Science.gov

Sample records for glass transition phenomena

  1. Are polymers standard glass-forming systems? The role of intramolecular barriers on the glass-transition phenomena of glass-forming polymers

    NASA Astrophysics Data System (ADS)

    Colmenero, J.

    2015-03-01

    Traditionally, polymer melts have been considered archetypal glass-formers. This has been mainly due to the fact that these systems can easily be obtained as glasses by cooling from the melt, even at low cooling rates. However, the macromolecules, i.e. the structural units of polymer systems in general, are rather different from the standard molecules. They are long objects (‘chains’) made by repetition of a given chemical motif (monomer) and have intra-macromolecular barriers that limit their flexibility. The influence of these properties on, for instance, the glass-transition temperature of polymers, is a topic that has been widely studied by the polymer community almost from the early times of polymer science. However, in the framework of the glass-community, the relevant influence of intra-macromolecular barriers and chain connectivity on glass-transition phenomena of polymers has started to be recognized only recently. The aim of this review is to give an overview and to critically revise the results reported on this topic over the last years. From these results, it seems to be evident that there are two different mechanisms involved in the dynamic arrest in glass-forming polymers: (i) the intermolecular packing effects, which dominate the dynamic arrest of low molecular weight glass-forming systems; and (ii) the effect of intra-macromolecular barriers combined with chain connectivity. It has also been shown that the mode coupling theory (MCT) is a suitable theoretical framework to discuss these questions. The values found for polymers for the central MCT parameter—the so-called λ-exponent—are of the order of 0.9, clearly higher than the standard values (λ ≈ 0.7) found in systems where the dynamic arrest is mainly driven by packing effects (‘standard’ glass-formers). Within the MCT, this is a signature of the presence of two competing mechanisms of dynamic arrest, as it has been observed in short-ranged attractive colloids or two component

  2. Photosensitivity phenomena in multicomponent glasses

    NASA Astrophysics Data System (ADS)

    Czachor, K.; Jedrzejewski, K.; Stępień, R.

    2005-09-01

    Low cost, high bandwidth, narrowband and multifunctionality are main targets for new optical devices development. Planar optics is probably the best solution for future telecom long distance and access transmission networks but also for metrology sensing devices. Many different materials can be used for this purpose like PECVD silica, multicomponent glasses or even polymers. Bragg grating inscription in such material is another advantage to achieve narrowband spectral characteristic of device, which is essential in modern systems. The main purpose of presented work was the development in technology and measurement techniques of channels formed on the surface of the glass. Planar couplers and structures that are more complicated can also be made in the same technology in the future. Special multicomponent glasses SiO2-GeO2-B2O3-Na2O-SnO2 with up to 6 %mol of Sn were synthetized and thin rectangular polished plates were prepared. The UV 244 nm 100 mW Coherent argon ion frequency doubled laser was used in our experiments. Surface relief structures similar to the compaction-densification/expansion model of photosensitivity were developed on the glass surface. The optical microscope and alpha-step profiler were used for preliminary tests of photoinduced structures on the glass surface. The ability of the writing possibility in function of Sn content and different laser power levels were analyzed.

  3. Glass transition of a particle in a random potential, front selection in nonlinear renormalization group, and entropic phenomena in Liouville and sinh-Gordon models

    NASA Astrophysics Data System (ADS)

    Carpentier, David; Le Doussal, Pierre

    2001-02-01

    We study via renormalization group (RG), numerics, exact bounds, and qualitative arguments the equilibrium Gibbs measure of a particle in a d-dimensional Gaussian random potential with translationally invariant logarithmic spatial correlations. We show that for any d>=1 it exhibits a transition at T=Tc>0. The low-temperature glass phase has a nontrivial structure, being dominated by a few distant states (with replica symmetry breaking phenomenology). In finite dimension this transition exists only in this ``marginal glass'' case (energy fluctuation exponent θ=0) and disappears if correlations grow faster (single ground-state dominance θ>0) or slower (high-temperature phase). The associated extremal statistics problem for correlated energy landscapes exhibits universal features which we describe using a nonlinear Kolmogorov (KPP) RG equation. These include the tails of the distribution of the minimal energy (or free energy) and the finite-size corrections, which are universal. The glass transition is closely related to Derrida's random energy models. In d=2, the connection between this problem and Liouville and sinh-Gordon models is discussed. The glass transition of the particle exhibits interesting similarities with the weak- to strong-coupling transition in Liouville (c=1 barrier) and with a transition that we conjecture for the sinh-Gordon model, with correspondence in some exact results and RG analysis. Glassy freezing of the particle is associated with the generation under RG of new local operators and of nonsmooth configurations in Liouville. Applications to Dirac fermions in random magnetic fields at criticality reveal a peculiar ``quasilocalized'' regime (corresponding to the glass phase for the particle), where eigenfunctions are concentrated over a finite number of distant regions, and allow us to recover the multifractal spectrum in the delocalized regime.

  4. Physical phenomena in containerless glass processing

    NASA Technical Reports Server (NTRS)

    Subramanian, R. S.; Cole, R.; Annamalai, P.; Jayaraj, K.; Kondos, P.; Mcneil, T. J.; Shankar, N.

    1982-01-01

    Experiments were conducted on bubble migration in rotating liquid bodies contained in a sphere. Experiments were initiated on the migration of a drop in a slightly less dense continuous phase contained in a rotating sphere. A refined apparatus for the study of thermocapillar flow in a glass melt was built, and data were acquired on surface velocities in the melt. Similar data also were obtained from an ambient temperature fluid model. The data were analyzed and correlated with the aid of theory. Data were obtained on flow velocities in a pendant drop heated from above. The motion in this system was driven principally by thermocapillarity. An apparatus was designed for the study of volatilization from a glass melt.

  5. Characteristic length of glass transition

    NASA Astrophysics Data System (ADS)

    Donth, E.

    1996-03-01

    The characteristic length of the glass transition (ξ _α ) is based on the concept of cooperatively rearranging regions (CRR's) by Adam & Gibbs (1965): ξ _α is the diameter of one CRR. In the theoretical part of the talk a formula is derived how this length can be calculated from calorimetric data of the transformation interval. The approach is based on fluctuations in natural functional subsystems. The corresponding thermodynamics is represented e.g. in a book of the author (E. Donth, Relaxation and Thermodynamics in Polymers. Glass Transition, Akademie-Verlag, Berlin 1992). A typical value for this length is 3 nanometers. In the experimental part several examples are reported to enlarge the experimental evidence for such a length: Squeezing the glass transition in the amorphous layers of partially crystallized PET (C. Schick, Rostock), glass transition of small-molecule glass formers in a series of nanoscaled pores of porous glasses (F. Kremer, Leipzig), comparison with a concentration fluctuation model in homogeneous polymer mixtures (E.W. Fischer, Mainz), and, from our laboratory, backscaling to ξ _α across the main transition from the entanglement spacing in several amorphous polymers such as PVAC, PS, NR, and some polymer networks. Rouse backscaling was possible in the α β splitting region of several poly(n alkyl methacrylates) resulting in small characteristic lengths of order 1 nanometer near the onset of α cooperativity. In a speculative outlook a dynamic density pattern is presented, having a cellular structure with higher density and lower mobility of the cell walls. It will be explained, with the aid of different thermal expansion of wall and clusters, how the clusters within the cells maintain a certain mobility far below the glass temperature.

  6. Assessing transitional phenomena with the transitional object memory probe.

    PubMed

    Fowler, C; Hilsenroth, M J; Handler, L

    1998-01-01

    Winnicott's concept of transitional relatedness has captured the interest of psychoanalysts because it provides an understanding of the dialectical process occurring between inner and outer reality, and by extension, between analyst and analysand. Clinical observations related to transitional phenomena have led the authors to develop a projective early memory probe that assesses transitional phenomena. The transitional object early memory probe was tested both for its empirical validity and for its clinical utility in psychodynamic psychotherapy. Construct validity was assessed by comparing memory scores to the Rorschach Transitional Object Scale, as well as to therapist ratings of patient behaviors. Results demonstrated moderate correlations between early memory scores and Rorschach scale scores. Equally important was the finding that early memory scores were significantly correlated with therapist ratings of key behavioral patterns in therapy. A case vignette highlights the clinical application of the transitional object probe in assessing the capacity for transitional relatedness. In this case, the data gleaned from the patient's memories provided the therapist with a sharper focus on their role in the patient's growing capacity for more vital and creative contact with reality.

  7. Phase transition in a super superspin glass

    NASA Astrophysics Data System (ADS)

    Mathieu, R.; De Toro, J. A.; Salazar, D.; Lee, S. S.; Cheong, J. L.; Nordblad, P.

    2013-06-01

    We here confirm the occurrence of spin glass phase transition and extract estimates of associated critical exponents of a highly monodisperse and densely compacted system of bare maghemite nanoparticles. This system has earlier been found to behave like an archetypal spin glass, with, e.g., a sharp transition from paramagnetic to non-equilibrium behavior, suggesting that this system undergoes a spin glass phase transition at a relatively high temperature, Tg ∼ 140 K.

  8. Ising model of a glass transition.

    PubMed

    Langer, J S

    2013-07-01

    Numerical simulations by Tanaka and co-workers indicate that glass-forming systems of moderately polydisperse hard-core particles, in both two and three dimensions, exhibit diverging correlation lengths. These correlations are described by Ising-like critical exponents, and are associated with diverging, Vogel-Fulcher-Tamann, structural relaxation times. Related simulations of thermalized hard disks indicate that the curves of pressure versus packing fraction for different polydispersities exhibit a sequence of transition points, starting with a liquid-hexatic transition for the monodisperse case, and crossing over with increasing polydispersity to glassy, Ising-like critical points. I propose to explain these observations by assuming that glass-forming fluids contain twofold degenerate, locally ordered clusters of particles, similar to the two-state systems that have been invoked to explain other glassy phenomena. This paper starts with a brief statistical derivation of the thermodynamics of thermalized, hard-core particles. It then discusses how a two-state, Ising-like model can be described within that framework in terms of a small number of statistically relevant, internal state variables. The resulting theory agrees accurately with the simulation data. I also propose a rationale for the observed relation between the Ising-like correlation lengths and the Vogel-Fulcher-Tamann formula.

  9. Temperature dependence of nonlinear optical phenomena in silica glasses

    NASA Astrophysics Data System (ADS)

    Mikami, K.; Motokoshi, S.; Fujita, M.; Jitsuno, T.; Murakami, M.

    2010-11-01

    A linear increase of the laser-induced damage thresholds in silica glasses with decreasing the temperature was reported in this conference at last year. Various nonlinear phenomena should be generated in silica glasses besides the damage in high intensity. Temperature dependences of the nonlinear refractive indices and the SBS (stimulated Brillouin scattering) thresholds in silica glasses at temperature 173 K to 473 K were measured with single-mode Q-switched Nd:YAG laser at fundamental wavelength. As the result, the nonlinear refractive indices increased with decreasing temperature. Because the change was not enough to explain the temperature dependence of laser-induced damage thresholds, the temperature dependence of nonlinear refractive indices would be negligible on laser-induced damage thresholds. On the other hand, the SBS thresholds also increased with decreasing temperature. This result means that acoustic phonons arise easily at high temperature. Probably, the SBS phenomenon is one of reasons for temperature dependence of laser-induced damage thresholds.

  10. Electron anions and the glass transition temperature

    PubMed Central

    Sushko, Peter V.; Tomota, Yudai; Hosono, Hideo

    2016-01-01

    Properties of glasses are typically controlled by judicious selection of the glass-forming and glass-modifying constituents. Through an experimental and computational study of the crystalline, molten, and amorphous [Ca12Al14O32]2+ ⋅ (e–)2, we demonstrate that electron anions in this system behave as glass modifiers that strongly affect solidification dynamics, the glass transition temperature, and spectroscopic properties of the resultant amorphous material. The concentration of such electron anions is a consequential control parameter: It invokes materials evolution pathways and properties not available in conventional glasses, which opens a unique avenue in rational materials design. PMID:27559083

  11. Mechanical failure and glass transition in metallic glasses

    SciTech Connect

    Egami, Takeshi

    2011-01-01

    The current majority view on the phenomenon of mechanical failure in metallic glasses appears to be that it is caused by the activity of some structural defects, such as free-volumes or shear transformation zones, and the concentration of such defects is small, only of the order of 1%. However, the recent results compel us to revise this view. Through molecular dynamics simulation it has been shown that mechanical failure is the stress-induced glass transition. According to our theory the concentration of the liquid-like sites (defects) is well over 20% at the glass transition. We suggest that the defect concentration in metallic glasses is actually very high, and percolation of such defects causes atomic avalanche and mechanical failure. In this article we discuss the glass transition, mechanical failure and viscosity from such a point of view.

  12. Electron anions and the glass transition temperature

    SciTech Connect

    Johnson, Lewis E.; Sushko, Peter V.; Tomota, Yudai; Hosono, Hideo

    2016-08-24

    Properties of glasses are typically controlled by judicious selection of the glass-forming and glass-modifying constituents. Through an experimental and computational study of the crystalline, molten, and amorphous [Ca12Al14O32]2+ ∙ (e)2, we demonstrate that electron anions in this system behave as glass-modifiers that strongly affect solidification dynamics, the glass transition temperature, and spectroscopic properties of the resultant amorphous material. Concentration of such electron anions is a consequential control parameter: it invokes materials evolution pathways and properties not available in conventional glasses, which opens a new avenue in rational materials design.

  13. Multiple reentrant glass transitions in confined hard-sphere glasses

    NASA Astrophysics Data System (ADS)

    Mandal, Suvendu; Lang, Simon; Gross, Markus; Oettel, Martin; Raabe, Dierk; Franosch, Thomas; Varnik, Fathollah

    2014-07-01

    Glass-forming liquids exhibit a rich phenomenology upon confinement. This is often related to the effects arising from wall-fluid interactions. Here we focus on the interesting limit where the separation of the confining walls becomes of the order of a few particle diameters. For a moderately polydisperse, densely packed hard-sphere fluid confined between two smooth hard walls, we show via event-driven molecular dynamics simulations the emergence of a multiple reentrant glass transition scenario upon a variation of the wall separation. Using thermodynamic relations, this reentrant phenomenon is shown to persist also under constant chemical potential. This allows straightforward experimental investigation and opens the way to a variety of applications in micro- and nanotechnology, where channel dimensions are comparable to the size of the contained particles. The results are in line with theoretical predictions obtained by a combination of density functional theory and the mode-coupling theory of the glass transition.

  14. Glass and percolation transitions in dense attractive micellar system

    NASA Astrophysics Data System (ADS)

    Mallamace, F.; Beneduci, R.; Gambadauro, P.; Lombardo, D.; Chen, S. H.

    2001-12-01

    In this work, we study a copolymer-micellar system characterized by clustering processes due to a short-range attractive interaction. This originates a percolation process and a new type of kinetic glass transition. We have studied these intriguing dynamical situations by means of an extensive set of light scattering and viscoelasticity experiments. Obtained data, in both the phenomena, are accounted for by considering in a proper way fractal clustering processes and the related scaling concepts. Near the percolation line the main role in the system structure and dynamics is played by the cluster's partial screening of hydrodynamic interaction, that behaves, on approaching the percolation threshold, dramatic effects on the rheological properties and on the density decay relaxations. The ergodic-nonergodic transition line (glass transition) is studied in terms of the intermediate scattering functions (ISF) in the frame of the mode coupling theory. The measured ISF gives evidence of a logarithmic decay on the density fluctuation followed by a power law behavior. This latter phenomenon is the signature of a high-order glass transition of the A3 type (cusp-like singularity).

  15. Critical Phenomena of the Disorder Driven Localization-Delocalization Transition

    SciTech Connect

    Ruhlander, Marc

    2002-12-31

    Metal-to-insulator transitions are generally linked to two phenomena: electron-electron correlations and disorder. Although real systems are usually responding to a mixture of both, they can be classified as undergoing a Mott-transition, if the former process dominates, or an Anderson-transition, if the latter dominates. High-Tc superconductors, e.g., are a candidate for the first class. Materials in which disorder drives the metal-to-insulator transition include doped semiconductors and amorphous materials. After briefly reviewing the previous research on transport in disordered materials and the disorder-induced metal-to-insulator transition, a summary of the model and the methods used in subsequent chapters is given.

  16. Superconducting Metallic Glass Transition-Edge-Sensors

    NASA Technical Reports Server (NTRS)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  17. Ideal glass transitions by random pinning

    PubMed Central

    Cammarota, Chiara; Biroli, Giulio

    2012-01-01

    We study the effect of freezing the positions of a fraction c of particles from an equilibrium configuration of a supercooled liquid at a temperature T. We show that within the random first-order transition theory pinning particles leads to an ideal glass transition for a critical fraction c = cK(T) even for moderate supercooling; e.g., close to the Mode-Coupling transition temperature. First we derive the phase diagram in the T - c plane by mean field approximations. Then, by applying a real-space renormalization group method, we obtain the critical properties for |c - cK(T)| → 0, in particular the divergence of length and time scales, which are dominated by two zero-temperature fixed points. We also show that for c = cK(T) the typical distance between frozen particles is related to the static point-to-set length scale of the unconstrained liquid. We discuss what are the main differences when particles are frozen in other geometries and not from an equilibrium configuration. Finally, we explain why the glass transition induced by freezing particles provides a new and very promising avenue of research to probe the glassy state and ascertain, or disprove, the validity of the theories of the glass transition. PMID:22623524

  18. Mechanisms of Rhyolitic Glass Hydration Below the Glass Transition

    SciTech Connect

    Anovitz, Lawrence {Larry} M; Cole, David R; Fayek, Mostafa

    2008-01-01

    Although a great deal is known about the interaction between water and rhyolitic glasses and melts at temperatures above the glass transition, the nature of this interaction at lower temperatures is much more obscure. Comparisons between high- and low-temperature diffusion studies suggest that several factors play important roles under lower-temperature conditions that are not significant at higher temperatures. Water concentrations in rhyolitic glasses hydrated at low temperatures are significantly greater than in those hydrated at high temperatures and low pressures. Surface concentrations, which equilibrate quickly with the surrounding environment at high temperature, change far more slowly as temperature decreases, and may not equilibrate at room temperature for hundreds or thousands of years. Temperature extrapolations of high- and low-temperature diffusion data are not consistent, suggesting that a change in mechanism occurs. These differences may be due to the inability of "self-stress," caused by the in-diffusing species, to relax at lower temperature. Preliminary calculations suggest that the level of stress caused by glass-water interaction may be greater than the tensile strength of the glass. On a microstuctural scale, extrapolations of high-temperature Fourier transform infrared spectroscopy (FTIR) data to lower temperatures suggests that there should be little or no hydroxyl present in glasses hydrated at low temperature. Comparisons of low-temperature hydration results among SiO2, obsidian, and albite compositions show distinct differences, and features are present in the spectra that do not occur at high temperature. Analysis of H2O and D2O diffusion also suggest that mechanistic differences occur between low- and high-temperature diffusive processes.

  19. Glass transition and enthalpy relaxation of amorphous lactose glass.

    PubMed

    Haque, Md Kamrul; Kawai, Kiyoshi; Suzuki, Toru

    2006-08-14

    The glass transition temperature, T(g), and enthalpy relaxation of amorphous lactose glass were investigated by differential scanning calorimetry (DSC) for isothermal aging periods at various temperatures (25, 60, 75, and 90 degrees C) below T(g). Both T(g) and enthalpy relaxation were found to increase with increasing aging time and temperature. The enthalpy relaxation increased approximately exponentially with aging time at a temperature (90 degrees C) close to T(g) (102 degrees C). There was no significant change observed in the enthalpy relaxation around room temperature (25 degrees C) over an aging period of 1month. The Kohlrausch-Williams-Watts (KWW) model was able to fit the experimental enthalpy relaxation data well. The relaxation distribution parameter (beta) was determined to be in the range 0.81-0.89. The enthalpy relaxation time constant (tau) increased with decreasing aging temperature. The observed enthalpy relaxation data showed that molecular mobility in amorphous lactose glass was higher at temperatures closer to T(g). Lactose glass was stable for a long time at 25 degrees C. These findings should be helpful for improving the processing and storage stability of amorphous lactose and lactose containing food and pharmaceutical products.

  20. Ising spin glass that closely resembles the physical glass transition.

    PubMed

    Mansfield, Marc L

    2002-07-01

    We consider a modification of the one-dimensional Ising model in an external field in which the higher-energy spin state is assumed to be P-fold degenerate. The model shows a transition that becomes first order in the limit of infinite coupling constant. Here we report a study of the dynamical properties of the model by computer simulation in the vicinity of this transition, under the assumption that the model evolves by single spin flips with Metropolis bias, but with certain forbidden flips. The result is a model that exhibits many well-known empirical properties of the physical glass transition, including the "Kauzmann paradox," the Vogel law, stretched-exponential relaxation, and dynamic heterogeneity.

  1. Two glass transitions in miscible polymer blends?

    SciTech Connect

    Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.

    2014-06-28

    In contrast to mixtures of two small molecule fluids, miscible binary polymer blends often exhibit two structural relaxation times and two glass transition temperatures. Qualitative explanations postulate phenomenological models of local concentration enhancements due to chain connectivity in ideal, fully miscible systems. We develop a quantitative theory that explains qualitative trends in the dynamics of real miscible polymer blends which are never ideal mixtures. The theory is a synthesis of the lattice cluster theory of blend thermodynamics, the generalized entropy theory for glass-formation in polymer materials, and the Kirkwood-Buff theory for concentration fluctuations in binary mixtures.

  2. Phenomena of solid state grain boundaries phase transition in technology

    SciTech Connect

    Minaev, Y. A.

    2015-03-30

    The results of study the phenomenon, discovered by author (1971), of the phase transition of grain boundary by the formation of two-dimensional liquid or quasi-liquid films have been done. The described phenomena of the first order phase transition (two-dimensional melting) at temperatures 0.6 – 0.9 T{sub S0} (of the solid state melting point) is a fundamental property of solid crystalline materials, which has allowed to revise radically scientific representations about a solid state of substance. Using the mathematical tools of the film thermodynamics it has been obtained the generalized equation of Clausius - Clapeyron type for two-dimensional phase transition. The generalized equation has been used for calculating grain boundary phase transition temperature T{sub Sf} of any metal, which value lies in the range of (0.55…0.86) T{sub S0}. Based on these works conclusions the develop strategies for effective forming of coatings (by thermo-chemical processing) on surface layers of functional alloys and hard metals have been made. The short overview of the results of some graded alloys characterization has been done.

  3. Scaling and universality in glass transition

    PubMed Central

    de Candia, Antonio; Fierro, Annalisa; Coniglio, Antonio

    2016-01-01

    Kinetic facilitated models and the Mode Coupling Theory (MCT) model B are within those systems known to exhibit a discontinuous dynamical transition with a two step relaxation. We consider a general scaling approach, within mean field theory, for such systems by considering the behavior of the density correlator 〈q(t)〉 and the dynamical susceptibility 〈q2(t)〉 − 〈q(t)〉2. Focusing on the Fredrickson and Andersen (FA) facilitated spin model on the Bethe lattice, we extend a cluster approach that was previously developed for continuous glass transitions by Arenzon et al. (Phys. Rev. E 90, 020301(R) (2014)) to describe the decay to the plateau, and consider a damage spreading mechanism to describe the departure from the plateau. We predict scaling laws, which relate dynamical exponents to the static exponents of mean field bootstrap percolation. The dynamical behavior and the scaling laws for both density correlator and dynamical susceptibility coincide with those predicted by MCT. These results explain the origin of scaling laws and the universal behavior associated with the glass transition in mean field, which is characterized by the divergence of the static length of the bootstrap percolation model with an upper critical dimension dc = 8. PMID:27221056

  4. Chiral-glass transition and replica symmetry breaking of a three-dimensional heisenberg spin glass

    PubMed

    Hukushima; Kawamura

    2000-02-01

    Extensive equilibrium Monte Carlo simulations are performed for a three-dimensional Heisenberg spin glass with the nearest-neighbor Gaussian coupling to investigate its spin-glass and chiral-glass orderings. The occurrence of a finite-temperature chiral-glass transition without the conventional spin-glass order is established. Critical exponents characterizing the transition are different from those of the standard Ising spin glass. The calculated overlap distribution suggests the appearance of a peculiar type of replica-symmetry breaking in the chiral-glass ordered state.

  5. Glass transition dynamics of enantiomer (+)-ibuprofen

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyun; Ko, Jae-Hyeon; Takayama, Haruki; Shibata, Tomohiko; Kojima, Seiji

    2013-02-01

    The acoustic properties and dynamic heat capacity of enantiomer (+)-Ibuprofen were investigated in a wide temperature including glassy and supercooled liquid and equilibrium liquid states. The Brillouin frequency shift and the full width at half maximum of the longitudinal acoustic waves of glassy ibuprofen exhibited clear changes at the glass transition temperature of 223 K. The fragility of (+)-Ibuprofen was determined to be 68 using the temperature dependence of relaxation time obtained from the imaginary part of the complex dynamic heat capacity. The sound velocity, the attenuation coefficient, and the thermal expansion coefficient were determined in the liquid (+)-Ibuprofen based on the measurements of the refractive index.

  6. The correlation between shear elastic modulus and glass transition temperature of bulk metallic glasses

    SciTech Connect

    Lu Zhibin; Li Jiangong; Shao Hang; Ni Xia; Gleiter, H.

    2009-03-02

    Based on Varshni equation, the shear elastic modulus at the glass transition temperature [G(T{sub g})] and the shear elastic modulus at 0 K [G(0)] were calculated from the elastic modulus measured at room temperature for various bulk metallic glasses (BMGs). The G(T{sub g})/G(0) ratios for various BMGs are almost the same and have a value around 0.85. This unique correlation implies that the glass transition occurs when the shear modulus of a BMG decreases to about 85% of G(0). This correlation between shear modulus and glass transition is of significance in understanding the glass transition of BMGs.

  7. PREFACE: Fourh Workshop on Non-Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials

    NASA Astrophysics Data System (ADS)

    Andreozzi, Laura; Giordano, Marco; Leporini, Dino; Tosi, Mario

    2007-04-01

    round-table discussion sessions were organized to discuss issues that have special impact on our current understanding (or lack of it) of the dynamics of glass transition: 'Low-energy excitations and relaxations in glasses' and 'An assessment of current theories: interconnections and relevance to experiments'. We are very grateful to M A Ramos and R Bömer, and to P G Debenedetti and H Z Cummins for organizing and leading these two activities. Two very active and profitable poster sessions collected contributions on the themes of relaxation processes, cooperativity in polymers and mixtures, polyamorphism and water, biomaterials, relaxation, aging phenomena in thin films, confined and complex systems, and theoretical aspect, energy landscape and molecular dynamics, low temperature, glass and PT procedures, tracer dynamics, heterogeneity and relaxation in glass formers We acknowledge the generous support given to the workshop by our institutions, and in particular by Scuola Normale Superiore. The organization of the events in its beautiful rooms and corridors, as well as the lunches and coffee breaks held in its courtyard, especially favoured meetings and discussions between the participants. Several public and private Institutions have also supported our efforts and we would like to thank them warmly: they are the 'Soft Matter' Center of Rome, the INFN Section in Pisa, the CNR/INFM Polylab, and Ital Scientifica, TA Instruments, Novocontrol Technologies, Up Group, Isole e Olena. Finally, we express our gratitude to all those individuals—we mention here in particular Dr Ciro Autiero, Dr Massimo Faetti, Dr Fabio Zulli, Ms Patrizia Pucci, and Ms Caterina D'Elia—who have given their work and time to the making and running of the Workshop.

  8. Characterization of the glass Transition Using a Microindenter.

    DTIC Science & Technology

    1991-02-22

    Glass transition, icroindenter, Poiy(methyl methacrylate), Plasticizers 19 ABSTRACT (Continue on reverse if necessary and identify by block number) The...OFFICE OF NAVAL RESEARCH ContractN00014-85-K-0474 4ir)- It)t Technical Report No. 19 Characterization of the Glass Transition Using a Microindenter...TASK WORK UNIT ELEMENT NO NO. NO ACCESSION NO. I I TITLE (Include Security Classification) Characterization of the Glass Transition Using a icroindenter

  9. Approaching the Glass Transition from Various Directions

    NASA Astrophysics Data System (ADS)

    Lipson, Jane

    2015-03-01

    In recent years a significant amount of experimental work has appeared on glassy systems, both polymeric and small molecule. However, this rich explosion in data has not been met with a concomitant leap in fundamental understanding. We have developed a number of approaches to elucidate some of the underlying mechanisms of behaviour in bulk and confined glassy systems. Using our Limited Mobility (LM) coarse-grained simulation model we have characterized the dynamic heterogeneity associated with approaching the glass transition, explored interfacial behaviour when layering materials of differing mobility, and analyzed the effect of a free surface on a supported thin film. Approaching related problems from a different direction we have modified a simple thermodynamic description of the bulk to account for missing interactions at a film surface, and substrate interactions in the case of supported films. Characterizing the systems via bulk data alone, we find our film-averaged predictions for the effects of confinement agree well with experimental data on several freestanding and supported polymer films. That work deals with confined systems; a fundamental understanding of bulk glass transitions also remains incomplete. Most recently we have been applying our Locally Correlated Lattice (LCL) equation of state model, which has met with success in modeling polymer melt and mixture behaviour, to reveal hints of the underlying glassy nature of a bulk polymer sample, even while above its transition temperature (Tg). Correlations between Tg and a variety of equilibrium bulk quantities have lead us to make connections not only with a substantive amount of experimental data on a wide range of polymers, but also with other models of glassy polymeric systems. This talk will comprise an efficient summary of past progress from these different directions, and will then focus on our most recent results and current understanding. This work has been supported by NSF-DMR and GAANN.

  10. Structural relaxation phenomena in silicate glasses modified by irradiation with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Seuthe, Thomas; Mermillod-Blondin, Alexandre; Grehn, Moritz; Bonse, Jörn; Wondraczek, Lothar; Eberstein, Markus

    2017-03-01

    Structural relaxation phenomena in binary and multicomponent lithium silicate glasses were studied upon irradiation with femtosecond (fs) laser pulses (800 nm central wavelength, 130 fs pulse duration) and subsequent thermal annealing experiments. Depending on the annealing temperature, micro-Raman spectroscopy analyses evidenced different relaxation behaviours, associated to bridging and non-bridging oxygen structures present in the glass network. The results indicate that the mobility of lithium ions is an important factor during the glass modification with fs-laser pulses. Quantitative phase contrast imaging (spatial light interference microscopy) revealed that these fs-laser induced structural modifications are closely related to local changes in the refractive index of the material. The results establish a promising strategy for tailoring fs-laser sensitivity of glasses through structural mobility.

  11. Structural relaxation phenomena in silicate glasses modified by irradiation with femtosecond laser pulses

    PubMed Central

    Seuthe, Thomas; Mermillod-Blondin, Alexandre; Grehn, Moritz; Bonse, Jörn; Wondraczek, Lothar; Eberstein, Markus

    2017-01-01

    Structural relaxation phenomena in binary and multicomponent lithium silicate glasses were studied upon irradiation with femtosecond (fs) laser pulses (800 nm central wavelength, 130 fs pulse duration) and subsequent thermal annealing experiments. Depending on the annealing temperature, micro-Raman spectroscopy analyses evidenced different relaxation behaviours, associated to bridging and non-bridging oxygen structures present in the glass network. The results indicate that the mobility of lithium ions is an important factor during the glass modification with fs-laser pulses. Quantitative phase contrast imaging (spatial light interference microscopy) revealed that these fs-laser induced structural modifications are closely related to local changes in the refractive index of the material. The results establish a promising strategy for tailoring fs-laser sensitivity of glasses through structural mobility. PMID:28266615

  12. Intermolecular forces and the glass transition.

    PubMed

    Hall, Randall W; Wolynes, Peter G

    2008-01-17

    Random first-order transition theory is used to determine the role of attractive and repulsive interactions in the dynamics of supercooled liquids. Self-consistent phonon theory, an approximate mean field treatment consistent with random first-order transition theory, is used to treat individual glassy configurations, whereas the liquid phase is treated using common liquid-state approximations. Free energies are calculated using liquid-state perturbation theory. The transition temperature, T*A, the temperature where the onset of activated behavior is predicted by mean field theory; the lower crossover temperature, T*C, where barrierless motions actually occur through fractal or stringy motions (corresponding to the phenomenological mode coupling transition temperature); and T*K, the Kauzmann temperature (corresponding to an extrapolated entropy crisis), are calculated in addition to T*g, the glass transition temperature that corresponds to laboratory cooling rates. Relationships between these quantities agree well with existing experimental and simulation data on van der Waals liquids. Both the isobaric and isochoric behavior in the supercooled regime are studied, providing results for DeltaCV and DeltaCp that can be used to calculate the fragility as a function of density and pressure, respectively. The predicted variations in the alpha-relaxation time with temperature and density conform to the empirical density-temperature scaling relations found by Casalini and Roland. We thereby demonstrate the microscopic origin of their observations. Finally, the relationship first suggested by Sastry between the spinodal temperature and the Kauzmann temperatures, as a function of density, is examined. The present microscopic calculations support the existence of an intersection of these two temperatures at sufficiently low temperatures.

  13. The Glass Transition of Driven Molecular Materials

    NASA Astrophysics Data System (ADS)

    Descamps, M.; Willart, J. F.; Aumelas, A.

    2008-02-01

    There are many cases of practical interest where materials are maintained in nonequilibrium conditions by some external dynamical forcing: typical examples of these driven materials are provided by irradiation, grinding, extrusion…Contrary to usual phase transitions which are properly addressed by thermal equilibrium states, equilibrium and irreversible thermodynamics, no such general framework is available for driven systems. The purpose of this paper is to show some examples of phase transformations in driven molecular materials. These materials are considered because they are extremely sensitive to external disturbances and are generally very good glass formers. This allows investigating more easily a broad range of the parameters which possibly influence the nature of the end product. We will examine mainly the effect of grinding. Contrary to other materials, metals or minerals, systematic investigations of transformations induced by grinding of molecular materials have not yet been done despite the practical and fundamental interests of such investigations in pharmaceutical and agro-chemical science. We will address several modes of interconversions between crystalline and glassy states of the same compound. We will further discuss specific processing effects on the physical state of the glass itself. It will be shown from these investigations that rationalization and possibilities of prediction are emerging. The use of effective temperature concepts to describe the end product of milling will be discussed. These findings may be of general concern for driven materials of any chemical nature.

  14. Quantitative field theory of the glass transition

    PubMed Central

    Franz, Silvio; Jacquin, Hugo; Parisi, Giorgio; Urbani, Pierfrancesco; Zamponi, Francesco

    2012-01-01

    We develop a full microscopic replica field theory of the dynamical transition in glasses. By studying the soft modes that appear at the dynamical temperature, we obtain an effective theory for the critical fluctuations. This analysis leads to several results: we give expressions for the mean field critical exponents, and we analytically study the critical behavior of a set of four-points correlation functions, from which we can extract the dynamical correlation length. Finally, we can obtain a Ginzburg criterion that states the range of validity of our analysis. We compute all these quantities within the hypernetted chain approximation for the Gibbs free energy, and we find results that are consistent with numerical simulations. PMID:23112202

  15. PREFACE: Dynamic crossover phenomena in water and other glass-forming liquids Dynamic crossover phenomena in water and other glass-forming liquids

    NASA Astrophysics Data System (ADS)

    Chen, Sow-Hsin; Baglioni, Piero

    2012-02-01

    This special section has been inspired by the workshop on Dynamic Crossover Phenomena in Water and Other Glass-Forming Liquids, held during November 11-13, 2010 at Pensione Bencistà, Fiesole, Italy, a well-preserved 14th century Italian villa tucked high in the hills overlooking Florence. The meeting, an assembly of world renowned scientists, was organized as a special occasion to celebrate the 75th birthday of Professor Sow-Hsin Chen of MIT, a pioneer in several aspects of complex fluids and soft matter physics. The workshop covered a large variety of experimental and theoretical research topics of current interest related to dynamic crossover phenomena in water and, more generally, in other glass-forming liquids. The 30 invited speakers/lecturers and approximately 60 participants were a select group of prominent physicists and chemists from the USA, Europe, Asia and Mexico, who are actively working in the field. Some highlights of this special issue include the following works. Professor Yamaguchi's group and their collaborators present a neutron spin echo study of the coherent intermediate scattering function of heavy water confined in cylindrical pores of MCM-41-C10 silica material in the temperature range 190-298 K. They clearly show that a fragile-to-strong (FTS) dynamic crossover occurs at about 225 K. They attribute the FTS dynamic crossover to the formation of a tetrahedral-like structure, which is preserved in the bulk-like water confined to the central part of the cylindrical pores. Mamontov and Kolesnikov et al study the collective excitations in an aqueous solution of lithium chloride over a temperature range of 205-270 K using neutron and x-ray Rayleigh-Brillouin (coherent) scattering. They detect both the low-frequency and the high-frequency sounds known to exist in pure bulk water above the melting temperature. They also perform neutron (incoherent) and x-ray (coherent) elastic intensity scan measurements. Clear evidence of the crossover in the

  16. Predicting the glass transition temperature of bioactive glasses from their molecular chemical composition.

    PubMed

    Hill, Robert G; Brauer, Delia S

    2011-10-01

    A recently published paper (M.D. O'Donnell, Acta Biomaterialia 7 (2011) 2264-2269) suggests that it is possible to correlate the glass transition temperature (T(g)) of bioactive glasses with their molar composition, based on iterative least-squares fitting of published T(g) data. However, we show that the glass structure is an important parameter in determining T(g). Phase separation, local structural effects and components (intermediate oxides) which can switch their structural role in the glass network need to be taken into consideration, as they are likely to influence the glass transition temperature of bioactive glasses. Although the model suggested by O'Donnell works reasonably well for glasses within the composition range presented, it is oversimplified and fails for glasses outside certain compositional boundaries.

  17. Theoretical study of production of unique glasses in space. [kinetic relationships describing nucleation and crystallization phenomena

    NASA Technical Reports Server (NTRS)

    Larsen, D. C.; Sievert, J. L.

    1975-01-01

    The potential of producing the glassy form of selected materials in the weightless, containerless nature of space processing is examined through the development of kinetic relationships describing nucleation and crystallization phenomena. Transformation kinetics are applied to a well-characterized system (SiO2), an excellent glass former (B2O3), and a poor glass former (Al2O3) by conventional earth processing methods. Viscosity and entropy of fusion are shown to be the primary materials parameters controlling the glass forming tendency. For multicomponent systems diffusion-controlled kinetics and heterogeneous nucleation effects are considered. An analytical empirical approach is used to analyze the mullite system. Results are consistent with experimentally observed data and indicate the promise of mullite as a future space processing candidate.

  18. Glass transition in fullerenes: mode-coupling theory predictions.

    PubMed

    Greenall, M J; Voigtmann, Th

    2006-11-21

    We report idealized mode-coupling theory results for the glass transition of ensembles of model fullerenes interacting via phenomenological two-body potentials. Transition lines are found for C60, C70, and C96 in the temperature-density plane. We argue that the observed glass transition behavior is indicative of kinetic arrest that is strongly driven by the interparticle attraction in addition to excluded-volume repulsion. In this respect, these systems differ from most standard glass-forming liquids. They feature arrest that occurs at lower densities and that is stronger than would be expected for repulsion-dominated hard-sphere-like or Lennard-Jones-type systems. The influence of attraction increases with increasing the number of carbon atoms per molecule. However, unrealistically large fullerenes would be needed to yield behavior reminiscent of recently investigated model colloids with strong short-ranged attraction (glass-glass transitions and logarithmic decay of time-correlation functions).

  19. Glass transition in fullerenes: Mode-coupling theory predictions

    NASA Astrophysics Data System (ADS)

    Greenall, M. J.; Voigtmann, Th.

    2006-11-01

    We report idealized mode-coupling theory results for the glass transition of ensembles of model fullerenes interacting via phenomenological two-body potentials. Transition lines are found for C60, C70, and C96 in the temperature-density plane. We argue that the observed glass transition behavior is indicative of kinetic arrest that is strongly driven by the interparticle attraction in addition to excluded-volume repulsion. In this respect, these systems differ from most standard glass-forming liquids. They feature arrest that occurs at lower densities and that is stronger than would be expected for repulsion-dominated hard-sphere-like or Lennard-Jones-type systems. The influence of attraction increases with increasing the number of carbon atoms per molecule. However, unrealistically large fullerenes would be needed to yield behavior reminiscent of recently investigated model colloids with strong short-ranged attraction (glass-glass transitions and logarithmic decay of time-correlation functions).

  20. Estimation of the critical glass transition rate and the inorganic glass thickness

    NASA Astrophysics Data System (ADS)

    Belousov, O. K.

    2009-12-01

    Procedures are described for calculating the components of a new equation obtained to estimate critical glass transition rate R c . Reported data on R c are used to calculate critical shear frequency ν t, g( m), and a technique of its calculation using absolute entropy and elastic constants is presented. Procedures for calculating the energy of defect formation in amorphous substances H ν and for estimating glass transition temperature T g are described. It is shown that the ratio H ν / q (where q = N A k BΔ T m-g , N A is Avogadro’s number, k B is the Boltzmann constant, and Δ T m-g is the difference between the melting and glass transition temperatures) can be used to estimate critical glass transition rate R c and critical glass thickness h c .

  1. Liquid-Liquid Phase Transition and Glass Transition in a Monoatomic Model System

    PubMed Central

    Xu, Limei; Buldyrev, Sergey V.; Giovambattista, Nicolas; Stanley, H. Eugene

    2010-01-01

    We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses. PMID:21614201

  2. The Liquid Glass Transition in Sugars and Sugar Mixtures

    NASA Astrophysics Data System (ADS)

    Seo, Jeong-Ah; Oh, Jiyoung; Kwon, Hyun-Joung; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2006-05-01

    The liquid-glass transition in sugars and sugar mixtures was studied with calorimetry, Brillouin scattering, and dielectric spectroscopy. Sugars are particular interest among other glass forming materials because sugars are main constitution of the biological system and sugar glasses play an important role in preservation and protection of biological cells. We studied a number of sugars and sugar mixtures including glucose, galactose, sucrose, maltose, trehalose, glucose/sucrose, sucrose/trehalose, using calorimetry (DTA and DSC), Brillouin scattering, and dielectric spectroscopy. We found the following: (1) Brillouin scattering technique can be used to determine the glass transition temperature. (2) In sugar mixtures, the volume compression effect from the molecule size and shape played an important role in the glass transition temperature. (3) The origin of the secondary relaxation in glucose-water mixtures maybe relate to the rotation-translation coupling constant in the schematic mode coupling theory.

  3. Thermodynamic glass transition in a spin glass without time-reversal symmetry

    PubMed Central

    Baños, Raquel Alvarez; Cruz, Andres; Fernandez, Luis Antonio; Gil-Narvion, Jose Miguel; Gordillo-Guerrero, Antonio; Guidetti, Marco; Iñiguez, David; Maiorano, Andrea; Marinari, Enzo; Martin-Mayor, Victor; Monforte-Garcia, Jorge; Muñoz Sudupe, Antonio; Navarro, Denis; Parisi, Giorgio; Perez-Gaviro, Sergio; Ruiz-Lorenzo, Juan Jesus; Schifano, Sebastiano Fabio; Seoane, Beatriz; Tarancon, Alfonso; Tellez, Pedro; Tripiccione, Raffaele; Yllanes, David

    2012-01-01

    Spin glasses are a longstanding model for the sluggish dynamics that appear at the glass transition. However, spin glasses differ from structural glasses in a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by applying an external magnetic field, but embarrassingly little is known about the critical behavior of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d < 6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method. PMID:22493229

  4. Mechanical spectrum study of glass transition by a composite method

    NASA Astrophysics Data System (ADS)

    Yuan, Y. H.; Zhang, L.; Wang, X. L.; Ying, X. N.; Yan, F.; Huang, Y. N.; Zhu, J. S.; Wang, Y. N.

    2009-11-01

    Normalized mechanical spectra of glycerol, 1,2-propanediol carbonate and poly(vinyl chloride)/di(2-ethyl-hexyl) phthalate (PVC/DOP) blends were studied in the temperature range from 100 to 300 K by a composite method. The dynamic glass transition was observed, which exhibits a peak of temperature-dependent loss modulus. The peak moves toward higher temperature with higher measuring frequency, which accords with the relaxation feature of the dynamic glass transition. Another characteristic temperature can be marked in the mechanical spectrum by the onset of storage modulus change, which is labeled as T gm. T gm is found to be nearly equal to the calorimetric glass transition temperature in glycerol, 1,2-propanediol carbonate and di(2-ethyl-hexyl) phthalate. As we expected, this onset temperature in the mechanical spectrum has an intimate relation with the calorimetric glass transition of materials, and it can be regarded as a representative when the calorimetric glass transition temperature is not available. Finally, normalized mechanical spectra of PVC/DOP blends with different PVC content were obtained and mechanical glass transition temperatures T gm were determined.

  5. Observing the Twinkling Fractal Nature of the Glass Transition

    NASA Astrophysics Data System (ADS)

    Stanzione, Joseph, III; Wool, Richard; Strawhecker, Kenneth

    2010-03-01

    The main idea underlying the Twinkling Fractal Theory (TFT) of the glass transition is the development of dynamic percolating solid fractal structures near Tg, which are in dynamic equilibrium with the surrounding liquid. Solid and liquid clusters interchange at a frequency φTF, which is controlled by the population of intermolecular oscillators in excited energy levels in accord with the Orbach vibrational density of states for a particular fractal cluster g(φ) ˜ φ^df-1, where the fracton dimension df = 4/3. To an observer, these clusters would appear to be ``twinkling.'' A time-lapse tapping-mode atomic force microscopy (AFM) technique has been developed in order to experimentally confirm such phenomena. The twinkling behavior of amorphous, atactic polystyrene with MW = 194,000 g/mol, PDI = 1.07 (GPC) and Tg = 375 K (DSC-heating rate of 3 K/min) has been captured above (383 K), below (358 K), and well below (298 K) its Tg. Two-dimensional space images reveal fractal dimensions consistent with the TFT. The twinkling behavior was analyzed using a statistical autocorrelation function in conjunction with the apparent stretched exponential Kohlrausch-Williams-Watts relaxation function.

  6. Temperature range of the liquid-glass transition

    NASA Astrophysics Data System (ADS)

    Sanditov, D. S.; Darmaev, M. V.; Sanditov, B. D.

    2016-02-01

    It has been shown that the currently used method for calculating the temperature range of δ T g in the glass transition equation qτ g = δ T g as the difference δ T g = ( T 12- T 13) results in overestimated values, which is explained by the assumption of a constant activation energy of glass transition in deriving the calculation equation ( T 12 and T 13 are the temperatures corresponding to the logarithmic viscosity values of logη = 12 and logη = 13). The methods for the evaluation of δ T g using the Williams-Landel-Ferry equation and the model of delocalized atoms are considered, the results of which are in satisfactory agreement with the product qτ g ( q is the cooling rate of the melt and τ g is the structural relaxation time at the glass transition temperature). The calculation of τ g for inorganic glasses and amorphous organic polymers is proposed.

  7. From Gelation and Glass Transition of Colloidal Systems to Polymers

    NASA Astrophysics Data System (ADS)

    Han, Charles; Yuan, Guangcui; Cheng, He

    Charles C. Han, Guangcui Yuan and He Cheng Joint Laboratory of Polymer Science and Materials, ICCAS, Beijing, China and Institute for Advanced Study, Shenzhen University, Shenzhen, China Aggregation and gelation behavior of mixed suspensions of polystyrene microspheres and poly(N-isopropylacrylamide) microgels have been studied. In dilute microsphere suspensions, with increasing concentration of microgel (MG), microspheres (MS) first aggregated with each other through the bridging of the microgels, then dispersed individually when saturated adsorption was achieved, and finally depletion clusters formed at even higher concentrations of microgel. In concentrated microsphere suspensions, with saturated MG adsorption, a state transition from attractive glass to repulsive glass can be observed. This type of system can be viewed as a molecular model system which has a long range repulsive interaction potential and a short range attractive potential. A comparison between the glass transition of the colloidal systems and the glass transition of polymeric systems can be made.

  8. Transit Scratchitti Removal and Glass Resurfacing by Controlled Fire Polishing

    NASA Astrophysics Data System (ADS)

    Jun, Seongchan; Hong, Shane Y.

    Scratchitti vandalism, a new type of graffiti vandalism, in public transits systems and city neighborhood is a serious problem. To solve this problem, an innovative approach was developed-controlled fire polishing, which incorporates a technique of localized softening and surface tension. Intensive heat is positioned near to the scratch marks on the glass panel. The heat melts a thin layer of glass into liquid, changing the glass’s viscosity to a formable state. The glass is melted to a level close to the depth of the scratch, and allowed to cool down naturally. During the cooling process, the surface tension of the melted glass will even out the scratching indent. After cooling, the glass will be as even and smooth as it was originally. The process will enable the reuse of the damaged window/door and eliminate the otherwise waste by replacement new glass.

  9. Spin-glass transition of the three-dimensional Heisenberg spin glass.

    PubMed

    Campos, I; Cotallo-Aban, M; Martin-Mayor, V; Perez-Gaviro, S; Tarancon, A

    2006-11-24

    It is shown, by means of Monte Carlo simulation and finite size scaling analysis, that the Heisenberg spin glass undergoes a finite-temperature phase transition in three dimensions. There is a single critical temperature, at which both a spin glass and a chiral glass ordering develop. The Monte Carlo algorithm, adapted from lattice gauge theory simulations, makes it possible to thermalize lattices of size L = 32, larger than in any previous spin-glass simulation in three dimensions. High accuracy is reached thanks to the use of the Marenostrum supercomputer. The large range of system sizes studied allows us to consider scaling corrections.

  10. Slowdown of Interhelical Motions Induces a Glass Transition in RNA.

    PubMed

    Frank, Aaron T; Zhang, Qi; Al-Hashimi, Hashim M; Andricioaei, Ioan

    2015-06-16

    RNA function depends crucially on the details of its dynamics. The simplest RNA dynamical unit is a two-way interhelical junction. Here, for such a unit--the transactivation response RNA element--we present evidence from molecular dynamics simulations, supported by nuclear magnetic resonance relaxation experiments, for a dynamical transition near 230 K. This glass transition arises from the freezing out of collective interhelical motional modes. The motions, resolved with site-specificity, are dynamically heterogeneous and exhibit non-Arrhenius relaxation. The microscopic origin of the glass transition is a low-dimensional, slow manifold consisting largely of the Euler angles describing interhelical reorientation. Principal component analysis over a range of temperatures covering the glass transition shows that the abrupt slowdown of motion finds its explanation in a localization transition that traps probability density into several disconnected conformational pools over the low-dimensional energy landscape. Upon temperature increase, the probability density pools then flood a larger basin, akin to a lakes-to-sea transition. Simulations on transactivation response RNA are also used to backcalculate inelastic neutron scattering data that match previous inelastic neutron scattering measurements on larger and more complex RNA structures and which, upon normalization, give temperature-dependent fluctuation profiles that overlap onto a glass transition curve that is quasi-universal over a range of systems and techniques.

  11. A simple method for tuning the glass transition process in inorganic phosphate glasses

    NASA Astrophysics Data System (ADS)

    Fulchiron, René; Belyamani, Imane; Otaigbe, Joshua U.; Bounor-Legaré, Véronique

    2015-02-01

    The physical modification of glass transition temperature (Tg) and properties of materials via blending is a common practice in industry and academia and has a large economic advantage. In this context, simple production of hitherto unattainable new inorganic glass blends from already existing glass compositions via blending raises much hope with the potential to provide new glasses with new and improved properties, that cannot be achieved with classical glass synthesis, for a plethora of applications such as computers screens, glass-to-metal seals, and storage materials for nuclear wastes. Here, we demonstrate that blends of the specific glass compositions studied are miscible in all proportions, an unreported phenomenon in hard condensed matter like glass. Interestingly, excellent agreement was found between the obtained data and calculated Tgs from theoretical equations (Supplementary information) for predicting the composition dependence of Tg for miscible blends with weak but significant specific interactions between the blend components. That this blending method is at present not applied to inorganic glasses reflects the fact that water and chemically resistant phosphate glasses with relatively low Tgs have become available only recently.

  12. A simple method for tuning the glass transition process in inorganic phosphate glasses

    PubMed Central

    Fulchiron, René; Belyamani, Imane; Otaigbe, Joshua U.; Bounor-Legaré, Véronique

    2015-01-01

    The physical modification of glass transition temperature (Tg) and properties of materials via blending is a common practice in industry and academia and has a large economic advantage. In this context, simple production of hitherto unattainable new inorganic glass blends from already existing glass compositions via blending raises much hope with the potential to provide new glasses with new and improved properties, that cannot be achieved with classical glass synthesis, for a plethora of applications such as computers screens, glass-to-metal seals, and storage materials for nuclear wastes. Here, we demonstrate that blends of the specific glass compositions studied are miscible in all proportions, an unreported phenomenon in hard condensed matter like glass. Interestingly, excellent agreement was found between the obtained data and calculated Tgs from theoretical equations (Supplementary information) for predicting the composition dependence of Tg for miscible blends with weak but significant specific interactions between the blend components. That this blending method is at present not applied to inorganic glasses reflects the fact that water and chemically resistant phosphate glasses with relatively low Tgs have become available only recently. PMID:25666949

  13. Frustration in Vicinity of Transition Point of Ising Spin Glasses

    NASA Astrophysics Data System (ADS)

    Miyazaki, Ryoji

    2013-09-01

    We conjecture the existence of a relationship between frustration and the transition point at zero temperature of Ising spin glasses. The relation reveals that, in several Ising spin glass models, the concentration of ferromagnetic bonds is close to the critical concentration at zero temperature when the output of a function about frustration is equal to unity. The function is the derivative of the average number of frustrated plaquettes with respect to the average number of antiferromagnetic bonds. This relation is conjectured in Ising spin glasses with binary couplings on two-dimensional lattices, hierarchical lattices, and three-body Ising spin glasses with binary couplings on two-dimensional lattices. In addition, the same argument in the Sherrington--Kirkpatrick model yields a point that is identical to the replica-symmetric solution of the transition point at zero temperature.

  14. Glass transition of repulsive charged rods (fd-viruses).

    PubMed

    Kang, Kyongok

    2014-05-14

    It has recently been shown that suspensions of long and thin charged fibrous viruses (fd) form a glass at low ionic strengths. The corresponding thick electric double layers give rise to long-ranged repulsive electrostatic interactions, which lead to caging and structural arrest at concentrations far above the isotropic-nematic coexistence region. Structural arrest and freezing of the orientational texture are found to occur at the same concentration. In addition, various types of orientational textures are equilibrated below the glass transition concentration, ranging from a chiral-nematic texture with a large pitch (of about 100 μm), an X-pattern, and a tightly packed domain texture, consisting of helical domains with a relatively small pitch (of about 10 μm) and twisted boundaries. The dynamics of both particles as well as the texture are discussed, below and above the glass transition. Dynamic light scattering correlation functions exhibit two dynamical modes, where the slow mode is attributed to the elasticity of helical domains. On approach of the glass-transition concentration, the slow mode increases in amplitude, while as the amplitudes of the fast and slow mode become equal at the glass transition. Finally, interesting features of the "transient" behaviors of charged fd-rod glass are shown as the initial caging due to structural arrest, the propagation of flow originating from stress release, and the transition to the final metastable glass state. In addition to the intensity correlation function, power spectra are presented as a function of the waiting time, at the zero-frequency limit that may access to the thermal anomalities in a charged system.

  15. A universal reduced glass transition temperature for liquids

    NASA Technical Reports Server (NTRS)

    Fedors, R. F.

    1979-01-01

    Data on the dependence of the glass transition temperature on the molecular structure for low-molecular-weight liquids are analyzed in order to determine whether Boyer's reduced glass transition temperature (1952) is a universal constant as proposed. It is shown that the Boyer ratio varies widely depending on the chemical nature of the molecule. It is pointed out that a characteristic temperature ratio, defined by the ratio of the sum of the melting temperature and the boiling temperature to the sum of the glass transition temperature and the boiling temperature, is a universal constant independent of the molecular structure of the liquid. The average value of the ratio obtained from data for 65 liquids is 1.15.

  16. Fluorinated epoxy resins with high glass transition temperatures

    NASA Technical Reports Server (NTRS)

    Griffith, James R.

    1991-01-01

    Easily processed liquid resins of low dielectric constants and high glass transition temperatures are useful for the manufacture of certain composite electronic boards. That combination of properties is difficult to acquire when dielectric constants are below 2.5, glass transition temperatures are above 200 C and processability is of conventional practicality. A recently issued patent (US 4,981,941 of 1 Jan. 1991) teaches practical materials and is the culmination of 23 years of research and effort and 15 patents owned by the Navy in the field of fluorinated resins of several classes. In addition to high fluorine content, practical utility was emphasized.

  17. Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature

    SciTech Connect

    Zhao, K.; Xia, X. X.; Bai, H. Y.; Zhao, D. Q.; Wang, W. H.

    2011-04-04

    We report a high entropy metallic glass of Zn{sub 20}Ca{sub 20}Sr{sub 20}Yb{sub 20}(Li{sub 0.55}Mg{sub 0.45}){sub 20} via composition design that exhibiting remarkable homogeneous deformation without shear banding under stress at room temperature. The glass also shows properties such as low glass transition temperature (323 K) approaching room temperature, low density and high specific strength, good conductivity, polymerlike thermoplastic manufacturability, and ultralow elastic moduli comparable to that of bones. The alloy is thermally and chemically stable.

  18. Glass transition temperature and conductivity in Li2O and Na2O doped borophosphate glasses

    NASA Astrophysics Data System (ADS)

    Ashwajeet, J. S.; Sankarappa, T.; Ramanna, R.; Sujatha, T.; Awasthi, A. M.

    2015-08-01

    Two alkali doped Borophosphate glasses in the composition, (B2O3)0.2. (P2O5)0.3. (Na2O)(0.5-x). (Li2O)x, where x = 0.05 to 0.50 were prepared by standard melt quenching method at 1200K. Non-crystalline nature was confirmed by XRD studies. Room temperature density was measured by Archimedes principle. DC conductivity in the temperature range from 300K to 575K has been measured. Samples were DSC studied in the temperature range from 423K to 673K and glass transition temperature was determined. Glass transition temperature passed through minima for Li2O con.2centration between 0.25 and 0.30 mole fractions. Activation energy of conduction has been determined by analyzing temperature variation of conductivity determining Arrhenius law. Conductivity passed through minimum and activation passed through maximum for Li2O content from 0.25 to 0.30 mole fractions. Glass transition temperature passed through minimum for the same range of Li2O content. These results revealed mixed alkali effect taking place in these glasses. It is for the first time borophosphate glasses doped with Li2O and Na2O have been studied for density and dc conductivity and, the mixed alkali effect (MAE) has been observed.

  19. Apparent critical phenomena in the superionic phase transition of Cu2-xSe

    DOE PAGES

    Kang, Stephen Dongmin; Danilkin, Sergey A.; Aydemir, Umut; ...

    2016-01-11

    The superionic phase transition ofmore » $${\\mathrm{Cu}}_{2-x}\\mathrm{Se}$$ accompanies drastic changes in transport properties. The Seebeck coefficient increases sharply while the electrical conductivity and thermal diffusivity drops. Such behavior has previously been attributed to critical phenomena under the assumption of a continuous phase transition. However, applying Landau's criteria suggests that the transition should be first order. Using the phase diagram that is consistent with a first order transition, we show that the observed transport properties and heat capacity curves can be accounted for and modeled with good agreement. The apparent critical phenomena is shown to be a result of compositional degree-of-freedom. In conclusion, understanding of the phase transition allows to explain the enhancement in the thermoelectric figure-of-merit that is accompanied with the transition.« less

  20. Glass transition in binary eutectic systems: best glass-forming composition.

    PubMed

    Wang, Li-Min; Li, Zijing; Chen, Zeming; Zhao, Yue; Liu, Riping; Tian, Yongjun

    2010-09-23

    The glass transition and glass-forming ability in a binary eutectic system of methyl o-toluate (MOT) versus methyl p-toluate (MPT) are studied across the whole composition range. The phase diagram is constructed to explore the best glass-forming composition as the characteristic temperatures of the glass transition, crystallization, eutectic, and liquidus are determined. The best vitrification region is found to locate between the eutectic and the midpoint compositions of the eutectic line, indicating a remarkable deviation from the eutectic composition. The compilation of various simple binary eutectic systems covering inorganic, metallic, ionic, and molecular glass-forming liquids reproduces the rule. Kinetics and thermodynamics in binary systems are investigated to associate with the rule. The composition dependence of the structural relaxation time and the kinetic fragility are presented with dielectric measurements. It is found that whereas mixing of binary miscible liquids kinetically favors glass formation, thermodynamic contribution to the deviation of the best glass-forming composition from eutectics is implied.

  1. Importance of many-body correlations in glass transition: An example from polydisperse hard spheres

    NASA Astrophysics Data System (ADS)

    Leocmach, Mathieu; Russo, John; Tanaka, Hajime

    2013-03-01

    Most of the liquid-state theories, including glass-transition theories, are constructed on the basis of two-body density correlations. However, we have recently shown that many-body correlations, in particular, bond orientational correlations, play a key role in both the glass transition and the crystallization transition. Here we show, with numerical simulations of supercooled polydisperse hard spheres systems, that the length-scale associated with any two-point spatial correlation function does not increase toward the glass transition. A growing length-scale is instead revealed by considering many-body correlation functions, such as correlators of orientational order, which follows the length-scale of the dynamic heterogeneities. Despite the growing of crystal-like bond orientational order, we reveal that the stability against crystallization with increasing polydispersity is due to an increasing population of icosahedral arrangements of particles. Our results suggest that, for this type of systems, many-body correlations are a manifestation of the link between the vitrification and the crystallization phenomena. Whether a system is vitrified or crystallized can be controlled by the degree of frustration against crystallization, polydispersity in this case.

  2. Configurational entropy of polar glass formers and the effect of electric field on glass transition

    NASA Astrophysics Data System (ADS)

    Matyushov, Dmitry V.

    2016-07-01

    A model of low-temperature polar liquids is constructed that accounts for the configurational heat capacity, entropy, and the effect of a strong electric field on the glass transition. The model is based on the Padé-truncated perturbation expansions of the liquid state theory. Depending on parameters, it accommodates an ideal glass transition of vanishing configurational entropy and its avoidance, with a square-root divergent enumeration function at the point of its termination. A composite density-temperature parameter ργ/T, often used to represent combined pressure and temperature data, follows from the model. The theory is in good agreement with the experimental data for excess (over the crystal state) thermodynamics of molecular glass formers. We suggest that the Kauzmann entropy crisis might be a signature of vanishing configurational entropy of a subset of degrees of freedom, multipolar rotations in our model. This scenario has observable consequences: (i) a dynamical crossover of the relaxation time and (ii) the fragility index defined by the ratio of the excess heat capacity and excess entropy at the glass transition. The Kauzmann temperature of vanishing configurational entropy and the corresponding glass transition temperature shift upward when the electric field is applied. The temperature shift scales quadratically with the field strength.

  3. Effect of pressure on fragility and glass transition temperature in fragile glass-former

    NASA Astrophysics Data System (ADS)

    Paluch, M.; Hensel-Bielówka, S.; Zioło, J.

    1999-06-01

    This paper presents the effect of pressure on liquid fragility in poly(bisphenol A-co-epichlorohydrin), glycidyl end capped. On the basis of temperature dependences of dielectric relaxation times measured for several different pressures, the steepness or fragility index mT has been calculated. We proved that liquid fragility is independent of pressure within experimental error. The influence of pressure on glass transition temperature has also been studied. It turned out that pressure dependence of glass transition temperature is well represented by the second-order polynomial.

  4. Deformation, Stress Relaxation, and Crystallization of Lithium Silicate Glass Fibers Below the Glass Transition Temperature

    NASA Technical Reports Server (NTRS)

    Ray, Chandra S.; Brow, Richard K.; Kim, Cheol W.; Reis, Signo T.

    2004-01-01

    The deformation and crystallization of Li(sub 2)O (center dot) 2SiO2 and Li(sub 2)O (center dot) 1.6SiO2 glass fibers subjected to a bending stress were measured as a function of time over the temperature range -50 to -150 C below the glass transition temperature (Tg). The glass fibers can be permanently deformed at temperatures about 100 C below T (sub)g, and they crystallize significantly at temperatures close to, but below T,, about 150 C lower than the onset temperature for crystallization for these glasses in the no-stress condition. The crystallization was found to occur only on the surface of the glass fibers with no detectable difference in the extent of crystallization in tensile and compressive stress regions. The relaxation mechanism for fiber deformation can be best described by a stretched exponential (Kohlrausch-Williams-Watt (KWW) approximation), rather than a single exponential model.The activation energy for stress relaxation, Es, for the glass fibers ranges between 175 and 195 kJ/mol, which is considerably smaller than the activation energy for viscous flow, E, (about 400 kJ/mol) near T, for these glasses at normal, stress-free condition. It is suspected that a viscosity relaxation mechanism could be responsible for permanent deformation and crystallization of the glass fibers below T,

  5. Glass transition and crystallization kinetics of a barium borosilicate glass by a non-isothermal method

    SciTech Connect

    Lopes, Andreia A. S.; Soares, Roque S.; Lima, Maria M. A.; Monteiro, Regina C. C.

    2014-01-28

    The glass transition and crystallization kinetics of a glass with a molar composition 60BaO-30B{sub 2}O{sub 3}-10SiO{sub 2} were investigated by differential scanning calorimetry (DSC) under non-isothermal conditions. DSC curves exhibited an endothermic peak associated with the glass transition and two partially overlapped exothermic peaks associated with the crystallization of the glass. The dependence of the glass transition temperature (T{sub g}) and of the maximum crystallization temperature (T{sub p}) on the heating rate was used to determine the activation energy associated with the glass transition (E{sub g}), the activation energy for crystallization (E{sub c}), and the Avrami exponent (n). X-ray diffraction (XRD) revealed that barium borate (β-BaB{sub 2}O{sub 4}) was the first crystalline phase to be formed followed by the formation of barium silicate (Ba{sub 5}Si{sub 8}O{sub 21}). The variations of activation energy for crystallization and of Avrami exponent with the fraction of crystallization (χ) were also examined. When the crystallization fraction (χ) increased from 0.1 to 0.9, the value of local activation energy (E{sub c}(χ)) decreased from 554 to 458 kJ/mol for the first exothermic peak and from 1104 to 831 kJ/mol for the second exothermic peak. The value determined for the Avrami exponent was near 2 indicating a similar one-dimensional crystallization mechanism for both crystalline phases. This was confirmed by the morphological studies performed by scanning electron microscopy (SEM) on glass samples heat-treated at the first and at the second crystallization temperatures.

  6. Crystallization and glass transition of the diols and aminoalcohols, according to DSC data

    NASA Astrophysics Data System (ADS)

    Solonina, I. A.; Rodnikova, M. N.; Kiselev, M. P.; Khoroshilov, A. V.

    2015-05-01

    Overcooling, crystallization, and glass transition of the diol series and aminoalcohols which are the liquids with spatial hydrogen-bond networks, which are the along with the overcooling of dioxane, dimethylsulfoxide, and acetonitrile, which do not have such networks were studied by DSC. The observed phenomena are explained by the stability of H-bond networks. It was concluded that changes in the stability of the networks in and between series of diols and aminoalcohols are due to differences between their molecular structures, the energies of their hydrogen bonds, and their network topologies.

  7. Configurational entropy of binary hard-disk glasses: nonexistence of an ideal glass transition.

    PubMed

    Donev, Aleksandar; Stillinger, Frank H; Torquato, Salvatore

    2007-09-28

    We study the thermodynamics of a binary hard-disk mixture in which the ratio of disk diameters is kappa=1.4. We use a recently developed molecular dynamics algorithm to calculate the free-volume entropy of glassy configurations and obtain the configurational entropy (degeneracy) of the supercompressed liquid as a function of density. We find that the configurational entropy of the glasses near the kinetic glass transition is very close to the mixing entropy, suggesting that the degeneracy is zero only for the phase-separated crystal. We explicitly construct an exponential number of jammed packings with densities spanning the spectrum from the accepted "amorphous" glassy state to the phase-separated crystal, thus showing that there is no ideal glass transition in binary hard-disk mixtures. This construction also demonstrates that the ideal glass, defined as having zero configurational entropy, is not amorphous, but instead is nothing more than a phase-separated crystal. This critique of the presumed existence of an ideal glass parallels our previous critique of the idea that there is a most-dense random (close) packing for hard spheres [Torquato et al., Phys. Rev. Lett. 84, 2064 (2000)]. We also perform free-energy calculations to determine the equilibrium phase behavior of the system. The calculations predict a first-order freezing transition at a density below the kinetic glass transition. However, this transition appears to be strongly kinetically suppressed and is not observed directly. New simulation techniques are needed in order to gain a more complete understanding of the thermodynamic and kinetic behavior of the binary disk mixture and, in particular, of the demixing process during crystallization.

  8. The nature of the colloidal 'glass' transition.

    PubMed

    Dawson, Kenneth A; Lawlor, A; DeGregorio, Paolo; McCullagh, Gavin D; Zaccarelli, Emanuela; Foffi, Giuseppe; Tartaglia, Piero

    2003-01-01

    The dynamically arrested state of matter is discussed in the context of athermal systems, such as the hard sphere colloidal arrest. We believe that the singular dynamical behaviour near arrest expressed, for example, in how the diffusion constant vanishes may be 'universal', in a sense to be discussed in the paper. Based on this we argue the merits of studying the problem with simple lattice models. This, by analogy with the the critical point of the Ising model, should lead us to clarify the questions, and begin the program of establishing the degree of universality to be expected. We deal only with 'ideal' athermal dynamical arrest transitions, such as those found for hard sphere systems. However, it is argued that dynamically available volume (DAV) is the relevant order parameter of the transition, and that universal mechanisms may be well expressed in terms of DAV. For simple lattice models we give examples of simple laws that emerge near the dynamical arrest, emphasising the idea of a near-ideal gas of 'holes', interacting to give the power law diffusion constant scaling near the arrest. We also seek to open the discussion of the possibility of an underlying weak coupling theory of the dynamical arrest transition, based on DAV.

