical SGFR post presented higher resistance than teeth restored using the commercial FRC post. The fatigue test endurance limitation (1.2×10(6) cycles) was 207.1N for the anatomical SGFR fiber post, higher than the 185.3N found with the commercial FRC post. The average accumulated number of AE signals and corresponding micro cracks for the anatomical SGFR fiber post (153.0 hits and 2.44 cracks) were significantly lower than those for the commercial FRC post (194.7 hits and 4.78 cracks) under 40% of the static maximum resistance fatigue test load (pass 1.2×10(6) cycles). This study concluded that the anatomical SGFR fiber post with surface slot/notch design made using precise injection molding presented superior static fracture resistance and fatigue endurance limitation than those for the commercial FRC post in an endodontically treated premolar.

  6. Silanated Surface Treatment: Effects on the Bond Strength to Lithium Disilicate Glass-Ceramic.

    PubMed

    Baratto, Samantha Schaffer Pugsley; Spina, Denis Roberto Falcão; Gonzaga, Carla Castiglia; Cunha, Leonardo Fernandes da; Furuse, Adilson Yoshio; Baratto Filho, Flares; Correr, Gisele Maria

    2015-10-01

    The aim of this study was to evaluate the effect of silanization protocols on the bond strength of two resin cements to a lithium disilicate glass-ceramic. Thirty-two ceramic discs were assigned to 2 groups (n=16): G1 - dual-cured resin cement and G2 - light-cured resin cement. Four subgroups were evaluated according to the used silanization protocol. The glass-ceramic was etched with 10% hydrofluoric acid for 20 s and silane was applied for 1 min, as follows: CTL - according to the manufacturer's instructions; HA - dried with hot air; NWA - washed and dried with water and air at room temperature; HWA - washed and dried with hot water and hot air. Thereafter, adhesive was applied and light-cured for 20 s. Silicon molds were used to prepare resin cement cylinders (1x1 mm) on the ceramic surface. The specimens were stored in deionized water at 37 °C for 48 h and subjected to a micro-shear test. The data were submitted to statistical analysis (?#61537;=0.05). Group G1 showed higher bond strengths than G2, except for the CTL and NWA subgroups. Differences as function of the silanization protocol were only observed in G1: HWA (25.13±6.83)≥HA (22.95±7.78)≥CTL(17.44±7.24) ≥NWA(14.63±8.76). For G2 there was no difference among the subgroups. In conclusion, the silanization protocol affected the resin cement/ceramic bond strengths, depending on the material. Washing/drying with hot water and/or hot air increased only the bond strength of the dual-cured resin cement.

  7. Detect-to-treat: development of analysis of bacilli spores in nasal mucus by surfaced-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Inscore, Frank E.; Gift, Alan D.; Farquharson, Stuart

    2004-12-01

    As the war on terrorism in Afghanistan and Iraq continue, future attacks both abroad and in the U.S.A. are expected. In an effort to aid civilian and military personnel, we have been investigating the potential of using a surface-enhanced Raman spectroscopy (SERS) sampling device to detect Bacillus anthracis spores in nasal swab samples. Such a device would be extremely beneficial to medical responders and management in assessing the extent of a bioterrorist attack and making detect-to-treat decisions. The disposable sample device consists of a glass capillary filled with a silver-doped sol-gel that is capable of extracting dipicolinic acid (DPA), a chemical signature of Bacilli, and generating SERS spectra. The sampling device and preliminary measurements of DPA extracted from spores and nasal mucus will be presented.

