Science.gov

Sample records for glasses materials

  1. Specialty glass raw materials: Status and developments

    SciTech Connect

    Bauer, R.J.; Gray, S.L.

    1996-12-31

    The authors highlight several key raw materials used in the specialty glass industry. The focus here is to update changes and shifts underway in the worldwide availability and processes that will impact both costs and efficient use of these products. The glass types that use these materials generally are those other than container, float, and fiber glass. Those high-volume consumers of glass raw materials are discussed in a companion paper in this volume. In the specialty glass field, the batch materials involve minerals, and the chemicals derived from them, which are less readily available domestically. These are much more critically defined by specifications of assay, contamination, and particle size, resulting in their being more expensive. They are seldom commodity products. The scope of materials for this fragmented industry includes those for leads, borosilicates, aluminosilicates, opals, sealing and frit glasses, optical glass, ophthalmic glass, cathode ray tubes (CRTs) for TV and display, and glass-ceramics as major segments. They use lead oxides, nearly all the alkalies and alkaline earth portions of the periodic table, as well as rare earths, transition element oxides, phosphates, boron minerals and chemicals, zircon, zinc, most of the halogens, and many of the anions. They often require very special particle size specifications. The requirements for these batch materials are often based on chemistry, the absence of contaminants that impact melting, very wide ranges of the electromagnetic spectrum, glass homogeneity, and freedom from solid and gaseous inclusions down to ppm levels in both size and number.

  2. Recycled Glass and Dredged Materials

    DTIC Science & Technology

    2007-03-01

    stations, and is either source-separated or co-mingled with plastics , aluminum cans, ceramics, or colored glass containers. In the United States in...cullet (for new bottles and other containers) or non-container glass cullet (all other uses), and non-container processed cullet production is...aggregates (i.e. opposition to change), cost, and regulations. Contamination and Safety Issues. Recycled container glass may contain debris (defined as

  3. Recent developments in glass-ceramic materials

    SciTech Connect

    Beall, G.H.

    1993-12-31

    Glass-ceramic materials can be made by sintering and crystallization of fine glass powders or by internal nucleation and crystallization of formed glass articles. In both cases, the final properties are controlled by phase assemblage and microstructure. Transparent glass-ceramics based upon ultra-fine grained {beta}-quartz solid solution have been developed with near-zero thermal expansion coefficient for a variety of consumer and technical products: cookware, stove-tops, telescope mirrors, optical gyroscopes. Fluormica glass-ceramics with a {open_quotes}house-of-cards{close_quotes} microstructure are easily machined and have found wide application in vacuum systems, precision dielectric components, insulators, and medical and dental prostheses. Acicular chain silicate glass-ceramics are strong and tough, and have recently been developed as high performance tableware and magnetic memory disk substrates. Sintered glass-ceramics based on magnesium aluminosilicate frits are the basis of copper-cordierite packaging for advanced IC packaging.

  4. Glasses, ceramics, and composites from lunar materials

    NASA Technical Reports Server (NTRS)

    Beall, George H.

    1992-01-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  5. Fiber glass reinforced structural materials for aerospace application

    NASA Technical Reports Server (NTRS)

    Bartlett, D. H.

    1968-01-01

    Evaluation of fiber glass reinforced plastic materials concludes that fiber glass construction is lighter than aluminum alloy construction. Low thermal conductivity and strength makes the fiber glass material useful in cryogenic tank supports.

  6. Glass material oxidation and dissolution system: Converting miscellaneous fissile materials to glass

    SciTech Connect

    Forsberg, C.W.; Ferrada, J.J.

    1996-03-19

    The cold war and the development of nuclear energy have resulted in significant inventories of miscellaneous fissile materials (MFMs). MFMs include (1) plutonium scrap and residue, (2) miscellaneous spent nuclear fuel (SNF), (3) certain hot cell wastes, and (4) many one-of-a-kind materials. Major concerns associated with the long-term management of these materials include: safeguards and nonproliferation issues; health, environment, and safety concerns. waste management requirements; and high storage costs. These issues can be addressed by converting the MFMs to glass for secure, long-term storage or repository disposal; however, conventional glass-making processes require oxide-like feed materials. Converting MFMs to oxide-like materials with subsequent vitrification is a complex and expensive process. A new vitrification process has been invented, the Glass Material Oxidation and Dissolution System (GMODS), which directly converts metals, ceramics, and amorphous solids to glass; oxidizes organics with the residue converted to glass; and converts chlorides to borosilicate glass and a secondary sodium chloride (NaCl) stream. Laboratory work has demonstrated the conversion of cerium (a plutonium surrogate), uranium, Zircaloy, stainless steel, multiple oxides, and other materials to glass. However, significant work is required to develop GMODS further for applications at an industrial scale. If implemented, GMODS will provide a new approach to manage these materials.

  7. Lightweight and thermally insulating aerogel glass materials

    NASA Astrophysics Data System (ADS)

    Gao, Tao; Jelle, Bjørn Petter; Gustavsen, Arild; He, Jianying

    2014-07-01

    Glass represents an important and widely used building material, and crucial aspects to be addressed include thermal conductivity, visible light transmittance, and weight for windows with improved energy efficiency. In this work, by sintering monolithic silica aerogel precursors at elevated temperatures, aerogel glass materials were successfully prepared, which were characterized by low thermal conductivity [k ≈ 0.17-0.18 W/(mK)], high visible transparency (T vis ≈ 91-96 % at 500 nm), low density (ρ ≈ 1.60-1.79 g/cm3), and enhanced mechanical strength (typical elastic modulus E r ≈ 2.0-6.4 GPa). These improved properties were derived from a series of successive gelation and aging steps during the desiccation of silica aerogels. The involved sol → gel → glass transformation was investigated by means of thermo-gravimetric analysis, scanning electron microscopy, nanoindentation, and Fourier transform infrared spectroscopy. Strategies of improving further the mechanical strength of the obtained aerogel glass materials are also discussed.

  8. The Glass Transition of Driven Molecular Materials

    NASA Astrophysics Data System (ADS)

    Descamps, M.; Willart, J. F.; Aumelas, A.

    2008-02-01

    There are many cases of practical interest where materials are maintained in nonequilibrium conditions by some external dynamical forcing: typical examples of these driven materials are provided by irradiation, grinding, extrusion…Contrary to usual phase transitions which are properly addressed by thermal equilibrium states, equilibrium and irreversible thermodynamics, no such general framework is available for driven systems. The purpose of this paper is to show some examples of phase transformations in driven molecular materials. These materials are considered because they are extremely sensitive to external disturbances and are generally very good glass formers. This allows investigating more easily a broad range of the parameters which possibly influence the nature of the end product. We will examine mainly the effect of grinding. Contrary to other materials, metals or minerals, systematic investigations of transformations induced by grinding of molecular materials have not yet been done despite the practical and fundamental interests of such investigations in pharmaceutical and agro-chemical science. We will address several modes of interconversions between crystalline and glassy states of the same compound. We will further discuss specific processing effects on the physical state of the glass itself. It will be shown from these investigations that rationalization and possibilities of prediction are emerging. The use of effective temperature concepts to describe the end product of milling will be discussed. These findings may be of general concern for driven materials of any chemical nature.

  9. Tempered glass and thermal shock of ceramic materials

    NASA Technical Reports Server (NTRS)

    Bunnell, L. Roy

    1992-01-01

    A laboratory experiment is described that shows students the different strengths and fracture toughnesses between tempered and untempered glass. This paper also describes how glass is tempered and the materials science aspects of the process.

  10. Glass cullet as a new supplementary cementitious material (SCM)

    NASA Astrophysics Data System (ADS)

    Mirzahosseini, Mohammadreza

    Finely ground glass has the potential for pozzolanic reactivity and can serve as a supplementary cementitious material (SCM). Glass reaction kinetics depends on both temperature and glass composition. Uniform composition, amorphous nature, and high silica content of glass make ground glass an ideal material for studying the effects of glass type and particle size on reactivity at different temperature. This study focuses on how three narrow size ranges of clear and green glass cullet, 63--75 mum, 25--38 mum, and smaller than 25 mum, as well as combination of glass types and particle sizes affects the microstructure and performance properties of cementitious systems containing glass cullet as a SCM. Isothermal calorimetry, chemical shrinkage, thermogravimetric analysis (TGA), quantitative analysis of X-ray diffraction (XRD), and analysis of scanning electron microscope (SEM) images in backscattered (BS) mode were used to quantify the cement reaction kinetics and microstructure. Additionally, compressive strength and water sorptivity experiments were performed on mortar samples to correlate reactivity of cementitious materials containing glass to the performance of cementitious mixtures. A recently-developed modeling platform called "muic the model" was used to simulated pozzolanic reactivity of single type and fraction size and combined types and particle sizes of finely ground glass. Results showed that ground glass exhibits pozzolanic properties, especially when particles of clear and green glass below 25 mum and their combination were used at elevated temperatures, reflecting that glass cullet is a temperature-sensitive SCM. Moreover, glass composition was seen to have a large impact on reactivity. In this study, green glass showed higher reactivity than clear glass. Results also revealed that the simultaneous effect of sizes and types of glass cullet (surface area) on the degree of hydration of glass particles can be accounted for through a linear addition

  11. Open-cell glass crystalline porous material

    DOEpatents

    Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2002-01-01

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  12. Open-cell glass crystalline porous material

    DOEpatents

    Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2003-12-23

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  13. Reinforcement of conventional glass-ionomer restorative material with short glass fibers.

    PubMed

    Hammouda, Ibrahim M

    2009-01-01

    This study investigated the strengthening effect of glass fibers when added to conventional glass-ionomer restorative material. Glass fibers were incorporated into glass-ionomer powder in 3 wt% and 5 wt%. The fibers used had 1 mm length and 10 microm thickness. These criteria of fiber length, diameter, and concentration represent a new approach for reinforcing conventional glass-ionomer [Medifill, conventional restorative glass-ionomer]. The mechanical properties tested were diametral tensile strength, hardness, flexural strength, flexural modulus and fracture toughness after 24-h and 7-days of storage in deionized water. Glass short fibers were mixed thoroughly into the glass-ionomer powder before mixing with the cement liquid. Samples of specific dimensions were prepared for each time interval and fiber loading according to the manufacturer's instructions and international standards. Hardness was measured using a micro-hardness tester at 100 gram applied load for 15 s. The other mechanical properties were measured using a Lloyd universal testing machine. The results showed increased diametral tensile strength, flexural strength, flexural modulus, and fracture toughness by the addition of glass fibers. There was an appreciable increase of the tested mechanical properties of glass-ionomer restorative material as a result of increasing fiber loading and water storage for 1 week. It was concluded that conventional glass-ionomer can be reinforced by the addition of short glass fibers.

  14. Use of glass ionomers as retrofilling materials.

    PubMed

    Barkhordar, R A; Pelzner, R B; Stark, M M

    1989-06-01

    Many materials have been used as retrofillings. Because of the bonding property of glass ionomer cement, this study was conducted to evaluate its possible use as a retrofilling material. Seventy human maxillary anterior teeth were chosen. The root canal systems were cleansed and shaped, and the teeth were assigned to six groups of 10 each. The root canals were obturated with gutta-percha and Grossman sealer, and the apical 2 mm of each root was resected. In all groups a retrofilling preparation was made to a depth of a number 331 bur. The apical preparations were filled in the following manner: silver amalgam (group I), silver amalgam plus two layers of varnish (group II), Ketac-Silver plus two layers of varnish (group III), Ketac-Silver without varnish (group IV), Ketac-Fil plus two layers of varnish (group V), Ketac-Fil without varnish (group VI), and Ketac-Bond (group VII). All the root surfaces with the exception of 2 mm from the resected line were coated with two layers of clear varnish. All the teeth were immersed in methylene blue for 24 hours. After vertical sectioning, dye penetration was measured under a dissecting microscope. The mean apical leakage (in millimeters) was as follows: I = 0.57, II = 0.39, III = 0.22, IV = 0.54, V = 0.11, VI = 0.46, and VII = 0.17. One-way analysis of variance performed on the group means indicated that Ketac-Fil with varnish (group V) and Ketac-Bond (group VII) had significantly less leakage than other groups (p less than 0.05). This study indicates that Ketac-Fil and Ketac-Bond may have potential as retrofilling materials.

  15. Characterization of low concentration uranium glass working materials

    SciTech Connect

    Eppich, G. R.; Wimpenny, J. B.; Leever, M. E.; Knight, K. B.; Hutcheon, I. D.; Ryerson, F. J.

    2016-03-22

    A series of uranium-doped silicate glasses were created at (Lawrence Livermore National Laboratory) LLNL, to be used as working reference material analogs for low uranium concentration research. Specifically, the aim of this effort was the generation of well-characterized glasses spanning a range of concentrations and compositions, and of sufficient homogeneity in uranium concentration and isotopic composition, for instrumentation research and development purposes. While the glasses produced here are not intended to replace or become standard materials for uranium concentration or uranium isotopic composition, it is hoped that they will help fill a current gap, providing low-level uranium glasses sufficient for methods development and method comparisons within the limitations of the produced glass suite. Glasses are available for research use by request.

  16. Materials processing apparatus development for fluoride glass

    NASA Technical Reports Server (NTRS)

    Smith, Guy A.; Kosten, Sue; Workman, Gary L.

    1994-01-01

    Fluoride glasses have great potential for optical fiber communications due to the high transmittance when no microcrystallites occur during drawing operations. This work has developed apparatus to test the occurrence of microcrystallites during recrystallization in reduced gravity on the KC-135. The apparatus allows fluoride glass fiber, such as ZBLAN, to be melted and recrystallized during both the low and high g portions the parabolic flight.

  17. Glass ceramic ionic conductor materials and method of making

    SciTech Connect

    Badzioch, S.

    1985-03-26

    Solid, crystalline glass ceramic compositions which are useful as ionic conductor materials, especially for use as solid electrolytes in high temperature, high energy density storage batteries. The glass ceramics are derived from sodium or calcium borates containing one or more metal halide, preferably the chlorides and bromides of the metals from Group 2 to 8 of the Periodic Table of the Elements.

  18. Antimony oxide based glasses, novel laser materials

    NASA Astrophysics Data System (ADS)

    Ouannes, Karima; Lebbou, Kheirreddine; Walsh, Brian M.; Poulain, Marcel; Alombert-Goget, Guillaume; Guyot, Yannick

    2017-03-01

    Glasses based on Sb2O3 make one of the major classes of heavy metal oxide glasses. This paper concerns two antimonite glasses, 88Sb2O3-10Na2O-2Bi2O3 (SNB2) and 60Sb2O3-20WO3-19Na2O-1Bi2O3 (SWNB1), doped with 0.25 mol% Er2O3. Bulk samples have been prepared and their absorption and fluorescence spectra have been recorded. Differential scanning calorimeter (DSC) measurements emphasize a thermal stability range ΔT > 100 °C that expresses a good stability against devitrification. Both FTIR and Raman spectra provide information on the structural organization of the glasses. The maximum phonon energies are 700 cm-1 and 920 cm-1 for SNB2 and SWNB1 glasses, respectively. The spectroscopic analysis of the absorption and emission properties of the Er3+ ions in the SNB2 and SWNB1 glasses has been performed. The Judd-Ofelt theory has been applied to interpret the local environment of the Er3+ ion site and covalency of the Ersbnd O bond, but also to determine the radiative lifetime (τr) for 4I13/2 → 4I15/2 emission transition. The emission cross-sections for the 4I13/2 → 4I15/2 transition (1528 nm) were calculated using McCumber and Füchtbauer-Ladenburg theories. We discuss the potential application of these glasses.

  19. The interfacial chemistry of organic materials on commercial glass surfaces

    NASA Astrophysics Data System (ADS)

    Banerjee, Joy

    The hydrolytic stability of glass is dependent on its composition. Glasses are exposed to water during their processing and in many applications; therefore, their surface or interface with other materials must withstand hydrolytic attack. Multi-component silicate glasses are widely used but have been the least studied. In coatings-based applications, these glasses come in contact with organosilanes and organic molecules where the adsorption may be affected by surface water. For example, the influence of glass composition on the wet strength of a glass/polymer composite material is unclear, but it is presumed to be driven by the hydrolytic stability of the interfacial chemistry. Organosilanes are critical for increasing the performance of composite materials in humid environments but the precise manner by which the improvement occurs has not been verified. The current school of thought is that the application of silane coatings on a multi-component glass surface transforms the chemically heterogeneous surface into a homogenous and hydrolytically stable surface. In this study, multi-component silicate glass surfaces were silanized by both aqueous and non-aqueous methods. The effect of glass composition and surface hydration on silane coverage was quantified by X-ray Photoelectron Spectroscopy (XPS) analysis. The monolayer-level adsorption results showed that the low-sodium content glasses had greater coverage than a high-sodium content glass in dry conditions in contrast to an equivalent coverage in wet conditions. The hydrolytically-stable coverage on multi-component silicate glass surfaces by both silanization methods was found to be sub-monolayer. A thin film model in conjunction with XPS and Infrared Spectroscopy was used to probe the interfacial region of a fiberglass insulation material containing a sodium-rich multi-component silicate glass and an acrylate resin binder. Upon the application of the aqueous binder, the leaching of sodium from the glass promoted

  20. Glass-ceramics: A class of nanostructured materials for photonics

    NASA Astrophysics Data System (ADS)

    de Pablos-Martin, A.; Ferrari, M.; Pascual, M. J.; Righini, G. C.

    2015-07-01

    Glass-ceramics (GCs) are constituted by nanometer-to-micron-sized crystals embedded in a glass matrix; usually, their structural or functional elements (clusters, crystallites or molecules) have dimensions in the 1 to 100nm range. As the name says, GCs must be considered an intermediate material between inorganic glasses and ceramics; in most cases the crystallinity is between 30 and 50%. GCs share many properties with both glasses and ceramics, offering low defects, extra hardness, high thermal shock resistance (typical of ceramics) together with the ease of fabrication and moulding (typical of glasses). The embedded crystalline phase, however, can enhance the existing properties of the matrix glass or lead to entirely new properties. GCs are produced by controlled crystallization of certain glasses, generally induced by nucleating additives; they may result opaque or transparent. Transparent GCs are now gaining a competitive advantage with respect to amorphous glasses and, sometimes, to crystals too. The aim of the present paper is to introduce the basic characteristics of transparent glass-ceramics, with particular attention to the relationship between structure and transparency and to the mechanism of crystallization, which may also be induced by selective laser treatments. Their applications to the development of guided-wave structures are also briefly described.

  1. Semiconducting glasses: A new class of thermoelectric materials?

    SciTech Connect

    Goncalves, A.P.; Vaney, J.B.; Lenoir, B.; Piarristeguy, A.; Pradel, A.; Monnier, J.; Ochin, P.; Godart, C.

    2012-09-15

    The deeper understanding of the factors that affect the dimensionless figure of merit, ZT, and the use of new synthetic methods has recently led to the development of novel systems with improved thermoelectric performances. Albeit up to now with ZT values lower than the conventional bulk materials, semiconducting glasses have also emerged as a new family of potential thermoelectric materials. This paper reviews the latest advances on semiconducting glasses for thermoelectric applications. Key examples of tellurium-based glasses, with high Seebeck coefficients, very low thermal conductivities and tunable electrical conductivities, are presented. ZT values as high as 0.2 were obtained at room temperature for several tellurium-based glasses with high copper concentrations, confirming chalcogenide semiconducting glasses as good candidates for high-performance thermoelectric materials. However, the temperature stability and electrical conductivity of the reported glasses are still not good enough for practical applications and further studies are still needed to enhance them. - Graphical abstract: Power factor as a function of the temperature for the Cu{sub 27.5}Ge{sub 2.5}Te{sub 70} and Cu{sub 30}As{sub 15}Te{sub 55} seniconducting glasses. Highlights: Black-Right-Pointing-Pointer A review of semiconducting glasses for thermoelectrics applications is presented. Black-Right-Pointing-Pointer The studied semiconducting glasses present very low thermal conductivities. Black-Right-Pointing-Pointer Composition can tune electrical conductivity and Seebeck coefficient. Black-Right-Pointing-Pointer ZT=0.2 is obtained at 300 K for different semiconducting glasses.

  2. Valorization of sugarcane bagasse ash: producing glass-ceramic materials.

    PubMed

    Teixeira, S R; Magalhães, R S; Arenales, A; Souza, A E; Romero, M; Rincón, J M

    2014-02-15

    Some aluminosilicates, for example mullite and wollastonite, are very important in the ceramic and construction industries. The most significant glass-ceramic for building applications has wollastonite as the main crystal phase. In this work we report on the use of sugarcane bagasse ash (SCBA) to produce glass-ceramics with silicates as the major crystalline phases. The glasses (frits) were prepared by mixing ash, limestone (calcium and magnesium carbonates) and potassium carbonate as the fluxing agent. X-ray fluorescence was used to determine the chemical composition of the glasses and their crystallization was assessed by using thermal analysis (DTA/DSC/TGA) and X-ray diffraction. The results showed that glass-ceramic material can be produced with wollastonite as the major phase, at a temperature lower than 900 °C.

  3. Hyperpolarized cesium ions doped in a glass material.

    PubMed

    Ishikawa, Kiyoshi

    2014-10-17

    Hyperpolarized (HP) (133)Cs nuclear magnetic resonance signals were measured from borosilicate glass cell walls during optical pumping of cesium vapor at high magnetic field (9.4T). Significant signal enhancements were observed when additional heating of the cell wall was provided by intense but non-resonant laser irradiation, with integrated HP (133)Cs NMR signals and line widths varying as a function of heating laser power (and hence glass temperature). Given that virtually no Cs ions would originally be present in the glass, absorbed HP Cs atoms rarely met thermally-polarized Cs ions already at the surface; thus, spin-exchange via nuclear dipole interaction cannot be the primary mechanism for injecting spin polarization into the glass. Instead, it is concluded that the absorption and transport of HP atoms into the glass material itself is the dominant mechanism of nuclear spin injection at high temperatures-the first reported experimental demonstration of such a mechanism.

  4. Dimensional stability. [of glass and glass-ceramic materials in diffraction telescopes

    NASA Technical Reports Server (NTRS)

    Hochen, R.; Justie, B.

    1976-01-01

    The temporal stability of glass and glass-ceramic materials is important to the success of a large diffraction-limited telescope. The results are presented of an experimental study of the dimensional stability of glasses and glass ceramics being considered for substrates of massive diffraction-limited mirrors designed for several years of service in earth orbit. The purpose of the study was to measure the relative change in length of the candidate substrate materials, to the order of 5 parts in 10 to the 8th power, as a function of several years time. The development of monolithic test etalons, the development and improvement of two types of ultra-high precision interferometers, and certain aspects of tests data presently achieved are discussed.

  5. Effects of rocks and backfill materials on waste glass leaching

    SciTech Connect

    Ishiguro, K.; Sasaki, N.; Kashihara, H.; Yamamoto, M.

    1986-12-31

    Extensive studies have been made on the interactions between a waste glass and repository materials under static conditions. One of the PNC reference glasses was leached in the solution prepared from water in contact with crushed granite, tuff, diabase and backfill materials such as bentonite and zeolite. The leachant solutions except for some bentonite solutions reduced the glass leach rate compared with that measured in distilled water. The extent of the reduction was a function of silicon concentration in solution. The bentonite solutions enhanced the glass dissolution rate by a factor of 2 to 3 at low bentonite/water ratios but the effect was found to be less important at high bentonite/water ratios and in the long-term experiment. Addition of granite and zeolite to the bentonite solutions decreased the leach rate below the value measured in distilled water.

  6. MOLYBDENUM DISILICIDE MATERIALS FOR GLASS MELTING SENSOR SHEATHS

    SciTech Connect

    J. PETROVIC; R. CASTRO; ET AL

    2001-01-01

    Sensors for measuring the properties of molten glass require protective sensor sheaths in order to shield them from the extremely corrosive molten glass environment. MoSi{sub 2} has been shown to possess excellent corrosion resistance in molten glass, making it a candidate material for advanced sensor sheath applications. MoSi{sub 2}-coated Al{sub 2}O{sub 3} tubes, MoSi{sub 2}-Al{sub 2}O{sub 3} laminate composite tubes, and MoSi{sub 2}-Al{sub 2}O{sub 3} functionally graded composite tubes have been produced by plasma spray-forming techniques for such applications.

  7. Spin glasses: redux: an updated experimental/materials survey

    NASA Astrophysics Data System (ADS)

    Mydosh, J. A.

    2015-05-01

    This article reviews the 40+ year old spin-glass field and one of its earliest model interpretations as a spin density wave. Our description is from an experimental phenomenological point of view with emphasis on new spin glass materials and their relation to topical problems and strongly correlated materials in condensed matter physics. We first simply define a spin glass (SG), give its basic ingredients and explain how the spin glasses enter into the statistical mechanics of classical phase transitions. We then consider the four basic experimental properties to solidly characterize canonical spin glass behavior and introduce the early theories and models. Here the spin density wave (SDW) concept is used to explain the difference between a short-range SDW, i.e. a SG and, in contrast, a long-range SDW, i.e. a conventional magnetic phase transition. We continue with the present state of SG, its massive computer simulations and recent proposals of chiral glasses and quantum SG. We then collect and mention the various SG ‘spin-off’s'. A major section uncovers the fashionable unconventional materials that display SG-like freezing and glassy ground states, such as (high temperature) superconductors, heavy fermions, intermetallics and Heuslers, pyrochlor and spinels, oxides and chalogenides and exotics, e.g. quasicrystals. Some conclusions and future directions complete the review.

  8. A new basaltic glass microanalytical reference material for multiple techniques

    USGS Publications Warehouse

    Wilson, Steve; Koenig, Alan; Lowers, Heather

    2012-01-01

    The U.S. Geological Survey (USGS) has been producing reference materials since the 1950s. Over 50 materials have been developed to cover bulk rock, sediment, and soils for the geological community. These materials are used globally in geochemistry, environmental, and analytical laboratories that perform bulk chemistry and/or microanalysis for instrument calibration and quality assurance testing. To answer the growing demand for higher spatial resolution and sensitivity, there is a need to create a new generation of microanalytical reference materials suitable for a variety of techniques, such as scanning electron microscopy/X-ray spectrometry (SEM/EDS), electron probe microanalysis (EPMA), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS). As such, the microanalytical reference material (MRM) needs to be stable under the beam, be homogeneous at scales of better than 10–25 micrometers for the major to ultra-trace element level, and contain all of the analytes (elements or isotopes) of interest. Previous development of basaltic glasses intended for LA-ICP-MS has resulted in a synthetic basaltic matrix series of glasses (USGS GS-series) and a natural basalt series of glasses (BCR-1G, BHVO-2G, and NKT-1G). These materials have been useful for the LA-ICP-MS community but were not originally intended for use by the electron or ion beam community. A material developed from start to finish with intended use in multiple microanalytical instruments would be useful for inter-laboratory and inter-instrument platform comparisons. This article summarizes the experiments undertaken to produce a basalt glass reference material suitable for distribution as a multiple-technique round robin material. The goal of the analytical work presented here is to demonstrate that the elemental homogeneity of the new glass is acceptable for its use as a reference material. Because the round robin exercise is still underway, only

  9. The properties of metal-reinforced glass ionomer materials.

    PubMed

    Chung, K H

    1993-01-01

    The physical properties and bond strengths of two glass ionomer materials reinforced with silver and amalgam alloy powders were compared with those of a conventional material from the same manufacture as well as two commercially available products. The diametral tensile strength, hardness and bonding strength are improved with the addition of either commercial available silver particles or fabricated high-copper amalgam alloy powders to the glass. Simple mixture of the metal or alloy powders with the glass ionomer cement seems to be feasible to improve the properties of the regular cement. However, further studies in formulating an optimal composition of metal or alloy, setting characteristics and long-term clinical evaluation are necessary before proposing uses for this new material.

  10. Glass-ceramic materials from electric arc furnace dust.

    PubMed

    Kavouras, P; Kehagias, T; Tsilika, I; Kaimakamis, G; Chrissafis, K; Kokkou, S; Papadopoulos, D; Karakostas, Th

    2007-01-31

    Electric arc furnace dust (EAFD) was vitrified with SiO2, Na2CO3 and CaCO3 powders in an electric furnace at ambient atmosphere. Vitreous products were transformed into glass-ceramic materials by two-stage heat treatment, at temperatures determined by differential thermal analysis. Both vitreous and glass-ceramic materials were chemically stable. Wollastonite (CaSiO3) was separated from the parent matrix as the dominant crystalline phase, verified by X-ray diffraction analysis and energy dispersive spectrometry. Transmission electron microscopy revealed that wollastonite crystallizes mainly in its monoclinic form. Knoop microhardness was measured with the static indentation test method in all initial vitreous products and the microhardness values were in the region of 5.0-5.5 GPa. Devitrification resulted in glass-ceramic materials with microhardness values strongly dependent on the morphology and orientation of the separated crystal phase.

  11. Composite materials based on wastes of flat glass processing.

    PubMed

    Gorokhovsky, A V; Escalante-Garcia, J I; Gashnikova, G Yu; Nikulina, L P; Artemenko, S E

    2005-01-01

    Glass mirrors scrap and poly (vinyl) butiral waste (PVB) obtained from flat glass processing plants were investigated as raw materials to produce composites. The emphasis was on studying the influence of milled glass mirror waste contents on properties of composites produced with PVB. The characterization involved: elongation under rupture, water absorption, tensile strength and elastic modulus tests. The results showed that the composite containing 10 wt% of filler powder had the best properties among the compositions studied. The influence of the time of exposure in humid atmosphere on the composite properties was investigated. It was found that the admixture of PVB iso-propanol solution to the scrap of glass mirrors during milling provided stabilization of the properties of the composites produced.

  12. Comparison of the properties of glass, glass-ceramic and ceramic materials produced from coal fly ash.

    PubMed

    Erol, M; Küçükbayrak, S; Ersoy-Meriçboyu, A

    2008-05-01

    Glass, glass-ceramic and ceramic materials were produced from thermal power plant fly ash without any additives. X-ray diffraction (XRD) analysis revealed the amorphous phase of the glass sample. Augite phase was detected in the glass-ceramic sample, while the enstatite and mullite phases occurred in the ceramic samples. Scanning electron microscopy (SEM) investigations showed that tiny crystallites homogeneously dispersed in the microstructure of the glass-ceramic sample and elongated crystals formed in the ceramic samples. Density values of the obtained samples are comparable to those of the commercially produced glass, glass-ceramic and ceramic samples. Toxicity characteristic leaching procedure (TCLP) results indicated that the produced samples could be taken as non-hazardous materials. Produced samples showed high resistance to alkali solutions in contrast to acidic solutions. Microstructural, physical, chemical and mechanical properties of the produced glass-ceramic samples are better than those of the produced glass and ceramic samples.

  13. Interactions of bioactive glass materials in the oral environment

    NASA Astrophysics Data System (ADS)

    Efflandt, Sarah Elizabeth

    The aim of this research was to investigate bioactive glass materials for their use in dental restorations. Mechanical properties such as strength, toughness and wear resistance were considered initially, but the focus of this thesis was the biological properties such as reactions with saliva and interactions with natural dental tissues. Bioactive composite materials were created by incorporating bioactive glass and alumina powders into an aqueous suspension, slip casting, and infiltrating with resin. Microstructure, mechanical properties and wear resistance were evaluated. Mechanically, the composites are comparable to natural dental tissues and current dental materials with a strength of 206 +/- 18.7 MPa and a toughness of 1.74 +/- 0.08 MPa(m)1/2. Interfacial reactions were examined using bulk bioactive glasses. Disks were prepared from a melt, placed in saliva and incubated at 37°C. Surfaces were analyzed at 2, 5, 10, 21, and 42 days using scanning electron microscopy (SEM) and microdiffraction. Results showed changes at 2 days with apatite crystallization by 10 days. These glass disks were then secured against extracted human dentin and incubated in saliva for 21 or 42 days. Results from SEM, electron microprobe analysis (EMPA) and microdiffraction showed that dentin and bioactive glasses adhered in this in vitro environment due to attraction of collagen to bioactive glasses and growth of an interfacial apatite. After investigating these bulk glass responses, particulate bioactive glasses were placed in in vitro and in vivo set-ups for evaluation. Particles immersed in biologically buffered saliva showed crystallization of apatite at 3 days. These bioactive glass particles were placed in the molars of mini-pigs and left in vivo. After 30 days the bioactive paste was evaluated using SEM, EMPA and microdiffraction analyses. Results showed that the paste gained structural integrity and had chemical changes in vivo. These sets of experiments show that bioactive

  14. Phononic glass: a robust acoustic-absorption material.

    PubMed

    Jiang, Heng; Wang, Yuren

    2012-08-01

    In order to achieve strong wide band acoustic absorption under high hydrostatic pressure, an interpenetrating network structure is introduced into the locally resonant phononic crystal to fabricate a type of phononic composite material called "phononic glass." Underwater acoustic absorption coefficient measurements show that the material owns high underwater sound absorption coefficients over 0.9 in 12-30 kHz. Moreover, the quasi-static compressive behavior shows that the phononic glass has a compressive strength over 5 MPa which is crucial for underwater applications.

  15. Polymer/glass nanocomposite fiber as an insulating material

    NASA Astrophysics Data System (ADS)

    Taygun, M. Erol; Akkaya, I.; Gönen, S. Ö.; Küçükbayrak, S.

    2017-02-01

    Production of the insulation materials with using nanofibers is the unique idea. With this idea, insulating facilities are enhanced with compressing air between the layers of nanofibers. Basically, glass wool is used as an insulation material. On the other hand, nanofiber glasses can be preferred for insulation purposes to be able to obtain insulation materials better then glass wool. From this point of view in this study, glass nanofibers were formed with sol-gel method by utilizing electrospinning technique. In the experimental part, first of all, sol-gel and polyvinylpyrolidone (PVP)/ethanol solutions were prepared. Then the relation of rheological properties with electrospinnability of PVP/sol-gel solutions was investigated by using a rheometer. Results showed that viscosity increased with the concentration of PVP. Meanwhile, the morphology of electrospun PVP/glass nanofibers was investigated by scanning electron microscope. It was also observed that the homogeneous nanofiber structure was obtained when the viscosity of the solution was 0.006 Pa.s. According to SEM results, it was concluded that nanocomposite fiber having a nanostructured morphology may be a good candidate for thermal insulation applications in the industry.

  16. Composite material based on fluoroplast and low melting oxyfluoride glass

    NASA Astrophysics Data System (ADS)

    Ignatieva, L. N.; Savchenko, N. N.; Lalayan, V. M.; Zverev, G. A.; Goncharuk, V. K.; Ustinov, A. Yu.; Shaulov, A. Yu.; Berlin, A. A.; Bouznik, V. M.

    2016-05-01

    The present work summarizes the results of studies of the samples fabricated through extrusion blending of mixtures composed of the perfluorocarbon polymer (polyvinylidene fluoride, PVDF), which presently undergoes intensive studies, and the inorganic glass (BF-glass) of the composition 3B2O3-97(40SnF2-30SnO-30P2O5). It is revealed as a result of application of the suggested technique the composite material whose structure depends on the component ratio in the mixture (from individual areas formed by each component to homogeneously distributed composite particles) has been fabricated. The peculiarities of formation of composites were studied on the basis of the results of studying their morphology, molecular structure and phase composition. It was revealed the preservation of the polymer molecular structure and the absence of interaction with the glass in the fabricated samples. We found that in the process of sample fabrication there occur melting of the mixture, mixing of particles and changing of the phase compositions. The polymer partially and the glass almost completely crystallize in the process of composite fabrication. Glass crystals fill polymer cavities forming agglomerates. Along with the increase of the amount of inorganic component crystals, the polymer monolithic nature is disrupted and an inversion occurs at a certain component ratio: polymer particles are located between crystals of the inorganic component, mixing with them and covering them. The glass crystallization is facilitated through pre-crushing in extruder mill.

  17. Study of Alkali-Metal Vapor Diffusion into Glass Materials

    NASA Astrophysics Data System (ADS)

    Sato, Kiminori

    2013-08-01

    To investigate nanodispersion of alkali metals into glass materials, potassium vapor diffusion is conducted using SiO2 glass under well-controlled temperature conditions. It is found that potassium vapor significantly diffuses into the bulk of SiO2 glass with less precipitation on the surface when the host material is kept at a temperature slightly higher than that of the guest material. Positron annihilation spectroscopy reveals that angstrom-scale open spaces in the SiO2 matrix contribute to potassium vapor diffusion. The analysis of potassium concentration obtained by electron probe microanalysis (EPMA) mapping with Fick's second law yields an extremely low potassium diffusion coefficient of 5.1×10-14 cm2 s-1, which arises from the overall diffusion from open spaces of various sizes. The diffusion coefficient attributable to angstrom-scale open spaces is thus expected to be less than ˜10-14 cm2 s-1. The present findings imply that angstrom-scale open spaces play an important role in loading alkali metals into glass materials.

  18. Encapsulant Material For Solar Cell Module And Laminated Glass Applications

    DOEpatents

    Hanoka, Jack I.

    2000-09-05

    An encapsulant material includes a layer of metallocene polyethylene disposed between two layers of ionomer. More specifically, the layer of metallocene polyethylene is disposed adjacent a rear surface of the first ionomer layer, and a second layer of ionomer is disposed adjacent a rear surface of the layer of metallocene polyethylene. The encapsulant material can be used in solar cell module and laminated glass applications.

  19. Encapsulant Material For Solar Cell Module And Laminated Glass Applications

    DOEpatents

    Hanoka, Jack I.; Klemchuk, Peter P.

    2001-02-13

    An encapsulant material includes a layer of metallocene polyethylene disposed between two layers of an acid copolymer of polyethylene. More specifically, the layer of metallocene polyethylene is disposed adjacent a rear surface of the first layer of the acid copolymer of polyethylene, and a second layer of the acid copolymer of polyethlene is disposed adjacent a rear surface of the layer of metallocene polyethylene. The encapsulant material can be used in solar cell module and laminated glass applications.

  20. Temperature Measurement of a Glass Material Using a Multiwavelength Pyrometer

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1997-01-01

    Temperature measurement of a substance that is transparent using the traditional 1-color, 2-color and other pyrometers has been difficult. The radiation detected by pyrometers do not come from a well defined location in the transparent body. The multiwavelength pyrometer developed at the NASA Lewis Research Center can measure the surface temperature of many materials. We show in this paper that it also measures the surface and a bulk subsurface temperature of transparent materials like glass.

  1. Sealing ceramic material in low melting point glass

    NASA Technical Reports Server (NTRS)

    Moritoki, M.; Fujikawa, T.; Miyanaga, J.

    1984-01-01

    A structured device placed in an aerated crucible to pack ceramics molding substance that is to be processed was designed. The structure is wrapped by sealing material made of pyrex glass and graphite foil or sheet with a weight attached on top of it. The crucible is made of carbon; the ceramics material to be treated through heat intervenient press process is molding substance consisting mainly of silicon nitride.

  2. Fluoride glass starting materials - Characterization and effects of thermal treatment

    NASA Technical Reports Server (NTRS)

    Chen, William; Dunn, Bruce; Shlichta, Paul; Neilson, George F.; Weinberg, Michael C.

    1987-01-01

    The production of heavy metal fluoride (HMF) glasses, and the effects of thermal treatments on the HMF glasses are investigated. ZrF4, BaF2, AlF3, LaF3, and NaF were utilized in the synthesis of zirconium-barium-lanthanum-aluminum-sodium fluoride glass. The purity of these starting materials, in particular ZrF4, is evaluated using XRD analysis. The data reveal that low temperature heating of ZrF4-H2O is effective in removing the water of hydration, but causes the production of ZrF4 and oxyfluorides; however, dehydration followed by sublimation results in the production of monoclinic ZrFe without water or oxyfluoride contaminants.

  3. Biocompatible glass-ceramic materials for bone substitution.

    PubMed

    Vitale-Brovarone, Chiara; Verné, Enrica; Robiglio, Lorenza; Martinasso, Germana; Canuto, Rosa A; Muzio, Giuliana

    2008-01-01

    A new bioactive glass composition (CEL2) in the SiO(2)-P(2)O(5)-CaO-MgO-K(2)O-Na(2)O system was tailored to control pH variations due to ion leaching phenomena when the glass is in contact with physiological fluids. CEL2 was prepared by a traditional melting-quenching process obtaining slices that were heat-treated to obtain a glass-ceramic material (CEL2GC) that was characterized thorough SEM analysis. Pre-treatment of CEL2GC with SBF was found to enhance its biocompatibility, as assessed by in vitro tests. CEL2 powder was then used to synthesize macroporous glass-ceramic scaffolds. To this end, CEL2 powders were mixed with polyethylene particles within the 300-600 microm size-range and then pressed to obtain crack-free compacted powders (green). This was heat-treated to remove the organic phase and to sinter the inorganic phase, leaving a porous structure. The biomaterial thus obtained was characterized by X-ray diffraction, SEM equipped with EDS, density measurement, image analysis, mechanical testing and in vitro evaluation, and found to be a glass-ceramic macroporous scaffold with uniformly distributed and highly interconnected porosity. The extent and size-range of the porosity can be tailored by varying the amount and size of the polyethylene particles.

  4. Ultrafast laser processing of glass-phase materials: mathematical simulation

    NASA Astrophysics Data System (ADS)

    Sokolova, Tatiana N.; Surmenko, Elena L.; Chebotarevsky, Yury V.; Konyushin, Alexander V.; Popov, Ivan A.; Bessonov, Dmitry A.

    2013-11-01

    Glass-phase materials, such as glass-carbon, ceramics etc., are a wide class of substances applied in electronic industry. These materials often need special technologies for their processing. Unlike traditional methods of micromachining, focused ultrashort laser pulses of sufficiently high fluence makes it possible not only to avoid the majority of side effects, including temperature, but also to create a qualitatively new laser technology for "hard materials". When using ultrafast lasers in micromachining processes it is necessary to account the possible negative effects that occur in the processing of brittle materials. Removing material from the surface in cold ablation process caused by laser light, in such a short period of time with such a high rate, creates the area of high pressure in the interaction zone that could cause a microdamage of brittle materials. To study the stress-strain state arising in brittle materials under the influence of ultrafast lasers, the special physicalmathematical model of the process was formulated. As a measure of the mechanical action of laser radiation on the processed material in cold ablation the reactive force was taken. As a mechanical reaction of the treated glass-carbon substrate a back pressure generated by the reactive force was considered. Brittle materials suffer plastic deformation, as a rule, only in the areas of high-temperature heating. Hence, in case of picosecond treatment in cold ablation process the material, from a mechanical point of view, was seen as a perfectly elastic up to its destruction. From a geometrical point of view, the processed object was presented in the form of a thin rectangular plate, loosely founded on the elastic base.

  5. Lithium isotope composition of basalt glass reference material.

    PubMed

    Kasemann, Simone A; Jeffcoate, Alistair B; Elliott, Tim

    2005-08-15

    We present data on the lithium isotope compositions of glass reference materials from the United States Geological Survey (USGS) and the National Institute of Standards and Technology (NIST) determined by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS), thermal ionization mass spectrometry (TIMS), and secondary ionization mass spectrometry (SIMS). Our data on the USGS basaltic glass standards agree within 2 per thousand, independent of the sample matrix or Li concentration. For SIMS analysis, we propose use of the USGS glasses GSD-1G (delta(7)Li 31.14 +/- 0.8 per thousand, 2sigma) and BCR-2G (delta(7)Li 4.08 +/- 1.0 per thousand, 2sigma) as suitable standards that cover a wide range of Li isotope compositions. Lithium isotope measurements on the silica-rich NIST 600 glass series by MC-ICPMS and TIMS agree within 0.8 per thousand, but SIMS analyses show systematic isotopic differences. Our results suggest that SIMS Li isotope analyses have a significant matrix bias in high-silica materials. Our data are intended to serve as a reference for both microanalytical and bulk analytical techniques and to improve comparisons between Li isotope data produced by different methodologies.

  6. Optical properties of polymer/chalcogenide glass composite materials

    NASA Astrophysics Data System (ADS)

    Bormashenko, Edward; Pogreb, Roman; Sutovski, Semion

    2000-06-01

    The novel composite material based on middle density polyethylene on one hand and thermoplastic chalcogenide glass on other hand has been worked out. Both materials used in the research are highly transparent in the middle and far IR but refraction indexes of components differ dramatically. The basic materials, polymer and glass, have close viscosities at the temperature of polyethylene processing. This fact allowed use of the extrusion technique for homogenization purposes. We proved, that the controlled structure of a composite could be derived through the varying of technological parameters of the mixing process. Single- and twin screw extrusion processes obtained compositions, which contain up to 50% particles of chalcogenide glass, which were dispersed in the polymer matrix. The highly homogeneous compositions that contain perfect spherical glass particles of 1-2 micrometers in diameter dispersed into polymer matrix were obtained as well. Highly oriented structures involving chalcogenide glass fibers immersed in the polymer matrix were prepared under high stretch speeds as well. Such fiberlike structures exhibited pronounced polarization properties. We studied the optical properties of the composite and came to the conclusion that the controlled structure of the composite allows variation in its optical properties. It was established that it is possible to produce a composite that is opaque in the visible and near IR, and highly transparent in the 2-25-micrometers wave length band. Light scattering on oriented and disordered structures was studied by the IR spectro-goniometer. The novel composite which was developed by our group is intended for various IR-optics applications.

  7. Multimillion atom molecular dynamics simulations of glasses and ceramic materials

    NASA Astrophysics Data System (ADS)

    Vashishta, Priya; Kalia, Rajiv K.; Nakano, Aiichiro

    1999-11-01

    Molecular dynamics simulations are a powerful tool for studying physical and chemical phenomena in materials. In these lectures we shall review the molecular dynamics method and its implementation on parallel computer architectures. Using the molecular dynamics method we will study a number of materials in different ranges of density, temperature, and uniaxial strain. These include structural correlations in silica glass under pressure, crack propagation in silicon nitride films, sintering of silicon nitride nanoclusters, consolidation of nanophase materials, and dynamic fracture. Multimillion atom simulations of oxidation of aluminum nanoclusters and nanoindentation in silicon nitride will also be discussed.

  8. Characterization of Glass Fiber Separator Material for Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Subbarao, S.; Frank, H.

    1984-01-01

    Characterization studies were carried out on a glass fiber paper that is currently employed as a separator material for some LiSOCl2 primary cells. The material is of the non-woven type made from microfilaments of E-type glass and contains an ethyl acrylate binder. Results from extraction studies and tensile testing revealed that the binder content and tensile strength of the paper were significantly less than values specified by the manufacturer. Scanning electron micrographs revealed the presence of clusters of impurities many of which were high in iron content. Results of emission spectroscopy revealed high overall levels of iron and leaching, followed by atomic absorption measurements, revealed that essentially all of this iron is soluble in SOCl2.

  9. Solid spherical glass particle impingement studies of plastic materials

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Young, S. G.; Buckley, D. H.

    1983-01-01

    Erosion experiments on polymethyl methacrylate (PMMA), polycarbonate, and polytetrafluoroethylene (PTFE) were conducted with spherical glass beads impacting at normal incidence. Optical and scanning electron microscopic studies and surface profile measurements were made on specimens at predetermined test intervals. During the initial stage of damage to PMMA and polycarbonate, material expands or builds up above the original surface. However, this buildup disappears as testing progresses. Little or no buildup was observed on PTFE. PTFE is observed to be the most resistant material to erosion and PMMA the least. At low impact pressures, material removal mechanisms are believed to be similar to those for metallic materials. However, at higher pressures, surface melting is indicated at the center of impact. Deformation and fatigue appear to play major roles in the material removal process with possible melting or softening.

  10. Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing

    SciTech Connect

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael; Barnaby, Hugo

    2013-04-30

    For many decades, various radiation detecting material have been extensively researched, to find a better material or mechanism for radiation sensing. Recently, there is a growing need for a smaller and effective material or device that can perform similar functions of bulkier Geiger counters and other measurement options, which fail the requirement for easy, cheap and accurate radiation dose measurement. Here arises the use of thin film chalcogenide glass, which has unique properties of high thermal stability along with high sensitivity towards short wavelength radiation. The unique properties of chalcogenide glasses are attributed to the lone pair p-shell electrons, which provide some distinctive optical properties when compared to crystalline material. These qualities are derived from the energy band diagram and the presence of localized states in the band gap. Chalcogenide glasses have band tail states and localized states, along with the two band states. These extra states are primarily due to the lone pair electrons as well as the amorphous structure of the glasses. The localized states between the conductance band (CB) and valence band (VB) are primarily due to the presence of the lone pair electrons, while the band tail states are attributed to the Van der Waal's forces between layers of atoms [1]. Localized states are trap locations within the band gap where electrons from the valence band can hop into, in their path towards the conduction band. Tail states on the other hand are locations near the band gap edges and are known as Urbach tail states (Eu). These states are occupied with many electrons that can participate in the various transformations due to interaction with photons. According to Y. Utsugi et. al.[2], the electron-phonon interactions are responsible for the generation of the Urbach tails. These states are responsible for setting the absorption edge for these glasses and photons with energy near the band gap affect these states. We have

  11. Ultrafast laser fabrication of waveguides in glasses and crystalline materials

    NASA Astrophysics Data System (ADS)

    McMillen, Benjamin W.

    Over the last decade, the ultrafast laser has emerged as a powerful tool to shape three-dimensional photonic circuits in transparent dielectric materials. One of the unique traits of this fabrication approach is its ability to produce photonic circuits in bulk optical substrates with proven optical quality. It therefore bypasses all challenges associated with multi-step thin-film based material synthesis and fabrication techniques. In this thesis, the ultrafast direct laser writing (DLW) technique is applied to several materials, including fused silica, lithium tantalate ( LiTaO3), sapphire (Al2 O3), and gallium lanthanum sulfide (GLS) chalcogenide glass to produce 3D photonic circuits. Optimal processing conditions are determined through the analysis of the guided-mode characteristics of these structures, while the mechanisms behind the laser-induced refractive index change are investigated with such techniques as micro-structural Raman imaging, and second-harmonic microscopy. This research identifies optimized processing conditions by considering laser-induced multi-photon ionization, pulse distortion due to nonlinear Kerr interactions, and laser-induced thermal effects, all in connection with the intrinsic material properties. Based on this fundamental understanding of ultrafast laser material interactions, spatial and temporal pulse femtosecond time scales with micrometer spatial resolution. This work has yielded high quality low-loss photonic circuits in chalcogenide glasses for nonlinear and mid-IR applications.

  12. Glass-ceramic material and method of making

    DOEpatents

    Meinhardt, Kerry D [Richland, WA; Vienna, John D [West Richland, WA; Armstrong, Timothy R [Pasco, WA; Pederson, Larry R [Kennewick, WA

    2002-08-13

    The present invention is a glass-ceramic material and method of making useful for joining at least two solid ceramic parts. The seal is a blend of M.sub.A O--M.sub.B O.sub.y --SiO.sub.2 that substantially matches a coefficient of thermal expansion of the solid electrolyte. According to the present invention, a series of glass ceramics in the M.sub.A O--M.sub.B O.sub.y --SiO.sub.2 system can be used to join or seal both tubular and planar ceramic solid oxide fuel cells, oxygen electrolyzers, and membrane reactors for the production of syngas, commodity chemicals and other products.

  13. Glass-ionomer cement restorative materials: a sticky subject?

    PubMed

    Sidhu, S K

    2011-06-01

    Glass-ionomer cement (GIC) materials have been in clinical use since their inception 40 years ago. They have undergone several permutations to yield different categories of these materials. Although all GICs share the same generic properties, subtle differences between commercial products may occur. They have a wide range of uses such as lining, bonding, sealing, luting or restoring a tooth. In general, GICs are useful for reasons of adhesion to tooth structure, fluoride release and being tooth-coloured although their sensitivity to moisture, inherent opacity, long-term wear and strength are not as adequate as desired. They are useful in situations where they are not disadvantaged by their comparatively lower physical properties, such as where there is adequate remaining tooth structure to support the material and where they are not subject to heavy occlusal loading. The last decade has seen the use of these materials being extended. However, they are likely to retain their specific niches of clinical application.

  14. Development and characterization of charcoal filled glass-composite materials made from SLS waste glass

    NASA Astrophysics Data System (ADS)

    Mustafa, Zaleha; Ismail, Mohd Ikwan; Juoi, Jariah Mohd; Shamsudin, Zurina; Rosli, Zulkifli M.; Fadzullah, Siti Hajar Sheikh Md; Othman, Radzali

    2015-07-01

    Glass-composite materials were prepared from the soda lime silicate (SLS) waste glass, ball clay and charcoal powder at various carbon content, of 1wt. % C, 5wt.% C and 10 wt.% C, fired to temperature of 850 °C as an alternative method for land site disposal method as well as effort for recycling waster glass. The effect of charcoal powder on the porosity, water absorption and hardness properties were studied. Phase analysis studies revealed the present of quartz (ICDD: 00001-0649, 2θ = 25.6° and 35.6°), cristobalite (ICDD 00004-0379, 2θ = 22.0° and 38.4°) and wollastonite (ICDD 00002-0689, 2θ = 30.1° and 26.9°). The results showed that the composite prepared from the mixture of 84 wt.% SLS, 1 wt.% of charcoal and 15 wt.% ball clay containing average pore size of 10 µm has projected optimized physical and mechanical properties. It is observed this batch has projected lowest water absorption percentage of 0.76 %, lowest porosity percentage of 1.76 %, highest 4.6 GPa for Vickers Microhardness.

  15. The Effect of Lucite Glass Reinforcement on the Properties of Conventional Glass-Ionomer Filling Materials

    PubMed Central

    Kazemi Yazdi, Haleh; Van Noort, Richard; Mansouri, Mona

    2016-01-01

    Statement of the Problem: The usage of glass ionomer cements (GICs) restorative materials are very limited due to lack of flexural strength and toughness. Purpose: The aim of this study was to investigate the effect of using a leucite glass on a range of mechanical and optical properties of commercially available conventional glass ionomer cement. Materials and Method: Ball milled 45μm leucite glass particles were incorporated into commercial conventional GIC, Ketac-Molar Easymix (KMEm). The characteristics of the powder particles were observed under scanning electron microscopy. The samples were made for each experimental group; KMEm and lucite- modified Ketac-Molar easy Mix (LMKMEm) according to manufacturer’s instruction then were collected in damp tissue and stored in incubator for 1 hour. The samples were divided into two groups, one stored in distilled water for 24 hours and the others for 1 week.10 samples were made for testing biaxial flexural strength after 1 day and 1 week, with a crosshead speed of 1mm/min, calculated in MPa. The hardness (Vickers hardness tester) of each experimental group was also tested. To evaluate optical properties, 3 samples were made for each experimental group and evaluated with a spectrophotometer. The setting time of modified GIC was measured with Gillmore machine. Result: The setting time in LMKMEm was 8 minutes. The mean biaxial flexural strength was LMKMEm/ 1day: 24.13±4.14 MPa, LMKMEm/ 1 week: 24.22±4.87 MPa KMEm/1day:28.87±6.31 MPa and KMEm/1 week: 26.65±5.82 MPa which were not statistically different from each other. The mean Vickers hardness was LMKMEm: 403±66 Mpa and KMEm: 358±22 MPa; though not statistically different from each other. The mean total transmittance (Tt) was LMKMEm: 15.9±0.7, KMEm: 22.3±1.2, the mean diffuse transmittance (Td) was LMKMEm: 12.2±0.5, KMEm: 18.0±0.5 which were statistically different from each other. Conclusion: Leucite glass can be incorporated with a conventional GIC without

  16. Methods of Fabricating a Layer of Metallic Glass-Based Material Using Immersion and Pouring Techniques

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas (Inventor)

    2015-01-01

    Systems and methods in accordance with embodiments of the invention implement layers of metallic glass-based materials. In one embodiment, a method of fabricating a layer of metallic glass includes: applying a coating layer of liquid phase metallic glass to an object, the coating layer being applied in a sufficient quantity such that the surface tension of the liquid phase metallic glass causes the coating layer to have a smooth surface; where the metallic glass has a critical cooling rate less than 1000 K/s; and cooling the coating layer of liquid phase metallic glass to form a layer of solid phase metallic glass.

  17. Machinable glass-ceramics forming as a restorative dental material.

    PubMed

    Chaysuwan, Duangrudee; Sirinukunwattana, Krongkarn; Kanchanatawewat, Kanchana; Heness, Greg; Yamashita, Kimihiro

    2011-01-01

    MgO, SiO(2), Al(2)O(3), MgF(2), CaF(2), CaCO(3), SrCO(3), and P(2)O(5) were used to prepare glass-ceramics for restorative dental materials. Thermal properties, phases, microstructures and hardness were characterized by DTA, XRD, SEM and Vickers microhardness. Three-point bending strength and fracture toughness were applied by UTM according to ISO 6872: 1997(E). XRD showed that the glass crystallized at 892°C (second crystallization temperature+20°C) for 3 hrs consisted mainly of calcium-mica and fluorapatite crystalline phases. Average hardness (3.70 GPa) closely matched human enamel (3.20 GPa). The higher fracture toughness (2.04 MPa√m) combined with the hardness to give a lower brittleness index (1.81 µm(-1/2)) which indicates that they have exceptional machinability. Bending strength results (176.61 MPa) were analyzed by Weibull analysis to determine modulus value (m=17.80). Machinability of the calcium mica-fluorapatite glass-ceramic was demonstrated by fabricating with CAD/CAM.

  18. Dielectric Relaxation of Materials that Form Ultra-Stable Glasses

    NASA Astrophysics Data System (ADS)

    Richert, Ranko

    2015-03-01

    Physical vapor deposition of glass forming materials onto substrates at temperatures around 0.8 Tg produces glasses of high density and low enthalpy. Using interdigitated electrode cells as substrates, such stable glasses can be studied by dielectric spectroscopy in situ. This technique is applied to monitor the dynamics of stable films upon their conversion to the ordinary supercooled liquid state. The dielectric loss during transformation indicates that the softening proceeds by a growth front mechanism and generates the ordinary liquid state without forming intermediates. The same technique is also used to assess the residual dynamics of the stable glassy state. We observe that processes such as the Johari-Goldstein beta relaxation are strongly suppressed in this stable state, consistent with the relatively low fictive temperature of these glassy states. coauthors: Hai-Bin Yu, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85278; Michael Tylinski, and Mark D. Ediger, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706.

  19. Fabrication and characterization of MCC (Materials Characterization Center) approved testing material: ATM-10 glass

    SciTech Connect

    Maupin, G.D.; Bowen, W.M.; Daniel, J.L.

    1988-04-01

    The Materials Characterization Center ATM-10 glass represents a reference commercial high-level waste form similar to that which will be produced by the West Valley Nuclear Service Co. Inc., West Valley, New York. The target composition and acceptable range of composition were defined by the sponsor, West Valley Nuclear Service. The ATM-10 glass was produced in accordance with the Pacific Northwest Laboratory QA Manual for License-Related Programs, MCC technical procedures, and MCC QA Plan that were in effect during the course of the work. The method and procedure to be used in the fabrication and characterization of the ATM-10 glass were specified in two run plans for glass preparation and a characterization plan. All of the ATM-10 glass was produced in the form of bars 1.9 /times/ 1.9 /times/ 10 cm nominal size, and 93 g nominal mass. A total of 15 bars of ATM-10 glass weighing 1394 g was produced. The production bars were characterized to determine the mean composition, oxidation state, and microstructure of the ATM-10 product. Table A summarizes the characterization results. The ATM-10 glass meets all specifications. The elemental composition and oxidation state of the glass are within the specifications of the client. Visually, the ATM-10 glass bars appear uniformly glassy and generally without exterior features. Microscopic examination revealed low (less than 2 wt %) concentractions of 3-..mu..m iron-chrome (suspected spinel) crystals and /approximately/0.5-..mu..m ruthenium inclusions scattered randomly throughout the glassy matrix. Closed porosity, with pores ranging in diameter from 5 to 250 ..mu..m, was observed in all samples. 4 refs., 10 figs., 21 tabs.

  20. Comparison of glass surfaces as a countertop material to existing surfaces

    SciTech Connect

    Turo, Laura A.; Winschell, Abigail E.

    2011-09-01

    Gleen Glass, a small production glass company that creates countertops, was selected for the Technology Assistance Program through Pacific Northwest National Laboratory. Gleen Glass was seeking material property analysis comparing glass as a countertop material to current surfaces (i.e. marble, granite and engineered stone). With samples provided from Gleen Glass, testing was done on granite, marble, and 3 different glass surfaces ('Journey,' 'Pebble,' and 'Gleen'). Results showed the glass surfaces have a lower density, lower water absorption, and are stronger in compressive and flexural tests as compared to granite and marble. Thermal shock tests showed the glass failed when objects with a high thermal mass are placed directly on them, whereas marble and granite did not fracture under these conditions.

  1. Crack closure on rehydration of glass-ionomer materials.

    PubMed

    Sidhu, Sharanbir K; Pilecki, Peter; Sherriff, Martyn; Watson, Timothy F

    2004-10-01

    Moisture-sensitivity of immature glass-ionomer cements suggests that hydration-induced volumetric expansion might close and potentially heal established cracks. Crack closure in glass-ionomer cements (GICs) was observed following rehydration. Circular cavities were prepared in 15 teeth: 10 were restored with resin-modified GICs (5 with Fuji II LC and 5 with Photac-Fil) and 5 were restored with a conventional GIC (Fuji IX); all were dehydrated for 1 min with air and imaged immediately by confocal microscopy. Crack formation in each was located, after which water was placed on the surface and observed for 15 min via a CCD camera. Dehydration caused cracks with measurable gaps, while rehydration resulted in varying degrees of closure: closure was limited in the conventional GIC, and complete or near complete along part/s of the crack in the resin-modified GICs. In all, closure movement became imperceptible after the first 10 min. Statistical analysis indicated no significant difference between the closure behavior of all materials. However, the resin-modified GICs appeared to show a greater potential for closure of established cracks than the conventional GIC upon rehydration.

  2. Glass and Glass-Ceramic Materials from Simulated Composition of Lunar and Martian Soils: Selected Properties and Potential Applications

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Sen, S.; Reis, S. T.; Kim, C. W.