  9. Polaronic Transport in Phosphate Glasses Containing Transition Metal Ions

    NASA Astrophysics Data System (ADS)

    Henderson, Mark

    The goal of this dissertation is to characterize the basic transport properties of phosphate glasses containing various amounts of TIs and to identify and explain any electronic phase transitions which may occur. The P2 O5-V2O5-WO3 (PVW) glass system will be analyzed to find the effect of TI concentration on conduction. In addition, the effect of the relative concentrations of network forming ions (SiO2 and P2O5) on transport will be studied in the P2O5-SiO2-Fe2O 3 (PSF) system. Also presented is a numerical study on a tight-binding model adapted for the purposes of modelling Gaussian traps, mimicking TI's, which are arranged in an extended network. The results of this project will contribute to the development of fundamental theories on the electronic transport in glasses containing mixtures of transition oxides as well as those containing multiple network formers without discernible phase separation. The present study on the PVW follows up on previous investigation into the effect on mixed transition ions in oxide glasses. Past research has focused on glasses containing transition metal ions from the 3d row. The inclusion of tungsten, a 5d transition metal, adds a layer of complexity through the mismatch of the energies of the orbitals contributing to localized states. The data have indicated that a transition reminiscent of a metal-insulator transition (MIT) occurs in this system as the concentration of tungsten increases. As opposed to some other MIT-like transitions found in phosphate glass systems, there seems to be no polaron to bipolaron conversion. Instead, the individual localization parameter for tungsten noticeably decreases dramatically at the transition point as well as the adiabaticity. Another distinctive feature of this project is the study of the PSF system, which contains two true network formers, phosphorous pentoxide (P2O 5) and silicon dioxide (SiO2). It is not usually possible to do a reliable investigation of the conduction properties of

  10. Investigation of low glass transition temperature on COTS PEM's reliability for space applications

    NASA Technical Reports Server (NTRS)

    Sandor, M.; Agarwal, S.; Peters, D.; Cooper, M. S.

    2003-01-01

    Plastic Encapsulated Microelectronics (PEM) reliability is affected by many factors. Glass transition temperature (Tg) is one such factor. In this presentation issues relating to PEM reliability and the effect of low glass transition temperature epoxy mold compounds are presented.

  11. Thermodynamics of viscous flow and elasticity of glass forming liquids in the glass transition range.

    PubMed

    Rouxel, T

    2011-11-14

    The elastic moduli of glasses from different chemical systems, including oxide, chalcogenide, oxynitride, and metallic, were investigated through the glass transition (T(g)), typically from 0.4 to 1.3 T(g). These data were used to interpret the temperature sensitivity of the shear viscosity coefficient obtained on the same materials. The relevant Gibbs free activation energy was estimated from the apparent heat of flow by means of the temperature dependence of the shear elastic modulus. The activation entropy associated with the viscous flow was also derived and was found to correlate with the fragile versus strong character of the glass forming liquids. Finally, the physicochemistry of the flow process was described on the basis of the glass network de-structuration which shows up through the temperature dependence of Poisson's ratio, and an expression for the shear viscosity coefficient is proposed which is chiefly based on the high temperature elastic behavior.

  12. Thermodynamics of viscous flow and elasticity of glass forming liquids in the glass transition range

    NASA Astrophysics Data System (ADS)

    Rouxel, T.

    2011-11-01

    The elastic moduli of glasses from different chemical systems, including oxide, chalcogenide, oxynitride, and metallic, were investigated through the glass transition (Tg), typically from 0.4 to 1.3 Tg. These data were used to interpret the temperature sensitivity of the shear viscosity coefficient obtained on the same materials. The relevant Gibbs free activation energy was estimated from the apparent heat of flow by means of the temperature dependence of the shear elastic modulus. The activation entropy associated with the viscous flow was also derived and was found to correlate with the fragile versus strong character of the glass forming liquids. Finally, the physicochemistry of the flow process was described on the basis of the glass network de-structuration which shows up through the temperature dependence of Poisson's ratio, and an expression for the shear viscosity coefficient is proposed which is chiefly based on the high temperature elastic behavior.

  13. Evidence for Glass and Spin-Glass Phase Transitions From the Dynamic Susceptibility

    PubMed Central

    Bitko, D.; Coppersmith, S. N.; Leheny, R. L.; Menon, N.; Nagel, S. R.; Rosenbaum, T. F.

    1997-01-01

    We present evidence that there is a phase transition, with a diverging static susceptibility, underlying the transformation of a liquid into a glass. The dielectric susceptibility, at frequencies above its characteristic value, shows a power-law tail extending over many decades to higher frequencies. An extrapolation of this behavior to the temperature where the dynamics becomes arrested indicates a diverging susceptibility. We present evidence for analogous behavior in the magnetic susceptibility of a paramagnet approaching the spin-glass transition. The similarity of the response in these two glassy systems suggests that some conventional lore, such as that the spin glass shows evidence for a diverging correlation length only in a nonlinear but not in the linear susceptibility, may be invalid. PMID:27805138

  14. Glass transition temperature of bulk metallic glasses: A linear connection with the mixing enthalpy

    NASA Astrophysics Data System (ADS)

    Li, Xuelian; Bian, Xiufang; Hu, Lina; Wu, Yuqin; Guo, Jing; Zhang, Junyan

    2007-05-01

    A linear relationship is found between the glass transition temperature Tg and the absolute value of the mixing enthalpy, |ΔHchem|, for bulk metallic glass systems. The increasing (or lowering) of Tg with an admixture of metals or other elements manifests itself in the larger (or smaller) of |ΔHchem| in a given system. The results indicate that the composition dependence of Tg results from the change of excess entropy (Sex) during thermal excitation. The |ΔHchem|, which relates to the strength of interaction among different atoms, corresponds to part of the Sex at Tg [Sex(Tg)]. The glass transition temperatures for Cu-Zr (Hf)-, Zr-Cu-, and La-Al-based glassy alloys are correlated with the interaction intensity between their based binary eutectic compositions, respectively.

  15. Application of liquid dynamics theory to the glass transition.

    PubMed

    Wallace, D C

    1999-12-01

    In monatomic liquid dynamics theory, the system moves among a large number of intersecting nearly harmonic valleys in the many-particle potential energy surface. The same potential surface underlies the motion of atoms in the supercooled liquid. As temperature is decreased below the melting temperature, the motion among the potential valleys will begin to freeze out, and the system will pass out of equilibrium. It is therefore necessary to develop a nonequilibrium theory, based on the Hamiltonian motion. The motion is separated into two distinct parts, and idealized as follows: (a) the vibrational motion within a single valley is assumed to be purely harmonic, and remaining in equilibrium; and (b) the transit motion, which carries the system from one valley to another, is assumed to be instantaneous, and energy and momentum conserving. This idealized system is capable of exhibiting a glass transition behavior. An elementary model, incorporating the idealized motion, is the independent atom model, originally developed to treat self diffusion in monatomic liquids. For supercooled liquids, in the independent atom model, the vanishing of self diffusion at a finite temperature implies the same property for the transit probability. The vanishing of the transit probability at a finite temperature supports the view that transits are not merely thermally activated, but are controlled by phase-space correlations. For supercooled liquid sodium, the transit probability has Vogel-Tamann-Fulcher temperature dependence. The independent atom model is shown to be capable of exhibiting all the essential glass transition properties, including rate dependence of the glass transition temperature, and both exponential and nonexponential relaxation.

  16. Glass transition temperatures in nanoscale equilibrated polystyrene droplets

    NASA Astrophysics Data System (ADS)

    Daley, Chad; Forrest, James

    2013-03-01

    Measurements of thin film glass transition temperature (Tg) in thin polymer films are only made possible through the metastability of the film with respect to dewetting. Even in the melt state, such samples are not in thermal equilibrium, and resulting Tg values may not be conclusive. In this talk we discuss recent measurements of Tg for equilibrium polystyrene droplets on silicon substrates as measured through their thermal expansion with true non-contact atomic force microscopy. These measurements show promise to not only definitively address the continuing controversy surrounding thin film Tg measurements, but are also readily applied to study non-polymeric glass formers.

  17. Role of Quantum Effects in the GlassTransition.

    SciTech Connect

    Novikov, Vladimir; Sokolov, Alexei P

    2013-01-01

    It is shown that quantum effects lead to a significant decrease of the glass transition temperature Tg with respect to the melting temperature Tm, so that the ratio Tg=Tm can be much smaller than the typical value of 2=3 in materials where Tg is near or below 60 K. Furthermore, it is demonstrated that the viscosity or structural relaxation time in such low temperature glass formers should exhibit highly unusual temperature dependence, namely a decrease of the apparent activation energy upon approaching Tg (instead of traditional increase).

  18. Multiple glass transitions and freezing events of aqueous citric acid.

    PubMed

    Bogdan, Anatoli; Molina, Mario J; Tenhu, Heikki; Loerting, Thomas

    2015-05-14

    Calorimetric and optical cryo-microscope measurements of 10-64 wt % citric acid (CA) solutions subjected to moderate (3 K/min) and slow (0.5 and 0.1 K/min) cooling/warming rates and also to quenching/moderate warming between 320 and 133 K are presented. Depending on solution concentration and cooling rate, the obtained thermograms show one freezing event and from one to three liquid-glass transitions upon cooling and from one to six liquid-glass and reverse glass-liquid transitions, one or two freezing events, and one melting event upon warming of frozen/glassy CA/H2O. The multiple freezing events and glass transitions pertain to the mother CA/H2O solution itself and two freeze-concentrated solution regions, FCS1 and FCS2, of different concentrations. The FCS1 and FCS2 (or FCS22) are formed during the freezing of CA/H2O upon cooling and/or during the freezing upon warming of partly glassy or entirely glassy mother CA/H2O. The formation of two FCS1 and FCS22 regions during the freezing upon warming to our best knowledge has never been reported before. Using an optical cryo-microscope, we are able to observe the formation of a continuous ice framework (IF) and its morphology and reciprocal distribution of IF/(FCS1 + FCS2). Our results provide a new look at the freezing and glass transition behavior of aqueous solutions and can be used for the optimization of lyophilization and freezing of foods and biopharmaceutical formulations, among many other applications where freezing plays a crucial role.

  19. Low-frequency optical dielectric response and rigidity transitions in network glasses

    SciTech Connect

    Gonzalez-Leal, J. M.; Angel, J. A.; Marquez, E.; Jimenez-Garay, R.; Krecmer, P.

    2006-11-15

    Self-organization occurring in As{sub x}S{sub 1-x} and As{sub x}Se{sub 1-x} glass alloy films reflects in their low-frequency optical dielectric response, and valuable information about the building blocks conforming their structure, can be derived from the analysis of the refractive-index dispersion data. The experimental results are discussed in the framework of the single-oscillator approach proposed by Wemple and DiDomenico, which provides a meaningful parametrization of the phenomena ruling the coupling between the photon-probe and the electron plasma in the near-infrared spectral region. Rigidity transitions occurring in both binary glassy systems are discussed in terms of the differences observed in the oscillator parameters, and these electronic evidences are linked to those arguments found in the literature, based on calorimetric and Raman measurements, that point to a segregated-phase view of glass materials.

  20. Instantaneous Normal Modes and the Protein Glass Transition

    SciTech Connect

    Schultz, Roland; Krishnan, Marimuthu; Daidone, Isabella; Smith, Jeremy C

    2009-01-01

    In the instantaneous normal mode method, normal mode analysis is performed at instantaneous configurations of a condensed-phase system, leading to modes with negative eigenvalues. These negative modes provide a means of characterizing local anharmonicities of the potential energy surface. Here, we apply instantaneous normal mode to analyze temperature-dependent diffusive dynamics in molecular dynamics simulations of a small protein (a scorpion toxin). Those characteristics of the negative modes are determined that correlate with the dynamical (or glass) transition behavior of the protein, as manifested as an increase in the gradient with T of the average atomic mean-square displacement at 220 K. The number of negative eigenvalues shows no transition with temperature. Further, although filtering the negative modes to retain only those with eigenvectors corresponding to double-well potentials does reveal a transition in the hydration water, again, no transition in the protein is seen. However, additional filtering of the protein double-well modes, so as to retain only those that, on energy minimization, escape to different regions of configurational space, finally leads to clear protein dynamical transition behavior. Partial minimization of instantaneous configurations is also found to remove nondiffusive imaginary modes. In summary, examination of the form of negative instantaneous normal modes is shown to furnish a physical picture of local diffusive dynamics accompanying the protein glass transition.

  1. Correlation between average melting temperature and glass transition temperature in metallic glasses

    NASA Astrophysics Data System (ADS)

    Lu, Zhibin; Li, Jiangong

    2009-02-01

    The correlation between average melting temperature (⟨Tm⟩) and glass transition temperature (Tg) in metallic glasses (MGs) is analyzed. A linear relationship, Tg=0.385⟨Tm⟩, is observed. This correlation agrees with Egami's suggestion [Rep. Prog. Phys. 47, 1601 (1984)]. The prediction of Tg from ⟨Tm⟩ through the relationship Tg=0.385⟨Tm⟩ has been tested using experimental data obtained on a large number of MGs. This relationship can be used to predict and design MGs with a desired Tg.

  2. Stability analysis of IV-V-VI chalcogenide glasses using glass transition and crystallization temperature

    NASA Astrophysics Data System (ADS)

    Sharma, Neha; Sharda, Sunanda; Sharma, Vineet; Sharma, Pankaj

    2013-06-01

    Selenium based chalcogenide glasses are attractive candidates for IR devices due to their low transmission loss. Thermal studies for Ge19Se81-xSbx (x = 0, 4, 8, 12, 16, 17.2, 20) have been carried out using differential thermal analysis. Glass transition temperature has been calculated using Tanaka's relation. Marseglia's and Ozawa's methods have been used for the calculation of activation energy for crystallization. Effect of Sb addition on GeSe base system shows that resistance to devitrification increases up to x = 17.2.

  3. Ductile-to-brittle transition in spallation of metallic glasses

    SciTech Connect

    Huang, X.; Ling, Z.; Dai, L. H.

    2014-10-14

    In this paper, the spallation behavior of a binary metallic glass Cu{sub 50}Zr{sub 50} is investigated with molecular dynamics simulations. With increasing the impact velocity, micro-voids induced by tensile pulses become smaller and more concentrated. The phenomenon suggests a ductile-to-brittle transition during the spallation process. Further investigation indicates that the transition is controlled by the interaction between void nucleation and growth, which can be regarded as a competition between tension transformation zones (TTZs) and shear transformation zones (STZs) at atomic scale. As impact velocities become higher, the stress amplitude and temperature rise in the spall region increase and micro-structures of the material become more unstable. Therefore, TTZs are prone to activation in metallic glasses, leading to a brittle behavior during the spallation process.

  4. Protein's unfolding and the glass transition: a common thermodynamic signature.

    NASA Astrophysics Data System (ADS)

    Olivares-Quiroz, L.; Garcia-Colin, L. S.

    2008-02-01

    Recently, it has been recognized that protein's folding and unfolding mechanisms exhibit a wide range of common features with the glass transition observed in supercooled organic and inorganic liquids. Such similarities range from pure thermodynamic aspects such an anomalous ΔCp and a substantial entropy decrease ΔS<0, to strictly kinetic aspects as the existence of an excess of vibrational modes at low frequencies (bosonic peak) revealed by Raman and neutron scattering experiments. In this work, we discuss both the experimental and theoretical facts that might enable an extrapolation of the Adam-Gibbs scheme for the standard glass transition to describe the relaxation time τ as function of temperature T in biological macromolecules' unfolding.

  5. Lost transparency! Weathering phenomena on the archaeological window glass collection of the Cistercian Abbey of the Dunes - Koksijde (Belgium)

    NASA Astrophysics Data System (ADS)

    Wouters, Hilde; Nuyts, Gert; Cagno, Simone; Minten, Nicole; Meulebroeck, Wendy; Baert, Kitty; Terryn, Herman; Janssens, Koen; Thienpont, Hugo; Nys, Karin

    As far as Belgium and archaeological window glass is concerned, the most important site is the Dunes Abbey, a former Cistercian abbey near the Flemish coastline. The collection contains approximately 15,000 fragments dating from the 13th to the 16th century. This glass was exposed to atmospheric weathering while in situ for several hundred years, buried for up to 400 years, excavated by different individual excavators in different eras and for over half a century stored in uncontrolled conditions. Moreover, different conservation treatments have been applied to the glass. Due to this, the collection was in a friable condition and we assume half of it has already been completely lost. The remaining collection retains fragments whose condition ranges between almost perfectly preserved material to being completely weathered to the point that no original glass survives. In this research, an important asset is recognizing what has already been lost and maximizing what is still available. During recent conservation and stock making campaigns, the different weathering phenomena were separated into 9 groups based on empirical criteria and detailed registration. As a first step to further investigation of the weathering processes, quantitative SEM-EDX analyses are used to give better insight into the chemical composition of these groups. The aim is to bridge the gap between interpretative archaeologically and archaeological science and to develop a common terminology to evaluate the complexity of weathering phenomena in archaeological window glass collections which can be used as a tool for the assembling and interpretation of these collections.

  6. Vibrational Excitations in Glasses — B. Vibrational Excitations in Glasses: Rigidity Transition and Lamb-Mössbauer Factors

    NASA Astrophysics Data System (ADS)

    Boolchand, P.

    The following sections are included: * Glass Forming Tendency and Rigidity Transition * Vibrational Density of States and Lamb-Mössbauer Factors * Experimental Considerations * Mössbauer spectrometer * Measurements of Lamb-Mössbauer factors * 119Sn Lamb-Mössbauer Factors and Nanophase Separation in GeSe2 Glass * Rigidity Transition and Lamb-Mössbauer Factors in Glasses * Chalcogenides * GexSe1-x * GexTe1-x * Oxide glasses * (Na2O)x(TeO2)1-x * Complementary Probes of Rigidity Transition * Temperature modulated differential scanning calorimetry * Raman scattering * Mössbauer hyperfine structure * Conclusions and Future Work * Acknowledgments * References

  7. Noise as a Probe of Ising Spin Glass Transitions

    NASA Astrophysics Data System (ADS)

    Chen, Zhi; Yu, Clare

    2009-03-01

    Noise is ubiquitous and and is often viewed as a nuisance. However, we propose that noise can be used as a probe of the fluctuations of microscopic entities, especially in the vicinity of a phase transition. In recent work we have used simulations to show that the noise increases in the vicinity of phase transitions of ordered systems. We have recently turned our attention to noise near the phase transitions of disordered systems. In particular, we are studying the noise near Ising spin glass transitions using Monte Carlo simulations. We monitor the system as a function of temperature. At each temperature, we obtain the time series of quantities characterizing the properties of the system, i.e., the energy and magnetization. We look at different quantities, such as the noise power spectrum and the second spectrum of the noise, to analyze the fluctuations.

  8. Energy Transfer between Post-Transition Elements & Rare Earths in Oxide & Chalcogenide Glasses.

    DTIC Science & Technology

    1979-08-27

    narrow- 37 line excitation F. Optical transitions of Sm3+ in oxide glasses 41 G. Energy transfer from U i+ to Sm3+ in phosphate glass 45 H. Transition...probabilities of europium(III) in zirconium 50 and beryllium fluoride glasses, phosphate glass and pentaphosphate crystals I. Multiphonon relaxation in...in phosphate , borate, germa- nate and tellurite glasses. The level fluorescent lifetime was derived from these rates and from the calculated radiative

  9. Motility-Driven Glass and Jamming Transitions in Biological Tissues

    NASA Astrophysics Data System (ADS)

    Bi, Dapeng; Yang, Xingbo; Marchetti, M. Cristina; Manning, M. Lisa

    2016-04-01

    Cell motion inside dense tissues governs many biological processes, including embryonic development and cancer metastasis, and recent experiments suggest that these tissues exhibit collective glassy behavior. To make quantitative predictions about glass transitions in tissues, we study a self-propelled Voronoi model that simultaneously captures polarized cell motility and multibody cell-cell interactions in a confluent tissue, where there are no gaps between cells. We demonstrate that the model exhibits a jamming transition from a solidlike state to a fluidlike state that is controlled by three parameters: the single-cell motile speed, the persistence time of single-cell tracks, and a target shape index that characterizes the competition between cell-cell adhesion and cortical tension. In contrast to traditional particulate glasses, we are able to identify an experimentally accessible structural order parameter that specifies the entire jamming surface as a function of model parameters. We demonstrate that a continuum soft glassy rheology model precisely captures this transition in the limit of small persistence times and explain how it fails in the limit of large persistence times. These results provide a framework for understanding the collective solid-to-liquid transitions that have been observed in embryonic development and cancer progression, which may be associated with epithelial-to-mesenchymal transition in these tissues.

  10. The glass-liquid transition of water on hydrophobic surfaces.

    PubMed

    Souda, Ryutaro

    2008-09-28

    Interactions of thin water films with surfaces of graphite and vitrified room-temperature ionic liquid [1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)])] were investigated using time-of-flight secondary ion mass spectrometry as a function of temperature and annealing time to elucidate the glass-liquid transition of water at the molecular level. Surface diffusion of water occurs at temperatures higher than 120 K, thereby forming three-dimensional clusters (a two-dimensional layer) on the [bmim][PF(6)] (graphite) surface. The hydrophobic effect of the surface decreases with increasing coverage of water; the bulklike properties evolve up to 40 ML, as evidenced by the occurrence of film dewetting at around the conventional glass transition temperature (140 K). Results also showed that aging is necessary for the water monolayer (a 40 ML water film) to dewet the graphite ([bmim][PF(6)]) surface. The occurrence of aging is explainable by the successive evolution of two distinct liquids during the glass-liquid transition: low density liquid is followed by supercooled liquid water. The water monolayer on graphite is characterized by the preferred orientation of unpaired OH groups toward the surface; this structure is arrested during the aging time despite the occurrence of surface diffusion. However, the water monolayer formed on the [bmim][PF(6)] surface agglomerates immediately after the commencement of surface diffusion. The structure of low density liquid tends to be arrested by the attractive interaction with the neighbors.

  11. Dynamical and structural signatures of the glass transition in emulsions

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Gnan, Nicoletta; Mason, Thomas G.; Zaccarelli, Emanuela; Scheffold, Frank

    2016-09-01

    We investigate structural and dynamical properties of moderately polydisperse emulsions across an extended range of droplet volume fractions ϕ, encompassing fluid and glassy states up to jamming. Combining experiments and simulations, we show that when ϕ approaches the glass transition volume fraction {φg} , dynamical heterogeneities and amorphous order arise within the emulsion. In particular, we find an increasing number of clusters of particles having five-fold symmetry (i.e. the so-called locally favoured structures, LFS) as ϕ approaches {φg} , saturating to a roughly constant value in the glassy regime. However, contrary to previous studies, we do not observe a corresponding growth of medium-range crystalline order; instead, the emergence of LFS is decoupled from the appearance of more ordered regions in our system. We also find that the static correlation lengths associated with the LFS and with the fastest particles can be successfully related to the relaxation time of the system. By contrast, this does not hold for the length associated with the orientational order. Our study reveals the existence of a link between dynamics and structure close to the glass transition even in the absence of crystalline precursors or crystallization. Furthermore, the quantitative agreement between our confocal microscopy experiments and Brownian dynamics simulations indicates that emulsions are and will continue to be important model systems for the investigation of the glass transition and beyond.

  12. Glass transition dynamics of stacked thin polymer films

    NASA Astrophysics Data System (ADS)

    Fukao, Koji; Terasawa, Takehide; Oda, Yuto; Nakamura, Kenji; Tahara, Daisuke

    2011-10-01

    The glass transition dynamics of stacked thin films of polystyrene and poly(2-chlorostyrene) were investigated using differential scanning calorimetry and dielectric relaxation spectroscopy. The glass transition temperature Tg of as-stacked thin polystyrene films has a strong depression from that of the bulk samples. However, after annealing at high temperatures above Tg, the stacked thin films exhibit glass transition at a temperature almost equal to the Tg of the bulk system. The α-process dynamics of stacked thin films of poly(2-chlorostyrene) show a time evolution from single-thin-film-like dynamics to bulk-like dynamics during the isothermal annealing process. The relaxation rate of the α process becomes smaller with increase in the annealing time. The time scale for the evolution of the α dynamics during the annealing process is very long compared with that for the reptation dynamics. At the same time, the temperature dependence of the relaxation time for the α process changes from Arrhenius-like to Vogel-Fulcher-Tammann dependence with increase of the annealing time. The fragility index increases and the distribution of the α-relaxation times becomes smaller with increase in the annealing time for isothermal annealing. The observed change in the α process is discussed with respect to the interfacial interaction between the thin layers of stacked thin polymer films.

  13. Glass transitions in nanoscale heated volumes of thin polystyrene films

    NASA Astrophysics Data System (ADS)

    Li, Alex G.; Burggraf, Larry W.

    2010-12-01

    Glass transitions in confined polystyrene films on a silicon substrate were studied using atomic force microscopy incorporating a thermal tip. Three-dimensional spatial nanoconfinements were achieved by controlling size and boundary conditions of small heated volumes of polymer nanostrands drawn from the polymer surface with the thermal tip, using appropriate loads and temperatures at the tip-polymer contact. Finite element analysis was performed to model mechanical contact and thermal transport, including the effects of contact radius, film thickness, and load on temperature and pressure distributions in the confined volume at the contact. The glass transition temperature (Tg) was measured by observing the softening of polymers with increasing temperature. The measured surface Tg exhibited a strong size dependence, while the subsurface Tg increased with decreasing the distance to the substrate. A large increase in the surface Tg was observed when the radius of contact was reduced below about 10 nm. The increase in the glass transition temperature at the surface was attributed to the presence of surface and line tension at the nanometer contact, while the enhanced Tg near the substrate was attributed to the pinning effects that reduces the mobility of the polymer molecules in the film over several hundreds of nanometers away from the polymer-substrate interface.

  14. Simple solvable energy-landscape model that shows a thermodynamic phase transition and a glass transition.

    PubMed

    Naumis, Gerardo G

    2012-06-01

    When a liquid melt is cooled, a glass or phase transition can be obtained depending on the cooling rate. Yet, this behavior has not been clearly captured in energy-landscape models. Here, a model is provided in which two key ingredients are considered in the landscape, metastable states and their multiplicity. Metastable states are considered as in two level system models. However, their multiplicity and topology allows a phase transition in the thermodynamic limit for slow cooling, while a transition to the glass is obtained for fast cooling. By solving the corresponding master equation, the minimal speed of cooling required to produce the glass is obtained as a function of the distribution of metastable states.

  15. Predicting bioactive glass properties from the molecular chemical composition: glass transition temperature.

    PubMed

    O'Donnell, Matthew D

    2011-05-01

    The glass transition temperature (T(g)) of inorganic glasses is an important parameter than can be used to correlate with other glass properties, such as dissolution rate, which governs in vitro and in vivo bioactivity. Seven bioactive glass compositional series reported in the literature (77 in total) were analysed here with T(g) values obtained by a number of different methods: differential thermal analysis, differential scanning calorimetry and dilatometry. An iterative least-squares fitting method was used to correlate T(g) from thermal analysis of these compositions with the levels of individual oxide and fluoride components in the glasses. When all seven series were fitted a reasonable correlation was found between calculated and experimental values (R(2)=0.89). When the two compositional series that were designed in weight percentages (the remaining five were designed in molar percentage) were removed from the model an improved fit was achieved (R(2)=0.97). This study shows that T(g) for a wide range in compositions (e.g. SiO(2) content of 37.3-68.4 mol.%) can be predicted to reasonable accuracy enabling processing parameters to be predicted such as annealing, fibre-drawing and sintering temperatures.

  16. First-principles computation of random-pinning glass transition, glass cooperative length scales, and numerical comparisons

    NASA Astrophysics Data System (ADS)

    Cammarota, Chiara; Seoane, Beatriz

    2016-11-01

    As a guideline for experimental tests of the ideal glass transition (random-pinning glass transition, RPGT) that shall be induced in a system by randomly pinning particles, we performed first-principle computations within the hypernetted chain approximation and numerical simulations of a hard-sphere model of a glass former. We obtain confirmation of the expected enhancement of glassy behavior under the procedure of random pinning. We present the analytical phase diagram as a function of c and of the packing fraction ϕ , showing a line of RPGT ending in a critical point. We also obtain microscopic results on cooperative length scales characterizing medium-range amorphous order in hard-sphere glasses and indirect quantitative information on a key thermodynamic quantity defined in proximity to ideal glass transitions, the amorphous surface tension. Finally, we present numerical results of pair correlation functions able to differentiate the liquid and the glass phases, as predicted by the analytic computations.

  17. Raman scattering boson peak and differential scanning calorimetry studies of the glass transition in tellurium-zinc oxide glasses.

    PubMed

    Stavrou, E; Tsiantos, C; Tsopouridou, R D; Kripotou, S; Kontos, A G; Raptis, C; Capoen, B; Bouazaoui, M; Turrell, S; Khatir, S

    2010-05-19

    Raman scattering and differential scanning calorimetry (DSC) measurements have been carried out on four mixed tellurium-zinc oxide (TeO(2))(1 - x)(ZnO)(x) (x = 0.1, 0.2, 0.3, 0.4) glasses under variable temperature, with particular attention being given to the respective glass transition region. From the DSC measurements, the glass transition temperature T(g) has been determined for each glass, showing a monotonous decrease of T(g) with increasing ZnO content. The Raman study is focused on the low-frequency band of the glasses, the so-called boson peak (BP), whose frequency undergoes an abrupt decrease at a temperature T(d) very close to the respective T(g) values obtained by DSC. These results show that the BP is highly sensitive to dynamical effects over the glass transition and provides a means for an equally reliable (to DSC) determination of T(g) in tellurite glasses and other network glasses. The discontinuous temperature dependence of the BP frequency at the glass transition, along with the absence of such a behaviour by the high-frequency Raman bands (due to local atomic vibrations), indicates that marked changes of the medium range order (MRO) occur at T(g) and confirms the correlation between the BP and the MRO of glasses.

  18. The old problems of glass and the glass transition, and the many new twists.

    PubMed Central

    Angell, C A

    1995-01-01

    In this paper I review the ways in which the glassy state is obtained both in nature and in materials science and highlight a "new twist"--the recent recognition of polymorphism within the glassy state. The formation of glass by continuous cooling (viscous slowdown) is then examined, the strong/fragile liquids classification is reviewed, and a new twist-the possibility that the slowdown is a result of an avoided critical point-is noted. The three canonical characteristics of relaxing liquids are correlated through the fragility. As a further new twist, the conversion of strong liquids to fragile liquids by pressure-induced coordination number increases is demonstrated. It is then shown that, for comparable systems, it is possible to have the same conversion accomplished via a first-order transition within the liquid state during quenching. This occurs in the systems in which "polyamorphism" (polymorphism in the glassy state) is observed, and the whole phenomenology is accounted for by Poole's bond-modified van der Waals model. The sudden loss of some liquid degrees of freedom through such weak first-order transitions is then related to the polyamorphic transition between native and denatured hydrated proteins, since the latter are also glass-forming systems--water-plasticized, hydrogen bond-cross-linked chain polymers (and single molecule glass formers). The circle is closed with a final new twist by noting that a short time scale phenomenon much studied by protein physicists-namely, the onset of a sharp change in d/dT ( is the Debye-Waller factor)--is general for glass-forming liquids, including computer-simulated strong and fragile ionic liquids, and is closely correlated with the experimental glass transition temperature. The latter thus originates in strong anharmonicity in certain components of the vibrational density of states, which permits the system to access the multiple minima of its configuration space. The connection between the anharmonicity

  19. Dynamic thermal expansivity of liquids near the glass transition.

    PubMed

    Niss, Kristine; Gundermann, Ditte; Christensen, Tage; Dyre, Jeppe C

    2012-04-01

    Based on previous works on polymers by Bauer et al. [Phys. Rev. E 61, 1755 (2000)], this paper describes a capacitative method for measuring the dynamical expansion coefficient of a viscous liquid. Data are presented for the glass-forming liquid tetramethyl tetraphenyl trisiloxane (DC704) in the ultraviscous regime. Compared to the method of Bauer et al., the dynamical range has been extended by making time-domain experiments and by making very small and fast temperature steps. The modeling of the experiment presented in this paper includes the situation in which the capacitor is not full because the liquid contracts when cooling from room temperature down to around the glass-transition temperature, which is relevant when measuring on a molecular liquid rather than a polymer.

  20. Single-particle dynamics near the glass transition of a metallic glass

    NASA Astrophysics Data System (ADS)

    Lü, Y. J.; Wang, W. H.

    2016-12-01

    The single-particle dynamics of the glass-forming C u50Z r50 alloy, from the supercooled liquid well above the glass-transition temperature, Tg to the glassy state, is studied by using the molecular dynamics simulations. When the liquid is cooled below 1.2 Tg , the dynamics heterogeneity characterized by the cage-jump motion becomes increasingly pronounced. The analyses based on the continuous time random walk method indicate that the liquid falls out of equilibrium in the present simulation time scale when it is cooled into the regime below 1.02 Tg . However, we find that the jump length and the jump rate do not display the non-equilibrium behaviors even in the glassy state below Tg, which allows us to study the intrinsic dynamic characteristics through Tg. The mean waiting time between two successive jumps has a rapid growth following the Vogel-Fulcher-Tammann law as the non-equilibrium regime is approached, in analogy with the temperature behaviors of transport properties for fragile supercooled liquids. In contrast, the jump rate maintains the Arrhenius decay and the jump length has even a weaker temperature dependence when the liquid is cooled into glassy state. We find that a pronounced enhancement of the spatial correlation of jumps occurs accompanied by the glass transition: the string-like cooperative jumps dominate the fast motion instead of the uncorrelated and individual jumps. Our work offers an insight into the equilibrium effect of the single-particle dynamics in glass transition.

  1. Pressure Dependence of the Glass Transition Temperature in the Fragile Glass Former Cumene

    NASA Astrophysics Data System (ADS)

    Raty, Jean-Yves; Baris Malcioglu, Osman; Bichara, Christophe

    2013-03-01

    The glass transition temperature, Tg, is one of the most important characteristics of glassy systems. While Tg has been measured for many systems at atmospheric pressure, direct measurement of the glass transition is difficult at high pressures due to small sample sizes and long time scales. Tg(P) measurements to date mostly involve extrapolations of high-pressure viscosity or relaxation data to η = 1013 P or t = 100 s, respectively. In this study we present direct measurement of Tg at pressures up to several GPa through a combination of pressure gradient tracking and observation of increases in the thermal expansion coefficient upon heating from the glass to the viscous liquid state. High pressures are attained through the use of a diamond anvil cell and precise temperatures are maintained via custom heating and cryogenic systems. By directly mapping this phase boundary, we can compare models for Tg(P). In addition, high-pressure analysis requiring knowledge of Tg at pressure will be greatly aided.

  2. Structure of Li(x)Rb(1-x)PO(3) glasses near the glass transition.

    PubMed

    Hall, Andreas; Swenson, Jan; Bowron, Daniel T; Adams, Stefan

    2009-06-17

    The temperature dependence of mixed alkali metaphosphate Li(x)Rb(1-x)PO(3) (x = 1, 0.5, 0) structures has been studied from room temperature up to about 20 K above the glass transition temperature (T(g)) by means of neutron diffraction and reverse Monte Carlo modelling. The results show that the structural changes are limited to a slight temperature-induced broadening of the peaks in S(Q) and a linear thermal expansion of 50-100 ppm K(-1). Furthermore, the possible diffusion pathways of the mobile ions have been investigated by the bond valence technique and the results show that they are not significantly affected as the glass is brought above T(g). The decrease in activation energy that occurs above T(g) is thus attributed to an increased coupling between the motions of the mobile ions and the relaxation of the phosphate network.

  3. Glass transition of ionic liquids under high pressure.

    PubMed

    Ribeiro, Mauro C C; Pádua, Agílio A H; Gomes, Margarida F Costa

    2014-06-28

    The glass transition pressure at room temperature, pg, of six ionic liquids based on 1-alkyl-3-methylimidazolium cations and the anions [BF4](-), [PF6](-), and bis(trifluromethanesulfonyl)imide, [NTf2](-), has been obtained from the pressure dependence of the bandwidth of the ruby fluorescence line in diamond anvil cells. Molar volume, Vm(pg), has been estimated by a group contribution model (GCM) developed for the ionic liquids. A density scaling relation, TV(γ), has been considered for the states Vm(pg, 295 K) and Vm(Tg, 0.1 MPa) using the simplifying condition that the viscosity at the glass transition is the same at pg at room temperature and at atmospheric pressure at Tg. Assuming a constant γ over this range of density, a reasonable agreement has been found for the γ determined herein and that of a previous density scaling analysis of ionic liquids viscosities under moderate conditions. Further support for the appropriateness of extrapolating the GCM equation of state to the GPa pressure range is provided by comparing the GCM and an equation of state previously derived in the power law density-scaling regime.

  4. Local Glass Transition Temperature Gradients Near Polymer-Polymer Interfaces

    NASA Astrophysics Data System (ADS)

    Baglay, Roman; Roth, Connie

    2015-03-01

    For decades the glass transition in confined systems has been studied with the hopes of uncovering the governing length scales that impact these dynamics. However, understanding length scales of local gradients in glass transition temperature (Tg) near a free surface have been hampered by limitations of how to treat the enhanced mobility at the free surface theoretically. We have previously reported on the local Tg in multilayer structures made from high molecular weight polystyrene (PS) and poly(n-butyl methacrylate) (PnBMA), a weakly immiscible system with a ~ 7 nm interfacial width. Using ultrathin (10-15 nm) pyrene-labeled layers inserted into the multilayer structure at different positions (z) from the glassy-rubbery interface, we were able to map the local Tg(z) profile across this glassy-rubbery interface with temperature-dependent fluorescence intensity measurements. Our work revealed an asymmetric local mobility gradient propagating hundreds of nanometers away from the glassy-rubbery PS-PnBMA interface into the glassy PS and rubbery PnBMA sides before bulk Tgs were recovered far from the interface. Here we extend these measurements to investigate how the local Tg(z) profile in PS varies when in contact with a variety of immiscible polymers whose Tgs vary between +90 K to -80 K relative to the Tg of PS, so-called hard vs soft confinement.

  5. Glass transition and relaxation processes of nanocomposite polymer electrolytes.

    PubMed

    Money, Benson K; Hariharan, K; Swenson, Jan

    2012-07-05

    This study focus on the effect of δ-Al(2)O(3) nanofillers on the dc-conductivity, glass transition, and dielectric relaxations in the polymer electrolyte (PEO)(4):LiClO(4). The results show that there are three dielectric relaxation processes, α, β, and γ, in the systems, although the structural α-relaxation is hidden in the strong conductivity contribution and could therefore not be directly observed. However, by comparing an enhanced dc-conductivity, by approximately 2 orders of magnitude with 4 wt % δ-Al(2)O(3) added, with a decrease in calorimetric glass transition temperature, we are able to conclude that the dc-conductivity is directly coupled to the hidden α-relaxation, even in the presence of nanofillers (at least in the case of δ-Al(2)O(3) nanofillers at concentrations up to 4 wt %). This filler induced speeding up of the segmental polymer dynamics, i.e., the α-relaxation, can be explained by the nonattractive nature of the polymer-filler interactions, which enhance the "free volume" and mobility of polymer segments in the vicinity of filler surfaces.

  6. Measurement of the glass transition temperature of elastomer systems

    SciTech Connect

    Sircar, A.K.; Chartoff, R.P.

    1994-09-01

    The glass transition temperature of polymers depends on both the experimental procedures and the experimental techniques used for its evaluation. However, the value of the published data is often diminished because these details are omitted. Examples are cited to show how the magnitude of differential scanning calorimetry (DSC) T{sub g} depends on the T{sub g} location and different calibration methods. Some comments are also made about thermomechanical analysis (TMA) and dynamic mechanical analysis (DMA) methods, although these are treated only briefly. The factors that are unique to elastomer glass transition temperatures are: (1) the difficulties of calibration of the instruments at subambient temperature, (2) increase of T{sub g} by the extent of vulcanization and filler loading, (3) differences due to microstructure and microphase separation, and (4) the availability of different grades of the same elastomer with different composition or added components, which alter their T{sub g}. Thus, the literature value of T{sub g} should include not only the calibration and procedure for the experiment, but also the exact name and description of the elastomer with the number index, the recipe used, and the cure conditions.

  7. Resolving the controversy on the glass transition temperature of water?

    PubMed

    Capaccioli, S; Ngai, K L

    2011-09-14

    We consider experimental data on the dynamics of water (1) in glass-forming aqueous mixtures with glass transition temperature T(g) approaching the putative T(g) = 136 K of water from above and below, (2) in confined spaces of nanometer in size, and (3) in the bulk at temperatures above the homogeneous nucleation temperature. Altogether, the considered relaxation times from the data range nearly over 15 decades from 10(-12) to 10(3) s. Assisted by the various features in the isothermal spectra and theoretical interpretation, these considerations enable us to conclude that relaxation of un-crystallized water is highly non-cooperative. The exponent β(K) of its Kohlrausch stretched exponential correlation function is not far from having the value of one, and hence the deviation from exponential time decay is slight. Albeit the temperature dependence of its α-relaxation time being non-Arrhenius, the corresponding T(g)-scaled temperature dependence has small steepness index m, likely less than 44 at T(g), and hence water is not "'fragile" as a glassformer. The separation in time scale of the α- and the β-relaxations is small at T(g), becomes smaller at higher temperatures, and they merge together shortly above T(g). From all these properties and by inference, water is highly non-cooperative as a glass-former, it has short cooperative length-scale, and possibly smaller configurational entropy and change of heat capacity at T(g) compared with other organic glass-formers. This conclusion is perhaps unsurprising because water is the smallest molecule. Our deductions from the data rule out that the T(g) of water is higher than 160 K, and suggest that it is close to the traditional value of 136 K.

  8. Structure of glasses containing transition metal ions. Progress report, February 1, 1979-January 31, 1980

    SciTech Connect

    White, W B; Furukawa, T; Tsong, I S.T.; Fox, K; Herman, J S; Houser, C; Nelson, C

    1980-02-01

    New normal coordinate calculations were used to relate the vibrational frequencies of silicate glasses to Si-O force constants. These appear to account for the observed frequency shifts with degree of silica polymerization. Raman spectroscopy has been used to elucidate the structure of sodium borosilicate glasses and of sodium aluminosilicate glasses. Structures of compositionally complex glasses can be understood if spectra are measured on many glasses spaced at small compositional intervals. Optical absorption spectra were used to investigate the structural setting of iron in alkali silicate glasses. Research on the alkali-hydrogen exchange in alkali silicate glasses was completed and additional work on ternary glasses is under way. A series of appendices present completed work on the structural investigations of alkali borosilicate glasses, on the structural setting of transition metal ions in glasses, and on the diffusion of hydrogen in alkali silicate glasses.

  9. Transition and post-transition metal ions in borate glasses: Borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties.

    PubMed

    Möncke, D; Kamitsos, E I; Palles, D; Limbach, R; Winterstein-Beckmann, A; Honma, T; Yao, Z; Rouxel, T; Wondraczek, L

    2016-09-28

    A series of transition and post-transition metal ion (Mn, Cu, Zn, Pb, Bi) binary borate glasses was studied with special consideration of the cations impact on the borate structure, the cations cross-linking capacity, and more generally, structure-property correlations. Infrared (IR) and Raman spectroscopies were used for the structural characterization. These complementary techniques are sensitive to the short-range order as in the differentiation of tetrahedral and trigonal borate units or regarding the number of non-bridging oxygen ions per unit. Moreover, vibrational spectroscopy is also sensitive to the intermediate-range order and to the presence of superstructural units, such as rings and chains, or the combination of rings. In order to clarify band assignments for the various borate entities, examples are given from pure vitreous B2O3 to meta-, pyro-, ortho-, and even overmodified borate glass compositions. For binary metaborate glasses, the impact of the modifier cation on the borate speciation is shown. High field strength cations such as Zn(2+) enhance the disproportionation of metaborate to polyborate and pyroborate units. Pb(2+) and Bi(3+) induce cluster formation, resulting in PbOn- and BiOn-pseudophases. Both lead and bismuth borate glasses show also a tendency to stabilize very large superstructural units in the form of diborate polyanions. Far-IR spectra reflect on the bonding states of modifier cations in glasses. The frequency of the measured cation-site vibration band was used to obtain the average force constant for the metal-oxygen bonding, FM-O. A linear correlation between glass transition temperature (Tg) and FM-O was shown for the metaborate glass series. The mechanical properties of the glasses also correlate with the force constant FM-O, though for cations of similar force constant the fraction of tetrahedral borate units (N4) strongly affects the thermal and mechanical properties. For paramagnetic Cu- and Mn-borate glasses, N4 was

  10. Transition and post-transition metal ions in borate glasses: Borate ligand speciation, cluster formation, and their effect on glass transition and mechanical properties

    NASA Astrophysics Data System (ADS)

    Möncke, D.; Kamitsos, E. I.; Palles, D.; Limbach, R.; Winterstein-Beckmann, A.; Honma, T.; Yao, Z.; Rouxel, T.; Wondraczek, L.

    2016-09-01

    A series of transition and post-transition metal ion (Mn, Cu, Zn, Pb, Bi) binary borate glasses was studied with special consideration of the cations impact on the borate structure, the cations cross-linking capacity, and more generally, structure-property correlations. Infrared (IR) and Raman spectroscopies were used for the structural characterization. These complementary techniques are sensitive to the short-range order as in the differentiation of tetrahedral and trigonal borate units or regarding the number of non-bridging oxygen ions per unit. Moreover, vibrational spectroscopy is also sensitive to the intermediate-range order and to the presence of superstructural units, such as rings and chains, or the combination of rings. In order to clarify band assignments for the various borate entities, examples are given from pure vitreous B2O3 to meta-, pyro-, ortho-, and even overmodified borate glass compositions. For binary metaborate glasses, the impact of the modifier cation on the borate speciation is shown. High field strength cations such as Zn2+ enhance the disproportionation of metaborate to polyborate and pyroborate units. Pb2+ and Bi3+ induce cluster formation, resulting in PbOn- and BiOn-pseudophases. Both lead and bismuth borate glasses show also a tendency to stabilize very large superstructural units in the form of diborate polyanions. Far-IR spectra reflect on the bonding states of modifier cations in glasses. The frequency of the measured cation-site vibration band was used to obtain the average force constant for the metal-oxygen bonding, FM-O. A linear correlation between glass transition temperature (Tg) and FM-O was shown for the metaborate glass series. The mechanical properties of the glasses also correlate with the force constant FM-O, though for cations of similar force constant the fraction of tetrahedral borate units (N4) strongly affects the thermal and mechanical properties. For paramagnetic Cu- and Mn-borate glasses, N4 was determined

  11. Breaking Through the Glass Ceiling: Recent Experimental Approaches to Probe the Properties of Supercooled Liquids near the Glass Transition.

    SciTech Connect

    Smith, R. Scott; Kay, Bruce D.

    2012-03-15

    Experimental measurements of the properties supercooled liquids at temperatures near their respective glass transition temperatures, Tg, are requisite for understanding the behavior of glasses and amorphous solids. Unfortunately, many supercooled molecular liquids rapidly crystallize at temperatures far above their Tg making such measurements difficult to nearly impossible. In this perspective we discuss some recent alternative approaches to obtain experimental data in the temperature regime near Tg. These new approaches may yield the additional experimental data necessary to test current theoretical models of the dynamical slowdown that occurs in supercooled liquids approaching the glass transition.

  12. Finite-size scaling study of dynamic critical phenomena in a vapor-liquid transition

    NASA Astrophysics Data System (ADS)

    Midya, Jiarul; Das, Subir K.

    2017-01-01

    Via a combination of molecular dynamics (MD) simulations and finite-size scaling (FSS) analysis, we study dynamic critical phenomena for the vapor-liquid transition in a three dimensional Lennard-Jones system. The phase behavior of the model has been obtained via the Monte Carlo simulations. The transport properties, viz., the bulk viscosity and the thermal conductivity, are calculated via the Green-Kubo relations, by taking inputs from the MD simulations in the microcanonical ensemble. The critical singularities of these quantities are estimated via the FSS method. The results thus obtained are in nice agreement with the predictions of the dynamic renormalization group and mode-coupling theories.

  13. Reconsideration of inviscid shock interactions and transition phenomena on double-wedge geometries in a M ∞ = 9 hypersonic flow

    NASA Astrophysics Data System (ADS)

    Hu, Z. M.; Myong, R. S.; Yang, Y. R.; Cho, T. H.

    2010-12-01

    Shock polar analysis as well as 2-D numerical computation technique are used to illustrate a diverse flow topology induced by shock/shock interaction in a M ∞ = 9 hypersonic flow. New flow features associated with inviscid shock wave interaction on double-wedge-like geometries are reported in this study. Transition of shock interaction, unsteady oscillation, and hysteresis phenomena in the RR ↔ MR transition, and the physical mechanisms behind these phenomena are numerically studied and analyzed.

  14. Two-dimensional electronic spectroscopy signatures of the glass transition

    DOE PAGES

    Lewis, K. L. .. M.; Myers, J. A.; Fuller, F.; ...

    2010-01-01

    Two-dimensional electronic spectroscopy is a sensitive probe of solvation dynamics. Using a pump–probe geometry with a pulse shaper [ Optics Express 15 (2007), 16681-16689; Optics Express 16 (2008), 17420-17428], we present temperature dependent 2D spectra of laser dyes dissolved in glass-forming solvents. At low waiting times, the system has not yet relaxed, resulting in a spectrum that is elongated along the diagonal. At longer times, the system loses its memory of the initial excitation frequency, and the 2D spectrum rounds out. As the temperature is lowered, the time scale of this relaxation grows, and the elongation persists for longermore » waiting times. This can be measured in the ratio of the diagonal width to the anti-diagonal width; the behavior of this ratio is representative of the frequency–frequency correlation function [ Optics Letters 31 (2006), 3354–3356]. Near the glass transition temperature, the relaxation behavior changes. Understanding this change is important for interpreting temperature-dependent dynamics of biological systems.« less

  15. Mid-gap phenomena in chalcogenide glasses and barrier-cluster-heating model

    SciTech Connect

    Banik, Ivan Kubliha, Marián; Lukovičová, Jozefa; Pavlendová, Gabriela

    2015-12-07

    The physical mechanism of photoluminescence spectrum formation of chalcogenide glasses (CHG) belongs to the important unsolved problems in physics of non-crystalline materials. Photoluminescence is an important means of the electron spectrum investigation. PL spectrum in CHG is produced mostly in the middle of the band gap, and its profile is normal - Gaussian. Several features of PL spectra in CHG is still a great mystery. The aim of the paper is to make reader acquainted with the new insight into the problem. In this article we also deal with the issue of clarifying the nature of mid-gap absorption. From the experiments it is known that after excitation of the glass As{sub 2}S{sub 3} (or As{sub 2}Se{sub 3}) with primary radiation from Urbach-tail region the glass will be able to absorb the photons of low energy (IR) radiation from mid-gap region of spectra. This low photon absorption without action of the primary excitation radiation of the higher photon energy is impossible. Mid-gap absorption yields boost in the photoluminescence. The paper gives the reader the new insights into some, until now, unexplained effects and contexts in chalcogenide glasses from the position of barrier-cluster-heating model.

  16. Anomalously large isotope effect in the glass transition of water

    SciTech Connect

    Gainaru, Catalin; Agapov, Alexander L.; Fuentes-Landete, Violeta; Amann-Winkel, Katrin; Nelson, Helge; Köster, Karsten W.; Kolesnikov, Alexander I.; Novikov, Vladimir N.; Richert, Ranko; Böhmer, Roland; Loerting, Thomas; Sokolov, Alexei P.

    2014-11-24

    Here we present the discovery of an unusually large isotope effect in the structural relaxation and the glass transition temperature Tg of water. Dielectric relaxation spectroscopy of low-density as well as of vapor deposited amorphous water reveal Tg differences of 10±2K between H2O and D2O, sharply contrasting with other hydrogen bonded liquids for which H/D exchange increases Tg by typically less than 1K. We show that the large isotope effect and the unusual variation of relaxation times in water at low temperatures can be explained in terms of quantum effects. Thus, our findings shed new light on water's peculiar low-temperature dynamics and the possible role of quantum effects in its structural relaxation, and possibly in dynamics of other low molecular weight liquids.

  17. Local elastic response measured near the colloidal glass transition

    NASA Astrophysics Data System (ADS)

    Anderson, D.; Schaar, D.; Hentschel, H. G. E.; Hay, J.; Habdas, Piotr; Weeks, Eric R.

    2013-03-01

    We examine the response of a dense colloidal suspension to a local force applied by a small magnetic bead. For small forces, we find a linear relationship between the force and the displacement, suggesting the medium is elastic, even though our colloidal samples macroscopically behave as fluids. We interpret this as a measure of the strength of colloidal caging, reflecting the proximity of the samples' volume fractions to the colloidal glass transition. The strain field of the colloidal particles surrounding the magnetic probe appears similar to that of an isotropic homogeneous elastic medium. When the applied force is removed, the strain relaxes as a stretched exponential in time. We introduce a model that suggests this behavior is due to the diffusive relaxation of strain in the colloidal sample.

  18. Moisture adsorption isotherms and glass transition temperature of pectin.

    PubMed

    Basu, Santanu; Shivhare, U S; Muley, S

    2013-06-01

    The moisture adsorption isotherms of low methoxyl pectin were determined at 30-70°C and water activity ranging from 0.11 to 0.94. The moisture adsorption isotherms revealed that the equilibrium moisture content increased with water activity. Increase in temperature, in general, resulted in decreased equilibrium moisture content. However in some cases, equilibrium moisture content values increased with temperature at higher water activities. Selected sorption models (GAB, Halsey, Henderson, Oswin, modified Oswin) were tested for describing the adsorption isotherms. Parameters of each sorption models were determined by nonlinear regression analysis. Oswin model gave the best fit for pectin sorption behaviour. Isosteric heat of sorption decreased with increase in moisture content and varied between 14.607 and 0.552 kJ/mol. Glass transition temperature decreased with increase in moisture content of pectin.

  19. Comparison of static length scales characterizing the glass transition.

    PubMed

    Biroli, Giulio; Karmakar, Smarajit; Procaccia, Itamar

    2013-10-18

    The dramatic dynamic slowing down associated with the glass transition is considered by many to be related to the existence of a static length scale that grows when temperature decreases. Defining, identifying, and measuring such a length is a subtle problem. Recently, two proposals, based on very different insights regarding the relevant physics, were put forward. One approach is based on the point-to-set correlation technique and the other on the scale where the lowest eigenvalue of the Hessian matrix becomes sensitive to disorder. Here we present numerical evidence that the two approaches might result in the same identical length scale. This provides mutual support for their relevance and, at the same time, raises interesting theoretical questions, discussed in the conclusion.

  20. Anomalously large isotope effect in the glass transition of water

    DOE PAGES

    Gainaru, Catalin; Agapov, Alexander L.; Fuentes-Landete, Violeta; ...

    2014-11-24

    Here we present the discovery of an unusually large isotope effect in the structural relaxation and the glass transition temperature Tg of water. Dielectric relaxation spectroscopy of low-density as well as of vapor deposited amorphous water reveal Tg differences of 10±2K between H2O and D2O, sharply contrasting with other hydrogen bonded liquids for which H/D exchange increases Tg by typically less than 1K. We show that the large isotope effect and the unusual variation of relaxation times in water at low temperatures can be explained in terms of quantum effects. Thus, our findings shed new light on water's peculiar low-temperaturemore » dynamics and the possible role of quantum effects in its structural relaxation, and possibly in dynamics of other low molecular weight liquids.« less

  1. Simultaneous Determination of Glass Transition Temperatures of Several Polymers

    PubMed Central

    He, Jiang; Liu, Wei; Huang, Yao-Xiong

    2016-01-01

    Aims A simple and easy optical method is proposed for the determination of glass transition temperature (Tg) of polymers. Methods & Results Tg was determined using the technique of microsphere imaging to monitor the variation of the refractive index of polymer microsphere as a function of temperature. It was demonstrated that the method can eliminate most thermal lag and has sensitivity about six fold higher than the conventional method in Tg determination. So the determined Tg is more accurate and varies less with cooling/heating rate than that obtained by conventional methods. The most attractive character of the method is that it can simultaneously determine the Tg of several polymers in a single experiment, so it can greatly save experimental time and heating energy. Conclusion The method is not only applicable for polymer microspheres, but also for the materials with arbitrary shapes. Therefore, it is expected to be broadly applied to different fundamental researches and practical applications of polymers. PMID:26985670

  2. High Glass Transition Temperature Renewable Polymers via Biginelli Multicomponent Polymerization.

    PubMed

    Boukis, Andreas C; Llevot, Audrey; Meier, Michael A R

    2016-04-01

    A novel and straightforward one-pot multicomponent polycondensation method was established in this work. The Biginelli reaction is a versatile multicomponent reaction of an aldehyde, a β-ketoester (acetoacetate) and urea, which can all be obtained from renewable resources, yielding diversely substituted 3,4-dihydropyrimidin-2(1H)-ones (DHMPs). In this study, renewable diacetoacetate monomers with different spacer chain lengths (C3, C6, C10, C20) were prepared via simple transesterification of renewable diols and commercial acetoacetates. The diacetoacetate monomers were then reacted with renewable dialdehydes, i.e., terephthalaldehyde and divanillin in a Biginelli type step-growth polymerization. The obtained DHMP polymers (polyDHMPs) displayed high molar masses, high glass transition temperatures (Tg) up to 203 °C and good thermal stability (Td5%) of 280 °C. The Tg of the polyDHMPs could be tuned by variation of the structure of the dialdehyde or the diacetoacetate component.

  3. Critical phenomena and noise-induced phase transitions in neuronal networks.

    PubMed

    Lee, K-E; Lopes, M A; Mendes, J F F; Goltsev, A V

    2014-01-01

    We study numerically and analytically first- and second-order phase transitions in neuronal networks stimulated by shot noise (a flow of random spikes bombarding neurons). Using an exactly solvable cortical model of neuronal networks on classical random networks, we find critical phenomena accompanying the transitions and their dependence on the shot noise intensity. We show that a pattern of spontaneous neuronal activity near a critical point of a phase transition is a characteristic property that can be used to identify the bifurcation mechanism of the transition. We demonstrate that bursts and avalanches are precursors of a first-order phase transition, paroxysmal-like spikes of activity precede a second-order phase transition caused by a saddle-node bifurcation, while irregular spindle oscillations represent spontaneous activity near a second-order phase transition caused by a supercritical Hopf bifurcation. Our most interesting result is the observation of the paroxysmal-like spikes. We show that a paroxysmal-like spike is a single nonlinear event that appears instantly from a low background activity with a rapid onset, reaches a large amplitude, and ends up with an abrupt return to lower activity. These spikes are similar to single paroxysmal spikes and sharp waves observed in electroencephalographic (EEG) measurements. Our analysis shows that above the saddle-node bifurcation, sustained network oscillations appear with a large amplitude but a small frequency in contrast to network oscillations near the Hopf bifurcation that have a small amplitude but a large frequency. We discuss an amazing similarity between excitability of the cortical model stimulated by shot noise and excitability of the Morris-Lecar neuron stimulated by an applied current.

  4. Changes in the Atomic Structure through Glass Transition Observed by X-Ray Scattering

    SciTech Connect

    Egami, Takeshi

    2012-01-01

    The glass transition involves a minor change in the internal energy, and yet the physical and mechanical properties of a glass change dramatically. In order to determine the evolution of the atomic structure through the glass transition, we employed in-situ synchrotron X-ray scattering measurements as a function of temperature on a model material: Zr-Cu-Al metallic glass. We found that the thermal expansion at the atomic level is smaller than the macroscopic thermal expansion, and significantly increases above the glass transition temperature. The observed changes in the pair-distribution function (PDF) are explained in terms of the fluctuations in the local atomic volume and their change through the glass transition.

  5. Determination of glass transition temperature for polymers by methods of thermoactivation spectroscopy

    NASA Astrophysics Data System (ADS)

    Yurov, V. M.; Laurinas, V. C.; Eremin, E. N.; Gyngazova, M. S.

    2016-02-01

    For rapid determination of glass transition temperature for polymers, we propose a method of thermally stimulated luminescence. The experiments were carried for epoxy polymers dyed and undyed with organic dyes. It is shown that glass transition temperature depends on curing temperature and concentration of the dye. The comparison with the thermogravimetric analysis showed coincidence of the results obtained.

  6. Modeling the nonlinear PMMA behavior near glass transition temperature: application to its thermoforming

    NASA Astrophysics Data System (ADS)

    Gilormini, P.; Chevalier, L.; Régnier, G.

    2011-01-01

    Using suitable constitutive equations, numerical simulation allows predicting the properties of transparencies that are thermoformed near their glass transition temperature. Such equations are presented, which describe the nonlinear viscoelastic behavior of poly(methyl methacrylate) at large deformations near glass transition. The simulation of the thermoforming of a transparency at constant and uniform temperature is performed and compared with experimental results.

  7. Pressure coefficient of the glass transition temperature in the thermodynamic scaling regime

    NASA Astrophysics Data System (ADS)

    Koperwas, K.; Grzybowski, A.; Grzybowska, K.; Wojnarowska, Z.; Pionteck, J.; Sokolov, A. P.; Paluch, M.

    2012-10-01

    We report that the pressure coefficient of the glass transition temperature, dTg/dp, which is commonly used to determine the pressure sensitivity of the glass transition temperature Tg, can be predicted in the thermodynamic scaling regime. We show that the equation derived from the isochronal condition combined with the well-known scaling, TVγ = const, predicts successfully values of dTg/dp for a variety of glass-forming systems, including van der Waals liquids, polymers, and ionic liquids.

  8. A thermally tunable inverse opal photonic crystal for monitoring glass transition.

    PubMed

    Sun, Liguo; Xie, Zhuoying; Xu, Hua; Xu, Ming; Han, Guozhi; Wang, Cheng; Bai, Xuduo; Gu, ZhongZe

    2012-03-01

    An optical method was developed to monitor the glass transition of the polymer by taking advantage of reflection spectrum change of the thermally tunable inverse opal photonic crystal. The thermally tunable photonic bands of the polymer inverse opal photonic crystal were traceable to the segmental motion of macromolecules, and the segmental motion was temperature dependent. By observing the reflection spectrum change of the polystyrene inverse opal photonic crystal during thermal treatment, the glass transition temperature of polystyrene was gotten. Both changes of the position and intensity of the reflection peak were observed during the glass transition process of the polystyrene inverse opal photonic crystal. The optical change of inverse opal photonic crystal was so large that the glass transition temperature could even be estimated by naked eyes. The glass transition temperature derived from this method was consistent with the values measured by differential scanning calorimeter.

  9. The structural origin of the hard-sphere glass transition in granular packing

    SciTech Connect

    Xia, Chengjie; Li, Jindong; Cao, Yixin; Kou, Binquan; Xiao, Xianghui; Fezzaa, Kamel; Xiao, Tiqiao; Wang, Yujie

    2015-09-28

    Glass transition is accompanied by a rapid growth of the structural relaxation time and a concomitant decrease of configurational entropy. It remains unclear whether the transition has a thermodynamic origin, and whether the dynamic arrest is associated with the growth of a certain static order. Using granular packing as a model hard-sphere glass, we show the glass transition as a thermodynamic phase transition with a ‘hidden’ polytetrahedral order. This polytetrahedral order is spatially correlated with the slow dynamics. It is geometrically frustrated and has a peculiar fractal dimension. Additionally, as the packing fraction increases, its growth follows an entropy-driven nucleation process, similar to that of the random first-order transition theory. In conclusion, our study essentially identifies a long-sought-after structural glass order in hard-sphere glasses.

  10. The structural origin of the hard-sphere glass transition in granular packing

    DOE PAGES

    Xia, Chengjie; Li, Jindong; Cao, Yixin; ...

    2015-09-28

    Glass transition is accompanied by a rapid growth of the structural relaxation time and a concomitant decrease of configurational entropy. It remains unclear whether the transition has a thermodynamic origin, and whether the dynamic arrest is associated with the growth of a certain static order. Using granular packing as a model hard-sphere glass, we show the glass transition as a thermodynamic phase transition with a ‘hidden’ polytetrahedral order. This polytetrahedral order is spatially correlated with the slow dynamics. It is geometrically frustrated and has a peculiar fractal dimension. Additionally, as the packing fraction increases, its growth follows an entropy-driven nucleationmore » process, similar to that of the random first-order transition theory. In conclusion, our study essentially identifies a long-sought-after structural glass order in hard-sphere glasses.« less

  11. Effects of forming conditions on structure, relaxation phenomena, and aging behaviors of glass fibers

    NASA Astrophysics Data System (ADS)

    Shen, Changqing

    DSC analysis and DRIFT spectroscopy were combined to study the effects of fiber forming conditions and fiber aging behaviors. An external pressure set-up was incorporated into the former fiber drawing system to manipulate the fiber diameter. Soda-aluminosilicate glass fibers of the same diameter were prepared with this system at the same temperature with various rates. Pre-Tg exotherm of the fibers increased first with drawing rate and decreased when the rate exceeded 8.0 m/s, presumably caused by the shear thinning effects. When the rate is greater than 8.0 m/s, a new structure-related band at 877 cm-1 appeared as a shoulder to the band at 850 cm-1. The band at 877 cm -1 remained intact during the annealing and aging processes, while the band at 850 cm-1 responded sensitively to these processes. Evidence was found for structural orientation in silicate fibers. Four endothermic peaks were found in the DSC curves of long-term aged fibers. The assignments for the peaks were provided. The aging behavior of glass fibers was found to be affected by both the glass composition and the fiber forming conditions.

  12. Thermal glass transition beyond the Vogel-Fulcher-Tammann behavior for glass forming diglycidylether of bisphenol A.

    PubMed

    Krüger, J K; Britz, T; Baller, J; Possart, W; Neurohr, H

    2002-12-31

    For the low molecular weight fragile liquid diglycidyl ether of bisphenol A we report, based on Brillouin and dielectric spectroscopy, on a thermal glass transition where the relaxation time of the alpha process does not go to infinity. Instead, the structural alpha relaxation disappears spontaneously at the transition point. That discontinuity in relaxation time coincides with a kink in the longitudinal hypersonic velocity and determines unambiguously the transition from the liquid to the glassy state.

  13. Analysis of early medieval glass beads - Glass in the transition period

    NASA Astrophysics Data System (ADS)

    Šmit, Žiga; Knific, Timotej; Jezeršek, David; Istenič, Janka

    2012-05-01

    Glass beads from graves excavated in Slovenia and dated archaeologically to the 7th-10th century AD were analysed by the combined PIXE-PIGE method. The results indicate two groups of glass; natron glass made in the Roman tradition and glass made with alkalis from the ash of halophytic plants, which gradually replaced natron glass after c. 800 AD. The alkalis used in the second group of glass seem to be in close relation to a variant of the Venetian white glass that appeared several centuries later. The origin of this glass may be traced to glass production in Mesopotamia and around the Aral Sea. All the mosaic beads with eye decoration, as well as most of the drawn-segmented and drawn-cut beads analysed, are of plant-ash glass, which confirms their supposed oriental origin.

  14. Laser-induced glass-crystallization phenomena of GeSe2 investigated by light scattering

    NASA Astrophysics Data System (ADS)

    Haro, E.; Xu, Z. S.; Morhange, J.-F.; Balkanski, M.; Espinosa, G. P.; Phillips, J. C.

    1985-07-01

    Recrystallization of glassy GeSe2 under laser irradiation has been studied with use of Raman spectroscopy. A threshold irradiation power level below which no changes in the local molecular structure of the system can be detected has been defined. For an irradiation power above the threshold, three stages of transformation have been identified: The first stage is characterized by the nucleation of clusters or submicrocrystallites which remain embedded in a continuum glass matrix. The second stage is characterized by the coexistence of clusters of various sizes. Up to this stage, the system is fully reversible. The last stage is reached when the crystallites coalesce to form a polycrystalline material.

  15. Effect of UV exposure on photochromic glasses doped with transition metal oxides

    NASA Astrophysics Data System (ADS)

    El-Zaiat, S. Y.; Medhat, M.; Omar, Mona F.; Shirif, Marwa A.

    2016-07-01

    Silver halide photochromic glasses doped with one of the transition metal oxides, (Ti O2) , (CoO) ,(Cr2 O3) are prepared using the melt quench technique. Glass samples are exposed to a UV source for 20 min. Spectral reflectance and transmittance at normal incidence of the prepared glasses are recorded before and after UV exposure with a double beam spectrophotometer in the spectral range 200-2500 nm. Dispersion parameters such as: single oscillator energy, dispersion energy and Abbe's number are deduced and compared. Absorption dispersion parameters, like optical energy gap for direct and indirect transitions, Urbach energy and steepness parameter, are deduced for the different glass prepared. Reflection loss, molar refractivity and electronic polarizability are deduced and compared. The effect of UV light exposure of these glasses on transmittance, reflectance, the linear and the predicted nonlinear optical parameters are investigated and discussed for the three transition metals. Nonlinear parameters increase in the three glass samples after UV exposure.