  8. Comparative evaluation of fracture resistance of glass fiber reinforced, carbon, and quartz post in endodontically treated teeth: An in-vitro study

    PubMed Central

    Sharma, Shweta; Attokaran, George; Singh, Kunwar S.; Jerry, Jeethu J.; Ahmed, Naima; Mitra, Nirban

    2016-01-01

    Aim and Objectives: Use of posts improves the physical properties of endodontically-treated teeth. Different post types are developed such as metal, custom-made, carbon, and quartz. The present study was conducted to evaluate the fracture resistance of glass fiber-reinforced, carbon, and quartz post in endodontically-treated teeth. Materials and Methods: Forty extracted human maxillary incisor teeth were decoronated and endodontically treated and equally divided into 4 groups; control, glass fiber-reinforced, carbon, and quartz posts. No post was used in the control group. Post space was prepared and cemented with different posts and subjected to universal testing machine to check fracture resistance. The data were statistically analyzed using t-test and analysis of variance to compare the mean difference between groups (SPSS version 20, IBM). Results: Quartz type of endodontic post showed good fracture resistance compared to carbon and resin-reinforced post. Least resistance was observed in the control group without post. Conclusion: Quartz, carbon, and glass fiber-reinforced posts show good resistance to fracture, and hence can be used in endodontically-treated teeth to enhance their strength. PMID:27583227

  9. Effectiveness of surface protection of resin modified glass ionomer cements evaluated spectrophotometrically.

    PubMed

    Cefaly, D F; Seabra, B G; Tapety, C M; Taga, E M; Valera, F; Navarro, M F

    2001-01-01

    The effectiveness of four surface protectors for resin-modified glass ionomer cements was evaluated by spectrophotometrically determining dye uptake. Ninety specimens, 3.0 mm in diameter and 1.0 mm in height, were made with Photac-Fil, Fuji II LC and Vitremer and divided into six groups for each material. Positive and negative controls were not protected while experimental specimens were protected with proprietary glaze, nail varnish, flowable resin and glaze. The discs were immersed in 0.1% methylene blue solution for 10 minutes after mixing, except for those negative control specimens that were immersed in deionized-water. After 24 hours, the specimens were washed and the protectors trimmed with Sof-Lex discs. The specimens were then removed from the matrixes and individually placed in 1.5 mL of 65% nitric acid for five hours. The absorbance was determined spectrophotometrically at 590 nm. Dye uptake was expressed in microgram dye/specimen. The data were analyzed by two-way ANOVA and Tukey-Kramer tests. All surface protectors tested were effective. For Fuji II LC and Vitremer no differences were observed among tested protections. For Photac-Fil, nail varnish showed better performance than the proprietary glaze.

  10. Bone regeneration performance of surface-treated porous titanium.

    PubMed

    Amin Yavari, Saber; van der Stok, Johan; Chai, Yoke Chin; Wauthle, Ruben; Tahmasebi Birgani, Zeinab; Habibovic, Pamela; Mulier, Michiel; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir Abbas

    2014-08-01

    The large surface area of highly porous titanium structures produced by additive manufacturing can be modified using biofunctionalizing surface treatments to improve the bone regeneration performance of these otherwise bioinert biomaterials. In this longitudinal study, we applied and compared three types of biofunctionalizing surface treatments, namely acid-alkali (AcAl), alkali-acid-heat treatment (AlAcH), and anodizing-heat treatment (AnH). The effects of treatments on apatite forming ability, cell attachment, cell proliferation, osteogenic gene expression, bone regeneration, biomechanical stability, and bone-biomaterial contact were evaluated using apatite forming ability test, cell culture assays, and animal experiments. It was found that AcAl and AnH work through completely different routes. While AcAl improved the apatite forming ability of as-manufactured (AsM) specimens, it did not have any positive effect on cell attachment, cell proliferation, and osteogenic gene expression. In contrast, AnH did not improve the apatite forming ability of AsM specimens but showed significantly better cell attachment, cell proliferation, and expression of osteogenic markers. The performance of AlAcH in terms of apatite forming ability and cell response was in between both extremes of AnH and AsM. AcAl resulted in significantly larger volumes of newly formed bone within the pores of the scaffold as compared to AnH. Interestingly, larger volumes of regenerated bone did not translate into improved biomechanical stability as AnH exhibited significantly better biomechanical stability as compared to AcAl suggesting that the beneficial effects of cell-nanotopography modulations somehow surpassed the benefits of improved apatite forming ability. In conclusion, the applied surface treatments have considerable effects on apatite forming ability, cell attachment, cell proliferation, and bone ingrowth of the studied biomaterials. The relationship between these properties and the bone

