Science.gov

Sample records for glassy matrices effets

  1. Molecular modeling of mechanical stresses on proteins in glassy matrices: Formalism

    NASA Astrophysics Data System (ADS)

    Hatch, Harold W.; Debenedetti, Pablo G.

    2012-07-01

    We present an expression for the calculation of microscopic stresses in molecular simulation, which is compatible with the use of electrostatic lattice sums such as the Ewald sum, with the presence of many-body interactions, and which allows local stresses to be calculated on surfaces of arbitrarily complex shape. The ultimate goal of this work is to investigate microscopic stresses on proteins in glassy matrices, which are used in the pharmaceutical industry for the long-term storage and stabilization of labile biomolecules. We demonstrate the formalism's usefulness through selected results on ubiquitin and an α-keratin fragment, in liquid and glassy states. We find that atomic-level normal stresses on hydrophilic side-chains exhibit a similar fingerprint in both proteins, and protein-level normal stresses increase upon vitrification. Both proteins experience compressive stresses of the order of 102 bar in the glassy state.

  2. Optical characterization of ion-doped crystalline and glassy matrices operating under hostile environmental conditions

    NASA Astrophysics Data System (ADS)

    Baccaro, S.; Cemmi, A.

    2016-10-01

    The aim of this work is to give an overall picture of the activity on gamma radiation effects in the field of scintillators (crystals, glasses) with specific mention to the role of ions doped in different crystalline and glassy matrices. Interesting results were obtained in terms of radiation hardness improvement and of physical-chemical properties modification as a function of the nature of dopant (i.e. rare earth as well as metallic ions) and of the scintillating host glassy and glass-ceramic matrix (silicate, phosphate, borate, oxyfluoride and mixed oxides glasses). The research activities were carried out at the 60Co gamma Calliope plant, a pool-type irradiation facility located at the Research Centre ENEA-Casaccia (Rome). Since the eighties, the Calliope facility is deeply involved in radiation processing research on materials and on devices to be used in hostile radiation environment such as nuclear plants, aerospace and High Energy Physics experiments, in the framework of international projects and collaboration with industries and research institutions.

  3. Caracterisation de l'effet du vieillissement en milieu aqueux sur les proprietes mecaniques de composites a matrice elastomere

    NASA Astrophysics Data System (ADS)

    Favre, Audrey

    Rubber composites are widely used in several engineering fields, such as automotive, and more recently for inflatable dams and other innovative underwater applications. These rubber materials are composed by an elastomeric matrix while the reinforcing phase is a synthetic fabric. Since these components are expected to operate several years in water environment, their durability must be guaranteed. The use of rubber materials immersed in water is not new, in fact, these materials have been studied for almost one century. However, the knowledge on reinforced rubber composites immersed several years in water is still limited. In this work, investigations on reinforced rubbers were carried out in the framework of a research project in partnership with Alstom and Hydro-Quebec. The objective of this study was to identify rubber composites that could be used under water for long periods. Various rubber composites with ethylene-propylene-diene monomer (EPDM), silicone, EPDM/silicone and polychloroprene (Neoprene) matrices reinforced with E-glass fabric were studied. Thus, these materials were exposed to an accelerated ageing at 85 °C underwater for periods varying from 14 to 365 days. For comparison purposes, they were also immersed and aged one year at room temperature (21 °C). The impact of accelerated aging was estimated through three different characterization methods. Scanning electron microscopy (SEM) was first used to assess the quality of fiber-matrix interface. Then, water absorption tests were performed to quantify the rate of water absorption during immersion. Finally the evolution of the mechanical properties was followed by the determination of Young's modulus (E) and ultimate stress (sigmau) using a dedicated traction test. This analysis allowed to point out that the quality of the fiber-matrix interface was the main factor influencing the drop of the mechanical properties and their durability. Moreover, it was noticed that this interface could be improved

  4. Protein/ionic liquid/glassy carbon sensors following analyte focusing by ionic liquid micelle collapse for simultaneous determination of water soluble vitamins in plasma matrices.

    PubMed

    Abd El-Hady, D; Albishri, H M

    2015-07-01

    Two novel sensors based on human serum albumin (HSA)-ionic liquid (IL) and bovine serum albumin (BSA)-ionic liquid (IL) composites modified glassy carbon electrode (GCE) were produced for simultaneous determination of water soluble vitamins B2, B6 and C in human plasma following analytes focusing by IL micelles collapse (AFILMC). For selective and efficient extraction, vitamins were dissolved in 3.0molL(-1) micellar solution of 1-octyl-3-methyl imidazolium bromide IL. The extracted vitamins were hydrodynamically injected by 25mbar for 20s into a running buffer of 12.5mmolL(-1) phosphate at pH 6.0 followed by electrochemical detection (ECD) on protein/1-octyl-3-methyl imidazolium hexafluorophosphate IL/GC sensors. The chemical stability of proposed sensors was achieved up to 7 days without any decomposition of PF6-based IL/protein and adsorption of interfering ions. In the current work, the sensitivity enhancement factor (SEF) up to 5000-fold was achieved using the AFILMC/ECD setup compared to conventional CE/UV. Under optimal conditions, linear calibration graphs were obtained from 0.5, 0.5 and 1.0 to 1500.0µgmL(-1) of vitamins B2, B6 and C, respectively. Detection limits of analytes were ranged from 180.0 to 520.0ngmL(-1). The proposed AFILMC/ECD setup was successfully applied to the assay of trace level quantification of vitamins in human plasma samples and also their binding constants with HSA and BSA were determined. The concurrent use of IL micelles for the proposed separation and detection processes exhibited some advantages, such as, a reduction of use toxic solvents, an efficient extraction and a direct injection of samples with a short-single run. Furthermore, IL micelles, having variable possibility of interactions, facilitated the successful achievements of AFILMC/ECD setup for the quantification of vitamins in plasma matrices.

  5. Photopolymérisation des monomères multifonctionnels dans une matrice polymère Effet de différents paramètres sur la réactivité des monomères

    NASA Astrophysics Data System (ADS)

    Bendaikha, T.; Boussaad, S.; Boutamdja, M.

    2005-05-01

    Un matériau polymère semi-interpénétré a été obtenu par polymérisation d'un monomère diacrylate, le tripropylène glycol diacrylate (TPGDA) ou le 1,6-hexanediol diacrylate (HDDA) dispersé dans une matrice organique qui est le polystyrène ou le copolymère élastomérique SBS. L'amorçage de la réaction se fait par voie photochimique en utilisant des photoamorceurs qui se décomposent rapidement sous l'action des radiations UV émises par une lampe à vapeur de mercure. La cinétique de la réaction a été suivie quantitativement par spectroscopie IR. Les effets de plusieurs paramètres sur la vitesse de la polymérisation ont été étudiés.

  6. Translation Matrices

    NASA Astrophysics Data System (ADS)

    Shurtleff, Richard

    2004-10-01

    Translation matrices together with rotation and boost matrices combine to represent spacetime symmetry transformations. A brief introduction to some of the properties of some not-so-well-known translation and momentum matrices is presented.

  7. Converging Matrices.

    ERIC Educational Resources Information Center

    Wallace, Edward C.

    1985-01-01

    Explains an application of matrix algebra which involves probability matrices and weather predictions. Using probabilities of sunny or cloudy weather students can determine the effect weather on day one will have on subsequent days. (DH)

  8. Glassy correlations in nematic elastomers

    NASA Astrophysics Data System (ADS)

    Lu, Bing; Goldbart, Paul; Mao, Xiaoming

    2009-03-01

    We address the physical properties of an isotropic melt or solution of nematogenic polymers that is then cross-linked beyond the vulcanization point. To do this, we construct a replica Landau theory involving a coupled pair of order- parameter fields: one describing vulcanization, the other describing local nematic order. Thermal nematic fluctuations, present at the time of cross-linking, are trapped by cross- linking into the vulcanized network. The resulting glassy nematic fluctuations are analyzed in the Gaussian approximation in two regimes. When the localization length is shorter than the thermal nematic correlation length, the nematic correlations are well captured as glassy correlations. In the opposite regime, fluctuations in the positions of the localized polymers partially wash out the glassy nematic correlations.

  9. Thermal expansion of glassy polymers.

    PubMed

    Davy, K W; Braden, M

    1992-01-01

    The thermal expansion of a number of glassy polymers of interest in dentistry has been studied using a quartz dilatometer. In some cases, the expansion was linear and therefore the coefficient of thermal expansion readily determined. Other polymers exhibited non-linear behaviour and values appropriate to different temperature ranges are quoted. The linear coefficient of thermal expansion was, to a first approximation, a function of both the molar volume and van der Waal's volume of the repeating unit.

  10. Glassy features of crystal plasticity

    NASA Astrophysics Data System (ADS)

    Lehtinen, Arttu; Costantini, Giulio; Alava, Mikko J.; Zapperi, Stefano; Laurson, Lasse

    2016-08-01

    Crystal plasticity occurs by deformation bursts due to the avalanchelike motion of dislocations. Here we perform extensive numerical simulations of a three-dimensional dislocation dynamics model under quasistatic stress-controlled loading. Our results show that avalanches are power-law distributed and display peculiar stress and sample size dependence: The average avalanche size grows exponentially with the applied stress, and the amount of slip increases with the system size. These results suggest that intermittent deformation processes in crystalline materials exhibit an extended critical-like phase in analogy to glassy systems instead of originating from a nonequilibrium phase transition critical point.

  11. Ending Aging in Super Glassy Polymer Membranes

    SciTech Connect

    Lau, CH; Nguyen, PT; Hill, MR; Thornton, AW; Konstas, K; Doherty, CM; Mulder, RJ; Bourgeois, L; Liu, ACY; Sprouster, DJ; Sullivan, JP; Bastow, TJ; Hill, AJ; Gin, DL; Noble, RD

    2014-04-16

    Aging in super glassy polymers such as poly(trimethylsilylpropyne) (PTMSP), poly(4-methyl-2-pentyne) (PMP), and polymers with intrinsic microporosity (PIM-1) reduces gas permeabilities and limits their application as gas-separation membranes. While super glassy polymers are initially very porous, and ultra-permeable, they quickly pack into a denser phase becoming less porous and permeable. This age-old problem has been solved by adding an ultraporous additive that maintains the low density, porous, initial stage of super glassy polymers through absorbing a portion of the polymer chains within its pores thereby holding the chains in their open position. This result is the first time that aging in super glassy polymers is inhibited whilst maintaining enhanced CO2 permeability for one year and improving CO2/N-2 selectivity. This approach could allow super glassy polymers to be revisited for commercial application in gas separations.

  12. Cooperative strings and glassy interfaces.

    PubMed

    Salez, Thomas; Salez, Justin; Dalnoki-Veress, Kari; Raphaël, Elie; Forrest, James A

    2015-07-07

    We introduce a minimal theory of glass formation based on the ideas of molecular crowding and resultant string-like cooperative rearrangement, and address the effects of free interfaces. In the bulk case, we obtain a scaling expression for the number of particles taking part in cooperative strings, and we recover the Adam-Gibbs description of glassy dynamics. Then, by including thermal dilatation, the Vogel-Fulcher-Tammann relation is derived. Moreover, the random and string-like characters of the cooperative rearrangement allow us to predict a temperature-dependent expression for the cooperative length ξ of bulk relaxation. Finally, we explore the influence of sample boundaries when the system size becomes comparable to ξ. The theory is in agreement with measurements of the glass-transition temperature of thin polymer films, and allows quantification of the temperature-dependent thickness hm of the interfacial mobile layer.

  13. Ionisation en couche K et effet biologique

    NASA Astrophysics Data System (ADS)

    L'Hoir, A.; Herve Du Penhoat, M. A.; Champion, C.; Fayard, B.; Touati, A.; Abel, F.; Politis, M. F.; Despiney-Bailly, I.; Sabatier, L.; Chetioui, A.

    1998-04-01

    Initial steps of radiation action mechanism on biological targets are still undnown. The strong correlation observed between inactivation cross sections by heavy ions and K-vacancy production cross sections has drawn the attention on this process. Although quite minor in the energy deposition of these particles, the K-ionization process gives rise to quite efficient ionization clusters. Values of K-ionization biological effectivenesses extracted from measured relative biological efficiencies of ultra soft X-rays support the idea of a major -may be a dominant- contribution of the K-vacancy process to the biological effect of heavy ions. Les étapes initiales des mécanismes d'effet biologique des radiations sont encore mal connues. La forte corrélation observée entre sections efficaces d'inactivation par ions lourds et sections efficaces d'ionisation K a attiré l'attention sur ce processus. Bien que de faible probabilité, l'ionisation K engendre des grappes d'ionisation très efficaces. Les valeurs de rendement létal extraites des efficacités biologiques relatives mesurées pour les rayonnements X ultra-mous suggèrent une contribution majeure -peut-être dominante- de l'ionisation K à l'effet biologique des ions.

  14. Molecular mobility in glassy dispersions

    NASA Astrophysics Data System (ADS)

    Mehta, Mehak; McKenna, Gregory B.; Suryanarayanan, Raj

    2016-05-01

    Dielectric spectroscopy was used to characterize the structural relaxation in pharmaceutical dispersions containing nifedipine (NIF) and either poly(vinyl) pyrrolidone (PVP) or hydroxypropyl methylcellulose acetate succinate (HPMCAS). The shape of the dielectric response (permittivity versus log time) curve was observed to be independent of temperature. Thus, for the pure NIF as well as the dispersions, the validity of the time-temperature superposition principle was established. Furthermore, though the shape of the full dielectric response varied with polymer concentration, the regime related to the α- or structural relaxation was found to superimpose for the dispersions, though not with the response of the NIF itself. Hence, there is a limited time-temperature-concentration superposition for these systems as well. Therefore, in this polymer concentration range, calculation of long relaxation times in these glass-forming systems becomes possible. We found that strong drug-polymer hydrogen bonding interactions improved the physical stability (i.e., delayed crystallization) by reducing the molecular mobility. The strength of hydrogen bonding, structural relaxation time, and crystallization followed the order: NIF-PV P>NIF-HPMCAS>NIF. With an increase in polymer concentration, the relaxation times were longer indicating a decrease in molecular mobility. The temperature dependence of relaxation time, in other words fragility, was independent of polymer concentration. This is the first application of the superposition principle to characterize structural relaxation in glassy pharmaceutical dispersions.

  15. Molecular mobility in glassy dispersions.

    PubMed

    Mehta, Mehak; McKenna, Gregory B; Suryanarayanan, Raj

    2016-05-28

    Dielectric spectroscopy was used to characterize the structural relaxation in pharmaceutical dispersions containing nifedipine (NIF) and either poly(vinyl) pyrrolidone (PVP) or hydroxypropyl methylcellulose acetate succinate (HPMCAS). The shape of the dielectric response (permittivity versus log time) curve was observed to be independent of temperature. Thus, for the pure NIF as well as the dispersions, the validity of the time-temperature superposition principle was established. Furthermore, though the shape of the full dielectric response varied with polymer concentration, the regime related to the α- or structural relaxation was found to superimpose for the dispersions, though not with the response of the NIF itself. Hence, there is a limited time-temperature-concentration superposition for these systems as well. Therefore, in this polymer concentration range, calculation of long relaxation times in these glass-forming systems becomes possible. We found that strong drug-polymer hydrogen bonding interactions improved the physical stability (i.e., delayed crystallization) by reducing the molecular mobility. The strength of hydrogen bonding, structural relaxation time, and crystallization followed the order: NIF-PV P>NIF-HPMCAS>NIF. With an increase in polymer concentration, the relaxation times were longer indicating a decrease in molecular mobility. The temperature dependence of relaxation time, in other words fragility, was independent of polymer concentration. This is the first application of the superposition principle to characterize structural relaxation in glassy pharmaceutical dispersions.

  16. Molecular mobility in glassy dispersions

    SciTech Connect

    Mehta, Mehak; McKenna, Gregory B.; Suryanarayanan, Raj

    2016-05-27

    Dielectric spectroscopy was used to characterize the structural relaxation in pharmaceutical dispersions containing nifedipine (NIF) and either poly(vinyl) pyrrolidone (PVP) or hydroxypropyl methylcellulose acetate succinate (HPMCAS). The shape of the dielectric response (permittivity versus log time) curve was observed to be independent of temperature. Thus, for the pure NIF as well as the dispersions, the validity of the time-temperature superposition principle was established. Furthermore, though the shape of the full dielectric response varied with polymer concentration, the regime related to the α- or structural relaxation was found to superimpose for the dispersions, though not with the response of the NIF itself. Hence, there is a limited time-temperature-concentration superposition for these systems as well. Therefore, in this polymer concentration range, calculation of long relaxation times in these glass-forming systems becomes possible. We found that strong drug-polymer hydrogen bonding interactions improved the physical stability (i.e., delayed crystallization) by reducing the molecular mobility. The strength of hydrogen bonding, structural relaxation time, and crystallization followed the order: NIF$-$PV P>NIF$-$HPMCAS>NIF. With an increase in polymer concentration, the relaxation times were longer indicating a decrease in molecular mobility. The temperature dependence of relaxation time, in other words fragility, was independent of polymer concentration. This is the first application of the superposition principle to characterize structural relaxation in glassy pharmaceutical dispersions.

  17. Spectral Theory of Matrices. I. General Matrices.

    DTIC Science & Technology

    1980-05-01

    criterion for similarity of two matrices 93 1.23 The equation AX - XB = C 98 1.24 A case of two nilpotent matrices 101 1.25 Components of a matrix and...following result is needed later. Theorem 1.24.1. Let A C M n(F) be a nilpotent matrix . Put XX . {xlx C in, A kx = 0), k - 0,1 ...... Assume that o - x 0 x x...establishes the theorem in case that A(x) is a nilpotent matrix . Next consider the case where A(x) is an upper triangular matrix whose diagonal entries

  18. A nanostructural investigation of glassy gelatin oligomers: molecular organization and interactions with low molecular weight diluents

    NASA Astrophysics Data System (ADS)

    Roussenova, M.; Enrione, J.; Diaz-Calderon, P.; Taylor, A. J.; Ubbink, J.; Alam, M. A.

    2012-03-01

    The effects of low molecular weight diluents (namely water and glycerol) on the nanostructure and thermodynamic state of low water content gelatin matrices are explored systematically by combining positron annihilation lifetime spectroscopy (PALS) with calorimetric measurements. Bovine gelatin matrices with a variation in the glycerol content (0-10 wt.%) are equilibrated in a range of water activities (aw = 0.11-0.68, T = 298 K). Both water and glycerol reduce the glass transition temperature, Tg, and the temperature of dissociation of the ordered triple helical segments, Tm, while having no significant effect on the level of re-naturation of the gelatin matrices. Our PALS measurements show that over the concentration range studied, glycerol acts as a packing enhancer and in the glassy state it causes a nonlinear decrease in the average hole size, vh, of the gelatin matrices. Finally, we report complex changes in vh for the gelatin matrices as a function of the increasing level of hydration. At low water contents (Qw ˜ 0.01-0.10), water acts as a plasticizer, causing a systematic increase in vh. Conversely, for water contents higher than Qw ˜ 0.10, vh is found to decrease, as small clusters of water begin to form between the polypeptide chains.

  19. Understanding rheological hysteresis in soft glassy materials.

    PubMed

    Radhakrishnan, Rangarajan; Divoux, Thibaut; Manneville, Sébastien; Fielding, Suzanne M

    2017-03-01

    Motivated by recent experimental studies of rheological hysteresis in soft glassy materials, we study numerically strain rate sweeps in simple yield stress fluids and viscosity bifurcating yield stress fluids. Our simulations of downward followed by upward strain rate sweeps, performed within fluidity models and the soft glassy rheology model, successfully capture the experimentally observed monotonic decrease of the area of the rheological hysteresis loop with sweep time in simple yield stress fluids, and the bell shaped dependence of hysteresis loop area on sweep time in viscosity bifurcating fluids. We provide arguments explaining these two different functional forms in terms of differing tendencies of simple and viscosity bifurcating fluids to form shear bands during the sweeps, and show that the banding behaviour captured by our simulations indeed agrees with that reported experimentally. We also discuss the difference in hysteresis behaviour between inelastic and viscoelastic fluids. Our simulations qualitatively agree with the experimental data discussed here for four different soft glassy materials.

  20. On the Marginal Stability of Glassy Systems

    NASA Astrophysics Data System (ADS)

    Yan, Le; Baity-Jesi, Marco; Müller, Markus; Wyart, Matthieu

    2015-03-01

    In various glassy systems that are out of equilibrium, like spin glasses and granular packings, the dynamics appears to be critical: avalanches involving almost the whole system could happen. A recent conceptual breakthrough argues that such glassy systems sample the ensemble of marginal stable states, which inevitably results into critical dynamics. However, it is unclear how the marginal stability is dynamically guaranteed. We investigate this marginal stability assumption by studying specifically the critical athermal dynamics of the Sherrington-Kirkpatrick model. We discuss how a pseudo-gap in the density distribution of local fields characterizing the marginal stability arises dynamically.

  1. STRUMPACK -- STRUctured Matrices PACKage

    SciTech Connect

    2014-12-01

    STRUMPACK - STRUctured Matrices PACKage - is a package for computations with sparse and dense structured matrix, i.e., matrices that exhibit some kind of low-rank property, in particular Hierarchically Semi Separable structure (HSS). Such matrices appear in many applications, e.g., FEM, BEM, Integral equations. etc. Exploiting this structure using certain compression algorithms allow for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. STRUMPACK has presently two main components: a distributed-memory dense matrix computations package and a shared-memory sparse direct solver.

  2. On the cytoskeleton and soft glassy rheology.

    PubMed

    Mandadapu, Kranthi K; Govindjee, Sanjay; Mofrad, Mohammad R K

    2008-01-01

    The cytoskeleton is a complex structure within the cellular corpus that is responsible for the main structural properties and motilities of cells. A wide range of models have been utilized to understand cytoskeletal rheology and mechanics (see e.g. [Mofrad, M., Kamm, R., 2006. Cytoskeletal Mechanics: Models and Measurements. Cambridge University Press, Cambridge]). From this large collection of proposed models, the soft glassy rheological model (originally developed for inert soft glassy materials) has gained a certain traction in the literature due to the close resemblance of its predictions to certain mechanical data measured on cell cultures [Fabry, B., Maksym, G., Butler, J., Glogauer, M., Navajas, D., Fredberg, J., 2001. Scaling the microrheology of living cells. Physical Review Letters 87, 14102]. We first review classical linear rheological theory in a concise fashion followed by an examination of the soft glassy rheological theory. With this background we discuss the observed behavior of the cytoskeleton and the inherent limitations of classical rheological models for the cytoskeleton. This then leads into a discussion of the advantages and disadvantages presented to us by the soft glassy rheological model. We close with some comments of caution and recommendations on future avenues of exploration.

  3. Inelastic Deformation and Fracture of Glassy Solids

    DTIC Science & Technology

    1991-05-31

    cyclic energy loss but also the so-called dinamic modulus as a function of temperature at a given frequency. As in the case of metal- lic glasses the...interactions molecular structures of several glassy polymers have been obtained by static energy minimization techniques. These include polypropy- lene

  4. Absorption Of Gases By Glassy Polymers

    NASA Technical Reports Server (NTRS)

    Fedors, Robert F.

    1990-01-01

    Report discusses solubility of gas in glassy polymer, both above and below glass-transition temperature (Tg). Thermodynamic arguments brought to bear on previously-developed mathematical models, result being new model that enables calculation of infinite-dilution partial molar volume of solvent in glass or liquid solvent from data on pressure, volume, and temperature of solute in equilibrium with solvent.

  5. Deformation and Fracture Behavior of Metallic Glassy Alloys and Glassy-Crystal Composites

    NASA Astrophysics Data System (ADS)

    Louzguine-Luzgin, D. V.; Vinogradov, A.; Li, S.; Kawashima, A.; Xie, G.; Yavari, A. R.; Inoue, A.

    2011-06-01

    The present work demonstrates the deformation behavior of Zr-Cu-Ni-Al bulk glassy alloys and Zr-Ni-Cu-Al-Pd glassy foils as well as Ni-Cu-Ti-Zr bulk crystal-glassy composites. Fracture of Zr60Cu16Ni14Al10 and Zr64.13Ni10.12Cu15.75Al10 bulk glassy alloys is featured by nearly equal fraction areas of cleavage-like and vein-type relief. The observed pattern of alternating cleavage-like and vein-type patterns illustrates a result of dynamically self-organizing shear propagation at the final catastrophic stage. The deformation behavior of Zr64.13Ni10.12Cu15.75Al10 alloy has also been tested at LN2 temperature. The strength of the sample decreases with temperature, and no clear serrated flow typical for bulk glassy samples tested at room temperature is observed in the case of the samples tested at LN2 temperature. We also studied the deformation behavior of Zr-Ni-Cu-Al-Pd glassy foils thinned to electron transparency in situ in tension in a transmission electron microscope. We also present a Ni-Cu-Ti-Zr crystal-glassy composite material having a superior strength paired with a considerable ductility exceeding 10 pct. The metastable cP2 crystalline phase promotes a strain-induced martensitic transformation leading to pseudoelastic behavior as well as enhanced plasticity at room temperature. Underlying mechanisms of plastic deformation are discussed in terms of the interplay between the dislocation slip in the crystalline phase and the shear deformation in the glassy matrix.

  6. Plastic flow modeling in glassy polymers

    SciTech Connect

    Clements, Brad

    2010-12-13

    Glassy amorphous and semi-crystalline polymers exhibit strong rate, temperature, and pressure dependent polymeric yield. As a rule of thumb, in uniaxial compression experiments the yield stress increases with the loading rate and applied pressure, and decreases as the temperature increases. Moreover, by varying the loading state itself complex yield behavior can be observed. One example that illustrates this complexity is that most polymers in their glassy regimes (i.e., when the temperature is below their characteristic glass transition temperature) exhibit very pronounced yield in their uniaxial stress stress-strain response but very nebulous yield in their uniaxial strain response. In uniaxial compression, a prototypical glassy-polymer stress-strain curve has a stress plateau, often followed by softening, and upon further straining, a hardening response. Uniaxial compression experiments of this type are typically done from rates of 10{sup -5} s{sup -1} up to about 1 s{sup -1}. At still higher rates, say at several thousands per second as determined from Split Hopkinson Pressure Bar experiments, the yield can again be measured and is consistent with the above rule of thumb. One might expect that that these two sets of experiments should allow for a successful extrapolation to yet higher rates. A standard means to probe high rates (on the order of 105-107 S-I) is to use a uniaxial strain plate impact experiment. It is well known that in plate impact experiments on metals that the yield stress is manifested in a well-defined Hugoniot Elastic Limit (HEL). In contrast however, when plate impact experiments are done on glassy polymers, the HEL is arguably not observed, let alone observed at the stress estimated by extrapolating from the lower strain rate experiments. One might argue that polymer yield is still active but somehow masked by the experiment. After reviewing relevant experiments, we attempt to address this issue. We begin by first presenting our recently

  7. Equation of state of heated glassy carbon

    NASA Technical Reports Server (NTRS)

    Sekine, Toshimori; Ahrens, Thomas J.

    1991-01-01

    New Hugoniot data are presented for glassy carbon preheated to 1550 K and shocked to 20 GPa. The high-temperature Hugoniot is very similar to the principal Hugoniot. This results argues against the diffusional mechanism for the shock-induced transformaton of amorphous carbon to diamond, although the present results are obviously limited to below 20 GPa. This study provides the first Higoniot data for carbon preheated to significantly high temperatures.

  8. Wafer-level microstructuring of glassy carbon

    NASA Astrophysics Data System (ADS)

    Hans, Loïc. E.; Prater, Karin; Kilchoer, Cédric; Scharf, Toralf; Herzig, Hans Peter; Hermerschmidt, Andreas

    2014-03-01

    Glassy carbon is used nowadays for a variety of applications because of its mechanical strength, thermal stability and non-sticking adhesion properties. One application is glass molding that allows to realize high resolution diffractive optical elements on large areas and at affordable price appropriate for mass production. We study glassy carbon microstructuring for future precision compression molding of low and high glass-transition temperature. For applications in optics the uniformity, surface roughness, edge definition and lateral resolution are very important parameters for a stamp and the final product. We study different methods of microstructuring of glassy carbon by etching and milling. Reactive ion etching with different protection layers such as photoresists, aluminium and titanium hard masks have been performed and will be compare with Ion beam etching. We comment on the quality of the structure definition and give process details as well as drawbacks for the different methods. In our fabrications we were able to realize optically flat diffractive structures with slope angles of 80° at typical feature sizes of 5 micron and 700 nm depth qualified for high precision glass molding.

  9. Depolarizing differential Mueller matrices.

    PubMed

    Ortega-Quijano, Noé; Arce-Diego, José Luis

    2011-07-01

    The evolution of a polarized beam can be described by the differential formulation of Mueller calculus. The nondepolarizing differential Mueller matrices are well known. However, they only account for 7 out of the 16 independent parameters that are necessary to model a general anisotropic depolarizing medium. In this work we present the nine differential Mueller matrices for general depolarizing media, highlighting the physical implications of each of them. Group theory is applied to establish the relationship between the differential matrix and the set of transformation generators in the Minkowski space, of which Lorentz generators constitute a particular subgroup.

  10. Destructive Clustering of Metal Nanoparticles in Chalcogenide and Oxide Glassy Matrices.

    PubMed

    Shpotyuk, M V; Shpotyuk, O I; Cebulski, J; Kozyukhin, S

    2016-12-01

    The energetic χ-criterion is developed to parameterize difference in the origin of high-order optical non-linearity associated with metallic atoms (Cu, Ag, Au) embedded destructively in oxide- and chalcogenide glasses. Within this approach, it is unambiguously proved that covalent-bonded networks of soft semiconductor chalcogenides exemplified by binary As(Ge)-S(Se) glasses differ essentially from those typical for hard dielectric oxides like vitreous silica by impossibility to accommodate pure agglomerates of metallic nanoparticles. In an excellence according to known experimental data, it is suggested that destructive clustering of nanoparticles is possible in Cu-, Ag-, and Au-ion-implanted dielectric oxide glass media, possessing a strongly negative χ-criterion. Some recent speculations trying to ascribe equally this ability to soft chalcogenide glasses despite an obvious difference in the corresponding bond dissociation energies have been disclosed and criticized as inconclusive.

  11. Water uptake impedance of glassy organic aerosols

    NASA Astrophysics Data System (ADS)

    Peter, T.; Zobrist, B.; Krieger, U. K.; Luo, B. P.; Soonsin, V.; Marcolli, C.; Koop, T.

    2009-04-01

    Depending on their concentration and composition, aerosols affect various atmospheric properties and processes, such as atmospheric chemistry and Earth's radiative budget. The atmospheric aerosol itself is a complex mixture of various inorganic and organic components, whereas the organic fraction can represent more than 50% of the total aerosol mass. It was recently shown that aerosols high in organics may be present in a glassy state (Zobrist et al., ACP, 8, 5221-5244, 2008). The glassy nature of the aerosols may influence their properties and restrict their functionalities severely, e.g. their water uptake, heterogeneous chemical reactions in their bulk or on their surfaces, as well as ice nucleation and ice crystal growth. Here, we present the first experiments on the water uptake by single levitated glassy aerosol particles using an electrodynamic balance (EDB). Sucrose was chosen as a model substance, which comprises functional groups typical of organic species in the atmosphere. In addition we developed a microphysical model, which enables us to calculate the liquid diffusion inside a glassy particle using water diffusion coefficients in aqueous sucrose particles adapted from the literature. As the diffusion coefficient of water in the particle, D(cH2O), depends on the water concentration cH2O itself, the solution of the diffusion equation presents an interesting non-linear problem. The combined experimental and modelling approach allows describing in detail the water uptake by glassy aerosols at atmospherically relevant temperatures and relative humidities (RH). Hygroscopicity cycles were perfomed in the EDB starting from a crystalline (non-spherical) sucrose particle at 291 K. No water uptake was observed while RH was increased until the particle deliquesces at roughly 85% RH leading to a liquid (spherical) particle. In the subsequent drying cycle, surprisingly no efflorescence was observed when the particle was dried to below 5% and it remained spherical

  12. Glassy dynamics in thin films of polystyrene

    NASA Astrophysics Data System (ADS)

    Fukao, Koji; Koizumi, Hiroki

    2008-02-01

    Glassy dynamics was investigated for thin films of atactic polystyrene by complex electric capacitance measurements using dielectric relaxation spectroscopy. During the isothermal aging process the real part of the electric capacitance increased with time, whereas the imaginary part decreased with time. It follows that the aging time dependences of real and imaginary parts of the electric capacitance were primarily associated with change in volume (film thickness) and dielectric permittivity, respectively. Further, dielectric permittivity showed memory and rejuvenation effects in a similar manner to those observed for poly(methyl methacrylate) thin films. On the other hand, volume did not show a strong rejuvenation effect.

  13. Mono- and biphotonic photochemistry in glass matrices

    NASA Astrophysics Data System (ADS)

    Kaupp, Gerd

    2006-04-01

    Photochemistry in hard glassy solvent matrices gives different results than in gas matrices. It is performed at 83, 77, and ≥10 K by continuous irradiation and by pulsed multi MW cm -2 peak intensity excitation for those systems that do not react monophotonically. The highly structured matrix spectra should be taken as a basis for the interpretation of transient spectra to avoid ambiguities. Numerous [2.2]paracyclophanes are photolyzed. Most of them give stable diradical and quinodimethane spectra in addition to fluorescence and phosphorescence. Some benzylic diradicals undergo chemiluminescence after their photochemical generation. Matrix isolation spectroscopy is at variance with common interpretations in the lepidopterene case. A [2+4]-photocycloreversion of a substituted cyclohexene at 83 K leads to diene stereoisomers/rotamers that isomerize upon further irradiation. E/Z-photoequilibria are obtained in MTHF matrix from both sides with ω-nitrostyrene and α-benzylidene-γ-butyrolactone at 83 K, the latter stereoisomerization was also successfully studied at 10 K. Pulsed irradiation of technical photostabilizers at 10 K leads to stable zwitterion formation by proton migration that cannot be seen by continuous excitation. Inter- and intramolecular donor acceptor systems provide stable charge separation at 15 or 77 K upon pulsed laser irradiation and radicalanion spectra are recorded. Biphotonic photochemistry at ≥10 K allows for the formation of new ring systems such as dioxathiirane ( cyclo-SO 2), several aryldioxaziridines, and an electron rich triaziridine, compounds that revert upon thawing and could not be obtained by continuous irradiation, except cyclo-SO 2 that can also be formed after absorption of the long lived SO 2 triplet by another two-photon process.

  14. Etude des effets du martelage repetitif sur les contraintes residuelles

    NASA Astrophysics Data System (ADS)

    Hacini, Lyes

    L'assemblage par soudage peut engendrer des contraintes residuelles. Ces contraintes provoquent des fissurations prematurees et un raccourcissement de la duree de vie des composants. Dans ce contexte, le martelage robotise est utilise pour relaxer ces contraintes residuelles. Trois volets sont presentes: le premier est l'evaluation des effets des impacts unitaires repetes sur le champ de contraintes developpe dans des plaques d'acier inoxydable austenitique 304L vierges ou contenant des contraintes residuelles initiales. Dans la deuxieme partie de ce projet, le martelage est applique grace au robot SCOMPI. Les contraintes residuelles induites et relaxees par martelage sont ensuite mesurees par la methode des contours, qui a ete adaptee a cet effet. Dans la troisieme partie, le martelage est modelise par la methode des elements finis. Un modele axisymetrique developpe grace au logiciel ANSYS permet de simuler des impacts repetes d'un marteau elastique sur une plaque ayant un comportement elastoplastique.

  15. Polymer modified glassy carbon electrode for the electrochemical determination of caffeine in coffee.

    PubMed

    Amare, Meareg; Admassie, Shimelis

    2012-05-15

    4-Amino-3-hydroxynaphthalene sulfonic acid (AHNSA) was electropolymerized on a glassy carbon electrode. The deposited film showed electrocatalytic activity towards the oxidation of caffeine. The polymer-modified electrode showed high sensitivity, selectivity and stability in the determination of caffeine in coffee. The peak current increased linearly with the concentration of caffeine in the range of 6 × 10(-8) to 4 × 10(-5) mol L(-1), with a detection limit of 1.37 × 10(-7) mol L(-1) (LoD = 3δ/slope). Analysis of caffeine in coffee was affected neither by sample matrices nor by structurally similar compounds. Recoveries ranging between 93.75 ± 2.32 and 100.75 ± 3.32 were achieved from coffee extracts indicating the applicability of the developed method for real sample analyses.

  16. Deformation and failure of glassy materials

    NASA Astrophysics Data System (ADS)

    Rottler, Joerg Gerhard

    Elastoplastic deformation of disordered solids and the formation of polymer crazes in amorphous polymer glasses are studied using large-scale molecular dynamics simulations. It is shown that the pressure-modified von Mises criterion accurately describes the maximum shear yield stress under general loading conditions. The pressure coefficient is insensitive to most model parameters, but is related to the bead geometry in analogy to friction coefficients. The yield stress decreases linearly with rising temperature and the strain rate dependence can be described by a power-law, or in a limited range, by a logarithm. The rate dependence does not vary with temperature, which is inconsistent with simple rate-state models of thermal activation such as the Eyring model. An analysis of the dynamics of the local stress distribution as well as modern phenomenological theories of rheology of glassy materials are discussed in light of these findings. We then present a comprehensive investigation of the deformation of glassy polymeric systems into a dense load-bearing network of fibrils and voids called a craze at large strains. This expansion takes place in the form of a drawing process, where the strain rate is strongly localized in a narrow interface region between dense polymer and craze. The expansion is controlled by some polymer chain segments between entanglements that are stretched taut during crazing. We also find that the distribution of tension in the craze develops an exponential force tail in close analogy to compressed jammed systems such as granular media. This highly anisotropic stress distribution and the localization of large forces on relatively few chains indicate that earlier models of the crazing process that treat the polymer as a viscous fluid with hydrodynamic interactions are incorrect. Simulations and simple scaling arguments are presented that describe craze breakdown through disentanglement or chain scission. Glassy polymers exhibit an unusually

  17. Simulations of Soft Glassy Matter with Ripening

    NASA Astrophysics Data System (ADS)

    Hwang, Hyun Joo; Riggleman, Robert; Crocker, John

    2015-03-01

    Soft glassy matter (SGM) such as foams, emulsions, and colloids, exhibit interesting rheological properties that have long defied explanation. In particular, the shear modulus of these materials displays weak power law frequency dependence. To understand the origin of this property in more depth, we have built a three-dimensional, modified Bubble Dynamics model. The bubbles interact with a purely repulsive harmonic potential and ripen according to diffusion-based governing equations. An energy minimizer is implemented to quasi-statically relax topological rearrangements in the system as ripening proceeds. Preliminary results show that the model displays expected intermittent particle rearrangements and a weakly frequency-dependent shear modulus behaving like a power law fluid. We find that the anomalous relaxation properties and avalanche-like nature of the rearrangements can be related to different measures of the systems potential energy landscape.

  18. Glassy Dynamics, Cell Mechanics and Endothelial Permeability

    PubMed Central

    Hardin, Corey; Rajendran, Kavitha; Manomohan, Greeshma; Tambe, Dhananjay T.; Butler, James P.; Fredberg, Jeffrey J.; Martinelli, Roberta; Carman, Christopher V.; Krishnan, Ramaswamy

    2013-01-01

    A key feature of all inflammatory processes is disruption of the vascular endothelial barrier. Such disruption is initiated in part through active contraction of the cytoskeleton of the endothelial cell (EC). Because contractile forces are propagated from cell to cell across a great many cell-cell junctions, this contractile process is strongly cooperative and highly nonlocal. We show here that the characteristic length scale of propagation is modulated by agonists and antagonists that impact permeability of the endothelial barrier. In the presence of agonists including thrombin, histamine, and H202, force correlation length increases, whereas in the presence of antagonists including sphingosine-1-phosphate, hepatocyte growth factor, and the rho kinase inhibitor, Y27632, force correlation length decreases. Intercellular force chains and force clusters are also evident, both of which are reminiscent of soft glassy materials approaching a glass transition. PMID:23638866

  19. Active fluidization in dense glassy systems.

    PubMed

    Mandal, Rituparno; Bhuyan, Pranab Jyoti; Rao, Madan; Dasgupta, Chandan

    2016-07-20

    Dense soft glasses show strong collective caging behavior at sufficiently low temperatures. Using molecular dynamics simulations of a model glass former, we show that the incorporation of activity or self-propulsion, f0, can induce cage breaking and fluidization, resulting in the disappearance of the glassy phase beyond a critical f0. The diffusion coefficient crosses over from being strongly to weakly temperature dependent as f0 is increased. In addition, we demonstrate that activity induces a crossover from a fragile to a strong glass and a tendency of active particles to cluster. Our results are of direct relevance to the collective dynamics of dense active colloidal glasses and to recent experiments on tagged particle diffusion in living cells.

  20. Effets Josephson generalises entre antiferroaimants et entre supraconducteurs antiferromagnetiques

    NASA Astrophysics Data System (ADS)

    Chasse, Dominique

    L'effet Josephson est generalement presente comme le resultat de l'effet tunnel coherent de paires de Cooper a travers une jonction tunnel entre deux supraconducteurs, mais il est possible de l'expliquer dans un contexte plus general. Par exemple, Esposito & al. ont recemment demontre que l'effet Josephson DC peut etre decrit a l'aide du boson pseudo-Goldstone de deux systemes couples brisant chacun la symetrie abelienne U(1). Puisque cette description se generalise de facon naturelle a des brisures de symetries continues non-abeliennes, l'equivalent de l'effet Josephson devrait donc exister pour des types d'ordre a longue portee differents de la supraconductivite. Le cas de deux ferroaimants itinerants (brisure de symetrie 0(3)) couples a travers une jonction tunnel a deja ete traite dans la litterature Afin de mettre en evidence la generalite du phenomene et dans le but de faire des predictions a partir d'un modele realiste, nous etudions le cas d'une jonction tunnel entre deux antiferroaimants itinerants. En adoptant une approche Similaire a celle d'Ambegaokar & Baratoff pour une jonction Josephson, nous trouvons un courant d'aimantation alternee a travers la jonction qui est proportionnel a sG x sD ou fG et sD sont les vecteurs de Neel de part et d'autre de la jonction. La fonction sinus caracteristique du courant Josephson standard est donc remplacee.ici par un produit vectoriel. Nous montrons que, d'un point de vue microscopique, ce phenomene resulte de l'effet tunnel coherent de paires particule-trou de spin 1 et de vecteur d'onde net egal au vecteur d'onde antiferromagnetique Q. Nous trouvons egalement la dependance en temperature de l'analogue du courant critique. En presence d'un champ magnetique externe, nous obtenons l'analogue de l'effet Josephson AC et la description complete que nous en donnons s'applique aussi au cas d'une jonction tunnel entre ferroaimants (dans ce dernier cas, les traitements anterieurs de cet effet AC s'averent incomplets). Nous

  1. Shear banding in soft glassy materials.

    PubMed

    Fielding, S M

    2014-10-01

    Many soft materials, including microgels, dense colloidal emulsions, star polymers, dense packings of multilamellar vesicles, and textured morphologies of liquid crystals, share the basic 'glassy' features of structural disorder and metastability. These in turn give rise to several notable features in the low frequency shear rheology (deformation and flow properties) of these materials: in particular, the existence of a yield stress below which the material behaves like a solid, and above which it flows like a liquid. In the last decade, intense experimental activity has also revealed that these materials often display a phenomenon known as shear banding, in which the flow profile across the shear cell exhibits macroscopic bands of different viscosity. Two distinct classes of yield stress fluid have been identified: those in which the shear bands apparently persist permanently (for as long as the flow remains applied), and those in which banding arises only transiently during a process in which a steady flowing state is established out of an initial rest state (for example, in a shear startup or step stress experiment). Despite being technically transient, such bands may in practice persist for a very long time and so be mistaken for the true steady state response of the material in experimental practice. After surveying the motivating experimental data, we describe recent progress in addressing it theoretically, using the soft glassy rheology model and a simple fluidity model. We also briefly place these theoretical approaches in the context of others in the literature, including elasto-plastic models, shear transformation zone theories, and molecular dynamics simulations. We discuss finally some challenges that remain open to theory and experiment alike.

  2. Computer simulations of athermal and glassy systems

    NASA Astrophysics Data System (ADS)

    Xu, Ning

    2005-12-01

    We performed extensive molecular dynamics simulations to better understand athermal and glassy systems near jamming transitions. We focused on four related projects. In the first project, we decomposed the probability distribution P(φ) of finding a collectively jammed state at packing fraction φ into two distinct contributions: the density of CJ states rho(φ) and their basins of attraction beta(φ). In bidisperse systems, it is likely that rho(φ) controls the shape of P(φ) in the large system size limit, and thus the most likely random jammed state may be used as a protocol independent definition of random close packing in this system. In the second project, we measured the yield stress in two different ensembles: constant shear rate and constant stress. The yield stress measured in the constant stress ensemble is larger than that measured in the constant shear rate ensemble, however, the difference between these two measurements decreases with increasing system size. In the third project, we investigated under what circumstances nonlinear velocity profiles form in frictionless granular systems undergoing boundary driven planar shear flow. Nonlinear velocity profiles occur at short times, but evolve into linear profiles at long times. Nonlinear velocity profiles can be stabilized by vibrating these systems. The velocity profile can become highly localized when the shear stress of the system is below the constant force yield stress, provided that the granular temperature difference across the system is sufficiently large. In the fourth project, we measured the effective temperature defined from equilibrium fluctuation-dissipation relations in athermal and glassy systems sheared at constant pressure. We found that the effective temperature is strongly controlled by pressure in the slowly sheared regime. Thus, this effective temperature and pressure are not independent variables in this regime.

  3. Anodic electrosynthesis of some peroxy compounds on glassy carbon electrodes

    SciTech Connect

    Khomutov, N.E.; Zakhodyakina, N.A.; Svirida, L.V.; Nesvat, N.V.

    1987-11-10

    The authors present the results of a study of the anodic electrosynthesis of hydrogen peroxide and its derivatives on glassy carbon in solutions of sodium carbonate and sodium carbonate with sodium borate. We studied the kinetics of anodic processes on glassy carbon with the aid of polarization measurements and a method for determining the concentrations of active oxygen in the anolyte and the current efficiency. The current efficiencies with respect to active oxygen obtained on glassy carbon in the mixed solution of sodium borate and sodium carbonate are close to the current efficiencies which are observed on platinum anodes in the industrial electrosynthesis of perborates.

  4. A Statistical Approach to Relaxation in Glassy Materials.

    DTIC Science & Technology

    1984-11-01

    Approach to Relaxation in Glassy Materials bya by DTIC Et. ECTE Karina Weron M A. and S "z’ Aleksander Weron ApptovC fcv - " Technical Report No. 82...STATISTICAL APPROACH TO RELAXATION IN GLASSY MATERIALS 12. PERSONAL AUTHOR(S) Karina Weron and Aleksander Weron 13.. TYPE OF REPORT 13b. TIME COVERED 14. DATE...CLASSIFICATION OF THIS PAGE A Statistical Approach to Relaxation in Glassy Materials1 Karina Weron Institute of Physics Technical University of Wroclaw 50-370

  5. Enhancing Understanding of Transformation Matrices

    ERIC Educational Resources Information Center

    Dick, Jonathan; Childrey, Maria

    2012-01-01

    With the Common Core State Standards' emphasis on transformations, teachers need a variety of approaches to increase student understanding. Teaching matrix transformations by focusing on row vectors gives students tools to create matrices to perform transformations. This empowerment opens many doors: Students are able to create the matrices for…

  6. Singular-potential random-matrix model arising in mean-field glassy systems.

    PubMed

    Akemann, Gernot; Villamaina, Dario; Vivo, Pierpaolo

    2014-06-01

    We consider an invariant random matrix ensemble where the standard Gaussian potential is distorted by an additional single pole of arbitrary fixed order. Potentials with first- and second-order poles have been considered previously and found applications in quantum chaos and number theory. Here we present an application to mean-field glassy systems. We derive and solve the loop equation in the planar limit for the corresponding class of potentials. We find that the resulting mean or macroscopic spectral density is generally supported on two disconnected intervals lying on the two sides of the repulsive pole, whose edge points can be completely determined imposing the additional constraint of traceless matrices on average. For an unbounded potential with an attractive pole, we also find a possible one-cut solution for certain values of the couplings, which is ruled out when the traceless condition is imposed. Motivated by the calculation of the distribution of the spin-glass susceptibility in the Sherrington-Kirkpatrick spin-glass model, we consider in detail a second-order pole for a zero-trace model and provide the most explicit solution in this case. In the limit of a vanishing pole, we recover the standard semicircle. Working in the planar limit, our results apply to matrices with orthogonal, unitary, and symplectic invariance. Numerical simulations and an independent analytical Coulomb fluid calculation for symmetric potentials provide an excellent confirmation of our results.

  7. Singular-potential random-matrix model arising in mean-field glassy systems

    NASA Astrophysics Data System (ADS)

    Akemann, Gernot; Villamaina, Dario; Vivo, Pierpaolo

    2014-06-01

    We consider an invariant random matrix ensemble where the standard Gaussian potential is distorted by an additional single pole of arbitrary fixed order. Potentials with first- and second-order poles have been considered previously and found applications in quantum chaos and number theory. Here we present an application to mean-field glassy systems. We derive and solve the loop equation in the planar limit for the corresponding class of potentials. We find that the resulting mean or macroscopic spectral density is generally supported on two disconnected intervals lying on the two sides of the repulsive pole, whose edge points can be completely determined imposing the additional constraint of traceless matrices on average. For an unbounded potential with an attractive pole, we also find a possible one-cut solution for certain values of the couplings, which is ruled out when the traceless condition is imposed. Motivated by the calculation of the distribution of the spin-glass susceptibility in the Sherrington-Kirkpatrick spin-glass model, we consider in detail a second-order pole for a zero-trace model and provide the most explicit solution in this case. In the limit of a vanishing pole, we recover the standard semicircle. Working in the planar limit, our results apply to matrices with orthogonal, unitary, and symplectic invariance. Numerical simulations and an independent analytical Coulomb fluid calculation for symmetric potentials provide an excellent confirmation of our results.

  8. Adhesion in hydrogels and model glassy polymers

    NASA Astrophysics Data System (ADS)

    Guvendiren, Murat

    Two main topics are addressed in this dissertation: (1) adhesion in hydrogels; (2) interfacial interactions between model glassy polymers. A self-assembly technique for the formation of hydrogels from acrylic triblock copolymer solutions was developed, based on vapor phase solvent exchange. Structure formation in the gels was characterized by small angle X-ray scattering, and swelling was measured in controlled pH buffer solutions. Strong gels are formed with polymer weight fractions between 0.01 and 0.15, and with shear moduli between 0.6 kPa and 3.5 kPa. Adhesive functionality, based on 3,4-dihydroxy-L-phenylalanine (DOPA) was also incorporated into the triblock copolymers. The effect of DOPA concentration on gel formation and swelling was investigated in detail. The adhesive properties of DOPA-functionalized hydrogels on TiO2 were investigated with an axisymmetric adhesion method. It was shown that the presence of DOPA enhances the adhesive properties of the hydrogels, but that the effect is minimized at pH values below 10, where the DOPA groups are hydrophobic. Thin film membranes were produced in order to study the specific interactions between DOPA and TiO2 and DOPA and tissue, using a membrane inflation method. The presence of DOPA in the membranes enhances the adhesion on TiO 2 and tissue, although adhesion to tissue requires that the DOPA groups be oxidized while in contact with the tissue of interest. Porous hydrogel scaffolds for tissue engineering applications were formed by adding salt crystals to the triblock copolymer solution prior to solvent exchange. Salt was then leached out by immersing the gel into water. Structures of the porous hydrogels were characterized by confocal laser scanning microscopy. These hydrogels were shown to be suitable for tissue regeneration and drug delivery applications. Diffusion-mediated adhesion between two component miscible polymer systems having very different glassy temperatures was also investigated. Axisymmetric

  9. Intrinsic character of Stokes matrices

    NASA Astrophysics Data System (ADS)

    Gagnon, Jean-François; Rousseau, Christiane

    2017-02-01

    Two germs of linear analytic differential systems x k + 1Y‧ = A (x) Y with a non-resonant irregular singularity are analytically equivalent if and only if they have the same eigenvalues and equivalent collections of Stokes matrices. The Stokes matrices are the transition matrices between sectors on which the system is analytically equivalent to its formal normal form. Each sector contains exactly one separating ray for each pair of eigenvalues. A rotation in S allows supposing that R+ lies in the intersection of two sectors. Reordering of the coordinates of Y allows ordering the real parts of the eigenvalues, thus yielding triangular Stokes matrices. However, the choice of the rotation in x is not canonical. In this paper we establish how the collection of Stokes matrices depends on this rotation, and hence on a chosen order of the projection of the eigenvalues on a line through the origin.

  10. No inherent glassiness in a Penrose tiling quasicrystal

    SciTech Connect

    Strandburg, K.J.; Dressel, P.R.