  16. Apparent critical phenomena in the superionic phase transition of Cu2-xSe

    SciTech Connect

    Kang, Stephen Dongmin; Danilkin, Sergey A.; Aydemir, Umut; Avdeev, Maxim; Studer, Andrew; Snyder, G. Jeffrey

    2016-01-11

    The superionic phase transition of ${\\mathrm{Cu}}_{2-x}\\mathrm{Se}$ accompanies drastic changes in transport properties. The Seebeck coefficient increases sharply while the electrical conductivity and thermal diffusivity drops. Such behavior has previously been attributed to critical phenomena under the assumption of a continuous phase transition. However, applying Landau's criteria suggests that the transition should be first order. Using the phase diagram that is consistent with a first order transition, we show that the observed transport properties and heat capacity curves can be accounted for and modeled with good agreement. The apparent critical phenomena is shown to be a result of compositional degree-of-freedom. In conclusion, understanding of the phase transition allows to explain the enhancement in the thermoelectric figure-of-merit that is accompanied with the transition.

  17. Roles of water and solids composition in the control of glass transition and stickiness of milk powders.

    PubMed

    Silalai, Nattiga; Roos, Yrjö H

    2010-06-01

    Plasticization and glass transition of amorphous components in food powders often result in stickiness and caking. The glass transition temperature (T(g)) of milk powders was measured by differential scanning calorimetry (DSC) and a viscometer method was used to determine sticky-point temperatures. Water sorption isotherms were established for varying solids compositions. Lactose contents were analyzed by high-performance anion exchange chromatography with pulsed amperometric detection (HPAE-PAD) and proteins were identified using SDS-PAGE gel electrophoresis. Solids composition and water affected both the T(g) and stickiness behavior. Stickiness was governed by carbohydrates and water plasticization. At low protein contents, precrystallization of lactose decreased the sticky point temperature, but increasing protein content in all milk powders decreased stickiness at all water activities. The results showed that glass transition can be used to describe time-dependent stickiness and crystallization phenomena, and it can be used as a parameter to control and reduce stickiness of dairy solids with various compositions.

  18. Conformational Fluctuations of Polymers in a Melt Associated with Glass Transition

    NASA Astrophysics Data System (ADS)

    Iwaoka, Nobuyuki; Takano, Hiroshi

    2017-03-01

    The conformational fluctuations of a glassy short polymer melt are studied by coarse-grained molecular dynamics simulations and principal component analysis (PCA). The distribution of PCA eigenvalues, which measure static fluctuations of the polymers, shows a clear difference between above and below the conventional glass transition temperature Tg. The approximate conformational entropy of the polymers also indicates a transition near Tg. This is evidence that the static properties of polymers in the melt signal the glass transition.

  19. Glass transition temperatures and fermentative activity of heat-treated commercial active dry yeasts.

    PubMed

    Schebor, C; Galvagno, M; del Pilar Buera, M; Chirife, J

    2000-01-01

    Differential scanning calorimetry thermograms of various samples of commercial instant active dry yeasts revealed a clear glass transition typical of amorphous carbohydrates and sugars. The resulting glass transition temperatures were found to decrease with increasing moisture content. The observed glass curve was similar to that of pure trehalose, which is known to accumulate in large amounts in baker's yeast. The effect of heat treatment at various temperatures on the fermentative activity (as measured by the metabolic production of CO(2)) of dry yeast was studied. First-order plots were obtained representing the loss of fermentative activity as a function of heating time at the various temperatures assayed. Significant losses of fermentative activity were observed in vitrified yeast samples. The dependence of rate constants with temperature was found to follow Arrhenius behavior. The relationship between the loss of fermentative activity and glass transition was not verified, and the glass transition was not reflected on the temperature dependence of fermentative activity loss.

  20. Evidence of glass transition in thin films of maleic anhydride derivatives: Effect of the surfactant coadsorption

    NASA Astrophysics Data System (ADS)

    López-Dıaz, D.; Velázquez, M. M.

    2008-08-01

    The glass transition temperature of poly (maleic anhydride-alt-1-octadecen) and poly (styrene-co-maleic anhydride) cumene-terminated thin films has been measured by mechanical relaxation of Langmuir films of these polymers. The dynamical properties show glass-like features (non-Arrhenius relaxation times and non-Debye mechanical response) interpreted by the coupling model. The glass transition temperature values determined by a mechanical relaxation experiment (step-compression) agree very well with those obtained by surface potential measurements. It is found that the glass transition temperature values in thin films decrease by about 100K as compared with those corresponding to the bulk polymers. The coadsorption of the water-insoluble surfactant DODAB decreases the glass transition temperature.

  1. Replica symmetry breaking transition of the weakly anisotropic Heisenberg spin glass in magnetic fields.

    PubMed

    Imagawa, Daisuke; Kawamura, Hikaru

    2004-02-20

    The spin and the chirality orderings of the three-dimensional Heisenberg spin glass with the weak random anisotropy are studied under applied magnetic fields by equilibrium Monte Carlo simulations. A replica symmetry breaking transition occurs in the chiral sector accompanied by the simultaneous spin-glass order. The ordering behavior differs significantly from that of the Ising spin glass, despite the similarity in the global symmetry. Our observation is consistent with the spin-chirality decoupling-recoupling scenario of a spin-glass transition.

  2. Using Dielectric Relaxation Spectroscopy to Characterize the Glass Transition Time of Polydextrose.

    PubMed

    Buehler, Martin G; Kindle, Michael L; Carter, Brady P

    2015-06-01

    Dielectric relaxation spectroscopy was used to characterize the glass transition time, tg , of polydextrose, where the glass transition temperature, Tg , and water activity, aw (relative humidity), were held constant during polydextrose relaxation. The tg was determined from a shift in the peak frequency of the imaginary capacitance spectrum with time. It was found that when the peak frequency reaches 30 mHz, polydextrose undergoes glass transition. Glass transition time, tg , is the time for polydextrose to undergo glass transition at a specific Tg and aw . Results lead to a modified state diagram, where Tg is depressed with increasing aw . This curve forms a boundary: (a) below the boundary, polydextrose does not undergo glass transition and (b) above the boundary, polydextrose rapidly undergoes glass transition. As the boundary curve is specified by a tg value, it can assist in the selection of storage conditions. An important point on the boundary curve is at aw = 0, where Tg0 = 115 °C. The methodology can also be used to calculate the stress-relaxation viscosity of polydextrose as a function of Tg and aw , which is important when characterizing the flow properties of polydextrose initially in powder form.

  3. The Gardner Transition: A new approach for understanding low-temperature glasses

    NASA Astrophysics Data System (ADS)

    Charbonneau, Patrick

    Recent theoretical advances in the mean-field theory of glasses predict the existence deep in the glass phase of a novel phase transition, a so-called Gardner transition. This transition signals the emergence of a complex free energy landscape composed of a marginally stable hierarchy of sub-basins within a broad glass metabasin. It is thus the onset of marked changes in thermal and transport properties of glasses, and ultimately leads to the unusual critical behavior at jamming. The Gardner transition itself is immediately related to a diverging (i) characteristic relaxation time, (ii) caging susceptibility and (iii) correlation length of the caging heterogeneity as well as aging, even in well-thermalized glasses. We have detected some of these signatures both in a mean-field model and in standard hard-sphere glass formers. We find the results to quantitatively agree with theory in the former and qualitatively so in the latter, which suggest that the transition should be detectable in a wide array of numerical and experimental systems. Interestingly, although the Gardner transitions is primarily associated with structural glass formers, we also find features of the transition in crystals of polydisperse particles once the landscape becomes rough.

  4. Investigation of the atypical glass transition and recrystallization behavior of amorphous prazosin salts.

    PubMed

    Kumar, Lokesh; Popat, Dharmesh; Bansal, Arvind K

    2011-08-25

    This manuscript studied the effect of counterion on the glass transition and recrystallization behavior of amorphous salts of prazosin. Three amorphous salts of prazosin, namely, prazosin hydrochloride, prazosin mesylate and prazosin tosylate were prepared by spray drying, and characterized by optical-polarized microscopy, differential scanning calorimetry and powder X-ray diffraction. Modulated differential scanning calorimetry was used to determine the glass transition and recrystallization temperature of amorphous salts. Glass transition of amorphous salts followed the order: prazosin mesylate > prazosin tosylate ~ prazosin hydrochloride. Amorphous prazosin mesylate and prazosin tosylate showed glass transition, followed by recrystallization. In contrast, amorphous prazosin hydrochloride showed glass transition and recrystallization simultaneously. Density Functional Theory, however, suggested the expected order of glass transition as prazosin hydrochloride > prazosin mesylate > prazosin tosylate. The counterintuitive observation of amorphous prazosin hydrochloride having lower glass transition was explained in terms of its lower activation energy (206.1 kJ/mol) for molecular mobility at Tg, compared to that for amorphous prazosin mesylate (448.5 kJ/mol) and prazosin tosylate (490.7 kJ/mol), and was further correlated to a difference in hydrogen bonding strength of the amorphous and the corresponding recrystallized salts. This study has implications in selection of an optimal amorphous salt form for pharmaceutical development.

  5. Control parameter dependence of transport coefficients near the glass transition

    NASA Astrophysics Data System (ADS)

    Tokuyama, Michio

    2013-02-01

    The master curves for transport coefficients, such as self-diffusion coefficient D, shear viscosity η, and electrical conductivity σ, near the glass transition are studied based on the fact recently proposed by the present author that the long-time self-diffusion coefficients in both fragile and strong liquids are well described by the following two types of master curves, depending on whether the control parameter is an intensive one (X) or an extensive one (Y); f(x) = (1-x)2+ɛexp[62x3+ɛ(1-x)2+ɛ] and g(y) = (1-y)2/y, where x = X/Xf and y = Y/Yf, Xf and Yf being fictive singular points to be determined. Here ɛ = 4/3 for fragile liquids and 5/3 for strong liquids. The thermodynamic function Y = h(X) is then used to relate f(x) with g(y) and vice versa. The experimental data and the simulation results for the shear viscosity and the electrical conductivity are also analyzed by using the master curves f(x) and g(y). Thus, it is shown that any transport coefficients are well described by those master curves up to the deviation point, above which all the data start to deviate from the master curves and the system becomes out of equilibrium.

  6. Magnetically ordered phase near transition to Bose-glass phase

    NASA Astrophysics Data System (ADS)

    Syromyatnikov, A. V.; Sizanov, A. V.

    2017-01-01

    We discuss a magnetically ordered ("superfluid") phase near quantum transition to the Bose-glass phase in a simple modeling system, a Heisenberg antiferromagnet with spatial dimension d >2 in an external magnetic field with disorder in exchange coupling constants. Our analytical consideration is based on hydrodynamic description of long-wavelength excitations. Results obtained are valid in the entire critical region near the quantum critical point (QCP), allowing us to describe a possible crossover from one critical behavior to another. We demonstrate that the system behaves in full agreement with predictions by M. P. Fisher et al. [Phys. Rev. B 40, 546 (1989), 10.1103/PhysRevB.40.546] in close vicinity to the QCP. We find as an extension to that analysis that the anomalous dimension η =2 -d and β =ν d /2 , where β and ν are critical exponents of the order parameter and the correlation length, respectively. The density of states per spin of low-energy localized excitations is found to be independent of d ("superuniversal"). We show that many recent experimental and numerical results obtained in various three-dimensional (3D) systems can be described by our formulas using percolation critical exponents. Then, it is a possibility that a percolation critical regime arises in the ordered phase in some 3D systems not very close to the QCP.

  7. Thermal Features and Glass Transition in Polystyrene-Nanodiamond Composites

    NASA Astrophysics Data System (ADS)

    Cristian Chipara, Alin; Mion, Thomas; Villegas, Rafael; Lozano, Karen; Magdalena Chipara, Dorina; Tidrow, Steven; Chipara, Mircea

    2010-03-01

    Polystyrene-Nanodiamond composites were obtained by dissolving the polymeric matrix into a theta solvent (cyclohexane) followed by the addition of diamond nanoparticles from Aldrich (with a particle size ranging between 3 and 8 nm) and subsequent sonication for about 100 minutes by using a Hielscher high power (1 kW) sonicator. The homogeneous solution was poured onto microscope slides and the solvent has been removed by heating in an oven at 125 ^oC for about 3 hours. Composites containing various amounts (from 0 % to 25 % nanodiamonds within polystyrene) have been investigated. The physical properties of the as obtained nanocomposites were investigated by DSC, TGA, Raman, and WAXS. Glass transition temperature was shifted to higher temperatures and the thermal stability was enhanced by the addition of nanodiamonds. A phenomenological model for the observed changes is proposed (within the free volume approximation) and discussed in detail. Acknowledgements: This research was supported by US Army Research Laboratory (W911NF-08-1-0353) and LSAMP -UTPA.

  8. Ideal quantum glass transitions: Many-body localization without quenched disorder

    SciTech Connect

    Schiulaz, M.; Müller, M.

    2014-08-20

    We explore the possibility for translationally invariant quantum many-body systems to undergo a dynamical glass transition, at which ergodicity and translational invariance break down spontaneously, driven entirely by quantum effects. In contrast to analogous classical systems, where the existence of such an ideal glass transition remains a controversial issue, a genuine phase transition is predicted in the quantum regime. This ideal quantum glass transition can be regarded as a many-body localization transition due to self-generated disorder. Despite their lack of thermalization, these disorder-free quantum glasses do not possess an extensive set of local conserved operators, unlike what is conjectured for many-body localized systems with strong quenched disorder.

  9. Non-monotonic effect of confinement on the glass transition.

    PubMed

    Varnik, Fathollah; Franosch, Thomas

    2016-04-06

    The relaxation dynamics of glass forming liquids and their structure are influenced in the vicinity of confining walls. This effect has mostly been observed to be a monotonic function of the slit width. Recently, a qualitatively new behaviour has been uncovered by Mittal and coworkers, who reported that the single particle dynamics in a hard-sphere fluid confined in a planar slit varies in a non-monotonic way as the slit width is decreased from five to roughly two particle diametres (Mittal et al 2008 Phys. Rev. Lett. 100 145901). In view of the great potential of this effect for applications in those fields of science and industry, where liquids occur under strong confinement (e.g. nano-technology), the number of researchers studying various aspects and consequences of this non-monotonic behaviour has been rapidly growing. This review aims at providing an overview of the research activity in this newly emerging field. We first briefly discuss how competing mechanisms such as packing effects and short-range attraction may lead to a non-monotonic glass transition scenario in the bulk. We then analyse confinement effects on the dynamics of fluids using a thermodynamic route which relates the single particle dynamics to the excess entropy. Moreover, relating the diffusive dynamics to the Widom's insertion probability, the oscillations of the local dynamics with density at moderate densities are fairly well described. At high densities belonging to the supercooled regime, however, this approach breaks down signaling the onset of strongly collective effects. Indeed, confinement introduces a new length scale which in the limit of high densities and small pore sizes competes with the short-range local order of the fluid. This gives rise to a non-monotonic dependence of the packing structure on confinement, with a corresponding effect on the dynamics of structural relaxation. This non-monotonic effect occurs also in the case of a cone-plate type channel, where the degree

  10. Non-monotonic effect of confinement on the glass transition

    NASA Astrophysics Data System (ADS)

    Varnik, Fathollah; Franosch, Thomas

    2016-04-01

    The relaxation dynamics of glass forming liquids and their structure are influenced in the vicinity of confining walls. This effect has mostly been observed to be a monotonic function of the slit width. Recently, a qualitatively new behaviour has been uncovered by Mittal and coworkers, who reported that the single particle dynamics in a hard-sphere fluid confined in a planar slit varies in a non-monotonic way as the slit width is decreased from five to roughly two particle diametres (Mittal et al 2008 Phys. Rev. Lett. 100 145901). In view of the great potential of this effect for applications in those fields of science and industry, where liquids occur under strong confinement (e.g. nano-technology), the number of researchers studying various aspects and consequences of this non-monotonic behaviour has been rapidly growing. This review aims at providing an overview of the research activity in this newly emerging field. We first briefly discuss how competing mechanisms such as packing effects and short-range attraction may lead to a non-monotonic glass transition scenario in the bulk. We then analyse confinement effects on the dynamics of fluids using a thermodynamic route which relates the single particle dynamics to the excess entropy. Moreover, relating the diffusive dynamics to the Widom’s insertion probability, the oscillations of the local dynamics with density at moderate densities are fairly well described. At high densities belonging to the supercooled regime, however, this approach breaks down signaling the onset of strongly collective effects. Indeed, confinement introduces a new length scale which in the limit of high densities and small pore sizes competes with the short-range local order of the fluid. This gives rise to a non-monotonic dependence of the packing structure on confinement, with a corresponding effect on the dynamics of structural relaxation. This non-monotonic effect occurs also in the case of a cone-plate type channel, where the degree

  11. Effects of confinement on the glass transition temperature of molecular liquids

    SciTech Connect

    Zhang, J.; Liu, G.; Jonas, J.

    1992-04-16

    Differential scanning calorimetry was used to analyze the effects of confinement on the glass transition of temperature, T{sub g}, of several molecular liquids in porous silica glasses. For all the liquids, confinement lowers the observed T{sub g}. A linear relationship between the inverse of the silica glass pore radius and T{sub g} was also observed. The relative temperature depression due to confinement was less than the freezing point depression. 40 refs., 1 fig., 1 tab.

  12. Striking role of non-bridging oxygen on glass transition temperature of calcium aluminosilicate glass-formers

    NASA Astrophysics Data System (ADS)

    Bouhadja, M.; Jakse, N.; Pasturel, A.

    2014-06-01

    Molecular dynamics simulations are used to study the structural and dynamic properties of calcium aluminosilicate, (CaO-Al2O3)1-x(SiO2)x, glass formers along three joins, namely, R = 1, 1.57, and 3, in which the silica content x can vary from 0 to 1. For all compositions, we determined the glass-transition temperature, the abundances of the non-bridging oxygen, triclusters, and AlO5 structural units, as well as the fragility from the temperature evolution of the α-relaxation times. We clearly evidence the role played by the non-bridging oxygen linked either to Al atoms or Si atoms in the evolution of the glass-transition temperature as well as of the fragility as a function of silica content along the three joins.

  13. Fast scanning calorimetry studies of the glass transition in doped amorphous solid water: Evidence for the existence of a unique vicinal phase

    NASA Astrophysics Data System (ADS)

    McCartney, Stephanie A.; Sadtchenko, Vlad

    2013-02-01

    The fast scanning calorimetry (FSC) was employed to investigate glass transition phenomena in vapor deposited amorphous solid water (ASW) films doped with acetic acid, pentanol, and carbon tetrachloride. In all three cases, FSC thermograms of doped ASW films show well pronounced glass transitions at temperatures near 180 K. Systematic FSC studies of the glass transition temperature and the excess heat capacity dependence on the concentration of impurities indicate the possible existence of two distinct non-crystalline phases of H2O in binary aqueous solutions. According to our conjecture, bulk pure ASW is a glass at temperatures up to its crystallization near 205 K. However, guest molecules in the ASW matrix may be enveloped in an H2O phase which undergoes a glass transition prior to crystallization. In the case of CH3COOH, we estimate that such a viscous liquid shell contains approximately 25 H2O molecules. We discuss the implications of these findings for past studies of molecular kinetics in pure vitreous water and in binary aqueous solutions.

  14. Fast scanning calorimetry studies of the glass transition in doped amorphous solid water: evidence for the existence of a unique vicinal phase.

    PubMed

    McCartney, Stephanie A; Sadtchenko, Vlad

    2013-02-28

    The fast scanning calorimetry (FSC) was employed to investigate glass transition phenomena in vapor deposited amorphous solid water (ASW) films doped with acetic acid, pentanol, and carbon tetrachloride. In all three cases, FSC thermograms of doped ASW films show well pronounced glass transitions at temperatures near 180 K. Systematic FSC studies of the glass transition temperature and the excess heat capacity dependence on the concentration of impurities indicate the possible existence of two distinct non-crystalline phases of H2O in binary aqueous solutions. According to our conjecture, bulk pure ASW is a glass at temperatures up to its crystallization near 205 K. However, guest molecules in the ASW matrix may be enveloped in an H2O phase which undergoes a glass transition prior to crystallization. In the case of CH3COOH, we estimate that such a viscous liquid shell contains approximately 25 H2O molecules. We discuss the implications of these findings for past studies of molecular kinetics in pure vitreous water and in binary aqueous solutions.

  15. Direct evidence of entropy driven fluid-like - glass-like transition in microgel suspensions

    NASA Astrophysics Data System (ADS)

    Guo, Yun Xia; Liu, Ying Dan; Liu, Riping; Tian, Yongjun; Chen, Ke; Wang, Li-Min

    2017-02-01

    The phase transitions in poly (N-isopropylacrylamide) (PNIPAM) microgel suspensions are studied using rheological and calorimetric measurements at various concentrations. Two transitions are resolved, one being the hydrophilic-hydrophobic transition imposed by the gain/release of H2O molecules in PNIPAM particles via H-bond interactions, the other the fluid-like - glass-like transition of the hydrated microgels. The relaxation behaviors in the frozen glass-like states are observed by monitoring the shear modulus upon aging. Nevertheless, no enthalpic signature is detected in the relaxation process, suggesting entropy-driven relaxation dynamics.

  16. Numerical detection of the Gardner transition in a mean-field glass former.

    PubMed

    Charbonneau, Patrick; Jin, Yuliang; Parisi, Giorgio; Rainone, Corrado; Seoane, Beatriz; Zamponi, Francesco

    2015-07-01

    Recent theoretical advances predict the existence, deep into the glass phase, of a novel phase transition, the so-called Gardner transition. This transition is associated with the emergence of a complex free energy landscape composed of many marginally stable sub-basins within a glass metabasin. In this study, we explore several methods to detect numerically the Gardner transition in a simple structural glass former, the infinite-range Mari-Kurchan model. The transition point is robustly located from three independent approaches: (i) the divergence of the characteristic relaxation time, (ii) the divergence of the caging susceptibility, and (iii) the abnormal tail in the probability distribution function of cage order parameters. We show that the numerical results are fully consistent with the theoretical expectation. The methods we propose may also be generalized to more realistic numerical models as well as to experimental systems.

  17. Numerical detection of the Gardner transition in a mean-field glass former

    NASA Astrophysics Data System (ADS)

    Charbonneau, Patrick; Jin, Yuliang; Parisi, Giorgio; Rainone, Corrado; Seoane, Beatriz; Zamponi, Francesco

    2015-07-01

    Recent theoretical advances predict the existence, deep into the glass phase, of a novel phase transition, the so-called Gardner transition. This transition is associated with the emergence of a complex free energy landscape composed of many marginally stable sub-basins within a glass metabasin. In this study, we explore several methods to detect numerically the Gardner transition in a simple structural glass former, the infinite-range Mari-Kurchan model. The transition point is robustly located from three independent approaches: (i) the divergence of the characteristic relaxation time, (ii) the divergence of the caging susceptibility, and (iii) the abnormal tail in the probability distribution function of cage order parameters. We show that the numerical results are fully consistent with the theoretical expectation. The methods we propose may also be generalized to more realistic numerical models as well as to experimental systems.

  18. Sharp semiconductor-to-metal transition of VO{sub 2} thin films on glass substrates

    SciTech Connect

    Jian, Jie; Chen, Aiping; Zhang, Wenrui; Wang, Haiyan

    2013-12-28

    Outstanding phase transition properties of vanadium dioxide (VO{sub 2}) thin films on amorphous glass were achieved and compared with the ones grown on c-cut sapphire and Si (111) substrates, all by pulsed laser deposition. The films on glass substrate exhibit a sharp semiconductor-to-metal transition (∼4.3 °C) at a near bulk transition temperature of ∼68.4 °C with an electrical resistance change as high as 3.2 × 10{sup 3} times. The excellent phase transition properties of the films on glass substrate are correlated with the large grain size and low defects density achieved. The phase transition properties of VO{sub 2} films on c-cut sapphire and Si (111) substrates were found to be limited by the high defect density.

  19. Subcritical transition to turbulence: What we can learn from the physics of glasses.

    PubMed

    Dauchot, Olivier; Bertin, Eric

    2012-09-01

    In this note, we discuss possible analogies between the subcritical transition to turbulence in shear flows and the glass transition in supercooled liquids. We briefly review recent experimental and numerical results, as well as theoretical proposals, and compare the difficulties arising in assessing the divergence of the turbulence lifetime in subcritical shear flow with that encountered for the relaxation time in the study of the glass transition. In order to go beyond the purely methodological similarities, we further elaborate on this analogy and propose a simple model for the transition to turbulence, inspired by the random energy model (a standard model for the glass transition), with the aim to possibly foster yet-unexplored directions of research in subcritical shear flows.

  20. Optical absorption and heating rate dependent glass transition in vanadyl doped calcium oxy-chloride borate glasses

    NASA Astrophysics Data System (ADS)

    Dahiya, M. S.; Khasa, S.; Agarwal, A.

    2015-04-01

    Some important results pertaining to optical and thermal properties of vanadyl doped oxy-halide glasses in the chemical composition CaCl2-CaO-B2O3 are discussed. These glasses have been prepared by conventional melt quench technique. From X-ray diffraction (XRD) profiles the amorphous nature of the doped glasses has been confirmed. The electronic polarizability is calculated and found to increase with increase in chloride content. The optical absorption spectra have been recorded in the frequency range of 200-3200 nm. Recorded spectra are analyzed to evaluate cut-off wavelength (λcut-off), optical band gap (Eg), band tailing (B), Urbach energy (ΔE) and refractive index (n). Thermal analysis has been carried out for the prepared glasses at three different heating rates viz. 5, 10 and 20 °C/min. The glass transition temperature (Tg) along with thermal activation energy (Ea) corresponding to each heating rate are evaluated from differential scanning calorimetry (DSC) thermographs. It is found that Ea decrease and Tg increase with increase in heating rate. The variation in Tg is also observed with the substitution of calcium chloride in place of calcium oxide. The increasing and higher values of Ea suggest that prepared glasses have good thermal stability. Variation in Tg and Eg suggests that Cl- anions enter into the voids of borate network at low concentrations (<5.0%) and contribute to the network formation at high concentration (>5.0%).

  1. Irreversible transitions in the exchange-striction model of spin-glass state

    NASA Astrophysics Data System (ADS)

    Valkov, V. I.; Golovchan, A. V.

    2014-08-01

    Based on the assumption of a negative volume dependence of random exchange integrals, it is possible to switch to a compressible Sherrington-Kirkpatrick spin-glass model. Within the proposed model, temperature-pressure phase diagrams were calculated and pressure- and magnetic-field-induced first-order phase transitions from the initial paramagnetic and spin-glass states to the ferromagnetic state were predicted. It was shown that the application of pressure in the spin-glass state not only increases and shifts magnetic susceptibility, but also reduces the critical magnetic fields of irreversible induced phase transitions from the spin-glass to the ferromagnetic state. The obtained results are used to describe the spin-glass state in (Sm1-xGdx)0.55Sr0.45MnO3.

  2. Cluster Glass Transition of Ultrasoft-Potential Fluids at High Density

    NASA Astrophysics Data System (ADS)

    Miyazaki, Ryoji; Kawasaki, Takeshi; Miyazaki, Kunimasa

    2016-10-01

    Using molecular dynamics simulation, we investigate the slow dynamics of a supercooled binary mixture of soft particles interacting with a generalized Hertzian potential. At low density, it displays typical slow dynamics near its glass transition temperature. At higher densities, particles bond together, forming clusters, and the clusters undergo the glass transition. The number of particles in a cluster increases one by one as the density increases. We demonstrate that there exist multiple cluster-glass phases characterized by a different number of particles per cluster, each of which is separated by distinct minima. Surprisingly, a so-called higher order singularity of the mode-coupling theory signaled by a logarithmic relaxation is observed in the vicinity of the boundaries between monomer and cluster glass phases. The system also exhibits rich and anomalous dynamics in the cluster glass phases, such as the decoupling of the self- and collective dynamics.

  3. Transition from glass to graphite in manufacture of composite aircraft structure

    NASA Technical Reports Server (NTRS)

    Buffum, H. E.; Thompson, V. S.

    1978-01-01

    The transition from fiberglass reinforced plastic composites to graphite reinforced plastic composites is described. Structural fiberglass design and manufacturing background are summarized. How this experience provides a technology base for moving into graphite composite secondary structure and then to composite primary structure is considered. The technical requirements that must be fulfilled in the transition from glass to graphite composite structure are also included.

  4. Testing the paradigms of the glass transition in colloids via dynamic simulation

    NASA Astrophysics Data System (ADS)

    Wang, Jialun; Peng, Xiaoguang; Li, Qi; McKenna, Gregory; Zia, Roseanna

    2016-11-01

    Upon cooling, molecular glass-formers undergo a glass transition during which viscosity appears to diverge, and the material transitions from a liquid to an amorphous solid. However, the new state is not an equilibrium phase: material properties such as enthalpy continue to evolve in time. Rather, the material evolves toward an "intransient" state, as measured by the Kovacs signature experiments, e.g. the intrinsic isotherm, which reveals a paradoxical dependence of transition time on quench depth, and suggests that whether the glass transition occurs at the beginning or end of this transition is an open question. Colloidal glass formers provide a natural way to model such behavior, owing to the disparity in time scales that allow tracking of particle dynamics. We interrogate these ideas via dynamic simulation of a hard-sphere colloidal glassy state induced by jumps in volume fraction. We explore three methods to model the jump: evaporation, aspiration, and particle-size jumps. During and following each jump, the positions, velocities, and particle-phase stress are tracked and utilized to characterize relaxation time scales and structural changes. Analogs for the intrinsic isotherms are developed. The results provide insight into the existence of an "ideal" glass transition.

  5. Glass Transition Temperature of Saccharide Aqueous Solutions Estimated with the Free Volume/Percolation Model.

    PubMed

    Constantin, Julian Gelman; Schneider, Matthias; Corti, Horacio R

    2016-06-09

    The glass transition temperature of trehalose, sucrose, glucose, and fructose aqueous solutions has been predicted as a function of the water content by using the free volume/percolation model (FVPM). This model only requires the molar volume of water in the liquid and supercooled regimes, the molar volumes of the hypothetical pure liquid sugars at temperatures below their pure glass transition temperatures, and the molar volumes of the mixtures at the glass transition temperature. The model is simplified by assuming that the excess thermal expansion coefficient is negligible for saccharide-water mixtures, and this ideal FVPM becomes identical to the Gordon-Taylor model. It was found that the behavior of the water molar volume in trehalose-water mixtures at low temperatures can be obtained by assuming that the FVPM holds for this mixture. The temperature dependence of the water molar volume in the supercooled region of interest seems to be compatible with the recent hypothesis on the existence of two structure of liquid water, being the high density liquid water the state of water in the sugar solutions. The idealized FVPM describes the measured glass transition temperature of sucrose, glucose, and fructose aqueous solutions, with much better accuracy than both the Gordon-Taylor model based on an empirical kGT constant dependent on the saccharide glass transition temperature and the Couchman-Karasz model using experimental heat capacity changes of the components at the glass transition temperature. Thus, FVPM seems to be an excellent tool to predict the glass transition temperature of other aqueous saccharides and polyols solutions by resorting to volumetric information easily available.

  6. Spin glass transition in canonical AuFe alloys: A numerical study

    NASA Astrophysics Data System (ADS)

    Zhang, Kai-Cheng; Li, Yong-Feng; Liu, Gui-Bin; Zhu, Yan

    2012-05-01

    Although spin glass transitions have long been observed in diluted magnetic alloys, e.g. AuFe and CuMn alloys, previous numerical studies are not completely consistent with the experiment results. The abnormal critical exponents of the alloys remain still puzzling. By employing parallel tempering algorithm with finite-size scaling analysis, we investigated the phase transitions in canonical AuFe alloys. Our results strongly support that spin glass transitions occur at finite temperatures in the alloys. The calculated critical exponents agree well with those obtained from experiments.

  7. Discontinuous nature of the repulsive-to-attractive colloidal glass transition

    PubMed Central

    van de Laar, T.; Higler, R.; Schroën, K.; Sprakel, J.

    2016-01-01

    In purely repulsive colloidal systems a glass transition can be reached by increasing the particle volume fraction beyond a certain threshold. The resulting glassy state is governed by configurational cages which confine particles and restrict their motion. A colloidal glass may also be formed by inducing attractive interactions between the particles. When attraction is turned on in a repulsive colloidal glass a re-entrant solidification ensues. Initially, the repulsive glass melts as free volume in the system increases. As the attraction strength is increased further, this weakened configurational glass gives way to an attractive glass in which motion is hindered by the formation of physical bonds between neighboring particles. In this paper, we study the transition from repulsive-to-attractive glasses using three-dimensional imaging at the single-particle level. We show how the onset of cage weakening and bond formation is signalled by subtle changes in local structure. We then demonstrate the discontinuous nature of the solid-solid transition, which is marked by a critical onset at a threshold bonding energy. Finally, we highlight how the interplay between bonding and caging leads to complex and heterogeneous dynamics at the microscale. PMID:26940737

  8. Effects of configurational changes on electrical resistivity during glass-liquid transition of two bulk metal-alloy glasses

    NASA Astrophysics Data System (ADS)

    Aji, D. P. B.; Johari, G. P.

    2014-12-01

    Consequences of increase in structural fluctuations on heating Pd40Ni10Cu30P20 and Zr46.75Ti8.25Cu7.5Ni10Be27.5 through their glass to liquid transition range were investigated by measuring the electrical resistivity, ρ, an electron scattering property. The temperature coefficient of resistivity (TCR = (1/ρ) dρ/dT) of the liquid and glassy states is negative. The plots of their ρ against T in the Tg (glass to liquid transition) range show a gradual change in the slope similar to the change observed generally for the plots of the density, elastic modulus, and refractive index. As fluctuations in the melt structure involve fewer configurations on cooling, ρ increases. In the energy landscape description, the melt's structure explores fewer minima with decrease in T, vibrational frequencies increase, and electron scattering and ρ increase. Plots of (-dρ/dT) against T resemble the plot of the specific heat of other glasses and show a sub-Tg feature and a rapid rise at T near Tg. Analysis shows that the magnitude of negative TCR is dominated by change in the phonon characteristics, and configurational fluctuations make it more negative. The TCR of the liquid and glassy states seems qualitatively consistent with the variation in the structure factor in Ziman's model for pure liquid metals as extended by Nagel to metal alloys and used to explain the negative TCR of a two-component metal glass.

  9. Kinetics of the glass transition of fragile soft colloidal suspensions.

    PubMed

    Saha, Debasish; Joshi, Yogesh M; Bandyopadhyay, Ranjini

    2015-12-07

    Microscopic relaxation time scales are estimated from the autocorrelation functions obtained by dynamic light scattering experiments for Laponite suspensions with different concentrations (CL), added salt concentrations (CS), and temperatures (T). It has been shown in an earlier work [D. Saha, Y. M. Joshi, and R. Bandyopadhyay, Soft Matter 10, 3292 (2014)] that the evolutions of relaxation time scales of colloidal glasses can be compared with molecular glass formers by mapping the waiting time (tw) of the former with the inverse of thermodynamic temperature (1/T) of the latter. In this work, the fragility parameter D, which signifies the deviation from Arrhenius behavior, is obtained from fits to the time evolutions of the structural relaxation time scales. For the Laponite suspensions studied in this work, D is seen to be independent of CL and CS but is weakly dependent on T. Interestingly, the behavior of D corroborates the behavior of fragility in molecular glass formers with respect to equivalent variables. Furthermore, the stretching exponent β, which quantifies the width w of the spectrum of structural relaxation time scales, is seen to depend on tw. A hypothetical Kauzmann time tk, analogous to the Kauzmann temperature for molecular glasses, is defined as the time scale at which w diverges. Corresponding to the Vogel temperature defined for molecular glasses, a hypothetical Vogel time tα (∞) is also defined as the time at which the structural relaxation time diverges. Interestingly, a correlation is observed between tk and tα (∞), which is remarkably similar to that known for fragile molecular glass formers. A coupling model that accounts for the tw-dependence of the stretching exponent is used to analyse and explain the observed correlation between tk and tα (∞).

  10. Kinetics of the glass transition of fragile soft colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Saha, Debasish; Joshi, Yogesh M.; Bandyopadhyay, Ranjini

    2015-12-01

    Microscopic relaxation time scales are estimated from the autocorrelation functions obtained by dynamic light scattering experiments for Laponite suspensions with different concentrations (CL), added salt concentrations (CS), and temperatures (T). It has been shown in an earlier work [D. Saha, Y. M. Joshi, and R. Bandyopadhyay, Soft Matter 10, 3292 (2014)] that the evolutions of relaxation time scales of colloidal glasses can be compared with molecular glass formers by mapping the waiting time (tw) of the former with the inverse of thermodynamic temperature (1/T) of the latter. In this work, the fragility parameter D, which signifies the deviation from Arrhenius behavior, is obtained from fits to the time evolutions of the structural relaxation time scales. For the Laponite suspensions studied in this work, D is seen to be independent of CL and CS but is weakly dependent on T. Interestingly, the behavior of D corroborates the behavior of fragility in molecular glass formers with respect to equivalent variables. Furthermore, the stretching exponent β, which quantifies the width w of the spectrum of structural relaxation time scales, is seen to depend on tw. A hypothetical Kauzmann time tk, analogous to the Kauzmann temperature for molecular glasses, is defined as the time scale at which w diverges. Corresponding to the Vogel temperature defined for molecular glasses, a hypothetical Vogel time tα ∞ is also defined as the time at which the structural relaxation time diverges. Interestingly, a correlation is observed between tk and tα ∞ , which is remarkably similar to that known for fragile molecular glass formers. A coupling model that accounts for the tw-dependence of the stretching exponent is used to analyse and explain the observed correlation between tk and tα ∞ .

  11. Reversible atomic processes as basic mechanisms of the glass transition

    PubMed Central

    Ye, Feng; Sprengel, Wolfgang; Wunderlich, Rainer K.; Fecht, Hans-Jörg; Schaefer, Hans-Eckhardt

    2007-01-01

    Reversible formation and disappearance of vacant spaces (vacancy-type defects) in bulk Zr57Cu15.4Ni12.6Nb5Al10 glass are directly evidenced by high-resolution, time-differential dilatometry studies. The vacancy kinetics are strongly temperature-dependent, with an effective migration enthalpy of HVM = 3.34 eV. This may explain the strong temperature dependence of glass properties such as viscosity. The results presented here are of general importance for understanding amorphous condensed matter and biomaterials and for the technical development of amorphous steels. PMID:17664428

  12. Glass transition in thin supported polystyrene films probed by temperature-modulated ellipsometry in vacuum.

    PubMed

    Efremov, Mikhail Yu; Kiyanova, Anna V; Last, Julie; Soofi, Shauheen S; Thode, Christopher; Nealey, Paul F

    2012-08-01

    Glass transition in thin (1-200 nm thick) spin-cast polystyrene films on silicon surfaces is probed by ellipsometry in a controlled vacuum environment. A temperature-modulated modification of the method is used alongside a traditional linear temperature scan. A clear glass transition is detected in films with thicknesses as low as 1-2 nm. The glass transition temperature (T(g)) shows no substantial dependence on thickness for coatings greater than 20 nm. Thinner films demonstrate moderate T(g) depression achieving 18 K for thicknesses 4-7 nm. Less than 4 nm thick samples are excluded from the T(g) comparison due to significant thickness nonuniformity (surface roughness). The transition in 10-20 nm thick films demonstrates excessive broadening. For some samples, the broadened transition is clearly resolved into two separate transitions. The thickness dependence of the glass transition can be well described by a simple 2-layer model. It is also shown that T(g) depression in 5 nm thick films is not sensitive to a wide range of experimental factors including molecular weight characteristics of the polymer, specifications of solvent used for spin casting, substrate composition, and pretreatment of the substrate surface.

  13. Size-Dependent Brittle-to-Ductile Transition in Silica Glass Nanofibers.

    PubMed

    Luo, Junhang; Wang, Jiangwei; Bitzek, Erik; Huang, Jian Yu; Zheng, He; Tong, Limin; Yang, Qing; Li, Ju; Mao, Scott X

    2016-01-13

    Silica (SiO2) glass, an essential material in human civilization, possesses excellent formability near its glass-transition temperature (Tg > 1100 °C). However, bulk SiO2 glass is very brittle at room temperature. Here we show a surprising brittle-to-ductile transition of SiO2 glass nanofibers at room temperature as its diameter reduces below 18 nm, accompanied by ultrahigh fracture strength. Large tensile plastic elongation up to 18% can be achieved at low strain rate. The unexpected ductility is due to a free surface affected zone in the nanofibers, with enhanced ionic mobility compared to the bulk that improves ductility by producing more bond-switching events per irreversible bond loss under tensile stress. Our discovery is fundamentally important for understanding the damage tolerance of small-scale amorphous structures.

  14. Thermal analysis of specific heat measurements in glassy Se80-xTe20Sbx alloys in glass transition region

    NASA Astrophysics Data System (ADS)

    Saraswat, S.; Mehta, N.; Sharma, S. D.

    2016-01-01

    In the present report, we have done specific heat measurements in glassy Se80-xTe20Sbx (0 ≤ x ≤ 15) alloys in glass transition region. Differential scanning calorimetry (DSC) technique is used for this purpose. We have observed a tremendously huge increase in the specific heat (Cp) values at the glass transition temperature. The thermal analysis shows that the values of Cp below glass transition temperature and the difference of Cp values before and after glass transition (∆Cp) are highly composition-dependent.

  15. Dynamical State Transition by Neuromodulation Due to Acetylcholine in Neural Network Model for Oscillatory Phenomena in Thalamus

    NASA Astrophysics Data System (ADS)

    Omori, Toshiaki; Horiguchi, Tsuyoshi

    2004-12-01

    We propose a two-layered neural network model for oscillatory phenomena in the thalamic system and investigate an effect of neuromodulation due to the acetylcholine on the oscillatory phenomena by numerical simulations. The proposed model consists of a layer of the thalamic reticular neurons and that of the cholinergic neurons. We introduce a dynamics of concentration of the acetylcholine which depends on a state of the cholinergic neurons, and assume that the conductance of the thalamic reticular neurons is dynamically regulated by the acetylcholine. From the results obtained by numerical simulations, we find that a dynamical transition between a bursting state and a resting state occurs successively in the layer of the thalamic reticular neurons due to the acetylcholine. Therefore it turns out that the neuromodulation due to the acetylcholine is important for the dynamical state transition in the thalamic system.

  16. Use of glass transitions in carbohydrate excipient design for lyophilized protein formulations

    PubMed Central

    Roughton, Brock C.; Topp, E.M.; Camarda, Kyle V.

    2013-01-01

    This work describes an effort to apply methods from process systems engineering to a pharmaceutical product design problem, with a novel application of statistical approaches to comparing solutions. A computational molecular design framework was employed to design carbohydrate molecules with high glass transition temperatures and low water content in the maximally freeze-concentrated matrix, with the objective of stabilizing lyophilized protein formulations. Quantitative structure–property relationships were developed for glass transition temperature of the anhydrous solute, glass transition temperature of the maximally concentrated solute, melting point of ice and Gordon–Taylor constant for carbohydrates. An optimization problem was formulated to design an excipient with optimal property values. Use of a stochastic optimization algorithm, Tabu search, provided several carbohydrate excipient candidates with statistically similar property values, as indicated by prediction intervals calculated for each property. PMID:24385675

  17. Constrained Methods in the Understanding of the Calorimetric Glass Transition in Simple Liquids.

    NASA Astrophysics Data System (ADS)

    Gonzalez Padilla, Francisco; Harrowell, Peter R.

    2001-03-01

    In spite of the intensive work and the important improvements in understanding the glass transition, the detailed microcopical behaviour and its thermodynamical implications are not understood yet. We will focus in the calorimetric glass transition, namely the non-monotonic variation of the specific heat with temperature. We will also be interested in recent suggestions that try to deal with the definition of an ideal glassy phase. We use different types of constrains to understand which degrees of freedom are important in understanding the calorimetric glass transition. We deal with geometrical constrain and with constrains obtain from the study of the hessian matrix. Indication on the importance of the anharmonicities to obtain a non-monotonic behaviour of the specific heat are obtained.

  18. Liquid-liquid transition in a strong bulk metallic glass-forming liquid.

    PubMed

    Wei, Shuai; Yang, Fan; Bednarcik, Jozef; Kaban, Ivan; Shuleshova, Olga; Meyer, Andreas; Busch, Ralf

    2013-01-01

    Polymorphic phase transitions are common in crystalline solids. Recent studies suggest that phase transitions may also exist between two liquid forms with different entropy and structure. Such a liquid-liquid transition has been investigated in various substances including water, Al2O3-Y2O3 and network glass formers. However, the nature of liquid-liquid transition is debated due to experimental difficulties in avoiding crystallization and/or measuring at high temperatures/pressures. Here we report the thermodynamic and structural evidence of a temperature-induced weak first-order liquid-liquid transition in a bulk metallic glass-forming system Zr(41.2)Ti(13.8)Cu(12.5)Ni10Be(22.5) characterized by non- (or weak) directional bonds. Our experimental results suggest that the local structural changes during the transition induce the drastic viscosity changes without a detectable density anomaly. These changes are correlated with a heat capacity maximum in the liquid. Our findings support the hypothesis that the 'strong' kinetics (low fragility) of a liquid may arise from an underlying lambda transition above its glass transition.

  19. Dynamics of an epoxy system near the glass transition studied by Brillouin and dielectric spectroscopies

    NASA Astrophysics Data System (ADS)

    Comez, L.; Fioretto, Daniele; Verdini, L.; Livi, A.; Rolla, Pierangelo A.

    1997-06-01

    The relaxation processes of an epoxy resin were investigated by light scattering and broadband dielectric spectroscopy around the glass transition temperature Tg. Dielectric spectroscopy measurements give evidence of tow relaxations, a structural and a secondary one, merging into a single process well above Tg. Besides the regular divergence of the structural relaxation time, the glass transition is also evidenced by changes of the shape parameters and of the relaxation strength of the secondary process. A comparison between dielectric and Brillouin data shows that Brillouin spectra are markedly sensitive to the secondary relaxation.

  20. Thermal conductivity of Glycerol’s liquid, glass, and crystal states, glass-liquid-glass transition, and crystallization at high pressures

    SciTech Connect

    Andersson, Ove; Johari, G. P.

    2016-02-14

    To investigate the effects of local density fluctuations on phonon propagation in a hydrogen bonded structure, we studied the thermal conductivity κ of the crystal, liquid, and glassy states of pure glycerol as a function of the temperature, T, and the pressure, p. We find that the following: (i) κ{sub crystal} is 3.6-times the κ{sub liquid} value at 140 K at 0.1 MPa and 2.2-times at 290 K, and it varies with T according to 138 × T{sup −0.95}; (ii) the ratio κ{sub liquid} (p)/κ{sub liquid} (0.1 MPa) is 1.45 GPa{sup −1} at 280 K, which, unexpectedly, is about the same as κ{sub crystal} (p)/κ{sub crystal} (0.1 MPa) of 1.42 GPa{sup −1} at 298 K; (iii) κ{sub glass} is relatively insensitive to T but sensitive to the applied p (1.38 GPa{sup −1} at 150 K); (iv) κ{sub glass}-T plots show an enhanced, pressure-dependent peak-like feature, which is due to the glass to liquid transition on heating; (v) continuous heating cold-crystallizes ultraviscous glycerol under pressure, at a higher T when p is high; and (vi) glycerol formed by cooling at a high p and then measured at a low p has a significantly higher κ than the glass formed by cooling at a low p. On heating at a fixed low p, its κ decreases before its glass-liquid transition range at that p is reached. We attribute this effect to thermally assisted loss of the configurational and vibrational instabilities of a glass formed at high p and recovered at low p, which is different from the usual glass-aging effect. While the heat capacity, entropy, and volume of glycerol crystal are less than those for its glass and liquid, κ{sub crystal} of glycerol, like its elastic modulus and refractive index, is higher. We discuss these findings in terms of the role of fluctuations in local density and structure, and the relations between κ and the thermodynamic quantities.

  1. Reversible transition of deformation mode by structural rejuvenation and relaxation in bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Meng, Fanqiang; Tsuchiya, Koichi; Seiichiro; Yokoyama, Yoshihiko

    2012-09-01

    A transition of the deformation mode from heterogeneous, localized deformation to homogeneous deformation was observed in Zr50Cu40Al10 bulk metallic glass (BMG) by giant straining using the high-pressure torsion (HPT) method. The transition is accompanied by a pronounced decrease in hardness and elastic modulus as measured by nanoindentation. Annealing of the deformed BMG resulted in the restoration of the localized deformation, hardness, and elastic modulus; thus, the transition is reversible. The observed reversible transition can be attributed to a change in the local atomic environment in the rejuvenated volume and the relaxed one.

  2. Thermal and fragility aspects of microwave synthesized glasses containing transition metal ions and heavy metal ions

    NASA Astrophysics Data System (ADS)

    Renuka, C.; Viswanatha, R.; Reddy, C. Narayana

    2016-08-01

    A simple, clean and energy efficient microwave heating route is used to prepare glasses in the systems xMnO-33(0.09PbCl2:0.91PbO)-(67-x) NaPO3 and xPbCl2-33PbO-(67-x) NaPO3 where 0.1 ≤ x ≤ 4 (mol%). Thermal data extracted from differential scanning calorimetry (DSC) thermograms are used to study the composition dependence of glass transition temperature (Tg), heat capacity, thermal stability and fragility. The decrease in glass transition temperature with modifier oxide (Na2O + MnO) content can be ascribed to network degradation and the volume increasing effect caused by PbCl2. The change in heat capacity of MnPb glass being greater than that of PbNP glass, suggests that MnPb glasses are more covalent than PbNP glasses. DSC thermograms taken at different heating rates (φ) reveal the dependence of Tg on φ, and the thermal stability of the glass increases due to MnO addition. Fragility aspects have also been studied by calculating the fragility functions ( Δ{C}_{p}/C_{pl} and [ NBO ]/V_{m}3 T_{g}. Results obtained from both the fragility functions compare well and reveal the dependence of fragility functions on modifier content and PbCl2 mol%. Further, the decrease in Tg and Hv are suggested to be due to the increase in the number of non-bridging oxygens, which results in the lowering of stiffness and rigidity of the glass network. Analysis of the infrared spectra confirms that the glassy matrix is composed of P-O-P, P-O-Pb, P=O and P-O- bonding.

  3. Thermal and fragility aspects of microwave synthesized glasses containing transition metal ions and heavy metal ions

    NASA Astrophysics Data System (ADS)

    Renuka, C.; Viswanatha, R.; Reddy, C. Narayana

    2017-02-01

    A simple, clean and energy efficient microwave heating route is used to prepare glasses in the systems xMnO-33(0.09PbCl2:0.91PbO)-(67-x) NaPO3 and xPbCl2-33PbO-(67-x) NaPO3 where 0.1 ≤ x ≤ 4 (mol%). Thermal data extracted from differential scanning calorimetry (DSC) thermograms are used to study the composition dependence of glass transition temperature (Tg), heat capacity, thermal stability and fragility. The decrease in glass transition temperature with modifier oxide (Na2O + MnO) content can be ascribed to network degradation and the volume increasing effect caused by PbCl2. The change in heat capacity of MnPb glass being greater than that of PbNP glass, suggests that MnPb glasses are more covalent than PbNP glasses. DSC thermograms taken at different heating rates (φ) reveal the dependence of Tg on φ, and the thermal stability of the glass increases due to MnO addition. Fragility aspects have also been studied by calculating the fragility functions ( {{Δ {{C}}_{{p}} }/{{{C}_{{pl}} }}{{and}}{[ {{NBO}} ]}/{{{V}_{{m}}3 {{T}}_{{g}} }}} ). Results obtained from both the fragility functions compare well and reveal the dependence of fragility functions on modifier content and PbCl2 mol%. Further, the decrease in Tg and Hv are suggested to be due to the increase in the number of non-bridging oxygens, which results in the lowering of stiffness and rigidity of the glass network. Analysis of the infrared spectra confirms that the glassy matrix is composed of P-O-P, P-O-Pb, P=O and P-O- bonding.

  4. Effects of configurational changes on electrical resistivity during glass-liquid transition of two bulk metal-alloy glasses

    SciTech Connect

    Aji, D. P. B.; Johari, G. P.

    2014-12-14

    Consequences of increase in structural fluctuations on heating Pd{sub 40}Ni{sub 10}Cu{sub 30}P{sub 20} and Zr{sub 46.75}Ti{sub 8.25}Cu{sub 7.5}Ni{sub 10}Be{sub 27.5} through their glass to liquid transition range were investigated by measuring the electrical resistivity, ρ, an electron scattering property. The temperature coefficient of resistivity (TCR = (1/ρ) dρ/dT) of the liquid and glassy states is negative. The plots of their ρ against T in the T{sub g} (glass to liquid transition) range show a gradual change in the slope similar to the change observed generally for the plots of the density, elastic modulus, and refractive index. As fluctuations in the melt structure involve fewer configurations on cooling, ρ increases. In the energy landscape description, the melt's structure explores fewer minima with decrease in T, vibrational frequencies increase, and electron scattering and ρ increase. Plots of (−dρ/dT) against T resemble the plot of the specific heat of other glasses and show a sub-T{sub g} feature and a rapid rise at T near T{sub g}. Analysis shows that the magnitude of negative TCR is dominated by change in the phonon characteristics, and configurational fluctuations make it more negative. The TCR of the liquid and glassy states seems qualitatively consistent with the variation in the structure factor in Ziman's model for pure liquid metals as extended by Nagel to metal alloys and used to explain the negative TCR of a two-component metal glass.

  5. Analyses of kinetic glass transition in short-range attractive colloids based on time-convolutionless mode-coupling theory

    NASA Astrophysics Data System (ADS)

    Narumi, Takayuki; Tokuyama, Michio

    2017-03-01

    For short-range attractive colloids, the phase diagram of the kinetic glass transition is studied by time-convolutionless mode-coupling theory (TMCT). Using numerical calculations, TMCT is shown to recover all the remarkable features predicted by the mode-coupling theory for attractive colloids: the glass-liquid-glass reentrant, the glass-glass transition, and the higher-order singularities. It is also demonstrated through the comparisons with the results of molecular dynamics for the binary attractive colloids that TMCT improves the critical values of the volume fraction. In addition, a schematic model of three control parameters is investigated analytically. It is thus confirmed that TMCT can describe the glass-glass transition and higher-order singularities even in such a schematic model.

  6. On the quantum spin glass transition on the Bethe lattice

    NASA Astrophysics Data System (ADS)

    Mossi, G.; Parolini, T.; Pilati, S.; Scardicchio, A.

    2017-01-01

    We investigate the ground-state properties of a disorderd Ising model with uniform transverse field on the Bethe lattice, focusing on the quantum phase transition from a paramagnetic to a glassy phase that is induced by reducing the intensity of the transverse field. We use a combination of quantum Monte Carlo algorithms and exact diagonalization to compute Rényi entropies, quantum Fisher information, correlation functions and order parameter. We locate the transition by means of the peak of the Rényi entropy and we find agreement with the transition point estimated from the emergence of finite values of the Edwards-Anderson order parameter and from the peak of the correlation length. We interpret the results by means of a mean-field theory in which quantum fluctuations are treated as massive particles hopping on the interaction graph. We see that the particles are delocalized at the transition, a fact that points towards the existence of possibly another transition deep in the glassy phase where these particles localize, therefore leading to a many-body localized phase.

  7. Ultra-slow dynamics in low density amorphous ice revealed by deuteron NMR: indication of a glass transition.

    PubMed

    Löw, Florian; Amann-Winkel, Katrin; Loerting, Thomas; Fujara, Franz; Geil, Burkhard

    2013-06-21

    The postulated glass-liquid transition of low density amorphous ice (LDA) is investigated with deuteron NMR stimulated echo experiments. Such experiments give access to ultra-slow reorientations of water molecules on time scales expected for structural relaxation of glass formers close to the glass-liquid transition temperature. An involved data analysis is necessary to account for signal contributions originating from a gradual crystallization to cubic ice. Even if some ambiguities remain, our findings support the view that pressure amorphized LDA ices are of glassy nature and undergo a glass-liquid transition before crystallization.

  8. Dynamics of Bragg glass in high-Tc superconductors near depinning transition

    NASA Astrophysics Data System (ADS)

    Luo, Meng-Bo; Hu, Xiao

    2010-12-01

    The dynamics of vortices near depinning transition is studied in terms of a three-dimensional flux-line model with point-like pinning centers. The zero-temperature critical depinning force F is determined with two methods consistently. We find two universal exponents β≈0.64 and δ≈2.3 which characterize the critical behaviors of depinning transition of Bragg glass (BrG). The dynamical modes of flux lines near F are also discussed.

  9. Dynamical transition in the D=3 Edwards-Anderson spin glass in an external magnetic field.

    PubMed

    Baity-Jesi, M; Baños, R A; Cruz, A; Fernandez, L A; Gil-Narvion, J M; Gordillo-Guerrero, A; Iñiguez, D; Maiorano, A; Mantovani, F; Marinari, E; Martin-Mayor, V; Monforte-Garcia, J; Muñoz Sudupe, A; Navarro, D; Parisi, G; Perez-Gaviro, S; Pivanti, M; Ricci-Tersenghi, F; Ruiz-Lorenzo, J J; Schifano, S F; Seoane, B; Tarancon, A; Tripiccione, R; Yllanes, D

    2014-03-01

    We study the off-equilibrium dynamics of the three-dimensional Ising spin glass in the presence of an external magnetic field. We have performed simulations both at fixed temperature and with an annealing protocol. Thanks to the Janus special-purpose computer, based on field-programmable gate array (FPGAs), we have been able to reach times equivalent to 0.01 s in experiments. We have studied the system relaxation both for high and for low temperatures, clearly identifying a dynamical transition point. This dynamical temperature is strictly positive and depends on the external applied magnetic field. We discuss different possibilities for the underlying physics, which include a thermodynamical spin-glass transition, a mode-coupling crossover, or an interpretation reminiscent of the random first-order picture of structural glasses.

  10. Dynamical transition in the D =3 Edwards-Anderson spin glass in an external magnetic field

    NASA Astrophysics Data System (ADS)

    Baity-Jesi, M.; Baños, R. A.; Cruz, A.; Fernandez, L. A.; Gil-Narvion, J. M.; Gordillo-Guerrero, A.; Iñiguez, D.; Maiorano, A.; Mantovani, F.; Marinari, E.; Martin-Mayor, V.; Monforte-Garcia, J.; Muñoz Sudupe, A.; Navarro, D.; Parisi, G.; Perez-Gaviro, S.; Pivanti, M.; Ricci-Tersenghi, F.; Ruiz-Lorenzo, J. J.; Schifano, S. F.; Seoane, B.; Tarancon, A.; Tripiccione, R.; Yllanes, D.; Janus Collaboration

    2014-03-01

    We study the off-equilibrium dynamics of the three-dimensional Ising spin glass in the presence of an external magnetic field. We have performed simulations both at fixed temperature and with an annealing protocol. Thanks to the Janus special-purpose computer, based on field-programmable gate array (FPGAs), we have been able to reach times equivalent to 0.01 s in experiments. We have studied the system relaxation both for high and for low temperatures, clearly identifying a dynamical transition point. This dynamical temperature is strictly positive and depends on the external applied magnetic field. We discuss different possibilities for the underlying physics, which include a thermodynamical spin-glass transition, a mode-coupling crossover, or an interpretation reminiscent of the random first-order picture of structural glasses.

  11. The glass transition, crystallization and melting in Au-Pb-Sb alloys

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Allen, J. L.; Fecht, H. J.; Perepezko, J. H.; Ohsaka, K.

    1988-01-01

    The glass transition, crystallization and melting of Au(55)Pb(22.5)Sb(22.5) alloys have been studied by differential scanning calorimetry DSC. Crystallization on heating above the glass transition temperature Tg (45 C) begins at 64 C. Further crystallization events are observed at 172 C and 205 C. These events were found to correspond to the formation of the intermetallic compounds AuSb2, Au2Pb, and possibly AuPb2, respectively. Isothermal DSC scans of the glassy alloy above Tg were used to monitor the kinetics of crystallization. The solidification behavior and heat capacity in the glass-forming composition range were determined with droplet samples. An undercooling level of 0.3T(L) below the liquidus temperature T(L) was achieved, resulting in crystallization of different stable and metastable phases. The heat capacity C(P) of the undercooled liquid was measured over an undercooling range of 145 C.

  12. Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition.

    PubMed

    Brambilla, G; El Masri, D; Pierno, M; Berthier, L; Cipelletti, L; Petekidis, G; Schofield, A B

    2009-02-27

    We use dynamic light scattering and computer simulations to study equilibrium dynamics and dynamic heterogeneity in concentrated suspensions of colloidal hard spheres. Our study covers an unprecedented density range and spans seven decades in structural relaxation time, tau(alpha0, including equilibrium measurements above phi(c), the location of the glass transition deduced from fitting our data to mode-coupling theory. Instead of falling out of equilibrium, the system remains ergodic above phi(c) and enters a new dynamical regime where tau(alpha) increases with a functional form that was not anticipated by previous experiments, while the amplitude of dynamic heterogeneity grows slower than a power law with tau(alpha), as found in molecular glass formers close to the glass transition.

  13. Evidence for Spin Glass Ordering Near the Weak to Strong Localization Transition in Hydrogenated Graphene.

    PubMed

    Matis, Bernard R; Houston, Brian H; Baldwin, Jeffrey W

    2016-04-26

    We provide evidence that magnetic moments formed when hydrogen atoms are covalently bound to graphene exhibit spin glass ordering. We observe logarithmic time-dependent relaxations in the remnant magnetoresistance following magnetic field sweeps, as well as strong variances in the remnant magnetoresistance following field-cooled and zero-field-cooled scenarios, which are hallmarks of canonical spin glasses and provide experimental evidence for the hydrogenated graphene spin glass state. Following magnetic field sweeps, and over a relaxation period of several minutes, we measure changes in the resistivity that are more than 3 orders of magnitude larger than what has previously been reported for a two-dimensional spin glass. Magnetotransport measurements at the Dirac point, and as a function of hydrogen concentration, demonstrate that the spin glass state is observable as the zero-field resistivity reaches a value close to the quantum unit h/2e(2), corresponding to the point at which the system undergoes a transition from weak to strong localization. Our work sheds light on the critical magnetic-dopant density required to observe spin glass formation in two-dimensional systems. These findings have implications to the basic understanding of spin glasses as well the fields of two-dimensional magnetic materials and spintronics.

  14. Practical Considerations for Determination of Glass Transition Temperature of a Maximally Freeze Concentrated Solution.

    PubMed

    Pansare, Swapnil K; Patel, Sajal Manubhai

    2016-08-01

    Glass transition temperature is a unique thermal characteristic of amorphous systems and is associated with changes in physical properties such as heat capacity, viscosity, electrical resistance, and molecular mobility. Glass transition temperature for amorphous solids is referred as (T g), whereas for maximally freeze concentrated solution, the notation is (T g'). This article is focused on the factors affecting determination of T g' for application to lyophilization process design and frozen storage stability. Also, this review provides a perspective on use of various types of solutes in protein formulation and their effect on T g'. Although various analytical techniques are used for determination of T g' based on the changes in physical properties associated with glass transition, the differential scanning calorimetry (DSC) is the most commonly used technique. In this article, an overview of DSC technique is provided along with brief discussion on the alternate analytical techniques for T g' determination. Additionally, challenges associated with T g' determination, using DSC for protein formulations, are discussed. The purpose of this review is to provide a practical industry perspective on determination of T g' for protein formulations as it relates to design and development of lyophilization process and/or for frozen storage; however, a comprehensive review of glass transition temperature (T g, T g'), in general, is outside the scope of this work.

  15. Molecular Motion in Polymers: Mechanical Behavior of Polymers Near the Glass-Rubber Transition Temperature.

    ERIC Educational Resources Information Center

    Sperling, L. H.

    1982-01-01

    The temperature at which the onset of coordinated segmental motion begins is called the glass-rubber transition temperature (Tg). Natural rubber at room temperature is a good example of a material above its Tg. Describes an experiment examining the response of a typical polymer to temperature variations above and below Tg. (Author/JN)

  16. CORRELATION OF THE GLASS TRANSITION TEMPERATURE OF PLASTICIZED PVC USING A LATTICE FLUID MODEL

    EPA Science Inventory

    A model has been developed to describe the composition dependence of the glass transition temperature (Tg) of polyvinyl chloride (PVC) + plasticizer mixtures. The model is based on Sanchez-Lacombe equation of state and the Gibbs-Di Marzio criterion, which states that th...

  17. Structural studies of an organic liquid through the glass transition

    SciTech Connect

    Leheny, R.L.; Menon, N.; Nagel, S.R.; Long Price, D.; Suzuya, K.; Thiyagarajan, P.

    1996-11-01

    We have performed neutron diffraction experiments on deuterated propylene glycol, an organic glass former, at temperatures ranging from where its dynamical response approaches that of normal liquids to below the point where relaxation times appear to diverge. Our studies extend over a very broad range of scattering wave vector (0.01{lt}{ital Q}{lt}30 A{sup {minus}1}). In contrast to models which predict clustering, we find no evidence in the liquid at any temperature for heterogeneities large on molecular scales. However, we do note subtle changes at shorter lengths. Using molecular dynamics simulations to model our results, we identify these changes with increasing density and increasing orientational order induced by hydrogen bonding in the liquid as it cools. Analysis of the orientational correlations between molecules reveals a strong dependence on their relative positions. {copyright} {ital 1996 American Institute of Physics.}

  18. Flight-measured laminar boundary-layer transition phenomena including stability theory analysis

    NASA Technical Reports Server (NTRS)

    Obara, C. J.; Holmes, B. J.

    1985-01-01

    Flight experiments were conducted on a single-engine turboprop aircraft fitted with a 92-in-chord, 3-ft-span natural laminar flow glove at glove section lift coefficients from 0.15 to 1.10. The boundary-layer transition measurement methods used included sublimating chemicals and surface hot-film sensors. Transition occurred downstream of the minimum pressure point. Hot-film sensors provided a well-defined indication of laminar, laminar-separation, transitional, and turbulent boundary layers. Theoretical calculations of the boundary-layer parameters provided close agreement between the predicted laminar-separation point and the measured transition location. Tollmien-Schlichting (T-S) wave growth n-factors between 15 and 17 were calculated at the predicted point of laminar separation. These results suggest that for many practical airplane cruise conditions, laminar separation (as opposed to T-S instability) is the major cause of transition in predominantly two-dimensional flows.

  19. Phenomena at the QCD phase transition in nonequilibrium chiral fluid dynamics (Nχ FD)

    NASA Astrophysics Data System (ADS)

    Nahrgang, Marlene; Herold, Christoph

    2016-08-01

    Heavy-ion collisions performed in the beam energy range accessible by the NICA collider facility are expected to produce systems of extreme net-baryon densities and can thus reach yet unexplored regions of the QCD phase diagram. Here, one expects the phase transition between the plasma of deconfined quarks and gluons and the hadronic matter to be of first order. A discovery of the first-order phase transition would as well prove the existence of the QCD critical point, a landmark in the phase diagram. In order to understand possible signals of the first-order phase transition in heavy-ion collision experiments it is very important to develop dynamical models of the phase transition. Here, we discuss the opportunities of studying dynamical effects at the QCD first-order phase transition within our model of nonequilibrium chiral fluid dynamics.

  20. Physical stability of drugs after storage above and below the glass transition temperature: Relationship to glass-forming ability.

    PubMed

    Alhalaweh, Amjad; Alzghoul, Ahmad; Mahlin, Denny; Bergström, Christel A S

    2015-11-10

    Amorphous materials are inherently unstable and tend to crystallize upon storage. In this study, we investigated the extent to which the physical stability and inherent crystallization tendency of drugs are related to their glass-forming ability (GFA), the glass transition temperature (Tg) and thermodynamic factors. Differential scanning calorimetry was used to produce the amorphous state of 52 drugs [18 compounds crystallized upon heating (Class II) and 34 remained in the amorphous state (Class III)] and to perform in situ storage for the amorphous material for 12h at temperatures 20°C above or below the Tg. A computational model based on the support vector machine (SVM) algorithm was developed to predict the structure-property relationships. All drugs maintained their Class when stored at 20°C below the Tg. Fourteen of the Class II compounds crystallized when stored above the Tg whereas all except one of the Class III compounds remained amorphous. These results were only related to the glass-forming ability and no relationship to e.g. thermodynamic factors was found. The experimental data were used for computational modeling and a classification model was developed that correctly predicted the physical stability above the Tg. The use of a large dataset revealed that molecular features related to aromaticity and π-π interactions reduce the inherent physical stability of amorphous drugs.

  1. Effect of mixed transition metal ions on DC conductivity in lithium bismuth borate glasses

    SciTech Connect

    Khasa, S.; Yadav, Arti Dahiya, M. S.; Seema,; Ashima; Agarwal, A.

    2015-06-24

    The DC conductivities of glasses having composition x(2NiO·V{sub 2}O{sub 5})·(30-x)Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} (with x=0, 2, 5, 7 and 10, i.e. NVLBB glasses) and glass samples having composition 7NiO·23 Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} and 7V{sub 2}O{sub 5}·23Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} (NLBB and VLBB respectively) are investigated as a function of temperature. Conductivity for glasses containing higher percentage of lithium ions is predominantly ionic and in glasses containing higher percentage of transition metal (TM) ions is predominantly electronic. The observed increase in conductivity with x and peak-like behavior at x=7 in NVLBB glasses due to competitive transport of small polaron contributing to a significant structural change in NVLBB glasses. Variation of molar volume and density was also observed with x. In NVLBB glasses, as x increases density increases except a slight decrease at x=7. Also density increases in NLBB whereas in case of VLBB it decreases in comparison to NVLBB1 glass composition. Mott’s small polaron hopping (SPH) model has been applied to analyze the high temperature conductivity data and activation energy.

  2. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions.