  11. Metal thin film growth on multimetallic surfaces: From quaternary metallic glass to binary crystal

    SciTech Connect

    Jing, Dapeng

    2010-01-01

    The work presented in this thesis mainly focuses on the nucleation and growth of metal thin films on multimetallic surfaces. First, we have investigated the Ag film growth on a bulk metallic glass surface. Next, we have examined the coarsening and decay of bilayer Ag islands on NiAl(110) surface. Third, we have investigated the Ag film growth on NiAl(110) surface using low-energy electron diffraction (LEED). At last, we have reported our investigation on the epitaxial growth of Ni on NiAl(110) surface. Some general conclusions can be drawn as follows. First, Ag, a bulk-crystalline material, initially forms a disordered wetting layer up to 4-5 monolayers on Zr-Ni-Cu-Al metallic glass. Above this coverage, crystalline 3D clusters grow, in parallel with the flatter regions. The cluster density increases with decreasing temperature, indicating that the conditions of island nucleation are far-from-equilibrium. Within a simple model where clusters nucleate whenever two mobile Ag adatoms meet, the temperature-dependence of cluster density yields a (reasonable) upper limit for the value of the Ag diffusion barrier on top of the Ag wetting layer of 0.32 eV. Overall, this prototypical study suggests that it is possible to grow films of a bulk-crystalline metal that adopt the amorphous character of a glassy metal substrate, if film thickness is sufficiently low. Next, the first study of coarsening and decay of bilayer islands has been presented. The system was Ag on NiAl(110) in the temperature range from 185 K to 250 K. The coarsening behavior, has some similarities to that seen in the Ag(110) homoepitaxial system studied by Morgenstern and co-workers. At 185 K and 205 K, coarsening of Ag islands follows a Smoluchowski ripening pathway. At 205 K and 250 K, the terrace diffusion limited Ostwald ripening dominants. The experimental observed temperature for the transition from SR to OR is 205 K. The SR exhibits anisotropic island diffusion and the OR exhibits 1D decay of island

  12. Surface chemical composition analysis of heat-treated bamboo

    NASA Astrophysics Data System (ADS)

    Meng, Fan-dan; Yu, Yang-lun; Zhang, Ya-mei; Yu, Wen-ji; Gao, Jian-min

    2016-05-01

    In this study, the effect of heat treatment on the chemical composition of bamboo slivers was studied. The chemical properties of the samples were examined by chemical analysis. Results showed a decrease in the contents of holocellulose and α-cellulose, as well as an increase in the contents of lignin and extractives. Changes in the chemical structure of bamboo components were analyzed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). FTIR spectroscopy results indicated that hemicellulose contents decrease, whereas lignin contents increase after heat treatment. Ester formation linked to lignin decreased the hygroscopicity of the bamboo samples and consequently improved their dimensional stability and durability. XPS spectroscopy results showed that hemicelluloses and celluloses are relatively more sensitive to the heating process than lignin. As a consequence, hemicellulose and cellulose contents decreased, whereas lignin contents increased during heat treatment. The results obtained in this study provide useful information for the future utilization of heat-treated bamboo.