    1988-11-01

    Consideration of the structure of the Penrose pattern has led to speculation that a system with a Penrose tiling ground state might be subject to inherent glassy behavior. Monte Carol simulations show, using a simple model of the energetics, that there is no inherent glassiness in the Penrose tiling. Thermodynamic quantities measured are completely reversible, displaying no observable hysterisis, and the system may be easily cooled from a highly disordered configuration into its lowest energy state. 11 refs., 7 figs.

  11. High Strain Rate Mechanical Properties of Glassy Polymers

    DTIC Science & Technology

    2012-07-25

    Force Materiel Command  United States Air Force  Eglin Air Force Base AFRL-RW-EG-TP-2012-008 High Strain Rate...TITLE AND SUBTITLE High Strain Rate Mechanical Properties of Glassy Polymers 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...1990s, a range of experimental data has been generated describing the response of glassy polymers to high strain rate loading in compression. More

  12. Glassy state of native collagen fibril?

    NASA Astrophysics Data System (ADS)

    Gevorkian, S. G.; Allahverdyan, A. E.; Gevorgyan, D. S.; Hu, C.-K.

    2011-07-01

    Our micromechanical experiments show that viscoelastic features of type-I collagen fibril at physiological temperatures display essential dependence on the frequency and speed of heating. For temperatures of 20-30 °C the internal friction has a sharp maximum for a frequency less than 2 kHz. Upon heating the internal friction displays a peak at a temperature Tsoft(v) that essentially depends on the speed of heating v: Tsoft≈70°C for v=1°C/min, and Tsoft≈25°C for v=0.1°C/min. At the same temperature Tsoft(v) Young's modulus passes through a minimum. All these effects are specific for the native state of the fibril and disappear after heat-denaturation. Taken together with the known facts that the fibril is axially ordered as quasicrystal, but disordered laterally, we interpret our findings as indications of a glassy state, where Tsoft is the softening transition.

  13. On Some Properties of Gamma Matrices

    ERIC Educational Resources Information Center

    Dumais, Jean-Francois

    1977-01-01

    Discusses the problem of the order, reducibility, and equivalence of systems of Dirac gamma matrices. Gives a simple systematic method for finding the matrices connecting different systems of 4 x 4 gamma matrices. (MLH)

  14. Estimating sparse precision matrices

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross

    2016-08-01

    We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic 1/sqrt{N_sim} rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the 1/sqrt{N_sim} limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example, we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.

  15. Numerical inversion of finite Toeplitz matrices and vector Toeplitz matrices

    NASA Technical Reports Server (NTRS)

    Bareiss, E. H.

    1969-01-01

    Numerical technique increases the efficiencies of the numerical methods involving Toeplitz matrices by reducing the number of multiplications required by an N-order Toeplitz matrix from N-cubed to N-squared multiplications. Some efficient algorithms are given.

  16. Ultra-smooth glassy graphene thin films for flexible transparent circuits

    PubMed Central

    Dai, Xiao; Wu, Jiang; Qian, Zhicheng; Wang, Haiyan; Jian, Jie; Cao, Yingjie; Rummeli, Mark H.; Yi, Qinghua; Liu, Huiyun; Zou, Guifu

    2016-01-01

    Large-area graphene thin films are prized in flexible and transparent devices. We report on a type of glassy graphene that is in an intermediate state between glassy carbon and graphene and that has high crystallinity but curly lattice planes. A polymer-assisted approach is introduced to grow an ultra-smooth (roughness, <0.7 nm) glassy graphene thin film at the inch scale. Owing to the advantages inherited by the glassy graphene thin film from graphene and glassy carbon, the glassy graphene thin film exhibits conductivity, transparency, and flexibility comparable to those of graphene, as well as glassy carbon–like mechanical and chemical stability. Moreover, glassy graphene–based circuits are fabricated using a laser direct writing approach. The circuits are transferred to flexible substrates and are shown to perform reliably. The glassy graphene thin film should stimulate the application of flexible transparent conductive materials in integrated circuits. PMID:28138535

  17. Effect of additives on physicochemical properties in amorphous starch matrices.

    PubMed

    Liang, Jun; Wang, Simon; Ludescher, Richard D

    2015-03-15

    The effect of the addition of non-reducing sugars or methylcellulose on the matrix physical properties and rate of non-enzymatic browning (NBR) between exogenous glucose+lysine in a starch-based glassy matrix were studied, using the methods of luminescence and FTIR. Amorphous starch-based matrices were formulated by rapidly dehydrating potato starch gel mixed with additives at weight ratios of 7:93 (additive:starch). Data on the phosphorescence emission energy and lifetime from erythrosin B dispersed in the matrices indicated that sugars decreased starch matrix mobility in a Tg-dependent manner, except for trehalose that interacted with starch in a unique mode, while methylcellulose, the additive with the highest Tg, increased the molecular mobility. Using FTIR, we found that methylcellulose decreased the strength of hydrogen bond network and sugars enhanced the hydrogen bond strength in the order: trehalose>maltitol>sucrose. Comparing those changes with the rate of NBR between exogenous glucose+lysine, we suggest that NBR rates are primarily influenced by matrix mobility, which is modulated by the hydrogen bond network, and interactions among components.

  18. Shear banding in soft glassy materials

    NASA Astrophysics Data System (ADS)

    Fielding, S. M.

    2014-10-01

    Many soft materials, including microgels, dense colloidal emulsions, star polymers, dense packings of multilamellar vesicles, and textured morphologies of liquid crystals, share the basic ‘glassy’ features of structural disorder and metastability. These in turn give rise to several notable features in the low frequency shear rheology (deformation and flow properties) of these materials: in particular, the existence of a yield stress below which the material behaves like a solid, and above which it flows like a liquid. In the last decade, intense experimental activity has also revealed that these materials often display a phenomenon known as shear banding, in which the flow profile across the shear cell exhibits macroscopic bands of different viscosity. Two distinct classes of yield stress fluid have been identified: those in which the shear bands apparently persist permanently (for as long as the flow remains applied), and those in which banding arises only transiently during a process in which a steady flowing state is established out of an initial rest state (for example, in a shear startup or step stress experiment). Despite being technically transient, such bands may in practice persist for a very long time and so be mistaken for the true steady state response of the material in experimental practice. After surveying the motivating experimental data, we describe recent progress in addressing it theoretically, using the soft glassy rheology model and a simple fluidity model. We also briefly place these theoretical approaches in the context of others in the literature, including elasto-plastic models, shear transformation zone theories, and molecular dynamics simulations. We discuss finally some challenges that remain open to theory and experiment alike.

  19. Computer-Access-Code Matrices

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1990-01-01

    Authorized users respond to changing challenges with changing passwords. Scheme for controlling access to computers defeats eavesdroppers and "hackers". Based on password system of challenge and password or sign, challenge, and countersign correlated with random alphanumeric codes in matrices of two or more dimensions. Codes stored on floppy disk or plug-in card and changed frequently. For even higher security, matrices of four or more dimensions used, just as cubes compounded into hypercubes in concurrent processing.

  20. Probing Properties of Glassy Water and Other Liquids with Site Selective Spectroscopies

    SciTech Connect

    Dang, Nhan Chuong

    2005-01-01

    The standard non-photochemical hole burning (NPHB) mechanism, which involves phonon-assisted tunneling in the electronically excited state, was originally proposed to explain the light-induced frequency change of chemically stable molecules in glassy solids at liquid helium temperatures by this research group more than two decades ago. The NPHB mechanism was then further elucidated and the concept of intrinsic to glass configurational relaxation processes as pre-mediating step to the hole burning process was introduced. The latter provided the theoretical basis for NPHB to evolve into a powerful tool probing the dynamics and nature of amorphous media, which aside from ''simple'' inorganic glasses may include also ''complex'' biological systems such as living cells and cancerous/normal tissues. Presented in this dissertation are the experimental and theoretical results of hole burning properties of aluminum phthalocyanine tetrasulphonate (APT) in several different matrices: (1) hyperquenched glassy water (HGW); (2) cubic ice (Ic); and (3) water confined into poly(2-hydroxyethylmethacrylate) (poly-HEMA). In addition, results of photochemical hole burning (PHB) studies obtained for phthalocyanine tetrasulphonate (PcT) in HGW and free base phthalocyanine (Pc) in ortho-dichlorobenzene (DCB) glass are reported. The goal of this dissertation was to provide further evidence supporting the NPHB mechanism and to provide more insight that leads to a better understanding of the kinetic events (dynamics) in glasses, and various dynamical processes of different fluorescent chromorphores in various amorphous solids and the liquid that exist above the glass transition temperature (Tg). The following issues are addressed in detail: (1) time evolution of hole being burned under different conditions and in different hole burning systems; (2) temperature dependent hole profile; and (3) the structure/dynamics of water in confined space, which

  1. Thermodynamics of Supercooled and Glassy Water

    NASA Astrophysics Data System (ADS)

    Debenedetti, Pablo G.

    1998-03-01

    The behavior of metastable water at low temperatures is unusual. The isothermal compressibility, the isobaric heat capacity, and the magnitude of the thermal expansion coefficient increase sharply upon supercooling, and structural relaxation becomes extremely sluggish at temperatures far above the glass transition(Angell, C.A., Annu. Rev. Phys. Chem., 34, 593, 1983)(Debenedetti, P.G., Metastable Liquids. Concepts and Principles, Princeton University Press, 1996). Water has two distinct glassy phases, low- and high-density amorphous ice (LDA, HDA). The transition between LDA and HDA is accompanied by sharp volume and enthalpy changes, and appears to be first-order(Mishima, O., L.D.Calvert, and E. Whalley, Nature, 314, 76, 1985)(Mishima, O., J. Chem. Phys., 100, 5910, 1994). The understanding of these observations in terms of an underlying global phase behavior remains incomplete(Speedy, R.J., J. Phys. Chem., 86, 982, 1982)(Poole, P.H., F. Sciortino, U. Essman, and H.E. Stanley, Nature, 360, 324, 1992)(Sastry, S., P.G. Debenedetti, F. Sciortino, and H.E. Stanley, Phys. Rev. E, 53, 6144, 1996)(Tanaka, H., Nature, 380, 328, 1996)(Xie, Y., K.F. Ludwig, G. Morales, D.E. Hare, and C.M. Sorensen, Phys. Rev. Lett., 71, 2050, 1993). Microscopic theories and computer simulations suggest several scenarios that can reproduce some experimental observations. Interesting and novel ideas have resulted from this body of theoretical work, such as the possibility of liquid-liquid immiscibility in a pure substance(Poole, P.H., F.Sciortino, T.Grande, H.E. Stanley, and C.A. Angell, Phys. Rev. Lett., 73, 1632, 1994)(Roberts, C.J., and P.G. Debenedetti, J. Chem. Phys., 105, 658, 1996)(Roberts, C.J., P.G. Debenedetti, and A.Z. Panagiotopoulos, Phys. Rev. Lett., 77, 4386, 1996)(Harrington, S., R. Zhang, P.H. Poole, F. Sciortino, and H.E. Stanley, Phys. Rev. Lett., 78, 2409, 1997). In this talk I will review the experimental facts, discuss their theoretical interpretation, and identify key

  2. Quasi-equilibrium in glassy dynamics: an algebraic view

    NASA Astrophysics Data System (ADS)

    Franz, Silvio; Parisi, Giorgio

    2013-02-01

    We study a chain of identical glassy systems in a constrained equilibrium, where each bond of the chain is forced to remain at a preassigned distance to the previous one. We apply this description to mean-field glassy systems in the limit of a long chain where each bond is close to the previous one. We show that this construction defines a pseudo-dynamic process that in specific conditions can formally describe real relaxational dynamics for long times. In particular, in mean-field spin glass models we can recover in this way the equations of Langevin dynamics in the long time limit at the dynamical transition temperature and below. We interpret the formal identity as evidence that in these situations the configuration space is explored in a quasi-equilibrium fashion. Our general formalism, which relates dynamics to equilibrium, puts slow dynamics in a new perspective and opens the way to the computation of new dynamical quantities in glassy systems.

  3. Peculiarities of the enthalpy relaxation of a glassy crystal

    NASA Astrophysics Data System (ADS)

    Delcourt, O.; Descamps, M.; Even, J.; Bertault, M.; Willart, J. F.

    1997-02-01

    The relaxation of a supercooled orientational glassy crystal is investigated by differential scanning calorimetry. Aging performed both below and above Tg reveal two original features. (i) The glassy compound relaxes beyond the simple return to equilibration of the metastable rotator phase. The state which is reached upon aging however reverses back to the metastable state when crossing Tg. (ii) Upon reheating a transition between a low temperature ordered phase and the rotator phase is observed whose occurrence strongly depends on the aging conditions. The calorimetric signature of this transition and the usual glass relaxation endotherm are superimposed when annealing is performed below Tg. These results suggest that the peculiarities of the structure and dynamics of orientational glassy crystals lead to an effective acceleration of the relaxation process and enable the system to search for enthalpy states lower than it is usual for a glass.

  4. Void nucleation and disentanglement in glassy amorphous polymers

    NASA Astrophysics Data System (ADS)

    Mahajan, Dhiraj K.; Singh, Bhupinder; Basu, Sumit

    2010-07-01

    Cavitation in glassy polymers is known to result from highly triaxial states of local stress and the presence of impurities. Understanding of cavitation, particularly void nucleation, is important as cavities are precursors to crazes, which in turn lead to fracture. In this work we study the early stages of void nucleation in glassy amorphous polymers by imposing, in well designed molecular dynamics simulations, highly triaxial states of stress on ensembles of entangled linear macromolecular chains and monitoring the evolution of the entanglement network. Our results demonstrate that deformation induced disentanglement and rearrangement of topological constraints along individual chains play an important role in the early stages of void nucleation. Even in the glassy state, deformation causes significant changes in the rheological constraints on a chain though the number of interchain binary contacts may not change much.

  5. Optical speckles of blood proteins embedded in porous glassy substrate

    NASA Astrophysics Data System (ADS)

    Holden, T.; Dehipawala, S.; Kokkinos, D.; Berisha, A.; Cheung, E.; Nguyen, A.; Golebiewska, U.; Schneider, P.; Tremberger, G., Jr.; Lieberman, D.; Cheung, T.

    2012-03-01

    Blood protein molecules could be embedded in porous glassy substrate with 10-nm pores. The embedding principle is based on blood cell dehydration with the destruction of the cell membrane, and reconstitution and centrifuge could yield a suitable solution for doping into a porous glassy medium. The doped glassy substrate speckle pattern under laser illumination could be used to characterize the protein size distribution. Calibration with known protein embedded samples would result in an optical procedure for the characterization of a blood sample. Samples embedded with larger kilo-Dalton protein molecule show more variation in the speckle patterns, consistent with protein folding interaction inside a pore cavity. A regression model has been used to correlate the protein molecule sizes with speckle sizes. The use of diffusion mean free path information to study protein folding in the embedding process is briefly discussed.

  6. The Erevan howardite: Petrology of glassy clasts and mineral chemistry

    NASA Technical Reports Server (NTRS)

    Nazarov, M. A.; Ariskin, A. A.

    1993-01-01

    The Erevan howardite is a polymict regolith breccia containing xenoliths of carbonaceous chondrites. In this work, we studied glassy clasts, which could be considered as primary quenched melts, and mineral chemistry of the breccia. The study reveals that the Erevan howardite consists of common rocks of the HED suite. However, unique glassy clasts, which are present in some eucritic melts, were identified. The mineral chemistry and the simulation of crystallization of the melts suggest that the compositions of the melts reflect those of some primary lithologies of EPB.

  7. Course 14: Hiking through Glassy Phases: Physics beyond Aging

    NASA Astrophysics Data System (ADS)

    Berthier, L.; Viasnoff, V.; White, O.; et al.

    Experiments performed on a wide range of glassy materials display many interesting phenomena, such as aging behavior. In recent years, a large body of experiments probed this nonequilibrium glassy dynamics through elaborate protocols, in which external parameters are shifted, or cycled in the course of the experiment. We review here these protocols, as well as experimental and numerical results. Then, we critically discuss various theoretical approaches put forward in this context. Emphasis is put more on the generality of the phenomena than on a specific system. Experiments are also suggested.

  8. Iterative methods for Toeplitz-like matrices

    SciTech Connect

    Huckle, T.

    1994-12-31

    In this paper the author will give a survey on iterative methods for solving linear equations with Toeplitz matrices, Block Toeplitz matrices, Toeplitz plus Hankel matrices, and matrices with low displacement rank. He will treat the following subjects: (1) optimal (w)-circulant preconditioners is a generalization of circulant preconditioners; (2) Optimal implementation of circulant-like preconditioners in the complex and real case; (3) preconditioning of near-singular matrices; what kind of preconditioners can be used in this case; (4) circulant preconditioning for more general classes of Toeplitz matrices; what can be said about matrices with coefficients that are not l{sub 1}-sequences; (5) preconditioners for Toeplitz least squares problems, for block Toeplitz matrices, and for Toeplitz plus Hankel matrices.

  9. Playback interference of glassy-winged sharp shooter communication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal communication is vital to reproduction, particularly for securing a mate. Insects commonly communicate by exchanging vibrational signals that are transmitted through host plants. The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is an important vector of Xylella fastidiosa, a pl...

  10. Thermodynamic behavior of glassy state of structurally related compounds.

    PubMed

    Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2008-08-01

    Thermodynamic properties of amorphous pharmaceutical forms are responsible for enhanced solubility as well as poor physical stability. The present study was designed to investigate the differences in thermodynamic parameters arising out of disparate molecular structures and associations for four structurally related pharmaceutical compounds--celecoxib, valdecoxib, rofecoxib, and etoricoxib. Conventional and modulated temperature differential scanning calorimetry were employed to study glass forming ability and thermodynamic behavior of the glassy state of model compounds. Glass transition temperature of four glassy compounds was in a close range of 327.6-331.8 K, however, other thermodynamic parameters varied considerably. Kauzmann temperature, strength parameter and fragility parameter showed rofecoxib glass to be most fragile of the four compounds. Glass forming ability of the compounds fared similar in the critical cooling rate experiments, suggesting that different factors were determining the glass forming ability and subsequent behavior of the compounds in glassy state. A comprehensive understanding of such thermodynamic facets of amorphous form would help in rationalizing the approaches towards development of stable glassy pharmaceuticals.

  11. A method to quantify glassy-winged sharpshooter egg maturation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To identify factors affecting glassy-winged sharpshooter egg production, a method to accurately estimate the number of mature eggs produced during a short-term assay is needed. Egg production is typically quantified by determining the number of eggs deposited during the assay plus the number of matu...

  12. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors.

    PubMed

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T; Evoy, Stephane

    2016-03-14

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors.

  13. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors

    PubMed Central

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T.; Evoy, Stephane

    2016-01-01

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors. PMID:26985910

  14. Symmetric Toeplitz-Structured Compressed Sensing Matrices

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Fan, Yi-Zheng; Zhu, Ming

    2015-11-01

    How to construct a suitable measurement matrix is an important topic in compressed sensing. A significant part of the recent work is that the measurement matrices are not completely random on the entries but exhibit some considerable structures. In this paper, we proved that a symmetric Toeplitz matrix and its variant can be used as measurement matrices and recovery signal with high probability. Compared with random matrices (e.g. Gaussian and Bernoulli matrices) and some structured matrices (e.g. Toeplitz and circulant matrices), we need to generate fewer independent entries to obtain the measurement matrix while the effectiveness of the recovery keeps good.

  15. Open string fields as matrices

    NASA Astrophysics Data System (ADS)

    Kishimoto, Isao; Masuda, Toru; Takahashi, Tomohiko; Takemoto, Shoko

    2015-03-01

    We show that the action expanded around Erler-Maccaferri's N D-brane solution describes the N+1 D-brane system where one D-brane disappears due to tachyon condensation. String fields on multi-branes can be regarded as block matrices of a string field on a single D-brane in the same way as matrix theories.

  16. Making almost commuting matrices commute

    SciTech Connect

    Hastings, Matthew B

    2008-01-01

    Suppose two Hermitian matrices A, B almost commute ({parallel}[A,B]{parallel} {<=} {delta}). Are they close to a commuting pair of Hermitian matrices, A', B', with {parallel}A-A'{parallel},{parallel}B-B'{parallel} {<=} {epsilon}? A theorem of H. Lin shows that this is uniformly true, in that for every {epsilon} > 0 there exists a {delta} > 0, independent of the size N of the matrices, for which almost commuting implies being close to a commuting pair. However, this theorem does not specifiy how {delta} depends on {epsilon}. We give uniform bounds relating {delta} and {epsilon}. The proof is constructive, giving an explicit algorithm to construct A' and B'. We provide tighter bounds in the case of block tridiagonal and tridiagnonal matrices. Within the context of quantum measurement, this implies an algorithm to construct a basis in which we can make a projective measurement that approximately measures two approximately commuting operators simultaneously. Finally, we comment briefly on the case of approximately measuring three or more approximately commuting operators using POVMs (positive operator-valued measures) instead of projective measurements.

  17. Fibonacci Identities, Matrices, and Graphs

    ERIC Educational Resources Information Center

    Huang, Danrun

    2005-01-01

    General strategies used to help discover, prove, and generalize identities for Fibonacci numbers are described along with some properties about the determinants of square matrices. A matrix proof for identity (2) that has received immense attention from many branches of mathematics, like linear algebra, dynamical systems, graph theory and others…

  18. 2H NMR studies of glycerol dynamics in protein matrices.

    PubMed

    Herbers, C R; Sauer, D; Vogel, M

    2012-03-28

    We use (2)H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.

  19. 2H NMR studies of glycerol dynamics in protein matrices

    NASA Astrophysics Data System (ADS)

    Herbers, C. R.; Sauer, D.; Vogel, M.

    2012-03-01

    We use 2H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.

  20. S-matrices and integrability

    NASA Astrophysics Data System (ADS)

    Bombardelli, Diego

    2016-08-01

    In these notes we review the S-matrix theory in (1+1)-dimensional integrable models, focusing mainly on the relativistic case. Once the main definitions and physical properties are introduced, we discuss the factorization of scattering processes due to integrability. We then focus on the analytic properties of the two-particle scattering amplitude and illustrate the derivation of the S-matrices for all the possible bound states using the so-called bootstrap principle. General algebraic structures underlying the S-matrix theory and its relation with the form factors axioms are briefly mentioned. Finally, we discuss the S-matrices of sine-Gordon and SU(2), SU(3) chiral Gross-Neveu models. In loving memory of Lilia Grandi.

  1. 2H NMR studies of supercooled and glassy aspirin

    NASA Astrophysics Data System (ADS)

    Nath, R.; Nowaczyk, A.; Geil, B.; Bohmer, R.

    2007-11-01

    Acetyl salicylic acid, deuterated at the methyl group, was investigated using 2H-NMR in its supercooled and glassy states. Just above the glass transition temperature the molecular reorientations were studied using stimulated-echo spectroscopy and demonstrated a large degree of similarity with other glass formers. Deep in the glassy phase the NMR spectra look similar to those reported for the crystal [A. Detken, P. Focke, H. Zimmermann, U. Haeberlen, Z. Olejniczak, Z. T. Lalowicz, Z. Naturforsch. A 50 (1995) 95] and below 20 K they are indicative for rotational tunneling with a relatively large tunneling frequency. Measurements of the spin-lattice relaxation times for temperatures below 150 K reveal a broad distribution of correlation times in the glass. The dominant energy barrier characterizing the slow-down of the methyl group is significantly smaller than the well defined barrier in the crystal.

  2. Understanding soft glassy materials using an energy landscape approach.

    PubMed

    Hwang, Hyun Joo; Riggleman, Robert A; Crocker, John C

    2016-09-01

    Many seemingly different soft materials-such as soap foams, mayonnaise, toothpaste and living cells-display strikingly similar viscoelastic behaviour. A fundamental physical understanding of such soft glassy rheology and how it can manifest in such diverse materials, however, remains unknown. Here, by using a model soap foam consisting of compressible spherical bubbles, whose sizes slowly evolve and whose collective motion is simply dictated by energy minimization, we study the foam's dynamics as it corresponds to downhill motion on an energy landscape function spanning a high-dimensional configuration space. We find that these downhill paths, when viewed in this configuration space, are, surprisingly, fractal. The complex behaviour of our model, including power-law rheology and non-diffusive bubble motion and avalanches, stems directly from the fractal dimension and energy function of these paths. Our results suggest that ubiquitous soft glassy rheology may be a consequence of emergent fractal geometry in the energy landscapes of many complex fluids.

  3. Diamond film growth on Ti-implanted glassy carbon

    NASA Astrophysics Data System (ADS)

    Brewer, M. A.; Brown, I. G.; Evans, P. J.; Hoffman, A.

    1993-09-01

    The growth of diamond thin films on glassy carbon substrates has been investigated as a function of deposition time for different surface treatments. Implantation of Ti to a dose of 1.7 x 10 exp 17/sq cm and abrasion with diamond powder have both been examined to determine their effect on film nucleation and growth. At the shorter deposition times studied, diamond nucleation was observed on all test samples with those subjected to the abrasive pretreatment exhibiting the higher growth rates. However, the adhesion and uniformity of films on unimplanted glassy carbon were found to deteriorate significantly following deposition runs of 14 and 21 h duration. This was attributed to a destabilization of the underlying surface caused by plasma erosion.

  4. Loss of halogens from crystallized and glassy silicic volcanic rocks

    USGS Publications Warehouse

    Noble, D.C.; Smith, V.C.; Peck, L.C.

    1967-01-01

    One hundred and sixty-four F and Cl analyses of silicic welded tuffs and lavas and glass separates are presented. Comparison of the F and Cl contents of crystallized rocks with those of nonhydrated glass and hydrated glassy rocks from the same rock units shows that most of the halogens originally present were lost on crystallization. An average of about half of the F and four-fifths of the Cl originally present was lost. Analyses of hydrated natural glasses and of glassy rocks indicate that in some cases significant amounts of halogens may be removed from or added to hydrated glass through prolonged contact with ground water. The data show that the original halogen contents of the groundmass of a silicic volcanic rock can be reliably determined only from nonhydrated glass. ?? 1967.

  5. Understanding soft glassy materials using an energy landscape approach

    NASA Astrophysics Data System (ADS)

    Hwang, Hyun Joo; Riggleman, Robert A.; Crocker, John C.

    2016-09-01

    Many seemingly different soft materials--such as soap foams, mayonnaise, toothpaste and living cells--display strikingly similar viscoelastic behaviour. A fundamental physical understanding of such soft glassy rheology and how it can manifest in such diverse materials, however, remains unknown. Here, by using a model soap foam consisting of compressible spherical bubbles, whose sizes slowly evolve and whose collective motion is simply dictated by energy minimization, we study the foam's dynamics as it corresponds to downhill motion on an energy landscape function spanning a high-dimensional configuration space. We find that these downhill paths, when viewed in this configuration space, are, surprisingly, fractal. The complex behaviour of our model, including power-law rheology and non-diffusive bubble motion and avalanches, stems directly from the fractal dimension and energy function of these paths. Our results suggest that ubiquitous soft glassy rheology may be a consequence of emergent fractal geometry in the energy landscapes of many complex fluids.

  6. Morphology and formation process of diamond from glassy carbon

    NASA Astrophysics Data System (ADS)

    Miyamoto, Manabu; Akaishi, Minoru; Ohsawa, Toshikazu; Yamaoka, Shinobu; Fukunaga, Osamu

    1989-10-01

    Under static high pressure conditions in the presence of a catalyst metal, a diamond formation process was studied using glassy carbon as a starting source, which was prepared by pyrolysis of furfuryl alcohol resin. Above 1200 °C of the pyrolysis temperature, diamond formation was clearly observed in Ni, Fe, Co and their alloy catalysts. The hydrogen content in the starting carbon has a drastic effect on the diamond formation. The maximum content of the hydrogen in the glassy carbon had to be between 1200 and 2200 ppm to see diamond formation. In the Fe-rich catalyst, a characteristic needle-like diamond was formed due to the texture of the carbon source and the nature of the catalyst.

  7. Glassy correlations and thermal fluctuations in nematic elastomers

    NASA Astrophysics Data System (ADS)

    Lu, Bing; Xing, Xiangjun; Ye, Fangfu; Goldbart, Paul

    2010-03-01

    By means of the vulcanization theory framework we address the properties of nematic elastomers prepared in the isotropic liquid state and subsequently randomly cross-linked beyond the gelation point. We base our analysis on a model replica Landau free energy, in which the vulcanization order parameter is coupled to the order parameter describing the local degree of nematic ordering, retaining fluctuation terms to the Gaussian level. We explore how the cross-linking renormalizes the thermal correlations of the local nematic order, and also results in frozen-in, glassy nematic correlations. We examine these thermal and glassy correlations for two different preparation histories of the system: in the first, the cross-linking is done at temperatures close to the isotropic-nematic transition; in the other, the cross-linking is done at higher temperatures, but the system is subsequently cooled to near this transition temperature.

  8. Probing glassy states in binary mixtures of soft interpenetrable colloids.

    PubMed

    Stiakakis, E; Erwin, B M; Vlassopoulos, D; Cloitre, M; Munam, A; Gauthier, M; Iatrou, H; Hadjichristidis, N

    2011-06-15

    We present experimental evidence confirming the recently established rich dynamic state diagram of asymmetric binary mixtures of soft colloidal spheres. These mixtures consist of glassy suspensions of large star polymers to which different small stars are added at varying concentrations. Using rheology and dynamic light scattering measurements along with a simple phenomenological analysis, we show the existence of re-entrance and multiple glassy states, which exhibit distinct features. Cooperative diffusion, as a probe for star arm interpenetration, is proven to be sensitive to the formation of the liquid pockets which signal the melting of the large-star-glass upon addition of small stars. These results provide ample opportunities for tailoring the properties of soft colloidal glasses.

  9. Global equation of state for a glassy material: Fused silica

    SciTech Connect

    Boettger, J.C.

    1994-09-01

    A new SESAME equation of state (EOS) for fused silica has been generated using the computer program GRIZZLY and will be added to the SESAME library as material number 7387. This new EOS provides better agreement with experimental data than was achieved by all previous SESAME EOSs for fused silica. Material number 7387 also constitutes the most realistic SESAME-type EOS generated for any glassy material thus far.

  10. Localization and Glassy Dynamics in the Immune System

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Earl, David J.; Deem, Michael W.

    We discuss use of the generalized NK model to examine evolutionary dynamics within the immune system. We describe how randomness and diversity play key roles in the immune response and how their effects are captured by this hierarchical spin glass model. We discuss analytical aspects of the model as well as practical applications to design of the annual influenza vaccine. We discuss the subtle role that the glassy evolutionary dynamics plays in suppressing autoimmune disease.

  11. Ultrasonic treatment of glassy carbon for nanoparticle preparation.

    PubMed

    Levêque, Jean-Marc; Duclaux, Laurent; Rouzaud, Jean-Noël; Reinert, Laurence; Komatsu, Naoki; Desforges, Alexandre; Afreen, Sadia; Sivakumar, Manickam; Kimura, Takahide

    2017-03-01

    Glassy carbon particles (millimetric or micrometric sizes) dispersions in water were treated by ultrasound at 20kHz, either in a cylindrical reactor, or in a "Rosette" type reactor, for various time lengths ranging from 3h to 10h. Further separations sedimentation allowed obtaining few nanoparticles of glassy carbon in the supernatant (diameter <200nm). Thought the yield of nanoparticle increased together with the sonication time at high power, it tended to be nil after sonication in the cylindrical reactor. The sonication of glassy carbon micrometric particles in water using "Rosette" instead of cylindrical reactor, allowed preparing at highest yield (1-2wt%), stable suspensions of carbon nanoparticles, easily separated from the sedimented particles. Both sediment and supernatant separated by decantation of the sonicated dispersions were characterized by laser granulometry, scanning electron microscopy, X-ray microanalysis, and Raman and infrared spectroscopies. Their multiscale organization was investigated by transmission electron microscopy as a function of the sonication time. For sonication longer than 10h, these nanoparticles from supernatant (diameter <50nm) are aggregated. Their structures are more disordered than the sediment particles showing typical nanometer-sized aromatic layer arrangement of glassy carbon, with closed mesopores (diameter ∼3nm). Sonication time longer than 5h has induced not only a strong amorphization (subnanometric and disoriented aromatic layer) but also a loss of the mesoporous network nanostructure. These multi-scale organizational changes took place because of both cavitation and shocks between particles, mainly at the particle surface. The sonication in water has induced also chemical effects, leading to an increase in the oxygen content of the irradiated material together with the sonication time.

  12. High Strain Rate Tensile and Compressive Effects in Glassy Polymers

    DTIC Science & Technology

    2013-02-08

    polymers under high strain rates has been determined in compression. Some research programs have studied the combined effects of temperature and strain rate...glassy polymers to high strain rate loading in compression. More recently, research programs that study the combined effects of temperature and strain...Force Materiel Command  United States Air Force  Eglin Air Force Base AFRL-RW-EG-TP-2013-006 High Strain Rate

  13. Magnetoresistance, electrical conductivity, and Hall effect of glassy carbon

    SciTech Connect

    Baker, D.F.

    1983-02-01

    These properties of glassy carbon heat treated for three hours between 1200 and 2700/sup 0/C were measured from 3 to 300/sup 0/K in magnetic fields up to 5 tesla. The magnetoresistance was generally negative and saturated with reciprocal temperature, but still increased as a function of magnetic field. The maximum negative magnetoresistance measured was 2.2% for 2700/sup 0/C material. Several models based on the negative magnetoresistance being proportional to the square of the magnetic moment were attempted; the best fit was obtained for the simplest model combining Curie and Pauli paramagnetism for heat treatments above 1600/sup 0/C. Positive magnetoresistance was found only in less than 1600/sup 0/C treated glassy carbon. The electrical conductivity, of the order of 200 (ohm-cm)/sup -1/ at room temperature, can be empirically written as sigma = A + Bexp(-CT/sup -1/4) - DT/sup -1/2. The Hall coefficient was independent of magnetic field, insensitive to temperature, but was a strong function of heat treatment temperature, crossing over from negative to positive at about 1700/sup 0/C and ranging from -0.048 to 0.126 cm/sup 3//coul. The idea of one-dimensional filaments in glassy carbon suggested by the electrical conductivity is compatible with the present consensus view of the microstructure.

  14. Yield Stress Enhancement in Glassy-Polyethylene Block Copolymers

    NASA Astrophysics Data System (ADS)

    Mulhearn, William; Register, Richard

    Polyethylene (PE) has the highest annual production volume of all synthetic polymers worldwide, and is valuable across many applications due to its low cost, toughness, processability, and chemical resistance. However, PE is not well suited to certain applications due to its modest yield stress and Young's modulus (approximately 30 MPa and 1 GPa, respectively for linear, high-density PE). Irreversible deformation of PE results from dislocation of crystal stems and eventual crystal fragmentation under applied stress. The liquid-like amorphous fraction provides no useful mechanical support to the crystal fold surface in a PE homopolymer, so the only method to enhance the force required for crystal slip, and hence the yield stress, is crystal thickening via thermal treatment. An alternative route towards modifying the mechanical properties of PE involves copolymerization of a minority high-glass transition temperature block into a majority-PE block copolymer. In this work, we investigate a system of glassy/linear-PE block copolymers prepared via ring-opening metathesis polymerization of cyclopentene and substituted norbornene monomers followed by hydrogenation. We demonstrate that a large change in mechanical properties can be achieved with the addition of a short glassy block (e.g. a doubling of the yield stress and Young's modulus versus PE homopolymer with the addition of 25 percent glassy block). Furthermore, owing to the low interaction energy between PE and the substituted polynorbornene blocks employed, these high-yield PE block copolymers can exhibit single-phase melts for ease of processability.

  15. Exploration for facultative endosymbionts of glassy-wingedsharpshooter (Hemiptera: Cicadellidae)

    SciTech Connect

    Montllor-Curley, C.; Brodie, E.L.; Lechner, M.G.; Purcell, A.H.

    2006-07-01

    Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae),glassy-winged sharpshooter, was collected in California and severalstates in the southeastern United States in 2002 and 2003 and analyzedfor endosymbiotic bacteria. Hemolymph, eggs, and bacteriomes wereexamined for the presence of bacteria by polymerase chain reaction. Asubset of hemolymph and egg samples had their 16S rRNA gene ampliconscloned and sequenced or analyzed by restriction digest patterns ofsamples compared with known bacterial DNA. Baumannia cicadellinicola, oneof the primary symbionts of glassy-winged sharpshooter, was found in themajority of hemolymph samples, although it has been considered until nowto reside primarily inside the specialized host bacteriocytes. Wolbachiasp., a common secondary symbiont in many insect taxa investigated todate, was the second most frequently detected bacterium in hemolymphsamples. In addition, we detected bacteria that were most closely related(by 16S rRNA gene sequence) to Pseudomonas, Stenotrophomonas, andAcinetobacter in hemolymph samples of one and/or two glassy-wingedsharpshooters, but their origin is uncertain.

  16. Glassy materials for lithium batteries: electrochemical properties and devices performances

    NASA Astrophysics Data System (ADS)

    Duclot, Michel; Souquet, Jean-Louis

    Amorphous or glassy materials may be used as electrolyte or electrode materials for lithium primary or secondary batteries. A first generation proceeded from classical coin cells in which the organic electrolyte was replaced by a high lithium conductive glassy electrolyte. The solid components were assembled under isostatic pressure. The main advantages of such cells are a good storage stability and ability to operate until 200°C. Nevertheless, the high resistivity of the glassy electrolyte below room temperature and a limited depth for charge and discharge cycles makes these cells not competitive compared to conventional lithium-ion batteries. More promising, are the thin films solid state microbatteries realised by successive depositions of electrodes and electrolyte. The low resistance of the electrolyte amorphous layer allows cycling at temperatures as low as -10°C. The total thickness of thin film batteries, including packaging is less than 100 μm. A capacity of about 100 μAh cm -2 with over 10 4 charge-discharge cycles at 90% in depth of discharge is well suited for energy independent smart cards or intelligent labels, which represent for these devices a large and unrivalled market.

  17. Quantifying glassy and crystalline basalt partitioning in the oceanic crust

    NASA Astrophysics Data System (ADS)

    Moore, Rachael; Ménez, Bénédicte

    2016-04-01

    The upper layers of the oceanic crust are predominately basaltic rock, some of which hosts microbial life. Current studies of microbial life within the ocean crust mainly focus on the sedimentary rock fraction, or those organisms found within glassy basalts while the potential habitability of crystalline basalts are poorly explored. Recently, there has been recognition that microbial life develops within fractures and grain boundaries of crystalline basalts, therefore estimations of total biomass within the oceanic crust may be largely under evaluated. A deeper understanding of the bulk composition and fractionation of rocks within the oceanic crust is required before more accurate estimations of biomass can be made. To augment our understanding of glassy and crystalline basalts within the oceanic crust we created two end-member models describing basalt fractionation: a pillow basalt with massive, or sheet, flows crust and a pillow basalt with sheeted dike crust. Using known measurements of massive flow thickness, dike thickness, chilled margin thickness, pillow lava size, and pillow lava glass thickness, we have calculated the percentage of glassy versus crystalline basalts within the oceanic crust for each model. These models aid our understanding of textural fractionation within the oceanic crust, and can be applied with bioenergetics models to better constrain deep biomass estimates.

  18. Fast algorithms for glassy materials: methods and explorations

    NASA Astrophysics Data System (ADS)

    Middleton, A. Alan

    2014-03-01

    Glassy materials with frozen disorder, including random magnets such as spin glasses and interfaces in disordered materials, exhibit striking non-equilibrium behavior such as the ability to store a history of external parameters (memory). Precisely due to their glassy nature, direct simulation of models of these materials is very slow. In some fortunate cases, however, algorithms exist that exactly compute thermodynamic quantities. Such cases include spin glasses in two dimensions and interfaces and random field magnets in arbitrary dimensions at zero temperature. Using algorithms built using ideas developed by computer scientists and mathematicians, one can even directly sample equilibrium configurations in very large systems, as if one picked the configurations out of a ``hat'' of all configurations weighted by their Boltzmann factors. This talk will provide some of the background for these methods and discuss the connections between physics and computer science, as used by a number of groups. Recent applications of these methods to investigating phase transitions in glassy materials and to answering qualitative questions about the free energy landscape and memory effects will be discussed. This work was supported in part by NSF grant DMR-1006731. Creighton Thomas and David Huse also contributed to much of the work to be presented.

  19. Thermodynamics of water sorption in high performance glassy thermoplastic polymers

    PubMed Central

    Scherillo, Giuseppe; Petretta, Mauro; Galizia, Michele; La Manna, Pietro; Musto, Pellegrino; Mensitieri, Giuseppe

    2014-01-01

    Sorption thermodynamics of water in two glassy polymers, polyetherimide (PEI) and polyetheretherketone (PEEK), is investigated by coupling gravimetry and on line FTIR spectroscopy in order to gather information on the total amount of sorbed water as well as on the different species of water molecules absorbed within the polymers, addressing the issue of cross- and self-interactions occurring in the polymer/water systems. Water sorption isotherms have been determined at temperatures ranging from 30 to 70°C while FTIR spectroscopy has been performed only at 30°C. The experimental analysis provided information on the groups present on the polymer backbones involved in hydrogen bonding interactions with absorbed water molecules. Moreover, it also supplied qualitative indications about the different “populations” of water molecules present within the PEEK and a quantitative assessment of these “populations” in the case of PEI. The results of the experimental analysis have been interpreted using an equation of state theory based on a compressible lattice fluid model for the Gibbs energy of the polymer-water mixture, developed by extending to the case of out of equilibrium glassy polymers a previous model intended for equilibrium rubbery polymers. The model accounts for the non-equilibrium nature of glassy polymers as well as for mean field and for hydrogen bonding interactions, providing a satisfactory quantitative interpretation of the experimental data. PMID:24860802

  20. Thermodynamics of Water Sorption in High Performance Glassy Thermoplastic Polymers

    NASA Astrophysics Data System (ADS)

    Mensitieri, Giuseppe; Scherillo, Giuseppe; Petretta, Mauro; Galizia, Michele; La Manna, Pietro; Musto, Pellegrino

    2014-05-01

    Sorption thermodynamics of water in two glassy polymers, polyetherimide (PEI) and polyetheretherketone (PEEK), is investigated by coupling gravimetry and on line FTIR spectroscopy in order to gather information on the total amount of sorbed water as well as on the different species of water molecules absorbed within the polymers, addressing the issue of cross- and self-interactions occurring in the polymer/water systems. Water sorption isotherms have been determined at temperatures ranging fro 30 to 70°C while FTIR spectroscopy has been performed only at 30°C. The experimental analysis provided information on the groups present on the polymer backbones involved in hydrogen bonding interactions with absorbed water molecules. Moreover, it also supplied qualitative indications about the different’populations’ of water molecules present within the PEEK and a quantitative assessment of these ‘populations’ in the case of PEI.The results of the experimental analysis have been interpreted using an equation of state theory based on a compressible lattice fluid model for the Gibbs energy of the polymer-water mixture, developed by extending to the case of out of equilibrium glassy polymers a previous model intended for equilibrium rubbery polymers. The model accounts for the non equilibrium nature of glassy poymers as well as for mean field and for hydrogen bonding interactions, providing a satisfactory quantitative interpretation of the experimental data.

  1. Rotationally invariant ensembles of integrable matrices.

    PubMed

    Yuzbashyan, Emil A; Shastry, B Sriram; Scaramazza, Jasen A

    2016-05-01

    We construct ensembles of random integrable matrices with any prescribed number of nontrivial integrals and formulate integrable matrix theory (IMT)-a counterpart of random matrix theory (RMT) for quantum integrable models. A type-M family of integrable matrices consists of exactly N-M independent commuting N×N matrices linear in a real parameter. We first develop a rotationally invariant parametrization of such matrices, previously only constructed in a preferred basis. For example, an arbitrary choice of a vector and two commuting Hermitian matrices defines a type-1 family and vice versa. Higher types similarly involve a random vector and two matrices. The basis-independent formulation allows us to derive the joint probability density for integrable matrices, similar to the construction of Gaussian ensembles in the RMT.

  2. Genetic code, hamming distance and stochastic matrices.

    PubMed

    He, Matthew X; Petoukhov, Sergei V; Ricci, Paolo E

    2004-09-01

    In this paper we use the Gray code representation of the genetic code C=00, U=10, G=11 and A=01 (C pairs with G, A pairs with U) to generate a sequence of genetic code-based matrices. In connection with these code-based matrices, we use the Hamming distance to generate a sequence of numerical matrices. We then further investigate the properties of the numerical matrices and show that they are doubly stochastic and symmetric. We determine the frequency distributions of the Hamming distances, building blocks of the matrices, decomposition and iterations of matrices. We present an explicit decomposition formula for the genetic code-based matrix in terms of permutation matrices, which provides a hypercube representation of the genetic code. It is also observed that there is a Hamiltonian cycle in a genetic code-based hypercube.

  3. Rotationally invariant ensembles of integrable matrices

    NASA Astrophysics Data System (ADS)

    Yuzbashyan, Emil A.; Shastry, B. Sriram; Scaramazza, Jasen A.

    2016-05-01

    We construct ensembles of random integrable matrices with any prescribed number of nontrivial integrals and formulate integrable matrix theory (IMT)—a counterpart of random matrix theory (RMT) for quantum integrable models. A type-M family of integrable matrices consists of exactly N -M independent commuting N ×N matrices linear in a real parameter. We first develop a rotationally invariant parametrization of such matrices, previously only constructed in a preferred basis. For example, an arbitrary choice of a vector and two commuting Hermitian matrices defines a type-1 family and vice versa. Higher types similarly involve a random vector and two matrices. The basis-independent formulation allows us to derive the joint probability density for integrable matrices, similar to the construction of Gaussian ensembles in the RMT.

  4. Investigation of glassy state molecular motions in thermoset polymers

    NASA Astrophysics Data System (ADS)

    Tu, Jianwei

    This dissertation presents the investigation of the glassy state molecular motions in isomeric thermoset epoxies by means of solid-state deuterium (2H) NMR spectroscopy technique. The network structure of crosslinked epoxies was altered through monomer isomerism; specifically, diglycidyl ether of bisphenol A (DGEBA) was cured with isomeric amine curatives, i.e., the meta-substituted diaminodiphenylsulfone (33DDS) and para-substituted diaminodiphenylsulfone (44DDS). The use of structural isomerism provided a path way for altering macroscopic material properties while maintaining identical chemical composition within the crosslinked networks. The effects of structural isomerism on the glassy state molecular motions were studied using solid-state 2H NMR spectroscopy, which offers unrivaled power to monitor site-specific molecular motions. Three distinctive molecular groups on each isomeric network, i.e., the phenylene rings in the bisphenol A structure (BPA), the phenylene rings in the diaminodiphenylsulfone structure (DDS), and the hydroxypropoyl ether group (HPE) have been selectively deuterated for a comprehensive study of the structure-dynamics- property relationships in thermoset epoxies. Quadrupolar echo experiments and line shape simulations were employed as the main research approach to gain both qualitative and quantitative motional information of the epoxy networks in the glassy state. Quantitative information on the geometry and rate of the molecular motions allows the elucidation of the relationship between molecular motions and macro physical properties and the role of these motions in the mechanical relaxation. Specifically, it is revealed that both the BPA and HPE moieties in the isomeric networks have almost identical behaviors in the deep glassy state, which indicates that the molecular motions in the glassy state are localized, and the correlation length of the motions does not exceed the length of the DGEBA repeat unit. BPA ring motions contribute

  5. Effet Hall et Magnetisme des Alliages Amorphes Nickel-Zirconium Fabriques Par Pulverisation

    NASA Astrophysics Data System (ADS)

    Morel, Robert

    Cette these se situe dans le cadre d'une etude des proprietes electroniques et structurales des alliages metalliques amorphes, en cours depuis quelques annees a l'Universite de Montreal. Ce programme nous a entre autres amene a caracteriser la magnetoresistivite et l'effet Hall d'alliages FeZr, CoZr et NiZr, ce qui a permis de mettre en evidence deux caracteristiques de l'effet Hall: Dans les alliages amorphes ferromagnetiques, la resistivite elevee engendre un effet Hall extraordinaire beaucoup plus important que celui enregistre dans les metaux cristallins. La polarisation des spins entrai ne une asymetrie de la diffusion qui, tant dans les phases cristalline et amorphe, est tenue responsable de cette contribution. L'autre particularite du comportement de Hall de ces systemes est le renversement de signe du coefficient de Hall ordinaire, qui passe du negatif au positif dans les echantillons plus riches en zirconium. Dans les metaux cristallins, un modele d'electrons libres predit un signe negatif a moins que la conduction ne soit dominee par les trous. Or, dans un milieu desordonne les memes concepts sont difficilement applicables et de nouvelles theories ont du etre elaborees pour expliquer ce phenomene. Jusqu'a maintenant, l'etude des alliages amorphes nickel-zirconium s'est faite surtout a partir d'echantillons fabriques par trempe sur roue. Malheureusement cette technique ne permet pas la fabrication d'alliages contenant plus de 70% de nickel, a l'exception du seul compose Ni _{90}Zr_{10 }. Pour pallier a cette lacune et etendre nos connaissance a l'ensemble de la gamme de compositions, nous avons fabrique par pulverisation cathodique des echantillons NiZr amorphes--et quelques alliages cristallins tres riches en nickel--couvrant une bonne partie de la gamme interdite par la technique de trempe sur roue. Dans un premier temps, par comparaison avec les resultats connus nous avons mis en evidence les similitudes et les differences entre les alliages obtenus par

  6. The equipment for the preparation of micro and nanoscale metallic glassy fibers.

    PubMed

    Ding, D W; Yi, J; Liu, G L; Sun, Y T; Zhao, D Q; Pan, M X; Bai, H Y; Wang, W H

    2014-10-01

    A supercooled liquid extraction method and apparatus for micro and nanoscale metallic glassy fiber preparation was developed. Using the fiber fabrication equipment, micro to nanoscale metallic glassy fibers with diameter ranging from 70 nm to 300 μm can be obtained by wire drawing in the supercooled liquid region of metallic glasses via superplastic deformation. The obtained metallic glassy fibers possess precisely designed and controlled sizes, high structural uniformity and high degree of surface smoothness.

  7. Canonical form of Hamiltonian matrices

    NASA Astrophysics Data System (ADS)

    Zuker, A. P.; Waha Ndeuna, L.; Nowacki, F.; Caurier, E.

    2001-08-01

    On the basis of shell model simulations, it is conjectured that the Lanczos construction at fixed quantum numbers defines-within fluctuations and behavior very near the origin-smooth canonical matrices whose forms depend on the rank of the Hamiltonian, dimensionality of the vector space, and second and third moments. A framework emerges that amounts to a general Anderson model capable of dealing with ground state properties and strength functions. The smooth forms imply binomial level densities. A simplified approach to canonical thermodynamics is proposed.

  8. Effets des electrons secondaires sur l'ADN

    NASA Astrophysics Data System (ADS)

    Boudaiffa, Badia

    Les interactions des electrons de basse energie (EBE) representent un element important en sciences des radiations, particulierement, les sequences se produisant immediatement apres l'interaction de la radiation ionisante avec le milieu biologique. Il est bien connu que lorsque ces radiations deposent leur energie dans la cellule, elles produisent un grand nombre d'electrons secondaires (4 x 104/MeV), qui sont crees le long de la trace avec des energies cinetiques initiales bien inferieures a 20 eV. Cependant, il n'y a jamais eu de mesures directes demontrant l'interaction de ces electrons de tres basse energie avec l'ADN, du principalement aux difficultes experimentales imposees par la complexite du milieu biologique. Dans notre laboratoire, les dernieres annees ont ete consacrees a l'etude des phenomenes fondamentaux induits par impact des EBE sur differentes molecules simples (e.g., N2, CO, O2, H2O, NO, C2H 4, C6H6, C2H12) et quelques molecules complexes dans leur phase solide. D'autres travaux effectues recemment sur des bases de l'ADN et des oligonucleotides ont montre que les EBE produisent des bris moleculaires sur les biomolecules. Ces travaux nous ont permis d'elaborer des techniques pour mettre en evidence et comprendre les interactions fondamentales des EBE avec des molecules d'interet biologique, afin d'atteindre notre objectif majeur d'etudier l'effet direct de ces particules sur la molecule d'ADN. Les techniques de sciences des surfaces developpees et utilisees dans les etudes precitees peuvent etre etendues et combinees avec des methodes classiques de biologie pour etudier les dommages de l'ADN induits par l'impact des EBE. Nos experiences ont montre l'efficacite des electrons de 3--20 eV a induire des coupures simple et double brins dans l'ADN. Pour des energies inferieures a 15 eV, ces coupures sont induites par la localisation temporaire d'un electron sur une unite moleculaire de l'ADN, ce qui engendre la formation d'un ion negatif transitoire

  9. Crystallization of the glassy grain boundary phase in silicon nitride ceramics

    NASA Technical Reports Server (NTRS)

    Drummond, Charles H., III

    1991-01-01

    The role was studied of the intergranular glassy phase in silicon nitride as-processed with yttria as a sintering aid. The microstructure, crystallization, and viscosity of the glassy phase were areas studied. Crystallization of the intergranular glassy phase to more refractory crystalline phases should improve the high temperature mechanical properties of the silicon nitride. The addition of a nucleating agent will increase the rate of crystallization. The measurement of the viscosity of the glassy phase will permit the estimation of the high temperature deformation of the silicon nitride.