    2005-01-01

    In-situ resource processing and utilization on planetary bodies is an important and integral part of NASA's space exploration program. Within this scope and context, our general effort is primarily aimed at developing glass and glass-ceramic type materials using lunar and martian soils, and exploring various applications of these materials for planetary surface operations. Our preliminary work to date have demonstrated that glasses can be successfully prepared from melts of the simulated composition of both lunar and martian soils, and the melts have a viscosity-temperature window appropriate for drawing continuous glass fibers. The glasses are shown to have the potential for immobilizing certain types of nuclear wastes without deteriorating their chemical durability and thermal stability. This has a direct impact on successfully and economically disposing nuclear waste generated from a nuclear power plant on a planetary surface. In addition, these materials display characteristics that can be manipulated using appropriate processing protocols to develop glassy or glass-ceramic magnets. Also discussed in this presentation are other potential applications along with a few selected thermal, chemical, and structural properties as evaluated up to this time for these materials.

  3. Nano-materials enabled thermoelectricity from window glasses.

    PubMed

    Inayat, Salman B; Rader, Kelly R; Hussain, Muhammad M

    2012-01-01

    With a projection of nearly doubling up the world population by 2050, we need wide variety of renewable and clean energy sources to meet the increased energy demand. Solar energy is considered as the leading promising alternate energy source with the pertinent challenge of off sunshine period and uneven worldwide distribution of usable sun light. Although thermoelectricity is considered as a reasonable renewable energy from wasted heat, its mass scale usage is yet to be developed. Here we show, large scale integration of nano-manufactured pellets of thermoelectric nano-materials, embedded into window glasses to generate thermoelectricity using the temperature difference between hot outside and cool inside. For the first time, this work offers an opportunity to potentially generate 304 watts of usable power from 9 m(2) window at a 20°C temperature gradient. If a natural temperature gradient exists, this can serve as a sustainable energy source for green building technology.

  4. Nano-materials Enabled Thermoelectricity from Window Glasses

    NASA Astrophysics Data System (ADS)

    Inayat, Salman B.; Rader, Kelly R.; Hussain, Muhammad M.

    2012-11-01

    With a projection of nearly doubling up the world population by 2050, we need wide variety of renewable and clean energy sources to meet the increased energy demand. Solar energy is considered as the leading promising alternate energy source with the pertinent challenge of off sunshine period and uneven worldwide distribution of usable sun light. Although thermoelectricity is considered as a reasonable renewable energy from wasted heat, its mass scale usage is yet to be developed. Here we show, large scale integration of nano-manufactured pellets of thermoelectric nano-materials, embedded into window glasses to generate thermoelectricity using the temperature difference between hot outside and cool inside. For the first time, this work offers an opportunity to potentially generate 304 watts of usable power from 9 m2 window at a 20°C temperature gradient. If a natural temperature gradient exists, this can serve as a sustainable energy source for green building technology.

  5. Nano-materials Enabled Thermoelectricity from Window Glasses

    PubMed Central

    Inayat, Salman B.; Rader, Kelly R.; Hussain, Muhammad M.

    2012-01-01

    With a projection of nearly doubling up the world population by 2050, we need wide variety of renewable and clean energy sources to meet the increased energy demand. Solar energy is considered as the leading promising alternate energy source with the pertinent challenge of off sunshine period and uneven worldwide distribution of usable sun light. Although thermoelectricity is considered as a reasonable renewable energy from wasted heat, its mass scale usage is yet to be developed. Here we show, large scale integration of nano-manufactured pellets of thermoelectric nano-materials, embedded into window glasses to generate thermoelectricity using the temperature difference between hot outside and cool inside. For the first time, this work offers an opportunity to potentially generate 304 watts of usable power from 9 m2 window at a 20°C temperature gradient. If a natural temperature gradient exists, this can serve as a sustainable energy source for green building technology. PMID:23150789

  6. CADMIUM-RARE EARTH BORATE GLASS AS REACTOR CONTROL MATERIAL

    DOEpatents

    Ploetz, G.L.; Ray, W.E.

    1958-11-01

    A reactor control rod fabricated from a cadmiumrare earth-borate glass is presented. The rare earth component of this glass is selected from among those rare earths having large neutron capture cross sections, such as samarium, gadolinium or europium. Partlcles of this glass are then dispersed in a metal matrix by standard powder metallurgy techniques.

  7. Deformation of rectangular thin glass plate coated with magnetostrictive material

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoli; Yao, Youwei; Liu, Tianchen; Liu, Chian; Ulmer, M. P.; Cao, Jian

    2016-08-01

    As magnetic smart materials (MSMs), magnetostrictive materials have great potential to be selected as coating materials for lightweight x-ray telescope mirrors due to their capability to tune the mirror profile to the desired shape under a magnetic field. To realize this potential, it is necessary to study the deformation of the mirror substrate with the MSM coating subjected to a localized magnetic field. In this paper, an analytical model is developed to calculate the deformation of rectangular coated samples locally affected by magnetostrictive strains driven by an external magnetic field. As a specific case to validate the model, a square glass sample coated with MSMs is prepared, and its deformation is measured in a designed experimental setup by applying a magnetic field. The measured deformation of the sample is compared with the results calculated from the analytical model. The comparison results demonstrate that the analytical model is effective in calculating the deformation of a coated sample with the localized mismatch strains between the film and the substrate. In the experiments, different shape patterns of surface profile changes are achieved by varying the direction of the magnetic field. The analytical model and the experimental method proposed in this paper can be utilized to further guide the application of magnetostrictive coating to deformable lightweight x-ray mirrors in the future.

  8. ZnO glass-ceramics: An alternative way to produce semiconductor materials

    SciTech Connect

    Masai, Hirokazu; Toda, Tatsuya; Ueno, Takahiro; Takahashi, Yoshihiro; Fujiwara, Takumi

    2009-04-13

    Fabrication of transparent glass-ceramics containing ZnO nanocrystallites has been reported. The obtained material shows UV-excited photoluminescence consisting of both broad emission in the visible region and the free exciton emission at 3.28 eV. Since the observed emission depends on the precipitated state of ZnO in the glass matrix, the glass-ceramics obtained by this way will give an alternative selection of semiconductor material with unique optical and electronic functions.

  9. Accelerated commercialization program for materials and components. Solar sheet glass: an example of materials commercialization

    SciTech Connect

    Livingston, R.; Butler, B.

    1980-03-01

    The SERI Accelerated Commercialization Program for Materials and Components is designed to serve as a catalyst in promoting technological change through the introduction of new materials into solar technologies. This report focuses on technological diffusion of advances in materials technology from the developer to the manufacturers of solar equipment. It provides an overview and understanding of the problems encountered in the private sector in trying to advance technological change and discusses a program designed to facilitate this change. Using as example of solar sheet glass, this report describes the process by which sample quantities of new materials are sent to solar equipment manufacturers for appliations testing. It also describes other materials that might undergo testing in a similar way. The entire program is an example of how government and industry can work together to accomplish common goals.

  10. Utilization of calcite and waste glass for preparing construction materials with a low environmental load.

    PubMed

    Maeda, Hirotaka; Imaizumi, Haruki; Ishida, Emile Hideki

    2011-11-01

    In this study, porous calcite materials are hydrothermally treated at 200 °C using powder compacts consisting of calcite and glasses composed of silica-rich soda-lime. After treatment, the glasses are converted into calcium aluminosilicate hydrates, such as zeolite phases, which increase their strength. The porosity and morphology of new deposits of hydrothermally solidified materials depend up on the chemical composition of glass. The use of calcite and glass in the hydrothermal treatment plays an important role in the solidification of calcite without thermal decomposition.

  11. Noncontact temperature measurement in glass and other transparent materials

    NASA Technical Reports Server (NTRS)

    Doremus, Robert H.

    1988-01-01

    The relationship between the optical properties of glass and temperature measurements in it by radiation pyrometry are described. Equations for the calculation of emissivity are presented and the transmittance, surface reflection and absorption characteristics of glass are defined. Recommendations are given regarding the selection of pyrometer wavelength sensitivity and the use of a blackbody radiator.

  12. Mesomorphic glass nanocomposites made of metal alkanoates and nanoparticles as emerging nonlinear-optical materials

    NASA Astrophysics Data System (ADS)

    Garbovskiy, Y.; Klimusheva, G.; Mirnaya, T.

    2016-09-01

    Mesomorphic metal alkanoates is very promising yet overlooked class of nonlinear-optical materials. Metal alkanoates can exhibit a broad variety of condensed states of matter including solid crystals, plastic crystals, lyotropic and thermotropic ionic liquid crystals, liquids, mesomorphic glasses, and Langmuir-Blodgett films. Glass-forming properties of metal alkanoates combined with their use as nano-reactors and anisotropic host open up simple and efficient way to design various photonic nanomaterials. Despite very interesting physics, the experimental data on optical and nonlinearoptical properties of such materials are scarce. The goal of the present paper is to fill the gap by discussing recent advances in the field of photonic materials made of metal alkanoates, organic dyes, and nanoparticles. Optical and nonlinear-optical properties of the following materials are reviewed: (i) mesomorphic glass doped with organic dyes; (ii) smectic glass composed of cobalt alkanoates; (iii) semiconductor nanoparticles embedded in a glassy host; (iv) metal nanoparticles - glass (the cobalt octanoate) nanocomposites.

  13. Material removal mechanism and material removal rate model of polishing process for quartz glass using soft particle

    NASA Astrophysics Data System (ADS)

    Liu, Defu; Chen, Guanglin; Hu, Qing

    2015-10-01

    Fiber arrays are used to connect arrayed waveguide chips. The end-faces of fiber array components are multi-materials non-uniform surfaces. Their low polishing quality has become a bottleneck that restricts coupling performance of integrated photo-electronic devices. The chemical mechanical polishing (CMP) is normally used to improve the polishing quality of the end-faces of fiber array components. It is very important to optimize process parameters by researching the mechanical behavior of nanoparticles and material microstructure evolution on the CMP interfaces. Based on the elastic and hyper-elastic contact of the soft polishing particle with quartz glass and polishing pad, the material removal mechanism at molecular scale of polishing process for quartz glass using soft polishing particles is investigated, and the material removal rate model is also derived by using Arrhenius theory and molecule vibration theory. Theoretical and experimental results show that the material is mainly removed by the interfacial tribo-chemical effect between polishing particle and quartz glass during CMP process. The depth of a single particle embedding into the quartz glass is at molecular scale, and the superficial molecules of quartz glass are removed by chemical reactions because of enough energy obtained. The material removal rate of quartz glass during CMP process is determined by the polishing pressure, the chemical reagents and its concentration, and the relative movement speed between the quartz glass workpiece and the polishing pad.

  14. Prediction of material strength and fracture of glass using the SPHINX smooth particle hydrodynamics code

    SciTech Connect

    Mandell, D.A.; Wingate, C.A.

    1994-08-01

    The design of many military devices involves numerical predictions of the material strength and fracture of brittle materials. The materials of interest include ceramics, that are used in armor packages; glass that is used in truck and jeep windshields and in helicopters; and rock and concrete that are used in underground bunkers. As part of a program to develop advanced hydrocode design tools, the authors have implemented a brittle fracture model for glass into the SPHINX smooth particle hydrodynamics code. The authors have evaluated this model and the code by predicting data from one-dimensional flyer plate impacts into glass, and data from tungsten rods impacting glass. Since fractured glass properties, which are needed in the model, are not available, the authors did sensitivity studies of these properties, as well as sensitivity studies to determine the number of particles needed in the calculations. The numerical results are in good agreement with the data.

  15. Glass corrosion in the presence of iron-bearing materials and potential corrosion suppressors

    SciTech Connect

    Reiser, Joelle T.; Neill, Lindsay; Weaver, Jamie L.; Parruzot, Benjamin; Musa, Christopher; Neeway, James J.; Ryan, Joseph V.; Qafoku, Nikolla; Gin, Stephane; Wall, Nathalie

    2015-07-16

    A complete understanding of radioactive waste glass interactions with near-field materials is essential for appropriate nuclear waste repository performance assessment. In many geologic repository designs, Fe is present in both the natural environment and in the containers that will hold the waste glasses. In this paper we discuss investigations into the alteration of International Simple Glass (ISG) in the presence of Fe0 foil and hematite (Fe2O3). ISG alteration is more pronounced in the presence of Fe0 than with hematite. Additionally, minimal glass corrosion is observed for distances equal to 5 mm between Fe materials and ISG, but substantial glass corrosion is observed for systems exhibiting full contact between Fe0 material and ISG. Diatomaceous earth appears to be a better corrosion suppressant than silica when present with iron and ISG.

  16. Research study for gel precursors as glass and ceramic starting materials for space processing applications research

    NASA Technical Reports Server (NTRS)

    Downs, R. L.; Miller, W. J.

    1983-01-01

    The development of techniques for the preparation of glass and ceramic starting materials that will result in homogeneous glasses or ceramic products when melted and cooled in a containerless environment is described. Metal-organic starting materials were used to make compounds or mixtures which were then decomposed by hydrolysis reactions to the corresponding oxides. The sodium tungstate system was chosen as a model for a glass with a relatively low melting temperature. The alkoxide tungstates also have interesting optical properties. For all the compositions studied, comparison samples were prepared from inorganic starting materials and submitted to the same analyses.

  17. On the mechanism of material removal in nanometric cutting of metallic glass

    NASA Astrophysics Data System (ADS)

    Zhu, Pengzhe; Fang, Fengzhou

    2014-08-01

    Metallic glasses find wide applications in nanotechnology and micro electro-mechanical systems because of their unique physical properties due to their amorphous structures. The material removal mechanism in nanometric cutting of Cu50Zr50, a typical metallic glass, is studied using molecular dynamics method. The chip formation, workpiece deformation and scratching forces under various scratching depths, scratching velocities and temperatures are investigated. The effect of void defect on the cutting behaviors of metallic glass is also explored. The results show that the material removal in nanometric cutting process is based on extrusion instead of shearing, achieving a good understanding of material removal at the nanoscale.

  18. Ceramic fiber-reinforced monoclinic celsian phase glass-ceramic matrix composite material

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P. (Inventor); Dicarlo, James A. (Inventor)

    1994-01-01

    A hyridopolysilazane-derived ceramic fiber reinforced monoclinic celsian phase barium aluminum silicate glass-ceramic matrix composite material is prepared by ball-milling an aqueous slurry of BAS glass powder and fine monoclinic celsian seeds. The fibers improve the mechanical strength and fracture toughness and with the matrix provide superior dielectric properties.

  19. Development of the new generation of glass-based neutron detection materials

    NASA Astrophysics Data System (ADS)

    Dosovitskiy, Alexey E.; Dosovitskiy, Georgy A.; Korjik, Mikhail V.

    2012-10-01

    Approach to obtaining of neutron detector material alternative to 3He containing ionization gas detectors is proposed. Recently, a severe deficit of the 3He has pushed its price up strongly, so alternative cheaper detecting materials are demanded. Possible alternatives to 3He are materials containing 10B and 6Li isotopes. These two elements form many inorganic materials, either crystalline or amorphous. Glass scintillators look very advantageous as detector materials, especially for large area detectors, as their manufacturing could be cheaper and easier-to-scale, compared to single crystals and ceramics. A poor exciton transport, which is a fundamental feature of glass scintillators, limits their light yield and, therefore, practical use. Here we discuss a possibility to improve energy transfer to luminescent centers by creation of high concentration of crystalline luminophore particles in the glass matrix. This could be achieved through the controlled crystallization of the glass. We demonstrate how this approach works in well known Li-Al-Si (LAS) glass system. Partially crystallized Ce3+-doped glass with nanocrystalline inclusions is obtained, which shows the superior scintillation properties compared to amorphous glass. The material is characterized by an emission spectrum shift towards shorter wavelengths, which provides low light self-absorption.

  20. The utilization of thin film transistor liquid crystal display waste glass as a pozzolanic material.

    PubMed

    Lin, K L; Huang, Wu-Jang; Shie, J L; Lee, T C; Wang, K S; Lee, C H

    2009-04-30

    This investigation elucidates the pozzolanic behavior of waste glass blended cement (WGBC) paste used in thin film transistor liquid crystal displays (TFT-LCD). X-ray diffraction (XRD) results demonstrate that the TFT-LCD waste glass was entirely non-crystalline. The leaching concentrations of the clay and TFT-LCD waste glass all met the current regulatory thresholds of the Taiwan EPA. The pozzolanic strength activity indices of TFT-LCD waste glass at 28 days and 56 days were 89% and 92%, respectively. Accordingly, this material can be regarded as a good pozzolanic material. The amount of TFT-LCD waste glass that is mixed into WGBC pastes affects the strength of the pastes. The strength of the paste clearly declined as the amount of TFT-LCD waste glass increased. XRD patterns indicated that the major difference was the presence of hydrates of calcium silicate (CSH, 2 theta=32.1 degrees), aluminate and aluminosilicate, which was present in WGBC pastes. Portland cement may have increased the alkalinity of the solution and induced the decomposition of the glass phase network. WGBC pastes that contained 40% TFT-LCD waste glass have markedly lower gel/space ratios and exhibit less degree of hydration than ordinary Portland cement (OPC) pastes. The most satisfactory characteristics of the strength were observed when the mixing ratio of the TFT-LCD waste glass was 10%.

  1. Direct vitrification of plutonium-containing materials (PCM`s) with the glass material oxidation and dissolution system (GMODS)

    SciTech Connect

    Forsberg, C.W. Beahm, E.C.; Parker, G.W.; Rudolph, J.C.; Haas, P.A.; Malling, G.F.; Elam, K.; Ott, L.

    1995-10-30

    The end of the cold war has resulted in excess PCMs from nuclear weapons and associated production facilities. Consequently, the US government has undertaken studies to determine how best to manage and dispose of this excess material. The issues include (a) ensurance of domestic health, environment, and safety in handling, storage, and disposition, (b) international arms control agreements with Russia and other countries, and (c) economics. One major set of options is to convert the PCMs into glass for storage or disposal. The chemically inert characteristics of glasses make them a desirable chemical form for storage or disposal of radioactive materials. A glass may contain only plutonium, or it may contain plutonium along with other radioactive materials and nonradioactive materials. GMODS is a new process for the direct conversion of PCMs (i.e., plutonium metal, scrap, and residues) to glass. The plutonium content of these materials varies from a fraction of a percent to pure plutonium. GMODS has the capability to also convert other metals, ceramics, and amorphous solids to glass, destroy organics, and convert chloride-containing materials into a low-chloride glass and a secondary clean chloride salt strewn. This report is the initial study of GMODS for vitrification of PCMs as input to ongoing studies of plutonium management options. Several tasks were completed: initial analysis of process thermodynamics, initial flowsheet analysis, identification of equipment options, proof-of-principle experiments, and identification of uncertainties.

  2. Fabrication and characterization of MCC approved testing material - ATM-12 glass

    SciTech Connect

    Wald, J.W.

    1985-10-01

    The Materials Characterization Center (MCC) Approved Testing Material ATM-12 is a borosilicate glass that incorporates elements typical of high-level waste (HLW) resulting from the reprocessing of commercial nuclear reactor fuels. The composition has been adjusted to match that predicted for HLW type 76-68 glass at an age of 300 y. Radioactive constituents contained in this glass include depleted uranium, {sup 99}Tc, {sup 237}Np, {sup 239}Pu, and {sup 241}Am. The glass was produced by the MCC at the Pacific Northwest Laboratory (PNL). ATM-12 glass ws produced from July to November of 1984 at the request of the Nevada Nuclear Waste Site Investigations (NNWSI) Program and is the third in a series of glasses produced for NNWSI. Most of the glass produced was in the form of cast bars; special castings and crushed material were also produced. Three kilograms of ATM-12 glass were produced from a feedstock melted in a nitrogen-atmosphere glove box at 1150{sup 0}C in a platinum crucible, and formed into stress-annealed rectangular bars and the special casting shapes requested by NNWSI. Bars of ATM-12 were nominally 1.9 x 1.9 x 10 cm, with an average mass of 111 g each. Nineteen bars and 37 special castings were made. ATM-12 glass has been provided to the NNWSI Program, in the form of bars, crushed powder and special castings. As of August 1985 approximately 590 g of ATM-12 is available for distribution. Requests for materials or services related to this glass should be directed to the Materials Characterization Center Program Office, PNL.

  3. Fabrication and characterization of MCC approved testing material: ATM-9 glass

    SciTech Connect

    Wald, J.W.

    1986-06-01

    The Materials Characterization Center ATM-9 glass is designed to be representative of glass to be produced by the Defense Waste Processing Facility at the Savannah River Plant, Aiken, South Carolina. ATM-9 glass contains all of the major components of the DWPF glass and corresponds to a waste loading of 29 wt %. The feedstock material for this glass was supplied by Savannah River Laboratory, Aiken, SC, as SRL-165 Black Frit to which was added Ba, Cs, Md, Nd, Zr, as well as /sup 99/Tc, depleted U, /sup 237/Np, /sup 239 +240/Pu, and /sup 243/Am. The glass was produced under reducing conditions by the addition of 0.7 wt % graphite during the final melting process. Three kilograms of the glass were produced from April to May of 1984. On final melting, the glass was formed into stress-annealed rectangular bars of two sizes: 1.9 x 1.9 x 10 cm and 1.3 x 1.3 x 10 cm. Seventeen bars of each size were made. The analyzed composition of ATM-9 glass is listed. Examination by optical microscopy of a single transverse section from one bar showed random porosity estimated at 0.36 vol % with nominal pore diameters ranging from approx. 5 ..mu..m to 200 ..mu..m. Only one distinct second phase was observed and it was at a low concentraction level in the glass matrix. The phase appeared as spherical metallic particles. X-ray diffraction analysis of this same sample did not show any diffraction peaks from crystalline components, indicating that the glass contained less than 5 wt % of crystalline devitrification products. The even shading on the radiograph exposure indicated a generally uniform distribution of radioactivity throughout the glass matrix, with no distinct high-concentration regions.

  4. Barium-borate-flyash glasses: As radiation shielding materials

    NASA Astrophysics Data System (ADS)

    Singh, Sukhpal; Kumar, Ashok; Singh, Devinder; Thind, Kulwant Singh; Mudahar, Gurmel S.

    2008-01-01

    The attenuation coefficients of barium-borate-flyash glasses have been measured for γ-ray photon energies of 356, 662, 1173 and 1332 keV using narrow beam transmission geometry. The photon beam was highly collimated and overall scatter acceptance angle was less than 3°. Our results have an uncertainty of less than 3%. These coefficients were then used to obtain the values of mean free path (mfp), effective atomic number and electron density. Good agreements have been observed between experimental and theoretical values of these parameters. From the studies of the obtained results it is reported here that from the shielding point of view the barium-borate-flyash glasses are better shields to γ-radiations in comparison to the standard radiation shielding concretes and also to the ordinary barium-borate glasses.

  5. Use of natural raw material for the production of photochromic glasses

    SciTech Connect

    Kiyan, V.I.; Artamonova, M.V.; Solinov, V.F.

    1986-07-01

    The authors investigated the possibility of using natural raw materials as replacements for soda and alumina for obtaining photochromic glasses and to determine their properties. Glasses of the sodium aluminoborosilicate system were studied. The characteristics of the batches and some of the properties of the glasses are given in a table. Sodium oxide was added to batches Nos. 1 and 2 as soda or borax. Composition Nos. 3, 4, and 5 were prepared using acid, basic, and neutral rocks by means of which the oxides of sodium and aluminum were added. The glasses were synthesized in SiC-heater furnaces. The differential thermal analysis of compositions Nos. 1 and 5 showed that the presence of natural materials leads to the formation of a liquid phase at lower temperatures which helps to intensify the processes of silicate- and glass-formation.

  6. Research of glass fibre used in the electromagnetic wave shielding and absorption composite material

    NASA Astrophysics Data System (ADS)

    Xu, M.; Jia, F.; Bao, H. Q.; Cui, K.; Zhang, F.

    2016-07-01

    Electromagnetic shielding and absorption composite material plays an important role in the defence and economic field. Comparing with other filler, Glass fibre and its processed product—metal-coated glass fibre can greatly reduce the material's weight and costs, while it still remains the high strength and the electromagnetic shielding effectiveness. In this paper, the electromagnetic absorption mechanism and the reflection mechanism have been investigated as a whole, and the shielding effectiveness of the double-layer glass fibre composite material is mainly focused. The relationship between the shielding effectiveness and the filled glass fibre as well as its metal-coated product's parameters has also been studied. From the subsequent coaxial flange and anechoic chamber analysis, it can be confirmed that the peak electromagnetic shielding effectiveness of this double-layer material can reach -78dB while the bandwidth is from 2GHz to 18GHz.

  7. Surface characterization and cell response of a PLA/CaP glass biodegradable composite material.

    PubMed

    Navarro, M; Engel, E; Planell, J A; Amaral, I; Barbosa, M; Ginebra, M P

    2008-05-01

    Bioabsorbable materials are of great interest for bone regeneration applications, since they are able to degrade gradually as new tissue is formed. In this work, a fully biodegradable composite material containing polylactic acid (PLA) and calcium phosphate (CaP) soluble glass particles has been characterized in terms of surface properties and cell response. Cell cultures were performed in direct contact with the materials and also with their extracts, and were evaluated using the MTT assay, alkaline phosphatase activity, and osteocalcin measurements. The CaP glass and PLA were used as reference materials. No significant differences were observed in cell proliferation with the extracts containing the degradation by-products of the three materials studied. A relation between the materials wettability and the material-cell interactions at the initial stages of contact was observed. The most hydrophilic material (CaP glass) presented the highest cell adhesion values as well as an earlier differentiation, followed by the PLA/glass material. The incorporation of glass particles into the PLA matrix increased surface roughness. SEM images showed that the heterogeneity of the composite material induced morphological changes in the cells cytoskeleton.

  8. The strength of two reinforced glass ionomer materials.

    PubMed

    Mazarakis, E; van der Vyver, P J; Janse van Rensburg, S D; de Wet, F A

    1994-08-01

    Preformed stainless steel crowns survive longer than multi-surface amalgams on deciduous molars. With the use of reinforced glass ionomers the bulk of the lost tooth structure can be replaced and the stainless steel crown cemented simultaneously. The purpose of this study was to compare two glass ionomer cements with regard to their shear bond strength (SBS) to the dentine of extracted primary molars and to their diametral tensile strength (DTS). The results showed that Vitremer was significantly (p < 0.01) stronger (DTS:x = 19.21; SBS:x = 7.63) than Ketac-Silver (DTS:x = 8.94; SBS:x = 2.92).

  9. Utilization of recycled glass as aggregate in controlled low-strength material (CLSM)

    SciTech Connect

    Ohlheiser, T.R.

    1998-10-01

    Incoming glass from curbside recycling programs is successfully being utilized as aggregate replacements. The colored glass that can not be used by local bottle manufacturers is crushed to a {1/2} in. (12.5 mm) material and used in various construction projects. The most successful use of processed glass aggregate (PGA) to date, has been in replacing up to 100% of the aggregate in controlled low-strength material (CLSM). It has proven to be successful and has gained acceptance by contractors in the Boulder, Colorado area.

  10. Possible environmental impacts of recycled glass used as a pavement base material.

    PubMed

    Imteaz, Monzur Alam; Ali, M M Younus; Arulrajah, Arul

    2012-09-01

    In theory, glass diverted or recovered from the municipal solid waste (MSW) stream can be used as feedstock (glass cullet) in the production of new glass containers. However, post-consumer glass typically contains a mixture of clear and coloured material and is often contaminated with other wastes; characteristics that are impediments to the production of new containers. Sorting and cleaning of glass diverted from MSW to make it feasible for use in bottle industries are also time consuming and costly tasks. There is, however, the potential to use recycled glass as a sub-base material for road pavement construction. Geotechnical investigations to date suggest that use of recycled glass as a roadway sub-base could be cost-effective, and thus preclude the need for expensive sorting. There is, however, the necessessity to further investigate the potential short- and long-term toxicity, health hazards, and/or environmental pollution associated with use of mixed glass cullet as an aggregate, considering conditions during stockpiled storage and after placement. The results of laboratory tests on recycled glass regarding its potential to release pollutants to the environment via leaching are presented herein. Five random samples of crushed glasses were collected from a recycling company in Melbourne, Australia. The parameters tested for each sample were total organic matter, heavy metals, sulfates, chlorides, conductivity, pH and surfactant levels. It wais found that in most cases, the contamination levels were within the State of Victoria's Environmental Protection Agency-specified limits for manual handling, thus indicating that recycled glass could probably be safely used in pavement sub-bases.

  11. Characterization of porous glass-ceramic material as absorber of electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Kazmina, O.; Suslyaev, V.; Dushkina, M.; Semukhin, B.

    2015-04-01

    Investigations of a foam glass-ceramic material synthesized from raw siliceous earth material by the two-stage method at temperatures below 950°C have demonstrated the improvement of its physic mechanical properties in comparison with foam glass synthesized from glass cullet. This material actively interacts with microwaves and can be used for the development of protective screens reducing the adverse effect of microwaves on biological objects, anechoic chambers, and rooms with low level of electromagnetic background noise. Spectra of the transmission and absorption coefficients and of the complex dielectric permittivity for frequencies in the range 26-260 GHz are presented. The observed effects demonstrate the existence of regions with partial and total reflection arising on the glass-pore boundary and of the microwave interaction with ultradisperse carbon particles that remain after foaming with incomplete frothier transition from the soot to the gas phase.

  12. Glass-ionomer cements as restorative and preventive materials.

    PubMed

    Ngo, Hien

    2010-07-01

    This article focuses on glass-ionomer cement (GIC) and its role in the clinical management of caries. It begins with a brief description of GIC, the mechanism of fluoride release and ion exchange, the interaction between GIC and the external environment, and finally the ion exchange between GIC and the tooth at the internal interface. The importance of GIC, as a tool, in caries management, in minimal intervention dentistry (MI), and Caries Management by Risk Assessment (CAMBRA) also will be highlighted.

  13. Inclusion of Material Non-Linearity and Inelasticity into a Continuum-Level Material Model for Soda-Lime Glass

    DTIC Science & Technology

    2012-01-01

    enhanced material model was coded using the Intel Fortran computational language and implemented as a VUMAT Material User Subroutine within the commercial...ABAQUS/Explicit finite- element solver with the VUMAT Material User Subroutine at each time increment at each integration point of each element can be...current time-step incremental strains are passed to the VUMAT by the ABAQUS/Explicit finite-element solver. Spe- cifically, the glass material model

  14. PREFACE: International Seminar on Science and Technology of Glass Materials (ISSTGM-2009)

    NASA Astrophysics Data System (ADS)

    Veeraiah, N.

    2009-07-01

    The progress of the human race is linked with the development of new materials and also the values they acquired in the course of time. Though the art of glass forming has been known from Egyptian civilization, the understanding and use of these glasses for technological applications only became possible once the structural aspects were revealed by the inspiring theories proposed by William H Zachariasen. Glass and glass ceramics have become the essential materials for modern technology. The applications of these materials are wide and cover areas such as optical communication, laser host, innovative architecture, bio-medical, automobile and space technology. As we master the technology, we must also learn to use it judiciously and for the overall development of all in this global village. The International Seminar on Science and Technology of Glass Materials (ISSTGM-2009) is organized to bring together scientists, academia and industry in order to discuss various aspects of the technology and to inspire young scholars to take up fruitful research. Various topics such as glass formation and glass-ceramics, glass structure, applications of glass and glass ceramics in nuclear waste management, radiation dosimetry, electronics and information technology, biotechnological applications, bulk metallic glasses, glasses containing nano-particles, hybrid glasses, novel glasses and applications in photonics, Non-linear optics and energy generation were discussed. In this volume, 59 research articles covering 18 invited talks, 10 oral presentations and 31 poster presentations are included. We hope these will serve as a valuable resource to all the scientists and scholars working with glass materials. Acharya Nagarjuna University, established in 1976, is named after the great Buddhist preceptor and philosopher, Acharya Nagarjuna, who founded a university on the banks of river Krishna some centuries ago. The University is situated between Vijayawada and Guntur, the famous

  15. Spectroscopic properties in Er(3+)-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials.

    PubMed

    Kang, Shiliang; Xiao, Xiudi; Pan, Qiwen; Chen, Dongdan; Qiu, Jianrong; Dong, Guoping

    2017-03-07

    Transparent Er(3+)-doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra were introduced to characterize the change of hydroxyl group (OH(-)) content. Enhanced 2.7 μm emission was achieved from Er(3+)-doped GCs upon excitation with a 980 nm laser diode (LD), and the influence of GeO2 concentration and heat-treated temperature on the spectroscopic properties were also discussed in detail. It is found that the present Er(3+)-doped GC possesses large stimulated emission cross section at around 2.7 μm (0.85 × 10(-20) cm(2)). The advantageous spectroscopic characteristics suggest that the obtained GC may be a promising material for mid-infrared fiber lasers.

  16. Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials

    NASA Astrophysics Data System (ADS)

    Kang, Shiliang; Xiao, Xiudi; Pan, Qiwen; Chen, Dongdan; Qiu, Jianrong; Dong, Guoping

    2017-03-01

    Transparent Er3+-doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra were introduced to characterize the change of hydroxyl group (OH‑) content. Enhanced 2.7 μm emission was achieved from Er3+-doped GCs upon excitation with a 980 nm laser diode (LD), and the influence of GeO2 concentration and heat-treated temperature on the spectroscopic properties were also discussed in detail. It is found that the present Er3+-doped GC possesses large stimulated emission cross section at around 2.7 μm (0.85 × 10‑20 cm2). The advantageous spectroscopic characteristics suggest that the obtained GC may be a promising material for mid-infrared fiber lasers.

  17. Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials

    PubMed Central

    Kang, Shiliang; Xiao, Xiudi; Pan, Qiwen; Chen, Dongdan; Qiu, Jianrong; Dong, Guoping

    2017-01-01

    Transparent Er3+-doped germanotellurite glass ceramics (GCs) with variable Te/Ge ratio were prepared by controllable heat-treated process. X-ray diffraction (XRD) and transmission electron microscope (TEM) confirmed the formation of nanocrystals in glass matrix. Raman spectra were used to investigate the evolution of glass structure and photon energy. Fourier transform infrared (FTIR) spectra were introduced to characterize the change of hydroxyl group (OH−) content. Enhanced 2.7 μm emission was achieved from Er3+-doped GCs upon excitation with a 980 nm laser diode (LD), and the influence of GeO2 concentration and heat-treated temperature on the spectroscopic properties were also discussed in detail. It is found that the present Er3+-doped GC possesses large stimulated emission cross section at around 2.7 μm (0.85 × 10−20 cm2). The advantageous spectroscopic characteristics suggest that the obtained GC may be a promising material for mid-infrared fiber lasers. PMID:28266570

  18. Analysis of Glass-Reinforced Epoxy Material for Radio Frequency Resonator

    PubMed Central

    Islam, M. T.; Misran, N.; Yatim, Baharudin

    2014-01-01

    A radio frequency (RF) resonator using glass-reinforced epoxy material for C and X band is proposed in this paper. Microstrip line technology for RF over glass-reinforced epoxy material is analyzed. Coupling mechanism over RF material and parasitic coupling performance is explained utilizing even and odd mode impedance with relevant equivalent circuit. Babinet's principle is deployed to explicate the circular slot ground plane of the proposed resonator. The resonator is designed over four materials from different backgrounds which are glass-reinforced epoxy, polyester, gallium arsenide (GaAs), and rogers RO 4350B. Parametric studies and optimization algorithm are applied over the geometry of the microstrip resonator to achieve dual band response for C and X band. Resonator behaviors for different materials are concluded and compared for the same structure. The final design is fabricated over glass-reinforced epoxy material. The fabricated resonator shows a maximum directivity of 5.65 dBi and 6.62 dBi at 5.84 GHz and 8.16 GHz, respectively. The lowest resonance response is less than −20 dB for C band and −34 dB for X band. The resonator is prototyped using LPKF (S63) drilling machine to study the material behavior. PMID:24977230

  19. Analysis of glass-reinforced epoxy material for radio frequency resonator.

    PubMed

    Zaman, M R; Islam, M T; Misran, N; Yatim, Baharudin

    2014-01-01

    A radio frequency (RF) resonator using glass-reinforced epoxy material for C and X band is proposed in this paper. Microstrip line technology for RF over glass-reinforced epoxy material is analyzed. Coupling mechanism over RF material and parasitic coupling performance is explained utilizing even and odd mode impedance with relevant equivalent circuit. Babinet's principle is deployed to explicate the circular slot ground plane of the proposed resonator. The resonator is designed over four materials from different backgrounds which are glass-reinforced epoxy, polyester, gallium arsenide (GaAs), and rogers RO 4350B. Parametric studies and optimization algorithm are applied over the geometry of the microstrip resonator to achieve dual band response for C and X band. Resonator behaviors for different materials are concluded and compared for the same structure. The final design is fabricated over glass-reinforced epoxy material. The fabricated resonator shows a maximum directivity of 5.65 dBi and 6.62 dBi at 5.84 GHz and 8.16 GHz, respectively. The lowest resonance response is less than -20 dB for C band and -34 dB for X band. The resonator is prototyped using LPKF (S63) drilling machine to study the material behavior.

  20. Recycling of inorganic waste in monolithic and cellular glass-based materials for structural and functional applications.

    PubMed

    Rincón, Acacio; Marangoni, Mauro; Cetin, Suna; Bernardo, Enrico

    2016-07-01

    The stabilization of inorganic waste of various nature and origin, in glasses, has been a key strategy for environmental protection for the last decades. When properly formulated, glasses may retain many inorganic contaminants permanently, but it must be acknowledged that some criticism remains, mainly concerning costs and energy use. As a consequence, the sustainability of vitrification largely relies on the conversion of waste glasses into new, usable and marketable glass-based materials, in the form of monolithic and cellular glass-ceramics. The effective conversion in turn depends on the simultaneous control of both starting materials and manufacturing processes. While silica-rich waste favours the obtainment of glass, iron-rich wastes affect the functionalities, influencing the porosity in cellular glass-based materials as well as catalytic, magnetic, optical and electrical properties. Engineered formulations may lead to important reductions of processing times and temperatures, in the transformation of waste-derived glasses into glass-ceramics, or even bring interesting shortcuts. Direct sintering of wastes, combined with recycled glasses, as an example, has been proven as a valid low-cost alternative for glass-ceramic manufacturing, for wastes with limited hazardousness. The present paper is aimed at providing an up-to-date overview of the correlation between formulations, manufacturing technologies and properties of most recent waste-derived, glass-based materials. © 2016 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  1. Advanced materials for aerospace and biomedical applications: New glasses for hermetic titanium seals

    SciTech Connect

    Brow, R.K.; Tallant, D.R.; Crowder, S.V.

    1996-11-01

    Titanium and titanium alloys have an outstanding strength-to-weight ratio and corrosion resistance and so are materials of choice for a variety of aerospace and biomedical applications. Such applications are limited by the lack of a viable hermetic glass sealing technology. Conventional silicate sealing glasses are readily reduced by titanium to form interfacial silicides that are incompatible with a robust glass/metal seal. Borate-based glasses undergo a similar thermochemistry and are reduced to a titanium boride. The kinetics of this reactions, however, are apparently slower and so a deleterious interface does not form. Chemically durable lanthanoborate glasses were examined as candidate sealing compositions. The compositions, properties, and structures of several alkaline earth, alumina, and titania lanthanoborate glass forming systems were evaluated and this information was used as the basis for a designed experiment to optimize compositions for Ti-sealing. A number of viable compositions were identified and sealing procedures established. Finally, glass formation, properties, and structure of biocompatible Fe{sub 2}O{sub 3}- and TiO{sub 2}-doped calcium phosphate systems were also evaluated.

  2. Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics

    NASA Astrophysics Data System (ADS)

    Danewalia, Satwinder Singh; Sharma, Gaurav; Thakur, Samita; Singh, K.

    2016-04-01

    Agricultural waste ashes are used as resource materials to synthesize new glass and glass-ceramics. The as-prepared materials are characterized using various techniques for their structural and dielectric properties to check their suitability in microelectronic applications. Sugarcane leaves ash exhibits higher content of alkali metal oxides than rice husk ash, which reduces the melting point of the components due to eutectic reactions. The addition of sugarcane leaves ash in rice husk ash promotes the glass formation. Additionally, it prevents the cristobalite phase formation. These materials are inherently porous, which is responsible for low dielectric permittivity i.e. 9 to 40. The presence of less ordered augite phase enhances the dielectric permittivity as compared to cristobalite and tridymite phases. The present glass-ceramics exhibit lower losses than similar materials synthesized using conventional minerals. The dielectric permittivity is independent to a wide range of temperature and frequency. The glass-ceramics developed with adequately devitrified phases can be used in microelectronic devices and other dielectric applications.

  3. Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics

    PubMed Central

    Danewalia, Satwinder Singh; Sharma, Gaurav; Thakur, Samita; Singh, K.

    2016-01-01

    Agricultural waste ashes are used as resource materials to synthesize new glass and glass-ceramics. The as-prepared materials are characterized using various techniques for their structural and dielectric properties to check their suitability in microelectronic applications. Sugarcane leaves ash exhibits higher content of alkali metal oxides than rice husk ash, which reduces the melting point of the components due to eutectic reactions. The addition of sugarcane leaves ash in rice husk ash promotes the glass formation. Additionally, it prevents the cristobalite phase formation. These materials are inherently porous, which is responsible for low dielectric permittivity i.e. 9 to 40. The presence of less ordered augite phase enhances the dielectric permittivity as compared to cristobalite and tridymite phases. The present glass-ceramics exhibit lower losses than similar materials synthesized using conventional minerals. The dielectric permittivity is independent to a wide range of temperature and frequency. The glass-ceramics developed with adequately devitrified phases can be used in microelectronic devices and other dielectric applications. PMID:27087123

  4. Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics.

    PubMed

    Danewalia, Satwinder Singh; Sharma, Gaurav; Thakur, Samita; Singh, K

    2016-04-18

    Agricultural waste ashes are used as resource materials to synthesize new glass and glass-ceramics. The as-prepared materials are characterized using various techniques for their structural and dielectric properties to check their suitability in microelectronic applications. Sugarcane leaves ash exhibits higher content of alkali metal oxides than rice husk ash, which reduces the melting point of the components due to eutectic reactions. The addition of sugarcane leaves ash in rice husk ash promotes the glass formation. Additionally, it prevents the cristobalite phase formation. These materials are inherently porous, which is responsible for low dielectric permittivity i.e. 9 to 40. The presence of less ordered augite phase enhances the dielectric permittivity as compared to cristobalite and tridymite phases. The present glass-ceramics exhibit lower losses than similar materials synthesized using conventional minerals. The dielectric permittivity is independent to a wide range of temperature and frequency. The glass-ceramics developed with adequately devitrified phases can be used in microelectronic devices and other dielectric applications.

  5. Photocatalytic activity of titanium dioxide modified concrete materials - influence of utilizing recycled glass cullets as aggregates.

    PubMed

    Chen, Jun; Poon, Chi-Sun

    2009-08-01

    Combining the use of photocatalysts with cementitious materials is an important development in the field of photocatalytic air pollution mitigation. This paper presents the results of a systematic study on assessing the effectiveness of pollutant degradation by concrete surface layers that incorporate a photocatalytic material - Titanium Dioxide. The photocatalytic activity of the concrete samples was determined by photocatalytic oxidation of nitric oxide (NO) in the laboratory. Recycled glass cullets, derived from crushed waste beverage bottles, were used to replace sand in preparing the concrete surface layers. Factors, which may affect the pollutant removal performance of the concrete layers including glass color, aggregate size and curing age, were investigated. The results show a significant enhancement of the photocatalytic activity due to the use of glass cullets as aggregates in the concrete layers. The samples fabricated with clear glass cullets exhibited threefold NO removal efficiency compared to the samples fabricated with river sand. The light transmittance property of glass was postulated to account for the efficiency improvement, which was confirmed by a separate simulation study. But the influence of the size of glass cullets was not evident. In addition, the photocatalytic activity of concrete surface layers decreased with curing age, showing a loss of 20% photocatalytic activity after 56-day curing.

  6. Characterization of MSWI bottom ashes towards utilization as glass raw material.

    PubMed

    Monteiro, R C C; Figueiredo, C F; Alendouro, M S; Ferro, M C; Davim, E J R; Fernandes, M H V

    2008-01-01

    The characterization of the bottom ashes produced by two Portuguese municipal solid waste incinerators (MSWI) was performed with the aim of assessing the feasibility of using this waste as raw material in the production of glass that can be further processed as glass-ceramics for application in construction. Density and particle size distribution measurements were carried out for physical characterization. Chemical characterization revealed that SiO(2), a network glass former oxide, was present in a relatively high content (52-58wt%), indicating the suitability for this waste to be employed in the development of vitreous materials. CaO, Na(2)O and K(2)O, which act as fluxing agents, were present in various amounts (2-17wt%) together with several other oxides normally present in ceramic and glass raw materials. Mineralogical characterization revealed that the main crystalline phases were quartz (SiO(2)) and calcite (CaCO(3)) and that minor amounts of different alkaline and alkaline-earth aluminosilicate phases were also present. Thermal characterization showed that the decomposition of the different compounds occurred up to 1100 degrees C and that total weight loss was <10wt%. Heating both bottom ashes at 1400 degrees C for 2h resulted in a melt with suitable viscosity to be poured into a mould, and homogeneous black-coloured glasses with a smooth shiny surface were obtained after cooling. The vitrified bottom ashes were totally amorphous as confirmed by X-ray diffraction. The results from the present experimental work indicate that the examined bottom ashes can be a potential material to melt and to obtain a glass that can be further processed as glass-ceramics to be applied in construction.

  7. Characterization of MSWI bottom ashes towards utilization as glass raw material

    SciTech Connect

    Monteiro, R.C.C. Figueiredo, C.F.; Alendouro, M.S.; Ferro, M.C.; Davim, E.J.R.; Fernandes, M.H.V.

    2008-07-01

    The characterization of the bottom ashes produced by two Portuguese municipal solid waste incinerators (MSWI) was performed with the aim of assessing the feasibility of using this waste as raw material in the production of glass that can be further processed as glass-ceramics for application in construction. Density and particle size distribution measurements were carried out for physical characterization. Chemical characterization revealed that SiO{sub 2}, a network glass former oxide, was present in a relatively high content (52-58 wt%), indicating the suitability for this waste to be employed in the development of vitreous materials. CaO, Na{sub 2}O and K{sub 2}O, which act as fluxing agents, were present in various amounts (2-17 wt%) together with several other oxides normally present in ceramic and glass raw materials. Mineralogical characterization revealed that the main crystalline phases were quartz (SiO{sub 2}) and calcite (CaCO{sub 3}) and that minor amounts of different alkaline and alkaline-earth aluminosilicate phases were also present. Thermal characterization showed that the decomposition of the different compounds occurred up to 1100 deg. C and that total weight loss was <10 wt%. Heating both bottom ashes at 1400 deg. C for 2 h resulted in a melt with suitable viscosity to be poured into a mould, and homogeneous black-coloured glasses with a smooth shiny surface were obtained after cooling. The vitrified bottom ashes were totally amorphous as confirmed by X-ray diffraction. The results from the present experimental work indicate that the examined bottom ashes can be a potential material to melt and to obtain a glass that can be further processed as glass-ceramics to be applied in construction.

  8. Methods for an investigation of the effect of material components on the mechanical characteristics of glass-fiber-reinforced plastics

    NASA Technical Reports Server (NTRS)

    Willax, H. O.

    1980-01-01

    The materials used in the production of glass reinforced plastics are discussed. Specific emphasis is given to matrix polyester materials, the reinforcing glass materials, and aspects of specimen preparation. Various methods of investigation are described, giving attention to optical impregnation and wetting measurements and the gravimetric determination of the angle of contact. Deformation measurements and approaches utilizing a piezoelectric device are also considered.

  9. Characterization & Modeling of Materials in Glass-To-Metal Seals: Part I

    SciTech Connect

    Chambers, Robert S.; Emery, John M.; Tandon, Rajan; Antoun, Bonnie R.; Stavig, Mark E.; Newton, Clay S.

    2014-01-01

    To support higher fidelity modeling of residual stresses in glass-to-metal (GTM) seals and to demonstrate the accuracy of finite element analysis predictions, characterization and validation data have been collected for Sandia’s commonly used compression seal materials. The temperature dependence of the storage moduli, the shear relaxation modulus master curve and structural relaxation of the Schott 8061 glass were measured and stress-strain curves were generated for SS304L VAR in small strain regimes typical of GTM seal applications spanning temperatures from 20 to 500 C. Material models were calibrated and finite element predictions are being compared to measured data to assess the accuracy of predictions.

  10. Shear bond strengths of resin-modified glass-ionomer restorative materials.

    PubMed

    Swift, E J; Pawlus, M A; Vargas, M A

    1995-01-01

    The purpose of this study was to evaluate the shear bond strength of resin-modified glass-ionomer restorative materials to dentin. The materials tested were Fuji II LC, Geristore, Photac-Fil, VariGlass VLC, and Vitremer. Ketac-Fil, a conventional glass ionomer, was used as the control. The occlusal surfaces of 60 extracted molars were ground flat in dentin using 600-grit silicon carbide abrasive paper. Dentin surfaces were treated according to manufacturers' instructions, and restorative materials were applied using gelatin capsule matrices. Shear bond strengths were determined after the specimens were thermocycled 500 times. Mean bond strengths of the resin-modified glass ionomers ranged from 1.4 MPa (Photac-Fil) to 12.3 MPa (Fuji II LC). Except for Photac-Fil, all values were significantly higher than the control. Pairwise comparisons between the means for Fuji II LC and Vitremer, Vitremer and Geristore, and Geristore and VariGlass were not significantly different.

  11. Data on Material Properties and Panel Compressive Strength of a Plastic-bonded Material of Glass Cloth and Canvas

    NASA Technical Reports Server (NTRS)

    Zender, George W; Schuette, Evan H; Weinberger, Robert A

    1944-01-01

    Results are presented of tests for determining the tensile, compressive, and bending properties of a material of plastic-bonding glass cloth and canvas layers. In addition, 10 panel specimens were tested in compression. Although the material is not satisfactory for primary structural use in aircraft when compared on a strength-weight basis with other materials in common use, there appears to be potential strength in the material that will require research for development. These points are considered in some detail in the concluding discussion of the report. An appendix shows that a higher tensile strength can be obtained by changes in the type of weave used in the glass-cloth reinforcement.

  12. Using Lunar Impact Glasses to Inform the Amount of Organic Material Delivered to the Early Earth

    NASA Astrophysics Data System (ADS)

    Nguyen, Pham; Zellner, Nicolle

    2017-01-01

    The delivery of organic material via comets and asteroids during the early history of Earth plays an important role in some theories about the origin of life on Earth. Given the close proximity of the Moon to the Earth, the Moon’s impact history can be used to estimate the amount of organic material delivered to the early Earth. Analysis of lunar impact glasses, derived from energetic impacts on the Moon, provide valuable data that can be used to interpret the Moon’s impact flux. Here we present the results of a study of the non-volatile lithophile element compositions of over 500 impact glass samples from the Apollo 14, 16, and 17 landing sites, along with associated ages of a subset of them. Our analyses show that many of the impact glasses possess compositions exotic to the local regolith in which they were found. Coupled with their ages, these glasses suggest material transport from distant regions of the Moon and may allow an estimate of the number of lunar (and terrestrial) impactors in a given time period. These results have important implications for constraining the Moon’s impact flux and also the amount of organic material delivered to the early Earth. Results of our preliminary study, which investigates the amounts of organic material delivered by comets and asteroids to the Moon (and Earth), will be presented.

  13. Exploring high-strength glass-ceramic materials for upcycling of industrial wastes

    NASA Astrophysics Data System (ADS)

    Back, Gu-Seul; Park, Hyun Seo; Seo, Sung Mo; Jung, Woo-Gwang

    2015-11-01

    To promote the recycling of industrial waste and to develop value-added products using these resources, the possibility of manufacturing glass-ceramic materials of SiO2-CaO-Al2O3 system has been investigated by various heat treatment processes. Glass-ceramic materials with six different chemical compositions were prepared using steel industry slags and power plant waste by melting, casting and heat treatment. The X-ray diffraction results indicated that diopside and anorthite were the primary phases in the samples. The anorthite phase was formed in SiO2-rich material (at least 43 wt%). In CaO-rich material, the gehlenite phase was formed. By the differential scanning calorimetry analyses, it was found that the glass transition point was in the range of 973-1023 K, and the crystallization temperature was in the range of 1123-1223 K. The crystallization temperature increased as the content of Fe2O3 decreased. By the multi-step heat treatment process, the formation of the anorthite phase was enhanced. Using FactSage, the ratio of various phases was calculated as a function of temperature. The viscosities and the latent heats for the samples with various compositions were also calculated by FactSage. The optimal compositions for glass-ceramics materials were discussed in terms of their compressive strength, and micro-hardness.

  14. Mechanical properties of lunar materials under anhydrous, hard vacuum conditions: applications of lunar glass structural components

    SciTech Connect

    Blacic, J.D.

    1984-01-01

    Lunar materials and derivatives such as glass may possess very high tensile strengths compared to equivalent materials on earth because of the absence of hydrolytic weakening processes on the moon and in the hard vacuum of free space. Hydrolyzation of Si-O bonds at crack tips or dislocations reduces the strength of silicates by about an order of magnitude in earth environments. However, lunar materials are extremely anhydrous and hydrolytic weakening will be suppressed in free space. Thus, the geomechanical properties of the moon and engineering properties of lunar silicate materials in space environments will be very different than equivalent materials under earth conditions where the action of water cannot be conveniently avoided. Possible substitution of lunar glass for structural metals in a variety of space engineering applications enhances the economic utilization of the moon. 26 references, 3 figures, 2 tables.

  15. Chemical Principles Revisited: The Chemistry of Glass.

    ERIC Educational Resources Information Center

    Kolb, Doris; Kolb, Kenneth E.

    1979-01-01

    Presents a detailed discussion on the chemistry of glass. Topics discussed include: natural glass, early history, modern glass composition, raw materials for glass melting, chemically modified glasses, modern glass forming, glass ceramics, and new developments in glass research. (BT)

  16. Contrasting glass and plastic material requirements for reflective and refractive CPV solar systems

    NASA Astrophysics Data System (ADS)

    Horne, Steve; Krevor, David

    2012-10-01

    Concentrator PhotoVoltaic (CPV) solar energy systems concentrate the sun 500 - 1,000 times or more, in order to take economic advantage of the most advanced and efficient solar cells. The two prevalent system architectures use either reflective glass optics - such as based on a Cassegrain telescope design - or a refractive plastic system - either an acrylic or silicone-on-glass Fresnel lens - for concentration. Both systems have their advantages in areas of performance and durability. Both system designs manufacture their optics by low-cost processes that are unavailable to the other material system. These contrasts are reviewed. The refractive system embodies a simpler optical concept, requiring a single Fresnel lens rather than two concentrating mirrors. However, the reflective, glass system uses the greater design sophistication to provide a greater acceptance angle, which yields tolerance benefits in both manufacture and installation; and also provides faster optics without suffering the spectral aberrations of the refractive systems. Both glass and plastics are low-cost commodity materials. The long-term durability of optical glass is more firmly established than for optical plastics. And light transmission through optical plastics is attenuated by absorbance in both the UV and IR regions, in regions where such light is harvested by efficient multi-junction solar cells.

  17. A hazardous waste from secondary aluminium metallurgy as a new raw material for calcium aluminate glasses.

    PubMed

    López-Delgado, Aurora; Tayibi, Hanan; Pérez, Carlos; Alguacil, Francisco José; López, Félix Antonio

    2009-06-15

    A solid waste coming from the secondary aluminium industry was successfully vitrified in the ternary CaO-Al(2)O(3)-SiO(2) system at 1500 degrees C. This waste is a complex material which is considered hazardous because of its behaviour in the presence of water or moisture. In these conditions, the dust can generate gases such as H(2), NH(3), CH(4), H(2)S, along with heat and potential aluminothermy. Only silica sand and calcium carbonate were added as external raw materials to complete the glasses formula. Different nominal compositions of glasses, with Al(2)O(3) ranging between 20% and 54%, were studied to determine the glass forming area. The glasses obtained allow the immobilisation of up to 75% of waste in a multicomponent oxide system in which all the components of the waste are incorporated. The microhardness Hv values varied between 6.05 and 6.62GPa and the linear thermal expansion coefficient, alpha, varied between (62 and 139)x10(-7)K(-1). Several glasses showed a high hydrolytic resistance in deionised water at 98 degrees C.

  18. Fabrication and characterization of MCC approved testing material: ATM-11 glass

    SciTech Connect

    Wald, J.W.; Daniel, J.L.

    1986-08-01

    ATM-11 glass is designed to be representative of defense high-level waste glasses that will be produced by the Defense Waste Processing Facility at the Savannah River Plant in Aiken, South Carolina. It is representative of a 300-year-old nuclear waste glass and was intended as a conservative compromise between 10-year-old waste and 1000-year-old waste. The feedstock material for this glass was supplied by Savannah River Laboratory, Aiken, SC, as SRL-165 black frit to which was added Ba, Cs, Mo, Nd, Ni, Pd, Rb, Ru, Sr, Te, Y, and Zr, as well as /sup 241/Am, /sup 237/Np, /sup 239+240/Pu, /sup 151/Sm, /sup 99/Tc, and depleted U. The glass was melted under the reducing conditions that resulted from the addition of 0.7 wt% graphite during the final melting process. Nearly 3 kg of ATM-11 glass were produced from a feedstock melted in a nitrogen-atmosphere glove box at 1250/sup 0/C in Denver Fire Clay crucibles. After final melting, the glass was formed into stress-annealed rectangular bars 1.9 x 1.9 x 10 cm nominal size. Twenty-six bars were cast with a nominal weight of about 100 g each. The analyzed composition of ATM-11 glass is tabulated. Examination of a single transverse section from one bar by reflected light microscopy showed random porosity estimated at 0.4 vol% with nominal pore diameters ranging from approx.5 ..mu..m to 175 ..mu..m. A distinct randomly distributed second phase was observed at a very low concentration in the glass matrix as agglomerated, metallic-like clusters. One form of the aggregates contained mainly a high concentration of iron, while a second form had regions of high nickel concentration, and of high palladium concentration. All aggregates also contained a low concentration of technetium and/or ruthenium. An autoradiograph of the sample provided an indication of the total radionuclide ditribution. X-ray diffraction analysis of this same sample indicates that the glass probably contained 5 wt% crystalline material.

  19. Flammability Characteristics of Glass Reinforced Epoxy Composite Materials

    DTIC Science & Technology

    1992-02-01

    adopted for the realistic flamability evaluation and screening of FRC materials for Army applications. UNCLASSIFIED S9CU*ITY CLASSIICATION Of THIS PAGIE...m2/g) is calculated by multiplying the optical density (m-1 ) by the total volumetric flow cate (m3/s) and dividing by the generation rate of...the ignition zone (50 kW/m2 of external heat flux with a pilot flame). FPI values were calculated as follows: I) chemical heat release rate (in kW

  20. Crack propagation and the material removal mechanism of glass-ceramics by the scratch test.

    PubMed

    Qiu, Zhongjun; Liu, Congcong; Wang, Haorong; Yang, Xue; Fang, Fengzhou; Tang, Junjie

    2016-12-01

    To eliminate the negative effects of surface flaws and subsurface damage of glass-ceramics on clinical effectiveness, crack propagation and the material removal mechanism of glass-ceramics were studied by single and double scratch experiments conducted using an ultra-precision machine. A self-manufactured pyramid shaped single-grit tool with a small tip radius was used as the scratch tool. The surface and subsurface crack propagations and interactions, surface morphology and material removal mechanism were investigated. The experimental results showed that the propagation of lateral cracks to the surface and the interaction between the lateral cracks and radial cracks are the two main types of material peeling, and the increase of the scratch depth increases the propagation angle of the radial cracks and the interaction between the cracks. In the case of a double scratch, the propagation of lateral cracks and radial cracks between paired scratches results in material peeling. The interaction between adjacent scratches depends on the scratch depth and separation distance. There is a critical separation distance where the normalized material removal volume reaches its peak. These findings can help reduce surface flaws and subsurface damage induced by the grinding process and improve the clinical effectiveness of glass-ceramics used as biological substitute and repair materials.

  1. Dental repair material: a resin-modified glass-ionomer bioactive ionic resin-based composite.

    PubMed

    Croll, Theodore P; Berg, Joel H; Donly, Kevin J

    2015-01-01

    This report documents treatment and repair of three carious teeth that were restored with a new dental repair material that features the characteristics of both resin-modified glass-ionomer restorative cement (RMGI) and resin-based composite (RBC). The restorative products presented are reported by the manufacturer to be the first bioactive dental materials with an ionic resin matrix, a shock-absorbing resin component, and bioactive fillers that mimic the physical and chemical properties of natural teeth. The restorative material and base/liner, which feature three hardening mechanisms, could prove to be a notable advancement in the adhesive dentistry restorative materials continuum.

  2. Preparation of glass-forming materials from granulated blast furnace slag

    NASA Astrophysics Data System (ADS)

    Alonso, M.; Sáinz, E.; Lopez, F. A.

    1996-10-01

    Glass precursor materials, to be used for the vitrification of hazardous wastes, have been prepared from blast furnace slag powder through a sol-gel route. The slag is initially reacted with a mixture of alcohol (ethanol or methanol) and mineral acid (HNO3 or H2SO4) to give a sol principally consisting of Si, Ca, Al, and Mg alkoxides. Gelation is carried out with variable amounts of either ammonia or water. The gelation rate can be made as fast as desired by adding excess hydrolizing agent or else by distilling the excess alcohol out of the alkoxide solution. The resulting gel is first dried at low temperature and ground. The powder thus obtained is then heat treated at several temperatures. The intermediate and final materials are characterized by thermal analysis, infrared (IR) spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), and chemical analysis. From the results, the operating conditions yielding a variety of glass precursors differing in their composition are established. The method, in comparison with direct vitrification of slag, presents a number of advantages: (1) the glass precursor obtained devitrifies at higher temperatures; (2) it enables the adjustment, to a certain extent, of the chemical composition of the glass precursor; and (3) it permits recovering marketable materials at different stages of the process.