  13. Accelerated formation of sodium depletion layer on soda lime glass surface by corona discharge treatment in hydrogen atmosphere

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Keiga; Ikeda, Hiroshi; Sakai, Daisuke; Funatsu, Shiro; Uraji, Keiichiro; Yamamoto, Kiyoshi; Suzuki, Toshio; Harada, Kenji; Nishii, Junji

    2014-05-01

    Formation of a sodium depletion layer on a soda lime glass surface was accelerated efficiently using a corona discharge treatment in H2 atmosphere. One origin of such acceleration was the preferential generation of H+ with a larger mobility at an anode needle end with a lower applied voltage than that in air. The second origin was the applied voltage across the glass plate during the corona discharge treatment, which was estimated theoretically as 2.7 times higher than that in air. These two effects doubled the depletion layer thickness compared with that in air.

  14. A note on Feynmanʼs calculation of reflection amplitudes for radiation striking a glass surface

    NASA Astrophysics Data System (ADS)

    Reali, Giancarlo

    2014-07-01

    In this paper we present a detailed calculation of reflection amplitudes for s- and p-polarized radiation striking a glass surface, closely following the derivation found in the Feynman Lectures on Physics, vol I. The basic idea underlying Feynman's exposition is the extinction theorem, which is used here in a very unique, Feynmanesque way. The calculation is carried out both for the case of radiation coming from the air and from the glass. We also show that the same reasonings are useful to discuss the internal Brewster's law.

  15. Factors Influencing Material Removal And Surface Finish Of The Polishing Of Silica Glasses

    DTIC Science & Technology

    2006-01-01

    Mechanical Properties of Quartz and Zerodur ® ..................................... 48 TABLE 4.2: Results from variable load and lap velocity experiments...of glass and glass-ceramic substrates which are used in a vast amount of applications, from optics for lithographic machines to mirrors and lenses...SiO2) glass polishing with metal oxide abrasive particles. This scheme will mirror the experimentation in this thesis, and hopefully provide a better

  16. Structure, surface reactivity and physico-chemical degradation of fluoride containing phospho-silicate glasses

    SciTech Connect

    Kansal, Ishu; Goel, Ashutosh; Tulyaganov, Dilshat U.; Santos, Luis F.; Ferreira, Jose M.

    2011-03-28

    We report on the structure, apatite-forming ability and physicochemical degradation of glasses along fluorapatite [FA; Ca5(PO4)3F] - diopside (Di; CaMgSi2O6) join. A series of glasses with varying FA/Di ratio have been synthesised by melt-quenching technique. The amorphous glasses could be obtained only for compositions up to 40 wt.% of FA. The detailed structural analysis of glasses has been made by infra-red spectroscopy (FTIR), Raman spectroscopy and magic angle spinning-nuclear magnetic resonance spectroscopy (MAS-NMR). Silicon was predominantly present as Q2 (Si) species while phosphorus was found in orthophosphate type environment in all the investigated glasses. The apatite forming ability of glasses was investigated by immersion of glass powders in simulated body fluid (SBF) for time durations varying between 1 h – 28 days. An extensive precipitation of calcite (CaCO3) after immersion in SBF was found in all the glasses which considerably masked the formation of hydroxyapatite [HA; Ca5(PO4)3OH] as depicted by X-ray diffraction (XRD) and FTIR. The possible mechanism favouring formation of calcite instead of HA has been explained on the basis of experimental results obtained for structure of glasses, leaching profile of glass powders in SBF solution and pH variation in SBF solution. Further, physico-chemical degradation of glasses has been studied in accordance with ISO 10993-14 “Biological evaluation of medical devices – Part 14: Identification and quantification of degradation products from ceramics” in Tris HCl and citric acid buffer. All the FA containing glasses exhibited a weight gain (instead of weight loss) after immersion in citric acid buffer due to the formation of different crystalline products.

  17. Production of glass or glass-ceramic to metal seals with the application of pressure

    DOEpatents

    Kelly, Michael D.; Kramer, Daniel P.

    1987-11-10

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  18. Production of glass or glass-ceramic to metal seals with the application of pressure

    DOEpatents

    Kelly, M.D.; Kramer, D.P.

    1985-01-04

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  19. Effects of endodontic post surface treatment, dentin conditioning, and artificial aging on the retention of glass fiber-reinforced composite resin posts.