  10. Effets de la formation sur la violence conjugale

    PubMed Central

    Zaher, Eman; Keogh, Kelly; Ratnapalan, Savithiri

    2014-01-01

    Résumé Objectif Décrire et évaluer l’efficacité de la formation concernant la violence conjugale pour améliorer les connaissances et permettre la reconnaissance et la prise en charge par les médecins des femmes victimes de violence. Sources des données On a fait une recension dans la base de données des révisions systématiques de Cochrane, MEDLINE, PubMed, PsycINFO, ERIC et EMBASE pour trouver des articles publiés entre le 1e janvier 2000 et le 1e novembre 2012. Des recherches manuelles ont complété cette recension pour cerner des articles pertinents à l’aide d’une stratégie de recherche combinant des textes, mots et expressions MeSH. Sélection des études On a choisi des études randomisées contrôlées qui portaient sur des interventions éducatives à l’intention des médecins et fournissaient des données sur les effets des interventions. Synthèse On a inclus 9 études randomisées contrôlées qui décrivaient différentes approches pédagogiques et diverses mesures des résultats. Trois études examinaient les effets d’interventions éducatives pour des médecins en formation postdoctorale et ont constaté une augmentation des connaissances, mais il n’y a eu aucun changement dans le comportement en ce qui a trait à l’identification des victimes de violence conjugale. Six études portaient sur des interventions éducatives pour des médecins en pratique active. Trois d’entre elles utilisaient une approche à multiples facettes pour les médecins, qui combinait une formation ainsi que des interventions de soutien de la part du système pour changer les comportements des médecins, comme une sensibilisation générale accrue à la violence conjugale au moyen de brochures et d’affiches, des aide-mémoire pour rappeler aux médecins comment identifier les victimes, des moyens pour faciliter l’accès des médecins à des services de soutien pour les victimes, la réalisation d’audits et la fourniture de rétroaction. Les

  11. Some Recent Developments in Structure and Glassy Behavior of Proteins

    NASA Astrophysics Data System (ADS)

    Hu, Chin-Kun

    2012-02-01

    We have used ARVO developed by us to find that the ratio of volume and surface area of proteins in Protein Data Bank distributed in a very narrow region [1]. Such result is useful for the determination of protein 3D structures. It has been widely known that a spin glass model can be used to understand the slow relaxation behavior of a glass at low temperatures [2]. We have used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that polymer chains with neighboring monomers connected by rigid bonds can relax very slowly and show glassy behavior [3]. We have also found that native collagen fibrils show glassy behavior at room temperatures [4]. The results of [3] and [4] about the glassy behavior of polymers or proteins are useful for understanding the mechanism for a biological system to maintain in a non-equilibrium state, including the ancient seed [5], which can maintain in a non-equilibrium state for a very long time. (1) M.-C. Wu, M. S. Li, W.-J. Ma, M. Kouza, and C.-K. Hu, EPL, in press (2011); (2) C. Dasgupta, S.-K. Ma, and C.-K. Hu. Phys. Rev. B 20, 3837-3849 (1979); (3) W.-J. Ma and C.-K. Hu, J. Phys. Soc. Japan 79, 024005, 024006, 054001, and 104002 (2010), C.-K. Hu and W.-J. Ma, Prog. Theor. Phys. Supp. 184, 369 (2010); S. G. Gevorkian, A. E. Allahverdyan, D. S. Gevorgyan and C.-K. Hu, EPL 95, 23001 (2011); S. Sallon, et al. Science 320, 1464 (2008).

  12. Arabidopsis GLASSY HAIR genes promote trichome papillae development

    PubMed Central

    Kirik, Viktor

    2013-01-01

    Specialized plant cells form cell walls with distinct composition and properties pertinent to their function. Leaf trichomes in Arabidopsis form thick cell walls that support the upright growth of these large cells and, curiously, have strong light-reflective properties. To understand the process of trichome cell-wall maturation and the molecular origins of this optical property, mutants affected in trichome light reflection were isolated and characterized. It was found that GLASSY HAIR (GLH) genes are required for the formation of surface papillae structures at late stages of trichome development. Trichomes in these mutants appeared transparent due to unobstructed light transmission. Genetic analysis of the isolated mutants revealed seven different gene loci. Two—TRICHOME BIREFRINGENCE (TBR) and NOK (Noeck)—have been reported previously to have the glassy trichome mutant phenotype. The other five glh mutants were analysed for cell-wall-related phenotypes. A significant reduction was found in cellulose content in glh2 and glh4 mutant trichomes. In addition to the glassy trichome phenotype, the glh6 mutants showed defects in leaf cuticular wax, and glh6 was found to represent a new allele of the eceriferum 10 (cer10) mutation. Trichomes of the glh1 and glh3 mutants did not show any other phenotypes beside reduced papillae formation. These data suggest that the GLH1 and GLH3 genes may have specific functions in trichome papillae formation, whereas GLH2, GLH4, and GLH6 genes are also involved in deposition of other cell-wall components. PMID:24014871

  13. Evidence for a glassy state in strongly driven carbon

    NASA Astrophysics Data System (ADS)

    Brown, C. R. D.; Gericke, D. O.; Cammarata, M.; Cho, B. I.; Döppner, T.; Engelhorn, K.; Förster, E.; Fortmann, C.; Fritz, D.; Galtier, E.; Glenzer, S. H.; Harmand, M.; Heimann, P.; Kugland, N. L.; Lamb, D. Q.; Lee, H. J.; Lee, R. W.; Lemke, H.; Makita, M.; Moinard, A.; Murphy, C. D.; Nagler, B.; Neumayer, P.; Plagemann, K.-U.; Redmer, R.; Riley, D.; Rosmej, F. B.; Sperling, P.; Toleikis, S.; Vinko, S. M.; Vorberger, J.; White, S.; White, T. G.; Wünsch, K.; Zastrau, U.; Zhu, D.; Tschentscher, T.; Gregori, G.

    2014-06-01

    Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen close to their original positions in the fluid.

  14. Evidence for a glassy state in strongly driven carbon.

    PubMed

    Brown, C R D; Gericke, D O; Cammarata, M; Cho, B I; Döppner, T; Engelhorn, K; Förster, E; Fortmann, C; Fritz, D; Galtier, E; Glenzer, S H; Harmand, M; Heimann, P; Kugland, N L; Lamb, D Q; Lee, H J; Lee, R W; Lemke, H; Makita, M; Moinard, A; Murphy, C D; Nagler, B; Neumayer, P; Plagemann, K-U; Redmer, R; Riley, D; Rosmej, F B; Sperling, P; Toleikis, S; Vinko, S M; Vorberger, J; White, S; White, T G; Wünsch, K; Zastrau, U; Zhu, D; Tschentscher, T; Gregori, G

    2014-06-09

    Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen close to their original positions in the fluid.

  15. Nonequilibrium thermodynamics of the soft glassy rheology model

    NASA Astrophysics Data System (ADS)

    Fuereder, Ingo; Ilg, Patrick

    2013-10-01

    The soft glassy rheology (SGR) model is a mesoscopic framework which proved to be very successful in describing flow and deformation of various amorphous materials phenomenologically (e.g., pastes, slurries, foams, etc.). In this paper, we cast SGR in a general, model-independent framework for nonequilibrium thermodynamics called general equation for the nonequilibrium reversible-irreversible coupling. This leads to a formulation of SGR which clarifies how it can properly be coupled to hydrodynamic fields, resulting in a thermodynamically consistent, local, continuum version of SGR. Additionally, we find that compliance with thermodynamics imposes the existence of a modification to the stress tensor as predicted by SGR.

  16. Positronics of radiation-induced effects in chalcogenide glassy semiconductors

    SciTech Connect

    Shpotyuk, O.; Kozyukhin, S. A.; Shpotyuk, M.; Ingram, A.; Szatanik, R.

    2015-03-15

    Using As{sub 2}S{sub 3} and AsS{sub 2} glasses as an example, the principal possibility of using positron annihilation spectroscopy methods for studying the evolution of the free volume of hollow nanoobjects in chalcogenide glassy semiconductors exposed to radiation is shown. The results obtained by measurements of the positron annihilation lifetime and Doppler broadening of the annihilation line in reverse chronological order are in full agreement with the optical spectroscopy data in the region of the fundamental absorption edge, being adequately described within coordination defect-formation and physical-aging models.

  17. Microscale rheology of a soft glassy material close to yielding.

    PubMed

    Jop, Pierre; Mansard, Vincent; Chaudhuri, Pinaki; Bocquet, Lydéric; Colin, Annie

    2012-04-06

    Using confocal microscopy, we study the flow of a model soft glassy material: a concentrated emulsion. We demonstrate the micro-macro link between in situ measured movements of droplets during the flow and the macroscopic rheological response of a concentrated emulsion, in the form of scaling relationships connecting the rheological "fluidity" with local standard deviation of the strain-rate tensor. Furthermore, we measure correlations between these local fluctuations, thereby extracting a correlation length which increases while approaching the yielding transition, in accordance with recent theoretical predictions.

  18. Evidence for a glassy state in strongly driven carbon

    SciTech Connect

    Brown, C. R. D.; Gericke, D. O.; Cammarata, M.; Cho, B. I.; Gwangju Inst. of Science and Technology, Gwangju; Inst. for Basic Science, Gwangju ; Döppner, T.; Engelhorn, K.; Förster, E.; Fortmann, C.; Fritz, D.; Galtier, E.; Glenzer, S. H.; Harmand, M.; Heimann, P.; Kugland, N. L.; Lamb, D. Q.; Lee, H. J.; Lee, R. W.; Lemke, H.; Makita, M.; Moinard, A.; Murphy, C. D.; Nagler, B.; Neumayer, P.; Plagemann, K. -U.; Redmer, R.; Riley, D.; Rosmej, F. B.; Sperling, P.; Toleikis, S.; Vinko, S. M.; Vorberger, J.; White, S.; White, T. G.; Wünsch, K.; Zastrau, U.; Zhu, D.; Tschentscher, T.; Gregori, G.

    2014-06-09

    Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen close to their original positions in the fluid.

  19. Electrical studies on silver based fast ion conducting glassy materials

    SciTech Connect

    Rao, B. Appa Kumar, E. Ramesh Kumari, K. Rajani Bhikshamaiah, G.

    2014-04-24

    Among all the available fast ion conductors, silver based glasses exhibit high conductivity. Further, glasses containing silver iodide enhances fast ion conducting behavior at room temperature. Glasses of various compositions of silver based fast ion conductors in the AgI−Ag{sub 2}O−[(1−x)B{sub 2}O{sub 3}−xTeO{sub 2}] (x=0 to1 mol% in steps of 0.2) glassy system have been prepared by melt quenching method. The glassy nature of the compounds has been confirmed by X-ray diffraction. The electrical conductivity (AC) measurements have been carried out in the frequency range of 1 KHz–3MHz by Impedance Analyzer in the temperature range 303–423K. The DC conductivity measurements were also carried out in the temperature range 300–523K. From both AC and DC conductivity studies, it is found that the conductivity increases and activation energy decreases with increasing the concentration of TeO{sub 2} as well as with temperature. The conductivity of the present glass system is found to be of the order of 10{sup −2} S/cm at room temperature. The ionic transport number of these glasses is found to be 0.999 indicating that these glasses can be used as electrolyte in batteries.

  20. Effects of glassy-winged sharpshooter feeding, size, and lipid content on egg maturation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The glassy-winged sharpshooter (Homalodisca vitripennis) is synovigenic and must feed during the adult stage to produce eggs. While glassy-winged sharpshooter egg production is related to adult feeding, rates of egg production are variable. In this study, effects of lipid allocation to eggs and fema...

  1. Evaluation of grapevine as a host for the glassy-winged sharpshooter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapevine was evaluated as a feeding and oviposition host for the glassy-winged sharpshooter. Two sets of experiments were conducted. The first set compared performance and preference of glassy-winged sharpshooter females for grapevine (cv. Chardonnay) versus cowpea (Vigna unguiculata cultivar black...

  2. Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery

    DOEpatents

    Neudecker, Bernd J.; Bates, John B.

    2001-01-01

    Disclosed are silicon-tin oxynitride glassy compositions which are especially useful in the construction of anode material for thin-film electrochemical devices including rechargeable lithium-ion batteries, electrochromic mirrors, electrochromic windows, and actuators. Additional applications of silicon-tin oxynitride glassy compositions include optical fibers and optical waveguides.

  3. Carbon in the matrices of ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Makjanic, J.; Vis, R. D.; Hovenier, J. W.; Heymann, D.

    1993-03-01

    Carbon in the petrologic matrices of a number of ordinary chondrites of groups H, L, and LL, and of types 3 through 6 was studied with a nuclear microprobe and a Raman microprobe. The majority of the matrices had carbon contents in the narrow range between 0.03 and 0.2 wt pct. The carbon content decreased only slightly with increasing petrologic type. Carbon-rich coats around troilite and/or metal phases occurred in five meteorites. Poorly ordered carbon was found in the matrices. The carbon in the meteorites of higher petrologic types was slightly better ordered than in the meteorites of lower types. The narrow range of carbon contents and the similarity of the structural form of carbon in the matrices of the measured ordinary chondrites, which represent all groups and types, imply that their matrices may contain a common component, which might be of interstellar origin.

  4. Rotationally invariant ensembles of integrable matrices

    NASA Astrophysics Data System (ADS)

    Scaramazza, Jasen; Yuzbashyan, Emil; Shastry, Sriram

    We construct ensembles of random integrable matrices with any prescribed number of nontrivial integrals and formulate integrable matrix theory (IMT) - a counterpart of random matrix theory (RMT) for quantum integrable models. A type- M family of integrable matrices consists of exactly N - M independent commuting N × N matrices linear in a real parameter. We first develop a rotationally invariant parameterization of such matrices, previously only constructed in a preferred basis. For example, an arbitrary choice of a vector and two commuting Hermitian matrices defines a type-1 family and vice-versa. Higher types similarly involve a random vector and two matrices. The basis-independent formulation allows us to derive the joint probability density for integrable matrices, in a manner similar to the construction of Gaussian ensembles in the RMT. This work was supported in part by the David and Lucille Packard Foundation. The work at UCSC was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under Award # FG02-06ER46319.

  5. Special symmetric quark mass matrices

    NASA Astrophysics Data System (ADS)

    Silva-Marcos, J. I.

    1998-12-01

    We give a procedure to construct a special class of symmetric quark mass matrices near the democratic limit of equal Yukawa couplings for each sector. It is shown that within appropriate weak-bases, the requirements of symmetry and arg[det(M)]=0 are very strong conditions, that necessarily lead to a Cabibbo angle given by Vus=sqrt(md/ms), and to Vcb~ms/mb, in first order. In addition, we prove that the recently classified ansätze, which also reproduce these mixing matrix relations, and which were based on the hypothesis of the Universal Strength for Yukawa couplings, where all Yukawa couplings have equal moduli while the flavour dependence is only in their phases, are, in fact, particular cases of the generalized symmetric quark mass matrix ansätze we construct here. In an excellent numerical example, the experimental values on all quark mixings and masses are accommodated, and the CP violation phase parameter is shown to be crucially dependent on the values of mu and Vus.

  6. Community Detection for Correlation Matrices

    NASA Astrophysics Data System (ADS)

    MacMahon, Mel; Garlaschelli, Diego

    2015-04-01

    A challenging problem in the study of complex systems is that of resolving, without prior information, the emergent, mesoscopic organization determined by groups of units whose dynamical activity is more strongly correlated internally than with the rest of the system. The existing techniques to filter correlations are not explicitly oriented towards identifying such modules and can suffer from an unavoidable information loss. A promising alternative is that of employing community detection techniques developed in network theory. Unfortunately, this approach has focused predominantly on replacing network data with correlation matrices, a procedure that we show to be intrinsically biased because of its inconsistency with the null hypotheses underlying the existing algorithms. Here, we introduce, via a consistent redefinition of null models based on random matrix theory, the appropriate correlation-based counterparts of the most popular community detection techniques. Our methods can filter out both unit-specific noise and system-wide dependencies, and the resulting communities are internally correlated and mutually anticorrelated. We also implement multiresolution and multifrequency approaches revealing hierarchically nested subcommunities with "hard" cores and "soft" peripheries. We apply our techniques to several financial time series and identify mesoscopic groups of stocks which are irreducible to a standard, sectorial taxonomy; detect "soft stocks" that alternate between communities; and discuss implications for portfolio optimization and risk management.

  7. Evidence for a glassy state in strongly driven carbon

    DOE PAGES

    Brown, C. R. D.; Gericke, D. O.; Cammarata, M.; ...

    2014-06-09

    Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen closemore » to their original positions in the fluid.« less

  8. Glassy dynamics of nanoparticles in semiflexible ring polymer nanocomposite melts

    PubMed Central

    Zhou, Xiaolin; Jiang, Yangwei; Deng, Zhenyu; Zhang, Linxi

    2017-01-01

    By employing molecular dynamics simulations, we explore the dynamics of NPs in semiflexible ring polymer nanocomposite melts. A novel glass transition is observed for NPs in semiflexible ring polymer melts as the bending energy (Kb) of ring polymers increases. For NPs in flexible ring polymer melts (Kb = 0), NPs move in the classic diffusive behavior. However, for NPs in semiflexible ring polymer melts with large bending energy, NPs diffuse very slowly and exhibit the glassy state in which the NPs are all irreversibly caged be the neighbouring semiflexible ring polymers. This glass transition occurs well above the classical glass transition temperature at which microscopic mobility is lost, and the topological interactions of semiflexible ring polymers play an important role in this non-classical glass transition. This investigation can help us understand the nature of the glass transition in polymer systems. PMID:28290546

  9. Glassy dynamics of nanoparticles in semiflexible ring polymer nanocomposite melts

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaolin; Jiang, Yangwei; Deng, Zhenyu; Zhang, Linxi

    2017-03-01

    By employing molecular dynamics simulations, we explore the dynamics of NPs in semiflexible ring polymer nanocomposite melts. A novel glass transition is observed for NPs in semiflexible ring polymer melts as the bending energy (Kb) of ring polymers increases. For NPs in flexible ring polymer melts (Kb = 0), NPs move in the classic diffusive behavior. However, for NPs in semiflexible ring polymer melts with large bending energy, NPs diffuse very slowly and exhibit the glassy state in which the NPs are all irreversibly caged be the neighbouring semiflexible ring polymers. This glass transition occurs well above the classical glass transition temperature at which microscopic mobility is lost, and the topological interactions of semiflexible ring polymers play an important role in this non-classical glass transition. This investigation can help us understand the nature of the glass transition in polymer systems.

  10. Surface treatment of Glassy Polymeric Carbon artifacts for medical applications

    SciTech Connect

    Rodrigues, M. G.; Zimmerman, R. L.; Rezende, M. C.

    1999-06-10

    Glassy Polymeric Carbon (GPC) has been used for mechanical cardiac valves. GCP valves are chemically biocompatible and durable, but less thromboresistant than biological valves. Enhanced thromboresistance of mechanical cardiac components with porous surface has been demonstrated. The endothelialized tissue blood-contacting surface adheres to the porous prosthetic component and decreases the formation of thrombus. Our experience has shown that the porosity of GPC can be increased and controlled by MeV ion bombardment. We report here that the surface roughness of heat-treated GPC bombarded with C, O, Si and Au is also enhanced. The surface roughness of the ion-bombarded samples is on a smaller scale than those roughened by sand blasting (measurements made with Perthomete S and P). The roughness decreases slightly after heat treatment, in linear proportion to the shrinkage of the test piece. Possible beneficial effects of the imbedded ions on tissue adherence and thromboresistance must be determined by in vivo animal experiments.

  11. Evidence for a glassy state in strongly driven carbon

    PubMed Central

    Brown, C. R. D.; Gericke, D. O.; Cammarata, M.; Cho, B. I.; Döppner, T.; Engelhorn, K.; Förster, E.; Fortmann, C.; Fritz, D.; Galtier, E.; Glenzer, S. H.; Harmand, M.; Heimann, P.; Kugland, N. L.; Lamb, D. Q.; Lee, H. J.; Lee, R. W.; Lemke, H.; Makita, M.; Moinard, A.; Murphy, C. D.; Nagler, B.; Neumayer, P.; Plagemann, K.-U.; Redmer, R.; Riley, D.; Rosmej, F. B.; Sperling, P.; Toleikis, S.; Vinko, S. M.; Vorberger, J.; White, S.; White, T. G.; Wünsch, K.; Zastrau, U.; Zhu, D.; Tschentscher, T.; Gregori, G.

    2014-01-01

    Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen close to their original positions in the fluid. PMID:24909903

  12. Determination of Fracture Patterns in Glass and Glassy Polymers.

    PubMed

    Baca, Allison C; Thornton, John I; Tulleners, Frederic A

    2016-01-01

    The study of fractures of glass, glassy-type materials, and plastic has long been of interest to the forensic community. The focus of this interest has been the use of glass and polymer fractures to associate items of evidence under the assumption that each fracture is different. Generally, it is well-accepted that deviations exist; however, the emphasis has been on classifying and predicting fracture rather than determining that each fracture is different. This study documented the controlled fracture patterns of 60 glass panes, 60 glass bottles, and 60 plastic tail light lens covers using both dynamic impact and static pressure methods under closely controlled conditions. Each pattern was intercompared, and based on the limited specimens tested in this study, the results illustrate that the fracture patterns are different. Further repetitive studies, under controlled conditions, will be needed to provide more statistical significance to the theory that each fracture forms a nonreproducible fracture pattern.

  13. Poly(4-vinylpyridine)-coated glassy carbon flow detectors

    SciTech Connect

    Wang, J.; Golden, T.; Tuzhi, P.

    1987-03-01

    The performance of a thin-layer flow detector with a glassy carbon electrode coated with a film of protonated poly(4-vinylpyridine) is described. Substantial improvement in the selectivity of amperometric detection for liquid chromatography and flow injection systems is observed as a result of excluding cationic species from the surface. The detector response was evaluated with respect to flow rate, solute concentration, coating scheme, film-to-film reproducibility, and other variables. Despite the increase in diffusional resistance, low detection limits of ca. 0.04 and 0.10 ng of ascorbic acid and uric acid, respectively, are maintained. Protection from organic surfactants can be coupled to the charge exclusion effect by using a bilayer coating, with a cellulose acetate film atop the poly(4-vinylpyridine) layer. Applicability to urine sample is demonstrated.

  14. Development of an Automatic Fabrication System for Cast Glassy Alloys

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yoshihiko

    2015-04-01

    The developed automatic fabrication system comprised three component functions: weighing, alloying, and casting. The measurement error of automatic weighing specimen was about less 1 pct for Zr-based master alloys (approximately 30 g). Especially, sufficient stirrer effect of arc-melting ingot for homogeneity can be achieved by the development of sinusoidal arcing and applying magnetic field. In order to achieve superior homogeneity of the glass structure with no secondary phase ( i.e., an intermetallic compound with a high melting temperature), a prealloying process should be advisable. In this study, high reliability of the density and mechanical properties of automatic processed cast glassy alloys (CGAs) was successfully obtained. The developed automatic fabrication process has a potential to accelerate the industrial application of CGAs in the near future.

  15. Kerov's interlacing sequences and random matrices

    NASA Astrophysics Data System (ADS)

    Bufetov, Alexey

    2013-11-01

    To a N × N real symmetric matrix Kerov assigns a piecewise linear function whose local minima are the eigenvalues of this matrix and whose local maxima are the eigenvalues of its (N - 1) × (N - 1) submatrix. We study the scaling limit of Kerov's piecewise linear functions for Wigner and Wishart matrices. For Wigner matrices the scaling limit is given by the Verhik-Kerov-Logan-Shepp curve which is known from asymptotic representation theory. For Wishart matrices the scaling limit is also explicitly found, and we explain its relation to the Marchenko-Pastur limit spectral law.

  16. Revisiting the texture zero neutrino mass matrices

    NASA Astrophysics Data System (ADS)

    Singh, Madan; Ahuja, Gulsheen; Gupta, Manmohan

    2016-12-01

    In the light of refined and large measurements of the reactor mixing angle θ, we have revisited the texture three- and two-zero neutrino mass matrices in the flavor basis. For Majorana neutrinos, it has been explicitly shown that all the texture three-zero mass matrices remain ruled out. Further, for both normal and inverted mass ordering, for the texture two-zero neutrino mass matrices one finds interesting constraints on the Dirac-like CP-violating phase δ and Majorana phases ρ and σ.

  17. Random Matrices and Lyapunov Coefficients Regularity

    NASA Astrophysics Data System (ADS)

    Gallavotti, Giovanni

    2017-02-01

    Analyticity and other properties of the largest or smallest Lyapunov exponent of a product of real matrices with a "cone property" are studied as functions of the matrices entries, as long as they vary without destroying the cone property. The result is applied to stability directions, Lyapunov coefficients and Lyapunov exponents of a class of products of random matrices and to dynamical systems. The results are not new and the method is the main point of this work: it is is based on the classical theory of the Mayer series in Statistical Mechanics of rarefied gases.

  18. [Basal cell carcinoma with matrical differentiation].

    PubMed

    Goldman-Lévy, Gabrielle; Frouin, Eric; Soubeyran, Isabelle; Maury, Géraldine; Guillot, Bernard; Costes, Valérie

    2015-04-01

    Basal cell carcinoma with matrical differentiation is a very rare variant of basal cell carcinoma. To our knowledge, less than 30 cases have been reported. This tumor is composed of basaloid lobules showing a differentiation toward the pilar matrix cells. Recently, it has been demonstrated that beta-catenin would interfer with physiopathogenesis of matrical tumors, in particular pilomatricomas, but also basal cell carcinomas with matrical differentiation. This is a new case, with immunohistochemical and molecular analysis of beta-catenin, in order to explain its histogenesis.

  19. Direct dialling of Haar random unitary matrices

    NASA Astrophysics Data System (ADS)

    Russell, Nicholas J.; Chakhmakhchyan, Levon; O’Brien, Jeremy L.; Laing, Anthony

    2017-03-01

    Random unitary matrices find a number of applications in quantum information science, and are central to the recently defined boson sampling algorithm for photons in linear optics. We describe an operationally simple method to directly implement Haar random unitary matrices in optical circuits, with no requirement for prior or explicit matrix calculations. Our physically motivated and compact representation directly maps independent probability density functions for parameters in Haar random unitary matrices, to optical circuit components. We go on to extend the results to the case of random unitaries for qubits.

  20. Glassy fragmental rocks of Macquarie Island (Southern Ocean): Mechanism of formation and deposition

    NASA Astrophysics Data System (ADS)

    Dickinson, J. A.; Harb, N.; Portner, R. A.; Daczko, N. R.

    2009-04-01

    Glassy fragmental rocks are interlayered with pillow basalt and tabular basalt on Macquarie Island (54°30' S, 158°54' E). These facies formed along the Proto-Macquarie Spreading Ridge between 6 and 12 Ma and have since been uplifted and exposed on the apex of the Macquarie Ridge Complex. Through a combination of field and microscopic analyses, we investigate the submarine production, transportation, deposition and lithification of basalt and sideromelane clasts within a spreading-ridge environment. The findings of this study indicate that these glassy grains form predominantly by cooling-contraction granulation of pillow lava rinds while crystalline basalt clasts are derived from the fragmentation of pillows along concentric and radial cooling joints. Hyaloclastite breccias consist of crystalline volcanic clasts in a matrix of glassy fragments, and are termed pillow-fragment breccias when clasts identifiable as pillows account for > 25% of the cobble-sized fraction. This glassy fragmental sediment was transported predominantly by short-lived grain flows and deposited as a result of syn-eruptive talus accumulation. The above interpretations culminate in the production of a depositional model: these glassy fragmental rocks formed on the slopes of pillow cones following gravitational collapse of a destabilised cone flank along the Proto-Macquarie Spreading Ridge. Scanning electron microscopy reveals that palagonite alteration rims on glassy grains lithify the sediment. The findings may be used as an analogue for the formation of glassy fragmental rocks along past and present mid-oceanic ridges.

  1. ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES.

    PubMed

    Fan, Jianqing; Rigollet, Philippe; Wang, Weichen

    High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓ r norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics.

  2. ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES

    PubMed Central

    Fan, Jianqing; Rigollet, Philippe; Wang, Weichen

    2016-01-01

    High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓr norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics. PMID:26806986

  3. Synchronous correlation matrices and Connes’ embedding conjecture

    SciTech Connect

    Dykema, Kenneth J.; Paulsen, Vern

    2016-01-15

    In the work of Paulsen et al. [J. Funct. Anal. (in press); preprint arXiv:1407.6918], the concept of synchronous quantum correlation matrices was introduced and these were shown to correspond to traces on certain C*-algebras. In particular, synchronous correlation matrices arose in their study of various versions of quantum chromatic numbers of graphs and other quantum versions of graph theoretic parameters. In this paper, we develop these ideas further, focusing on the relations between synchronous correlation matrices and microstates. We prove that Connes’ embedding conjecture is equivalent to the equality of two families of synchronous quantum correlation matrices. We prove that if Connes’ embedding conjecture has a positive answer, then the tracial rank and projective rank are equal for every graph. We then apply these results to more general non-local games.

  4. Polymorphism in glassy silicon: Inherited from liquid-liquid phase transition in supercooled liquid

    NASA Astrophysics Data System (ADS)

    Zhang, Shiliang; Wang, Li-Min; Zhang, Xinyu; Qi, Li; Zhang, Suhong; Ma, Mingzhen; Liu, Riping

    2015-02-01

    Combining molecular dynamics (MD) simulation and Voronoi polyhedral analyses, we discussed the microstructure evolution in liquid and glassy silicon during cooling by focusing on the fraction of various clusters. Liquid-liquid phase transition (LLPT) is detected in supercooled liquid silicon However, freezing the high-density liquid (HDL) to the glassy state is not achieved as the quenching rate goes up to 1014 K/s. The polyamorphism in glassy silicon is found to be mainly associated with low-density liquid (LDL).

  5. Au nanoparticles and graphene quantum dots co-modified glassy carbon electrode for catechol sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Xuan; He, Dawei; Wang, Yongsheng; Hu, Yin; Fu, Chen

    2016-03-01

    In this letter, the gold nanoparticles and graphene quantum dots were applied to the modification of glassy carbon electrode for the detection of catechol. The synergist cooperation between gold nanoparticles and graphene quantum dots can increase specific surface area and enhance electronic and catalytic properties of glassy carbon electrode. The detection limit of catechol is 0.869 μmol/L, demonstrating the superior detection efficiency of the gold nanoparticles and graphene quantum dots co-modified glassy carbon electrode as a new sensing platform.

  6. Decomposition of Balanced Matrices. Part 5: Goggles

    DTIC Science & Technology

    1991-10-01

    A D-A 247 462 Management Science Research Report #MSRR-573 1~ ~~112 Eil 11 I Decomposition of Balanced Matrices . Part V: Goggles Michele Conforti 12...9001705. I Dipartimento di Matematica Pura ed Applicata, UniversitA di Padova, Via Belzoni 7, 35131 Padova, Italy.f 2 Carnegie Mellon University...NUMBER 4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED DECOMPOSITION OF BALANCED MATRICES . Technical Report, Oct 1991 PART V: GOGGLES 6

  7. Flux Jacobian Matrices For Equilibrium Real Gases

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1990-01-01

    Improved formulation includes generalized Roe average and extension to three dimensions. Flux Jacobian matrices derived for use in numerical solutions of conservation-law differential equations of inviscid flows of ideal gases extended to real gases. Real-gas formulation of these matrices retains simplifying assumptions of thermodynamic and chemical equilibrium, but adds effects of vibrational excitation, dissociation, and ionization of gas molecules via general equation of state.

  8. Computation of transform domain covariance matrices

    NASA Technical Reports Server (NTRS)

    Fino, B. J.; Algazi, V. R.

    1975-01-01

    It is often of interest in applications to compute the covariance matrix of a random process transformed by a fast unitary transform. Here, the recursive definition of fast unitary transforms is used to derive recursive relations for the covariance matrices of the transformed process. These relations lead to fast methods of computation of covariance matrices and to substantial reductions of the number of arithmetic operations required.

  9. Fast Array Algorithms for Structured Matrices

    DTIC Science & Technology

    1989-06-01

    matrices and operators, Akademie-Verlag, Berlin, 1984. [111. T. Kailath , Linear Systems , Prentice-Hall, Englewood Cliffs, New Jersey, 1980. [121. T... Linear Systems Prentice-Hall, Englewood Cliffs, New Jersey, 1980. [131. T. Kailath, Signal processing in the VLSI era, VLSI and Modem Signal Processing...vol 5, No. 1., (1984), pp. 237-254. [11]. F. Gantmacher The theory of matrices, vol. 2, Chelsea Publishing Comp., New York, 1960. [121. T. Kailath

  10. Block Lanczos tridiagonalization of complex symmetric matrices

    NASA Astrophysics Data System (ADS)

    Qiao, Sanzheng; Liu, Guohong; Xu, Wei

    2005-08-01

    The classic Lanczos method is an effective method for tridiagonalizing real symmetric matrices. Its block algorithm can significantly improve performance by exploiting memory hierarchies. In this paper, we present a block Lanczos method for tridiagonalizing complex symmetric matrices. Also, we propose a novel componentwise technique for detecting the loss of orthogonality to stablize the block Lanczos algorithm. Our experiments have shown our componentwise technique can reduce the number of orthogonalizations.

  11. Infinite Products of Random Isotropically Distributed Matrices

    NASA Astrophysics Data System (ADS)

    Il'yn, A. S.; Sirota, V. A.; Zybin, K. P.

    2017-01-01

    Statistical properties of infinite products of random isotropically distributed matrices are investigated. Both for continuous processes with finite correlation time and discrete sequences of independent matrices, a formalism that allows to calculate easily the Lyapunov spectrum and generalized Lyapunov exponents is developed. This problem is of interest to probability theory, statistical characteristics of matrix T-exponentials are also needed for turbulent transport problems, dynamical chaos and other parts of statistical physics.

  12. A Brief Historical Introduction to Matrices and Their Applications

    ERIC Educational Resources Information Center

    Debnath, L.

    2014-01-01

    This paper deals with the ancient origin of matrices, and the system of linear equations. Included are algebraic properties of matrices, determinants, linear transformations, and Cramer's Rule for solving the system of algebraic equations. Special attention is given to some special matrices, including matrices in graph theory and electrical…

  13. Mating behavior and intraspecific vibrational mimicry in the glassy-winged sharpshooter, homalodisca vitripennis (hemiptera: cicadellidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrational communication is widespread in insects, particularly in leafhoppers where the pair formation process is mediated by species-specific vibrational signals. One important pest using vibrational communication, glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is a vector of Xylella...

  14. Sub-nanoscale nanoimprint fabrication of atomically stepped glassy substrates of silicate glass and acryl polymer

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Mamoru

    2015-11-01

    In the nanoimprint process, the resolution limit of patterning has attracted much attention from both scientific and industrial aspects. In this article, we briefly review the main achievements of our research group on sub-nanoscale nanoimprint fabrication of atomically patterned glassy substrates of oxide glass and polymer. By applying the sapphire (α-Al2O3 single crystal) wafers with self-organized nanopatterns of atomic steps as thermal nanoimprinting molds, we successfully transferred their nanoscale patterns onto the surfaces of glassy substrates such as soda-lime silicate glasses and poly(methyl methacrylate) polymers. The surfaces of nanoimprinted glassy materials exhibited regularly arrayed atomic stairs with 0.2-0.3 nm step height, which were in good agreement with the sub-nanopatterns of sapphire molds. These atomically stepped morphologies on the glassy substrates were found to be stable for about 1 year.

  15. Determination of Volatility and Element Fractionation in Glassy Fallout Debris by SIMS

    SciTech Connect

    Williamson, Todd L.; Tenner, Travis Jay; Bonamici, Chloe Elizabeth; Kinman, William Scott; Pollington, Anthony Douglas; Steiner, Robert Ernest

    2016-05-10

    The purpose of this report is to characterize glassy fallout debris using the Trinity Test and then characterize the U-isotopes of U3O8 reference materials that contain weaponized debris.

  16. Probing the viscoelastic response of glassy polymer films using atomic force microscopy.

    PubMed

    Yang, Guanwen; Rao, Nanxia; Yin, Zejie; Zhu, Da-Ming

    2006-05-01

    The mechanical properties of glassy films and glass surfaces have been studied using an atomic force microscope (AFM) through various imaging modes and measuring methods. In this paper, we discuss the viscoelastic response of a glassy surface probed using an AFM. We analyzed the force-distance curves measured on a glassy film or a glassy surface at temperatures near the glass transition temperature, Tg, using a Burgers model. We found that the material's characteristics of reversible anelastic response and viscous creep can be extracted from a force-distance curve. Anelastic response shifts the repulsive force-distance curve while viscous creep strongly affects the slope of the repulsive force-distance curve. When coupled with capillary force, due to the condensation of a thin layer of liquid film at the tip-surface joint, the anelasticity and viscous creep can alter the curve significantly in the attractive region.

  17. Quasi-one-dimensional models for glassy dynamics

    NASA Astrophysics Data System (ADS)

    Pal, Prasanta

    2011-12-01

    We describe analytical calculations and simulations of the quasi-one-dimensional (Q1-D) model for glassy dynamics. In the Q1-D models, hard rods undergo single-file diffusion through a series of narrow channels connected by J intersections. The topology of the model is specified by J, the maximum number of rods in each middle channel K, and the number of rods N. We assume that the rods cannot turn at the intersections, and thus there is a single, continuous route through the system. This model displays hallmarks of glassy dynamics including caging behavior and subdiffusion, rapid growth in the structural relaxation time and collective particle rearrangements. The mean-square displacement Sigma(t) for the Q1-D model displays four dynamical regimes: 1) short-time diffusion Sigma( t) ˜ t, 2) a plateau Sigma(t) ˜ t0 caused by caging behavior, 3) single-file diffusion characterized by anomalous scaling Sigma(t) ˜ t0.5 at intermediate times, and 4) a crossover to long-tine diffusion Sigma(t) ˜ t for times that grow with the system size. We develop a general procedure for calculating analytically the structural relaxation time tD, beyond which the system undergoes long-time diffusion, as a function of density and system topology. The method involves several steps: 1) uniquely defining the set of microstates for the system and transitions among them, 2) constructing networks of connected microstates and identifying minimal, closed, directed loops that give rise to structural relaxation, 3) calculating the probabilities for obtaining each of the microstates that form the closed loops and for transitioning from one microstate to another, and 4) using these probabilities to deduce the dependence of tD on packing fraction. We find that to obeys power-law scaling tD ˜ (φ g-φ)-alpha, where φ g (the packing fraction corresponding to complete kinetic arrest) and alpha depend on the system topology, and can be calculated exactly. The analytical calculations are supported

  18. Condition number estimation of preconditioned matrices.

    PubMed

    Kushida, Noriyuki

    2015-01-01

    The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager's method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei's matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei's matrix, and matrices generated with the finite element method.

  19. Condition Number Estimation of Preconditioned Matrices

    PubMed Central

    Kushida, Noriyuki

    2015-01-01

    The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager’s method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei’s matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei’s matrix, and matrices generated with the finite element method. PMID:25816331

  20. Bayesian Nonparametric Clustering for Positive Definite Matrices.

    PubMed

    Cherian, Anoop; Morellas, Vassilios; Papanikolopoulos, Nikolaos

    2016-05-01

    Symmetric Positive Definite (SPD) matrices emerge as data descriptors in several applications of computer vision such as object tracking, texture recognition, and diffusion tensor imaging. Clustering these data matrices forms an integral part of these applications, for which soft-clustering algorithms (K-Means, expectation maximization, etc.) are generally used. As is well-known, these algorithms need the number of clusters to be specified, which is difficult when the dataset scales. To address this issue, we resort to the classical nonparametric Bayesian framework by modeling the data as a mixture model using the Dirichlet process (DP) prior. Since these matrices do not conform to the Euclidean geometry, rather belongs to a curved Riemannian manifold,existing DP models cannot be directly applied. Thus, in this paper, we propose a novel DP mixture model framework for SPD matrices. Using the log-determinant divergence as the underlying dissimilarity measure to compare these matrices, and further using the connection between this measure and the Wishart distribution, we derive a novel DPM model based on the Wishart-Inverse-Wishart conjugate pair. We apply this model to several applications in computer vision. Our experiments demonstrate that our model is scalable to the dataset size and at the same time achieves superior accuracy compared to several state-of-the-art parametric and nonparametric clustering algorithms.

  1. Strain localization in glassy polymers under cylindrical confinement.

    PubMed

    Shavit, Amit; Riggleman, Robert A

    2014-06-14

    Although the origin of ductility in crystalline materials is well understood through the motion of dislocations and defects, a similar framework for understanding deformation in amorphous materials remains elusive. In particular, the difference in the mechanical response for small-molecule amorphous solids, such as organic glasses that are typically brittle, and polymer glasses, which are frequently very tough, has not been systematically explored. Here, we employ molecular dynamics simulations to investigate the mechanical response of model glassy polymers confined to a nanoscopic pillar under tensile deformation. We vary the chain length, cooling rate for forming the glass, and the deformation rate and investigate the changes in the mechanical response. We find that samples that are cooled at a slower rate and deformed at a slower rate are more prone to localization of the strain response, or shear banding. Interestingly, this effect is independent of chain length over the range of parameters we have investigated so far, and we believe this is the first direct observation of shear banding in deformed polymer glasses under cylindrical confinement. Finally, by using the isoconfigurational ensemble approach, we provide evidence that the location where the shear band forms is due to structural features that are frozen in place during sample preparation.

  2. Mathematical modeling of glassy-winged sharpshooter population.

    PubMed

    Yoon, Jeong-Mi; Hrynkiv, Volodymyr; Morano, Lisa; Nguyen, Anh Tuan; Wilder, Sara; Mitchell, Forrest

    2014-06-01

    Pierce's disease (PD) is a fatal disease of grapevines which results from an infection by the plant pathogen Xyllela fastidiosa. This bacterium grows in the xylem (water-conducting) vessels of the plant blocking movement of water. PD can kill vines in one year and poses a serious threat to both the California and the expanding Texas wine industries. Bacteria are vectored from one vine to the next by a number of xylem feeding insect species. Of these, the Glassy-winged Sharpshooter (GWSS) is considered to be the primary xylem feeding insect in Texas vineyards. An extensive database of the xylem-feeding population frequencies was collected by USDA-APHIS for Texas vineyards over multiple years. This project focused on a subset of data, GWSS frequencies within 25 vineyards in Edwards Plateau located in central Texas. The proposed model investigates the natural population dynamics and the decline in GWSS, likely the result of pest management campaigns on the insects within the region. The model is a delay Gompertz differential equation with harvesting and immigration terms, and we use the data to estimate the model parameters.

  3. Frequency-dependent conductivity in bismuth-vanadate glassy semiconductors

    NASA Astrophysics Data System (ADS)

    Ghosh, Aswini

    1990-01-01

    The first measurements are reported for the frequency-dependent (ac) conductivity (real as well as imaginary parts) for various compositions of the bismuth-vanadate glassy semiconductors in the frequency range 102-105 Hz and in the temperature range 77-420 K. The behavior of the ac conductivity is broadly similar to what has been observed previously in many other types of amorphous semiconductors, namely, nearly linear frequency dependence and weak temperature dependence. The experimental results are analyzed with reference to various theoretical models based on quantum-mechanical tunneling and classical hopping over barriers. The analysis shows that the temperature dependence of the ac conductivity is consistent with the simple quantum-mechanical tunneling model at low temperatures; however, this model completely fails to predict the observed temperature dependence of the frequency exponent. The overlapping-large-polaron tunneling model can explain the temperature dependence of the frequency exponent at low temperatures. Fitting of this model to the low-temperature data yields a reasonable value of the wave-function decay constant. However, this model predicts the temperature dependence of the ac conductivity much higher than what actual data showed. The correlated barrier hopping model is consistent with the temperature dependence of both the ac conductivity and its frequency exponent. This model provides reasonable values of the maximum barrier heights but higher values of characteristic relaxation times.

  4. Surface temperatures and glassy state investigations in tribology, part 1

    NASA Technical Reports Server (NTRS)

    Winer, W. O.; Sanborn, D. M.

    1978-01-01

    The research in this report is divided into two categories: (1) lubricant rheological behavior, and (2) thermal behavior of a simulated elastohydrodynamic contact. The studies of the lubricant rheological behavior consists of high pressure, low shear rate viscosity measurements, viscoelastic transition measurements, by volume dilatometry, dielectric transitions at atmospheric pressure and light scattering transitions. Lubricant shear stress-strain behavior in the amorphous glassy state was measured on several fluids. It appears clear from these investigations that many lubricants undergo viscoplastic transitions in typical EHD contacts and that the lubricant has a limiting maximum shear stress it can support which in turn will determine the traction in the contact except in cases of very low slide-roll ratio. Surface temperature measurements were made for a naphthenic mineral oil and a polyphenyl ether. The maximum surface temperature in these experiments was approximately symmetrical about the zero slide-roll ration except for absolute values of slide-roll ratio greater than about 0.9. Additional surface temperature measurements were made in contacts with rough surfaces where the composite surface roughness was approximately equal to the EHD film thickness. A regression analysis was done to obtain a predictive equation for surface temperatures as a function of pressure, sliding speed, and surface roughness. A correction factor for surface roughness effects to the typical flash temperature analysis was found.

  5. Dielectric studies of molecular motions in glassy and liquid nicotine

    NASA Astrophysics Data System (ADS)

    Kaminski, K.; Paluch, M.; Ziolo, J.; Ngai, K. L.

    2006-06-01

    The dielectric permittivity and loss spectra of glassy and liquid states of nicotine have been measured over the frequency range 10-2-109 Hz. The relaxation spectra are similar to common small molecular glass-forming substances, showing the structural α-relaxation and its precursor, the Johari-Goldstein β-relaxation. The α-relaxation is well described by the Fourier transform of the Kohlrausch-Williams-Watts stretched exponential function with an approximately constant stretch exponent that is equal to 0.70 as the glass transition temperature is approached. The dielectric α-relaxation time measured over 11 orders of magnitude cannot be described by a single Vogel-Fulcher-Tamman-Hesse equation. The most probable Johari-Goldstein β-relaxation time determined from the dielectric spectra is in good agreement with the primitive relaxation time of the coupling model calculated from parameters of the structural α-relaxation. The shape of the dielectric spectra of nicotine is compared with that of other glass-formers having about the same stretch exponent, and they are shown to be nearly isomorphic. The results indicate that the molecular dynamics of nicotine conform to the general pattern found in other glass-formers, and the presence of the universal Johari-Goldstein secondary relaxation, which plays a role in the crystallization of amorphous pharmaceuticals.

  6. Cryptoachneliths: Hidden glassy ash in composite spheroidal lapilli

    NASA Astrophysics Data System (ADS)

    Carracedo Sánchez, M.; Arostegui, J.; Sarrionandia, F.; Larrondo, E.; Gil Ibarguchi, J. I.

    2010-09-01

    Cryptoachneliths, perceptible by means of electron microscopy but unresolved under the optical microscope, occur unnoticed inside spheroidal lapilli of ultrabasic composition of the Cabezo Segura volcano (Calatrava volcanic province, Spain). The cryptoachneliths are glassy spherical particles that have compositions of Al-rich silicate with minor amounts of Fe, Ca and other elements. The smallest cryptoachneliths of < 1 μm in diameter (nanoachneliths) joined by coalescence to form microspheres > 1 μm (microachneliths) and homogeneous less regular masses of similar composition. Nano and microachneliths welded each other or to other types of volcanic particles (crystals, crystal fragments, spinning droplets, cognate lithic clasts, etc.) to form spheroidal lapilli and even bomb size clasts within proximal fall deposits of the Cabezo Segura volcano. The welding processes took place inside the eruptive column, previous to the fall of the spheroidal lapilli on top of the volcanic cone. The presence of the cryptoachneliths implies that lapilli and even bomb size tephra within deposits formed during explosive eruptions of low-viscosity basic to ultrabasic magmas should be carefully examined in order to establish key parameters of eruption dynamics, like size, amount and distribution of juvenile fine particles.

  7. Mechanics of particulate composites with glassy polymer binders in compression

    PubMed Central

    Jordan, J. L.; Spowart, J. E.; Kendall, M. J.; Woodworth, B.; Siviour, C. R.

    2014-01-01

    Whether used as structural components in design or matrix materials for composites, the mechanical properties of polymers are increasingly important. The compressive response of extruded polymethyl methacrylate (PMMA) rod with aligned polymer chains and Al–Ni–PMMA particulate composites are investigated across a range of strain rates and temperatures. The particulate composites were prepared using an injection-moulding technique resulting in highly anisotropic microstructures. The mechanics of these materials are discussed in the light of theories of deformation for glassy polymers. The experimental data from this study are compared with PMMA results from the literature as well as epoxy-based composites with identical particulates. The PMMA exhibited the expected strain rate and temperature dependence and brittle failure was observed at the highest strain rates and lowest temperatures. The Al–Ni–PMMA composites were found to have similar stress–strain response to the PMMA with reduced strain softening after yield. Increasing volume fraction of particulates in the composite resulted in decreased strength. PMID:24711495

  8. Redox behavior of biofilm on glassy carbon electrode.

    PubMed

    Sridharan, D; Manoharan, S P; Palaniswamy, N

    2011-10-01

    Marine and freshwater biofilm usually shift the open circuit potential (OCP) of stainless steel towards the electropositive direction by +450 mV vs SCE. The nature of oxide film and bacterial metabolism were also correlated with ennoblement process by various investigators. Glassy carbon electrode (GCE) was used in the present study and a shifting of potential in the positive side (+450 mV) was noticed. It indicates that biofilm contributes to the ennoblement process without any n/p-type semiconducting oxide film. The nature of the cathodic curve for the biofilm covered GCE is compared with the previous literature on the electrochemical behavior of stainless steel. The present study explains the oxidation and reduction peaks of biofilm covered GCE by cyclic voltammetry. Electrochemical impedance result reveals the diffusion process within the manganese biofilm. The present study confirms the previous investigations that the manganese biofilm rules the electrochemical behavior of materials and suggests that oxide film is not necessary to assist the ennoblement process.

  9. Advanced incomplete factorization algorithms for Stiltijes matrices

    SciTech Connect

    Il`in, V.P.

    1996-12-31

    The modern numerical methods for solving the linear algebraic systems Au = f with high order sparse matrices A, which arise in grid approximations of multidimensional boundary value problems, are based mainly on accelerated iterative processes with easily invertible preconditioning matrices presented in the form of approximate (incomplete) factorization of the original matrix A. We consider some recent algorithmic approaches, theoretical foundations, experimental data and open questions for incomplete factorization of Stiltijes matrices which are {open_quotes}the best{close_quotes} ones in the sense that they have the most advanced results. Special attention is given to solving the elliptic differential equations with strongly variable coefficients, singular perturbated diffusion-convection and parabolic equations.

  10. PRM: A database of planetary reflection matrices

    NASA Astrophysics Data System (ADS)

    Stam, D. M.; Batista, S. F. A.

    2014-04-01

    We present the PRM database with reflection matrices of various types of planets. With the matrices, users can calculate the total, and the linearly and circularly polarized fluxes of incident unpolarized light that is reflected by a planet for arbitrary illumination and viewing geometries. To allow for flexibility in these geometries, the database does not contain the elements of reflection matrices, but the coefficients of their Fourier series expansion. We describe how to sum these coefficients for given illumination and viewing geometries to obtain the local reflection matrix. The coefficients in the database can also be used to calculate flux and polarization signals of exoplanets, by integrating, for a given planetary phase angle, locally reflected fluxes across the visible part of the planetary disk. Algorithms for evaluating the summation for locally reflected fluxes, as applicable to spatially resolved observations of planets, and the subsequent integration for the disk-integrated fluxes, as applicable to spatially unresolved exoplanets are also in the database

  11. L'effet dynamo et le champ magnétique solaire.

    NASA Astrophysics Data System (ADS)

    Leorat, J.

    Contents: (1) Introduction. (2) Propriétés générales des équations d'évolution. (3) Définition de l'effet dynamo et condition nécessaire. (4) Dynamos phénoménologiques; théorèmes antidynamos. (5) Exemples de dynamos à champ de vitesse stationnaire. (6) Dynamos dépendant du temps. (7) Dynamos homogènes expérimentales. (8) Remarques finales.

  12. Controlled release of drugs from cellulose acetate matrices produced from sugarcane bagasse: monitoring by square-wave voltammetry.