  3. Computational materials science aided design of glass ceramics and crystal properties (abstract only).

    PubMed

    Mannstadt, Wolfgang

    2008-02-13

    Today's high tech materials have in many cases highly specialized properties and designed functionalities. Materials parameters like high temperature stability, high stiffness and certain optical properties have to be optimized and in many cases an adaptation to given processes is necessary. Many materials are compounds or layered structures. Thus, surface and interface properties need to be considered as well. At the same time to some extent just a few atomic layers sometimes determine the properties of the material, as is well known in semiconductor and other thin film technologies. Therefore, a detailed understanding of the materials properties at the atomic scale becomes more and more important. In addition many high tech materials have to be of high purity or selective dopant concentrations have to be adjusted to fulfill the desired functionality. Modern materials developments successfully use computational materials science to achieve that goal. Improved software tools and continuously growing computational power allow us to predict macroscopic properties of materials on the basis of microscopic/atomic ab initio simulation approaches. At Schott, special materials, in particular glasses and glass ceramics, are produced for a variety of applications. For a glass ceramic all the above mentioned difficulties for materials development arise. The properties of a glass ceramic are determined by the interplay of crystalline phases embedded in an amorphous glass matrix. For materials development the understanding of crystal structures and their properties, surfaces and interface phenomena, and amorphous systems are necessary, likewise. Each by itself is already a challenging problem. Many crystal phases that are grown within the glass matrix do not exist as single crystals or are difficult to grow in reasonable amounts for experimental investigations. The only way to obtain the properties of these crystalline phases is through 'ab initio' simulations in the computer

  4. Recycling of iron foundry sand and glass waste as raw material for production of whiteware.

    PubMed

    Bragança, Saulo R; Vicenzi, Juliane; Guerino, Kareline; Bergmann, Carlos P

    2006-02-01

    The purpose of this study was to evaluate the production feasibility of triaxial whiteware using sand from cast iron moulds as a raw material instead of silica, and recycled glass in place of feldspar. Formulations were prepared using sand, glass waste, and white-firing clay such that only 50% of the composition was virgin material (clay). The ceramic bodies were formed by pressing and fired at different temperatures (between 1100 and 1300 degrees C). Specimens were characterized in terms of green density prior to firing; and their flexural strength, linear shrinkage, and water absorption were measured after firing. The microstructure was determined by scanning electron microscopy. Possible environmental impacts of this recycling process were also evaluated, through solubility and leaching tests, according to Brazilian standards. Gaseous emissions during the firing process were also analysed. The results showed that it is possible to produce triaxial ceramics by using such alternative raw materials.

  5. Formulation of a candidate glass for use as an acceptance test standard material

    SciTech Connect

    Ebert, W.L.; Strachan, D.M.; Wolf, S.F.

    1998-04-01

    In this report, the authors discuss the formulation of a glass that will be used in a laboratory testing program designed to measure the precision of test methods identified in the privatization contracts for the immobilization of Hanford low-activity wastes. Tests will be conducted with that glass to measure the reproducibility of tests and analyses that must be performed by glass producers as a part of the product acceptance procedure. Test results will be used to determine if the contractually required tests and analyses are adequate for evaluating the acceptability of likely immobilized low-activity waste (ILAW) products. They will also be used to evaluate if the glass designed for use in these tests can be used as an analytical standard test material for verifying results reported by vendors for tests withg ILAW products. The results of those tests and analyses will be presented in a separate report. The purpose of this report is to document the strategy used to formulate the glass to be used in the testing program. The low-activity waste reference glass LRM that will be used in the testing program was formulated to be compositionally similar to ILAW products to be made with wastes from Hanford. Since the ILAW product compositions have not been disclosed by the vendors participating in the Hanford privatization project, the composition of LRM was formulated based on simulated Hanford waste stream and amounts of added glass forming chemicals typical for vitrified waste forms. The major components are 54 mass % SiO{sub 2}, 20 mass % Na{sub 2}O, 10 mass % Al{sub 2}O{sub 3}, 8 mass % B{sub 2}O{sub 3}, and 1.5 mass % K{sub 2}O. Small amounts of other chemicals not present in Hanford wastes were also included in the glass, since they may be included as chemical additives in ILAW products. This was done so that the use of LRM as a composition standard could be evaluated. Radionuclides were not included in LRM because a nonradioactive material was desired.

  6. Light dynamic properties of a synthetic, low-fusing, quartz glass-ceramic material.

    PubMed

    Chu, Stephen J; Ahmad, Irfan

    2003-01-01

    Significant material advancements have resulted in the increased application of porcelain materials as an ideal restorative substitute for tooth enamel and dentin. This discussion introduces a synthetic, low-fusing, quartz glass-ceramic system for the fabrication of fixed dental prostheses. This article evaluates and compares the properties of this ceramic system with regard to its applicability for use in contemporary dental practices. The theoretical aspects are supplemented by clinical case studies that highlight examples of the authentic results achievable using the low-fusing restorative material.

  7. The research of ceramic materials for applications in the glass industry including microwave heating techniques

    NASA Astrophysics Data System (ADS)

    Kogut, K.; Kasprzyk, K.; Zboromirska-Wnukiewicz, B.; Ruziewicz, T.

    2016-02-01

    The melting of a glass is a very energy-intensive process. Selection of energy sources, the heating technique and the method of heating recovery are a fundamental issue from the furnace design point of view of and economic effectiveness of the process. In these processes the problem constitutes the lack of the appropriate ceramic materials that would meet the requirements. In this work the standard ceramic materials were examined and verified. The possibilities of application of microwave techniques were evaluated. In addition the requirements regarding the parameters of new ceramic materials applied for microwave technologies were determined.

  8. Tellurite glass as a waste form for a simulated mixed chloride waste stream: Candidate materials selection and initial testing

    SciTech Connect

    Riley, Brian J.; Rieck, Bennett T.; McCloy, John S.; Crum, Jarrod V.; Sundaram, S. K.; Vienna, John D.

    2012-02-02

    Tellurite glasses have been researched widely for the last 60 years since they were first introduced by Stanworth. These glasses have been primarily used in research applications as glass host materials for lasers and as non-linear optical materials, though many other uses exist in the literature. Tellurite glasses have long since been used as hosts for various, and even sometimes mixed, halogens (i.e., multiple chlorides or even chlorides and iodides). Thus, it was reasonable to expect that these types of glasses could be used as a waste form to immobilize a combination of mixed chlorides present in the electrochemical separations process involved with fuel separations and processing from nuclear reactors. Many of the properties related to waste forms (e.g., chemical durability, maximum chloride loading) for these materials are unknown and thus, in this study, several different types of tellurite glasses were made and their properties studied to determine if such a candidate waste form could be fabricated with these glasses. One of the formulations studied was a lead tellurite glass, which had a low sodium release and is on-par with high-level waste silicate glass waste forms.

  9. Materials and Techniques for the Femtosecond Laser Fabrication of Optical Devices in Glass

    NASA Astrophysics Data System (ADS)

    Troy, Neil William

    Focused femtosecond laser pulses can be used to permanently modify the refractive index of glasses. If the change in the refractive index of the laser-modified material is positive, the material can be easily used to create optical waveguiding structures. Unfortunately, few materials are known to exhibit this property. In prior research we found a unique zinc phosphate glass composition, 60ZnO ∘ 40P2O5, that exhibits this property and we have used it as a launching point to create more robust glasses as well as optical devices using the femtosecond laser writing technique. In particular, the research presented in this dissertation verifies our claim that the oxygen to phosphorus ratio (O/P) in the glass is responsible for the glass's ability to create high index regions when modified. This O/P ratio of 3.25 has allowed us to create waveguides in zinc phosphate glasses with the inclusion of rare-earth doping, magnesium doping, and aluminum doping. After the creation of these waveguides Raman spectroscopy showed that there were distinct changes to the phosphate glass network such that longer phosphate chains were broken up into smaller chains by the modification process. We were able to show that by mapping the ratio of differently bonded phosphate tetrahedra (denoted by their Qi species) we could precisely map out all laser-modified material. In a separate study we investigated the use of cylindrical vector beams for femtosecond laser writing. By using cylindrical vector beams, in which the polarization state varies across the beam profile, it is possible to create torus-shaped foci, which possibly yield new waveguide geometries. After creation of these beams with a twisted nematic liquid crystal device we modified torus-shaped regions on and inside glasses. In glasses we attempted to use this torus modified shape to induce optical guiding by producing a low index region around a high index core but were unable to, likely due to the self-focusing of the laser deep

  10. Tensile behavior of glass/ceramic composite materials at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.; Grande, D. H.; Jacobs, J.

    1987-01-01

    This paper describes the tensile behavior of high-temperature composite materials containing continuous Nicalon ceramic fiber reinforcement and glass and glass/ceramic matrices. The longitudinal properties of these materials can approach theoretical expectations for brittle matrix composites, failing at a strength and ultimate strain level consistent with those of the fibers. The brittle, high-modulus matrices result in a nonlinear stress-strain curve due to the onset of stable matrix cracking at 10 to 30 percent of the fiber strain to failure, and at strains below this range in off-axis plies. Current fibers and matrices can provide attractive properties well above 1000 C, but composites experience embrittlement in oxidizing atmospheres at 800 to 1000 C due to oxidation of a carbon interface reaction layer.The oxidation effect greatly increases the interface bond strength, causing composite embrittlement.

  11. The size effect of crystalline inclusions on the fracture modes in glass-ceramic materials.

    PubMed

    Charitidis, C A; Karakasidis, T E; Kavouras, P; Karakostas, Th

    2007-07-04

    The main parameters influencing the mechanical performance of glass-ceramic materials are the shape and mean size of the ceramic phase, i.e. the crystalline inclusions. The aim of the present work is twofold: first, to study the effect of the above parameters on the modes of fracture in two kinds of glass-ceramic materials by the use of the static microindentation technique; second, to interpret the experimental results by the application of a simple physical model. It was found that reduction in the size of granularly shaped crystallite inclusions or reduction of the width of needle-like crystalline inclusions results in an increase of the extent of crack propagation, while the fracture mode shifts from intergranular to transgranular. These observations were successfully interpreted in terms of energetic arguments related to the size of the crystalline inclusions with respect to the width of a disordered zone acting as an interface between them and the amorphous matrix.

  12. Fluoride release of glass ionomer restorations after bleaching with two different bleaching materials

    PubMed Central

    Baroudi, Kusai; Mahmoud, Rasha Said; Tarakji, Bassel

    2013-01-01

    Objective: This study was designed to evaluate the effect of two bleaching agents on the fluoride release of three types of glass ionomer materials. Materials and Methods: A total of 90 specimens of the tested materials (Ketac Fil, Photac Fil and F2000) were prepared by a split Teflon ring with an internal diameter of 5 mm and thickness of 2 mm. The tested materials were applied and bleached according to manufacturer instructions. Fluoride release measurements were made by using specific ion electrode. Results: Results revealed that bleaching with opalescence Xtra caused little increase in fluoride release from Ketac Fil and Photac Fil but has no effect on F2000. However, Opalescence Quick had no significant effect on the three tested materials. Conclusions: Bleaching effect on fluoride release is material dependent and time has a significant role on fluoride release. PMID:24883026

  13. Study of glass preforms for glass fiber optics applications (study of space processing of ceramic materials). [light transmission

    NASA Technical Reports Server (NTRS)

    Wang, F. F. Y.

    1974-01-01

    The feasibility, and technical and economic desirability was studied of space processing of glass preforms for optical fiber transmission applications. The results indicate that space processing can produce glass preforms of equal quality at lower cost than earth bound production, and can produce diameter modulation in the glass preform which promotes mode coupling and lowers the dispersion. The glass composition can be modified through the evaporative and diffusion processes, and graded refractive index profiles can be produced. A brief summary of the state of the art in optical fiber transmission is included.

  14. New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses

    PubMed Central

    Afyon, Semih; Krumeich, Frank; Mensing, Christian; Borgschulte, Andreas; Nesper, Reinhard

    2014-01-01

    V2O5 based materials are attractive cathode alternatives due to the many oxidation state switches of vanadium bringing about a high theoretical specific capacity. However, significant capacity losses are eminent for crystalline V2O5 phases related to the irreversible phase transformations and/or vanadium dissolution starting from the first discharge cycle. These problems can be circumvented if amorphous or glassy vanadium oxide phases are employed. Here, we demonstrate vanadate-borate glasses as high capacity cathode materials for rechargeable Li-ion batteries for the first time. The composite electrodes of V2O5 – LiBO2 glass with reduced graphite oxide (RGO) deliver specific energies around 1000 Wh/kg and retain high specific capacities in the range of ~ 300 mAh/g for the first 100 cycles. V2O5 – LiBO2 glasses are considered as promising cathode materials for rechargeable Li-ion batteries fabricated through rather simple and cost-efficient methods. PMID:25408200

  15. Optimisation of laser wavelength in the ablation sampling of glass materials

    NASA Astrophysics Data System (ADS)

    Shuttleworth, S.

    1996-04-01

    Glass is an excellent matrix for use in the immobilisation of waste materials. In order to more thoroughly understand how this material behaves over long periods of time it is important to be able to carry out spatially resolved chemical analysis of the material. One technique which offers spatially resolved chemical and isotopic analysis is laser microprobe inductively coupled plasma mass spectrometry. The laser is employed as a high resolution sampling probe and the inductively coupled plasma mass spectrometer provides the analysis. For the sampling technique to be valid it is imperative that the material ablated is representative of the original matrix. Unfortunately glass can be a difficult material to ablate at certain wavelengths due to its transparency and ability to reflect the radiation. This can result in ablation of material which is not representative of the matrix. This paper will examine the effect of laser wavelength on the ablation process. Chemical analysis by inductively coupled plasma mass spectrometry will be used to examine the composition of the ablate.

  16. Mechanical and thermal properties of composite material system reinforced with micro glass balloons

    NASA Astrophysics Data System (ADS)

    Ozawa, Y.; Watanabe, M.; Kikuchi, T.; Ishiwatari, H.

    2010-06-01

    The mechanical and thermal properties of polymer composites reinforced with micro glass balloons are investigated in temperature conditions. The matrix resin of the composite is epoxy resin and its dispersion is micro glassy spherical shells of Sirasu Balloon. The composite system developed is a kind of micro porous materials with lightweight. From the experimental data of bending and tension tests, mechanical behaviours of the composites were clarified, and the effects of material properties and configurations on the mechanical properties of composites were discussed from the viewpoint of micromechanical study. A homogenization theory with multi-scale analytical method has been applied in order to evaluate the composite material system in temperature conditions. Numerical calculations were performed by using a model of micro porous materials and setting properties of each material at the temperature. Analytical results for the mechanical behaviour made a good agreement with experimental result of the composites in temperature conditions.

  17. Characterization of the Defense Waste Processing Facility (DWPF) Environmental Assessment (EA) glass Standard Reference Material. Revision 1

    SciTech Connect

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Crawford, C.L.; Pickett, M.A.

    1993-06-01

    Liquid high-level nuclear waste at the Savannah River Site (SRS) will be immobilized by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Other waste form producers, such as West Valley Nuclear Services (WVNS) and the Hanford Waste Vitrification Project (HWVP), will also immobilize high-level radioactive waste in borosilicate glass. The canistered waste will be stored temporarily at each facility for eventual permanent disposal in a geologic repository. The Department of Energy has defined a set of requirements for the canistered waste forms, the Waste Acceptance Product Specifications (WAPS). The current Waste Acceptance Primary Specification (WAPS) 1.3, the product consistency specification, requires the waste form producers to demonstrate control of the consistency of the final waste form using a crushed glass durability test, the Product Consistency Test (PCI). In order to be acceptable, a waste glass must be more durable during PCT analysis than the waste glass identified in the DWPF Environmental Assessment (EA). In order to supply all the waste form producers with the same standard benchmark glass, 1000 pounds of the EA glass was fabricated. The chemical analyses and characterization of the benchmark EA glass are reported. This material is now available to act as a durability and/or redox Standard Reference Material (SRM) for all waste form producers.

  18. Omni-directional selective shielding material based on amorphous glass coated microwires

    NASA Astrophysics Data System (ADS)

    Ababei, G.; Chiriac, H.; David, V.; Dafinescu, V.; Nica, I.

    2012-01-01

    The shielding effectiveness of the omni-directional selective shielding material based on CoFe-glass coated amorphous wires in 0.8 GHz-3 GHz microwave frequency range is investigated. The measurements were done in a controlled medium using a TEM cell and in the free space using horn antennas, respectively. Experimental results indicate that the composite shielding material can be developed with desired shielding effectiveness and selective absorption of the microwave frequency range by controlling the number of the layers and the length of microwires.

  19. Waste glass from end-of-life fluorescent lamps as raw material in geopolymers.

    PubMed

    Novais, Rui M; Ascensão, G; Seabra, M P; Labrincha, J A

    2016-06-01

    Nowadays the stunning volume of generated wastes, the exhaustion of raw materials, and the disturbing greenhouse gases emission levels show that a paradigm shift is mandatory. In this context, the possibility of using wastes instead of virgin raw materials can mitigate the environmental problems related to wastes, while reducing the consumption of the Earth's natural resources. This innovative work reports the incorporation of unexplored waste glass coming from end-of-life fluorescent lamps into geopolymers. The influence of the waste glass incorporation level, NaOH molarity and curing conditions on the microstructure, physical and mechanical properties of the geopolymers was evaluated. Results demonstrate that curing conditions are the most influential factor on the geopolymer characteristics, while the NaOH molarity is less important. Geopolymers containing 37.5% (wt) waste glass were successfully produced, showing compressive strength of 14MPa (after 28days of curing), suggesting the possibility of their use in non-structural applications. Porous waste-based geopolymers for novel applications were also fabricated.

  20. Factors Affecting the Morphology of Pb-Based Glass Frit Coated with Ag Material Prepared by Electroless Silver Plating

    NASA Astrophysics Data System (ADS)

    Huang, Bei; Gan, Weiping; Zhou, Jian; Li, Yingfen; Lin, Tao; Liu, Xiaogang

    2014-05-01

    Pb-based glass frit coated with nanosilver material for Si solar cell applications has been directly prepared by electroless silver plating. Activation of the glass frit was accomplished by using glycol, with the aim of reducing the silver ions to elemental silver on the surface of the glass frit. Electroless silver plating onto the glass frit was successfully realized using two kinds of electroless plating bath. However, the morphology of the composite powder greatly affected the modality, sheet resistance, series resistance, and photoelectric conversion efficiency of the conducting silver films. We found that the activation temperature affected the number and distribution of silver nanoparticles. Meanwhile, the average grain size of the silver particles and the silver content in the Pb-based glass frit coated with Ag material could be controlled by adjusting the pH value and loading capacity, respectively, during plating.

  1. Effect of pad location relative to glass weave on cratering and underfill process improvement and material evaluation

    NASA Astrophysics Data System (ADS)

    Quran, Mohammad M.

    This research contains two studies. First study investigated one of the factors that affect the performance of pads; the locations of pads relative to glass weave. Dage 4000plus bond tester was used in conducting a joint-level testing of pads on 370HR printed circuit board that has 1080 glass fabric. Scanning acoustic microscopy (SAM) was utilized to image pads with respect to upper layer of glass weave. It was found that locations of pads do not affect their strength, but it has a weak effect on fatigue performance. The second part of this research is underfill process improvement and material selection. This study evaluated four underfill materials against a flow model. Assemblies were made of transparent glass slides and then underfilled. Different factors that affect this flow were investigated: substrate temperature, standoff, and material age. In addition, the materials' tendency to form voids during flow or curing was observed.

  2. Surface diffusion of molecular glasses: Material dependence and impact on physical stability

    NASA Astrophysics Data System (ADS)

    Ruan, Shigang; Zhang, Wei; Yu, Lian

    Surface diffusion coefficients have been measured for molecular glasses tris-naphthylbenzene (TNB) and PMMA oligomers by surface grating decay. Surface diffusion on TNB is vastly faster than bulk diffusion, by a factor of 107 at Tg, while the process is very slow on PMMA. Along with the previous results on o - terphenyl, nifedipine, indomethacin, and polystyrene oligomers, we find that surface diffusion slows down with increasing molecular size and intermolecular forces, whereas bulk diffusion has a weaker material dependence. The molecular glasses studied show fast crystal growth on the free surface. A general correlation is observed between the coefficient of surface diffusion and the velocity of surface crystal growth, indicating surface crystallization is supported by surface mobility. (Zhu, L., et al. Phys. Rev. Lett. 106 (2011): 256103; Zhang, W., et al. J. Phys. Chem. B 119 (2015): 5071-5078) Nsf.

  3. In vitro microleakage of glass-ionomer composite resin hybrid materials.

    PubMed

    Rodrigues, J A; De Magalhães, C S; Serra, M C; Rodrigues Júnior, A L

    1999-01-01

    The purpose of this study was to evaluate the microleakage of six glass-ionomer composite resin hybrid materials compared with a glass-ionomer cement and a composite resin. Standardized class 5 dentin cavities were prepared on root surfaces of 240 extracted human teeth that were randomly assigned to eight groups and restored using the following restorative systems: (I) Vitremer, (II) Compoglass, (III) Photac-Fil Aplicap, (IV) Variglass, (V) Dyract, (VI) Fuji II LC, (VII) Ketac-Fil Aplicap, and (VIII) Z100. The teeth were thermocycled, placed in a 2% methylene blue solution, and sectioned with diamond disks. Dye penetration was scored on a scale of 0-3. Results showed no significant differences among groups VIII, IV, I, V, VI, III, and II. There were also no significant differences among groups VI, III, II, and VII.

  4. Influence of pressure on fast relaxation in glass-forming materials

    NASA Astrophysics Data System (ADS)

    Novikov, Vladimir; Hong, Liang; Kisliuk, Alexander; Sokolov, Alexei

    2011-03-01

    The spectra of GHz-THz dynamics in glass forming materials have two main contributions: the boson peak and the fast relaxation that overlaps with the low-frequency flank of the boson peak. The nature of both contributions remains a subject of active discussions. Applying pressure helps to separate the temperature and volume effects on the fast dynamics. Although the boson peak under pressure was investigated recently by several groups, less attention was devoted to the fast relaxation. In this work we present the study of the fast relaxation measured in some molecular and polymeric glass formers under pressure by light (Raman and Brillouin) scattering. Different experimental conditions were applied: isothermal, isobaric, isokinetic, and isochoric. The results are analyzed within the frames of various theoretical models. In particular, we check in detail the predictions of the soft-potential model of glassy dynamics.

  5. Optimized microwave-assisted decomposition method for multi-element analysis of glass standard reference material and ancient glass specimens by inductively coupled plasma atomic emission spectrometry.

    PubMed

    Zachariadis, G; Dimitrakoudi, E; Anthemidis, A; Stratis, J

    2006-02-28

    A novel microwave-assisted wet-acid decomposition method for the multi-element analysis of glass samples using inductively coupled plasma atomic emission spectrometry (ICP-AES) was developed and optimized. The SRM 621 standard reference glass material was used for this purpose, because it has similar composition with either archaeological glass specimens or common modern glasses. For the main constituents of SRM 621 (Ca, Na, Al, Fe, Mg, Ba and Ti), quality control data are given for all the examined procedures. The chemical and instrumental parameters of the method were thoroughly optimized. Thirteen acid mixtures of hydrochloric, nitric, and hydrofluoric acids in relation to two different microwave programs were examined in order to establish the most efficient protocol for the determination of metals in glass matrix. For both microwave programs, an intermediate step was employed with addition of H(3)BO(3) in order to compensate the effect of HF, which was used in all protocols. The suitability of the investigated protocols was evaluated for major (Ca, Na, Al), and minor (Fe, Mg, Ba, Ti, Mn, Cu, Sb, Co, Pb) glass constituents. The analytes were determined using multi-element matrix matched standard solutions. The analytical data matrix was processed chemometrically in order to evaluate the examined protocols in terms of their accuracy, precision and sensitivity, and eventually select the most efficient method for ancient glass. ICP-AES parameters such as spectral line, RF power and sample flow rate were optimized using the proposed protocol. Finally, the optimum method was successfully applied to the analysis of a number of ancient glass fragments.

  6. Laser ablation of advanced ceramics and glass-ceramic materials: Reference position dependence

    NASA Astrophysics Data System (ADS)

    Sola, D.; Escartín, A.; Cases, R.; Peña, J. I.

    2011-04-01

    In this work, we present the effect produced by modifying the reference position as well as the method of machining on the results obtained when advanced ceramics and glass-ceramic materials are machined by laser ablation. A Q-switched Nd:YAG laser at its fundamental wavelength of 1064 nm with pulsewidths in the nanosecond range has been used. Morphology, depth and volume obtained by means of pulse bursts and grooves have been studied. Working within the same laser conditions, it has been shown that these values depend on the thermal, optical and mechanical features of the material processed. We have also studied the variation in the ablation yield when the position of the surface to be machined is modified. Material properties and work conditions are related to the results obtained. We have described and discussed the morphology, composition, microstructure and hardness of the materials processed.

  7. Two-year clinical performance of a resin-modified glass-ionomer restorative material.

    PubMed

    Brackett, W W; Gilpatrick, R O; Browning, W D; Gregory, P N

    1999-01-01

    This study was a 2-year clinical evaluation of a conventional and a resin-modified glass-ionomer restorative material. Thirty-four restorations each of Ketac-Fil and Photac-Fil were placed without tooth preparation in cervical abrasion/abfraction lesions, primarily in premolar teeth. Patients ranged in age from 30 to 73 years, with a median age of 45 years. Isolation for the restorations was accomplished with cotton rolls. Restorations of both materials were retained at the rate of 93%, and both were comparable in appearance, receiving Alfa ratings for more than 85% of the restorations. One occurrence of secondary caries was observed for each material. No significant difference between the materials was observed for any evaluation category (exact binomial test, P > 0.05).

  8. A continuum thermo-inelastic model for damage and healing in self-healing glass materials

    SciTech Connect

    Xu, Wei; Sun, Xin; Koeppel, Brian J.; Zbib, Hussein M.

    2014-07-08

    Self-healing glass, a recent advancement in the class of smart sealing materials, has attracted great attention from both research and industrial communities because of its unique capability of repairing itself at elevated temperatures. However, further development and optimization of this material rely on a more fundamental and thorough understanding of its essential thermo-mechanical response characteristics, which is also pivotal in predicting the coupling and interactions between the nonlinear stress and temperature dependent damage and healing behaviors. In the current study, a continuum three-dimensional thermo-inelastic damage-healing constitutive framework has been developed for the compliant self-healing glass material. The important feature of the present model is that various phenomena governing the mechanical degradation and recovery process, i.e. the nucleation, growth, and healing of the cracks and pores, are described with distinct mechanism-driven kinetics, where the healing constitutive relations are propagated from lower-length scale simulations. The proposed formulations are implemented into finite element analyses and the effects of various loading conditions and material properties on the material’s mechanical resistance are investigated.

  9. Nucleation and crystallization of Ca doped basaltic glass for the production of a glass-ceramic material

    NASA Astrophysics Data System (ADS)

    Tarrago, Mariona; Royo, Irene; Garcia-Valles, Maite; Martínez, Salvador

    2016-04-01

    Sewage sludge from wastewater treatment plants is a waste with a composition roughly similar to that of a basalt. It may contain potentially toxic elements that can be inertized by vitrification. Using a glass-ceramic process, these elements will be emplaced in newly formed mineral phases. Glass-ceramic production requires an accurate knowledge of the temperatures of nucleation (TN) and crystal growth of the corresponding minerals. This work arises from the study of the addition of ions to a basaltic matrix in order to establish a model of vitrification of sewage sludge. In this case a glass-ceramic is obtained from a glass made with a basalt that has been doped with 16% CaO. Two glasses which underwent different cooling processes have been produced and compared. The first was annealed at 650oC (AG) and the second was quenched (QG). The chemical composition of the glasses is SiO2 36.11 wt%, Al2O312.19 wt%, CaO 24.44 wt%, FeO 10.06 wt%, MgO 9.19 wt%, Na2O 2.28 wt%, TiO2 2.02 wt%, K2O 1.12 wt%, P2O5 0.46 wt%. Glass transition temperature obtained by dilatometry varies from 640 oC (AG) to 700 oC (QG). The temperatures of nucleation and crystal growth of the glass have been determined by Differential Thermal Analysis (DTA). The phases formed after these treatments were identified by X-Ray Diffraction. The temperatures of exothermic and endothermic peaks measured in the quenched glass are, in average, 10 oC higher than those found for the annealed glass. The exothermic peaks provide crystallization temperatures for different phases: a first event at 857 oC corresponds to the growth of magnetite, pyroxene and nepheline, whereas a second event at 1030 oC is due to the crystallization of melilite from the reaction between previous minerals and a remaining amorphous phase. The complete melting of this system occurs at 1201 oC. This glass has been nucleated inside the DTA furnace (500-850° C/3 hours) and then heated up to 1300 oC using the fraction between 400-500μm. TN

  10. The importance of material structure in the laser cutting of glass fiber reinforced plastic composites

    SciTech Connect

    Caprino, G. . Dipt. di Ingegneria dei Materiali e della Produzione); Tagliaferri, V. . Istituto di Ingegneria Meccanica); Covelli, L. )

    1995-01-01

    A previously proposed micromechanical formula, aiming to predict the vaporization energy Q[sub v] of composite materials as a function of fiber and matrix properties and fiber volume ratio, was assessed. The experimental data, obtained on glass fiber reinforced plastic panels with different fiber contents cut by a medium power CO[sub 2] cw laser, were treated according to a procedure previously suggested, in order to evaluate Q[sub v]. An excellent agreement was found between experimental and theoretical Q[sub v] values. Theory was then used to predict the response to laser cutting of a composite material with a fiber content varying along the thickness. The theoretical predictions indicated that, in this case, the interpretation of the experimental results may be misleading, bringing to errors in the evaluation of the material thermal properties, or in the prediction of the kerf depth. Some experimental data were obtained, confirming the theoretical findings.

  11. The influence of the secondary relaxation processes on the structural relaxation in glass-forming materials.

    PubMed

    Khamzin, A A; Popov, I I; Nigmatullin, R R

    2013-06-28

    In the frame of fractional-kinetic approach, the model of the structural α-relaxation in the presence of the secondary β-relaxation processes is suggested. The model is based on the rigorous bond between β-processes with α-process and leads to the generalized and justified expression for the complex dielectric permittivity (CDP). It allows to form a new sight on the problem of the fitting of multi-peak structure of the dielectric loss spectra in glass-forming materials. The consistency of the CDP expressions obtained is based on a good fit of experimental data for binary methanol-water mixtures.

  12. Pulsed laser ablation and deposition of bioactive glass as coating material for biomedical applications

    NASA Astrophysics Data System (ADS)

    D'Alessio, L.; Teghil, R.; Zaccagnino, M.; Zaccardo, I.; Ferro, D.; Marotta, V.

    1999-01-01

    A study of the laser ablation and deposition, on Ti-Al substrates, of a biologically active glass (Bioglass®) suitable for bone implants is reported. The analysis of the gaseous phase by emission spectroscopy and the characterisation of the films from a compositional and morphological point of view have been carried out. The mean chemical composition of the deposits obtained from Bioglass ablation is very close to the target composition and the morphology indicates that different mechanisms of material ejection are present.

  13. Adhesion Between Volcanic Glass and Spacecraft Materials in an Airless Body Environment

    NASA Technical Reports Server (NTRS)

    Berkebile, Stephen; Street, Kenneth W., Jr.; Gaier, James R.

    2012-01-01

    The successful exploration of airless bodies, such as the Earth s moon, many smaller moons of the outer planets (including those of Mars) and asteroids, will depend on the development and implementation of effective dust mitigation strategies. The ultrahigh vacuum environment (UHV) on the surfaces of these bodies, coupled with constant ion and photon bombardment from the Sun and micrometeorite impacts (space weathering), makes dust adhesion to critical spacecraft systems a severe problem. As a result, the performance of thermal control surfaces, photovoltaics and mechanical systems can be seriously degraded even to the point of failure. The severe dust adhesion experienced in these environments is thought to be primarily due to two physical mechanisms, electrostatic attraction and high surface energies, but the dominant of these has yet to be determined. The experiments presented here aim to address which of these two mechanisms is dominant by quantifying the adhesion between common spacecraft materials (polycarbonate, FEP and PTFE Teflon, (DuPont) Ti-6-4) and a synthetic noritic volcanic glass, as a function of surface cleanliness and triboelectric charge transfer in a UHV environment. Adhesion force has been measured between pins of spacecraft materials and a plate of synthetic volcanic glass by determining the pull-off force with a torsion balance. Although no significant adhesion is observed directly as a result of high surface energies, the adhesion due to induced electrostatic charge is observed to increase with spacecraft material cleanliness, in some cases by over a factor of 10, although the increase is dependent on the particular material pair. The knowledge gained by these studies is envisioned to aid the development of new dust mitigation strategies and improve existing strategies by helping to identify and characterize mechanisms of glass to spacecraft adhesion for norite volcanic glass particles. Furthermore, the experience of the Apollo missions

  14. Semiconducting quaternary chalcogenide glasses as new potential thermoelectric materials: an As-Ge-Se-Sb case.

    PubMed

    Dahshan, A; Sharma, Pankaj; Aly, K A

    2015-09-07

    The performance of thermoelectric materials may be improved via complex structures, impurities, disorder etc. Chalcogenide glasses possess such properties. In the present paper, we report the electrical and thermoelectric properties of As14Ge14Se72-xSbx (where x = 3, 6, 9, 12, 15 at%) chalcogenide glasses in the temperature range of 300 K-450 K. The electrical conductivity has been observed to increase from 1.46 × 10(-9) Ω(-1) cm(-1) to 1.80 × 10(-6) Ω(-1) cm(-1) for x = 3 at% to x = 15 at%. The addition of Sb increases the Seebeck coefficient to a large value of 1124 μV K(-1) for x = 15 at% at 333 K. As a result of increased electrical conductivity and Seebeck coefficient for enhanced values of Sb, the power factor (a measure of the performance of the thermoelectric energy converters) has been observed to increase strongly. Results indicate that the investigated chalcogenide glassy compositions may be potential candidates for incurring high action thermoelectric materials.

  15. Thermal Insulation Properties Research of the Composite Material "Water Glass - Graphite Microparticles"

    NASA Astrophysics Data System (ADS)

    Gostev, V. A.; Pitukhin, E. A.; Ustinov, A. S.; Shelestov, A. S.

    2016-04-01

    Research results for the composite material (CM) "water glass - graphite microparticles" with high thermal stability and thermal insulation properties are given. A composition is proposed consisting of graphite (42 % by weight), water glass Na2O(SiO2)n (50% by weight) and the hardener - sodium silicofluoride Na2SiF6 (8% by weight). Processing technology of such composition is suggested. Experimental samples of the CM with filler particles (graphite) of a few microns in size were obtained. This is confirmed by a study of samples using X-ray diffraction analysis and electron microscopy. The qualitative and quantitative phase analysis of the CM structure was done. Values of limit load causing destruction of the CM were identified. The character of the rupture surface was detected. Numerical values of the specific heat and thermal conductivity were defined. Dependence of the specific heat capacity and thermal conductivity on temperature during monotonic heating was obtained experimentally. Studies have confirmed the increased thermal insulation properties of the proposed composition. The CM with such properties can be recommended as a coating designed to reduce heat losses and resistant to high temperatures. Due to accessibility and low cost of its components the proposed material can be produced on an industrial scale.

  16. Densification behavior of ceramic and crystallizable glass materials constrained on a rigid substrate

    NASA Astrophysics Data System (ADS)

    Calata, Jesus N.

    2005-11-01

    Constrained sintering is an important process for many applications. The sintering process almost always involves some form of constraint, both internal and external, such as rigid particles, reinforcing fibers and substrates to which the porous body adheres. The densification behavior of zinc oxide and cordierite-base crystallizable glass constrained on a rigid substrate was studied to add to the understanding of the behavior of various materials undergoing sintering when subjected to external substrate constraint. Porous ZnO films were isothermally sintered at temperatures between 900°C and 1050°C. The results showed that the densification of films constrained on substrates is severely reduced. This was evident in the sintered microstructures where the particles are joined together by narrower necks forming a more open structure, instead of the equiaxed grains with wide grain boundaries observed in the freestanding films. The calculated activation energies of densification were also different. For the density range of 60 to 64%, the constrained film had an activation energy of 391 +/- 34 kJ/mole compared to 242 +/- 21 kJ/mole for the freestanding film, indicating a change in the densification mechanism. In-plane stresses were observed during the sintering of the constrained films. Yielding of the films, in which the stresses dropped slight or remained unchanged, occurred at relative densities below 60% before the stresses climbed linearly with increasing density followed by a gradual relaxation. A substantial amount of the stresses remained after cooling. Free and constrained films of the cordierite-base crystallizable glass (glass-ceramic) were sintered between 900°C and 1000°C. The substrate constraint did not have a significant effect on the densification rate but the constrained films eventually underwent expansion. Calculations of the densification activation energy showed that, on average, it was close to 1077 kJ/mole, the activation energy of the glass

  17. Insights into Silicate and Oxide Melt Structure from Amorphous, Non-Glass-Forming Materials

    NASA Astrophysics Data System (ADS)

    Stebbins, J. F.

    2015-12-01

    Many silicate and oxide liquids of interest in the Earth sciences and in technology cannot readily be quenched to glasses, either because of low silica contents (and hence low viscosity at the melting point and accompanying liquid 'fragility') or because of liquid-liquid unmixing at high temperature. Although in-situ, high temperature structural tools have been in use for decades and are rapidly developing, many methods are still most informative for glass samples quenched to ambient pressure and temperature, e.g. high-resolution solid-state NMR. Amorphous oxides, including alumina and silicate compositions, have widespread technological applications. These are generally deposited by a variety of high-energy sputtering methods, as films of thicknesses of 10's to 100's of nm. Using Al-27, Si-29, and O-17 NMR, we have recently shown that for such films, very similar short-range structure is seen in materials made by very different kinetic pathways, such as sol-gel synthesis vs. ion-beam sputtering. This path-independent structure suggests that these materials pass through transient equilibrium states during their formation, probably that of deeply supercooled liquids just above glass transition temperatures. In the HfO2-SiO2 and ZrO2-SiO2 systems, for example, samples have well-resolved O-17 NMR spectra, allowing quantitation of O sites with only Hf(Zr) neighbors (so-called "free" oxide ions), with mixed Hf(Zr) and Si neighbors, and Si only. The observed oxygen speciation agrees well with a simple thermodynamic model of one of the most fundamental equilibria in silicate systems, namely the reaction of bridging (Si-O-Si) and "free" (e.g. OHf3 and OHf4) oxide ions to produce "non-bridging" oxygens (e.g. Si-OHf2). This new approach to sampling such structural equilibria in compositions far outside the range of normal glass-forming liquids may provide new insights into more geological compositions as well, as well as in more general models of silicate melt chemistry.

  18. Strength of anisotropic wood and synthetic materials. [plywood, laminated wood plastics, glass fiber reinforced plastics, polymeric film, and natural wood

    NASA Technical Reports Server (NTRS)

    Ashkenazi, Y. K.

    1981-01-01

    The possibility of using general formulas for determining the strength of different anisotropic materials is considered, and theoretical formulas are applied and confirmed by results of tests on various nonmetallic materials. Data are cited on the strength of wood, plywood, laminated wood plastics, fiber glass-reinforced plastics and directed polymer films.

  19. Spherical micro-glass particle impingement studies of thermoplastic materials at normal incidence

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Buckley, D. H.

    1983-01-01

    Light optical and scanning electron microscope studies were conducted to characterize the erosion resistance of polymethyl methacrylate (PMMA), polycarbonate (PC), polytetrafluoroethylene (PTFE) and ultra-high-molecular-weight-polyethylene (UHMWPE). Erosion was caused by a jet of spherical micro-glass beads at normal impact. During the initial stages of damage, the surfaces of these materials were studied using a profilometer. Material buildup above the original surface was observed on PC and PMMA. As erosion progressed, this buildup disappeared as the pit became deeper. Little or no buildup was observed on PTFE and on UHMWPE. UHMWPE and PTFE are the most resistant materials and PMMA the least. Favorable properties for high erosion resistance seem to be high values of ultimate elongation, and strain energy and a low value of the modulus of elasticity. Erosion-rate-versus-time curves of PC and PTFE exhibit incubation, acceleration and steady state periods. A continuously increasing erosion rate period was observed however for PMMA instead of a steady state period. At early stages of damage and at low impact pressure material removal mechanisms appear to be similar to those for metallic materials.

  20. Liquid-assisted laser ablation of advanced ceramics and glass-ceramic materials

    NASA Astrophysics Data System (ADS)

    Garcia-Giron, A.; Sola, D.; Peña, J. I.

    2016-02-01

    In this work, results obtained by laser ablation of advanced ceramics and glass-ceramic materials assisted by liquids are reported. A Q-switched Nd:YAG laser at its fundamental wavelength of 1064 nm with pulse-width in the nanosecond range was used to machine the materials, which were immersed in water and ethylene glycol. Variation in geometrical parameters, morphology, and ablation yields were studied by using the same laser working conditions. It was observed that machined depth and removed volume depended on the thermal, optical, and mechanical features of the processed materials as well as on the properties of the surrounding medium in which the laser processing was carried out. Variation in ablation yields was studied in function of the liquid used to assist the laser process and related to refractive index and viscosity. Material features and working conditions were also related to the obtained results in order to correlate ablation parameters with respect to the hardness of the processed materials.

  1. Applications of Non-Crystalline Materials — A. APPLICATIONS OF GLASSES, AMORPHOUS AND DISORDERED MATERIALS

    NASA Astrophysics Data System (ADS)

    Ovshinsky, Stanford R.

    The following sections are included: * Introduction * Information Technology * History * Phase change erasable optical memory * Basic physical process * Materials * Direct-overwrite recording * Device configurations * Structural analysis * Thermal stability * Phase transformation kinetics induced by a laser diode * Media performance * Manufacturing * Commercial applications * The Ovonic threshold switch * The Ovonic electronic phase change memory * Data storage mechanism * Basic device operation * Commercial applications of Ovonic unified semiconductor memories * Amorphous silicon alloy diode and TFT AMLCD display addressing * Long-life amorphous silicon alloy copier drums * Energy Generation and Storage * Amorphous silicon alloy thin-film photovoltaics * Introduction * Using science and technology to break the cost barrier * Multi-phase disordered hydrogen storage materials * Ovonic nickel metal-hydride batteries * NiMH cell chemistry * Metal hydride alloy development * Positive electrode development * Hydrogen storage for fuel cell applications * Fuel cells * The fuel * Conclusion * Acknowledgments * References

  2. Characterization of a wollastonite glass-ceramic material prepared using sugar cane bagasse ash (SCBA) as one of the raw materials

    SciTech Connect

    Teixeira, Silvio R.; Souza, Agda E.; Carvalho, Claudio L.; Reynoso, Victor C.S.; Romero, Maximina; Rincón, Jesús Ma.

    2014-12-15

    Glass-ceramic material prepared with sugar cane bagasse ash as one of the raw materials was characterized to determine some important properties for its application as a coating material. X-ray diffraction patterns showed that wollastonite-2M (CaSiO{sub 3}) was the major glass-ceramic phase. The Rietveld method was used to quantify the crystalline (60 wt.%) and vitreous (40 wt.%) phases in the glass-ceramic. The microstructure (determined by scanning electron microscopy) of this material had a marble appearance, showing a microporous network of elongated crystals with some areas with dendritic, feather-like ordering. Microhardness data gave a mean hardness value of 564.4 HV (Vickers-hardness), and light microscopy disclosed a greenish brown colored material with a vitreous luster. - Highlights: • We studied the properties of a glass-ceramic material obtained from sugarcane ash. • This material has the appearance and hardness of natural stones. • A refining method gave information about its amorphous and crystalline phases. • This material has potential to be used as coating plates for buildings.

  3. Novel Application of Glass Fibers Recovered From Waste Printed Circuit Boards as Sound and Thermal Insulation Material

    NASA Astrophysics Data System (ADS)

    Sun, Zhixing; Shen, Zhigang; Ma, Shulin; Zhang, Xiaojing

    2013-10-01

    The aim of this study is to investigate the feasibility of using glass fibers, a recycled material from waste printed circuit boards (WPCB), as sound absorption and thermal insulation material. Glass fibers were obtained through a fluidized-bed recycling process. Acoustic properties of the recovered glass fibers (RGF) were measured and compared with some commercial sound absorbing materials, such as expanded perlite (EP), expanded vermiculite (EV), and commercial glass fiber. Results show that RGF have good sound absorption ability over the whole tested frequency range (100-6400 Hz). The average sound absorption coefficient of RGF is 0.86, which is prior to those of EP (0.81) and EV (0.73). Noise reduction coefficient analysis indicates that the absorption ability of RGF can meet the requirement of II rating for sound absorbing material according to national standard. The thermal insulation results show that RGF has a fair low thermal conductivity (0.046 W/m K), which is comparable to those of some insulation materials (i.e., EV, EP, and rock wool). Besides, an empirical dependence of thermal conductivity on material temperature was determined for RGF. All the results showed that the reuse of RGF for sound and thermal insulation material provided a promising way for recycling WPCB and obtaining high beneficial products.

  4. Repairability of three resin-modified glass-ionomer restorative materials.

    PubMed

    Shaffer, R A; Charlton, D G; Hermesch, C B

    1998-01-01

    The purpose of this study was to evaluate the repair shear bond strengths of three resin-modified glass-ionomer restorative materials repaired at two different times. Thirty specimens of Fuji II LC, Vitremer, and Photac-Fil were prepared in cavities (2 mm x 7 mm) cut into acrylic resin cylinders. After the initial fill, half of the specimens were repaired 5 minutes later and half 1 week later. The specimens were stored in 37 degrees C distilled water when not being repaired or tested. Repairs were made without any surface preparation of the initial fill. Each specimen was mixed according to the manufacturer's directions, placed in the preparation in 1-mm increments and photocured for 40 seconds. The last increment was covered with a plastic strip and a glass slide before curing to create a smooth surface. Repairs were accomplished by drying the specimen for 10 seconds, then adding the new material to the unprepared surface using a 3-mm-thick polytetrafluoroethylene mold. The specimens were thermocycled 500 times, stored in 37 degrees C distilled water for 1 week, then loaded to failure in shear at a rate of 0.5 mm/min. Data were analyzed using a one-way ANOVA and Z-value multiple comparison test to determine significant differences at the 0.05 significance level. Vitremer showed no significant difference in shear bond strength for 5-minute and 1-week repair periods, while Fuji II LC and Photac-Fil did. Repair bond strength of Vitremer was significantly greater than Fuji II LC and Photac-Fil at both repair times. This study showed that time of repair significantly affected the bond strength of two of the materials tested.

  5. Study on the highly transmitted Ag-In2O3/glass nanocomposite material: fabrication, microstructure and nonlinear absorption effects

    NASA Astrophysics Data System (ADS)

    Han, Liyuan; Yin, Dewu; Xu, Qin; Yang, Xinyu; Gao, Xiaoli; Lu, Xue; Liu, Haitao

    2016-11-01

    We fabricated a highly transmitted Ag-In2O3/glass nanocomposite material through a sol-gel method plus a controlled gas. Microstructural analysis revealed that the Ag and In elements in the Ag-In2O3 nanostructure exist in two forms: crystalline Ag nanoparticles and non-crystalline In2O3. And the crystalline Ag nanoparticles show the small size, uniform distribution and good dispersion in the glass host, thus triggering the surface plasmon resonance (SPR) effect and the quantum confinement effect. Remarkably, the Ag-In2O3/glass nanocomposite material exhibits the high transmittance greater than 70% in almost the whole visible spectral range. Open-aperture Z-scan technique further showed a typical two-photon absorption effect in the Ag-In2O3/glass nanocomposite material, where the nonlinear absorption coefficient was determined to be ~1.1  ×  10-9 cm W-1, and interestingly, the normalized transmittance decreased with increasing input fluence. The present results blaze a new path to develop the metal/glass nanocomposite materials with high transmittance, significant nonlinear absorption effects and potential optical limiting behavior. In addition, the mechanism on the nonlinear absorption effects were also discussed in this paper, such as the SPR effect, the quantum confinement effect, the thermal effects, the nonlinear scattering effect and the resonant nonlinear effect.

  6. Crystallization kinetics of magnetic glass-ceramics prepared by the processing of waste materials

    SciTech Connect

    Francis, A.A. . E-mail: adel_francis@hotmail.com

    2006-06-15

    The objective of the present investigation was to study the feasibility of conversion of an intimate mixture of blast furnace slag and blast furnace flue dust generated by a single industrial company into magnetic glass-ceramic product. Blast furnace slag (BFS) and blast furnace flue dust (BFD) are generated at a rate of 300,000 and 30,000 tons/year, respectively, from iron and steel factory. The crystallization mechanisms of a composition containing BFS and BFD in a 50/50 proportion were investigated by differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The crystallization temperature was found to vary from 900 to 1100 deg. C and two phases appeared in the crystallized samples: pyroxene Ca(Mg, Fe, Al)(Si, Al){sub 2}O{sub 6} and magnetite/maghemite. Heating rate and particle sizes effects on crystal growth of powdered samples were studied by DTA. The apparent activation energy of crystal growth using the particle size 180-315 {mu}m was determined to be 355 and 329 kJ/mol for the first and second peak, respectively. The presence of sharp and broad crystallization peaks indicate simultaneous surface and internal crystallization mechanism. Good wear resistance and chemical durability particularly in alkaline environment, combine with good hardness and magnetic properties make this glass-ceramic material potentially useful for various industrial applications.

  7. Glass Artworks

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Several NASA technologies have played part in growth and cost containment of studio glass art, among them a foam type insulation developed to meet a need for lightweight material that would reduce flame spread in aircraft fire. Foam comes in several forms and is widely used by glass artists, chiefly as an insulator for the various types of ovens used in glass working. Another Spinoff is alumina crucibles to contain molten glass. Before alumina crucibles were used, glass tanks were made of firebrick which tended to erode under high temperatures and cause impurities; this not only improved quality but made the process more cost effective. One more NASA technology that found its way into glass art working is a material known as graphite board, a special form of graphite originally developed for rocket motor applications. This graphite is used to exact compound angles and creates molds for poured glass artworks of dramatic design.

  8. PREFACE: Fourh Workshop on Non-Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials

    NASA Astrophysics Data System (ADS)

    Andreozzi, Laura; Giordano, Marco; Leporini, Dino; Tosi, Mario

    2007-04-01

    This special issue of Journal of Physics: Condensed Matter presents the Proceedings of the Fourh Workshop on Non-Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials, held in Pisa from 17-22 September 2006. This was the fourth of a series of workshops on this theme started in 1995 as a joint initiative of the Università di Pisa and the Scuola Normale Superiore. The 2006 edition was attended by about 200 participants from Europe, Asia and the Americas. As for the earlier workshops, the main objective was to bring together scientists from different areas of science, technology and engineering, to comparatively discuss experimental facts and theoretical predictions on the dynamical processes that occur in supercooled fluids and other disordered materials in non-equilibrium states. The underlying conceptual unity of the field provides a common background for the scientific community working in its various areas. In this edition the number of sessions was increased to cover a wider range of topics of general and current interest, in a larger number of stimulating lectures. The core of the workshop was a set of general lectures followed by more specific presentations on current issues in the main areas of the field. The sessions were in sequence devoted to: non-equilibrium dynamics, aging and secondary relaxations, biomaterials, polyamorphism and water, polymer dynamics I, complex systems, pressure-temperature scaling, thin films, nanometre length-scale studies, folded states of proteins and polymer crystals, theoretical aspects and energy landscape approaches, relaxation and heterogeneous dynamics, rheology in fluids and entangled polymers, biopolymers, and polymer dynamics II. We thank the session chairmen and all speakers for the high quality of their contributions. The structure of this issue of the proceedings follows the sequence of the oral presentations in the workshop, complemented by some papers selected from the poster sessions. Two

  9. Transient radiation effects in D.O.I. optical materials: Schott filter glass

    SciTech Connect

    Simmons-Potter, K.

    1998-07-01

    Department of Energy and Defense Programs systems are becoming increasingly reliant on the use of optical technologies that must perform under a range of ionizing radiation environments. In particular, the radiation response of materials under consideration for applications in direct optical initiation (D.O.I.) schemes must be well characterized. In this report, transient radiation effects observed in Schott filter glass S-7010 are characterized. Under gamma exposure with 2 MeV photons in a 20--30 nsec pulse, the authors observe strong initial induced fluorescence in the red region of the spectrum followed by significant induced absorption over the same spectral region. Peak induced absorption coefficients of 0.113 cm{sup {minus}1} and 0.088 cm{sup {minus}1} were calculated at 800 nm and 660 nm respectively.

  10. Restoration of endodontically treated anterior teeth: an evaluation of coronal microleakage of glass ionomer and composite resin materials.

    PubMed

    Diaz-Arnold, A M; Wilcox, L R

    1990-12-01

    A glass ionomer material was evaluated for coronal microleakage in permanent lingual access restorations of endodontically treated anterior teeth. The material was tested as a restoration, placed over a zinc oxide-eugenol base, and as a base with an acid-etched composite resin veneer and a dentinal bonding agent. Restored teeth were thermocycled, immersed in silver nitrate, developed, and sectioned to assess microleakage. Significant coronal leakage was observed with all materials used.

  11. An Improved Mechanical Material Model for Ballistic Soda-Lime Glass

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Pandurangan, B.; Bell, W. C.; Coutris, N.; Cheeseman, B. A.; Fountzoulas, C.; Patel, P.; Templeton, D. W.; Bishnoi, K. D.

    2009-11-01

    In our recent work (Grujicic et al., Int. J. Impact Eng., 2008), various open-literature experimental findings pertaining to the ballistic behavior of soda-lime glass were used to construct a simple, physically based, high strain rate, high-pressure, large-strain mechanical model for this material. The model was structured in such a way that it is suitable for direct incorporation into standard commercial transient non-linear dynamics finite element-based software packages like ANSYS/Autodyn (Century Dynamics Inc., 2007) or ABAQUS/Explicit (Dessault Systems, 2007). To validate the material model, a set of finite element analyses of the edge-on-impact tests was conducted and the results compared with their experimental counterparts obtained in the recent work of Strassburger et al. ( Proceedings of the 23rd International Symposium on Ballistics, Spain, April 2007; Proceedings of the 22nd International Symposium on Ballistics, November 2005, Vancouver, Canada). In general, a good agreement was found between the computational and the experimental results relative to: (a) the front shapes and the propagation velocities of the longitudinal and transverse waves generated in the target during impact and (b) the front shapes and propagation velocities of a coherent-damage zone (a zone surrounding the projectile/target contact surface which contains numerous micron and submicron-size cracks). However, substantial computational analysis/experiment disagreements were found relative to the formation of crack centers, i.e. relative to the presence and distribution of isolated millimeter-size cracks nucleated ahead of the advancing coherent-damage zone front. In the present work, it was shown that these disagreements can be substantially reduced if the glass model (Grujicic et al., Int. J. Impact Eng., 2008) is advanced to include a simple macrocracking algorithm based on the linear elastic fracture mechanics.

  12. Retrospective Analysis of NIST Standard Reference Material 1450, Fibrous Glass Board, for Thermal Insulation Measurements.

    PubMed

    Zarr, Robert R; Heckert, N Alan; Leigh, Stefan D

    2014-01-01

    Thermal conductivity data acquired previously for the establishment of Standard Reference Material (SRM) 1450, Fibrous Glass Board, as well as subsequent renewals 1450a, 1450b, 1450c, and 1450d, are re-analyzed collectively and as individual data sets. Additional data sets for proto-1450 material lots are also included in the analysis. The data cover 36 years of activity by the National Institute of Standards and Technology (NIST) in developing and providing thermal insulation SRMs, specifically high-density molded fibrous-glass board, to the public. Collectively, the data sets cover two nominal thicknesses of 13 mm and 25 mm, bulk densities from 60 kg·m(-3) to 180 kg·m(-3), and mean temperatures from 100 K to 340 K. The analysis repetitively fits six models to the individual data sets. The most general form of the nested set of multilinear models used is given in the following equation: [Formula: see text]where λ(ρ,T) is the predicted thermal conductivity (W·m(-1)·K(-1)), ρ is the bulk density (kg·m(-3)), T is the mean temperature (K) and ai (for i = 1, 2, … 6) are the regression coefficients. The least squares fit results for each model across all data sets are analyzed using both graphical and analytic techniques. The prevailing generic model for the majority of data sets is the bilinear model in ρ and T. [Formula: see text] One data set supports the inclusion of a cubic temperature term and two data sets with low-temperature data support the inclusion of an exponential term in T to improve the model predictions. Physical interpretations of the model function terms are described. Recommendations for future renewals of SRM 1450 are provided. An Addendum provides historical background on the origin of this SRM and the influence of the SRM on external measurement programs.

  13. Molecular glass positive i-line photoresist materials containing 2,1,4-DNQ and acid labile group

    NASA Astrophysics Data System (ADS)

    Wang, Liyuan; Yu, Jinxing; Xu, Na

    2010-04-01

    Recent years increasing attention has been given to molecular glass resist materials. In this paper, maleopimaric acid, cycloaddition reaction product of rosin with maleic anhydride, was reacted with hydroxylamine and then further esterified with 2-diazo-1-naphthoquinone-4-sulfonyl chloride to give N-hydroxy maleopimarimide sulfonate. The carboxylic acid group of the compound was then protected by the reaction of this compound with vinyl ethyl ether or dihydropyran. Thus obtained compounds were amorphous. When irradiated with i-line light, the 2,1,4-DNQ group undergo photolysis not only to give off nitrogen gas but also generate sulfonic acid which can result in the decomposition of the acid labile group. So, a novel chemically amplified positive i-line molecular glass photoresists can be formed by the compound and other acidolytic molecular glass compounds. The lithographic performance of the resist materials is evaluated.

  14. Technical evaluation panel summary report. Ceramic and glass immobilization options fissile materials disposition program

    SciTech Connect

    Myers, B. R.; Brummond, W.; Armantrout, G.; Shaw, H.; Jantzen, C. M.; Jostons, A.; McKibben, M.; Strachan, D.; Vienna, J. D.

    1997-12-23

    This report documents the results of a technical evaluation of the merits of ceramic and glass immobilization forms for the disposition of surplus weapons-useable plutonium. The evaluation was conducted by a Technical Evaluation Panel (TEP), whose members were selected to cover a relevant range of scientific and technical expertise and represented each of the technical organizations involved in the Plutonium Immobilization Program. The TEP held a formal review at Lawrence Liver-more National Laboratory (LLNL) from July 2%August 1, 1997. Following this review, the TEP documented the review and its evaluation of the two immobilization technologies in this report to provide a technical basis for a recommendation by LLNL to the Department of Energy (DOE) for the preferred immobilization form. The comparison of the glass and ceramic forms and manufacturing processes was a tremendous challenge to the TEP. The two forms and their processes are similar in many ways. The TEP went to great effort to accurately assess what were, in many cases, fine details of the processes, unit operations, and the glass and ceramic forms themselves. The set of criteria used by the Fissile Materials Disposition Program (FMDP) in past screenings and down-selections was used to measure-the two options. One exception is that the TEP did not consider criteria that were largely nontechnical (namely international impact, public acceptance, and effects on other : DOE programs). The TEP' s measures and assessments are documented in detail. Care was taken to ensure that the data used were well documented and traceable to their source. Although no final conclusion regarding the preferred form was reached or explicitly stated in this report (this was not within the TEP' s charter), no "show stoppers" were identified for either form. Both forms appear capable of satisfying all the criteria, as interpreted by the TEP. The TEP identified a number of distinct and quantifiable differences between the forms

  15. Effect of the Dosage of Tourmaline on Far Infrared Emission Properties of Tourmaline/Glass Composite Materials.

    PubMed

    Zhang, Hongchen; Meng, Junping; Liang, Jinsheng; Liu, Jie; Zeng, Zhaoyang

    2016-04-01

    Tourmaline/glass composite materials were prepared by sintering at 600 °C using micron-size tourmaline mineral and glass powders as raw materials. The glass has lower melting point than the transition temperature of tourmaline. The Fourier transform infrared spectroscopy showed that the far infrared emissivity of composite was significantly higher than that of either tourmaline or glass powders. A highest far infrared emissivity of 0.925 was obtained when the dosage of tourmaline was 10 wt%. The effects of the amount of tourmaline on the far infrared emission properties of composite was also systematically studied by field emission scanning electron microscope and X-ray diffraction. The tourmaline phase was observed in the composite, showing a particle size of about 70 nm. This meant that the tourmaline particles showed nanocrystallization. They distributed homogenous in the glass matrix when the dosage of tourmaline was not more than 20 wt%. Two reasons were attributed to the improved far infrared emission properties of composite: the particle size of tourmaline-doped was nanocrystallized and the oxidation of Fe2+ (0.076 nm in radius) to Fe3+ (0.064 nm in radius) took place inside the tourmaline-doped. This resulted in the shrinkage of unit cell of the tourmaline in the composite.

  16. Development of a Fire-Resistant Anti-Sweat Submarine Hull Insulation Based on Fiber Glass Materials.

    DTIC Science & Technology

    1983-09-01

    CHART NATIONAL BUREAU OF STANDARDS-1963-A6w " ;’’ ..J’ d’ ,.,, -,,,.. ,.- -,. . 11111, , .. b,, I - - -.. .,. , .. . ..°.. III. . . ,Lm’ Johns ... Manville Research & Development Center DEVELOPMENT OF A FIRE-RESISTANT ANTI-SWEAT SUBMARINE HULL INSULATION BASED ON FIBER *" GLASS MATERIALS Oct icrb iz Ic

  17. Fatique testing of OTEC (ocean thermal energy conversion) cold water pipe glass-reinforced plastic materials. Technical report

    SciTech Connect

    Sirian, C.R.; Conn, A.F.