    PubMed

    Sathish, K; Thirumaran, S

    2015-08-05

    The present work describes the glass samples of composition (x% V₂O₅-(80-x)% B₂O₃-20% Na₂CO₃) VBS glass system and (x%MnO₂-(80-x)% B₂O₃-20% Na₂CO₃) in MBS glass system with mol% ranging from x=3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V₂O₅ doped glass system,(VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO₂ doped glass system (VBS glass system). The present study critically observes the doping of V₂O₅ with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO₂. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO₃ or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na₂CO₃, V₂O₅ and MnO₂ contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs.

  3. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions

    NASA Astrophysics Data System (ADS)

    Sathish, K.; Thirumaran, S.

    2015-08-01

    The present work describes the glass samples of composition (x% V2O5-(80-x)% B2O3-20% Na2CO3) VBS glass system and (x% MnO2-(80-x)% B2O3-20% Na2CO3) in MBS glass system with mol% ranging from x = 3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V2O5 doped glass system, (VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO2 doped glass system (VBS glass system). The present study critically observes the doping of V2O5 with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO2. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO3 or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na2CO3, V2O5 and MnO2 contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs.

  4. Glass-to-cryogenic-liquid transitions in aqueous solutions suggested by crack healing

    PubMed Central

    Kim, Chae Un; Tate, Mark W.; Gruner, Sol M.

    2015-01-01

    Observation of theorized glass-to-liquid transitions between low-density amorphous (LDA) and high-density amorphous (HDA) water states had been stymied by rapid crystallization below the homogeneous water nucleation temperature (∼235 K at 0.1 MPa). We report optical and X-ray observations suggestive of glass-to-liquid transitions in these states. Crack healing, indicative of liquid, occurs when LDA ice transforms to cubic ice at 160 K, and when HDA ice transforms to the LDA state at temperatures as low as 120 K. X-ray diffraction study of the HDA to LDA transition clearly shows the characteristics of a first-order transition. Study of the glass-to-liquid transitions in nanoconfined aqueous solutions shows them to be independent of the solute concentrations, suggesting that they represent an intrinsic property of water. These findings support theories that LDA and HDA ice are thermodynamically distinct and that they are continuously connected to two different liquid states of water. PMID:26351671

  5. Glass-to-cryogenic-liquid transitions in aqueous solutions suggested by crack healing.

    PubMed

    Kim, Chae Un; Tate, Mark W; Gruner, Sol M

    2015-09-22

    Observation of theorized glass-to-liquid transitions between low-density amorphous (LDA) and high-density amorphous (HDA) water states had been stymied by rapid crystallization below the homogeneous water nucleation temperature (∼235 K at 0.1 MPa). We report optical and X-ray observations suggestive of glass-to-liquid transitions in these states. Crack healing, indicative of liquid, occurs when LDA ice transforms to cubic ice at 160 K, and when HDA ice transforms to the LDA state at temperatures as low as 120 K. X-ray diffraction study of the HDA to LDA transition clearly shows the characteristics of a first-order transition. Study of the glass-to-liquid transitions in nanoconfined aqueous solutions shows them to be independent of the solute concentrations, suggesting that they represent an intrinsic property of water. These findings support theories that LDA and HDA ice are thermodynamically distinct and that they are continuously connected to two different liquid states of water.

  6. On the nature of the liquid-to-glass transition equation

    NASA Astrophysics Data System (ADS)

    Sanditov, D. S.

    2016-09-01

    Within the model of delocalized atoms, it is shown that the parameter δ T g , which enters the glasstransition equation qτ g = δ T g and characterizes the temperature interval in which the structure of a liquid is frozen, is determined by the fluctuation volume fraction {f_g} = {( {{{Δ {V_e}} / V _{T = {T_g}}} frozen at the glass-transition temperature T g and the temperature T g itself. The parameter δ T g is estimated by data on f g and T g . The results obtained are in agreement with the values of δ T g calculated by the Williams-Landel-Ferry (WLF) equation, as well as with the product qτ g —the left-hand side of the glass-transition equation ( q is the cooling rate of the melt, and τ g is the structural relaxation time at the glass-transition temperature). Glasses of the same class with f g ≈ const exhibit a linear correlation between δ T g and T g . It is established that the currently used methods of Bartenev and Nemilov for calculating δ T g yield overestimated values, which is associated with the assumption, made during deriving the calculation formulas, that the activation energy of the glass-transition process is constant. A generalized Bartenev equation is derived for the dependence of the glass-transition temperature on the cooling rate of the melt with regard to the temperature dependence of the activation energy of the glasstransition process. A modified version of the kinetic glass-transition criterion is proposed. A conception is developed that the fluctuation volume fraction f = Δ V e / V can be interpreted as an internal structural parameter analogous to the parameter ξ in the Mandelstam-Leontovich theory, and a conjecture is put forward that the delocalization of an active atom—its critical displacement from the equilibrium position—can be considered as one of possible variants of excitation of a particle in the Vol'kenshtein-Ptitsyn theory. The experimental data used in the study refer to a constant cooling rate of q = 0.05 K

  7. Spacelab experiment definition study on phase transition and critical phenomena in fluids: Interim report on experimental justification

    NASA Technical Reports Server (NTRS)

    Moldover, M. R.; Hocken, M. R.; Gammon, R. W.; Sengers, J. V.

    1976-01-01

    Pure fluids and fluid mixtures near critical points are identified and are related to the progress of several disciplines. Consideration is given to thermodynamic properties, transport properties, and the complex nonlinear phenomena which occur when fluids undergo phase transitions in the critical region. The distinction is made between practical limits which may be extended by advances in technology and intrinsic ones which arise from the modification of fluid properties by the earth's gravitational field. The kinds of experiments near critical points which could best exploit the low gravity environment of an orbiting laboratory are identified. These include studies of the index of refraction, constant volume specific heat, and phase separation.

  8. Boundary layer transition: A review of theory, experiment and related phenomena

    NASA Technical Reports Server (NTRS)

    Kistler, E. L.

    1971-01-01

    The overall problem of boundary layer flow transition is reviewed. Evidence indicates a need for new, basic physical hypotheses in classical fluid mechanics math models based on the Navier-Stokes equations. The Navier-Stokes equations are challenged as inadequate for the investigation of fluid transition, since they are based on several assumptions which should be expected to alter significantly the stability characteristics of the resulting math model. Strong prima facie evidence is presented to this effect.

  9. Deuteron NMR (Nuclear Magnetic Resonance) in relation to the glass transition in polymers

    NASA Technical Reports Server (NTRS)

    Roessler, E.; Sillescu, H.; Spiess, H. W.; Wallwitz, R.

    1983-01-01

    H-2NMR is introduced as a tool for investigating slow molecular motion in the glass transition region of amorphous polymers. In particular, we compare H-2 spin alignment echo spectra of chain deuterated polystyrene with model calculations for restricted rotational Brownian motion. Molecular motion in the polyztyrene-toluene system has been investigated by analyzing H-2NMR of partially deuterated polystyrene and toluene, respectively. The diluent mobility in the mixed glass has been decomposed into solid and liquid components where the respective average correlation times differ by more than 5 decades.

  10. Effects of dynamic heterogeneity and density scaling of molecular dynamics on the relationship among thermodynamic coefficients at the glass transition

    SciTech Connect

    Koperwas, K. Grzybowski, A.; Grzybowska, K.; Wojnarowska, Z.; Paluch, M.

    2015-07-14

    In this paper, we define and experimentally verify thermodynamic characteristics of the liquid-glass transition, taking into account a kinetic origin of the process. Using the density scaling law and the four-point measure of the dynamic heterogeneity of molecular dynamics of glass forming liquids, we investigate contributions of enthalpy, temperature, and density fluctuations to spatially heterogeneous molecular dynamics at the liquid-glass transition, finding an equation for the pressure coefficient of the glass transition temperature, dTg/dp. This equation combined with our previous formula for dTg/dp, derived solely from the density scaling criterion, implies a relationship among thermodynamic coefficients at Tg. Since this relationship and both the equations for dTg/dp are very well validated using experimental data at Tg, they are promising alternatives to the classical Prigogine-Defay ratio and both the Ehrenfest equations in case of the liquid-glass transition.

  11. The superspin glass transition in zinc ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Kaman, O.; Kořínková, T.; Jirák, Z.; Maryško, M.; Veverka, M.

    2015-05-01

    Nanoparticles of the ZnxFe3-xO4 (x = 0.3-0.4) spinel phase having 5 and 15 nm size were synthesized by thermal decomposition of the respective acetylacetonates in a high boiling-point solvent employing surfactants. The collective behaviour of the nanoparticles was probed by dc and ac magnetic measurements of tightly compressed pellets of the particles and silica coated products which were prepared by reverse microemulsion technique. The assembly of bare 5 nm particles remains in the superparamagnetic state with Curie-Weiss characteristics down to 35 K when a rather sharp freezing of superspins is detected. The larger particles show a similar but more diffusive transition at 250 K. The cores encapsulated into the diamagnetic silica do not exhibit glassy freezing.

  12. Probing the Bose glass-superfluid transition using quantum quenches of disorder

    NASA Astrophysics Data System (ADS)

    Meldgin, Carolyn; Ray, Ushnish; Russ, Philip; Chen, David; Ceperley, David M.; Demarco, Brian

    2016-07-01

    The disordered Bose-Hubbard model--a paradigm for strongly correlated and disordered bosonic systems--is central to our understanding of quantum phase transitions. Despite extensive theoretical work on the disordered Bose-Hubbard model, little is known about the impact of temperature, the dynamical behaviour of quantum phases, and how equilibrium is affected during quantum phase transitions. These issues are critically important to applications such as quantum annealing and electronics based on quantum phase transitions. Here, we use a quantum quench of disorder in an ultracold lattice gas to dynamically probe the superfluid-Bose glass quantum phase transition at non-zero temperature ( Fig. 1). By measuring excitations generated during the quench, we provide evidence for superfluid puddles in the Bose glass phase and produce a superfluid-Bose glass phase diagram consistent with completely constrained, finite temperature, and equilibrium quantum Monte Carlo simulations. The residual energy from the quench, which is an efficacy measure for optimization through quantum annealing, is unchanged for quench times spanning nearly a hundred tunnelling times.

  13. Fragility, network adaptation, rigidity- and stress- transitions in homogenized binary GexS100-x glasses

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shibalik; Boolchand, Punit

    2014-03-01

    Binary GexS100-x glasses reveal elastic and chemical phase transitions driven by network topology. With increasing Ge content x, well defined rigidity (xc(1) =19.3%) and stress(xc(2) =24.85%) transitions and associated optical elasticity power-laws are observed in Raman scattering. Calorimetric measurements reveal a square-well like minimum with window walls that coincide with the two elastic phase transitions. Molar volumes show a trapezoidal-like minimum with edges that nearly coincide with the reversibility window. These results are signatures of the isostatically rigid nature of the elastic phase formed between the rigidity and stress transitions. Complex Cp measurements show melt fragility index, m(x) to also show a global minimum in the reversibility window, underscoring that melt dynamics encode the elastic behavior of the glass formed at Tg. The strong nature of melts formed in the IP has an important practical consequence; they lead to slow homogenization of non-stoichiometric batch compositions reacted at high temperatures. Homogenization of chalcogenides melts/glasses over a scale of a few microns is a pre-requisite to observe the intrinsic physical properties of these materials. Supported by NSF Grant DMR 0853957.

  14. Critical Phenomena at the Normal-Incommensurate Phase Transition in Rb2ZnCl4

    NASA Astrophysics Data System (ADS)

    Mashiyama, Hiroyuki

    1981-08-01

    The X-ray reflection intensity and the dielectric constant are measured around the normal-incommensurate phase transition. From the temperature dependence of a satellite reflection at \\includegraphics{dummy.eps}, the critical exponent 2β is determined to be 0.69± 0.01. This value is very close to the exponent of the three-dimensional n{=}2-vector model. The dielectric constant along the ferroelectric axis shows a weak anomaly at the transition point, which is discussed with the aid of the remormalization-group method.

  15. Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions

    NASA Astrophysics Data System (ADS)

    Zhou, Hongwei; Xue, Changguo; Weis, Philipp; Suzuki, Yasuhito; Huang, Shilin; Koynov, Kaloian; Auernhammer, Günter K.; Berger, Rüdiger; Butt, Hans-Jürgen; Wu, Si

    2016-10-01

    The development of polymers with switchable glass transition temperatures (Tg) can address scientific challenges such as the healing of cracks in high-Tg polymers and the processing of hard polymers at room temperature without using plasticizing solvents. Here, we demonstrate that light can switch the Tg of azobenzene-containing polymers (azopolymers) and induce reversible solid-to-liquid transitions of the polymers. The azobenzene groups in the polymers exhibit reversible cis-trans photoisomerization abilities. Trans azopolymers are solids with Tg above room temperature, whereas cis azopolymers are liquids with Tg below room temperature. Because of the photoinduced solid-to-liquid transitions of these polymers, light can reduce the surface roughness of azopolymer films by almost 600%, repeatedly heal cracks in azopolymers, and control the adhesion of azopolymers for transfer printing. The photoswitching of Tg provides a new strategy for designing healable polymers with high Tg and allows for control over the mechanical properties of polymers with high spatiotemporal resolution.

  16. Survey and research on up-conversion emission character and energy transition of Yb3+/Er3+/Tm3+ co-doped phosphate glass and glass ceramic

    NASA Astrophysics Data System (ADS)

    Yu, Yin; Song, Feng; Ming, Chengguo; Liu, Jiadong; Li, Wei; Liu, Yanling; Zhao, Hongyan

    2012-11-01

    By conventional high-temperature melting method, Yb3+/Er3+/Tm3+ co-doped phosphate glass was synthesized. After annealing the precursor glass, the phosphate glass ceramic (GC) was obtained. By measuring the X-ray diffraction (XRD) spectrum, it is proved that the LiYbP4O12 and Li6P6O18 nano-crystals have existed in the phosphate GC. The up-conversion (UC) emission intensity of the GC is obvious stronger compared to that of the glass. The reason is that the shorter distance between rare earth ions in the glass ceramic increases the energy transitions from the sensitized ions (Yb3+) to the luminous ions (Er3+ and Tm3+). By studying the dependence of UC emissions on the pump power, the 523 and 546 nm green emissions of Er3+ ions in the glass are two-photon processes. But in the glass ceramic, they are two/three-photon processes. The phenomenon implies that a three-photon process has participated in the population of the two green emissions. Using Dexter theory, we discuss the energy transitions of Er3+ and Tm3+. The results indicate the energy transition of Tm3+ to Er3+ is very strong in the GC, which changes the population mechanism of UC emissions of Er3+.

  17. Effect of free surface roughness on the apparent glass transition temperature in thin polymer films measured by ellipsometry.

    PubMed

    Efremov, Mikhail Yu

    2014-12-01

    Ellipsometry is one of the standard methods for observation of glass transition in thin polymer films. This work proposes that sensitivity of the method to surface morphology can complicate manifestation of the transition in a few nm thick samples. Two possible mechanisms of free surface roughening in the vicinity of glass transition are discussed: roughening due to lateral heterogeneity and roughening associated with thermal capillary waves. Both mechanisms imply an onset of surface roughness in the glass transition temperature range, which affects the experimental data in a way that shifts apparent glass transition temperature. Effective medium approximation models are used to introduce surface roughness into optical calculations. The results of the optical modeling for a 5 nm thick polystyrene film on silicon are presented.

  18. Difference in variation of glass transition activation energy between 1,2-propanediamine and 1,2-propanediol

    NASA Astrophysics Data System (ADS)

    Terashima, Yukio

    2016-05-01

    Variations of the effective activation energy (Eα) throughout the glass transition were determined for 1,2-propanediamine (12PDA) and 1,2-propanediol (12PDO) by applying an isoconversional method to differential scanning calorimetry (DSC) data. Eα was found to markedly decrease throughout the glass transition of 12PDA, whereas such drastic change in Eα was not observed for 12PDO. Although the two simple liquids are similar in molecular structure and size, their trends in Eα and fragility m throughout the glass transition can be quite different. The significant disparity in the kinetic parameters can be caused by differences in hydrogen-bonding structure between 12PDA and 12PDO.

  19. Effect of sodium chloride on the glass transition of condensed starch systems.

    PubMed

    Chuang, Lillian; Panyoyai, Naksit; Shanks, Robert; Kasapis, Stefan

    2015-10-01

    The present investigation deals with the structural properties of condensed potato starch-sodium chloride systems undergoing a thermally induced glass transition. Sample preparation included hot pressing at 120°C for 7 min to produce extensive starch gelatinisation. Materials covered a range of moisture contents from 3.6% to 18.8%, which corresponded to relative humidity values of 11% and 75%. Salt addition was up to 6.0% in formulations. Instrumental work was carried out with dynamic mechanical analysis in tension, modulated differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy and wide angle X-ray diffraction. Experimental conditions ensured the development of amorphous matrices that exhibited thermally reversible glassy consistency. Both moisture content and addition of sodium chloride affected the mechanical strength and glass transition temperature of polymeric systems. Sodium ions interact with chemical moieties of the polysaccharide chain to alter considerably structural properties, as compared to the starch-water matrix.

  20. Correlation between the glass-rubber transition and ionic conductivity in poly(3-hexylthiophene)

    NASA Astrophysics Data System (ADS)

    Lada, M.

    2008-10-01

    Using impedance spectroscopy and metal-insulator-semiconductor structures, the small-signal bulk conductivity of annealed poly(3-hexylthiophene) (P3HT) has been extracted in the temperature range of 150-420K. A faster-than-Arrhenius increase in the conductivity of P3HT observed near and above room temperature is shown to be a result of the glass-rubber transition and is closely related to the amorphous phase of the polymer. The super-Arrhenius conductivity can be modeled and interpreted as ionic, arising from the thermal motion of the polymer segments. In addition, a percolative conduction mechanism induced by the glass transition can phenomenologically model the conductivity increase.

  1. Phase transitions in the three-state Ising spin-glass model with finite connectivity.

    PubMed

    Erichsen, R; Theumann, W K

    2011-06-01

    The statistical mechanics of a two-state Ising spin-glass model with finite random connectivity, in which each site is connected to a finite number of other sites, is extended in this work within the replica technique to study the phase transitions in the three-state Ghatak-Sherrington (or random Blume-Capel) model of a spin glass with a crystal-field term. The replica symmetry ansatz for the order function is expressed in terms of a two-dimensional effective-field distribution, which is determined numerically by means of a population dynamics procedure. Phase diagrams are obtained exhibiting phase boundaries that have a reentrance with both a continuous and a genuine first-order transition with a discontinuity in the entropy. This may be seen as "inverse freezing," which has been studied extensively lately, as a process either with or without exchange of latent heat.

  2. Dielectric spectroscopy for the determination of the glass transition temperature of pharmaceutical solid dispersions.

    PubMed

    O'Donnell, Kevin P; Woodward, W H Hunter

    2015-06-01

    The purpose of this study was to evaluate analytical techniques for the measurement of the glass transition temperature of HPMC and formulated solid dispersions thereof. Unmodified samples of various grades of HPMC and solid dispersions of HPMC and itraconazole produced by hot melt extrusion were analyzed by thermomechanical analysis, differential scanning calorimetry, thermally stimulated depolarization current and dielectric spectroscopy. It was found that dielectric spectroscopy offers the best accuracy and reproducibility for analysis of the base HPMC powders regardless of the substitution type or viscosity grade and that the obtained results were not frequency dependent. The results of dielectric measurements of solid dispersions prepared by hot melt extrusion were compared with predicted values of the Gordon-Taylor equation. It was found that time-temperature superposition effects and small molecule frequency dependence makes broadly applying determination of the glass transition temperature in drug dispersions by dielectric spectroscopy prohibitively difficult.

  3. Terahertz spectral change associated with glass transition of poly-ε-caprolactone

    SciTech Connect

    Komatsu, Marina; Mizuno, Maya; Fukunaga, Kaori; Saito, Shingo; Ohki, Yoshimichi

    2015-04-07

    We measured absorption spectra of unidirectionally stretched poly-ε-caprolactone (PCL) film in a range from 0.3 to 3.6 THz at temperatures from 10 to 300 K. Several absorption peaks were observed, when the electric field of THz waves was set in directions parallel and perpendicular to the stretching direction. The absorption bandwidths became significantly broad at around 200 K and above at least in two specific peaks. This temperature is close to the glass transition temperature of PCL. Further, it is shown by quantum chemical calculations that all the peaks obtained experimentally originate in skeletal vibrations of PCL. Therefore, it has become clear that a specific feature appears in the THz absorption spectrum of PCL associated with its glass transition.

  4. The Glass Transition and Dynamics in Athermal Poly(a-Methyl Styrene)/Oligomer Blends

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Simon, Sindee

    2008-03-01

    The glass transition and dynamics in athermal blends of poly(a-methyl styrene) (PaMS) and its short chain oligomers are investigated using differential scanning calorimetry (DSC). A methodology is described to partition the calorimetric transition in order to obtain effective Tgs for each component of the blend. The dependences of these effective Tgs on overall blend composition are described by the Lodge-McLeish model although the self-concentration effect is less than expected based on the Kuhn length. The kinetics associated with the glass temperature, Tg, are examined by studying the cooling rate dependence of Tg for the pure components and the blends, as well as by examining the enthalpy overshoots in the heating DSC scans. Extension of Colmenero's model to describe the dynamics in these materials will be discussed.

  5. Disorder-Assisted Melting and the Glass Transition in Amorphous Solids

    NASA Astrophysics Data System (ADS)

    Zaccone, Alessio; Terentjev, Eugene M.

    2013-04-01

    The mechanical response of solids depends on temperature, because the way atoms and molecules respond collectively to deformation is affected at various levels by thermal motion. This is a fundamental problem of solid state science and plays a crucial role in materials science. In glasses, the vanishing of shear rigidity upon increasing temperature is the reverse process of the glass transition. It remains poorly understood due to the disorder leading to nontrivial (nonaffine) components in the atomic displacements. Our theory explains the basic mechanism of the melting transition of amorphous (disordered) solids in terms of the lattice energy lost to this nonaffine motion, compared to which thermal vibrations turn out to play only a negligible role. The theory is in good agreement with classic data on melting of amorphous polymers (for which no alternative theory can be found in the literature) and offers new opportunities in materials science.

  6. Glass transition accelerates the spreading of polar solvents on a soluble polymer.

    PubMed

    Dupas, Julien; Verneuil, Emilie; Van Landeghem, Maxime; Bresson, Bruno; Forny, Laurent; Ramaioli, Marco; Lequeux, Francois; Talini, Laurence

    2014-05-09

    We study the wetting of polymer layers by polar solvents. As previously observed, when a droplet of solvent spreads, both its contact angle and velocity decrease with time as a result of solvent transfers from the droplet to the substrate. We show that, when the polymer is initially glassy, the angle decreases steeply for a given value of the velocity, Ug. We demonstrate that those variations result from a plasticization, i.e., a glass transition, undergone by the polymer layer during spreading, owing to the increase of its solvent content. By analyzing previous predictions on the wetting of rigid and soft viscoelastic substrates, we relate Ug to the viscosity of the polymer gel close to the glass transition. Finally, we derive an analytical prediction for Ug based on existing predictions for the water transfer from the droplet to the substrate. Using polar solvents of different natures, we show that the experimental data compare well to the predicted expression for Ug.

  7. Role of branching architecture on the glass transition of hyperbranched polyethers.

    PubMed

    Zhu, Qi; Wu, Jieli; Tu, Chunlai; Shi, Yunfeng; He, Lin; Wang, Ruibin; Zhu, Xinyuan; Yan, Deyue

    2009-04-30

    The influence of branching architecture on the glass transition of hyperbranched polyethers has been investigated. For amorphous samples, the glass transition temperature (T(g)) first increases with the degree of branching (DB), passes through a maximum, and then decreases sharply. An attempt is made to explain this by the competition between the junction density and the free volume of terminal units. For the crystalline samples, the crystallization of polymer chains makes the relationship of DB and T(g) more complicated. By the introduction of branching architecture, the crystallization ability of the branched polymer is weakened gradually. When the samples are isothermally crystallized for a long time, the T(g) of polyethers decreases monotonically with DB.

  8. Translation-rotation coupling, phase transitions, and elastic phenomena in orientationally disordered crystals

    NASA Astrophysics Data System (ADS)

    Lynden-Bell, R. M.; Michel, K. H.

    1994-07-01

    Many of the properties of orientationally disordered crystals are profoundly affected by the coupling (known as translation-rotation coupling) between translation displacements and molecular orientation. The consequences of translation-rotation coupling depend on molecular and crystal symmetry, and vary throughout the Brillouin zone. One result is an indirect coupling between the orientations of different molecules, which plays an important role in the order/disorder phase transition, especially in ionic orientationally disordered crystals. Translation-rotation coupling also leads to softening of elastic constants and affects phonon spectra. This article describes the theory of the coupling from the point of view of the microscopic Hamiltonian and the resulting Landau free energy. Considerable emphasis is placed on the restrictions due to symmetry as these are universal and can be used to help one's qualitative understanding of experimental observations. The application of the theory to phase transitions is described. The softening of elastic constants is discussed and shown to be universal. However, anomalies associated with the order/disorder phase transition are shown to be restricted to cases in which the symmetry of the order parameter satisfies certain conditions. Dynamic effects on phonon spectra are described and finally the recently observed dielectric behavior of ammonium compounds is discussed. Throughout the article examples from published experiments are used to illustrate the application of the theory including well known examples such as the alkali metal cyanides and more recently discovered orientationally disordered crystals such as the fullerite, C60.

  9. Computational Investigation of Impact Energy Absorption Capability of Polyurea Coatings via Deformation-Induced Glass Transition

    DTIC Science & Technology

    2010-01-01

    homepage: www.e lsev ier .com/ locate /msea Computational investigation of impact energy absorption capability of polyurea coatings via deformation-induced...Keywords: Polyurea Computational analysis Glass transition Blast/impact energy absorption coating a b s t r a c t A number of experimental investigations...reported in the open literature have indicated that the applica- tion of polyurea coatings can substantially improve blast and ballistic impact

  10. Dynamic and thermodynamic characteristics associated with the glass transition of amorphous trehalose-water mixtures.

    PubMed

    Weng, Lindong; Elliott, Gloria D

    2014-06-21

    The glass transition temperature Tg of biopreservative formulations is important for predicting the long-term storage of biological specimens. As a complementary tool to thermal analysis techniques, which are the mainstay for determining Tg, molecular dynamics simulations have been successfully applied to predict the Tg of several protectants and their mixtures with water. These molecular analyses, however, rarely focused on the glass transition behavior of aqueous trehalose solutions, a subject that has attracted wide scientific attention via experimental approaches. Important behavior, such as hydrogen-bonding dynamics and self-aggregation has yet to be explored in detail, particularly below, or in the vicinity of, Tg. Using molecular dynamics simulations of several dynamic and thermodynamic properties, this study reproduced the supplemented phase diagram of trehalose-water mixtures (i.e., Tg as a function of the solution composition) based on experimental data. The structure and dynamics of the hydrogen-bonding network in the trehalose-water systems were also analyzed. The hydrogen-bonding lifetime was determined to be an order of magnitude higher in the glassy state than in the liquid state, while the constitution of the hydrogen-bonding network exhibited no noticeable change through the glass transition. It was also found that trehalose molecules preferred to form small, scattered clusters above Tg, but self-aggregation was substantially increased below Tg. The average cluster size in the glassy state was observed to be dependent on the trehalose concentration. Our findings provided insights into the glass transition characteristics of aqueous trehalose solutions as they relate to biopreservation.

  11. Optical transitions and frequency upconversion emission of Er 3+ions in novel lead-bismuthate glass

    NASA Astrophysics Data System (ADS)

    Sun, Hongtao; Dai, Shixun; Zhang, Debao; Xu, Shiqing; Zhang, Junjie; Hu, Lili; Jiang, Zhonghong

    2004-12-01

    Er 3+-doped strontiam lead bismuth glass for developing upconversion lasers has been fabricated and characterized. The Judd-Ofelt analysis was performed on the absorption spectrum and the transition probabilities, excited state lifetimes, and the fluorescence branching ratios were calculated and discussed. Under 975 nm excitation, intense green and red emissions centered at 525, 546, and 657 nm, corresponding to the transitions 2H→4I, 4S→4I, and 4F→4I, respectively, were observed. The upconversion mechanisms are discussed based on the energy matching and quadratic dependence on excitation power, and the dominant mechanisms are excited state absorption and energy transfer upconversion for the green and red emissions.

  12. Viscoelastic processes in non-ergodic states (percolation and glass transitions) of attractive micellar systems

    NASA Astrophysics Data System (ADS)

    Mallamace, F.; Broccio, M.; Tartaglia, P.; Chen, W. R.; Faraone, A.; Chen, S. H.

    2003-12-01

    We report a set of viscoelastic measurements in aqueous solutions of a copolymer micellar system with attractive interactions, a system characterized by a percolation line (PT), and a structural arrest (SA) in the particle diffusion motions of a kinetic glass transition (KGT). We observe, in both transitions, dramatic variations in both the elastic (or storage G‧( ω)) and loss components ( G″( ω)) of the shear moduli. At the PT, rheological data are characterized by a scaling behavior, whereas at the SA G‧ and G″ develop a plateau and a marked minimum, respectively. These behaviors are described in the frame of percolation models and mode coupling theory (MCT).

  13. Cubic to tetragonal phase transition of Tm{sup 3+} doped nanocrystals in oxyfluoride glass ceramics

    SciTech Connect

    Li, Yiming; Fu, Yuting; Shi, Yahui; Zhang, Xiaoyu; Yu, Hua E-mail: yuhua@nankai.edu.cn; Zhao, Lijuan E-mail: yuhua@nankai.edu.cn

    2016-02-15

    Tm{sup 3+} ions doped β-PbF{sub 2} nanocrystals in oxyfluoride glass ceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm{sup 3+} doped nanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an O{sub h} to D{sub 4h} site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm{sup 3+} doped nanocrystals at 800 nm was modulated by the phase transition of the surrounding crystal field.

  14. Transition to Glass: Pilot Training for High-Technology Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.; Chute, Rebecca D.; Moses, John H.

    1999-01-01

    This report examines the activities of a major commercial air carrier between 1993 and late 1996 as it acquired an advanced fleet of high-technology aircraft (Boeing 757). Previously, the airline's fleet consisted of traditional (non-glass) aircraft, and this report examines the transition from a traditional fleet to a glass one. A total of 150 pilots who were entering the B-757 transition training volunteered for the study, which consisted of three query phases: (1) first day of transition training, (2) 3 to 4 months after transition training, and (3) 12 to 14 months after initial operating experience. Of these initial 150 pilots, 99 completed all three phases of the study, with each phase consisting of probes on attitudes and experiences associated with their training and eventual transition to flying the line. In addition to the three questionnaires, 20 in-depth interviews were conducted. Although the primary focus of this study was on the flight training program, additional factors such as technical support, documentation, and training aids were investigated as well. The findings generally indicate that the pilot volunteers were highly motivated and very enthusiastic about their training program. In addition, the group had low levels of apprehension toward automation and expressed a high degree of satisfaction toward their training. However, there were some concerns expressed regarding the deficiencies in some of the training aids and lack of a free-play flight management system training device.

  15. Reversibility and hysteresis of the sharp yielding transition of a colloidal glass under oscillatory shear.

    PubMed

    Dang, M T; Denisov, D; Struth, B; Zaccone, A; Schall, P

    2016-04-01

    The mechanical response of glasses remains challenging to understand. Recent results indicate that the oscillatory rheology of soft glasses is accompanied by a sharp non-equilibrium transition in the microscopic dynamics. Here, we use simultaneous x-ray scattering and rheology to investigate the reversibility and hysteresis of the sharp symmetry change from anisotropic solid to isotropic liquid dynamics observed in the oscillatory shear of colloidal glasses (D. Denisov, M.T. Dang, B. Struth, A. Zaccone, P. Schall, Sci. Rep. 5 14359 (2015)). We use strain sweeps with increasing and decreasing strain amplitude to show that, in analogy with equilibrium transitions, this sharp symmetry change is reversible and exhibits systematic frequency-dependent hysteresis. Using the non-affine response formalism of amorphous solids, we show that these hysteresis effects arise from frequency-dependent non-affine structural cage rearrangements at large strain. These results consolidate the first-order-like nature of the oscillatory shear transition and quantify related hysteresis effects both via measurements and theoretical modelling.

  16. Influence of the glass transition on the secondary relaxation of an epoxy resin

    NASA Astrophysics Data System (ADS)

    Casalini, R.; Fioretto, D.; Livi, A.; Lucchesi, M.; Rolla, P. A.

    1997-08-01

    The dynamics of diglycidyl ether of bisphenol-A (DGEBA) was studied by employing broadband dielectric spectroscopy over a wide temperature range extending from below to above the glass-transition temperature. Dielectric spectra reveal the existence of two relaxation processes: the structural relaxation, slowing down for decreasing temperature and freezing at Tg, and a secondary process present in both liquid and glassy phase. Above the glass transition the temperature behavior of the structural relaxation time is properly described by a Vogel-Fulcher-Tamman equation with the singularity at T0=234 K. The analysis of the variation of the relaxation strength versus temperature of both processes clearly shows the onset of the structural relaxation at Ton~350 K. Below this temperature the two relaxations progressively separate their time scales and change their shapes. The occurrence of the glass-transition phenomenon is markedly evidenced by the changes of the relaxation strength and of the low-frequency slope of the secondary relaxation.

  17. Microscopic dynamics of the glass transition investigated by time-resolved fluorescence measurements of doped chromophores

    NASA Astrophysics Data System (ADS)

    Ye, Jing Yong; Hattori, Toshiaki; Nakatsuka, Hiroki; Maruyama, Yoshihiro; Ishikawa, Mitsuru

    1997-09-01

    The microscopic dynamics of several monomeric and polymeric glass-forming materials has been investigated by time-resolved fluorescence measurements of doped malachite green molecules in a wide temperature region. For monomers, 1-propanol, propylene glycol, and glycerol, and a polymer without side chains, poly- butadiene, the temperature dependence of nonradiative decay time of doped malachite green molecules behaves in a similar way through the glass-transition region. Besides a kink around the calorimetric glass-transition temperature Tg, another crossover at a critical temperature Tc about 30-50 K above Tg has been clearly observed. This experimental finding is in agreement with the prediction of the mode-coupling theory that a dynamical transition exists well above Tg. On the other hand, for the complex polymers with side chains, poly(vinyl acetate), poly(methyl acrylate), and poly(ethyl methacrylate), the crossover at Tg is less pronounced than those for the monomers and the polymer without side chains. Moreover, although we could not distinguish any singularities above Tg for these complex polymers, we observed another kink below Tg, which may be attributed to the side-chain motions.

  18. Unveiling the Dependence of Glass Transitions on Mixing Thermodynamics in Miscible Systems

    NASA Astrophysics Data System (ADS)

    Tu, Wenkang; Wang, Yunxi; Li, Xin; Zhang, Peng; Tian, Yongjun; Jin, Shaohua; Wang, Li-Min

    2015-02-01

    The dependence of the glass transition in mixtures on mixing thermodynamics is examined by focusing on enthalpy of mixing, ΔHmix with the change in sign (positive vs. negative) and magnitude (small vs. large). The effects of positive and negative ΔHmix are demonstrated based on two isomeric systems of o- vs. m- methoxymethylbenzene (MMB) and o- vs. m- dibromobenzene (DBB) with comparably small absolute ΔHmix. Two opposite composition dependences of the glass transition temperature, Tg, are observed with the MMB mixtures showing a distinct negative deviation from the ideal mixing rule and the DBB mixtures having a marginally positive deviation. The system of 1, 2- propanediamine (12PDA) vs. propylene glycol (PG) with large and negative ΔHmix is compared with the systems of small ΔHmix, and a considerably positive Tg shift is seen. Models involving the properties of pure components such as Tg, glass transition heat capacity increment, ΔCp, and density, ρ, do not interpret the observed Tg shifts in the systems. In contrast, a linear correlation is revealed between ΔHmix and maximum Tg shifts.

  19. Unraveling wetting transition through surface textures with X-rays: liquid meniscus penetration phenomena.

    PubMed

    Antonini, C; Lee, J B; Maitra, T; Irvine, S; Derome, D; Tiwari, Manish K; Carmeliet, J; Poulikakos, D

    2014-02-11

    In this report we show that synchrotron X-ray radiography is a powerful method to study liquid-air interface penetration through opaque microtextured surface roughness, leading to wetting transition. We investigate this wetting phenomenon in the context of sessile drop evaporation, and establish that liquid interface sinking into the surface texture is indeed dictated by the balance of capillary and Laplace pressures, where the intrinsically three-dimensional nature of the meniscus must be accounted for. Air bubble entrapment in the texture underneath impacting water drops is also visualized and the mechanisms of post-impact drop evaporation are discussed.

  20. Unraveling wetting transition through surface textures with X-rays: Liquid meniscus penetration phenomena

    PubMed Central

    Antonini, C.; Lee, J. B.; Maitra, T.; Irvine, S.; Derome, D.; Tiwari, Manish K.; Carmeliet, J.; Poulikakos, D.

    2014-01-01

    In this report we show that synchrotron X-ray radiography is a powerful method to study liquid-air interface penetration through opaque microtextured surface roughness, leading to wetting transition. We investigate this wetting phenomenon in the context of sessile drop evaporation, and establish that liquid interface sinking into the surface texture is indeed dictated by the balance of capillary and Laplace pressures, where the intrinsically three-dimensional nature of the meniscus must be accounted for. Air bubble entrapment in the texture underneath impacting water drops is also visualized and the mechanisms of post-impact drop evaporation are discussed. PMID:24514762

  1. Ultraviolet and visible Brillouin scattering study of viscous relaxation in 3-methylpentane down to the glass transition

    NASA Astrophysics Data System (ADS)

    Benassi, P.; Nardone, M.; Giugni, A.

    2012-09-01

    Brillouin light scattering spectra from transverse and longitudinal acoustic waves in liquid and supercooled 3-methylpentane have been collected from room temperature down to 80 K, just above the glass transition. Spectra at different wave vectors have been obtained using 532 nm and 266 nm excitation. We found evidence of a shear relaxation with a characteristic time of 100 s at the glass transition which only partly accounts for the relaxation observed in the propagation and attenuation of the longitudinal modes. The inclusion of a relaxing bulk viscosity contribution with a relaxation time of the order of 102 ns at the glass transition is found to adequately reproduce the experimental data including transient grating data at a much lower frequency. A consistent picture of relaxed shear and bulk moduli as a function of temperature is derived. These two quantities are found to be related by a linear relation suggesting that a Cauchy-like relation holds also above the glass transition.

  2. The peculiar behavior of the glass transition temperature of amorphous drug-polymer films coated on inert sugar spheres.

    PubMed

    Dereymaker, Aswin; Van Den Mooter, Guy

    2015-05-01

    Fluid bed coating has been proposed in the past as an alternative technology for manufacturing of drug-polymer amorphous solid dispersions, or so-called glass solutions. It has the advantage of being a one-step process, and thus omitting separate drying steps, addition of excipients, or manipulation of the dosage form. In search of an adequate sample preparation method for modulated differential scanning calorimetry analysis of beads coated with glass solutions, glass transition broadening and decrease of the glass transition temperature (Tg ) were observed with increasing particle size of crushed coated beads and crushed isolated films of indomethacin (INDO) and polyvinylpyrrolidone (PVP). Substituting INDO with naproxen gave comparable results. When ketoconazole was probed or the solvent in INDO-PVP films was switched to dichloromethane (DCM) or a methanol-DCM mixture, two distinct Tg regions were observed. Small particle sizes had a glass transition in the high Tg region, and large particle sizes had a glass transition in the low Tg region. This particle size-dependent glass transition was ascribed to different residual solvent amounts in the bulk and at the surface of the particles. A correlation was observed between the deviation of the Tg from that calculated from the Gordon-Taylor equation and the amount of residual solvent at the Tg of particles with different sizes.

  3. Thermodynamic aspects of the glass transition phenomenon. II. Molecular liquids with variable interactions

    NASA Astrophysics Data System (ADS)

    Alba-Simionesco, C.; Fan, J.; Angell, C. A.

    1999-03-01

    As a contribution to the understanding of the thermodynamics of the glass transition phenomenon a series of molecules having the same steric character, but differing in the strength and nature of intermolecular interactions, has been investigated. The series is based on systematic changes of substituents on disubstituted benzene ring compounds, the simplest example of which is meta-xylene. Meta-isomers are chosen in each instance because of their greater tendency to supercool. In particular, m-fluoroaniline cannot be crystallized at ambient pressure. The principal measurements performed were of heat capacity and enthalpy change, using the technique of differential scanning calorimetry, and these have been examined in the light of literature data on the liquid viscosities and some recent data for dielectric relaxation. As the strength of hydrogen-bonding interactions between the ring substituents on adjacent molecules increases, the glass transition temperature Tg increases by almost 100 degrees from the lowest value in the series, 122.5 K, for m-fluorotoluene. Empirical rules involving Tb/Tm and Tg/Tm are found wanting. The important thermodynamic characteristic of the glass transition, viz., the change in heat capacity at the glass transition, ΔCp, remains approximately constant until the -OH substituent is introduced, whereupon a new element appears. This is a specific component of ΔCp which appears at temperatures above an initially small jump at Tg. It is well accounted for by the addition of a two-state H-bond breaking component (with the usual H⋯-OH bond energy) to the total excess heat capacity. The liquid ground state (or Kauzmann) temperature TK assessed from thermodynamic data acquired in this study, falls 20%-30% below the glass transition temperature. From the limited transport data available, these liquids appear to be quite fragile in character implying that the phenyl group influence dominates the hydrogen bond factor which has often seemed

  4. Nd - Fe - Al, A SPIN GLASS TRANSITION IN A COLLECTION OF SUPERPARAMAGNETIC CLUSTERS.

    SciTech Connect

    MCCALLUM,R.W.KRAMER,M.J.DENNIS,K.W.LEWIS,L.H.

    2002-08-18

    In the Nd-Fe-A1 system, compositions in the range of Nd{sub 60}Fe{sub 30}Al{sub 10} have been reported to be ferromagnetic bulk metallic glasses with high coercivities. Careful examination of both the microstructure and magnetic properties of these materials shows this to be true only in the most general sense. The materials are shown to be nanocomposites, in the strictest sense, with characteristic structural length scales on the order of 1.2 nm. Magnetically, the materials are also composites exhibiting a number of magnetic transitions as a function of temperature. The temperature dependence of the magnetic properties will be discussed in terms of strongly-interacting superparamagnetic clusters residing in a paramagnetic matrix. The clusters exhibit a frequency-dependent blocking temperature as determined from AC susceptibility, that is inconsistent with simple superparamagnetic behavior but is consistent with a spin glass-type ordering of the clusters to form a cluster glass. For a temperature region extending approximately 100 K below the cluster glass ordering temperature, the materials exhibit low coercivity. Below this temperature regime significant coercivities develop. The energy barrier to magnetic reversal provided by the product of the cluster volume multiplied by the anisotropy energy is inconsistent with the values required to fit the superparamagnetic behavior above the spin glass transition in the framework of the random anisotropy model. Instead, the existence in this system of significant coercivity is associated with a change in the paramagnetic fraction of the sample consistent with antiferromagnetic ordering of part of the paramagnetic matrix. The remainder of the matrix material orders ferromagnetically at a lower temperature and the interaction between the antiferromagnetic clusters and the ferromagnetic matrix underlies the large coercivities observed at low temperatures.

  5. A study of many-body phenomena in metal nanoclusters (Au, Cu) close to their transition to the nonmetallic state

    SciTech Connect

    Borman, V. D.; Borisyuk, P. V.; Lebid'ko, V. V.; Pushkin, M. A.; Tronin, V. N.; Troyan, V. I. Antonov, D. A.; Filatov, D. O.

    2006-02-15

    The results of a study of many-body phenomena in gold and copper nanoclusters are presented. The measured conductivity as a function of nanocluster height h was found to have a minimum at h {approx} 0.6 nm. Conductivity was local in character at nanocluster sizes l {<=} l{sub c} {approx} 2.5 nm. Changes in core hole screening and an anomalous increase in the Anderson singularity index {alpha} in gold and copper nanoclusters could be caused by changes in permittivity from metallic ({epsilon} {sup {yields}} {infinity}) to nonmetallic ({epsilon} {proportional_to} l{sup 2}). The many-body phenomenon characteristics observed in the X-ray photoelectron and tunnel spectra of gold and copper nanoclusters as the size of the nanoclusters changed led us to suggest changes in the band structure of the nanoclusters and, therefore, their possible transition from the metallic to nonmetallic state.

  6. Thermodynamic evidence for the Bose glass transition in twinnedYBa2Cu3O7-δcrystals

    DOE PAGES

    Pérez-Morelo, D. J.; Osquiguil, E.; Kolton, A. B.; ...

    2015-07-21

    We used a micromechanical torsional oscillator to measure the magnetic response of a twinned YBaBa2Cu3O7-δ single crystal disk near the Bose glass transition. We observe an anomaly in the temperature dependence of the magnetization consistent with the appearance of a magnetic shielding perpendicular to the correlated pinning of the twin boundaries. This effect is related to the thermodynamic transition from the vortex liquid phase to a Bose glass state.

  7. Investigation of laminar to turbulent transition phenomena effects on impingement heat transfer

    NASA Astrophysics Data System (ADS)

    Isman, Mustafa Kemal; Morris, Philip J.; Can, Muhiddin

    2016-10-01

    Turbulent impinging air flow is investigated numerically by using the ANSYS-CFX® code. All computations are performed by considering three-dimensional, steady, and incompressible flow. Three different Reynolds averaged Navier-Stokes (RANS) turbulence models and two Reynolds stress models (RSM's) are employed. Furthermore three different laminar to turbulent transition (LTT) models are employed with the shear stress transport (SST) and the baseline (BSL) models. Results show that predictions of the SST and two RSM's are very close each other and these models' results are in better agreement with the experimental data when all Reynolds numbers used in this study are considered. Secondary maxima in Nusselt number can be seen only if the LTT formula is employed with SST and BSL models.

  8. Phase transitions and reentrant phenomena in liquid crystals having both rigid and flexible intramolecular joints

    NASA Astrophysics Data System (ADS)

    Pyżuk, W.; Górecka, E.; Mieczkowski, J.; Przedmojski, J.

    1992-07-01

    Two series of liquid-crystalline compounds having three phenyl rings separated by flexible spacer —CH(CH{3})CH{2}—COO— and by rigid azo and azoxy group, were studied by DSC, optical and X-ray methods. For esters of dl-3-(4^{prime}-nitro)-phenylbutyric acid with 4^{prime}-alkoxy-phenylazo-phenol-4 having dodecyloxy or longer terminal chains, as well as for related azoxy compounds, a narrow (even below 5 K) reentrant or inverted nematic phase appearing between partly bilayer and monolayer smectics A was observed. For higher homologues of the azoxy series additional smectic phases appear, leading to the occurrence of new multicritical points, e.g. the critical end point Ad Cd N^re. On each of the lines, which separate nematic from smectic A phases, transitions are of weakly first or second-order and more than one tricritical point can occur. On the A{1} N/A{1} N^re line, a simple N A{1} tricritical point is observed at T_NI/T_AN = 0.834. The presence of further critical points depends on the components of the binary system involved. Four of the azoxy compounds studied undergo a second order phase transition between partly bilayer smectics, Ad and Cd. Such a transition is accompanied by a jumb in the specific heat, varying linearly with the length of the molecular tails. Various temperature dependences of the layer spacing in the Ad phase are observed for subsequent homologues from the azoxy series. Plusieurs cristaux liquides composés de trois groupements phényl séparés par un groupement —CH(CH{3})CH{2}—COO—, ainsi que par des groupements azo et azoxy, ont été examinés par AED, méthodes optiques et par rayons X. Pour des esters de l'acide dl-3-(4^{prime}-nitro)phénylbutyrique et de 4^{prime}-alkoxy-phénylazo-phénol-4 ayant comme terminaison une chaîne dodecyloxy ou bien plus longue, ainsi que pour des composés azoxy relatif, on observe (même au-dessous de 5 K) une étroite phase nématique réentrante ou inverse entre les phases smectiques

  9. Implications of storage and handling conditions on glass transition and potential devitrification of oocytes and embryos.

    PubMed

    Sansinena, M; Santos, M V; Taminelli, G; Zaritky, N

    2014-08-01

    Devitrification, the process of crystallization of a formerly crystal-free, amorphous glass state, can lead to damage during the warming of cells. The objective of this study was to determine the glass transition temperature of a cryopreservation solution typically used in the vitrification, storage, and warming of mammalian oocytes and embryos using differential scanning calorimetry. A numerical model of the heat transfer process to analyze warming and devitrification thresholds for a common vitrification carrier (open-pulled straw) was conducted. The implications on specimen handling and storage inside the dewar in contact with nitrogen vapor phase at different temperatures were determined. The time required for initiation of devitrification of a vitrified sample was determined by mathematical modeling and compared with measured temperatures in the vapor phase of liquid nitrogen cryogenic dewars. Results indicated the glass transition ranged from -126 °C to -121 °C, and devitrification was initiated at -109 °C. Interestingly, samples entered rubbery state at -121 °C and therefore could potentially initiate devitrification above this value, with the consequent damaging effects to cell survival. Devitrification times were calculated considering an initial temperature of material immersed in liquid nitrogen (-196 °C), and two temperatures of liquid nitrogen vapors within the dewar (-50 °C and -70 °C) to which the sample could be exposed for a period of time, either during storage or upon its removal. The mathematical model indicated samples could reach glass transition temperatures and undergo devitrification in 30 seconds. Results of the present study indicate storage of vitrified oocytes and embryos in the liquid nitrogen vapor phase (as opposed to completely immersed in liquid nitrogen) poses the potential risk of devitrification. Because of the reduced time-handling period before samples reach critical rubbery and devitrification values, caution should be

  10. Strain glass transition in a multifunctional β-type Ti alloy

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Gao, Jinghui; Wu, Haijun; Yang, Sen; Ding, Xiangdong; Wang, Dong; Ren, Xiaobing; Wang, Yunzhi; Song, Xiaoping; Gao, Jianrong

    2014-02-01

    Recently, a class of multifunctional Ti alloys called GUM metals attracts tremendous attentions for their superior mechanical behaviors (high strength, high ductility and superelasticity) and novel physical properties (Invar effect, Elinvar effect and low modulus). The Invar and Elinvar effects are known to originate from structural or magnetic transitions, but none of these transitions were found in the GUM metals. This challenges our fundamental understanding of their physical properties. In this study, we show that the typical GUM metal Ti-23Nb-0.7Ta-2Zr-1.2O (at%) alloy undergoes a strain glass transition, where martensitic nano-domains are frozen gradually over a broad temperature range by random point defects. These nano-domains develop strong texture after cold rolling, which causes the lattice elongation in the rolling direction associated with the transition upon cooling and leads to its Invar effect. Moreover, its Elinvar effect and low modulus can also be explained by the nano-domain structure of strain glass.

  11. Single-frequency dielectric relaxation used to characterize the glass transition time of polydextrose

    NASA Astrophysics Data System (ADS)

    Buehler, Martin G.; Campbell, Zachary J.; Carter, Brady P.

    2017-02-01

    Dielectric relaxation methods are applicable to powdery materials such as carbohydrates. These materials have relaxations that occur in the milli-Hz range while samples are held at fixed temperatures and fixed water activities, a w, (relativity humidity). Under proper conditions these materials undergo physical changes where the initially glassy powder transitions to an amorphous equilibrium state at the glass transition temperature, T g. Determining this transition involves characterizing the boundary curve (T g versus a w) which determines T g and a w conditions where materials are stable with long-shelf life or unstable with very a short shelf-life. This paper serves to illustrate multiple methodologies which can be used to characterize glass transition from frequency-spectra. Three methodologies are described: peak-broadening, peak-shift, and single-frequency. The new single frequency method not only provides results that identical to those of the peak-shift method but increases the data acquisition speeds by a factor of 5. This method is illustrated on polydextrose, a common sugar substitute. The information gathered can then be used to construct the boundary curve which is used to characterize the shelf-life of a material at various conditions.

  12. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses

    NASA Astrophysics Data System (ADS)

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K.; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe-Co metallic glass system of composition [(Co1-x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent ‘Stoner type’ magnetization for the amorphous alloys in contrast to ‘Heisenberg type’ in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study.

  13. Theory of activated dynamics and glass transition of hard colloids in two dimensions.

    PubMed

    Zhang, Bo-kai; Li, Hui-shu; Tian, Wen-de; Chen, Kang; Ma, Yu-qiang

    2014-03-07

    The microscopic nonlinear Langevin equation theory is applied to study the localization and activated hopping of two-dimensional hard disks in the deeply supercooled and glass states. Quantitative comparisons of dynamic characteristic length scales, barrier, and their dependence on the reduced packing fraction are presented between hard-disk and hard-sphere suspensions. The dynamic barrier of hard disks emerges at higher absolute and reduced packing fractions and correspondingly, the crossover size of the dynamic cage which correlates to the Lindemann length for melting is smaller. The localization lengths of both hard disks and spheres decrease exponentially with packing fraction. Larger localization length of hard disks than that of hard spheres is found at the same reduced packing fraction. The relaxation time of hard disks rises dramatically above the reduced packing fraction of 0.88, which leads to lower reduced packing fraction at the kinetic glass transition than that of hard spheres. The present work provides a foundation for the subsequent study of the glass transition of binary or polydisperse mixtures of hard disks, normally adopted in experiments and simulations to avoid crystallization, and further, the rheology and mechanical response of the two-dimensional glassy colloidal systems.

  14. Rigidity transitions in glasses driven by changes in network dimensionality and structural groupings

    NASA Astrophysics Data System (ADS)

    Vignarooban, K.; Boolchand, P.; Micoulaut, M.; Malki, M.; Bresser, W. J.

    2014-12-01

    Calorimetric, Raman and electrical conductivity properties of alkali borates {(100-x)}\\text{B}_2\\text{O}_3\\text-x\\text{M}_2\\text{O} (\\text{M}=\\text{Li} , Na) are studied as a function of composition (x) and these show the presence of stiffness transitions and an intermediate phase which are driven by a combination of network dimensionality change and usual topological constraint changes. This picture is confirmed by a detailed Raman analysis showing that specific modes of molecular structural groupings dominate the network structure in the intermediate phase. Their evolution shows a one-to-one correspondance with the observed non-reversing heat flow at the glass transition, and are correlated with thresholds in ionic conductivity that allows identifying a flexible phase at high alkali content, whereas the mildly stressed-rigid \\text{B}_2\\text{O}3 -rich glasses are driven by the conversion of planar 2D boroxol ring structures into the 3D structural groupings. These findings deeply modify the usual picture of these archetypal glasses, and reveal the very first example of the onset of rigidity tuned by network dimensional conversion.

  15. Polyamorphic phase transition of Yb-based metallic glass at high pressure

    NASA Astrophysics Data System (ADS)

    li, L.; Li, R.; Liu, H.; Chupas, P.

    2013-12-01

    A family of Yb-based bulk metallic glasses (BMG) has been fabricated based on strong liquid characteristic and excellent glass-forming ability. Using a diamond anvil cell with high-energy synchrotron X-ray, the total scattering of metallic glass Yb-Mg-Zn was studied at pressure up to 30GPa in a hydrostatic isopropanol pressure-medium. The local structure was investigated through direct Fourier transformation of the structure factor [S(Q)], pair distribution function (PDF) [G(r)] with background correction. Polyamorphic phase transition is achieved because smaller atoms are extruded into the clearance of the larger rare earth atoms and 4f electrons delocalized. Phase transition from a low-density state to a high-density state occurs, smaller atoms can be extruded is one of two reasons for the high compressibility of rare earth BMG. The second reason is the delocalization of 4f electrons, which can induce the volume collapse of rare earth atoms.

  16. Response of water to electric fields at temperatures below the glass transition: A molecular dynamics analysis

    SciTech Connect

    Hu, Xiaohu; Elghobashi-Meinhardt, Nadia; Gembris, Daniel; Smith, Jeremy C

    2011-01-01

    The electric field dependence of the structure and dynamics of water at 77 K, i.e., below the glass transition temperature (136 K), is investigated using molecular dynamics simulations. Transitions are found at two critical field strengths, denoted E1 and E2. The transition around E1 3.5 V/nm is characterized by the onset of significant structural disorder, a rapid increase in the orientational polarization, and a maximum in the dynamical fluctuations. At E2 40 V/nm, the system crystallizes in discrete steps into a body-centered-cubic unit cell that minimizes the potential energy by simultaneous superpolarization of the water molecular dipoles and maximization of the intermolecular hydrogen bonds. The stepwise and discontinuous increase of the orientational polarization with the increasing electric field indicates that the dipole relaxation in the electric field is highly cooperative.

  17. Ising spin-glass transition in a magnetic field outside the limit of validity of mean-field theory.

    PubMed

    Leuzzi, L; Parisi, G; Ricci-Tersenghi, F; Ruiz-Lorenzo, J J

    2009-12-31

    The spin-glass transition in a magnetic field is studied both in and out of the limit of validity of mean-field theory on a diluted one dimensional chain of Ising spins where exchange bonds occur with a probability decaying as the inverse power of the distance. Varying the power in this long-range model corresponds, in a one-to-one relationship, to changing the dimension in spin-glass short-range models. Evidence for a spin-glass transition in a magnetic field is found also for systems whose equivalent dimension is below the upper critical dimension in a zero magnetic field.

  18. Glass phase and other multiple liquid-to-liquid transitions resulting from two-liquid phase competition

    NASA Astrophysics Data System (ADS)

    Tournier, Robert F.

    2016-11-01

    Melt supercooling leads to glass formation. Liquid-to-liquid phase transitions are observed depending on thermal paths. Viscosity, density and surface tension thermal dependences measured at heating and subsequent cooling show hysteresis below a branching temperature and result from the competition of two-liquid phases separated by an enthalpy difference depending on temperature. The nucleation classical equation of these phases is completed by this enthalpy saving existing at all temperatures. The glass phase thermodynamic parameters and their thermal variation have already been determined in such a two-liquid model. They are used at high temperatures to predict liquid-to-liquid transitions in some metallic glass-forming melts.

  19. Confinement effects on glass transition temperature, transition breadth, and expansivity: Comparison of ellipsometry and fluorescence measurements on polystyrene films

    NASA Astrophysics Data System (ADS)

    Kim, S.; Hewlett, S. A.; Roth, C. B.; Torkelson, J. M.

    2009-09-01

    Using ellipsometry, we characterized the nanoconfinement effect on the glass transition temperature (T gof supported polystyrene (PS) films employing two methods: the intersection of fits to the temperature (Tdependences of rubbery- and glassy-state thicknesses, and the transition mid-point between rubbery- and glassy-state expansivities. The results demonstrate a strong effect of thickness: ensuremath Tg(bulk)-Tg(23{ nm})= 10 circ C. The T -range needed for accurate measurement increases significantly with decreasing thickness, an effect that arises from the broadening of the transition with confinement and a region below T g where expansivity slowly decreases with decreasing T . As determined from expansivities, the T g breadth triples in going from bulk films to a 21-nm-thick film; this broadening of the transition may be a more dramatic effect of confinement than the T g reduction itself. In contrast, there is little effect of confinement on the rubbery- and glassy-state expansivities. Compared with ellipsometry, T g ’s from fluorescence agree well in bulk films but yield lower values in nanoconfined films: T g(bulk) - T g(23 nm) = 15° C via fluorescence. This small difference in the T g confinement effect reflects differences in how fluorescence and ellipsometry report “average T g ” with confinement. With decreasing nanoscale thickness, fluorescence may slightly overweight the contribution of the free-surface layer while ellipsometry may evenly weight or underweight its contribution. in here

  20. Upper-nose temper phenomena and transition behavior of fracture toughness of 2. 25Cr-1Mo pressure vessel steel

    SciTech Connect

    Holzmann, M.; Man, J.; Vlach, B. . Academy of Sciences)

    1993-12-15

    A non-reversible upper-nose temper embrittlement (UNTE) which is characterized by transcrystalline cleavage could occur in low alloy steels when tempered or post-weld heat treated at temperatures ranging between 600 C to A[sub c1] for longer-time period. The deterioration of mechanical properties, in particular toughness, associated with this process, is a very relevant problem for fabricators of large components in petrochemical and power industry. One must be very careful when evaluating the embrittlement of the structure itself, using results of the Charpy test. The authors of the present work have reported in a recent paper that the cleavage fracture stress [sigma][sub CF], due to structural changes during temper treatment, has fallen steadily from the very beginning of tempering and a model has been suggested, explaining the transition behavior in the Charpy test. Even though the Charpy tests provide valuable information regarding impact toughness properties, the fracture toughness is a more exact material characteristic defining the fracture resistance properties. Therefore, the fracture toughness temperature curves, measured for a variety of tempered conditions, aim to reveal to what extent UNTE phenomena can influence the level and transition behavior of this material characteristic. Some representative results are given in the present paper.

  1. Two glass transitions of polyurea networks: effect of the segmental molecular weight.

    PubMed

    Reinecker, Marius; Soprunyuk, Viktor; Fally, Martin; Sánchez-Ferrer, Antoni; Schranz, Wilfried

    2014-08-21

    Polymer-nanoparticle composites (PNCs) play an increasing role in technology. Inorganic or organic nanoparticles are usually incorporated into a polymer matrix to improve material properties. Polyurea is a spontaneously occurring PNC, exhibiting a phase segregated structure with hard nanodomains embedded in a soft (elastically compliant) matrix. This system shows two glass transitions at Tg1 and Tg2. It has been argued that they are related to the freezing of motion of molecular segments in the soft matrix (usual polymer α-glass transition at Tg1) and to regions of restricted mobility near the hard nanodomains (α'-process) at Tg2, respectively. We present detailed dynamic mechanical analysis (DMA) measurements for polyurea networks with different segmental lengths l(c) (2.5, 12.1, 24.5 nm) of the polymer chains, i.e. different volume fractions ϕ(x) (0.39, 0.12, 0.07) of the hard domains. The two glass transitions show up in two distinct peaks in tan δ at Tα and Tα'. Analysing the data using a Havriliak-Negami term for the α- and α'-relaxation, as well as Vogel-Fulcher dependencies for the corresponding relaxation times, it is found that the α-glass transition at Tg1 increases strongly (up to ΔT = 70 K) with increasing ϕ(x), whereas the α'-transition at Tg2 remains unchanged. At ϕ(x)(c) ≈ 0.19 the two curves intersect, i.e. Tg1 = Tg2. This value of ϕ(x)(c) is very close to the percolation threshold of randomly oriented overlapping ellipsoids of revolution with an aspect ratio of about 1 : 4-1 : 5. We therefore conclude that around 19% of the hard nanodomains polyurea changes from a system of hard nanoparticles embedded in a soft matrix (ϕ(x) ≤ ϕ(x)(c)) to a system of soft domains confined in a network of percolated hard domains at ϕ(x) ≥ ϕ(x)(c).

  2. Glass Transitions in Monodisperse Cluster-Forming Ensembles: Vortex Matter in Type-1.5 Superconductors.

    PubMed

    Díaz-Méndez, Rogelio; Mezzacapo, Fabio; Lechner, Wolfgang; Cinti, Fabio; Babaev, Egor; Pupillo, Guido

    2017-02-10

    At low enough temperatures and high densities, the equilibrium configuration of an ensemble of ultrasoft particles is a self-assembled, ordered, cluster crystal. In the present Letter, we explore the out-of-equilibrium dynamics for a two-dimensional realization, which is relevant to superconducting materials with multiscale intervortex forces. We find that, for small temperatures following a quench, the suppression of the thermally activated particle hopping hinders the ordering. This results in a glass transition for a monodispersed ensemble, for which we derive a microscopic explanation in terms of an "effective polydispersity" induced by multiscale interactions. This demonstrates that a vortex glass can form in clean systems of thin films of "type-1.5" superconductors. An additional setup to study this physics can be layered superconducting systems, where the shape of the effective vortex-vortex interactions can be engineered.

  3. Relaxation map of a 100% green thermoplastic film. Glass transition and fragility

    NASA Astrophysics Data System (ADS)

    Saiter, J. M.; Dobircau, L.; Saiah, R.; Sreekumar, P. A.; Galandon, A.; Gattin, R.; Leblanc, N.; Adhikari, R.

    2010-02-01

    A 100% green thermoplastic obtained by extrusion of a mixture of wheat flour and plasticizers has been realized. The existence of two vitreous phases in this 100% green thermoplastic film has been pointed out by means of calorimetric measurements ( T g=-56 °C and T g=10 °C) and confirmed by electron microscopy. The molecular dynamics have been investigated by means of DMA measurements for temperature domains in the vicinity of the glass transition of each phase. We show that each phase exhibits a molecular dynamic characteristic of a fragile glass liquid former. The size of the cooperative domain engaged in the relaxation processes have also been estimated and we show that this new green thermoplastic exhibits relaxation mechanisms as expected for a conventional thermoplastic, as for instance a PMMA.

  4. Disorder-assisted melting and the glass transition in amorphous solids

    NASA Astrophysics Data System (ADS)

    Zaccone, Alessio; Terentjev, Eugene

    2013-03-01

    The mechanical response of solids depends on temperature because the way atoms and molecules respond collectively to deformation is affected at various levels by thermal motion. This is a fundamental problem of solid state science and plays a crucial role in metallurgy, aerospace engineering, energy. In disordered solids (glass, amorphous semiconductors, ceramics, metallic glass, polymers) the vanishing of rigidity as a function of temperature is not well understood because continuum elasticity is inapplicable due to the disorder leading to nontrivial (nonaffine) components in the atomic displacements. Our theory explains the basic mechanism of the melting transition of amorphous solids in terms of the lattice energy lost to nonaffine motion, compared to which thermal vibrations turn out to play a negligible role. The theory is in good agreement with data on melting of amorphous polymers (where no alternative theory can be found in the literature) and offers new opportunities in materials science.

  5. Crystallization at the glass transition in supercooled thin films of methanol

    NASA Astrophysics Data System (ADS)

    Dounce, Susan M.; Mundy, Julia; Dai, Hai-Lung

    2007-05-01

    The stability of an amorphous material depends on how fast and by what mechanism crystallization occurs. Based on crystallization rate measurements through optical reflectivity changes in supercooled methanol thin films, it is observed for the first time that there is a definitive and detectable change of the crystallization mechanism at the glass transition temperature Tg. For methanol glasses below Tg=103.4K, crystallization occurs as an interface controlled, one-dimension process at frozen-in embryo sites, while in the deep supercooled liquid phase above Tg crystallization is diffusion controlled in two dimensions with a constant nucleation rate and an activation energy of 107.8(±4.7)kJ/mol.

  6. Glass Transitions in Monodisperse Cluster-Forming Ensembles: Vortex Matter in Type-1.5 Superconductors

    NASA Astrophysics Data System (ADS)

    Díaz-Méndez, Rogelio; Mezzacapo, Fabio; Lechner, Wolfgang; Cinti, Fabio; Babaev, Egor; Pupillo, Guido

    2017-02-01

    At low enough temperatures and high densities, the equilibrium configuration of an ensemble of ultrasoft particles is a self-assembled, ordered, cluster crystal. In the present Letter, we explore the out-of-equilibrium dynamics for a two-dimensional realization, which is relevant to superconducting materials with multiscale intervortex forces. We find that, for small temperatures following a quench, the suppression of the thermally activated particle hopping hinders the ordering. This results in a glass transition for a monodispersed ensemble, for which we derive a microscopic explanation in terms of an "effective polydispersity" induced by multiscale interactions. This demonstrates that a vortex glass can form in clean systems of thin films of "type-1.5" superconductors. An additional setup to study this physics can be layered superconducting systems, where the shape of the effective vortex-vortex interactions can be engineered.

  7. Spin-glass transition in bond-disordered Heisenberg antiferromagnets coupled with local lattice distortions on a pyrochlore lattice.

    PubMed

    Shinaoka, Hiroshi; Tomita, Yusuke; Motome, Yukitoshi

    2011-07-22

    Motivated by puzzling characteristics of spin-glass transitions widely observed in pyrochlore-based frustrated materials, we investigate the effects of coupling to local lattice distortions in a bond-disordered antiferromagnet on the pyrochlore lattice by extensive Monte Carlo simulations. We show that the spin-glass transition temperature T(f) is largely enhanced by the spin-lattice coupling and, furthermore, becomes almost independent of Δ in a wide range of the disorder strength Δ. The critical property of the spin-glass transition is indistinguishable from that of the canonical Heisenberg spin glass in the entire range of Δ. These peculiar behaviors are ascribed to a modification of the degenerate manifold from a continuous to semidiscrete one by spin-lattice coupling.

  8. 93 Nb NMR investigation of vortex- glass transition in layered NbSe2

    NASA Astrophysics Data System (ADS)

    Wilson, Douglas; Saraswat, Garima; Shirage, Parasharam; Kuhns, Philip; Hoch, Michael J. R.; Reyes, Arneil

    We report a detailed low temperature investigation of vortex glass transition in layered superconducting compound NbSe2 using 93Nb NMR at fields below Hc2. Preliminary measurements show that spin-lattice relaxation rate 1/T1 demonstrates a classic Korringa behavior 1/T1~ T above the superconducting transition Tc , consistent with previous measurements on this compound. However, for field H perpendicular to the layers, we observed that 1/T1 exhibits an anomalous plateau between Tc (H = 0) and Tc (H) and a suppression of the superconducting enhancement expected below Tc. Instead, a power law behavior, 1/T1 ~T 1 . 2 below Tc down to 360mK was observed which suggests a strong anisotropy in the low energy excitations. However, the possibility of enhancement in 1/T1 due to vortex fluctuations which competes with electronic mechanisms cannot be excluded. The implications of these results with regards to vortex-glass transition will be discussed. This work was performed at the National High Magnetic Field Laboratory, which is supported by NSF DMR-1157490 and the State of Florida.