    PubMed

    Rodrigues Filho, Guimes; Almeida, Flávia; Ribeiro, Sabrina D; Tormin, Thiago F; Muñoz, Rodrigo A A; Assunção, Rosana M N; Barud, Hernane

    2016-01-01

    In this paper, cellulose triacetate (CTA) was produced from sugarcane bagasse and used as matrices for controlled release of paracetamol. Symmetric and asymmetric membranes were obtained by formulations of CTA/dichloromethane/drug and CTA/dichloromethane/water/drug, respectively, and they were characterized by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). Different morphologies of membranes were observed by SEM, and the incorporation of paracetamol was confirmed by lowering of the glass transition temperature (Tg) in the DSC curves. This indicates the existence of interactions between the matrix and the drug. The evaluation of drug release was based on the electrochemical monitoring of paracetamol through its oxidation at a glassy carbon electrode surface using square-wave voltammetry (SWV), which provides fast, precise and accurate in situ measurements. The studies showed a content release of 27% and 45% by the symmetric and asymmetric membranes, respectively, during 8 h.

  13. Sparse Matrices in MATLAB: Design and Implementation

    NASA Technical Reports Server (NTRS)

    Gilbert, John R.; Moler, Cleve; Schreiber, Robert

    1992-01-01

    The matrix computation language and environment MATLAB is extended to include sparse matrix storage and operations. The only change to the outward appearance of the MATLAB language is a pair of commands to create full or sparse matrices. Nearly all the operations of MATLAB now apply equally to full or sparse matrices, without any explicit action by the user. The sparse data structure represents a matrix in space proportional to the number of nonzero entries, and most of the operations compute sparse results in time proportional to the number of arithmetic operations on nonzeros.

  14. Balanced 0, + or - Matrices. Part 1. Decomposition,

    DTIC Science & Technology

    1994-01-22

    AD-A278 170 Management Science Research Report Number *600 Balanced 0, ± Matrices Part 1: DecompositionDTIC~ SD’.I.CT 1 Michele Conforti:. F I, ECTE...G6rard CornuJ6jgsQE R15� Ajai Kapuur 00 P 1 4 Kristina Vuskovic U F January 22, 1994 Dipartimento di Matematica Pura ed Applicata Universiti di...two nonzero entries per row and column, the sum of the entries is a multiple of four. This paper extends the decomposition of balanced 0, 1 matrices

  15. Partitioning sparse rectangular matrices for parallel processing

    SciTech Connect

    Kolda, T.G.

    1998-05-01

    The authors are interested in partitioning sparse rectangular matrices for parallel processing. The partitioning problem has been well-studied in the square symmetric case, but the rectangular problem has received very little attention. They will formalize the rectangular matrix partitioning problem and discuss several methods for solving it. They will extend the spectral partitioning method for symmetric matrices to the rectangular case and compare this method to three new methods -- the alternating partitioning method and two hybrid methods. The hybrid methods will be shown to be best.

  16. Oligonucleotide formation catalyzed by mononucleotide matrices

    NASA Technical Reports Server (NTRS)

    Lohrmann, R.

    1982-01-01

    Pb(2+)-containing precipitates of mononucleotides form matrices which catalyze the self-condensation of nucleotide 5-prime-phosphorimidazolides and their condensation with nucleosides. The reactions exhibit base-pairing specificity between matrix nucleotide and substrate, and usually follow the Watson-Crick pairing rules. Although purine polynucleotides do not facilitate the oligomerization of pyrimidine nucleotide monomers in solution, it is interesting that purine-containing matrices do catalyze such a reaction. The significance of the results in the context of the prebiotic evolution of polynucleotides is discussed.

  17. Fabrication of Ni-Nb-Sn metallic glassy alloy powder and its microwave-induced sintering behavior.

    PubMed

    Xie, Guoqiang; Li, Song; Louzguine-Luzgin, D V; Cao, Ziping; Yoshikawa, Noboru; Sato, Motoyasu; Inoue, Akihisa

    2009-01-01

    In the present study, we prepared Ni59.35Nb34.45Sn6.2 metallic glassy alloy powder by an argon gas atomization process. Microwave (MW)-induced heating and sintering was carried out by a single-mode 2.45 GHz MW applicator in the separated magnetic field or electric field using the obtained glassy powders. The structure and thermal stability of the sintered glassy alloy specimens were investigated.

  18. How important are glassy SOA ice nuclei for the formation of cirrus clouds?

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Penner, J. E.; Lin, G.; Liu, X.; Wang, M.

    2014-12-01

    Extremely low ice numbers (i.e. 5 - 100 / L) have been observed in the tropical troposphere layer (TTL) in a variety of field campaigns. Various mechanisms have been proposed to explain these low numbers, including the effect of glassy secondary organic aerosol acting as heterogeneous ice nuclei (IN). In this study, we explored these effects using the CAM5.3 model. SOA fields were provided by an offline version of the University of Michigan-IMPACT model, which has a detailed process-based mechanism that describes aerosol microphysics and SOA formation through both gas phase and multiphase reactions. The transition criterion of SOA to glassy heterogeneous IN follows the parameterization developed by Wang et al. 2012. With this parameterization, glassy SOA IN form mainly when the temperature (T) is lower than 210K. In the default CAM5.3 set-up in which only the fraction of Aitken mode sulfate aerosols with diameter larger than 100nm participate in the ice nucleation (Liu and Penner 2005 parameterization), glassy SOA IN are shown to decrease the ice number (Ni) by suppressing some of the homogeneous freezing at low temperatures thereby leading to an improved representation of the relationship between Ni and T compared to the observations summarized by Kramer et al. 2009. However, when we allow the total number of the Aitken mode sulfate particles to participate in homogeneous freezing, glassy SOA IN have only a small impact on the relationship between Ni and T. If the subgrid updraft velocity is decreased to 0.1 m/s (compared to 0.2 m/s in the default set-up), there is a large decrease of Ni, since homogeneous freezing is more easily suppressed by glassy SOA IN at these updrafts. We also present the effects of glassy SOA IN using an alternative ice nucleation scheme (Barahona and Nenes, 2009).

  19. Glassy dynamics in CuMn thin-film multilayers

    NASA Astrophysics Data System (ADS)

    Zhai, Qiang; Harrison, David C.; Tennant, Daniel; Dalhberg, E. Dan; Kenning, Gregory G.; Orbach, Raymond L.

    2017-02-01

    Thin-film multilayered spin-glass CuMn/Cu structures display glassy dynamics. The freezing temperature Tf was measured for 40 layers of CuMn films of thickness L =4.5 ,9.0 , and 20.0 nm, sandwiched between nonmagnetic Cu layers of thickness ≈60 nm. The Kenning effect, Tf∝lnL , is shown to follow from power-law dynamics where the correlation length grows from nucleation as ξ (t ,T ) =c1a0(t/τ0) c2(T /Tg) , leading to [(Tf/Tg) c2ln(tco/τ0) ] +lnc1=ln(L /a0) . Here, Tg is the bulk spin-glass temperature, c1 and c2 are constants determined from the spin-glass dynamics, tco is the time for the correlation length to grow to the film thickness, τ0 is a characteristic exchange time ≈ℏ /kBTg , and a0 is the average Mn-Mn separation. For t ≥tco , the magnetization dynamics are simple activated, with a single activation energy Δmax(L ) /kBTg=(1 /c2) [ln(L /a0) -lnc1] that does not change with time. Values for all these parameters are found for the three values of L explored in these measurements. We find experimentally Δmax(L ) /kB =907 , 1246, and 1650 K, respectively, for the three CuMn thin-film multilayer thicknesses, consistent with power-law dynamics. We perform a similar analysis based on the activated dynamics of the droplet model and find a much larger spread for Δmax(L ) than found experimentally.

  20. Modeling mechanophore activation within a crosslinked glassy matrix

    NASA Astrophysics Data System (ADS)

    Silberstein, Meredith N.; Min, Kyoungmin; Cremar, Lee D.; Degen, Cassandra M.; Martinez, Todd J.; Aluru, Narayana R.; White, Scott R.; Sottos, Nancy R.

    2013-07-01

    Mechanically induced reactivity is a promising means for designing self-reporting materials. Mechanically sensitive chemical groups called mechanophores are covalently linked into polymers in order to trigger specific chemical reactions upon mechanical loading. These mechanophores can be linked either within the backbone or as crosslinks between backbone segments. Mechanophore response is sensitive to both the matrix properties and placement within the matrix, providing two avenues for material design. A model framework is developed to describe reactivity of mechanophores located as crosslinks in a glassy polymer matrix. Simulations are conducted at the molecular and macromolecular scales in order to develop macroscale constitutive relations. The model is developed specifically for the case of spiropyran (SP) in lightly crosslinked polymethylmethacrylate (PMMA). This optically trackable mechanophore (fluorescent when activated) allows the model to be assessed in terms of observed experimental behavior. The force modified potential energy surface (FMPES) framework is used in conjunction with ab initio steered molecular dynamics (MD) simulations of SP to determine the mechanophore kinetics. MD simulations of the crosslinked PMMA structure under shear deformation are used to determine the relationship between macroscale stress and local force on the crosslinks. A continuum model implemented in a finite element framework synthesizes these mechanochemical relations with the mechanical behavior. The continuum model with parameters taken directly from the FMPES and MD analyses under predicts stress-driven activation relative to experimental data. The continuum model, with the physically motivated modification of force fluctuations, provides an accurate prediction for monotonic loading across three decades of strain rate and creep loading, suggesting that the fundamental physics are captured.

  1. Charge Transport and Glassy Dynamics in Ionic Liquids

    SciTech Connect

    Sangoro, Joshua R; Kremer, Friedrich

    2012-01-01

    Ionic liquids (ILs) exhibit unique features such as low melting points, low vapor pressures, wide liquidus temperature ranges, high thermal stability, high ionic conductivity, and wide electrochemical windows. As a result, they show promise for use in variety of applications: as reaction media, in batteries and supercapacitors, in solar and fuel cells, for electrochemical deposition of metals and semiconductors, for protein extraction and crystallization, and many others. Because of the ease with which they can be supercooled, ionic liquids offer new opportunities to investigate long-standing questions regarding the nature of the dynamic glass transition and its possible link to charge transport. Despite the significant steps achieved from experimental and theoretical studies, no generally accepted quantitative theory of dynamic glass transition to date has been capable of reproducing all the experimentally observed features. In this Account, we discuss recent studies of the interplay between charge transport and glassy dynamics in ionic liquids as investigated by a combination of several experimental techniques including broadband dielectric spectroscopy, pulsed field gradient nuclear magnetic resonance, dynamic mechanical spectroscopy, and differential scanning calorimetry. Based on EinsteinSmoluchowski relations, we use dielectric spectra of ionic liquids to determine diffusion coefficients in quantitative agreement with independent pulsed field gradient nuclear magnetic resonance measurements, but spanning a broader range of more than 10 orders of magnitude. This approach provides a novel opportunity to determine the electrical mobility and effective number density of charge carriers as well as their types of thermal activation from the measured dc conductivity separately. We also unravel the origin of the remarkable universality of charge transport in different classes of glass-forming ionic liquids.

  2. Effet de l'acide ascorbique sur la détermination du plomb dans des matrices végétales par ETA-AAS

    NASA Astrophysics Data System (ADS)

    Hoenig, Michel; Van Hoeyweghen, Paul

    Sulphuric acid used in wet oxidation of plant material and the matrix elements are responsible for a strong suppression of lead absorption signals and for the poor reproducibility of the measurements with ETA-AAS. Addition of ascorbic acid to samples (2% m/V) provides an enhancement in sensitivity by more than 200% and leads to acceptable values of the relative error. The results obtained with the 283.3 nm line are better than those obtained with the 217.0 nm line.

  3. Circulant Matrices and Time-Series Analysis

    ERIC Educational Resources Information Center

    Pollock, D. S. G.

    2002-01-01

    This paper sets forth some salient results in the algebra of circulant matrices which can be used in time-series analysis. It provides easy derivations of some results that are central to the analysis of statistical periodograms and empirical spectral density functions. A statistical test for the stationarity or homogeneity of empirical processes…

  4. SPECIATION OF ARSENIC IN EXPOSURE ASSESSMENT MATRICES

    EPA Science Inventory

    The speciaton of arsenic in water, food and urine are analytical capabilities which are an essential part in arsenic risk assessment. The cancer risk associated with arsenic has been the driving force in generating the analytical research in each of these matrices. This presentat...

  5. Constructing random matrices to represent real ecosystems.

    PubMed

    James, Alex; Plank, Michael J; Rossberg, Axel G; Beecham, Jonathan; Emmerson, Mark; Pitchford, Jonathan W

    2015-05-01

    Models of complex systems with n components typically have order n(2) parameters because each component can potentially interact with every other. When it is impractical to measure these parameters, one may choose random parameter values and study the emergent statistical properties at the system level. Many influential results in theoretical ecology have been derived from two key assumptions: that species interact with random partners at random intensities and that intraspecific competition is comparable between species. Under these assumptions, community dynamics can be described by a community matrix that is often amenable to mathematical analysis. We combine empirical data with mathematical theory to show that both of these assumptions lead to results that must be interpreted with caution. We examine 21 empirically derived community matrices constructed using three established, independent methods. The empirically derived systems are more stable by orders of magnitude than results from random matrices. This consistent disparity is not explained by existing results on predator-prey interactions. We investigate the key properties of empirical community matrices that distinguish them from random matrices. We show that network topology is less important than the relationship between a species' trophic position within the food web and its interaction strengths. We identify key features of empirical networks that must be preserved if random matrix models are to capture the features of real ecosystems.

  6. Noisy covariance matrices and portfolio optimization

    NASA Astrophysics Data System (ADS)

    Pafka, S.; Kondor, I.

    2002-05-01

    According to recent findings [#!bouchaud!#,#!stanley!#], empirical covariance matrices deduced from financial return series contain such a high amount of noise that, apart from a few large eigenvalues and the corresponding eigenvectors, their structure can essentially be regarded as random. In [#!bouchaud!#], e.g., it is reported that about 94% of the spectrum of these matrices can be fitted by that of a random matrix drawn from an appropriately chosen ensemble. In view of the fundamental role of covariance matrices in the theory of portfolio optimization as well as in industry-wide risk management practices, we analyze the possible implications of this effect. Simulation experiments with matrices having a structure such as described in [#!bouchaud!#,#!stanley!#] lead us to the conclusion that in the context of the classical portfolio problem (minimizing the portfolio variance under linear constraints) noise has relatively little effect. To leading order the solutions are determined by the stable, large eigenvalues, and the displacement of the solution (measured in variance) due to noise is rather small: depending on the size of the portfolio and on the length of the time series, it is of the order of 5 to 15%. The picture is completely different, however, if we attempt to minimize the variance under non-linear constraints, like those that arise e.g. in the problem of margin accounts or in international capital adequacy regulation. In these problems the presence of noise leads to a serious instability and a high degree of degeneracy of the solutions.

  7. Universal portfolios generated by Toeplitz matrices

    NASA Astrophysics Data System (ADS)

    Tan, Choon Peng; Chu, Sin Yen; Pan, Wei Yeing

    2014-06-01

    Performance of universal portfolios generated by Toeplitz matrices is studied in this paper. The general structure of the companion matrix of the generating Toeplitz matrix is determined. Empirical performance of the threeband and nine-band Toeplitz universal portfolios on real stock data is presented. Pseudo Toeplitz universal portfolios are studied with promising empirical achievement of wealth demonstrated.

  8. Chlorate analyses in matrices of animal origin.

    PubMed

    Smith, David J; Taylor, Joshua B

    2011-03-09

    Sodium chlorate is being developed as a potential food-safety tool for use in the livestock industry because of its effectiveness in decreasing concentrations of certain Gram-negative pathogens in the gastrointestinal tracts of food animals. A number of studies with sodium chlorate in animals have demonstrated that concentrations of chlorate in meat, milk, wastes, and gastrointestinal contents range from parts per billion to parts per thousand, depending upon chlorate dose, matrix, and time lapse after dosing. Although a number of analytical methods exist for chlorate salts, very few were developed for use in animal-derived matrices, and none have anticipated the range of chlorate concentrations that have been observed in animal wastes and products. To meet the analytical needs of this development work, LC-MS, ion chromatographic, and colorimetric methods were developed to measure chlorate residues in a variety of matrices. The LC-MS method utilizes a Cl(18)O(3)(-) internal standard, is applicable to a variety of matrices, and provides quantitative assessment of samples from 0.050 to 2.5 ppm. Due to ion suppression, matrix-matched standard curves are appropriate when using LC-MS to measure chlorate in animal-derived matrices. A colorimetric assay based on the acid-catalyzed oxidation of o-tolidine proved valuable for measuring ≥20 ppm quantities of chlorate in blood serum and milk, but not urine, samples. Ion chromatography was useful for measuring chlorate residues in urine and in feces when chlorate concentrations exceeded 100 ppm, but no effort was made to maximize ion chromatographic sensitivity. Collectively, these methods offer the utility of measuring chlorate in a variety of animal-derived matrices over a wide range of chlorate concentrations.

  9. Co-Fe-B-Si-Nb bulk glassy alloys with superhigh strength and extremely low magnetostriction

    SciTech Connect

    Chang Chuntao; Shen Baolong; Inoue, Akihisa

    2006-01-02

    Co-based bulk glassy alloys with diameters up to 4 mm were formed in a [(Co{sub 1-x}Fe{sub x}){sub 0.75}B{sub 0.2}Si{sub 0.05}]{sub 96}Nb{sub 4} system. The bulk glassy alloys exhibit a superhigh fracture strength of 3980-4170 MPa and Young's modulus of 190-210 GPa. The bulk glassy alloys also exhibit excellent soft-magnetic properties, i.e., high saturation magnetization of 0.71-0.97 T, low coercive force of 0.7-1.8 A/m, high permeability of 1.48-3.25x10{sup 4}, and extremely low saturation magnetostriction of 0.55-5.76x10{sup -6}. The first successful synthesis of the Co-Fe-B-Si-based bulk glassy alloys exhibiting superhigh fracture strength and excellent soft-magnetic properties with extremely low magnetostriction is encouraging for future development of Co-based bulk glassy alloys as new engineering and functional materials.

  10. Understanding the Physical Aging Behavior of Glassy Polystyrene Layers in Close Contact with Rubbery Domains

    NASA Astrophysics Data System (ADS)

    Roth, Connie; Rauscher, Phil; Pye, Justin; Baglay, Roman

    2014-03-01

    Recent advances in synthesis strategies and processing methods have led to new nanostructured polymer blend and block-copolymer materials containing domain sizes less than 100 nm with glassy and rubbery domains in close proximity. Given the outsized role interfacial perturbations have played in causing large changes in the glass transition temperature Tg and physical aging of ultrathin single-layer films, we are interested in studying how the presence of glassy-rubbery interfaces between neighboring polymer domains may alter the local stability and physical aging of confined glassy layers. Using a polystyrene (PS) / poly(n-butyl methacrylate) (PnBMA) weakly immiscible system with 7 nm interfacial width, we demonstrate how ellipsometry can be used to isolate the physical aging rate of thin PS layers atop rubbery PnBMA layers. Despite a 25-30 K reduction in the average Tg of 84 nm thick PS layers atop PnBMA as measured by fluorescence, we observe no change in the PS aging rate relative to bulk. These results are in contrast with previous works on single-layer polymer films that have found the local aging rate to often be correlated with local Tg changes. This appears not to be the case for glassy PS layers atop rubbery PnBMA suggesting some additional factor is affecting the structural relaxation occurring near the glassy-rubbery interface.

  11. Mechanisms of crazing in glassy polymers revealed by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Mahajan, Dhiraj K.; Hartmaier, Alexander

    2012-08-01

    Mechanisms leading to initiation of crazing type failure in a glassy polymer are not clearly understood. This is mainly due to the difficulty in characterizing the stress state and polymer configuration sufficiently locally at the craze initiation site. Using molecular dynamics simulations, we have now been able to access this information and have shown that the local heterogeneous deformation leads to craze initiation in glassy polymers. We found that zones of high plastic activity are constrained by their neighborhood and become unstable, initiating crazing from these sites. Furthermore, based on the constant flow stresses observed in the unstable zones, we conclude that microcavitation is the essential local deformation mode to trigger crazing in glassy polymers. Our results demonstrate the basic difference in the local deformation mode as well as the conditions that lead to either shear-yielding or crazing type failures in glassy polymers. We anticipate our paper to help in devising a new criterion for craze initiation that not only considers the stress state, but also considers local deformation heterogeneities that form the necessary condition for crazing in glassy polymers.

  12. Cure kinetics, morphologies, and mechanical properties of thermoplastic/MWCNT modified multifunctional glassy epoxies prepared via continuous reaction methods

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaole

    The primary goal of this dissertation is to develop a novel continuous reactor method to prepare partially cured epoxy prepolymers for aerospace prepreg applications with the aim of replacing traditional batch reactors. Compared to batch reactors, the continuous reactor is capable of solubilizing and dispersing a broad range of additives including thermoplastic tougheners, stabilizers, nanoparticles and curatives and advancing epoxy molecular weights and viscosities while reducing energy consumption. In order to prove this concept, polyethersulfone (PES) modified 4, 4'-diaminodiphenylsulfone (44DDS)/tetraglycidyl-4, 4'-diaminodiphenylmethane (TGDDM) epoxy prepolymers were firstly prepared using both continuous reactor and batch reactor methods. Kinetic studies confirmed the chain extension reaction in the continuous reactor is similar to the batch reactor, and the molecular weights and viscosities of prepolymers were readily controlled through reaction kinetics. Atomic force microscopy (AFM) confirmed similar cured network morphologies for formulations prepared from batch and continuous reactors. Additionally tensile strength, tensile modulus and fracture toughness analyses concluded mechanical properties of cured epoxy matrices produced from both reactors were equivalent. Effects of multifunctional epoxy compositions on thermoplastics phase-separated morphologies were systematically studied using a combination of AFM with nanomechanical mapping, spectroscopic and calorimetric techniques to provide new insights to tailor cured reaction induced phase separation (CRIPS) in multifunctional epoxy blend networks. Furthermore, how resultant crosslinked glassy polymer network and phase-separated morphologies correlated with mechanical properties are discussed in detail. Multiwall carbon nanotube (MWCNT)/TGDDM epoxy prepolymers were further prepared by combining the successful strategies for advancing epoxy chemistries and dispersing nanotubes using the continuous reactor

  13. Bounds for Eigenvalues of Arrowhead Matrices and Their Applications to Hub Matrices and Wireless Communications

    DTIC Science & Technology

    2009-01-01

    2009 Recommended by Enrico Capobianco This paper considers the lower and upper bounds of eigenvalues of arrow-head matrices. We propose a parameterized...arrowhead matrices have been used to describe radiationless transitions in isolated molecules [1] and oscillators vibrationally coupled with a Fermi ...Journal of Chemical Physics, vol. 48, no. 2, pp. 715– 726, 1968. [2] J. W. Gadzuk, “Localized vibrational modes in Fermi liquids. General theory

  14. A test of the conjecture that G-matrices are more stable than B-matrices.

    PubMed

    Barker, Brittany S; Phillips, Patrick C; Arnold, Stevan J

    2010-09-01

    The G-matrix occupies an important position in evolutionary biology both as a summary of the inheritance of quantitative traits and as an ingredient in predicting how those traits will respond to selection and drift. Consequently, the stability of G has an important bearing on the accuracy of predicted evolutionary trajectories. Furthermore, G should evolve in response to stable features of the adaptive landscape and their trajectories through time. Although the stability and evolution of G might be predicted from knowledge of selection in natural populations, most empirical comparisons of G-matrices have been made in the absence of such a priori predictions. We present a theoretical argument that within-sex G-matrices should be more stable than between-sex B-matrices because they are more powerfully exposed to multivariate stabilizing selection. We tested this conjecture by comparing estimates of B- and within-sex G-matrices among three populations of the garter snake Thamnophis elegans. Matrix comparisons using Flury's hierarchical approach revealed that within-sex G-matrices had four principal components in common (full CPC), whereas B-matrices had only a single principal component in common and eigenvalues that were more variable among populations. These results suggest that within-sex G is more stable than B, as predicted by our theoretical argument.

  15. Effect of entanglements on mechanical properties of glassy polymers

    NASA Astrophysics Data System (ADS)

    Hoy, Robert Scott

    Glass forming polymers are of great industrial importance and scientific interest because of their unique mechanical properties, which arise from the connectivity and random-walk-like structure of the constituent chains. In this thesis I study the relation of entanglements to the mechanical properties of model polymer glasses and brushes using molecular dynamics simulations. We perform extensive studies of glassy strain hardening, which stabilizes polymers against strain localization and fracture. Fundamental inconsistencies in existing entropic models of strain hardening imply that our understanding of its microscopic origins is far from complete. The dependence of stress on strain and entanglement density is consistent with experiment and entropic models. However, many of the assumptions of these models are totally inconsistent with our simulation results. The dependence on temperature, rate and interaction strength can be understood as reflecting changes in the plastic flow stress rather than a network entropy. A substantial energetic contribution to the stress rises rapidly as segments between entanglements are pulled taut. The thermal component of stress is less sensitive to entanglements, mostly irreversible, and directly related to the rate of local plastic arrangements. The deformation of the entanglement network is not affine to the macroscopic stretch. Entangled and unentangled chains show the same strain hardening when plotted against the microscopic chain orientation rather than the macroscopic strain. The entropic back stress responsible for shape recovery arises from chain orientation rather than entanglement. We also present some other results unrelated to strain hardening. We analyze the entanglement of polymer brushes embedded in long-chain melts and in implicit good and theta solvents. The melt-embedded brushes are more self-entangled than those in the solvents. The degree of self-entanglement of the brushes in the solvents follows a simple

  16. Temporal disconnectivity of the energy landscape in glassy systems

    NASA Astrophysics Data System (ADS)

    Lempesis, Nikolaos; Boulougouris, Georgios C.; Theodorou, Doros N.

    2013-03-01

    An alternative graphical representation of the potential energy landscape (PEL) has been developed and applied to a binary Lennard-Jones glassy system, providing insight into the unique topology of the system's potential energy hypersurface. With the help of this representation one is able to monitor the different explored basins of the PEL, as well as how - and mainly when - subsets of basins communicate with each other via transitions in such a way that details of the prior temporal history have been erased, i.e., local equilibration between the basins in each subset has been achieved. In this way, apart from detailed information about the structure of the PEL, the system's temporal evolution on the PEL is described. In order to gather all necessary information about the identities of two or more basins that are connected with each other, we consider two different approaches. The first one is based on consideration of the time needed for two basins to mutually equilibrate their populations according to the transition rate between them, in the absence of any effect induced by the rest of the landscape. The second approach is based on an analytical solution of the master equation that explicitly takes into account the entire explored landscape. It is shown that both approaches lead to the same result concerning the topology of the PEL and dynamical evolution on it. Moreover, a "temporal disconnectivity graph" is introduced to represent a lumped system stemming from the initial one. The lumped system is obtained via a specially designed algorithm [N. Lempesis, D. G. Tsalikis, G. C. Boulougouris, and D. N. Theodorou, J. Chem. Phys. 135, 204507 (2011), 10.1063/1.3663207]. The temporal disconnectivity graph provides useful information about both the lumped and the initial systems, including the definition of "metabasins" as collections of basins that communicate with each other via transitions that are fast relative to the observation time. Finally, the two examined

  17. Direct Imaging of Dynamic Glassy Behavior in a Strained Manganite Film

    NASA Astrophysics Data System (ADS)

    Kundhikanjana, Worasom; Sheng, Zhigao; Yang, Yongliang; Lai, Keji; Ma, Eric Yue; Cui, Yong-Tao; Kelly, Michael A.; Nakamura, Masao; Kawasaki, Masashi; Tokura, Yoshinori; Tang, Qiaochu; Zhang, Kun; Li, Xinxin; Shen, Zhi-Xun

    2015-12-01

    Complex many-body interaction in perovskite manganites gives rise to a strong competition between ferromagnetic metallic and charge-ordered phases with nanoscale electronic inhomogeneity and glassy behaviors. Investigating this glassy state requires high-resolution imaging techniques with sufficient sensitivity and stability. Here, we present the results of a near-field microwave microscope imaging on the strain-driven glassy state in a manganite film. The high contrast between the two electrically distinct phases allows direct visualization of the phase separation. The low-temperature microscopic configurations differ upon cooling with different thermal histories. At sufficiently high temperatures, we observe switching between the two phases in either direction. The dynamic switching, however, stops below the glass transition temperature. Compared with the magnetization data, the phase separation was microscopically frozen, while spin relaxation was found in a short period of time.

  18. Fate of a genetically modified bacterium in foregut of glassy-winged sharpshooter (Hemiptera: Cicadellidae).

    PubMed

    Ramirez, José L; Perring, Thomas M; Miller, Thomas A

    2008-10-01

    Symbiotic control is a new strategy being investigated to prevent the spread of insect-transmitted pathogens by reducing vector competence. We are developing this strategy to reduce the spread of Xylella fastidiosa by Homalodisca vitripennis (Germar) [formerly Homalodisca coagulata (Say)] (Hemiptera: Cicadellidae), the glassy-winged sharpshooter. In this study, the fate of a transformed symbiotic bacterium, Alcaligenes xylosoxidans variety denitriicans (S1Axd), in the foregut of glassy-winged sharpshooter when fed on citrus (Citrus spp.) and grape (Vitris spp.) was assessed. TaqMan-based quantitative real-time polymerase chain reaction (PCR) was used to detect and quantify bacterial cells remaining in the foregut at 0, 2, 4, 9, and 12 d after acquisition. S1Axd titer dropped rapidly by 2 d after acquisition, but in spite of this, at end of the 12-d experimental period, 45 and 38% of the glassy-winged sharpshooters retained the transformed bacteria, when fed on grape and citrus, respectively.

  19. Broadband terahertz time-domain spectroscopy : crystalline and glassy drug materials

    NASA Astrophysics Data System (ADS)

    Kojima, Seiji; Shibata, Tomohiko; Igawa, Hikaru; Mori, Tatsuya

    2014-03-01

    Low-energy IR active modes of glassy and crystalline drug materials were studied by the broadband Terahertz Time Domain Spectroscopy (THz-TDS) in the frequency range from 0.5 to 6.5 THz using a Cherenkov type THz generator. In order to determine the real and imaginary parts of complex dielectric constant, all samples were measured by the transmission using a pure pellet without mixing polyethylene. For glassy indomethacine, the broadband THz spectrum of real part of dielectric constant shows step-wise decrease with the increase of frequency, while the imaginary part shows a broad peak at about 3 THz reflecting quenched glassy disordered structure. The observed spectra of crystalline racemic ketoprofen show the noncoincidence of peak frequencies between low-frequency Raman scattering and THz absorbance spectra. It can be attributed to the fact that the mutual exclusion principle between Raman and IR activities holds below 6 THz.

  20. Direct Imaging of Dynamic Glassy Behavior in a Strained Manganite Film.

    PubMed

    Kundhikanjana, Worasom; Sheng, Zhigao; Yang, Yongliang; Lai, Keji; Ma, Eric Yue; Cui, Yong-Tao; Kelly, Michael A; Nakamura, Masao; Kawasaki, Masashi; Tokura, Yoshinori; Tang, Qiaochu; Zhang, Kun; Li, Xinxin; Shen, Zhi-Xun

    2015-12-31

    Complex many-body interaction in perovskite manganites gives rise to a strong competition between ferromagnetic metallic and charge-ordered phases with nanoscale electronic inhomogeneity and glassy behaviors. Investigating this glassy state requires high-resolution imaging techniques with sufficient sensitivity and stability. Here, we present the results of a near-field microwave microscope imaging on the strain-driven glassy state in a manganite film. The high contrast between the two electrically distinct phases allows direct visualization of the phase separation. The low-temperature microscopic configurations differ upon cooling with different thermal histories. At sufficiently high temperatures, we observe switching between the two phases in either direction. The dynamic switching, however, stops below the glass transition temperature. Compared with the magnetization data, the phase separation was microscopically frozen, while spin relaxation was found in a short period of time.

  1. Glassiness and exotic entropy scaling induced by quantum fluctuations in a disorder-free frustrated magnet.

    PubMed

    Klich, I; Lee, S-H; Iida, K

    2014-04-01

    When spins are arranged in a lattice of triangular motif, the phenomenon of frustration leads to numerous energetically equivalent ground states, and results in exotic states such as spin liquid and spin ice. Here we report an alternative situation: a system, classically a liquid, freezes in the clean limit into a glassy state induced by quantum fluctuations. We call such glassy state a spin jam. The case in point is a frustrated magnet, where spins are arranged in a triangular network of bipyramids. Quantum corrections break the classical degeneracy into a set of aperiodic spin configurations forming local minima in a rugged energy landscape. This is established by mapping the problem into tiling with hexagonal tiles. The number of tessellations scales with the boundary length rather than its volume, showing the absence of local zero-energy modes. Low-temperature thermodynamics is discussed to compare it with other glassy materials.

  2. Decision Matrices: Tools to Enhance Middle School Engineering Instruction

    ERIC Educational Resources Information Center

    Gonczi, Amanda L.; Bergman, Brenda G.; Huntoon, Jackie; Allen, Robin; McIntyre, Barb; Turner, Sheri; Davis, Jen; Handler, Rob

    2017-01-01

    Decision matrices are valuable engineering tools. They allow engineers to objectively examine solution options. Decision matrices can be incorporated in K-12 classrooms to support authentic engineering instruction. In this article we provide examples of how decision matrices have been incorporated into 6th and 7th grade classrooms as part of an…

  3. Improved Separability Criteria Based on Bloch Representation of Density Matrices

    PubMed Central

    Shen, Shu-Qian; Yu, Juan; Li, Ming; Fei, Shao-Ming

    2016-01-01

    The correlation matrices or tensors in the Bloch representation of density matrices are encoded with entanglement properties. In this paper, based on the Bloch representation of density matrices, we give some new separability criteria for bipartite and multipartite quantum states. Theoretical analysis and some examples show that the proposed criteria can be more efficient than the previous related criteria. PMID:27350031

  4. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301,...

  5. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301,...

  6. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301,...

  7. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301,...

  8. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301,...

  9. Fungible Correlation Matrices: A Method for Generating Nonsingular, Singular, and Improper Correlation Matrices for Monte Carlo Research.

    PubMed

    Waller, Niels G

    2016-01-01

    For a fixed set of standardized regression coefficients and a fixed coefficient of determination (R-squared), an infinite number of predictor correlation matrices will satisfy the implied quadratic form. I call such matrices fungible correlation matrices. In this article, I describe an algorithm for generating positive definite (PD), positive semidefinite (PSD), or indefinite (ID) fungible correlation matrices that have a random or fixed smallest eigenvalue. The underlying equations of this algorithm are reviewed from both algebraic and geometric perspectives. Two simulation studies illustrate that fungible correlation matrices can be profitably used in Monte Carlo research. The first study uses PD fungible correlation matrices to compare penalized regression algorithms. The second study uses ID fungible correlation matrices to compare matrix-smoothing algorithms. R code for generating fungible correlation matrices is presented in the supplemental materials.

  10. Elastic properties of aspirin in its crystalline and glassy phases studied by micro-Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Ko, Jae-Hyeon; Lee, Kwang-Sei; Ike, Yuji; Kojima, Seiji

    2008-11-01

    The acoustic waves propagating along the direction perpendicular to the (1 0 0) cleavage plane of aspirin crystal were investigated using micro-Brillouin spectroscopy from which C11, C55 and C66 were obtained. The temperature dependence of the longitudinal acoustic waves could be explained by normal anharmonic lattice models, while the transverse acoustic waves showed an abnormal increase in the hypersonic attenuation at low temperatures indicating their coupling to local remnant dynamics. The sound velocity as well as the attenuation of the longitudinal acoustic waves of glassy aspirin showed a substantial change at ˜235 K confirming a transition from glassy to supercooled liquid state in vitreous aspirin.

  11. A Thermodynamic Theory of Solid Viscoelasticity. Part 3: Nonlinear Glassy Viscoelasticity, Stability Constraints, Specifications

    NASA Technical Reports Server (NTRS)

    Freed, Alan; Leonov, Arkady I.

    2002-01-01

    This paper, the last in the series, continues developing the nonlinear constitutive relations for non-isothermal, compressible, solid viscoelasticity. We initially discuss a single integral approach, more suitable for the glassy state of rubber-like materials, with basic functionals involved in the thermodynamic description for this type of viscoelasticity. Then we switch our attention to analyzing stability constraints, imposed on the general formulation of the nonlinear theory of solid viscoelasticity. Finally, we discuss specific (known from the literature or new) expressions for material functions that are involved in the constitutive formulations of both the rubber-like and glassy-like, complementary parts of the theory.

  12. lnterferometric Examination of Small (Glassy Spherules and Related Objects in a 5-Graml Lunar Dust Sample.

    PubMed

    Tolansky, S

    1970-01-30

    Over two hundred spherules and cylinders were extracted from the lunar dust sample. Sizes ranged from 0.7 to 0.03 millimeters, and most were shiny glassy objects, which were studied by interferometry. This study reveals very high spcular feflection, frequentperfect sphericity, and clear evidence n some objects of micracking and microchipping. Many spheres were once projectiles. Some have inpacted in free flight with much smaller pices of rocky material, which embedded in the surface. It is conjectured that the glassy spherules originated as a gas-blown shower from a pool of molten glass.

  13. Fabrication and Investigation of Intermetallic Compound-Glassy Phase Composites having Tensile Ductility

    DTIC Science & Technology

    2012-08-09

    with Mg-Y-Cu BGA, MgY phase also has a cP2 B2 structure), Mg-Y-Ag (AgMg phase also has a cP2 B2 structure and is ductile) and Y-Cu-Zn and some other...result were obtained is connected with cP2 TiNi phase which demonstrates martensitic transformations. Choice of alloys and sample preparation...1. The tentative compositions at which bulk glassy phase formation and possible formation of cP2 crystal-glassy composites are Cu-Y (starting from

  14. Effects of xylem-sap composition on glassy-winged sharpshooter egg maturation on high and low quality host plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glassy-winged sharpshooters must feed as adults to produce mature eggs. Cowpea and sunflower are both readily accepted by the glassy-winged sharpshooter for feeding, but egg production on sunflower was reported to be lower than egg production on cowpea. To better understand the role of adult diet in...

  15. Characterization of molecular mobility within the glassy matrix of dry seeds using mechanical properties: pea cotyledon as a test study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed glasses form during maturation drying and regulate seed longevity. Seeds continue to age within the glassy state and, even during cryogenic storage, viability eventually declines. Inevitability of aging suggests some level of molecular motion within the glassy matrix and quantifying these “rel...

  16. Approximate inverse preconditioners for general sparse matrices

    SciTech Connect

    Chow, E.; Saad, Y.

    1994-12-31

    Preconditioned Krylov subspace methods are often very efficient in solving sparse linear matrices that arise from the discretization of elliptic partial differential equations. However, for general sparse indifinite matrices, the usual ILU preconditioners fail, often because of the fact that the resulting factors L and U give rise to unstable forward and backward sweeps. In such cases, alternative preconditioners based on approximate inverses may be attractive. We are currently developing a number of such preconditioners based on iterating on each column to get the approximate inverse. For this approach to be efficient, the iteration must be done in sparse mode, i.e., we must use sparse-matrix by sparse-vector type operatoins. We will discuss a few options and compare their performance on standard problems from the Harwell-Boeing collection.

  17. Edge universality for deformed Wigner matrices

    NASA Astrophysics Data System (ADS)

    Lee, Ji Oon; Schnelli, Kevin

    2015-09-01

    We consider N × N random matrices of the form H = W + V where W is a real symmetric Wigner matrix and V a random or deterministic, real, diagonal matrix whose entries are independent of W. We assume subexponential decay for the matrix entries of W and we choose V so that the eigenvalues of W and V are typically of the same order. For a large class of diagonal matrices V, we show that the rescaled distribution of the extremal eigenvalues is given by the Tracy-Widom distribution F1 in the limit of large N. Our proofs also apply to the complex Hermitian setting, i.e. when W is a complex Hermitian Wigner matrix.

  18. Characteristic Matrices for Spherical Shell Photonic Systems

    NASA Technical Reports Server (NTRS)

    Fuller, Kirk A.; Smith, David D.

    2004-01-01

    We establish a parallel between the transfer matrix used in the study of plane-parallel photonic structures and the matrix characterizing transfer of partial waves in concentric spheres. We derive explicit expressions for the elements of the transfer matrix for concentric spherical layers, and from those expressions derive the scattering coefficients of a multilayered sphere. The transfer matrices are 4x4 block diagonal with only four independent elements. Matrix elements for the case of TM waves are related to those for the case of TE waves through simple interchange and multiplicative constants. In analogy with plane parallel layers, the transfer matrix for concentric multilayers is simply the product of the transfer matrices of the individual layers.

  19. Evolutionary Games with Randomly Changing Payoff Matrices

    NASA Astrophysics Data System (ADS)

    Yakushkina, Tatiana; Saakian, David B.; Bratus, Alexander; Hu, Chin-Kun

    2015-06-01

    Evolutionary games are used in various fields stretching from economics to biology. In most of these games a constant payoff matrix is assumed, although some works also consider dynamic payoff matrices. In this article we assume a possibility of switching the system between two regimes with different sets of payoff matrices. Potentially such a model can qualitatively describe the development of bacterial or cancer cells with a mutator gene present. A finite population evolutionary game is studied. The model describes the simplest version of annealed disorder in the payoff matrix and is exactly solvable at the large population limit. We analyze the dynamics of the model, and derive the equations for both the maximum and the variance of the distribution using the Hamilton-Jacobi equation formalism.

  20. Analysis of thematic map classification error matrices.

    USGS Publications Warehouse

    Rosenfield, G.H.

    1986-01-01

    The classification error matrix expresses the counts of agreement and disagreement between the classified categories and their verification. Thematic mapping experiments compare variables such as multiple photointerpretation or scales of mapping, and produce one or more classification error matrices. This paper presents a tutorial to implement a typical problem of a remotely sensed data experiment for solution by the linear model method.-from Author

  1. Some physical applications of random hierarchical matrices

    SciTech Connect

    Avetisov, V. A.; Bikulov, A. Kh.; Vasilyev, O. A.; Nechaev, S. K.; Chertovich, A. V.

    2009-09-15

    The investigation of spectral properties of random block-hierarchical matrices as applied to dynamic and structural characteristics of complex hierarchical systems with disorder is proposed for the first time. Peculiarities of dynamics on random ultrametric energy landscapes are discussed and the statistical properties of scale-free and polyscale (depending on the topological characteristics under investigation) random hierarchical networks (graphs) obtained by multiple mapping are considered.

  2. Computing partial traces and reduced density matrices

    NASA Astrophysics Data System (ADS)

    Maziero, Jonas

    Taking partial traces (PTrs) for computing reduced density matrices, or related functions, is a ubiquitous procedure in the quantum mechanics of composite systems. In this paper, we present a thorough description of this function and analyze the number of elementary operations (ops) needed, under some possible alternative implementations, to compute it on a classical computer. As we note, it is worthwhile doing some analytical developments in order to avoid making null multiplications and sums, what can considerably reduce the ops. For instance, for a bipartite system ℋa⊗ℋb with dimensions da=dimℋa and db=dimℋb and for da,db≫1, while a direct use of PTr definition applied to ℋb requires 𝒪(da6db6) ops, its optimized implementation entails 𝒪(da2db) ops. In the sequence, we regard the computation of PTrs for general multipartite systems and describe Fortran code provided to implement it numerically. We also consider the calculation of reduced density matrices via Bloch’s parametrization with generalized Gell Mann’s matrices.

  3. Scattering Matrices and Conductances of Leaky Tori

    NASA Astrophysics Data System (ADS)

    Pnueli, A.

    1994-04-01

    Leaky tori are two-dimensional surfaces that extend to infinity but which have finite area. It is a tempting idea to regard them as models of mesoscopic systems connected to very long leads. Because of this analogy-scattering matrices on leaky tori are potentially interesting, and indeed-the scattering matrix on one such object-"the" leaky torus-was studied by M. Gutzwiller, who showed that it has chaotic behavior. M. Antoine, A. Comtet and S. Ouvry generalized Gutzwiller‧s result by calculating the scattering matrix in the presence of a constant magnetic field B perpendicular to the surface. Motivated by these results-we generalize them further. We define scattering matrices for spinless electrons on a general leaky torus in the presence of a constant magnetic field "perpendicular" to the surface. From the properties of these matrices we show the following: (a) For integer values of B, Tij (the transition probability from cusp i to cusp j), and hence also the Büttiker conductances of the surfaces, are B-independent (this cannot be interpreted as a kind of Aharonov-Bohm effect since a magnetic force is acting on the electrons). (b) The Wigner time-delay is a monotonically increasing function of B.

  4. Preconditioning matrices for Chebyshev derivative operators

    NASA Technical Reports Server (NTRS)

    Rothman, Ernest E.

    1986-01-01

    The problem of preconditioning the matrices arising from pseudo-spectral Chebyshev approximations of first order operators is considered in both one and two dimensions. In one dimension a preconditioner represented by a full matrix which leads to preconditioned eigenvalues that are real, positive, and lie between 1 and pi/2, is already available. Since there are cases in which it is not computationally convenient to work with such a preconditioner, a large number of preconditioners were studied which were more sparse (in particular three and four diagonal matrices). The eigenvalues of such preconditioned matrices are compared. The results were applied to the problem of finding the steady state solution to an equation of the type u sub t = u sub x + f, where the Chebyshev collocation is used for the spatial variable and time discretization is performed by the Richardson method. In two dimensions different preconditioners are proposed for the matrix which arises from the pseudo-spectral discretization of the steady state problem. Results are given for the CPU time and the number of iterations using a Richardson iteration method for the unpreconditioned and preconditioned cases.

  5. Bruit thermique et effets quantiques dans une cavité optique de grande finesse

    NASA Astrophysics Data System (ADS)

    Caniard, T.; Briant, T.; Heidmann, A.; Pinard, M.

    2006-10-01

    Nous nous intéressons aux bruits dans les mesures optiques de très grande sensibilité et aux limites associées. Une des limitations fondamentales des mesures interférométriques, telles que les détections d'ondes gravitationnelles, est liée aux fluctuations de la pression de radiation exercée par la lumière sur les miroirs. Celle-ci induit des corrélations quantiques entre la position des miroirs et les fluctuations de la lumière. L'observation de ces effets quantiques ouvrirait de nombreuses perspectives: étude de la limite quantique standard, production d'états comprimés, réalisation d'une mesure quantique non destructive ldots

  6. L'effet Casimir : théorie et expériences

    NASA Astrophysics Data System (ADS)

    Lambrecht, A.; Genet, C.; Intravaia, F.; Reynaud, S.

    2004-11-01

    L'existence de fluctuations irréductibles de champ dans le vide est une prédiction importante de la théorie quantique. Ces fluctuations ont de nombreuses conséquences observables comme l'effet Casimir, qui est maintenant mesuré avec une bonne précision et un bon accord avec la théorie, pourvu que celle-ci tienne compte des différences entre les expériences rélles et la situation idéale considérée par H.G.B. Casimir. Nous présenterons quelqu'unes des expériences récentes et discuterons les principales corrections à la force de Casimir liées à la situation expérimentale.

  7. Effet Bauschinger lors de la plasticité cyclique de l'aluminium pur monocristallin

    NASA Astrophysics Data System (ADS)

    Alhamany, A.; Chicois, J.; Fougères, R.; Hamel, A.

    1992-08-01

    This paper is concerned with the study of microscopic mechanisms which control the cyclic deformation of pure aluminium and especially with the analysis of the Bauschinger effect which appears in aluminium single crystals deformed by cyclic straining. Fatigue tests are performed on Al single crystals with the crystal axis parallel to [ overline{1}23] at room temperature, at plastic shear strain amplitudes in the range from 10^{-4} to 3× 10^{-3}. Mechanical saturation is not obtained at any strain level. Instead, a hardening-softening-secondary hardening sequence is found. The magnitude of the Bauschinger effect as the difference between yield stresses in traction and in compression, changes all along the fatigue loop and during the fatigue test. The Bauschinger effect disappears at two points of the fatigue loop, one in the traction part, the other in the compression one. At these points, the Bauschinger effect is inverted. Dislocation arrangement evolutions with fatigue conditions can explain the cyclic behaviour of Al single crystals. An heterogeneous dislocation distribution can be observed in the cyclically strained metal : dislocation tangles, long dislocation walls and dislocation cell walls, separated by dislocation poor channels appear in the material as a function of the cycle number. The long range internal stress necessary to ensure the compatibility of deformation between the hard and soft regions controls the observed Bauschinger effect. Ce travail s'inscrit dans le cadre de l'étude des mécanismes microsocopiques intervenant lors de la déformation cyclique de l'aluminium pur et concerne en particulier l'analyse de l'effet Bauschinger apparaissant au cours de la solliciation cyclique des monocristaux. L'étude a été menée à température ambiante sur des monocristaux d'aluminium pur orientés pour un glissement simple (axe [ overline{1}23] ), à des amplitudes de déformation plastique comprise entre 10^{-4} et quelques 10^{-3}. Nous n'avons pas

  8. L’effet du yoga chez les patients atteints de cancer

    PubMed Central

    Côté, Andréanne; Daneault, Serge

    2012-01-01

    Résumé Objectif Déterminer si le yoga thérapeutique améliore la qualité de vie de patients atteints de cancer. Sources des données Recherche effectuée avec la base de données MEDLINE (1950–2010) en utilisant les mots-clés yoga, cancer et quality of life. Sélection des études Priorité accordée aux études cliniques randomisées contrôlées évaluant l’effet du yoga sur différents symptômes susceptibles de se présenter chez des patients atteints de cancer en Amérique du Nord. Synthèse Quatre études cliniques randomisées contrôlées ont d’abord été analysées, puis 2 études sans groupe-contrôle. Trois études réalisées en Inde et au Proche-Orient ont également apporté des éléments intéressants au plan méthodologique. Les interventions proposées comprenaient des séances de yoga d’une durée et d’une fréquence variables. Les paramètres mesurés variaient également d’une étude à l’autre. Plusieurs symptômes ont connu des améliorations significatives avec le yoga (meilleure qualité du sommeil, diminution des symptômes anxieux ou dépressifs, amélioration du bien-être spirituel, etc.). Il a aussi semblé que la qualité de vie, dans sa globalité ou dans certaines de ses composantes spécifiques, s’améliorait. Conclusion La variété des effets bénéfiques produits, l’absence d’effet secondaire et le rapport coût-bénéfice avantageux du yoga thérapeutique en fait une intervention intéressante à suggérer par les médecins de famille aux patients atteints de cancer. Certaines lacunes méthodologiques ont pu diminuer la puissance statistique des études présentées, à commencer par la taille restreinte des échantillons et par l’assiduité variable des patients soumis à l’intervention. Il est également possible que les échelles de mesure utilisées ne convenaient pas à ce type de situation et de clientèle pour qu’en soit dégagé un effet significatif. Toutefois, les commentaires

  9. Fabrication of Glassy and Crystalline Ferroelectric Oxide by Containerless Processing

    NASA Astrophysics Data System (ADS)

    Yoda, Shinichi

    1. Instruction Much effort has been devoted to forming bulk glass from the melt of ferroelectric crystalline materials without adding any network-forming oxides such as SiO2 due to the potential for producing transparent glass ceramics with high dielectric constant and enhanced piezoelectric, pyroelectric and electro-optic effects. However, they require a higher cooling rate than glass formed by conventional techniques. Therefore, only amorphous thin-films have been formed, using rapid quenching with a cooling rate >105 K/s. The containerless processing is an attractive synthesis technique as it can prevent melt contamination, minimize heterogeneous nucleation, and allow melt to achieve deep undercooling for forming metastable phase and glassy material. Recently a new ferroelectric materiel, monoclinic BaTi2 O5 , with Currie temperature as 747 K was reported. In this study, we fabricated a bulk BaTi2 O5 glass from melt using containerless processing to study the phase relations and ferroelectric properties of BaTi2 O5 . To our knowledge, this was the first time that a bulk glass of ferroelectric material was fabricated from melt without adding any network-forming oxide. 2. Experiments BaTi2 O5 sphere glass with 2mm diameter was fabricated using containerless processing in an Aerodynamic Levitation Furnace (ALF). The containerless processing allowed the melt to achieve deep undercooling for glass forming. High purity commercial BaTiO3 and TiO2 powders were mixed with a mole ratio of 1:1 and compressed into rods and then sintered at 1427 K for 10 h. Bulk samples with a mass of about 20 mg were cut from the rod, levitated with the ALF, and then melted by a CO2 laser beam. After quenching with a cooling rate of about 1000 K/s, 2 mm diameter sphere glass could be obtained. To analyze the glass structure, a high-energy x-ray diffraction experiment was performed using an incident photon energy of 113.5 keV at the high-energy x-ray diffraction beamline BL04B2 of SPring-8

  10. Deterministic sensing matrices in compressive sensing: a survey.

    PubMed

    Nguyen, Thu L N; Shin, Yoan

    2013-01-01

    Compressive sensing is a sampling method which provides a new approach to efficient signal compression and recovery by exploiting the fact that a sparse signal can be suitably reconstructed from very few measurements. One of the most concerns in compressive sensing is the construction of the sensing matrices. While random sensing matrices have been widely studied, only a few deterministic sensing matrices have been considered. These matrices are highly desirable on structure which allows fast implementation with reduced storage requirements. In this paper, a survey of deterministic sensing matrices for compressive sensing is presented. We introduce a basic problem in compressive sensing and some disadvantage of the random sensing matrices. Some recent results on construction of the deterministic sensing matrices are discussed.