    1983-09-01

    Specimens of a GFRP (glass fiber reinforced plastic) composite laminate - a candidate material for use in an OTEC cold water pipe (CWP) - were subjected to cyclic bending while immersed in a synthetic sea water solution. The loss of stiffness, i.e., decrease in bending modulus, for this GFRP was determined as a function of cycles of loading.

  18. Gel Precursors as Glass and Ceramic Starting Materials for Space Processing Applications Research

    NASA Technical Reports Server (NTRS)

    Downs, R. L.; Miller, W. J.

    1985-01-01

    The crystallization kinetics and glass forming ability of reluctant glass formers is investigated. This could ultimately aid the formation of bulk samples of unique glass compositions outside of normal glass forming regions allowing the optimization of certain properties of the glass. One important aspect of processing in space is the containerless undercooling of molten substances. Theoretically, the extent of undercooling can be greatly enhanced by solidifying in the absence of heterogeneous nucleation resulting from contact with crucibles or molds. Techniques were established for the measurement of crystallization kinetics and critical cooling rates. The glass formation ability and crystallization kinetics of Ga2O-43CaO and several Al2O3-CaO compositions were measured. An apparatus was set up to measure the temperature of spherical samples on a thermocouple at large cooling rates. The time and temperature of nucleation is recorded and the probability of nucleation at various cooling rates can be measured.

  19. Factors Influencing Material Removal And Surface Finish Of The Polishing Of Silica Glasses

    DTIC Science & Technology

    2006-01-01

    Mechanical Properties of Quartz and Zerodur ® ..................................... 48 TABLE 4.2: Results from variable load and lap velocity experiments...of glass and glass-ceramic substrates which are used in a vast amount of applications, from optics for lithographic machines to mirrors and lenses...SiO2) glass polishing with metal oxide abrasive particles. This scheme will mirror the experimentation in this thesis, and hopefully provide a better

  20. Optical lead flint glasses: key material in optics since centuries and in future

    NASA Astrophysics Data System (ADS)

    Hartmann, Peter

    2015-09-01

    About 350 years ago a new kind of glass types was invented for decorative purposes such as drinking glasses, bowls and vases. It needed more than 70 years until the capability of these lead flint glasses was discovered to improve the performance of optical systems markedly. Color correction enabled images with resolution more than ten times better than earlier systems opening the view of researchers for new fields in the micro and macro world. Within the next 150 years the progress in optical glass production concentrated on improving quality especially homogeneity, characterization of its properties and achieving larger lenses. The introduction of glass types with considerably different compositions in the 1880s led to complementation of the glass program but not to a replacement of the lead flint glasses. Their outstanding optical properties together with their favorable melting behavior kept them being workhorses in optical systems design. One of the outstanding properties of lead flint glasses is their capability of being cast in large volumes. The size development reached a summit by the end of the 19th century with the lenses of the largest refracting telescopes. Their use as radiation shielding glasses since the second half of the 20th century led to even bigger castings of up to two tons of weight. In the 1990s the other outstanding property made lead flint glass types playing an important role in microlithography. Transmissive optics working with the mercury i-line needs crown and flint glass for dispersion correction of the comparatively broad i-line. The flint glasses had to have utmost transmission in the near UV to reduce thermal lensing as far as possible. This combination of requirements on dispersion and transmission could be fulfilled only by using lead flint glasses. It remains valid in fluorescence microscopy. Here the trend goes to an ever broader spectral range extending from the IR into the UV allowing diffraction limited resolution for many

  1. The role of the ionomer glass component in polyacid-modified composite resin dental restorative materials.

    PubMed

    Adusei, Gabriel O; Deb, Sanjukta; Nicholson, John W

    2004-07-01

    In order to model the processes that occur within polyacid-modified composite resin ("compomer") dental restoratives, a series of experiments has been carried out with silanated and silane-free ionomer glass G338, and silanated and silane-free unreactive glass (Raysorb T-4000). In an acid-base reaction with dental grade aqueous maleic acid-acrylic acid copolymer solution, the setting time of the silanted G338 was found to be 9 min, compared with 5 min for the silane-free glass. Inclusion of each glass in an experimental composite resin system showed that the formulations which contained G338 absorbed more water than the formulations which contained Raysorb T-4000, regardless of whether or not the glass was silanted. Biaxial flexure strength was superior for experimental composites containing Raysorb T-4000, with highest results being obtained with the silanated glass. Overall these results demonstrate that silanation of the filler is essential for optimal physical properties but that, for the ionomer glass, it inhibits the acid-base reaction. The presence of ionomer glass led to an increase in water uptake compared with the unreactive glass, regardless of the presence of silane.

  2. Use of a synthetic low-fusing quartz glass-ceramic material for the fabrication of metal-ceramic restorations.

    PubMed

    Chu, S J

    2001-01-01

    The development of natural aesthetics has been facilitated by various innovative ceramic materials and techniques. Although metal-ceramic restorations have traditionally been the standard for durable and predictable restorations, the use of metal core materials may result in dense, opaque restorations. The incorporation of low-fusing porcelain materials has enabled the provision of translucent restorations that enable sufficient light transmission and strength. This article presents two comparative case reports that demonstrate the clinical application of a synthetic low-fusing quartz glass-ceramic material for the fabrication of aesthetic and functional metal-ceramic restorations.

  3. Retrospective Analysis of NIST Standard Reference Material 1450, Fibrous Glass Board, for Thermal Insulation Measurements

    PubMed Central

    Zarr, Robert R; Heckert, N Alan; Leigh, Stefan D

    2014-01-01

    Thermal conductivity data acquired previously for the establishment of Standard Reference Material (SRM) 1450, Fibrous Glass Board, as well as subsequent renewals 1450a, 1450b, 1450c, and 1450d, are re-analyzed collectively and as individual data sets. Additional data sets for proto-1450 material lots are also included in the analysis. The data cover 36 years of activity by the National Institute of Standards and Technology (NIST) in developing and providing thermal insulation SRMs, specifically high-density molded fibrous-glass board, to the public. Collectively, the data sets cover two nominal thicknesses of 13 mm and 25 mm, bulk densities from 60 kg·m−3 to 180 kg·m−3, and mean temperatures from 100 K to 340 K. The analysis repetitively fits six models to the individual data sets. The most general form of the nested set of multilinear models used is given in the following equation: λ(ρ,T)=a0+a1ρ+a2T+a3T3+a4e−(T−a5a6)2where λ(ρ,T) is the predicted thermal conductivity (W·m−1·K−1), ρ is the bulk density (kg·m−3), T is the mean temperature (K) and ai (for i = 1, 2, … 6) are the regression coefficients. The least squares fit results for each model across all data sets are analyzed using both graphical and analytic techniques. The prevailing generic model for the majority of data sets is the bilinear model in ρ and T. λ(ρ,T)=a0+a1ρ+a2T One data set supports the inclusion of a cubic temperature term and two data sets with low-temperature data support the inclusion of an exponential term in T to improve the model predictions. Physical interpretations of the model function terms are described. Recommendations for future renewals of SRM 1450 are provided. An Addendum provides historical background on the origin of this SRM and the influence of the SRM on external measurement programs. PMID:26601034

  4. Quantitative relations between cooperative motion, emergent elasticity, and free volume in model glass-forming polymer materials

    PubMed Central

    Pazmiño Betancourt, Beatriz A.; Hanakata, Paul Z.; Starr, Francis W.; Douglas, Jack F.

    2015-01-01

    The study of glass formation is largely framed by semiempirical models that emphasize the importance of progressively growing cooperative motion accompanying the drop in fluid configurational entropy, emergent elasticity, or the vanishing of accessible free volume available for molecular motion in cooled liquids. We investigate the extent to which these descriptions are related through computations on a model coarse-grained polymer melt, with and without nanoparticle additives, and for supported polymer films with smooth or rough surfaces, allowing for substantial variation of the glass transition temperature and the fragility of glass formation. We find quantitative relations between emergent elasticity, the average local volume accessible for particle motion, and the growth of collective motion in cooled liquids. Surprisingly, we find that each of these models of glass formation can equally well describe the relaxation data for all of the systems that we simulate. In this way, we uncover some unity in our understanding of glass-forming materials from perspectives formerly considered as distinct. PMID:25713371

  5. Development of a 100-gm-class inspector satellite using photostructurable glass/ceramic materials

    NASA Astrophysics Data System (ADS)

    Huang, Adam; Hansen, William W.; Janson, Siegfried W.; Helvajian, Henry

    2002-06-01

    A pulsed UV laser volumetric direct-write patterning technique has been used to fabricate the structural members and key fluidic distribution systems of a miniature 100 gm mass spacecraft called the Co-Orbital Satellite Assistant (COSA). A photostructurable glass ceramic material enables this photo-fabrication process. The COSA is a miniature space vehicle designed to assist its host ship by serving as a maneuverable external viewing platform. Using orbital dynamics simulation software, a minimum (Delta) V solution has been found that allows a COSA vehicle to eject from the host and maneuver into an observation orbit about the host vehicle. The result of the simulant show that a cold gas propulsion system can adequately support the mission given a total fuel volume of 5 cm3. A prototype COSA with dimensions of 50 X 50 X 50 mm has been fabricated and assembled for simulation experiments on an air table. The vehicle is fashioned out of 7 laser patterned wafers, electronics boards and a battery. The patterned wafers include an integrated 2-axis propulsion system, a fuel tank and a propellant distribution system. The electronics portion of the COSA vehicle includes a wireless communication system, 2 microcontrollers for system, 2 microcontrollers for system control and MEMS gyros for relative attitude determination. The COSA vehicle is designed to be mass producible and scalable.

  6. Material characterization of the MSWI bottom ash as a function of particle size. Effects of glass recycling over time.

    PubMed

    Del Valle-Zermeño, R; Gómez-Manrique, J; Giro-Paloma, J; Formosa, J; Chimenos, J M

    2017-03-01

    Differences during the last 15years in materials' composition in Municipal Solid Waste Incineration (MSWI) regarding bottom ash (BA) were assessed as a function of particle size (>16, 8-16, 4-8, 2-4, 1-2 and 0-1mm). After sieving, fractions >2mm were carefully washed in order to separate fine particles adhering to bigger particles. The characterization took into account five types of materials: glass (primary and secondary), ceramics (natural and synthetic), non-ferrous metals, ferrous metals and unburned organic matter. The evaluation was performed through a visual (>2mm) and chemical (0-2mm) classification. Results showed that total weight of glass in the particles over 16mm has decreased with respect to 1999. Moreover, the content of glass (primary and secondary) in BA was estimated to be 60.8wt%, with 26.4wt% corresponding to primary glass in >2mm size fractions. Unlike 1999, in which glass was the predominant material, ceramics are currently the major phase in bottom ash (BA) coarse fractions. As for the metals, respect to 1999, results showed a slight increase in all size fractions. The greatest content (>22wt%) of ferromagnetic was observed for the 2-4mm size fraction while the non-ferrous type was almost non-existent in particles over 16mm, remaining below 10wt% for the rest fractions. In the finest fractions (<2mm), about 60 to 95% of non-ferrous metals corresponded to metallic aluminium. The results from the chemical characterization also indicated that the finest fractions contributed significantly to the total heavy metals content, especially for Pb, Zn, Cu, Mn and Ti.

  7. Cordierite glass-ceramics as glaze materials for refractory forming tools

    NASA Astrophysics Data System (ADS)

    Miller, Frank Scott

    1999-11-01

    Glasses of the composition 2MgO·2Al2O 3·5SiO2 were successfully nucleated with additions of up to 8 mol% TiO2 to form fully crystalline glass-ceramic bodies. The predominant crystalline phase is a hexagonal stuffed quartz structure when the glasses are heated to temperatures near 950°C. This phase transforms to the hexagonal indialite phase at higher temperatures. The nucleating effect of the TiO2 addition results in a fine grained glass-ceramic. Both the glass transition temperature (Tg) and the melting temperature (Tm) decreased with a linear dependence on the amount of TiO 2 added to the glass. Glass of the composition 2MgO·2Al 2O3·5SiO2 + 8 mol% TiO2 was ground and air plasma sprayed onto low thermal expansion castable refractory concretes as a glaze. This glaze remained intact on the refractory concretes during crystallization. This behavior was observed during and after limited thermal cycling of the glazed refractory concretes, and also after high temperature heat treatment of the glazed refractory concretes.

  8. A simulation approach to material removal in microwave drilling of soda lime glass at 2.45 GHz

    NASA Astrophysics Data System (ADS)

    Lautre, Nitin Kumar; Sharma, Apurbba Kumar; Pradeep, Kumar; Das, Shantanu

    2015-09-01

    Material removal during microwave drilling is basically due to thermal ablation of the material in the vicinity of the drilling tool. The microtip of the tool, also termed as concentrator, absorbs microwaves and ionizes the dielectric in its proximity creating a zone of plasma. The plasma takes the shape of a sphere owing to the atmospheric sphere, which acts as the source of thermal energy to be used for processing a material. This mechanism of heating, also called localized microwave heating, was used in the present study to drill holes in 1.2-mm-thick soda lime glass. The mechanism of material removal had been analyzed through simulation of the hot spot region, and the results were attempted to explain through experiment observations. It was realized that the glass being a poor conductor of heat, a low power (90 W in this case) yields better drilling results owing to more localized heat corresponding to a low-volume plasma sphere. The low application time prevents further heat transfer, and a localized concentration of heat becomes possible that primarily causes the material ablation. The plasma sphere appears sustain while the tool moves through the bulk of the glass thickness although its volume gets further shrunk. The process needs careful selection of the parameters. The simulation results show relatively low temperature in the top half (opposite to the tool tip) of the plasma sphere which eventually causes the semimolten viscous glass to collapse into the drill cavity as the tool advances into the bulk and stops the movement of the tool. The continued plasma sphere raises the tip temperature, which makes the tip to melt and gets blunt. The plasma formation ceases owing to larger diameter of the tool, and the tool gets stuck which could be verified through experimental results.

  9. Tempered glass

    SciTech Connect

    Bunnell, L.R.

    1991-11-01

    This document describes a demonstration for making tempered glass using minimal equipment. The demonstration is intended for a typical student of materials science, at the high school level or above. (JL)

  10. Iodine confinement into metal-organic frameworks (MOFs)-low temperature sintering glasses to form novel glass composite material (GCM) alternative waste forms.

    SciTech Connect

    Nenoff, Tina Maria; Garino, Terry J.; Sava, Dorina Florentina

    2010-11-01

    The safe handling of reprocessed fuel addresses several scientific goals, especially when considering the capture and long-term storage of volatile radionuclides that are necessary during this process. Despite not being a major component of the off-gas, radioiodine (I{sub 2}) is particularly challenging, because it is a highly mobile gas and {sup 129}I is a long-lived radionuclide (1.57 x 10{sup 7} years). Therefore, its capture and sequestration is of great interest on a societal level. Herein, we explore novel routes toward the effective capture and storage of iodine. In particular, we report on the novel use of a new class of porous solid-state functional materials (metal-organic frameworks, MOFs), as high-capacity adsorbents of molecular iodine. We further describe the formation of novel glass-composite material (GCM) waste forms from the mixing and sintering of the I{sub 2}-containing MOFs with Bi-Zn-O low-temperature sintering glasses and silver metal flakes. Our findings indicate that, upon sintering, a uniform monolith is formed, with no evidence of iodine loss; iodine is sequestered during the heating process by the in situ formation of AgI. Detailed materials characterization analysis is presented for the GCMs. This includes powder X-ray diffraction, scanning electron microscopy coupled with energy-dispersive spectroscopy (SEM-EDS), thermal analysis (thermogravimetric analysis (TGA)), and chemical durability tests including aqueous leach studies (product consistency test (PCT)), with X-ray fluorescence (XRF) and inductively coupled plasma-mass spectrometry (ICP-MS) of the PCT leachate.

  11. Biocompatibility of glass-crystalline materials obtained by the sol-gel method: effect on macrophage function.

    PubMed

    Turyna, B; Milc, J; Laczka, A; Cholewa, K; Laczka, M

    1996-07-01

    The aim of this work was to confirm in vitro biocompatibility of a new gel-derived glass-crystalline material containing hydroxyapatite and wollastonite phases. For the purpose of comparison, studies were also carried out for a material of the same chemical composition obtained by the traditional melting method. We examined the behaviour and response of cells cultured in the presence of the studied materials. The level of activation of macrophages in culture was determined using three different methods: measurement of respiratory burst by chemiluminescence, nitrite assay and by bioassay of secreted cytokines after immunoelectrophoresis of acute phase proteins from hepatoma cells. All our results show a relatively low, close to control level, activation of macrophages exposed to the studied materials. This indicates a good biocompatibility of both the gel-derived material and the material obtained by the traditional melting method.

  12. Evaluation of new geological reference materials for uranium-series measurements: Chinese Geological Standard Glasses (CGSG) and macusanite obsidian.

    PubMed

    Denton, J S; Murrell, M T; Goldstein, S J; Nunn, A J; Amato, R S; Hinrichs, K A

    2013-10-15

    Recent advances in high-resolution, rapid, in situ microanalytical techniques present numerous opportunities for the analytical community, provided accurately characterized reference materials are available. Here, we present multicollector thermal ionization mass spectrometry (MC-TIMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) uranium and thorium concentration and isotopic data obtained by isotope dilution for a suite of newly available Chinese Geological Standard Glasses (CGSG) designed for microanalysis. These glasses exhibit a range of compositions including basalt, syenite, andesite, and a soil. Uranium concentrations for these glasses range from ∼2 to 14 μg g(-1), Th/U weight ratios range from ∼4 to 6, (234)U/(238)U activity ratios range from 0.93 to 1.02, and (230)Th/(238)U activity ratios range from 0.98 to 1.12. Uranium and thorium concentration and isotopic data are also presented for a rhyolitic obsidian from Macusani, SE Peru (macusanite). This glass can also be used as a rhyolitic reference material, has a very low Th/U weight ratio (around 0.077), and is approximately in (238)U-(234)U-(230)Th secular equilibrium. The U-Th concentration data agree with but are significantly more precise than those previously measured. U-Th concentration and isotopic data agree within estimated errors for the two measurement techniques, providing validation of the two methods. The large (238)U-(234)U-(230)Th disequilibria for some of the glasses, along with the wide range in their chemical compositions and Th/U ratios should provide useful reference points for the U-series analytical community.

  13. Potential use of gallium-doped phosphate-based glass material for periodontitis treatment.

    PubMed

    Sahdev, Rohan; Ansari, Tahera I; Higham, Susan M; Valappil, Sabeel P

    2015-07-01

    This study aimed at evaluating the potential effect of gallium-incorporated phosphate-based glasses towards periodontitis-associated bacteria, Porphyromonas gingivalis, and matrix metalloproteinase-13. Periodontitis describes a group of inflammatory diseases of the gingiva and supporting structures of the periodontium. They are initiated by the accumulation of plaque bacteria, such as the putative periodontal pathogen Porphyromonas gingivalis, but the host immune response such as elevated matrix metalloproteinases are the major contributing factor for destruction of periodontal tissues. Antibacterial assays of gallium-incorporated phosphate-based glasses were conducted on Porphyromonas gingivalis ATCC 33277 using disc diffusion assay on fastidious anaerobe agar and liquid broth assay in a modified tryptic soy broth. In vitro study investigated the effect of gallium on purified recombinant human matrix metalloproteinase-13 activity using matrix metalloproteinase assay kit. In vivo biocompatibility of gallium-incorporated phosphate-based glass was evaluated in rats as subcutaneous implants. Antibacterial assay of gallium displayed activity against Porphyromonas gingivalis (inhibition zone of 22 ± 0.5 mm compared with 0 mm for control glass, c-PBG). Gallium in the glass contributed to growth inhibitory effect on Porphyromonas gingivalis (up to 1.30 reductions in log 10 values of the viable counts compared with control) in a modified tryptic soy broth. In vitro study showed gallium-incorporated phosphate-based glasses inhibited matrix metalloproteinase activity significantly (p ≤ 0.01) compared with c-PBG. Evaluation of in vivo biocompatibility of gallium-incorporated phosphate-based glasses in rats showed a non-toxic and foreign body response after 2 weeks of implantation. The results indicate that gallium ions might act on multiple targets of biological mechanisms underlying periodontal disease. Moreover, gallium-incorporated phosphate-based glasses

  14. Fabrication and characterization of MCC approved testing material: ATM-WV/205 glass

    SciTech Connect

    Maupin, G.D.; Bowen, W.M.; Daniel, J.L.

    1988-08-01

    The ATM-WV/205 glass was produced in accordance with PNL's QA Manual for License-Related Programs, MCC technical procedures, and MCC QA Plan that were in effect during the course of this work. The method and procedure to be used in the fabrication and characterization of the ATM-WV/205 glass were specified in two run plans for glass preparation and a characterization plan. The ATM-WV/205 glass meets all specifications. The elemental composition and oxidation state of the glass are within the sponsor's specifications. Visually, the ATM-WV/205 glass bars appear uniformly glassy and generally without exterior features. Microscopic examination and x-ray diffraction revealed low (about 0.5 wt %) concentrations of 3-..mu..m iron chrome spinel crystals and 1-..mu..m ruthenium inclusions scattered randomly throughout the glassy matrix. Closed porosity, with pores ranging in diameter from 20 to 135 ..mu..m, was observed in all samples. 3 refs., 10 figs., 21 tabs.

  15. Gain Enhancement of a Multiband Resonator Using Defected Ground Surface on Epoxy Woven Glass Material

    PubMed Central

    Islam, Mohammad Tariqul; Arshad, Haslina

    2014-01-01

    A multiband microstrip resonator is proposed in this study which is realized through a rectangular radiator with embedded symmetrical rectangular slots in it and a defected ground surface. The study is presented with detailed parametric analyses to understand the effect of various design parameters. The design and analyses are performed using the FIT based full-wave electromagnetic simulator CST microwave studio suite. With selected parameter values, the resonator showed a peak gain of 5.85 dBi at 5.2 GHz, 6.2 dBi at 8.3 GHz, 3.9 dBi at 9.5 GHz, 5.9 dBi at 12.2 GHz, and 4.7 dBi at 14.6 GHz. Meanwhile, the main lobe magnitude and the 3 dB angular beam width are 6.2 dBi and 86°, 5.9 dBi and 53.7°, 8.5 dBi and 43.9°, 8.6 dBi and 42.1°, and 4.7 dBi and 30.1°, respectively, at the resonant frequencies. The overall resonator has a compact dimension of 0.52λ  × 0.52λ  × 0.027λ at the lower resonant frequency. For practical validation, a lab prototype was built on a 1.6 mm thick epoxide woven glass fabric dielectric material which is measured using a vector network analyzer and within an anechoic chamber. The comparison between the simulated and measured results showed a very good understanding, which implies the practical suitability of the proposed multiband resonator design. PMID:24883354

  16. An evaluation of microleakage of various glass ionomer based restorative materials in deciduous and permanent teeth: An in vitro study

    PubMed Central

    Singla, Teena; Pandit, I.K.; Srivastava, Nikhil; Gugnani, Neeraj; Gupta, Monika

    2011-01-01

    Aim To evaluate the microleakage of recently available glass ionomer based restorative materials (GC Fuji IX GP, GC Fuji VII, and Dyract) and compare their microleakage with the previously existing glass ionomer restorative materials (GC Fuji II LC) in primary and permanent teeth. Method One hundred and fifty (75 + 75) non-carious deciduous and permanent teeth were restored with glass ionomer based restorative materials after making class I cavities. Samples were subjected to thermocycling after storing in distilled water for 24 h. Two coats of nail polish were applied 1 mm short of restorative margins and samples sectioned buccolingually after storing in methylene blue dye for 24 h. Microleakage was assessed using stereomicroscope. Result Significant differences (P < 0.05) were found when inter group comparisons were done. Except when GC Fuji VII (Group III) was compared with GC Fuji II LC (Group II) and Dyract (Group IV), non-significant differences (P > 0.05) were observed. It was found that there was no statistically significant difference when the means of microleakage of primary teeth were compared with those of permanent teeth. Conclusions GC Fuji IX GP showed maximum microleakage and GC Fuji VII showed least microleakage. PMID:23960526

  17. Influence of Al 2O 3 additions on the crystallization mechanism and properties of diopside/anorthite hybrid glass-ceramics for LED packaging materials

    NASA Astrophysics Data System (ADS)

    Kang, Mina; Kang, Seunggu

    2011-07-01

    The crystallization mechanism and properties of diopside (CaMgSi 2O 6)/anorthite (CaAl 2Si 2O 8) hybrid glass-ceramics fabricated from a CMSA (CaO-MgO-SiO 2-Al 2O 3) glass system were studied as a function of Al 2O 3 additions. The parent glass prepared was pressed to pellets isostatically and was sintered to produce glass-ceramics. A non-isothermal analysis was performed to study the crystallization behavior of diopside/anorthite hybrid glass-ceramics using differential thermal analysis (DTA) with various heating rates (5-20 K min -1) and John-Mehl-Avrami and Kissinger equations. The occupying ratio of diopside and anorthite phases, crystal identification and microstructure in the glass-ceramics containing various Al 2O 3 contents were analyzed. Also the thermal conductivity and density of diopside/anorthite composites were measured to apply to LED packaging materials. The main crystalline phases for CaO-MgO-SiO 2-Al 2O 3 glass-ceramics system containing 8.6 wt% or less Al 2O 3, and 15.9 wt% or more Al 2O 3 were the diopside and anorthite, respectively. The difference (Δ T) of initiation temperature for crystallized ( Tx) and glass transition temperature ( Tg), calculated from the DTA curve for a glass is inversely proportional to the density of glass-ceramics fabricated from the glass. The highest crystallization temperature was 946 °C for the glass-ceramics containing 27.4 wt% Al 2O 3, which is low enough to apply the LTCC process. The glass-ceramics of diopside base with no Al 2O 3 added had the highest thermal conductivity of 2.372 W/m °C among all specimens fabricated in this study.

  18. Multicomponent glass materials with the raised efficiency for conversion of laser radiation frequency

    NASA Astrophysics Data System (ADS)

    Smirnov, V. A.; Vostrikova, L. I.; Schavelev, O. S.; Schavelev, K. O.; Jakobson, N. A.

    2010-02-01

    Nonlinear conversions of laser radiation frequency on the photo-integrated volumetric structures of the second-order susceptibility, created by all-optical poling, have been investigated in various glass mediums. The detailed analysis of the influence of a chemical compound was carried out, and as a result, the perspective multi-lead phosphate glasses with the concentration of the some percents of niobium oxide have been synthesized in which the greatest efficiency of the conversion of light is observed in conditions of long lifetime of the photo-integrated structures. The studied photointegrated structures may be useful in future for the creation of the various photonic devices for micro- and nanoelectronics.

  19. Multicomponent glass materials with the raised efficiency for conversion of laser radiation frequency

    NASA Astrophysics Data System (ADS)

    Smirnov, V. A.; Vostrikova, L. I.; Schavelev, O. S.; Schavelev, K. O.; Jakobson, N. A.

    2009-10-01

    Nonlinear conversions of laser radiation frequency on the photo-integrated volumetric structures of the second-order susceptibility, created by all-optical poling, have been investigated in various glass mediums. The detailed analysis of the influence of a chemical compound was carried out, and as a result, the perspective multi-lead phosphate glasses with the concentration of the some percents of niobium oxide have been synthesized in which the greatest efficiency of the conversion of light is observed in conditions of long lifetime of the photo-integrated structures. The studied photointegrated structures may be useful in future for the creation of the various photonic devices for micro- and nanoelectronics.

  20. Ferroic Shape Memory Materials & Piezo:Pyro-Electric Oriented Recrystallized Glasses.

    DTIC Science & Technology

    1986-07-01

    preparing large, complex, pore free bodies have been exploited in the electronics industry for a variety of applications. New glass forming techniques...examined using optical and electron microscopes. Typically the microstructure consisted of needle-like crystallites growing from the initial...and in PLZT detectors, piezoelectric noise is eliminated by modifying the ~ (~C~.-~ . ~A -7- - __1( 1 --. . . . . . . . . . . 42 electronics

  1. Surface Chemistry and Structural Effects in the Stress Corrosion of Glass and Ceramic Materials.

    DTIC Science & Technology

    1986-03-31

    stress corrosion susceptibility, chemical effects during crack growth and the static fatigue limit. After a general discussion of chemical effects in...106 * CHAPTER V. Stress Corrosion of Sodium-Aluminosilicate Glasses: A Comparison of Small and Large Cracks ............. 123... crack growth behavior. It leads naturally to the conclusion that the composition dependence of the stress corrosion susceptibility is due to

  2. Laser glass: a key material in the search for fusion energy

    SciTech Connect

    Campbell, J H

    1999-06-02

    Nuclear fusion is the energy source that powers the sun. For more than four decades man has sought to develop this essentially inexhaustible, clean power source for use on earth. Unfortunately the conditions needed to initiate fusion are daunting; the nuclear fuel, consisting of isotopes of hydrogen, must be heated to temperatures in excess of 100,000,000 C and maintained at that temperature long enough for the nuclear fuel to ignite and burn. Lasers are being used as one of the tools to achieve these conditions. The best lasers for this work are those that derive their energy from a unique set of optical glasses called laser glasses. The work to develop, manufacture and test these glasses has involved a partnership between university and industry that has spanned more than 25 years. During this time lasers used in fusion development have grown from small systems that could fit on the top of a table to systems currently under construction that are approximately the size of a municipal sports stadium. A brief historical and anecdotal account of the development of laser glasses for fusion energy research applications is the subject of the presentation.

  3. A study on the radiopacity of different shades of resin-modified glass-ionomer restorative materials.

    PubMed

    Marouf, N; Sidhu, S K

    1998-01-01

    There are several resin-modified glass-ionomer restorative materials available to the dental profession today. The commercially available brands are presented in a range of shades. There is little information on their radiopacity and whether this varies with differences in shade. While the general radiopacity of various products may have been studied, only assumptions are available regarding their consistency between shades. The purpose of this study was to investigate if there were any significant differences in the radiopacity of the shades available within each commercial product. The products evaluated were Fuji II LC, Vitremer, and Photac-Fil. The optical densities of standardized radiographs of samples of these materials were determined and radiopacity values of materials expressed in millimeter equivalents of aluminum. Of the three resin-modified glass-ionomer restorative materials tested, Fuji II LC was the most radiopaque and Photac-Fil the least. Fuji II LC and Vitremer showed radiopacity values equivalent to > 2.5 mm and > 1.5 mm aluminum respectively; Photac-Fil demonstrated very low radiopacity values (equivalent to < 0.6 mm aluminum). Statistical analysis revealed that there was no significant difference in radiopacity among the shades within each of these brands.

  4. A Molecular Dynamics Model of Melting and Glass Transition in an Idealized Two-Dimensional Material. - 1

    DTIC Science & Technology

    1989-01-23

    SYNMBOL 7A NAME OF MONITORING OQiA.NIZATION - Massachusetts Institute I (it applicable) ONR 4~ of TechnologyI (x. AOORESS 1Ciry, Stt. and Z1IC00*J 7b...deformations in glasses to extensions of well defined mobile crystal de- fects, such as vacancies and dislocations (for a review see (21). In our view, 11... mobility of dislocations in the quasi-crystalline domains encapsulated by the liquid-like material. As can be expected, this latter component of

  5. Preliminary evaluation of Glass Resin materials for solar cell cover use

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Swartz, C. K.; Baraona, C. R.

    1978-01-01

    The glass resins were deposited by several techniques on 200 micron thick cells and on 50 microns thick wafers. The covered cells were exposed to ultraviolet light in vacuum to an intensity of 10 UV energy-equivalent solar constants at air mass zero for 728 hr. The exposure was followed by a single long thermal cycle from ambient temperature to -150 C. Visual inspection of the samples indicated that all samples had darkened to varying degrees. The loss in short-circuit current was found to range from 8 to 24%, depending on the resin formulation. In another test over 40 glass resin-coated silicon wafers withstood 15 thermal cycles from 100 to-196 C in one or more of the thicknesses tested. Several of the resin-coated wafers were tested at 65 C and 90% relative humidity for 170 hr. No change in physical appearance was detected.

  6. Structure of a composite material based on oxyfluoride glass and low-melting fluoroplast

    NASA Astrophysics Data System (ADS)

    Ignat'eva, L. N.; Savchenko, N. N.; Lalayan, V. M.; Zverev, G. A.; Usol'tseva, T. I.; Ustinov, A. Yu.; Shaulov, A. Yu.; Berlin, A. A.; Buznik, V. M.

    2016-09-01

    Aspects of the fabrication of composites obtained via the extrusion formation of mixtures composed of a perfluorocarbon polymer (F2MB) and a thermoplastic inorganic glass of the composition 3B2O3-97(40SnF2-30SnO-30P2O5) are investigated by analyzing the results from studies of their morphology, molecular structure, and phase composition.

  7. Environmental impact assessment of chlorine in liquid crystal display glass (LCDG) based on material flow analysis.

    PubMed

    Kotani, Kensuke; Masunaga, Shigeki

    2012-12-15

    Liquid crystal display glass (LCDG) may contain chlorine in trace amounts to attain some of its special properties. LCDG is primarily manufactured by glass companies, which then supply the electronic industry for utilization in the manufacture of items such as televisions, computer monitors, etc. In order to be seen as environmentally friendly, some electronic companies that utilize LCDG request that glass companies eliminate halogens such as chlorine from LCDG. The issue of halogens in products is often associated with dioxin-like problems. By using halogen-free LCDG in their manufacturing process, electronic companies aim to enhance their eco-friendly branding. Nevertheless, the real gains in terms of environmental improvement are yet to be assessed. In this study, we discussed the effectiveness of reducing or eliminating chlorine in electrical and electronic products on a scientific basis, by carrying out a quantitative assessment of cancer risk posed by potential emissions of dioxins when discarded LCDG is incinerated. The results indicate that the maximum increase of individual lifetime cancer risk is 3.2 × 10(-10). This level of cancer risk is negligible. Consequently, we suggest that there is no need to introduce stricter standards for chlorine content in LCDG, from the viewpoint of potential dioxin formation.

  8. A Comparative Evaluation of Effect of Different Chemical Solvents on the Shear Bond Strength of Glass Fiber reinforced Post to Core Material

    PubMed Central

    Samadi, Firoza; Jaiswal, JN; Saha, Sonali

    2014-01-01

    ABSTRACT% Aim: To compare the effect of different chemical solvents on glass fiber reinforced posts and to study the effect of these solvents on the shear bond strength of glass fiber reinforced post to core material. Materials and methods: This study was conducted to evaluate the effect of three chemical solvents, i.e. silane coupling agent, 6% H2O2 and 37% phosphoric acid on the shear bond strength of glass fiber post to a composite resin restorative material. The changes in post surface characteristics after different treatments were also observed, using scanning electron microscopy (SEM) and shear bond strength was analyzed using universal testing machine (UTM). Results: Surface treatment with hydrogen peroxide had greatest impact on the post surface followed by 37% phosphoric acid and silane. On evaluation of the shear bond strength, 6% H2O2 exhibited the maximum shear bond strength followed in descending order by 37% phosphoric acid and silane respectively. Conclusion: The surface treatment of glass fiber post enhances the adhesion between the post and composite resin which is used as core material. Failure of a fiber post and composite resin core often occurs at the junction between the two materials. This failure process requires better characterization. How to cite this article: Sharma A, Samadi F, Jaiswal JN, Saha S. A Comparative Evaluation of Effect of Different Chemical Solvents on the Shear Bond Strength of Glass Fiber Reinforced Post to Core Material. Int J Clin Pediatr Dent 2014;7(3):192-196. PMID:25709300

  9. Ash from the combustion of Ekibastuzsk coals - a raw material for obtaining glasses and aluminium

    SciTech Connect

    Suleimenov, S.T.

    1984-01-01

    The ash content of the Ekibastuzsk coal deposit is up to 45%. The ash contains 26-30% Al2O3, 60-65% SiO2 and at least 4-5% coke. It was mixed with 20-30% slag from the phosphorus industry and 4-5% sodium sulphate for the making of glass ceramic tiles. The good acid resistance of these tiles makes them suitable for lining the equipment in which Al is extracted from the same ash for producing aluminium sulphate.

  10. Structural features of vitreous and glass-ceramic materials prepared from brown coal ashes

    SciTech Connect

    Petrakovskaya, E.A.; Pavlov, V.F.; Bayukov, O.A.

    1995-05-01

    The ESR and Moessbauer spectra for the highly porous X-ray amorphous products of processing the high-calcium ashes of brown coals are studied. The tetrahedral coordination of Fe{sup 3+} ions and octahedral coordinations of Mn{sup 2+} and Ti{sup 3+}, ions are revealed. Some of the iron centers are attributed to the extrinsic crystalline phase. The character of change in the ESR spectra is investigated in the vitreous and glass--ceramic states. The correlation between the change in the valence of Ti and the amount of octahedrally coordinated Mn is established.

  11. Spectroscopic and laser-induced damage properties of Fe2+-doped fluorophosphate glass, a new color-separation material

    NASA Astrophysics Data System (ADS)

    Fu, Lili; Ren, Wenyi; Liu, Chunxiao; Xu, Shennuo; Zheng, Ruilin; Wei, Wei; Zhang, Chunmin; Peng, Bo

    2013-10-01

    Fe2+-doped fluorophosphate glass (FEFG), a new color-separation material, is prepared by a melt-quenching method. The spectroscopic and laser-induced damage (LID) properties of FEFG are investigated by transmittance spectroscopy, LID tests, scanning electron microscopy, and Raman spectroscopy. Results show that the sample has intensive absorption (>85 %) at 1,053 nm and high transmittance (~86.5 %) at 351 nm after introducing 0.3 wt% Fe2O3. The LID thresholds of 0.3 wt% Fe2O3-doped FEFG sample irradiated by 351- and 1,053-nm lasers with 8 ns pulse width are 4.5 and 36.0 J/cm2, respectively. Thus, FEFG has laser-separation ability and can resist nanosecond laser irradiation, indicating that FEFG is a potential color-separation material for high-power lasers.

  12. Determination of Material Properties Near the Glass Transition Temperature for an Isogrid Boom

    NASA Technical Reports Server (NTRS)

    Blandino, Joseph R.; Woods-Vedeler, Jessica A. (Technical Monitor)

    2002-01-01

    Experiments were performed and results obtained to determine the temperature dependence of the modulus of elasticity for a thermoplastic isogrid tube. The isogrid tube was subjected to axial tensile loads of 0-100 lbf and strain was measured at room and elevated temperatures of 100, 120, 140, 160, 180, 190, and 200 F. These were based on tube manufacturer specifying an incorrect glass transition temperature of 210 F. Two protocols were used. For the first protocol the tube was brought to temperature and a tensile test performed. The tube was allowed to cool between tests. For the second protocol the tube was ramped to the desired test temperature and held. A tensile test was performed and the tube temperature ramped to the next test temperature. The second protocol spanned the entire test range. The strain rate was constant at 0.008 in/min. Room temperature tests resulted in the determination of an average modulus of 2.34 x 106 Psi. The modulus decreased above 100 F. At 140 F the modulus had decreased by 7.26%. The two test protocols showed good agreement below 160 F. At this point the glass transition temperature had been exceeded. The two protocols were not repeated because the tube failed.

  13. Demonstrate Scale-up Procedure for Glass Composite Material (GCM) for Incorporation of Iodine Loaded AgZ.

    SciTech Connect

    Nenoff, Tina M.; Garino, Terry J.; Croes, Kenneth James; Rodriguez, Mark A.

    2015-07-01

    Two large size Glass Composite Material (GCM) waste forms containing AgI-MOR were fabricated. One contained methyl iodide-loaded AgI-MOR that was received from Idaho National Laboratory (INL, Test 5, Beds 1 – 3) and the other contained iodine vapor loaded AgIMOR that was received from Oak Ridge National Laboratory (ORNL, SHB 2/9/15 ). The composition for each GCM was 20 wt% AgI-MOR and 80 wt% Ferro EG2922 low sintering temperature glass along with enough added silver flake to prevent any I2 loss during the firing process. The silver flake amounts were 1.2 wt% for the GCM with the INL AgI-MOR and 3 wt% for the GCM contained the ORNL AgI-MOR. The GCMs, nominally 100 g, were first uniaxially pressed to 6.35 cm (2.5 inch) diameter disks then cold isostatically pressed, before firing in air to 550°C for 1hr. They were cooled slowly (1°C/min) from the firing temperature to avoid any cracking due to temperature gradients. The final GCMs were ~5 cm in diameter (~2 inches) and non-porous with densities of ~4.2 g/cm³. X-ray diffraction indicated that they consisted of the amorphous glass phase with small amounts of mordenite and AgI. Furthermore, the presence of the AgI was confirmed by X-ray fluorescence. Methodology for the scaled up production of GCMs to 6 inch diameter or larger is also presented.

  14. Materials for Tc Capture to Increase Tc Retention in Glass Waste Form

    SciTech Connect

    Luksic, Steven A.; Hrma, Pavel R.; Kruger, Albert A.

    2016-04-01

    99Technetium is a long-lived fission product found in the tank waste at the Hanford site in Washington State. In its heptavalent species, it is volatile at the temperatures used in Hanford Tank Waste Treatment and Immobilization Plant vitrification melters, and thus is challenging to incorporate into waste glass. In order to decrease volatility and thereby increase retention, technetium can be converted into more thermally stable species. Several mineral phases, such as spinel, are able to incorporate tetravalent technetium in a chemically durable and thermally stable lattice, and these hosts may promote the decreased volatility that is desired. In order to be usefully implemented, there must be a synthetic rout to these phases that is compatible with both technetium chemistry and current Hanford Tank Waste Treatment and Immobilization Plant design. Synthetic routes for spinel and other potential host phases are examined.

  15. Zr-based bulk metallic glass as a cylinder material for high pressure apparatuses

    SciTech Connect

    Komatsu, Kazuki; Munakata, Koji; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Yokoyama, Yoshihiko; Sugiyama, Kazumasa; Matsuda, Masaaki

    2015-05-12

    Zirconium-based bulk metallic glass (Zr-based BMG) has outstanding properties as a cylinder mate- rial for piston-cylinder high pressure apparatuses and is especially useful for neutron scattering. The piston-cylinder consisting of a Zr-based BMG cylinder with outer/inner diameters of 8.8/2.5 mm sustains pressures up to 1.81 GPa and ruptured at 2.0 GPa, with pressure values determined by the superconduct- ing temperature of lead. The neutron attenuation of Zr-based BMG is similar to that of TiZr null-scattering alloy and more transparent than that of CuBe alloy. No contamination of sharp Bragg reflections is observed in the neutron diffraction pattern for Zr-based BMG. The magnetic susceptibility of Zr-based BMG is similar to that of CuBe alloy; this leads to a potential application for measurements of magnetic properties under pressure.

  16. Ce(3+)/Yb(3+)/Er(3+) triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers.

    PubMed

    Chu, Yushi; Ren, Jing; Zhang, Jianzhong; Peng, Gangding; Yang, Jun; Wang, Pengfei; Yuan, Libo

    2016-09-20

    Erbium doped bismuth borosilicate (BBS) glasses, possessing the broadest 1.55 μm near infrared (NIR) emission band among oxide glasses, stand out as excellent fiber material for optical fiber amplifiers. In this work, we demonstrate that both broadened and enhanced NIR emission of Er(3+) can be obtained by sensibly combining the effects such as mixed glass former effect, phonon-assisted energy transfer (PAET) and de-excitation effect induced by codopant. Specially, by codoping CeO2 in a controlled manner, it leads to not only much improved optical quality of the glasses, enhanced NIR emission, but also significantly suppressed energy transfer up-conversion (ETU) luminescence which is detrimental to the NIR emission. Cerium incorporated in the glasses exists overwhelmingly as the trivalent oxidation state Ce(3+) and its effects on the luminescence properties of Er(3+) are discussed. Judd-Ofelt analysis is used to evaluate gain amplification of the glasses. The result indicates that Ce(3+)/Yb(3+)/Er(3+) triply doped BBS glasses are promising candidate for erbium doped fiber amplifiers. The strategy described here can be readily extended to other rare-earth ions (REs) to improve the performance of REs doped fiber lasers and amplifiers.

  17. Ce3+/Yb3+/Er3+ triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Chu, Yushi; Ren, Jing; Zhang, Jianzhong; Peng, Gangding; Yang, Jun; Wang, Pengfei; Yuan, Libo

    2016-09-01

    Erbium doped bismuth borosilicate (BBS) glasses, possessing the broadest 1.55 μm near infrared (NIR) emission band among oxide glasses, stand out as excellent fiber material for optical fiber amplifiers. In this work, we demonstrate that both broadened and enhanced NIR emission of Er3+ can be obtained by sensibly combining the effects such as mixed glass former effect, phonon-assisted energy transfer (PAET) and de-excitation effect induced by codopant. Specially, by codoping CeO2 in a controlled manner, it leads to not only much improved optical quality of the glasses, enhanced NIR emission, but also significantly suppressed energy transfer up-conversion (ETU) luminescence which is detrimental to the NIR emission. Cerium incorporated in the glasses exists overwhelmingly as the trivalent oxidation state Ce3+ and its effects on the luminescence properties of Er3+ are discussed. Judd-Ofelt analysis is used to evaluate gain amplification of the glasses. The result indicates that Ce3+/Yb3+/Er3+ triply doped BBS glasses are promising candidate for erbium doped fiber amplifiers. The strategy described here can be readily extended to other rare-earth ions (REs) to improve the performance of REs doped fiber lasers and amplifiers.

  18. Ce3+/Yb3+/Er3+ triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers

    PubMed Central

    Chu, Yushi; Ren, Jing; Zhang, Jianzhong; Peng, Gangding; Yang, Jun; Wang, Pengfei; Yuan, Libo

    2016-01-01

    Erbium doped bismuth borosilicate (BBS) glasses, possessing the broadest 1.55 μm near infrared (NIR) emission band among oxide glasses, stand out as excellent fiber material for optical fiber amplifiers. In this work, we demonstrate that both broadened and enhanced NIR emission of Er3+ can be obtained by sensibly combining the effects such as mixed glass former effect, phonon-assisted energy transfer (PAET) and de-excitation effect induced by codopant. Specially, by codoping CeO2 in a controlled manner, it leads to not only much improved optical quality of the glasses, enhanced NIR emission, but also significantly suppressed energy transfer up-conversion (ETU) luminescence which is detrimental to the NIR emission. Cerium incorporated in the glasses exists overwhelmingly as the trivalent oxidation state Ce3+ and its effects on the luminescence properties of Er3+ are discussed. Judd-Ofelt analysis is used to evaluate gain amplification of the glasses. The result indicates that Ce3+/Yb3+/Er3+ triply doped BBS glasses are promising candidate for erbium doped fiber amplifiers. The strategy described here can be readily extended to other rare-earth ions (REs) to improve the performance of REs doped fiber lasers and amplifiers. PMID:27646191

  19. Near-IR Photoluminescence of Pr/Cu/Sn Tridoped Phosphate Glass: Nonplasmonic Material System Versus Plasmonic Nanocomposite

    NASA Astrophysics Data System (ADS)

    Jiménez, José A.; Sendova, Mariana

    2015-04-01

    An optical spectroscopy study of Pr2O3, CuO, and SnO tridoped barium phosphate glass prepared by the melt-quenching technique has been carried out, emphasizing near-infrared (IR) emission properties. The material is studied in its nonplasmonic state (as synthesized) and plasmonic form (heat-treated), aiming to elucidate the effects of Cu nanoparticles. The data indicate that Cu+ ions and Sn centers are stabilized in the melt-quenched glass. Broad ultraviolet excitations of both species can lead to near-IR emission of Pr3+ ions via energy transfer. The plasmonic nanocomposite is produced upon heat treatment as Sn2+ reduces Cu+ to Cu0 atoms, ultimately precipitating as Cu nanoparticles sustaining the surface plasmon resonance. Consequently, depletion of primarily Cu+ modified the ultraviolet excitation properties for the sensitized near-IR Pr3+ emission. Further, suppression of the Pr3+ emission from near-IR emitting states 1D2 and 1G4 was observed in the Cu nanocomposite in accord with a "plasmonic diluent" role of the nanoparticles.

  20. Absorption characteristics of glass fiber materials at normal and oblique incidence. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Wyerman, B. R.

    1974-01-01

    The absorption characteristics of several fibrous materials of the Owens Corning 700 Fiberglas Series were measured to determine the variation in impedance as a function of incident angle of the sound wave. The results, indicate that the fibrous absorbents behave as extended reacting materials. The poor agreement between measurement and theory for sound absorption based on the parameters of flow resistance and porosity indicates that this theory does not adequately predict the acoustic behavior of fibrous materials. A much better agreement with measured results is obtained for values calculated from the bulk acoustic parameters of the material.

  1. Spectroscopic properties and near-infrared broadband luminescence of Bi-doped SrB4O7 glasses and crystalline materials.

    PubMed

    Su, Liangbi; Zhou, Peng; Yu, Jun; Li, Hongjun; Zheng, Lihe; Wu, Feng; Yang, Yan; Yang, Qiuhong; Xu, Jun

    2009-08-03

    Spectroscopic properties of Bi-doped SrB(4)O(7) glasses, sintered compounds, polycrystalline materials, and single crystals were investigated. Broadband near-infrared luminescence was realized in Bi-doped SrB(4)O(7) glasses with basicity and polycrystalline materials with non-bridging oxygens. In Bi:SrB(4)O(7) single crystals, only visible luminescence of Bi(3+) and Bi(2+) was observed, but no near-infrared. The rigid three-dimensional network of SrB(4)O(7) crystal is proved to be unfavorable for accommodation of Bi(+) ions.

  2. Effect of powder to liquid ratio on tensile strength and glass transition temperature of alumina filled poly methyl methacrylate (PMMA) denture base material.

    PubMed

    Mohamed, S H; Arifin, A; Mohd Ishak, Z A; Nizam, A; Samsudin, A R

    2004-05-01

    The aim of this study was to evaluate the mechanical properties and glass transition temperature (Tg) of a denture base material prepared from high molecular weight poly methyl methacrylate (PMMA) and alumina (Al2O3). The glass transition temperature was studied by using differential scanning calorimetry (DSC). The effect of powder-to-liquid ratio was investigated. The result showed that the tensile properties and the Tg were slightly effected by the powder-to-liquid ratio. The ratio of 2.2:1 by weight of powder to liquid was found to be the best ratio for mixing the material to give the best result in this formulation.

  3. Diamond turning of glass

    SciTech Connect

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  4. Predicting composition-property relationships for glass ionomer cements: a multifactor central composite approach to material optimization.

    PubMed

    Kiri, Lauren; Boyd, Daniel

    2015-06-01

    Adjusting powder-liquid ratio (P/L) and polyacrylic acid concentration (AC) has been documented as a means of tailoring the handling and mechanical properties of glass ionomer cements (GICs). This work implemented a novel approach in which the interactive effects of these two factors on three key GIC properties (working time, setting time, and compressive strength) were investigated using a central composite design of experiments. Using nonlinear regression analysis, formulation-property relationships were derived for each property, which enabled prediction of an optimal formulation (P/L and AC) through application of the desirability approach. A novel aluminum free GIC was investigated, as this material may present the first clinically viable GIC for use in injectable spinal applications, such as vertebroplasty. Ultimately, this study presents the first series of predictive regression models that explain the formulation-dependence of a GIC, and the first statistical method for optimizing both P/L and AC depending on user-defined inputs.

  5. Potential utilization of glass experiments in space

    NASA Technical Reports Server (NTRS)

    Kreidl, N. J.

    1984-01-01

    Materials processing in space utilizing the microgravity environment is discussed; glass processing in particular is considered. Attention is given to the processing of glass shells, critical cooling rate and novel glasses, gel synthesis of glasses, immiscibility, surface tension, and glass composites. Soviet glass experiments in space are also enumerated.

  6. Zr-based bulk metallic glass as a cylinder material for high pressure apparatuses

    DOE PAGES

    Komatsu, Kazuki; Munakata, Koji; Matsubayashi, Kazuyuki; ...

    2015-05-12

    Zirconium-based bulk metallic glass (Zr-based BMG) has outstanding properties as a cylinder mate- rial for piston-cylinder high pressure apparatuses and is especially useful for neutron scattering. The piston-cylinder consisting of a Zr-based BMG cylinder with outer/inner diameters of 8.8/2.5 mm sustains pressures up to 1.81 GPa and ruptured at 2.0 GPa, with pressure values determined by the superconduct- ing temperature of lead. The neutron attenuation of Zr-based BMG is similar to that of TiZr null-scattering alloy and more transparent than that of CuBe alloy. No contamination of sharp Bragg reflections is observed in the neutron diffraction pattern for Zr-based BMG.more » The magnetic susceptibility of Zr-based BMG is similar to that of CuBe alloy; this leads to a potential application for measurements of magnetic properties under pressure.« less

  7. Study on the laser irradiation effects on coating reinforced glass fiber/resin composite material

    NASA Astrophysics Data System (ADS)

    Chen, Minsun; Jiang, Houman; Zhang, Tianyu; Zhang, Xiangyu

    2016-10-01

    Two kinds of anti-laser coating made of reflective / ablative resin, called reinforcement schemes of A and B, are applied to the glass fiber reinforced resin matrix composite plate. The anti-laser performance of these samples to the laser operated at the wavelength of 976nm is tested, under the case of a 0.3 Mach tangential airflow pass over the surface of the sample. The experimental results show that the laser damage threshold of the coating reinforced samples have increased more than 50% compared to the original sample, the reinforcement scheme B is better than A. The laser power density damage threshold of the coating reinforced samples to the near infrared laser is higher than 100W/cm2, under the irradiation time is 60 seconds. For the resin reinforced fiber samples, the removal process of the ablation residues has important effects on the perforation time of samples, when there is a strong airflow pass over the surface. The larger laser spot corresponding to the removal of the ablation residues is easier.

  8. Materials and design experience in a slurry-fed electric glass melter

    SciTech Connect

    Barnes, S.M.; Larson, D.E.

    1981-08-01

    The design of a slurry-fed electric gas melter and an examination of the performance and condition of the construction materials were completed. The joule-heated, ceramic-lined melter was constructed to test the applicability of materials and processes for high-level waste vitrification. The developmental Liquid-Fed Ceramic Melter (LFCM) was operated for three years with simulated high-level waste and was subjected to conditions more severe than those expected for a nuclear waste vitrification plant.

  9. Durability of polymeric encapsulation materials in a PMMA/glass concentrator photovoltaic system: Durability of polymeric encapsulation materials

    SciTech Connect

    Miller, David C.; Kempe, Michael D.; Muller, Matthew T.; Gray, Matthew H.; Araki, Kenji; Kurtz, Sarah R.

    2016-07-13

    The durability of polymeric encapsulation materials was examined using outdoor exposure at the nominal geometric concentration of 500 suns. The results for 36-month cumulative field deployment are presented for materials including: poly(ethylene-co-vinyl acetate), (EVA); polyvinyl butyral (PVB); ionomer; polyethylene/polyoctene copolymer (PO); thermoplastic polyurethane (TPU); poly(dimethylsiloxane) (PDMS); poly(diphenyl dimethyl siloxane) (PDPDMS); and poly(phenyl-methyl siloxane) (PPMS). Measurements of the field conditions including ambient temperature and ultraviolet (UV) dose were recorded at the test site during the experiment. Measurements for the experiment included optical transmittance (with subsequent analysis of solar-weighted transmittance, UV cut-off wavelength, and yellowness index), mass, visual photography, photoelastic imaging, and fluorescence spectroscopy. While the results to date for EVA are presented and discussed, examination here focuses more on the siloxane materials. A specimen recently observed to fail by thermal decomposition is discussed in terms of the implementation of the experiment as well as its fluorescence signature, which was observed to become more pronounced with age. Modulated thermogravimetry (allowing determination of the activation energy of thermal decomposition) was performed on a subset of the siloxanes to quantify the propensity for decomposition at elevated temperatures. Supplemental, Pt-catalyst- and primer-solutions as well as peroxide-cured PDMS specimens were examined to assess the source of the luminescence. The results of the study including the change in optical transmittance, observed failure modes, and subsequent analyses of the failure modes are described in the conclusions.

  10. Ultrafast Frequency Agile Optical Materials: Organically Doped Sol-Gel Glasses

    DTIC Science & Technology

    1992-10-13

    PhD. anticipated 1/93 John Pelo Robert A. Crowell, Ph.D. awarded 9/92 Teresa Rose Undergraduate Students: John Middleton Bibliography [1] A...Coulter, D. Alvarez Jr., S. R. Marder, T. H. Wei, M. J. Sence, E. W. Van Stryland, and D. J. Hagan, Organic Materials for Nonlinear Optics and Photonics, J

  11. Shear Bond Strength of Self-Adhering Flowable Composite and Resin-modified Glass Ionomer to Two Pulp Capping Materials

    PubMed Central

    Doozaneh, Maryam; Koohpeima, Fatemeh; Firouzmandi, Maryam; Abbassiyan, Forugh

    2017-01-01

    Introduction: The aim of this study was to compare the shear bond strength of a self-adhering flowable composite (SAFC) and resin-modified glass ionomer (RMGI) to mineral trioxide aggregate (MTA) and calcium-enriched mixture (CEM) cement. Methods and Materials: A total of 72 acrylic blocks with a central hole (4 mm in diameter and 2 mm in depth) were prepared. The holes were filled with MTA (sub group A) and CEM cement. The specimens of both restorative materials were divided into 6 groups; overall there were 12 groups. In groups 1 and 4, SAFC was used without bonding while in groups 2 and 5 SAFC was used with bonding agent. In all these groups the material was placed into the plastic mold and light cured. In groups 3 and 6, after surface conditioning with poly acrylic acid and rinsing, RMGI was placed into the mold and photo polymerized. After 24 h, the shear bond strength values were measured and fracture patterns were examined by a stereomicroscope. Data were analyzed using the two-way ANOVA and student’s t-test. Results: The use of bonding agent significantly increased the shear bond strength of FC to MTA and CEM cement (P=0.008 and 0.00, respectively). In both materials, RMGI had the lowest shear bond strength values (2.25 Mpa in MTA and 1.32 Mpa in CEM). The mean shear bond strength were significantly higher in MTA specimen than CEM cement (P=0.003). There was a significant differences between fracture patterns among groups (P=0.001). Most failures were adhesive/mix in MTA specimen but in CEM cement groups the cohesive failures were observed in most of the samples. Conclusion: The bond strength of self-adhering flowable composite resin to MTA and CEM cement was higher than RMGI which was improved after the additional application of adhesive. PMID:28179935

  12. Bioactive glasses and glass-ceramics.

    PubMed

    Rawlings, R D

    1993-01-01

    Bioactive materials are designed to induce a specific biological activity; in most cases the desired biological activity is one that will give strong bonding to bone. A range of materials has been assessed as being capable of bonding to bone, but this paper is solely concerned with bioactive glasses and glass-ceramics. Firstly, the structure and processing of glasses and glass-ceramics are described, as a basic knowledge is essential for the understanding of the development and properties of the bioactive materials. The effect of composition and structure on the bioactivity is then discussed, and it will be shown that bioactivity is associated with the formation of an apatite layer on the surface of the implant. A survey of mechanical performance demonstrates that the structure and mechanical properties of glass-ceramics depend upon whether the processing involves casting or sintering and that the strength and toughness of glass-ceramics are superior to those of glasses. Attempts to further improve the mechanical performance by the use of non-monolithic components, i.e. bioactive coatings on metal substrates and glass and glass-ceramic matrix composites, are also reviewed and are shown to have varying degrees of success. Finally, some miscellaneous applications, namely bioactive bone cements and bone fillers, are briefly covered.

  13. Durability of Polymeric Encapsulation Materials for a PMMA/glass Concentrator Photovoltaic System

    SciTech Connect

    Miller, David C.; Kempe, Michael D.; Muller, Matthew T; Gray, Matthew H.; Araki, Kenji; Kurtz, Sarah R.

    2014-04-08

    The durability of polymeric encapsulation materials was examined using outdoor exposure at the nominal geometric concentration of 500 suns. The results for 36 months cumulative field deployment are presented for materials including: poly(ethylene-co-vinyl acetate), (EVA); polyvinyl butyral (PVB); ionomer; polyethylene/ polyoctene copolymer (PO); thermoplastic polyurethane (TPU); poly(dimethylsiloxane) (PDMS); poly(diphenyl dimethyl siloxane) (PDPDMS); and poly(phenyl-methyl siloxane) (PPMS). Measurements of the field conditions including ambient temperature and ultraviolet (UV) dose were recorded at the test site during the experiment. Measurements for the experiment included optical transmittance (with subsequent analysis of solar-weighted transmittance, UV cut-off wavelength, and yellowness index), mass, visual photography, photoelastic imaging, and fluorescence spectroscopy. While the results to date for EVA are presented and discussed, examination here focuses more on the siloxane materials. A specimen recently observed to fail by thermal decomposition is discussed in terms of the implementation of the experiment as well as its fluorescence signature, which was observed to become more pronounced with age. Modulated thermogravimetry (allowing determination of the activation energy of thermal decomposition) was performed on a subset of the siloxanes to quantify the propensity for decomposition at elevated temperatures. Supplemental, Pt-catalyst- and primer-solutions as well as peroxide-cured PDMS specimens were examined to assess the source of the luminescence. The results of the study including the change in optical transmittance, observed failure modes, and subsequent analyses of the failure modes are described in the conclusions.