  9. Gelation and glass transition of particles with short-range attraction induced by adsorbing microgel

    NASA Astrophysics Data System (ADS)

    Yuan, Guangcui; Luo, Junhua; Han, Charles C.

    2015-03-01

    Mixed suspensions of large hard polystyrene microsphere and small poly(N-isopropylacrylamide) microgel is used as model systems to investigate the static and viscoelastic properties of suspensions which go through liquid to gel and to glass transitions. The microgels cause short-range attraction between microspheres through bridging and depletion mechanism whose strength can be tuned by the microgel concentration. Baxter's sticky hard-sphere model is used to extract the effective inter-microsphere interaction introduced by bridging or depletion of microgels despite the fact that the physical mechanisms of bridging attraction and depletion attraction are different at a molecular level. A new state diagram of gelation and even of glass transition was constructed by taking the bridges as a short-ranged attractive interaction With the help of the well-defined bridging bonds, some controversies regarding to the interference between two origins for ergodic to\\ non-ergodic transition in condensed system, i.e. cage effect and bond effect, were clarified. This work is supported by the National Basic Research Program of China (973 Program, 2012CB821503).

  10. Effects of temperature and pressure on the glass transitions of plastic bonded explosives

    SciTech Connect

    Campbell, M.S.; Garcia, D.; Idar, D.

    1998-12-31

    Various plastic bonded explosives (PBXs) contain about 5-wt% polymer, plasticizer, and stabilizer as binder. The glass-transition temperature (T{sub g}) determines, in part, if the binder will reduce or increase the sensitivity of the PBX to impact. A soft binder reduces the impact sensitivity; however, too soft a binder compromises the mechanical strength below that desirable for dimensional stability. Glass transitions were measured by temperature modulated DSC for PBXs before and after pressing. Pressing temperature was 90 C. The T{sub g} of Estane, a polyester/polyurethane used in some PBX binders, was investigated. Only small changes were observed in the low temperature T{sub g} of the soft segments but larger changes were seen in the higher temperature transitions due to the relaxation of the hard segments. The T{sub g} of Kel F 800, a binder used in insensitive PBX 9502, was observed near ambient temperature. The PBX 9502 had a lower T{sub g} than the neat polymer. Mechanical strength will be measured for the samples.

  11. Differential scanning calorimetry study of glass transition in frozen starch gels.

    PubMed

    Tananuwong, Kanitha; Reid, David S

    2004-06-30

    The effects of initial water content, maximum heating temperature, amylopectin crystallinity type, and annealing on the glass transition of starch gels were studied by differential scanning calorimetry (DSC). The glass transition temperatures of the frozen gels measured as the onset (T(g,onset)) or midpoint temperature (T(g,midpoint)), heat capacity change during the glass transition (deltaC(p)), unfrozen water of starch gels, and additional unfrozen water (AUW) arising from gelatinization were reported. The results show that T(g,onset) and T(g,midpoint) of the partially gelatinized gels are independent of the initial water content, while both of the T(g) values of the fully gelatinized gel increase as the initial water content increases. These observations might result from the difference in the level of structural disruption associated with different heating conditions, resulting in different gel structures as well as different concentrations of the sub-T(g) unfrozen matrix. The amylopectin crystallinity type does not greatly affect T(g,onset) and T(g,midpoint) of the gels. Annealing at a temperature near T(g,onset) increases both T(g,onset) and T(g,midpoint) of the gels, possibly due to an increase in the extent of the freeze concentration as evidenced by a decrease in AUW. Annealing results in an increase in the deltaC(p) value of the gels, presumably due to structural relaxation. A devitrification exotherm may be related to AUW. The annealing process decreases AUW, thus also decreasing the size of the exotherm.

  12. The Nonequilibrium Phase and Glass Transition Behavior of β-Lactoglobulin

    PubMed Central

    Parker, Roger; Noel, Timothy R.; Brownsey, Geoffrey J.; Laos, Katrin; Ring, Stephen G.

    2005-01-01

    Concentrated solutions of bovine β-lactoglobulin were studied using osmotic stress and rheological techniques. At pH 6.0 and 8.0, the osmotic pressure was largely independent of NaCl concentration and could be described by a hard sphere equation of state. At pH 5.1, close to the isoelectric point, the osmotic pressure was lower at the lower NaCl concentrations (0 mM, 100 mM) and was fitted by an adhesive hard sphere model. Liquid-liquid phase separation was observed at pH 5.1 at ionic strengths of 13 mM and below. Comparison of the liquid-liquid and literature solid-liquid coexistence curves showed these solutions to be supersaturated and the phase separation to be nonequilibrium in nature. In steady shear, the zero shear viscosity of concentrated solutions at pH 5.1 was observed at shear rates above 50 s−1. With increasing concentration, the solution viscosity showed a progressive increase, a behavior interpreted as the approach to a colloidlike glass transition at ∼60% w/w. In oscillatory shear experiments, the storage modulus crossed the loss modulus at concentrations of 54% w/w, an indication of the approaching glass transition. Comparison of the viscous behavior with predictions from the Krieger-Dougherty equation indicates the hydrodynamic size of the protein decreases with increasing concentration, resulting in a slower approach to the glass transition than a hard sphere system. PMID:15923230

  13. Predict the glass transition temperature of glycerol-water binary cryoprotectant by molecular dynamic simulation.

    PubMed

    Li, Dai-Xi; Liu, Bao-Lin; Liu, Yi-shu; Chen, Cheng-lung

    2008-04-01

    Vitrification is proposed to be the best way for the cryopreservation of organs. The glass transition temperature (T(g)) of vitrification solutions is a critical parameter of fundamental importance for cryopreservation by vitrification. The instruments that can detect the thermodynamic, mechanical and dielectric changes of a substance may be used to determine the glass transition temperature. T(g) is usually measured by using differential scanning calorimetry (DSC). In this study, the T(g) of the glycerol-aqueous solution (60%, wt/%) was determined by isothermal-isobaric molecular dynamic simulation (NPT-MD). The software package Discover in Material Studio with the Polymer Consortium Force Field (PCFF) was used for the simulation. The state parameters of heat capacity at constant pressure (C(p)), density (rho), amorphous cell volume (V(cell)) and specific volume (V(specific)) and radial distribution function (rdf) were obtained by NPT-MD in the temperature range of 90-270K. These parameters showed a discontinuity at a specific temperature in the plot of state parameter versus temperature. The temperature at the discontinuity is taken as the simulated T(g) value for glycerol-water binary solution. The T(g) values determined by simulation method were compared with the values in the literatures. The simulation values of T(g) (160.06-167.51K) agree well with the DSC results (163.60-167.10K) and the DMA results (159.00K). We drew the conclusion that molecular dynamic simulation (MDS) is a potential method for investigating the glass transition temperature (T(g)) of glycerol-water binary cryoprotectants and may be used for other vitrification solutions.

  14. Glass transition of polymers in bulk, confined geometries, and near interfaces

    NASA Astrophysics Data System (ADS)

    Napolitano, Simone; Glynos, Emmanouil; Tito, Nicholas B.

    2017-03-01

    When cooled or pressurized, polymer melts exhibit a tremendous reduction in molecular mobility. If the process is performed at a constant rate, the structural relaxation time of the liquid eventually exceeds the time allowed for equilibration. This brings the system out of equilibrium, and the liquid is operationally defined as a glass—a solid lacking long-range order. Despite almost 100 years of research on the (liquid/)glass transition, it is not yet clear which molecular mechanisms are responsible for the unique slow-down in molecular dynamics. In this review, we first introduce the reader to experimental methodologies, theories, and simulations of glassy polymer dynamics and vitrification. We then analyse the impact of connectivity, structure, and chain environment on molecular motion at the length scale of a few monomers, as well as how macromolecular architecture affects the glass transition of non-linear polymers. We then discuss a revised picture of nanoconfinement, going beyond a simple picture based on interfacial interactions and surface/volume ratio. Analysis of a large body of experimental evidence, results from molecular simulations, and predictions from theory supports, instead, a more complex framework where other parameters are relevant. We focus discussion specifically on local order, free volume, irreversible chain adsorption, the Debye–Waller factor of confined and confining media, chain rigidity, and the absolute value of the vitrification temperature. We end by highlighting the molecular origin of distributions in relaxation times and glass transition temperatures which exceed, by far, the size of a chain. Fast relaxation modes, almost universally present at the free surface between polymer and air, are also remarked upon. These modes relax at rates far larger than those characteristic of glassy dynamics in bulk. We speculate on how these may be a signature of unique relaxation processes occurring in confined or heterogeneous polymeric

  15. Influence of the glass transition on the liquid-gas spinodal decomposition.

    PubMed

    Testard, Vincent; Berthier, Ludovic; Kob, Walter

    2011-03-25

    We use large-scale molecular dynamics simulations to study the kinetics of the liquid-gas phase separation if the temperature is lowered across the glass transition of the dense phase. We observe a gradual change from phase separated systems at high temperatures to nonequilibrium, gel-like structures that evolve very slowly at low temperatures. The microscopic mechanisms responsible for the coarsening strongly depend on temperature, and change from diffusive motion at high temperature to a strongly intermittent, heterogeneous, and thermally activated dynamics at low temperature, leading to logarithmically slow growth of the typical domain size.

  16. Modified thiol-ene networks: Tuning the glass transition temperature and energy damping capabilities

    NASA Astrophysics Data System (ADS)

    Sun, Ning; Rafailovich, Miriam; Gersappe, Dilip

    2013-03-01

    Utilizing thiol-ene `click' reactions, it is possible to produce thermoset networks that are highly homogeneous and thus exhibit enhanced energy damping capabilities. This talk will present recent results in the characterization and impact testing of modified thiol-ene networks with tunable physical properties. In particular, we synthesize ternary networks containing (1) bulky side-chain substituents, (2) isocyanate functionality, or (3) dual thiol components to improve control over the glass transition temperature and strain at break. In addition, we present results in the high-impact compression testing to demonstrate the energy damping capabilities of these materials.

  17. Study of L-ascorbic acid (vitamin C)/H 2O mixture across glass transition

    NASA Astrophysics Data System (ADS)

    Migliardo, F.; Branca, C.; Faraone, A.; Magazù, S.; Migliardo, P.

    2001-07-01

    In this paper, we report quasi elastic neutron scattering (QENS) spectra of vitamin C aqueous solutions, obtained using MIBEMOL spectrometer (LLB). The main purpose of this work is to characterize the relaxational and vibrational properties of the Vitamin C/H 2O system below and above the glass transition temperature by analysing the low-frequency neutron scattering spectra. The determination of the relative weight of vibrational over relaxational contributions allows to get information on the fragility degree of this peculiar hydrogen-bond system.

  18. Acoustic and thermal anomalies in a liquid-glass transition of racemic S(+)-R(-) ketoprofen

    NASA Astrophysics Data System (ADS)

    Shibata, Tomohiko; Takayama, Haruki; Kim, Tae Hyun; Kojima, Seiji

    2014-01-01

    Acoustic and thermal properties of pharmaceutical racemic S(+)-R(-) ketoprofen were investigated in wide temperature range including glassy, supercooled liquid and liquid states by Brillouin scattering and temperature modulated DSC. Sound velocity and acoustic attenuation exhibited clear changes at 265 K indicating a liquid-glass transition and showed the typical structural relaxation above Tg. The high value of the fragility index m = 71 was determined by the dispersion of the complex heat capacity. New relaxation map was suggested in combination with previous study of dielectric measurement.

  19. Deviations of the glass transition temperature in amorphous conjugated polymer thin films

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Osuna Orozco, Rodrigo; Wang, Tao

    2013-08-01

    The deviations of the glass transition temperature (Tg) in thin films of an amorphous conjugated polymer poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenylamine) (TFB) are reported. Monotonic and nonmonotonic Tg deviations are observed in TFB thin films supported on Si-SiOx and poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS), respectively. A three-layer model is developed to fit both monotonic and nonmonotonic Tg deviations in these films. A 5-nm PEDOT:PSS capping layer was not found to be effective to remove the free-surface effect in Si-SiOx supported TFB films.

  20. Predicting the glass transition temperature as function of crosslink density and polymer interactions in rubber compounds

    NASA Astrophysics Data System (ADS)

    D'Escamard, Gabriella; De Rosa, Claudio; Auriemma, Finizia

    2016-05-01

    Crosslink sulfur density in rubber compounds and interactions in polymer blends are two of the composition elements that affect the rubber compound properties and glass transition temperature (Tg), which is a marker of polymer properties related to its applications. Natural rubber (NR), butadiene rubber (BR) and styrene-butadiene rubber (SBR) compounds were investigated using calorimetry (DSC) and dynamic mechanical analysis (DMA). The results indicate that the Di Marzio's and Schneider's Models predict with accuracy the dependence of Tg on crosslink density and composition in miscible blends, respectively, and that the two model may represent the base to study the relevant "in service" properties of real rubber compounds.

  1. Ductile to brittle transition in dynamic fracture of brittle bulk metallic glass

    SciTech Connect

    Wang, G.; Han, Y. N.; Han, B. S.; Wang, W. H.; Xu, X. H.; Ke, F. J.

    2008-05-01

    We report an unusual transition from a locally ductile to a pure brittle fracture in the dynamic fracture of brittle Mg{sub 65}Cu{sub 20}Gd{sub 10} bulk metallic glass. The fractographic evolution from a dimple structure to a periodic corrugation pattern and then to the mirror zone along the crack propagation direction during the dynamic fracture process is discussed within the framework of the meniscus instability of the fracture process zone. This work might provide an important clue in understanding of the energy dissipation mechanism for dynamic crack propagation in brittle glassy materials.

  2. Use of glass transition temperature for stabilization of board's cracks of Eucalyptus grandis.

    PubMed

    Calonego, Fred W; Severo, Elias T D; Cunha, Antonio R; Gaia, Daiane C

    2010-09-01

    The Eucalyptus grandis logs temperatures were determined and correlated with the board's cracks during steaming. Thermocouples were inserted in the logs center, registering their temperatures during steaming at 90°C. The logs were sawed and the board's cracks measured. It was concluded that: (1) the logistic S-shaped curve explains the logs temperature variation; (2) the logs with diameter of 20 to <25, 25 to <30 and 30 to <35 cm presented, respectively, 84.2°C, 73.1°C and 45.8°C in the steaming; and (3) the cracks lengths significantly decreased in logs that reached the glass transition temperature.

  3. A phenomenological molecular model for yielding and brittle-ductile transition of polymer glasses

    NASA Astrophysics Data System (ADS)

    Wang, Shi-Qing; Cheng, Shiwang; Lin, Panpan; Li, Xiaoxiao

    2014-09-01

    This work formulates, at a molecular level, a phenomenological theoretical description of the brittle-ductile transition (BDT) in tensile extension, exhibited by all polymeric glasses of high molecular weight (MW). The starting point is our perception of a polymer glass (under large deformation) as a structural hybrid, consisting of a primary structure due to the van der Waals bonding and a chain network whose junctions are made of pairs of hairpins and function like chemical crosslinks due to the intermolecular uncrossability. During extension, load-bearing strands (LBSs) emerge between the junctions in the affinely strained chain network. Above the BDT, i.e., at "warmer" temperatures where the glass is less vitreous, the influence of the chain network reaches out everywhere by activating all segments populated transversely between LBSs, starting from those adjacent to LBSs. It is the chain network that drives the primary structure to undergo yielding and plastic flow. Below the BDT, the glassy state is too vitreous to yield before the chain network suffers a structural breakdown. Thus, brittle failure becomes inevitable. For any given polymer glass of high MW, there is one temperature TBD or a very narrow range of temperature where the yielding of the glass barely takes place as the chain network also reaches the point of a structural failure. This is the point of the BDT. A theoretical analysis of the available experimental data reveals that (a) chain pullout occurs at the BDT when the chain tension builds up to reach a critical value fcp during tensile extension; (b) the limiting value of fcp, extrapolated to far below the glass transition temperature Tg, is of a universal magnitude around 0.2-0.3 nN, for all eight polymers examined in this work; (c) pressurization, which is known [K. Matsushige, S. V. Radcliffe, and E. Baer, J. Appl. Polym. Sci. 20, 1853 (1976)] to make brittle polystyrene (PS) and poly(methyl methacrylate) (PMMA) ductile at room temperature

  4. A phenomenological molecular model for yielding and brittle-ductile transition of polymer glasses.

    PubMed

    Wang, Shi-Qing; Cheng, Shiwang; Lin, Panpan; Li, Xiaoxiao

    2014-09-07

    This work formulates, at a molecular level, a phenomenological theoretical description of the brittle-ductile transition (BDT) in tensile extension, exhibited by all polymeric glasses of high molecular weight (MW). The starting point is our perception of a polymer glass (under large deformation) as a structural hybrid, consisting of a primary structure due to the van der Waals bonding and a chain network whose junctions are made of pairs of hairpins and function like chemical crosslinks due to the intermolecular uncrossability. During extension, load-bearing strands (LBSs) emerge between the junctions in the affinely strained chain network. Above the BDT, i.e., at "warmer" temperatures where the glass is less vitreous, the influence of the chain network reaches out everywhere by activating all segments populated transversely between LBSs, starting from those adjacent to LBSs. It is the chain network that drives the primary structure to undergo yielding and plastic flow. Below the BDT, the glassy state is too vitreous to yield before the chain network suffers a structural breakdown. Thus, brittle failure becomes inevitable. For any given polymer glass of high MW, there is one temperature TBD or a very narrow range of temperature where the yielding of the glass barely takes place as the chain network also reaches the point of a structural failure. This is the point of the BDT. A theoretical analysis of the available experimental data reveals that (a) chain pullout occurs at the BDT when the chain tension builds up to reach a critical value f(cp) during tensile extension; (b) the limiting value of f(cp), extrapolated to far below the glass transition temperature T(g), is of a universal magnitude around 0.2-0.3 nN, for all eight polymers examined in this work; (c) pressurization, which is known [K. Matsushige, S. V. Radcliffe, and E. Baer, J. Appl. Polym. Sci. 20, 1853 (1976)] to make brittle polystyrene (PS) and poly(methyl methacrylate) (PMMA) ductile at room

  5. Spectroscopic cell for fast pressure jumps across the glass transition line

    NASA Astrophysics Data System (ADS)

    Di Leonardo, R.; Scopigno, T.; Ruocco, G.; Buontempo, U.

    2004-08-01

    We present an experimental protocol for the spectroscopic study of the dynamics of glasses in the aging regime induced by sudden pressure jumps (crunches) across the glass transition line. The sample, initially in the liquid state, is suddenly brought in the glassy state, and therefore out of equilibrium, in a four-window optical crunch cell which is able to perform pressure jumps of 3 Kbar in a time interval of ≈10 ms. The main advantages of this setup with respect to previous pressure-jump systems is that the pressure jump is induced through a pressure transmitting fluid mechanically coupled to the sample stage through a deformable membrane, thus avoiding any flow of the sample itself in the pressure network and allowing us to deal with highly viscous materials. The dynamics of the sample during the aging regime is investigated by Brillouin light scattering. For this purpose the crunch cell is used in conjunction with a high resolution double monochromator equipped with a charge-coupled device detector. This system is able to record a full spectrum of a typical glass forming material in a single 1 s shot. As an example we present the study of the evolution toward equilibrium of the infinite frequency longitudinal elastic modulus (M∞) of low molecular weight polymer [Poly(bisphenol A-co-epichlorohydrin), glycidyl end capped]. The observed time evolution of M∞, well represented by a single stretched exponential, is interpreted within the framework of the Tool-Narayanaswamy theory.

  6. Electrical Conductivity, Relaxation and the Glass Transition: A New Look at a Familiar Phenomenon

    NASA Technical Reports Server (NTRS)

    Angel, Paul W.; Cooper, Alfred R.; DeGuire, Mark R.

    1996-01-01

    Annealed samples from a single melt of a 10 mol% K2O-90SiO2 glass were reheated to temperatures ranging from 450 to 800 C, held isothermally for 20 min, and then quenched in either air or a silicon oil bath. The complex impedance of both the annealed and quenched samples was measured as a function of temperature from 120 to 250 C using ac impedance spectroscopy from 1 Hz to 1 MHz. The dc conductivity, sigma(sub dc), was measured from the low frequency intercept of depressed semicircle fits to the complex impedance data. When the sigma(sub dc) at 150 C was plotted against soak temperature, the results fell into three separate regions that are explained in terms of the glass structural relaxation time, tau(sub S). This sigma(sub dc) plot provides a new way to look the glass transition range, Delta T(sub r). In addition, sigma(sub dc) was measured for different soak times at 550 C, from which an average relaxation time of 7.3 min was calculated. It was found that the size and position of the Delta T(sub r) is controlled by both the soak time and cooling rate.

  7. Short time dynamics determine glass forming ability in a glass transition two-level model: A stochastic approach using Kramers' escape formula

    NASA Astrophysics Data System (ADS)

    Toledo-Marín, J. Quetzalcóatl; Naumis, Gerardo G.

    2017-03-01

    The relationship between short and long time relaxation dynamics is obtained for a simple solvable two-level energy landscape model of a glass. This is done through means of the Kramers' transition theory, which arises in a very natural manner to calculate transition rates between wells. Then the corresponding stochastic master equation is analytically solved to find the population of metastable states. A relation between the cooling rate, the characteristic relaxation time, and the population of metastable states is found from the solution of such equation. From this, a relationship between the relaxation times and the frequency of oscillation at the metastable states, i.e., the short time dynamics, is obtained. Since the model is able to capture either a glass transition or a crystallization depending on the cooling rate, this gives a conceptual framework in which to discuss some aspects of rigidity theory, for example.

  8. Understanding the physical stability of freeze dried dosage forms from the glass transition temperature of the amorphous components.

    PubMed

    Fitzpatrick, Shaun; Saklatvala, Robert

    2003-12-01

    Modulated differential scanning calorimetry has been applied to understanding the long-term physical stability of freeze-dried units. It is known that these units are liable to contract on exposure to elevated temperature or humidity. The contraction occurs when the storage temperature is above the glass transition temperature of the amorphous components in the system. The effect of moisture content on the glass transition temperature of the amorphous components in the system has been studied. By combining this information with the moisture sorption isotherm it has been demonstrated that it is possible to predict the temperature and humidity conditions that will induce contraction of the unit. The magnitude of the glass transition temperature is composed of the contribution of each of the amorphous components in the system. It is proposed that it should be possible to develop a more robust system by the rational selection of excipients that increase the glass transition temperature or by modification of the processing conditions to promote crystallization of components that would otherwise depress the glass transition temperature.

  9. Glass transition of adsorbed stereoregular PPMA by inverse gas chromatography at infinite dilution

    NASA Astrophysics Data System (ADS)

    Hamieh, T.; Rezzaki, M.; Grohens, Y.; Schultz, J.

    1998-10-01

    In this paper, we used inverse gas chromatography (IGC) at infinite dilution that proved to be a powerful technique to determine glass transition and other transitions of PMMA adsorbed on α-alumina. We highlighted the glass transition temperature of the system PMMA/α-Al2O3 with defined polymer tacticity at various covered surface fractions. Thus, the Tg of the adsorbed isotactic PMMA increases strongly as compared to the bulk value. The study of the physical chemical properties of PMMA/α-alumina revealed an important difference in the acidic and basic behaviour, in Lewis terms, of aluminium oxide covered by various concentrations of PMMA. It appears that there is a stabilisation of the physical chemical properties of PMMA/α-Al2O3 for a surface coverage above 50%. This study also highlighted an important effect of the tacticity of the polymer on the acid-base character of the system PMMA/Al2O3. Dans cet article, nous montrons que la chromatographie gazeuse inverse (CGI) à dilution infinie se révèle être une technique très intéressante pour la détermination de la transition vitreuse de polymères stéréoréguliers adsorbés sur des substrats solides tels que l'alumine. Nous avons mis en évidence des transitions attribuées aux phénomènes de relaxation béta, transition vitreuse et autres transitions des systèmes PMMA/Al2O3 de tacticité définie à différents taux de recouvrement. Ainsi, la Tg du PMMA isotactique adsorbé augmente de façon significative par rapport a celle du polymère massique. L'étude des propriétés physico-chimiques du système PMMA/Al2O3, révèle une différence importante dans le comportement acido-basique, au sens de Lewis, de l'alumine pour de taux de recouvrement en PMMA variables. Il apparaît qu'il y a stabilisation des propriétés physico-chimiques de PMMA/Al2O3 pour un taux de recouvrement en PMMA supérieur à 50 %. Cette étude a montré également une influence importante de la tacticité du polymère sur le

  10. Calcium chloride effects on the glass transition of condensed systems of potato starch.

    PubMed

    Chuang, Lillian; Panyoyai, Naksit; Katopo, Lita; Shanks, Robert; Kasapis, Stefan

    2016-05-15

    The effect of calcium chloride on the structural properties of condensed potato starch undergoing a thermally induced glass transition has been studied using dynamic mechanical analysis and modulated differential scanning calorimetry. Extensive starch gelatinisation was obtained by hot pressing at 120°C for 7 min producing materials that covered a range of moisture contents from 3.7% w/w (11% relative humidity) to 18.8% w/w (75% relative humidity). FTIR, ESEM and WAXD were also performed in order to elucidate the manner by which salt addition affects the molecular interactions and morphology of condensed starch. Experimental protocol ensured the development of amorphous matrices that exhibited thermally reversible glassy consistency. Both moisture content and addition of calcium chloride affected the mechanical strength and glass transition temperature of polymeric systems. Highly reactive calcium ions form a direct interaction with starch to alter considerably its structural properties via an anti-plasticizing effect, as compared to the polymer-water matrix.

  11. Impact of caramelization on the glass transition temperature of several caramelized sugars. Part I: Chemical analyses.

    PubMed

    Jiang, Bin; Liu, Yeting; Bhandari, Bhesh; Zhou, Weibiao

    2008-07-09

    This study aims to investigate the relationship between caramelization of several sugars including fructose, glucose, and sucrose and their glass transition temperature (Tg). Differential scanning calorimetry (DSC) was used for creating caramelized sugar samples as well as determining their glass transition temperature, which was found to decrease first and then increase as the holding time at the highest temperature increased. The extent of caramelization was quantified by UV-vis absorbance measurement and high-performance liquid chromatography analysis. Results showed that the amount of small molecules from the degradation of sugar increased very fast at the beginning of heating, and this increase slowed down in the later stage of caramelization. On the other hand, there was a lag phase in the formation of large molecules from the degradation of sugar at the beginning of heating, followed by a fast increase in the later stage of caramelization. The obtained results clearly indicate the impact of melting condition on the T g of sugars through formation of intermediates and end products of caramelization. Generally, when the heating condition is relatively mild, small molecules are formed first by decomposition of the sugar, which leads to a decrease of the overall Tg, and as the heating time becomes longer and/or the heating condition becomes more severe, polymerization takes over and more large molecules are formed, which results in an increase of the overall Tg. Mathematical modeling of the relationship will be presented as part II of the study in a separate paper.

  12. On the Glass Transition in Polystyrene-TiO2 Nanocomposites

    NASA Astrophysics Data System (ADS)

    Alarcon, Jorge; Chipara, Dorina M.; Lozano, Karen; Chipara, Mircea; Chipara, Alin Cristian; Vajtai, Robert; Ajayan, Pullickel M.; University of Texas-Pan American Collaboration; Rice University Collaboration

    2014-03-01

    Nanocomposites of atactic polystyrene (PS) filled with TiO2 nanoparticles of about 15 nm have been prepared. A dilute solution of PS in a good solvent (chlorophorm) has been prepared by stirring the components at room temperature for 24 h at 500 rotations per minute. The solution was then sonicated for 5 minutes by using a high power sonicator. TiO2 nanoparticles were added in the sonicating bath and the sonication continued for 1 hour in order to achieve an uniform dispersion on nanoparticles. Then, a non solvent (distilled water) has been suddenly added under sonication. The sonication continued for about 30 minutes. After 30 minutes, the polymer nanocomposite was isolated from the liquid mixture by filtration. The residual amount of solvent and water was removed by placing the nanocomposites into a vacuum oven at 100 C for 12 hours. The complete removel of water and solvent was confirmed by TGA. The as obtained samples were measured by Differential Scanning Calorimetry and the effect of TiO2 on the glass transition temperature was investigated. The effect of TiO2 on the glass transition of PS is discussed.

  13. Structure and dynamical intra-molecular heterogeneity of star polymer melts above glass transition temperature.

    PubMed

    Chremos, Alexandros; Glynos, Emmanouil; Green, Peter F

    2015-01-28

    Structural and dynamical properties of star melts have been investigated with molecular dynamics simulations of a bead-spring model. Star polymers are known to be heterogeneous, but a systematic simulation study of their properties in melt conditions near the glass transition temperature was lacking. To probe their properties, we have expanded from linear to star polymers the applicability of Dobkowski's chain-length dependence correlation function [Z. Dobkowski, Eur. Polym. J. 18, 563 (1982)]. The density and the isokinetic temperature, based on the canonical definition of the laboratory glass-transition, can be described well by the correlation function and a subtle behavior manifests as the architecture becomes more complex. For linear polymer chains and low functionality star polymers, we find that an increase of the arm length would result in an increase of the density and the isokinetic temperature, but high functionality star polymers have the opposite behavior. The effect between low and high functionalities is more pronounced for short arm lengths. Complementary results such as the specific volume and number of neighbors in contact provide further insights on the subtle relation between structure and dynamics. The findings would be valuable to polymer, colloidal, and nanocomposites fields for the design of materials in absence of solution with the desired properties.

  14. Interparticle interactions mediated superspin glass to superferromagnetic transition in Ni-bacterial cellulose aerogel nanocomposites

    NASA Astrophysics Data System (ADS)

    Thiruvengadam, V.; Vitta, Satish

    2016-06-01

    The interparticle interactions in the magnetic nanocomposites play a dominant role in controlling phase transitions: superparamagnetic to superspin glass and to superferromagnetic. These interactions can be tuned by controlling the size and number density of nanoparticles. The aerogel composites, 0.3Ni-BC and 0.7Ni-BC, consisting of Ni nanoparticles distributed in the bacterial cellulose have been used as a model system to study these interactions. Contrary to conventional approach, size of Ni-nanoparticles is not controlled and allowed to form naturally in bacterial cellulose template. The uncontrolled growth of Ni results in the formation of nanoparticles with 3 different size distributions - <10 nm particles along the length of fibrils, 50 nm particles in the intermediate spaces between the fibrils, and >100 nm particles in voids formed by reticulate structure. At room temperature, the composites exhibit a weakly ferromagnetic behaviour with a coercivity of 40 Oe, which increases to 160 Oe at 10 K. The transition from weakly ferromagnetic state to superferromagnetic state at low temperatures is mediated by the superspin glass state at intermediate temperatures via the interparticle interactions aided by nanoparticles present along the length of fibres. A temperature dependent microstructural model has been developed to understand the magnetic behaviour of nanocomposite aerogels.

  15. Relaxation transition in glass-forming polybutadiene as revealed by nuclear resonance X-ray scattering

    NASA Astrophysics Data System (ADS)

    Kanaya, Toshiji; Inoue, Rintaro; Saito, Makina; Seto, Makoto; Yoda, Yoshitaka

    2014-04-01

    We investigated the arrest mechanism of molecular motions in a glass forming polybutadiene near the glass transition using a new nuclear resonance synchrotron X-ray scattering technique to cover a wide time range (10-9 to 10-5 s) and a scattering vector Q range (9.6-40 nm-1), which have never been accessed by other methods. Owing to the wide time and Q ranges it was found for the first time that a transition of the α-process to the slow β-process (or the Johari-Goldstein process) was observed in a Q range higher than the first peak in the structure factor S(Q) at the critical temperature Tc in the mode coupling theory. The results suggest the important roles of hopping motions below Tc, which was predicted by the recent extended mode coupling theory and the cooperative motions due to the strong correlation at the first peak in S(Q) in the arrest mechanism.

  16. Determination of Material Properties Near the Glass Transition Temperature for an Isogrid Boom

    NASA Technical Reports Server (NTRS)

    Blandino, Joseph R.; Woods-Vedeler, Jessica A. (Technical Monitor)

    2002-01-01

    Experiments were performed and results obtained to determine the temperature dependence of the modulus of elasticity for a thermoplastic isogrid tube. The isogrid tube was subjected to axial tensile loads of 0-100 lbf and strain was measured at room and elevated temperatures of 100, 120, 140, 160, 180, 190, and 200 F. These were based on tube manufacturer specifying an incorrect glass transition temperature of 210 F. Two protocols were used. For the first protocol the tube was brought to temperature and a tensile test performed. The tube was allowed to cool between tests. For the second protocol the tube was ramped to the desired test temperature and held. A tensile test was performed and the tube temperature ramped to the next test temperature. The second protocol spanned the entire test range. The strain rate was constant at 0.008 in/min. Room temperature tests resulted in the determination of an average modulus of 2.34 x 106 Psi. The modulus decreased above 100 F. At 140 F the modulus had decreased by 7.26%. The two test protocols showed good agreement below 160 F. At this point the glass transition temperature had been exceeded. The two protocols were not repeated because the tube failed.

  17. High-temperature tolerance in anhydrobiotic tardigrades is limited by glass transition.

    PubMed

    Hengherr, S; Worland, M R; Reuner, A; Brümmer, F; Schill, R O

    2009-01-01

    Survival in microhabitats that experience extreme fluctuations in water availability and temperature requires special adaptations. To withstand such environmental conditions, tardigrades, as well as some nematodes and rotifers, enter a completely desiccated state known as anhydrobiosis. We examined the effects of high temperatures on fully desiccated (anhydrobiotic) tardigrades. Nine species from the classes Heterotardigrada and Eutardigrada were exposed to temperatures of up to 110 degrees C for 1 h. Exposure to temperatures of up to 80 degrees C resulted in a moderate decrease in survival. Exposure to temperatures above this resulted in a sharp decrease in survival, with no animals of the families Macrobiotidae and Echiniscidae surviving 100 degrees C. However, Milnesium tardigradum (Milnesidae) showed survival of >90% after exposure to 100 degrees C; temperatures above this resulted in a steep decrease in survival. Vitrification is assumed to play a major role in the survival of anhydrobiotic organisms during exposure to extreme temperatures, and consequently, the glass-transition temperature (T(g)) is critical to high-temperature tolerance. In this study, we provide the first evidence of the presence of a glass transition during heating in an anhydrobiotic tardigrade through the use of differential scanning calorimetry.

  18. Glass transition dynamics and conductivity scaling in ionic deep eutectic solvents: The case of (acetamide + lithium nitrate/sodium thiocyanate) melts

    NASA Astrophysics Data System (ADS)

    Tripathy, Satya N.; Wojnarowska, Zaneta; Knapik, Justyna; Shirota, Hideaki; Biswas, Ranjit; Paluch, Marian

    2015-05-01

    A detailed investigation on the molecular dynamics of ionic deep eutectic solvents (acetamide + lithium nitrate/sodium thiocyanate) is reported. The study was carried out employing dielectric relaxation spectroscopy covering seven decades in frequency (10-1-106 Hz) and in a wide temperature range from 373 K down to 173 K, accessing the dynamic observables both in liquid and glassy state. The dielectric response of the ionic system has been presented in the dynamic window of modulus formalism to understand the conductivity relaxation and its possible connection to the origin of localized motion. Two secondary relaxation processes appear below glass transition temperature. Our findings provide suitable interpretation on the nature of secondary Johari-Goldstein process describing the ion translation and orientation of dipoles in a combined approach using Ngai's coupling model. A nearly constant loss feature is witnessed at shorter times/lower temperatures. We also discuss the ac conductivity scaling behavior using Summerfield approach and random free energy barrier model which establish the time-temperature superposition principle. These experimental observations have fundamental importance on theoretical elucidation of the conductivity relaxation and glass transition phenomena in molten ionic conductors.

  19. Glass transition dynamics and conductivity scaling in ionic deep eutectic solvents: The case of (acetamide + lithium nitrate/sodium thiocyanate) melts

    SciTech Connect

    Tripathy, Satya N. Wojnarowska, Zaneta; Knapik, Justyna; Paluch, Marian; Shirota, Hideaki; Biswas, Ranjit

    2015-05-14

    A detailed investigation on the molecular dynamics of ionic deep eutectic solvents (acetamide + lithium nitrate/sodium thiocyanate) is reported. The study was carried out employing dielectric relaxation spectroscopy covering seven decades in frequency (10{sup −1}-10{sup 6} Hz) and in a wide temperature range from 373 K down to 173 K, accessing the dynamic observables both in liquid and glassy state. The dielectric response of the ionic system has been presented in the dynamic window of modulus formalism to understand the conductivity relaxation and its possible connection to the origin of localized motion. Two secondary relaxation processes appear below glass transition temperature. Our findings provide suitable interpretation on the nature of secondary Johari-Goldstein process describing the ion translation and orientation of dipoles in a combined approach using Ngai’s coupling model. A nearly constant loss feature is witnessed at shorter times/lower temperatures. We also discuss the ac conductivity scaling behavior using Summerfield approach and random free energy barrier model which establish the time-temperature superposition principle. These experimental observations have fundamental importance on theoretical elucidation of the conductivity relaxation and glass transition phenomena in molten ionic conductors.

  20. On the theoretical determination of the Prigogine-Defay ratio in glass transition

    NASA Astrophysics Data System (ADS)

    Tropin, Timur V.; Schmelzer, Jürn W. P.; Gutzow, Ivan; Schick, Christoph

    2012-03-01

    In a recent analysis [J. W. P. Schmelzer and I. Gutzow, J. Chem. Phys. 125, 184511 (2006), 10.1063/1.2374894] it was shown for the first time that - in contrast to earlier belief arising from the works of Prigogine and Defay [Chemical Thermodynamics (Longman, London, 1954), Chap. 19; The first French edition of this book was published in 1950] and Davies and Jones [Adv. Phys. 2, 370 (1953), 10.1080/00018735300101252; Davies and Jones Proc. R. Soc. London, Ser. A 217, 26 (1953), 10.1098/rspa.1953.0044] - a satisfactory theoretical interpretation of the experimentally observed values of the so-called Prigogine-Defay ratio Π, being a combination of jumps of thermodynamic coefficients at glass transition, can be given employing only one structural order parameter. According to this analysis, this ratio has to be, in full agreement with experimental findings, larger than one (Π > 1). Its particular value depends both on the thermodynamic properties of the system under consideration and on cooling and heating rates. Based on above-mentioned analysis, latter dependence on cooling rates has been studied in detail in another own preceding paper [T. V. Tropin, J. W. P. Schmelzer, and C. Schick, J. Non-Cryst. Solids 357, 1303 (2011), 10.1016/j.jnoncrysol.2010.12.005]. In the present analysis, an alternative general method of determination of the Prigogine-Defay ratio is outlined, allowing one to determine this ratio having at ones disposal the generalized equation of state of the glass-forming melts under consideration and, in particular, the knowledge of the equilibrium properties of the melts in the glass transformation range. Employing, as an illustration of the method, a particular model for the description of glass-forming melts, theoretical estimates are given for this ratio being, again, in good agreement with experimental data.

  1. Glass transition dynamics and boiling temperatures of molecular liquids and their isomers.

    PubMed

    Wang, Li-Min; Richert, Ranko

    2007-03-29

    The relation between a dynamic and a thermodynamic temperature, glass transition Tg and boiling point Tb, is investigated for various glass-forming liquids, with emphasis on monohydroxy alcohols. As is well known, Tb and Tg are positively correlated across a large variety of liquids. However, we found that the same quantities show a negative correlation within an isomeric series, i.e., Tb decreases with increasing Tg for different isomers of the same chemical formula. For the alcohol series, CnH2n+1OH with 3 < or = n < or = 10, a master curve of the negative Tg - Tb correlation is obtained if the temperatures are normalized to the respective values of the n-alkanols. This Tg - Tb dependence of isomeric liquids is linked to entropic effects and responsible for much of the scatter of the correlation observed for a large number of molecular organic glass-formers with 45 < Tg < 250 K. Dielectric relaxation is measured for three groups of isomers: (a) 3-methoxyl-1-butanol and 2-iso-propoxyethanol, (b) 1,4-, 1,2-, and 2,4-pentanediol, and (c) di-n- and di-iso-butyl phthalate. Two key parameters of the dynamics, fragility m and stretching exponent beta, are found to be indistinguishable within isomers of moderately different Tgs. Larger fragility differences are readily expected with pronounced structural change, but no systematic trend is observed within an isomer series. The results provide a useful tool for assessing Tg, m, and beta for marginal glass formers on the basis of their isomers.

  2. Glass Transition and Molecular Mobility in Styrene-Butadiene Rubber Modified Asphalt.

    PubMed

    Khabaz, Fardin; Khare, Rajesh

    2015-11-05

    Asphalt, a soft matter consisting of more than a thousand chemical species, is of vital importance for the transportation infrastructure, yet it poses significant challenges for microscopic theory and modeling approaches due to its multicomponent nature. Polymeric additives can potentially enhance the thermo-mechanical properties of asphalt, thus helping reduce the road repair costs; rational design of such systems requires knowledge of the molecular structure and dynamics of these systems. We have used molecular dynamics (MD) simulations to investigate the volumetric, structural, and dynamic properties of the neat asphalt as well as styrene-butadiene rubber (SBR) modified asphalt systems. The volume-temperature behavior of the asphalt systems exhibited a glass transition phenomenon, akin to that observed in experiments. The glass transition temperature, room temperature density, and coefficient of volume thermal expansion of the neat asphalt systems so evaluated were in agreement with experimental data when the effect of the high cooling rate used in simulations was accounted for. While the volumetric properties of SBR modified asphalt were found to be insensitive to the presence of the SBR additive, the addition of SBR led to an increase in the aggregation of asphaltene molecules. Furthermore, addition of SBR caused a reduction in the mobility of the constituent molecules of asphalt, with the reduction being more significant for the larger constituent molecules. Similar to other glass forming liquids, the reciprocal of the diffusion coefficient of the selected molecules was observed to follow the Vogel-Fulcher-Tammann (VFT) behavior as a function of temperature. These results suggest the potential for using polymeric additives for enhancing the dynamic mechanical properties of asphalt without affecting its volumetric properties.

  3. Glass transition of aqueous solutions involving annealing-induced ice recrystallization resolves liquid-liquid transition puzzle of water.

    PubMed

    Zhao, Li-Shan; Cao, Ze-Xian; Wang, Qiang

    2015-10-27

    Liquid-liquid transition of water is an important concept in condensed-matter physics. Recently, it was claimed to have been confirmed in aqueous solutions based on annealing-induced upshift of glass-liquid transition temperature, T(g) . Here we report a universal water-content, X(aqu) , dependence of T(g) for aqueous solutions. Solutions with X(aqu)>X(cr)(aqu)vitrify/devitrify at a constant temperature, ~T(g) , referring to freeze-concentrated phase with X(aqu)left behind ice crystallization. Those solutions with X(aqu)

  4. Fluid to soft-glass transition in a quasi-2D system: thermodynamic and rheological evidences for a Langmuir monolayer.

    PubMed

    Maestro, Armando; Guzmán, Eduardo; Chuliá, Raquel; Ortega, Francisco; Rubio, Ramón G; Miller, Reinhard

    2011-05-28

    We report an experimental study that points out the existence of a fluid to soft-glass transition in Langmuir polymer monolayers of poly(methyl methacrylate) (PMMA), for which the water/air interface behaves as a poor-solvent. The temperature dependence of surface pressure vs. surface area equilibrium isotherms shows a glass-like transition temperature at T(g,2D)≈ 298 K, significantly lower than the value for bulk PMMA (T(g,bulk)≈ 378 K). The plot of the film thickness h vs. temperature shows a sharp change of slope at about the same temperature, 298 K, which is a typical hallmark of a glass transition in thin polymer films [J. L. Keddie, R. A. L. Jones, R. A. Cory, Europhys. Lett., 1996, 27, 59-64]. Furthermore, slightly above T(g,2D), the temperature dependence of the dilational viscosity does not follow an Arrhenius law, but instead can be described by a Vogel-Fulcher-Tamman equation with parameters that are typical of a fragile glass. Not only the qualitative behavior of three distinct equilibrium and dynamic properties, but also the quantitative agreement of the values of T(g) obtained, are a strong evidence of the existence of a fluid to soft-glass transition in this quasi-2D system.

  5. An Experimental Investigation into Failure and Localization Phenomena in the Extension to Shear Fracture Transition in Rock

    NASA Astrophysics Data System (ADS)

    Choens, R. C., II; Chester, F. M.; Bauer, S. J.; Flint, G. M.

    2014-12-01

    Fluid-pressure assisted fracturing can produce mesh and other large, interconnected and complex networks consisting of both extension and shear fractures in various metamorphic, magmatic and tectonic systems. Presently, rock failure criteria for tensile and low-mean compressive stress conditions is poorly defined, although there is accumulating evidence that the transition from extension to shear fracture with increasing mean stress is continuous. We report on the results of experiments designed to document failure criteria, fracture mode, and localization phenomena for several rock types (sandstone, limestone, chalk and marble). Experiments were conducted in triaxial extension using a necked (dogbone) geometry to achieve mixed tension and compression stress states with local component-strain measurements in the failure region. The failure envelope for all rock types is similar, but are poorly described using Griffith or modified Griffith (Coulomb or other) failure criteria. Notably, the mode of fracture changes systematically from pure extension to shear with increase in compressive mean stress and display a continuous change in fracture orientation with respect to principal stress axes. Differential stress and inelastic strain show a systematic increase with increasing mean stress, whereas the axial stress decreases before increasing with increasing mean stress. The stress and strain data are used to analyze elastic and plastic strains leading to failure and compare the experimental results to predictions for localization using constitutive models incorporating on bifurcation theory. Although models are able to describe the stability behavior and onset of localization qualitatively, the models are unable to predict fracture type or orientation. Constitutive models using single or multiple yield surfaces are unable to predict the experimental results, reflecting the difficulty in capturing the changing micromechanisms from extension to shear failure. Sandia

  6. Glass transition and relaxation dynamics of propylene glycol-water solutions confined in clay

    NASA Astrophysics Data System (ADS)

    Elamin, Khalid; Björklund, Jimmy; Nyhlén, Fredrik; Yttergren, Madeleine; Mârtensson, Lena; Swenson, Jan

    2014-07-01

    The molecular dynamics of aqueous solutions of propylene glycol (PG) and propylene glycol methylether (PGME) confined in a two-dimensional layer-structured Na-vermiculite clay has been studied by broadband dielectric spectroscopy and differential scanning calorimetry. As typical for liquids in confined geometries the intensity of the cooperative α-relaxation becomes considerably more suppressed than the more local β-like relaxation processes. In fact, at high water contents the calorimetric glass transition and related structural α-relaxation cannot even be observed, due to the confinement. Thus, the intensity of the viscosity related α-relaxation is dramatically reduced, but its time scale as well as the related glass transition temperature Tg are for both systems only weakly influenced by the confinement. In the case of the PGME-water solutions it is an important finding since in the corresponding bulk system a pronounced non-monotonic concentration dependence of the glass transition related dynamics has been observed due to the growth of hydrogen bonded relaxing entities of water bridging between PGME molecules [J. Sjöström, J. Mattsson, R. Bergman, and J. Swenson, Phys. Chem. B 115, 10013 (2011)]. The present results suggest that the same type of structural entities are formed in the quasi-two-dimensional space between the clay platelets. It is also observed that the main water relaxation cannot be distinguished from the β-relaxation of PG or PGME in the concentration range up to intermediate water contents. This suggests that these two processes are coupled and that the water molecules affect the time scale of the β-relaxation. However, this is most likely true also for the corresponding bulk solutions, which exhibit similar time scales of this combined relaxation process below Tg. Finally, it is found that at higher water contents the water relaxation does not merge with, or follow, the α-relaxation above Tg, but instead crosses the

  7. Yielding of glass under shear: A directed percolation transition precedes shear-band formation

    NASA Astrophysics Data System (ADS)

    Shrivastav, Gaurav Prakash; Chaudhuri, Pinaki; Horbach, Jürgen

    2016-10-01

    Under external mechanical loading, glassy materials, ranging from soft matter systems to metallic alloys, often respond via formation of inhomogeneous flow patterns, during yielding. These inhomogeneities can be precursors to catastrophic failure, implying that a better understanding of their underlying mechanisms could lead to the design of smarter materials. Here, extensive molecular dynamics simulations are used to reveal the emergence of heterogeneous dynamics in a binary Lennard-Jones glass, subjected to a constant strain rate. At a critical strain, this system exhibits for all considered strain rates a transition towards the formation of a percolating cluster of mobile regions. We give evidence that this transition belongs to the universality class of directed percolation. Only at low shear rates, the percolating cluster subsequently evolves into a transient (but long-lived) shear band with a diffusive growth of its width. Finally, the steady state with a homogeneous flow pattern is reached. In the steady state, percolation transitions also do occur constantly, albeit over smaller strain intervals, to maintain the stationary plastic flow in the system.

  8. Experimental evidence for an absorbing phase transition underlying yielding of a soft glass

    NASA Astrophysics Data System (ADS)

    Nagamanasa, K. Hima; Gokhale, Shreyas; Sood, A. K.; Ganapathy, Rajesh

    2014-03-01

    A characteristic feature of solids ranging from foams to atomic crystals is the existence of a yield point, which marks the threshold stress beyond which a material undergoes plastic deformation. In hard materials, it is well-known that local yield events occur collectively in the form of intermittent avalanches. The avalanche size distributions exhibit power-law scaling indicating the presence of self-organized criticality. These observations led to predictions of a non-equilibrium phase transition at the yield point. By contrast, for soft solids like gels and dense suspensions, no such predictions exist. In the present work, by combining particle scale imaging with bulk rheology, we provide a direct evidence for a non-equilibrium phase transition governing yielding of an archetypal soft solid - a colloidal glass. The order parameter and the relaxation time exponents revealed that yielding is an absorbing phase transition that belongs to the conserved directed percolation universality class. We also identified a growing length scale associated with clusters of particles with high Debye-Waller factor. Our findings highlight the importance of correlations between local yield events and may well stimulate the development of a unified description of yielding of soft solids.

  9. Thermodynamic behaviour of gliadins mixture and the glass-softening transition of its dried state.

    PubMed

    Ferrari, C; Johari, G P

    1997-10-01

    The glass-softening transition of a mixture of gliadins extracted from wheat flour has been studied in its dry state by differential scanning calorimetry (DSC). Further, the rate of removal of its water vapours on its evaporation from a gliadins mixture containing different amounts of water has been investigated, and through this the presence of any exothermic effect that could be attributed to polymerization of gliadins has been examined. The heat absorbed in this evaporation is comparable with the heat of evaporation of pure water measured in a separate experiment in identical conditions. This showed that the gliadins mixture did not polymerize on heating up to 473 K in the presence of moisture. In this respect the behaviour of the gliadins mixture differs remarkably from that of gluten studied before (J Phys Chem 1996:100:19692). The effects of purge gas, helium and argon, on the calorimetric effects during the evaporation of water have been studied. A restudy of gluten shows that helium decreases substantially the endothermic signal in the DSC measurements, and thereby reveals the exothermic effects of polymerization in gluten, but argon does not do so. The structural relaxation time, t, of dry gliadins mixtures at different temperatures has been calculated from an analysis of its glass-softening endotherm. The temperature at which t = 1 ks is 452 K, and the Tg, obtained by the usual method of intersection of the straight lines drawn, is 443 K, 7 K higher than for the polymerized dry gluten, the distribution of relaxation time parameter is 0.25, and increase in the heat capacity in this range is 0.21 J/g K. Physical ageing effects are considerable in the gliadins mixture, which alters the glass-softening endotherm but not the structural relaxation time or its distribution.

  10. How melt stretching affect the brittle-ductile transition temperature of polymer glasses

    NASA Astrophysics Data System (ADS)

    Cheng, Shiwang; Wang, Shi-Qing

    2013-03-01

    Upon increasing temperature a brittle polymer glass can turn ductile. PMMA is a good example. For a while this brittle-ductile transition (BDT) was thought to be determined by the emergence of a secondary relaxation....1-3 On the other hand, it has been known for a long time...4-6 that predeformation in the melt state (e.g., melt stretching) can also make brittle glasses behave in a ductile manner. This transformation has recently received a satisfactory explanation based on a picture of structural hybrid for polymer glasses....7 It appears that BDT is dictated by the relative mechanical characteristics of the primary structure (due to the van der Waals bonds) and the chain network. The present work, based on conventional Instron tensile extension tests and DMA tests, shows that melt stretching does not alter the secondary relaxation behavior of PMMA and PC yet can turn them the brittle PMMA ductile and the ductile PC brittle. Moreover, sufficient melt stretching makes the brittle PS ductile although it does not produce any secondary relaxation process..1. Monnerie, L.; Laupretre, F.; Halary, J. L. Adv. Polym. Sci2005, 187, 35-213. 2. Monnerie, L.; Halary, J. L.; Kausch, H. Adv. Polym. Sci2005, 187, 215-364. 3. Wu, S. J. Appl. Polym. Sci.1992, 46, (4), 619-624. 4. Vincent, P. I. Polymer1960, 1, (0), 425-444. 5. Harris, J. S.; Ward, I. M. J. Mater. Sci.1970, 5, (7), 573-579. 6. Ender, D. H.; Andrews, R. D. J. Appl. Phys.1965, 36, (10), 3057-3062. 7. Zartman, G. D.; Cheng, S.; Li, X.; Lin, F.; Becker, M. L.; Wang, S.-Q. Macromolecules2012, 45, (16), 6719-6732.

  11. Transition from stress-driven to thermally activated stress relaxation in metallic glasses

    NASA Astrophysics Data System (ADS)

    Qiao, J. C.; Wang, Yun-Jiang; Zhao, L. Z.; Dai, L. H.; Crespo, D.; Pelletier, J. M.; Keer, L. M.; Yao, Y.

    2016-09-01

    The short-range ordered but long-range disordered structure of metallic glasses yields strong structural and dynamic heterogeneities. Stress relaxation is a technique to trace the evolution of stress in response to a fixed strain, which reflects the dynamic features phenomenologically described by the Kohlrausch-Williams-Watts (KWW) equation. The KWW equation describes a broad distribution of relaxation times with a small number of empirical parameters, but it does not arise from a particular physically motivated mechanistic picture. Here we report an anomalous two-stage stress relaxation behavior in a Cu46Zr46Al8 metallic glass over a wide temperature range and generalize the findings in other compositions. Thermodynamic analysis identifies two categories of processes: a fast stress-driven event with large activation volume and a slow thermally activated event with small activation volume, which synthetically dominates the stress relaxation dynamics. Discrete analyses rationalize the transition mechanism induced by stress and explain the anomalous variation of the KWW characteristic time with temperature. Atomistic simulations reveal that the stress-driven event involves virtually instantaneous short-range atomic rearrangement, while the thermally activated event is the percolation of the fast event accommodated by the long-range atomic diffusion. The insights may clarify the underlying physical mechanisms behind the phenomenological description and shed light on correlating the hierarchical dynamics and structural heterogeneity of amorphous solids.

  12. Retrogradation of Waxy Rice Starch Gel in the Vicinity of the Glass Transition Temperature

    PubMed Central

    Charoenrein, Sanguansri; Udomrati, Sunsanee

    2013-01-01

    The retrogradation rate of waxy rice starch gel was investigated during storage at temperatures in the vicinity of the glass transition temperature of a maximally concentrated system (Tg′), as it was hypothesized that such temperatures might cause different effects on retrogradation. The Tg′ value of fully gelatinized waxy rice starch gel with 50% water content and the enthalpy of melting retrograded amylopectin in the gels were investigated using differential scanning calorimetry. Starch gels were frozen to −30°C and stored at 4, 0, −3, −5, and −8°C for 5 days. The results indicated that the Tg′ value of gelatinized starch gel annealed at −7°C for 15 min was −3.5°C. Waxy rice starch gels retrograded significantly when stored at 4°C with a decrease in the enthalpy of melting retrograded starch in samples stored for 5 days at −3, −5, and −8°C, respectively, perhaps due to the more rigid glass matrix and less molecular mobility facilitating starch chain recrystallization at temperatures below Tg′. This suggests that retardation of retrogradation of waxy rice starch gel can be achieved at temperature below Tg′. PMID:26904602

  13. The relationship between the glass transition temperature and water vapor absorption by poly(vinylpyrrolidone)

    PubMed

    Oksanen, C A; Zografi, G

    1990-06-01

    Water associated with amorphous solids is known to affect significantly the physical and chemical properties of dosage form ingredients. An analysis of water vapor absorption isotherms of poly(vinylpyrrolidone) measured in this and other laboratories, over the range -40 to 60 degrees C, along with the measurement of the glass transition temperature of poly(vinylpyrrolidone) as a function of water content is reported. It is observed that the amount of water vapor absorbed at a particular relative humidity increases with decreasing temperature, along with a significant change in the shape of the isotherm. It is also shown that at any temperature, along with a significant change in the shape of the isotherm. It is also shown that at any temperature the state of the solid changes from a highly viscous glass to a much less viscous rubber in the region where absorbed water appears to enter into a "solvent-like" state. Further, the apparent "tightly bound" state, observed at low relative humidities, appears to exist when the polymer enters into a very viscous glassy state. It is concluded that the apparent states of water and polymer are interrelated in a dynamic manner and, therefore, that they cannot be uncoupled by simple thermodynamic analyses based only on a water-binding model.

  14. Coupled effects of substrate adhesion and intermolecular forces on polymer thin film glass-transition behavior.

    PubMed

    Xia, Wenjie; Keten, Sinan

    2013-10-15

    Intermolecular noncovalent forces between polymer chains influence the mobility and glass-transition temperature (Tg), where weaker interchain interactions, all else being the same, typically results in lower bulk polymer Tg. Using molecular dynamics simulations, here we show that this relation can become invalid for supported ultrathin films when the substrate-polymer interaction is extremely strong and the polymer-polymer interactions are much weaker. This contrasting trend is found to be due to a more pronounced substrate-induced appreciation of the film Tg for polymers with weaker intermolecular interactions and low bulk Tg. We show that optimizing this coupling between substrate adhesion and bulk Tg maximizes thin film Tg, paving the way for tuning film properties through interface nanoengineering.

  15. A novel method to measure the glass and melting transitions of pharmaceutical powders.

    PubMed

    Abiad, Mohamad G; Gonzalez, David C; Mert, Behic; Campanella, Osvaldo H; Carvajal, M Teresa

    2010-08-30

    A method to measure thermo-mechanical properties of pharmaceutical and polymeric powders was developed. The measurements are conducted by characterizing the material's response to applied acoustic waves. Measurements were performed using griseofulvin, felodipine and indomethacin as model drugs and polyethylene oxide (MW=200,000, 900,000, 2,000,000Da) as model polymers. The method employed measures the mechanical impedance enabled the calculation of the powder rheological and thermo-mechanical properties. Measurements attained with this new technique are compared with measurements made using differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The new method detects the melting and glass transitions events while providing complementary information to that provided by DSC and DMA.

  16. Glass transition temperature of PIB, PDMS and PMMA from small-time simulations

    NASA Astrophysics Data System (ADS)

    Duki, Solomon; Tsige, Mesfin; Taylor, Philip

    2009-03-01

    We have applied some new techniques to obtain predictions of the glass transition temperatures Tg of poly(isobutylene), poly(dimethyl-siloxane), and poly(methyl methacrylate) from small-time atomistic molecular dynamics simulations. The different fragilities of these materials are reflected in the results of the simulations. One approach involved measurement of the apparent softening of the ``cage'' in which a monomer is bound, while another involved studying autocorrelation of a convolution of the velocity with a smoothing function in order to detect the frequency of escapes from the ``cage.'' To check the accuracy of the short-time methods, the Tg of the polymers was also found using conventional diffusion simulations in which the rate of increase of the root mean squared displacement of an atom, monomer, or molecule is measured at very long times. The economical short-time simulations yielded results for Tg that were identical to those of the computer-intensive long-time simulations.

  17. Organotin piezo- and pyroelectric polymer films. [Synthesis, glass transition, and piezo- and pyroelectric activity

    SciTech Connect

    Liepins, R.; Timmons, M.L.; Morosoff, N.; Surles, J.

    1983-01-01

    The synthesis of a new class of piezo- and pyroelectrically active materials of various co- and terpolymers of tributylin methacrylate (TBTM) and trimethyltin methacrylate (TMTM) is described. A description of sample preparation, poling techniques, and measurement system is given in some detail. Films of the various polymer compositions were evaluated for tin current, glass transition temperature (Tg), crystallinity or ordering of the amorphous phase and piezo- and pytoelectric activity. Experimental results on 25 to 30 mol% TBTM/methyl methacrylate copolymers, which possessed good piezoelectric activity, antifouling properties and paint-formulation characteristics, are discussed in detail. Solvent-induced orientation effects that lead to piezoelectric activity in amorphous, unpoled, polymers are also described.

  18. Relaxation processes and glass transition in confined 1,4-polybutadiene films: A Molecular Dynamics study

    NASA Astrophysics Data System (ADS)

    Paul, Wolfgang; Solar, Mathieu

    We will present results from Molecular Dynamics simulations of a chemically realistic model of 1,4-polybutadiene (PB) chains confined by graphite walls. Relaxation processes in this system are heterogeneous and anisotropic. We will present evidence for a slow additional relaxation process related to chain desorption from the walls. We also study the structural relaxation resolved with respect to the distance from the graphite walls and show the influence of structural changes on the relaxation behavior. The temperature dependence of the dielectric relaxation in layers of different thickness near the walls shows no indication of a shift of Tg as a function of thickness when analyzed with a Vogel-Fulcher fit. We explain this by the importance of intramolecular dihedral barriers for the glass transition in PB which dominate over the density changes next to a wall except for a 1 nm thick layer directly at the wall.

  19. Glass transition of polystyrene (PS) studied by Raman spectroscopic investigation of its phenyl functional groups

    NASA Astrophysics Data System (ADS)

    Bertoldo Menezes, D.; Reyer, A.; Marletta, A.; Musso, M.

    2017-01-01

    In polymeric materials the glass transition (GT) is a well-known and very important relaxation process related to movements of functional groups in the polymeric chain. In this work, we show the potential of Raman spectroscopy for exploring the GT process in the polymer polystyrene. We collected Raman spectra during a step-by-step heating process of the sample, which allowed us to collect signatures of the GT process from peak parameters of specific vibrational modes, and to verify the GT temperature. Results of the latter were in accordance with published values obtained via other methods. We identified the aromatic ring vibrational modes of the phenyl functional groups to be those which, due to steric hindrance, suffer the largest influence during the GT process. This confirms that Raman spectroscopy can be used as a complementary technique to perform GT investigations in polymeric materials due to its sensitivity to small intermolecular changes affecting vibrational properties of relevant functional side groups.

  20. Critical test of the mode-coupling theory of the glass transition.

    PubMed

    Berthier, Ludovic; Tarjus, Gilles

    2010-09-01

    In its common implementation, the mode-coupling theory of the glass transition predicts the time evolution of the intermediate scattering functions in viscous liquids on the sole basis of the structural information encoded in two-point density correlations. We provide a critical test of this property and show that the theory fails to describe the strong differences of dynamical behavior seen in two model liquids characterized by very similar pair-correlation functions. Because we use "exact" static information provided by numerical simulations, our results are a direct indication that some important information about the dynamics of viscous liquids is not captured by pair correlations and is thus not described by the mode-coupling theory, even in the temperature regime where the theory is usually applied.

  1. Two Simultaneous Mechanisms Causing Glass Transition Temperature Reductions in High Molecular Weight Freestanding Polymer Films as Measured by Transmission Ellipsometry

    NASA Astrophysics Data System (ADS)

    Pye, Justin E.; Roth, Connie B.

    2011-12-01

    We study the glass transition in confined polymer films and present the first experimental evidence indicating that two separate mechanisms can act simultaneously on the film to propagate enhanced mobility from the free surface into the material. Using transmission ellipsometry, we have measured the thermal expansion of ultrathin, high molecular-weight (MW), freestanding polystyrene films over an extended temperature range. For two different MWs, we observed two distinct reduced glass transition temperatures (Tg’s), separated by up to 60 K, within single films with thicknesses h less than 70 nm. The lower transition follows the expected MW dependent, linear Tg(h) behavior previously seen in high MW freestanding films. We also observe a much stronger upper transition with no MW dependence that exhibits the same Tg(h) dependence as supported and low MW freestanding polymer films.

  2. Universal behavior of the osmotically compressed cell and its analogy to the colloidal glass transition.

    PubMed

    Zhou, E H; Trepat, X; Park, C Y; Lenormand, G; Oliver, M N; Mijailovich, S M; Hardin, C; Weitz, D A; Butler, J P; Fredberg, J J

    2009-06-30

    Mechanical robustness of the cell under different modes of stress and deformation is essential to its survival and function. Under tension, mechanical rigidity is provided by the cytoskeletal network; with increasing stress, this network stiffens, providing increased resistance to deformation. However, a cell must also resist compression, which will inevitably occur whenever cell volume is decreased during such biologically important processes as anhydrobiosis and apoptosis. Under compression, individual filaments can buckle, thereby reducing the stiffness and weakening the cytoskeletal network. However, the intracellular space is crowded with macromolecules and organelles that can resist compression. A simple picture describing their behavior is that of colloidal particles; colloids exhibit a sharp increase in viscosity with increasing volume fraction, ultimately undergoing a glass transition and becoming a solid. We investigate the consequences of these 2 competing effects and show that as a cell is compressed by hyperosmotic stress it becomes progressively more rigid. Although this stiffening behavior depends somewhat on cell type, starting conditions, molecular motors, and cytoskeletal contributions, its dependence on solid volume fraction is exponential in every instance. This universal behavior suggests that compression-induced weakening of the network is overwhelmed by crowding-induced stiffening of the cytoplasm. We also show that compression dramatically slows intracellular relaxation processes. The increase in stiffness, combined with the slowing of relaxation processes, is reminiscent of a glass transition of colloidal suspensions, but only when comprised of deformable particles. Our work provides a means to probe the physical nature of the cytoplasm under compression, and leads to results that are universal across cell type.

  3. Modeling the glass transition of amorphous networks for shape-memory behavior

    NASA Astrophysics Data System (ADS)

    Xiao, Rui; Choi, Jinwoo; Lakhera, Nishant; Yakacki, Christopher M.; Frick, Carl P.; Nguyen, Thao D.

    2013-07-01

    In this paper, a thermomechanical constitutive model was developed for the time-dependent behaviors of the glass transition of amorphous networks. The model used multiple discrete relaxation processes to describe the distribution of relaxation times for stress relaxation, structural relaxation, and stress-activated viscous flow. A non-equilibrium thermodynamic framework based on the fictive temperature was introduced to demonstrate the thermodynamic consistency of the constitutive theory. Experimental and theoretical methods were developed to determine the parameters describing the distribution of stress and structural relaxation times and the dependence of the relaxation times on temperature, structure, and driving stress. The model was applied to study the effects of deformation temperatures and physical aging on the shape-memory behavior of amorphous networks. The model was able to reproduce important features of the partially constrained recovery response observed in experiments. Specifically, the model demonstrated a strain-recovery overshoot for cases programmed below Tg and subjected to a constant mechanical load. This phenomenon was not observed for materials programmed above Tg. Physical aging, in which the material was annealed for an extended period of time below Tg, shifted the activation of strain recovery to higher temperatures and increased significantly the initial recovery rate. For fixed-strain recovery, the model showed a larger overshoot in the stress response for cases programmed below Tg, which was consistent with previous experimental observations. Altogether, this work demonstrates how an understanding of the time-dependent behaviors of the glass transition can be used to tailor the temperature and deformation history of the shape-memory programming process to achieve more complex shape recovery pathways, faster recovery responses, and larger activation stresses.

  4. Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition?

    PubMed

    Nascimento, Marcio Luis Ferreira; Zanotto, Edgar Dutra

    2010-11-07

    An analysis of the kinetic coefficient of crystal growth U(kin), recently proposed by Ediger et al. [J. Chem. Phys. 128, 034709 (2008)], indicates that the Stokes-Einstein/Eyring (SE/E) equation does not describe the diffusion process controlling crystal growth rates in fragile glass-forming liquids. U(kin) was defined using the normal growth model and tested for crystal data for inorganic and organic liquids covering a viscosity range of about 10(4)-10(12) Pa  s. Here, we revisit their interesting finding considering two other models: the screw dislocation (SD) and the two-dimensional surface nucleated (2D) growth models for nine undercooled oxide liquids, in a wider temperature range, from slightly below the melting point down to the glass transition region T(g), thus covering a wider viscosity range: 10(1)-10(13) Pa  s. We then propose and use normalized kinetic coefficients (M(kin)) for the SD and 2D growth models. These new kinetic coefficients restore the ability of viscosity to describe the transport part of crystal growth rates (M(kin)∼1/η and ξ∼1) from low to moderate viscosities (η<10(6) Pa  s), and thus the SE/E equation works well in this viscosity range for all systems tested. For strong glasses, the SE/E equation works well from low to high viscosities, from the melting point down to T(g)! However, for at least three fragile liquids, diopside (kink at 1.08T(g), η=1.6×10(8) Pa  s), lead metasilicate (kink at 1.14T(g), η=4.3×10(6) Pa  s), and lithium disilicate (kink at 1.11T(g), η=1.6×10(8) Pa  s), there are clear signs of a breakdown of the SE/E equation at these higher viscosities. Our results corroborate the findings of Ediger et al. and demonstrate that viscosity data cannot be used to describe the transport part of the crystal growth (via the SE/E equation) in fragile glasses in the neighborhood of T(g).