    PubMed

    Albashaireh, Zakereyya S; Ghazal, Muhamad; Kern, Matthias

    2010-01-01

    Several post surface treatments with or without the application of a bonding agent have been recommended to improve the bond strength of resin cements to posts. A regimen that produces the maximum bond strength of glass fiber-reinforced composite resin posts has not been verified. The purpose of this study was to evaluate the influence of post surface conditioning methods and artificial aging on the retention and microleakage of adhesively luted glass fiber-reinforced composite resin posts. Seventy-two endodontically treated single-rooted teeth were prepared for glass fiber-reinforced composite resin posts. The posts were submitted to 3 different surface treatments (n=24), including no treatment, etching with phosphoric acid, and airborne-particle abrasion. Subgroups of the posts (n=8) were then allocated for 3 different experimental conditions: no artificial aging, no bonding agent; no artificial aging, bonding agent; or artificial aging, bonding agent. The posts were luted with resin cement (Calibra). Post retention was measured in tension at a crosshead speed of 2 mm/min. The posts assigned for microleakage investigation were placed in fuchsin dye for 72 hours. The dislodged posts and the post spaces were examined microscopically to evaluate the mode of failure and explore the microleakage. Data were analyzed by 2-way ANOVA followed by Tukey HSD test (alpha=.05). The mean (SD) retention values for test groups ranged from 269 (63.8) to 349 (52.2) N. The retention values of the airborne-particle-abrasion group were significantly higher than those of the acidic-treatment and no-treatment groups. The application of bonding agent on the post surface produced no significant influence on retention. The mean retention values after artificial aging were significantly higher than without artificial aging. Microscopic evaluation demonstrated that the failure mode was primarily mixed. Treating the surface of the posts with phosphoric acid for 15 seconds before cementation

  20. Surface spin disorder and spin-glass-like behaviour in manganese-substituted cobalt ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Topkaya, R.; Akman, Ö.; Kazan, S.; Aktaş, B.; Durmus, Z.; Baykal, A.

    2012-10-01

    Manganese-substituted cobalt ferrite nanoparticles coated with triethylene glycol (TREG) have been prepared by the glycothermal reaction. The effect of Mn substitution and coating on temperature-dependent magnetic properties of the TREG-coated Mn x Co1- x Fe2O4 nanoparticles (0.0 ≤ x ≤ 0.8) with size of 5-7 nm has been investigated in the temperature range of 10-300 K in a magnetic field up to 9 T. After the irreversible processes of the magnetic hysteresis curves were completed, the high-field regions of these curves were fitted by using a `law of approach to saturation' to extract the magnetic properties, such as the effective anisotropy constant ( K eff) and the anisotropy field ( H A) etc. High coercive field of 12.6 kOe is observed in pure cobalt ferrite coated with TREG at 10 K. The low temperature unsaturated magnetization behaviour indicates the core-shell structure of the Mn x Co1- x Fe2O4 NPs. Zero-field-cooled (ZFC) and field-cooled (FC) measurements revealed superparamagnetic phase of TREG-coated Mn x Co1- x Fe2O4 nanoparticles at room temperature. The blocking and irreversibility temperatures obtained from ZFC-FC curves decrease at highest Mn concentration ( x = 0.8). The existence of spin-glass-like surface layer with freezing temperature of 215 K was established with the applied field dependence of the blocking temperatures following the de Almeida-Thouless line for the Mn0.6Co0.4Fe2O4 NPs. The shifted hysteresis loops with exchange bias field of 60 Oe and high-field irreversibility up to 60 kOe in FC M- H curve at 10 K show that spin-glass-like surface spins surrounds around ordered core material of the Mn0.6Co0.4Fe2O4 NPs. FMR measurement show that all the TREG-coated Mn x Co1- x Fe2O4 nanoparticles absorb microwave in broad field range of about ten thousands Oe. The spectra for all the samples have broad linewidth because of angular distributions of easy axis and internal fields of nanoparticles.