  14. Developing photorefractive glass composites

    NASA Astrophysics Data System (ADS)

    Duignan, Jason P.; Taylor, Lesley L.; Cook, Gary

    2002-01-01

    The production of a transparent photorefractive glass composite would offer a useful alternative to bulk crystal materials. We aim to produce such a material by incorporating single domain photorefractive Fe:LiNbO3 particles into a refractive index matched glass host. This glass host is also required to be chemically compatible with the photorefractive material. This compatibility will ensure that the Fe:LiNbO3 particles added to the host glass will remain in the intended crystalline phase and not simply dissolve in the glass. Due to the high refractive index of the Fe:LiNbO3 (no equals 2.35 532 nm), producing a chemically compatible and refractive index matched glass host is technically challenging. By examining common Tellurite, Bismuthate, and Gallate glasses as a starting point and then developing new and hybrid glasses, we have succeeded in producing a chemically compatible glass host and also a refractive index matched glass host. We have produced preliminary glass composite samples which contain a large amount of Fe:LiNbO3. We are currently able to retain nearly 90% of the incorporated Fe:LiNbO3 in the correct crystalline phase, a substantial improvement over previous work conducted in this area in recent years. In this paper we present our progress and findings in this area.

  15. Oxynitride glass fibers

    NASA Technical Reports Server (NTRS)

    Patel, Parimal J.; Messier, Donald R.; Rich, R. E.

    1991-01-01

    Research at the Army Materials Technology Laboratory (AMTL) and elsewhere has shown that many glass properties including elastic modulus, hardness, and corrosion resistance are improved markedly by the substitution of nitrogen for oxygen in the glass structure. Oxynitride glasses, therefore, offer exciting opportunities for making high modulus, high strength fibers. Processes for making oxynitride glasses and fibers of glass compositions similar to commercial oxide glasses, but with considerable enhanced properties, are discussed. We have made glasses with elastic moduli as high as 140 GPa and fibers with moduli of 120 GPa and tensile strengths up to 2900 MPa. AMTL holds a U.S. patent on oxynitride glass fibers, and this presentation discusses a unique process for drawing small diameter oxynitride glass fibers at high drawing rates. Fibers are drawn through a nozzle from molten glass in a molybdenum crucible at 1550 C. The crucible is situated in a furnace chamber in flowing nitrogen, and the fiber is wound in air outside of the chamber, making the process straightforward and commercially feasible. Strengths were considerably improved by improving glass quality to minimize internal defects. Though the fiber strengths were comparable with oxide fibers, work is currently in progress to further improve the elastic modulus and strength of fibers. The high elastic modulus of oxynitride glasses indicate their potential for making fibers with tensile strengths surpassing any oxide glass fibers, and we hope to realize that potential in the near future.

  16. Investigation into the Depth of Cure of Resin-Modified Glass-Ionomer Restorative Materials

    DTIC Science & Technology

    2006-08-01

    cure of RMGI materials has not received the attention that has been directed to the resin composite restorations. The main cause for this lack of...temperature span of the specific heat determination (20 9 - 60 Q C) would not be sufficient to cause reasonable loss of any HEMA methacrylate components (BP...UD I C? c::i cr) All c:j c:i c::i CKD C--) A" ai 40’. C::3 c=j c=D. cri n 5 43 Table 41. Scheffe Multi Two-way ANOVA analysis of the Vitremer

  17. Coordination chemistry for antibacterial materials: a monolayer of a Cu(2+) 2,2'-bipyridine complex grafted on a glass surface.

    PubMed

    Pallavicini, Piersandro; Dacarro, Giacomo; Grisoli, Pietro; Mangano, Carlo; Patrini, Maddalena; Rigoni, Federica; Sangaletti, Luigi; Taglietti, Angelo

    2013-04-07

    A propyltrimethoxysilane-modified 2,2'-bipyridine ligand is synthesized and its acetonitrile solutions are used to prepare monolayers of the molecule on glass surfaces. Absorption and X-ray photoelectron spectroscopy demonstrate that the modified glass surfaces bind Cu(2+) with a 1:1 ratio with respect to the 2,2'-bipyridine moieties under the chosen preparative conditions, producing materials bearing 0.016 μg cm(-2) of copper. Although in trace amounts, the bound Cu(2+) cations exert a significant microbicidal effect against Escherichia coli and Staphylococcus aureus.

  18. Effect of Ca-Al-Si-O common glass on dielectric properties of low-temperature co-fired ceramic materials with different fillers.

    PubMed

    Park, Zee-Hoon; Yeo, Dong-Hun; Shin, Hyo-Soon

    2014-11-14

    High-density integration in single component used for mobile communication is highly demanded with the miniaturization trend in multi-functional light-weighted mobile communication devices. Embedding passive components into multi-layered ceramic chips is also increasingly needed for high integrity. The need for high strength materials to be used in handheld devices has also increased. To this end, many attempts to join different low-temperature co-fired ceramics (LTCC) materials with different dielectric constants have been made, but failed with de-laminations or internal cracks mainly due to difference of thermal expansion coefficients. It is thought that this difference could be minimized with the use of common glass in different LTCC materials. In this study, several candidates of common glass were mixed with various fillers of LTCC to have various dielectric constants in the radio-frequency, and to minimize the mismatch in joining. Ca-Al-Si-O glass was mixed with 1.3MgO-TiO2, cordierite and CaTiO3. Mixtures were tape-cast and sintered to be compared with their micro-structures, dielectric properties and thermo-mechanical characteristics. When 1.3MgO-TiO2 with volumetric ratio of 30% was mixed with Ca-Al-Si-O glass, the measured dielectric constant was 7.9, the quality factor was 3708. With 45 volumetric percent of cordierite, the dielectric constant was 5 and the quality factor was 1052.

  19. Interfacial characteristics of resin-modified glass-ionomer materials: a study on fluid permeability using confocal fluorescence microscopy.

    PubMed

    Sidhu, S K; Watson, T F

    1998-09-01

    The tooth interface with resin-modified glass-ionomer cements (RM GICs) is poorly understood. This study examined the interface, especially with dentin. Cervical cavities in extracted teeth were restored with Fuji II LC, Vitremer, Photac-Fil, or a conventional GIC, Fuji Cap II. Fluorescent dye was placed in the pulp chambers for 3 hrs before the specimens were sectioned. Examination of the tooth/material interface with a confocal microscope showed that dye uptake by the restoration varied among materials. A "structureless", non-particulate, highly-stained layer of GIC was observed next to dentin in Fuji II LC. This layer varied in width, was prominent where the dentin tubules were cut "end-on" and in areas closer to the pulp, and was not seen adjacent to enamel. Vitremer showed minimal dye uptake, and the "structureless" layer was barely discernible. Photac-Fil showed more uniform uptake and absence of this layer. Cracking of enamel was also noted with these materials. The conventional GIC did not show any dye uptake, presence of a "structureless" layer, or enamel cracking. We elucidated the potential mechanisms involved in the formation of a "structureless" interfacial layer in Fuji II LC by studying the variables of cavity design, surface pre-treatment, water content of the tooth, time for it to develop, early finishing, and coating of the restoration. This layer, the "absorption layer", is probably related to water flux within the maturing cement, depending on environmental moisture changes and communication with the pulp in a wet tooth. The "micropermeability model" was useful in this study of the interfacial characteristics of RM GICs.

  20. Co-based metallic glass as a precursor for hard magnetic material

    NASA Astrophysics Data System (ADS)

    Bottoni, G.; Candolfo, D.; Cecchetti, A.; Palmeri, D.

    1996-03-01

    The Co-based amorphous ribbon of commercial name 6030 V having a nominal composition Co 71.5Fe 1.5Mo 1Mn 4Si 13B 9, which in the as-cast state is a very soft ferromagnet ( Hc = 0.01 Oe), after annealing, in a suitable range of temperatures, higher than the crystallization temperature ( Tk = 480°C), exhibits magnetic properties similar to those of a material for magnetic recording ( Hc ≈ 400 Oe). The fraction and the size of the crystallites, which play a fundamental role in the magnetic behaviour, depend on the annealing temperature and on the annealing time. Such a magnetic behaviour is here analysed for samples subjected to different thermal treatments. Particularly, we have examined: the magnetization processes, the occurrence of superparamagnetic particles and the influence of the residual amorphous matrix on the particles interactions.

  1. Chiral nematic stained glass: controlling the optical properties of nanocrystalline cellulose-templated materials.

    PubMed

    Kelly, Joel A; Shopsowitz, Kevin E; Ahn, Jun Myun; Hamad, Wadood Y; MacLachlan, Mark J

    2012-12-18

    Chiral nematic mesoporous materials decorated with metal nanoparticles have been prepared using the templated self-assembly of nanocrystalline cellulose (NCC). By adding small quantities of ionic compounds to aqueous dispersions of NCC and tetramethoxysilane (TMOS), the helical pitch of the chiral nematic structure could be manipulated in a manner complementary to the ratio of NCC/TMOS previously demonstrated by our group. We have studied the transformation of these ion-loaded composites into high surface area mesoporous silica and carbon films decorated with metal nanoparticles through calcination and carbonization, respectively. This general and straightforward approach to prepare chiral nematic metal nanoparticle assemblies may be useful in a variety of applications, particularly for their chiral optical properties.

  2. POLYESTER GLASS PLASTICS FOR SHIPBUILDING,

    DTIC Science & Technology

    POLYESTER PLASTICS , SHIP HULLS), (*SHIP HULLS, POLYESTER PLASTICS ), GLASS TEXTILES, REINFORCING MATERIALS, SHIP STRUCTURAL COMPONENTS, COMPOSITE MATERIALS, PROCESSING, CHEMISTRY, HANDBOOKS, BINDERS, USSR

  3. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.

    PubMed

    Dziadek, Michal; Menaszek, Elzbieta; Zagrajczuk, Barbara; Pawlik, Justyna; Cholewa-Kowalska, Katarzyna

    2015-11-01

    Poly(ε-caprolactone) (PCL) based composite films containing 12 and 21vol.% bioactive glass (SBG) microparticles were prepared by solvent casting method. Two gel-derived SBGs of SiO2-CaO-P2O5 system differing in SiO2 and CaO contents were applied (mol%): S2: 80SiO2, 16CaO, 4P2O5 and A2: 40SiO2, 54CaO, 6P2O5. The surfaces of the films in contact with Petri dish and exposed to the gas phase during casting were denoted as GS and AS, respectively. Both surfaces of films were characterised in terms of their morphology, micro- and nano-topography as well as wettability. Also mechanical properties (tensile strength, Young's modulus) and PCL matrix crystallinity (degree of crystallinity, crystal size) were evaluated. Degradation behaviour was examined by incubation of materials in UHQ-water at 37°C for 56weeks. The crystallinity, melting temperature and mass loss of incubated materials and pH changes of water were monitored. Furthermore, proliferation of MG-63 osteoblastic cells by direct contact and cytotoxic effect of obtained materials were investigated. Results showed that opposite surfaces of the same polymer and composite films differ in studied surface parameters. The addition of SBG particles into PCL matrix improves nano- and micro-roughness of both surfaces, enhances the hydrophilicity of GS surfaces (~67° for 21A2-PCL compared to ~78° for pure PCL) and also makes AS surface more hydrophobic (~94° for 21S2-PCL compared to ~86° for pure PCL). The nucleation density of PCL was increased with increasing content of SBG particles, which results in the large number of fine spherulites on composite AS surfaces observed using polarized optical (POM), scanning electron (SEM), and atomic force (AFM) microscopies. Higher content of SBG particles causes a notable increase of Young's modulus (from 0.38GPa for pure PCL, 0.90GPa for 12A2-PCL to 1.31GPa for 21A2-PCL), which also depends on SBG chemical composition. After 56-week degradation test, considerably higher

  4. Materials for the General Aviation Industry: Effect of Environment on Mechanical Properties of Glass Fabric/Rubber Toughened Vinyl Ester Laminates

    NASA Technical Reports Server (NTRS)

    McBride, Timothy M.

    1995-01-01

    A screening evaluation is being conducted to determine the performance of several glass fabric/vinyl ester composite material systems for use in primary General Aviation aircraft structures. In efforts to revitalize the General Aviation industry, the Integrated Design and Manufacturing Work Package for General Aviation Airframe and Propeller Structures is seeking to develop novel composite materials and low-cost manufacturing methods for lighter, safer and more affordable small aircraft. In support of this Work Package, this study is generating material properties for several glass fabric/rubber toughened vinyl ester composite systems and investigates the effect of environment on property retention. All laminates are made using the Seemann Composites Resin Infusion Molding Process (SCRIMP), a potential manufacturing method for the General Aviation industry.

  5. Porous wall hollow glass microspheres as a medium or substrate for storage and formation of novel materials

    DOEpatents

    Wicks, George G; Serkiz, Steven M.; Zidan, Ragaiy; Heung, Leung K.

    2014-06-24

    Porous wall hollow glass microspheres are provided as a template for formation of nanostructures such as carbon nanotubes, In addition, the carbon nanotubes in combination with the porous wall hollow glass microsphere provides an additional reaction template with respect to carbon nanotubes.

  6. The Biomineralization of a Bioactive Glass-Incorporated Light-Curable Pulp Capping Material Using Human Dental Pulp Stem Cells

    PubMed Central

    Jun, Soo-Kyung; Lee, Hae-Hyoung

    2017-01-01

    The aim of this study was to investigate the biomineralization of a newly introduced bioactive glass-incorporated light-curable pulp capping material using human dental pulp stem cells (hDPSCs). The product (Bioactive® [BA]) was compared with a conventional calcium hydroxide-incorporated (Dycal [DC]) and a light-curable (Theracal® [TC]) counterpart. Eluates from set specimens were used for investigating the cytotoxicity and biomineralization ability, determined by alkaline phosphatase (ALP) activity and alizarin red staining (ARS). Cations and hydroxide ions in the extracts were measured. An hDPSC viability of less than 70% was observed with 50% diluted extract in all groups and with 25% diluted extract in the DC. Culturing with 12.5% diluted BA extract statistically lowered ALP activity and biomineralization compared to DC (p < 0.05), but TC did not (p > 0.05). Ca (~110 ppm) and hydroxide ions (pH 11) were only detected in DC and TC. Ionic supplement-added BA, which contained similar ion concentrations as TC, showed similar ARS mineralization compared to TC. In conclusion, the BA was similar to, yet more cytotoxic to hDPSCs than, its DC and TC. The BA was considered to stimulate biomineralization similar to DC and TC only when it released a similar amount of Ca and hydroxide ions. PMID:28232937

  7. Material development in the SI sub 3 N sub 4 system using glass encapsulated Hip'ing

    SciTech Connect

    Corbin, N.D.; Sundberg, G.J.; Siebein, K.N.; Willkens, C.A.; Pujari, V.K.; Rossi, G.A.; Hansen, J.S.; Chang, C.L.; Hammarstrom, J.L.

    1992-04-01

    This report covers a two-year program to develop fully dense Si{sub 3}N{sub 4} matrix SiC whisker composites with enhanced properties over monolithic Si{sub 3}N{sub 4} materials. The primary goal was to develop a composite with a fracture toughness > 10 MPa{radical}m, capable of using high pressure glass encapsulated HIP'ing. Coating methods were developed to apply thin (<150nm) stoichiometric BN layers to SiC whiskers and also to apply a dual coating of SiC over carbon to the whiskers. Fracture toughness of the composites was determined to increase as the quantity of whiskers (or elongated grains) with their axis perpendicular to the crack plane increased. Of the interface compositions evaluated in this effort, carbon was determined to be the most effective for increasing toughness. The highest toughnesses (6.8--7.0 MPa{radical}m) were obtained with uniaxially aligned carbon coated whiskers. There was no evidence of the carbon coating compromising the oxidation resistance of the composites at 1370{degree}C.

  8. Baseline LAW Glass Formulation Testing

    SciTech Connect

    Kruger, Albert A.; Mooers, Cavin; Bazemore, Gina; Pegg, Ian L.; Hight, Kenneth; Lai, Shan Tao; Buechele, Andrew; Rielley, Elizabeth; Gan, Hao; Muller, Isabelle S.; Cecil, Richard

    2013-06-13

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  9. Diopside (CaO-MgO-2SiO2)-fluorapatite (9CaO-3P2O5-CaF2) glass-ceramics: Potential materials for bone tissue engineering

    SciTech Connect

    Kansal, Ishu; Goel, Ashutosh; Tulyaganov, Dilshat U.; Pascual, Maria J.; Lee, Hye-Young; Kim, Hae-Won; Ferreira, Jose M.

    2011-08-18

    Glass-ceramics in the diopside (CaMgSi2O6) - fluorapatite [Ca5(PO4)3F] system are potential candidates for restorative dental and bone implant materials. In the present study, a series of glasses along diopside - fluorapatite binary system have been prepared with varying diopside/fluorapatite ratios for their potential applications in bone tissue engineering. The glasses were obtained from compositions with fluorapatite contents varying between 0-40 wt.%. The sintering ability and crystallization kinetics of as obtained amorphous glasses have been studied through hot-stage microscopy (HSM) and differential thermal analysis (DTA), respectively while crystalline phase evolution in sintered GCs has been followed by X-ray diffraction (XRD) adjoined with Rietveld-R.I.R. technique and scanning electron microscopy (SEM). Further, biodegradation and apatite forming ability of glass-ceramics were investigated by immersion of glass-ceramic discs in simulated body fluid (SBF) solution while chemical degradation and weight loss of glass-ceramics were studied by immersion in Tris-HCl in accordance with standard ISO 10993-14. The addition of fluorapatite (10-25 wt.%) in diopside glass system significantly enhanced the sintering ability of glass-ceramics and improved their apatite forming ability along with their biodegradation behaviour. Moreover, the in vitro cellular responses to glass-ceramics showed good cell viability and significant stimulation of osteoblastic differentiation, suggesting the possible use of the glass-ceramics for bone regeneration.

  10. Glass strengthening and patterning methods

    DOEpatents

    Harper, David C; Wereszczak, Andrew A; Duty, Chad E

    2015-01-27

    High intensity plasma-arc heat sources, such as a plasma-arc lamp, are used to irradiate glass, glass ceramics and/or ceramic materials to strengthen the glass. The same high intensity plasma-arc heat source may also be used to form a permanent pattern on the glass surface--the pattern being raised above the glass surface and integral with the glass (formed of the same material) by use of, for example, a screen-printed ink composition having been irradiated by the heat source.

  11. Comparison of a SiO(2)-CaO-ZnO-SrO glass polyalkenoate cement to commercial dental materials: glass structure and physical properties.

    PubMed

    Wren, A W; Coughlan, A; Laffir, F R; Towler, M R

    2013-02-01

    Glass polyalkenoate cements (GPCs) have previously been considered for orthopedic applications. A Zn-GPC (BT 101) was compared to commercial GPCs (Fuji IX and Ketac Molar) which have a setting chemistry analogous to BT 101. Handling properties (working, T (w) and setting, T (s) times) for BT 101 were shorter than the commercial GPCs. BT 101 also had a higher setting exotherm (S (x) -34 °C) than the commercial GPCs (29 °C). The maximum strengths for BT 101, Fuji IX, and Ketac Molar were 75, 238, and 216 MPa (compressive, σ (c)), and 34, 54, and 62 MPa (biaxial flexural strengths, σ (f)), respectively. The strengths of BT 101 are more suitable for spinal applications than commercial GPCs.

  12. Dye-impregnated polymer-filled porous glass: a new composite material for solid state dye lasers and laser beam control optical elements (Abstract Only)

    NASA Astrophysics Data System (ADS)

    Koldunov, M. F.; Manenkov, Alexander A.; Sitnikov, N. M.; Dolotov, S. M.

    1994-07-01

    Polymer-filled microporous glass (PFMG) composite materials have been recently proposed as a proper host for dyes to create solid-state dye lasers and laser beam control elements (Q-switchers, etc.) [1,2]. In this paper we report investigation of some laser-related properties of Polymethilmethacrylate (PMAA) - filled porous glass doped with Rhodamine 6G perchiorate (active lasing dye) and 1055 dye (passive bleachable dye): laser induced damage threshold, lasmg efficiency, bleaching efficiency, and microhardness have been measured. All these characteristics have been found to be rather high indicating that PFMG composite materials are perspective hosts for dye impregnation and fabrication highly effective solid-state dye lasers and other laser related elements (Q-switchers, mode-lockers, modeselectors, spatial filters).

  13. In vitro comparative fluoride release, and weight and volume change in light-curing and self-curing glass ionomer materials.

    PubMed

    Wandera, A; Spencer, P; Bohaty, B

    1996-01-01

    The purpose of this study was to evaluate and compare in vitro fluoride release from and weight and volume changes of Photac-Fil, a light-curing polymaleinate restorative glass ionomer, with Ketac-Fil, a self-curing glass ionomer, and Ketac-Silver, a metal reinforced glass ionomer. Five discs of each material, measuring 2 mm height and 5 mm diameter, were suspended in separate vials of distilled water and laboratory artificial saliva. Fluoride release into the solutions was measured using a calibrated fluoride-sensitive ion meter initially at 24 hr and then weekly from 1 to 9 weeks. These results were evaluated statistically using repeated measures analysis of variance. Volumes and weights were recorded at the start and end of the experiment and analyzed using the paired t-test. Photac-Fil released similar amounts of fluoride to Ketac-Silver, but significantly less than Ketac-Fil in distilled water (P < or = 0.05). In artificial saliva, Photac-Fil released similar amounts to Ketac-Fil, but significantly more than Ketac-Silver (P < or = 0.05). Photac-Fil volume increased in distilled water and artificial saliva (P < or = 0.05) as did Ketac-Fil and Ketac-Silver in artificial saliva (P < or = 0.05). The only material that demonstrated significant net weight increase was Ketac-Silver in artificial saliva (P < or = 0.05). In summary, differences in fluoride release between these three glass ionomer materials varied as a function of the media in which they were stored. Whereas Ketac-Fil exhibited significantly greater fluoride release than the other materials in distilled water, in artificial saliva Ketac-Fil and Photac-Fil exhibited comparable fluoride release. Dimensional change, as evaluated by volume and weight differences, was also affected by storage media.

  14. INTRINSIC DOSIMETRY OF GLASS CONTAINERS USED TO TRANSPORT NUCLEAR MATERIALS: Potential Implications to the Field of Nuclear Forensics

    SciTech Connect

    Schwantes, Jon M.; Miller, Steven D.; Piper, Roman K.; Murphy, Mark K.; Amonette, James E.; Bonde, Steven E.; Duckworth, Douglas C.

    2008-09-15

    Thermoluminescence (TL) and Electron Paramagnetic Resonance (EPR) dosimetry were used to measure dose effects in borosilicate glass with time, from 10 minutes to ~60 days following exposure to a dose of up to 10,000 Rad. TL and EPR results were consistent and performed similarly, with both techniques capable of achieving an estimated limit of detection of between 50-100 Rad. Three peaks were identified in the TL glow curve at roughly 110oC, 205oC, and 225oC. The intensity of the 205oC peak was the dominant peak over the time period of this study. The stability of all of the peaks with time since irradiation increased with their corresponding temperature and little or no variation was observed in the glow curve response to a specified total dose attained at different dose rates. The intensity of the 205oC peak decreased logarithmically with time regardless of total dose. Based upon a conservative limit of detection of 330 Rad, a 10,000 Rad dose would still be detected 2.7E3 years after exposure. This paper introduces the concept of intrinsic dosimetry, the consideration of a measured dose received to container walls in concert with the physical characteristics of the radioactive material contained inside those walls, as a method for gathering rather unique pathway information about the history of that sample. Three hypothetical scenarios are presented to introduce this method and to illustrate how intrinsic dosimetry might benefit the fields of nuclear forensics and waste management.

  15. Comparative evaluation of sealing ability of glass ionomer-resin continuum as root-end filling materials: An in vitro study

    PubMed Central

    Chohan, Hitesh; Dewan, Harisha; Annapoorna, B. M.; Manjunath, M. K.

    2015-01-01

    Background and Objectives: Root-end filling is a prudent procedure aimed at sealing the root canal to prevent penetration of tissue fluids into the root canals. An ideal root-end filling material should produce a complete apical seal. Therefore, the aim of this study is to compare the leakage behavior of four different root-end filling materials. Materials and Methods: Sixty-eight maxillary central incisors were obturated with laterally condensed gutta-percha and AH plus sealer. The roots were resected at the level of 3 mm perpendicular to the long axis of the tooth. Root-end cavities were prepared with straight fissure stainless steel bur. The teeth were then divided into four experimental and two control groups, and cavities restored as per the groupings. The teeth were immersed in methylene blue for 48 h, split longitudinally, and dye penetration was measured. Results: A highly significant difference existed in the mean dye penetration of Group I (conventional glass ionomer) and the other groups (resin-modified glass ionomer, polyacid-modified composite, and composite resin). There was no statistically significant difference among the three groups. Conclusions: (1) Significant difference was found in the dye penetration values of conventional glass ionomer cement and other groups. (2) No statistically significant difference was found in the dye penetration values of groups II, III, and IV. PMID:26759803

  16. Glass-Ceramic Material from the SiO2-Al2O3-CaO System Using Sugar-Cane Bagasse Ash (SCBA)

    NASA Astrophysics Data System (ADS)

    Teixeira, S. R.; Romero, M.; Ma Rincón, J.; Magalhães, R. S.; Souza, A. E.; Santos, G. T. A.; Silva, R. A.

    2011-10-01

    Brazil is the world's largest producer of alcohol and sugar from sugarcane. Currently, sugarcane bagasse is burned in boilers to produce steam and electrical energy, producing a huge volume of ash. The major component of the ash is SiO2, and among the minor components there are some mineralizing agents or fluxing. Published works have shown the potential of transforming silicate-based residues into glass-ceramic products of great utility. This work reports the research results of SCBA use to produce glass-ceramics with wollastonite, rankinite and gehlenite as the major phases. These silicates have important applications as building industry materials, principally wollastonite, due to their special properties: high resistance to weathering, zero water absorption, and hardness among others. The glasses (frits) were prepared mixing ash, calcium carbonate and sodium or potassium carbonates as flux agents, in different concentrations. X-ray fluorescence was used to determine the chemical composition of the glasses and their crystallization was assessed by using thermal analysis (DTA/DSC/TGA) and X-ray diffraction. The crystallization kinetics was evaluated using the Kissinger method, giving activation energies ranging from 200 to 600 kJ/mol.

  17. Measuring space radiation impact on the characteristics of optical glasses; measurement results and recommendations from testing a selected set of materials

    NASA Astrophysics Data System (ADS)

    Fruit, Michel; Gusarov, Andrei I.; Doyle, Dominic B.

    2002-09-01

    Radiation sensitivity of glass is a general concern for the designer of Space optical instruments. ASTRIUM, in cooperation with SCK-CEN, has conducted a study (under ESA sponsorship) to define the approach for the gathering of a comprehensive database to quantify these effects through the use of linear sensitivity coefficients (called "Dose Coefficients"). These "Dose coefficients" cover not only transmittance but also other characteristics such as refractive index. After having recalled the basics of the proposed approach, results of the first irradiation tests which have been run on a selected set of classical glasses nd their Radiation hardened Cerium doped analogs (including BK7, K5, LaK9 and other Schott glasses) will be discussed. PRotons and gamma radiation have been performed with the aim to demonstrate equivalence, thus allowing to further considering only gamma radiation for an extensive testing of available glasses. Relaxation impacts on some months period have been tentatively analyzed. All these measurements have been processed and the modeling approach of the radiations impacts has been derived, as shown in the publication from A. Gusarov at this conference. This will constitute the grounds for the building of a comprehensive "Dose Coefficients" data base, as expressed in the publication from D. Doyle also at this conference. From this, recommendations for a sound characterization of radiation impacts on refractive optical materials have been established and are the subject of this publication.

  18. Er3+ doped germanate-tellurite glass for mid-infrared 2.7 μm fiber laser material

    NASA Astrophysics Data System (ADS)

    Lu, Yu; Cai, Muzhi; Cao, Ruijie; Qian, Shan; Xu, Shiqing; Zhang, Junjie

    2016-03-01

    2.7 μm fluorescence has been achieved in the different concentration Er3+ doped germanate-tellurite glasses. The germanate-tellurite glass shows a good thermal stability and Fourier transform infrared spectra indicates that the mid-infrared transmission spectra performance is good. Based on the measured absorption spectra, the Judd-Ofelt parameters were calculated and discussed. Moreover, the emission spectra of Er3+ doped glasses show that the emission intensity at ~2.7 μm reaches a maximal value and no obvious concentration quenching phenomenon happens even if the ErF3-doping concentration is 1.5 mol%. In addition, the 2.7 μm radiative transition probability and emission cross section is 35.57 s-1 and 13.87×10-21 cm2 corresponding to the Er3+:4I11/2→4I13/2 transition and superior gain performance was also obtained from the prepared glass. Meanwhile, energy transfer mechanism has been investigated in detail. Hence, the spectroscopic characteristics as well as the good thermal property indicate that this kind of glass is an attractive host for developing mid-infrared fiber laser.

  19. Apollo 15 green glasses.

    NASA Technical Reports Server (NTRS)

    Ridley, W. I.; Reid, A. M.; Warner, J. L.; Brown, R. W.

    1973-01-01

    The samples analyzed include 28 spheres, portions of spheres, and angular fragments from soil 15101. Emerald green glasses from other soils are identical to those from 15101. The composition of the green glass is unlike that of any other major lunar glass group. The Fe content is comparable to that in mare basalts, but Ti is much lower. The Mg content is much higher than in most lunar materials analyzed to date, and the Cr content is also high. The low Al content is comparable to that of mare basalt glasses.

  20. Local modification of speed of sound in lithium alumino-silicate glass/ceramic material by pulsed laser irradiation and thermal processing.

    PubMed

    Kim, Y; Helvajian, H

    2013-11-21

    Glass and glass/ceramics are now used in modern devices with increasing frequency. A list of the notable material properties commonly will not include a capability to guide ultrasonic waves. The photosensitive glass ceramics (PSGCs), an old invention with recent technological rebirth, may enable this capability. The speed of sound (SoS) has been measured at an ultrasonic frequency (75 MHz) in a commercially available PSGC material. The measurements are made using a pulse echo time-of-flight (TOF) technique as a function of UV laser exposure and thermal processing. The measured increase in the SoS correlates with the density of crystalline matter present, which can be metered by controlling the exposure dose. For the Li2SiO3 crystalline phase, the results show the shear (transverse) wave mode velocity can be increased by 4.8% relative to an unexposed area where no crystalline matter exists. The maximum change in velocity for the longitudinal (compressional) wave mode is only 2%. However, by altering the thermal processing protocols to grow the high temperature Li2Si2O5 crystalline phase, the measured change in the SoS increases to 11% and 9%, respectively. These results permit the volumetric patterning of delay lines by laser direct write techniques for generating complex profile ultrasonic wave patterns. Moreover, by patterned 3D shaping (i.e., photostructuring), ultrasound energy can be harnessed and utilized to advantage.

  1. Methods and preliminary findings of a cost-effectiveness study of glass-ionomer-based and composite resin sealant materials after 2 yr.

    PubMed

    Goldman, Ann S; Chen, Xi; Fan, Mingwen; Frencken, Jo E

    2014-06-01

    The cost-effectiveness of glass-carbomer, conventional high-viscosity glass-ionomer cement (HVGIC) [without or with heat (light-emitting diode (LED) thermocuring) application], and composite resin sealants were compared after 2 yr in function. Estimated net costs per sealant were obtained from data on personnel time (measured with activity sampling), transportation, materials, instruments and equipment, and restoration costs for replacing failed sealants from a community trial involving 7- to 9-yr-old Chinese children. Cost data were standardized to reflect the placement of 1,000 sealants per group. Outcomes were the differences in the number of dentine caries lesions that developed between groups. The average sealant application time ranged from 5.40 min (for composite resin) to 8.09 min (for LED thermocured HVGIC), and the average cost per sealant for 1,000 performed per group (simulation sample) ranged from $US3.73 (for composite resin) to $US7.50 (for glass-carbomer). The incremental cost-effectiveness of LED thermocured HVGIC to prevent one additional caries lesion per 1,000 sealants performed was $US1,106 compared with composite resin. Sensitivity analyses showed that differences in the cost of materials across groups had minimal impact on the overall cost. Cost and effectiveness data enhance policymakers' ability to address issues of availability, access, and compliance associated with poor oral-health outcomes, particularly when large numbers of children are excluded from care, in economies where oral health services are still developing.

  2. Effects of air abrasion with alumina or glass beads on surface characteristics of CAD/CAM composite materials and the bond strength of resin cements

    PubMed Central

    Nobuaki, ARAO; Keiichi, YOSHIDA; Takashi, SAWASE

    2015-01-01

    ABSTRACT Objective The study aimed to evaluate effects of air abrasion with alumina or glass beads on bond strengths of resin cements to CAD/CAM composite materials. Material and Methods CAD/CAM composite block materials [Cerasmart (CS) and Block HC (BHC)] were pretreated as follows: (a) no treatment (None), (b) application of a ceramic primer (CP), (c) alumina-blasting at 0.2 MPa (AB), (d) AB followed by CP (AB+CP), and (e) glass-beads blasting at 0.4 MPa (GBB) followed by CP (GBB+CP). The composite specimens were bonded to resin composite disks using resin cements [G-CEM Cerasmart (GCCS) and ResiCem (RC)]. The bond strengths after 24 h (TC 0) and after thermal cycling (TC 10,000 at 4–60°C) were measured by shear tests. Three-way ANOVA and the Tukey compromise post hoc tests were used to analyze statistically significant differences between groups (α=0.05). Results For both CAD/CAM composite materials, the None group exhibited a significant decrease in bond strength after TC 10,000 (p<0.05). AB showed significantly higher bond strength after TC 10,000 than the None group, while CP did not (p<0.05). GBB exhibited smaller surface defects than did AB; however, their surface roughnesses were not significantly different (p>0.05). The AB+CP group showed a significantly higher bond strength after TC 10,000 than did the AB group for RC (p<0.05), but not for GCCS. The GBB+CP group showed the highest bond strength for both thermal cyclings (p<0.05). Conclusions Air abrasion with glass beads was more effective in increasing bond durability between the resin cements and CAD/CAM composite materials than was using an alumina powder and a CP. PMID:26814465

  3. Phase development and sintering behaviour of biphasic HA-TCP calcium phosphate materials prepared from hydroxyapatite and bioactive glass.

    PubMed

    Behnamghader, A; Bagheri, N; Raissi, B; Moztarzadeh, F

    2008-01-01

    The composites of hydroxyapatite (HA) with 2.5 and 5 wt% of a double oxide (50 mol% CaO and 50 mol% P(2)O(5)) glass were prepared using the conventional powder mixing and sintering method. The addition of the glass significantly enhanced the decomposition process of HA into alpha tricalcium phosphate (alpha-TCP) for bodies sintered at 1,300 and 1,350 degrees C and beta-TCP phases for the ones sintered at 1,200, 1,250 and 1,300 degrees C. Microstructural characteristics, phase development and thermal behaviour were studied by SEM, XRD and STA. The effects of TCP phase content and phase transformation from beta-TCP to alpha-TCP on the sintering are discussed. The characterizations revealed considerable content of TCP in the form of large semi-islands due to important reactions between the fine HA and the glass mixed powders.

  4. Transmission electron microscopy for archaeo-materials research: Nanoparticles in glazes and red/yellow glass and inorganic pigments in painted context

    NASA Astrophysics Data System (ADS)

    Fredrickx, Peggy

    2004-10-01

    This dissertation addresses the application of Transmission Electron Microscopy (TEM) to historic objects, concentrating on colour-causing nanoparticles in vitreous materials and pigments with the focus on substrates in lake pigments used in thin glaze layers, and on manuscript illustrations. TEM is well suited for archaeometry: it gives chemical elemental information, imaging and diffraction information and the amount of material needed is minimal. Sample preparation techniques suitable for historic materials are discussed. Nanoparticles can be incorporated in glass through staining. Yellow coloured glass plates contain Ag particles. Baking temperatures and different Ag-salts determine the density of the nanoparticles. Dense layers cause more saturated colours. Red glass plates can be obtained by staining with Cu-salts. Metallic Cu particles have a diameter of about 24 nm. Comparison with XRF results suggests that often a combination of Cu and Ag was used for warmer colours. Red glass can be "flashed" to the substrate glass. Then, the colour is also caused by metallic Cu particles. The red layer often displays a band structure of stacked red and transparent bands. In the transparent bands, no nanoparticles have been found. In lustre-ware, Ag and metallic Cu occur. Their distribution throughout the material determines the colour of the fragment. In both there is a dense top layer with particles of sizes smaller than 15 nm. If this top layer consists of Ag particles, the resulting colour is golden. In one sample, under this top layer the amount of Cu particles increases. This underlying layer causes the colour to redden. Particles are mainly between 5 and 15 nm in diameter. Using reconstructions, it has been demonstrated that TEM can detect and identify a stacking of thin layers in parchment decorations. A pink powder sample from Pompeii consists of a basis of allophane type clay. The lake substrates consist of Al, O, S and their amorphous structure does not seem to

  5. Determination of lead, uranium, thorium, and thallium in silicate glass standard materials by isotope dilution mass spectrometry

    USGS Publications Warehouse

    Barnes, I.L.; Garner, E.L.; Gramlich, J.W.; Moore, L.J.; Murphy, T.J.; Machlan, L.A.; Shields, W.R.; Tatsumoto, M.; Knight, R.J.

    1973-01-01

    A set of four standard glasses has been prepared which have been doped with 61 different elements at the 500-, 50-, 1-, and 0.02-ppm level. The concentrations of lead, uranium, thorium, and thallium have been determined by isotope dilution mass spectrometry at a number of points in each of the glasses. The results obtained from independent determinations in two laboratories demonstrate the homogeneity of the samples and that precision of the order of 0.5% (95% L.E.) may be obtained by the method even at the 20-ppb level for these elements. The chemical and mass spectrometric procedures necessary are presented.

  6. Glass formation - A contemporary view

    NASA Technical Reports Server (NTRS)

    Uhlmann, D. R.

    1983-01-01

    The process of glass formation is discussed from several perspectives. Particular attention is directed to kinetic treatments of glass formation and to the question of how fast a given liquid must be cooled in order to form a glass. Specific consideration is paid to the calculation of critical cooling rates for glass formation, to the effects of nucleating heterogeneities and transients in nucleation on the critical cooling rates, to crystallization on reheating a glass, to the experimental determination of nucleation rates and barriers to crystal nucleation, and to the characteristics of materials which are most conducive to glass formation.

  7. Glass sealing

    SciTech Connect

    Brow, R.K.; Kovacic, L.; Chambers, R.S.

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  8. Glass Stronger than Steel

    DOE R&D Accomplishments Database

    Yarris, Lynn

    2011-03-28

    A new type of damage-tolerant metallic glass, demonstrating a strength and toughness beyond that of steel or any other known material, has been developed and tested by a collaboration of researchers from Berkeley Lab and Caltech.

  9. Present and future of glass-ionomers and calcium-silicate cements as bioactive materials in dentistry: Biophotonics-based interfacial analyses in health and disease

    PubMed Central

    Watson, Timothy F.; Atmeh, Amre R.; Sajini, Shara; Cook, Richard J.; Festy, Frederic

    2014-01-01

    Objective Since their introduction, calcium silicate cements have primarily found use as endodontic sealers, due to long setting times. While similar in chemistry, recent variations such as constituent proportions, purities and manufacturing processes mandate a critical understanding of service behavior differences of the new coronal restorative material variants. Of particular relevance to minimally invasive philosophies is the potential for ion supply, from initial hydration to mature set in dental cements. They may be capable of supporting repair and remineralization of dentin left after decay and cavity preparation, following the concepts of ion exchange from glass ionomers. Methods This paper reviews the underlying chemistry and interactions of glass ionomer and calcium silicate cements, with dental tissues, concentrating on dentin–restoration interface reactions. We additionally demonstrate a new optical technique, based around high resolution deep tissue, two-photon fluorescence and lifetime imaging, which allows monitoring of undisturbed cement–dentin interface samples behavior over time. Results The local bioactivity of the calcium-silicate based materials has been shown to produce mineralization within the subjacent dentin substrate, extending deep within the tissues. This suggests that the local ion-rich alkaline environment may be more favorable to mineral repair and re-construction, compared with the acidic environs of comparable glass ionomer based materials. Significance The advantages of this potential re-mineralization phenomenon for minimally invasive management of carious dentin are self-evident. There is a clear need to improve the bioactivity of restorative dental materials and these calcium silicate cement systems offer exciting possibilities in realizing this goal. PMID:24113131

  10. THERMAL STABILITY OF GLASS PLASTICS.

    DTIC Science & Technology

    COMPOSITE MATERIALS, THERMAL STABILITY), (* GLASS TEXTILES, THERMAL STABILITY), (*LAMINATED PLASTICS , THERMAL STABILITY), HEATING, COOLING, MECHANICAL PROPERTIES, FATIGUE(MECHANICS), FLEXURAL STRENGTH, THERMAL STRESSES, USSR

  11. Identification of resinous materials on 16th and 17th century reverse-glass objects by gas chromatography/mass spectrometry

    NASA Astrophysics Data System (ADS)

    Baumer, Ursula; Dietemann, Patrick; Koller, Johann

    2009-07-01

    Objects of hinterglasmalerei, reverse-glass paintings, are painted on the back side of glass panels. Obviously, the paint layers are applied in reverse order, starting with the uppermost layer. The finished hinterglas painting is viewed through the glass, thus revealing an impressive gloss and depth of colour. The binding media of two precious objects of hinterglasmalerei from the 16th and 17th century have been identified as almost exclusively resinous. Identification was performed by a special optimised analysis procedure, which is discussed in this paper: solvent extracts are analysed by gas chromatography/mass spectrometry, both with and without derivatisation or hydrolysis. In an additional step, oxalic acid is added to the methanol extracts prior to injection. This attenuates the peaks of the non-acidic compounds, whereas the acids elute with good resolution. The non-acidic compounds are emphasised after injection of the underivatised extracts. This approach minimises compositional changes caused by the sample preparation and derivatisation steps. Chromatograms of aged samples with a very complex composition are simplified, which allows a more reliable and straightforward identification of significant markers for various materials. The binding media of the hinterglas objects were thus shown to consist of mixtures of different natural resins, larch turpentine, heat-treated Pinaceae resin or mastic. Typical compounds of dragon's blood, a natural red resin, were also detectable in red glazes by the applied analysis routine. Identification of the binding media provides valuable information that can be used in the development of an adequate conservation treatment.

  12. [Effect of the application of fluoride on the superficial roughness of vitremer glass ionomer cement and microbial adhesion to this material].

    PubMed

    Pedrini, D; Gaetti-Jardim Júnior, E; Mori, G G

    2001-01-01

    Glass ionomer cements are important options in restorative and preventive dentistry due to their adhesion to the tooth surface and to fluoride release, which can decrease the risk of recurrent caries. The topical use of acidulated and neutral fluoride gels has been frequent in dentistry. However, this procedure can adversely affect the surface of restorative materials, increasing their roughness and the retention of dental plaque. Thus, this study evaluated the period in which Vitremer glass ionomer cement maintains its antimicrobial activity over Streptococcus mutans ATCC 25175, as well as the effects of topical application of acidulated and neutral fluoride gels on these microbiological parameters and on the superficial characteristics of the restorative material. It was verified that the antimicrobial activity of Vitremer is very transient, decreasing to an undetectable level after four days, and the topical application of fluoride gel did not restore this activity. It was observed that S. mutans ATCC 25175 adheres to this restorative material, and the topical fluorides did not affect this event. The surface of Vitremer was not altered by the application of fluoride gels.

  13. Advanced Ceramic Armor Materials

    DTIC Science & Technology

    1990-05-11

    materials, toughened alumina, fiber -reinforced glass matrix composites, and multilayer-gradient materials for ballistic testing. Fabrication and...material systems: Multilayer advanced armor materials consisting of a hard ceramic faceplate bonded to a graphite fiber -reinforced glass matrix...toughened alumina, and fiber - applied studies of advanced reinforced ceramic matrix glass and glass -ceramic composites for ballistic testing. technologies

  14. Containerless Manufacture of Glass Optical Fibers

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.; Ethridge, E. C.

    1985-01-01

    Contamination and crystallization reduced in proposed process. Solid optical fiber drawn from an acoustically levitated lump of molten glass. New material added in solid form, melted and then moved into main body of molten glass. Single axis acoustic levitation furnances levitate glass melts at temperature up to about 700 degrees C. Processing in unit limited to low-melting temperature glasses.

  15. Indium fluoride glass fibers

    NASA Astrophysics Data System (ADS)

    Saad, Mohammed

    2012-03-01

    Fluoride glasses are the only material that transmit light from ultraviolet to mid-infrared and can be drawn into industrial optical fibers. The mechanical and optical properties of new indium fluoride glass fibers have been investigated. Multimode fiber 190 microns, has very high mechanical strength greater than 100 kpsi and optical loss as low as 45 dB/km between 2 and 4 microns. Unlike chalcogenide glass fibers, indium fluoride fiber has a wide transmission window from 0.3 to 5.5 microns without any absorption peak. Indium fluoride glass fibers are the technology of choice for all application requiring transmission up to 5 micron such as infrared contour measure (IRCM) and chemical sensing. Furthermore, Indium fluoride glasses have low phonon energy and can be heavily doped and co-doped whit rare-earth elements. Therefore they are very promising candidates for infrared fiber lasers.

  16. Analysis of water sorption isotherms of amorphous food materials by solution thermodynamics with relevance to glass transition: evaluation of plasticizing effect of water by the thermodynamic parameters.

    PubMed

    Shimazaki, Eriko; Tashiro, Akiko; Kumagai, Hitomi; Kumagai, Hitoshi

    2017-04-01

    Relation between the thermodynamic parameters obtained from water sorption isotherms and the degree of reduction in the glass transition temperature (Tg), accompanied by water sorption, was quantitatively studied. Two well-known glassy food materials namely, wheat gluten and maltodextrin were used as samples. The difference between the chemical potential of water in a solution and that of pure water ([Formula: see text]), the difference between the chemical potential of solid in a solution and that of a pure solid ([Formula: see text]), and the change in the integral Gibbs free energy ([Formula: see text]) were obtained by analyzing the water sorption isotherms using solution thermodynamics. The parameter [Formula: see text] correlated well with ΔTg (≡Tg - Tg0; where Tg0 is the glass transition temperature of dry material), which had been taken to be an index of plasticizing effect. This indicates that plasticizing effect of water on foods can be evaluated through the parameter [Formula: see text].

  17. Effect of residual chips on the material removal process of the bulk metallic glass studied by in situ scratch testing inside the scanning electron microscope

    SciTech Connect

    Huang Hu; Zhao Hongwei; Shi Chengli; Wu Boda; Fan Zunqiang; Wan Shunguang; Geng Chunyang

    2012-12-15

    Research on material removal mechanism is meaningful for precision and ultra-precision manufacturing. In this paper, a novel scratch device was proposed by integrating the parasitic motion principle linear actuator. The device has a compact structure and it can be installed on the stage of the scanning electron microscope (SEM) to carry out in situ scratch testing. Effect of residual chips on the material removal process of the bulk metallic glass (BMG) was studied by in situ scratch testing inside the SEM. The whole removal process of the BMG during the scratch was captured in real time. Formation and growth of lamellar chips on the rake face of the Cube-Corner indenter were observed dynamically. Experimental results indicate that when lots of chips are accumulated on the rake face of the indenter and obstruct forward flow of materials, materials will flow laterally and downward to find new location and direction for formation of new chips. Due to similar material removal processes, in situ scratch testing is potential to be a powerful research tool for studying material removal mechanism of single point diamond turning, single grit grinding, mechanical polishing and grating fabrication.

  18. Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials

    NASA Astrophysics Data System (ADS)

    Singh, Narveer; Singh, Kanwar Jit; Singh, Kulwant; Singh, Harvinder

    2004-09-01

    Gamma-ray mass attenuation coefficients have been measured experimentally and calculated theoretically for PbO-B 2O 3 and Bi 2O 3-PbO-B 2O 3 glass systems using narrow beam transmission method. These values have been used to calculate half value layer (HVL) parameter. These parameters have also been calculated theoretically for some standard radiation shielding concretes at same energies. Effect of replacing lead by bismuth has been analyzed in terms of density, molar volume and mass attenuation coefficient.

  19. Laser Glass Frit Sealing for Encapsulation of Vacuum Insulation Glasses

    NASA Astrophysics Data System (ADS)

    Kind, H.; Gehlen, E.; Aden, M.; Olowinsky, A.; Gillner, A.

    Laser glass frit sealing is a joining method predestined in electronics for the sealing of engineered materials housings in dimensions of some 1 mm2 to several 10 mm2. The application field ranges from encapsulation of display panels to sensor housings. Laser glass frit sealing enables a hermetical closure excluding humidity and gas penetration. But the seam quality is also interesting for other applications requiring a hermetical sealing. One application is the encapsulation of vacuum insulation glass. The gap between two panes must be evacuated for reducing the thermal conductivity. Only an efficient encapsulating technique ensures durable tight joints of two panes for years. Laser glass frit sealing is an alternative joining method even though the material properties of soda lime glass like sensitivity to thermal stresses are much higher as known from engineered materials. An adapted thermal management of the process is necessary to prevent the thermal stresses within the pane to achieve crack free and tight glass frit seams.

  20. Electron anions and the glass transition temperature

    PubMed Central

    Sushko, Peter V.; Tomota, Yudai; Hosono, Hideo

    2016-01-01

    Properties of glasses are typically controlled by judicious selection of the glass-forming and glass-modifying constituents. Through an experimental and computational study of the crystalline, molten, and amorphous [Ca12Al14O32]2+ ⋅ (e–)2, we demonstrate that electron anions in this system behave as glass modifiers that strongly affect solidification dynamics, the glass transition temperature, and spectroscopic properties of the resultant amorphous material. The concentration of such electron anions is a consequential control parameter: It invokes materials evolution pathways and properties not available in conventional glasses, which opens a unique avenue in rational materials design. PMID:27559083

  1. Glass recycling

    SciTech Connect

    Dalmijn, W.L.; Houwelingen, J.A. van

    1995-12-31

    Glass recycling in the Netherlands has grown from 10,000 to 300,000 tonnes per annum. The various advantages and problems of the glass cycle with reference to the state of the art in the Netherlands is given. Special attention is given to new technologies for the automated sorting of cullet with detection systems. In Western Europe the recycling of glass has become a success story. Because of this, the percentage of glass cullet used in glass furnaces has increased. To meet the quality demands of the glass industry, automated sorting for the removal of stones, non-ferrous metals and other impurities had to be developed and incorporated in glass recycling plants. In Holland, Germany and other countries, the amount of glass collected has reached a level that color-sorting becomes necessary to avoid market saturation with mixed cullet. Recently, two systems for color-sorting have been developed and tested for the separation of bottles and cullet in the size range of 20--50 mm. With the increased capacity of the new glass recycling plants, 120,000--200,000 tpy, the quality systems have also to be improved and automated. These quality control systems are based on the automated sorting technology developed earlier for the glass recycling plants. The data obtained are automatically processed and printed. The sampling system and its relation to the theory of Gy will be described. Results of both developments in glass recycling plants will be described.

  2. Submerged combustion melting processes for producing glass and similar materials, and systems for carrying out such processes

    DOEpatents

    Charbonneau, Mark William

    2015-08-04

    Processes of controlling submerged combustion melters, and systems for carrying out the methods. One process includes feeding vitrifiable material into a melter vessel, the melter vessel including a fluid-cooled refractory panel in its floor, ceiling, and/or sidewall, and heating the vitrifiable material with a burner directing combustion products into the melting zone under a level of the molten material in the zone. Burners impart turbulence to the molten material in the melting zone. The fluid-cooled refractory panel is cooled, forming a modified panel having a frozen or highly viscous material layer on a surface of the panel facing the molten material, and a sensor senses temperature of the modified panel using a protected thermocouple positioned in the modified panel shielded from direct contact with turbulent molten material. Processes include controlling the melter using the temperature of the modified panel. Other processes and systems are presented.

  3. Community Geothermal Technology Program: Hawaii glass project. Final report

    SciTech Connect

    Miller, N.; Irwin, B.

    1988-01-20

    Objective was to develop a glass utilizing the silica waste material from geothermal energy production, and to supply local artists with this glass to make artistic objects. A glass composed of 93% indigenous Hawaiian materials was developed; 24 artists made 110 objects from this glass. A market was found for art objects made from this material.

  4. Glass matrix armor

    DOEpatents

    Calkins, Noel C.

    1991-01-01

    An armor system which utilizes glass. A plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material consisting of glass and a ceramic material and, in certain embodiments, a polymeric material. The glass may be in monolithic form or particles of ceramic may be dispersed in a glass matrix. The ceramic material may be in monolithic form or may be in the form of particles dispersed in glass or dispersed in said polymer.

  5. Fabrication of glass microspheres with conducting surfaces

    DOEpatents

    Elsholz, W.E.

    1982-09-30

    A method for making hollow glass microspheres with conducting surfaces by adding a conducting vapor to a region of the glass fabrication furnace. As droplets or particles of glass forming material pass through multiple zones of different temperature in a glass fabrication furnace, and are transformed into hollow glass microspheres, the microspheres pass through a region of conducting vapor, forming a conducting coating on the surface of the microspheres.

  6. Fabrication of glass microspheres with conducting surfaces

    DOEpatents

    Elsholz, William E.

    1984-01-01

    A method for making hollow glass microspheres with conducting surfaces by adding a conducting vapor to a region of the glass fabrication furnace. As droplets or particles of glass forming material pass through multiple zones of different temperature in a glass fabrication furnace, and are transformed into hollow glass microspheres, the microspheres pass through a region of conducting vapor, forming a conducting coating on the surface of the microspheres.

  7. Glass Research

    NASA Technical Reports Server (NTRS)

    Weinberg, M. C.

    1985-01-01

    Research efforts span three general areas of glass science: glass refining, gel-derived glasses, and nucleation and crystallization of glasses. Gas bubbles which are present in a glass product are defects which may render the glass totally useless for the end application. For example, optical glasses, laser host glasses, and a variety of other specialty glasses must be prepared virtually defect free to be employable. Since a major mechanism of bubble removal, buoyant rise, is virtually inoperative in microgravity, glass fining will be especially difficult in space. On the other hand, the suppression of buoyant rise and the ability to perform containerless melting experiments in space allows the opportunity to carry out several unique bubble experiments in space. Gas bubble dissolution studies may be performed at elevated temperatures for large bubbles with negligible bubble motion. Also, bubble nucleation studies may be performed without the disturbing feature of heterogeneous bubble nucleation at the platinum walls. Ground based research efforts are being performed in support of these potential flight experiments.

  8. Mixed polyanion glass cathodes: Glass-state conversion reactions

    DOE PAGES

    Kercher, Andrew K.; Kolopus, James A.; Carroll, Kyler; ...

    2015-01-01

    Mixed polyanion (MP) glasses can undergo glass-state conversion (GSC) reactions to provide an alternate class of high-capacity cathode materials. GSC reactions have been demonstrated in phosphate/vanadate glasses with Ag, Co, Cu, Fe, and Ni cations. These MP glasses provided high capacity and good high power performance, but suffer from moderate voltages, large voltage hysteresis, and significant capacity fade with cycling. Details of the GSC reaction have been revealed by x-ray absorption spectroscopy, electron microscopy, and energy dispersive x-ray spectroscopy of ex situ cathodes at key states of charge. Using the Open Quantum Materials Database (OQMD), a computational thermodynamic model hasmore » been developed to predict the near-equilibrium voltages of glass-state conversion reactions in MP glasses.« less

  9. Mixed polyanion glass cathodes: Glass-state conversion reactions

    SciTech Connect

    Kercher, Andrew K.; Kolopus, James A.; Carroll, Kyler; Unocic, Raymond R.; Kirklin, S.; Wolverton, C.; Stooksbury, Shelby L.; Boatner, Lynn A.; Dudney, Nancy J.

    2015-01-01

    Mixed polyanion (MP) glasses can undergo glass-state conversion (GSC) reactions to provide an alternate class of high-capacity cathode materials. GSC reactions have been demonstrated in phosphate/vanadate glasses with Ag, Co, Cu, Fe, and Ni cations. These MP glasses provided high capacity and good high power performance, but suffer from moderate voltages, large voltage hysteresis, and significant capacity fade with cycling. Details of the GSC reaction have been revealed by x-ray absorption spectroscopy, electron microscopy, and energy dispersive x-ray spectroscopy of ex situ cathodes at key states of charge. Using the Open Quantum Materials Database (OQMD), a computational thermodynamic model has been developed to predict the near-equilibrium voltages of glass-state conversion reactions in MP glasses.

  10. Study on borate glass system containing with Bi 2O 3 and BaO for gamma-rays shielding materials: Comparison with PbO

    NASA Astrophysics Data System (ADS)

    Kaewkhao, J.; Pokaipisit, A.; Limsuwan, P.

    2010-04-01

    In this work, the mass attenuation coefficients and shielding parameters of borate glass matrices containing with Bi 2O 3 and BaO have been investigated at 662 keV, and compare with PbO in same glass structure. The theoretical values were calculated by WinXCom software and compare with experiential data. The results found that the mass attenuation coefficients were increased with increasing of Bi 2O 3, BaO and PbO concentration, due to increase photoelectric absorption of all glass samples. However, Compton scattering gives dominant contribution to the total mass attenuation coefficients for studied glass samples. Moreover the half value layers (HVL) of glass samples were also better than ordinary concretes and commercial window glass. These results reflecting that the Bi-based glass can use replace Pb in radiation shielding glass. In the case of Ba, may be can use at appropriate energy such as X-rays or lower.

  11. Measurement and Control of Glass Feedstocks

    SciTech Connect

    2005-08-01

    Laser-induced breakdown spectroscopy (LIBS) promises a new way for glass manufacturers to significantly increase productivity. By measuring the chemical makeup in raw materials and recycled glass cullet, LIBS can quickly detect contaminants and batch non...

  12. Properties and characteristics of optical glass

    SciTech Connect

    Marker, A.J. III.

    1988-01-01

    This book contains the proceedings of SPIE on properties and characteristics of optical glass. Topics covered include IR reflectance measurement of ion-implanted silica, specifying optical materials, and impurity absorption coefficient measurements in phosphate glass melted under oxidizing conditions.

  13. Silicon, iron and titanium doped calcium phosphate-based glass reinforced biodegradable polyester composites as bone analogous materials

    NASA Astrophysics Data System (ADS)

    Shah Mohammadi, Maziar

    Bone defects resulting from disease or traumatic injury is a major health care problem worldwide. Tissue engineering offers an alternative approach to repair and regenerate bone through the use of a cell-scaffold construct. The scaffold should be biodegradable, biocompatible, porous with an open pore structure, and should be able to withstand the applied forces. Phosphate-based glasses (PGs) may be used as reinforcing agents in degradable composites since their degradation can be predicted and controlled through their chemistry. This doctoral dissertation describes the development and evaluation of PGs reinforced biodegradable polyesters for intended applications in bone augmentation and regeneration. This research was divided into three main objectives: 1) Investigating the composition dependent properties of novel PG formulations by doping a sodium-free calcium phosphate-based glass with SiO2, Fe2O3, and TiO2. Accordingly, (50P2 O5-40CaO- xSiO2-(10-x)Fe2O3, where x = 10, 5 and 0 mol.%) and (50P2O5-40CaO-xSiO 2-(10-x)TiO2 where x = 10, 7, 5, 3 and 0 mol.%) formulations were developed and characterised. SiO2 incorporation led to increased solubility, ion release, pH reduction, as well as hydrophilicity, surface energy, and surface polarity. In contrast, doping with Fe2O 3 or TiO2 resulted in more durable glasses, and improved cell attachment and viability. It was hypothesised that the presence of SiO 2 in the TiO2-doped formulations could up-regulate the ionic release from the PG leading to higher alkaline phosphatase activity of MC3T3-E1 cells. 2) Incorporating Si, Fe, and Ti doped PGs as fillers, either as particulates (PGPs) or fibres (PGFs), into biodegradable polyesters (polycaprolactone (PCL) and semi-crystalline and amorphous poly(lactic acid) (PLA and PDLLA)) with the aim of developing degradable bone analogous composites. It was found that PG composition and geometry dictated the weight loss, ionic release, and mechanical properties of the composites. It

  14. In-situ Curing Strain Monitoring of a Flat Plate Residual Stress Specimen Using a Chopped Stand Mat Glass/Epoxy Composite as Test Material

    NASA Astrophysics Data System (ADS)

    Jakobsen, J.; Skordos, A.; James, S.; Correia, R. G.; Jensen, M.

    2015-12-01

    The curing stresses in a newly proposed bi-axial residual stress testing configuration are studied using a chopped strand mat glass/epoxy specimen. In-situ monitoring of the curing is conducted using dielectric and fibre Bragg grating sensors. It is confirmed that a bi-axial residual stress state can be introduced in the specimens during curing and a quantification of its magnitude is presented. An alternative decomposition method used for converting the dielectric signal into a material state variable is proposed and good agreement with models found in the literature is obtained. From the cure cycles chosen it is suggested that any stress build up in the un-vitrified state is relaxed immediately and only stress build up in the vitrified state contributes to the residual stress state in the specimen.

  15. The effects of ambient temperature and mixing time of glass ionomer cement material on the survival rate of proximal ART restorations in primary molars

    PubMed Central

    Kemoli, Arthur M

    2014-01-01

    Objective: Temperature fluctuations and material mixing times are likely to affect the consistency and integrity of the material mixture, and hence the restoration made out of it. The purpose of the present study was to determine the influence of the ambient temperature and the mixing time of glass ionomer cement (GIC) restorative material on the survival rate of proximal atraumatic restorative treatment (ART) restorations placed in primary molars. Materials and Methods: A total of 804 restorations were placed in the primary molars of 6-8-year-olds using the ART approach. The restorations were then followed for a period of 2 years and evaluated at given intervals. The data collected were analyzed using SPSS computer statistical program, and the results tested and compared using the Chi-square, Kaplan Meier survival analysis and Cox Proportional hazard statistical tests. Results: The cumulative survival rate of the restorations dropped from the initial 94.4% to 30.8% at the end of 2 years. The higher survival rate of the restorations was associated with the experienced operators and assistants when using the rubber dam isolation method. However, there was no statistically significant difference in the survival rate of the restorations when related to the room temperature and the mixing time of the GIC materials used in spite of the variations in the temperature recoded and the methods used in mixing the materials. Conclusion: The ambient temperature and mixing time of GIC did not have a significant effect on the survival of the proximal ART restorations. PMID:24808692

  16. The thermal and mechanical properties of a low-density glass-fiber-reinforced elastomeric ablation material

    NASA Technical Reports Server (NTRS)

    Engelke, W. T.; Robertson, R. W.; Bush, A. L.; Pears, C. D.