  5. Reply to ``Comment on `Unusual magnetic transitions and nature of magnetic resonance spectra in oxide glasses containing gadolinium' ''

    NASA Astrophysics Data System (ADS)

    Kliava, Janis; Malakhovskii, Alexander; Edelman, Irina; Potseluyko, Anatoly; Melnikova, Svetlana; Petrakovskaja, Eleonora; Zarubina, Tat'Jana; Petrovskii, Gurii; Bruckental, I.; Yeshurun, Y.

    2006-07-01

    In this Reply we show that, contrary to the suggestion of Dubroca, Hack, and Hummel (DHH), the feature observed at ca. 55K in the magnetic susceptibility of gadolinium-containing oxide glasses [as in our earlier paper, Kliava Phys. Rev. B 71, 104406 (2005)] cannot be due to a magnetic transition in oxygen contaminant. In support of this statement, we supply transformed data at low Gd content as well as magnetization curves for a series of glasses containing dysprosium oxide measured with the same superconducting quantum interference device as in our earlier paper. In all these cases the feature in question is absent. Thus, our previous assignment of the 55K feature to a paramagnetic-to-ferromagnetic transition in Gd clusters in the glass remains the only one consistent with the experimental results.

  6. Topological characteristics of bonds in SiO{sub 2} and GeO{sub 2} oxide systems upon a glass-liquid transition

    SciTech Connect

    Ozhovan, M. I.

    2006-11-15

    Using the Angell model of broken bonds (configurons), configuron clustering in a topologically disordered lattice (network) of amorphous SiO{sub 2} and GeO{sub 2} upon a glass-liquid transition is considered. It is shown that the glass-liquid transition is accompanied by the formation of a macroscopic (percolation) configuron cluster penetrating the entire bulk of the material and possessing fractal geometry. The glass-liquid (overcooled liquid) percolation phase transition in the amorphous substance is accompanied by a change in the Hausdorff dimension of the bond network structure for configurons from the three-dimensional Euclidean dimension in the glassy state to a fractal dimension of 2.55 {+-} 0.05 in the liquidlike state. Contrary to the kinetic character of the liquid-glass transition, the glass-transition temperature is a thermodynamic parameter of the amorphous substance, depending parametrically on the cooling rate.

  7. Waveguides and nonlinear index of refraction of borate glass doped with transition metals

    NASA Astrophysics Data System (ADS)

    Almeida, Juliana M. P.; Fonseca, Ruben D.; De Boni, Leonardo; Diniz, Andre Rosa S.; Hernandes, Antonio C.; Ferreira, Paulo H. D.; Mendonca, Cleber R.

    2015-04-01

    The ability to write 3D waveguides by femtosecond laser micromachining and the nonlinear refractive index (n2) spectrum of a new borate glass matrix, containing zinc and lead oxides - (BZP) have been investigated. The transparent matrix was doped with transition metals (CdCl2, Fe2O3, MnO2 and CoO) in order to introduce electronic transitions in visible spectrum, aiming to evaluate their influence on the waveguides and n2 spectrum. We observed that n2 is approximately constant from 600 to 1500 nm, exhibiting an average value of 4.5 × 10-20 m2/W, which is about twice larger than the one for fused silica. The waveguide profile is influenced by the self-focusing effect of the matrix owing to its positive nonlinear index of refraction in the wavelength used for micromachining. A decrease in the waveguide loss of approximately four times was observed for the sample doped with Fe in comparison to the other ones, which may be associated with the change in the optical gap energy.

  8. Multichannel transition emissions of Dy{sup 3+} in fiber-adaptive germanium tellurite glasses

    SciTech Connect

    Li, Y. H.; Chen, B. J.; Lin, H.; Pun, E. Y. B.

    2013-03-28

    Multichannel transition visible and near-infrared (NIR) fluorescences have been captured in Dy{sup 3+}-doped fiber-adaptive Na{sub 2}O-ZnO-PbO-GeO{sub 2}-TeO{sub 2} glasses. The maximum stimulated emission cross-sections {sigma}{sub em-max} were derived to be 0.33 Multiplication-Sign 10{sup -21}, 3.66 Multiplication-Sign 10{sup -21}, and 0.67 Multiplication-Sign 10{sup -21} cm{sup 2} for conventional visible emissions assigned to {sup 4}F{sub 9/2}{yields}{sup 6}H{sub J} (J = 15/2, 13/2, and 11/2) transitions, respectively. Infrequent multi-peak NIR emissions were recorded in the spectral range of 900-1500 nm, among which the values of {sigma}{sub em-max} were solved to be 1.05 Multiplication-Sign 10{sup -22} and 1.56 Multiplication-Sign 10{sup -22} cm{sup 2} for {approx}1.02 and {approx}1.18 {mu}m emission bands. Internal quantum efficiency for the {sup 4}F{sub 9/2} level and external quantum yield for visible emissions of Dy{sup 3+} were determined to be 88.44% and 12.38%, severally. Effective multichannel radiative emissions reveal a potential in developing fiber-lighting sources, tunable lasers, and NIR optical amplifiers.

  9. Structural transition and orbital glass physics in near-itinerant CoV2O4

    DOE PAGES

    Reig-i-Plessis, D.; Casavant, D.; Garlea, Vasile O.; ...

    2016-01-25

    In this study, the ferrimagnetic spinel CoV2O4 has been a topic of intense recent interest, both as a frustrated insulator with unquenched orbital degeneracy and as a near-itinerant magnet which can be driven metallic with moderate applied pressure. Here, we report on our recent neutron di raction and inelastic scattering measurements on powders with minimal cation site disorder. Our main new result is the identification of a weak (Δa/a ~ 10–4), first order structural phase transition at T* = 90 K, the same temperature where spin canting was seen in recent single crystal measurements. This transition is characterized by amore » short-range distortion of oxygen octahedral positions, and inelastic data further establish a weak 1.25meV spin gap at low temperature. Together, these findings provide strong support for the local orbital picture and the existence of an orbital glass state at temperatures below T*.« less

  10. A universal description of ultraslow glass dynamics

    PubMed Central

    Martinez-Garcia, Julio Cesar; Rzoska, Sylwester J.; Drozd-Rzoska, Aleksandra; Martinez-Garcia, Jorge

    2013-01-01

    The dynamics of glass is of importance in materials science but its nature has not yet been fully understood. Here we report that a verification of the temperature dependencies of the primary relaxation time or viscosity in the ultraslowing/ultraviscous domain of glass-forming systems can be carried out via the analysis of the inverse of the Dyre–Olsen temperature index. The subsequent analysis of experimental data indicates the possibility of the self-consistent description of glass-forming low-molecular-weight liquids, polymers, liquid crystals, orientationally disordered crystals and Ising spin-glass-like systems, as well as the prevalence of equations associated with the ‘finite temperature divergence’. All these lead to a new formula for the configurational entropy in glass-forming systems. Furthermore, a link to the dominated local symmetry for a given glass former is identified here. Results obtained show a new relationship between the glass transition and critical phenomena. PMID:23652011

  11. A universal description of ultraslow glass dynamics.

    PubMed

    Martinez-Garcia, Julio Cesar; Rzoska, Sylwester J; Drozd-Rzoska, Aleksandra; Martinez-Garcia, Jorge

    2013-01-01

    The dynamics of glass is of importance in materials science but its nature has not yet been fully understood. Here we report that a verification of the temperature dependencies of the primary relaxation time or viscosity in the ultraslowing/ultraviscous domain of glass-forming systems can be carried out via the analysis of the inverse of the Dyre-Olsen temperature index. The subsequent analysis of experimental data indicates the possibility of the self-consistent description of glass-forming low-molecular-weight liquids, polymers, liquid crystals, orientationally disordered crystals and Ising spin-glass-like systems, as well as the prevalence of equations associated with the 'finite temperature divergence'. All these lead to a new formula for the configurational entropy in glass-forming systems. Furthermore, a link to the dominated local symmetry for a given glass former is identified here. Results obtained show a new relationship between the glass transition and critical phenomena.

  12. Raman scattering study of glass crystallization kinetics

    NASA Astrophysics Data System (ADS)

    Balkanski, M.; Haro, E.; Espinosa, G. P.; Phillips, J. C.

    1984-08-01

    Laser induced glass-crystalline transition is studied by light scattering. Three significant effects are observed depending on the incident laser energy density: (i) Spectral band narrowing indicating cluster enlargement constitutes a precursor effect, (ii) an intensity increase effect indicates a rapid rise of the density of clusters attaining microcrystalline size and (iii) a dynamical reversal effect indicative of glass-crystalline instability. Cluster volume and crystallization appear as separate but related threshold phenomena.

  13. Effect of sugar addition on glass transition temperatures of cassava starch with low to intermediate moisture contents.

    PubMed

    Figueroa, Yetzury; Guevara, Marvilan; Pérez, Adriana; Cova, Aura; Sandoval, Aleida J; Müller, Alejandro J

    2016-08-01

    This work studies how sucrose (S) addition modifies the thermal properties of cassava starch (CS). Neat CS and CS-S blends with 4, 6 and 8% sugar contents (CS-S-4%, CS-S-6% and CS-S-8%) were prepared and analyzed by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA), in a wide range of moisture levels (2-20%). In equilibrated samples with moisture contents lower than 10%, twoendothermic steps were observed during first DSC heating scans and two corresponding relaxation maxima in tan δ were detected by DMTA. The first transition, detected at around 45-55°C by both DSC and DMTA, is frequently found in starchy foods, while the second observed at higher temperatures is associated to the glass transition temperature of the blends. At higher moisture contents, only one thermal transition was observed. Samples analyzed immediately after cooling from the melt (i.e., after erasing their thermal history), exhibited a single glass transition temperature, regardless of their moisture content. Addition of sugar promotes water plasticization of CS only at high moisture contents. In the low moisture content range, anti-plasticization was observed for both neat and sugar-added CS samples. Addition of sugar decreases the moisture content needed to achieve the maximum value of the glass transition temperature before plasticization starts. The results of this work may be valuable for the study of texture establishment in low moisture content extruded food products.

  14. Interplay between crystallization and glass transition in binary Lennard-Jones mixtures

    NASA Astrophysics Data System (ADS)

    Banerjee, Atreyee; Chakrabarty, Suman; Bhattacharyya, Sarika Maitra

    2013-09-01

    In this work we explore the interplay between crystallization and glass transition in different binary mixtures by changing their inter-species interaction length and also the composition. We find that only those systems which form bcc crystal in the equimolar mixture and whose global structure for larger xA (xA = 0.6, where xA is the mole fraction of the bigger particles) is a mixed fcc + bcc phase, do not crystallize at this higher composition. However, the systems whose equimolar structure is a variant of fcc (NaCl type crystal) and whose global structure at larger xA is a mixed NaCl + fcc phase, crystallize easily to this mixed structure. We find that the stability against crystallization of this "bcc zone" is due to the frustration between the locally preferred structure (LPS) and the mixed bcc + fcc crystal. Our study suggests that when the global structure is a mixed crystal where a single species contributes to both the crystal forms and where the two crystal forms have large difference in some order parameter related to that species then this induces frustration between the LPS and the global structure. This frustration makes the systems good glass former. When xA is further increased (0.70 ⩽ xA < 0.90) the systems show a tendency towards mixed fcc crystal formation. However, the "bcc zone" even for this higher composition is found to be sitting at the bottom of a V shaped phase diagram formed by two different variants of the fcc crystal structure, leading to its stability against crystallization.

  15. Interplay between crystallization and glass transition in binary Lennard-Jones mixtures.

    PubMed

    Banerjee, Atreyee; Chakrabarty, Suman; Bhattacharyya, Sarika Maitra

    2013-09-14

    In this work we explore the interplay between crystallization and glass transition in different binary mixtures by changing their inter-species interaction length and also the composition. We find that only those systems which form bcc crystal in the equimolar mixture and whose global structure for larger x(A) (x(A) = 0.6, where x(A) is the mole fraction of the bigger particles) is a mixed fcc + bcc phase, do not crystallize at this higher composition. However, the systems whose equimolar structure is a variant of fcc (NaCl type crystal) and whose global structure at larger x(A) is a mixed NaCl + fcc phase, crystallize easily to this mixed structure. We find that the stability against crystallization of this "bcc zone" is due to the frustration between the locally preferred structure (LPS) and the mixed bcc + fcc crystal. Our study suggests that when the global structure is a mixed crystal where a single species contributes to both the crystal forms and where the two crystal forms have large difference in some order parameter related to that species then this induces frustration between the LPS and the global structure. This frustration makes the systems good glass former. When x(A) is further increased (0.70 ≤ x(A) < 0.90) the systems show a tendency towards mixed fcc crystal formation. However, the "bcc zone" even for this higher composition is found to be sitting at the bottom of a V shaped phase diagram formed by two different variants of the fcc crystal structure, leading to its stability against crystallization.

  16. Investigation of the shear-mechanical and dielectric relaxation processes in two monoalcohols close to the glass transition

    NASA Astrophysics Data System (ADS)

    Jakobsen, Bo; Maggi, Claudio; Christensen, Tage; Dyre, Jeppe C.

    2008-11-01

    Shear-mechanical and dielectric measurements on the two monohydroxy (monoalcohol) molecular glass formers 2-ethyl-1-hexanol and 2-butanol close to the glass-transition temperature are presented. The shear-mechanical data are obtained using the piezoelectric shear-modulus gauge method covering frequencies from 1 mHz to 10 kHz. The shear-mechanical relaxation spectra show two processes, which follow the typical scenario of a structural (alpha) relaxation and an additional (Johari-Goldstein) beta relaxation. The dielectric relaxation spectra are dominated by a Debye-type peak with an additional non-Debye peak visible. This Debye-type relaxation is a common feature peculiar to monoalcohols. The time scale of the non-Debye dielectric relaxation process is shown to correspond to the mechanical structural (alpha) relaxation. Glass-transition temperatures and fragilities are reported based on the mechanical alpha relaxation and the dielectric Debye-type process, showing that the two glass-transition temperatures differ by approximately 10 K and that the fragility based on the Debye-type process is a factor of 2 smaller than the structural fragility. If a mechanical signature of the Debye-type relaxation exists in these liquids, its relaxation strength is at most 1% and 3% of the full relaxation strength of 2-butanol and 2-ethyl-1-hexanol, respectively. These findings support the notion that it is the non-Debye dielectric relaxation process that corresponds to the structural alpha relaxation in the liquid.

  17. Multidiffusion mechanisms for noble gases (He, Ne, Ar) in silicate glasses and melts in the transition temperature domain: Implications for glass polymerization

    NASA Astrophysics Data System (ADS)

    Amalberti, Julien; Burnard, Pete; Laporte, Didier; Tissandier, Laurent; Neuville, Daniel R.

    2016-01-01

    Noble gases are ideal probes to study the structure of silicate glasses and melts as the modifications of the silicate network induced by the incorporation of noble gases are negligible. In addition, there are systematic variations in noble gas atomic radii and several noble gas isotopes with which the influence of the network itself on diffusion may be investigated. Noble gases are therefore ideally suited to constrain the time scales of magma degassing and cooling. In order to document noble gas diffusion behavior in silicate glass, we measured the diffusivities of three noble gases (4He, 20Ne and 40Ar) and the isotopic diffusivities of two Ar isotopes (36Ar and 40Ar) in two synthetic basaltic glasses (G1 and G2; 20Ne and 36Ar were only measured in sample G1). These new diffusion results are used to re-interpret time scales of the acquisition of fractionated atmospheric noble gas signatures in pumices. The noble gas bearing glasses were synthesized by exposing the liquids to high noble gas partial pressures at high temperature and pressure (1750-1770 K and 1.2 GPa) in a piston-cylinder apparatus. Diffusivities were measured by step heating the glasses between 423 and 1198 K and measuring the fraction of gas released at each temperature step by noble gas mass spectrometry. In addition we measured the viscosity of G1 between 996 and 1072 K in order to determine the precise glass transition temperature and to estimate network relaxation time scales. The results indicate that, to a first order, that the smaller the size of the diffusing atom, the greater its diffusivity at a given temperature: D(He) > D(Ne) > D(Ar) at constant T. Significantly, the diffusivities of the noble gases in the glasses investigated do not display simple Arrhenian behavior: there are well-defined departures from Arrhenian behavior which occur at lower temperatures for He than for Ne or Ar. We propose that the non-Arrhenian behavior of noble gases can be explained by structural modifications

  18. Monte Carlo simulations on atropisomerism of thienotriazolodiazepines applicable to slow transition phenomena using potential energy surfaces by ab initio molecular orbital calculations.

    PubMed

    Morikami, Kenji; Itezono, Yoshiko; Nishimoto, Masahiro; Ohta, Masateru

    2014-01-01

    Compounds with a medium-sized flexible ring often show atropisomerism that is caused by the high-energy barriers between long-lived conformers that can be isolated and often have different biological properties to each other. In this study, the frequency of the transition between the two stable conformers, aS and aR, of thienotriazolodiazepine compounds with flexible 7-membered rings was estimated computationally by Monte Carlo (MC) simulations and validated experimentally by NMR experiments. To estimate the energy barriers for transitions as precisely as possible, the potential energy (PE) surfaces used in the MC simulations were calculated by molecular orbital (MO) methods. To accomplish the MC simulations with the MO-based PE surfaces in a practical central processing unit (CPU) time, the MO-based PE of each conformer was pre-calculated and stored before the MC simulations, and then only referred to during the MC simulations. The activation energies for transitions calculated by the MC simulations agreed well with the experimental ΔG determined by the NMR experiments. The analysis of the transition trajectories of the MC simulations revealed that the transition occurred not only through the transition states, but also through many different transition paths. Our computational methods gave us quantitative estimates of atropisomerism of the thienotriazolodiazepine compounds in a practical period of time, and the method could be applicable for other slow-dynamics phenomena that cannot be investigated by other atomistic simulations.

  19. Soft glassy colloidal arrays in an ionic liquid: colloidal glass transition, ionic transport, and structural color in relation to microstructure.

    PubMed

    Ueno, Kazuhide; Sano, Yuta; Inaba, Aya; Kondoh, Masashi; Watanabe, Masayoshi

    2010-10-21

    The colloidal glass transition, ionic transport, and optical properties of soft glassy colloidal arrays (SGCAs) that consist of poly(methyl methacrylate) (PMMA)-grafted silica nanoparticles (PMMA-g-NPs) and a room-temperature ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfonyl)amide ([C(2)mim][NTf(2)]), were investigated. At lower particle concentrations, PMMA-g-NPs were well-suspended in the IL without any aggregation or sedimentation, and the dilute suspensions showed liquid-like behavior. However, above a certain particle concentration, the suspensions became solidified and exhibited different structural colors depending on the particle concentrations. The liquid-solid transition of the SGCAs was essentially caused by colloidal glass transition. Due to the soft repulsive interaction between the particles, the effective volume fraction of the particle (ϕ(eff)) required for colloidal glass transition was higher than that of the hard sphere system and found to be approximately 0.70-0.74. The SGCA had sufficient ionic conductivity, which was greater than 10(-3) S cm(-1) at room temperature, even in the highly concentrated region. For ionic transport of the cation and the anion in the SGCAs, the decrease in diffusivity observed with the addition of the particles (D(g)/D(0)) was slightly greater for the [NTf(2)] anion than that of the [C(2)mim] cation, suggesting that the [NTf(2)] anion preferentially interacts with the PMMA chains. The SGCAs showed homogeneous, nonbrilliant, and angle-independent structural colors above the glass transition volume fraction. In addition, the color of the SGCAs changed from red to green to blue as the particle concentration increased. A linear relationship was found between the maximum wavelength of the reflection spectra and the center-to-center distance in the SGCAs.

  20. Optical transitions of Er3+/Yb3+ codoped TeO2-WO3-Bi2O3 glass.

    PubMed

    Shen, Xiang; Nie, Qiuhua; Xu, Tiefeng; Gao, Yuan

    2005-10-01

    Optical absorption and emission properties of the Er3+/Yb3+ codoped TeO2-WO3-Bi2O3 (TWB) glass has been investigated. The transition probabilities, excited state lifetimes, and the branching ratios have been predicted for Er3+ based on the Judd-Ofelt theory. The broad 1.5 microm fluorescence was observed under 970 nm excitation, and its full width at half maximum (FWHM) is 77 nm. The emission cross-section is calculated using the McCumber theory, and the peak emission cross-section is 1.03 x 10(-21) cm2 at 1.531 microm. This value is much larger than those of the silicate and phosphate glasses. Efficient green and weak red upconversion luminescence from Er3+ centers in the glass sample was observed at room temperature, and the upconversion excitation processes have been analyzed.

  1. Aggregation, Gelation and Glass Transition in Mixed Suspension of Polystyrene Microsphere and Poly(N-isopropyl-acrylamide) Microgel

    NASA Astrophysics Data System (ADS)

    Yuan, Guangcui; Zhao, Chuanzhuang; Han, Charles; Joint Laboratory Of Polymer Science; Materials, Iccas Team

    2013-03-01

    Poly(N-isopropylacrylamide) microgel is adsorbable to the polystyrene microsphere surface. The saturated adsorption concentration of microgel (Φ*MG) is in a linear relationship with the given concentration of microsphere (ΦMS) . Depending on the concentration of microgel (ΦMG) added into the suspension microspheres, the microgel can induce bridging (ΦMG < Φ*MG) , stabilizing (ΦMG = Φ*MG) and depletion (ΦMG > Φ*MG) effect. With combination of various ΦMS and ΦMG/ Φ*MG , different structures including stable solution, bridging and depletion cluster, bridging and depletion gel, attractive glass and repulsive glass, were obtained. The transitions between these states were investigated by rheology and microscopy. Two-step yielding behavior was observed in attractive glass, which was contributed from bridging bonds of microgels and caging effect of dense microspheres. This work is supported by the National Basic Research Program of China (973 Program, 2012CB821503)

  2. Glass transition in hard-core fluids and beyond, using an effective static structure in the mode coupling theory.

    PubMed

    Amokrane, S; Tchangnwa Nya, F; Ndjaka, J M

    2017-02-01

    The dynamical arrest in classical fluids is studied using a simple modification of the mode coupling theory (MCT) aimed at correcting its overestimation of the tendency to glass formation while preserving its overall structure. As in previous attempts, the modification is based on the idea of tempering the static pair correlations used as input. It is implemented in this work by computing the static structure at a different state point than the one used to solve the MCT equation for the intermediate scattering function, using the pure hard-sphere glass for calibration. The location of the glass transition predicted from this modification is found to agree with simulations data for a variety of systems --pure fluids and mixtures with either purely repulsive interaction potentials or ones with attractive contributions. Besides improving the predictions in the long-time limit, and so reducing the non-ergodicity domain, the same modification works as well for the time-dependent correlators.

  3. Thickness-dependent glass transition temperature and charge mobility in cross-linked polyfluorene thin films

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Qin, Hui; Zhang, Jinghui; Wang, Tao

    2016-11-01

    We report thickness-dependent glass transition temperature (Tg) and charge mobility in cross-linked thin films made of conjugated polymer poly(9,9-dioctylfluorene-co-N -(4-butylphenyl)diphenylamine) (TFB). Monotonic Tg depressions with reducing film thickness in thermally and UV cross-linked TFB thin films supported on Si-SiOx substrates are observed through ellipsometry measurements, suggesting that a surface mobile layer with enhanced chain dynamics still exists in cross-linked TFB thin films, even with a high cross-linking percentage. Data fitting using a three-layer model shows that the Tg in the interface, bulk and surface layer both increases with increasing cross-linking, while the thickness of the interface and surface layer increases and reduces, respectively. Cross-linking of TFB thin film generates traps that hinder charge transport and consequently reduce charge mobility. The charge mobility converges in thick (>140 nm) and thin (<40 nm) TFB films but shows strong thickness dependence in between, reducing from 4.0 ×10-4c m2/V s in a 180-nm film to 0.1 ×10-4c m2/V s in a 20-nm thin film.

  4. Generation and extinction of a crystal nucleus below the glass transition temperature

    NASA Astrophysics Data System (ADS)

    Okamoto, Norimaru; Oguni, Masaharu; Sagawa, Yuko

    1997-10-01

    The generation/extinction phenomenon of a crystal nucleus was studied for 4-dibenzylamino-2-methylbenzaldehyde-1, 1-diphenylhydrazone by using a differential scanning calorimeter at 120 - 450 K. Glass transition and fusing temperatures were found to be 0953-8984/9/43/005/img6 and 0953-8984/9/43/005/img7, respectively, at the heating rate of 0953-8984/9/43/005/img8. Bulk crystallization, observed in the range 390 - 400 K, was used to check whether the crystal nucleation did or did not proceed at low temperatures. The effective nucleus which had a radius larger than the critical value at 290 K was generated through annealing the sample for 1 h in the range 120 - 280 K or for 5 min at 170 - 270 K. The crystal nucleation process was thus found to proceed even at 120 K, lower by 186 K than the 0953-8984/9/43/005/img9. This is interpreted as indicating that the nucleation rate is controlled by the characteristic time of the 0953-8984/9/43/005/img10-molecular rearrangement process which could be much shorter than the annealing period. The crystal nucleus generated during the annealing at 220 K for 1 h was found to be extinguished by rapid heating to temperatures above 300 K. This is qualitatively understood from a classical theory.

  5. Structure-to-glass transition temperature relationships in high temperature stable condensation polyimides

    NASA Technical Reports Server (NTRS)

    Alston, W. B.; Gratz, R. F.

    1985-01-01

    The presence of a hexafluoroisopropylidene (6F) connecting group in aryl dianhydrides used to prepare aromatic condensation polyimides provides high glass transition temperature (T sub g) polyimides with excellent thermo-oxidative stability. The purpose of this study was to determine if a trifluorophenyl-ethylidene (3F) connecting group would have a similar effect on the T sub g of aromatic condensation polyimides. A new dianhydride containing the 3F connecting group was synthesized. This dianhydride and an aromatic diamine also containing the 3F connecting group were used together and in various combinations with known diamines or known dianhydrides, respectively, to prepare new 3F containing condensation polyimides. Known polyimides, including some with the 6F connecting linkage, were also prepared for comparison purposes. The new 3F containing polymers and the comparison polymers were prepared by condensation polymerization via the traditional amic-acid polymerization method in N,N-dimethylacetamide solvent. The solutions were characterized by determining their inherent viscosities and then were thermally converted into polyimide films under nitrogen atmosphere at 300 to 500 C, usually 350 C. The T sub g's of the films and resin discs were then determined by thermomechanical analysis and were correlated as a function of the final processing temperatures of the films and resin discs. The results showed that similarities existed in the T sub g's depending on the nature of the connecting linkage in the monomers used to prepare the condensation polyimides.

  6. Length Scales of Local Glass Transition Temperature Gradients Near Soft and Hard Polymer-Polymer Interfaces

    NASA Astrophysics Data System (ADS)

    Baglay, Roman; Roth, Connie

    Polymer-polymer interfaces are ubiquitous in polymer blends and block copolymers, while opening up another avenue for the study of interfacial perturbations to the local glass transition temperature Tg(z). We have previously reported the full local Tg(z) profile across a glassy-rubbery polymer interface between polystyrene (PS) and poly(n-butyl methacrylate) (PnBMA), an 80 K difference in bulk Tg [Baglay & Roth, J Chem Phys 2015, 143, 111101]. By using local fluorescence measurements, we revealed how the Tg(z) profile extends hundreds of nanometers away from the interface showing an asymmetric behavior penetrating deeper into the glassy PS side relative to the composition profile. Here, we extend these measurements to investigate how the local Tg profile in PS varies when in contact with a variety of immiscible polymers whose Tgs vary between +90 K and -80 K relative to the bulk Tg of PS, so-called hard vs. soft confinement. The data reveal that the onset of local Tg deviation from bulk in PS occurs at two distinct length scales, which depend on whether PS is the low Tg component (hard confinement) or the high Tg component (soft confinement). In addition, we explore the influence of finite system size on the range of dynamics by the introduction of periodic boundary conditions, as is commonly encountered in computer simulations or block copolymer systems.

  7. GLASS TRANSITION AND DEGREE OF CONVERSION OF A LIGHT-CURED ORTHODONTIC COMPOSITE

    PubMed Central

    Sostena, Michela M. D. S.; Nogueira, Renata A.; Grandini, Carlos R.; Moraes, João Carlos Silos

    2009-01-01

    Objective: This study evaluated the glass transition temperature (Tg) and degree of conversion (DC) of a light-cured (Fill Magic) versus a chemically cured (Concise) orthodontic composite. Material and Methods: Anelastic relaxation spectroscopy was used for the first time to determine the Tg of a dental composite, while the DC was evaluated by infrared spectroscopy. The light-cured composite specimens were irradiated with a commercial LED light-curing unit using different exposure times (40, 90 and 120 s). Results: Fill Magic presented lower Tg than Concise (35-84°C versus 135°C), but reached a higher DC. Conclusions: The results of this study suggest that Fill Magic has lower Tg than Concise due to its higher organic phase content, and that when this light-cured composite is used to bond orthodontic brackets, a minimum energy density of 7.8 J/cm2 is necessary to reach adequate conversion level and obtain satisfactory adhesion. PMID:20027428

  8. Glass transition dynamics and charge carrier mobility in conjugated polyfluorene thin films

    NASA Astrophysics Data System (ADS)

    Qin, Hui; Liu, Dan; Wang, Tao

    Conjugated polymers are commonly used in organic optoelectronic devices, e.g. organic photovoltaics (OPVs), light-emitting diodes (LEDs) and field effect transistors (FETs). In these devices, the conjugated polymers are prepared as thin films with thicknesses in the range of tens to hundreds of nanometers, and are interfaced with different function layers made from organic or inorganic materials. We have studied the glass transition temperature (Tg) of poly(9, 9-dioctylfluorene)-co-N-(1, 4-butylphenyl)diphenylamine) (TFB) thin films supported on different substrates, as well as their SCLC charge carrier mobility in photodiodes. Both Monotonic and non-monotonic Tg deviations are observed in TFB thin films supported on Si/SiOx and PEDOT:PSS, respectively. With low to moderate thermal crosslinking, the thickness dependent Tg deviation still exists, which diminishes in TFB films with a high crosslinking degree. The vertical charge carrier mobility of TFB thin films extracted from the SCLC measurements is found increase with film thickness, a value increases from 1 to 50 x 10-6 cm2 V-1 s-1 in the thickness range from 15 to 180 nm. Crosslinking was found to reduce the carrier mobility in TFB thin films. The Tg deviations are also discussed using the classic layered models in the literature. Our results provide a precise guide for the fabrication and design of high performance optoelectronic devices.

  9. Glass Transition of Polystyrene Thin Films on Silicon Wafer Measured by Dynamic Mechanical Analysis and Ellipsometry

    NASA Astrophysics Data System (ADS)

    Jackson, Catheryn; Lan, Tian; Caporale, Stefan; Torkelson, John

    Measuring the glass transition temperature, Tg, of polymer films in the thickness range of 20-500 nm is non-routine but commercially important for polymer films used in applications such as membranes and electronic circuit boards. Various specialized methods have been used or developed to determine Tg in thin films, including thermal ellipsometry and many others. Differential scanning calorimetry (DSC) is a more conventional method that has been used to measure Tg, but since the thin films must be scraped from the wafer, consolidation and annealing can occur in the pan and may negate effects due to film thickness. Here we report results for polystyrene (PS) spin coated on silicon wafers in the range of 20-500 nm using a benchtop dynamic mechanical analyzer (DMA) in the 3-point bending mode. For the DMA, the peak tan δ temperature is related to the polymer Tg and effects due to confinement as a function of film thickness are compared to literature values. We use thermal ellipsometry as a control method to measure film thickness and Tg in parallel. Low level additives present in commercial PS were observed to strongly affect the results for thin films and are described.

  10. Low-Cost, High Glass-Transition Temperature, Thermosetting Polyimide Developed

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.

    1999-01-01

    PMR-15 polyimide, developed in the mid-1970's at the NASA Lewis Research Center, is recognized as a state-of-the-art high-temperature resin for composite applications in the temperature range of 500 to 550 F (260 to 288 C). PMR-15 offers easy processing and good property retention at a reasonable cost. For these reasons, it is widely used in both military and commercial aircraft engine components. Traditionally, polyimide composites have been designed for long-term use at 500 to 600 F over thousands of hours. However, new applications in reusable launch vehicles (RLV's) require lightweight materials that can perform for short times (tens of hours) at temperatures between 800 and 1000 F (425 and 538 C). Current efforts at Lewis are focused on raising the use temperature of polyimide composites by increasing the glass-transition temperature of the matrix resins. Achieving this dramatic increase in the upper use temperature without sacrificing polymer and composite processability is a major technical challenge.

  11. Tuning Glass Transition in Polymer Nanocomposites with Functionalized Cellulose Nanocrystals through Nanoconfinement.

    PubMed

    Qin, Xin; Xia, Wenjie; Sinko, Robert; Keten, Sinan

    2015-10-14

    Cellulose nanocrystals (CNCs) exhibit impressive interfacial and mechanical properties that make them promising candidates to be used as fillers within nanocomposites. While glass-transition temperature (Tg) is a common metric for describing thermomechanical properties, its prediction is extremely difficult as it depends on filler surface chemistry, volume fraction, and size. Here, taking CNC-reinforced poly(methyl-methacrylate) (PMMA) nanocomposites as a relevant model system, we present a multiscale analysis that combines atomistic molecular dynamics (MD) surface energy calculations with coarse-grained (CG) simulations of relaxation dynamics near filler-polymer interfaces to predict composite properties. We discover that increasing the volume fraction of CNCs results in nanoconfinement effects that lead to an appreciation of the composite Tg provided that strong interfacial interactions are achieved, as in the case of TEMPO-mediated surface modifications that promote hydrogen bonding. The upper and lower bounds of shifts in Tg are predicted by fully accounting for nanoconfinement and interfacial properties, providing new insight into tuning these aspects in nanocomposite design. Our multiscale, materials-by-design framework is validated by recent experiments and breaks new ground in predicting, without any empirical parameters, key structure-property relationships for nanocomposites.

  12. Linking high-pressure structure and density of albite liquid near the glass transition

    NASA Astrophysics Data System (ADS)

    Gaudio, Sarah J.; Lesher, Charles E.; Maekawa, Hideki; Sen, Sabyasachi

    2015-05-01

    The pressure-induced densification of NaAlSi3O8 liquid is determined following annealing immediately above the glass transition and upon quenching from superliquidus temperatures. High-field 27Al magic-angle-spinning NMR spectroscopy is used to investigate the corresponding changes in Al coordination environment that accompany the densification. We show that samples synthesized by quenching from superliquidus temperatures record lower fictive pressures (Pf) than annealed samples at the same nominal load and have lower recovered densities and average Al coordination number. Accounting for differences in Pf brings melt-quench and annealed samples into excellent agreement. The proportion of [5]Al increases from ∼3% to 29% and [6]Al from 0% to 8% between 1.8 and 7.2 GPa. The production of high-coordinated Al ([5]Al + [6]Al) with pressure is most dramatic above 3 GPa. Changes in network topology and structural disorder as revealed by the high-field 27Al NMR spectra provide new insights into the structural mechanisms of densification of the albite liquid. We posit that it is an overall weakening of the network structure on compression that is largely responsible for the anomalous pressure dependence of the transport properties observed for this liquid below ∼5 GPa.

  13. Critical exponents of the superfluid-Bose-glass transition in three dimensions.

    PubMed

    Yao, Zhiyuan; da Costa, Karine P C; Kiselev, Mikhail; Prokof'ev, Nikolay

    2014-06-06

    Recent experimental and numerical studies of the critical-temperature exponent ϕ for the superfluid-Bose-glass universality in three-dimensional systems report strong violations of the key quantum critical relation, ϕ=νz, where z and ν are the dynamic and correlation-length exponents, respectively; these studies question the conventional scaling laws for this quantum critical point. Using Monte Carlo simulations of the disordered Bose-Hubbard model, we demonstrate that previous work on the superfluid-to-normal-fluid transition-temperature dependence on the chemical potential (or the magnetic field, in spin systems), T_{c}∝(μ-μ_{c})^{ϕ}, was misinterpreting transient behavior on approach to the fluctuation region with the genuine critical law. When the model parameters are modified to have a broad quantum critical region, simulations of both quantum and classical models reveal that the ϕ=νz law [with ϕ=2.7(2), z=3, and ν=0.88(5)] holds true, resolving the ϕ-exponent "crisis."

  14. A novel powder sample holder for the determination of glass transition temperatures by DMA.

    PubMed

    Mahlin, Denny; Wood, John; Hawkins, Nicholas; Mahey, Jas; Royall, Paul G

    2009-04-17

    The use of a new sample holder for dynamic mechanical analysis (DMA) as a means to characterise the Tg of powdered hydroxypropyl methyl cellulose (HPMC) has been investigated. A sample holder was constructed consisting of a rectangular stainless steel container and a lid engineered to fit exactly within the walls of the container when clamped within a TA instruments Q800 DMA in dual cantilever configuration. Physical mixtures of HPMC (E4M) and aluminium oxide powders were placed in the holder and subjected to oscillating strains (1 Hz, 10 Hz and 100 Hz) whilst heated at 3 degrees C/min. The storage and loss modulus signals showed a large reduction in the mechanical strength above 150 degrees C which was attributed to a glass transition. Optimal experimental parameters were determined using a design of experiment procedure and by analysing the frequency dependence of Tg in Arrhenius plots. The parameters were a clamping pressure of 62 kPa, a mass ratio of 0.2 HPMC in aluminium oxide, and a loading mass of either 120 mg or 180 mg. At 1 Hz, a Tg of 177+/-1.2 degrees C (n=6) for powdered HPMC was obtained. In conclusion, the new powder holder was capable of measuring the Tg of pharmaceutical powders and a simple optimization protocol was established, useful in further applications of the DMA powder holder.

  15. Ionic liquids and their bases: Striking differences in the dynamic heterogeneity near the glass transition

    PubMed Central

    Grzybowska, K.; Grzybowski, A.; Wojnarowska, Z.; Knapik, J.; Paluch, M.

    2015-01-01

    Ionic liquids (ILs) constitute an active field of research due to their important applications. A challenge for these investigations is to explore properties of ILs near the glass transition temperature Tg, which still require our better understanding. To shed a new light on the issues, we measured ILs and their base counterparts using the temperature modulated calorimetry. We performed a comparative analysis of the dynamic heterogeneity at Tg for bases and their salts with a simple monoatomic anion (Cl–). Each pair of ionic and non-ionic liquids is characterized by nearly the same chemical structure but their intermolecular interactions are completely different. We found that the size of the dynamic heterogeneity of ILs near Tg is considerably smaller than that established for their dipolar counterparts. Further results obtained for several other ILs near Tg additionally strengthen the conclusion about the relatively small size of the dynamic heterogeneity of molecular systems dominated by electrostatic interactions. Our finding opens up new perspectives on designing different material properties depending on intermolecular interaction types. PMID:26582136

  16. Morphology and Mechanical Properties of Poly(Ethylene Terephthalate) Stretched Above the Glass Transition Temperature

    NASA Astrophysics Data System (ADS)

    Todorov, Lyudmil V.; Viana, Júlio C.

    2007-04-01

    This study presents an experimental investigation into the development of the strain-induced morphology of amorphous poly(ethylene terephthalate), PET, stretched above its glass transition temperature. The present work aims at: i) defining the most important processing parameters that govern the structure formation and its significance; ii) characterising the mechanical properties of uniaxial stretched glassy PET, as an approach for industrial stretch-blow moulding techniques; iii) establishing structure-properties relationships. Compression moulded amorphous PET was uniaxial stretched with variations of following stretching parameters: stretching temperature, Tst, stretching velocity, Vst, and stretching ratio, λst, that were varied in two levels according to a L8 Taguchi orthogonal array. The developed morphologies were observed by differential scanning calorimetry (DSC), birefringence and Wide-Angle X-ray Scattering (WAXS). The mechanical behaviour was assessed in tensile testing at 15 mm.min-1 and room temperature. The results were treated by a statistical ANOVA tool. A strong thermal and mechanical coupling is evidenced in the stretching process, significantly influencing the morphology development. The main stretching parameters controlling microstructure formation were defined. The relationships between the microstructure and mechanical properties were established too.

  17. Reduced Glass Transition Temperatures in Thin Polymer Films: Surface Effect or Artifact?

    NASA Astrophysics Data System (ADS)

    Bäumchen, O.; McGraw, J. D.; Forrest, J. A.; Dalnoki-Veress, K.

    2012-08-01

    We have examined the direct effect of manipulating the number of free surfaces on the measured glass transition temperature Tg of thin polystyrene films. Thin films in the range 35nm

  18. Transition from Short-Range to Long-Range Order in Lead-Bismuthate Oxide Glass Matrices

    NASA Astrophysics Data System (ADS)

    Simon, V.; Pop, R.; Simon, S.

    Glass transition and nucleation temperatures as well as densities and molar volumes of xBi2O3.yPbO (0.5<=x/y<=4) are reported. The glass transition temperature and molar volume are further analysed in terms of structural data. The obtained results indicate the occurrence of structural changes from short range to long range order induced by the heat treatment applied at 550°C, as per DTA results. These changes depend on the x/y ratio between Bi2O3 and PbO content. The compositional variation of the molar volume of untreated and heat-treated samples are evidences that both Bi2O3 and PbO play the role of network formers.

  19. Characterization of a sucrose/starch matrix through positron annihilation lifetime spectroscopy: unravelling the decomposition and glass transition processes.

    PubMed

    Sharma, Sandeep Kumar; Roudaut, Gaëlle; Fabing, Isabelle; Duplâtre, Gilles

    2010-11-14

    The triplet state of positronium, o-Ps, is used as a probe to characterize a starch-20% w/w sucrose matrix as a function of temperature (T). A two-step decomposition (of sucrose, and then starch) starts at 440 K as shown by a decrease in the o-Ps intensity (I(3)) and lifetime (τ(3)), the latter also disclosing the occurrence of a glass transition. Upon sucrose decomposition, the matrix acquires properties (reduced size and density of nanoholes) that are different from those of pure starch. A model is successfully established, describing the variations of both I(3) and τ(3) with T and yields a glass transition temperature, T(g) = (446 ± 2) K, in spite of the concomitant sucrose decomposition. Unexpectedly, the starch volume fraction (as probed through thermal gravimetry) decreases with T at a higher rate than the free volume fraction (as probed through PALS).

  20. Glass transition dynamics of anti-inflammatory ketoprofen studied by Raman scattering and terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Shibata, Tomohiko; Igawa, Hikaru; Kim, Tae Hyun; Mori, Tatsuya; Kojima, Seiji

    2014-03-01

    A liquid-glass transition and a crystalline state of pharmaceutical racemic ketoprofen were studied by Raman scattering and the broadband terahertz time-domain spectroscopy (THz-TDS) in the frequency range from 9 to 260 cm-1. The low-frequency Raman scattering spectra clearly shows the remarkable change related to a liquid-glass transition at about Tg = 267 K. After melt-quenching at liquid nitrogen temperature, a boson peak appears at about 16.5 cm-1 near and below Tg and the intensity of quasi-elastic scattering related to structural relaxation increases markedly on heating. The crystalline racemic ketoprofen of "conformer A" shows the noncoincidence effect of mode frequencies below 200 cm-1 between Raman scattering spectra and dielectric spectra observed by THz-TDS.

  1. Fragility and glass transition for binary mixtures of 1,2-propanediol and LiBF4

    NASA Astrophysics Data System (ADS)

    Terashima, Y.; Mori, M.; Sugimoto, N.; Takeda, K.

    2014-04-01

    The fragility and glass transition for binary mixtures of 1,2-propanediol and LiBF4 were investigated by measuring the heating rate dependence of glass transition temperature (Tg) using differential scanning calorimetry. With increasing LiBF4 mole fraction, x, up to 0.25, fragility, m, increased rapidly from 53 to 85, and then remained approximately unchanged for x > 0.25. The concentration dependences of Tg and heat capacity jump at Tg also showed anomalies around x = 0.25. We suggest this mixture transformed from a moderate to quite fragile liquid at x = 0.25 because of a structural change from a hydrogen-bonding- to ionic-interaction-dominant system.

  2. Effect of 3d-transition metal doping on the shielding behavior of barium borate glasses: a spectroscopic study.

    PubMed

    ElBatal, H A; Abdelghany, A M; Ghoneim, N A; ElBatal, F H

    2014-12-10

    UV-visible and FT infrared spectra were measured for prepared samples before and after gamma irradiation. Base undoped barium borate glass of the basic composition (BaO 40%-B2O3 60mol.%) reveals strong charge transfer UV absorption bands which are related to unavoidable trace iron impurities (Fe(3+)) within the chemical raw materials. 3d transition metal (TM)-doped glasses exhibit extra characteristic absorption bands due to each TM in its specific valence or coordinate state. The optical spectra show that TM ions favor generally the presence in the high valence or tetrahedral coordination state in barium borate host glass. Infrared absorption bands of all prepared glasses reveal the appearance of both triangular BO3 units and tetrahedral BO4 units within their characteristic vibrational modes and the TM-ions cause minor effects because of the low doping level introduced (0.2%). Gamma irradiation of the undoped barium borate glass increases the intensity of the UV absorption together with the generation of an induced broad visible band at about 580nm. These changes are correlated with suggested photochemical reactions of trace iron impurities together with the generation of positive hole center (BHC or OHC) within the visible region through generated electrons and positive holes during the irradiation process.

  3. Effect of In-situ Cure on Measurement of Glass Transition Temperatures in High-temperature Thermosetting Polymers

    DTIC Science & Technology

    2015-01-01

    presented at Proceedings of SAMPE, 16 May 2015. PA#15140 14. ABSTRACT Using the dicyanate ester of bisphenol E (also known as Primaset LECy), we have...93524 ABSTRACT Using the dicyanate ester of bisphenol E (also known as Primaset LECy), we have illustrated the difficulties inherent in measurement of...high-temperature thermosetting polymers, utilizing cyanate ester resins as examples throughout. In common practice, the glass transition

  4. A review of the slow relaxation processes in the glass-rubber transition region of amorphous polymers

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; He, Xianru; Huang, Guangsu

    2015-09-01

    This article is a review that introduces several articles about slow relaxation processes, also known as slower segmental dynamics. According to the literature, the coupling effect and free volume holes are two important elements for slower micro-dynamics. In addition, the slower processes of many-body systems (blend and diluted systems) are summarised. A good numerical method for detecting multiple modes in the glass-rubber transition region is introduced.

  5. Paranormal phenomena

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    1996-08-01

    Critical analysis is given of some paranormal phenomena events (UFO, healers, psychokinesis (telekinesis))reported in Moldova. It is argued that correct analysis of paranormal phenomena should be made in the framework of electromagnetism.

  6. Signatures of many-body localisation in a system without disorder and the relation to a glass transition

    NASA Astrophysics Data System (ADS)

    Hickey, James M.; Genway, Sam; Garrahan, Juan P.

    2016-05-01

    We study a quantum spin system—adapted from a facilitated spin model for classical glasses—with local bilinear interactions and without quenched disorder which seems to display characteristic signatures of a many-body localisation (MBL) transition. From direct diagonalisation of small systems, we find a change in certain dynamical and spectral properties at a critical value of a coupling, from those characteristic of a thermalising phase to those characteristic of a MBL phase. The system we consider is known to have a quantum phase transition in its ground-state in the limit of large size, related to a first-order active-to-inactive phase transition in the stochastic trajectories of an associated classical model of glasses. Our results here suggest that this first-order transition in the low-lying spectrum may influence the rest of the spectrum of the system in the large size limit. These findings may help understand the connection between MBL and structural glass transitions.

  7. 14N NMR study of the glass transition in (NH4I)0.44(KI)0.56

    NASA Astrophysics Data System (ADS)

    Blinc, R.; Apih, T.; Dolinšek, J.; Šprogar, M.; Zalar, B.

    1995-12-01

    The orientational glass transition in a (NH4I)0.44(KI)0.56 single crystal has been studied by two-dimensional quadrupole perturbed 14N NMR spectroscopy and 14N spin-lattice relaxation time T1 measurements. A 14N T1 minimum was found at 9 K. The 14N inhomogeneous linewidth starts to increase strongly with decreasing T already below 50 K, i.e., on the high-temperature side of the T1 minimum, demonstrating a breaking of the local cubic symmetry and the onset of the orientational glass transition in the fast motion regime. The 14N magnetization recovery also changes from monoexponential to stretched-exponential below 50 K due to the development of spatial inhomogeneities in the sample as a result of a local glassy freeze-out. Both effects can be described by the presence of a local polarization distribution function W(p) with a nonzero second moment M2 below 50 K. The temperature dependence of the 14N M2, which is proportional to the Edwards-Anderson order parameter, shows that the glass transition is of the random-bond-random-field type. The random bond contribution is about three times stronger than the random-field one.

  8. Effect of water on glass transition in starch/sucrose matrices investigated through positron annihilation lifetime spectroscopy: a new approach.

    PubMed

    Sharma, Sandeep Kumar; Zaydouri, Abdelhadi; Roudaut, Gaëlle; Duplâtre, Gilles

    2011-11-21

    Glass transition is studied through positron annihilation lifetime spectroscopy (PALS) in maize starch matrices containing 10 (batch STS10) and 20 (STS20) w/w% sucrose, as a function of temperature (T) and water content (c(w)). To circumvent important losses of water upon heating while recording the PALS spectra, a new method is developed: instead of a series of measurements of τ(3), the triplet positronium lifetime, at different T, the latter is kept constant and the series relates to c(w), which is left to decrease at a constant rate. Similarly to the changes in τ(3) with T, the τ(3)vs. c(w) plots obtained show a smooth linear increase until a break, denoting the occurrence of glass transition, followed by a sharper increase. The gradients appear to be independent of T. The variation of the glass transition temperature, T(g), with c(w) shows a broad sigmoid with a large linear central part; as expected from the plasticising effect of sucrose, the plot for STS20 lies some 10 K below that for STS10. Results from differential scanning calorimetry for STS20 yield T(g) values some 15 K higher than from PALS. On the basis of the general shape of the τ(3)vs. T variations, a general equation is set for τ(3)(T, c(w)), leading one to expect a similar shape for τ(3)vs. c(w), as experimentally observed.

  9. Effects of heating conditions on the glass transition parameters of amorphous sucrose produced by melt-quenching.

    PubMed

    Lee, Joo Won; Thomas, Leonard C; Schmidt, Shelly J

    2011-04-13

    This research investigates the effects of heating conditions used to produce amorphous sucrose on its glass transition (T(g)) parameters, because the loss of crystalline structure in sucrose is caused by the kinetic process of thermal decomposition. Amorphous sucrose samples were prepared by heating at three different scan rates (1, 10, and 25 °C/min) using a standard differential scanning calorimetry (SDSC) method and by holding at three different isothermal temperatures (120, 132, and 138 °C) using a quasi-isothermal modulated DSC (MDSC) method. In general, the quasi-isothermal MDSC method (lower temperatures for longer times) exhibited lower T(g) values, larger ΔC(p) values, and broader glass transition ranges (i.e., T(g end) minus T(g onset)) than the SDSC method (higher temperatures for shorter times), except at a heating rate of 1 °C/min, which exhibited the lowest T(g) values, the highest ΔC(p), and the broadest glass transition range. This research showed that, depending on the heating conditions employed, a different amount and variety of sucrose thermal decomposition components may be formed, giving rise to wide variation in the amorphous sucrose T(g) values. Thus, the variation observed in the literature T(g) values for amorphous sucrose produced by thermal methods is, in part, due to differences in the heating conditions employed.

  10. Effect of polymer-nanoparticle interactions on the glass transition dynamics and the conductivity mechanism in polyurethane titanium dioxide nanocomposites

    SciTech Connect

    Polyzos, Georgios; Tuncer, Enis; Agapov, Alexander L; Stevens, Derrick; Sokolov, Alexei P; Kidder, Michelle; Jacobs,; Koerner, Hilmar; Vaia, Richard; More, Karren Leslie; Sauers, Isidor

    2012-01-01

    We report on the glass transition dynamics and the conductivity properties of a nanodielectric system composed of pre-synthesized TiO{sub 2} nanoparticles embedded in thermoplastic polyurethane. Increase of TiO{sub 2} loading results in enhanced segmental mobility of the composites and less steep temperature dependence, i.e., lower fragility index. The decrease in the fragility index and glass transition temperature is discussed based on the FTIR results. We observe different behavior of conductivity for temperatures above and below the glass transition temperature. At high temperatures the composites exhibit conductivity values more than 2 orders of magnitude higher than those in the pristine matrix. At the same time, at sub-Tg temperatures composites are characterized by superior electrical insulation properties compared to pristine matrix material. Such drastic temperature dependence of the conductivity/insulating ability of the flexible and light-weight, low-Tg composite material can be utilized in various applications including sensing and temperature switching materials.

  11. Coupling of gelation and glass transition in a biphasic colloidal mixture--from gel-to-defective gel-toglass

    NASA Astrophysics Data System (ADS)

    Cheng, He; Jia, Di; Han, Charles

    The state transition from gel to glass is studied in a biphasic mixture of polystyrene core/poly (N-isopropylacrylamide) shell (CS) microgels and sulfonated polystyrene (PSS) particles. At 35 °C, the interaction between CS is due to short-range Van der Waals attraction while that between PSS is from long-range electrostatic repulsion. During variation of the relative ratio of the two species at a fixed apparent total volume fraction, the mixture exhibits a gel-to-defective gel-to-glass transition. When small amounts of PSS are introduced into the CS gel network, some of them are kinetically trapped, causing a change in its fractal structure, and act as defects to weaken the macroscopic gel strength. An increase of PSS content in the mixture promotes the switch from gel to defective gel, e . g . , the typical two-step yielding gel merges into one-step yielding. This phenomenon is an indication that inter-cluster bond breakage coincides with intra-cluster bond fracture. As the relative volume fraction of PSS exceeds a critical threshold, the gel network can no longer be formed; hence, the mixture exhibits characteristics of glass. A state diagram of the biphasic mixture is constructed, and the landscape of the different transitions will be described in future studies The financial support from the National Basic Research Program of China (973 Program, 2012CB821500) is gratefully acknowledged.

  12. Impact of Confinement and Interfaces on Glass Transition Temperature, Fragility and Small Molecule Diffusivity in Polymers

    NASA Astrophysics Data System (ADS)

    Lan, Tian

    Substantial deviations from bulk responses have been observed with different physical properties in nanoconfined polymers, including glass transition temperature (Tg), physical aging rate, modulus, etc. This thesis explores several new aspects of confinement effects, which are important for fundamental understanding of how confinement changes thermophysical properties in both free polymer chains and densely grafted brushes. Some discoveries are also important for technological applications such as photolithography. To optimize resolution, methacrylate polymers used as photoresists are often low molecular weight (MW). Using spectroscopic ellipsometry and fluorescence, I studied how Tg is affected by confinement in silica-supported films of low and high MW poly(1-ethylcyclopentyl methacrylate) (PECPMA). With decreasing nanoscale thickness, Tg is nearly invariant for high MW PECPMA but decreases for low MW PECPMA (M n = ˜ 4 kg/mol). This MW dependence was observed in films of poly(methyl methacrylate) but not polystyrene (PS). Polymer brushes are applied in lithography and in biomedical and microfluidic devices. I prepared dense, nanoscale PS brushes on silica wafers via a "grafting from" technique. By labeling different portions of dense PS brushes with a fluorescent dye, a 50 °C difference was found between local Tg near the free surface and Tg close to the silica substrate; however, the overall average Tg in dense brushes is nearly independent of thickness, substantially different from freely deposited PS films. A novel ellipsometry-based method was introduced to study the effect of nanoscale confinement on polymer fragility, which relates to chain packing efficiency near the glass transition. The fragility of neat PS films decreased substantially with confinement, but this effect was not observed in densely grafted PS brushes. A one-to-one correspondence of the strength of the Tg-confinement effect and the strength of the fragility-confinement effect was

  13. Computational modelling of large deformations in layered-silicate/PET nanocomposites near the glass transition

    NASA Astrophysics Data System (ADS)

    Figiel, Łukasz; Dunne, Fionn P. E.; Buckley, C. Paul

    2010-01-01

    Layered-silicate nanoparticles offer a cost-effective reinforcement for thermoplastics. Computational modelling has been employed to study large deformations in layered-silicate/poly(ethylene terephthalate) (PET) nanocomposites near the glass transition, as would be experienced during industrial forming processes such as thermoforming or injection stretch blow moulding. Non-linear numerical modelling was applied, to predict the macroscopic large deformation behaviour, with morphology evolution and deformation occurring at the microscopic level, using the representative volume element (RVE) approach. A physically based elasto-viscoplastic constitutive model, describing the behaviour of the PET matrix within the RVE, was numerically implemented into a finite element solver (ABAQUS) using an UMAT subroutine. The implementation was designed to be robust, for accommodating large rotations and stretches of the matrix local to, and between, the nanoparticles. The nanocomposite morphology was reconstructed at the RVE level using a Monte-Carlo-based algorithm that placed straight, high-aspect ratio particles according to the specified orientation and volume fraction, with the assumption of periodicity. Computational experiments using this methodology enabled prediction of the strain-stiffening behaviour of the nanocomposite, observed experimentally, as functions of strain, strain rate, temperature and particle volume fraction. These results revealed the probable origins of the enhanced strain stiffening observed: (a) evolution of the morphology (through particle re-orientation) and (b) early onset of stress-induced pre-crystallization (and hence lock-up of viscous flow), triggered by the presence of particles. The computational model enabled prediction of the effects of process parameters (strain rate, temperature) on evolution of the morphology, and hence on the end-use properties.

  14. Glass transition and dynamics of poly(vinyl pyrrolidone)-water mixture

    NASA Astrophysics Data System (ADS)

    Miyara, M.; Sakuramatsu, Y.; Sasaki, K.; Kita, R.; Shinyashiki, N.; Yagihara, S.

    2013-02-01

    Broadband dielectric measurements of poly(vinyl pyrrolidone) (PVP)-water mixture were performed in a frequency range of 10 mHz - 50 GHz and at temperatures between 118 K and 318 K. The relaxation processes caused by the reorientational motion of water molecules (h-process) and the local chain motion of PVP (m-process) were observed without crystallization of water. The relaxation time of the m-process, τm, obeys the Vogel-Fulcher law, and the glass transition temperature, Tg, of PVP in the mixture, at which τm being 100 s is 237 K. The relaxation time of the h-process, τh, obeys the Vogel-Fulcher law above Tg = 237 K, and it turns to obey the Arrhenius law below Tg. The relaxation strength of the m-process, Δɛm, increases with decreasing temperature. The relaxation strength of the h-process, Δɛh, increases with decreasing temperature above the crossover temperature, TC (TC = 272 K), and it turns to be almost constant below TC. The temperature dependences of τm and τh are the same as those of the α- and the ν-processes observed in various kinds of water mixtures. In contrast, the temperature dependence of Δɛh is different from that observed in various kinds of water mixtures. The characteristic property of Δɛh could be related to the highest Tg of neat PVP in those of the solutes of other water mixtures.

  15. Optical stability of 3d transition metal ions doped-cadmium borate glasses towards γ-rays interaction

    NASA Astrophysics Data System (ADS)

    Marzouk, M.; ElBatal, H.; Eisa, W.

    2016-07-01

    This work reports the preparation of glasses of binary cadmium borate with the basic composition (mol% 45 CdO 55 B2O3) and samples of the same composition containing 0.2 wt% dopants of 3d transition metal (TM) oxides (TiO2 → CuO). The glasses have been investigated by combined optical and Fourier Transform infrared spectroscopic measurements before and after being subjected to gamma irradiation with a dose of 8 Mrad (8 × 104 Gy). Optical absorption of the undoped glass before irradiation reveals strong charge transfer UV absorption which is related to the presence of unavoidable contaminated trace iron impurities (mainly Fe3+) within the raw materials used for the preparation of the base cadmium borate glass. The optical spectra of the 3d TM ions exhibit characteristic bands which are related the stable oxidation state of the 3d TM ions within the host glass. Gamma irradiation produces some limited variations in the optical spectra due to the stability of the host glass containing high percent 45 mol% of heavy metal oxide (CdO) which causes some shielding effects towards irradiation. From the absorption edge data, the values of the optical band gap Eopt and Urbach energy (∆E) have been calculated. The values of the optical energy gap are found to be dependent on the glass composition. Infrared absorption spectral measurements reveal characteristic absorption bands due to both triangular and tetrahedral borate groups with the BO3 units vibrations more intense than BO4 units due to the known limit value for the change of BO3 to BO4 groups. The introduction of 3d TM ions with the doping level (0.2 wt%) causes no changes in the number or position of the IR bands because of the presence of TM ions in modifying sites in the glass network. It is observed that gamma irradiation causes some limited changes in the FT-IR spectral bands due to the stability of the host heavy cadmium borate glass.

  16. Spin-glass phase transition and behavior of nonlinear susceptibility in the Sherrington-Kirkpatrick model with random fields

    NASA Astrophysics Data System (ADS)

    Morais, C. V.; Zimmer, F. M.; Lazo, M. J.; Magalhães, S. G.; Nobre, F. D.

    2016-06-01

    The behavior of the nonlinear susceptibility χ3 and its relation to the spin-glass transition temperature Tf in the presence of random fields are investigated. To accomplish this task, the Sherrington-Kirkpatrick model is studied through the replica formalism, within a one-step replica-symmetry-breaking procedure. In addition, the dependence of the Almeida-Thouless eigenvalue λAT (replicon) on the random fields is analyzed. Particularly, in the absence of random fields, the temperature Tf can be traced by a divergence in the spin-glass susceptibility χSG, which presents a term inversely proportional to the replicon λAT. As a result of a relation between χSG and χ3, the latter also presents a divergence at Tf, which comes as a direct consequence of λAT=0 at Tf. However, our results show that, in the presence of random fields, χ3 presents a rounded maximum at a temperature T* which does not coincide with the spin-glass transition temperature Tf (i.e., T*>Tf for a given applied random field). Thus, the maximum value of χ3 at T* reflects the effects of the random fields in the paramagnetic phase instead of the nontrivial ergodicity breaking associated with the spin-glass phase transition. It is also shown that χ3 still maintains a dependence on the replicon λAT, although in a more complicated way as compared with the case without random fields. These results are discussed in view of recent observations in the LiHoxY1 -xF4 compound.

  17. DEVELOPMENT OF GLASS COMPOSITIONS TO IMMOBILIZE ALKALI, ALKALINE EARTH, LANTHANIDE AND TRANSITION METAL FISSION PRODUCTS FROM NUCLEAR FUEL REPROCESSING

    SciTech Connect

    Marra, J.; Billings, A.

    2009-06-24

    The Advanced Fuel Cycle Initiative (AFCI) waste management strategy revolves around specific treatment of individual or groups of separated waste streams. A goal for the separations processes is to efficiently manage the waste to be dispositioned as high level radioactive waste. The Advanced Fuel Cycle Initiative (AFCI) baseline technology for immobilization of the lanthanide (Ln) and transition metal fission product (TM) wastes is vitrification into a borosilicate glass. A current interest is to evaluate the feasibility of vitrifying combined waste streams to most cost effectively immobilize the wastes resulting from aqueous fuel reprocessing. Studies showed that high waste loadings are achievable for the Ln only (Option 1) stream. Waste loadings in excess of 60 wt % (on a calcined oxide basis) were demonstrated via a lanthanide borosilicate (LaBS) glass. The resulting glasses had excellent relative durability as determined by the Product Consistency Test (PCT). For a combined Ln and TM waste stream glass (Option 2), noble metal solubility was found to limit waste loading. However, the measured PCT normalized elemental releases for this glass were at least an order of magnitude below that of Environmental Assessment (EA) glass. Current efforts to evaluate the feasibility of vitrifying combined Ln, TM, alkali (Cs is the primary radionuclide of concern) and alkaline earth (Sr is the primary radionuclide of concern) wastes (Option 3) have shown that these approaches are feasible. However, waste loading limitations with respect to heat load (Cs/Sr loading), molybdenum solubility and/or noble metal solubility will likely be realized and must be considered in determining the cost effectiveness of these approaches.

  18. Strongly correlated electron physics: From Kondo and spin glasses to heavy fermions, hidden order and quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Bennett, Edmund; Mydosh, J. A.

    2012-09-01

    We summarize the development of strongly correlated electron physics (SCEP) stimu-lated from the 1930's when a strange upturn was found in the electrical resistivity at low temper-atures. It was only in 1965 that this effect was explained as a many-body, spin-flip, scattering of electrons from a magnetic impurity, i.e., the Kondo effect. This marked the beginning of SCEP. When the concentration of these impurities is increased so that they can randomly interact we have the spin glasses and their unconventional, yet classical phase transition. Spin glass physics formed the background know-how for the combination of two ferromagnetic layers separated by a non-magnetic spacer which generated the the giant magnetic resistance and it many applications in com-puter hardware. By fabricating a lattice of the magnetic species, viz., an intermetallic compound based upon certain rare-earth and actinide elements, we then create a heavy Fermi liquid that can support most unusual ground-state behavior, e.g., unconventional superconductivity. This leads to the mysterious and still unexplained "hidden order" phase transition of URu2Si2. Finally, since the heavy fermions commonly exhibit zero temperature phase transitions, aka, quantum phase transitions when tuned with pressure, magnetic field or doping, we are at the summit of today's SCEP - the prime topic of 2012 condensed matter physics.

  19. Chaotic state to self-organized critical state transition of serrated flow dynamics during brittle-to-ductile transition in metallic glass

    SciTech Connect

    Wang, C.; Wang, W. H.; Bai, H. Y.; Sun, B. A.

    2016-02-07

    We study serrated flow dynamics during brittle-to-ductile transition induced by tuning the sample aspect ratio in a Zr-based metallic glass. The statistical analysis reveals that the serrated flow dynamics transforms from a chaotic state characterized by Gaussian-distribution serrations corresponding to stick-slip motion of randomly generated and uncorrelated single shear band and brittle behavior, into a self-organized critical state featured by intermittent scale-free distribution of shear avalanches corresponding to a collective motion of multiple shear bands and ductile behavior. The correlation found between serrated flow dynamics and plastic deformation might shed light on the plastic deformation dynamic and mechanism in metallic glasses.

  20. Enthalpy relaxation kinetics of Ge20Te(80-y)Sey far-infrared glasses in the glass transition range

    NASA Astrophysics Data System (ADS)

    Svoboda, Roman; Málek, Jiří

    2016-06-01

    Differential scanning calorimetry was used to study enthalpy relaxation kinetics of the Ge20Te(80-y)Sey infrared chalcogenide glasses for the compositional range y = 0-8. The relaxation behaviour was described in terms of the phenomenological Tool-Narayanaswamy-Moynihan (TNM) model. The direct curve-fitting procedure was used to determine the values of TNM parameters. Compositional evolution of the TNM parameters was interpreted with respect to the involved structural entities and their motions. Based on the joint Raman scattering study, the addition of Se leads to increased amount of edge-shared GeTe4-xSex tetrahedra. While the primary structural basis for the relaxation movements appears not to be affected by addition of Se (constant value of non-linearity), changes of the non-exponentiality parameter indicate increased structural variability occurring within the groups of directly interlinked tetrahedra, which were found to carry the main portion of relaxation movements. Increased activation energy was explained by the presence of significantly stronger Ge-Se bonds and increased amount of edge-shared tetrahedra.

  1. Transitioning glass-ceramic scintillators for diagnostic x-ray imaging from the laboratory to commercial scale

    NASA Astrophysics Data System (ADS)

    Beckert, M. Brooke; Gallego, Sabrina; Elder, Eric; Nadler, Jason

    2016-10-01

    This study sought to mitigate risk in transitioning newly developed glass-ceramic scintillator technology from a laboratory concept to commercial product by identifying the most significant hurdles to increased scale. These included selection of cost effective raw material sources, investigation of process parameters with the most significant impact on performance, and synthesis steps that could see the greatest benefit from participation of an industry partner that specializes in glass or optical component manufacturing. Efforts focused on enhancing the performance of glass-ceramic nanocomposite scintillators developed specifically for medical imaging via composition and process modifications that ensured efficient capture of incident X-ray energy and emission of scintillation light. The use of cost effective raw materials and existing manufacturing methods demonstrated proof-of-concept for economical viable alternatives to existing benchmark materials, as well as possible disruptive applications afforded by novel geometries and comparatively lower cost per volume. The authors now seek the expertise of industry to effectively navigate the transition from laboratory demonstrations to pilot scale production and testing to evince the industry of the viability and usefulness of composite-based scintillators.

  2. Heat capacities and volumetric changes in the glass transition range: a constitutive approach based on the standard linear solid

    NASA Astrophysics Data System (ADS)

    Lion, Alexander; Mittermeier, Christoph; Johlitz, Michael

    2017-01-01

    A novel approach to represent the glass transition is proposed. It is based on a physically motivated extension of the linear viscoelastic Poynting-Thomson model. In addition to a temperature-dependent damping element and two linear springs, two thermal strain elements are introduced. In order to take the process dependence of the specific heat into account and to model its characteristic behaviour below and above the glass transition, the Helmholtz free energy contains an additional contribution which depends on the temperature history and on the current temperature. The model describes the process-dependent volumetric and caloric behaviour of glass-forming materials, and defines a functional relationship between pressure, volumetric strain, and temperature. If a model for the isochoric part of the material behaviour is already available, for example a model of finite viscoelasticity, the caloric and volumetric behaviour can be represented with the current approach. The proposed model allows computing the isobaric and isochoric heat capacities in closed form. The difference c_p -c_v is process-dependent and tends towards the classical expression in the glassy and equilibrium ranges. Simulations and theoretical studies demonstrate the physical significance of the model.