  11. Centrosymmetric property of unitary matrices that preserve the set of ( T + H)-matrices under similarity transformations

    NASA Astrophysics Data System (ADS)

    Abdikalykov, A. K.

    2015-05-01

    The following problem is discussed: what are unitary n × n matrices U that map the linear space of ( T + H)-matrices into itself by similarity transformations? Analogous problems for the spaces of Toeplitz and Hankel matrices were solved recently. For ( T + H)-matrices, the problem of describing appropriate matrices U appears to be considerably more complex and is still open. The result proved in this paper may contribute to the complete solution of this problem. Namely, every such matrix U is either centrosymmetric or skew-centrosymmetric; moreover, only the first variant is possible for odd n.

  12. Substrate-borne vibrational signals in intraspecific communication of glassy-winged sharpshooters (GWSS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exploitation of vibrational signals for suppressing glassy-winged sharpshooter (GWSS) populations could prove to be a useful tool. However, existing knowledge on GWSS vibrational communication is insufficient to implement a management program for this pest in California. Therefore, the objective of ...

  13. Glassy-winged sharpshooter oviposition effects on foliar grapevine and red-tipped photinia terpenoid levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is an important vector of Xylella fastidiosa, the bacterium that causes Pierce's disease of grapevine and is a threat to grape production throughout the United States. Female GWSS deposit egg masses be...

  14. Effects of feeding on glassy-winged sharpshooter lipid content and egg production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glassy-winged sharpshooter females emerge without mature eggs, and females must feed to produce mature eggs. As a result, allocation of incoming resources must be balanced between egg production and maintenance of other critical biological functions. Central to this process is allocation of lipids s...

  15. Glassy-winged sharpshooter oviposition effects on photinia volatile chemistry with implications on egg parasitoid effectiveness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An effective way to limit incidence of Pierce’s disease of grapevine is to reduce populations of glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), which transmit the causal bacterium, Xylella fastidiosa. One strategy is to utilize egg parasitoids such as ...

  16. Glassy-winged sharpshooter can use a mechanical mechanism to inoculate Xylella fastidiosa into grapevines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xylem-feeding leafhoppers such as the glassy-winged sharpshooter, Homalodisca vitripennis (Cicadellidae: Cicadellinae), are thought to inoculate the bacterium Xylella fastidiosa (Xf) from colonies bound to cuticle of the sharpshooter’s functional foregut (precibarium and cibarium). The mechanism of ...

  17. Phylogenetic analysis of heat shock proteins in Glassy-winged sharpshooter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four heat shock protein transcripts were produced from the glassy-winged sharpshooter Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae) which is the major vector of Xylella fastidiosa, the causal agent of Pierce’s disease of grapes. As genomic information has continued to be produced resea...

  18. Phylogenetic analysis of heat shock proteins in Glassy-winged sharpshooter (Homalodisca vitripennis)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat shock proteins were identified in the glassy-winged sharpshooter, GWSS, Homalodisca vitripennis. The overall importance and function of HSPs lie in their ability to maintain protein integrity and activity during stressful conditions, such as extreme heat, cold, drought, or other stresses. The G...

  19. Sequence polymorphism of a glassy-winged sharpshooter phytoreovirus reveals a bottleneck in the Californian population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The glassy-winged sharpshooter (GWSS; Homalodisca vitripennis Germar) is an invasive insect introduced to California circa 1989. Native to the southeastern U.S. and northeastern Mexico, GWSS is of economic concern as a vector of the Pierce’s disease bacterium Xylella fastidiosa. Recently, a novel ...

  20. Kinetics of phase transformation of carbon nanotubes containing Se85Te10Ag5 glassy composites

    NASA Astrophysics Data System (ADS)

    Upadhyay, A. N.; Singh, Kedar

    2016-12-01

    Carbon nanotubes (CNTs) containing glassy composites [(Se85Te10Ag5)100-X(CNT)X] (X = 0, 3 and 5) have been prepared by the melt-quenching technique. The differential scanning calorimetry (DSC) technique was used to study changes in the kinetics of phase transformations of [(Se85Te10Ag5)100-X(CNT)X] (X = 0, 3 and 5) after the incorporation of CNTs under non-isothermal conditions at different heating rates (5, 10, 15 and 20 K min-1). The calculated values of the activation energy of crystallization (E c) and the Avrami index (n) decrease whereas the activation energy of the glass transition (E g) increases for CNTs containing glass composites; such effects are explained on the basis of effective CNTs mediating through a cross-link with the pure-Se85Te10Ag5 glassy matrix. The superiority of the CNT-Se85Te10Ag5 glassy composite over the pure glassy alloy have also been briefly mentioned in regard to electrical, thermal and mechanical properties at room temperature.

  1. Microarray analysis of diapause in the glassy-winged sharpshooter (Homalodisca vitripennis: Hemiptera)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We identified several genes from the pathway which controls leafhopper diapause. Diapause in the glassy-winged sharpshooter, GWSS, Homalodisca vitripennis, is poorly understood, yet is an important physiological condition which permits leafhoppers to survive adverse conditions such as winter tempera...

  2. Microarray analysis of gene expression and diapause in Glassy-winged Sharpshooter (Homalodisca vitripennis: Hemiptera: Cicadellidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The condition of diapause in the glassy-winged sharpshooter, GWSS, Homalodisca vitripennis, is poorly understood. Diapause is better known from other, non hemipteran insects. We used oligonucleotide microarrays to address the specificities of transcriptional responses of adult female GWSS, which wer...

  3. Abundance and consumption rate of glassy-winged sharpshooter (Hemiptera: Cicadellidae) on peaches and plums

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Homalodisca vitripennis, also known as the glassy-winged sharpshooter, is a primary vector of phony peach and plum leaf scald diseases caused by Xylella fastidiosa Wells et al. Two of the following scions, (Prunus persica L. Batch cvs. Flordaking and June Gold and Prunus salicina L. cvs. Methley an...

  4. Optical and mechanical behaviors of glassy silicone networks derived from linear siloxane precursors

    NASA Astrophysics Data System (ADS)

    Jang, Heejun; Seo, Wooram; Kim, Hyungsun; Lee, Yoonjoo; Kim, Younghee

    2016-01-01

    Silicon-based inorganic polymers are promising materials as matrix materials for glass fiber composites because of their good process ability, transparency, and thermal property. In this study, for utilization as a matrix precursor for a glass-fiber-reinforced composite, glassy silicone networks were prepared via hydrosilylation of linear/pendant Si-H polysiloxanes and the C=C bonds of viny-lterminated linear/cyclic polysiloxanes. 13C nuclear magnetic resonance spectroscopy was used to determine the structure of the cross-linked states, and a thermal analysis was performed. To assess the mechanical properties of the glassy silicone networks, we performed nanoindentation and 4-point bending tests. Cross-linked networks derived from siloxane polymers are thermally and optically more stable at high temperatures. Different cross-linking agents led to final networks with different properties due to differences in the molecular weights and structures. After stepped postcuring, the Young's modulus and the hardness of the glassy silicone networks increased; however, the brittleness also increased. The characteristics of the cross-linking agent played an important role in the functional glassy silicone networks.

  5. Preface: Proceedings of the Workshop on Mechanical Behavior of Glassy Materials (Vancouver, 21 23 July 2007)

    NASA Astrophysics Data System (ADS)

    Rottler, Joerg; Kennett, Malcolm; Stamp, Philip

    2008-06-01

    This special issue highlights some of the research topics presented at the workshop on Mechanical Behavior of Glassy Materials, which took place in Vancouver, Canada from 21-23 July 2007. The workshop was organized under the auspices of the Pacific Institute of Theoretical Physics (PITP) with support from the Pacific Institute of Mathematical Sciences (PIMS) and Simon Fraser University (SFU). During this three-day event, 23 invited lectures were presented to an international group of about 40 participants. The full conference program as well as an archive of all presentations can be found online at www.pitp.physics.ubc.ca/confs/glass07/ The aim of the workshop was to bring together theorists and experimentalists working on glassy systems, with mechanical properties as the unifying theme. The talks touched on many aspects of the glass problem, from theories of the glass transition and mode coupling approaches to glassy dynamics, to spin glasses, simulations and theories of amorphous plasticity, the universal origin of ageing and dynamical heterogeneity in glasses, and glassy phenomena in biological systems. The interplay of ideas from high- and low-temperature (quantum) regimes of glasses led to lively discussions that brought researchers in both communities to explore similarities and differences in their respective ideas and physical systems. Progress was made on several fronts, and we hope that everyone involved left with some new perspective on their particular corner of interest in a class of problems that continues to present many challenges.

  6. Columbia River Basalt Chemistry, Degassing, and Eruption Dynamics: Insights From Quenched Glassy Lapilli and Tuffs

    NASA Astrophysics Data System (ADS)

    Davis, K.; Wolff, J.; Rowe, M. C.; Neill, O. K.

    2015-12-01

    Primary eruptive vent areas for several lavas in the Imnaha and Grande Ronde Formations of the Columbia River Basalt exhibit phreatomagmatic character, due to the interaction of rising flood basalt magma with groundwater and/or surface water. Vent constructional forms range from extensive (>1 km) maar complexes with abundant basement lithics to small (<<1 km), lithic-poor low-angle cones. Phreatomagmatic tephra is lithified and variably palagonitized, but glassy basaltic lapilli can be recovered from many locations. Many lapilli have experienced variable degrees of Na leaching but preserve magmatic abundances of most other elements; nonetheless in many cases pristine, unmodified glass is amenable to analysis. In addition, phenocrysts in lapilli have fully glassy melt inclusions. Glassy lapilli have highly variable S contents between ~100 and ~1300 ppm. This is consistent with quenching before degassing was complete, a common feature of phreatomagmatic eruptions. Melt inclusions have ≤2900 ppm S, ≤3400 ppm CO2 and ≤2.6 wt% H2O, allowing estimates of atmospheric input from the main phase of Columbia River volcanism. In addition, the lithophile trace element contents, and petrogenetically significant ratios such as Ba/Nb, of glassy lapilli exhibit differ from those in the equivalent 'stony' lava flows by up to a factor of 2. This suggests that processes in the flow and crystallization of lava serve to modify trace element abundances, and may place limits on the petrogenetic significance of trace element data from crystalline lava samples.

  7. Roe Matrices for Ideal MHD and Systematic Construction of Roe Matrices for Systems of Conservation Laws

    NASA Astrophysics Data System (ADS)

    Cargo, Patricia; Gallice, Gérard

    1997-09-01

    In this paper, the construction of a Roe's scheme for the conservative system of ideal magnetohydrodynamics (MHD) is presented. As this method relies on the computation of a Roe matrix, the problem is to find a matrixA(Ul,Ur) which satisfies the following properties. It is required to be consistent with the jacobian of the fluxF, to have real eigenvalues, a complete set of eigenvectors and to satisfy the relation: ΔF=A(Ul,Ur) ΔU, whereUlandUrare two admissible states and ΔUtheir difference. For the ideal MHD system, using eulerian coordinates, a Roe matrix is obtained without any hypothesis on the specific heat ratio. Especially, its construction relies on an original expression of the magnetic pressure jump. Moreover, a Roe matrix is computed for lagrangian ideal MHD, by extending the results of Munz who obtained such a matrix for the system of lagrangian gas dynamics. So this second matrix involves arithmetic averages unlike the eulerian one, which contains classical Roe averages like in eulerian gas dynamics. In this paper, a systematic construction of lagrangian Roe matrices in terms of eulerian Roe matrices for a general system of conservation laws is also presented. This result, applied to the above eulerian and lagrangian matrices for ideal MHD, gives two new matrices for this system. In the same way, by applying this construction to the gas dynamics equations new Roe matrices are also obtained. All these matrices allow the construction of Roe type schemes. Some numerical examples on the shock tube problem show the applicability of this method.

  8. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Skrotzki, J.; Leisner, T.; Wilson, T. W.; Malkin, T. L.; Murray, B. J.

    2012-09-01

    The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA), levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition) before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosol particles that have re-vitrified in contact

  9. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Skrotzki, J.; Leisner, T.; Wilson, T. W.; Malkin, T. L.; Murray, B. J.

    2012-04-01

    The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA), levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition) before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosols that have re-vitrified in contact with the

  10. Quantitative comparison of stylet penetration behaviors of glassy-winged sharpshooter on selected hosts.

    PubMed

    Sandanayaka, W R M; Backus, E A

    2008-08-01

    New Zealand is threatened by invasion of the glassy-winged sharpshooter, Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), an important vector of Xylella fastidiosa, a gram-negative bacterium that causes Pierce's disease in grape (Vitis spp.) and scorch diseases in many other horticultural crops. Therefore, an understanding of the host acceptability, feeding behavior, and potential vector efficiency of glassy-winged sharpshooter on New Zealand crops is important. We tested host plant acceptance and feeding behaviors of glassy-winged sharpshooter on three common horticultural crops grown in New Zealand (apple [Malus spp.], grape, and citrus [Citrus spp.]), and a native plant (Metrosideros excelsa [=tomentosa] Richard, pohutukawa), using the electrical penetration graph (EPG) technique. Probing (stylet penetration) behaviors varied among the host plants, primarily due to differences in waveform event durations. Apple and grape were the most accepted host plants, on which glassy-winged sharpshooter spent the majority of its time on the plant probing and readily located and accepted a xylem cell for ingestion. This resulted in long durations of sustained xylem fluid ingestion. In contrast, pohutukawa was the least accepted host. On this plant, glassy-winged sharpshooter spent less time probing and engaged in longer and more frequent testing/searching and xylem-testing activities, rejected xylem cells frequently, and spent less time with stylets resting, before accepting a xylem cell and ultimately performing the same amount of sustained ingestion. Citrus plants contaminated with sublethal insecticide residues were intermediate between these extremes, with some acceptance of xylem, but less ingestion, probably due to presumed partial paralysis of the cibarial muscles. Implications of the results in terms of host plant acceptance and the development of a stylet penetration index are discussed.

  11. Annealing effects on the migration of ion-implanted cadmium in glassy carbon

    NASA Astrophysics Data System (ADS)

    Hlatshwayo, T. T.; Sebitla, L. D.; Njoroge, E. G.; Mlambo, M.; Malherbe, J. B.

    2017-03-01

    The migration behaviour of cadmium (Cd) implanted into glassy carbon and the effects of annealing on radiation damage introduced by ion implantation were investigated. The glassy carbon substrates were implanted with Cd at a dose of 2 × 1016 ions/cm2 and energy of 360 keV. The implantation was performed at room temperature (RT), 430 °C and 600 °C. The RT implanted samples were isochronally annealed in vacuum at 350, 500 and 600 °C for 1 h and isothermally annealed at 350 °C up to 4 h. The as-implanted and annealed samples were characterized by Raman spectroscopy and Rutherford backscattering spectrometry (RBS). Raman results revealed that implantation at room temperature amorphized the glassy carbon structure while high temperature implantations resulted in slightly less radiation damage. Isochronal annealing of the RT implanted samples resulted in some recrystallization as a function of increasing temperature. The original glassy carbon structure was not achieved at the highest annealing temperature of 600 °C. Diffusion of Cd in glassy carbon was already taking place during implantation at 430 °C. This diffusion of Cd was accompanied by significant loss from the surface during implantation at 600 °C. Isochronal annealing of the room temperature implanted samples at 350 °C for 1 h caused Cd to diffuse towards the bulk while isothermal annealing at 500 and 600 °C resulted in the migration of implanted Cd toward the surface accompanied by a loss of Cd from the surface. Isothermal annealing at 350 °C for 1 h caused Cd to diffuse towards the bulk while for annealing time >1 h Cd diffused towards the surface. These results were interpreted in terms of trapping and de-trapping of implanted Cd by radiation damage.

  12. A novel pattern transfer technique for mounting glassy carbon microelectrodes on polymeric flexible substrates

    NASA Astrophysics Data System (ADS)

    Vomero, Maria; van Niekerk, Pieter; Nguyen, Vivian; Gong, Nick; Hirabayashi, Mieko; Cinopri, Alessio; Logan, Kyle; Moghadasi, Ali; Varma, Priya; Kassegne, Sam

    2016-02-01

    We present a novel technology for transferring glassy carbon microstructures, originally fabricated on a silicon wafer through a high-temperature process, to a polymeric flexible substrate such as polyimide. This new transfer technique addresses a major barrier in Carbon-MEMS technology whose widespread use so has been hampered by the high-temperature pyrolysis process (⩾900 °C), which limits selection of substrates. In the new approach presented, patterning and pyrolysis of polymer precursor on silicon substrate is carried out first, followed by coating with a polymer layer that forms a hydrogen bond with glassy carbon and then releasing the ensuing glassy carbon structure; hence, transferring it to a flexible substrate. This enables the fabrication of a unique set of glassy carbon microstructures critical in applications that demand substrates that conform to the shape of the stimulated/actuated or sensed surface. Our findings based on Fourier transform infared spectroscopy on the complete electrode set demonstrate—for the first time—that carbonyl groups on polyimide substrate form a strong hydrogen bond with hydroxyl groups on glassy carbon resulting in carboxylic acid dimers (peaks at 2660 and 2585 cm-1). This strong bond is further confirmed by a tensile test that demonstrated an almost perfect bond between these materials that behave as an ideal composite material. Further, mechanical characterization shows that ultimate strain for such a structure is as high as 15% with yield stress of ~20 MPa. We propose that this novel technology not only offers a compelling case for the widespread use of carbon-MEMS, but also helps move the field in new and exciting directions.

  13. Glassy slags for minimum additive waste stabilization. Interim progress report, May 1993--February 1994

    SciTech Connect

    Feng, X.; Wronkiewicz, D.J.; Bates, J.K.; Brown, N.R.; Buck, E.C.; Dietz, N.L.; Gong, M.; Emery, J.W.

    1994-05-01

    Glassy slag waste forms are being developed to complement glass waste forms in implementing Minimum Additive Waste Stabilization (MAWS) for supporting DOE`s environmental restoration efforts. The glassy slag waste form is composed of various crystalline and metal oxide phases embedded in a silicate glass phase. The MAWS approach was adopted by blending multiple waste streams to achieve up to 100% waste loadings. The crystalline phases, such as spinels, are very durable and contain hazardous and radioactive elements in their lattice structures. These crystalline phases may account for up to 80% of the total volume of slags having over 80% metal loading. The structural bond strength model was used to quantify the correlation between glassy slag composition and chemical durability so that optimized slag compositions were obtained with limited crucible melting and testing. Slag compositions developed through crucible melts were also successfully generated in a pilot-scale Retech plasma centrifugal furnace at Ukiah, California. Utilization of glassy slag waste forms allows the MAWS approach to be applied to a much wider range of waste streams than glass waste forms. The initial work at ANL has indicated that glassy slags are good final waste forms because of (1) their high chemical durability; (2) their ability to incorporate large amounts of metal oxides; (3) their ability to incorporate waste streams having low contents of flux components; (4) their less stringent requirements on processing parameters, compared to glass waste forms; and (5) their low requirements for purchased additives, which means greater waste volume reduction and treatment cost savings.

  14. Identifying complexity by means of matrices

    NASA Astrophysics Data System (ADS)

    Drożdż, S.; Kwapień, J.; Speth, J.; Wójcik, M.

    2002-11-01

    Complexity is an interdisciplinary concept which, first of all, addresses the question of how order emerges out of randomness. For many reasons matrices provide a very practical and powerful tool in approaching and quantifying the related characteristics. Based on several natural complex dynamical systems, like the strongly interacting quantum many-body systems, the human brain and the financial markets, by relating empirical observations to the random matrix theory and quantifying deviations in terms of a reduced dimensionality, we present arguments in favour of the statement that complexity is a phenomenon at the edge between collectivity and chaos.

  15. Parallel mergs sort using comparison matrices. I

    SciTech Connect

    Romm, Y.E.

    1995-05-01

    The topics discussed in this paper are connected with internal merge sorting by a key (in short, M-sorting or M-sort). Originally developed by von Neumann, this is one of the first sorting methods. It still remains one of the fastest, involving Nlog{sub 2}N comparisons. The purpose of our article is to demonstrate the use of comparison matrices (CMs) for merging in M-sort. While preserving the known advantages of the sequential implementation of M-sort. CMs ensure more efficient use of main memory (one of the known weaknesses of M-sort is its large memory requirements) and effective parallelizability.

  16. Asymptotic properties of infinite Leslie matrices.

    PubMed

    Gosselin, Frédéric; Lebreton, Jean-Dominique

    2009-01-21

    The stable population theory is classically applicable to populations in which there is a maximum age after which individuals die. Demetrius [1972. On an infinite population matrix. Math. Biosci. 13, 133-137] extended this theory to infinite Leslie matrices, in which the longevity of individuals is potentially infinite. However, Demetrius had to assume that the survival probability per time step tends to 0 with age. We generalise here the conditions of application of the stable population theory to infinite Leslie matrix models and apply these results to two examples, including or not senescence.

  17. Solid-State Li-Ion Batteries Using Fast, Stable, Glassy Nanocomposite Electrolytes for Good Safety and Long Cycle-Life.

    PubMed

    Tan, Guoqiang; Wu, Feng; Zhan, Chun; Wang, Jing; Mu, Daobin; Lu, Jun; Amine, Khalil

    2016-03-09

    The development of safe, stable, and long-life Li-ion batteries is being intensively pursued to enable the electrification of transportation and intelligent grid applications. Here, we report a new solid-state Li-ion battery technology, using a solid nanocomposite electrolyte composed of porous silica matrices with in situ immobilizing Li(+)-conducting ionic liquid, anode material of MCMB, and cathode material of LiCoO2, LiNi1/3Co1/3Mn1/3O2, or LiFePO4. An injection printing method is used for the electrode/electrolyte preparation. Solid nanocomposite electrolytes exhibit superior performance to the conventional organic electrolytes with regard to safety and cycle-life. They also have a transparent glassy structure with high ionic conductivity and good mechanical strength. Solid-state full cells tested with the various cathodes exhibited high specific capacities, long cycling stability, and excellent high temperature performance. This solid-state battery technology will provide new avenues for the rational engineering of advanced Li-ion batteries and other electrochemical devices.

  18. Solid-State Li-Ion Batteries Using Fast, Stable, Glassy Nanocomposite Electrolytes for Good Safety and Long Cycle-Life

    SciTech Connect

    Tan, Guoqiang; Wu, Feng; Zhan, Chun; Wang, Jing; Mu, Daobin; Lu, Jun; Amine, Khalil

    2016-03-09

    The development of safe, stable, and long-life Li-ion batteries is being intensively pursued to enable the electrification of transportation and intelligent grid applications. Here, we report a new solid-state Li-ion battery technology, using a solid nanocomposite electrolyte composed of porous silica matrices with in situ immobilizing Li+ conducting ionic liquid, anode material of MCMB, and cathode material of LiCoO2, LiNi1/3Co1/3Mn1/3O2, or LiFePO4. An injection printing method is used for the electrode/electrolyte preparation. Solid nanocomposite electrolytes exhibit superior performance to the conventional organic electrolytes with regard to safety and cycle-life. They also have a transparent glassy structure with high ionic conductivity and good mechanical strength. Solid-state full cells tested with the various cathodes exhibited high specific capacities, long cycling stability, and excellent high temperature performance. This solid-state battery technology will provide new avenues for the rational engineering of advanced Li-ion batteries and other electrochemical devices.

  19. Frequency filtering decompositions for unsymmetric matrices and matrices with strongly varying coefficients

    SciTech Connect

    Wagner, C.

    1996-12-31

    In 1992, Wittum introduced the frequency filtering decompositions (FFD), which yield a fast method for the iterative solution of large systems of linear equations. Based on this method, the tangential frequency filtering decompositions (TFFD) have been developed. The TFFD allow the robust and efficient treatment of matrices with strongly varying coefficients. The existence and the convergence of the TFFD can be shown for symmetric and positive definite matrices. For a large class of matrices, it is possible to prove that the convergence rate of the TFFD and of the FFD is independent of the number of unknowns. For both methods, schemes for the construction of frequency filtering decompositions for unsymmetric matrices have been developed. Since, in contrast to Wittums`s FFD, the TFFD needs only one test vector, an adaptive test vector can be used. The TFFD with respect to the adaptive test vector can be combined with other iterative methods, e.g. multi-grid methods, in order to improve the robustness of these methods. The frequency filtering decompositions have been successfully applied to the problem of the decontamination of a heterogeneous porous medium by flushing.

  20. Effets Seebeck et Nernst dans les cuprates: Etude de la reconstruction de la surface de Fermi sous champ magnetique intense

    NASA Astrophysics Data System (ADS)

    Laliberte, Francis

    2010-06-01

    Ce memoire presente des mesures de transport thermoelectrique, les effets Seebeck et Nernst, dans une serie d'echantillons de supraconducteurs a haute temperature critique. Des resultats obtenus recemment au Laboratoire National des Champs Magnetiques Intenses a Grenoble sur La1.7Eu0.2Sr0.1 CuO4, La1.675Eu0.2Sr0.125CuO 4, La1.64Eu0.2Sr0.16CuO4, La1.74Eu0.1Sr0.16CuO4 et La 1.4Nd0.4Sr0.2CuO4 sont analyses. Une attention particuliere est accordee aux equations de la theorie semi-classique du transport et leur validite est verifiee. La procedure experimentale et les materiaux utilises pour concevoir les montages de mesures sont expliques en detail. Enfin, un chapitre est dedie a l'explication et l'interpretation des resultats de transport thermoelectrique sur YBa2Cu3O6+delta publies au cours de l'hiver 2010 dans les revues Nature et Physical Review Letters. Les donnees d'effet Seebeck dans les echantillons de La 1.8-x,Eu0.2SrxCuO 4, ou un changement de signe est observe, permettent de conclure a la presence d'une poche d'electrons dans la surface de Fermi qui domine le transport a basse temperature dans la region sous-dopee du diagramme de phase. Cette conclusion est similaire a celle obtenue par des mesures d'effet Hall dans YBa 2Cu3O6+delta et elle cadre bien dans un scenario de reconstruction de la surface de Fermi. Les donnees d'effet Nernst recueillies indiquent que la contribution des fluctuations supraconductrices est limitee a un modeste intervalle de temperature au-dessus de la temperature critique.

  1. Bromination of selected pharmaceuticals in water matrices.

    PubMed

    Benitez, F Javier; Acero, Juan L; Real, Francisco J; Roldan, Gloria; Casas, Francisco

    2011-11-01

    The bromination of five selected pharmaceuticals (metoprolol, naproxen, amoxicillin, phenacetin, and hydrochlorothiazide) was studied with these compounds individually dissolved in ultra-pure water. The apparent rate constants for the bromination reaction were determined as a function of the pH, obtaining the sequence amoxicillin>naproxen>hydrochlorothiazide≈phenacetin≈metoprolol. A kinetic mechanism specifying the dissociation reactions and the species formed for each compound according to its pK(a) value and the pH allowed the intrinsic rate constants to be determined for each elementary reaction. There was fairly good agreement between the experimental and calculated values of the apparent rate constants, confirming the goodness of the proposed reaction mechanism. In a second stage, the bromination of the selected pharmaceuticals simultaneously dissolved in three water matrices (a groundwater, a surface water from a public reservoir, and a secondary effluent from a WWTP) was investigated. The pharmaceutical elimination trend agreed with the previously determined rate constants. The influence of the main operating conditions (pH, initial bromine dose, and characteristics of the water matrix) on the degradation of the pharmaceuticals was established. An elimination concentration profile for each pharmaceutical in the water matrices was proposed based on the use of the previously evaluated apparent rate constants, and the theoretical results agreed satisfactorily with experiment. Finally, chlorination experiments performed in the presence of bromide showed that low bromide concentrations slightly accelerate the oxidation of the selected pharmaceuticals during chlorine disinfection.

  2. Generating correlation matrices based on the boundaries of their coefficients.

    PubMed

    Numpacharoen, Kawee; Atsawarungruangkit, Amporn

    2012-01-01

    Correlation coefficients among multiple variables are commonly described in the form of matrices. Applications of such correlation matrices can be found in many fields, such as finance, engineering, statistics, and medicine. This article proposes an efficient way to sequentially obtain the theoretical bounds of correlation coefficients together with an algorithm to generate n × n correlation matrices using any bounded random variables. Interestingly, the correlation matrices generated by this method using uniform random variables as an example produce more extreme relationships among the variables than other methods, which might be useful for modeling complex biological systems where rare cases are very important.

  3. A multiple shift QR-step for structured rank matrices

    NASA Astrophysics Data System (ADS)

    Vandebril, Raf; van Barel, Marc; Mastronardi, Nicola

    2010-01-01

    Eigenvalue computations for structured rank matrices are the subject of many investigations nowadays. There exist methods for transforming matrices into structured rank form, QR-algorithms for semiseparable and semiseparable plus diagonal form, methods for reducing structured rank matrices efficiently to Hessenberg form and so forth. Eigenvalue computations for the symmetric case, involving semiseparable and semiseparable plus diagonal matrices have been thoroughly explored. A first attempt for computing the eigenvalues of nonsymmetric matrices via intermediate Hessenberg-like matrices (i.e. a matrix having all subblocks in the lower triangular part of rank at most one) was restricted to the single shift strategy. Unfortunately this leads in general to the use of complex shifts switching thereby from real to complex operations. This paper will explain a general multishift implementation for Hessenberg-like matrices (semiseparable matrices are a special case and hence also admit this approach). Besides a general multishift QR-step, this will also admit restriction to real computations when computing the eigenvalues of arbitrary real matrices. Details on the implementation are provided as well as numerical experiments proving the viability of the presented approach.

  4. Effects of molecular architecture on fluid ingress behavior of glassy polymer networks

    NASA Astrophysics Data System (ADS)

    Jaskson, Matthew Blaine

    This manuscript demonstrates the synthesis of glassy polymer network isomers to control morphological variations and study solvent ingress behavior independent of chemical affinity. Well-controlled network architectures with varying free volume average hole-sizes have been shown to substantially influence solvent ingress within glassy polymer networks. Bisphenol-A diglycidyl ether (DGEBA), bisphenol-F diglycidyl ether (DGEBF), Triglycidyl p-aminophenol (pAP, MY0510), Triglycidyl maminophenol (mAP, MY0610), and tetraglydicyl-4,4'-diamino-diphenyl methane (TGDDM, MY721) were cured with 3,3'- and 4,4'-diaminodiphenyl sulfone (DDS) at a stoichiometric ratio of 1:1 oxirane to amine active hydrogen to generate a series of network architectures with an average free volume hole-size (Vh) ranging between 54-82 A3. Polymer networks were exposed to water and a broad range of organic solvents ranging in van der Waals (vdW) volumes from 18-88 A3 for up to 10,000h time. A clear relationship between glassy polymer network Vh and fluid penetration has been established. As penetrant vdW volume approached Vh, uptake kinetics significantly decreased, and as penetrant vdW volume exceeded Vh, a blocking mechanism dominated ingress and prevented penetrant transport. These results suggest that reducing the free volume hole-size is a reasonable approach to control solvent properties for glassy polymer networks. New techniques to monitor and predict the diffusion behavior of liquids through glassy networks are also presented. Digital Image Correlation (DIC) was employed to accurately measure the strain developed during case II diffusion. This technique also presented a new theory for a relationship between sample topology and irreversible macroscopic brittle failure induced by solvent absorption. A new modeling technique has been developed which can accurately predict the chemical and physical interactions a solvent may have with a glassy network. This new model can be used as a

  5. Composition of Crustal Melts at the Source Area: Information from Glassy Melt Inclusions in Anatectic Enclaves

    NASA Astrophysics Data System (ADS)

    Acosta-vigil, A.; Cesare, B.; London, D.; Morgan, G. B., VI; Buick, I.; Hermann, J.; Bartoli, O.; Remusat, L.

    2014-12-01

    Crustal anatexis, together with melt extraction and ascent to upper crustal levels, generate plutons and volcanic edifices of granitoid composition. This process constitutes the main mechanism for the differentiation of the continental crust. A recent breakthrough in the study of crustal anatexis is the discovery of former melt inclusions in peritectic minerals of anatectic rocks. These melt droplets show now as glassy inclusions in rapidly cooled anatectic enclaves within volcanic rocks, or as polycrystalline aggregates (nanogranites) in migmatites. Analysis of glassy inclusions and of rehomogenized nanogranites provide direct information on the composition of crustal melts at the source of crustal magmas, on the extent of equilibration between melt and residue, and on the fluid regime during anatexis. A comprehensive geochemical study (≈350 EMP, 100 LA-ICPMS and 80 nanoSIMS analyses) of matrix glasses and glassy melt inclusions in Pl and Grt of anatectic enclaves within El Hoyazo dacite (Betic Cordillera, S Spain), recording melt compositions during regional anatexis at ≈700-850 °C and 0.5-0.7 GPa, shows that melts are leucogranitic (FeOt+MgO+TiO2=1.0-2.0 wt%), moderately to strongly peraluminous (ASI=1.10-1.25), with H2O concentrations well below saturation (3-5 wt%). They are heterogeneous and spread around the 0.5-0.7 GPa haplogranite H2O-undersaturated eutectics. Glassy inclusions in Pl are more heterogeneous, richer in normative Qtz and H2O, and poorer in FeOt and CaO compared to glassy inclusions in Grt and matrix glass. All glasses have moderate to high concentrations of LILE and low to very low concentrations in FRTE, HFSE and REE. Glass inclusions in Pl and Grt have higher concentrations of LILE, lower concentrations of Y, Zr, REE, and lower values of Th/U compared to matrix glasses. Surprisingly, and in spite of the compositional heterogeneity, glasses are at or close to equilibrium with their residue regarding most of the trace elements, except

  6. Effets de la pollution de l’air sur la santé

    PubMed Central

    Abelsohn, Alan; Stieb, Dave M.

    2011-01-01

    Résumé Objectif Faire connaître aux médecins de famille les effets de la pollution atmosphérique sur la santé et indiquer quels conseils donner aux patients vulnérables pour qu’ils soient moins exposés. Sources de l’information On a consulté MEDLINE à l’aide des termes relatifs à la pollution atmosphérique et à ses effets indésirables. On a révisé les articles en anglais publiés entre janvier 2008 et décembre 2009. La plupart des études contenaient des preuves de niveau II. Principal message Au Canada, la pollution de l’air extérieur cause une morbidité et une mortalité importantes. Elle peut affecter le système respiratoire (exacerbation de l’asthme et de la maladie pulmonaire obstructive chronique) et le système cardiovasculaire (déclencher l’arythmie, l’insuffisance cardiaque et les AVC). La cote air santé (CAS) est un nouvel outil de communication mis au point par Santé Canada et Environnement Canada qui indique sur une échelle de 1 à 10, le risque pour la santé causé par la pollution atmosphérique. La CAS est largement diffusée dans les médias et cet outil pourrait être utile au médecin de famille pour inciter les patients à haut risque (comme ceux qui souffrent d’asthme, de maladie pulmonaire obstructive chronique ou d’insuffisance cardiaque) à réduire leur exposition à la pollution atmosphérique. Conclusion Le médecin de famille peut se servir de la CAS et de ses messages sur la santé pour enseigner aux asthmatiques et aux autres patients à risque élevé la façon de réduire les risques pour la santé causés par la pollution atmosphérique.

  7. Noisy covariance matrices and portfolio optimization II

    NASA Astrophysics Data System (ADS)

    Pafka, Szilárd; Kondor, Imre

    2003-03-01

    Recent studies inspired by results from random matrix theory (Galluccio et al.: Physica A 259 (1998) 449; Laloux et al.: Phys. Rev. Lett. 83 (1999) 1467; Risk 12 (3) (1999) 69; Plerou et al.: Phys. Rev. Lett. 83 (1999) 1471) found that covariance matrices determined from empirical financial time series appear to contain such a high amount of noise that their structure can essentially be regarded as random. This seems, however, to be in contradiction with the fundamental role played by covariance matrices in finance, which constitute the pillars of modern investment theory and have also gained industry-wide applications in risk management. Our paper is an attempt to resolve this embarrassing paradox. The key observation is that the effect of noise strongly depends on the ratio r= n/ T, where n is the size of the portfolio and T the length of the available time series. On the basis of numerical experiments and analytic results for some toy portfolio models we show that for relatively large values of r (e.g. 0.6) noise does, indeed, have the pronounced effect suggested by Galluccio et al. (1998), Laloux et al. (1999) and Plerou et al. (1999) and illustrated later by Laloux et al. (Int. J. Theor. Appl. Finance 3 (2000) 391), Plerou et al. (Phys. Rev. E, e-print cond-mat/0108023) and Rosenow et al. (Europhys. Lett., e-print cond-mat/0111537) in a portfolio optimization context, while for smaller r (around 0.2 or below), the error due to noise drops to acceptable levels. Since the length of available time series is for obvious reasons limited in any practical application, any bound imposed on the noise-induced error translates into a bound on the size of the portfolio. In a related set of experiments we find that the effect of noise depends also on whether the problem arises in asset allocation or in a risk measurement context: if covariance matrices are used simply for measuring the risk of portfolios with a fixed composition rather than as inputs to optimization, the

  8. Grapevines respond to glassy-winged sharpshooter (Homalodisca vitripennis) oviposition by increasing local and systemic terpenoid levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grapevines (Vitis vinifera) have been observed to respond to oviposition by glassy-winged sharpshooters [Homalodisca vitripennis (Germar)(Hemiptera: Cicadellidae)] by producing volatile compounds that attract egg parasitoids such as Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae). Recent work ...

  9. Host plant effects on development and reproduction of the glassy-winged sharpshooter, Homalodisca vitripennis (Homoptera: Cicadellidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development, survivorship, longevity, reproduction and life table parameters of the glassy-winged sharpshooter, Homalodisca vitripennis (Germar), were examined in the laboratory using three host plants, sunflower (Helianthus annuus L.), Chrysanthemum morifolium L. and euonymus (Euonymus japonica Thu...

  10. Electrochemiluminescence of luminol at the titanate nanotubes modified glassy carbon electrode.

    PubMed

    Xu, Guifang; Zeng, Xiaoxue; Lu, Shuangyan; Dai, Hong; Gong, Lingshan; Lin, Yanyu; Wang, Qingping; Tong, Yuejin; Chen, Guonan

    2013-01-01

    A new strategy for the construction of a sensitive and stable electrochemiluminescent platform based on titanate nanotubes (TNTs) and Nafion composite modified electrode for luminol is described, TNTs contained composite modified electrodes that showed some photocatalytic activity toward luminol electrochemiluminescence emission, and thus could dramatically enhance luminol light emission. This extremely sensitive and stable platform allowed a decrease of the experiment electrochemiluminescence luminol reagent. In addition, in luminol solution at low concentrations, we compared the capabilities of a bare glassy carbon electrode with the TNT composite modified electrode for hydrogen peroxide detection. The results indicated that compared with glassy carbon electrode this platform was extraordinarily sensitive to hydrogen peroxide. Therefore, by combining with an appropriate enzymatic reaction, this platform would be a sensitive matrix for many biomolecules.

  11. The glassy random laser: replica symmetry breaking in the intensity fluctuations of emission spectra

    PubMed Central

    Antenucci, Fabrizio; Crisanti, Andrea; Leuzzi, Luca

    2015-01-01

    The behavior of a newly introduced overlap parameter, measuring the correlation between intensity fluctuations of waves in random media, is analyzed in different physical regimes, with varying amount of disorder and non-linearity. This order parameter allows to identify the laser transition in random media and describes its possible glassy nature in terms of emission spectra data, the only data so far accessible in random laser measurements. The theoretical analysis is performed in terms of the complex spherical spin-glass model, a statistical mechanical model describing the onset and the behavior of random lasers in open cavities. Replica Symmetry Breaking theory allows to discern different kinds of randomness in the high pumping regime, including the most complex and intriguing glassy randomness. The outcome of the theoretical study is, eventually, compared to recent intensity fluctuation overlap measurements demonstrating the validity of the theory and providing a straightforward interpretation of qualitatively different spectral behaviors in different random lasers. PMID:26616194

  12. Investigation of basic thermal behavior of a-Te-Se-Ge-Sb glassy system

    NASA Astrophysics Data System (ADS)

    Nidhi, Anant Vidya; Modgil, Vivek; Chaudhary, Shobhna; Kumar, Prashant; Rangra, V. S.

    2015-05-01

    The bulk material Te9Se72Ge19-xSbx (8≤x≤12) has been prepared by melt quenching technique. The amorphous and glassy nature has been confirmed using XRD and DSC analysis respectively. The thermal kinetics of material is studied through differential scanning calorimetry under non-isothermal condition at constant heating rate. The thermal behavior, activation energy of glass transition and crystallization has been determined using appropriate models. The thermal parameter accounting for thermal stability and quality has been explored along with compositional dependence. A stable glass with high value of Tg and quality has been formed. The mild phase separation has been observed in the material at x=8, 9 and this phase separation dissolves when the Sb content further increases in glassy matrix.

  13. Relaxation of enthalpy fluctuations during sub-T(g) annealing of glassy selenium.

    PubMed

    Gulbiten, Ozgur; Mauro, John C; Lucas, Pierre

    2013-06-28

    The relaxation behavior of glass is influenced by the presence of dynamical heterogeneities, which lead to an intrinsically non-monotonic decay of fluctuations in density and enthalpy during isothermal annealing. This is apparently a universal feature of fragile glass forming systems associated with localized spatial variations in relaxation time. Here we present direct experimental observation of the nonmonotonic evolution of enthalpy fluctuations in glassy selenium annealed near room temperature. The nonmonotonic change in the distribution of enthalpy fluctuations measured by heat capacity spectroscopy offers direct evidence for the presence of dynamical heterogeneity in this glass. An enthalpy landscape model of selenium is then used to simulate annealing under identical conditions. The simulation results closely follow the evolution of enthalpy fluctuations observed experimentally. The close match between model and experiment demonstrate that enthalpy and density fluctuations are sources of dynamical heterogeneities in glassy materials.

  14. Low substrate temperature deposition of diamond coatings derived from glassy carbon

    DOEpatents

    Holcombe, C.E. Jr.; Seals, R.D.

    1995-09-26

    A process is disclosed for depositing a diamond coating on a substrate at temperatures less than about 550 C. A powder mixture of glassy carbon and diamond particles is passed through a high velocity oxy-flame apparatus whereupon the powders are heated prior to impingement at high velocity against the substrate. The powder mixture contains between 5 and 50 powder volume percent of the diamond particles, and preferably between 5 and 15 powder volume percent. The particles have a size from about 5 to about 100 micrometers, with the diamond particles being about 5 to about 30 micrometers. The flame of the apparatus provides a velocity of about 350 to about 1000 meters per second, with the result that upon impingement upon the substrate, the glassy carbon is phase transformed to diamond as coaxed by the diamond content of the powder mixture. 2 figs.

  15. Low substrate temperature deposition of diamond coatings derived from glassy carbon

    DOEpatents

    Holcombe, Jr., Cressie E.; Seals, Roland D.

    1995-01-01

    A process for depositing a diamond coating on a substrate at temperatures less than about 550.degree. C. A powder mixture of glassy carbon and diamond particles is passed through a high velocity oxy-flame apparatus whereupon the powders are heated prior to impingement at high velocity against the substrate. The powder mixture contains between 5 and 50 powder volume percent of the diamond particles, and preferably between 5 and 15 powder volume percent. The particles have a size from about 5 to about 100 micrometers, with the diamond particles being about 5 to about 30 micrometers. The flame of the apparatus provides a velocity of about 350 to about 1000 meters per second, with the result that upon impingement upon the substrate, the glassy carbon is phase transformed to diamond as coaxed by the diamond content of the powder mixture.

  16. Direct visualization of photoinduced glassy dynamics on the amorphous silicon carbide surface by STM movies

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc; Nienhaus, Lea; Haasch, Richard T.; Lyding, Joseph; Gruebele, Martin

    2015-03-01

    Glassy dynamics can be controlled by light irradiation. Sub- and above-bandgap irradiation cause numerous phenomena in glasses including photorelaxation, photoexpansion, photodarkening and pohtoinduced fluidity. We used scanning tunneling microscopy to study surface glassy dynamics of amorphous silicon carbide irradiated with above- bandgap 532 nm light. Surface clusters of ~ 4-5 glass forming unit in diameter hop mostly in a two-state fashion, both without and with irradiation. Upon irradiation, the average surface hopping activity increases by a factor of 3. A very long (~1 day) movie of individual clusters with varying laser power density provides direct evidence for photoinduced enhanced hopping on the glass surfaces. We propose two mechanisms: heating and electronic for the photoenhanced surface dynamics.

  17. Cytochrome c dynamics at gold and glassy carbon surfaces monitored by in situ scanning tunnel microscopy

    NASA Astrophysics Data System (ADS)

    Andersen, Jens E. T.; Møller, Per; Pedersen, Marianne V.; Ulstrup, Jens

    1995-02-01

    We have investigated the absorption of cytochrome c on gold and glassy carbon substrates by in situ scanning tunnel microscopy under potentiostatic control of both substrate and tip. Low ionic strength and potential ranges where no Faradaic current flows were used. Cyt c aggregates into flat composite structures of about 50 nm lateral extension at gold surfaces. The aggregates evolve in time, and structures resembling individual cyt c molecules can be distinguished in the space between the 50 nm structures. Cyt c aggregates also form at glassy carbon but have a different, unbroken character where cyt c both sticks well to the surface and exhibits notable mobility. The observations suggest that characteristic surface specific, internally mobile protein aggregates are formed at both surfaces and that in situ molecular resolution of the STM pictures may have been achieved.

  18. Direct Electron Transfer of Hemoglobin on Manganese III Oxide-Ag Nanofibers Modified Glassy Carbon Electrode

    PubMed Central

    Negahdary, Masoud; Mazaheri, Gholamreza; Rad, Somyyeh; Hadi, Mohammadreza; Malekzadeh, Roya; Saadatmand, Mohammad Mahdi; Rezaei-Zarchi, Saeed; Pishbin, Fariba; Khosravian-hemami, Mojdeh

    2012-01-01

    We investigated the electrochemical behavior of hemoglobin by glassy carbon electrode modified with Mn2O3-Ag nanofibers. The Mn2O3-Ag nanofibers were used as facilitator electron transfer between Hb and glassy-carbon-modified electrode. The Mn2O3-Ag nanofibers are studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The hemoglobin showed a quasireversible electrochemical redox behavior with a formal potential of −49 mV (versus Ag/AgCl) in 0.1 M potassium phosphate buffer solution at pH 7.0. The designed biosensor possesses good stability and reproducibility and achieves 95% of the steady-state current in less than five seconds. PMID:22550487

  19. Unraveling the Mechanism of Nanoscale Mechanical Reinforcement in Glassy Polymer Nanocomposites

    SciTech Connect

    Cheng, Shiwang; Bocharova, Vera; Belianinov, Alex; Xiong, Shaomin; Kisliuk, Alexander; Somnath, Suhas; Holt, Adam P.; Ovchinnikova, Olga S.; Jesse, Stephen; Martin, Halie J.; Etampawala, Thusitha N.; Dadmun, Mark D.; Sokolov, Alexei P.

    2016-05-20

    The mechanical reinforcement of polymer nanocomposites (PNCs) above the glass transition temperature, Tg, has been extensively researched. However, not much is known about the origin of this effect below Tg. In this paper, we unravel the mechanism of PNC reinforcement within the glassy state by directly probing nanoscale mechanical properties with atomic force microscopy and macroscopic properties with Brillouin light scattering. Our results unambiguously show that the "glassy" Young's modulus in the interfacial polymer layer of PNCs is two-times higher than in the bulk polymer, which results in significant reinforcement below Tg. We ascribe this phenomenon to a high stretching of the chains within the interfacial layer. Since the interfacial chain packing is essentially temperature independent, these findings provide a new insight into the mechanical reinforcement of PNCs also above Tg.

  20. Unraveling the Mechanism of Nanoscale Mechanical Reinforcement in Glassy Polymer Nanocomposites

    DOE PAGES

    Cheng, Shiwang; Bocharova, Vera; Belianinov, Alex; ...

    2016-05-20

    The mechanical reinforcement of polymer nanocomposites (PNCs) above the glass transition temperature, Tg, has been extensively researched. However, not much is known about the origin of this effect below Tg. In this paper, we unravel the mechanism of PNC reinforcement within the glassy state by directly probing nanoscale mechanical properties with atomic force microscopy and macroscopic properties with Brillouin light scattering. Our results unambiguously show that the "glassy" Young's modulus in the interfacial polymer layer of PNCs is two-times higher than in the bulk polymer, which results in significant reinforcement below Tg. We ascribe this phenomenon to a high stretchingmore » of the chains within the interfacial layer. Since the interfacial chain packing is essentially temperature independent, these findings provide a new insight into the mechanical reinforcement of PNCs also above Tg.« less

  1. Applications of Random Matrices in Physics

    NASA Astrophysics Data System (ADS)

    Brezin, Edouard; Kazakov, Vladimir; Serban, Didina; Wiegmann, Paul; Zabrodin, Anton

    Random matrices are widely and successfully used in physics for almost 60-70 years, beginning with the works of Dyson and Wigner. Although it is an old subject, it is constantly developing into new areas of physics and mathematics. It constitutes now a part of the generalculture of a theoretical physicist. Mathematical methods inspired by random matrix theory become more powerful, sophisticated and enjoy rapidly growing applications in physics. Recent examples include the calculation of universal correlations in the mesoscopic system, new applications in disordered and quantum chaotic systems, in combinatorial and growth models, as well as the recent breakthrough, due to the matrix models, in two dimensional gravity and string theory and the non-abelian gauge theories.

  2. Association of scattering matrices in quantum networks

    SciTech Connect

    Almeida, F.A.G.; Macêdo, A.M.S.

    2013-06-15

    Algorithms based on operations that associate scattering matrices in series or in parallel (analogous to impedance association in a classical circuit) are developed here. We exemplify their application by calculating the total scattering matrix of several types of quantum networks, such as star graphs and a chain of chaotic quantum dots, obtaining results with good agreement with the literature. Through a computational-time analysis we compare the efficiency of two algorithms for the simulation of a chain of chaotic quantum dots based on series association operations of (i) two-by-two centers and (ii) three-by-three ones. Empirical results point out that the algorithm (ii) is more efficient than (i) for small number of open scattering channels. A direct counting of floating point operations justifies quantitatively the superiority of the algorithm (i) for large number of open scattering channels.

  3. Investigation of degradation mechanisms in composite matrices

    NASA Technical Reports Server (NTRS)

    Giori, C.; Yamauchi, T.

    1982-01-01

    Degradation mechanisms were investigated for graphite/polysulfone and graphite/epoxy laminates exposed to ultraviolet and high-energy electron radiations in vacuum up to 960 equivalent sun hours and 10 to the ninth power rads respectively. Based on GC and combined GC/MS analysis of volatile by-products evolved during irradiation, several free radical mechanisms of composite degradation were identified. The radiation resistance of different matrices was compared in terms of G values and quantum yields for gas formation. All the composite materials evaluated show high electron radiation stability and relatively low ultraviolet stability as indicated by low G values and high quantum for gas formation. Mechanical property measurements of irradiated samples did not reveal significant changes, with the possible exception of UV exposed polysulfone laminates. Hydrogen and methane were identified as the main by-products of irradiation, along with unexpectedly high levels of CO and CO2.

  4. Carbon nanomaterials in silica aerogel matrices

    SciTech Connect

    Hamilton, Christopher E; Chavez, Manuel E; Duque, Juan G; Gupta, Gautam; Doorn, Stephen K; Dattelbaum, Andrew M; Obrey, Kimberly A D

    2010-01-01

    Silica aerogels are ultra low-density, high surface area materials that are extremely good thermal insulators and have numerous technical applications. However, their mechanical properties are not ideal, as they are brittle and prone to shattering. Conversely, single-walled carbon nanotubes (SWCNTs) and graphene-based materials, such as graphene oxide, have extremely high tensile strength and possess novel electronic properties. By introducing SWCNTs or graphene-based materials into aerogel matrices, it is possible to produce composites with the desirable properties of both constituents. We have successfully dispersed SWCNTs and graphene-based materials into silica gels. Subsequent supercritical drying results in monolithic low-density composites having improved mechanical properties. These nanocomposite aerogels have great potential for use in a wide range of applications.