    1974-01-01

    An evaluation of the thermal and mechanical properties was performed on a molded low-density elastomeric ablation material designated as Material B. Both the virgin and charred states were examined to provide meaningful inputs to the design of a thermal protection system. Chars representative of the flight chars formed during ablation were prepared in a laboratory furnace from 600 K to 1700 K and properties of effective thermal conductivity, heat capacity, porosity and permeability were determined on the furnace chars formed at various temperature levels within the range. This provided a boxing of the data which will enable the prediction of the transient response of the material during flight ablation.

  17. Glass formation in microgravity

    NASA Technical Reports Server (NTRS)

    Ray, C. S.; Day, D. E.

    1987-01-01

    An account is given of containerless glass-forming experiments conducted aboard the Space Shuttle in 1985, using a single-axis acoustic levitator furnace apparatus. An attempt was made to obtain quantitative evidence for the suppression of heterogeneous nucleation/crystallization in containerless melts under microgravity conditions, as well as to study melt homogenization in the absence of gravity-driven convection and assess the feasibility of laser fusion target glass microsphere preparation with a microgravity apparatus of the present type. A ternary calcia-gallia-silica glass thus obtained indicated a 2-3-fold increase in glass-formation tendency for this material composition in microgravity, by comparison with 1g.

  18. Comparison of marginal adaptation of mineral trioxide aggregate, glass ionomer cement and intermediate restorative material as root-end filling materials, using scanning electron microscope: An in vitro study

    PubMed Central

    Gundam, Sirisha; Patil, Jayaprakash; Venigalla, Bhuvan Shome; Yadanaparti, Sravanthi; Maddu, Radhika; Gurram, Sindhura Reddy

    2014-01-01

    Aim: The present study compares the marginal adaption of Mineral Trioxide Aggregate (MTA), Glass Ionomer Cement (GIC) and Intermediate Restorative Material (IRM) as root-end filling materials in extracted human teeth using Scanning Electron Microscope (SEM). Materials and Methods: Thirty single rooted human teeth were obturated with Gutta-percha after cleaning and shaping. Apical 3 mm of roots were resected and retrofilled with MTA, GIC and IRM. One millimeter transverse section of the retrofilled area was used to study the marginal adaptation of the restorative material with the dentin. Mounted specimens were examined using SEM at approximately 15 Kv and 10-6 Torr under high vacuum condition. At 2000 X magnification, the gap size at the material-tooth interface was recorded at 2 points in microns. Statistical Analysis: One way ANOVA Analysis of the data from the experimental group was carried out with gap size as the dependent variable, and material as independent variable. Results: The lowest mean value of gap size was recorded in MTA group (0.722 ± 0.438 μm) and the largest mean gap in GIC group (1.778 ± 0.697 μm). Conclusion: MTA showed least gap size when compared to IRM and GIC suggesting a better marginal adaptation. PMID:25506146

  19. Water sorption, glass transition, and protein-stabilizing behavior of an amorphous sucrose matrix combined with various materials.

    PubMed

    Imamura, Koreyoshi; Yokoyama, Toru; Fukushima, Atsushi; Kinuhata, Mitsunori; Nakanishi, Kazuhiro

    2010-11-01

    The effects of various additives on the physical properties of an amorphous sugar matrix were compared. Amorphous, sugar-additive mixtures were prepared by freeze-drying and then rehumidified at given RHs. Sucrose and eighteen types of substances were used as the sugar and the additive, respectively, and water sorption, glass-to-rubber transition, and protein stabilization during freeze-drying for the various sucrose-additive mixtures were examined. The additives were categorized into two groups according to their effects on T(g) and water sorption. Presence of polysaccharides, cyclodextrins, and polymers (large-sized additives) resulted in a decrease in equilibrium water content from the ideal value calculated from individual water contents for sucrose and additive, and in contrast, low MW substances containing ionizable groups (small-ionized additives) resulted in an increase. The increase in T(g) by the addition of large-sized additives was significant at the additive contents >50 wt.% whereas the T(g) was markedly increased in the lower additive content by the addition of small-ionized additives. The addition of small-ionized additives enhanced the decrease in T(g) with increasing water content. The protein stabilizing effect was decreased with increasing additive content in the cases of the both groups of the additives.

  20. AN INVESTIGATION OF THE MECHANICS OF FAILURE IN GLASS FIBER REINFORCED PLASTICS.

    DTIC Science & Technology

    COMPOSITE MATERIALS, *PLASTICS, FILAMENT WOUND CONSTRUCTION, GLASS TEXTILES, REINFORCING MATERIALS, FRACTURE(MECHANICS), FILAMENTS, GLASS , SURFACE PROPERTIES, EPOXY RESINS, TOUGHNESS, MOISTURE, TENSILE PROPERTIES.

  1. Spin-glass behavior of a hierarchically-organized, hybrid microporous material, based on an extended framework of octanuclear iron-oxo units.

    PubMed

    Cao, Xin-Yi; Hubbard, Jeremiah W; Guerrero-Medina, Jennifer; Hernández-Maldonado, Arturo J; Mathivathanan, Logesh; Rinaldi, Carlos; Sanakis, Yiannis; Raptis, Raphael G

    2015-02-21

    Inspired by the stepwise addition of octanuclear iron units into mammalian ferritin, a "stop-and-go" synthesis strategy was used to prepare two microporous (Langmuir surface area, 490 m(2) g(-1); effective pore size, 4-5 Å) hierarchical materials {[Fe8(μ4-O)4(μ-pz)12Cl0.3(μ-O)1.85}n () and {[Fe8(μ4-O)4(μ-4-Me-pz)12Cl0.4(μ-O)1.8}n (), which are new members of the EO2 family of polymeric materials (E = C, Si and Ge). The secondary building units (SBUs) E = [Fe8(μ4-O)4(μ-4-R-pz)12] (Fe8) are nanoscale pseudo-spherical clusters, rather than single atoms, forming μ-oxo Fe-O-Fe linkages between Fe8-SBUs. The characteristic Fe-O-Fe asymmetric stretching mode in the infrared (IR) spectra of these compounds appearing at around 800 cm(-1) suggest the formation of approximately linear μ-oxo Fe-O-Fe linkages between Fe8-SBUs in and . We employ the concept of continuous random network (CRN) to describe for the first time the framework features of a Fe8-based amorphous materials, in which the average connecting numbers of each Fe8-cluster are ∼3.7 and ∼3.6 for and , respectively. (57)Fe-Mössbauer spectroscopic analysis provides insights to the intercluster connectivity of and on one hand and to their magnetic properties on the other, evident by a magnetic split sextet below 30 K. The combination of Mössbauer spectroscopy and magnetism measurements reveals a spin-glass behavior with Tg of ∼30 K. The hierarchical porous materials and straddle the gap between metal oxides and metal-organic frameworks (MOFs). This study may open an alternative way for the development of multifunctional materials based on high nuclearity metal clusters.

  2. Glass microsphere lubrication

    NASA Technical Reports Server (NTRS)

    Geiger, Michelle; Goode, Henry; Ohanlon, Sean; Pieloch, Stuart; Sorrells, Cindy; Willette, Chris

    1991-01-01

    The harsh lunar environment eliminated the consideration of most lubricants used on earth. Considering that the majority of the surface of the moon consists of sand, the elements that make up this mixture were analyzed. According to previous space missions, a large portion of the moon's surface is made up of fine grained crystalline rock, about 0.02 to 0.05 mm in size. These fine grained particles can be divided into four groups: lunar rock fragments, glasses, agglutinates (rock particles, crystals, or glasses), and fragments of meteorite material (rare). Analysis of the soil obtained from the missions has given chemical compositions of its materials. It is about 53 to 63 percent oxygen, 16 to 22 percent silicon, 10 to 16 percent sulfur, 5 to 9 percent aluminum, and has lesser amounts of magnesium, carbon, and sodium. To be self-supporting, the lubricant must utilize one or more of the above elements. Considering that the element must be easy to extract and readily manipulated, silicon or glass was the most logical choice. Being a ceramic, glass has a high strength and excellent resistance to temperature. The glass would also not contaminate the environment as it comes directly from it. If sand entered a bearing lubricated with grease, the lubricant would eventually fail and the shaft would bind, causing damage to the system. In a bearing lubricated with a solid glass lubricant, sand would be ground up and have little effect on the system. The next issue was what shape to form the glass in. Solid glass spheres was the only logical choice. The strength of the glass and its endurance would be optimal in this form. To behave as an effective lubricant, the diameter of the spheres would have to be very small, on the order of hundreds of microns or less. This would allow smaller clearances between the bearing and the shaft, and less material would be needed. The production of glass microspheres was divided into two parts, production and sorting. Production includes the

  3. The recycling of incinerated sewage sludge ash as a raw material for CaO-Al2O3-SiO2-P2O5 glass-ceramic production.

    PubMed

    Zhang, Zhikun; Zhang, Lei; Yin, Yulei; Liang, Xuanye; Li, Aimin

    2015-01-01

    In this paper, the recycling of incinerated sewage sludge ash (ISSA) into glass-ceramic materials by a two-stage sintering cycle of nucleation stage and crystallization stage without any pressure and binder is presented. The parent glasses were subjected to the following nucleation/crystallization temperature and time level: (A) 790°C, 1.0 h/870°C, 1.0-3.0 h; (B) 790°C, 1.0 h/945°C, 1.0-3.0 h and (C) 790°C, 1.0 h/1065°C, 1.0-3.0 h. X-ray power diffraction analysis results revealed that multiple crystalline phases coexisted in the glass-ceramic materials and the crystalline phase compositions were more affected by crystallization temperature than crystallization time. Scanning electron microscopy analysis showed an interlocking microstructure of glass phases and crystals with different sizes and spatial distribution. The glass-ceramics crystallized at 945°C for 2.0 h exhibited optimal properties of density of 2.88±0.08 g/cm3, compression strength of 247±12 MPa, bending strength of 118±14 MPa and water absorption of 0.42±0.04. The leaching concentrations of heavy metals were far lower than the limits required by the regulatory standard of EPA. This paper provides a feasible, low-cost and promising method to produce ISSA-based glass-ceramics and highlights the principal characteristics that must be taken into account to use ISSA correctly in glass-ceramics.

  4. The Modified VFT law of glass former materials under pressure: Part II: Relation with the equation of state.

    PubMed

    Rault, Jacques

    2015-08-01

    The dynamical properties of glass formers (GFs) as a function of P, V, and T are reanalyzed in relation with the equations of state (EOS) proposed recently (Eur. Phys. J. E 37, 113 (2014)). The relaxation times τ of the cooperative non-Arrhenius α process and the individual Arrhenius β process are coupled via the Kohlrausch exponent n S(T, P). In the model n S is the sigmoidal logistic function depending on T (and P, and the α relaxation time τ α of GFs above T g verifies the pressure-modified VFT law: log τ α ∼ E β /nsRT, which can be put into a form with separated variables: log τ α ∼ f(T)g(P). From the variation of n S and τ α with T and P the Vogel temperature T 0 (τ α → ∝, n S = 0) and the crossover temperature (also called the merging or splitting temperature) T B (τ α ∼ τ β, n S ∼ 1) are determined. The proposed sm-VFT equation fits with excellent accuracy the experimental data of fragile and strong GFs under pressure. The properties generally observed in organic mineral and metallic GFs are explained: a) The Vogel temperature is independent of P (as suggested by the EOS properties), the crossover is pressure-dependent. b) In crystallizable GFs the T B (P) and Clapeyron curves T m(P) coincide. c) The α and β processes have the same ratio of the activation energies and volume, E*/V* (T- and P-independent), the compensation law is observed, this ratio depends on the anharmonicity Slater-Grüneisen parameter and on the critical pressure P* deduced from the EOS. d) The properties of the Fan Structure of the Tangents (FST) to the isotherms and isobars curves log τ versus P and T and to the isochrones curves P(T). e) The scaling law log τ = f(V (Λ) ) and the relation between Γ and γ. We conclude that these properties should be studied in detail in GFs submitted to negative pressures.

  5. Electrochemical properties of an all-solid-state lithium-ion battery with an in-situ formed electrode material grown from a lithium conductive glass ceramics sheet

    NASA Astrophysics Data System (ADS)

    Amiki, Yuichi; Sagane, Fumihiro; Yamamoto, Kazuo; Hirayama, Tsukasa; Sudoh, Masao; Motoyama, Munekazu; Iriyama, Yasutoshi

    2013-11-01

    A lithium insertion reaction in a Li+ conductive glass ceramics solid electrolyte (lithium aluminum titanium phosphate: LATP) sheet produces an in-situ formed electrode active material, which operates at 2.35 V vs. Li/Li+ in the vicinity of the LATP-sheet/current-collector interface. Electron energy loss spectroscopy clarifies that titanium in the LATP sheet in the vicinity of the current collector/LATP-sheet interface is preferentially reduced by this lithium insertion reaction. Charge transfer resistance between the in-situ-formed-electrode and the LATP-sheet is less than 100 Ω cm2, which is smaller than that of the common LiPON/LiCoO2 interface. A thin film of LiCoO2 is deposited on one side of the LATP-sheet as a Li+ source for developing the in-situ formed electrode material. Eventually, a Pt/LATP-sheet/LiCoO2/Au multilayer is fabricated. The multilayer structure successfully works as an all-solid-state lithium-ion battery operating at 1.5 V. A redox peak of the battery is observed even at 100 mV s-1 in the potential sweep curve. Additionally, charge-discharge reactions are repeated stably even after 25 cycles.

  6. Waste product profile: Glass containers

    SciTech Connect

    Miller, C.

    1995-09-01

    In 1992, Waste Age initiated the Waste Product Profile series -- brief, factual listings of the solid waste management characteristics of materials in the solid waste stream. This popular series of profiles high-lighted a product, explained how it fit into integrated waste management systems, and provided current data on recycling and markets for the product. Glass containers are made from sand, limestone, soda ash, cullet (crushed bottles), and various additives, including those used to produce green, brown, and blue glass. Other glass products include flat glass, such as windows, and fiberglass products, such as insulation and glassware. These products are manufactured using different processes and different additives than container glass. This profile covers only glass containers.

  7. Fracture mechanics of cellular glass

    NASA Technical Reports Server (NTRS)

    Zwissler, J. G.; Adams, M. A.

    1981-01-01

    The fracture mechanics of cellular glasses (for the structural substrate of mirrored glass for solr concentrator reflecting panels) are discussed. Commercial and developmental cellular glasses were tested and analyzed using standard testing techniques and models developed from linear fracture mechanics. Two models describing the fracture behavior of these materials were developed. Slow crack growth behavior in cellular glass was found to be more complex than that encountered in dense glasses or ceramics. The crack velocity was found to be strongly dependent upon water vapor transport to the tip of the moving crack. The existence of a static fatigue limit was not conclusively established, however, it is speculated that slow crack growth behavior in Region 1 may be slower, by orders of magnitude, than that found in dense glasses.

  8. GLASS FIBER REINFORCED PLASTICS,

    DTIC Science & Technology

    Contents: Fibrous glass fillers Binders used in the glass plastic industry Method of manufacturing glass plastics and glass plastic articles Properties of fiberglass Primary areas for use of glass fibre reinforced plastics

  9. Granular Material Response to Dynamic Shock Compression: A Study of SiO2 in the Form of Sand and Soda Lime Glass Beads

    DTIC Science & Technology

    2011-06-01

    RESPONSE TO DYNAMIC SHOCK COMPRESSION: A STUDY OF SIO2 IN THE FORM OF SAND AND SODA LIME GLASS BEADS by James R. Santymire June 2011...Compression: A Study of SiO2 in the Form of Sand and Soda Lime Glass Beads 5. FUNDING NUMBERS 6. AUTHOR(S) James R. Santymire 7. PERFORMING...technical sand’ composed of uniform sized, nearly spherical soda lime glass beads as a viable alternative for modeling sand. This allows for the repetition

  10. Role of copper in time dependent dielectric breakdown of porous organo-silicate glass low-k materials

    NASA Astrophysics Data System (ADS)

    Zhao, Larry; Pantouvaki, Marianna; Croes, Kristof; Tőkei, Zsolt; Barbarin, Yohan; Wilson, Christopher J.; Baklanov, Mikhail R.; Beyer, Gerald P.; Claeys, Cor

    2011-11-01

    The role of copper in time dependent dielectric breakdown (TDDB) of a porous low-k dielectric with TaN/Ta barrier was investigated on a metal-insulator-metal capacitor configuration where Cu ions can drift into the low-k film by applying a positive potential on the top while they are not permitted to enter the low-k dielectric if a negative potential is applied on the top. No difference in TDDB performance was observed between the positive and negative bias conditions, suggesting that Cu cannot penetrate TaN/Ta barrier to play a critical role in the TDDB of porous low-k material.

  11. Study Of Phase Separation In Glass

    NASA Technical Reports Server (NTRS)

    Neilson, George F.; Weinberg, Michael C.; Smith, Gary L.

    1989-01-01

    Report describes an experimental study of effect of hydroxide content on phase separation in soda/silica glasses. Ordinary and gel glasses melted at 1,565 degree C, and melts stirred periodically. "Wet" glasses produced by passing bubbles of N2 saturated with water through melts; "dry" glasses prepared in similar manner, except N2 dried before passage through melts. Analyses of compositions of glasses performed by atomic-absorption and index-of-refraction measurements. Authors conclude hydroxide speeds up phase separation, regardless of method (gel or ordinary) by which glass prepared. Eventually helps material scientists to find ways to control morphology of phase separation.

  12. Glasses for Solar-Cell Arrays

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.

    1982-01-01

    Report presents data on glass for encapsulation of solar-cell arrays, with special emphasis on materials and processes for automated high-volume production of low-cost arrays. Commercial suppliers of glass are listed. Factors that affect the cost of glass are examined: type (sheet, float, or plate), formulation, and energy consumed in manufacturing.

  13. Impact resistance of bar glasses.

    PubMed

    Shepherd, J P; Huggett, R H; Kidner, G

    1993-12-01

    Bar glasses are often used as weapons in interpersonal violence. Violence often erupts spontaneously and assailants use objects close to hand as weapons. After an initial national Accident and Emergency Department study to identify glass designs most often implicated in interpersonal violence, the impact resistance of 1-pint beer glasses was tested in a materials laboratory with a Zwick 5102 pendulum impact tester. Both straight-sided (nonik) glasses (annealed and tempered) and handled tankards (annealed) were tested to destruction. The impact resistance of new glasses was compared with that of glasses subjected to wear. The mean impact resistance of new annealed noniks did not differ significantly although new glasses were significantly more resistant than worn glasses (p < 0.01). It was not possible to break any of the tempered glasses with the pendulum used (maximum impact energy, 4 J). When noniks had been scratched at the rim to mimic wear, tempered glasses also had the highest impact resistance (p < 0.01) whereas the mean resistance of the annealed noniks was not significantly different. When tempered glasses failed during testing, they all disintegrated into relatively harmless cubes of glass, particularly the thicker bases of glasses. In contrast, annealed designs fractured leaving sharp shards although the thicker bases remained intact. The mean impact resistance of new annealed noniks was 0.5 J, of worn annealed noniks 0.08 J, of tempered new noniks > 4 J, of worn tempered noniks 0.18 J, and of tankards, 1.7 J.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Bioactive glass in tissue engineering

    PubMed Central

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  15. Glass-An Environmental Protector

    SciTech Connect

    MARRA, JAMES

    2004-11-01

    From asbestos abatement to lead paint removal to nuclear waste stabilization and even to heavy metal removal using microorganisms, glass has great potential as a solution to many environmental problems. The ability to accommodate an array of chemical elements within the glass structure has facilitated the use of glass as a medium for the stabilization of numerous hazardous substances. The resulting glasses have proven to be durable enough for direct land disposal. In many cases, the stabilized forms have been deemed suitable for re-use in other applications. As recycling and hazardous material treatment become even more important in the global materials cycle, it is a certainty that glass will assume a prominent role.

  16. Inorganic glass ceramic slip rings

    NASA Technical Reports Server (NTRS)

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  17. Through the looking glass of a chemistry video game: Evaluating the effects of different MLEs presenting identical content material

    NASA Astrophysics Data System (ADS)

    Hillman, Dustin S.

    The primary goal of this study is to evaluate the effects of different media-based learning environments (MLEs) that present identical chemistry content material. This is done with four different MLEs that utilize some or all components of a chemistry-based media-based prototype video game. Examination of general chemistry student volunteers purposefully randomized to one of four different MLEs did not provide evidence that the higher the level of interactivity resulted in a more effective MLE for the chemistry content. Data suggested that the cognitive load to play the chemistry-based video game may impaired the chemistry content being presented and recalled by the students while the students watching the movie of the chemistry-based video game were able to recall the chemistry content more efficiently. Further studies in this area need to address the overall cognitive load of the different MLEs to potentially better determine what the most effective MLE may be for this chemistry content.

  18. Enhancement of luminescence of Rhodamine B by gold nanoparticles in thin films on glass for active optical materials applications

    NASA Astrophysics Data System (ADS)

    Levchenko, Viktoria; Grouchko, Michael; Magdassi, Shlomo; Saraidarov, Tsiala; Reisfeld, Renata

    2011-12-01

    Fluorescent dyes in solid matrices have many potential applications provided that their high optical efficiencies are achieved. We present here gold nanoparticles formed and incorporated together with fluorescent dye Rhodamine B into a film of polyvinyl alcohol (PVA). The increase of fluorescence of the dye results from its interaction with surface plasmons. The electric charge on the gold nanoparticles and the distance between them and the dye molecules has a significant effect on the fluorescence intensity. Fluorescence enhancement of 74% was achieved for the negatively charged particles. Dynamic measurements reveal decrease of fluorescent lifetimes of the dye in presence of gold nanoparticles. Our findings enable utilization of films with enhanced fluorescence in optical materials such as luminescence solar concentrators, solid state tunable laser and active waveguides.

  19. Mixed polyanion glass cathodes: Iron phosphate vanadate glasses

    SciTech Connect

    Kercher, Andrew K; Ramey, Joanne Oxendine; Carroll, Kyler J; Kiggans Jr, James O; Veith, Gabriel M; Meisner, Roberta; Boatner, Lynn A; Dudney, Nancy J

    2014-01-01

    Mixed polyanion (MP) glasses have been investigated for use as cathodes in lithium ion batteries. MP glass cathodes are similar in composition to theoretically promising crystalline polyanionic (CP) cathodes (e.g., lithium cobalt phosphate, lithium manganese silicate), but with proper polyanion substitution, they can be designed to overcome the key shortcomings of CP cathodes, such as poor electrical conductivity and irreversible phase changes. Iron phosphate/vanadate glasses were chosen as a first demonstration of the MP glass concept. Polyanion substitution with vanadate was shown to improve the intercalation capacity of an iron phosphate glass from almost zero to full theoretical capacity. In addition, the MP glass cathodes also exhibited an unexpected second high-capacity electrochemical reaction. X-ray absorption near-edge structure (XANES) and x-ray diffraction (XRD) of cathodes from cells having different states of charge suggested that this second electrochemical reaction is a glass-state conversion reaction. With a first demonstration established, MP glass materials utilizing an intercalation and/or glass-state conversion reaction are promising candidates for future high-energy cathode research.

  20. Granular packing as model glass formers

    NASA Astrophysics Data System (ADS)

    Wang, Yujie

    2017-01-01

    Static granular packings are model hard-sphere glass formers. The nature of glass transition has remained a hotly debated issue. We review recent experimental progresses in using granular materials to study glass transitions. We focus on the growth of glass order with five-fold symmetry in granular packings and relate the findings to both geometric frustration and random first-order phase transition theories.

  1. Crystallization of a barium-aluminosilicate glass

    NASA Technical Reports Server (NTRS)

    Drummond, C. H., III; Lee, W. E.; Bansal, N. P.; Hyatt, M. J.

    1989-01-01

    The crystallization of a celsian glass composition was investigated as a possible high-temperature ceramic matrix material. Heat treatments invariably resulted in crystallization of the hexaclesian phase unless a flux, such as lithia, was added or a nucleating agent used (e.g., celsian seeds). TEM analysis revealed complex microstructures. Glasses with Mo additions contained hexacelsian, mullite, and an Mo-rich glass. Li2O additions stabilized celsian but mullite and Mo-rich glass were still present.

  2. Fracture mechanics of cellular glass

    SciTech Connect

    Zwissler, J.G.; Adams, M.A.

    1981-02-01

    Cellular glasses are prime candidate materials for the structural substrate of mirrored glass for solar concentrator reflecting panels. These materials are brittle, however, and susceptible to mechanical failure from slow crack growth caused by a stress corrosion mechanism. The results are detailed of one part of a program established to develop improved cellular glasses and to characterize the behavior of these and commercially available materials. Commercial and developmental cellular glasses were tested and analyzed using standard testing techniques and models developed from linear fracture mechanics. Two models describing the fracture behavior of these materials are developed. Slow crack growth behavior in cellular glass was found to be more complex than that encountered in dense glasses or ceramics. The crack velocity was found to be strongly dependent upon water vapor transport to the tip of the moving crack. The existence of a static fatigue limit was not conclusively established, however, it is speculated that slow crack growth behavior in Region I may be slower, by orders of magnitude, than that found in dense glasses.

  3. Pressurized heat treatment of glass ceramic

    DOEpatents

    Kramer, D.P.

    1984-04-19

    A method of producing a glass-ceramic having a specified thermal expansion value is disclosed. The method includes the step of pressurizing the parent glass material to a predetermined pressure during heat treatment so that the glass-ceramic produced has a specified thermal expansion value. Preferably, the glass-ceramic material is isostatically pressed. A method for forming a strong glass-ceramic to metal seal is also disclosed in which the glass-ceramic is fabricated to have a thermal expansion value equal to that of the metal. The determination of the thermal expansion value of a parent glass material placed in a high-temperature environment is also used to determine the pressure in the environment.

  4. Low-thermal expansion infrared glass ceramics

    NASA Astrophysics Data System (ADS)

    Lam, Philip

    2009-05-01

    L2 Tech, Inc. is in development of an innovative infrared-transparent glass ceramic material with low-thermal expansion (<0.5 ppm/°C) and high thermal-shock resistance to be used as windows and domes for high speed flight. The material is an inorganic, non-porous glass ceramic, characterized by crystalline phases of evenly distributed nano-crystals in a residual glass phase. The major crystalline phase is zirconium tungstate (ZrW2O8) which has Negative Thermal Expansion (NTE). The glass phase is the infrared-transparent germanate glass which has positive thermal expansion (PTE). Then glass ceramic material has a balanced thermal expansion of near zero. The crystal structure is cubic and the thermal expansion of the glass ceramic is isotropic or equal in all directions.

  5. Intrinsic dosimetry of glass containers used to transport nuclear materials: Potential implications to the fields of waste management and nuclear forensics

    SciTech Connect

    Schwantes, Jon M.; Miller, Steve D.; Piper, Roman K.; Murphy, Mark K.; Amonette, James E.; Bonde, Steven E.; Duckworth, Douglas C.

    2009-04-12

    Thermoluminescence (TL) and Electron Paramagnetic Resonance (EPR) dosimetry were used to measure dose effects in borosilicate glass with time, from 10 min to w60 days following exposure to a dose of up to 100 Gy. TL and EPR results were consistent and performed similarly, with both techniques capable of achieving an estimated limit of detection of between 0.5 and 1 Gy. Three peaks were identified in the TL glow curve at roughly 110 C, 205 C, and 225 C. The intensity of the 205 C peak was the dominant peak over the time period of this study. The stability of all of the peaks with time since irradiation increased with their corresponding temperature and no significant variation was observed in the glow curve response to a specified total dose attained at different dose rates. The intensity of the 205 C peak decreased logarithmically with time regardless of total dose. Based upon a conservative limit of detection of 3.3 Gy, a 100 Gy dose would still be detected 2.7E3 years after exposure. Here, we introduce the concept of intrinsic dosimetry, the measurement of the total absorbed dose received by the walls of a container containing radioactive material. The foreseen advantage of intrinsic dosimetry comes from considering the measured absorbed dose received by containers in concert with the characteristics (amount, type) of the source of that dose, the radioactive material contained within the walls of the container, in order to provide enhanced information about the history of an unknown sample in question. Three hypothetical scenarios are presented to introduce this method and to illustrate how intrinsic dosimetry might benefit the fields of nuclear forensics and waste management.

  6. Refractory Glass Seals for SOFC

    SciTech Connect

    Chou, Y. S.; Stevenson, Jeffry W.

    2011-07-01

    One of the critical challenges facing planar solid oxide fuel cell (SOFC) technology is the need for reliable sealing technology. Seals must exhibit long-term stability and mechanical integrity in the high temperature SOFC environment during normal and transient operation. Several different approaches for sealing SOFC stacks are under development, including glass or glass-ceramic seals, metallic brazes, and compressive seals. Among glass seals, rigid glass-ceramics, self-healing glass, and composite glass approaches have been investigated under the SECA Core Technology Program. The U.S. Department of Energy's Pacific Northwest National Laboratory (PNNL) has developed the refractory glass approach in light of the fact that higher sealing temperatures (e.g., 930-1000 degrees C) may enhance the ultimate in-service bulk strength and electrical conductivity of contact materials, as well as the bonding strength between contact materials and adjacent SOFC components, such as interconnect coatings and electrodes. This report summarizes the thermal, chemical, mechanical, and electrical properties of the refractory sealing glass.

  7. Sol-Gel Glasses

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  8. Development of an eco-friendly material recycling process for spent lead glass using a mechanochemical process and Na2EDTA reagent.

    PubMed

    Sasai, Ryo; Kubo, Hisashi; Kamiya, Masahiro; Itoh, Hideaki

    2008-06-01

    To develop a novel nonheating method with lower energy consumption and higher efficiency for recovering both lead and SiO2 glass matrix from spent lead-glass powder, we attempted to treat the spent lead glass by the mechanochemical method using the metal chelate reagent, sodium ethylenediaminetetraacetate (Na2EDTA). As a result of the wet ball-milling treatment of spent lead-glass powder sealed in a polypropylene bottle with zirconia balls, Na2EDTA, and water at room temperature, we found that more than 99 mass % of lead contained in the spentlead-glass powder was extracted as a lead-EDTA species from the solid silica glass network matrix. This separation phenomenon was accelerated by the enlargement of the solid-liquid interface area due to ball-milling atomization and by the high stability constant of lead-EDTA. High extraction yield suggests that Pb-O-Pb bonds in lead glass are weakened or are broken down by the wet ball-milling treatment, i.e., the strong mechanical energy such as the potential and/ or friction energy provided by ball-milling may be high enough to elute lead ions from silica matrix. Moreover, we succeeded in recovering both lead ions as lead sulfate, which is the main compound of anglesite, and the EDTA as sodium-EDTA, which is reusable as the metal chelate reagent in wet chemical process using the ferric sulfate.

  9. Viscous sealing glass compositions for solid oxide fuel cells

    SciTech Connect

    Kim, Cheol Woon; Brow, Richard K.

    2016-12-27

    A sealant for forming a seal between at least two solid oxide fuel cell components wherein the sealant comprises a glass material comprising B.sub.2O.sub.3 as a principal glass former, BaO, and other components and wherein the glass material is substantially alkali-free and contains less than 30% crystalline material.

  10. Refractive index of glass and its dipersion for visible light.

    SciTech Connect

    Smith, D. Y.; Karstens, W.

    2010-01-01

    The classification of optical glass and empirical relations between the refractive index and its dispersion are discussed in terms of moments of the glass's IR and UV absorption spectra. The observed linear dependence of index on dispersion within glass families is shown to arise primarily from the approximately linear superposition of the electronic absorptions of glass former and glass modifiers. The binary classification into crown and flint glasses is also based primarily on electronic spectra: Crown glasses are 'wide-gap' materials with excitation energies greater than {approx}12.4 eV, while flint glasses are their 'narrow-gap' counterpart.

  11. Glass corrosion in natural environments

    NASA Technical Reports Server (NTRS)

    Thorpe, Arthur N.; Barkatt, Aaron

    1992-01-01

    Experiments carried out during the progress period are summarized. Experiments carried out involving glass samples exposed to solutions of Tris have shown the appearance of 'spikes' upon monitoring glass dissolution as a function of time. The periodic 'spikes' observed in Tris-based media were interpreted in terms of cracking due to excessive stress in the surface region of the glass. Studies of the interactions of silicate glasses with metal ions in buffered media were extended to systems containing Al. Caps buffer was used to establish the pH. The procedures used are described and the results are given. Preliminary studies were initiated as to the feasibility of adding a slowly dissolving solid compound of the additive to the glass-water system to maintain a supply of dissolved additive. It appears that several magnesium compounds have a suitable combination of solubility and affinity towards silicate glass surfaces to have a pronounced retarding effect on the extraction of uranium from the glass. These preliminary findings raise the possibility that introducing a magnesium source into geologic repositories for nuclear waste glass in the form of a sparingly soluble Mg-based backfill material may cause a substantial reduction in the extent of long-term glass corrosion. The studies described also provide mechanistic understanding of the roles of various metal solutes in the leachant. Such understanding forms the basis for developing long-term predictions of nuclear waste glass durability under repository conditions. From what is known about natural highly reduced glasses such as tektites, it is clear that iron is dissolved as ferrous iron with little or no ferric iron. The reducing conditions were high enough to cause metallic iron to exsolve out of the glass in the form of submicroscopic spherules. As the nuclear waste glass is much less reduced, a study was initiated on other natural glasses in addition to the nuclear waste glass. Extensive measurements were

  12. Radiative parameters of Nd3+-doped titanium and tungsten modified tellurite glasses for 1.06 μm laser materials

    NASA Astrophysics Data System (ADS)

    Fares, Hssen; Jlassi, Ifa; Hraiech, S.; Elhouichet, Habib; Férid, Mokhtar

    2014-11-01

    Different glass matrices doped with Nd3+ have been prepared by the conventional melt quenching method with the molar compositions of (89-x)TeO2-10TiO2-1Nd2O3-xWO3 (x=0, 10 and 20 mol%). The XRD, FTIR, absorption spectra, photoluminescence (PL) spectra and luminescence decay curves of glass samples were measured at room temperature and investigated, respectively. The XRD pattern confirms the amorphous nature of the prepared glasses. The free OH- content in the 1.0 mol% Nd2O3-doped glass samples has been estimated from their measured Infrared transmittance spectra. Judd-Ofelt (J-O) intensity parameters were derived from the absorption spectrum and used in turn to estimate radiative properties such as radiative transition probabilities (AT), radiative lifetimes (τr) and branching ratios (βJJ‧) for 4F3/2→4I9/2, 11/2, 13/2 transitions. From the emission spectra, peak wavelength, effective bandwidth (Δλeff) and stimulated emission cross-section (σemis) were calculated for the 4F3/2→4I11/2 transition. The values of the stimulated emission cross-section obtained in the present Nd3+-doped tellurite glasses are on the higher side than the values of the reported as well as commercial. The luminescence decay curves for the 4F3/2→4I11/2 transition have been measured to evaluate the quantum efficiency (η). The results show a significant increase of the quantum efficiency (η) with the increases of WO3 concentration. Notably, it is found that the quantum efficiency in the TTNW20 glass is much longer than that in most other glasses which indicates that this glass system could be considered as a good candidate for near-infrared lasers at 1.06 μm.

  13. Glass forming range of the Ti-Fe-Si amorphous alloys: An effective materials-design approach coupling CALPHAD and topological instability criterion

    NASA Astrophysics Data System (ADS)

    Zhao, Guo-Hua; Mao, Huahai; Louzguine-Luzgin, Dmitri V.

    2016-11-01

    A method of composition design for metallic glasses was proposed by using the Calculation of Phase Diagrams (CALPHAD) with the assistance of the topological instability criterion. This methodology was demonstrated in the quick and effective searching of glass-forming regions for Ti-Fe-Si and Ti-Zr-Fe-Si alloys containing no biologically toxic elements, e.g., Ni and Cu. In addition, the Ti-Fe-Si system may promote the glass formation owing to the existence of a deep eutectic at the Ti-rich corner. A self-consistent thermodynamic database was constructed based on the CALPHAD approach. The liquidus projection, isothermal sections, and the enthalpy of mixing were calculated by using the database. On the basis of these calculations coupling with the topological instability "lambda λ criterion," the potential glass-forming alloy compositions in a narrow region were suggested for experimental validation. Thereafter, the isothermal sections of the Ti-Zr-Fe-Si quaternary system were calculated at certain contents of Zr. The designed alloys were prepared by arc-melting and followed by melt-spinning to the ribbon shape. The experimental verifications matched reasonably well with the theoretical calculations. This work offers new insights for predicting glass-forming alloys based on thermodynamic arguments; it shall be of benefit for the exploration of new metallic glasses.

  14. Effect of different palatal vault shapes on the dimensional stability of glass fiber-reinforced heat-polymerized acrylic resin denture base material

    PubMed Central

    Dalkiz, Mehmet; Arslan, Demet; Tuncdemir, Ali Riza; Bilgin, M.Selim; Aykul, Halil

    2012-01-01

    Objective: The aim of this study was to determine the effect of different palatal vault shapes on the dimensional stability of a glass fiber reinforced heat polymerized acrylic resin denture base material. Methods: Three edentulous maxilla with shallow, deep and medium shaped palatal vaults were selected and elastomeric impressions were obtained. A maxillary cast with four reference points (A, B, C, and D) was prepared to serve as control. Point (A) was marked in the anterior midline of the edentulous ridge in the incisive papillary region, points (B) and (C) were marked in the right and left posterior midlines of the edentulous ridge in the second molar regions, and point (D) was marked in the posterior palatal midline near the fovea palatina media (Figure 2). To determine linear dimensional changes, distances between four reference points (A–B, A–C, A–D and B–C) were initially measured with a metal gauge accurate within 0.1 mm under a binocular stereo light microscope and data (mm) were recorded. Results: No significant difference of interfacial distance was found in sagittal and frontal sections measured 24 h after polymerization and after 30 days of water storage in any of experimental groups (P>.05). Significant difference of linear dimension were found in all experimental groups (P<.01) between measurements made 24 h after polymerization of specimens and 30 days after water storage. Conclusion: Palatal vault shape and fiber impregnation into the acrylic resin bases did not affect the magnitude of interfacial gaps between the bases and the stone cast surfaces. PMID:22229010

  15. Pinhole Glasses

    ERIC Educational Resources Information Center

    Colicchia, Giuseppe; Hopf, Martin; Wiesner, Hartmut; Zollman, Dean

    2008-01-01

    Eye aberrations are commonly corrected by lenses that restore vision by altering rays before they pass through the cornea. Some modern promoters claim that pinhole glasses are better than conventional lenses in correcting all kinds of refractive defects such as myopia (nearsighted), hyperopia (farsighted), astigmatisms, and presbyopia. Do pinhole…

  16. Method of determining glass durability

    DOEpatents

    Jantzen, C.M.; Pickett, J.B.; Brown, K.G.; Edwards, T.B.

    1998-12-08

    A process is described for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, {Delta}G{sub p}, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, {Delta}G{sub a}, based upon the free energy associated with weak acid dissociation, {Delta}G{sub a}{sup WA}, and accelerated matrix dissolution at high pH, {Delta}G{sub a}{sup SB} associated with solution strong base formation, and determining a final hydration free energy, {Delta}G{sub f}. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log{sub 10}(N C{sub i}(g/L))=a{sub i} + b{sub i}{Delta}G{sub f}. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained. 4 figs.

  17. Method of determining glass durability

    DOEpatents

    Jantzen, Carol Maryanne; Pickett, John Butler; Brown, Kevin George; Edwards, Thomas Barry

    1998-01-01

    A process for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, .DELTA.G.sub.p, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, .DELTA.G.sub.a, based upon the free energy associated with weak acid dissociation, .DELTA.G.sub.a.sup.WA, and accelerated matrix dissolution at high pH, .DELTA.G.sub.a.sup.SB associated with solution strong base formation, and determining a final hydration free energy, .DELTA.G.sub.f. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log.sub.10 (N C.sub.i (g/L))=a.sub.i +b.sub.i .DELTA.G.sub.f. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained.

  18. Method and apparatus for melting glass batch

    DOEpatents

    Fassbender, Alexander G.; Walkup, Paul C.; Mudge, Lyle K.

    1988-01-01

    A glass melting system involving preheating, precalcining, and prefluxing of batch materials prior to injection into a glass furnace. The precursors are heated by convection rather than by radiation in present furnaces. Upon injection into the furnace, batch materials are intimately coated with molten flux so as to undergo or at least begin the process of dissolution reaction prior to entering the melt pool.

  19. Photon Interaction Parameters for Some Borate Glasses

    SciTech Connect

    Mann, Nisha; Kaur, Updesh; Singh, Tejbir; Sharma, J. K.; Singh, Parjit S.

    2010-11-06

    Some photon interaction parameters of dosimetric interest such as mass attenuation coefficients, effective atomic number, electron density and KERMA relative to air have been computed in the wide energy range from 1 keV to 100 GeV for some borate glasses viz. barium-lead borate, bismuth-borate, calcium-strontium borate, lead borate and zinc-borate glass. It has been observed that lead borate glass and barium-lead borate glass have maximum values of mass attenuation coefficient, effective atomic number and KERMA relative to air. Hence, these borate glasses are suitable as gamma ray shielding material, packing of radioactive sources etc.

  20. Method for manufacturing glass frit

    DOEpatents

    Budrick, Ronald G.; King, Frank T.; Nolen, Jr., Robert L.; Solomon, David E.

    1977-01-01

    A method of manufacturing a glass frit for use in the manufacture of uniform glass microspheres to serve as containers for laser fusion fuel to be exposed to laser energy which includes the formation of a glass gel which is then dried, pulverized, and very accurately sized to particles in a range of, for example, 125 to 149 micrometers. The particles contain an occluded material such as urea which expands when heated. The sized particles are washed, dried, and subjected to heat to control the moisture content prior to being introduced into a system to form microspheres.

  1. POROUS WALL, HOLLOW GLASS MICROSPHERES

    SciTech Connect

    Sexton, W.

    2012-06-30

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to 'normal glasses of a 1 to 2 order of

  2. Electron anions and the glass transition temperature

    SciTech Connect

    Johnson, Lewis E.; Sushko, Peter V.; Tomota, Yudai; Hosono, Hideo

    2016-08-24

    Properties of glasses are typically controlled by judicious selection of the glass-forming and glass-modifying constituents. Through an experimental and computational study of the crystalline, molten, and amorphous [Ca12Al14O32]2+ ∙ (e)2, we demonstrate that electron anions in this system behave as glass-modifiers that strongly affect solidification dynamics, the glass transition temperature, and spectroscopic properties of the resultant amorphous material. Concentration of such electron anions is a consequential control parameter: it invokes materials evolution pathways and properties not available in conventional glasses, which opens a new avenue in rational materials design.

  3. Celsian Glass-Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Dicarlo, James A.

    1996-01-01

    Glass-ceramic matrix reinforced fiber composite materials developed for use in low dielectric applications, such as radomes. Materials strong and tough, exhibit low dielectric properties, and endure high temperatures.

  4. Production and Characterization of a Ag- and Zn-Doped Glass-Ceramic Material and In Vitro Evaluation of Its Biological Effects

    NASA Astrophysics Data System (ADS)

    Baghbani, Fatemeh; Moztarzadeh, Fathollah; Mozafari, Masoud; Raz, Majid; Rezvani, Hamideh

    2016-08-01

    Bioactive glasses in the system SiO2-CaO-Na2O-P2O5-MgO with different amounts of zinc (Zn) and silver (Ag) were synthesized by the sol-gel technique and characterized. The bioactivity was studied during in vitro assays: the ability of hydroxycarbonate apatite (HCA) layer to form on the glass surface was examined after contact with simulated body fluid (SBF). The x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and inductively coupled plasma atomic emission spectrometry (ICP) studies were performed after immersion in vitro assays. Also, the antibacterial and antifungal activities of glass samples against Pseudomonas aeruginosa (ATCC 27853), E. coli (ATCC 25922), and Candida albicans were measured by the halo zone test. Introduction of zinc and silver as the trace elements induces several modifications on the observed phenomena at the glass surface and in SBF solution after immersion of the samples. The chemical durability of the glasses, the formation of the silica-rich layer, and the crystallization of the HCA layer were affected. Samples with the higher content of zinc and silver exhibited an excellent antibacterial/antifungal activity.

  5. Evaluation of Behaviours of Laminated Glass

    NASA Astrophysics Data System (ADS)

    Sable, L.; Japins, G.; Kalnins, K.

    2015-11-01

    Visual appearance of building facades and other load bearing structures, which now are part of modern architecture, is the reason why it is important to investigate in more detail the reliability of laminated glass for civil structures. Laminated glass in particular has become one of the trendy materials, for example Apple© stores have both load carrying capacity and transparent appearance. Glass has high mechanical strength and relatively medium density, however, the risk of sudden brittle failure like concrete or other ceramics determine relatively high conservatism in design practice of glass structures. This should be changed as consumer requirements evolve calling for a safe and reliable design methodology and corresponding building standards. A design methodology for glass and glass laminates should be urgently developed and included as a chapter in Eurocode. This paper presents initial experimental investigation of behaviour of simple glass sheets and laminated glass samples in 4-point bending test. The aim of the current research is to investigate laminated glass characteristic values and to verify the obtained experimental results with finite element method for glass and EVA material in line with future European Structural Design of Glass Components code.

  6. Electrochromic Glasses.

    DTIC Science & Technology

    1980-07-31

    Li20-B203 and Na20-B203 or Te02 . These glasses exhibit for the first time, electrochromic and photochromic behaviour and have potential for use in...the complete spectral distribution of the absorption at levels of 10- cm- I for the first time. In the past, it was only possible to measure low...distribution of the absorption at levels at 10 -cm it was possible, for the first time, to identify extrinsic impurities in highly transparent solids. This

  7. Thermal infrared reflectance and emission spectroscopy of quartzofeldspathic glasses

    USGS Publications Warehouse

    Byrnes, J.M.; Ramsey, M.S.; King, P.L.; Lee, R.J.

    2007-01-01

    This investigation seeks to better understand the thermal infrared (TIR) spectral characteristics of naturally-occurring amorphous materials through laboratory synthesis and analysis of glasses. Because spectra of glass phases differ markedly from their mineral counterparts, examination of glasses is important to accurately determine the composition of amorphous surface materials using remote sensing datasets. Quantitatively characterizing TIR (5-25 ??m) spectral changes that accompany structural changes between glasses and mineral crystals provides the means to understand natural glasses on Earth and Mars. A suite of glasses with compositions analogous to common terrestrial volcanic glasses was created and analyzed using TIR reflectance and emission techniques. Documented spectral characteristics provide a basis for comparison with TIR spectra of other amorphous materials (glasses, clays, etc.). Our results provide the means to better detect and characterize glasses associated with terrestrial volcanoes, as well as contribute toward understanding the nature of amorphous silicates detected on Mars. Copyright 2007 by the American Geophysical Union.

  8. Classification of oxide glasses: A polarizability approach

    SciTech Connect

    Dimitrov, Vesselin; Komatsu, Takayuki . E-mail: komatsu@chem.nagaokaut.ac.jp

    2005-03-15

    A classification of binary oxide glasses has been proposed taking into account the values obtained on their refractive index-based oxide ion polarizability {alpha}{sub O2-}(n{sub 0}), optical basicity {lambda}(n{sub 0}), metallization criterion M(n{sub 0}), interaction parameter A(n{sub 0}), and ion's effective charges as well as O1s and metal binding energies determined by XPS. Four groups of oxide glasses have been established: glasses formed by two glass-forming acidic oxides; glasses formed by glass-forming acidic oxide and modifier's basic oxide; glasses formed by glass-forming acidic and conditional glass-forming basic oxide; glasses formed by two basic oxides. The role of electronic ion polarizability in chemical bonding of oxide glasses has been also estimated. Good agreement has been found with the previous results concerning classification of simple oxides. The results obtained probably provide good basis for prediction of type of bonding in oxide glasses on the basis of refractive index as well as for prediction of new nonlinear optical materials.

  9. Energetics of glass fragmentation: Experiments on synthetic and natural glasses

    NASA Astrophysics Data System (ADS)

    Kolzenburg, S.; Russell, J. K.; Kennedy, L. A.

    2013-11-01

    Natural silicate glasses are an essential component of many volcanic rock types including coherent and pyroclastic rocks; they span a wide range of compositions, occur in diverse environments, and form under a variety of pressure-temperature conditions. In subsurface volcanic environments (e.g., conduits and feeders), melts intersect the thermodynamically defined glass transition temperature to form glasses at elevated confining pressures and under differential stresses. We present a series of room temperature experiments designed to explore the fundamental mechanical and fragmentation behavior of natural (obsidian) and synthetic glasses (Pyrex™) under confining pressures of 0.1-100 MPa. In each experiment, glass cores are driven to brittle failure under compressive triaxial stress. Analysis of the load-displacement response curves is used to quantify the storage of energy in samples prior to failure, the (brittle) release of elastic energy at failure, and the residual energy stored in the post-failure material. We then establish a relationship between the energy density within the sample at failure and the grain-size distributions (D-values) of the experimental products. The relationship between D-values and energy density for compressive fragmentation is significantly different from relationships established by previous workers for decompressive fragmentation. Compressive fragmentation is found to have lower fragmentation efficiency than fragmentation through decompression (i.e., a smaller change in D-value with increasing energy density). We further show that the stress storage capacity of natural glasses can be enhanced (approaching synthetic glasses) through heat treatment.

  10. Electrochemical cell with high conductivity glass electrolyte

    DOEpatents

    Nelson, P.A.; Bloom, I.D.; Roche, M.F.

    1987-04-21

    A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with a ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material. 6 figs.

  11. Electrochemical cell with high conductivity glass electrolyte

    DOEpatents

    Nelson, Paul A.; Bloom, Ira D.; Roche, Michael F.

    1987-01-01

    A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with a ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material.

  12. Electrochemical cell with high conductivity glass electrolyte

    DOEpatents

    Nelson, P.A.; Bloom, I.D.; Roche, M.F.

    1986-04-17

    A secondary electrochemical cell with sodium-sulfur or other molten reactants is provided with an ionically conductive glass electrolyte. The cell is contained within an electrically conductive housing with a first portion at negative potential and a second portion insulated therefrom at positive electrode potential. The glass electrolyte is formed into a plurality of elongated tubes and placed lengthwise within the housing. The positive electrode material, for instance sulfur, is sealed into the glass electrolyte tubes and is provided with an elongated axial current collector. The glass electrolyte tubes are protected by shield tubes or sheets that also define narrow annuli for wicking of the molten negative electrode material.

  13. A universal description of ultraslow glass dynamics

    PubMed Central

    Martinez-Garcia, Julio Cesar; Rzoska, Sylwester J.; Drozd-Rzoska, Aleksandra; Martinez-Garcia, Jorge

    2013-01-01

    The dynamics of glass is of importance in materials science but its nature has not yet been fully understood. Here we report that a verification of the temperature dependencies of the primary relaxation time or viscosity in the ultraslowing/ultraviscous domain of glass-forming systems can be carried out via the analysis of the inverse of the Dyre–Olsen temperature index. The subsequent analysis of experimental data indicates the possibility of the self-consistent description of glass-forming low-molecular-weight liquids, polymers, liquid crystals, orientationally disordered crystals and Ising spin-glass-like systems, as well as the prevalence of equations associated with the ‘finite temperature divergence’. All these lead to a new formula for the configurational entropy in glass-forming systems. Furthermore, a link to the dominated local symmetry for a given glass former is identified here. Results obtained show a new relationship between the glass transition and critical phenomena. PMID:23652011

  14. A universal description of ultraslow glass dynamics.

    PubMed

    Martinez-Garcia, Julio Cesar; Rzoska, Sylwester J; Drozd-Rzoska, Aleksandra; Martinez-Garcia, Jorge

    2013-01-01

    The dynamics of glass is of importance in materials science but its nature has not yet been fully understood. Here we report that a verification of the temperature dependencies of the primary relaxation time or viscosity in the ultraslowing/ultraviscous domain of glass-forming systems can be carried out via the analysis of the inverse of the Dyre-Olsen temperature index. The subsequent analysis of experimental data indicates the possibility of the self-consistent description of glass-forming low-molecular-weight liquids, polymers, liquid crystals, orientationally disordered crystals and Ising spin-glass-like systems, as well as the prevalence of equations associated with the 'finite temperature divergence'. All these lead to a new formula for the configurational entropy in glass-forming systems. Furthermore, a link to the dominated local symmetry for a given glass former is identified here. Results obtained show a new relationship between the glass transition and critical phenomena.

  15. Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193 nm, 213 nm and 266 nm wavelengths

    USGS Publications Warehouse

    Guillong, M.; Hametner, K.; Reusser, E.; Wilson, S.A.; Gunther, D.

    2005-01-01

    New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP.

  16. R2O3 (R = La, Y) modified erbium activated germanate glasses for mid-infrared 2.7 μm laser materials

    NASA Astrophysics Data System (ADS)

    Cai, Muzhi; Zhou, Beier; Wang, Fengchao; Wei, Tao; Tian, Ying; Zhou, Jiajia; Xu, Shiqing; Zhang, Junjie

    2015-08-01

    Er3+ activated germanate glasses modified by La2O3 and Y2O3 with good thermal stability were prepared. 2.7 μm fluorescence was observed and corresponding radiative properties were investigated. A detailed discussion of J-O parameters has been carried out based on absorption spectra and Judd-Ofelt theory. The peak emission cross sections of La2O3 and Y2O3 modified germanate glass are (14.3 ± 0.10) × 10-21 cm2 and (15.4 ± 0.10) × 10-21 cm2, respectively. Non-radiative relaxation rate constants and energy transfer coefficients of 4I11/2 and 4I13/2 levels have been obtained and discussed to understand the 2.7 μm fluorescence behavior. Moreover, the energy transfer processes of 4I11/2 and 4I13/2 level were quantitatively analyzed according to Dexter’s theory and Inokuti-Hirayama model. The theoretical calculations are in good agreement with the observed 2.7 μm fluorescence phenomena. Results demonstrate that the Y2O3 modified germanate glass, which possesses more excellent spectroscopic properties than La2O3 modified germanate glass, might be an attractive candidate for mid-infrared laser.

  17. R2O3 (R = La, Y) modified erbium activated germanate glasses for mid-infrared 2.7 μm laser materials

    PubMed Central

    Cai, Muzhi; Zhou, Beier; Wang, Fengchao; Wei, Tao; Tian, Ying; Zhou, Jiajia; Xu, Shiqing; Zhang, Junjie

    2015-01-01

    Er3+ activated germanate glasses modified by La2O3 and Y2O3 with good thermal stability were prepared. 2.7 μm fluorescence was observed and corresponding radiative properties were investigated. A detailed discussion of J–O parameters has been carried out based on absorption spectra and Judd–Ofelt theory. The peak emission cross sections of La2O3 and Y2O3 modified germanate glass are (14.3 ± 0.10) × 10−21 cm2 and (15.4 ± 0.10) × 10−21 cm2, respectively. Non-radiative relaxation rate constants and energy transfer coefficients of 4I11/2 and 4I13/2 levels have been obtained and discussed to understand the 2.7 μm fluorescence behavior. Moreover, the energy transfer processes of 4I11/2 and 4I13/2 level were quantitatively analyzed according to Dexter’s theory and Inokuti–Hirayama model. The theoretical calculations are in good agreement with the observed 2.7 μm fluorescence phenomena. Results demonstrate that the Y2O3 modified germanate glass, which possesses more excellent spectroscopic properties than La2O3 modified germanate glass, might be an attractive candidate for mid-infrared laser. PMID:26279092

  18. Glass microspheres for medical applications

    NASA Astrophysics Data System (ADS)

    Conzone, Samuel David

    Radioactive dysprosium lithium borate glass microspheres have been developed as biodegradable radiation delivery vehicles for the radiation synovectomy treatment of rheumatoid arthritis. Once injected into a diseased joint, the microspheres deliver a potent dose of radiation to the diseased tissue, while a non-uniform chemical reaction converts the glass into an amorphous, porous, hydrated dysprosium phosphate reaction product. The non-radioactive, lithium-borate component is dissolved from the glass (up to 94% weight loss), while the radioactive 165Dy reacts with phosphate anions in the body fluids, and becomes "chemically" trapped in a solid, dysprosium phosphate reaction product that has the same size as the un-reacted glass microsphere. Ethylene diamine tetraacetate (EDTA) chelation therapy can be used to dissolve the dysprosium phosphate reaction product after the radiation delivery has subsided. The dysprosium phosphate reaction product, which formed in vivo in the joint of a Sprague-Dawley rat, was dissolved by EDTA chelation therapy in <1 week, without causing any detectable joint damage. The combination of dysprosium lithium borate glass microspheres and EDTA chelation therapy provides an unique "tool" for the medical community, which can deliver a large dose (>100 Gy) of localized beta radiation to a treatment site within the body, followed by complete biodegradability. The non-uniform reaction process is a desirable characteristic for a biodegradable radiation delivery vehicle, but it is also a novel material synthesis technique that can convert a glass to a highly porous materials with widely varying chemical composition by simple, low-temperature, glass/solution reaction. The reaction product formed by nonuniform reaction occupies the same volume as the un-reacted glass, and after drying for 1 h at 300°C, has a specific surface area of ≈200 m2/g, a pore size of ≈30 nm, and a nominal crushing strength of ≈10 MPa. Finally, rhenium glass

  19. Integral assembly of photovoltaic arrays using glass

    NASA Technical Reports Server (NTRS)

    Younger, P. R.; Kirkpatrick, A. R.; Maxwell, H. G.; Holtze, R. F.

    1978-01-01

    For a number of reasons glass is an excellent material for encapsulation of solar cell arrays. Glass can be readily available at relatively low cost. It exhibits excellent stability against degradation by solar ultraviolet illumination and atmospheric pollutants. A superior approach results if glass is employed directly as an integral encapsulant without secondary organic materials. A description is presented of a electrostatic bonding process which is being developed for integral assembly of glass encapsulated arrays. Solar cells are placed in contact with the glass surface, temperature is raised until the glass becomes ionically conductive, and an electric field is applied to initiate the bonding action. Silicon solar cells up to 3 inches in diameter have been integrally bonded without degradation.

  20. Space processing of chalcogenide glass

    NASA Technical Reports Server (NTRS)

    Ali, M. A.; Larsen, D. C.

    1976-01-01

    The manner in which the weightless, containerless nature of in-space processing can be successfully utilized to improve the quality of infrared transmitting chalcogenide glasses was investigated. The following conclusions were reached: (1) Laboratory experiments have established the techniques, processes and equipment necessary for the production of high purity chalcogenide glasses. (2) Processing techniques have been successfully adopted for Ge28Sb12Se60 glass in a 1-g environment. (3) The Ge28Sb12Se60 glasses that have been processed have optical transmission around 63% (5 mm thick). (4) Laboratory experiments have established that the use of precursor materials in powdered form increases the oxygen contamination of the processed glass. This indicates that high purity precursor materials in bar or pellet form should be used. (5) Modifications were made on the MSFC acoustic levitator in an attempt to improve levitation stability during long-time experiments. Room temperature experiments on As2S3 glasses and high temperature experiments on polystyrene were conducted.

  1. BNFL Report Glass Formers Characterization

    SciTech Connect

    Schumacher, R.F.

    2000-07-27

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. The problems might include arching or ratholing in the silo/hopper. In addition, all of the blends may require consideration for their handling.

  2. BNFL Report Glass Formers Characterization

    SciTech Connect

    Schumacher, R.F.

    2000-07-27

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. In addition, all of the blends may require consideration for their handling. A number of engineering considerations and recommendations were prepared based on the experimental findings, experience, and other process considerations. Recommendations for future testing are included. In conjunction with future work, it is recommended that a professional consultant be engaged to guide and assist with testing and design input.

  3. Preparation and investigation of [GeSe4]100-xIx glasses as promising materials for infrared fiber sensors

    NASA Astrophysics Data System (ADS)

    Velmuzhov, A. P.; Sukhanov, M. V.; Shiryaev, V. S.; Plekhovich, A. D.; Kotereva, T. V.; Snopatin, G. E.; Gerasimenko, V. V.; Pushkin, A. A.

    2016-10-01

    The glasses of [GeSe4]100-xIx (x = 1, 3, 5, 8, 10) compositions are prepared; their thermal properties, transparency in the mid-IR range and stability against crystallization are investigated. The glass transition temperature (Tg) in this system decreases monotonically with increasing iodine content from the value of Tg = 176 °C at x = 1 to Tg = 129 °C at x = 10. It has been determined by X-ray diffraction method that the addition of iodine reduces the volume fraction of the crystalline phase in glasses after annealing at 350 °C. Using a single crucible technique, the rod of [GeSe4]95I5 glass was drawn into a single-index fiber of 300 μm diameter and 10 m length. The optical losses were 2-3 dB/m in the spectral range 2.5-8 μm; the minimum optical losses were 1.7 dB/m at a wavelength of 5.5 μm. The content of impurity hydrogen in the form of Se-H in the fiber was about 3.6 ppm(wt), impurity oxygen in the form of Ge-O is 1 ppm(wt). The possibility of use of such [GeSe4]95I5 glass single-index fiber for infrared analysis of liquids by example of crude oil and water solutions of acetone has been demonstrated.