  3. Dynamic processes in a silicate liquid from above melting to below the glass transition.

    PubMed

    Nascimento, Marcio Luis Ferreira; Fokin, Vladimir Mihailovich; Zanotto, Edgar Dutra; Abyzov, Alexander S

    2011-11-21

    We collect and critically analyze extensive literature data, including our own, on three important kinetic processes--viscous flow, crystal nucleation, and growth--in lithium disilicate (Li(2)O·2SiO(2)) over a wide temperature range, from above T(m) to 0.98T(g) where T(g) ≈ 727 K is the calorimetric glass transition temperature and T(m) = 1307 K, which is the melting point. We found that crystal growth mediated by screw dislocations is the most likely growth mechanism in this system. We then calculated the diffusion coefficients controlling crystal growth, D(eff)(U), and completed the analyses by looking at the ionic diffusion coefficients of Li(+1), O(2-), and Si(4+) estimated from experiments and molecular dynamic simulations. These values were then employed to estimate the effective volume diffusion coefficients, D(eff)(V), resulting from their combination within a hypothetical Li(2)Si(2)O(5) "molecule". The similarity of the temperature dependencies of 1/η, where η is shear viscosity, and D(eff)(V) corroborates the validity of the Stokes-Einstein/Eyring equation (SEE) at high temperatures around T(m). Using the equality of D(eff)(V) and D(eff)(η), we estimated the jump distance λ ~ 2.70 Å from the SEE equation and showed that the values of D(eff)(U) have the same temperature dependence but exceed D(eff)(η) by about eightfold. The difference between D(eff)(η) and D(eff)(U) indicates that the former determines the process of mass transport in the bulk whereas the latter relates to the mobility of the structural units on the crystal/liquid interface. We then employed the values of η(T) reduced by eightfold to calculate the growth rates U(T). The resultant U(T) curve is consistent with experimental data until the temperature decreases to a decoupling temperature T(d)(U) ≈ 1.1-1.2T(g), when D(eff)(η) begins decrease with decreasing temperature faster than D(eff)(U). A similar decoupling occurs between D(eff)(η) and D(eff)(τ) (estimated from

  4. FAST TRACK COMMUNICATION: Critical phenomena at the 140 and 200 K magnetic phase transitions in BiFeO3

    NASA Astrophysics Data System (ADS)

    Scott, J. F.; Singh, M. K.; Katiyar, R. S.

    2008-08-01

    We have measured the magnon Raman cross-sections for bismuth ferrite as a function of temperature near the newly discovered magnetic phase transitions near T2 = 140.3 ± 0.2 K and T1 = 201.0 ± 0.8 K (Singh et al 2008 J. Phys.: Condens. Matter 20 252203) and evaluate the critical exponents (α = 0.05 and α' = 0.09) characterizing that at 140.3 K and (α = 0.06 and α' = 0.13) that at 201.0 K. These are {\\ll } 1 , and hence the data fit a logarithmic divergence about as well. The occurrence of divergences in the electric susceptibility proportional to the specific heat anomaly in non-ferroelectric transitions due to piezoelectric coupling was first reported by Kizhaev et al (1986 JETP Lett. 43 445); in the present paper we apply an analogous theory to magnetoelastic coupling at magnetic transitions. This is an application of the basic Pippard relationship between susceptibilities and specific heat (Pippard 1956 Phil. Mag. 1 473) to a magnetoelastic system. The observations are related to the mechanical loss anomalies observed at the same temperatures (Redfern et al 2008 Preprint cond-mat). Our results support the distorted spin cycloid model of Zalesskii et al (2003 Phys. Solid State 45 141) and not the earlier model of Sosnowska et al (1982 J. Phys. C: Solid State Phys. 15 4835).

  5. The glass transition in cured epoxy thermosets: A comparative molecular dynamics study in coarse-grained and atomistic resolution

    SciTech Connect

    Langeloth, Michael; Böhm, Michael C.; Müller-Plathe, Florian; Sugii, Taisuke

    2015-12-28

    We investigate the volumetric glass transition temperature T{sub g} in epoxy thermosets by means of molecular dynamics simulations. The epoxy thermosets consist of the resin bisphenol A diglycidyl ether and the hardener diethylenetriamine. A structure based coarse-grained (CG) force field has been derived using iterative Boltzmann inversion in order to facilitate simulations of larger length scales. We observe that T{sub g} increases clearly with the degree of cross-linking for all-atomistic (AA) and CG simulations. The transition T{sub g} in CG simulations of uncured mixtures is much lower than in AA-simulations due to the soft nature of the CG potentials, but increases all the more with the formation of rigid cross-links. Additional simulations of the CG mixtures in contact with a surface show the existence of an interphase region of about 3 nm thickness in which the network properties deviate significantly from the bulk. In accordance to experimental studies, we observe that T{sub g} is reduced in this interphase region and gradually increases to its bulk value with distance from the surface. The present study shows that the glass transition is a local phenomenon that depends on the network structure in the immediate environment.

  6. A phenomenological model of dynamical arrest of electron transfer in solvents in the glass-transition region

    SciTech Connect

    Matyushov, Dmitry V.

    2005-02-22

    A phenomenological model of electron transfer reactions in solvents undergoing glass transition is discussed. The reaction constant cuts off slow polarization modes from the spectrum of nuclear thermal motions active on the observation time scale. The arrest of nuclear solvation in turn affects the reaction activation barrier making it dependent on the rate. The resultant rate constant is sought from a self-consistent equation. The model describes well the sharp change in the solvent Stokes shift of optical lines in the glass-transition region. It is also applied to describe the temperature dependence of primary charge separation and reduction of primary pair in photosynthetic reaction centers. The model shows that a weak dependence of the primary charge separation rate on temperature can be explained by dynamical arrest of nuclear solvation on the picosecond time scale of electron transfer. For reduction of primary pair by cytochrome, the model yields a sharp turnover of the reaction kinetics at the transition temperature when nuclear solvation freezes in.

  7. Ellipsometry applied to phase transitions and relaxation phenomena in Ni2MnGa ferromagnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Dejneka, A.; Zablotskii, V.; Tyunina, M.; Jastrabik, L.; Pérez-Landazábal, J. I.; Recarte, V.; Sánchez-Alarcos, V.; Chernenko, V. A.

    2012-10-01

    The temperature dependences of the refractive index, n(T), calculated from ellipsometric data during the premartensitic and martensite transitions in a Ni2MnGa ferromagnetic shape memory alloy allow to detect all critical temperatures of the sample. The performed measurements reveal the behavior of a surface layer of a few tens nanometers depth due to the light absorption. Optical measurements reveal the earlier onset of premartensitic transition at the sample surface and shows unknown new features like time and temperature dependent effects related to the crystal surface. The underlying mechanisms of the observed temperature changes of the equilibrium n0 may be related to temperature dependent interactions between free electrons and phonons as well as between electrons and defects. A giant isothermal creep (up to 20%) of the refractive index was found for temperatures below T0 = 315 K. Below T0 the creep amplitude grows with the temperature difference T0-T. The creep disappears and the relaxation time becomes zero at temperatures above T0.

  8. Role of entropy in the thermodynamic evolution of the time scale of molecular dynamics near the glass transition.

    PubMed

    Grzybowska, K; Grzybowski, A; Pawlus, S; Pionteck, J; Paluch, M

    2015-06-01

    In this paper, we investigate how changes in the system entropy influence the characteristic time scale of the system molecular dynamics near the glass transition. Independently of any model of thermodynamic evolution of the time scale, against some previous suppositions, we show that the system entropy S is not sufficient to govern the time scale defined by structural relaxation time τ. In the density scaling regime, we argue that the decoupling between τ and S is a consequence of different values of the scaling exponents γ and γ(S) in the density scaling laws, τ=f(ρ(γ)/T) and S=h(ρ(γ(S))/T), where ρ and T denote density and temperature, respectively. It implies that the proper relation between τ and S requires supplementing with a density factor, u(ρ), i.e., τ=g(u(ρ)w(S)). This meaningful finding additionally demonstrates that the density scaling idea can be successfully used to separate physically relevant contributions to the time scale of molecular dynamics near the glass transition. The relation reported by us between τ and S constitutes a general pattern based on nonconfigurational quantities for describing the thermodynamic evolution of the characteristic time scale of molecular dynamics near the glass transition in the density scaling regime, which is a promising alternative to the approaches based as the Adam-Gibbs model on the configurational entropy that is difficult to evaluate in the entire thermodynamic space. As an example, we revise the Avramov entropic model of the dependence τ(T,ρ), giving evidence that its entropic basis has to be extended by the density dependence of the maximal energy barrier for structural relaxation. We also discuss the excess entropy S(ex), the density scaling of which is found to mimic the density scaling of the total system entropy S.

  9. Role of entropy in the thermodynamic evolution of the time scale of molecular dynamics near the glass transition

    NASA Astrophysics Data System (ADS)

    Grzybowska, K.; Grzybowski, A.; Pawlus, S.; Pionteck, J.; Paluch, M.

    2015-06-01

    In this paper, we investigate how changes in the system entropy influence the characteristic time scale of the system molecular dynamics near the glass transition. Independently of any model of thermodynamic evolution of the time scale, against some previous suppositions, we show that the system entropy S is not sufficient to govern the time scale defined by structural relaxation time τ. In the density scaling regime, we argue that the decoupling between τ and S is a consequence of different values of the scaling exponents γ and γS in the density scaling laws, τ =f (ργ/T ) and S =h (ργS/T ) , where ρ and T denote density and temperature, respectively. It implies that the proper relation between τ and S requires supplementing with a density factor, u (ρ), i.e., τ =g ( u (ρ )w (S ) ) . This meaningful finding additionally demonstrates that the density scaling idea can be successfully used to separate physically relevant contributions to the time scale of molecular dynamics near the glass transition. The relation reported by us between τ and S constitutes a general pattern based on nonconfigurational quantities for describing the thermodynamic evolution of the characteristic time scale of molecular dynamics near the glass transition in the density scaling regime, which is a promising alternative to the approaches based as the Adam-Gibbs model on the configurational entropy that is difficult to evaluate in the entire thermodynamic space. As an example, we revise the Avramov entropic model of the dependence τ(T ,ρ), giving evidence that its entropic basis has to be extended by the density dependence of the maximal energy barrier for structural relaxation. We also discuss the excess entropy Sex, the density scaling of which is found to mimic the density scaling of the total system entropy S .

  10. Fragile-to-fragile liquid transition at Tg and stable-glass phase nucleation rate maximum at the Kauzmann temperature TK

    NASA Astrophysics Data System (ADS)

    Tournier, Robert F.

    2014-12-01

    An undercooled liquid is unstable. The driving force of the glass transition at Tg is a change of the undercooled-liquid Gibbs free energy. The classical Gibbs free energy change for a crystal formation is completed including an enthalpy saving. The crystal growth critical nucleus is used as a probe to observe the Laplace pressure change Δp accompanying the enthalpy change -Vm×Δp at Tg where Vm is the molar volume. A stable glass-liquid transition model predicts the specific heat jump of fragile liquids at T≤Tg, the Kauzmann temperature TK where the liquid entropy excess with regard to crystal goes to zero, the equilibrium enthalpy between TK and Tg, the maximum nucleation rate at TK of superclusters containing magic atom numbers, and the equilibrium latent heats at Tg and TK. Strong-to-fragile and strong-to-strong liquid transitions at Tg are also described and all their thermodynamic parameters are determined from their specific heat jumps. The existence of fragile liquids quenched in the amorphous state, which do not undergo liquid-liquid transition during heating preceding their crystallization, is predicted. Long ageing times leading to the formation at TK of a stable glass composed of superclusters containing up to 147 atom, touching and interpenetrating, are evaluated from nucleation rates. A fragile-to-fragile liquid transition occurs at Tg without stable-glass formation while a strong glass is stable after transition.

  11. Critical phenomena at a first-order phase transition in a lattice of glow lamps: Experimental findings and analogy to neural activity

    NASA Astrophysics Data System (ADS)

    Minati, Ludovico; de Candia, Antonio; Scarpetta, Silvia

    2016-07-01

    Networks of non-linear electronic oscillators have shown potential as physical models of neural dynamics. However, two properties of brain activity, namely, criticality and metastability, remain under-investigated with this approach. Here, we present a simple circuit that exhibits both phenomena. The apparatus consists of a two-dimensional square lattice of capacitively coupled glow (neon) lamps. The dynamics of lamp breakdown (flash) events are controlled by a DC voltage globally connected to all nodes via fixed resistors. Depending on this parameter, two phases having distinct event rate and degree of spatiotemporal order are observed. The transition between them is hysteretic, thus a first-order one, and it is possible to enter a metastability region, wherein, approaching a spinodal point, critical phenomena emerge. Avalanches of events occur according to power-law distributions having exponents ≈3/2 for size and ≈2 for duration, and fractal structure is evident as power-law scaling of the Fano factor. These critical exponents overlap observations in biological neural networks; hence, this circuit may have value as building block to realize corresponding physical models.

  12. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    SciTech Connect

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  13. Viscosity of glass-forming liquids

    PubMed Central

    Mauro, John C.; Yue, Yuanzheng; Ellison, Adam J.; Gupta, Prabhat K.; Allan, Douglas C.

    2009-01-01

    The low-temperature dynamics of ultraviscous liquids hold the key to understanding the nature of glass transition and relaxation phenomena, including the potential existence of an ideal thermodynamic glass transition. Unfortunately, existing viscosity models, such as the Vogel–Fulcher–Tammann (VFT) and Avramov–Milchev (AM) equations, exhibit systematic error when extrapolating to low temperatures. We present a model offering an improved description of the viscosity–temperature relationship for both inorganic and organic liquids using the same number of parameters as VFT and AM. The model has a clear physical foundation based on the temperature dependence of configurational entropy, and it offers an accurate prediction of low-temperature isokoms without any singularity at finite temperature. Our results cast doubt on the existence of a Kauzmann entropy catastrophe and associated ideal glass transition. PMID:19903878

  14. Highly sensitive pseudo-differential ac-nanocalorimeter for the study of the glass transition

    SciTech Connect

    Laarraj, Mohcine; Adhiri, Rahma; Moussetad, Mohamed; Ouaskit, Said; Guttin, Christophe; Richard, Jacques; Garden, Jean-Luc

    2015-11-15

    We present a nanocalorimeter designed for the measurement of the dynamic heat capacity of thin films. The microfabricated sensor, the thermal conditioning of the sensor, as well as the highly stable and low noise electronic chain allow measurements of the real and imaginary parts of the complex specific heat with a resolution Δ C/C of about 10{sup −5}. The performances of this quasi-differential nanocalorimeter were tested on a model of polymeric glass-former, the polyvinyl acetate (PVAc). The high stability and low noise of the device are essential for accurate studies on non-equilibrium slow relaxing systems such as glasses.

  15. A new method for separating first row transition metals and actinides from synthetic melt glass

    SciTech Connect

    Roman, Audrey Rae; Bond, Evelyn M.

    2016-01-14

    A new method was developed for separating Co, Fe, and Sc from complex debris matrices using the extraction chromatography resin DGA. The activation products Co-58, Mn-54, and Sc-46 were used to characterize the separation of the synthetic melt glass solutions. In the separation scheme that was developed, Au, Co, Cu, Fe, Sc, and Ti were separated from the rest of the sample constituents. In this paper, the synthetic melt glass separation method, efficiency, recoveries, and the length of procedure will be discussed. In conclusion, batch contact adsorption studies for Na and Sc for DGA resin are discussed as well.

  16. Relaxation times of nanoscale deformations on the surface of a polymer thin film near and below the glass transition

    SciTech Connect

    Papaleo, R. M.; Leal, R.; Carreira, W. H.; Barbosa, L. G.; Bello, I.; Bulla, A.

    2006-09-01

    We report on measurements of relaxation times of nanometer-sized deformations resulting from the impact of individual energetic ions on poly(methyl methacrylate) surfaces at temperatures close to and below the glass transition T{sub g}. The temporal evolution of the dimensions of the deformations is well described by a stretched exponential function, but with relaxation times {tau}(T) many orders of magnitude smaller than bulk values at the same T. The local T{sub g} was around 86 deg. C, roughly 30 deg. C below the conventional bulk T{sub g}. At the vicinity of the local T{sub g}, {tau}(T) follows the Vogel-Fulcher type of T dependence, but at lower T a transition towards a less steep behavior is seen.

  17. High-density amorphous ice: Molecular dynamics simulations of the glass transition at 0.3 GPa.

    PubMed

    Seidl, M; Loerting, T; Zifferer, G

    2009-09-21

    Based on several force fields (COMPASS, modified TIP3P and SPC/E) high-density amorphous ice is simulated by use of isothermal-isobaric molecular dynamics at a pressure of p approximately 0.3 GPa in the temperature range from 70 to 300 K. Starting at low temperature a large number of heating/cooling cycles are performed and several characteristic properties (density, total energy, and mobility) are traced as functions of temperature. While the first cycles are showing irreversible structural relaxation effects data points from further cycles are reproducible and give clear evidence for the existence of a glass-to-liquid transition. Although, the observed transition temperatures T(g) are dependent on the actual force field used and slightly dependent on the method adopted the results indicate that high-density amorphous ices may indeed be low-temperature structural proxies of ultraviscous high-density liquids.

  18. Transport Phenomena.

    ERIC Educational Resources Information Center

    Shah, D. B.

    1984-01-01

    Describes a course designed to achieve a balance between exposing students to (1) advanced topics in transport phenomena, pointing out similarities and differences between three transfer processes and (2) common methods of solving differential equations. (JN)

  19. Colloidal Phenomena.

    ERIC Educational Resources Information Center

    Russel, William B.; And Others

    1979-01-01

    Described is a graduate level engineering course offered at Princeton University in colloidal phenomena stressing the physical and dynamical side of colloid science. The course outline, reading list, and requirements are presented. (BT)

  20. Mobility of Supercooled liquid Toluene, Ethylbenzene, and Benzene near their Glass Transition Temperatures Investigated using Inert Gas Permeation

    SciTech Connect

    May, Robert A.; Smith, R. Scott; Kay, Bruce D.

    2013-11-21

    We investigate the mobility of supercooled liquid toluene, ethylbenzene, and benzene near their respective glass transition temperatures (Tg). The permeation rate of Ar, Kr, and Xe through the supercooled liquid created when initially amorphous overlayers heated above their glass transition temperature is used to determine the diffusivity. Amorphous benzene crystallizes at temperatures well below its Tg and as a result the inert gas underlayer remains trapped until the onset of benzene desorption. In contrast, for toluene and ethylbenzene the onset of inert gas permeation is observed at temperatues near Tg. The inert gas desorption peak temperature as a function of the heating rate and overlayer thickness is used to quantify the diffusivity of supercooled liquid toluene and ethylbenzene from 115 K to 135 K. In this temperature range, diffusivities are found to vary across five orders of magnitude (~10-14 to 10-9 cm2/s). These data are compared to viscosity measurements and used to determine the low temperature fractional Stokes-Einstein exponent. Efforts to determine the diffusivity of a mixture of benzene and ethylbenzene are detailed, and the effect of mixing these materials on benzene crystallization is explored using infrared spectroscopy.

  1. EFFECTS OF TRITIUM GAS EXPOSURE ON THE GLASS TRANSITION TEMPERATURE OF EPDM ELASTOMER AND ON THE CONDUCTIVITY OF POLYANILINE

    SciTech Connect

    Clark, E; Marie Kane, M

    2008-12-12

    Four formulations of EPDM (ethylene-propylene diene monomer) elastomer were exposed to tritium gas initially at one atmosphere and ambient temperature for between three and four months in closed containers. Material properties that were characterized include density, volume, mass, appearance, flexibility, and dynamic mechanical properties. The glass transition temperature was determined by analysis of the dynamic mechanical property data per ASTM standards. EPDM samples released significant amounts of gas when exposed to tritium, and the glass transition temperature increased by about 3 C. during the exposure. Effects of ultraviolet and gamma irradiation on the surface electrical conductivity of two types of polyaniline films are also documented as complementary results to planned tritium exposures. Future work will determine the effects of tritium gas exposure on the electrical conductivity of polyaniline films, to demonstrate whether such films can be used as a sensor to detect tritium. Surface conductivity was significantly reduced by irradiation with both gamma rays and ultraviolet light. The results of the gamma and UV experiments will be correlated with the tritium exposure results.

  2. A novel approach for analyzing glass-transition temperature vs. composition patterns: application to pharmaceutical compound+polymer systems.

    PubMed

    Kalogeras, Ioannis M

    2011-04-18

    In medicine, polymer-based materials are commonly used as excipients of poorly water-soluble drugs. The success of the encapsulation, as well as the physicochemical stability of the products, is often reflected on their glass transition temperature (T(g)) vs. composition (w) dependencies. The shape of the T(g)(w) patterns is critically influenced by polymer's molecular mass, drug molecule's shape and molecular volume, the type and degree of shielding of hydrogen-bonding capable functional groups, as well as aspects of the preparation process. By altering mixture's T(g) the amorphous solid form of the active ingredient may be retained at ambient or body temperatures, with concomitant improvements in handling, solubility, dissolution rate and oral bioavailability. Given the importance of the problem, the glass transitions observed in pharmaceutical mixtures have been extensively analyzed, aiming to appraise the state of mixing and intermolecular interactions. Here, accumulated experimental information on related systems is re-evaluated and comparably discussed under the light of a more effective and system-inclusive T(g)(w) equation. The present analysis indicates that free volume modifications and conformational changes of the macromolecular chains dominate, over enthalpic effects of mixing, in determining thermal characteristics and crystallization inhibition/retardation. Moreover, hydrogen-bonding and ion-dipole heterocontacts--although favorable of a higher degree of mixing--appear less significant compared to the steric hindrances and the antiplasticization proffered by the higher viscosity component.

  3. Development of DMBZ-15 High-Glass-Transition-Temperature Polyimides as PMR-15 Replacements Given R&D 100 Award

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy

    2004-01-01

    PMR-15, a high-temperature polyimide developed in the mid-1970s at the NASA Lewis Research Center,1 offers the combination of low cost, easy processing, and good high-temperature performance and stability. It has been recognized as the leading polymer matrix resin for carbon-fiber-reinforced composites used in aircraft engine components. The state-of-the-art PMR-15 polyimide composite has a glass-transition temperature (Tg) of 348 C (658 F). Since composite materials must be used at temperatures well below their glass-transition temperature, the long-term use temperatures of PMR-15 composites can be no higher than 288 C (550 F). In addition, PMR-15 is made from methylene dianiline (MDA), a known liver toxin. Concerns about the safety of workers exposed to MDA during the fabrication of PMR-15 components and about the environmental impact of PMR-15 waste disposal have led to the industry-wide implementation of special handling procedures to minimize the health risks associated with this material. These procedures have increased manufacturing and maintenance costs significantly and have limited the use of PMR-15 in commercial aircraft engine components.

  4. Mobility of supercooled liquid toluene, ethylbenzene, and benzene near their glass transition temperatures investigated using inert gas permeation.

    PubMed

    May, R Alan; Smith, R Scott; Kay, Bruce D

    2013-11-21

    We investigate the mobility of supercooled liquid toluene, ethylbenzene, and benzene near their respective glass transition temperatures (Tg). The permeation rate of Ar, Kr, and Xe through the supercooled liquid created when initially amorphous overlayers are heated above their glass transition temperature is used to determine the diffusivity. Amorphous benzene crystallizes at temperatures well below its Tg, and as a result, the inert gas underlayer remains trapped until the onset of benzene desorption. In contrast, for toluene and ethylbenzene the onset of inert gas permeation is observed at temperatues near Tg. The inert gas desorption peak temperature as a function of the heating rate and overlayer thickness is used to quantify the diffusivity of supercooled liquid toluene and ethylbenzene from 115 to 135 K. In this temperature range, diffusivities are found to vary across 5 orders of magnitude (∼10(-14) to 10(-9) cm(2)/s). The diffusivity data are compared to viscosity measurements and reveal a breakdown in the Stokes-Einstein relationship at low temperatures. However, the data are well fit by the fractional Stokes-Einstein equation with an exponent of 0.66. Efforts to determine the diffusivity of a mixture of benzene and ethylbenzene are detailed, and the effect of mixing these materials on benzene crystallization is explored using infrared spectroscopy.

  5. Definition of the rheological glass transition temperature in association with the concept of iso-free-volume.

    PubMed

    Kasapis, S; Mitchell, J R

    2001-12-10

    Small deformation dynamic oscillation was used to develop an index of physical significance for the rationalisation of the mechanical properties of high co-solute/biopolymer systems during vitrification. The index is based on the combined framework of Williams-Landel-Ferry equation with the free volume theory and is called the 'rheological glass transition temperature, T(g)' thus differentiating it from the empirical calorimetric T(g) used in thermal analysis. The rheological T(g) is located at the conjunction of two distinct molecular processes, namely: free-volume effects in the glass transition region and the predictions of the reaction-rate theory in the glassy state. The method of reduced variables was used to shift the mechanical spectra of shear moduli to composite curves. The temperature dependence of shift factors for all materials was identical provided that they were normalised at suitably different reference temperatures, which reflect iso-free-volume states. The treatment makes free volume the overriding parameter governing the mechanical relaxation times during vitrification of high co-solute/biopolymer systems regardless of physicochemical characteristics. We believe that potential applications resulting from this fundamental work are numerous for the food and pharmaceutical industries.

  6. Understanding the dynamics of glass-forming liquids with random pinning within the random first order transition theory

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Saurish; Das, Rajsekhar; Karmakar, Smarajit; Dasgupta, Chandan

    2016-07-01

    Extensive computer simulations are performed for a few model glass-forming liquids in both two and three dimensions to study their dynamics when a randomly chosen fraction of particles are frozen in their equilibrium positions. For all the studied systems, we find that the temperature-dependence of the α relaxation time extracted from an overlap function related to the self-part of the density autocorrelation function can be explained within the framework of the Random First Order Transition (RFOT) theory of the glass transition. We propose a scaling description to rationalize the simulation results and show that our data for the α relaxation time for all temperatures and pin concentrations are consistent with this description. We find that the fragility parameter obtained from fits of the temperature dependence of the α relaxation time to the Vogel-Fulcher-Tammann form decreases by almost an order of magnitude as the pin concentration is increased from zero. Our scaling description relates the fragility parameter to the static length scale of RFOT and thus provides a physical understanding of fragility within the framework of the RFOT theory. Implications of these findings for the values of the exponents appearing in the RFOT theory are discussed.

  7. Hypernetted-chain investigation of the random first-order transition of a Lennard-Jones liquid to an ideal glass

    NASA Astrophysics Data System (ADS)

    Bomont, Jean-Marc; Hansen, Jean-Pierre; Pastore, Giorgio

    2015-10-01

    The structural and thermodynamic behavior of a deeply supercooled Lennard-Jones liquid, and its random first-order transition (RFOT) to an ideal glass is investigated, using a system of two weakly coupled replicas and the hypernetted chain integral equation for the pair structure of this symmetric binary system. A systematic search in the density-temperature plane points to the existence of two glass branches below a density-dependent threshold temperature. The branch of lower free energy exhibits a rapid growth of the structural overlap order parameter upon cooling and may be identified with the ideal glass phase conjectured by several authors for both spin and structural glasses. The RFOT, signaled by a sharp discontinuity of the order parameter, is predicted to be weakly first order from a thermodynamic viewpoint. The transition temperature Tcr increases rapidly with density and approximately obeys a scaling relation valid for a reference system of particles interacting via a purely repulsive 1 /r18 potential.

  8. Partial glass Isosymmetry Transition in Multiferroic Hexagonal ErMnO3

    SciTech Connect

    Barbour, A.; Alatas, A.; Liu, Y.; Zhu, C.; Leu, B. M.; Zhang, X.; Sandy, A.; Pierce, M. S.; Wang, Xueyun; Cheong, S. -W.; You, H.

    2016-02-18

    Ferroelectric transitions of a hexagonal multiferroic, ErMnO3, are studied by x-ray scattering techniques. An isosymmetry transition, similar to that previously observed for YMnO3, approximately 300 K below the well-known ferroic transition temperature is investigated. The partial glassy behavior of the isosymmetry transition is identified by appearance of quasi-elastic scattering lines in high-energy-resolution scans. The glassy behavior is further supported by the increased interlayer decorrelation of (√3×√3)R30º ordering below the isosymmetry transition. The transition behavior is considered for possible hidden sluggish modes and two-step phase transitions theoretically predicted for the stacked triangular antiferromagnets. The in-plane azimuthal (orientational) ordering behaviors were also compared to the theoretical predictions. Coherent x-ray speckle measurements show unambiguously that the domain sizes decrease anomalously near both the isosymmetry and ferroic transitions. However, domain boundary fluctuations increase monotonically with an Arrhenius form with an activation energy of 0.54(5) eV through both transitions.

  9. Testing statics-dynamics equivalence at the spin-glass transition in three dimensions

    NASA Astrophysics Data System (ADS)

    Fernández, Luis Antonio; Martín-Mayor, Víctor

    2015-05-01

    The statics-dynamics correspondence in spin glasses relate nonequilibrium results on large samples (the experimental realm) with equilibrium quantities computed on small systems (the typical arena for theoretical computations). Here we employ statics-dynamics equivalence to study the Ising spin-glass critical behavior in three dimensions. By means of Monte Carlo simulation, we follow the growth of the coherence length (the size of the glassy domains), on lattices too large to be thermalized. Thanks to the large coherence lengths we reach, we are able to obtain accurate results in excellent agreement with the best available equilibrium computations. To do so, we need to clarify the several physical meanings of the dynamic exponent close to the critical temperature.

  10. Transition from glass- to gel-like states in clay at a liquid interface

    PubMed Central

    Gholamipour-Shirazi, A.; Carvalho, M. S.; Huila, M. F. G.; Araki, K.; Dommersnes, P.; Fossum, J. O.

    2016-01-01

    Colloidal clay in water suspensions are known to exhibit a multitude of bulk phases depending on initial colloidal concentration and ionic strength, and examples of this include repulsive Wigner colloidal glasses at low ionic strength and attractive gels at higher ionic strength due to screened electrostatic forces by the electrolyte. From confocal Raman microscopy combined with elasticity measurements, we infer that clay trapped at quasi two-dimensional interfaces between oil and water also exhibit confined glass-like or gel-like states. The results can be important for the preparation of particles stabilized colloidal emulsions or colloidal capsules, and a better understanding of this phenomenon may lead to new emulsion or encapsulation technologies. PMID:27883031

  11. Highly Mobile Metastable State of He-4 Thin Films: A Glass Transition by Mechanical Perturbation?

    NASA Astrophysics Data System (ADS)

    Minoguchi, Tomoki

    2017-01-01

    Solid layers of helium on graphite surface are known to go into a highly mobile state (HMS) once the solid layer is enforced to slip on the substrate. The HMS collapses to the stable inert state with the lifetime extending over 10^4 s. In this paper, we suggest that the HMS is a structural glass by showing the similarities between the present system and an organic conductor named BEDT-TTF. The latter was recently discovered to be an electronic glass if the cooling rate is rapid enough across the freezing temperature (Wigner crystal formation temperature). We then address a novel annealing process promoted by a local condensate which should be seen for the present He-4 case as the condensation fraction grows in the liquid overlayer.

  12. Transition from glass- to gel-like states in clay at a liquid interface

    NASA Astrophysics Data System (ADS)

    Gholamipour-Shirazi, A.; Carvalho, M. S.; Huila, M. F. G.; Araki, K.; Dommersnes, P.; Fossum, J. O.

    2016-11-01

    Colloidal clay in water suspensions are known to exhibit a multitude of bulk phases depending on initial colloidal concentration and ionic strength, and examples of this include repulsive Wigner colloidal glasses at low ionic strength and attractive gels at higher ionic strength due to screened electrostatic forces by the electrolyte. From confocal Raman microscopy combined with elasticity measurements, we infer that clay trapped at quasi two-dimensional interfaces between oil and water also exhibit confined glass-like or gel-like states. The results can be important for the preparation of particles stabilized colloidal emulsions or colloidal capsules, and a better understanding of this phenomenon may lead to new emulsion or encapsulation technologies.

  13. Theoretical Study of Role of Sb in Se_0.85-xTe_0.15Sbx Chalcogenide Glass in Influencing Glass Transition Temperature

    NASA Astrophysics Data System (ADS)

    Maharjan, N. B.; Paudyal, D. D.; Jeong, J.; Scheicher, R. H.; Das, T. P.

    2001-03-01

    The influence of Sb impurity on glass transition temperature (Tg) has recently been studied using Differential Scanning Calorimetry(N. B. Maharjan et al., Phy. Stat. Sol. (a) 178, 663 (2000)). The results indicate that Tg initially increases with Sb concentration (x), reaching a maximum at 0.04, subsequently decreasing till x=0.06 and then becoming constant. Qualitative explanation of this behavior for Tg has been suggested^1 using earlier ideas in the literature regarding the role of Sb in the interaction between chains in the Se_1-xTex system and bond energy strength considerations involving Se-Se and Sb-Se bonds. These ideas are being tested quantitatively using Hartree-Fock Cluster procedures, previously utilized by our group for study(H. S. Cho et al., (to be published); H. S. Cho et al., Hyperfine Interactions 96, 213 (1995)) of nuclear quadrupole interactions including that of ^125Te in Selenium and Tellurium(P. Boolchand et al., Phys. Rev. Lett. 30, 1292 (1973)).

  14. Effect of powder to liquid ratio on tensile strength and glass transition temperature of alumina filled poly methyl methacrylate (PMMA) denture base material.

    PubMed

    Mohamed, S H; Arifin, A; Mohd Ishak, Z A; Nizam, A; Samsudin, A R

    2004-05-01

    The aim of this study was to evaluate the mechanical properties and glass transition temperature (Tg) of a denture base material prepared from high molecular weight poly methyl methacrylate (PMMA) and alumina (Al2O3). The glass transition temperature was studied by using differential scanning calorimetry (DSC). The effect of powder-to-liquid ratio was investigated. The result showed that the tensile properties and the Tg were slightly effected by the powder-to-liquid ratio. The ratio of 2.2:1 by weight of powder to liquid was found to be the best ratio for mixing the material to give the best result in this formulation.

  15. Criticality in dynamic arrest: correspondence between glasses and traffic.

    PubMed

    de Wijn, A S; Miedema, D M; Nienhuis, B; Schall, P

    2012-11-30

    Dynamic arrest is a general phenomenon across a wide range of dynamic systems including glasses, traffic flow, and dynamics in cells, but the universality of dynamic arrest phenomena remains unclear. We connect the emergence of traffic jams in a simple traffic flow model directly to the dynamic slowing down in kinetically constrained models for glasses. In kinetically constrained models, the formation of glass becomes a true (singular) phase transition in the limit T→0. Similarly, using the Nagel-Schreckenberg model to simulate traffic flow, we show that the emergence of jammed traffic acquires the signature of a sharp transition in the deterministic limit p→1, corresponding to overcautious driving. We identify a true dynamic critical point marking the onset of coexistence between free flowing and jammed traffic, and demonstrate its analogy to the kinetically constrained glass models. We find diverging correlations analogous to those at a critical point of thermodynamic phase transitions.

  16. Yield stress in metallic glasses: The jamming-unjamming transition studied through Monte Carlo simulations based on the activation-relaxation technique

    SciTech Connect

    Rodney, David; Schuh, Christopher A.

    2009-11-01

    A Monte Carlo approach allowing for stress control is employed to study the yield stress of a two-dimensional metallic glass in the limit of low temperatures and long (infinite) time scales. The elementary thermally activated events are determined using the activation-relaxation technique (ART). By tracking the minimum-energy state of the glass for various applied stresses, we find a well-defined jamming-unjamming transition at a yield stress about 30% lower than the steady-state flow stress obtained in conventional strain-controlled quasistatic simulations. ART is then used to determine the evolution of the distribution of thermally activated events in the glass microstructure both below and above the yield stress. We show that aging below the yield stress increases the stability of the glass, both thermodynamically (the internal potential energy decreases) and dynamically (the aged glass is surrounded by higher-energy barriers than the initial quenched configuration). In contrast, deformation above the yield stress brings the glass into a high internal potential energy state that is only marginally stable, being surrounded by a high density of low-energy barriers. The strong influence of deformation on the glass state is also evidenced by the microstructure polarization, revealed here through an asymmetry of the distribution of thermally activated inelastic strains in glasses after simple shear deformation.

  17. Final Report on DE-FG02-04ER46107: Glasses, Noise and Phase Transitions

    SciTech Connect

    Yu, Clare C.

    2011-12-31

    We showed that noise has distinct signatures at phase transitions in spin systems. We also studied charge noise, critical current noise, and flux noise in superconducting qubits and Josephson junctions.

  18. GlassForm

    SciTech Connect

    2011-09-16

    GlassForm is a software tool for generating preliminary waste glass formulas for a given waste stream. The software is useful because it reduces the number of verification melts required to develop a suitable additive composition. The software includes property models that calculate glass properties of interest from the chemical composition of the waste glass. The software includes property models for glass viscosity, electrical conductivity, glass transition temperature, and leach resistance as measured by the 7-day product consistency test (PCT).

  19. Snapshotted glass and gel transitions of stable colloidal dispersions after shear-driven aggregation in a microchannel.

    PubMed

    Meng, Xia; Wu, Hua; Morbidelli, Massimo

    2015-02-07

    Intense shear can lead to aggregation of colloids that are highly stable at rest. The aggregation process typically has an induction time, and then becomes explosive, leading to rapid phase transitions. We study the phase evolution during shear-driven aggregation in a short microchannel (MC) under intense shear for a colloid with a high interaction energy barrier that ensures high stability of particles and clusters before and after intense shear. The short residence time allows us to snapshot the phase evolution by repeatedly cycling the colloid in the MC. It is found that, depending on the particle concentration, in addition to a fluid of clusters and a solid-like gel, there is another solid-like state between them: Wigner glass of clusters. Their transitions occur over a large range of particle concentrations. We have proposed a phase diagram that describes how the transitions of the three phases evolve in the aggregation steady state in the colloidal interaction vs. particle concentration plane.

  20. Transition from glass to digital slide microscopy in the teaching of oral pathology in a Brazilian dental school

    PubMed Central

    Fonseca, Felipe-Paiva; Santos-Silva, Alan-Roger; Lopes, Márcio-Ajudarte; de Almeida, Oslei-Paes

    2015-01-01

    Objectives: Several medical and dental schools have described their experience in the transition from conventional to digital microscopy in the teaching of general pathology and histology disciplines; however, this transitional process has scarcely been reported in the teaching of oral pathology. Therefore, the objective of the current study is to report the transition from conventional glass slide to virtual microscopy in oral pathology teaching, a unique experience in Latin America. Study Design: An Aperio ScanScope® scanner was used to digitalize histological slides used in practical lectures of oral pathology. The challenges and benefits observed by the group of Professors from the Piracicaba Dental School (Brazil) are described and a questionnaire to evaluate the students’ compliance to this new methodology was applied. Results: An improvement in the classes was described by the Professors who mainly dealt with questions related to pathological changes instead of technical problems; also, a higher interaction with the students was described. The simplicity of the software used and the high quality of the virtual slides, requiring a smaller time to identify microscopic structures, were considered important for a better teaching process. Conclusions: Virtual microscopy used to teach oral pathology represents a useful educational methodology, with an excellent compliance of the dental students. Key words:Digital microscopy, virtual microscopy, dental education, virtual slides, oral pathology. PMID:25129250

  1. Transport Phenomena.

    ERIC Educational Resources Information Center

    McCready, Mark J.; Leighton, David T.

    1987-01-01

    Discusses the problems created in graduate chemical engineering programs when students enter with a wide diversity of understandings of transport phenomena. Describes a two-semester graduate transport course sequence at the University of Notre Dame which focuses on fluid mechanics and heat and mass transfer. (TW)

  2. The glass transition and the distribution of voids in room-temperature ionic liquids: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Forero-Martinez, N. C.; Cortes-Huerto, R.; Ballone, P.

    2012-05-01

    The glass transition in prototypical room temperature ionic liquids has been investigated by molecular dynamics simulations based on an Amber-like empirical force field. Samples of [C4mim][PF6], [C4mim][Tf2N], and [C3mim][Tf2N] have been quenched from the liquid phase at T = 500 to a glassy state at T ˜ 0 K in discontinuous steps of 20 K every 1.2 ns. The glass temperature estimated by simulation (Tg = 209 K for [C4mim][PF6], Tg = 204 K for [C4mim][Tf2N], and Tg = 196 K for [C3mim][Tf2N]) agrees semi-quantitatively with the experimental values (Tg = 193÷196 K for [C4mim][PF6], Tg = 186÷189 K for [C4mim][Tf2N], and Tg = 183 K for [C3mim][Tf2N]). A model electron density is introduced to identify voids in the system. The temperature dependence of the size distribution of voids provided by simulation reproduce well the experimental results of positron annihilation lifetime spectroscopy reported in G. Dlubek, Y. Yu, R. Krause-Rehberg, W. Beichel, S. Bulut, N. Pogodina, I. Krossing, and Ch. Friedrich, J. Chem. Phys. 133, 124502 (2010), with only one free parameter needed to fit the experimental data.

  3. From boiling point to glass transition temperature: transport coefficients in molecular liquids follow three-parameter scaling.

    PubMed

    Schmidtke, B; Petzold, N; Kahlau, R; Hofmann, M; Rössler, E A

    2012-10-01

    The phenomenon of the glass transition is an unresolved problem in condensed matter physics. Its prominent feature, the super-Arrhenius temperature dependence of the transport coefficients, remains a challenge to be described over the full temperature range. For a series of molecular glass formers, we combined τ(T) collected from dielectric spectroscopy and dynamic light scattering covering a range 10(-12) s < τ(T) < 10(2) s. Describing the dynamics in terms of an activation energy E(T), we distinguish a high-temperature regime characterized by an Arrhenius law with a constant activation energy E(∞) and a low-temperature regime for which E(coop)(T) ≡ E(T)-E(∞) increases exponentially while cooling. A scaling is introduced, specifically E(coop)(T)/E(∞) [proportionality] exp[-λ(T/T(A)-1)], where λ is a fragility parameter and T(A) a reference temperature proportional to E(∞). In order to describe τ(T) still the attempt time τ(∞) has to be specified. Thus, a single interaction parameter E(∞) describing the high-temperature regime together with λ controls the temperature dependence of low-temperature cooperative dynamics.

  4. Bogoliubov approach to superfluid-Bose glass phase transition of a disordered Bose-Hubbard model in weakly interacting regime

    NASA Astrophysics Data System (ADS)

    Wang, Botao; Jiang, Ying

    2016-11-01

    We investigate the disorder effect on coherent fraction and the quantum phase transition of ultracold dilute Bose gases trapped in disordered optical lattices. Within the framework of Bogoliubov theory, an analytical expression for the particle density is derived and the dependence of coherent fraction on disorder strength as well as on lattice depth is discussed. In weak disorder regime, we find a decreased sensitivity of coherent fraction to disorder with the increase of on-site interaction strength. For strong disorder, the quantum phase boundary between superfluid phase and Bose glass phase in the disordered Bose-Hubbard system in weak interaction regime is discussed qualitatively. The obtained phase diagram is in agreement with the empirical square-root law. The dependence of the corresponding critical value of the disorder strength on optical lattice depth is presented as well, and may serve as a reference object for possible experimental investigation.

  5. Phenomenological theory of a renormalized simplified model based on time-convolutionless mode-coupling theory near the glass transition

    NASA Astrophysics Data System (ADS)

    Tokuyama, Michio

    2017-01-01

    The renormalized simplified model is proposed to investigate indirectly how the static structure factor plays an important role in renormalizing a quadratic nonlinear term in the ideal mode-coupling memory function near the glass transition. The renormalized simplified recursion equation is then derived based on the time-convolutionless mode-coupling theory (TMCT) proposed recently by the present author. This phenomenological approach is successfully applied to check from a unified point of view how strong liquids are different from fragile liquids. The simulation results for those two types of liquids are analyzed consistently by the numerical solutions of the recursion equation. Then, the control parameter dependence of the renormalized nonlinear exponent in both types of liquids is fully investigated. Thus, it is shown that there exists a novel difference between the universal behavior in strong liquids and that in fragile liquids not only for their transport coefficients but also for their dynamics.

  6. Study of viscosity of aluminum melt during glass transition by molecular dynamics and Green-Kubo formula

    NASA Astrophysics Data System (ADS)

    Kirova, E. M.; Pisarev, V. V.

    2016-11-01

    Molecular dynamics study of shear viscosity behavior of liquid aluminum is performed. The embedded atom method potential is used at the simulation of isobaric cooling. The viscosity is calculated using the Green-Kubo formula. The stress autocorrelation functions are obtained in the range 300-1200 K. The calculated kinematic viscosity is in agreement with the experimental data for the temperatures above melting temperature. The steep change of the shear viscosity is found below 650 K which we associate with the glass transition and is in a good agreement with the temperature which is obtained using the calorimetric criterion Kolotova et al (2015 J. Non-Cryst. Solids 429 98). The viscosity coefficient can not be calculated using the direct atomistic simulations below that temperature.

  7. Dynamics of a thermo-responsive microgel colloid near to the glass transition

    NASA Astrophysics Data System (ADS)

    Di, Xiaojun; Peng, Xiaoguang; McKenna, Gregory B.

    2014-02-01

    In a previous study, we used diffusing wave spectroscopy (DWS) to investigate the aging signatures of a thermo-sensitive colloidal glass and compared them with those of molecular glasses from the perspective of the Kovacs temperature-jump, volume recovery experiments [X. Di, K. Z. Win, G. B. McKenna, T. Narita, F. Lequeux, S. R. Pullela, and Z. Cheng, Phys. Rev. Lett. 106, 095701 (2011)]. In order to further look into the glassy behavior of colloidal systems, we have synthesized a new core/shell particle with lower temperature sensitivity and studied the aging signatures of concentrated systems, again following Kovacs' protocol. Similar signatures of aging to those observed previously were seen in this new system. Moreover, a systematic study of the temperature dependence of the dynamics of the new system for different weight concentrations was performed and the dynamic fragility index m was determined. We have also explored the use of the properties determined from the DWS measurements to obtain macroscopic rheological parameters - storage modulus G'(ω) and loss modulus G″(ω) - using a generalized Stokes-Einstein approach. The micro-rheological and macro-rheological values are in reasonable agreement.

  8. Predict the glass transition temperature and plasticization of β-cyclodextrin/water binary system by molecular dynamics simulation.

    PubMed

    Zhou, Guohui; Zhao, Tianhai; Wan, Jie; Liu, Chengmei; Liu, Wei; Wang, Risi

    2015-01-12

    The glass transition temperature, diffusion behavior and plasticization of β-cyclodextrin (β-CD), and three amorphous β-CD/water mixtures (3%, 5% and 10% [w/w] water, respectively) were investigated by molecular dynamics simulation, which were performed using Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) force field and isothermal-isobaric ensembles. The specific volumes of four amorphous cells were obtained as a function of temperature. The glass transition temperatures (T(g)) were estimated to be 334.25 K, 325.12 K, 317.32 K, and 305.41 K for amorphous β-CD containing 0%, 3%, 5% and 10% w/w water, respectively, which compares well with the values observed in published literature. The radial distribution function was computed to elucidate the intermolecular interactions between amorphous β-CD and water, which acts as a plasticizer. These results indicate that the hydrogen bond interactions of oxygen in hydroxyl ions was higher than oxygen in acetal groups in β-CD amorphous mixtures with that in water, due to less accessibility of ring oxygens to the surrounding water molecules. The mobility of water molecules was investigated over various temperature ranges, including the rubbery and glassy phases of the β-CD/water mixtures, by calculating the diffusion coefficients and the fractional free volume. In β-CD amorphous models, the higher mobility of water molecules was observed at temperatures above Tg, and almost no change was observed at temperatures below T(g).

  9. Reorientational dynamics in molecular liquids as revealed by dynamic light scattering: from boiling point to glass transition temperature.

    PubMed

    Schmidtke, B; Petzold, N; Kahlau, R; Rössler, E A

    2013-08-28

    We determine the reorientational correlation time τ of a series of molecular liquids by performing depolarized light scattering experiments (double monochromator, Fabry-Perot interferometry, and photon correlation spectroscopy). Correlation times in the range 10(-12) s-100 s are compiled, i.e., the full temperature interval between the boiling point and the glass transition temperature T(g) is covered. We focus on low-T(g) liquids for which the high-temperature limit τ ≅ 10(-12) s is easily accessed by standard spectroscopic equipment (up to 440 K). Regarding the temperature dependence three interpolation formulae of τ(T) with three parameters each are tested: (i) Vogel-Fulcher-Tammann equation, (ii) the approach recently discussed by Mauro et al. [Proc. Natl. Acad. Sci. U.S.A. 106, 19780 (2009)], and (iii) our approach decomposing the activation energy E(T) in a constant high temperature value E∞ and a "cooperative part" E(coop)(T) depending exponentially on temperature [Schmidtke et al., Phys. Rev. E 86, 041507 (2012)]. On the basis of the present data, approaches (i) and (ii) are insufficient as they do not provide the correct crossover to the high-temperature Arrhenius law clearly identified in the experimental data while approach (iii) reproduces the salient features of τ(T). It allows to discuss the temperature dependence of the liquid's dynamics in terms of a E(coop)(T)/E∞ vs. T/E∞ plot and suggests that E∞ controls the energy scale of the glass transition phenomenon.

  10. Reorientational dynamics in molecular liquids as revealed by dynamic light scattering: From boiling point to glass transition temperature

    NASA Astrophysics Data System (ADS)

    Schmidtke, B.; Petzold, N.; Kahlau, R.; Rössler, E. A.

    2013-08-01

    We determine the reorientational correlation time τ of a series of molecular liquids by performing depolarized light scattering experiments (double monochromator, Fabry-Perot interferometry, and photon correlation spectroscopy). Correlation times in the range 10-12 s-100 s are compiled, i.e., the full temperature interval between the boiling point and the glass transition temperature Tg is covered. We focus on low-Tg liquids for which the high-temperature limit τ ≅ 10-12 s is easily accessed by standard spectroscopic equipment (up to 440 K). Regarding the temperature dependence three interpolation formulae of τ(T) with three parameters each are tested: (i) Vogel-Fulcher-Tammann equation, (ii) the approach recently discussed by Mauro et al. [Proc. Natl. Acad. Sci. U.S.A. 106, 19780 (2009)], and (iii) our approach decomposing the activation energy E(T) in a constant high temperature value E∞ and a "cooperative part" Ecoop(T) depending exponentially on temperature [Schmidtke et al., Phys. Rev. E 86, 041507 (2012)], 10.1103/PhysRevE.86.041507. On the basis of the present data, approaches (i) and (ii) are insufficient as they do not provide the correct crossover to the high-temperature Arrhenius law clearly identified in the experimental data while approach (iii) reproduces the salient features of τ(T). It allows to discuss the temperature dependence of the liquid's dynamics in terms of a Ecoop(T)/E∞ vs. T/E∞ plot and suggests that E∞ controls the energy scale of the glass transition phenomenon.

  11. Glass transition and dynamics in BSA-water mixtures over wide ranges of composition studied by thermal and dielectric techniques.

    PubMed

    Panagopoulou, A; Kyritsis, A; Sabater I Serra, R; Gómez Ribelles, J L; Shinyashiki, N; Pissis, P

    2011-12-01

    Protein-water dynamics in mixtures of water and a globular protein, bovine serum albumin (BSA), was studied over wide ranges of composition, in the form of solutions or hydrated solid pellets, by differential scanning calorimetry (DSC), thermally stimulated depolarization current technique (TSDC) and dielectric relaxation spectroscopy (DRS). Additionally, water equilibrium sorption isotherm (ESI) measurements were performed at room temperature. The crystallization and melting events were studied by DSC and the amount of uncrystallized water was calculated by the enthalpy of melting during heating. The glass transition of the system was detected by DSC for water contents higher than the critical water content corresponding to the formation of the first sorption layer of water molecules directly bound to primary hydration sites, namely 0.073 (grams of water per grams of dry protein), estimated by ESI. A strong plasticization of the T(g) was observed by DSC for hydration levels lower than those necessary for crystallization of water during cooling, i.e. lower than about 0.3 (grams of water per grams of hydrated protein) followed by a stabilization of T(g) at about -80°C for higher water contents. The α relaxation associated with the glass transition was also observed in dielectric measurements. In TSDC a microphase separation could be detected resulting in double T(g) for some hydration levels. A dielectric relaxation of small polar groups of the protein plasticized by water, overlapped by relaxations of uncrystallized water molecules, and a separate relaxation of water in the crystallized water phase (bulk ice crystals) were also recorded.

  12. Anisotropy in binary metallic spin-glass alloys. I. Transition metals

    NASA Astrophysics Data System (ADS)

    Goldberg, Stephen M.; Levy, Peter M.; Fert, A.

    1986-01-01

    We derive the anisotropic pair interaction for binary spin-glass systems for the case where the ternary site which scatters electrons by means of the spin-orbit interaction is a magnetic site characterized by spin-split virtual bound states. We find that there are two distinctly different types of anisotropic Dzyaloshinsky-Moriya couplings. One depends only upon the magnitude of the third magnetic moment and has the vector coupling form familiar from ternary spin glasses: (R^i×R^j).(Si×Sj). The second type depends upon both the magnitude and direction of the third moment and has the coupling structure (R^i×R^j).S^k (Si×Sj).S^k. We define spin-dependent critical distances R+/-c in terms of which the coefficients of the two anisotropic interactions, acting relatively independently, take on preasymptotic or asymptotic forms according to whether the average interparticle spacings are less than or greater than the R+/-c. These critical distances are themselves variable, depending upon the separation of the virtual bound-state resonances from the Fermi surface. When the resonances are sufficiently close to EF, there will be large regions where the interactions exhibit preasymptotic behavior (1/R3). If the resonances are sufficiently far from EF, the interactions quickly reach their asymptotic forms. In the practical cases of CuMn and AuFe, we find that the critical distances are of the order of a nearest-neighbor distance so that the interactions fall off as 1/R4. This feature has great consequence in calculations of the macroscopic anisotropy energy.

  13. Quantum critical scaling at a Bose-glass/superfluid transition: Theory and experiment for a model quantum magnet

    NASA Astrophysics Data System (ADS)

    Yu, Rong; Miclea, Corneliu F.; Weickert, Franziska; Movshovich, Roman; Paduan-Filho, Armando; Zapf, Vivien S.; Roscilde, Tommaso

    2012-10-01

    In this paper we investigate the quantum phase transition from magnetic Bose Glass to magnetic Bose-Einstein condensation induced by a magnetic field in NiCl2·4SC(NH2)2 (dichloro-tetrakis-thiourea-nickel, or DTN), doped with Br (Br-DTN) or site diluted. Quantum Monte Carlo simulations for the quantum phase transition of the model Hamiltonian for Br-DTN, as well as for site-diluted DTN, are consistent with conventional scaling at the quantum critical point and with a critical exponent z verifying the prediction z=d; moreover the correlation length exponent is found to be ν=0.75(10), and the order parameter exponent to be β=0.95(10). We investigate the low-temperature thermodynamics at the quantum critical field of Br-DTN both numerically and experimentally, and extract the power-law behavior of the magnetization and of the specific heat. Our results for the exponents of the power laws, as well as previous results for the scaling of the critical temperature to magnetic ordering with the applied field, are incompatible with the conventional crossover-scaling Ansatz proposed by Fisher [Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.40.546 40, 546 (1989)]. However they can all be reconciled within a phenomenological Ansatz in the presence of a dangerously irrelevant operator.

  14. Cooperativity at the glass transition: A perspective from facilitation on the analysis of relaxation in modulated calorimetry

    NASA Astrophysics Data System (ADS)

    Tombari, Elpidio; Pieruccini, Marco

    2016-11-01

    The glass transition region in nonconfined polymeric and low-molecular-weight supercooled liquids is probed by temperature-modulated calorimetry at a frequency of 3.3 mHz. From the distribution of relaxation times derived by analyzing the complex heat capacity, the number Nα of cooperatively rearranging units is estimated. This is done by resorting to a method in which cooperative motion is viewed as a result of a spontaneous regression of energy fluctuations. After a first, local, structural transition occurs, the energy threshold for the rearrangement of adjacent molecular units decreases progressively. This facilitation process is associated to a corresponding evolution of the density of states in a canonical representation and may be considered as a continuous spanning through different dynamic states toward a condition in which configurational constraints disappear. A good agreement is found with the Nα values obtained from the same calorimetric data within the framework of Donth's fluctuation theory. It is shown that, at variance from previous treatments, Nα can be estimated from just the relaxation function, without resorting to the knowledge of the configurational entropy. Examples point to a modest dependence of the Nα estimates on the experimental method used to derive the relaxation function.

  15. Physical Aging of Thin and Ultrathin Free-Standing Polymer Films: Effect of Stress and Reduced Glass Transitions

    NASA Astrophysics Data System (ADS)

    Pye, Justin; Roth, Connie

    2014-03-01

    While great effort has been made in elucidating the effect of confinement on the glass transition (Tg) in polymers, considerably less work has been done on physical aging. Starting with supported films, we have previously shown that the reduced physical aging rates in ultrathin polystyrene (PS) films can be linked to the reduced Tg near the free surface [Macromolecules 2010, 43, 8296]. We then showed that high molecular weight (MW) free-standing PS films have two reduced Tgs suggesting that two separate mechanisms are acting simultaneously to propagate enhanced mobility at the free surface deeper into the film [PRL 2011, 107, 235701]. To help determine the mechanisms of these two reduced Tgs, we performed physical aging measurements on these high MW free-standing PS films. For thick films (220-1800 nm) in which there are no Tg reductions, we find that the physical aging rate depends strongly on stress caused by thermal expansion mismatch between film and support. This stress, applied to the films as they are quenched into the glassy state, can nearly double the physical aging rate when changing the frame material from polycarbonate to silicon [Macromolecules 2013, DOI:10.1021/ma401872u]. Finally, ultrathin high MW PS films held at a temperature between the two Tgs do exhibit physical aging, indicating that at least some of the film is glassy between these two transitions.

  16. The vibrational behavior of silica clusters at the glass transition: Ab initio calculations and thermodynamic implications.

    PubMed

    Ottonello, G; Zuccolini, M Vetuschi; Belmonte, D

    2010-09-14

    We present the results of a computational investigation with ab initio procedures of the structure-energy and vibrational properties of silica clusters in a dielectric continuum with dielectric constant ε=3.8, through density functional theory/B3LYP gas phase calculations coupled with a polarized continuum model approach [integral equation formalism applied to a polarized continuum (IEFPCM)] and those of the periodical structure D(6h) which leads to the α-cristobalite polymorph of silica when subjected to symmetry operations with the same functional within the linear combination of atomic orbitals (LCAO) approximation and in the framework of Bloch's theorem. Based on the computed energies and vibrational features, an aggregate of the D(6h) network and the monomer locally ordered in the short-medium range and both present in the glass in a mutual arrangement lacking of spatial continuity reproduces satisfactorily the experimentally observed low T heat capacity and the deviation from the Debye T(3) law. Above T(g), the experimental heat capacity of the liquid is perfectly reproduced summing to the internal modes the translational and rotational contributions to the bulk heat capacity and subtracting the (acoustic) terms arising from coherent motion (no longer existent).

  17. Analytical estimates of the locations of phase transition points in the ground state for the bimodal Ising spin glass model in two dimensions

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Chiaki

    2014-05-01

    We analytically estimate the locations of phase transition points in the ground state for the ± J random bond Ising model with asymmetric bond distributions on the square lattice. We propose and study the percolation transitions for two types of bond shared by two non-frustrated plaquettes. The present method indirectly treats the sizes of clusters of correlated spins for the ferromagnetic and spin glass orders. We find two transition points. The first transition point is the phase transition point for the ferromagnetic order, and the location is obtained as p_c^{(1)} ≈ 0.895 399 54 as the solution of [p^2 + 3 (1-p)^2 ]^2 p^3 - {1}/{2} = 0. The second transition point is the phase transition point for the spin glass order, and the location is obtained as p_c^{(2)} = {1}/{4} [2 + √ {2 (√ {5} - 1)}] ≈ 0.893 075 69. Here, p is the ferromagnetic bond concentration, and 1 - p is the antiferromagnetic bond concentration. The obtained locations are very reasonably close to the previously estimated locations. This study suggests the presence of an intermediate phase between p_c^{(1)} and p_c^{(2)}; however, since the present method produces remarkable values but has no mathematical proof for accuracy yet, no conclusions are drawn in this article about the presence of the intermediate phase.

  18. A cavitation transition in the energy landscape of simple cohesive liquids and glasses

    NASA Astrophysics Data System (ADS)

    Altabet, Y. Elia; Stillinger, Frank H.; Debenedetti, Pablo G.

    2016-12-01

    In particle systems with cohesive interactions, the pressure-density relationship of the mechanically stable inherent structures sampled along a liquid isotherm (i.e., the equation of state of an energy landscape) will display a minimum at the Sastry density ρS. The tensile limit at ρS is due to cavitation that occurs upon energy minimization, and previous characterizations of this behavior suggested that ρS is a spinodal-like limit that separates all homogeneous and fractured inherent structures. Here, we revisit the phenomenology of Sastry behavior and find that it is subject to considerable finite-size effects, and the development of the inherent structure equation of state with system size is consistent with the finite-size rounding of an athermal phase transition. What appears to be a continuous spinodal-like point at finite system sizes becomes discontinuous in the thermodynamic limit, indicating behavior akin to a phase transition. We also study cavitation in glassy packings subjected to athermal expansion. Many individual expansion trajectories averaged together produce a smooth equation of state, which we find also exhibits features of finite-size rounding, and the examples studied in this work give rise to a larger limiting tension than for the corresponding landscape equation of state.

  19. Iso-conversional analysis of glass transition and crystallization in as-synthesis high yield of glassy Se98Cd2 nanorods

    NASA Astrophysics Data System (ADS)

    Dohare, C.; Mehta, N.

    2013-08-01

    In the present work, we have prepared high yield of glassy Se98Cd2 nanorods using melt-quench technique. The morphology and micro-structural analysis of as-prepared nanorods are characterized by SEM, XRD and EDX techniques. The glass transition and crystallization kinetics of glassy Se98Cd2 nanorods are studied at different heating rates (5, 10, 15, 20 K/min) using differential scanning calorimetric (DSC) technique. Four iso-conversional methods [Kissinger-Akahira-Sunose (KAS), Flynn-Wall-Ozawa (FWO), Tang and Straink] were used to determine the various kinetic parameters (crystallization temperature T αc, transition temperature T αg, activation energy of crystallization E αc, activation energy of glass transition E αg, order parameter n) of glass transition and crystallization process in non-isothermal mode. The monotonous decrease in activation energy E α with the crystallization fraction α confirm the complex kinetic mechanism of the glassy Se98Cd2 nanorods.

  20. Topological origin of fragility, network adaptation, and rigidity and stress transitions in especially homogenized nonstoichiometric binary Ge(x)S(100-x) glasses.

    PubMed

    Chakraborty, Shibalik; Boolchand, P

    2014-02-27

    Binary GexS100-x glasses reveal a richness of elastic and chemical phase transitions driven by network topology. With increasing Ge content (x), well-defined rigidity at xc(1) = 19.3(5)% and a stress transition at xc(2) = 24.9(5)% are observed in Raman scattering. In modulated DSC measurements, the nonreversing enthalpy of relaxation at Tg reveals a square-well-like minimum (reversibility window) with window walls that coincide with the two elastic phase transitions. Molar volumes show a trapezoidal-like minimum (volumetric window) with edges that nearly coincide with the reversibility window. These optical, thermal, and volumetric results are consistent with an isostatically rigid elastic phase (intermediate phase, IP) present between the rigidity (xc(1)) and stress (xc(2)) transitions. Complex Cp measurements show melt fragility index, m(x) to also show a global minimum in the reversibility window with m < 20, underscoring that melt dynamics encode the elastic behavior of the glass formed at Tg. The strong nature of melts formed in the IP has an important practical consequence; they lead to slow homogenization (over days not hours) of nonstoichiometric Ge-S batch compositions reacted at high temperatures. Homogenization of chalcogenide melts/glasses over a scale of a few micrometers is a prerequisite to observe the intrinsic physical properties of these materials.

  1. Protein Internal Dynamics Associated With Pre-System Glass Transition Temperature Endothermic Events: Investigation of Insulin and Human Growth Hormone by Solid State Hydrogen/Deuterium Exchange.

    PubMed

    Fang, Rui; Grobelny, Pawel J; Bogner, Robin H; Pikal, Michael J

    2016-11-01

    Lyophilized proteins are generally stored below their glass transition temperature (Tg) to maintain long-term stability. Some proteins in the (pure) solid state showed a distinct endotherm at a temperature well below the glass transition, designated as a pre-Tg endotherm. The pre-Tg endothermic event has been linked with a transition in protein internal mobility. The aim of this study was to investigate the internal dynamics of 2 proteins, insulin and human growth hormone (hGH), both of which exhibit the pre-Tg endothermic event with onsets at 50°C-60°C. Solid state hydrogen/deuterium (H/D) exchange of both proteins was characterized by Fourier transform infrared spectroscopy over a temperature range from 30°C to 80°C. A distinct sigmoidal transition in the extent of H/D exchange had a midpoint of 56.1 ± 1.2°C for insulin and 61.7 ± 0.9°C for hGH, suggesting a transition to greater mobility in the protein molecules at these temperatures. The data support the hypothesis that the pre-Tg event is related to a transition in internal protein mobility associated with the protein dynamical temperature. Exceeding the protein dynamical temperature is expected to activate protein internal motion and therefore may have stability consequences.

  2. Effect of hydrolyzed whey protein on surface morphology, water sorption, and glass transition temperature of a model infant formula.

    PubMed

    Kelly, Grace M; O'Mahony, James A; Kelly, Alan L; O'Callaghan, Donal J

    2016-09-01

    Physical properties of spray-dried dairy powders depend on their composition and physical characteristics. This study investigated the effect of hydrolyzed whey protein on the microstructure and physical stability of dried model infant formula. Model infant formulas were produced containing either intact (DH 0) or hydrolyzed (DH 12) whey protein, where DH=degree of hydrolysis (%). Before spray drying, apparent viscosities of liquid feeds (at 55°C) at a shear rate of 500 s(-1) were 3.02 and 3.85 mPa·s for intact and hydrolyzed infant formulas, respectively. On reconstitution, powders with hydrolyzed whey protein had a significantly higher fat globule size and lower emulsion stability than intact whey protein powder. Lactose crystallization in powders occurred at higher relative humidity for hydrolyzed formula. The Guggenheim-Anderson-de Boer equation, fitted to sorption isotherms, showed increased monolayer moisture when intact protein was present. As expected, glass transition decreased significantly with increasing water content. Partial hydrolysis of whey protein in model infant formula resulted in altered powder particle surface morphology, lactose crystallization properties, and storage stability.

  3. Influence of compression on water sorption, glass transition, and enthalpy relaxation behavior of freeze-dried amorphous sugar matrices.

    PubMed

    Imamura, Koreyoshi; Kagotani, Ryo; Nomura, Mayo; Tanaka, Kazuhiro; Kinugawa, Kohshi; Nakanishi, Kazuhiro

    2011-04-15

    An amorphous matrix comprised of sugar molecules are frequently used in the pharmaceutical industry. The compression of the amorphous sugar matrix improves the handling. Herein, the influence of compression on the water sorption of an amorphous sugar matrix was investigated. Amorphous sugar samples were prepared by freeze-drying, using several types of sugars, and compressed at 0-443 MPa. The compressed amorphous sugar samples as well as uncompressed samples were rehumidified at given RHs, and the equilibrium water content and glass transition temperature (T(g)) were then measured. Compression resulted in a decrease in the equilibrium water content of the matrix, the magnitude of which was more significant for smaller sized sugars. Diffusivity of water vapor in the sample was also decreased to one-hundredth by the compression. The T(g) value for a given RH remained unchanged, irrespective of the compression. Accordingly, the decrease in T(g) with increasing water content increased as the result of compression. The structural relaxation of the amorphous sugar matrices were also examined and found to be accelerated to the level of a non-porous amorphous sugar matrix as the result of the compression. The findings indicate that pores contained in freeze-dried sugar samples interfere with the propagation of structural relaxation.

  4. Influence of microwave vacuum drying on glass transition temperature, gelatinization temperature, physical and chemical qualities of lotus seeds.

    PubMed

    Zhao, Yingting; Jiang, Yajun; Zheng, Baodong; Zhuang, Weijing; Zheng, Yafeng; Tian, Yuting

    2017-08-01

    This study investigated the effects of microwave power density on effective moisture diffusion coefficient (Deff), glass transition temperature (Tg), gelatinization temperature (TP), physical and chemical qualities of lotus seeds during microwave vacuum drying. Deff increased by 42% and 127% at 15W/g and 20W/g, respectively, when compared with 10W/g. TP was negatively correlated with the relaxation times of T21 and T22, while Tg was negatively correlated with the relative areas A22. The rates of change of color were observed to be divided roughly into two periods, consisting of a rapid change caused by enzymatic browning and a slow change caused by non-enzymatic browning. An equation is provided to illustrate the relationship of k1 and k2 of Peleg's model depending on power density during rehydration kinetics. The samples at 20W/g exhibited the higher content of amino acid (540.19mg/100gd.b.) while lower starch (17.53g/100gd.b.).

  5. Free Volume, Energy, and Entropy at the Polymer Glass Transition: New Results and Connections with Widely Used Treatments

    NASA Astrophysics Data System (ADS)

    White, Ronald; Lipson, Jane

    Free volume has a storied history in polymer physics. To introduce our own results, we consider how free volume has been defined in the past, e.g. in the works of Fox and Flory, Doolittle, and the equation of Williams, Landel, and Ferry. We contrast these perspectives with our own analysis using our Locally Correlated Lattice (LCL) model where we have found a striking connection between polymer free volume (analyzed using PVT data) and the polymer's corresponding glass transition temperature, Tg. The pattern, covering over 50 different polymers, is robust enough to be reasonably predictive based on melt properties alone; when a melt hits this T-dependent boundary of critical minimum free volume it becomes glassy. We will present a broad selection of results from our thermodynamic analysis, and make connections with historical treatments. We will discuss patterns that have emerged across the polymers in the energy and entropy when quantified as ''per LCL theoretical segment''. Finally we will relate the latter trend to the point of view popularized in the theory of Adam and Gibbs. The authors gratefully acknowledge support from NSF DMR-1403757.