  5. Quantum State Tomography via Reduced Density Matrices

    NASA Astrophysics Data System (ADS)

    Xin, Tao; Lu, Dawei; Klassen, Joel; Yu, Nengkun; Ji, Zhengfeng; Chen, Jianxin; Ma, Xian; Long, Guilu; Zeng, Bei; Laflamme, Raymond

    2017-01-01

    Quantum state tomography via local measurements is an efficient tool for characterizing quantum states. However, it requires that the original global state be uniquely determined (UD) by its local reduced density matrices (RDMs). In this work, we demonstrate for the first time a class of states that are UD by their RDMs under the assumption that the global state is pure, but fail to be UD in the absence of that assumption. This discovery allows us to classify quantum states according to their UD properties, with the requirement that each class be treated distinctly in the practice of simplifying quantum state tomography. Additionally, we experimentally test the feasibility and stability of performing quantum state tomography via the measurement of local RDMs for each class. These theoretical and experimental results demonstrate the advantages and possible pitfalls of quantum state tomography with local measurements.

  6. Novel Factor-loaded Polyphosphazene Matrices

    PubMed Central

    Oredein-McCoy, Olugbemisola; Krogman, Nicholas R.; Weikel, Arlin L.; Hindenlang, Mark D.; Allcock, Harry R.; Laurencin, Cato T.

    2009-01-01

    Currently employed bone tissue engineered scaffolds often lack the potential for vascularization, which may be enhanced through the incorporation of and regulated release of angiogenic factors. For this reason, our objective was to fabricate and characterize protein-loaded amino acid ester polyphosphazene (Pphos)-based scaffolds and evaluate the novel sintering method used for protein incorporation, a method which will ultimately allow for the incorporation of proangiogenic agents. To test the hypothesis, Pphos and their composite microspheres with nanocrystalline hydroxyapatite (Pphos-HAp) were fabricated via the emulsion solvent evaporation method. Next, bovine serum albumin (BSA)-containing microsphere matrices were created using a novel solvent-non solvent approach for protein loading. The resulting protein (BSA) loaded-circular porous microsphere based scaffolds were characterized for morphology, porosity, protein structure, protein distribution, and subsequent protein release pattern. Scanning electron microscopy revealed porous microsphere scaffolds with a smooth surface and sufficient level of sintering, illustrated by fusion of adjacent microspheres. The porosity measured for the PNPhGly and PNPhGly-HAp scaffolds were 23 +/- 0.11% and 18+/- 4.02%, respectively, and within the range of trabecular bone. Circular dichroism confirmed an intact secondary protein structure for BSA following the solvent sintering method used for loading, and confocal microscopy verified that FITC-BSA was successfully entrapped both between adjacent microspheres and within the surface of the microspheres while sintering. For both Pphos and their composite microsphere scaffolds, BSA was released at a steady rate over a 21day time period, following a zero order release profile. HAp particles in the composite scaffolds served to improve the release profile pattern, underscoring the potential of HAp for growth factor delivery. Moreover, the results of this work suggests that the

  7. Dirac matrices for Chern-Simons gravity

    NASA Astrophysics Data System (ADS)

    Izaurieta, Fernando; Ramírez, Ricardo; Rodríguez, Eduardo

    2012-10-01

    A genuine gauge theory for the Poincaré, de Sitter or anti-de Sitter algebras can be constructed in (2n - 1)-dimensional spacetime by means of the Chern-Simons form, yielding a gravitational theory that differs from General Relativity but shares many of its properties, such as second order field equations for the metric. The particular form of the Lagrangian is determined by a rank n, symmetric tensor invariant under the relevant algebra. In practice, the calculation of this invariant tensor can be reduced to the computation of the trace of the symmetrized product of n Dirac Gamma matrices Γab in 2n-dimensional spacetime. While straightforward in principle, this calculation can become extremely cumbersome in practice. For large enough n, existing computer algebra packages take an inordinate long time to produce the answer or plainly fail having used up all available memory. In this talk we show that the general formula for the trace of the symmetrized product of 2n Gamma matrices Γab can be written as a certain sum over the integer partitions s of n, with every term being multiplied by a numerical cofficient αs. We then give a general algorithm that computes the α-coefficients as the solution of a linear system of equations generated by evaluating the general formula for different sets of tensors Bab with random numerical entries. A recurrence relation between different coefficients is shown to hold and is used in a second, "minimal" algorithm to greatly speed up the computations. Runtime of the minimal algorithm stays below 1 min on a typical desktop computer for up to n = 25, which easily covers all foreseeable applications of the trace formula.

  8. Robust Generalized Low Rank Approximations of Matrices.

    PubMed

    Shi, Jiarong; Yang, Wei; Zheng, Xiuyun

    2015-01-01

    In recent years, the intrinsic low rank structure of some datasets has been extensively exploited to reduce dimensionality, remove noise and complete the missing entries. As a well-known technique for dimensionality reduction and data compression, Generalized Low Rank Approximations of Matrices (GLRAM) claims its superiority on computation time and compression ratio over the SVD. However, GLRAM is very sensitive to sparse large noise or outliers and its robust version does not have been explored or solved yet. To address this problem, this paper proposes a robust method for GLRAM, named Robust GLRAM (RGLRAM). We first formulate RGLRAM as an l1-norm optimization problem which minimizes the l1-norm of the approximation errors. Secondly, we apply the technique of Augmented Lagrange Multipliers (ALM) to solve this l1-norm minimization problem and derive a corresponding iterative scheme. Then the weak convergence of the proposed algorithm is discussed under mild conditions. Next, we investigate a special case of RGLRAM and extend RGLRAM to a general tensor case. Finally, the extensive experiments on synthetic data show that it is possible for RGLRAM to exactly recover both the low rank and the sparse components while it may be difficult for previous state-of-the-art algorithms. We also discuss three issues on RGLRAM: the sensitivity to initialization, the generalization ability and the relationship between the running time and the size/number of matrices. Moreover, the experimental results on images of faces with large corruptions illustrate that RGLRAM obtains the best denoising and compression performance than other methods.

  9. Robust Generalized Low Rank Approximations of Matrices

    PubMed Central

    Shi, Jiarong; Yang, Wei; Zheng, Xiuyun

    2015-01-01

    In recent years, the intrinsic low rank structure of some datasets has been extensively exploited to reduce dimensionality, remove noise and complete the missing entries. As a well-known technique for dimensionality reduction and data compression, Generalized Low Rank Approximations of Matrices (GLRAM) claims its superiority on computation time and compression ratio over the SVD. However, GLRAM is very sensitive to sparse large noise or outliers and its robust version does not have been explored or solved yet. To address this problem, this paper proposes a robust method for GLRAM, named Robust GLRAM (RGLRAM). We first formulate RGLRAM as an l1-norm optimization problem which minimizes the l1-norm of the approximation errors. Secondly, we apply the technique of Augmented Lagrange Multipliers (ALM) to solve this l1-norm minimization problem and derive a corresponding iterative scheme. Then the weak convergence of the proposed algorithm is discussed under mild conditions. Next, we investigate a special case of RGLRAM and extend RGLRAM to a general tensor case. Finally, the extensive experiments on synthetic data show that it is possible for RGLRAM to exactly recover both the low rank and the sparse components while it may be difficult for previous state-of-the-art algorithms. We also discuss three issues on RGLRAM: the sensitivity to initialization, the generalization ability and the relationship between the running time and the size/number of matrices. Moreover, the experimental results on images of faces with large corruptions illustrate that RGLRAM obtains the best denoising and compression performance than other methods. PMID:26367116

  10. Infrared spectra of crystalline and glassy silicates and application to interstellar dust

    NASA Technical Reports Server (NTRS)

    Stephens, John R.; Blanco, A.; Borghesi, A.; Fonti, Sergio; Bussoletti, E.

    1989-01-01

    The infrared spectra of crystalline minerals predicted in theoretical condensation sequences do not match the astronomical observations. Since the astronomical spectra are a closer match to glassy silicates, the authors undertook a study to measure the infrared spectra of glassy silicates that have compositions similar to silicate minerals predicted in theoretical condensation sequences. The data should support observations aimed at elucidating condensation chemistry in dust forming regions. The authors measured the mass absorption coefficients, from 2.5 to 25 microns, of ground samples of olivine, diopside, and serpentine and also smoke samples that were prepared from these minerals. The smoke samples prepared in this way are predominantly glassy with nearly the same composition as the parent minerals. The crystalline samples consisted of pure olivine ((Fe(0.1)Mg(0.9))(2)SiO(4)), serpentine, diopside. Sample purity was confirmed by x ray diffraction. Each mineral was ground for 10 hours and a measured mass of the powder was mixed with KBr powder for absorption measurements using the method of Borghesi et a. (1985). The smoke samples were prepared from the same samples used for grinding by vaporizing the minerals using pulsed laser radiation in air. The smoke samples formed by condensation of the resulting vapor. The smoke settled onto infrared transparent KRS-5 substrates and onto a quartz crystal microbalance used to obtain mass measurements. A description of the preparation method is given in Stephens (1980). The glassy diopside showed only diffuse electron diffraction peaks and hence was nearly amorphous, while the serpentine smoke showed a weak diffraction pattern corresponding to MgO. The smoke from olivine showed a weak diffraction pattern corresponding to Fe2O3 and/or Fe3O4. The mass absorption coefficients, from 2.5 to 25 microns, of crystalline diopside, olivine, and serpentine and their corresponding smoke samples are shown in figures.

  11. Carbonization Studies of Glassy Carbon Derived from Bis-Ortho-Diynylarenes (BODA) (Postprint)

    DTIC Science & Technology

    2007-02-26

    Derived from Bis-Ortho-Diynylarenes ( BODA ) (Postprint) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Scott T. Iacono, Mark W. Perpall...have demonstrated bis-ortho-diynylarene ( BODA ) monomers undergo Bergman cyclopolymerizations to form hyper-branched, rigid naphthalene networks that...Std. 239.18 CARBONIZATION STUDIES OF GLASSY CARBON DERIVED FROM BIS-ORTHO-DIYNYLARENES ( BODA ) Scott T. Iacono1, Mark W. Perpall1, Wesley P

  12. Complex nonlinear deformation of nanometer intergranular glassy films in beta-Si3N4.

    PubMed

    Chen, Jun; Ouyang, Lizhi; Rulis, Paul; Misra, Anil; Ching, W Y

    2005-12-16

    The mechanical properties of a model of Y-doped intergranular glassy film in silicon nitride ceramics are studied by large-scale ab initio modeling. By linking directly to its electronic structure, it is shown that this microstructure has a complex nonlinear deformation under stress and Y doping significantly enhances the mechanical properties. The calculation of the electrostatic potential across the film supports the space charge model in ceramic microstructures.

  13. Crystallization of the glassy phase of grain boundaries in silicon nitride

    NASA Technical Reports Server (NTRS)

    Jefferson, D. A.; Thomas, J. M.; Wen, S.

    1984-01-01

    Three types of hot-pressed silicon nitride specimens (containing 5wt% Y2O3 and 2wt% Al2O3 additives) which were subjected to different temperature heat treatments were studied by X-ray diffraction, X-ray microanalysis and high resolution electron microscopy. The results indicated that there were phase changes in the grain boundaries after heat treatment and the glassy phase at the grain boundaries was crystallized by heat treatment.

  14. A Novel Method for Electroplating Ultra-High-Strength Glassy Metals

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian; Engelhaupt, Darell; Six, N. Frank (Technical Monitor)

    2002-01-01

    A novel method for electroplating ultra-high-strength glassy metals, nickel-phosphorous and nickel-cobalt-phosphorous, has been developed at NASA Marshall Space Flight Center, cooperatively with the University of Alabama in Huntsville. Traditionally, thin coatings of these metals are achieved via electroless deposition. Benefits of the new electrolytic process include thick, low-stress deposits, free standing shapes, lower plating temperature, low maintenance, and safer operation with substantially lower cost.

  15. Highly Selective Membranes For The Separation Of Organic Vapors Using Super-Glassy Polymers

    DOEpatents

    Pinnau, Ingo; Lokhandwala, Kaaeid; Nguyen, Phuong; Segelke, Scott

    1997-11-18

    A process for separating hydrocarbon gases of low boiling point, particularly methane, ethane and ethylene, from nitrogen. The process is performed using a membrane made from a super-glassy material. The gases to be separated are mixed with a condensable gas, such as a C.sub.3+ hydrocarbon. In the presence of the condensable gas, improved selectivity for the low-boiling-point hydrocarbon gas over nitrogen is achieved.

  16. Comportement instationnaire des thermoéléments à effet Peltier multi-étages

    NASA Astrophysics Data System (ADS)

    Monchoux, F.; Zély, D.; Cordier, A.

    1995-01-01

    The analysis of thermoelectric phenomena is possible based on non-equilibrium thermodynamics. Integration of the thermal balance equation leads to an analytical solution for the non-stationnary behaviour. The influence to Thomson effect is commmented. The model, introduced in the complete software TRNSYS, permits the modelling of complex systems including such elements in their thermal regulation. La thermodynamique des processus irréversibles permet l'analyse des phénomènes thermoélectriques. Par intégration de l'équation de bilan thermique, on a obtenu une solution analytique pour le régime non stationnaire donnant la température en tous points et le flux absorbé. On a analysé l'influence de l'effet Thomson. Le modèle a été inclu dans le code plus général TRNSYS qui permet la modélisation de systèmes complexes.

  17. Clinical outcomes of advanced-stage glassy cell carcinoma of the uterine cervix: a need for reappraisal

    PubMed Central

    Yoon, Nara; Kim, Ji-Ye; Kim, Hyun-Soo

    2016-01-01

    We performed a retrospective analysis of the clinical features and patient outcomes for advanced-stage glassy cell carcinoma of the uterine cervix. The study was restricted to cases in which the glassy cell features constituted at least 95% of the biopsied specimen. During the study period, 675 patients were diagnosed with primary cervical carcinoma. Five (0.7%) of the 675 patients had cervical glassy cell carcinoma; of these, three were premenopausal, and two were postmenopausal. Abnormal vaginal bleeding was the most frequent presenting symptom. Glassy cell carcinoma presented as a fungating, exophytic, or infiltrative mass. The greatest tumor dimension ranged from 3 to 9 cm. All patients had parametrial extension. Four patients had stage IIB tumors, and one had a stage IIIB tumor. All patients received concurrent chemoradiation therapy. The patient with a stage IIIB tumor died of hypovolemic shock caused by upper gastrointestinal bleeding during radiation therapy. Three patients with stage IIB tumors survived for more than 8 years without tumor recurrence or metastasis. One of these three patients died of pelvic recurrence 10 years after the initial diagnosis. Cervical glassy cell carcinoma has traditionally been considered an aggressive, highly malignant tumor with poor prognosis, but our data suggest that patient survival is not significantly decreased compared with other histological types of cervical carcinoma. It will be necessary to analyze patient outcomes using a larger number of cervical glassy cell carcinoma cases to confirm our findings. PMID:27793022

  18. Generation of fine hydromagmatic ash by growth and disintegration of glassy rinds

    NASA Astrophysics Data System (ADS)

    Mastin, Larry G.

    2007-02-01

    The deposits of mafic hydromagmatic eruptions are more fine grained and variable in vesicularity than dry magmatic deposits. Blocky, equant shapes of many hydromagmatic clasts also contrast with droplet, thread, and bubble wall morphology of dry magmatic fragments. Small (<˜180 μm), blocky hydromagmatic pyroclasts have traditionally been interpreted to result from discrete vapor explosions, although such explosions tend to occur only under certain conditions. This paper considers a process of hydromagmatic ash formation that involves repeated growth and disintegration of glassy rinds on pyroclast surfaces as they deform within turbulent flows. This process, termed "turbulent shedding", may occur during the expansion phase of vapor explosions or during turbulent but nonexplosive mixing of magma with water, steam, or water sprays. The occurrence of turbulent shedding and the resulting fragment sizes depend on the timescale for rind growth and the timescale between disturbances that remove or disintegrate glassy rinds. Turbulent shedding is directly observable in some small littoral jets at Kilauea. Calculations suggest that, in the presence of liquid water or water sprays, glassy rinds having a thickness of microns to millimeters should form in milliseconds to seconds. This is similar to the timescale between turbulent velocity fluctuations that can shred lava globules and remove such rinds. The fraction of a deposit consisting of fine ash should increase with the duration of this process: Large-scale Surtseyan jets generate hundreds or thousands of shedding events; bubble bursts or tephra jets at Kilauea's coast may produce only a few.

  19. Thermal and elastic characterization of glassy carbon thin films by photoacoustic measurements

    NASA Astrophysics Data System (ADS)

    Markushev, D. D.; Ordonez-Miranda, J.; Rabasović, M. D.; Chirtoc, M.; Todorović, D. M.; Bialkowski, S. E.; Korte, D.; Franko, M.

    2017-01-01

    A portable photoacoustic device is designed and applied to measure thermal diffusivity and linear thermal expansion coefficient of glassy carbon by means of the standard photoacoustic model involving both the thermal diffusion and thermoelastic contributions. This is done by measuring the evolution of the open-cell photoacoustic signal within the modulation frequency interval of 20 Hz-10 kHz, for four samples with thicknesses of 180μm, 140μm, 100μm, and 60μm. A proper fitting procedure of the theoretical amplitude and phase to their corresponding experimental counterparts yielded an average thermal diffusivity of 0.68mm^2·s^-1 and expansion coefficient of 4.3× 10^{-6} K-1 which are in good agreement with their values reported in the literature for glassy carbon. Furthermore, we demonstrate that the theoretical amplitude does not properly describe the thermoelastic behavior of the samples thinner than l ≤ 100 μm, due to their strong bending and vibrations driven by the highly disordered fullerene microstructure of glassy carbon followed by the increasing non-homogeneity effects violating 1D heat conduction.

  20. Shear Banding of Soft Glassy Materials in Large Amplitude Oscillatory Shear

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Rangarajan; Fielding, Suzanne M.

    2016-10-01

    We study shear banding in soft glassy materials subject to a large amplitude oscillatory shear flow (LAOS). By numerical simulations of the widely used soft glassy rheology model, supplemented by more general physical arguments, we demonstrate strong banding over an extensive range of amplitudes and frequencies of the imposed shear rate γ ˙(t )=γ˙0cos (ω t ), even in materials that do not permit banding as their steady state response to a steadily imposed shear flow γ ˙=γ˙0=const. Highly counterintuitively, banding persists in LAOS even in the limit of zero frequency ω →0 , where one might a priori have expected a homogeneous flow response in a material that does not display banding under conditions of steadily imposed shear. We explain this finding in terms of an alternating competition within each cycle between glassy aging and flow rejuvenation. Our predictions have far-reaching implications for the flow behavior of aging yield stress fluids, suggesting a generic expectation of shear banding in flows of even arbitrarily slow time variation.

  1. Modelling multi-scale deformation of amorphous glassy polymers with experimentally motivated evolution of the microstructure

    NASA Astrophysics Data System (ADS)

    Engqvist, Jonas; Wallin, Mathias; Ristinmaa, Matti; Hall, Stephen A.; Plivelic, Tomás S.

    2016-11-01

    Novel experimental data, obtained recently using advanced multi-scale experiments, have been used to develop a micro-mechanically motivated constitutive model for amorphous glassy polymers. Taking advantage of the experiments, the model makes use of a microstructural deformation gradient to incorporate the experimentally obtained deformation of the microstructure, as well as its evolving orientation. By comparing results from the model to experimental data, it is shown that the proposed approach is able to accurately predict glassy polymer deformation over a wide range of length-scales, from the macroscopic response (mm range) down to the deformation of the microstructure (nm range). The proposed model is evaluated by comparing the numerical response to experimental results on multiple scales from an inhomogeneous cold drawing experiment of glassy polycarbonate. Besides the macroscopic force-displacement response, a qualitative comparison of the deformation field at the surface of the specimen is performed. Furthermore, the predicted evolution of the fabric orientation is compared to experimental results obtained from X-ray scattering experiments. The model shows very good agreement with the experimental data over a wide range of length scales.

  2. Generation of fine hydromagmatic ash by growth and disintegration of glassy rinds

    USGS Publications Warehouse

    Mastin, L.G.

    2007-01-01

    The deposits of mafic hydromagmatic eruptions are more fine grained and variable in vesicularity than dry magmatic deposits. Blocky, equant shapes of many hydromagmatic clasts also contrast with droplet, thread, and bubble wall morphology of dry magmatic fragments. Small (glassy rinds on pyroclast surfaces as they deform within turbulent flows. This process, termed "turbulent shedding", may occur during the expansion phase of vapor explosions or during turbulent but nonexplosive mixing of magma with water, steam, or water sprays. The occurrence of turbulent shedding and the resulting fragment sizes depend on the timescale for rind growth and the timescale between disturbances that remove or disintegrate glassy rinds. Turbulent shedding is directly observable in some small littoral jets at Kilauea. Calculations suggest that, in the presence of liquid water or water sprays, glassy rinds having a thickness of microns to millimeters should form in milliseconds to seconds. This is similar to the timescale between turbulent velocity fluctuations that can shred lava globules and remove such rinds. The fraction of a deposit consisting of fine ash should increase with the duration of this process: Large-scale Surtseyan jets generate hundreds or thousands of shedding events; bubble bursts or tephra jets at Kilauea's coast may produce only a few.

  3. Relationship between local structure and relaxation in out-of-equilibrium glassy systems

    PubMed Central

    Cubuk, Ekin D.; Kaxiras, Efthimios; Liu, Andrea J.

    2017-01-01

    The dynamical glass transition is typically taken to be the temperature at which a glassy liquid is no longer able to equilibrate on experimental timescales. Consequently, the physical properties of these systems just above or below the dynamical glass transition, such as viscosity, can change by many orders of magnitude over long periods of time following external perturbation. During this progress toward equilibrium, glassy systems exhibit a history dependence that has complicated their study. In previous work, we bridged the gap between structure and dynamics in glassy liquids above their dynamical glass transition temperatures by introducing a scalar field called “softness,” a quantity obtained using machine-learning methods. Softness is designed to capture the hidden patterns in relative particle positions that correlate strongly with dynamical rearrangements of particle positions. Here we show that the out-of-equilibrium behavior of a model glass-forming system can be understood in terms of softness. To do this we first demonstrate that the evolution of behavior following a temperature quench is a primarily structural phenomenon: The structure changes considerably, but the relationship between structure and dynamics remains invariant. We then show that the relaxation time can be robustly computed from structure as quantified by softness, with the same relation holding both in equilibrium and as the system ages. Together, these results show that the history dependence of the relaxation time in glasses requires knowledge only of the softness in addition to the usual state variables. PMID:28028217

  4. Relationship between local structure and relaxation in out-of-equilibrium glassy systems

    NASA Astrophysics Data System (ADS)

    Schoenholz, Samuel S.; Cubuk, Ekin D.; Kaxiras, Efthimios; Liu, Andrea J.

    2017-01-01

    The dynamical glass transition is typically taken to be the temperature at which a glassy liquid is no longer able to equilibrate on experimental timescales. Consequently, the physical properties of these systems just above or below the dynamical glass transition, such as viscosity, can change by many orders of magnitude over long periods of time following external perturbation. During this progress toward equilibrium, glassy systems exhibit a history dependence that has complicated their study. In previous work, we bridged the gap between structure and dynamics in glassy liquids above their dynamical glass transition temperatures by introducing a scalar field called “softness,” a quantity obtained using machine-learning methods. Softness is designed to capture the hidden patterns in relative particle positions that correlate strongly with dynamical rearrangements of particle positions. Here we show that the out-of-equilibrium behavior of a model glass-forming system can be understood in terms of softness. To do this we first demonstrate that the evolution of behavior following a temperature quench is a primarily structural phenomenon: The structure changes considerably, but the relationship between structure and dynamics remains invariant. We then show that the relaxation time can be robustly computed from structure as quantified by softness, with the same relation holding both in equilibrium and as the system ages. Together, these results show that the history dependence of the relaxation time in glasses requires knowledge only of the softness in addition to the usual state variables.

  5. Glassy slags as novel waste forms for remediating mixed wastes with high metal contents

    SciTech Connect

    Feng, X.; Wronkiewicz, D.J.; Bates, J.K.; Brown, N.R.; Buck, E.C.; Gong, M.; Ebert, W.L.

    1994-03-01

    Argonne National Laboratory (ANL) is developing a glassy slag final waste form for the remediation of low-level radioactive and mixed wastes with high metal contents. This waste form is composed of various crystalline and metal oxide phases embedded in a silicate glass phase. This work indicates that glassy slag shows promise as final waste form because (1) it has similar or better chemical durability than high-level nuclear waste (HLW) glasses, (2) it can incorporate large amounts of metal wastes, (3) it can incorporate waste streams having low contents of flux components (boron and alkalis), (4) it has less stringent processing requirements (e.g., viscosity and electric conductivity) than glass waste forms, (5) its production can require little or no purchased additives, which can result in greater reduction in waste volume and overall treatment costs. By using glassy slag waste forms, minimum additive waste stabilization approach can be applied to a much wider range of waste streams than those amenable only to glass waste forms.

  6. Efficient quantum circuits for Toeplitz and Hankel matrices

    NASA Astrophysics Data System (ADS)

    Mahasinghe, A.; Wang, J. B.

    2016-07-01

    Toeplitz and Hankel matrices have been a subject of intense interest in a wide range of science and engineering related applications. In this paper, we show that quantum circuits can efficiently implement sparse or Fourier-sparse Toeplitz and Hankel matrices. This provides an essential ingredient for solving many physical problems with Toeplitz or Hankel symmetry in the quantum setting with deterministic queries.

  7. Asymptotic Spectra Of Banded Quasi-Toeplitz Matrices

    NASA Technical Reports Server (NTRS)

    Beam, Richard; Warming, Robert

    1995-01-01

    Paper presents theoretical and numerical study of asymptotic spectra of eigenvalues of banded Toeplitz and quasi-Toeplitz matrices. Emphasis in study on non-normal banded Toeplitz and quasi-Toeplitz matrices of arbitrarily large order and relatively small bandwidth.

  8. Infinite Töplitz Lipschitz matrices and operators

    NASA Astrophysics Data System (ADS)

    Eliasson, H. L.; Kuksin, S. B.

    2008-01-01

    We introduce a class of infinite matrices {(A_{ss', s, s' in mathbb{Z}^d)} , which are asymptotically ( as | s| + | s'| → ∞) close to Hankel Töplitz matrices. We prove that this class forms an algebra, and that flow-maps of nonautonomous linear equations with coefficients from the class also belong to it.

  9. The Modern Origin of Matrices and Their Applications

    ERIC Educational Resources Information Center

    Debnath, L.

    2014-01-01

    This paper deals with the modern development of matrices, linear transformations, quadratic forms and their applications to geometry and mechanics, eigenvalues, eigenvectors and characteristic equations with applications. Included are the representations of real and complex numbers, and quaternions by matrices, and isomorphism in order to show…

  10. Component Identification and Item Difficulty of Raven's Matrices Items.

    ERIC Educational Resources Information Center

    Green, Kathy E.; Kluever, Raymond C.

    Item components that might contribute to the difficulty of items on the Raven Colored Progressive Matrices (CPM) and the Standard Progressive Matrices (SPM) were studied. Subjects providing responses to CPM items were 269 children aged 2 years 9 months to 11 years 8 months, most of whom were referred for testing as potentially gifted. A second…

  11. Computing Vibration-Mode Matrices From Finite-Element Output

    NASA Technical Reports Server (NTRS)

    Levy, Roy

    1993-01-01

    Postprocessing algorithms devised to facilitate vibrational-mode analyses of dynamics of complicated structures. Yields inertia matrices and elastic/rigid-coupling matrices. Such analyses important in simulation and control in active suppression of vibrations in large building or in precise aiming of large antenna.

  12. User-Friendly Tools for Random Matrices: An Introduction

    DTIC Science & Technology

    2012-12-03

    zeros of the Riemann zeta function [Mon73]). 1.2 The Modern Random Matrix By now, random matrices are ubiquitous. They arise throughout modern ... mathematics and statistics, as well as in many branches of science and engineering. Random matrices have sev- eral different purposes that we may wish to

  13. Random Matrices, Combinatorics, Numerical Linear Algebra and Complex Networks

    DTIC Science & Technology

    2012-02-16

    Rudelson and R. Vershynin, The Littlewood -Offord Problem and invertibility of random matrices, Advances in Mathematics 218 (2008), 600–633. [25] L... Littlewood -Offord theorems and the condition number of random discrete matrices, Annals of Mathematics, to appear. [29] T. Tao and V. Vu, The condition

  14. Time series, correlation matrices and random matrix models

    SciTech Connect

    Vinayak; Seligman, Thomas H.

    2014-01-08

    In this set of five lectures the authors have presented techniques to analyze open classical and quantum systems using correlation matrices. For diverse reasons we shall see that random matrices play an important role to describe a null hypothesis or a minimum information hypothesis for the description of a quantum system or subsystem. In the former case various forms of correlation matrices of time series associated with the classical observables of some system. The fact that such series are necessarily finite, inevitably introduces noise and this finite time influence lead to a random or stochastic component in these time series. By consequence random correlation matrices have a random component, and corresponding ensembles are used. In the latter we use random matrices to describe high temperature environment or uncontrolled perturbations, ensembles of differing chaotic systems etc. The common theme of the lectures is thus the importance of random matrix theory in a wide range of fields in and around physics.

  15. Tissue engineered cartilage on collagen and PHBV matrices.

    PubMed

    Köse, Gamze Torun; Korkusuz, Feza; Ozkul, Aykut; Soysal, Yasemin; Ozdemir, Taner; Yildiz, Cemil; Hasirci, Vasif

    2005-09-01

    Cartilage engineering is a very novel approach to tissue repair through use of implants. Matrices of collagen containing calcium phosphate (CaP-Gelfix), and matrices of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) were produced to create a cartilage via tissue engineering. The matrices were characterized by scanning electron microscopy (SEM) and electron diffraction spectroscopy (EDS). Porosity and void volume analysis were carried out to characterize the matrices. Chondrocytes were isolated from the proximal humerus of 22 week-old male, adult, local albino rabbits. For cell type characterization, Type II collagen was measured by Western Blot analysis. The foams were seeded with 1x10(6) chondrocytes and histological examinations were carried out to assess cell-matrix interaction. Macroscopic examination showed that PHBV (with or without chondrocytes) maintained its integrity for 21 days, while CaP-Gelfix was deformed and degraded within 15 days. Cell-containing and cell-free matrices were implanted into full thickness cartilage defects (4.5 mm in diameter and 4 mm in depth) at the patellar groove on the right and left knees of eight rabbits, respectively. In vivo results at 8 and 20 weeks with chondrocyte seeded PHBV matrices presented early cartilage formation resembling normal articular cartilage and revealed minimal foreign body reaction. In CaP-Gelfix matrices, fibrocartilage formation and bone invasion was noted in 20 weeks. Cells maintained their phenotype in both matrices. PHBV had better healing response than CaP-Gelfix. Both matrices were effective in cartilage regeneration. These matrices have great potential for use in the repair of joint cartilage defects.

  16. Mechanically implementable accommodation matrices for passive force control

    SciTech Connect

    Goswami, A.; Peshkin, M.

    1999-08-01

    Robot force control implemented by means of passive mechanical devices has inherent advantages over active implementations with regard to stability, response rapidity, and physical robustness. The class of devices considered in this paper consists of a Stewart platform-type mechanism interconnected with a network of adjustable mechanical elements such as springs and dampers. The control law repertoire of such a device, imagined as a robot wrist, is given by the range of admittance matrices that it may be programmed to possess. This paper focuses on wrists incorporating damper networks for which the admittance matrices reduce to accommodation or inverse-damping matrices. The authors show that a hydraulic network of fully adjustable damper elements may attain any diagonally dominant accommodation matrix. They describe the technique of selecting the individual damping coefficients to design a desired matrix. They identify the set of dominant matrices as a polyhedral convex cone in the space of matrix entries, and show that each dominant matrix can be composed of a positive linear combination of a fixed set of basis matrices. The overall wrist-accommodation matrix is obtained by projecting the accommodation matrix of the damper network through the wrist kinematics. The linear combination of the dominant basis matrices projected through the wrist kinematics generates the entire space of mechanically implementable force-control laws. The authors quantify the versatility of mechanically implementable force-control laws by comparing this space to the space of all matrices.

  17. Modèle de diélectrique associant les effets Poole-Frenkel et Maxwell-Wagner

    NASA Astrophysics Data System (ADS)

    Pillonnet, Alain; Ongaro, Roger; Garoum, Mohammed

    1992-06-01

    The model presented here combines Poole-Frenkel (PF) and Maxwell-Wagner (MW) effects to determine the equivalent conductivity σ of a plane double-layered dielectric. PF effect is introduced first under its usual form (Boltzmann statistics), and then under a more general form (Fermi-Dirac statistics). The curves log (σ) versus the electric field (sqrt{F}) generally display one or two linear parts, with the low-field slopes always larger than the high-field ones. These slopes are dependent on the layer's thickness ration and may greatly differ from slopes associated with PF effect in an homogeneous dielectric. The computer simulations show that this behaviour results from the fact that the potential can dominate successively in each layer. Le modèle présenté associe les effets Poole-Frenkel (PF) et Maxwell-Wagner (MW) dans la détermination de la conductivité équivalente σ d'un diélectrique plan à deux couches. L'effet PF y est introduit sous sa forme usuelle (statistique de Boltzmann), puis sous une forme plus générale (statistique de Fermi-Dirac). Les courbes log σ en fonction du champ électrique (sqrt{F}) présentent généralement une ou deux parties linéaires, la pente en bas champs étant toujours supérieure à la pente en hauts champs. Ces pentes sont fonctions du rapport des épaisseurs des couches et peuvent différer beaucoup des pentes relevant de l'effet PF dans un diélectrique homogène. Les simulations numériques montrent que ce comportement résulte du fait que le potentiel peut être successivement prépondérant dans chacune des couches.

  18. Dynamic Condensation of Mass and Stiffness Matrices

    NASA Astrophysics Data System (ADS)

    Zhang, N.

    1995-12-01

    Details are given of a procedure for condensing the mass and stiffness matrices of a structure for dynamic analysis. The condensed model is based on choosing ncnatural frequencies and the corresponding modes of original model. The model is constructed so that (1) it has ncnatural frequencies equal to those of the original model, (2) the modes φ ifcless than i,j = 1, 2, . . . , ncare the same as those for the master co-ordinates in the corresponding modes of the original and (3) the responses of the condensed system at the co-ordinates Xcdue to forces at these co-ordinates, at one particular chosen frequency, are the same as those of the original system. The natural frequencies, the corresponding modes and the dynamic responses used for the condensation can be obtained from finite element analysis of the original structure. The method has been applied to the modelling of two common structures to examine its applicability. Comparisons between the performance of the condensed models obtained by means of the dynamic condensation method and that of the models obtained by the Guyan method have been conducted. The results of the example show that the condensed models determined by the dynamic condensation method retain the natural frequencies and modal shapes and perform better in describing the dynamic responses of the structures than do the corresponding models obtained by the Guyan method.

  19. Nanostructured mesoporous silica matrices in nanomedicine.

    PubMed

    Vallet-Regí, M

    2010-01-01

    In the last few years the biomedical research field has shown a growing interest towards nanostructured mesoporous silica materials, whose chemical composition is silica and present nanometric pores. These bioceramics exhibit two important features: they can regenerate osseous tissues--the bond bioactivity of these materials has been confirmed by the formation of biological-like nanoapatites on their surface when in contact with physiological fluids--and they are able to act as controlled release systems. Drugs in the nanometre scale can be loaded on those matrices and then locally released in a controlled fashion. It is possible to chemically modify the silica walls to favour the adsorption of certain biomolecules such as peptides, proteins or growth factors. It is even possible to design smart biomaterials where the drug is released under an external stimulus. Thus, looking at all those properties, a question arises: Have these bioceramics good expectations to be used in clinical medical practice? Their biocompatibility, bioactivity, capacity to regenerate bone and ability to act as controlled release systems of biologically active species have been confirmed. In fact, their preliminary in vitro and in vivo essays have been positive. Now it is the time to adequate all these properties to the actual clinical problems, and to evaluate their efficiency in comparison with materials already known and currently employed such as bioglasses.

  20. Photochemistry of glycolaldehyde in cryogenic matrices

    SciTech Connect

    Chin, W. Chevalier, M.; Thon, R.; Crépin, C.; Pollet, R.

    2014-06-14

    The photochemistry of glycolaldehyde (GA) upon irradiation at 266 nm is investigated in argon, nitrogen, neon, and para-hydrogen matrices by IR spectroscopy. Isomerization and fragmentation processes are found to compete. The hydrogen-bonded Cis-Cis form of GA is transformed mainly to the open Trans-Trans conformer and to CO and CH{sub 3}OH fragments and their mixed complexes. Different photo-induced behaviours appear depending on the matrix. In nitrogen, small amounts of Trans-Gauche and Trans-Trans conformers are detected after deposition and grow together upon irradiation. The Trans-Gauche conformer is characterized for the first time. In para-hydrogen due to a weaker cage effect additional H{sub 2}CO and HCO fragments are seen. Calculations of the potential energy surfaces of S{sub 0}, S{sub 1}, and T{sub 1} states – to analyse the torsional deformations which are involved in the isomerization process – and a kinetic analysis are presented to investigate the different relaxation pathways of GA. Fragmentation of GA under UV irradiation through the CO+CH{sub 3}OH molecular channel is a minor process, as in the gas phase.

  1. Generalized graph states based on Hadamard matrices

    SciTech Connect

    Cui, Shawn X.; Yu, Nengkun; Zeng, Bei

    2015-07-15

    Graph states are widely used in quantum information theory, including entanglement theory, quantum error correction, and one-way quantum computing. Graph states have a nice structure related to a certain graph, which is given by either a stabilizer group or an encoding circuit, both can be directly given by the graph. To generalize graph states, whose stabilizer groups are abelian subgroups of the Pauli group, one approach taken is to study non-abelian stabilizers. In this work, we propose to generalize graph states based on the encoding circuit, which is completely determined by the graph and a Hadamard matrix. We study the entanglement structures of these generalized graph states and show that they are all maximally mixed locally. We also explore the relationship between the equivalence of Hadamard matrices and local equivalence of the corresponding generalized graph states. This leads to a natural generalization of the Pauli (X, Z) pairs, which characterizes the local symmetries of these generalized graph states. Our approach is also naturally generalized to construct graph quantum codes which are beyond stabilizer codes.

  2. Partitioning sparse matrices with eigenvectors of graphs

    NASA Technical Reports Server (NTRS)

    Pothen, Alex; Simon, Horst D.; Liou, Kang-Pu

    1990-01-01

    The problem of computing a small vertex separator in a graph arises in the context of computing a good ordering for the parallel factorization of sparse, symmetric matrices. An algebraic approach for computing vertex separators is considered in this paper. It is shown that lower bounds on separator sizes can be obtained in terms of the eigenvalues of the Laplacian matrix associated with a graph. The Laplacian eigenvectors of grid graphs can be computed from Kronecker products involving the eigenvectors of path graphs, and these eigenvectors can be used to compute good separators in grid graphs. A heuristic algorithm is designed to compute a vertex separator in a general graph by first computing an edge separator in the graph from an eigenvector of the Laplacian matrix, and then using a maximum matching in a subgraph to compute the vertex separator. Results on the quality of the separators computed by the spectral algorithm are presented, and these are compared with separators obtained from other algorithms for computing separators. Finally, the time required to compute the Laplacian eigenvector is reported, and the accuracy with which the eigenvector must be computed to obtain good separators is considered. The spectral algorithm has the advantage that it can be implemented on a medium-size multiprocessor in a straightforward manner.

  3. Decellularized matrices for cardiovascular tissue engineering

    PubMed Central

    Moroni, Francesco; Mirabella, Teodelinda

    2014-01-01

    Cardiovascular disease (CVD) is one of the leading causes of death in the Western world. The replacement of damaged vessels and valves has been practiced since the 1950’s. Synthetic grafts, usually made of bio-inert materials, are long-lasting and mechanically relevant, but fail when it comes to “biointegration”. Decellularized matrices, instead, can be considered biological grafts capable of stimulating in vivo migration and proliferation of endothelial cells (ECs), recruitment and differentiation of mural cells, finally, culminating in the formation of a biointegrated tissue. Decellularization protocols employ osmotic shock, ionic and non-ionic detergents, proteolitic digestions and DNase/RNase treatments; most of them effectively eliminate the cellular component, but show limitations in preserving the native structure of the extracellular matrix (ECM). In this review, we examine the current state of the art relative to decellularization techniques and biological performance of decellularized heart, valves and big vessels. Furthermore, we focus on the relevance of ECM components, native and resulting from decellularization, in mediating in vivo host response and determining repair and regeneration, as opposed to graft corruption. PMID:24660110

  4. Substituted amylose matrices for oral drug delivery

    NASA Astrophysics Data System (ADS)

    Moghadam, S. H.; Wang, H. W.; Saddar El-Leithy, E.; Chebli, C.; Cartilier, L.

    2007-03-01

    High amylose corn starch was used to obtain substituted amylose (SA) polymers by chemically modifying hydroxyl groups by an etherification process using 1,2-epoxypropanol. Tablets for drug-controlled release were prepared by direct compression and their release properties assessed by an in vitro dissolution test (USP XXIII no 2). The polymer swelling was characterized by measuring gravimetrically the water uptake ability of polymer tablets. SA hydrophilic matrix tablets present sequentially a burst effect, typical of hydrophilic matrices, and a near constant release, typical of reservoir systems. After the burst effect, surface pores disappear progressively by molecular association of amylose chains; this allows the creation of a polymer layer acting as a diffusion barrier and explains the peculiar behaviour of SA polymers. Several formulation parameters such as compression force, drug loading, tablet weight and insoluble diluent concentration were investigated. On the other hand, tablet thickness, scanning electron microscope analysis and mercury intrusion porosimetry showed that the high crushing strength values observed for SA tablets were due to an unusual melting process occurring during tabletting although the tablet external layer went only through densification, deformation and partial melting. In contrast, HPMC tablets did not show any traces of a melting process.

  5. Modeling Covariance Matrices via Partial Autocorrelations

    PubMed Central

    Daniels, M.J.; Pourahmadi, M.

    2009-01-01

    Summary We study the role of partial autocorrelations in the reparameterization and parsimonious modeling of a covariance matrix. The work is motivated by and tries to mimic the phenomenal success of the partial autocorrelations function (PACF) in model formulation, removing the positive-definiteness constraint on the autocorrelation function of a stationary time series and in reparameterizing the stationarity-invertibility domain of ARMA models. It turns out that once an order is fixed among the variables of a general random vector, then the above properties continue to hold and follows from establishing a one-to-one correspondence between a correlation matrix and its associated matrix of partial autocorrelations. Connections between the latter and the parameters of the modified Cholesky decomposition of a covariance matrix are discussed. Graphical tools similar to partial correlograms for model formulation and various priors based on the partial autocorrelations are proposed. We develop frequentist/Bayesian procedures for modelling correlation matrices, illustrate them using a real dataset, and explore their properties via simulations. PMID:20161018

  6. Les effets des interfaces sur les proprietes magnetiques et de transport des multicouches nickel/iron et cobalt/silver

    NASA Astrophysics Data System (ADS)

    Veres, Teodor

    Cette these est consacree a l'etude de l'evolution structurale des proprietes magnetiques et de transport des multicouches Ni/Fe et nanostructures a base de Co et de l'Ag. Dans une premiere partie, essentiellement bibliographique, nous introduisons quelques concepts de base relies aux proprietes magnetiques et de transport des multicouches metalliques. Ensuite, nous presentons une breve description des methodes d'analyse des resultats. La deuxieme partie est consacree a l'etude des proprietes magnetiques et de transport des multicouches ferromagnetiques/ferromagnetiques Ni/Fe. Nous montrerons qu'une interpretation coherente de ces proprietes necessite la prise en consideration des effets des interfaces. Nous nous attacherons a mettre en evidence, a evaluer et a etudier les effets de ces interfaces ainsi que leur evolution, et ce, suite a des traitements thermiques tel que le depot a temperature elevee et l'irradiation ionique. Les analyses correlees de la structure et de la magnetoresistance nous permettront d'emettre des conclusions sur l'influence des couches tampons entre l'interface et le substrat ainsi qu'entre les couches elles-memes sur le comportement magnetique des couches F/F. La troisieme partie est consacree aux systemes a Magneto-Resistance Geante (MRG) a base de Co et Ag. Nous allons etudier l'evolution de la microstructure suite a l'irradiation avec des ions Si+ ayant une energie de 1 MeV, ainsi que les effets de ces changements sur le comportement magnetique. Cette partie debutera par l'analyse des proprietes d'une multicouche hybride, intermediaire entre les multicouches et les materiaux granulaires. Nous analyserons a l'aide des mesures de diffraction, de relaxation superparamagnetique et de magnetoresistance, les evolutions structurales produites par l'irradiation ionique. Nous etablirons des modeles qui nous aideront a interpreter les resultats pour une serie des multicouches qui couvrent un large eventail de differents comportements magnetiques

  7. Random matrices as models for the statistics of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Casati, Giulio; Guarneri, Italo; Mantica, Giorgio

    1986-05-01

    Random matrices from the Gaussian unitary ensemble generate in a natural way unitary groups of evolution in finite-dimensional spaces. The statistical properties of this time evolution can be investigated by studying the time autocorrelation functions of dynamical variables. We prove general results on the decay properties of such autocorrelation functions in the limit of infinite-dimensional matrices. We discuss the relevance of random matrices as models for the dynamics of quantum systems that are chaotic in the classical limit. Permanent address: Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy.

  8. Bunch-Kaufman factorization for real symmetric indefinite banded matrices

    NASA Technical Reports Server (NTRS)

    Jones, Mark T.; Patrick, Merrell L.

    1989-01-01

    The Bunch-Kaufman algorithm for factoring symmetric indefinite matrices was rejected for banded matrices because it destroys the banded structure of the matrix. Herein, it is shown that for a subclass of real symmetric matrices which arise in solving the generalized eigenvalue problem using Lanczos's method, the Bunch-Kaufman algorithm does not result in major destruction of the bandwidth. Space time complexities of the algorithm are given and used to show that the Bunch-Kaufman algorithm is a significant improvement over LU factorization.

  9. On the asymptotic distribution of block-modified random matrices

    SciTech Connect

    Arizmendi, Octavio; Nechita, Ion; Vargas, Carlos

    2016-01-15

    We study random matrices acting on tensor product spaces which have been transformed by a linear block operation. Using operator-valued free probability theory, under some mild assumptions on the linear map acting on the blocks, we compute the asymptotic eigenvalue distribution of the modified matrices in terms of the initial asymptotic distribution. Moreover, using recent results on operator-valued subordination, we present an algorithm that computes, numerically but in full generality, the limiting eigenvalue distribution of the modified matrices. Our analytical results cover many cases of interest in quantum information theory: we unify some known results and we obtain new distributions and various generalizations.

  10. The explosive divergence in iterative maps of matrices

    NASA Astrophysics Data System (ADS)

    Navickas, Zenonas; Ragulskis, Minvydas; Vainoras, Alfonsas; Smidtaite, Rasa

    2012-11-01

    The effect of explosive divergence in generalized iterative maps of matrices is defined and described using formal algebraic techniques. It is shown that the effect of explosive divergence can be observed in an iterative map of square matrices of order 2 if and only if the matrix of initial conditions is a nilpotent matrix and the Lyapunov exponent of the corresponding scalar iterative map is greater than zero. Computational experiments with the logistic map and the circle map are used to illustrate the effect of explosive divergence occurring in iterative maps of matrices.

  11. ANOVA like analysis for structured families of stochastic matrices

    NASA Astrophysics Data System (ADS)

    Dias, Cristina; Santos, Carla; Varadinov, Maria; Mexia, João T.

    2016-12-01

    Symmetric stochastic matrices width a width a dominant eigenvalue λ and the corresponding eigenvector α appears in many applications. Such matrices can be written as M =λ α αt+E¯. Thus β = λ α will be the structure vector. When the matrices in such families correspond to the treatments of a base design we can carry out a ANOVA like analysis of the action of the treatments in the model on the structured vectors. This analysis can be transversal-when we worked width homologous components and - longitudinal when we consider contrast on the components of each structure vector. The analysis will be briefly considered at the end of our presentation.

  12. Methyl group dynamics in glassy, polycrystalline, and liquid coenzyme Q10 studied by quasielastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Smuda, Christoph; Busch, Sebastian; Wagner, Bernd; Unruh, Tobias

    2008-08-01

    The methyl group rotation of coenzyme Q10 confined in nanosized droplets was studied using quasielastic neutron scattering (QENS). Q10 as an oligoisoprene derivative with ten isoprene units can easily be supercooled in nanodroplets. Fixed window scans and QENS spectra at several temperatures of glassy Q10 were recorded to study the methyl group rotation which can be described by a logarithmic Gaussian distribution of hopping rates for temperatures below the glass transition temperature (Tg~200 K). A mean activation energy of 4.8 kJ/mol with a distribution width of 2.1 kJ/mol was obtained from the evaluation of the QENS spectra. A corresponding analysis of a fixed window scan yielded an average activation energy of 5.1 kJ/mol with a distribution width of 1.8 kJ/mol. The results are compared and discussed with those of chain deuterated polyisoprene-d5. For polycrystalline Q10, the QENS spectra could be described by the same model yielding a similar average activation energy as found for glassy Q10. However, no temperature dependence of the distribution width was observed. Based on the performed low-temperature measurements, the correlation times for the methyl group rotation were extrapolated to temperatures of liquid Q10. The complex dynamics of liquid Q10 could be described by a model yielding an apparent diffusion coefficient, the jump rate of the methyl groups, as well as an overall molecular rotational diffusion coefficient. The correlation times of the methyl group rotation in liquid Q10 at a given temperature T0 coincide with values determined in the glassy phase and extrapolated to T0.

  13. Distribution and management of citrus in California: implications for management of glassy-winged sharpshooter.

    PubMed

    Sisterson, Mark S; Yacoub, Rosie; Montez, Greg; Grafton-Cardwell, Elizabeth E; Groves, Russell L

    2008-08-01

    The epidemiology of Pierce's disease of grape (Vitis spp.) in California has changed over the past 10 yr due to the introduction of an exotic vector, Homalodisca vitripennis (Germar), the glassy-winged sharpshooter. Although this insect is highly polyphagous, citrus (Citrus spp.) is considered a preferred host and proximity to citrus has been implicated as a significant risk factor in recent epidemics of Pierce's disease in southern California. Consequently, a detailed knowledge of the distribution and management of citrus in relation to grape is needed to improve insect and disease management. Analysis of data on the area planted to these two commodities indicates that only five counties in California concomitantly grow >1,000 ha of grape and >1,000 ha of citrus: Riverside, Kern, Tulare, Fresno, and Madera counties. Comparison of the distribution of grape and citrus within each of these counties indicates that the percentage of grape that is in proximity to citrus is greatest for Riverside County, but the total area of grape that is in proximity to citrus is greater for Fresno, Kern, and Tulare counties. The use of carbamates, neonicotinoids, organophosphates, and pyrethroids as part of the citrus pest management program for control of key insect pests was compared among the same five counties plus Ventura County from 1995 to 2006. Ventura County was included in this analysis as this county grows >10,000 ha of citrus and has established glassy-winged sharpshooter populations. The use of these broad-spectrum insecticides was lowest in Riverside and Ventura counties compared with the other four counties. Analysis of historical trapping data at the county scale indicates a negative association of broad-spectrum insecticide use with glassy-winged sharpshooter abundance. These results are used to retrospectively analyze the Pierce's disease outbreaks in Kern and Riverside counties.

  14. Laser micromilling of convex microfluidic channels onto glassy carbon for glass molding dies

    NASA Astrophysics Data System (ADS)

    Tseng, Shih-Feng; Chen, Ming-Fei; Hsiao, Wen-Tse; Huang, Chien-Yao; Yang, Chung-Heng; Chen, Yu-Sheng

    2014-06-01

    This study reports the fabrication of convex microfluidic channels on glassy carbon using an ultraviolet laser processing system to produce glass molding dies. The laser processing parameters, including various laser fluences and scanning speeds of galvanometers, were adjusted to mill a convex microchannel on a glassy carbon substrate to identify the effects of material removal. The machined glassy carbon substrate was then applied as a glass molding die to fabricate a glass-based microfluidic biochip. The surface morphology, milled width and depth, and surface roughness of the microchannel die after laser micromilling were examined using a three-dimensional confocal laser scanning microscope. This study also investigates the transcription rate of microchannels after the glass molding process. To produce a 180 μm high microchannel on the GC substrate, the optimal number of milled cycles, laser fluence, and scanning speed were 25, 4.9 J/cm2, and 200 mm/s, respectively. The width, height, and surface roughness of milled convex microchannels were 119.6±0.217 μm, 180.26±0.01 μm, and 0.672±0.08 μm, respectively. These measured values were close to the predicted values and suitable for a glass molding die. After the glass molding process, a typical glass-based microchannel chip was formed at a molding temperature of 660 °C and the molding force of 0.45 kN. The transcription rates of the microchannel width and depth were 100% and 99.6%, respectively. Thus, the proposed approach is suitable for performing in chemical, biochemical, or medical reactions.

  15. A geochemical approach to constraining the formation of glassy fallout debris from nuclear tests

    DOE PAGES

    Bonamici, Chloë E.; Kinman, William S.; Fournelle, John H.; ...