  4. Fast Crystals and Strong Glasses

    SciTech Connect

    Weitz, David

    2009-11-04

    This talk describes new results on model colloid systems that provide insight into the behavior of fundamental problems in colloid physics, and more generally, for other materials as well. By visualizing the nucleation and growth of colloid crystals, we find that the incipient crystallites are much more disordered than expected, leading to a larger diversity of crystal morphologies. When the entropic contribution of these diverse morphologies is included in the free energy, we are able to describe the behavior very well, and can predict the nucleation rate surprisingly accurately. The talk also describes the glass transition in deformable colloidal particles, and will show that when the internal elasticity of the particles is included, the colloidal glass transition mimics that of molecular glass formers much more completely. These results also suggest that the elasticity at the scale of the fundamental unit, either colloid particle or molecule, determines the nature of the glass transition, as described by the "fragility."

  5. Glass matrix composites from coal flyash and waste glass

    SciTech Connect

    Boccaccini, A.R.; Buecker, M.; Bossert, J.; Marszalek, K.

    1997-12-31

    Glass matrix composites have been fabricated from waste materials by means of powder technology. Flyash from coal power stations and waste glass, residue of float glass production, were used. Commercial alumina platelets were employed as the reinforcing component. For flyash contents up to 20% by weight nearly fully dense compacts could be fabricated by using relatively low sintering temperatures (650 C). For higher flyash contents the densification was hindered due to the presence of crystalline particles in the as-received flyash, which jeopardized the viscous flow densification mechanism. The addition of alumina platelets resulted in better mechanical properties of the composites than those of the unreinforced matrix, despite a residual porosity present. Young`s modulus, modulus of rupture, hardness and fracture toughness increase with platelet volume fraction. The low brittleness index of the composites suggests that the materials have good machinability. A qualitative analysis of the wear behavior showed that the composite containing 20% by volume platelet addition has a higher wear resistance than the unreinforced matrix. Overall, the results indicate that the materials may compete with conventional glasses and glass-ceramics in technical applications.

  6. Production Of Far Infrared Glass Fiber

    NASA Astrophysics Data System (ADS)

    Hilton, A. Ray; Hilton, A. Ray; McCord, James

    1989-06-01

    Direct application of the experience gained in preparing optical fibers for visual or very near infrared use has not produced good results in the far IR, 8-llμm. Joint efforts between suppliers of infrared transmitting (chalcogenide) glasses and those versed in the production of silicate glass fibers have met with only modest success. Perhaps oxide glass fiber methods are not compatible with the production of chalcogenide glasses. Separation of the glass production from the fiber production across organizational lines is another handicap preventing free flow of information. After participating in two such programs, Amorphous Materials concluded that a successful program would require that both activities be carried out together. This paper reports the results of efforts at Amorphous Materials to produce fibers in a manner compatible with chalcogenide glass production. Areas emphasized and discussed are: (1) Selection of glass composition from the standpoint of glass quality and fiber properties, (2) Fiber production designed to preserve bulk glass quality, (3) Fiber evaluation results, (4) Low level absorption glass production.

  7. Identifying glass compositions in fly ash

    NASA Astrophysics Data System (ADS)

    Aughenbaugh, Katherine; Stutzman, Paul; Juenger, Maria

    2016-01-01

    In this study, four Class F fly ashes were studied with a scanning electron microscope; the glassy phases were identified and their compositions quantified using point compositional analysis with k-means clustering and multispectral image analysis. The results showed that while the bulk oxide contents of the fly ashes were different, the four fly ashes had somewhat similar glassy phase compositions. Aluminosilicate glasses (AS), calcium aluminosilicate glasses (CAS), a mixed glass, and, in one case, a high iron glass were identified in the fly ashes. Quartz and iron crystalline phases were identified in each fly ash as well. The compositions of the three main glasses identified, AS, CAS, and mixed glass, were relatively similar in each ash. The amounts of each glass were varied by fly ash, with the highest calcium fly ash containing the most of calcium-containing glass. Some of the glasses were identified as intermixed in individual particles, particularly the calcium-containing glasses. Finally, the smallest particles in the fly ashes, with the most surface area available to react in alkaline solution, such as when mixed with portland cement or in alkali-activated fly ash, were not different in composition than the large particles, with each of the glasses represented. The method used in the study may be applied to a fly ash of interest for use as a cementing material in order to understand its potential for reactivity.

  8. Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass

    NASA Astrophysics Data System (ADS)

    Koike, Akio; Sugimoto, Naoki

    2006-02-01

    Temperature dependences of optical path length (dS/dT; calculated using the equation, dS/dT = dn/dT + na, where a is coefficient of thermal expansion, n is refractive index and dn/dT is temperature coefficient of refractive index) in various oxide glasses were investigated. The dS/dT is generally difficult to adjust by change of glass composition because dn/dT and a are interrelated. However, low dS/dT materials are desired for optical applications such as athermal devices, and high dS/dT materials can be used for thermo-optic devices. Pure silica glass is well-known as a typical low dS/dT material but still not sufficient. Fluorine-doped silica glass showed a lower dS/dT than that of pure silica glass. By fluorine-doping in silica glass, refractive index and dn/dT decreased but a near room temperature stayed at the same level. As a result, the dS/dT decreased with increasing fluorine concentration. On the other hand, bismuthate glass showed the highest dS/dT in this study. Most glasses having high a such as tellurite glass showed negative dn/dT. However, bismuthate glasses showed positive dn/dT in spite of high a. As a result, bismuthate glasses showed quite high dS/dT. These results indicate that dS/dT of the glass can be controllable and that fluorine doped silica glass and bismuthate glass are appropriate candidate materials for optical applications.

  9. Manufacturing unique glasses in space

    NASA Technical Reports Server (NTRS)

    Happe, R. P.

    1976-01-01

    An air suspension melting technique is described for making glasses from substances which to date have been observed only in the crystalline condition. A laminar flow vertical wind tunnel was constructed for suspending oxide melts that were melted using the energy from a carbon dioxide laser beam. By this method it is possible to melt many high-melting-point materials without interaction between the melt and crucible material. In addition, space melting permits cooling to suppress crystal growth. If a sufficient amount of under cooling is accompanied by a sufficient increase in viscosity, crystallization will be avoided entirely and glass will result.

  10. Division of Materials Science (DMS) meeting presentation

    SciTech Connect

    Cline, C.F.; Weber, M.J.

    1982-11-08

    Materials preparation techniques are listed. Materials preparation capabilities are discussed for making BeF/sub 2/ glasses and other materials. Materials characterization techniques are listed. (DLC)

  11. Mechanical properties of bioactive glasses, glass-ceramics and composites.

    PubMed

    Thompson, I D; Hench, L L

    1998-01-01

    The application of bioactive glass and glass-ceramics has been widely documented over the past twenty years but the high modulus and low fracture toughness has made them less applicable for clinical, load bearing, applications. The development of non-resorbable polyethylene and polysulphone matrices for these materials has improved the mechanical properties. However, the primary concern of whether the bioactivity of the composites is reduced is still unresolved. The more recent development of resorbable carrier systems, dextran and collagen, for bioactive glasses does not introduce such problems, hence making this form of composite suitable for novel soft tissue applications. The development of a simple quality index has enabled some of the materials described within this paper to be ranked by their ability to replace bone, thus enabling possible new research directions to be emphasized.

  12. Mixture designs to assess composition-structure-property relationships in SiO₂-CaO-ZnO-La₂O₃-TiO₂-MgO-SrO-Na₂O glasses: potential materials for embolization.

    PubMed

    Kehoe, Sharon; Langman, Maxine; Werner-Zwanziger, Ulli; Abraham, Robert J; Boyd, Daniel

    2013-09-01

    Embolization with micron-sized particulates is widely applied to treat uterine fibroids. The objective of this work was to develop mixture designs to predict materials composition-structure-property relationships for the SiO₂-CaO-ZnO-La₂O₃-TiO₂-MgO-SrO-Na₂O glass system and compare its fundamental materials properties (density and cytocompatibility), against a state-of-the-art embolic agent (contour polyvinyl alcohol) to assess the potential of these materials for embolization therapies. The glass structures were evaluated using ²⁹Si MAS NMR to identify chemical shift and line width; the particulate densities were determined using helium pycnometry and the cell viabilities were assessed via MTT assay. ²⁹Si MAS NMR results indicated peak maxima for each glass in the range of -82.3 ppm to -89.9 ppm; associated with Q² to Q³ units in silicate glasses. All experimental embolic compositions showed enhanced in vitro compatibility in comparison to Contour PVA with the exceptions of ORP9 and ORP11 (containing no TiO₂). In this study, optimal compositions for cell viability were obtained for the following compositional ranges: 0.095-0.188 mole fraction ZnO; 0.068-0.159 mole fraction La₂O₃; 0.545-0.562 mole fraction SiO₂ and 0.042-0.050 mole fraction TiO₂. To ensure ease of producibility in obtaining good melts, a maximum loading of 0.068 mole fraction La₂O₃ is required. This is confirmed by the desirability approach, for which the only experimental composition (ORP5) of the materials evaluated was presented as an optimum composition; combining high cell viability with ease of production (0.188 mole fraction ZnO; 0.068 mole fraction La₂O₃; 0.562 mole fraction SiO₂ and 0.042 mole fraction TiO₂).

  13. Glass ionomer restorative cement systems: an update.

    PubMed

    Berg, Joel H; Croll, Theodore P

    2015-01-01

    Glass ionomer cements have been used in pediatric restorative dentistry for more than two decades. Their usefulness in clinical dentistry is preferential to other materials because of fluoride release from the glass component, biocompatibility, chemical adhesion to dentin and enamel, coefficient of thermal expansion similar to that of tooth structure, and versatility. The purpose of this paper was to review the uses of glass ionomer materials in pediatric dentistry, specifically as pit and fissure sealants, dentin and enamel replacement repair materials, and luting cements, and for use in glass ionomer/resin-based composite stratification tooth restoration (the sandwich technique). This article can also be used as a guide to research and clinical references regarding specific aspects of the glass ionomer systems and how they are used for young patients.

  14. A combined arc-melting and tilt-casting furnace for the manufacture of high-purity bulk metallic glass materials.

    PubMed

    Soinila, E; Pihlajamäki, T; Bossuyt, S; Hänninen, H

    2011-07-01

    An arc-melting furnace which includes a tilt-casting facility was designed and built, for the purpose of producing bulk metallic glass specimens. Tilt-casting was chosen because reportedly, in combination with high-purity processing, it produces the best fatigue endurance in Zr-based bulk metallic glasses. Incorporating the alloying and casting facilities in a single piece of equipment reduces the amount of laboratory space and capital investment needed. Eliminating the sample transfer step from the production process also saves time and reduces sample contamination. This is important because the glass forming ability in many alloy systems, such as Zr-based glass-forming alloys, deteriorates rapidly with increasing oxygen content of the specimen. The challenge was to create a versatile instrument, in which high purity conditions can be maintained throughout the process, even when melting alloys with high affinity for oxygen. Therefore, the design provides a high-vacuum chamber to be filled with a low-oxygen inert atmosphere, and takes special care to keep the system hermetically sealed throughout the process. In particular, movements of the arc-melting electrode and sample manipulator arm are accommodated by deformable metal bellows, rather than sliding O-ring seals, and the whole furnace is tilted for tilt-casting. This performance of the furnace is demonstrated by alloying and casting Zr(55)Cu(30)Al(10)Ni(5) directly into rods up to ø 10 mm which are verified to be amorphous by x-ray diffraction and differential scanning calorimetry, and to exhibit locally ductile fracture at liquid nitrogen temperature.

  15. GlassForm

    SciTech Connect

    2011-09-16

    GlassForm is a software tool for generating preliminary waste glass formulas for a given waste stream. The software is useful because it reduces the number of verification melts required to develop a suitable additive composition. The software includes property models that calculate glass properties of interest from the chemical composition of the waste glass. The software includes property models for glass viscosity, electrical conductivity, glass transition temperature, and leach resistance as measured by the 7-day product consistency test (PCT).

  16. Colorless and high strength MgO/Al2 O3 /SiO2 glass-ceramic dental material using zirconia as nucleating agent.

    PubMed

    Dittmer, Marc; Rüssel, Christian

    2012-02-01

    Glasses in the system of MgO/Al2 O3 /SiO2 with different concentrations of zirconia as nucleating agent, some of them additionally doped with ZnO or P2 O5 , were annealed in a temperature range from 950 to 1150°C. The use of zirconia led to colorless glass-ceramics, which were transparent to opaque. In all studied compositions, α-/β-quartz-solid-solutions, zirconia as well as spinel or gahnite (ZnAl2 O4 )/spinel-solid-solution precipitated. The highest bending strength of 475 MPa was obtained after annealing at 1000°C for 3 h. The increase of the annealing temperature or an increase in the zirconia concentration resulted in an increase of the microhardness up to 13.3 GPa and of the fracture toughness up to 2.7 MPa m(1/2) . The addition of ZnO results in an increase of the hardness up to 12.5 GPa. The addition of ZnO or P2 O5 led to a fracture toughness of 2 MPa m(1/2) . The described physical properties had to be highly advantageous for the preparation of colorless high strength dental glass-ceramics.

  17. Polyamorphism in metalic glass.

    SciTech Connect

    Sheng, H. W.; Liu, H. Z.; Cheng, Y. Q.; Wen, J.; Lee, P.L.; Luo, W.K.; Shastri, S.D.; Ma, E.; X-Ray Science Division; Johns Hopkins Univ.; Chinese Academy of Sciences

    2007-03-01

    A metal, or an alloy, can often exist in more than one crystal structure. The face-centered-cubic and body-centered-cubic forms of iron (or steel) are a familiar example of such polymorphism. When metallic materials are made in the amorphous form, is a parallel 'polyamorphism' possible? So far, polyamorphic phase transitions in the glassy state have been observed only in glasses involving directional and open (such as tetrahedral) coordination environments. Here, we report an in situ X-ray diffraction observation of a pressure-induced transition between two distinct amorphous polymorphs in a Ce{sub 55}Al{sub 45} metallic glass. The large density difference observed between the two polyamorphs is attributed to their different electronic and atomic structures, in particular the bond shortening revealed by ab initio modeling of the effects of f-electron delocalization. This discovery offers a new perspective of the amorphous state of metals, and has implications for understanding the structure, evolution and properties of metallic glasses and related liquids. Our work also opens a new avenue towards technologically useful amorphous alloys that are compositionally identical but with different thermodynamic, functional and rheological properties due to different bonding and structural characteristics.

  18. Picritic glasses from Hawaii

    USGS Publications Warehouse

    Clague, D.A.; Weber, W.S.; Dixon, J.E.

    1991-01-01

    ESTIMATES of the MgO content of primary Hawaiian tholeiitic melts range from 8wt% to as high as 25wt% (refs 1, 2). In general, these estimates are derived from analysis of the whole-rock composition of lavas, coupled with the compositions of the most magnesian olivine phenocrysts observed. But the best estimate of magma composition comes from volcanic glass, as it represents the liquid composition at the time of quenching; minimal changes occur during the quenching process. Here we report the discovery of tholeiitic basalt glasses, recovered offshore of Kilauea volcano, that contain up to 15.0 wt% MgO. To our knowledge, these are the most magnesian glasses, and have the highest eruption temperatures (??? 1,316 ??C), yet found. The existence of these picritic (high-MgO) liquids provides constraints on the temperature structure of the upper mantle, magma transport and the material and thermal budgets of the Hawaiian volcanoes. Furthermore, picritic melts are affected little by magma-reservoir processes, and it is therefore relatively straightforward to extrapolate back to the composition of the primary melt and its volatile contents.

  19. Controlling the shape of glass microballoons

    NASA Technical Reports Server (NTRS)

    Dunn, S. A.; Gunter, S.

    1980-01-01

    Percent yield of "perfect" glass microballoons is increased by using microlevitating furnaces. Furnace components operate at higher temperatures and with levitation gases that will not affect glass materials. Furnace speeds up remelting and reshaping, reducing number of rejects for laser fusion studies. Electronic sensing maintains constant pressure differential across CHS despite changing furnace pressure and temperature; control retains microballoon in stable levitating state.

  20. Strength of inorganic glass

    SciTech Connect

    Kurkjian, C.R.

    1985-01-01

    This book presents information on the following topics: a look at the history of glass strength; atomistic theory of fracture; surface chemistry in relation to the strength and fracture of silicate glasses; high-speed photographic investigations of the dynamic localized loading of some oxide glasses; a correction for measurements of contact area using Newton's rings; envionmentally enhanced crack growth; fatigue in glass; behavior of flaws in fused silica fibers; fracture toughness of chalcogenide glasses and glass-ceramics; fracture analysis of glass surfaces; and fracture mechanics parameters for glasses - a compilation and correlation.

  1. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    SciTech Connect

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  2. Processing of bulk metallic glass.

    PubMed

    Schroers, Jan

    2010-04-12

    Bulk metallic glass (BMG) formers are multicomponent alloys that vitrify with remarkable ease during solidification. Technological interest in these materials has been generated by their unique properties, which often surpass those of conventional structural materials. The metastable nature of BMGs, however, has imposed a barrier to broad commercial adoption, particularly where the processing requirements of these alloys conflict with conventional metal processing methods. Research on the crystallization of BMG formers has uncovered novel thermoplastic forming (TPF)-based processing opportunities. Unique among metal processing methods, TPF utilizes the dramatic softening exhibited by a BMG as it approaches its glass-transition temperature and decouples the rapid cooling required to form a glass from the forming step. This article reviews crystallization processes in BMG former and summarizes and compares TPF-based processing methods. Finally, an assessment of scientific and technological advancements required for broader commercial utilization of BMGs will be made.

  3. Tm3+/Yb3+ co-doped tellurite glass with silver nanoparticles for 1.85 μm band laser material

    NASA Astrophysics Data System (ADS)

    Huang, Bo; Zhou, Yaxun; Cheng, Pan; Zhou, Zizhong; Li, Jun; Jin, Wei

    2016-10-01

    Tm3+/Yb3+ co-doped tellurite glasses with different silver nanoparticles (Ag NPs) concentrations were prepared using the conventional melt-quenching technique and characterized by the UV/Vis/NIR absorption spectra, 1.85 μm band fluorescence emission spectra, transmission electron microscopy (TEM) images, differential scanning calorimeter (DSC) curves and X-ray diffraction (XRD) patterns to investigate the effects of Ag NPs on the 1.85 μm band spectroscopic properties of Tm3+ ions, thermal stability and structural nature of glass hosts. Under the excitation of 980 nm laser diode (LD), the 1.85 μm band fluorescence emission of Tm3+ ions enhances significantly in the presence of Ag NPs with average diameter of ∼8 nm and local surface Plasmon resonance (LSPR) band of ∼590 nm, which is mainly attributed to the increased local electric field induced by Ag NPs at the proximity of doped rare-earth ions on the basis of energy transfer from Yb3+ to Tm3+ ions. An improvement by about 110% of fluorescence intensity is observed in the Tm3+/Yb3+ co-doped tellurite glass containing 0.5 mol% amount of AgNO3 while the prepared glass samples possess good thermal stability and amorphous structural nature. Meanwhile, the Judd-Ofelt intensity parameters Ωt (t = 2,4,6), spontaneous radiative transition probabilities, fluorescence branching ratios and radiative lifetimes of relevant excited levels of Tm3+ ions were determined based on the Judd-Ofelt theory to reveal the enhanced effects of Ag NPs on the 1.85 μm band spectroscopic properties, and the energy transfer micro-parameters and phonon contribution ratios were calculated based on the non-resonant energy transfer theory to elucidate the energy transfer mechanism between Yb3+ and Tm3+ ions. The present results indicate that the prepared Tm3+/Yb3+ co-doped tellurite glass with an appropriate amount of Ag NPs is a promising lasing media applied for 1.85 μm band solid-state lasers and amplifiers.

  4. IMPACT STRENGTH OF GLASS AND GLASS CERAMIC

    SciTech Connect

    Bless, S.; Tolman, J.

    2009-12-28

    Strength of glass and glass ceramic was measured with a bar impact technique. High-speed movies show regions of tensile and compressive failure. The borosilicate glass had a compressive strength of at least 2.2 GPa, and the glass ceramic at least 4 GPa. However, the BSG was much stronger in tension than GC. In ballistic tests, the BSG was the superior armor.

  5. Rapid prototyping of glass microfluidic chips

    NASA Astrophysics Data System (ADS)

    Kotz, Frederik; Plewa, Klaus; Bauer, Werner; Hanemann, Thomas; Waldbaur, Ansgar; Wilhelm, Elisabeth; Neumann, Christiane; Rapp, Bastian E.

    2015-03-01

    In academia the rapid and flexible creation of microfluidic chips is of great importance for microfluidic research. Besides polymers glass is a very important material especially when high chemical and temperature resistance are required. However, glass structuring is a very hazardous process which is not accessible to most members of the microfluidic community. We therefore sought a new method for the rapid and simple creation of transparent microfluidic glass chips by structuring and sintering amorphous silica suspensions. The whole process from a digital mask layout to a microstructured glass sheet can be done within two days. In this paper we show the applicability of this process to fabricate capillary driven microfluidic systems.

  6. Bioactive Glasses: Frontiers and Challenges.

    PubMed

    Hench, Larry L; Jones, Julian R

    2015-01-01

    Bioactive glasses were discovered in 1969 and provided for the first time an alternative to nearly inert implant materials. Bioglass formed a rapid, strong, and stable bond with host tissues. This article examines the frontiers of research crossed to achieve clinical use of bioactive glasses and glass-ceramics. In the 1980s, it was discovered that bioactive glasses could be used in particulate form to stimulate osteogenesis, which thereby led to the concept of regeneration of tissues. Later, it was discovered that the dissolution ions from the glasses behaved like growth factors, providing signals to the cells. This article summarizes the frontiers of knowledge crossed during four eras of development of bioactive glasses that have led from concept of bioactivity to widespread clinical and commercial use, with emphasis on the first composition, 45S5 Bioglass(®). The four eras are (a) discovery, (b) clinical application, (c) tissue regeneration, and (d) innovation. Questions still to be answered for the fourth era are included to stimulate innovation in the field and exploration of new frontiers that can be the basis for a general theory of bioactive stimulation of regeneration of tissues and application to numerous clinical needs.

  7. Economic manufacturing of bulk metallic glass compositions by microalloying

    DOEpatents

    Liu, Chain T.

    2003-05-13

    A method of making a bulk metallic glass composition includes the steps of:a. providing a starting material suitable for making a bulk metallic glass composition, for example, BAM-11; b. adding at least one impurity-mitigating dopant, for example, Pb, Si, B, Sn, P, to the starting material to form a doped starting material; and c. converting the doped starting material to a bulk metallic glass composition so that the impurity-mitigating dopant reacts with impurities in the starting material to neutralize deleterious effects of the impurities on the formation of the bulk metallic glass composition.

  8. Engineered glass seals for solid-oxide fuel cells

    DOEpatents

    Surdoval, Wayne; Lara-Curzio, Edgar; Stevenson, Jeffry; Muth, Joseph Thomas; Armstrong, Beth L.; Shyam, Amit; Trejo, Rosa M.; Wang, Yanli; Chou, Yeong Shyung; Shultz, Travis Ray

    2017-02-07

    A seal for a solid oxide fuel cell includes a glass matrix having glass percolation therethrough and having a glass transition temperature below 650.degree. C. A deformable second phase material is dispersed in the glass matrix. The second phase material can be a compliant material. The second phase material can be a crushable material. A solid oxide fuel cell, a precursor for forming a seal for a solid oxide fuel cell, and a method of making a seal for a solid oxide fuel cell are also disclosed.

  9. Manufacturing laser glass by continuous melting

    SciTech Connect

    Campbell, J H; Suratwala, T; krenitsky, S; Takeuchi, K

    2000-07-01

    A novel, continuous melting process is being used to manufacture meter-sized plates of laser glass at a rate 20-times faster, 5-times cheaper, and with 2-3 times better optical quality than with previous one-at-a-time, ''discontinuous'' technology processes. This new technology for manufacturing laser glass, which is arguably the most difficult continuously-melted optical material ever produced, comes as a result of a $60 million, six-year joint R&D program between government and industry. The glasses manufactured by the new continuous melting process are Nd-doped phosphate-based glasses and are marketed under the product names LG-770 (Schott Glass Technologies) and LHG-8 (Hoya Corporation USA). With this advance in glass manufacturing technology, it is now possible to construct high-energy, high-peak-power lasers for use in fusion energy development, national defense, and basic physics research that would have been impractical to build using the old melting technology. The development of continuously melted laser glass required technological advances that have lead to improvements in the manufacture of other optical glass products as well. For example, advances in forming, annealing, and conditioning steps of the laser glass continuous melting process are now being used in manufacture of other large-size optical glasses.

  10. Analysis of advanced optical glass and systems

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry; Feng, Chen

    1991-01-01

    Optical lens systems performance utilizing optical materials comprising reluctant glass forming compositions was studied. Such special glasses are being explored by NASA/Marshall Space Flight Center (MSFC) researchers utilizing techniques such as containerless processing in space on the MSFC Acoustic Levitation Furnace and on the High Temperature Acoustic Levitation Furnace in the conceptual design phase for the United States Microgravity Laboratory (USML) series of shuttle flights. The application of high refractive index and low dispersive power glasses in optical lens design was investigated. The potential benefits and the impacts to the optical lens design performance were evaluated. The results of the studies revealed that the use of these extraordinary glasses can result in significant optical performance improvements. Recommendations of proposed optical properties for potential new glasses were also made. Applications of these new glasses are discussed, including the impact of high refractive index and low dispersive power, improvements of the system performance by using glasses which are located outside of traditional glass map, and considerations in establishing glass properties beyond conventional glass map limits.

  11. Glass-rich chondrules in ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Krot, Alexander N.; Rubin, Alan E.

    1994-09-01

    There are two types of glass-rich chondrules in unequilibrated ordinary chondrites (OC): (1) porphyritic chondrules containing 55-85 vol% glass or microcrystalline mesostasis and (2) nonporphyritic chondrules, containing 90-99 vol% glass. These two types are similar in mineralogy and bulk composition to previously described Al-rich chondrules in OC. In addition to Si-, Al- and Na-rich glass or Ca-Al-rich microcrystalline mesostasis, glass-rich chondrules contain dendritic and skeletal crystals of olivine, Al2O3-rich low-Ca pyroxene and fassaite. Some chondrules contain relict grains of forsterite +/- Mg-Al spinel. We suggest that glass-rich chondrules were formed early in nebular history by melting fine-grained precursor materials rich in refractory (Ca, Al, Ti) and moderately volatile (Na, K) components (possibly related to Ca-Al-rich inclusions) admixed with coarse relict forsterite and spinel grains derived from previously disrupted type-I chondrules.

  12. A review of glass-ionomers: From conventional glass-ionomer to bioactive glass-ionomer

    PubMed Central

    Khoroushi, Maryam; Keshani, Fateme

    2013-01-01

    Materials used in the body, especially the materials used in various oral cavity regions should be stable and passive without any interactions with the body tissues or fluids. Dental amalgam, composite resins and dental cements are the materials of choice with such properties. The first attempts to produce active materials, which could interact with the human body tissues and fluids were prompted by the concept that fluoride-releasing materials exert useful effects in the body. The concept of using the “smart” materials in dentistry has attracted a lot of attention in recent years. Conventional glass-ionomer (GI) cements have a large number of applications in dentistry. They are biocompatible with the dental pulp to some extent. GI is predominantly used as cements in dentistry; however, they have some disadvantages, the most important of which is lack of adequate strength and toughness. In an attempt to improve the mechanical properties of the conventional GI, resin-modified glass-ionomers have been marketed, with hydrophilic monomers, such as hydroxyethyl methacrylated (HEMA). Some recent studies have evaluated GI with bioactive glass in its structure to validate the claims that such a combination will improve tooth bioactivity, regeneration capacity and restoration. There is ever-increasing interest in the application of bioactive materials in the dental field in an attempt to remineralize affected dentin. The aim of this review article is to evaluate these materials and their characteristics and applications. PMID:24130573

  13. HGMS: Glasses and Nanocomposites for Hydrogen Storage.

    SciTech Connect

    Lipinska, Kris; Hemmers, Oliver

    2013-02-17

    The primary goal of this project is to fabricate and investigate different glass systems and glass-derived nanocrystalline composite materials. These glass-based, two-phased materials will contain nanocrystals that can attract hydrogen and be of potential interest as hydrogen storage media. The glass materials with intrinsic void spaces that are able to precipitate functional nanocrystals capable to attract hydrogen are of particular interest. Proposed previously, but never practically implemented, one of promising concepts for storing hydrogen are micro-containers built of glass and shaped into hollow microspheres. The project expanded this concept to the exploration of glass-derived nanocrystalline composites as potential hydrogen storage media. It is known that the most desirable materials for hydrogen storage do not interact chemically with hydrogen and possess a high surface area to host substantial amounts of hydrogen. Glasses are built of disordered networks with ample void spaces that make them permeable to hydrogen even at room temperature. Glass-derived nanocrystalline composites (two-phased materials), combination of glasses (networks with ample voids) and functional nanocrystals (capable to attract hydrogen), appear to be promising candidates for hydrogen storage media. Key advantages of glass materials include simplicity of preparation, flexibility of composition, chemical durability, non-toxicity and mechanical strength, as well as low production costs and environmental friendliness. This project encompasses a fundamental research into physics and chemistry of glasses and nanocrystalline composite materials, derived from glass. Studies are aimed to answer questions essential for considering glass-based materials and composites as potential hydrogen storage media. Of particular interest are two-phased materials that combine glasses with intrinsic voids spaces for physisorption of hydrogen and nanocrystals capable of chemisorption. This project does not

  14. Raman and Infrared Spectroscopy of Yttrium Aluminum Borate Glasses and Glass-ceramics

    NASA Technical Reports Server (NTRS)

    Bradley, J.; Brooks, M.; Crenshaw, T.; Morris, A.; Chattopadhyay, K.; Morgan, S.

    1998-01-01

    Raman spectra of glasses and glass-ceramics in the Y2O3-Al2O3-B2O3 system are reported. Glasses with B2O3 contents ranging from 40 to 60 mole percent were prepared by melting 20 g of the appropriate oxide or carbonate powders in alumina crucibles at 1400 C for 45 minutes. Subsequent heat treatments of the glasses at temperatures ranging from 600 to 800 C were performed in order to induce nucleation and crystallization. It was found that Na2CO3 added to the melt served as a nucleating agent and resulted in uniform bulk crystallization. The Raman spectra of the glasses are interpreted primarily in terms of vibrations of boron - oxygen structural groups. Comparison of the Raman spectra of the glass-ceramic samples with spectra of aluminate and borate crystalline materials reveal that these glasses crystallize primarily as yttrium aluminum borate, YAl3(BO3)4.

  15. Photosensitivity phenomena in multicomponent glasses

    NASA Astrophysics Data System (ADS)

    Czachor, K.; Jedrzejewski, K.; Stępień, R.

    2005-09-01

    Low cost, high bandwidth, narrowband and multifunctionality are main targets for new optical devices development. Planar optics is probably the best solution for future telecom long distance and access transmission networks but also for metrology sensing devices. Many different materials can be used for this purpose like PECVD silica, multicomponent glasses or even polymers. Bragg grating inscription in such material is another advantage to achieve narrowband spectral characteristic of device, which is essential in modern systems. The main purpose of presented work was the development in technology and measurement techniques of channels formed on the surface of the glass. Planar couplers and structures that are more complicated can also be made in the same technology in the future. Special multicomponent glasses SiO2-GeO2-B2O3-Na2O-SnO2 with up to 6 %mol of Sn were synthetized and thin rectangular polished plates were prepared. The UV 244 nm 100 mW Coherent argon ion frequency doubled laser was used in our experiments. Surface relief structures similar to the compaction-densification/expansion model of photosensitivity were developed on the glass surface. The optical microscope and alpha-step profiler were used for preliminary tests of photoinduced structures on the glass surface. The ability of the writing possibility in function of Sn content and different laser power levels were analyzed.

  16. Enhancing the value of commodity polymers: Part 1. Structure-property relationships in composite materials based on maleated polypropylene/inorganic phosphate glasses. Part 2. New value-added applications for polyesters

    NASA Astrophysics Data System (ADS)

    Gupta, Mohit

    The first part of the thesis (Chapters 2 & 3) describes a new class of organic polymer/inorganic glass composite materials with property improvements that are impossible to achieve with classical polymer blends or composites. These materials exhibit good processability, superior mechanical performance, good thermal stability, and have excellent gas barrier properties. Low glass transition temperature phosphate glasses (Pglass) are used as inorganic fillers and slightly maleated polypropylene is used as the organic polymer matrix. The Pglass, which was dispersed as spherical droplets in the unoriented composites can be elongated into high aspect ratio platelets during the biaxial stretching process. Biaxially oriented films exhibited a brick wall type microstructure with highly aligned inorganic platelets in a ductile organic matrix and the oxygen barrier properties are significantly improved due to presence of Pglass platelets as impermeable inclusions. Mechanical properties of the biaxially oriented films showed significant improvements compared to neat polymer due to uniform dispersion of the Pglass platelets. Properly dispersed and aligned platelets have proven to be very effective for increasing the composite modulus. These developed materials therefore show promise to help fulfill the ever increasing demand for new advanced materials for a wide variety of advanced packaging applications because of their gas barrier properties, flexibility, transparency, mechanical strength and performance under humid conditions. The second part of the thesis (Chapters 4 & 5) describes new value-added applications for polyesters. Chapter 4 reports a novel process for the decolorization of green and blue colored PET bottle flakes using hydrogen peroxide. The decolorized flakes were characterized for color, intrinsic viscosity values. Decolorized flakes exhibited color values similar to those of colorless recycled PET and even though IV values decreased, bleached flakes still

  17. Glass matrix composites. I - Graphite fiber reinforced glass

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Bacon, J. F.

    1978-01-01

    An experimental program is described in which graphite fibers of Hercules HMS and HTS, Thornel 300, and Celanese DG-12 were used to reinforce, both uniaxially and biaxially, borosilicate pyrex glass. Composite flexural strength distribution, strength as a function of test temperature, fracture toughness and oxidative stability were determined and shown to be primarily a function of fiber type and the quality of fiber-matrix bond formed during composite fabrication. It is demonstrated that the graphite fiber reinforced glass system offers unique possibilities as a high performance structural material.

  18. Oxide glasses for mid-infrared lasers

    NASA Astrophysics Data System (ADS)

    Richards, Billy D. O.; Jha, Animesh; Jose, Gin; Jiang, Xin

    2011-06-01

    We present an overview of rare-earth doped heavy metal oxide and oxy-fluoride glasses which show promise as host materials for lasers operating in the 2-5 μm spectral region for medical, military and sensing applications. By engineering glass composition and purity, tellurite and germanate glasses can support transmission up to and beyond 5 μm and can have favourable thermal, mechanical and environmental stability compared to fluoride glasses. We discuss techniques for glass purification and water removal for enhanced infrared transmission. By comparing the material properties of the glass, and spectroscopic performance of selected rare-earth dopant ions we can identify promising compositions for fibre and bulk lasers in the mid-infrared. Tellurite glass has recently been demonstrated to be a suitable host material for efficient and compact lasers in the {2 μm spectral region in fibre and bulk form and the next challenge is to extend the operating range further into the infrared region where silica fibre is not sufficiently transparent, and provide an alternative to fluoride glass and fibre.

  19. A College-Level Art Curriculum in Glass. Final Report.

    ERIC Educational Resources Information Center

    Willson, Robert

    In order to compile information to be used as a basis for developing a curriculum for teaching glass as an art material on the college level, glass experts, artists and centers in 12 nations were visited. It was clear that the US lags far behind other countries in teaching glass, in using it as a subject for art exhibitions and using it creatively…

  20. Glass as encapsulation for low-cost photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.

    1981-01-01

    In photovoltaic systems, the encapsulant material that protects the solar cells should be highly transparent and very durable. Glass satisfies these two criteria and is considered a primary candidate for low-cost, photovoltaic encapsulation systems. In this paper, various aspects of glass encapsulation are treated that are important for the designer of photovoltaic systems. Candidate glasses and available information defining the state of the art of glass encapsulation materials and processes for automated, high volume production of terrestrial photovoltaic devices and related applications are presented. The desired characteristics of glass encapsulation are (1) low degradation rates, (2) high transmittance, (3) high reliability, (4) low-cost, and (5) high annual production capacity. The glass design areas treated herein include the types of glass, sources, prices, physical properties and glass modifications, such as antireflection coatings.

  1. Inverted glass harp

    NASA Astrophysics Data System (ADS)

    Quinn, Daniel B.; Rosenberg, Brian J.

    2015-08-01

    We present an analytical treatment of the acoustics of liquid-filled wine glasses, or "glass harps." The solution is generalized such that under certain assumptions it reduces to previous glass harp models, but also leads to a proposed musical instrument, the "inverted glass harp," in which an empty glass is submerged in a liquid-filled basin. The versatility of the solution demonstrates that all glass harps are governed by a family of solutions to Laplace's equation around a vibrating disk. Tonal analyses of recordings for a sample glass are offered as confirmation of the scaling predictions.

  2. Glass-silicon column

    DOEpatents

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  3. A simple method for tuning the glass transition process in inorganic phosphate glasses

    NASA Astrophysics Data System (ADS)

    Fulchiron, René; Belyamani, Imane; Otaigbe, Joshua U.; Bounor-Legaré, Véronique

    2015-02-01

    The physical modification of glass transition temperature (Tg) and properties of materials via blending is a common practice in industry and academia and has a large economic advantage. In this context, simple production of hitherto unattainable new inorganic glass blends from already existing glass compositions via blending raises much hope with the potential to provide new glasses with new and improved properties, that cannot be achieved with classical glass synthesis, for a plethora of applications such as computers screens, glass-to-metal seals, and storage materials for nuclear wastes. Here, we demonstrate that blends of the specific glass compositions studied are miscible in all proportions, an unreported phenomenon in hard condensed matter like glass. Interestingly, excellent agreement was found between the obtained data and calculated Tgs from theoretical equations (Supplementary information) for predicting the composition dependence of Tg for miscible blends with weak but significant specific interactions between the blend components. That this blending method is at present not applied to inorganic glasses reflects the fact that water and chemically resistant phosphate glasses with relatively low Tgs have become available only recently.

  4. A simple method for tuning the glass transition process in inorganic phosphate glasses

    PubMed Central

    Fulchiron, René; Belyamani, Imane; Otaigbe, Joshua U.; Bounor-Legaré, Véronique

    2015-01-01

    The physical modification of glass transition temperature (Tg) and properties of materials via blending is a common practice in industry and academia and has a large economic advantage. In this context, simple production of hitherto unattainable new inorganic glass blends from already existing glass compositions via blending raises much hope with the potential to provide new glasses with new and improved properties, that cannot be achieved with classical glass synthesis, for a plethora of applications such as computers screens, glass-to-metal seals, and storage materials for nuclear wastes. Here, we demonstrate that blends of the specific glass compositions studied are miscible in all proportions, an unreported phenomenon in hard condensed matter like glass. Interestingly, excellent agreement was found between the obtained data and calculated Tgs from theoretical equations (Supplementary information) for predicting the composition dependence of Tg for miscible blends with weak but significant specific interactions between the blend components. That this blending method is at present not applied to inorganic glasses reflects the fact that water and chemically resistant phosphate glasses with relatively low Tgs have become available only recently. PMID:25666949

  5. Materialism.

    PubMed

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website.

  6. Cholesteric Liquid Crystal Glass Platinum Acetylides

    DTIC Science & Technology

    2014-06-01

    cholesteric glasses at room temperature, a series of platinum acetylide complexes modified with cholesterol has been synthesized. The materials synthesized...have the formula trans-Pt(PR3)( cholesterol (3 or 4)- ethynyl benzoate)(1-ethynyl-4-X-benzene), where R = Et, Bu or Oct and X = H, F, OCH3 and CN. A...glasses at room temperature, a series of platinum acetylide complexes modified with cholesterol has been synthesized. The materials synthesized

  7. Containerless glass fiber processing

    NASA Technical Reports Server (NTRS)

    Ethridge, E. C.; Naumann, R. J.

    1986-01-01

    An acoustic levitation furnace system is described that was developed for testing the feasibility of containerless fiber pulling experiments. It is possible to levitate very dense materials such as platinum at room temperature. Levitation at elevated temperatures is much more difficult. Samples of dense heavy metal fluoride glass were levitated at 300 C. It is therefore possible that containerless fiber pulling experiments could be performed. Fiber pulling from the melt at 650 C is not possible at unit gravity but could be possible at reduced gravities. The Acoustic Levitation Furnace is described, including engineering parameters and processing information. It is illustrated that a shaped reflector greatly increases the levitation force aiding the levitation of more dense materials.

  8. Crystallization of Nanocomposite Glasses made by the SSG

    DTIC Science & Technology

    1989-10-18

    manuscript #1). The applications of cordierite as a ceramic material are limited by relatively poor mechanical properties which directly result from the...did suggest the presence of amorphous carbon in the glasses, but its concentration, distribution and effect upon the glass properties has not yet been...the range 500’-1000"C, and this provides a sense of thermodynamic stability to the glass. And since oxygen must diffuse through the glass to oxidize

  9. Crystallization of Nanocomposite Glasses Made by the SSG Process

    DTIC Science & Technology

    1989-08-31

    applications of cordierite as a ceramic material are limited by relatively poor mechanical properties which directly result from the inability to sinter...of amorphous carbon in the glasses, but its concentration, distribution and effect upon the glass properties has not yet been determined. The ’-GA...and this provides a sense of thermodynamic stability to the glass. And since oxygen must diffuse through the glass to oxidize the Si-C bonds, a

  10. Physical and Mechanical Properties of Glass--Reinforced Plastics,

    DTIC Science & Technology

    REINFORCED PLASTICS , REVIEWS), GLASS TEXTILES, MECHANICAL PROPERTIES, ELECTRICAL PROPERTIES, SILICONE PLASTICS , POLYESTER PLASTICS , PHENOLIC... PLASTICS , EPOXY RESINS, TEST METHODS, NONDESTRUCTIVE TESTING, FIRE RESISTANT MATERIALS, POLYVINYL CHLORIDE, USSR

  11. Structural materials and components

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Lee, Raymond (Inventor)

    1982-01-01

    High density structural (blocking) materials composed of a polyimide filled with glass microballoons and methods for making such materials. Structural components such as panels which have integral edgings and/or other parts made of the high density materials.

  12. High density fluoride glass calorimeter

    NASA Astrophysics Data System (ADS)

    Xie, Q.; Scheltzbaum, J.; Akgun, U.

    2014-04-01

    The unprecedented radiation levels in current Large Hadron Collider runs, and plans to even increase the luminosity creates a need for new detector technologies to be investigated. Quartz plates to replace the plastic scintillators in current LHC calorimeters have been proposed in recent reports. Quartz based Cherenkov calorimeters can solve the radiation damage problem, however light production and transfer have proven to be challenging. This report summarizes the results from a computational study on the performance of a high-density glass calorimeter. High-density, scintillating, fluoride glass, CHG3, was used as the active material. This glass has been developed specifically for hadron collider experiments, and is known for fast response time, in addition to high light yield. Here, the details of a Geant4 model for a sampling calorimeter prototype with 20 layers, and its hadronic as well as electromagnetic performances are reported.

  13. Introduction to glass microstructuring techniques.

    PubMed

    Mazurczyk, Radoslaw; Mansfield, Colin D

    2013-01-01

    In this chapter an overview of manufacturing methods, leading to the fabrication of microstructures in glass substrates, is presented. Glass is a material of excellent optical properties, a very good electric insulator, biocompatible and chemically stable. In addition to its intrinsic qualities, glass can be processed with the use of manufacturing methods originating from the microelectronic industry. In this text two complete manufacturing protocols are described, each composed of standard microfabrication steps; namely, the deposition of masking layers, photolithographic patterning and pattern transfer via wet or dry etching. As a result, a set of building blocks is provided, allowing the manufacture of various microfluidic components that are frequently used in the domain of micro-total analysis system technology.

  14. The effect of two fibre impregnation methods on the cytotoxicity of a glass and carbon fibre-reinforced acrylic resin denture base material on oral epithelial cells and fibroblasts.

    PubMed

    Sipahi, Cumhur; Ozen, Julide; Ural, A Ugur; Dalkiz, Mehmet; Beydemir, Bedri

    2006-09-01

    Acrylic resin dentures may have cytotoxic effects on oral soft tissues. However, there is sparse data about the cytotoxic effect of fibre-reinforced acrylic resin denture base materials. The purpose of this in vitro study was to determine the effect of two fibre impregnation methods on the cytotoxicity of a glass and carbon fibre-reinforced heat-polymerized acrylic resin denture base material on oral epithelial cells and fibroblasts. One hundred acrylic resin discs were assigned to five experimental groups (n = 20). One of the groups did not include any fibre. Two groups consisted of silane and monomer treated glass fibres (Vetrolex) impregnated into acrylic resin (QC-20) discs. The other two groups consisted of silane and monomer treated carbon fibres (Type Tenox J, HTA). Untreated cell culture was used as positive control. The human oral epithelial cell line and buccal fibroblast cultures were exposed to test specimens. The cytotoxicity of the test materials was determined by succinic dehydrogenase activity (MTT method) after 24 and 72 h exposures. Data were analysed with a statistical software program (SPSSFW, 9.0). A one-way analysis of variance (anova) test and Bonferroni test were used for the comparisons between the groups. All statistical tests were performed at the 0.95 confidence level (P < 0.05). After 24 and 72 h incubation, cell viability percentages of all experimental groups showed significant decrease according to the positive control cell culture. Fibroblastic cell viability percentages of silane and monomer treated fibre-reinforced groups were lower than the unreinforced group. Cell viability of monomer-treated groups displayed the lowest percentages. Elapsed incubation time decreased epithelial cell viability in silane-treated groups. Fibroblastic cell viability was not influenced by elapsed time except the unreinforced group.

  15. Diphenylamino-substituted bicarbazole derivative: Hole-transporting material with high glass-transition temperature, good electron and triplet exciton blocking capabilities and efficient hole injection

    NASA Astrophysics Data System (ADS)

    Chen, Shanyong; Jiang, Shan; Yu, Hong

    2017-04-01

    A diphenylamino-substituted bicarbazole derivative (BCZDA) with high glass-transition temperature (170 °C) has been developed. The introduction of the strongly electron-donating diphenylamino group endows this compound with high HOMO (-4.94 eV), LUMO (-1.94 eV) and triplet energy (2.65 eV) levels which are beneficial for hole injection and electron/triplet exciton blocking. By adopting this compound as the hole-transporting layer, both fluorescent and phosphorescent devices with good performance have been realized. Through the device study, the performance of this compound is proved to be comparable to that of NPB. The utility of this compound as a host has also been evaluated.

  16. Ion Exchange in Glass-Ceramics

    NASA Astrophysics Data System (ADS)

    Beall, George; Comte, Monique; Deneka, Matthew; Marques, Paulo; Pradeau, Philippe; Smith, Charlene

    2016-08-01

    In the past few years ion-exchange in glasses has found a renewed interest with a lot of new development and research in industrial and academic labs and the commercialization of materials with outstanding mechanical properties. These glasses are now widely used in many electronic devices including hand-held displays and tablets. The exchange is generally conducted in a bath of molten salt below the transition temperature of the glass. The exchange at the surface of an alkali ion by a bigger one brings compressive stress at the surface. The mechanical properties are dependent on the stress level at the surface and the depth of penetration of the bigger ion. As compared to glasses, glass-ceramics have the interest to display a wide range of aspects (transparent to opaque) and different mechanical properties (especially higher modulus and toughness). There has been little research on ion-exchange in glass-ceramics. In these materials the mechanisms are much more complex than in glasses because of their polyphasic nature: ion-exchange generally takes place mostly in one phase (crystalline phase or residual glass). The mechanism can be similar to what is observed in glasses with the replacement of an ion by another in the structure. But in some cases this ion-exchange leads to microstructural modifications (for example amorphisation or phase change). This article reviews these ion-exchange mechanisms using several transparent and opaque alumino-silicate glass-ceramics as examples. The effect of the ion exchange in the various glass-ceramics will be described, with particular emphasis on flexural strength.

  17. Bioactive Glasses: Frontiers and Challenges

    PubMed Central

    Hench, Larry L.; Jones, Julian R.

    2015-01-01

    Bioactive glasses were discovered in 1969 and provided for the first time an alternative to nearly inert implant materials. Bioglass formed a rapid, strong, and stable bond with host tissues. This article examines the frontiers of research crossed to achieve clinical use of bioactive glasses and glass–ceramics. In the 1980s, it was discovered that bioactive glasses could be used in particulate form to stimulate osteogenesis, which thereby led to the concept of regeneration of tissues. Later, it was discovered that the dissolution ions from the glasses behaved like growth factors, providing signals to the cells. This article summarizes the frontiers of knowledge crossed during four eras of development of bioactive glasses that have led from concept of bioactivity to widespread clinical and commercial use, with emphasis on the first composition, 45S5 Bioglass®. The four eras are (a) discovery, (b) clinical application, (c) tissue regeneration, and (d) innovation. Questions still to be answered for the fourth era are included to stimulate innovation in the field and exploration of new frontiers that can be the basis for a general theory of bioactive stimulation of regeneration of tissues and application to numerous clinical needs. PMID:26649290

  18. Surface Coatings on Lunar Volcanic Glasses

    NASA Technical Reports Server (NTRS)

    Wentworth, Susan J.; McKay, D. S.; Thomas,-Keprta, K. L.; Clemett, S. J.

    2007-01-01

    We are undertaking a detailed study of surface deposits on lunar volcanic glass beads. These tiny deposits formed by vapor condensation during cooling of the gases that drove the fire fountain eruptions responsible for the formation of the beads. Volcanic glass beads are present in most lunar soil samples in the returned lunar collection. The mare-composition beads formed as a result of fire-fountaining approx.3.4-3.7 Ga ago, within the age range of large-scale mare volcanism. Some samples from the Apollo 15 and Apollo 17 landing sites are enriched in volcanic spherules. Three major types of volcanic glass bead have been identified: Apollo 15 green glass, Apollo 17 orange glass, and Apollo 17 "black" glass. The Apollo 15 green glass has a primitive composition with low Ti. The high-Ti compositions of the orange and black glasses are essentially identical to each other but the black glasses are opaque because of quench crystallization. A poorly understood feature common to the Apollo 15 and 17 volcanic glasses is the presence of small deposits of unusual materials on their exterior surfaces. For example, early studies indicated that the Apollo 17 orange glasses had surface enrichments of In, Cd, Zn, Ga, Ge, Au, and Na, and possible Pb- and Zn-sulfides, but it was not possible to characterize the surface features in detail. Technological advances now permit us to examine such features in detail. Preliminary FE-TEM/X-ray studies of ultramicrotome sections of Apollo 15 green glass indicate that the surface deposits are heterogeneous and layered, with an inner layer consisting of Fe with minor S and an outer layer of Fe and no S, and scattered Zn enrichments. Layering in surface deposits has not been identified previously; it will be key to defining the history of lunar fire fountaining.

  19. Precision glass molding of complex shaped chalcogenide glass lenses for IR applications

    NASA Astrophysics Data System (ADS)

    Staasmeyer, Jan-Helge; Wang, Yang; Liu, Gang; Dambon, Olaf; Klocke, Fritz

    2016-09-01

    The use of chalcogenide glass in the thermal infrared domain is an emerging alternative to commonly used crystalline materials such as germanium. The main advantage of chalcogenide glass is the possibility of mass production of complex shaped geometries with replicative processes such as precision glass molding. Thus costly single point diamond turning processes are shifted to mold manufacturing and do not have to be applied to every single lens produced. The usage of FEM-Simulation is mandatory for developing a molding process for complex e.g. non rotational symmetric chalcogenide glass lenses in order to predict the flow of glass. This talk will present state of the art modelling of the precision glass molding process for chalcogenide glass lenses, based on thermal- and mechanical models. Input data for modelling are a set of material properties of the specific chalcogenide glass in conjunction with properties of mold material and wear protective coatings. Specific properties for the mold-glass interaction such as stress relaxation or friction at the glassmold interface cannot be obtained from datasheets and must be determined experimentally. A qualified model is a powerful tool to optimize mold and preform designs in advance in order to achieve sufficient mold filling and compensate for glass shrinkage. Application of these models in an FEM-Simulation "case study" for molding a complex shaped non-rotational symmetric lens is shown. The outlook will examine relevant issues for modelling the precision glass molding process of chalcogenide glasses in order to realize scaled up production in terms of multi cavity- and wafer level molding.

  20. Bare Bones of Bioactive Glass

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Paul Ducheyne, a principal investigator in the microgravity materials science program and head of the University of Pernsylvania's Center for Bioactive Materials and Tissue Engineering, is leading the trio as they use simulated microgravity to determine the optimal characteristics of tiny glass particles for growing bone tissue. The result could make possible a much broader range of synthetic bone-grafting applications. Bioactive glass particles (left) with a microporous surface (right) are widely accepted as a synthetic material for periodontal procedures. Using the particles to grow three-dimensional tissue cultures may one day result in developing an improved, more rugged bone tissue that may be used to correct skeletal disorders and bone defects. The work is sponsored by NASA's Office of Biological and Physical Research.

  1. Picture Wall (Glass Structures)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Photo shows a subway station in Toronto, Ontario, which is entirely glass-enclosed. The all-glass structure was made possible by a unique glazing concept developed by PPG Industries, Pittsburgh, Pennsylvania, one of the largest U.S. manufacturers of flat glass. In the TVS glazing system, transparent glass "fins" replace conventional vertical support members used to provide support for wind load resistance. For stiffening, silicone sealant bonds the fins to adjacent glass panels. At its glass research center near Pittsburgh, PPG Industries uses the NASTRAN computer program to analyze the stability of enclosures made entirely of glass. The company also uses NASTRAN to simulate stresses on large containers of molten glass and to analyze stress effects of solar heating on flat glass.

  2. Fiber reinforced glasses and glass-ceramics for high performance applications

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Brennan, J. J.; Layden, G. K.

    1986-01-01

    The development of fiber reinforced glass and glass-ceramic matrix composites is described. The general concepts involved in composite fabrication and resultant composite properties are given for a broad range of fiber and matrix combinations. It is shown that composite materials can be tailored to achieve high levels of toughness, strength, and elastic stiffness, as well as wear resistance and dimensional stability.

  3. Late Byzantine mineral soda high alumina glasses from Asia Minor: a new primary glass production group.

    PubMed

    Schibille, Nadine

    2011-04-19

    The chemical characterisation of archaeological glass allows the discrimination between different glass groups and the identification of raw materials and technological traditions of their production. Several lines of evidence point towards the large-scale production of first millennium CE glass in a limited number of glass making factories from a mixture of Egyptian mineral soda and a locally available silica source. Fundamental changes in the manufacturing processes occurred from the eight/ninth century CE onwards, when Egyptian mineral soda was gradually replaced by soda-rich plant ash in Egypt as well as the Islamic Middle East. In order to elucidate the supply and consumption of glass during this transitional period, 31 glass samples from the assemblage found at Pergamon (Turkey) that date to the fourth to fourteenth centuries CE were analysed by electron microprobe analysis (EPMA) and by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The statistical evaluation of the data revealed that the Byzantine glasses from Pergamon represent at least three different glass production technologies, one of which had not previously been recognised in the glass making traditions of the Mediterranean. While the chemical characteristics of the late antique and early medieval fragments confirm the current model of glass production and distribution at the time, the elemental make-up of the majority of the eighth- to fourteenth-century glasses from Pergamon indicate the existence of a late Byzantine glass type that is characterised by high alumina levels. Judging from the trace element patterns and elevated boron and lithium concentrations, these glasses were produced with a mineral soda different to the Egyptian natron from the Wadi Natrun, suggesting a possible regional Byzantine primary glass production in Asia Minor.

  4. Late Byzantine Mineral Soda High Alumina Glasses from Asia Minor: A New Primary Glass Production Group

    PubMed Central

    Schibille, Nadine

    2011-01-01

    The chemical characterisation of archaeological glass allows the discrimination between different glass groups and the identification of raw materials and technological traditions of their production. Several lines of evidence point towards the large-scale production of first millennium CE glass in a limited number of glass making factories from a mixture of Egyptian mineral soda and a locally available silica source. Fundamental changes in the manufacturing processes occurred from the eight/ninth century CE onwards, when Egyptian mineral soda was gradually replaced by soda-rich plant ash in Egypt as well as the Islamic Middle East. In order to elucidate the supply and consumption of glass during this transitional period, 31 glass samples from the assemblage found at Pergamon (Turkey) that date to the fourth to fourteenth centuries CE were analysed by electron microprobe analysis (EPMA) and by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The statistical evaluation of the data revealed that the Byzantine glasses from Pergamon represent at least three different glass production technologies, one of which had not previously been recognised in the glass making traditions of the Mediterranean. While the chemical characteristics of the late antique and early medieval fragments confirm the current model of glass production and distribution at the time, the elemental make-up of the majority of the eighth- to fourteenth-century glasses from Pergamon indicate the existence of a late Byzantine glass type that is characterised by high alumina levels. Judging from the trace element patterns and elevated boron and lithium concentrations, these glasses were produced with a mineral soda different to the Egyptian natron from the Wadi Natrun, suggesting a possible regional Byzantine primary glass production in Asia Minor. PMID:21526144

  5. Reaction cured glass and glass coatings

    NASA Technical Reports Server (NTRS)

    Goldstein, H. E.; Leiser, D. B.; Katvala, V. W. (Inventor)

    1978-01-01

    The invention relates to reaction cured glass and glass coatings prepared by reacting a compound selected from the group consisting of silicon tetraboride, silicon hexaboride, other boron silicides, boron and mixtures with a reactive glass frit composed of a porous high silica borosilicate glass and boron oxide. The glassy composites of the present invention are useful as coatings on low density fibrous porous silica insulations used as heat shields and for articles such as reaction vessels that are subjected to high temperatures with rapid heating and cooling and that require resistance to temperature and repeated thermal shock at temperatures up to about 1482C (2700PF).

  6. Thermal diffusivity of glass ionomer cement systems.

    PubMed

    Brantley, W A; Kerby, R E

    1993-01-01

    The thermal diffusivity has been measured for 10 glass ionomer and resin-based materials: three conventional (water-hardened) glass ionomer cements, two silver-reinforced glass ionomers, an experimental stainless steel-reinforced glass ionomer, three visible light-cured (VLC) glass ionomer-resin hybrid materials, and a VLC resin-based product developed for the same clinical uses as the hybrid materials. Cube-shaped specimens, c. 10 x 10 x 10 mm, initially at room temperature were immersed in mercury surrounded by an ice-water bath. From the experimental cooling curve a semi-log plot of relative temperature decrease vs. time yielded a straight line whose slope is proportional to the thermal diffusivity. The values ranged from 1.74-5.16 x 10(-3) cm2 s-1, and all of the materials tested would have adequate insulating properties provided normal clinical thickness levels for lining materials are maintained. It was found that the thermal diffusivities for the three metal-reinforced glass ionomers, where composition information is available, do not follow a rule of mixtures applied to the individual components.

  7. Dynamics and thermodynamics of polymer glasses.

    PubMed

    Cangialosi, D

    2014-04-16

    The fate of matter when decreasing the temperature at constant pressure is that of passing from gas to liquid and, subsequently, from liquid to crystal. However, a class of materials can exist in an amorphous phase below the melting temperature. On cooling such materials, a glass is formed; that is, a material with the rigidity of a solid but exhibiting no long-range order. The study of the thermodynamics and dynamics of glass-forming systems is the subject of continuous research. Within the wide variety of glass formers, an important sub-class is represented by glass forming polymers. The presence of chain connectivity and, in some cases, conformational disorder are unfavourable factors from the point of view of crystallization. Furthermore, many of them, such as amorphous thermoplastics, thermosets and rubbers, are widely employed in many applications. In this review, the peculiarities of the thermodynamics and dynamics of glass-forming polymers are discussed, with particular emphasis on those topics currently the subject of debate. In particular, the following aspects will be reviewed in the present work: (i) the connection between the pronounced slowing down of glassy dynamics on cooling towards the glass transition temperature (Tg) and the thermodynamics; and, (ii) the fate of the dynamics and thermodynamics below Tg. Both aspects are reviewed in light of the possible presence of a singularity at a finite temperature with diverging relaxation time and zero configurational entropy. In this context, the specificity of glass-forming polymers is emphasized.

  8. Enhancement effect of pre-reacted glass on strength of glass-ionomer cement.

    PubMed

    Monmaturapoj, Naruporn; Soodsawang, Wiwaporn; Tanodekaew, Siriporn

    2012-02-03

    In this paper, we report on the enhanced strength of glass ionomer cement (GIC) by using the process of pre acid-base reaction and spray drying in glass preparation. The pre acid-base reaction was induced by prior mixing of the glass powder with poly(alkenoic acid). The weight ratios of glass powder to poly(alkenoic acid) were varied to investigate the extent of the pre acid-base reaction of the glass. The effect of the spray drying process which produced spherical glass particles on cement strength was also studied and discussed. The results show that adding 2%-wt of poly(alkenoic acid) liquid in the pre-reacted step improved cement strength. GICs prepared using a mixture of pre-reacted glass with both spherical and irregular powders at 60:40 by weight exhibited the highest compressive strength at 138.64±7.73 MPa. It was concluded that glass ionomer cements containing pre-reacted glass with mixed glass morphology using both spherical and irregular forms are promising as restorative dental materials with improved mechanical properties and handling characteristics.

  9. Impact damage resistance of flat glass/cellular glass solar mirror experimental panels

    NASA Technical Reports Server (NTRS)

    Varner, J. R.; Akbar Ali, M.; Adams, M. A.

    1983-01-01

    An attempt is made to characterize the hail-impact behavior of a solar concentrator structural material which consists of thin, second-surface silvered glass sheets bonded to structural support panels of cellular glass. The resulting glass/cellular glass panel can be described as a thin, brittle plate supported by an elastic foundation, with the adhesive bonding the two as a third component. The plate will bend during impact. Attention is experimentally given to how variations in the characteristics or geometry of the flat glass, adhesive and cellular glass affect hail-impact damage resistance. The critical energy needed to cause impact damage is calculated from the critical velocity of the iceball by means of the kinetic energy formula. The complexity of this structural system and the variability of the specimens render it impossible to completely develop an analytical treatment for the prediction of impact damage resistance.