  1. In vitro surface reaction layer formation and dissolution of calcium phosphate cement-bioactive glass composites.

    PubMed

    Liu, Changsheng; Chen, Chien-Wen; Ducheyne, Paul

    2008-09-01

    Composites of hydrated calcium phosphate cement (CPC) and bioactive glass (BG) containing Si were immersed in vitro to study the effect of chemical composition on surface reaction layer formation and dissolution/precipitation behavior. The solutions used were 0.05 M tris hydroxymethyl aminomethane/HCl (tris buffer), tris buffer supplemented with plasma electrolyte (TE) with pH 7.4 at 37 degrees C, and this solution complemented with 10% newborn bovine serum (TES). The post-immersion solutions were analyzed for changes in Ca, PO(4) and Si concentrations. The reacted surfaces were analyzed using Fourier transform infrared (FTIR), and scanning electron microscopy with energy dispersive x-ray analysis. The sample weight variations after immersion were also determined. The results showed that the composition of the bioactive composite CPCs greatly affected their behavior in solution and the formation of apatite bioactive surface reaction layers. After immersion in the TE solution, Ca ions were taken up by all samples during the entire immersion duration. Initially, the P ion concentration increased sharply, and then decreased. This reaction pattern reveals the formation of an amorphous calcium phosphate layer on the surface of these composite CPCs. FTIR revealed that the layer was, in fact, poorly crystallized Ca-deficient carbonate apatite. The thickness of the layer was 12-14 microm and it was composed of rod-like apatite with directional arrangement. For immersion in the TES solution, the Ca and Si ion concentrations showed a similar behavior to that in TE, but the release rate of Si ions was higher. FTIR revealed that after TES immersion, not only did the typical, poorly crystallized, Ca-deficient carbonated apatite form, as it did in TE, but also the serum proteins co-adsorbed on the surface and thereby affected the surface reaction layer formation. A thinner apatite layer was formed and was composed of a micro-porous layer comprising rounded particles in a glue

  2. Effect of acid etching of glass ionomer cement surface on the microleakage of sandwich restorations.

    PubMed

    Bona, Alvaro Della; Pinzetta, Caroline; Rosa, Vinícius

    2007-06-01

    The purposes of this study were to evaluate the sealing ability of different glass ionomer cements (GICs) used for sandwich restorations and to assess the effect of acid etching of GIC on microleakage at GIC-resin composite interface. Forty cavities were prepared on the proximal surfaces of 20 permanent human premolars (2 cavities per tooth), assigned to 4 groups (n=10) and restored as follows: Group CIE - conventional GIC (CI) was applied onto the axial and cervical cavity walls, allowed setting for 5 min and acid etched (E) along the cavity margins with 35% phosphoric acid for 15 s, washed for 30 s and water was blotted; the adhesive system was applied and light cured for 10 s, completing the restoration with composite resin light cured for 40 s; Group CIN - same as Group CIE, except for acid etching of the CI surface; Group RME - same as CIE, but using a resin modified GIC (RMGIC); Group RMN - same as Group RME, except for acid etching of the RMGIC surface. Specimens were soaked in 1% methylene blue dye solution at 24 degrees C for 24 h, rinsed under running water for 1 h, bisected longitudinally and dye penetration was measured following the ISO/TS 11405-2003 standard. Results were statistically analyzed by Kruskal-Wallis and chi-square tests (a=0.05). Dye penetration scores were as follow: CIE - 2.5; CIN - 2.5; RME - 0.9; and RMN - 0.6. The results suggest that phosphoric acid etching of GIC prior to the placement of composite resin does not improve the sealing ability of sandwich restorations. The RMGIC was more effective in preventing dye penetration at the GIC-resin composite-dentin interfaces than CI.