    2016-12-15

    Reprocessed earth material is a glassy nuclear fallout debris from near-surface nuclear tests. A geochemical approach to analysis of glassy fallout is uniquely suited to determine the means of reprocessing and shed light on the mechanisms of fallout formation. An improved understanding of fallout formation is of interest both for its potential to guide post-detonation nuclear forensic investigations and in the context of possible affinities between glassy debris and other glasses generated by high-energy natural events, such as meteorite impacts and lightning strikes. Our study presents a large major-element compositional dataset for glasses within aerodynamic fallout from the Trinity nuclearmore » test (“trinitite”) and a geochemically based analysis of the glass compositional trends. Silica-rich and alkali-rich trinitite glasses show compositions and textures consistent with formation through melting of individual mineral grains—quartz and alkali feldspar, respectively—from the test-site sediment. Furthermore, the volumetrically dominant glass phase—called the CaMgFe glass—shows extreme major-element compositional variability. Compositional trends in the CaMgFe glass are most consistent with formation through volatility-controlled condensation from compositionally heterogeneous plasma. Radioactivity occurs only in CaMgFe glass, indicating that co-condensation of evaporated bulk ground material and trace device material was the main mechanism of radioisotope incorporation into trinitite. CaMgFe trinitite glasses overlap compositionally with basalts, rhyolites, fulgurites, tektites, and microtektites but display greater compositional diversity than all of these naturally formed glasses. Indeed, the most refractory CaMgFe glasses compositionally resemble early solar system condensates—specifically, CAIs.« less

  16. A geochemical approach to constraining the formation of glassy fallout debris from nuclear tests

    SciTech Connect

    Bonamici, Chloë E.; Kinman, William S.; Fournelle, John H.; Zimmer, Mindy M.; Pollington, Anthony D.; Rector, Kirk D.

    2016-12-15

    Reprocessed earth material is a glassy nuclear fallout debris from near-surface nuclear tests. A geochemical approach to analysis of glassy fallout is uniquely suited to determine the means of reprocessing and shed light on the mechanisms of fallout formation. An improved understanding of fallout formation is of interest both for its potential to guide post-detonation nuclear forensic investigations and in the context of possible affinities between glassy debris and other glasses generated by high-energy natural events, such as meteorite impacts and lightning strikes. Our study presents a large major-element compositional dataset for glasses within aerodynamic fallout from the Trinity nuclear test (“trinitite”) and a geochemically based analysis of the glass compositional trends. Silica-rich and alkali-rich trinitite glasses show compositions and textures consistent with formation through melting of individual mineral grains—quartz and alkali feldspar, respectively—from the test-site sediment. Furthermore, the volumetrically dominant glass phase—called the CaMgFe glass—shows extreme major-element compositional variability. Compositional trends in the CaMgFe glass are most consistent with formation through volatility-controlled condensation from compositionally heterogeneous plasma. Radioactivity occurs only in CaMgFe glass, indicating that co-condensation of evaporated bulk ground material and trace device material was the main mechanism of radioisotope incorporation into trinitite. CaMgFe trinitite glasses overlap compositionally with basalts, rhyolites, fulgurites, tektites, and microtektites but display greater compositional diversity than all of these naturally formed glasses. Indeed, the most refractory CaMgFe glasses compositionally resemble early solar system condensates—specifically, CAIs.

  17. A geochemical approach to constraining the formation of glassy fallout debris from nuclear tests

    NASA Astrophysics Data System (ADS)

    Bonamici, Chloë E.; Kinman, William S.; Fournelle, John H.; Zimmer, Mindy M.; Pollington, Anthony D.; Rector, Kirk D.

    2017-01-01

    Glassy nuclear fallout debris from near-surface nuclear tests is fundamentally reprocessed earth material. A geochemical approach to analysis of glassy fallout is uniquely suited to determine the means of reprocessing and shed light on the mechanisms of fallout formation. An improved understanding of fallout formation is of interest both for its potential to guide post-detonation nuclear forensic investigations and in the context of possible affinities between glassy debris and other glasses generated by high-energy natural events, such as meteorite impacts and lightning strikes. This study presents a large major-element compositional dataset for glasses within aerodynamic fallout from the Trinity nuclear test ("trinitite") and a geochemically based analysis of the glass compositional trends. Silica-rich and alkali-rich trinitite glasses show compositions and textures consistent with formation through melting of individual mineral grains—quartz and alkali feldspar, respectively—from the test-site sediment. The volumetrically dominant glass phase—called the CaMgFe glass—shows extreme major-element compositional variability. Compositional trends in the CaMgFe glass are most consistent with formation through volatility-controlled condensation from compositionally heterogeneous plasma. Radioactivity occurs only in CaMgFe glass, indicating that co-condensation of evaporated bulk ground material and trace device material was the main mechanism of radioisotope incorporation into trinitite. CaMgFe trinitite glasses overlap compositionally with basalts, rhyolites, fulgurites, tektites, and microtektites but display greater compositional diversity than all of these naturally formed glasses. Indeed, the most refractory CaMgFe glasses compositionally resemble early solar system condensates—specifically, CAIs.

  18. Plasticizing effect of ibuprofen induced an alteration of drug released from Kollidon SR matrices produced by direct compression.

    PubMed

    Wiranidchapong, Chutima; Ruangpayungsak, Nuchnan; Suwattanasuk, Pattaraporn; Shuwisitkul, Duangratana; Tanvichien, Sujimon

    2015-06-01

    The objectives of this study were to investigate the effect of storage temperature on drug release from matrices containing 10, 40 and 70% w/w ibuprofen in Kollidon® SR (KSR). The matrix tablets were produced by direct compression and then kept at 30 and 45 °C for 3 months. Drug release from the matrix tablets was examined after storage for 0, 1, 4 and 12 weeks. Scanning electron microscope was used to reveal physical appearance of the tablet surface at the respective time intervals. In addition, differential scanning calorimeter was used to investigate glass transition temperature (Tg) of ibuprofen in KSR at 0-100% w/w based on the principle of Gordon-Taylor equation. At 45 °C, the dissolution of ibuprofen in KSR as well as the coalescence of polymer particles were observed to be higher than those of storage at 30 °C. The physical state of ibuprofen dispersed in the polymeric matrix and degree of polymer coalescence led to the variation of drug release. The coalescence of polymer particles was a result of the polymer transition from glassy to rubbery state according to water absorption of KSR and plasticizing effect of ibuprofen. The reduction of the Tg of ibuprofen blended with KSR could be better described by the Kwei equation, a modified version of Gordon-Taylor equation.

  19. Bone Regeneration Using Gene-Activated Matrices.

    PubMed

    D'Mello, Sheetal; Atluri, Keerthi; Geary, Sean M; Hong, Liu; Elangovan, Satheesh; Salem, Aliasger K

    2017-01-01

    Gene delivery to bone is a potential therapeutic strategy for directed, sustained, and regulated protein expression. Tissue engineering strategies for bone regeneration include delivery of proteins, genes (viral and non-viral-mediated delivery), and/or cells to the bone defect site. In addition, biomimetic scaffolds and scaffolds incorporating bone anabolic agents greatly enhance the bone repair process. Regional gene therapy has the potential of enhancing bone defect healing and bone regeneration by delivering osteogenic genes locally to the osseous lesions, thereby reducing systemic toxicity and the need for using supraphysiological dosages of therapeutic proteins. By implanting gene-activated matrices (GAMs), sustained gene expression and continuous osteogenic protein production in situ can be achieved in a way that stimulates osteogenesis and bone repair within osseous defects. Critical parameters substantially affecting the therapeutic efficacy of gene therapy include the choice of osteogenic transgene(s), selection of non-viral or viral vectors, the wound environment, and the selection of ex vivo and in vivo gene delivery strategies, such as GAMs. It is critical for gene therapy applications that clinically beneficial amounts of proteins are synthesized endogenously within and around the lesion in a sustained manner. It is therefore necessary that reliable and reproducible methods of gene delivery be developed and tested for their efficacy and safety before translating into clinical practice. Practical considerations such as the age, gender, and systemic health of patients and the nature of the disease process also need to be taken into account in order to personalize the treatments and progress towards developing a clinically applicable gene therapy for healing bone defects. This review discusses tissue engineering strategies to regenerate bone with specific focus on non-viral gene delivery systems.

  20. ON THE STIFFNESS OF DEMINERALIZED DENTIN MATRICES

    PubMed Central

    Ryou, Heonjune; Turco, Gianluca; Breschi, Lorenzo; Tay, Franklin R.; Pashley, David H.; Arola, Dwayne

    2015-01-01

    Resin bonding to dentin requires the use of self-etching primers or acid etching to decalcify the surface and expose a layer of collagen fibrils of the dentin matrix. Acid-etching reduces the stiffness of demineralized dentin from approximately 19 GPa to 1 MPa, requiring that it floats in water to prevent it from collapsing during bonding procedures. Several publications show that crosslinking agents like gluteraladehyde, carbodiimide or grape seed extract can stiffen collagen and improve resin-dentin bond strength. Objective The objective was to assess a new approach for evaluating the changes in stiffness of decalcified dentin by polar solvents and a collagen cross-linker. Methods Fully demineralized dentin beams and sections of etched coronal dentin were subjected to indentation loading using a cylindrical flat indenter in water, and after treatment with ethanol or ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). The stiffness was measured as a function of strain and as a function of loading rate from 1 to 50 µm/sec. Results At a strain of 0.25% the elastic modulus of the fully demineralized dentin was approximately 0.20 MPa. It increased to over 0.90 MPa at strains of 1%. Exposure to ethanol caused an increase in elastic modulus of up to four times. Increasing the loading rate from 1 to 50 µm/sec caused an increase in the apparent modulus of up to three times in both water and ethanol. EDC treatment caused increases in the stiffness in fully demineralized samples and in acid-etched demineralized dentin surfaces in situ. Significance Changes in the mechanical behavior of demineralized collagen matrices can be measured effectively under hydration via indentation with cylindrical flat indenters. This approach can be used for quantifying the effects of bonding treatments on the properties of decalcified dentin after acid etching, as well as to follow the loss of stiffness over time due to enzymatic degradation. PMID:26747822

  1. Systems of Differential Equations with Skew-Symmetric, Orthogonal Matrices

    ERIC Educational Resources Information Center

    Glaister, P.

    2008-01-01

    The solution of a system of linear, inhomogeneous differential equations is discussed. The particular class considered is where the coefficient matrix is skew-symmetric and orthogonal, and where the forcing terms are sinusoidal. More general matrices are also considered.

  2. Separation of traces of metal ions from sodium matrices

    NASA Technical Reports Server (NTRS)

    Korkisch, J.; Orlandini, K. A.

    1969-01-01

    Method for isolating metal ion traces from sodium matrices consists of two extractions and an ion exchange step. Extraction is accomplished by using 2-thenoyltrifluoracetone and dithizone followed by cation exchange.

  3. Spectral density of a Wishart model for nonsymmetric correlation matrices.

    PubMed

    Vinayak

    2013-10-01

    The Wishart model for real symmetric correlation matrices is defined as W=AA^{t}, where matrix A is usually a rectangular Gaussian random matrix and A^{t} is the transpose of A. Analogously, for nonsymmetric correlation matrices, a model may be defined for two statistically equivalent but different matrices A and B as AB^{t}. The corresponding Wishart model, thus, is defined as C=AB^{t}BA^{t}. We study the spectral density of C for the case when A and B are not statistically independent. The ensemble average of such nonsymmetric matrices, therefore, does not simply vanishes to a null matrix. In this paper we derive a Pastur self-consistent equation which describes spectral density of C at large matrix dimension. We complement our analytic results with numerics.

  4. Eigenvalue statistics for the sum of two complex Wishart matrices

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh

    2014-09-01

    The sum of independent Wishart matrices, taken from distributions with unequal covariance matrices, plays a crucial role in multivariate statistics, and has applications in the fields of quantitative finance and telecommunication. However, analytical results concerning the corresponding eigenvalue statistics have remained unavailable, even for the sum of two Wishart matrices. This can be attributed to the complicated and rotationally noninvariant nature of the matrix distribution that makes extracting the information about eigenvalues a nontrivial task. Using a generalization of the Harish-Chandra-Itzykson-Zuber integral, we find exact solution to this problem for the complex Wishart case when one of the covariance matrices is proportional to the identity matrix, while the other is arbitrary. We derive exact and compact expressions for the joint probability density and marginal density of eigenvalues. The analytical results are compared with numerical simulations and we find perfect agreement.

  5. Synbiotic matrices derived from plant oligosaccharides and polysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A porous synbiotic matrix was prepared by lyophilization of alginate and pectin or fructan oligosaccharides and polysaccharides cross-linked with calcium. These synbiotic matrices were excellent physical structures to support the growth of Lactobacillus acidophilus (1426) and Lactobacillus reuteri (...

  6. Morphic images of binary words and Parikh matrices

    NASA Astrophysics Data System (ADS)

    Isawasan, Pradeep; Venkat, Ibrahim; Subramanian, K. G.; Sarmin, Nor Haniza

    2014-07-01

    A word is a finite sequence of symbols. Parikh matrix of a word, introduced by Mateescu et al (2000), has become an effective tool in the study of certain numerical properties of words based on subwords. There have been several investigations on various properties of Parikh matrices such as M-ambiguity, M-equivalence, subword equalities and inequalities, commutativity and so on. Recently, Parikh matrices of words that are images under certain morphisms have been studied for their properties. On the other hand, Parikh matrices of words involving a certain ratio property called weak-ratio property have been investigated by Subramanian et al (2009). Here we consider two special morphisms called Fibonacci and Tribonacci morphisms and obtain properties of Parikh matrices of images of binary words under these morphisms, utilizing the notion of weak-ratio property.

  7. Joint Estimation of Multiple Precision Matrices with Common Structures

    PubMed Central

    Lee, Wonyul; Liu, Yufeng

    2015-01-01

    Estimation of inverse covariance matrices, known as precision matrices, is important in various areas of statistical analysis. In this article, we consider estimation of multiple precision matrices sharing some common structures. In this setting, estimating each precision matrix separately can be suboptimal as it ignores potential common structures. This article proposes a new approach to parameterize each precision matrix as a sum of common and unique components and estimate multiple precision matrices in a constrained l1 minimization framework. We establish both estimation and selection consistency of the proposed estimator in the high dimensional setting. The proposed estimator achieves a faster convergence rate for the common structure in certain cases. Our numerical examples demonstrate that our new estimator can perform better than several existing methods in terms of the entropy loss and Frobenius loss. An application to a glioblastoma cancer data set reveals some interesting gene networks across multiple cancer subtypes. PMID:26568704

  8. Performance Properties of Graphite Reinforced Composites with Advanced Resin Matrices

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1980-01-01

    This article looks at the effect of different resin matrices on thermal and mechanical properties of graphite composites, and relates the thermal and flammability properties to the anaerobic char yield of the resins. The processing parameters of graphite composites utilizing graphite fabric and epoxy or other advanced resins as matrices are presented. Thermoset resin matrices studied were: aminecured polyfunctional glycidyl aminetype epoxy (baseline), phenolicnovolac resin based on condensation of dihydroxymethyl-xylene and phenol cured with hexamine, two types of polydismaleimide resins, phenolic resin, and benzyl resin. The thermoplastic matrices studied were polyethersulfone and polyphenylenesulfone. Properties evaluated in the study included anaerobic char yield, limiting oxygen index, smoke evolution, moisture absorption, and mechanical properties at elevated temperatures including tensile, compressive, and short-beam shear strengths. Generally, it was determined that graphite composites with the highest char yield exhibited optimum fire-resistant properties.

  9. Influence of elastic strains on the mask ratio in glassy polymer nanoimprint

    NASA Astrophysics Data System (ADS)

    Cross, Graham L. W.; O'Connell, Barry S.; Pethica, John B.

    2005-02-01

    During glassy polymer nanoimprint, a supported film is extruded from protruding (punch) to recessed (cavity) regions of a patterned stamp. The completeness of this extrusion determines the mask ratio for lithographic applications. We show that, for a given punch contact size, there is a residual layer of unextruded material with a mean thickness that is independent of initial film thickness, stamping time, or applied maximum load. Depth sensing indentation enables us to monitor deformation during the imprinting as well as after, and so understand the deformation process involved. It is found that both the geometry and mean thickness of the residual layer are influenced by the overall elastic properties of the stamping system.

  10. Analysis of glassy spherules extracted from Carpathian Mesozoic lime stone by μPIXE method

    NASA Astrophysics Data System (ADS)

    Uzonyi, I.; Kiss, Á. Z.; Solt, P.; Dosztály, L.; Kákay Szabó, O.; Detre, Cs. H.

    1998-04-01

    Twenty-four glassy spherules collected from three Mesozoic sites of the Carpathian Basin have been analysed for major, minor and trace element composition using the scanning proton microprobe facility of the Institute of Nuclear Research (ATOMKI) in Debrecen. μPIXE analyses revealed surprisingly high Ca and Ba concentrations (CaO ˜40%, BaO ˜2.5%) which have never been reported before. Samples proved to be homogeneous for the major elements (Si, Ca). From geological considerations it may be inferred that these spherules are terrestrial impact products, though, the details of the impact events have not been fully cleared yet.

  11. Dielectric relaxation studies in Se90Cd8Sb2 glassy alloy

    NASA Astrophysics Data System (ADS)

    Shukla, Nitesh; Rao, Vandita; Dwivedi, D. K.

    2016-05-01

    Se90Cd8Sb2 chalcogenide semiconducting alloy was prepared by melt quench technique. The prepared glassy alloy has been characterized by techniques such as scanning electron microscopy (SEM) and energy dispersive X-ray (EDAX).Dielectric properties of Se90Cd8Sb2 chalcogenide semiconductor have been studied using impedance spectroscopic technique in the frequency range 5×102Hz - 1×105Hz and in temperature range 303-318K. It is found that dielectric constant ɛ' and dielectric loss factor ɛ″ are dependent on frequency and temperature.

  12. Multiple Uses of Hydrogen Isotopes as a Tracer of Rehydration Processes in Glassy Lavas

    NASA Astrophysics Data System (ADS)

    Cameron, B. I.; Fink, J. H.; Guan, Y.; Leshin, L. A.

    2001-12-01

    Silicic lava flows contain zones of enhanced vesicularity with high total H2O contents. This relationship between volatile content and vesicularity has promoted the monitoring of active lava domes using remote sensing techniques in an effort to forecast explosive activity. A persistent complication in attempts to relate surface texture to H2O content and explosivity was the confounding effect of meteoric H2O. Glassy and vesicular lavas exposed at the surface of the Earth for prolonged periods readily interact with meteoric H2O. Rehydration is a time-, temperature-, and porosity-dependent process governed by the slow diffusion of molecular H2O into the glass. This inevitable addition of secondary H2O obscures the spatial distribution of juvenile H2O in lava flows. The ability to distinguish magmatic from meteoric H2O in glassy lavas would help identify regions of overpressure on active domes and thereby improve hazard assessment. Three types of hydrogen isotopic studies of glassy lavas have been utilized to disentangle rehydration processes from primary magmatic ones. First, bulk hydrogen isotopic data on variably textured lava flows reveal enrichments in both δ D and total H2O as vesicularity increases. Mixing between a degassed magmatic and a partially evaporated meteoric H2O best explains the observed trend from lower δ D values in the interior massive obsidian samples to higher δ D in the most surficial vesicular pumice. Second, step-heated hydrogen isotopic analyses further prove that the vesicular samples contain a high percentage of meteoric H2O. Whereas dense massive obsidian samples release a large fraction of deuterium-depleted H2O at temperatures above 600° C, the bubble-rich pumiceous samples lose a majority of their H2O at temperatures below 400° C. Lastly, the Cameca 6f ion microprobe at ASU was used to measure hydrogen isotope transects into the vesicle-melt interface. The gradation from depleted δ D values in the glassy interstices to more

  13. Transmission of phage by glassy-winged sharpshooters, a vector of Xylella fastidiosa

    PubMed Central

    Bhowmick, Tushar Suvra; Das, Mayukh; Heinz, Kevin M.; Krauter, Peter C.; Gonzalez, Carlos F.

    2016-01-01

    ABSTRACT Xylella fastidiosa subsp. fastidiosa (Xff) is the causal agent of Pierce's Disease (PD) of grapevines and is vectored by the glassy-winged sharpshooter (GWSS, Homalodisca vitripennis). Previously we have reported the development of a bacteriophage (phage) based biocontrol system for PD, but no information on insect transmission of phages has been reported. Here we communicate that laboratory reared GWSSs fed on cowpea plants (Vigna unguiculata subsp. unguiculata) harboring the virulent phage Paz were able to uptake of phage efficiently when the phage was present in high concentration, but were inefficient in transfer to plants. PMID:27738554

  14. Permanent photoalignment of liquid crystals on nanostructured chalcogenide glassy thin films

    SciTech Connect

    Gelbaor, Miri; Abdulhalim, I.; Klebanov, Matvey; Lyubin, Victor

    2011-02-14

    Photoalignment of nematic liquid crystals is obtained on the chalcogenide glassy thin film of As{sub 2}S{sub 3} using irradiation with polarized blue light. A uniform homogeneously aligned device is obtained with high contrast and strong anchoring. The device alignment quality is permanent as checked by following its functionality over a period of few months. The origin of the observed photoalignment is attributed to the photoinduced anisotropy in chalcogenide glasses. No differences between the different As{sub 2}S{sub 3} film thicknesses observed, thus supporting the proposition that some orientational order is photoinduced on the surface of the glass and responsible for the photoalignment.

  15. Estimating soil matric potential in Owens Valley, California

    USGS Publications Warehouse

    Sorenson, Stephen K.; Miller, R.F.; Welch, M.R.; Groeneveld, D.P.; Branson, F.A.

    1988-01-01

    Much of the floor of the Owens Valley, California, is covered with alkaline scrub and alkaline meadow plant communities, whose existence is dependent partly on precipitation and partly on water infiltrated into the rooting zone from the shallow water table. The extent to which these plant communities are capable of adapting to and surviving fluctuations in the water table depends on physiological adaptations of the plants and on the water content, matric potential characteristics of the soils. Two methods were used to estimate soil matric potential in test sites in Owens Valley. The first was the filter-paper method, which uses water content of filter papers equilibrated to water content of soil samples taken with a hand auger. The other method of estimating soil matric potential was a modeling approach based on data from this and previous investigations. These data indicate that the base 10 logarithm of soil matric potential is a linear function of gravimetric soil water content for a particular soil. Estimates of soil water characteristic curves were made at two sites by averaging the gravimetric soil water content and soil matric potential values from multiple samples at 0.1 m depths derived by using the hand auger and filter paper method and entering these values in the soil water model. The characteristic curves then were used to estimate soil matric potential from estimates of volumetric soil water content derived from neutron-probe readings. Evaluation of the modeling technique at two study sites indicated that estimates of soil matric potential within 0.5 pF units of the soil matric potential value derived by using the filter paper method could be obtained 90 to 95% of the time in soils where water content was less than field capacity. The greatest errors occurred at depths where there was a distinct transition between soils of different textures. (Lantz-PTT)

  16. Decomposition of Balanced Matrices. Part 4. Connected Squares

    DTIC Science & Technology

    1991-10-01

    AD-A247 308 Management Science Research Report #MSRR-572 Decomposition of Balanced Matrices . Part IV: Connected Squares Michele Conforti 2 Gerard...is unlimited. This work was supported in part by NSF grants DDM-8800281, DDM-8901495 and DDM-9001705. tDipartlmento di Matematica Pura ed Applicata...BALANCED MATRICES .• Technical Report, Oct 1991 PART IV: CONNECTED SQUARES 6. PERFORMING ORG. REPORT NUMBER 7. AUTHORS) CONTRACT OR GRANT NUMBER(S) Michele

  17. Boundary transfer matrices and boundary quantum KZ equations

    SciTech Connect

    Vlaar, Bart

    2015-07-15

    A simple relation between inhomogeneous transfer matrices and boundary quantum Knizhnik-Zamolodchikov (KZ) equations is exhibited for quantum integrable systems with reflecting boundary conditions, analogous to an observation by Gaudin for periodic systems. Thus, the boundary quantum KZ equations receive a new motivation. We also derive the commutativity of Sklyanin’s boundary transfer matrices by merely imposing appropriate reflection equations, in particular without using the conditions of crossing symmetry and unitarity of the R-matrix.

  18. In vitro characterization of polycaprolactone matrices generated in aqueous media.

    PubMed

    Pok, Seok Won; Wallace, Kristin N; Madihally, Sundararajan V

    2010-03-01

    In this study, a novel process of dissolving polycaprolactone (PCL) matrices in glacial acetic acid was explored in which matrices spontaneously formed upon contact with water. Scanning electron microscopy analysis showed rough architecture and holes on the self-assembled matrix relative to matrices formed after dissolving in chloroform. Immersion in the gelatin solution reduced its roughness and number of micropores. Atomic force microscopy (AFM) analysis confirmed the increased roughness of the self-assembled matrices. The roughness of the matrices decreased after incubation in 1N NaOH for 10 min. AFM analysis also revealed that the self-assembled matrix had a net positive surface charge, whereas chloroform-cast matrix had a negative surface charge. The surface charge of self-assembled matrix after immersion in gelatin changed to negative. However, incubation in NaOH did not affect the surface charge. The tensile properties were tested in both the dry state (25 degrees Celsius) and the wet state (37 degrees Celsius) by immersion in phosphate-buffered saline. Self-assembled matrix had lower elastic modulus, break stress and break strain than chloroform-cast matrix in both states. The elastic modulus in the wet condition was reduced by half in self-assembled matrix but tensile strain increased. Samples were further analyzed by ramp-hold test for assessing stress relaxation behavior. Both self-assembled and chloroform-cast matrices had similar trends in stress relaxation behavior. However, stress accumulation in self-assembled matrix was half that of chloroform-cast matrix. In vitro cell cultures were conducted using human foreskin fibroblast (HFF-1) in serum-free medium. Cytoskeletal actin staining showed cell adhesion and spreading on all matrices. Cell retention was significantly increased in self-assembled matrix compared to chloroform-cast matrix. Addition of gelatin improved the retention of seeded cells on the surface. In summary, PCL matrices generated using

  19. Preliminary Analysis on Matric Suction for Barren Soil

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Fazlina, M. I. S.; Aziman, M.; Fairus, Y. M.; Azman, K.; Hazreek, Z. A. M.

    2016-11-01

    Most research conducted on slope failures can broadly be attributed to the convergence of three factors, i.e. rainfall, steepness of slope, and soil geological profile. The mechanism of the failures is mainly due to the loss of matric suction of soils by rainwater. When rainwater infiltrates into the slopes, it will start to saturate the soil, i.e., reduce the matric suction. A good understanding of landslide mechanisms and the characteristics of unsaturated soil and rock in tropical areas is crucial in landslide hazard formulation. Most of the slope failures in unsaturated tropical residual soil in Malaysia are mainly due to infiltration, especially during intense and prolonged rainfall, which reduces the soil matric suction and hence decreases the stability of the slope. Therefore, the aim of this research is to determine the matric suction for barren soil and to model an unsaturated slope with natural rainfall to evaluate the effects of matric suction on rainfall intensity. A field test was carried out using the Watermark Soil Moisture Sensor to determine the matric suction. The sensor was connected to a program called SpecWare 9 Basic which also used Data Logging Rain gauge Watermark 1120 to measure the intensity and duration of rainfall. This study was conducted at the Research Centre for Soft Soil which is a new Research and Development (R & D) initiative by Universiti Tun Hussein Onn Malaysia, Parit Raja. Field observation showed that the highest daily suction was recorded during noon while the lowest suction was obtained at night and early morning. The highest matric suction for loose condition was 31.0 kPa while the highest matric suction for compacted condition was 32.4 kPa. The results implied that the field suction variation was not only governed by the rainfall, but also the cyclic evaporation process. The findings clearly indicated that the changes in soil suction distribution patterns occurred due to different weather conditions.

  20. Inference for High-dimensional Differential Correlation Matrices *

    PubMed Central

    Cai, T. Tony; Zhang, Anru

    2015-01-01

    Motivated by differential co-expression analysis in genomics, we consider in this paper estimation and testing of high-dimensional differential correlation matrices. An adaptive thresholding procedure is introduced and theoretical guarantees are given. Minimax rate of convergence is established and the proposed estimator is shown to be adaptively rate-optimal over collections of paired correlation matrices with approximately sparse differences. Simulation results show that the procedure significantly outperforms two other natural methods that are based on separate estimation of the individual correlation matrices. The procedure is also illustrated through an analysis of a breast cancer dataset, which provides evidence at the gene co-expression level that several genes, of which a subset has been previously verified, are associated with the breast cancer. Hypothesis testing on the differential correlation matrices is also considered. A test, which is particularly well suited for testing against sparse alternatives, is introduced. In addition, other related problems, including estimation of a single sparse correlation matrix, estimation of the differential covariance matrices, and estimation of the differential cross-correlation matrices, are also discussed. PMID:26500380

  1. Inference for High-dimensional Differential Correlation Matrices.

    PubMed

    Cai, T Tony; Zhang, Anru

    2016-01-01

    Motivated by differential co-expression analysis in genomics, we consider in this paper estimation and testing of high-dimensional differential correlation matrices. An adaptive thresholding procedure is introduced and theoretical guarantees are given. Minimax rate of convergence is established and the proposed estimator is shown to be adaptively rate-optimal over collections of paired correlation matrices with approximately sparse differences. Simulation results show that the procedure significantly outperforms two other natural methods that are based on separate estimation of the individual correlation matrices. The procedure is also illustrated through an analysis of a breast cancer dataset, which provides evidence at the gene co-expression level that several genes, of which a subset has been previously verified, are associated with the breast cancer. Hypothesis testing on the differential correlation matrices is also considered. A test, which is particularly well suited for testing against sparse alternatives, is introduced. In addition, other related problems, including estimation of a single sparse correlation matrix, estimation of the differential covariance matrices, and estimation of the differential cross-correlation matrices, are also discussed.

  2. Action recognition from video using feature covariance matrices.

    PubMed

    Guo, Kai; Ishwar, Prakash; Konrad, Janusz

    2013-06-01

    We propose a general framework for fast and accurate recognition of actions in video using empirical covariance matrices of features. A dense set of spatio-temporal feature vectors are computed from video to provide a localized description of the action, and subsequently aggregated in an empirical covariance matrix to compactly represent the action. Two supervised learning methods for action recognition are developed using feature covariance matrices. Common to both methods is the transformation of the classification problem in the closed convex cone of covariance matrices into an equivalent problem in the vector space of symmetric matrices via the matrix logarithm. The first method applies nearest-neighbor classification using a suitable Riemannian metric for covariance matrices. The second method approximates the logarithm of a query covariance matrix by a sparse linear combination of the logarithms of training covariance matrices. The action label is then determined from the sparse coefficients. Both methods achieve state-of-the-art classification performance on several datasets, and are robust to action variability, viewpoint changes, and low object resolution. The proposed framework is conceptually simple and has low storage and computational requirements making it attractive for real-time implementation.

  3. Electrochemical reduction of Brønsted acids by glassy carbon in acetonitrile-implications for electrocatalytic hydrogen evolution.

    PubMed

    McCarthy, Brian D; Martin, Daniel J; Rountree, Eric S; Ullman, Alexander C; Dempsey, Jillian L

    2014-08-18

    Molecular catalysts for electrochemically driven hydrogen evolution are often studied in acetonitrile with glassy carbon working electrodes and Brønsted acids. Surprisingly, little information is available regarding the potentials at which acids are directly reduced on glassy carbon. This work examines acid electroreduction in acetonitrile on glassy carbon electrodes by cyclic voltammetry. Reduction potentials, spanning a range exceeding 2 V, were found for 20 acids. The addition of 100 mM water was not found to shift the reduction potential of any acid studied, although current enhancement was observed for some acids. The data reported provides a guide for selecting acids to use in electrocatalysis experiments such that direct electrode reduction is avoided.

  4. Voltammetric Detection of Oxalic Acid by Using Glassy Carbon Electrodes with Covalently Attached Nitrogen-containing Functional Groups.

    PubMed

    Matsuura, Hiroaki; Akabe, Syuhei; Kitamura, Tsubasa; Takahashi, Takuto; Uchiyama, Shunichi

    2015-01-01

    We report on a novel voltammetric detection of oxalic acid by using glassy carbon electrodes with covalently attached nitrogen-containing functional groups prepared by stepwise electrolysis. A glassy carbon electrode electrooxidized in an ammonium carbamate solution was electroreduced at -1.0 V (vs. Ag/AgCl) in 1.0 M sulfuric acid for a long time. We found that the electrocatalytic oxidation wave of oxalic acid obtained by this modified glassy carbon electrode was moved to a more negative potential region than that obtained by a platinum electrode in an acidic medium. A good linearity for the peak current signals was observed in the concentration range from 0.1 to 50 mM.

  5. Boson peak as a probe of quantum effects in a glassy state of biomolecules: The case of L-cysteine

    NASA Astrophysics Data System (ADS)

    Lima, T. A.; Ishikawa, M. S.; Martinho, H. S.

    2014-02-01

    Some physical properties of hydrated biomolecules, e.g., the occurrence of a boson peak, have been recognized to resemble those of glassy states. The present work shows that quantum fluctuations play a fundamental role in describing the glassy state of biomolecules, particularly at lower hydration levels. There is a linear relationship between the quantumness and the slope of the temperature dependence of the boson peak frequency, which is used to classify the extent of quantum contributions to the glassy state of glasses in general. Lastly, we demonstrate that the boson peak two-band spectral structure that is observed in some cases can be directly linked to the anisotropy of the elastic properties of the material. The amino acid L-cysteine is studied in detail. The findings are compared with previously reported data for other macromolecules.

  6. Geographic distribution and relative abundance of the invasive glassy-winged sharpshooter: effects of temperature and egg parasitoids.

    PubMed

    Gutierrez, Andrew Paul; Ponti, Luigi; Hoddle, Mark; Almeida, Rodrigo P P; Irvin, Nicola A

    2011-08-01

    The capacity to predict the geographic distribution and relative abundance of invasive species is pivotal to developing policy for eradication or control and management. Commonly used methods fall under the ambit of ecological niche models (ENMs). These methods were reviewed and shortcomings identified. Weather-driven physiologically based demographic models (PBDMs) are proposed that resolve many of the deficiencies of ENMs. The PBDM approach is used to analyze the invasiveness of the polyphagous glassy-winged sharpshooter (Homalodisca vitripennis [Germar]), a pest native to the southeastern United States and northeastern Mexico that extended its range into California in 1989. Glassy-winged sharpshooter vectors the pathogenic bacterium, Xylella fastidiosa (Wells) that causes Pierce's disease in grape and scorch-like diseases in other plants. PBDMs for glassy-winged sharpshooter and its egg parasitoids (Gonatocerus ashmeadi Girault and G. triguttatus Girault) were developed and linked to a PBDM for grape published by Wermelinger et al. (1991). Daily weather data from 108 locations across California for the period 1995-2006 were used to drive the PBDM system, and GRASS GIS was used to map the simulation results. The geographic distribution of glassy-winged sharpshooter, as observed, is predicted to be largely restricted to the warm areas of southern California, with the action of the two egg parasitoids reducing its abundance >90%. The average indispensable mortality contributed by G. triguttatus is <1%. A temperature-dependent developmental rate model for X. fastidiosa was developed that suggests its geographic range is also limited to the warm inland areas of southern California. Biological control of glassy-winged sharpshooter further decreases the pathogen's relative range. Climate warming scenarios of +2°C and +3°C suggest that the distribution and severity of glassy-winged sharpshooter and X. fastidiosa will increase in the agriculturally rich central valley

  7. Bounds for Eigenvalues of ArrowheadMatrices and Their Applications to HubMatrices andWireless Communications

    DTIC Science & Technology

    2009-01-01

    September 2009 Recommended by Enrico Capobianco This paper considers the lower and upper bounds of eigenvalues of arrow-head matrices. We propose a... Fermi liquid [2]. Numerically efficient algorithms for computing eigenvalues and eigenvectors of arrowhead matrices were discussed in [3]. The...tions,” The Journal of Chemical Physics, vol. 48, no. 2, pp. 715– 726, 1968. [2] J. W. Gadzuk, “Localized vibrational modes in Fermi liquids. General

  8. Glassy Carbons

    DTIC Science & Technology

    1975-02-01

    the layer plane spacing, d002; the in plane spacing, dll 0 , and the line broadening parameters, Lc and La, there is an experimentally significant...developed graphitic structure. The structure is certainly planar, with a near perfect graphitic spacing wi+hin planes. The line broadening parameters, Lc ...phase) Peak NVS: "Not Very Smooth" Peak 2P: Ŗ Phase" Peak 3P: ŗ Phase" Peak (002) Temp. Peak Sample Des,.qnation (rC) Type d(002) Lc d(10) La Graphite

  9. Inorganic Nanoparticle Nucleation on Polymer Matrices

    NASA Astrophysics Data System (ADS)

    Kosteleski, Adrian John

    dressing applications. PAA's ability to nucleate nanoparticles in a solid matrix was displayed. Interestingly enough PAA retains its ability to nucleate nanoparticle even when its reactive functional groups are used in the crosslinking process. Silver nanoparticle composition and size on the solid polymer matrices was controlled by varying the composition of PAA. PAA and silver nanoparticles effect on the mechanical properties of the calcium alginate hydrogels were also studied. Physically crosslinking PAA with calcium alginate gels enables the development of intricate gel structures that are decorated with nucleated silver; yielding a composite biomaterial with improved and enhanced antimicrobial properties.

  10. Crystalline Colloidal Arrays in Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Sunkara, Hari B.; Penn, B. G.; Frazier, D. O.; Ramachandran, N.

    1997-01-01

    matrices, the factors which affect the optical diffraction qualities of resulting polymer films, and methods to improve the efficiencies of solid optical filters. Before this, we also present the experimental demonstration, of controlling the optical diffraction intensities from aqueous CCA dispersions by varying the temperature, which establishes the feasibility of fabricating all-optical switching devices with nonlinear periodic array structures.

  11. Estimated correlation matrices and portfolio optimization

    NASA Astrophysics Data System (ADS)

    Pafka, Szilárd; Kondor, Imre

    2004-11-01

    Correlations of returns on various assets play a central role in financial theory and also in many practical applications. From a theoretical point of view, the main interest lies in the proper description of the structure and dynamics of correlations, whereas for the practitioner the emphasis is on the ability of the models to provide adequate inputs for the numerous portfolio and risk management procedures used in the financial industry. The theory of portfolios, initiated by Markowitz, has suffered from the “curse of dimensions” from the very outset. Over the past decades a large number of different techniques have been developed to tackle this problem and reduce the effective dimension of large bank portfolios, but the efficiency and reliability of these procedures are extremely hard to assess or compare. In this paper, we propose a model (simulation)-based approach which can be used for the systematical testing of all these dimensional reduction techniques. To illustrate the usefulness of our framework, we develop several toy models that display some of the main characteristic features of empirical correlations and generate artificial time series from them. Then, we regard these time series as empirical data and reconstruct the corresponding correlation matrices which will inevitably contain a certain amount of noise, due to the finiteness of the time series. Next, we apply several correlation matrix estimators and dimension reduction techniques introduced in the literature and/or applied in practice. As in our artificial world the only source of error is the finite length of the time series and, in addition, the “true” model, hence also the “true” correlation matrix, are precisely known, therefore in sharp contrast with empirical studies, we can precisely compare the performance of the various noise reduction techniques. One of our recurrent observations is that the recently introduced filtering technique based on random matrix theory performs

  12. Mediatorless solar energy conversion by covalently bonded thylakoid monolayer on the glassy carbon electrode.

    PubMed

    Lee, Jinhwan; Im, Jaekyun; Kim, Sunghyun

    2016-04-01

    Light reactions of photosynthesis that take place in thylakoid membranes found in plants or cyanobacteria are among the most effective ways of utilizing light. Unlike most researches that use photosystem I or photosystem II as conversion units for converting light to electricity, we have developed a simple method in which the thylakoid monolayer was covalently immobilized on the glassy carbon electrode surface. The activity of isolated thylakoid membrane was confirmed by measuring evolving oxygen under illumination. Glassy carbon surfaces were first modified with partial or full monolayers of carboxyphenyl groups by reductive C-C coupling using 4-aminobenzoic acid and aniline and then thylakoid membrane was bioconjugated through the peptide bond between amine residues of thylakoid and carboxyl groups on the surface. Surface properties of modified surfaces were characterized by cyclic voltammetry, contact angle measurements, and electrochemical impedance spectroscopy. Photocurrent of 230 nA cm(-2) was observed when the thylakoid monolayer was formed on the mixed monolayer of 4-carboxylpheny and benzene at applied potential of 0.4V vs. Ag/AgCl. A small photocurrent resulted when the 4-carboxyphenyl full monolayer was used. This work shows the possibility of solar energy conversion by directly employing the whole thylakoid membrane through simple surface modification.

  13. Glassy behavior and jamming of a random walk process for sequentially satisfying a constraint satisfaction formula

    NASA Astrophysics Data System (ADS)

    Zhou, Haijun

    2010-02-01

    Random K-satisfiability (K-SAT) is a model system for studying typical-case complexity of combinatorial optimization. Recent theoretical and simulation work revealed that the solution space of a random K-SAT formula has very rich structures, including the emergence of solution communities within single solution clusters. In this paper we investigate the influence of the solution space landscape to a simple stochastic local search process SEQSAT, which satisfies a K-SAT formula in a sequential manner. Before satisfying each newly added clause, SEQSAT walk randomly by single-spin flips in a solution cluster of the old subformula. This search process is efficient when the constraint density α of the satisfied subformula is less than certain value αcm; however it slows down considerably as α> αcm and finally reaches a jammed state at α≈αj. The glassy dynamical behavior of SEQSAT for α≥αcm probably is due to the entropic trapping of various communities in the solution cluster of the satisfied subformula. For random 3-SAT, the jamming transition point αj is larger than the solution space clustering transition point αd, and its value can be predicted by a long-range frustration mean-field theory. For random K-SAT with K ≥ 4, however, our simulation results indicate that αj = αd. The relevance of this work for understanding the dynamic properties of glassy systems is also discussed.

  14. Sensitive Electrochemical Detection of Enzymatically-generated Thiocholine at Carbon Nanotube Modified Glassy Carbon Electrode

    SciTech Connect

    Liu, Guodong; Riechers, Shawn L.; Mellen, Maria C.; Lin, Yuehe

    2005-11-01

    A carbon nanotube modified glassy-carbon (CNT/GC) electrode was used for enhancing the sensitivity of electrochemical measurements of enzymatically-generated thiocholine. Cyclic voltammetric and amperometric characteristics of thiocholine at CNT/GC, glassy carbon, carbon paste, and gold electrodes were compared. The CNT layer leads to a greatly improved anodic detection of enzymatically generated thiocholine product including lower oxidation overpotential (0.15 V) and higher sensitivity because of its electrocatalytic activity, fast electron transfer and large surface area. The sensor performance was optimized with respect to the operating conditions. Under the optimal batch conditions, a detection limit of 5 ?10 -6 mol/L was obtained with good precision (RSD = 5.2%, n=10). Furthermore, the attractive response of thiocholine on a CNT/GC electrode has allowed it to be used for constant-potential flow injection analysis. The detection limit was greatly improved to 0.3 ?10-6 mol/L. The high sensitivity electrochemical detection of enzymatically generated thiocholine with a CNT sensing platform holds great promise to prepare an acetylcholinesterase biosensor for monitoring organophosphate pesticides and nerve agents.

  15. Diazonium Chemistry for the Bio-Functionalization of Glassy Nanostring Resonator Arrays

    PubMed Central

    Zheng, Wei; Du, Rongbing; Cao, Yong; Mohammad, Mohammad A.; Dew, Steven K.; McDermott, Mark T.; Evoy, Stephane

    2015-01-01

    Resonant glassy nanostrings have been employed for the detection of biomolecules. These devices offer high sensitivity and amenability to large array integration and multiplexed assays. Such a concept has however been impaired by the lack of stable and biocompatible linker chemistries. Diazonium salt reduction-induced aryl grafting is an aqueous-based process providing strong chemical adhesion. In this work, diazonium-based linker chemistry was performed for the first time on glassy nanostrings, which enabled the bio-functionalization of such devices. Large arrays of nanostrings with ultra-narrow widths down to 10 nm were fabricated employing electron beam lithography. Diazonium modification was first developed on SiCN surfaces and validated by X-ray photoelectron spectroscopy. Similarly modified nanostrings were then covalently functionalized with anti-rabbit IgG as a molecular probe. Specific enumeration of rabbit IgG was successfully performed through observation of downshifts of resonant frequencies. The specificity of this enumeration was confirmed through proper negative control experiments. Helium ion microscopy further verified the successful functionalization of nanostrings. PMID:26263989

  16. Molecular dynamics simulation of rupture in glassy polymer bridges within filler aggregates

    NASA Astrophysics Data System (ADS)

    Froltsov, Vladimir A.; Klüppel, Manfred; Raos, Guido

    2012-10-01

    We present a series of nonequilibrium molecular dynamics simulations, investigating the rupture mechanisms in glassy polymer films confined between two solid surfaces. Such systems provide a useful model for the strong nonlinear reinforcement of rubber by colloidal filler particles. Depending on the degree of confinement three qualitatively different rupture modes have been found, which originate from the interplay of internal (polymer-polymer) and external (polymer-wall) interactions. In very thin films we observe the formation and stretching of many single-chain bridges between the confining surfaces. Progressing to thicker samples we observe fewer bridges, consisting of bundled polymer chains, and eventually just one large bridge in thick specimens. The yield stress and the elongational modulus of the polymer films have been calculated from the stress-strain curves at various temperatures and confinements and their behavior has been analyzed in terms of polymer-polymer and polymer-surface interaction energies. The thinnest films (5 monomer diameters) are always glassy in our simulations, while the others display a glass transition temperature around 0.50-0.55 (in units ɛ0/kB of the Lennard-Jones interaction energy), depending on their thickness. This range of values, which has been determined using both the nonequilibrium tensile simulations and equilibrium diffusion data, agrees with the transition temperature previously found by shear simulations [Baljon and Robbins, ScienceSCIEAS0036-807510.1126/science.271.5248.482 271, 482 (1996)].

  17. An agglomeration induced glassy magnetic state in a carbon nanotube/NiO nanocomposite system.

    PubMed

    Chattopadhyay, S; Jana, S; Giri, S; Majumdar, S

    2012-10-31

    A series of nanocomposite materials were synthesized using multi-walled carbon nanotubes (MWCNTs) and NiO nanoparticles by varying the concentration of NiO in the MWCNT host matrix. Such an increment in the NiO particle density actually tunes the degree of isolation among the magnetic nanoparticles. Careful investigation by transmission electron microscopy shows that particle agglomeration increases substantially with NiO particle density. Field dependence of magnetization measurements depict a gradual enhancement of coercivity with increasing NiO concentration, signifying the enhancement of magnetic anisotropy in this nanocomposite system. Furthermore, field cooled and zero field cooled memory effect as well as magnetization relaxation measurements show that a glassy magnetic state gradually develops when the concentration increases. Analysis based on the result of high resolution transmission electron microscopy along with the magnetization data reveals that interparticle magnetic exchange interaction in the presence of interfacial disorders plays the major role in the emergence of the glassy magnetic state in this nanocomposite system.

  18. Multilevel micro-structuring of glassy carbon for precision glass molding of diffractive optical elements

    NASA Astrophysics Data System (ADS)

    Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans Peter; Plöger, Sven; Hermerschmidt, Andreas

    2015-03-01

    A consumer market for diffractive optical elements in glass can only be created if high efficient elements are available at affordable prices. In diffractive optics the efficiency and optical properties increases with the number of levels used, but in the same way the costs are multiplied by the number if fabrication steps. Replication of multilevel diffractive optical elements in glass would allow cost efficient fabrication but a suitable mold material is needed. Glassy carbon shows a high mechanical strength, thermal stability and non-sticking adhesion properties, which makes it an excellent candidate as mold material for precision compression molding of low and high glass-transition temperature materials. We introduce an 8 level micro structuring process for glassy carbon molds with standard photolithography and a Ti layer as hard mask for reactive ion etching. The molds were applied to thermal imprinting onto low and high transition temperature glass. Optical performance was tested for the molded samples with different designs for laser beamsplitters. The results show a good agreement to the design specification. Our result allow us to show limitations of our fabrication technique and we discussed the suitability of precision glass molding for cost efficient mass production with a high quality.

  19. Tellurium-nanowire-coated glassy carbon electrodes for selective and sensitive detection of dopamine.

    PubMed

    Tsai, Hsiang-Yu; Lin, Zong-Hong; Chang, Huan-Tsung

    2012-05-15

    Tellurium-nanowire-coated glassy carbon electrodes (TNGCEs) have been fabricated and employed for selective and sensitive detection of dopamine (DA). TNGCEs were prepared by direct deposition of tellurium nanowires, 600 ± 150 nm in length and 16 ± 3 nm in diameter, onto glassy carbon electrodes, which were further coated with Nafion to improve their selectivity and stability. Compared to the GCE, the TNGCE is more electroactive (by approximately 1.9-fold) for DA, and its selectivity toward DA over ascorbic acid (AA) and uric acid (UA) is also greater. By applying differential pulse voltammetry, at a signal-to-noise ratio of 3, the TNGCE provides a limit of detection of 1 nM for DA in the presence of 0.5mM AA and UA. Linearity (R(2)=0.9955) of the oxidation current at 0.19 V against the concentration of DA is found over the range 5 nM-1 μM. TNGCEs have been applied to determine the concentration of dopamine to be 0.59 ± 0.07 μM in PC12 cells.

  20. Diffusion of liquid polystyrene into glassy poly(phenylene oxide) characterized by DSC

    NASA Astrophysics Data System (ADS)

    Li, Linling; Wang, Xiaoliang; Zhou, Dongshan; Xue, Gi

    2013-03-01

    We report a diffusion study on the polystyrene/poly(phenylene oxide) (PS/PPO) mixture consisted by the PS and PPO nanoparticles. Diffusion of liquid PS into glassy PPO (l-PS/g-PPO) is promoted by annealing the PS/PPO mixture at several temperatures below Tg of the PPO. By tracing the Tgs of the PS-rich domain behind the diffusion front using DSC, we get the relationships of PS weight fractions and diffusion front advances with the elapsed diffusion times at different diffusion temperatures using the Gordon-Taylor equation and core-shell model. We find that the plots of weight fraction of PS vs. elapsed diffusion times at different temperatures can be converted to a master curve by Time-Temperature superposition, and the shift factors obey the Arrhenius equation. Besides, the diffusion front advances of l-PS into g-PPO show an excellent agreement with the t1/2 scaling law at the beginning of the diffusion process, and the diffusion coefficients of different diffusion temperatures also obey the Arrhenius equation. We believe the diffusion mechanism for l-PS/g-PPO should be the Fickean law rather than the Case II, though there are departures of original linearity at longer diffusion times due to the limited liquid supply system. Diffusion of liquid polystyrene into glassy poly(phenylene oxide) characterized by DSC

  1. Electron-microscopic microstructural examination of glassy Ge-Se semiconductors

    NASA Astrophysics Data System (ADS)

    Marikhin, V. A.; Mamontova, T. N.; Nikitin, V. A.

    1984-04-01

    The microstructure of glassy Ge-Se semiconductors was studied under an electron microscope, synthetic GeSe2 being an important representative of the Ge-Se system. Specimens of this material had been produced by heating a mixture of Ge with electrical resistivity of 50 ohm cm and 99.999% pure Se in a T-40-600 tubular vacuum furnace to 1000 C at a rate not exceeding 150 C/h and holding at this temperature for 40-50 h prior to quenching the melt at a rate within 100-200 C/s. Examination under a JEM-5Y microscope with an acceleration voltage up to 100 kV revealed microdomains (200-300 A) and minidomains (1000-2000 A) forming macrodomains (3-4 micron). This confirms the hypothesis, based on earlier laser spectrophotography and luminescence measurements, that these glassy materials are heterogeneous with inclusions of fine imperfect crystallites. The replicas indicate also that microdomains with unsaturated bonds and carrying electric charges may be forming during segregation of phases.

  2. Superconductivity of Ni-Nb-Zr-H glassy alloys with nanoclusters.

    PubMed

    Fukuhara, Mikio; Yoshida, Hajime; Koyama, Keiichi; Inoue, Akihisa; Miura, Yoshio

    2010-08-01

    We investigated the hydrogen effect on superconductivity in the (Ni0.36Nb0.24Zr0.40)(100-x)H(x)(0 < or = x < or = 6.4) glassy alloys with nanoclusters, as a function of temperature. The resistivity of these alloys started to drop from onset temperature of around 9.5 K. The (Ni0.36Nb0.24Zr0.40)98.6H1.6 showed zero resistance at 2.1 K. However, the application of a magnetic field > 4.6 T arrested the drop of resistivity, showing the existence of superconductivity of type II. The maximum onset temperature of 11.3 K was observed at 4.4 at% H. The superconducting behavior of the glassy alloys would be associated with electron pair transport along zigzag paths, which link the shortened atomic -Ni-Ni-Ni- array in the Zr5Ni5Nb3 clusters, and tunneling among the clusters.