  10. 6. Looking glass aircraft in the project looking glass historic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Looking glass aircraft in the project looking glass historic district. View to north. - Offutt Air Force Base, Looking Glass Airborne Command Post, Looking Glass Avenue between Comstat Drive & Nightwatch Avenue, Offutt Air Force Base, Bellevue, Sarpy County, NE

  11. The geochemistry and provenance of Apollo 16 mafic glasses

    NASA Astrophysics Data System (ADS)

    Zeigler, Ryan A.; Korotev, Randy L.; Jolliff, Bradley L.; Haskin, Larry A.; Floss, Christine

    2006-12-01

    The regolith of the Apollo 16 lunar landing site is composed mainly of feldspathic lithologies but mafic lithologies are also present. A large proportion of the mafic material occurs as glass. We determined the major element composition of 280 mafic glasses (>10 wt% FeO) from six different Apollo 16 soil samples. A small proportion (˜5%) of the glasses are of volcanic origin with picritic compositions. Most, however, are of impact origin. Approximately half of the mafic impact glasses are of basaltic composition and half are of noritic composition with high concentrations of incompatible elements. A small fraction have compositions consistent with impact mixtures of mare material and material of the feldspathic highlands. On the basis of major-element chemistry, we identified six mafic glass groups: VLT picritic glass, low-Ti basaltic glass, high-Ti basaltic glass, high-Al basaltic glass, KREEPy glass, and basaltic-andesite glass. These glass groups encompass ˜60% of the total mafic glasses studied. Trace-element analyses by secondary ion mass spectroscopy for representative examples of each glass group (31 total analyses) support the major-element classifications and groupings. The lack of basaltic glass in Apollo 16 ancient regolith breccias, which provide snapshots of the Apollo 16 soil just after the infall of Imbrium ejecta, leads us to infer that most (if not all) of the basaltic glass was emplaced as ejecta from small- or moderate-sized impacts into the maria surrounding the Apollo 16 site after the Imbrium impact. The high-Ti basaltic glasses likely represent a new type of basalt from Mare Tranquillitatis, whereas the low-Ti and high-Al basaltic glasses possibly represent the composition of the basalts in Mare Nectaris. Both the low-Ti and high-Al basaltic glasses are enriched in light-REEs, which hints at the presence of a KREEP-bearing source region beneath Mare Nectaris. The basaltic andesite glasses have compositions that are siliceous, ferroan

  12. Status of Gr/glass composites technology at UTOS

    NASA Technical Reports Server (NTRS)

    Mayor, Ramon A.

    1988-01-01

    The TSC (Thermally Stable Composite) refers to a family of graphite reinforced glass matrix composite materials developed by UTOS. This fiber matrix combination exhibits low coefficients of thermal expansion (CTE), exceptional dimensional stability, high specific strength and stiffness, adequate fracture toughness, and space environment compatibility. The dimensional stability of a TSC mirror structure was experimentally characterized at the Steward Observatory. Preliminary results indicate that TSC is significantly more thermally stable than most current structural composite materials. In addition, the use of lower CTE glass matrix materials, such as 96 percent silica glass, have the potential for producing graphite/glass panels with expansion rates and stability comparable to that of fused silica.

  13. Remote Sensing of Lunar Mineralogy: The Glass Conundrum

    NASA Technical Reports Server (NTRS)

    Pieters, C. M.; Tompkins, S.; Pieters, C. M.

    2005-01-01

    The term "lunar glasses" provokes different connotations depending on the context. Common usages include a) pyroclastic deposits consisting of "glass beads" derived from the deep interior, b) melt products created during impact events, and c) the ubiquitous and complex glass-welded weathering products, agglutinates. Each is distinct due to a specific geologic origin and composition, but all contain quench glass in some form. Spectral properties of a wide range of glass-bearing lunar materials is presented elsewhere [1], Discussed here are new spectra for a depth sequence of samples from Apollo 17 core 74002 collected at Shorty Crater. The data provide new insight into why Fe-Ti-rich quench glass is not directly observed remotely. Resolving this mystery allows the extensive glass-rich deposits at Aristarchus to be recognized as low-Ti pyroclastic glass.

  14. Lunar glass compositions - Apollo 16 core sections 60002 and 60004

    NASA Technical Reports Server (NTRS)

    Meyer, H. O. A.; Tsai, H.-M.

    1975-01-01

    Approximately 500 glasses between 1 mm and 125 microns in size have been analyzed from fourteen samples from the Apollo 16 core sections 60002 and 60004. The majority of glasses have compositions comparable to those found in previous studies of lunar surface soils; however, two new and distinct glass compositions that are probably derived in part from mare material occur in the core samples. The major glass composition in all samples is that of Highland Basalt glass, but it also appears that high-K Fra Mauro Basalt (KREEP) glass is more common at the Apollo 16 site than was previously thought. The relative abundance of glasses within the core samples is random in distribution: each sample is characterized by a particular assemblage and distribution of the constituent glass compositions.

  15. Luminescence of phosphorus containing oxide materials: Crystalline SiO2-P and 3P2O5ṡ7SiO2; CaOṡP2O5; SrOṡP2O5 glasses

    NASA Astrophysics Data System (ADS)

    Trukhin, A. N.; Smits, K.; Jansons, J.; Berzins, D.; Chikvaidze, G.; Griscom, D. L.

    2014-10-01

    Luminescence of phosphate glasses such as CaOṡP2O5 and SrOṡP2O5 is compared with that of phosphorus doped crystalline α-quartz and phosphosilicate glass with content 3P2O5ṡ7SiO2. Water & OH groups are found by IR spectra in these materials. The spectrum of luminescence contains many bands in the range 1.5 - 5.5 eV. The luminescence bands in UV range at 4.5-5 eV are similar in those materials. Decay duration in exponential approximation manifests a time constant about 37 ns. Also a component in μs range was detected. PL band of μs component is shifted to low energy with respect to that of ˜37 ns component. This shift is about 0.6 eV. It is explained as singlet-triplet splitting of excited state. Below 14 K increase of luminescence kinetics duration in μs range was observed and it was ascribed to zero magnetic field splitting of triplet excited state of the center. Yellow-red luminescence was induced by irradiation in phosphorus doped crystalline α-quartz, phosphosilicate glasses. The yellowl uminescence contains two bands at 600 and 740 nm. Their decay is similar under 193 nm laser and may be fitted with the first order fractal kinetics or stretched exponent. Thermally stimulated luminescence contains only band at 600 nm. The 248 nm laser excites luminescence at 740 nm according to intra center process with decay time constant about 4 ms at 9 K. Both type of luminescence UV and yellow were ascribed to different defects containing phosphorus. P-doped α-quartz sample heated to 550 co become opalescent. Ir spectra related to water & OH groups are changed. Photoluminescence intensity of all three bands, UV (250 nm), yellow (600 nm) and red (740 nm) strongly diminished and disappeared after heating to 660 C°. Radiation induced red luminescence of non-bridging oxygen luminescence center (NBO) appeared in crystal after heat treatment. We had observed a crystalline version of this center (l. Skuja et al, Nuclear Instruments and Methods in Physics Research B

  16. ANT XXIV/2 (SYSTCO) Hexactinellida (Porifera) and bathymetric traits of Antarctic glass sponges (incorporating ANDEEP-material); including an emendation of the rediscovered genus Lonchiphora

    NASA Astrophysics Data System (ADS)

    Göcke, Christian; Janussen, Dorte

    2011-10-01

    In this study, we present the hexactinellid sponges sampled in the Weddell-Sea during the ANT 24-2 SYSTCO expedition (30.10.2007-31.01.2008) on the RV Polarstern. All deep-sea stations sampled during this expedition showed comparably modest sponge colonization, with Hexactinellida and Demospongiae occurring in similar numbers of species and individuals. The hexactinellids sampled represent three abyssal species and six species from the deep shelf. Among the deep-sea glass sponges one species new to science was found, Lonchiphora antartica sp. nov., belonging to a poorly known genus, so far represented by only a single specimen known from the Sagami Bay, Japan. Herein we give the first detailed emended diagnosis of the genus and a description of the new species representing the genus as its first well-known specimen. Ecological analysis shows three clearly differentiated associations of hexactinellid sponges in the Antarctic Ocean, which replace each other with increasing depths. Sponge communities on the shelf are dominated by Rossella spp., those on the continental slope and in the lower bathyal mostly by Bathydorus spinosus, and the abyssal associations by Caulophacus spp. No distinct geographical distribution pattern of the Weddell-Sea Hexactinellida could be observed, apart from those caused by their bathyal ranges.

  17. Effect of material, process parameters, and simulated body fluids on mechanical properties of 13-93 bioactive glass porous constructs made by selective laser sintering.

    PubMed

    Kolan, Krishna C R; Leu, Ming C; Hilmas, Gregory E; Velez, Mariano

    2012-09-01

    The effect of particle size distribution, binder content, processing parameters, and sintering schedule on the microstructure and mechanical properties of porous constructs was investigated. The porous constructs were produced by indirect selective laser sintering (SLS) of 13-93 bioactive glass using stearic acid as a polymeric binder. The binder content and d(50) particle size in the feedstock powders were simultaneously reduced from 22 to 12 wt% and from 20 to 11 μm, respectively, to identify the minimum binder content required for the SLS fabrication. An average particle size of ∼16 μm with a binder content of 15 wt% significantly reduced post-processing time and improved mechanical properties. Increasing the laser power and scan speed at the energy density of 1 cal/cm² maintained the feature sharpness of the parts during the fabrication of green parts and could almost double the mechanical properties of the sintered parts. Changes in the heating rates, ranging from 0.1 to 2 °C/min, during the post-processing of the fabricated "green" scaffolds showed that the heating rate significantly affects the densification and mechanical properties of the sintered scaffolds. The compressive strength of the scaffolds manufactured with the optimized parameters varied from 41 MPa, for a scaffold with a porosity of ∼50%, to 157 MPa, for a dense part. The bioactive scaffolds soaked in simulated body fluids for durations up to 6 weeks were used to evaluate the change in mechanical properties in vitro.

  18. [Clinical examination of the gingival effects of three glass ionomer restorative materials (GC Fuji IX GP, GC Fuji IX GP EXTRA és GC EQUIA)].

    PubMed

    Horváth, Attila; Papp, Zsuzsanna; Dobó-Nagy, Csaba; Gera, István

    2014-12-01

    The restoration of cervical abrasions, erosions or cervical carious lesions is still challenging because of their unpredictable adhesion and possible negative effects on the marginal plaque accumulation. The impact of three different glass ionomer cements (GIC) on the marginal gingiva and root sensitivity was studied. Furthermore, it was investigated in details, whether or not a recently developed light curing varnish (GC Coat - EQUIA) had any additional effect on the gingival tissue. A total number of 30 non-smokers with healthy gingiva having at least one cervical supra/paragingival abrasion/erosion/abfraction defects were enrolled in the present study. The cervical defects were randomly restored by using one of the three GIC and the gingival parameters were recorded and evaluated at baseline, 6 weeks and 6 months. According to our results root sensitivity were substantially decreased in all the three groups. Plaque scores were also reduced in all groups with the greatest improvement at the sites where the new varnish were applied. Although this improvement was not reflected by the gingival parameters, such as bleeding on probing and crevicular fluid flow, since both were slightly increased in the varnish group. However, neither the intra-group, nor the intergroup differences reached statistical significance. Consequently, the three investigated GIC did not significantly affect the gingival health, therefore they might serve as alternative for the treatment of such cervical lesions. Nevertheless, the new light cure varnish-coated GIC did not seem to be either clinically or statistical significantly more favorable.

  19. Bioactive ceramic glasses in situ synthesized by laser melting

    NASA Astrophysics Data System (ADS)

    Taca, Mihaela; Vasile, Eugeniu; Boroica, Lucica; Udrea, Mircea; Medianu, Rares; Munteanu, Maria Cristina

    2008-10-01

    The synthesis of bioactive glass from raw materials even during the laser deposition process, could provide formation of a biocompatible layer on the metallic prosthesis. During the laser irradiation melting and ultrarapid solidification of ceramic materials occur and glasses controlled by the process parameters (especially laser power and solidification rate) will be obtained. The aim of the present paper is to study the influence of the processing parameters on the laser synthesized glasses chemical composition, structure and bioactive behaviour.

  20. The Encapsulation of Organic Molecules and Enzymes in Sol-Gel Glasses: Novel Photoactive, Optical, Sensing and Bioactive Materials. A Review

    DTIC Science & Technology

    1992-01-01

    precursor for a rhodium c’talyst for alkcne hydroformylation and methanol homologation, but only low catalytic activity was observed (24a. 3. Enzymes...Materials. A Review l)avid Avnirl, Sergei lh’aunz 2 and Michael Ottolcughi’ ,Institutc of Chemistry and 21)cpartment of Biological C?,cmistry Fhc lchrew...types of matcrials and th,.r applications are reviewed . These include photocatalysts for redox reactions; photochromic materials and other

  1. Glass tube splitting tool

    NASA Technical Reports Server (NTRS)

    Klein, J. A.; Murray, C. D.; Stein, J. A.

    1971-01-01

    Tool accurately splits glass tubing so cuts are aligned 180 deg apart and reassembled tube forms low pressure, gastight enclosure. Device should interest industries using cylindrical closed glass containers.

  2. Failure in glass

    NASA Technical Reports Server (NTRS)

    Keeton, S. C.

    1972-01-01

    Review of state of the art concerning glass failure mechanisms and fatigue theories discusses brittle fracture in glass, fatigue mechanisms, fatigue behavior, environmental effects on failure rate, and aging.

  3. Application of the model of delocalized atoms to metallic glasses

    NASA Astrophysics Data System (ADS)

    Sanditov, D. S.; Darmaev, M. V.; Sanditov, B. D.

    2017-01-01

    The parameters of the model of delocalized atoms applied to metallic glasses have been calculated using the data on empirical constants of the Vogel-Fulcher-Tammann equation (for the temperature dependence of viscosity). It has been shown that these materials obey the same glass-formation criterion as amorphous organic polymers and inorganic glasses. This fact qualitatively confirms the universality of the main regularities of the liquid-glass transition process for all amorphous materials regardless of their origin. The energy of the delocalization of an atom in metallic glasses, Δɛ e ≈ 20-25 kJ/mol, coincides with the results obtained for oxide inorganic glasses. It is substantially lower than the activation energies for a viscous flow and for ion diffusion. The delocalization of an atom (its displacement from the equilibrium position) for amorphous metallic alloys is a low-energy small-scale process similar to that for other glass-like systems.

  4. Electroless plating of copper on surface-modified glass substrate

    NASA Astrophysics Data System (ADS)

    Su, Wei; Yao, Libei; Yang, Fang; Li, Peiyuan; Chen, Juan; Liang, Lifang

    2011-07-01

    This work focuses on developing a novel convenient method for electroless copper deposition on glass material. This method is relied on the formation of amino (NH2)-terminated film on the surface of glass substrate, by coating polyethylenimine (PEI) on glass matrix and using epichlorohydrin (ECH) as cross-linking agent. The introduced amino groups can effectively adsorb the palladium, the catalysts which could initiate the subsequent Cu electroless plating, onto the glass substrate surface. Finally, a copper film is formed on the palladium-activated glass substrate through copper electroless plating and the surface-coppered glass material is therefore acquired. X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscopy (SEM) images combined with energy diffraction X-ray (EDX) analysis demonstrate the successful copper deposition on the surface of glass substrate.

  5. High strength E-glass/CNF fibers nanocomposite

    NASA Astrophysics Data System (ADS)

    Abu-Zahra, Esam H.

    Glass fibers are among the most versatile industrial materials known today, where 4 billion pounds of glass are used every year. They are readily produced from raw materials, which are available in virtually unlimited supply. Reinforced glass composites still suffer from different weaknesses; such as: poor dispersion, poor alignment and orientation of reinforcing materials, in addition to the difficulties associated with handling randomly oriented nanofibers and nanotubes in an industrial setting. The aim of this work is to study the feasibility of a manufacturing methodology to align the imbedded CNFs in the glass fibers and to quantify the potential gains in the mechanical strength of the nanocomposite glass fibers. The method makes use of the high aspect ratio of the CNFs along with the glass filament drawing process to imbed, disperse and align the CNFs in glass fibers. E-glass frit was prepared and mixed with 5% vol. CNFs. The mix was fed to the glass fibers drawing machine using a special feeding mechanism. Hybrid glass fibers were drawn on 12 runs and tested for their tensile strength properties. A 300% increase on the tensile strength of the E-glass/CNFs fibers was successfully demonstrated. Structural analysis using SEM testing revealed that the CNFs survived the high temperature in the premelter (2400°F), in addition to that for being well dispersed and aligned.

  6. Direction of CRT waste glass processing: electronics recycling industry communication.

    PubMed

    Mueller, Julia R; Boehm, Michael W; Drummond, Charles

    2012-08-01

    Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

  7. Weakly supervised glasses removal

    NASA Astrophysics Data System (ADS)

    Wang, Zhicheng; Zhou, Yisu; Wen, Lijie

    2015-03-01

    Glasses removal is an important task on face recognition, in this paper, we provide a weakly supervised method to remove eyeglasses from an input face image automatically. We choose sparse coding as face reconstruction method, and optical flow to find exact shape of glasses. We combine the two processes iteratively to remove glasses more accurately. The experimental results reveal that our method works much better than these algorithms alone, and it can remove various glasses to obtain natural looking glassless facial images.

  8. Ultrastable glasses portray similar behaviour to ordinary glasses at high pressure

    PubMed Central

    Rodríguez-Tinoco, C.; González-Silveira, M.; Barrio, M.; Lloveras, P.; Tamarit, J. Ll; Garden, J.-L.; Rodríguez-Viejo, J.

    2016-01-01

    Pressure experiments provide a unique opportunity to unravel new insights into glass-forming liquids by exploring its effect on the dynamics of viscous liquids and on the evolution of the glass transition temperature. Here we compare the pressure dependence of the onset of devitrification, Ton, between two molecular glasses prepared from the same material but with extremely different ambient-pressure kinetic and thermodynamic stabilities. Our data clearly reveal that, while both glasses exhibit different dTon/dP values at low pressures, they evolve towards closer calorimetric devitrification temperature and pressure dependence as pressure increases. We tentatively interpret these results from the different densities of the starting materials at room temperature and pressure. Our data shows that at the probed pressures, the relaxation time of the glass into the supercooled liquid is determined by temperature and pressure similarly to the behaviour of liquids, but using stability-dependent parameters. PMID:27694814

  9. Ultrastable glasses portray similar behaviour to ordinary glasses at high pressure

    NASA Astrophysics Data System (ADS)

    Rodríguez-Tinoco, C.; González-Silveira, M.; Barrio, M.; Lloveras, P.; Tamarit, J. Ll; Garden, J.-L.; Rodríguez-Viejo, J.

    2016-10-01

    Pressure experiments provide a unique opportunity to unravel new insights into glass-forming liquids by exploring its effect on the dynamics of viscous liquids and on the evolution of the glass transition temperature. Here we compare the pressure dependence of the onset of devitrification, Ton, between two molecular glasses prepared from the same material but with extremely different ambient-pressure kinetic and thermodynamic stabilities. Our data clearly reveal that, while both glasses exhibit different dTon/dP values at low pressures, they evolve towards closer calorimetric devitrification temperature and pressure dependence as pressure increases. We tentatively interpret these results from the different densities of the starting materials at room temperature and pressure. Our data shows that at the probed pressures, the relaxation time of the glass into the supercooled liquid is determined by temperature and pressure similarly to the behaviour of liquids, but using stability-dependent parameters.

  10. Technique for Machining Glass

    NASA Technical Reports Server (NTRS)

    Rice, S. H.

    1982-01-01

    Process for machining glass with conventional carbide tools requires a small quantity of a lubricant for aluminum applied to area of glass to be machined. A carbide tool is then placed against workpiece with light pressure. Tool is raised periodically to clear work of glass dust and particles. Additional lubricant is applied as it is displaced.

  11. Glass in Class

    ERIC Educational Resources Information Center

    Greaves, Neville

    2005-01-01

    Glass is reviewed from fabrication to application, laying emphasis on the wide-ranging physics involved. This begins with liquids and solids and the way in which glasses are defined and can be demonstrated in the classroom. At the atomic level the regular structure of crystals and their irregular counterparts in glasses are explained through…

  12. Antibacterial properties of laser spinning glass nanofibers.

    PubMed

    Echezarreta-López, M M; De Miguel, T; Quintero, F; Pou, J; Landin, M

    2014-12-30

    A laser-spinning technique has been used to produce amorphous, dense and flexible glass nanofibers of two different compositions with potential utility as reinforcement materials in composites, fillers in bone defects or scaffolds (3D structures) for tissue engineering. Morphological and microstructural analyses have been carried out using SEM-EDX, ATR-FTIR and TEM. Bioactivity studies allow the nanofibers with high proportion in SiO2 (S18/12) to be classified as a bioinert glass and the nanofibers with high proportion of calcium (ICIE16) as a bioactive glass. The cell viability tests (MTT) show high biocompatibility of the laser spinning glass nanofibers. Results from the antibacterial activity study carried out using dynamic conditions revealed that the bioactive glass nanofibers show a dose-dependent bactericidal effect on Sthaphylococcus aureus (S. aureus) while the bioinert glass nanofibers show a bacteriostatic effect also dose-dependent. The antibacterial activity has been related to the release of alkaline ions, the increase of pH of the medium and also the formation of needle-like aggregates of calcium phosphate at the surface of the bioactive glass nanofibers which act as a physical mechanism against bacteria. The antibacterial properties give an additional value to the laser-spinning glass nanofibers for different biomedical applications, such as treating or preventing surgery-associated infections.

  13. Interaction between bioactive glasses and human dentin.

    PubMed

    Efflandt, S E; Magne, P; Douglas, W H; Francis, L F

    2002-06-01

    This study explores the interaction between bioactive glasses and dentin from extracted human teeth in simulated oral conditions. Bioactive glasses in the Na(2)O-CaO-P(2)O(5)-SiO(2) and MgO-CaO-P(2)O(5)-SiO(2) systems were prepared as polished disks. Teeth were prepared by grinding to expose dentin and etching with phosphoric acid. A layer of saliva was placed between the two, and the pair was secured with an elastic band and immersed in saliva at 37 degrees C for 5, 21 or 42 days. The bioactive glasses adhered to dentin, while controls showed no such interaction. A continuous interface between the bioactive glass and dentin was imaged using cryogenic-scanning electron microscopy (SEM). However, after alcohol dehydration and critical point drying, fracture occurred due to stresses from dentin shrinkage. SEM investigations showed a microstructurally different material at the fractured interface. Chemical analyses revealed that ions from the glass penetrated into the dentin and that the surface of the glass in contact with the dentin was modified. Microdiffractometry showed the presence of apatite at the interface. Bonding appears to be due to an affinity of collagen for the glass surface and chemical interaction between the dentin and glass, leading to apatite formation at the interface.

  14. Welding/sealing glass-enclosed space in a vacuum

    DOEpatents

    Tracy, C. Edwin; Benson, David K.

    1996-01-01

    A method of welding and sealing the edges of two juxtaposed glass sheets together to seal a vacuum space between the sheets comprises the steps of positioning a radiation absorbant material, such as FeO, VO.sub.2, or NiO, between the radiation transmissive glass sheets adjacent the edges and then irradiating the absorbant material, preferably with a laser beam, through at least one of the glass sheets. Heat produced by the absorbed radiation in the absorbant material melts glass in the portions of both glass sheets that are adjacent the absorbant material, and the melted glass from both sheets flows together to create the weld when the melted glass cools and hardens. The absorbant material can be dissolved and diffused into the melted glass to the extent that it no longer absorbs enough energy to keep the glass melted, thus, with appropriate proportioning of absorbant material to source energy power and welding heat needed, the process can be made self-stopping.

  15. Welding/sealing glass-enclosed space in a vacuum

    DOEpatents

    Tracy, C.E.; Benson, D.K.

    1996-02-06

    A method of welding and sealing the edges of two juxtaposed glass sheets together to seal a vacuum space between the sheets comprises the steps of positioning a radiation absorbent material, such as FeO, VO{sub 2}, or NiO, between the radiation transmissive glass sheets adjacent the edges and then irradiating the absorbent material, preferably with a laser beam, through at least one of the glass sheets. Heat produced by the absorbed radiation in the absorbent material melts glass in the portions of both glass sheets that are adjacent the absorbent material, and the melted glass from both sheets flows together to create the weld when the melted glass cools and hardens. The absorbent material can be dissolved and diffused into the melted glass to the extent that it no longer absorbs enough energy to keep the glass melted, thus, with appropriate proportioning of absorbent material to source energy power and welding heat needed, the process can be made self-stopping. 8 figs.

  16. Energy implications of glass-container recycling

    SciTech Connect

    Gaines, L L; Mintz, M M

    1994-03-01

    This report addresses the question of whether glass-container recycling actually saves energy. Glass-container production in 1991 was 10{sup 7} tons, with cullet making up about 30% of the input to manufacture. Two-thirds of the cullet is postconsumer waste; the remainder is in-house scrap (rejects). Most of the glass recycled is made into new containers. Total primary energy consumption includes direct process-energy use by the industry (adjusted to account for the efficiency of fuel production) plus fuel and raw-material transportation and production energies; the grand total for 1991 is estimated to be about 168 {times} 10{sup 12} Btu. The total primary energy use decreases as the percent of glass recycled rises, but the maximum energy saved is only about 13%. If distance to the landfill is kept fixed and that to the recovery facility multiplied by about eight, to 100 mi, a break-even point is reached, and recycling saves no energy. Previous work has shown that to save energy when using glass bottles, reuse is the clear choice. Recycling of glass does not save much energy or valuable raw material and does not reduce air or water pollution significantly. The most important impacts are the small reduction of waste sent to the landfill and increased production rates at glass plants.

  17. Direction of CRT waste glass processing: Electronics recycling industry communication

    SciTech Connect

    Mueller, Julia R.; Boehm, Michael W.; Drummond, Charles

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source

  18. Glass powder blended cement hydration modelling

    NASA Astrophysics Data System (ADS)

    Saeed, Huda

    The use of waste materials in construction is among the most attractive options to consume these materials without affecting the environment. Glass is among these types of potential waste materials. In this research, waste glass in powder form, i.e. glass powder (GP) is examined for potential use in enhancing the characteristics of concrete on the basis that it is a pozzolanic material. The experimental and the theoretical components of the work are carried out primarily to prove that glass powder belongs to the "family" of the pozzolanic materials. The chemical and physical properties of the hydrated activated glass powder and the hydrated glass powder cement on the microstructure level have been studied experimentally and theoretically. The work presented in this thesis consists of two main phases. The first phase contains experimental investigations of the reaction of glass powder with calcium hydroxide (CH) and water. In addition, it includes experiments that are aimed at determining the consumption of water and CH with time. The reactivity, degree of hydration, and nature of the pore solution of the glass powder-blended cement pastes and the effect of adding different ratios of glass powder on cement hydration is also investigated. The experiments proved that glass powder has a pozzolanic effect on cement hydration; hence it enhances the chemical and physical properties of cement paste. Based on the experimental test results, it is recommended to use a glass powder-to-cement ratio (GP/C) of 10% as an optimum ratio to achieve the best hydration and best properties of the paste. Two different chemical formulas for the produced GP C-S-H gel due to the pure GP and GP-CH pozzolanic reaction hydration are proposed. For the pure GP hydration, the produced GP C-S-H gel has a calcium-to-silica ratio (C/S) of 0.164, water-to-silica ratio (H/S) of 1.3 and sodium/silica ratio (N/S) of 0.18. However, for the GP-CH hydration, the produced GP C-S-H gel has a C/S ratio of 1

  19. Production of Synthetic Nuclear Melt Glass.

    PubMed

    Molgaard, Joshua J; Auxier, John D; Giminaro, Andrew V; Oldham, Colton J; Gill, Jonathan; Hall, Howard L

    2016-01-04

    Realistic surrogate nuclear debris is needed within the nuclear forensics community to test and validate post-detonation analysis techniques. Here we outline a novel process for producing bulk surface debris using a high temperature furnace. The material developed in this study is physically and chemically similar to trinitite (the melt glass produced by the first nuclear test). This synthetic nuclear melt glass is assumed to be similar to the vitrified material produced near the epicenter (ground zero) of any surface nuclear detonation in a desert environment. The process outlined here can be applied to produce other types of nuclear melt glass including that likely to be formed in an urban environment. This can be accomplished by simply modifying the precursor matrix to which this production process is applied. The melt glass produced in this study has been analyzed and compared to trinitite, revealing a comparable crystalline morphology, physical structure, void fraction, and chemical composition.

  20. Recent advancements in optical microstructure fabrication through glass molding process

    NASA Astrophysics Data System (ADS)

    Zhou, Tianfeng; Liu, Xiaohua; Liang, Zhiqiang; Liu, Yang; Xie, Jiaqing; Wang, Xibin

    2017-02-01

    Optical microstructures are increasingly applied in several fields, such as optical systems, precision measurement, and microfluid chips. Microstructures include microgrooves, microprisms, and microlenses. This paper presents an overview of optical microstructure fabrication through glass molding and highlights the applications of optical microstructures in mold fabrication and glass molding. The glass-mold interface friction and adhesion are also discussed. Moreover, the latest advancements in glass molding technologies are detailed, including new mold materials and their fabrication methods, viscoelastic constitutive modeling of glass, and microstructure molding process, as well as ultrasonic vibrationassisted molding technology.

  1. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, M.; Watson, E.B.; Acocella, J.

    1986-11-04

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10[sup 7] rad, the coloration resistant glass does not lose transparency. 3 figs.

  2. Radiation coloration resistant glass

    DOEpatents

    Tomozawa, Minoru; Watson, E. Bruce; Acocella, John

    1986-01-01

    A radiation coloration resistant glass is disclosed which is used in a radiation environment sufficient to cause coloration in most forms of glass. The coloration resistant glass includes higher proportions by weight of water and has been found to be extremely resistant to color change when exposed to such radiation levels. The coloration resistant glass is free of cerium oxide and has more than about 0.5% by weight water content. Even when exposed to gamma radiation of more than 10.sup.7 rad, the coloration resistant glass does not lose transparency.

  3. Oxynitride glass production procedure

    DOEpatents

    Weidner, Jerry R.; Schuetz, Stanley T.; O'Brien, Michael H.

    1991-01-01

    The invention is a process for the preparation of high quality oxynitride glasses without resorting to high pressures. Nitrogen-containing compounds such as Si.sub.3 N.sub.4 are first encapsulated in a low melting temperature glass. Particles of the encapsulated nitrogen-containing compound are mixed with other oxide glass-formers and melted in an atmosphere of flowing nitrogen and in the presence of buffering gas to form the oxynitride glass. Glasses containing up to 15 at % nitrogen have been prepared by this method.

  4. High expansion, lithium corrosion resistant sealing glasses

    DOEpatents

    Brow, Richard K.; Watkins, Randall D.

    1991-01-01

    Glass compositions containing CaO, Al.sub.2 O.sub.3, B.sub.2 O.sub.3, SrO and BaO in various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with pin materials of 446 Stainless Steel and Alloy-52 rather than molybdenum, for use in harsh chemical environments, specifically in lithium batteries.

  5. High expansion, lithium corrosion resistant sealing glasses

    DOEpatents

    Brow, R.K.; Watkins, R.D.

    1991-06-04

    Glass compositions containing CaO, Al[sub 2]O[sub 3], B[sub 2]O[sub 3], SrO and BaO in various combinations of mole % are provided. These compositions are capable of forming stable glass-to-metal seals with pin materials of 446 Stainless Steel and Alloy-52 rather than molybdenum, for use in harsh chemical environments, specifically in lithium batteries.

  6. Water dynamics in glass ionomer cements

    NASA Astrophysics Data System (ADS)

    Berg, M. C.; Jacobsen, J.; Momsen, N. C. R.; Benetti, A. R.; Telling, M. T. F.; Seydel, T.; Bordallo, H. N.

    2016-07-01

    Glass ionomer cements (GIC) are an alternative for preventive dentistry. However, these dental cements are complex systems where important motions related to the different states of the hydrogen atoms evolve in a confined porous structure. In this paper, we studied the water dynamics of two different liquids used to prepare either conventional or resin-modified glass ionomer cement. By combining thermal analysis with neutron scattering data we were able to relate the water structure in the liquids to the materials properties.

  7. Designing Glass Panels for Economy and Reliability

    NASA Technical Reports Server (NTRS)

    Moore, D. M.

    1983-01-01

    Analytical method determines probability of failure of rectangular glass plates subjected to uniformly distributed loads such as those from wind, earthquake, snow, and deadweight. Developed as aid in design of protective glass covers for solar-cell arrays and solar collectors, method is also useful in estimating the reliability of large windows in buildings exposed to high winds and is adapted to nonlinear stress analysis of simply supported plates of any elastic material.

  8. Comparison of mechanical properties of glass-bonded sodalite and borosilicate glass high-level waste forms

    SciTech Connect

    O'Holleran, T. P.; DiSanto, T.; Johnson, S. G.; Goff, K. M.

    2000-05-09

    Argonne National Laboratory has developed a glass-bonded sodalite waste form to immobilize the salt waste stream from electrometallurgical treatment of spent nuclear fuel. The waste form consists of 75 vol.% crystalline sodalite and 25 vol.% glass. Microindentation fracture toughness measurements were performed on this material and borosilicate glass from the Defense Waste Processing Facility using a Vickers indenter. Palmqvist cracking was confined for the glass-bonded sodalite waste form, while median-radial cracking occurred in the borosilicate glass. The elastic modulus was measured by an acoustic technique. Fracture toughness, microhardness, and elastic modulus values are reported for both waste forms.

  9. Glass formability in medium-sized molecular systems/pharmaceuticals. I. Thermodynamics vs. kinetics

    NASA Astrophysics Data System (ADS)

    Tu, Wenkang; Li, Xiangqian; Chen, Zeming; Liu, Ying Dan; Labardi, Massimiliano; Capaccioli, Simone; Paluch, M.; Wang, Li-Min

    2016-05-01

    Scrutinizing critical thermodynamic and kinetic factors for glass formation and the glass stability of materials would benefit the screening of the glass formers for the industry of glassy materials. The present work aims at elucidating the factors that contribute to the glass formation by investigating medium-sized molecules of pharmaceuticals. Glass transition related thermodynamics and kinetics are performed on the pharmaceuticals using calorimetric, dielectric, and viscosity measurements. The characteristic thermodynamic and kinetic parameters of glass transition are found to reproduce the relations established for small-molecule glass formers. The systematic comparison of the thermodynamic and kinetic contributions to glass formation reveals that the melting-point viscosity is the crucial quantity for the glass formation. Of more interest is the finding of a rough correlation between the melting-point viscosity and the entropy of fusion normalized by the number of beads of the pharmaceuticals, suggesting the thermodynamics can partly manifest its contribution to glass formation via kinetics.

  10. Glass formability in medium-sized molecular systems/pharmaceuticals. I. Thermodynamics vs. kinetics.

    PubMed

    Tu, Wenkang; Li, Xiangqian; Chen, Zeming; Liu, Ying Dan; Labardi, Massimiliano; Capaccioli, Simone; Paluch, M; Wang, Li-Min

    2016-05-07

    Scrutinizing critical thermodynamic and kinetic factors for glass formation and the glass stability of materials would benefit the screening of the glass formers for the industry of glassy materials. The present work aims at elucidating the factors that contribute to the glass formation by investigating medium-sized molecules of pharmaceuticals. Glass transition related thermodynamics and kinetics are performed on the pharmaceuticals using calorimetric, dielectric, and viscosity measurements. The characteristic thermodynamic and kinetic parameters of glass transition are found to reproduce the relations established for small-molecule glass formers. The systematic comparison of the thermodynamic and kinetic contributions to glass formation reveals that the melting-point viscosity is the crucial quantity for the glass formation. Of more interest is the finding of a rough correlation between the melting-point viscosity and the entropy of fusion normalized by the number of beads of the pharmaceuticals, suggesting the thermodynamics can partly manifest its contribution to glass formation via kinetics.

  11. Bioactive glasses as accelerators of apatite bioactivity.

    PubMed

    Vallet-Regí, M; Rámila, A; Padilla, S; Muñoz, B

    2003-09-01

    Synthetic carbonatehydroxyapatite is the ceramic closest to the mineral component of human bone and seems, therefore, the optimum material to use in osseous implants. However, in vitro assays performed to determine its bioactivity have shown no positive results after 2 months of assay. With the aim of improving this bioactivity, a new biphasic material was synthesized composed mainly of synthetic carbonatehydroxyapatite and only 5% of a sol-gel bioactive glass. In vitro assays were assessed to determine the bioactive behavior of this new material and revealed that the addition of a minimal amount of bioactive glass is enough to induce bioactivity on synthetic carbonatehydroxyapatites.

  12. Acoustics of glass harmonicas

    NASA Astrophysics Data System (ADS)

    Rossing, Thomas D.

    2004-05-01

    Glass musical instruments are probably as old as glassmaking. At least as early as the 17th century it was discovered that wine glasses, when rubbed with a wet finger, produced a musical tone. A collection of glasses played in this manner is called a glass harp. Another type of glass harmonica, called the armonica by its inventor Benjamin Franklin, employs glass bowls or cups turned by a horizontal axle, so the performer need only touch the rim of the bowls as they rotate to set them into vibration. We discuss the modes of vibration of both types of glass harmonica, and describe the different sounds that are emitted by rubbing, tapping, or bowing them. Rubbing with a wet finger tends to excite only the (2,0) mode and its harmonics through a ``stick-slip'' process, while tapping excites the other modes as well.

  13. PLUTONIUM SOLUBILITY IN HIGH-LEVEL WASTE ALKALI BOROSILICATE GLASS

    SciTech Connect

    Marra, J.; Crawford, C.; Fox, K.; Bibler, N.

    2011-01-04

    The solubility of plutonium in a Sludge Batch 6 (SB6) reference glass and the effect of incorporation of Pu in the glass on specific glass properties were evaluated. A Pu loading of 1 wt % in glass was studied. Prior to actual plutonium glass testing, surrogate testing (using Hf as a surrogate for Pu) was conducted to evaluate the homogeneity of significant quantities of Hf (Pu) in the glass, determine the most appropriate methods to evaluate homogeneity for Pu glass testing, and to evaluate the impact of Hf loading in the glass on select glass properties. Surrogate testing was conducted using Hf to represent between 0 and 1 wt % Pu in glass on an equivalent molar basis. A Pu loading of 1 wt % in glass translated to {approx}18 kg Pu per Defense Waste Processing Facility (DWPF) canister, or about 10X the current allowed limit per the Waste Acceptance Product Specifications (2500 g/m{sup 3} of glass or about 1700 g/canister) and about 30X the current allowable concentration based on the fissile material concentration limit referenced in the Yucca Mountain Project License Application (897 g/m{sup 3}3 of glass or about 600 g Pu/canister). Based on historical process throughput data, this level was considered to represent a reasonable upper bound for Pu loading based on the ability to provide Pu containing feed to the DWPF. The task elements included evaluating the distribution of Pu in the glass (e.g. homogeneity), evaluating crystallization within the glass, evaluating select glass properties (with surrogates), and evaluating durability using the Product Consistency Test -- Method A (PCT-A). The behavior of Pu in the melter was evaluated using paper studies and corresponding analyses of DWPF melter pour samples.The results of the testing indicated that at 1 wt % Pu in the glass, the Pu was homogeneously distributed and did not result in any formation of plutonium-containing crystalline phases as long as the glass was prepared under 'well-mixed' conditions. The

  14. Digimarc Discover on Google Glass

    NASA Astrophysics Data System (ADS)

    Rogers, Eliot; Rodriguez, Tony; Lord, John; Alattar, Adnan

    2015-03-01

    This paper reports on the implementation of the Digimarc® Discover platform on Google Glass, enabling the reading of a watermark embedded in a printed material or audio. The embedded watermark typically contains a unique code that identifies the containing media or object and a synchronization signal that allows the watermark to be read robustly. The Digimarc Discover smartphone application can read the watermark from a small portion of printed image presented at any orientation or reasonable distance. Likewise, Discover can read the recently introduced Digimarc Barcode to identify and manage consumer packaged goods in the retail channel. The Digimarc Barcode has several advantages over the traditional barcode and is expected to save the retail industry millions of dollars when deployed at scale. Discover can also read an audio watermark from ambient audio captured using a microphone. The Digimarc Discover platform has been widely deployed on the iPad, iPhone and many Android-based devices, but it has not yet been implemented on a head-worn wearable device, such as Google Glass. Implementing Discover on Google Glass is a challenging task due to the current hardware and software limitations of the device. This paper identifies the challenges encountered in porting Discover to the Google Glass and reports on the solutions created to deliver a prototype implementation.

  15. Dynamic Fatigue of a Titanium Silicate Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Nettles, Alan T.; Cagle, Holly A.; Smith, W. Scott (Technical Monitor)

    2002-01-01

    A dynamic fatigue study was performed on a Titanium Silicate Glass in order to assess its susceptibility to delayed failure. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions for optical elements made from this material. The material has reasonably good resistance (N=23 to stress corrosion in ambient conditions).

  16. Chalcogenide-mold interactions during precision glass molding (PGM) of GeAsSe glasses

    NASA Astrophysics Data System (ADS)

    Gleason, B.; Wachtel, P.; Musgraves, J. D.; Steinkopf, R.; Eberhardt, R.; Richardson, K.

    2013-09-01

    Five chalcogenide glasses in the GeAsSe ternary glass system were melted, fabricated into flats, and molded between planar, uncoated, binderless WC molds using a laboratory-scale precision glass molding machine. The five glasses originate at the binary arsenic triselenide (As40Se60) and are modified by replacing As with Se in 5 mol% increments, or by locking the As:Se ratio and adding Ge, also in 5 mol% increments. The glasses are separated into two groups, one for the Ge-free compositions and the other for the Ge-containing compositions. This effort analyzes the differences between the Ge-containing and the Ge-free glasses on the post-molded glass and mold surface behavior, as well as the mold lifetime. Fabrication features, such as scratch and/or dig marks were present on the glass and mold surfaces prior to the PGM process. White light interferometry analysis of the surfaces shows an overall reduction in the RMS roughness of the glass after molding, and an increase of the roughness of the molds, after 15 molding cycles. After molding, the quantity of observable defects, primarily deposits and dig marks are increased for both the glass and mold surfaces. Deposits found on the WC molds and glasses were analyzed using Electron Dispersive X-ray Spectroscopy (EDS) and showed no evidence of being due to material transfer between the WC molds and the glass constituents. In general the main observable difference in the analysis of the two post molded sets, despite the changes in chemistry, is the quantity of molding induced defects near the edge of the GeAsSe samples.

  17. Glass dissolution rate measurement and calculation revisited

    NASA Astrophysics Data System (ADS)

    Fournier, Maxime; Ull, Aurélien; Nicoleau, Elodie; Inagaki, Yaohiro; Odorico, Michaël; Frugier, Pierre; Gin, Stéphane

    2016-08-01

    Aqueous dissolution rate measurements of nuclear glasses are a key step in the long-term behavior study of such waste forms. These rates are routinely normalized to the glass surface area in contact with solution, and experiments are very often carried out using crushed materials. Various methods have been implemented to determine the surface area of such glass powders, leading to differing values, with the notion of the reactive surface area of crushed glass remaining vague. In this study, around forty initial dissolution rate measurements were conducted following static and flow rate (SPFT, MCFT) measurement protocols at 90 °C, pH 10. The international reference glass (ISG), in the forms of powders with different particle sizes and polished monoliths, and soda-lime glass beads were examined. Although crushed glass grains clearly cannot be assimilated with spheres, it is when using the samples geometric surface (Sgeo) that the rates measured on powders are closest to those found for monoliths. Overestimation of the reactive surface when using the BET model (SBET) may be due to small physical features at the atomic scale-contributing to BET surface area but not to AFM surface area. Such features are very small compared with the thickness of water ingress in glass (a few hundred nanometers) and should not be considered in rate calculations. With a SBET/Sgeo ratio of 2.5 ± 0.2 for ISG powders, it is shown here that rates measured on powders and normalized to Sgeo should be divided by 1.3 and rates normalized to SBET should be multiplied by 1.9 in order to be compared with rates measured on a monolith. The use of glass beads indicates that the geometric surface gives a good estimation of glass reactive surface if sample geometry can be precisely described. Although data clearly shows the repeatability of measurements, results must be given with a high uncertainty of approximately ±25%.

  18. Structural materials and components

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Lee, Raymond (Inventor)

    1982-01-01

    High density structural (blocking) materials composed of a polyimide filled with glass microballoons. Structural components such as panels which have integral edgings and/or other parts made of the high density materials.

  19. Structural materials and components

    NASA Technical Reports Server (NTRS)

    Gagliani, John (Inventor); Lee, Raymond (Inventor)

    1983-01-01

    High density structural (blocking) materials composed of a polyimide filled with glass microballoons. Structural components such as panels which have integral edgings and/or other parts made of the high density materials.

  20. Structures and optical properties of tellurite glasses and glass ceramics

    NASA Astrophysics Data System (ADS)

    Hart, Robert Theodore, Jr.

    The structures and optical properties of (K2O)15(Nb 2O5)15(TeO2)70 glass and glass ceramic have been studied in order to understand the second harmonic generation observed from the glass ceramic. We have used 93Nb NMR, Raman spectroscopy, differential scanning calorimetry, small angle x-ray scattering, transmission electron microscopy, and powder x-ray and neutron scattering. We find that there is a microstructure consistent with binodal phase separation leading to spherical inclusions ˜20 nm in size. Upon heat treatment, these domains become nanocrystals of K2Te 4O9. A theory of optical heterogeneity is used to describe the observed second harmonic generation which is ˜95 times more intense that quartz. The chi(2) value for this material is 3.0 x 10-9 esu. A second project has used 125Te and 17O NMR to study alkali tellurite glasses in the system (M2O) x(TeO2)10-x, where M = Li, Na or K and x = 1, 2 or 3. The 125Te results show that complex models of network modification are needed to explain the resulting spectra that include a distribution of polyhedral tellurite units at all compositions. The 17O results show that there is a clear distinction between bridging and non-bridging oxygen sites in tellurite crystals and that sophisticated NMR experiments should be able to distinguish them in the glasses. Further, we have used Extended Huckel theory tight-binding calculations to predict the 17O NMR shifts of SiO2, GeO 2 and TeO2. We find that these calculations allow accurate predictions of the chemical shifts based solely on the trend in valence orbital size, and that expensive calculations of electron currents need not be used for this application.

  1. Materials

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Schoeppner, Gregory A.

    2006-01-01

    NASA Langley Research Center has successfully developed an electron beam freeform fabrication (EBF3) process, a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF3 process can be used to build a complex, unitized part in a layer-additive fashion, although the more immediate payoff is for use as a manufacturing process for adding details to components fabricated from simplified castings and forgings or plate products. The EBF3 process produces structural metallic parts with strengths comparable to that of wrought product forms and has been demonstrated on aluminum, titanium, and nickel-based alloys to date. The EBF3 process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Operation in a vacuum ensures a clean process environment and eliminates the need for a consumable shield gas. Advanced metal manufacturing methods such as EBF3 are being explored for fabrication and repair of aerospace structures, offering potential for improvements in cost, weight, and performance to enhance mission success for aircraft, launch vehicles, and spacecraft. Near-term applications of the EBF3 process are most likely to be implemented for cost reduction and lead time reduction through addition of details onto simplified preforms (casting or forging). This is particularly attractive for components with protruding details that would require a significantly large volume of material to be machined away from an oversized forging, offering significant reductions to the buy-to-fly ratio. Future far-term applications promise improved structural efficiency through reduced weight and improved performance by exploiting the layer-additive nature of the EBF3 process to fabricate tailored unitized structures with functionally graded microstructures and compositions.

  2. PEDOT:PSS-based piezo-resistive sensors applied to reinforcement glass fibres for in situ measurement during the composite material weaving process.

    PubMed

    Trifigny, Nicolas; Kelly, Fern M; Cochrane, Cédric; Boussu, François; Koncar, Vladan; Soulat, Damien

    2013-08-16

    The quality of fibrous reinforcements used in composite materials can be monitored during the weaving process. Fibrous sensors previously developed in our laboratory, based on PEDOT:PSS, have been adapted so as to directly measure the mechanical stress on fabrics under static or dynamic conditions. The objective of our research has been to develop new sensor yarns, with the ability to locally detect mechanical stresses all along the warp or weft yarn. This local detection is undertaken inside the weaving loom in real time during the weaving process. Suitable electronic devices have been designed in order to record in situ measurements delivered by this new fibrous sensor yarn.

  3. PEDOT:PSS-Based Piezo-Resistive Sensors Applied to Reinforcement Glass Fibres for in Situ Measurement during the Composite Material Weaving Process

    PubMed Central

    Trifigny, Nicolas; Kelly, Fern M.; Cochrane, Cédric; Boussu, François; Koncar, Vladan; Soulat, Damien

    2013-01-01

    The quality of fibrous reinforcements used in composite materials can be monitored during the weaving process. Fibrous sensors previously developed in our laboratory, based on PEDOT:PSS, have been adapted so as to directly measure the mechanical stress on fabrics under static or dynamic conditions. The objective of our research has been to develop new sensor yarns, with the ability to locally detect mechanical stresses all along the warp or weft yarn. This local detection is undertaken inside the weaving loom in real time during the weaving process. Suitable electronic devices have been designed in order to record in situ measurements delivered by this new fibrous sensor yarn. PMID:23959238

  4. Final Report. Baseline LAW Glass Formulation Testing, VSL-03R3460-1, Rev. 0

    SciTech Connect

    Muller, Isabelle S.; Pegg, Ian L.; Gan, Hao; Buechele, Andrew; Rielley, Elizabeth; Bazemore, Gina; Cecil, Richard; Hight, Kenneth; Mooers, Cavin; Lai, Shan-Tao T.; Kruger, Albert A.

    2015-06-18

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements.

  5. Nanostructures synthesis by femtosecond laser ablation of glasses

    NASA Astrophysics Data System (ADS)

    Vipparty, D.; Tan, B.; Venkatakrishnan, K.

    2012-10-01

    In this article, we investigate the variations in ablation dynamics that result in diverse nanostructures on SiO2 based glass samples. A three-dimensional fibrous nanoparticle agglomerate was observed on sodalime glass when exposed to femtosecond laser irradiation. The fused nanoparticles have diameters ranging from 30 nm to 70 nm. Long continuous nanofibers of extremely high aspect ratio (certain fibers up to 100 000:1) were obtained by exposing silica glass surface to femtosecond laser irradiation at MHz repetition rate in air. A nanostructure assembly comprising of nanofiber and nanoparticle agglomerates was also observed by ablating silica glass. From our experimental analysis, it was determined that variation in bandgap and material composition alters ablation dynamics and dictates the response of glass to femtosecond laser irradiation, ultimately leading to the formation of structures with varying morphology on silica and sodalime glass. The possible underlying mechanisms that produce such nanostructures on glass specimens have also been explored.

  6. Preliminary report on a glass burial experiment in granite

    SciTech Connect

    Clark, D.E.; Zhu, B.F.; Robinson, R.S.; Wicks, G.G.

    1983-01-01

    Preliminary results of a two-year burial experiment in granite are discussed. Three compositions of simulated alkali borosilicate waste glasses were placed in boreholes approximately 350 meters deep. The glass sample configurations include mini-cans (stainless steel rings into which glass has been cast) and pineapple slices (thin sections from cylindrical blocks). Assemblies of these glass samples were prepared by stacking them together with granite, compacted bentonite and metal rings to provide several types of interfaces that are expected to occur in the repository. The assemblies were maintained at either ambient mine temperature (8 to 10/sup 0/C) or 90/sup 0/C. The glasses were analyzed before burial and after one month storage at 90/sup 0/C. The most extensive surface degradation occurred on the glasses interfaced with bentonite. In general, very little attack was observed on glass surfaces in contact with the other materials. The limited field and laboratory data are compared.

  7. Low melting high lithia glass compositions and methods

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2003-09-23

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste uranium oxides The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  8. Glass for low-cost photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.

    1980-01-01

    Various aspects of glass encapsulation that are important for the designer of photovoltaic systems are discussed. Candidate glasses and available information defining the state of the art of glass encapsulation materials and processes for automated, high volume production of terrestrial photovoltaic devices and related applications are presented. The criteria for consideration of the glass encapsulation systems were based on the low-cost solar array project goals for arrays: (1) a low degradation rate, (2) high reliability, (3) an efficiency greater than 10 percent, (4) a total array price less than $500/kW, and (5) a production capacity of 500,000 kW/yr. The glass design areas discussed include the types of glass, sources and costs, physical properties, and glass modifications, such as antireflection coatings.

  9. Impact glasses from the ultrafine fraction of lunar soils

    NASA Technical Reports Server (NTRS)

    Norris, J. A.; Keller, L. P.; Mckay, D. S.

    1993-01-01

    The chemical compositions of microscopic glasses produced during meteoroid impacts on the lunar surface provide information regarding the various fractionation processes which accompany these events. To learn more about these fractionation processes, we studied the compositions of submicrometer glass spheres from two Apollo 17 sampling sites using electron microscopy. The majority of the analyzed glasses show evidence for varying degrees of impact induced chemical fractionation. Among these are HASP glasses (High-Al, Si-Poor) which are believed to represent the refractory residuum left after the loss of volatile elements (e.g. Si, Fe, N) from the precursor material. In addition to HASP-type glasses, we also observed a group of VRAP glasses (volatile-rich, Al-poor) that represent condensates of vaporized volatile constituents and are complementary to the HASP compositions. High-Ti glasses were also found during the course of the study, and are documented here for the first time.

  10. Bubble formation in additive manufacturing of glass

    NASA Astrophysics Data System (ADS)

    Luo, Junjie; Gilbert, Luke J.; Peters, Daniel C.; Bristow, Douglas A.; Landers, Robert G.; Goldstein, Jonathan T.; Urbas, Augustine M.; Kinzel, Edward C.

    2016-05-01

    Bubble formation is a common problem in glass manufacturing. The spatial density of bubbles in a piece of glass is a key limiting factor to the optical quality of the glass. Bubble formation is also a common problem in additive manufacturing, leading to anisotropic material properties. In glass Additive Manufacturing (AM) two separate types of bubbles have been observed: a foam layer caused by the reboil of the glass melt and a periodic pattern of bubbles which appears to be unique to glass additive manufacturing. This paper presents a series of studies to relate the periodicity of bubble formation to part scan speed, laser power, and filament feed rate. These experiments suggest that bubbles are formed by the reboil phenomena why periodic bubbles result from air being trapped between the glass filament and the substrate. Reboil can be detected using spectroscopy and avoided by minimizing the laser power while periodic bubbles can be avoided by a two-step laser melting process to first establish good contact between the filament and substrate before reflowing the track with higher laser power.

  11. Taylor impact of glass rods

    SciTech Connect

    Willmott, G.R.; Radford, D.D.

    2005-05-01

    The deformation and fracture behavior of soda-lime and borosilicate glass rods was examined during classic and symmetric Taylor impact experiments for impact pressures to 4 and 10 GPa, respectively. High-speed photography and piezoresistive gauges were used to measure the failure front velocities in both glasses, and for impact pressures below {approx}2 GPa the failure front velocity increases rapidly with increasing pressure. As the pressure was increased above {approx}3 GPa, the failure front velocities asymptotically approached maximum values between the longitudinal and shear wave velocities of each material; at {approx}4 GPa, the average failure front velocities were 4.7{+-}0.5 and 4.6{+-}0.5 mm {mu}s{sup -1} for the soda-lime and borosilicate specimens, respectively. The observed mechanism of failure in these experiments involved continuous pressure-dependent nucleation and growth of microcracks behind the incident wave. As the impact pressure was increased, there was a decrease in the time to failure. The density of cracks within the failed region was material dependent, with the more open-structured borosilicate glass showing a larger fracture density.

  12. A Discrete Element Model of Armor Glass Fragmentation and Comminution Failure Under Compression

    SciTech Connect

    Xu, Wei; Sun, Xin

    2016-02-15

    Because of its exceptional compressive resistance and crystal-clear appearance, lightweight glass has been traditionally used in transparent armor applications. However, due to its brittle nature, glass fails differently from ductile materials in the sense that glass fragmentation occurs instantly ahead of the projectile tip upon penetration. The effective residual strength of the armor glass then inevitably relies on the damaged glass strength within such comminuted zones with confinement from the surrounding intact materials. Physical understanding of damaged glass strength therefore becomes highly critical to the further development of armor designs. In the present study, a discrete element based modeling framework has been developed to understand and predict the evolution of compressive damages and residual strength of armor glasses. With the characteristic fragmentation and comminution failures explicitly resolved, their influences on the mechanical degradation of the loaded glass materials have been evaluated. The effects of essential loading conditions and material properties have also been investigated.

  13. Processing FeB03 glass-ceramics in space

    NASA Technical Reports Server (NTRS)

    Li, C. T.

    1976-01-01

    The possibility of preparing FeBO3 glass-ceramic in space is explored. A transparent glass-ceramic of FeBO3, due to its unique properties could be an excellent material for magneto-optic applications which currently utilize high price materials such as single crystals of Ga-YIG. The unique magneto-optic properties of FeBO3 were found to come from glass-ceramic but not from the glass form. It was anticipated and later confirmed that the FeBO3 glass-ceramics could not be prepared on earth. Phase separation and iron valence reduction, were identified as the two terrestrial manufacturing obstacles. Since the phase separation problem could be overcome by space processing, the preparation of FeBO3 glass-ceramic in space appears attractive.

  14. Magnetic antenna using metallic glass

    NASA Technical Reports Server (NTRS)

    Desch, Michael D. (Inventor); Farrell, William M. (Inventor); Houser, Jeffrey G. (Inventor)

    1996-01-01

    A lightweight search-coil antenna or sensor assembly for detecting magnetic fields and including a multi-turn electromagnetic induction coil wound on a spool type coil form through which is inserted an elongated coil loading member comprised of metallic glass material wrapped around a dielectric rod. The dielectric rod consists of a plastic or a wooden dowel having a length which is relatively larger than its thickness so as to provide a large length-to-diameter ratio. A tri-axial configuration includes a housing in which is located three substantially identical mutually orthogonal electromagnetic induction coil assemblies of the type described above wherein each of the assemblies include an electromagnetic coil wound on a dielectric spool with an elongated metallic glass coil loading member projecting therethrough.

  15. Damage assessment of curtain wall glass

    NASA Astrophysics Data System (ADS)

    Puga, H.; Olmos, BA; Olmos, L.; Jara, J. M.; Jara, M.

    2015-07-01

    The failure prediction of simply supported annealed glass plates subjected to uniform loads is one of the main purposes in the design codes of the United States, Canada and the European Community. The methodologies and codes available in the literature are based on concepts and criteria applicable to the glass failure prediction; they evaluate the load associated to a specific probability of failure. The aim of this work is to estimate fragility curves for curtain glass under different uniform loads representative of the wind loads that they can be subjected, using the lifetime prediction model. The capacity of the structural elements was determined experimentally considering as-received annealed soda lime silica glass; this material is used in structural elements although the material is brittle and random. The capacity and demand are associated with the life time prediction model. The results let us understand the glass failure mechanisms of glass panels with different thickness, as well as assess their probability of failure by estimating fragility curves.

  16. Reversing Glass Wettability

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Smith, J. E., Jr.; Kaukler, W. F.

    1985-01-01

    Treatment reverses wettability of glassware: Liquids that normally wet glass no longer do, and those that do not wet glass are made to do so. Useful in research on container effects in nucleation and growth of secondary phase from solution. Treatment consists of spreading 3 percent (by weight) solution of silicone oil in hexane isomers over glass, drying in air, and curing at 300 degrees C in vacuum for one hour.

  17. Materials research. [research concerning materials for aerospace applications

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The research is reported concerned with materials for aerospace applications. Areas reported include: electrical properties of glasses, oxides and metals; structural and high temperature properties of crystalline and amorphous materials; and physical properties, and microstructure of materials.

  18. Drugstore Reading Glasses

    NASA Astrophysics Data System (ADS)

    Erlichson, Herman

    2006-03-01

    The occasion for this paper was my reading of a paper in the February 2005 issue of TPT. As one gets older the near point of the eye begins to recede.2 This is called presbyopia.3 An alternative to purchasing glasses from an optometrist is to purchase an inexpensive pair of reading glasses in a pharmacy. The pharmacy has these glasses ordered by diopters corresponding to the strength of the lens needed for a particular presbyopic eye. The glasses are, of course, not available for myopic eyes.

  19. Chalcogenide glass microsphere laser.

    PubMed

    Elliott, Gregor R; Murugan, G Senthil; Wilkinson, James S; Zervas, Michalis N; Hewak, Daniel W

    2010-12-06

    Laser action has been demonstrated in chalcogenide glass microsphere. A sub millimeter neodymium-doped gallium lanthanum sulphide glass sphere was pumped at 808 nm with a laser diode and single and multimode laser action demonstrated at wavelengths between 1075 and 1086 nm. The gallium lanthanum sulphide family of glass offer higher thermal stability compared to other chalcogenide glasses, and this, along with an optimized Q-factor for the microcavity allowed laser action to be achieved. When varying the pump power, changes in the output spectrum suggest nonlinear and/or thermal effects have a strong effect on laser action.

  20. Photoprotection: clothing and glass.

    PubMed

    Almutawa, Fahad; Buabbas, Hanan

    2014-07-01

    Ultraviolet (UV) radiation (UVR) has well-known adverse effects on the skin and eyes. Little attention is given to physical means of photoprotection, namely glass, window films, sunglasses, and clothing. In general, all types of glass block UV-B. For UV-A, the degree of transmission depends on the type, thickness, and color of the glass. Adding window films to glass can greatly decrease the transmission of UV-A. Factors that can affect the transmission of UVR through cloth include tightness of weave, thickness, weight, type of fabrics, laundering, hydration, stretch, fabric processing, UV absorbers, color, and fabric-to-skin distance.