  3. Surface texture of resin-modified glass ionomer cements: effects of finishing/polishing systems.

    PubMed

    Yap, Adrian U J; Tan, W S; Yeo, J C; Yap, W Y; Ong, S B

    2002-01-01

    This study investigated the surface texture of two resin-modified glass ionomer cements (RMGICs) in the vertical and horizontal axis after treatment with different finishing/polishing systems. Class V preparations were made on the buccal and lingual/palatal surfaces of freshly extracted teeth. The cavities on each tooth were restored with Fuji II LC (GC) and Photac-Fil Quick (ESPE) according to manufacturers' instructions. Immediately after light-polymerization, gross finishing was done with 8-flute tungsten carbide burs. The teeth were then randomly divided into four groups and finished/polished with (a) Robot Carbides (RC); (b) Super-Snap system (SS); (c) OneGloss (OG) and (d) CompoSite Points (CS). The sample size for each material-finishing/polishing system combination was eight. The mean surface roughness (microm) in vertical (RaV) and horizontal (RaH) axis was measured using a profilometer. Data was subjected to ANOVA/Scheffe's tests and Independent Samples t-test at significance level 0.05. Mean RaV ranged from 0.59-1.31 and 0.83-1.52, while mean RaH ranged from 0.80-1.43 and 0.85-1.58 for Fuji II LC and Photac-Fil, respectively. Results of statistical analysis were as follows: Fuji II LC: RaV-RC, SS

  4. EFFECT OF ACID ETCHING OF GLASS IONOMER CEMENT SURFACE ON THE MICROLEAKAGE OF SANDWICH RESTORATIONS

    PubMed Central

    Bona, Álvaro Della; Pinzetta, Caroline; Rosa, Vinícius

    2007-01-01

    The purposes of this study were to evaluate the sealing ability of different glass ionomer cements (GICs) used for sandwich restorations and to assess the effect of acid etching of GIC on microleakage at GIC-resin composite interface. Forty cavities were prepared on the proximal surfaces of 20 permanent human premolars (2 cavities per tooth), assigned to 4 groups (n=10) and restored as follows: Group CIE – conventional GIC (CI) was applied onto the axial and cervical cavity walls, allowed setting for 5 min and acid etched (E) along the cavity margins with 35% phosphoric acid for 15 s, washed for 30 s and water was blotted; the adhesive system was applied and light cured for 10 s, completing the restoration with composite resin light cured for 40 s; Group CIN – same as Group CIE, except for acid etching of the CI surface; Group RME – same as CIE, but using a resin modified GIC (RMGIC); Group RMN – same as Group RME, except for acid etching of the RMGIC surface. Specimens were soaked in 1% methylene blue dye solution at 24°C for 24 h, rinsed under running water for 1 h, bisected longitudinally and dye penetration was measured following the ISO/TS 11405-2003 standard. Results were statistically analyzed by Kruskal-Wallis and chi-square tests (α=0.05). Dye penetration scores were as follow: CIE – 2.5; CIN – 2.5; RME – 0.9; and RMN – 0.6. The results suggest that phosphoric acid etching of GIC prior to the placement of composite resin does not improve the sealing ability of sandwich restorations. The RMGIC was more effective in preventing dye penetration at the GIC-resin composite- dentin interfaces than CI. PMID:19089135

  5. Changes in actin and tubulin expression in osteogenic cells cultured on bioactive glass-based surfaces.

    PubMed

    Martins, Carolina Scanavez; Ferraz, Emanuela Prado; De Castro-Raucci, Larissa Moreira Spinola; Teixeira, Lucas Novaes; Maximiano, William Marcatti Amarú; Rosa, Adalberto Luiz; De Oliveira, Paulo Tambasco