  6. Understanding and characterizing the effect of nanoscale confinement on glass transition temperature and film dewetting of macrocylic polystyrene

    NASA Astrophysics Data System (ADS)

    Zhang, Lanhe; Elupula, Ravinder; Grayson, Scott; Torkelson, John

    There is a growing interest in the dynamics of different polymer topologies when confined to nanoscopic length scales. Macrocyclic polymers have attracted research interest because their lack of chain ends and cyclic topology has led to a range of unique physical properties. Cyclic polystyrene (c-PS) of well-defined molecular weight (MW) ranging from 2,300 to 8,700 g/mol was synthesized via click cyclization of dilute solutions of linear PS (l-PS) with azide and alkyne end functionalities. The click reaction enables nearly quantitative cyclization of l-PS. Differential scanning calorimetry was used to measure bulk glass transition temperature (Tg) and fragility of c-PS, both of which exhibit less MW dependence compared to l-PS. Compared to thin l-PS films, thin c-PS films exhibited extraordinary stability against dewetting. 22-nm-thick c-PS films were nearly stable for up to 4 hr at bulk Tg + 45 °C in contrast, 22-nm-thick l-PS films underwent severe dewetting. Nanoconfinement effects on Tgand fragility of c-PS are investigated using ellipsometry and/or fluorescence spectroscopy and compared to effects for l-PS precursors as well as commercial anionic l-PS standards.

  7. Sorption isotherms, thermodynamic properties and glass transition temperature of mucilage extracted from chia seeds (Salvia hispanica L.).

    PubMed

    Velázquez-Gutiérrez, Sandra Karina; Figueira, Ana Cristina; Rodríguez-Huezo, María Eva; Román-Guerrero, Angélica; Carrillo-Navas, Hector; Pérez-Alonso, César

    2015-05-05

    Freeze-dried chia mucilage adsorption isotherms were determined at 25, 35 and 40°C and fitted with the Guggenheim-Anderson-de Boer model. The integral thermodynamic properties (enthalpy and entropy) were estimated with the Clausius-Clapeyron equation. Pore radius of the mucilage, calculated with the Kelvin equation, varied from 0.87 to 6.44 nm in the temperature range studied. The point of maximum stability (minimum integral entropy) ranged between 7.56 and 7.63kg H2O per 100 kg of dry solids (d.s.) (water activity of 0.34-0.53). Enthalpy-entropy compensation for the mucilage showed two isokinetic temperatures: (i) one occurring at low moisture contents (0-7.56 kg H2O per 100 kg d.s.), controlled by changes in water entropy; and (ii) another happening in the moisture interval of 7.56-24 kg H2O per 100 kg d.s. and was enthalpy driven. The glass transition temperature Tg of the mucilage fluctuated between 42.93 and 57.93°C.

  8. The glass transition and sub-T(g)-relaxation in pharmaceutical powders and dried proteins by thermally stimulated current.

    PubMed

    Reddy, Renuka; Chang, Liuquan ' Lucy '; Luthra, Suman; Collins, George; Lopez, Ciro; Shamblin, Sheri L; Pikal, Michael J; Gatlin, Larry A; Shalaev, Evgenyi Y

    2009-01-01

    The main goal of the study was to evaluate the applicability of thermally stimulated current (TSC) as a measure of molecular mobility in dried globular proteins. Three proteins, porcine somatotropin, bovine serum albumin, and immunoglobulin, as well as materials with a strong calorimetric glass transition (T(g)), that is, indomethacin and poly(vinypyrrolidone) (PVP), were studied by both TSC and differential scanning calorimetry (DSC). Protein/sugar colyophilized mixtures were also studied by DSC, to estimate calorimetric T(g) for proteins using extrapolation procedure. In the majority of cases, TSC detected relaxation events that were not observed by DSC. For example, a sub-T(g) TSC event (beta-relaxation) was observed for PVP at approximately 120 degrees C, which was not detected by the DSC. Similarly, DSC did not detect events in any of the three proteins below the thermal denaturation temperature whereas a dipole relaxation was detected by TSC in the range of 90-140 degrees C depending on the protein studied. The TSC signal in proteins was tentatively assigned as localized mobility of protein segments, which is different from a large-scale cooperative motions usually associated with calorimetric T(g). TSC is a promising method to study the molecular mobility in proteins and other materials with weak calorimetric T(g).

  9. Correlation Of Ortho-Positronium Intensity With Doppler Broadening For Rubber Above And Below The Glass Transition Temperature

    SciTech Connect

    Towry, Amanda; Quarles, C. A.

    2011-06-01

    Previous research has demonstrated a correlation between the Doppler broadening S parameter and the intensity of the ortho-positronium lifetime component in polymers that depends on the composition of the polymer. On the other hand, rubber polymers do not show this correlation and behave more like liquids for which the S parameter is essentially independent of the ortho-positronium intensity. The bubble model has been suggested as an explanation of the lack of correlation in analogy with liquids, but the bubble model applied to rubber is controversial. There are two important differences between the rubber and the polymers samples: first, the rubber samples at room temperature were all above the glass transition temperature (T{sub G}). Second, the rubber samples all contained sulfur and were vulcanized. These differences were investigated by first measuring the S parameter for six rubber samples below T{sub G} where the bubble model would not be expected to work. Second, raw rubber samples that did not contain any sulfur and were unvulcanized were studied at room temperature. The results show that the lack of correlation between the S parameter and the ortho-positronium intensity previously observed for vulcanized rubber is due to the inhibition of positronium formation by the sulfur in the vulcanized rubber samples rather than to the rubber being above T{sub G}.

  10. Water sorption, glass transition, and protein-stabilizing behavior of an amorphous sucrose matrix combined with various materials.

    PubMed

    Imamura, Koreyoshi; Yokoyama, Toru; Fukushima, Atsushi; Kinuhata, Mitsunori; Nakanishi, Kazuhiro

    2010-11-01

    The effects of various additives on the physical properties of an amorphous sugar matrix were compared. Amorphous, sugar-additive mixtures were prepared by freeze-drying and then rehumidified at given RHs. Sucrose and eighteen types of substances were used as the sugar and the additive, respectively, and water sorption, glass-to-rubber transition, and protein stabilization during freeze-drying for the various sucrose-additive mixtures were examined. The additives were categorized into two groups according to their effects on T(g) and water sorption. Presence of polysaccharides, cyclodextrins, and polymers (large-sized additives) resulted in a decrease in equilibrium water content from the ideal value calculated from individual water contents for sucrose and additive, and in contrast, low MW substances containing ionizable groups (small-ionized additives) resulted in an increase. The increase in T(g) by the addition of large-sized additives was significant at the additive contents >50 wt.% whereas the T(g) was markedly increased in the lower additive content by the addition of small-ionized additives. The addition of small-ionized additives enhanced the decrease in T(g) with increasing water content. The protein stabilizing effect was decreased with increasing additive content in the cases of the both groups of the additives.

  11. Effect of Adding Plasticizer on Ionic Conductivity and Glass Transition Temperature of PMMA+Lithium Iodide Complexes

    NASA Astrophysics Data System (ADS)

    Zulkepely, N. R.; Majid, S. R.; Osman, Z.

    2010-07-01

    Polymer electrolyte films based on poly-methylmethacrylate (PMMA) have been prepared using the solution casting technique. Ethylene carbonate (EC) was used as a plasticizer and lithium iodide (LiI) as a doping salt. The ionic conductivity of the films was analyzed using ac impedance spectroscopy. It can be observed that the ionic conductivity of PMMA+LiI film increased when the plasticizer was added. The conductivity-temperature dependence studies were carried out in the temperature range between 303 and 393 K. The results indicate that the conductivity is increased when the temperature is increased. The glass transition temperature, Tg of the polymer electrolyte films was measured using Differential Scanning Calorimetry (DSC). The Tg of the pure PMMA film is ˜125 °C. On addition of plasticizer, it can be observed that the Tg of PMMA+LiI film is decreased. This reveals that the plasticizer, EC has reduced the Tg of the polymer electrolyte film by increasing segmental motion of the polymer resulting in conductivity enhancement.

  12. Influence of manufacturing factors on physical stability and solubility of solid dispersions containing a low glass transition temperature drug.

    PubMed

    Sakurai, Atsushi; Sako, Kazuhiro; Maitani, Yoshie

    2012-01-01

    In this study, we investigated the effect of manufacturing factors such as particle size, water content and manufacturing method on the physical stability and solubility of solid dispersion formulations of a low-glass-transition-temperature (T(g)) drug. Solid dispersions were prepared from polyvinylpyrrolidone (PVP) and hydroxypropylmethylcellulose (HPMC) by hot melt extrusion or spray drying. Water content of solid dispersions prepared by hot melt extrusion determined by dynamic moisture sorption measurement was increased drastically with relative humidity below a certain level of particle size. The blends with a lower water content (0.8%) prepared by hot melt extrusion during storage were more stable than those with a higher water content (3.5%) prepared by spray drying, which caused rapid recrystallization. Physical stability in the hot melt blends may be attributed to reduced molecular mobility due to a higher T(g). Dissolution study revealed that solid dispersions prepared by hot melt extrusion with the smallest particle size showed decreased solubility, attributed to reduced wetting properties (surface energy), which is not predictable by the Noyes-Whitney equation. Taken together, these results indicate that the control of particle size concerned in water content or wetting properties is critical to ensuring the physical stability or enhancing solubility of low-T(g) drugs. Further, hot melt extrusion, which can reduce water content, is a suitable manufacturing method for solid dispersions of low-T(g) drugs.

  13. Selecting polymers for two-phase partitioning bioreactors (TPPBs): Consideration of thermodynamic affinity, crystallinity, and glass transition temperature.

    PubMed

    Bacon, Stuart L; Peterson, Eric C; Daugulis, Andrew J; Parent, J Scott

    2015-01-01

    Two-phase partitioning bioreactor technology involves the use of a secondary immiscible phase to lower the concentration of cytotoxic solutes in the fermentation broth to subinhibitory levels. Although polymeric absorbents have attracted recent interest due to their low cost and biocompatibility, material selection requires the consideration of properties beyond those of small molecule absorbents (i.e., immiscible organic solvents). These include a polymer's (1) thermodynamic affinity for the target compound, (2) degree of crystallinity (wc ), and (3) glass transition temperature (Tg ). We have examined the capability of three thermodynamic models to predict the partition coefficient (PC) for n-butyric acid, a fermentation product, in 15 polymers. Whereas PC predictions for amorphous materials had an average absolute deviation (AAD) of ≥16%, predictions for semicrystalline polymers were less accurate (AAD ≥ 30%). Prediction errors were associated with uncertainties in determining the degree of crystallinity within a polymer and the effect of absorbed water on n-butyric acid partitioning. Further complications were found to arise for semicrystalline polymers, wherein strongly interacting solutes increased the polymer's absorptive capacity by actually dissolving the crystalline fraction. Finally, we determined that diffusion limitations may occur for polymers operating near their Tg , and that the Tg can be reduced by plasticization by water and/or solute. This study has demonstrated the impact of basic material properties that affects the performance of polymers as sequestering phases in TPPBs, and reflects the additional complexity of polymers that must be taken into account in material selection.

  14. Freezing and glass transitions upon cooling and warming and ice/freeze-concentration-solution morphology of emulsified aqueous citric acid.

    PubMed

    Bogdan, Anatoli; Molina, Mario J; Tenhu, Heikki

    2016-12-01

    Although freeze-induced phase separation and the ice/FCS (freeze-concentration solution) morphology of aqueous solutions play an important role in fields ranging from life sciences and biotechnology to geophysics and high-altitude ice clouds, their understanding is far from complete. Herein, using differential scanning calorimetry (DSC) and optical cryo-microscope (OC-M), we have studied the freezing and glass transition behavior and the ice/FCS morphology of emulsified 10-60wt% CA (citric acid) solutions in the temperature region of ∼308and153K. We have obtained a lot of new result which are understandable and unclear. The most essential understandable results are as follows: (i) similar to bulk CA/H2O, emulsified CA/H2O also freezes upon cooling and warming and (ii) the ice/FCS morphology of frozen drops smaller than ∼3-4μm is less ramified than that of frozen bulk solutions. Unclear results, among others, are as follows: (i) in contrast to bulk solutions, which produce one freezing event, emulsified CA/H2O produces two freezing events and (ii) in emulsions, drop concentration is not uniform. Our results demonstrate that DSC thermograms and OC-M images/movies are mutually supplementary and allow us to extract important information which cannot be gained when DSC and OC-M techniques are used alone.

  15. Glass-like dynamics of the strain-induced coil/helix transition on a permanent polymer network

    NASA Astrophysics Data System (ADS)

    Ronsin, O.; Caroli, C.; Baumberger, T.

    2016-02-01

    We study the stress response to a step strain of covalently bonded gelatin gels in the temperature range where triple helix reversible crosslink formation is prohibited. We observe slow stress relaxation towards a T-dependent finite asymptotic level. We show that this is assignable to the strain-induced coil → helix transition, previously evidenced by Courty et al. [Proc. Natl. Acad. Sci. U. S. A. 102, 13457 (2005)], of a fraction of the polymer strands. Relaxation proceeds, in a first stage, according to a stretched exponential dynamics, then crosses over to a terminal simple exponential decay. The respective characteristic times τK and τf exhibit an Arrhenius-like T-dependence with an associated energy E incompatibly larger than the activation barrier height for the isomerisation process which sets the clock for an elementary coil → helix transformation event. We tentatively assign this glass-like slowing down of the dynamics to the long-range couplings due to the mechanical noise generated by the local elementary events in this random elastic medium.

  16. Theoretical and Computational Studies of Condensed-Phase Phenomena: The Origin of Biological Homochirality, and the Liquid-Liquid Phase Transition in Network-Forming Fluids

    NASA Astrophysics Data System (ADS)

    Ricci, Francesco

    This dissertation describes theoretical and computational studies of the origin of biological homochirality, and the existence of a liquid-liquid phase transition in pure-component network-forming fluids. A common theme throughout these studies is the use of sophisticated computer simulation and statistical mechanics techniques to study complex condensed-phase phenomena. In the first part of this dissertation, we use an elementary lattice model with molecular degrees of freedom, and satisfying microscopic reversibility, to investigate the effect of reaction reversibility on the evolution of stochastic symmetry breaking via autocatalysis and mutual inhibition in a closed system. We identify conditions under which the system's evolution towards racemic equilibrium becomes extremely slow, allowing for long-time persistence of a symmetry-broken state. We also identify a "monomer purification" mechanism, due to which a nearly homochiral state can persist for long times, even in the presence of significant reverse reaction rates. Order of magnitude estimates show that with reasonable physical parameters a symmetry broken state could persist over geologically-relevant time scales. In the second part of this dissertation, we study a chiral-symmetry breaking mechanism known as Viedma ripening. We develop a Monte Carlo model to gain further insights into the mechanisms capable of reproducing key experimental signatures associated with this phenomenon. We also provide a comprehensive investigation of how the model parameters impact the system's overall behavior. It is shown that size-dependent crystal solubility alone is insufficient to reproduce most experimental signatures, and that some form of a solid-phase chiral feedback mechanism (e.g., agglomeration) must be invoked in our model. In the third part of this dissertation, we perform rigorous free energy calculations to investigate the possibility of a liquid-liquid phase transition (LLPT) in the Stillinger-Weber (SW

  17. Hypernetted-chain investigation of the random first-order transition of a Lennard-Jones liquid to an ideal glass.

    PubMed

    Bomont, Jean-Marc; Hansen, Jean-Pierre; Pastore, Giorgio

    2015-10-01

    The structural and thermodynamic behavior of a deeply supercooled Lennard-Jones liquid, and its random first-order transition (RFOT) to an ideal glass is investigated, using a system of two weakly coupled replicas and the hypernetted chain integral equation for the pair structure of this symmetric binary system. A systematic search in the density-temperature plane points to the existence of two glass branches below a density-dependent threshold temperature. The branch of lower free energy exhibits a rapid growth of the structural overlap order parameter upon cooling and may be identified with the ideal glass phase conjectured by several authors for both spin and structural glasses. The RFOT, signaled by a sharp discontinuity of the order parameter, is predicted to be weakly first order from a thermodynamic viewpoint. The transition temperature T(cr) increases rapidly with density and approximately obeys a scaling relation valid for a reference system of particles interacting via a purely repulsive 1/r(18) potential.

  18. 2 μm fluorescence of Ho3+:5I7 → 5I8 transition sensitized by Er3+ in tellurite germanate glasses

    NASA Astrophysics Data System (ADS)

    Chen, Rong; Tian, Ying; Li, Bingpeng; Wang, Fengchao; Jing, Xufeng; Zhang, Junjie; Xu, Shiqing

    2015-11-01

    This paper investigated the mid-infrared luminescence properties of Er3+/Ho3+ co-doped tellurite germanate glass at 2 μm pumped by 980 nm. Thermal stability of the system, absorption spectra and fluorescence spectra of the Er3+/Ho3+ co-doped glass sample were measured. Besides, the absorption spectra of the Ho3+ singly doped sample was measured. According to the measured absorption spectra and the Judd-Ofelt theory, the Judd-Ofelt intensity parameters Ωt (t = 2, 4, 6), spontaneous radiative transition probability, branching ratio and lifetime of Ho3+ were calculated. And the upconversion emission in Er3+ doped and Er3+/Ho3+ co-doped tellurite germanate glasses pumped by 980 nm have been investigated. Then the spectroscopic properties and possible energy transfer mechanisms between Ho3+ and Er3+ ions were discussed in detail. Meanwhile, the FWHM (146 nm), σepeak × FWHM (659.92 cm3) and emission cross section (4.52 × 10-21 cm2) of 5I8 → 5I7 transition of Ho3+ were obtained, respectively. The results indicate that Er3+/Ho3+ co-doped tellurite germanate glass is a promising host material for 2 μm solid laser.

  19. Radiative parameters for multi-channel visible and near-infrared emission transitions of Sm3+ in heavy-metal-silicate glasses

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Zhai, Bin; Zhao, Xin; Wang, Zhiqiang; Lin, Hai

    2013-05-01

    Multi-channel visible and near-infrared (NIR) emission transitions originating from 4G5/2 emitting state of Sm3+ in cadmium-aluminum-silicate (CAS) glasses with maximum-phonon-energy of ˜980 cm-1 have been investigated. Based on the measured absorption spectrum, the Judd-Ofelt parameters Ωt (t=2, 4, 6) are derived to be 2.87×10-20, 3.34×10-20 and 1.86×10-20 cm2, respectively. From the evaluated Judd-Ofelt parameters, the radiative parameters such as spontaneous emission probabilities (Arad), branching ratios (β), and radiative lifetime (τrad) are obtained from the 4G5/2 excited level to different lower energy levels. The efficient visible and NIR transition emissions have been observed in the Sm3+ doped CAS glasses, and the maximum stimulated emission cross-sections (σe-max) corresponding to emission peaks are calculated and demonstrated to lay in the same order of magnitude. The quantum efficiency of 4G5/2 level of Sm3+ has been derived to be 60%. Investigations on multi-channel radiative transition emissions originated from 4G5/2 level of Sm3+ in CAS glasses expose its potential applications in tunable laser, medical light source and NIR optoelectronic devices.

  20. Wolf-Rayet phenomena

    NASA Technical Reports Server (NTRS)

    Conti, P. S.

    1982-01-01

    The properties of stars showing Wolf-Rayet phenomena are outlined along with the direction of future work. Emphasis is placed on the characteristics of W-R spectra. Specifically the following topics are covered: the absolute visual magnitudes; the heterogeneity of WN spectra; the existence of transition type spectra and compositions the mass loss rates; and the existence of very luminous and possibly very massive W-R stars. Also, a brief overview of current understanding of the theoretical aspects of stellar evolution and stellar winds and the various scenarios that have been proposed to understand W-R spectra are included.

  1. On the strength of glasses

    PubMed Central

    Wisitsorasak, Apiwat; Wolynes, Peter G.

    2012-01-01

    The remarkable strength of glasses is examined using the random first order transition theory of the glass transition. The theory predicts that strength depends on elastic modulus but also on the configurational energy frozen in when the glass is prepared. The stress catalysis of cooperative rearrangements of the type responsible for the supercooled liquid’s high viscosity account quantitatively for the measured strength of a range of metallic glasses, silica, and a polymer glass. PMID:22988070

  2. Physical phenomena in containerless glass processing

    NASA Technical Reports Server (NTRS)

    Subramanian, R. Shankar; Cole, Robert

    1988-01-01

    Flight experiments are planned on drops containing bubbles. The experiments involve stimulating the drop via non-uniform heating and rotation. The resulting trajectories of the bubbles as well as the shapes of the drops and bubble will be videotaped and analyzed later frame-by-frame on the ground. Supporting ground based experiments are planned in the area of surface tension driven motion of bubbles, the behavior of compound drops settling in an immiscible liquid and the shapes and trajectories of large bubbles and drops in a rotating liquid. Theoretical efforts will be directed at thermocapillary migration of drops and bubbles, surfactant effects on such migration, and the behavior of compound drops.

  3. Transition from Arrhenius to non-Arrhenius temperature dependence of structural relaxation time in glass-forming liquids: continuous versus discontinuous scenario.

    PubMed

    Popova, V A; Surovtsev, N V

    2014-09-01

    The temperature dependences of α relaxation time τ(α)(T) of three glass-forming liquids (salol, o-terphenyl, and α-picoline) were investigated by a depolarized light scattering technique. A detailed description of τ(α)(T) near T(A), the temperature of the transition from the Arrhenius law at high temperatures to a non-Arrhenius behavior of τ(α)(T) at lower temperatures, was done. It was found that this transition is quite sharp. If the transition is described as switching from the Arrhenius law to the Vogel-Fulcher-Tammann law, it occurs within the temperature range of about 15 K or less. Most of the known expressions for τ(α)(T) cannot describe this sharp transition. Our analysis revealed that this transition can be described either as a discontinuous transition in the spirit of the frustration-limited domain theory [D. Kivelson, G. Tarjus, X. Zhao, and S. A. Kivelson, Phys. Rev. E 53, 751 (1996)], implying a phase transition, or by a phenomenological expression recently suggested [B. Schmidtke, N. Petzold, R. Kahlau, M. Hofmann, and E. A. Rössler, Phys. Rev. E 86, 041507 (2012)], where the activation energy includes the term depending exponentially on temperature.

  4. Some aspects of the thermal history of lunar glass.

    NASA Technical Reports Server (NTRS)

    Cooper, A. R.; Varshneya, A. K.; Sarkar, S. K.; Swift, J.; Klein, L.; Yen, F.

    1972-01-01

    Electron microprobe examination revealed that glassy lunar fragments had inclusions as well as boundaries between mineral glasses of different compositions. Glassy lunar spherules showed detectable heterogeneity less marked than that of the fragments. The room-temperature refractive indices and densities of the spherules are changed by heat-treating them at 500 to 700 C. The large increases (as much as 2% in density and 0.7% in index of refraction) are difficult to explain on the basis of classical glass-transition phenomena alone unless extremely rapid cooling rates are assumed. Further, the spherules darkened significantly when they were heated in air or a medium vacuum above 625 C.

  5. The phenomena of subharmonic bifurcations, runaway, and transition to chaos in a non-linear oscillator: perturbation methods and a numerical experiment

    NASA Astrophysics Data System (ADS)

    Janicki, Krzysztof L.

    1994-07-01

    The importance of non-linear dynamic systems has grown significantly in recent years. And this statement does not merely apply to the development of the discipline per se, but most importantly to the extension of its concepts and results to other sciences, including engineering, biology, and economics. Its results which have demonstrated the complexity of the behavior of relatively simple systems have been especially spectacular. These advances have given researchers the hope that relatively compact non-linear mathematical models might be used for largely qualitative descriptions of a variety of complex phenomena such as hydrodynamic instabilities, population dynamics, or ship disasters. Studies of simple models also seem to constitute a necessary preliminary step for gaining knowledge of the phenomena which occur in more complex systems.

  6. Comparison of Structural Relaxation Behavior in As-Cast and Pre-Annealed Zr-Based Bulk Metallic Glasses Just below Glass Transition

    DOE PAGES

    Haruyama, Osami; Yoshikawa, Kazuyoshi; Yamazaki, Yoshikatsu; ...

    2015-04-25

    In this paper, the α-relaxation of pre-annealed Zr55Cu30Ni5Al10 bulk metallic glasses (BMGs) was compared with that of as-cast Zr-based BMGs including Zr55Cu30Ni5Al10. The α-relaxation was investigated by volume relaxation. The relaxation behavior was well described by a stretched exponential relaxation function, Φ (t) ≈ exp [ - (t/τ α )β α ], with the isothermal relaxation time, τα, and the Kohlrausch exponent, βα. The βα exhibited the strong temperature dependence for the pre-annealed BMG, while the weak temperature dependence was visualized for the as-cast BMG similar to the dynamic relaxation. The τα’s were modified by Moynihan and Narayanaswamy-Tool-Moynihan methods thatmore » reduce the difference in the thermal history of sample. Finally, as a result, the relaxation kinetics in the glass resembled that of a liquid deduced from the behavior of viscosity in the supercooled liquid.« less

  7. Liquid-to-glass transition in bulk glass-forming Cu60Ti20Zr20 alloy by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Han, X. J.; Teichler, H.

    2007-06-01

    We report results from molecular dynamics studies concerning the microscopic structure and dynamics of the ternary, bulk metallic glass-forming Cu60Ti20Zr20 alloy. In detail we consider the partial radial distribution functions, nearest-neighbor numbers, specific heat, simulated glass temperature, diffusion coefficients, and incoherent intermediate scattering function (ISF). The applied atomic model reproduces well experimental x-ray data of the total radial distribution function. It provides for Cu60Ti20Zr20 a structure with marked intermediate-range order. The ISF is analyzed within an extension of mode-coupling theory, where the effective memory kernel is evaluated from the Laplace transform of the ISF. The dynamics of the system fulfills in most respects the predictions of mode-coupling theory (MCT), up to an absence of the algebraic t-a decay in the early β range. Comparison with the calculated memory kernel shows that this absence can be traced back to deviations of the kernel from its approximate form analyzed in MCT. As by-product, our investigation provides a method to reconstruct around the critical temperature major parts of the memory kernel from λ and the plateau value fc of the ISF, and it indicates why the critical dynamics predicted by mode-coupling theory can be observed in a temperature interval of more than 500K .

  8. Comparison of Structural Relaxation Behavior in As-Cast and Pre-Annealed Zr-Based Bulk Metallic Glasses Just below Glass Transition

    SciTech Connect

    Haruyama, Osami; Yoshikawa, Kazuyoshi; Yamazaki, Yoshikatsu; Yokoyama, Yoshihiko; Egami, Takeshi

    2015-04-25

    In this paper, the α-relaxation of pre-annealed Zr55Cu30Ni5Al10 bulk metallic glasses (BMGs) was compared with that of as-cast Zr-based BMGs including Zr55Cu30Ni5Al10. The α-relaxation was investigated by volume relaxation. The relaxation behavior was well described by a stretched exponential relaxation function, Φ (t) ≈ exp [ - (t/τ α )β α ], with the isothermal relaxation time, τα, and the Kohlrausch exponent, βα. The βα exhibited the strong temperature dependence for the pre-annealed BMG, while the weak temperature dependence was visualized for the as-cast BMG similar to the dynamic relaxation. The τα’s were modified by Moynihan and Narayanaswamy-Tool-Moynihan methods that reduce the difference in the thermal history of sample. Finally, as a result, the relaxation kinetics in the glass resembled that of a liquid deduced from the behavior of viscosity in the supercooled liquid.

  9. The relationship of dynamical heterogeneity to the Adam-Gibbs and random first-order transition theories of glass formation

    PubMed Central

    Starr, Francis W.; Douglas, Jack F.; Sastry, Srikanth

    2013-01-01

    We carefully examine common measures of dynamical heterogeneity for a model polymer melt and test how these scales compare with those hypothesized by the Adam and Gibbs (AG) and random first-order transition (RFOT) theories of relaxation in glass-forming liquids. To this end, we first analyze clusters of highly mobile particles, the string-like collective motion of these mobile particles, and clusters of relative low mobility. We show that the time scale of the high-mobility clusters and strings is associated with a diffusive time scale, while the low-mobility particles' time scale relates to a structural relaxation time. The difference of the characteristic times for the high- and low-mobility particles naturally explains the well-known decoupling of diffusion and structural relaxation time scales. Despite the inherent difference of dynamics between high- and low-mobility particles, we find a high degree of similarity in the geometrical structure of these particle clusters. In particular, we show that the fractal dimensions of these clusters are consistent with those of swollen branched polymers or branched polymers with screened excluded-volume interactions, corresponding to lattice animals and percolation clusters, respectively. In contrast, the fractal dimension of the strings crosses over from that of self-avoiding walks for small strings, to simple random walks for longer, more strongly interacting, strings, corresponding to flexible polymers with screened excluded-volume interactions. We examine the appropriateness of identifying the size scales of either mobile particle clusters or strings with the size of cooperatively rearranging regions (CRR) in the AG and RFOT theories. We find that the string size appears to be the most consistent measure of CRR for both the AG and RFOT models. Identifying strings or clusters with the “mosaic” length of the RFOT model relaxes the conventional assumption that the “entropic droplets” are compact. We also confirm

  10. The relationship of dynamical heterogeneity to the Adam-Gibbs and random first-order transition theories of glass formation

    NASA Astrophysics Data System (ADS)

    Starr, Francis W.; Douglas, Jack F.; Sastry, Srikanth

    2013-03-01

    We carefully examine common measures of dynamical heterogeneity for a model polymer melt and test how these scales compare with those hypothesized by the Adam and Gibbs (AG) and random first-order transition (RFOT) theories of relaxation in glass-forming liquids. To this end, we first analyze clusters of highly mobile particles, the string-like collective motion of these mobile particles, and clusters of relative low mobility. We show that the time scale of the high-mobility clusters and strings is associated with a diffusive time scale, while the low-mobility particles' time scale relates to a structural relaxation time. The difference of the characteristic times for the high- and low-mobility particles naturally explains the well-known decoupling of diffusion and structural relaxation time scales. Despite the inherent difference of dynamics between high- and low-mobility particles, we find a high degree of similarity in the geometrical structure of these particle clusters. In particular, we show that the fractal dimensions of these clusters are consistent with those of swollen branched polymers or branched polymers with screened excluded-volume interactions, corresponding to lattice animals and percolation clusters, respectively. In contrast, the fractal dimension of the strings crosses over from that of self-avoiding walks for small strings, to simple random walks for longer, more strongly interacting, strings, corresponding to flexible polymers with screened excluded-volume interactions. We examine the appropriateness of identifying the size scales of either mobile particle clusters or strings with the size of cooperatively rearranging regions (CRR) in the AG and RFOT theories. We find that the string size appears to be the most consistent measure of CRR for both the AG and RFOT models. Identifying strings or clusters with the "mosaic" length of the RFOT model relaxes the conventional assumption that the "entropic droplets" are compact. We also confirm the

  11. Kinetic arrest, dynamical transitions, and activated relaxation in dense fluids of attractive nonspherical colloids

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Schweizer, Kenneth S.

    2011-06-01

    The coupled translation-rotation activated dynamics in dense suspensions of attractive homogeneous and Janus uniaxial dicolloids are studied using microscopic statistical mechanical theory. Multiple kinetic arrest transitions and reentrant phenomena are predicted that are associated with fluid, gel, repulsive glass, attractive glass, plastic glass, and novel glass-gel states. The activated relaxation rate is a nonuniversal nonmonotonic function of attraction strength at high volume fractions due to the consequences of a change of the transient localization mechanism from caging to physical bonding.

  12. Investigation of luminescence and laser transition of Dy3+ in Li2O-Gd2O3-Bi2O3-B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Zaman, F.; Kaewkhao, J.; Srisittipokakun, N.; Wantana, N.; Kim, H. J.; Rooh, G.

    2016-05-01

    The aim of this study is to develop Li2O-Gd2O3-Bi2O3-B2O3 glass doped with different concentration of Dy3+ ions by melt quenching technique for different applications in photonics and laser devices. From the experimental oscillator strength (fexp) of the absorption spectra the JO intensity parameters (Ω λ = 2, 4, 6) have been calculated, and by using these JO intensity parameters various radiative parameters were calculated. By using JO theory the radiative transition probability (AR), radiative lifetime (τR) and branching ratio (βR) for Dy3+ ion have been found. A decrease in lifetimes of the prepared glass by increasing concentration of Dy3+ is because of the energy transfer through cross relaxation and resonant energy transfer channels in the present glass matrix. Using experimental and calculated lifetimes, the quantum efficiency (η) and non-radiative relaxation rates (WNR) of 4F9/2 excited state have been calculated. From emission spectra, effective bandwidths (Δλeff) and emission stimulated emission cross section σ (λp) were found for 4F9/2 → 6HJ (J = 15/2, 13/2, 11/2 and 9/2). Chromaticity results revealed that the CCT values of the LGBiBDy glass samples are in between to those of day light and commercial white light LED sources. Further investigations are under way for the optimization of dopant concentration in the Li2O-Gd2O3-Bi2O3-B2O3 glass.

  13. Line patterning of (Sr,Ba)Nb{sub 2}O{sub 6} crystals in borate glasses by transition metal atom heat processing

    SciTech Connect

    Sato, M.; Honma, T.; Benino, Y.; Komatsu, T.

    2007-09-15

    Some NiO-doped Bi{sub 2}O{sub 3},La{sub 2}O{sub 3}-SrO-BaO-Nb{sub 2}O{sub 5}-B{sub 2}O{sub 3} glasses giving the formation of strontium barium niobate Sr{sub 0.5}Ba{sub 0.5}Nb{sub 2}O{sub 6} (SBN) crystals with a tetragonal tungsten-bronze structure through conventional crystallization in an electric furnace have been developed, and SBN crystal lines have been patterned on the glass surface by heat-assisted (250-300 deg. C) laser irradiation and scanning of continuous-wave Nd:YAG laser (wavelength: 1064 nm). The surface morphology and the quality of SBN crystal lines are examined from measurements of confocal scanning laser micrographs and polarized micro-Raman scattering spectra. The surface morphology of SBN crystal lines changes from periodic bump structures to homogeneous structures, depending on laser scanning conditions. It is suggested that the line patterned at the laser irradiation condition of laser power P=1 W and of laser scanning speed S=1 {mu}m/s in 2NiO-4La{sub 2}O{sub 3}-16SrO-16BaO-32Nb{sub 2}O{sub 5}-30B{sub 2}O{sub 3} glass has a possibility of the orientation of SBN crystals along the laser scanning direction. The present study demonstrates that the transition metal atom heat processing (i.e., a combination of cw Nd:YAG laser and Ni{sup 2+} ions) is a novel technique for spatially selected crystallization of SBN crystals in glass. - Graphical abstract: This figure shows the polarization optical (a) and confocal scanning laser (b) micrographs for the sample obtained by heat-assisted (300 deg. C) Nd:YAG laser irradiation with a laser power of P=1 W and laser scanning speed of S=1 {mu}m/s in Glass C. The figure demonstrates that the transition metal atom heat processing (i.e., a combination of cw Nd:YAG laser and Ni{sup 2+} ions) is a novel technique for spatially selected crystallization of SBN crystals in glass.

  14. Solubility of crystalline organic compounds in high and low molecular weight amorphous matrices above and below the glass transition by zero enthalpy extrapolation.

    PubMed

    Amharar, Youness; Curtin, Vincent; Gallagher, Kieran H; Healy, Anne Marie

    2014-09-10

    Pharmaceutical applications which require knowledge of the solubility of a crystalline compound in an amorphous matrix are abundant in the literature. Several methods that allow the determination of such data have been reported, but so far have only been applicable to amorphous polymers above the glass transition of the resulting composites. The current work presents, for the first time, a reliable method for the determination of the solubility of crystalline pharmaceutical compounds in high and low molecular weight amorphous matrices at the glass transition and at room temperature (i.e. below the glass transition temperature), respectively. The solubilities of mannitol and indomethacin in polyvinyl pyrrolidone (PVP) K15 and PVP K25, respectively were measured at different temperatures. Mixtures of undissolved crystalline solute and saturated amorphous phase were obtained by annealing at a given temperature. The solubility at this temperature was then obtained by measuring the melting enthalpy of the crystalline phase, plotting it as a function of composition and extrapolating to zero enthalpy. This new method yielded results in accordance with the predictions reported in the literature. The method was also adapted for the measurement of the solubility of crystalline low molecular weight excipients in amorphous active pharmaceutical ingredients (APIs). The solubility of mannitol, glutaric acid and adipic acid in both indomethacin and sulfadimidine was experimentally determined and successfully compared with the difference between their respective calculated Hildebrand solubility parameters. As expected from the calculations, the dicarboxylic acids exhibited a high solubility in both amorphous indomethacin and sulfadimidine, whereas mannitol was almost insoluble in the same amorphous phases at room temperature. This work constitutes the first report of the methodology for determining an experimentally measured solubility for a low molecular weight crystalline solute

  15. Long-Term Stability of New Co-Amorphous Drug Binary Systems: Study of Glass Transitions as a Function of Composition and Shelf Time.

    PubMed

    Martínez, Luz María; Videa, Marcelo; Sosa, Nahida González; Ramírez, José Héctor; Castro, Samuel

    2016-12-14

    The amorphous state is of particular interest in the pharmaceutical industry due to the higher solubility that amorphous active pharmaceutical ingredients show compared to their respective crystalline forms. Due to their thermodynamic instability, drugs in the amorphous state tend to recrystallize; in order to avoid crystallization, it has been a common strategy to add a second component to hinder the crystalline state and form a thermally stable co-amorphous system, that is to say, an amorphous binary system which retains its amorphous structure. The second component can be a small molecule excipient (such as a sugar or an aminoacid) or a second drug, with the advantage that a second active pharmaceutical ingredient could be used for complementary or combined therapeutic purposes. In most cases, the compositions studied are limited to 1:1, 2:1 and 1:2 molar ratios, leaving a gap of information about phase transitions and stability on the amorphous state in a wider range of compositions. In the present work, a study of novel co-amorphous formulations in which the selection of the active pharmaceutical ingredients was made according to the therapeutic effect is presented. Resistance against crystallization and behavior of glass transition temperature ( T g were studied through calorimetric measurements as a function of composition and shelf time. It was found that binary formulations with T g temperatures higher than those of pure components presented long-term thermal stability. In addition, significant increments of T g values, of as much as 15 ∘ C, were detected as a result of glass relaxation at room temperature during storage time; this behavior of glass transition has not been previously reported for co-amorphous drugs. Based on these results, it can be concluded that monitoring behavior of T g and relaxation processes during the first weeks of storage leads to a more objective evaluation of the thermomechanical stability of an amorphous formulation.

  16. Sugar-induced blue membrane: release of divalent cations during phase transition of purple membranes observed in sugar-derived glasses.

    PubMed

    Rhinow, Daniel; Hampp, Norbert A

    2008-04-17

    The formation of blue membrane from purple membranes (PM) has been observed in glassy films made from PM and various sugars. The phase transition of PM at about 70 degrees C causes the complexation of divalent cations to be weakened. The vicinal diol structures in sugars are capable to complex divalent cations and delocalize them throughout the matrix as long as its glass transition temperature is lower than the phase transition temperature of PM. The loss of divalent cations from bacteriorhodopsin (BR), the only protein in PM, causes the formation of blue membrane (BM), which is accompanied by a loss of beta-sheet structure observable in the infrared spectrum. Glassy sugars are particular useful to observe this transition, as sugar entrapment does not restrict conformational changes of BR but rather retards them. The material obtained was named sugar-induced blue membrane (SIBM). The formation of SIBM is inhibited by the addition of divalent cations. Furthermore, SIBM is reverted immediately to PM by addition of water. A characteristic time dependence of the thermal reversion of SIBM to PM proves that the phase transition of PM triggers the release and uptake of divalent cations and the corresponding color change.

  17. Increased radiative lifetime of Tm{sup 3+}:{sup 3}F{sub 4} → {sup 3}H{sub 6} transition in oxyfluoride tellurite glasses

    SciTech Connect

    Ma, Yaoyao; Wang, Xin; Zhang, Liyan; Huang, Feifei; Hu, Lili

    2015-04-15

    Highlights: • We prepare Tm{sup 3+}-doped tellurite-zinc glasses with F{sup −} substitution. • Thermal stability becomes better with increasing F{sup −} in present glasses. • Tm{sup 3+} 1.8 μm radiative lifetime increases with F{sup −} concentration. • The origin of the increased lifetime has been discussed. - Abstract: The 1.8 μm emission properties of Tm{sup 3+}-doped zinc tellurite glasses modified by the substitution of ZnF{sub 2} are investigated in this paper. The thermal stability, Raman and phonon sideband spectra, transmission and absorption spectra, emission spectra and decay curves are discussed. It is found that substitution of fluoride ions into the zinc tellurite matrix produces dramatic increase in the emission lifetime of Tm{sup 3+} 1.8 μm emission. Absorption, Raman and phonon sideband spectra are used to estimate the local structure of Tm{sup 3+} ions. These analyses indicate structural change around Tm{sup 3+} ions caused by substitution of fluoride ions monitors the increased intrinsic radiative lifetimes. An increase in the measured radiative lifetimes of the Tm{sup 3+}:{sup 3}F{sub 4} → {sup 3}H{sub 6} transition is observed. The origin has been discussed and the reduction of OH{sup −} absorption, decrease of maximum phonon energy and phonon density are considered to be dominant in all of the nonradiative relaxations.

  18. Moisture sorption isotherms and glass transition temperature of elecampe (Inula helenium L.) and burdock (Arctium lappa L.) roots at 25°C.

    PubMed

    Cervenka, L; Kubínová, J; Juszczak, L; Witczak, M

    2012-02-01

    Sorption isotherms of elecampe (Inula helenium L.) and burdock (Arctium lappa L.) root samples were obtained at 25 °C. Elecampe exhibited hysteresis loop in the range of 0.35-0.90 a(w) , whereas burdock roots showed significant differences between adsorption and desorption isotherms from 0.65 to 0.80 a(w) . Blahovec-Yanniotis was considered to give the best fit over the whole range of a(w) tested. Various parameters describing the properties of sorbed water derived from GAB, Henderson and Blahovec-Yanniotis models have been discussed. Differential scanning calorimetric method was used to measure the glass transition temperature (T (g)) of root samples in relation to water activity. The safe moisture content was determined in 12.01 and 14.96 g/100 g d. b. for burdock and elecampe root samples at 25 °C, respectively. Combining the T (g) line with sorption isotherm in one plot, it was found that the glass transition temperature concept overestimated the temperature stability for both root samples.

  19. Evidence of PPII-like helical conformation and glass transition in a self-assembled solid-state polypeptide-surfactant complex: poly(L-histidine)/docylbenzenesulfonic acid.

    PubMed

    Ramani, Ramasubbu; Hanski, Sirkku; Laiho, Ari; Tuma, Roman; Kilpeläinen, Simo; Tuomisto, Filip; Ruokolainen, Janne; Ikkala, Olli

    2008-05-01

    We present lamellar self-assembly of cationic poly(L-histidine) (PLH) stoichiometrically complexed with an anionic surfactant, dodecyl benzenesulfonic acid (DBSA), which allows a stabilized conformation reminiscent of polyproline type II (PPII) left-handed helices. Such a conformation has no intrapeptide hydrogen bonds, and it has previously been found to be one source of flexibility, e.g., in collagen and elastin, as well as an intermediate in silk processing. PLH(DBSA)1.0 complexes were characterized by Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The PPII-like conformation in PLH(DBSA)1.0 is revealed by characteristic CD and FTIR spectra, where the latter indicates absence of intrachain peptide hydrogen bonds. In addition, a glass transition was directly verified by DSC at ca. 135 degrees C for PLH(DBSA)1.0 and indirectly by SAXS and TEM in comparison to pure PLH at 165 degrees C, thus indicating plasticization. Glass transitions have not been observed before in polypeptide-surfactant complexes. The present results show that surfactant binding can be a simple scheme to provide steric crowding to stabilize PPII conformation to tune the polypeptide properties, plasticization and flexibility.

  20. Analysis of water sorption isotherms of amorphous food materials by solution thermodynamics with relevance to glass transition: evaluation of plasticizing effect of water by the thermodynamic parameters.

    PubMed

    Shimazaki, Eriko; Tashiro, Akiko; Kumagai, Hitomi; Kumagai, Hitoshi

    2017-04-01

    Relation between the thermodynamic parameters obtained from water sorption isotherms and the degree of reduction in the glass transition temperature (Tg), accompanied by water sorption, was quantitatively studied. Two well-known glassy food materials namely, wheat gluten and maltodextrin were used as samples. The difference between the chemical potential of water in a solution and that of pure water ([Formula: see text]), the difference between the chemical potential of solid in a solution and that of a pure solid ([Formula: see text]), and the change in the integral Gibbs free energy ([Formula: see text]) were obtained by analyzing the water sorption isotherms using solution thermodynamics. The parameter [Formula: see text] correlated well with ΔTg (≡Tg - Tg0; where Tg0 is the glass transition temperature of dry material), which had been taken to be an index of plasticizing effect. This indicates that plasticizing effect of water on foods can be evaluated through the parameter [Formula: see text].

  1. Characterization by combined optical and FT infrared spectra of 3d-transition metal ions doped-bismuth silicate glasses and effects of gamma irradiation.

    PubMed

    ElBatal, F H; Abdelghany, A M; ElBatal, H A

    2014-03-25

    Optical and infrared absorption spectral measurements were carried out for binary bismuth silicate glass and other derived prepared samples with the same composition and containing additional 0.2% of one of 3d transition metal oxides. The same combined spectroscopic properties were also measured after subjecting the prepared glasses to a gamma dose of 8 Mrad. The experimental optical spectra reveal strong UV-near visible absorption bands from the base and extended to all TMs-doped samples and these specific extended and strong UV-near visible absorption bands are related to the contributions of absorption from both trace iron (Fe(3+)) ions present as contaminated impurities within the raw materials and from absorption of main constituent trivalent bismuth (Bi(3+)) ions. The strong UV-near visible absorption bands are observed to suppress any further UV bands from TM ions. The studied glasses show obvious resistant to gamma irradiation and only small changes are observed upon gamma irradiation. This observed shielding behavior is related to the presence of high Bi(3+) ions with heavy mass causing the observed stability of the optical absorption. Infrared absorption spectra of the studied glasses reveal characteristic vibrational bands due to both modes from silicate network and the sharing of Bi-O linkages and the presence of TMs in the doping level (0.2%) causes no distinct changes within the number or position of the vibrational modes. The presence of high Bi2O3 content (70 mol%) appears to cause stability of the structural building units towards gamma irradiation as revealed by FTIR measurements.

  2. Crossover from fragile liquids to strong liquids near the glass transition created by isotropic two-body short-range interactions

    NASA Astrophysics Data System (ADS)

    Tokuyama, Michio; Enda, Shohei

    2013-07-01

    The extensive molecular-dynamics simulations on binary mixtures A80B20 with a Stillinger-Weber potential are performed to obtain two types of glass-forming liquids near the glass transition, fragile and strong liquids. The simulations are done for different mass ratios Q (=mB/mA) under the same potential with mA being fixed, where mα denotes a mass of α particle. The simulation results for the self-diffusion coefficient D are then analyzed by two types of master curves recently proposed as D=d0x-1(1exp[62x(1] with η=4/3 for fragile liquids and 5/3 for strong liquids, where x is a reduced inverse temperature and d0 a positive constant. Then, it is shown that for QQc they obey the strong master curve with η=5/3, where Qc≃20. The structural relaxation time τα and the β-relaxation time τβ are also shown to obey the power laws recently proposed as τα∼D and τβ∼D in a supercooled region, respectively, while τα∼τβ∼D in a liquid region, where μ=2/(3(η+2)). Here μ≃1/5 for fragile liquids and 2/11 for strong liquids. These situations are exactly the same as those in usual glass-forming liquids. Thus, it is emphasized that two types of glass-forming liquids can be simply created by simple short-range potentials.

  3. Optical evaluation of multichannel radiative transitions originating from {sup 4}G{sub 5/2} level of Sm{sup 3+} in heavy-metal-gallate glasses

    SciTech Connect

    Zhang, J.; Yang, D. L.; Gong, H.; Lin, H.; Pun, E. Y. B.

    2010-06-15

    Conventional visible and novel infrared (IR) emissions of Sm{sup 3+} in heavy-metal-gallate glasses (Li{sub 2}O-K{sub 2}O-BaO-PbO-Bi{sub 2}O{sub 3}-Ga{sub 2}O{sub 3}, LKBPBG for short) with low phonon energy have been observed. Judd-Ofelt parameters {Omega}{sub 2} (3.00x10{sup -20} cm{sup 2}), {Omega}{sub 4} (5.19x10{sup -20} cm{sup 2}), and {Omega}{sub 6} (1.69x10{sup -20} cm{sup 2}) indicate a higher asymmetry and stronger covalent environment in the optical glasses. For the visible fluorescence bands peaked at 564, 601, 648, and 710 nm, the maximum stimulated emission cross-sections ({sigma}{sub e}) were derived to be 1.35x10{sup -22}, 9.21x10{sup -22}, 9.58x10{sup -22}, and 3.91x10{sup -22} cm{sup 2}, respectively, the values are larger than those in phosphate, oxyfluoroborate, tellurite, and calibo glasses obviously. The observed 1185 nm IR emission lies in the low-loss window of telecommunication system, and the maximum value of {sigma}{sub e} for this band was obtained to be 6.09x10{sup -23} cm{sup 2}. The characterization of multichannel radiative transitions of Sm{sup 3+} in LKBPBG glasses is beneficial in exposing its potential applications in visible and IR optoelectronic devices.

  4. Phase transitions and critical phenomena in the two-dimensional Ising model with dipole interactions: A short-time dynamics study.

    PubMed

    Horowitz, C M; Bab, M A; Mazzini, M; Rubio Puzzo, M L; Saracco, G P

    2015-10-01

    The ferromagnetic Ising model with antiferromagnetic dipole interactions is investigated by means of Monte Carlo simulations, focusing on the characterization of the phase transitions between the tetragonal liquid and stripe of width h phases. The dynamic evolution of the physical observables is analyzed within the short-time regime for 0.5≤δ≤1.3, where δ is the ratio between the short-range exchange and the long-range dipole interaction constants. The obtained results for the interval 0.5≤δ≤1.2 indicate that the phase transition line between the h=1 stripe and tetragonal liquid phases is continuous. This finding contributes to clarifying the controversy about the order of this transition. This controversy arises from the difficulties introduced in the simulations due to the presence of long-range dipole interactions, such as an important increase in the simulation times that limits the system size used, strong finite size effects, as well as to the existence of multiple metastable states at low temperatures. The study of the short-time dynamics of the model allows us to avoid these hindrances. Moreover, due to the fact that the finite-size effects do not significantly affect the power-law behavior exhibited in the observables within the short-time regime, the results could be attributed to those corresponding to the thermodynamic limit. As a consequence of this, a careful characterization of the critical behavior for the whole transition line is performed by giving the complete set of critical exponents.

  5. Finite-temperature twisted-untwisted transition of the kagome lattice

    NASA Astrophysics Data System (ADS)

    Bedi, Deshpreet; Rocklin, D. Zeb; Mao, Xiaoming

    Mechanical instability governs many fascinating phenomena in nature, including jamming, glass transitions, and structural phase transitions. Although mechanical instability in athermal systems is well understood, how thermal fluctuations modify such transitions remains largely unexplored. Recent studies reveal that, due to the large number of floppy modes that emerge at mechanical instability, intriguing new phenomena occur, such as fluctuation-driven first-order transitions and order-by-disorder. In this talk, we present an analytic study of the finite-temperature rigidity transition for the kagome lattice. Our model exhibits a zero-temperature continuous twisted-untwisted transition as the sign of the next-nearest-neighbor spring constant changes. At finite temperature, we show that the divergent contribution of floppy modes to the vibrational entropy renormalizes this spring constant, resulting in a first-order transition. We also propose an experimental manifestation of this transition in the system of self-assembling triblock Janus particles.

  6. Coffee-rings and glasses: Colloids out of equilibrium

    NASA Astrophysics Data System (ADS)

    Yunker, Peter Joseph

    This thesis describes experiments that utilize colloids to explore nonequilibrium phenomena. Specifically, the deposition of particles during evaporation and the glass transition are explored. In the first set of experiments, we found that particle shape has a profound effect on particle deposition. We evaporated drops of colloidal suspensions containing micron-sized particles that range in shape from isotropic spheres to very anisotropic ellipsoids. For sessile drops, i.e., drops sitting on a solid surface, spheres are deposited in a ring-like stain, while ellipsoids are deposited uniformly. We also confined drops between glass plates and allowed them to evaporate. During evaporation, colloidal particles coat the air-water interface, forming colloidal monolayer membranes (CMMs). As particle anisotropy increases, CMM bending rigidity was found to increase. This increase in bending rigidity provides a new mechanism that produces a uniform deposition of ellipsoids and a heterogeneous deposition of spheres. In the second set of experiments, we employed colloidal suspensions to investigate the character of glassy materials. "Anisotropic glasses'' were investigated with ellipsoidal particles confined to two-dimensional chambers at high packing fractions; this system enabled the study of the effects of particle shape on the vibrational properties of colloidal glasses. Low frequency modes in glasses composed of slightly anisotropic particles are found to have predominantly rotational character. Conversely, low frequency modes in glasses of highly anisotropic particles exhibit a mix of rotational and translational character. Aging effects in glasses were explored using suspensions of temperature-sensitive microgel spheres. We devised a method to rapidly quench from liquid to glass states, and then observed the resultant colloidal glasses as they aged. Particle rearrangements in glasses occur collectively, i.e., many particles move in a correlated manner. During aging, we

  7. XRD and FTIR studies the effect of heat treatment and doping the transition metal oxide on LiNbO3 and LiNb3O8 nano-crystallite phases in lithium borate glass system.

    PubMed

    Kashif, Ismail; Soliman, Ashia A; Sakr, Elham M; Ratep, Asmaa

    2013-09-01

    Glasses of various compositions in the system 90 Li2B4O7-10 Nb2O5 mixed with T.M ions (where T.M is the transition metal) were prepared by quenching technique. Heat-treatment of the parent glasses was performed at 540, 570 and 620 °C, for 5 and 16 h. The glass structure evolution during the controlled crystallization was examined by XRD and FT-IR spectroscopy analysis. The crystalline phases present in the glass ceramics were identified via X-ray diffraction as a function of heat treatment. The FT-IR data propose for these glasses and heat-treated glass network structures mainly built by: di-, tri-, tetra-, penta-and ortho-borate groups. It was found that the quantitative evolution of these various borate species in the glass structures is influenced by the transition metal. A detailed discussion relating to the N4 evolution with the T.M content was made.

  8. Phase transition and glass transition concerning configurational order/disorder of ions in crystalline (TMA) 2[Sr{Ni(pro) 2} 6](ClO 4) 4 and (TMA)[Sm{Ni(pro) 2} 6](ClO 4) 4

    NASA Astrophysics Data System (ADS)

    Yukawa, Y.; Igarashi, S.; Masuda, Y.; Oguni, M.

    2002-03-01

    Crystalline (TMA) 2[Sr{Ni(pro) 2} 6](ClO 4) 4 was synthesized newly and its structure was determined, where TMA and pro denote tetramethylammonium and L-prolinato, respectively. Heat capacities of crystalline (TMA) 2[Sr{Ni(pro) 2} 6](ClO 4) 4 and (TMA)[Sm{Ni(pro) 2} 6](ClO 4) 4 were measured at low temperatures by using an adiabatic calorimeter. In the former compound, a phase transition of the first order was found to occur at (160±1) K with a sharp heat-capacity peak. The enthalpy and entropy of the transition were estimated to be (11.0±0.2) and (69.4±1.5) JK -1 mol -1, respectively. In the latter compound, a phase transition of the first order and a glass transition were found at (190±1) and (162±2) K, respectively. The entropy of the phase transition was estimated to be in the range 20-45 JK -1 mol -1. The phase transitions were attributed to the orientational order/disorder process of perchlorate ions ClO 4-, and it was suggested that each ClO 4- ion has six and three distinguishable, reasonably stable orientations in the high-temperature disordered phase for the Sr II and Sm III complex compounds, respectively. The glass transition was interpreted as a freezing-in phenomenon of the reorientational motion of ClO 4- ions, and the activation energy for the motion was estimated to be (53±1) kJ mol -1 and less than 39 kJ mol -1 for the Sm III and Sr II complex compounds, respectively; the removal of one of the two TMA ions neighboring to the ClO 4- ion leads to an increase in the activation energy. It is discussed that the cooperative interaction between the orientations of the ClO 4- ions operates through the orientational and positional shifts of TMA ions, and thus the lattice deformation in the relevant region, associated with the orientational change of the ClO 4- ions. Then it is noted that the position of the ClO 4- ion itself would shift to form preferable ionic interaction, for example through a kind of hydrogen bond of C-H δ+ ⋯ δ- O-Cl, for

  9. Transition.

    ERIC Educational Resources Information Center

    Thompson, Sandy, Ed.; And Others

    1990-01-01

    This "feature issue" focuses on transition from school to adult life for persons with disabilities. Included are "success stories," brief program descriptions, and a list of resources. Individual articles include the following titles and authors: "Transition: An Energizing Concept" (Paul Bates); "Transition…

  10. Humidity-dependent compression-induced glass transition of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA).

    PubMed

    Kim, Hyun Chang; Lee, Hoyoung; Jung, Hyunjung; Choi, Yun Hwa; Meron, Mati; Lin, Binhua; Bang, Joona; Won, You-Yeon

    2015-07-28

    Constant rate compression isotherms of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA) show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not fully understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air-water interface, using combined experimental techniques including the Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods. We observed that the mechanical and structural responses of the Langmuir PLGA films are significantly dependent on the rate of film compression; the glass transition was induced in the PLGA film only at fast compression rates. Surprisingly, we found that this deformation rate dependence is also dependent on the humidity of the environment. With water acting as a plasticizer for the PLGA material, the diffusion of water molecules through the PLGA film seems to be the key factor in the determination of the glass transformation properties and thus the mechanical response of the PLGA film against lateral compression. Based on our combined results, we hypothesize the following mechanism for the compression-induced glass transformation of the Langmuir PLGA film; (1) initially, a humidified/non-glassy PLGA film is formed in the full surface-coverage region (where the surface pressure shows a plateau) during compression; (2) further compression leads to the collapse of the PLGA chains and the formation of new surfaces on the air side of the film, and this newly formed top layer of the PLGA film is transiently glassy in character because the water evaporation rate

  11. Hydrogen Bonding Interactions and Enthalpy Relaxation in Sugar/Protein Glasses.

    PubMed

    Sydykov, Bulat; Oldenhof, Harriëtte; Sieme, Harald; Wolkers, Willem F

    2017-03-01

    In this study, hydrogen bonding interactions and enthalpy relaxation phenomena of sugar and sugar/protein glasses have been studied using Fourier transform infrared spectroscopy and differential scanning calorimetry. The sugar OH band in Fourier transform infrared spectra was used to derive the glass transition temperature, Tg, and the wavenumber-temperature coefficient (WTC) of the OH band. A study on mixtures of sucrose and albumin revealed that the glass transition temperature and strength of hydrogen bonds increased with increasing percentages of albumin. WTCg and Tg derived from sucrose/albumin glasses showed a negative linear correlation. The Lu-Weiss equation was used to fit Tg data of sucrose/albumin mixtures. An inflection point was observed at a 1:1 mass ratio, which coincided with an inflection of the OH-stretching band denoting a change in hydrogen bonding interactions. Enthalpy relaxation, which is seen as an endothermic event superimposed on the glass transition in differential scanning calorimetry thermograms, increases with increasing storage temperature. Activation energies of enthalpy relaxation of sucrose and sucrose/albumin glasses were determined to be 332 and 236 kJ mol(-1), respectively. Addition of albumin to sucrose increases the Tg, average strength of hydrogen bonding, heterogeneity, and the enthalpy relaxation time, making the glass more stable during storage at room temperature.

  12. In-situ observation of self-cleansing phenomena during ultra-high vacuum anneal of transition metal nitride thin films: Prospects for non-destructive photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Greczynski, G.; Hultman, L.

    2016-11-01

    Self-cleansing of transition metal nitrides is discovered to take place during ultra-high vacuum annealing of TiN, NbN, and VN thin films. Native oxide layers from air exposure disappear after isothermal anneal at 1000 °C. Also, for TiN, the Ti 2p and N 1s X-ray photoelectron spectra (XPS) recorded after the anneal are identical to those obtained from in-situ grown and analyzed epitaxial TiN(001). These unexpected effects are explained by oxide decomposition in combination with N-replenishing of the nitride during recrystallization. The finding opens up new possibilities for true bonding assignments through non-destructive XPS analyses, thus avoiding artefacts from Ar etching.

  13. Nanoscale confinement and interfacial effects on the dynamics and glass transition/crystallinity of thin adsorbed films on silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Madathingal, Rajesh Raman

    in the latter case bridging of PMMA between aggregates occurred. The anchoring point densities were comparable to the silanol densities, suggesting that PMMA adsorbed as trains rather than loops. For hydrophilic SiO2, Tg increased with [SiOH], as more carbonyl groups hydrogen bonded to the silanols, and was independent of particle morphology. For methylated silica, (CH3) 3-SiO2, the adsorption isotherms were identical for colloidal and fumed silica, but Tg was depressed for the former, and comparable to the bulk value for the latter. The increased Tg of PMMA adsorbed onto fumed (CH3)3-SiO2 was attributed to the larger loops formed by the bridging PMMA chains between the silica aggregates. For nanocomposites the interphase region becomes more important as the surface/volume ratio of the nanoparticles increases. Polymers have chain dimensions (characterized by the radius of gyration, Rg) similar to the nanoparticles (Rnanoparticle) themselves, so that chain conformation, mobility and crystallinity can be affected by Rg/Rnanoparticle. Here, both the glass transition temperature (Tg) and degree of crystallinity (Xc) of polyethylene oxide (PEO) on individual SiO 2 nanoparticles of nominal 15, 50 and 100 nm diameter (2 RSiO2 ) , in which Rg (PEO) was greater, equal to or less than RSiO2 was investigated. Plateau adsorption of PEO on SiO2 nanoparticles (PEO-SiO2) increased in the order PEO-SiO 2 (100 nm) > PEO-SiO2 (50 nm) > PEO-SiO2 (15 nm). At plateau adsorption after melting and solidification, the samples were completely amorphous. The Tg of the adsorbed PEO increased in the order PEO-SiO 2 (100 nm) > PEO-SiO2 (50 nm) > PEO-SiO2 (15 nm); since the Tgs were above 25°C in all cases, the PEO behaved more like a brittle solid than an elastomer. For comparable amounts of PEO that were adsorbed from solution but not melted, the melt endotherm increased in the order PEO-SiO2 (15 nm) > PEO-SiO2 (50 nm) > PEO-SiO 2 (100 nm). These trends were interpreted as due to an increase

  14. Solid–solid phase transitions via melting in metals

    PubMed Central

    Pogatscher, S.; Leutenegger, D.; Schawe, J. E. K.; Uggowitzer, P. J.; Löffler, J. F.

    2016-01-01

    Observing solid–solid phase transitions in-situ with sufficient temporal and spatial resolution is a great challenge, and is often only possible via computer simulations or in model systems. Recently, a study of polymeric colloidal particles, where the particles mimic atoms, revealed an intermediate liquid state in the transition from one solid to another. While not yet observed there, this finding suggests that such phenomena may also occur in metals and alloys. Here we present experimental evidence for a solid–solid transition via the formation of a metastable liquid in a ‘real' atomic system. We observe this transition in a bulk glass-forming metallic system in-situ using fast differential scanning calorimetry. We investigate the corresponding transformation kinetics and discuss the underlying thermodynamics. The mechanism is likely to be a feature of many metallic glasses and metals in general, and may provide further insight into phase transition theory. PMID:27103085

  15. A creep apparatus to explore the quenching and ageing phenomena of PVC films

    NASA Technical Reports Server (NTRS)

    Lee, H. H. D.; Mcgarry, F. J.

    1991-01-01

    A creep apparatus has been constructed for an in situ determination of length and length change. Using this apparatus, the creep behavior of PVC thin films associated with quenching and aging was studied. The more severe the quench through the glass transition temperature, the greater is the instantaneous elastic deformation and the subsequent creep behavior. As aging proceeds, the quenched films gradually lose the ductility incurred by quenching. These results agree well with the well-known phenomena of physical aging. Thus, the changes reflecting molecular mobilities due to quenching and aging can be properly monitored by such a creep apparatus.

  16. Crystal-to-glass-transition induced elastic anomaly of cerium-iron multilayer films and texture-related mechanical properties after hydrogenation

    NASA Astrophysics Data System (ADS)

    Hassdorf, R.; Arend, M.; Felsch, W.

    1995-04-01

    The flexural modulus EF of pure and hydrided cerium-iron multilayer films has been measured at 300 K as a function of the modulation wavelength Λ using a vibrating-reed technique. EF is strongly correlated to the structure of the layered systems. In the pure Ce/Fe multilayers, the Fe sublayers show a structural transition from an amorphous to the bcc crystalline phase for a thickness near 20 Å. At this transition, the modulus EF is reduced by ~70%. The elastic softening occurs already, as a precursor to the structural change, for the crystalline Fe sublayers somewhat above the thickness for amorphous growth. This behavior reveals close similarities to the crystal-to-glass transition in bulk metallic alloys and compounds which seems to be driven by a shear instability of the crystal lattice. Hydrogenation leads to multilayers built of CeH~2/Fe. The Fe sublayers grow in the bcc structure above 10 Å, with a pronounced (110) or (111) texture for low- or room-temperature deposition. The flexural moduli are larger as compared to the nonhydrided multilayers and distinctly different for the two Fe textures. A simple calculation shows that the texture-related differences mainly result from the bulk properties of the Fe layers, but a contribution of interfacial effects cannot be excluded.

  17. A Molecular Dynamics Model of Melting and Glass Transition in an Idealized Two-Dimensional Material. - 1

    DTIC Science & Technology

    1989-01-23

    SYNMBOL 7A NAME OF MONITORING OQiA.NIZATION - Massachusetts Institute I (it applicable) ONR 4~ of TechnologyI (x. AOORESS 1Ciry, Stt. and Z1IC00*J 7b...deformations in glasses to extensions of well defined mobile crystal de- fects, such as vacancies and dislocations (for a review see (21). In our view, 11... mobility of dislocations in the quasi-crystalline domains encapsulated by the liquid-like material. As can be expected, this latter component of

  18. Alternating copolymerization of propylene oxide with biorenewable terpene-based cyclic anhydrides: a sustainable route to aliphatic polyesters with high glass transition temperatures.

    PubMed

    Van Zee, Nathan J; Coates, Geoffrey W

    2015-02-23

    The alternating copolymerization of propylene oxide with terpene-based cyclic anhydrides catalyzed by chromium, cobalt, and aluminum salen complexes is reported. The use of the Diels-Alder adduct of α-terpinene and maleic anhydride as the cyclic anhydride comonomer results in amorphous polyesters that exhibit glass transition temperatures (Tg ) of up to 109 °C. The polymerization conditions and choice of catalyst have a dramatic impact on the molecular weight distribution, the relative stereochemistry of the diester units along the polymer chain, and ultimately the Tg of the resulting polymer. The aluminum salen complex exhibits exceptional selectivity for copolymerization without transesterification or epimerization side reactions. The resulting polyesters are highly alternating and have high molecular weights and narrow polydispersities.

  19. Diphenylamino-substituted bicarbazole derivative: Hole-transporting material with high glass-transition temperature, good electron and triplet exciton blocking capabilities and efficient hole injection

    NASA Astrophysics Data System (ADS)

    Chen, Shanyong; Jiang, Shan; Yu, Hong

    2017-04-01

    A diphenylamino-substituted bicarbazole derivative (BCZDA) with high glass-transition temperature (170 °C) has been developed. The introduction of the strongly electron-donating diphenylamino group endows this compound with high HOMO (-4.94 eV), LUMO (-1.94 eV) and triplet energy (2.65 eV) levels which are beneficial for hole injection and electron/triplet exciton blocking. By adopting this compound as the hole-transporting layer, both fluorescent and phosphorescent devices with good performance have been realized. Through the device study, the performance of this compound is proved to be comparable to that of NPB. The utility of this compound as a host has also been evaluated.

  20. Nanoscale mechanical measurement determination of the glass transition temperature of poly(lactic acid)/everolimus coated stents in air and dissolution media.

    PubMed

    Wu, Ming; Kleiner, Lothar; Tang, Fuh-Wei; Hossainy, Syed; Davies, Martyn C; Roberts, Clive J

    2009-03-02

    Localized atomic force microscopy (AFM) force analysis on poly(lactic acid) (PLA) and poly(lactic acid)/everolimus coated stents has been performed under ambient conditions. Similar Young's modulus were derived from both PLA and PLA/everolimus stent surface, namely 2.25+/-0.46 and 2.04+/-0.39GPa, respectively, indicating that the drug, everolimus does not significantly effect the mechanical properties of PLA up to a 1:1 (w/w) drug loading. Temperature controlled force measurements on PLA only coated stents in air and in a 1% Triton surfactant solution allowed the glass transition temperature (T(g)) of the polymer to be determined. A significant drop of the Young's modulus in solution was observed at 36 degrees C, suggests that in vivo the T(g) of the polymer is below body temperature. The possible consequences on drug release and the mechanisms by which this may occur are considered.