    2015-11-01

    The present study evaluated whether the changes in the labeling pattern of cytoskeletal proteins in osteogenic cells cultured on bioactive glass-based materials are due to altered mRNA and protein levels. Primary rat-derived osteogenic cells were plated on Bioglass® 45S5, Biosilicate®, and borosilicate (bioinert control). The following parameters were assayed: (i) qualitative epifluorescence analysis of actin and tubulin; (ii) quantitative mRNA and protein expression for actin and tubulin by real-time PCR and ELISA, respectively, and (iii) qualitative analysis of cell morphology by scanning electron microscopy (SEM). At days 3 and 7, the cells grown on borosilicate showed typical actin and tubulin labeling patterns, whereas those on the bioactive materials showed roundish areas devoid of fluorescence signals. The cultures grown on bioactive materials showed significant changes in actin and tubulin mRNA expression that were not reflected in the corresponding protein levels. A positive correlation between the mRNA and protein as well as an association between epifluorescence imaging and quantitative data were only detected for the borosilicate. SEM imaging of the cultures on the bioactive surfaces revealed cells partly or totally coated with material aggregates, whose characteristics resembled the substrate topography. The culturing of osteogenic cells on Bioglass® 45S5 and Biosilicate® affect actin and tubulin mRNA expression but not the corresponding protein levels. Changes in the labeling pattern of these proteins should then be attributed, at least in part, to the presence of a physical barrier on the cell surface as a result of the material surface reactions, thus limiting fluorescence signals.

  6. 40 CFR 721.10573 - Magnesium hydroxide surface treated with substituted alkoxysilanes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Magnesium hydroxide surface treated... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10573 Magnesium hydroxide surface... to reporting. (1) The chemical substance identified generically as magnesium hydroxide surface...

  7. 40 CFR 721.10573 - Magnesium hydroxide surface treated with substituted alkoxysilanes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Magnesium hydroxide surface treated... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10573 Magnesium hydroxide surface... to reporting. (1) The chemical substance identified generically as magnesium hydroxide surface...

  8. Bond Strength of Resin Cement and Glass Ionomer to Nd:YAG Laser-Treated Zirconia Ceramics.

    PubMed

    Asadzadeh, Nafiseh; Ghorbanian, Foojan; Ahrary, Farzaneh; Rajati Haghi, Hamidreza; Karamad, Reza; Yari, Amir; Javan, Abdollah

    2017-09-05

    To investigate the effect of neodymium-doped yttrium aluminum garnet (Nd:YAG) laser irradiation on the surface properties and bond strength of zirconia ceramics. Forty-eight zirconia ceramic pieces (4 × 4 × 1 mm(3) ) were divided into four groups according to surface treatment as follows: two control groups (no treatment) for resin bonding (CRC) and glass ionomer (GI) bonding (CGC); two laser treatment groups (Nd:YAG irradiation, 3 W, 200 MJ, 10 Hz, 180 μs) for resin bonding (LRC) and GI bonding (LGC). The ceramics in the control groups and the laser groups were distinguished by the application of different cements (resin cement and GI). Following surface treatments, the specimens were cemented to human dentin with resin cement and GI. After bonding, the shear bond strength (SBS) of the ceramic to dentin was measured, and the failure mode of each specimen was analyzed using a stereomicroscope. A one-way ANOVA compared the average bond strength of the four groups. Pairwise comparisons among the groups were performed using the Games-Howell test. The level of significance was set at 0.05. The means (± standard deviation) of SBS values in the CRC, CGC, LRC, and LGC groups were 3.98 ± 1.10, 1.66 ± 0.59, 10.24 ± 2.46, and 2.21 ± 0.38 MPa, respectively. Data showed that the application of the Nd:YAG laser resulted in a significantly greater SBS of the resin cement to the zirconia ceramics (p < 0.001). The highest bond strength was recorded in the LRC group. In the CRC group, 75% of the failures were of the adhesive type, compared with 66.7% and 83.3% in the LRC and LGC groups, respectively. In the CGC group, all failures were adhesive. Pretreatment of zirconia ceramic