  3. Physical aging of glassy PMMA/toluene films: influence of drying/swelling history.

    PubMed

    Doumenc, F; Bodiguel, H; Guerrier, B

    2008-09-01

    Gravimetry experiments in a well-controlled environment have been performed to investigate aging for a glassy PMMA/toluene film. The temperature is constant and the control parameter is the solvent vapor pressure above the film (i.e. the activity). Several experimental protocols have been used, starting from a high activity where the film is swollen and rubbery and then aging the film at different activities below the glass transition. Desorption and resorption curves have been compared for the different protocols, in particular in terms of the softening time, i.e. the time needed by the sample to recover an equilibrium state at high activity. Non-trivial behaviors have been observed, especially at small activities (deep quench). A model is proposed, extending the Leibler-Sekimoto approach to take into account the structural relaxation in the glassy state, using the Tool formalism. This model well captures some of the observed phenomena, but fails in describing the specific kinetics observed when aging is followed by a short but deep quench.

  4. Mechanistic study of carvacrol processing and stabilization as glassy solid solution and microcapsule.

    PubMed

    Tackenberg, Markus W; Geisthövel, Carola; Marmann, Andreas; Schuchmann, Heike P; Kleinebudde, Peter; Thommes, Markus

    2015-01-30

    Essential oils and other liquid active pharmaceutical ingredients (APIs) are frequently microencapsulated to improve shelf life, handling, and for tailoring release. A glassy solid solution (GSS), a single-phase system, where the excipient is plasticized by the API, could be an alternative formulation system. Thus this study focuses on the investigation of two formulation strategies using carvacrol as a model compound, namely a microcapsule (MC) and a glassy solid solution (GSS). Applying the solubility parameter approach, polyvinylpyrrolidone (PVP) was chosen as a suitable matrix material for a GSS system, whereas maltodextrin and sucrose served as excipients for a microcapsule (MC) system. Differential scanning calorimetry (DSC) measurements of the excipients' glass transition temperatures and the melting point of carvacrol verified plasticizing properties of carvacrol on PVP. Batch mixing processes, as preliminary experiments for future extrusion processes, were performed to prepare GSSs and MCs with various amounts of carvacrol, followed by crushing and sieving. Maximally 4.5% carvacrol was encapsulated in the carbohydrate material, whereas up to 16.3% were stabilized as GSS, which is an outstanding amount. However, grinding of the samples led to a loss of up to 30% of carvacrol.

  5. Effect of water polyamorphism on the molecular vibrations of glycerol in its glassy aqueous solutions.

    PubMed

    Suzuki, Yoshiharu; Mishima, Osamu

    2016-07-14

    A glassy dilute glycerol-water solution undergoes a mutual polyamorphic transition relating to the transition between high- and low-density amorphous ices of solvent water. The polyamorphic transition behavior depends on the glycerol concentration, indicating that the glycerol affects the water polyamorphism. Here, we used the glassy dilute glycerol-water solution of the solute molar fraction of 0.07 and examined the effect of the polyamorphic change in solvent water on the molecular vibrations of glycerol via Raman spectroscopy. It is found that the molecular vibration of glycerol in high-density liquid like solvent water is different from that in the low-density liquid like solvent water and that the change in the molecular vibration of glycerol is synchronized with the polyamorphic transition of solvent water. The dynamical change of the solute molecule relates to the polyamorphic state of solvent water. This result suggests that the polyamorphic fluctuation of water structure emanated from the presumed liquid-liquid critical point plays an important role for the function of aqueous solution under an ambient condition such as the conformational stability of solute, the functional expression of solute, and so on.

  6. Effect of water polyamorphism on the molecular vibrations of glycerol in its glassy aqueous solutions

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshiharu; Mishima, Osamu

    2016-07-01

    A glassy dilute glycerol-water solution undergoes a mutual polyamorphic transition relating to the transition between high- and low-density amorphous ices of solvent water. The polyamorphic transition behavior depends on the glycerol concentration, indicating that the glycerol affects the water polyamorphism. Here, we used the glassy dilute glycerol-water solution of the solute molar fraction of 0.07 and examined the effect of the polyamorphic change in solvent water on the molecular vibrations of glycerol via Raman spectroscopy. It is found that the molecular vibration of glycerol in high-density liquid like solvent water is different from that in the low-density liquid like solvent water and that the change in the molecular vibration of glycerol is synchronized with the polyamorphic transition of solvent water. The dynamical change of the solute molecule relates to the polyamorphic state of solvent water. This result suggests that the polyamorphic fluctuation of water structure emanated from the presumed liquid-liquid critical point plays an important role for the function of aqueous solution under an ambient condition such as the conformational stability of solute, the functional expression of solute, and so on.

  7. Electrochemical behavior of an antiviral drug acyclovir at fullerene-C(60)-modified glassy carbon electrode.

    PubMed

    Shetti, Nagaraj P; Malode, Shweta J; Nandibewoor, Sharanappa T

    2012-12-01

    Electrochemical oxidation of acyclovir at fullerene-C(60)-modified glassy carbon electrode has been investigated using cyclic and differential pulse voltammetry. In pH 7.4 phosphate buffer, acyclovir showed an irreversible oxidation peak at about 0.96V. The cyclic voltammetric results showed that fullerene-C(60)-modified glassy carbon electrode can remarkably enhance electrocatalytic activity towards the oxidation of acyclovir. The electrocatalytic behavior was further exploited as a sensitive detection scheme for the acyclovir determination by differential pulse voltammetry. Effects of anodic peak potential (E(p)/V), anodic peak current (I(p)/μA) and heterogeneous rate constant (k(0)) have been discussed. Under optimized conditions, the concentration range and detection limit were 9.0×10(-8) to 6.0×10(-6)M and 1.48×10(-8)M, respectively. The proposed method was applied to acyclovir determination in pharmaceutical samples and human biological fluids such as urine and blood plasma as a real sample. This method can also be employed in quality control and routine determination of drugs in pharmaceutical formulations.

  8. Magnetite-platinum nanoparticles-modified glassy carbon electrode as electrochemical detector for nitrophenol isomers.

    PubMed

    Gerent, Giles G; Spinelli, Almir

    2017-05-15

    A glassy carbon electrode was modified with magnetite and platinum nanoparticles stabilized with 3-n-propyl-4-picoline silsesquioxane chloride. This chemically-modified electrode is proposed for the first time for the individual or simultaneous electrochemical detection of nitrophenol isomers. Nanoparticles act as catalysts and also increase the surface area. The polymer stabilizes the particles and provides the electrochemical separation of isomers. Under optimized conditions, the reduction peak currents, obtained by differential-pulse voltammetry, of 2-, 3-, and 4-nitrophenol increased linearly with increases in their concentration in the range of 0.1-1.5μmolL(-1). In individual analysis, the detection limits were 33.7nmolL(-1), 45.3nmolL(-1) and 48.2nmolL(-1), respectively. Also, simultaneous analysis was possible for 2-, and 4-nitrophenol. In this case, the separation of the peak potentials was 0.138V and the detection limits were 69.6nmolL(-1) and 58.0nmolL(-1), respectively. These analytical figures of merit evidence the outstanding performance of the modified electrode, which was also successfully applied to the individual determination of isomers in environmental and biological samples. The magnetite and platinum nanoparticles modified glassy carbon electrode was able to detect nitrophenol isomers at the ppm level in rain water and human urine samples.

  9. Electrochemical reduction of nalidixic acid at glassy carbon electrode modified with multi-walled carbon nanotubes.

    PubMed

    Patiño, Yolanda; Pilehvar, Sanaz; Díaz, Eva; Ordóñez, Salvador; De Wael, Karolien

    2017-02-05

    The aqueous phase electrochemical degradation of nalidixic acid (NAL) is studied in this work, using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) as instrumental techniques. The promotional effect of multi-walled carbon nanotubes (MWCNT) on the performance of glassy carbon electrodes is demonstrated, being observed that these materials catalyze the NAL reduction. The effect of surface functional groups on MWCNT -MWCNT-COOH and MWCNT-NH2-was also studied. The modification of glassy carbon electrode (GCE) with MWCNT leads to an improved performance for NAL reduction following the order of MWCNT>MWCNT-NH2>MWCNT-COOH. The best behavior at MWCNT-GCE is mainly due to both the increased electrode active area and the enhanced MWCNT adsorption properties. The NAL degradation was carried out under optimal conditions (pH=5.0, deposition time=20s and volume of MWCNT=10μL) using MWCNT-GCE obtaining an irreversible reduction of NAL to less toxic products. Paramaters as the number of DPV cycles and the volume/area (V/A) ratio were optimized for maximize pollutant degradation. It was observed that after 15 DPV scans and V/A=8, a complete reduction was obtained, obtaining two sub-products identified by liquid chromatography-mass spectrometry (LC-MS).

  10. Incoherent chimera and glassy states in coupled oscillators with frustrated interactions

    NASA Astrophysics Data System (ADS)

    Choe, Chol-Ung; Ri, Ji-Song; Kim, Ryong-Son

    2016-09-01

    We suggest a site disorder model that describes the population of identical oscillators with quenched random interactions for both the coupling strength and coupling phase. We obtain the reduced equations for the suborder parameters, on the basis of Ott-Antonsen ansatz theory, and present a complete bifurcation analysis of the reduced system. New effects include the appearance of the incoherent chimera and glassy state, both of which are caused by heterogeneity of the coupling phases. In the incoherent chimera state, the system displays an exotic symmetry-breaking behavior in spite of the apparent structural symmetry where the oscillators for both of the two subpopulations are in a frustrated state, while the phase distribution for each subpopulation approaches a steady state that differs from each other. When the incoherent chimera undergoes Hopf bifurcation, the system displays a breathing incoherent chimera. The glassy state that occurs on a surface of three-dimensional parameter space exhibits a continuum of metastable states with zero value of the global order parameter. Explicit formulas are derived for the system's Hopf, saddle-node, and transcritical bifurcation curves, as well as the codimension-2 crossing points, including the Takens-Bogdanov point.

  11. Comparing the mechanism of water condensation and evaporation in glassy aerosol.

    PubMed

    Bones, David L; Reid, Jonathan P; Lienhard, Daniel M; Krieger, Ulrich K

    2012-07-17

    Atmospheric models generally assume that aerosol particles are in equilibrium with the surrounding gas phase. However, recent observations that secondary organic aerosols can exist in a glassy state have highlighted the need to more fully understand the kinetic limitations that may control water partitioning in ambient particles. Here, we explore the influence of slow water diffusion in the condensed aerosol phase on the rates of both condensation and evaporation, demonstrating that significant inhibition in mass transfer occurs for ultraviscous aerosol, not just for glassy aerosol. Using coarse mode (3-4 um radius) ternary sucrose/sodium chloride/aqueous droplets as a proxy for multicomponent ambient aerosol, we demonstrate that the timescale for particle equilibration correlates with bulk viscosity and can be ≫10(3) s. Extrapolation of these timescales to particle sizes in the accumulation mode (e.g., approximately 100 nm) by applying the Stokes-Einstein equation suggests that the kinetic limitations imposed on mass transfer of water by slow bulk phase diffusion must be more fully investigated for atmospheric aerosol. Measurements have been made on particles covering a range in dynamic viscosity from < 0.1 to > 10(13) Pa s. We also retrieve the radial inhomogeneities apparent in particle composition during condensation and evaporation and contrast the dynamics of slow dissolution of a viscous core into a labile shell during condensation with the slow percolation of water during evaporation through a more homogeneous viscous particle bulk.

  12. Structural characterization and aging of glassy pharmaceuticals made using acoustic levitation.

    PubMed

    Benmore, Chris J; Weber, J K R; Tailor, Amit N; Cherry, Brian R; Yarger, Jeffery L; Mou, Qiushi; Weber, Warner; Neuefeind, Joerg; Byrn, Stephen R

    2013-04-01

    Here, we report the structural characterization of several amorphous drugs made using the method of quenching molten droplets suspended in an acoustic levitator. (13) C NMR, X-ray, and neutron diffraction results are discussed for glassy cinnarizine, carbamazepine, miconazole nitrate, probucol, and clotrimazole. The (13) C NMR results did not find any change in chemical bonding induced by the amorphization process. High-energy X-ray diffraction results were used to characterize the ratio of crystalline to amorphous material present in the glasses over a period of 8 months. All the glasses were stable for at least 6 months except carbamazepine, which has a strong tendency to crystallize within a few months. Neutron and X-ray pair distribution function analyses were applied to the glassy materials, and the results were compared with their crystalline counterparts. The two diffraction techniques yielded similar results in most cases and identified distinct intramolecular and intermolecular correlations. The intramolecular scattering was calculated based on the crystal structure and fit to the measured X-ray structure factor. The resulting intermolecular pair distribution functions revealed broad-nearest and next-nearest neighbor molecule-molecule correlations. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1290-1300, 2013.

  13. Study of the electrochemical behavior of isorhamnetin on a glassy carbon electrode and its application.

    PubMed

    Liu, Ai-Lin; Zhang, Shao-Bo; Chen, Wei; Huang, Li-Ying; Lin, Xin-Hua; Xia, Xing-Hua

    2008-10-19

    The electrochemical behavior of isorhamnetin (ISO) at a glassy carbon electrode was studied in a phosphate buffer solution (PBS) of pH 4.0 by cyclic voltammetry (CV) and differential pulse voltammetric method (DPV). A well-defined redox wave of ISO involving one electrons and one proton appeared. The electrode reaction is a reactant weak adsorption-controlled process with a charge transfer coefficient (alpha) of 0.586. Based on the understanding of the electrochemical process of ISO at the glassy carbon electrode, analysis of ISO can be realized. Under optimal conditions, the oxidation peak current showed linear dependence on the concentration of ISO in the range of 1.0x10(-8) to 4.0x10(-7)M and 1.0x10(-6) to 1.0x10(-5)M. The detection limit is 5.0x10(-9)M. This method has been successfully applied to the detection of ISO in tablets.

  14. Diazonium Chemistry for the Bio-Functionalization of Glassy Nanostring Resonator Arrays.

    PubMed

    Zheng, Wei; Du, Rongbing; Cao, Yong; Mohammad, Mohammad A; Dew, Steven K; McDermott, Mark T; Evoy, Stephane

    2015-07-30

    Resonant glassy nanostrings have been employed for the detection of biomolecules. These devices offer high sensitivity and amenability to large array integration and multiplexed assays. Such a concept has however been impaired by the lack of stable and biocompatible linker chemistries. Diazonium salt reduction-induced aryl grafting is an aqueous-based process providing strong chemical adhesion. In this work, diazonium-based linker chemistry was performed for the first time on glassy nanostrings, which enabled the bio-functionalization of such devices. Large arrays of nanostrings with ultra-narrow widths down to 10 nm were fabricated employing electron beam lithography. Diazonium modification was first developed on SiCN surfaces and validated by X-ray photoelectron spectroscopy. Similarly modified nanostrings were then covalently functionalized with anti-rabbit IgG as a molecular probe. Specific enumeration of rabbit IgG was successfully performed through observation of downshifts of resonant frequencies. The specificity of this enumeration was confirmed through proper negative control experiments. Helium ion microscopy further verified the successful functionalization of nanostrings.

  15. Effect of tellurium addition on the physical properties of germanium selenide glassy semiconductors

    NASA Astrophysics Data System (ADS)

    Sharma, Pankaj; Katyal, S. C.

    2008-10-01

    Effect of tellurium (Te) addition on the physical properties, density ( ρ), molar volume ( Vm), compactness ( δ), cohesive energy (CE), coordination number ( m), lone pair electrons ( L) and glass transition temperature ( Tg) of Ge 10Se 90-xTe x ( x=0, 10, 20, 30, 40, 50) bulk glassy alloy has been investigated. The density of the glassy alloys has been found to increase with the increasing Te content. The molar volume and compactness of the structure of the glass, determined from measured density of the glass, have been found to increase with the increase of Te content. The CE of the investigated samples has been calculated using the chemical bond approach (CBA) and is correlated with decrease in optical band gap with the increase of Te content. The glass transition temperature has been estimated using Tichy-Ticha approach and found to increase with the increase of Te content. This has been observed that the estimated glass transition temperature using Tichy-Ticha approach is not consistent with experimental results.

  16. Gas-to-liquid permeation in silicon-containing, crosslinked, glassy copolymers of methyl methacrylate.

    PubMed

    Yang, W M; Peppas, N A

    1983-10-01

    Copolymers of methyl methacrylate with disiloxane derivatives have been proposed as biomaterials for contact lens applications. Although glassy, these copolymers exhibit high oxygen permeability and adequate wettability so that they can be used for manufacture of hard, extended wear lenses. Crosslinked copolymers of poly(methylmethacrylate-co-1,3-bis(methacryloxymethyl) -1,1,3,3-tetramethyl-disiloxane), P(MMA-co-BMTDS), containing from 0.085 to 0.53 mole fraction of BMTDS were prepared and tested for oxygen permeation using a novel apparatus which simulates the atmosphere/lens/cornea conditions. The gas-to-liquid dissolved oxygen permeability, P gd1 was determined and it was found to increase with BMTDS content. Permeability values for P(MMA-co-BMTDS) at 34 degrees C were significantly higher than for pure homopolymer PMMA, although these copolymers were glassy at this temperature. The increased oxygen permeation was attributed to increased oxygen solubility in the copolymers due to the presence of the -Si-O-bonds.

  17. Glassy dynamics in the isotropic phase of a smectogenic liquid crystalline compound.

    PubMed

    Rzoska, Sylwester J; Pawlus, Sebastian; Czupryński, Krzysztof

    2011-09-01

    The temperature evolution of the primary relaxation time in the isotropic phase of 4-cyano-4'-tetradecylbiphenyl (14CB) above the isotropic-smectic A (I-SmA) transition is discussed. Based on the enthalpy space and distortion-sensitive analysis, the prevalence of the mode coupling theory (MCT) "critical" and "glassy" dynamics is shown. The obtained singular dependence is related to the MCT critical temperature located approximately 48 K below the clearing (I-SmA) temperature. However, a weak but detectable distortion in the immediate vicinity of the transition occurs. It is also shown that the value of the fragile strength coefficient D(T) is characteristic of a very fragile glassy liquid whereas the steepness index m is typical of a strong one. Both magnitudes anomalously change on approaching the I-SmA phase transition. The static permittivity shows the pretransitional effect linked to the temperature of the hypothetical continuous phase transition located approximately 10.2 K below the I-SmA transition.

  18. Detection of lead ions in picomolar concentration range using underpotential deposition on silver nanoparticles-deposited glassy carbon electrodes.

    PubMed

    Sivasubramanian, R; Sangaranarayanan, M V

    2011-09-30

    The efficacy of silver-deposited glassy carbon electrode for the determination of lead ions at the sub-nanomolar concentration ranges is investigated. The silver nanoparticles are electrodeposited on glassy carbon electrode using chronoamperometry and the electrode surface is characterized using SEM. Lead ions are detected in the region of underpotential deposition. The analysis is performed in square wave mode in the stripping voltammetry without the removal of oxygen. The detection limit of 10 pM has been obtained with a constant potential of -0.7 V during the electrodeposition step for a period of 50s. The interference of surfactants in the detection of lead ions is also studied.

  19. Room-temperature nonlinear transport phenomena in low-dimensional Ni-Nb-Zr-H glassy alloys and its device

    SciTech Connect

    Fukuhara, Mikio; Yoshida, Hajime

    2014-05-15

    We report the room-temperature switching and Coulomb blockade effects in three–terminal glassy alloy field effect transistor (GAFET), using the millimeter sized glassy alloy. By applying dc and ac voltages to a gate electrode, GAFET can be switched from a metallic conducting state to an insulating state with Coulomb oscillation at a period of 14 μV at room temperature. The transistor showed the three-dimensional Coulomb diamond structure. The fabrication of a low-energy controllable device throws a new light on cluster electronics without wiring.

  20. Nucleation and growth of thin films of the organic conductor TTF-iodide over glassy carbon. Electrochemical and spectroelectrochemical study.

    PubMed

    Gómez, L; Rodríguez-Amaro, R

    2009-04-21

    On the basis of the electrochemical and spectroelectrochemical behavior of thin films of TTF over a glassy carbon electrode in iodide media, a new, more complete mechanism for the electrode processes involved is proposed. The voltammetric and chronoamperometric results for the films can be explained in light of a recently developed nucleation-growth model involving a layer-by-layer mechanism. Also, their in situ UV-vis spectral data expand the available knowledge about the overall mechanism and the nature of the compound formed over the glassy carbon electrode.

  1. Mechanochemical investigation of a glassy epoxy-amine thermoset subjected to fatigue

    NASA Astrophysics Data System (ADS)

    Foster, Stephen Finley

    Covalent bonds in organic molecules can be produced, altered, and broken through various sources of energy and processes. These include photochemical, thermochemical, chemical, and mechanochemical processes. Polymeric materials derive their physical properties from the time scale of motion, summation of intermolecular forces, and number of chain entanglements and crosslinks. Glassy thermoset polymers experience mechanical fatigue during dynamic stress loading and properties diminish with inevitable material failure at stress levels below the ultimate tensile strength (UTS). Damage modeling has been successful in predicting the number of cycles required to induce failure in a specimen due to stress. However, it does not directly provide an explanation of the origin of fatigue in polymers. It is hypothesized herein that mechanical failure at stress levels below the ultimate strength property is due to the accumulation of mechanically induced homolytic chain scission events throughout the glassy thermoset network. The goal of this research will be to quantify homolytic chain scission events with fatigue cycles with the ultimate goal of correlating mechanical property loss with degradation of covalent network structure. To accomplish this goal, stable free nitroxyl radicals were incorporated into an epoxy-amine matrix to detect homolytic chain scission resulting from fatigue. Chapter II discusses a successful synthesis and characterization of the nitroxyl radical molecule, a product of 4-hydroxy-2,2,5,5-tetramethylpiperdin-1-yl-oxyl (TEMPO) and isophorone diisocyanate designated as BT-IPDI. In Chapter III, the epoxy-amine reaction was determined to be unaffected by incorporation of up to 5 wt% of BT-IPDI. Although 50% UTS fatigue studies produced property degradation and fatigue failure as shown in Chapter IV, analysis of BT-IPDI through EPR did not detect homolytic chain scission. Chapter V reveals that mechano-radicals were produced from cryo-grinding the glassy

  2. Effet de la composition des materiaux composites sur la caracterisation et detection par ondes de Lamb

    NASA Astrophysics Data System (ADS)

    Ostiguy, Pierre-Claude

    Les matériaux composites sont de plus en plus utilisés en aéronautique. Leurs excellentes propriétés mécaniques et leur faible poids leur procurent un avantage certain par rapport aux matériaux métalliques. Ceux-ci étant soumis à diverses conditions de chargement et environnementales, ils sont suceptibles de subir plusieurs types d'endommagements, compromettant leur intégrité. Des méthodes fiables d'inspection sont donc nécessaires pour évaluer leur intégrité. Néanmoins, peu d'approches non destructives, embarquées et efficaces sont présentement utilisées. Ce travail de recherche se penche sur l'étude de l'effet de la composition des matériaux composites sur la détection et la caractérisation par ondes guidées. L'objectif du projet est de développer une approche de caractérisation mécanique embarquée permettant d'améliorer la performance d'une approche d'imagerie par antenne piézoélectriques sur des structures composite et métalliques. La contribution de ce projet est de proposer une approche embarquée de caractérisation mécanique par ultrasons qui ne requiert pas une mesure sur une multitude d'échantillons et qui est non destructive. Ce mémoire par articles est divisé en quatre parties, dont les parties deux A quatre présentant les articles publiés et soumis. La première partie présente l'état des connaissances dans la matière nécessaires à l'acomplissement de ce projet de maîtrise. Les principaux sujets traités portent sur les matériaux composites, propagation d'ondes, la modélisation des ondes guidées, la caractérisation par ondes guidées et la surveillance embarquée des structures. La deuxième partie présente une étude de l'effet des propriétés mécaniques sur la performance de l'algorithme d'imagerie Excitelet. L'étude est faite sur une structure isotrope. Les résultats ont démontré que l'algorithme est sensible à l'exactitude des propriétés mécaniques utilisées dans le modèle. Cette

  3. Retinal pigment epithelium cell alignment on nanostructured collagen matrices.

    PubMed

    Ulbrich, Stefan; Friedrichs, Jens; Valtink, Monika; Murovski, Simo; Franz, Clemens M; Müller, Daniel J; Funk, Richard H W; Engelmann, Katrin

    2011-01-01

    We investigated attachment and migration of human retinal pigment epithelial cells (primary, SV40-transfected and ARPE-19) on nanoscopically defined, two-dimensional matrices composed of parallel-aligned collagen type I fibrils. These matrices were used non-cross-linked (native) or after riboflavin/UV-A cross-linking to study cell attachment and migration by time-lapse video microscopy. Expression of collagen type I and IV, MMP-2 and of the collagen-binding integrin subunit α(2) were examined by immunofluorescence and Western blotting. SV40-RPE cells quickly attached to the nanostructured collagen matrices and aligned along the collagen fibrils. However, they disrupted both native and cross-linked collagen matrices within 5 h. Primary RPE cells aligned more slowly without destroying either native or cross-linked substrates. Compared to primary RPE cells, ARPE-19 cells showed reduced alignment but partially disrupted the matrices within 20 h after seeding. Expression of the collagen type I-binding integrin subunit α(2) was highest in SV40-RPE cells, lower in primary RPE cells and almost undetectable in ARPE-19 cells. Thus, integrin α(2) expression levels directly correlated with the degree of cell alignment in all examined RPE cell types. Specific integrin subunit α(2)-mediated matrix binding was verified by preincubation with an α(2)-function-blocking antibody, which impaired cell adhesion and alignment to varying degrees in primary and SV40-RPE cells. Since native matrices supported extended and directed primary RPE cell growth, optimizing the matrix production procedure may in the future yield nanostructured collagen matrices serving as transferable cell sheet carriers.

  4. Randomized Algorithms for Matrices and Data

    NASA Astrophysics Data System (ADS)

    Mahoney, Michael W.

    2012-03-01

    This chapter reviews recent work on randomized matrix algorithms. By “randomized matrix algorithms,” we refer to a class of recently developed random sampling and random projection algorithms for ubiquitous linear algebra problems such as least-squares (LS) regression and low-rank matrix approximation. These developments have been driven by applications in large-scale data analysis—applications which place very different demands on matrices than traditional scientific computing applications. Thus, in this review, we will focus on highlighting the simplicity and generality of several core ideas that underlie the usefulness of these randomized algorithms in scientific applications such as genetics (where these algorithms have already been applied) and astronomy (where, hopefully, in part due to this review they will soon be applied). The work we will review here had its origins within theoretical computer science (TCS). An important feature in the use of randomized algorithms in TCS more generally is that one must identify and then algorithmically deal with relevant “nonuniformity structure” in the data. For the randomized matrix algorithms to be reviewed here and that have proven useful recently in numerical linear algebra (NLA) and large-scale data analysis applications, the relevant nonuniformity structure is defined by the so-called statistical leverage scores. Defined more precisely below, these leverage scores are basically the diagonal elements of the projection matrix onto the dominant part of the spectrum of the input matrix. As such, they have a long history in statistical data analysis, where they have been used for outlier detection in regression diagnostics. More generally, these scores often have a very natural interpretation in terms of the data and processes generating the data. For example, they can be interpreted in terms of the leverage or influence that a given data point has on, say, the best low-rank matrix approximation; and this

  5. Estimating soil matric potential in Owens Valley, California

    USGS Publications Warehouse

    Sorenson, Stephen K.; Miller, Reuben F.; Welch, Michael R.; Groeneveld, David P.; Branson, Farrel A.

    1989-01-01

    Much of the floor of Owens Valley, California, is covered with alkaline scrub and alkaline meadow plant communities, whose existence is dependent partly on precipitation and partly on water infiltrated into the rooting zone from the shallow water table. The extent to which these plant communities are capable of adapting to and surviving fluctuations in the water table depends on physiological adaptations of the plants and on the water content, matric potential characteristics of the soils. Two methods were used to estimate soil matric potential in test sites in Owens Valley. The first, the filter-paper method, uses water content of filter papers equilibrated to water content of soil samples taken with a hand auger. The previously published calibration relations used to estimate soil matric potential from the water content of the filter papers were modified on the basis of current laboratory data. The other method of estimating soil matric potential was a modeling approach based on data from this and previous investigations. These data indicate that the base-10 logarithm of soil matric potential is a linear function of gravimetric soil water content for a particular soil. The slope and intercepts of this function vary with the texture and saturation capacity of the soil. Estimates of soil water characteristic curves were made at two sites by averaging the gravimetric soil water content and soil matric potential values from multiple samples at 0.1-m depth intervals derived by using the hand auger and filter-paper method and entering these values in the soil water model. The characteristic curves then were used to estimate soil matric potential from estimates of volumetric soil water content derived from neutron-probe readings. Evaluation of the modeling technique at two study sites indicated that estimates of soil matric potential within 0.5 pF units of the soil matric potential value derived by using the filter-paper method could be obtained 90 to 95 percent of the

  6. Development of Stepwise Osteogenesis-mimicking Matrices for the Regulation of Mesenchymal Stem Cell Functions*

    PubMed Central

    Hoshiba, Takashi; Kawazoe, Naoki; Tateishi, Tetsuya; Chen, Guoping

    2009-01-01

    An extracellular microenvironment, including an extracellular matrix (ECM), is an important factor in regulating stem cell differentiation. During tissue development, the ECM is dynamically remodeled to regulate stem cell functions. Here, we developed matrices mimicking ECM remodeling during the osteogenesis of mesenchymal stem cells (MSCs). The matrices were prepared from cultured MSCs controlled at different stages of osteogenesis and referred to as “stepwise osteogenesis-mimicking matrices.” The matrices supported the adhesion and proliferation of MSCs and showed different effects on the osteogenesis of MSCs. On the matrices mimicking the early stage of osteogenesis (early stage matrices), the osteogenesis occurred more rapidly than did that on the matrices mimicking undifferentiated stem cells (stem cell matrices) and the late stage of osteogenesis (late stage matrices). RUNX2 was similarly expressed when MSCs were cultured on both the early stage and late stage matrices but decreased on the stem cell matrices. PPARG expression in the MSCs cultured on the late stage matrices was higher than for those cultured on the stem cell and early stage matrices. This increase of PPARG expression was caused by the suppression of the amount of β-catenin and downstream signal transduction. These results demonstrate that the osteogenesis-mimicking matrices had different effects on the osteogenesis of MSCs, and the early stage matrices provided a favorable microenvironment for the osteogenesis. PMID:19762920

  7. Null matrices and the analysis of species co-occurrences.

    PubMed

    Sanderson, James G; Moulton, Michael P; Selfridge, Ralph G

    1998-08-01

    Patterns in species occurrences on islands have been analyzed by several authors. At issue is the number of non-occurring pairs of species (also known as checkerboards). Previous authors have suggested that if the number of checkerboards differs from what is expected by chance, then island communities might have been structured by competition. Investigators have pursued this problem by first generating random (or null) matrices and then testing a metric derived from the collection of null matrices against the metric calculated from the actual species co-occurrence matrix. The random matrices were constrained by requiring the number of species on each island, and the number of islands on which each species occurred to be equal to their observed values. We show that results from previous studies are generally flawed. We present a fast, efficient algorithm to generate null matrices for any set of fixed row and column sums, and propose a modification of a previously proposed metric as a test statistic. We evaluated the efficacy of our construction method for null creation and our metric using incidence matrices from the avifauna of Vanuatu (formerly New Hebrides).

  8. Calibration and temperature correction of heat dissipation matric potential sensors

    USGS Publications Warehouse

    Flint, A.L.; Campbell, G.S.; Ellett, K.M.; Calissendorff, C.

    2002-01-01

    This paper describes how heat dissipation sensors, used to measure soil water matric potential, were analyzed to develop a normalized calibration equation and a temperature correction method. Inference of soil matric potential depends on a correlation between the variable thermal conductance of the sensor's porous ceramic and matric poten-tial. Although this correlation varies among sensors, we demonstrate a normalizing procedure that produces a single calibration relationship. Using sensors from three sources and different calibration methods, the normalized calibration resulted in a mean absolute error of 23% over a matric potential range of -0.01 to -35 MPa. Because the thermal conductivity of variably saturated porous media is temperature dependent, a temperature correction is required for application of heat dissipation sensors in field soils. A temperature correction procedure is outlined that reduces temperature dependent errors by 10 times, which reduces the matric potential measurement errors by more than 30%. The temperature dependence is well described by a thermal conductivity model that allows for the correction of measurements at any temperature to measurements at the calibration temperature.

  9. Learning Discriminative Stein Kernel for SPD Matrices and Its Applications.

    PubMed

    Zhang, Jianjia; Wang, Lei; Zhou, Luping; Li, Wanqing

    2016-05-01

    Stein kernel (SK) has recently shown promising performance on classifying images represented by symmetric positive definite (SPD) matrices. It evaluates the similarity between two SPD matrices through their eigenvalues. In this paper, we argue that directly using the original eigenvalues may be problematic because: 1) eigenvalue estimation becomes biased when the number of samples is inadequate, which may lead to unreliable kernel evaluation, and 2) more importantly, eigenvalues reflect only the property of an individual SPD matrix. They are not necessarily optimal for computing SK when the goal is to discriminate different classes of SPD matrices. To address the two issues, we propose a discriminative SK (DSK), in which an extra parameter vector is defined to adjust the eigenvalues of input SPD matrices. The optimal parameter values are sought by optimizing a proxy of classification performance. To show the generality of the proposed method, three kernel learning criteria that are commonly used in the literature are employed as a proxy. A comprehensive experimental study is conducted on a variety of image classification tasks to compare the proposed DSK with the original SK and other methods for evaluating the similarity between SPD matrices. The results demonstrate that the DSK can attain greater discrimination and better align with classification tasks by altering the eigenvalues. This makes it produce higher classification performance than the original SK and other commonly used methods.

  10. Osteocalcin/fibronectin-functionalized collagen matrices for bone tissue engineering.

    PubMed

    Kim, S G; Lee, D S; Lee, S; Jang, J-H

    2015-06-01

    Collagen is the most abundant protein found in the extracellular matrix and is widely used to build scaffolds for biomedical applications which are the result of its biocompatibility and biodegradability. In the present study, we constructed a rhOCN/FNIII9-10 fusion protein and rhOCN/FNIII9-10-functionalized collagen matrices and investigated the potential value for bone tissue engineering. In vitro studies carried out with preosteoblastic MC3T3-E1 cells showed that rhOCN/FNIII9-10 fusion protein promoted cell adhesion and the mRNA levels of osteogenic markers including osteocalcin, runt-related transcription factor 2, alkaline phosphatase (ALP), and collagen type I. In addition, rhOCN/FNIII9-10-functionalized collagen matrices showed significant induction of the ALP activity more than rhFNIII9-10-functionalized collagen matrices or collagen matrices alone. These results suggested that rhOCN/FNIII9-10-functionalized collagen matrices have potential for bone tissue engineering.

  11. Laplacian matrices of weighted digraphs represented as quantum states

    NASA Astrophysics Data System (ADS)

    Adhikari, Bibhas; Banerjee, Subhashish; Adhikari, Satyabrata; Kumar, Atul

    2017-03-01

    Representing graphs as quantum states is becoming an increasingly important approach to study entanglement of mixed states, alternate to the standard linear algebraic density matrix-based approach of study. In this paper, we propose a general weighted directed graph framework for investigating properties of a large class of quantum states which are defined by three types of Laplacian matrices associated with such graphs. We generalize the standard framework of defining density matrices from simple connected graphs to density matrices using both combinatorial and signless Laplacian matrices associated with weighted directed graphs with complex edge weights and with/without self-loops. We also introduce a new notion of Laplacian matrix, which we call signed Laplacian matrix associated with such graphs. We produce necessary and/or sufficient conditions for such graphs to correspond to pure and mixed quantum states. Using these criteria, we finally determine the graphs whose corresponding density matrices represent entangled pure states which are well known and important for quantum computation applications. We observe that all these entangled pure states share a common combinatorial structure.

  12. Efficient computer algebra algorithms for polynomial matrices in control design

    NASA Technical Reports Server (NTRS)

    Baras, J. S.; Macenany, D. C.; Munach, R.

    1989-01-01

    The theory of polynomial matrices plays a key role in the design and analysis of multi-input multi-output control and communications systems using frequency domain methods. Examples include coprime factorizations of transfer functions, cannonical realizations from matrix fraction descriptions, and the transfer function design of feedback compensators. Typically, such problems abstract in a natural way to the need to solve systems of Diophantine equations or systems of linear equations over polynomials. These and other problems involving polynomial matrices can in turn be reduced to polynomial matrix triangularization procedures, a result which is not surprising given the importance of matrix triangularization techniques in numerical linear algebra. Matrices with entries from a field and Gaussian elimination play a fundamental role in understanding the triangularization process. In the case of polynomial matrices, matrices with entries from a ring for which Gaussian elimination is not defined and triangularization is accomplished by what is quite properly called Euclidean elimination. Unfortunately, the numerical stability and sensitivity issues which accompany floating point approaches to Euclidean elimination are not very well understood. New algorithms are presented which circumvent entirely such numerical issues through the use of exact, symbolic methods in computer algebra. The use of such error-free algorithms guarantees that the results are accurate to within the precision of the model data--the best that can be hoped for. Care must be taken in the design of such algorithms due to the phenomenon of intermediate expressions swell.

  13. Dynamic Electromechanical Hydrogel Matrices for Stem Cell Culture

    PubMed Central

    Lim, Han L.; Chuang, Jessica C.; Tran, Tuan; Aung, Aereas; Arya, Gaurav; Varghese, Shyni

    2013-01-01

    Hydrogels have numerous biomedical applications including synthetic matrices for cell culture and tissue engineering. Here we report the development of hydrogel based multifunctional matrices that not only provide three-dimensional structural support to the embedded cells but also can simultaneously provide potentially beneficial dynamic mechanical and electrical cues to the cells. A unique aspect of these matrices is that they undergo reversible, anisotropic bending dynamics in an electric field. The direction and magnitude of this bending can be tuned through the hydrogel crosslink density while maintaining the same electric potential gradient, allowing control over the mechanical strain imparted to the cells in a three-dimensional environment. The conceptual design of these hydrogels was motivated through theoretical modeling of the osmotic pressure changes occurring at the gel-solution interfaces in an electric field. These electro-mechanical matrices support survival, proliferation, and differentiation of stem cells. Thus, these new three-dimensional in vitro synthetic matrices, which mimic multiple aspects of the native cellular environment, take us one step closer to in vivo systems. PMID:24273479

  14. Dynamic Electromechanical Hydrogel Matrices for Stem Cell Culture.

    PubMed

    Lim, Han L; Chuang, Jessica C; Tran, Tuan; Aung, Aereas; Arya, Gaurav; Varghese, Shyni

    2011-01-07

    Hydrogels have numerous biomedical applications including synthetic matrices for cell culture and tissue engineering. Here we report the development of hydrogel based multifunctional matrices that not only provide three-dimensional structural support to the embedded cells but also can simultaneously provide potentially beneficial dynamic mechanical and electrical cues to the cells. A unique aspect of these matrices is that they undergo reversible, anisotropic bending dynamics in an electric field. The direction and magnitude of this bending can be tuned through the hydrogel crosslink density while maintaining the same electric potential gradient, allowing control over the mechanical strain imparted to the cells in a three-dimensional environment. The conceptual design of these hydrogels was motivated through theoretical modeling of the osmotic pressure changes occurring at the gel-solution interfaces in an electric field. These electro-mechanical matrices support survival, proliferation, and differentiation of stem cells. Thus, these new three-dimensional in vitro synthetic matrices, which mimic multiple aspects of the native cellular environment, take us one step closer to in vivo systems.

  15. Glassy-winged sharpshooter Microbiota explored using deep 16S rRNA sequencing from individual insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The glassy-winged sharpshooter (GWSS) is an invasive insect species that transmits Xylella fastidiosa, the bacterium causing Pierce’s disease of grapevine and other leaf scorch diseases. X. fastidiosa has been shown to colonize the anterior foregut (cibarium and precibarium) of sharpshooters, where ...

  16. Exploring glassy-winged sharpshooter microbiota using deep 16S rRNA sequencing from individual insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The glassy-winged sharpshooter (GWSS) is an invasive insect species that transmits Xylella fastidiosa, the bacterium causing Pierce’s disease of grapevine and other leaf scorch diseases. X. fastidiosa has been shown to colonize the anterior foregut (cibarium and precibarium) of sharpshooters, where ...

  17. Salivary enzymes are injected into xylem by the glassy-winged sharpshooter, a vector of Xylella fastidiosa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certain hemipteran insects such as the glassy-winged sharpshooter, Homalodisca vitripennis, subsist entirely on xylem fluid, notwithstanding the poor nutrition of such food. Among many adaptations enabling xylem-feeding are aspects of the insect’s salivation that may also allow these insects to tra...

  18. Sequential Sampling Plans for Estimating Density of Glassy-winged Sharpshooter, Homalodisca vitripennis (Hemiptera: Cicadellidae) on Citrus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is a serious pest of grapes and other crop and ornamental plants mainly through its role as a vector of the bacterium Xylella fastidiosa. Citrus harbors large populations of GWSS throughout much of the year in areas where the pest is pr...

  19. Sequential sampling plans for estimating censity of glassy-winged sharpshooter, homalodisca vitripennis (Hemiptera: Cicadellidae) on citrus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is a serious pest of grapes and other crop and ornamental plants mainly through its role as a vector of the bacterium Xylella fastidiosa. Citrus harbors large populations of GWSS throughout much of the year in areas where the pest is pr...

  20. Determination of s-triazines with copper and glassy carbon electrodes. Flow injection analysis of aziprotryne in water samples.

    PubMed

    Zapardiel, A; Bermejo, E; Pérez, J A; Chicharro, M

    2000-07-01

    The detection and determination of s-triazines, atrazine-desethyl and aziprotryne by cyclic voltammetry and an amperometric method using a metallic copper electrode and a glassy carbon electrode are described. The concentrations of atrazine-desethyl and aziprotryne in 0.1 M NaOH solutions were determined using the oxidation signal corresponding to the Cu(0)/Cu(I) redox process. The detection level calculated for these s-triazines were 0.3 and 0.5 microg/mL of analyte, respectively. The glassy carbon electrode was shown to give sensitive reduction response to aziprotryne in flow injection mode. No special activation was required for the glassy carbon electrode. A detection limit of 0.2 microg/mL (20 ng aziprotryne) was obtained for a sample loop of 0.1 mL at a fixed potential of -1.0 V (vs. Ag/AgCl) in 0.1 M HCl and a flow rate of 3.5 mL/min. Furthermore, the glassy carbon electrode showed stable response in such a system, and the relative standard deviation was only 2.7% using the same surface, and 6.3% using different surfaces. The method developed was applied to the determination of aziprotryne in environmental and tap water samples; using a prior solid-phase extraction step, aziprotryne concentrations lower than 1.0 ng/mL could be measured.

  1. Evaluation of a method to quantify glassy-winged sharpshooter (Hemiptera: Cicadellidae) egg maturation during a feeding assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methods to improve an assay relating adult feeding to egg maturation by the glassy-winged sharpshooter (Hemiptera: Cicadellidae) were evaluated. The assay consisted of confining adult females to cowpea stems in parafilm enclosures and quantifying adult feeding and egg maturation. Adult feeding was...

  2. Identification and whole extraction of Homalodisca coagulata Virus 01 (HoCv-01)from Texas Glassy-winged sharpshooter populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Viral infection makes insects more sensitive to insecticide treatment, resulting in lower LD50 rates needed to achieve significant control. The glassy-winged sharpshooter, GWSS, Homalodisca vitripennis (Hemiptera: Cicadellidae), is an invasive pest and important vector of Xylella fastidiosa, a xylem...

  3. Composition dependence of dielectric properties in Se{sub 100-x}Cu{sub x} glassy alloys

    SciTech Connect

    Sharma, J.; Shrotriya, D.; Kumar, S.

    2015-06-24

    In this paper we report the composition dependent of dielectric properties in Se{sub 100-x}Cu{sub x} (x = 0, 2, 4 and 6) glassy alloys. The temperature and frequency dependence of the dielectric constants and the dielectric losses in the above glassy systems in the frequency range (1k Hz-5 M Hz) and temperature range (300 K–350 K) have been measured. It has been found that dielectric constant and the dielectric loss both are highly dependent on frequency and temperature and also found to increase with increasing concentration of Cu in pure amorphous Se. The role of Cu, as an impurity in the pure a-Se glassy alloy, is also discussed in terms of electronegativity difference between the elements used in making the aforesaid glassy system. Apart from this, the results have been also correlated in terms of a dipolar model which considers the hopping of charge carriers over a potential barrier between charged defect states.

  4. A stirred bath technique for diffusivity measurements in cell matrices.

    PubMed

    Chresand, T J; Dale, B E; Hanson, S L; Gillies, R J

    1988-10-05

    A stirred bath technique was developed for determining effective diffusivities in cell matrices. The technique involves cell immobilization in a dilute gel which has negligible effect on solute diffusion. Agar and collagen were tested as immobilizing gels. Agar gel was shown to have minor interactions with the diffusion of various biological molecules, and was used for immobilization of Ehrlich Ascites Tumor (EAT) cells. Diffusivities of glucose and lactic acid were measured in EAT matrices for cell loadings between 20 and 45 vol %. Treatment with glutaraldehyde was effective in quenching the metabolic activity of the cells while preserving their physical properties and diffusive resistance. The measured data agree favorably with predictions based on Maxwell's equation for effective diffusion in a periodic composite material. The stirred bath technique is useful for diffusivity determinations in immobilized matrices or free slurries, and is applicable to both microbial and mammalian cell systems.

  5. Sweeping the space of admissible quark mass matrices

    NASA Astrophysics Data System (ADS)

    Falk, Silke; Häußling, Rainer; Scheck, Florian

    2002-05-01

    We propose a new and efficient method of reconstructing quark mass matrices from their eigenvalues and a complete set of mixing observables. By a combination of the principle of NNI bases which are known to cover the general case, and of the polar decomposition theorem that allows us to convert arbitrary nonsingular matrices to triangular form, we achieve a parametrization where the remaining freedom is reduced to one complex parameter. While this parameter runs through the domain bounded by the circle with radius R=((m2t-m2u)/(m2t-m2c)) around the origin in the complex plane one sweeps the space of all mass matrices compatible with the given set of data.

  6. Scattering matrices in non-uniformly lined ducts

    NASA Astrophysics Data System (ADS)

    Demir, Ahmet

    2017-02-01

    Sudden area expansion and sudden area contraction in an infinitely long duct with discontinuous locally reacting lining are defined by respective mixed boundary value problems. In the absence of a sudden area change, a separate problem with an infinite duct having bifid lining on its wall is described. Introducing Fourier transform along the duct axis boundary value problems is solved by the well-known Wiener-Hopf technique, and then, corresponding scattering matrices are constructed. To show the proper use of scattering matrices in the case of several discontinuities and also validation and comparison purposes, transmitted field in a duct with an inserted expansion chamber whose walls are treated by acoustically absorbent material is derived by the help of the relevant scattering matrices. A perfect agreement is observed when the transmitted fields are compared numerically with a similar work exists in the literature.

  7. Asymmetric correlation matrices: an analysis of financial data

    NASA Astrophysics Data System (ADS)

    Livan, G.; Rebecchi, L.

    2012-06-01

    We analyse the spectral properties of correlation matrices between distinct statistical systems. Such matrices are intrinsically non-symmetric, and lend themselves to extend the spectral analyses usually performed on standard Pearson correlation matrices to the realm of complex eigenvalues. We employ some recent random matrix theory results on the average eigenvalue density of this type of matrix to distinguish between noise and non-trivial correlation structures, and we focus on financial data as a case study. Namely, we employ daily prices of stocks belonging to the American and British stock exchanges, and look for the emergence of correlations between two such markets in the eigenvalue spectrum of their non-symmetric correlation matrix. We find several non trivial results when considering time-lagged correlations over short lags, and we corroborate our findings by additionally studying the asymmetric correlation matrix of the principal components of our datasets.

  8. Large N matrices from a nonlocal spin system

    NASA Astrophysics Data System (ADS)

    Anninos, Dionysios; Hartnoll, Sean A.; Huijse, Liza; Martin, Victoria L.

    2015-10-01

    Large N matrices underpin the best understood models of emergent spacetime. We suggest that large N matrices can themselves be emergent from simple quantum mechanical spin models with finite dimensional Hilbert spaces. We exhibit the emergence of large N matrices in a nonlocal statistical physics model of order N2 Ising spins. The spin partition function is shown to admit a large N saddle described by a matrix integral, which we solve. The matrix saddle is dominant at high temperatures, metastable at intermediate temperatures and ceases to exist below a critical order one temperature. The matrix saddle is disordered in a sense we make precise and competes with ordered low energy states. We verify our analytic results by Monte Carlo simulation of the spin system.

  9. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  10. Complications of acellular dermal matrices in breast surgery.

    PubMed

    Israeli, Ron

    2012-11-01

    Acellular dermal matrices have been used in breast surgery for a decade. They are widely used in implant-based breast reconstruction to provide coverage of the inferolateral aspects of the prosthesis. Numerous benefits have been reported with this approach including improved fold control, better support and control of the implant pocket with concomitant reduced risk of malposition, and improved lower pole expansion. Seroma, infection, mastectomy skin necrosis, and expander/implant loss are the most commonly reported complications with this approach, and the incidences vary widely among studies. Patient selection and adherence to established intraoperative technique principles related to acellular dermal matrix use are both critical to minimizing the risk of complications. Acellular dermal matrices are also being used in aesthetic breast surgery, revision breast surgery, and nipple reconstruction, but clinical experience is limited. This article reviews the complications associated with the use of matrices in breast surgery from the published literature.

  11. Modeling quantization matrices for perceptual image / video encoding

    NASA Astrophysics Data System (ADS)

    Zhang, Huipin; Cote, Guy

    2008-01-01

    Quantization matrix is an important encoding tool for discrete cosine transform (DCT) based perceptual image / video encoding in that DCT coefficients can be quantized according to the sensitivity of the human visual system to the coefficients' corresponding spatial frequencies. A quadratic model is introduced to parameterize the quantization matrices. This model is then used to optimize quantization matrices for a specific bitrate or bitrate range by maximizing the expected encoding quality via a trial based multidimensional numerical search method. The model is simple yet it characterizes the slope and the convexity of the quantization matrices along the horizontal, the vertical and the diagonal directions. The advantage of the model for improving perceptual video encoding quality is demonstrated with simulations using H.264 / AVC video encoding.

  12. Effets du titane et du niobium sur l'oxydation à 950circC d'aciers ferritiques

    NASA Astrophysics Data System (ADS)

    Issartel, C.; Buscail, H.; Caudron, E.; Cueff, R.; Riffard, F.; El Messki, S.; Karimi, N.; Antoni, L.

    2004-11-01

    Nous avons étudié l'effet du titane et du niobium sur l'oxydation à 950circC d'un acier Fe-Cr chrominoformeur. La DRX in situ montre que le titane semble s'oxyder en formant Cr{2}TiO{5} et TiO{2} qui contribuent à une augmentation de la prise de masse des échantillons. Une partie du titane issu de ces oxydes semble doper la couche de chromine. Sa présence augmente la concentration en lacunes cationiques dans la chromine et augmente donc la diffusion du chrome dans la couche. Nous avons aussi montré que le niobium n'a pas d'influence sur l'oxydation de ce type d'acier à 950circC.

  13. Effete-mediated degradation of Cyclin A is essential for the maintenance of germline stem cells in Drosophila.

    PubMed

    Chen, Dongsheng; Wang, Qi; Huang, Haidong; Xia, Laixin; Jiang, Xiaoyong; Kan, Lijuan; Sun, Qinmiao; Chen, Dahua

    2009-12-01

    Increasing evidence supports the idea that the regulation of stem cells requires both extrinsic and intrinsic mechanisms. However, much less is known about how intrinsic signals regulate the fate of stem cells. Studies on germline stem cells (GSCs) in the Drosophila ovary have provided novel insights into the regulatory mechanisms of stem cell maintenance. In this study, we demonstrate that a ubiquitin-dependent pathway mediated by the Drosophila eff gene, which encodes the E2 ubiquitin-conjugating enzyme Effete (Eff), plays an essential role in GSC maintenance. We show that Eff both physically and genetically interacts with dAPC2, a key component of the anaphase-promoting complex (APC), which acts as a multisubunit E3 ligase and plays an essential role in targeting mitotic regulators for degradation during exit from mitosis. This interaction indicates that Eff regulates the APC/C-mediated proteolysis pathway in GSCs. Moreover, we show that expression of a stable form of Cyclin A, but not full-length Cyclin A, results in GSC loss. Finally we show that, in common with APC2, Eff is required for the ubiquitylation of Cyclin A, and overexpression of full-length Cyclin A accelerates the loss of GSCs in the eff mutant background. Collectively, our data support the idea that Effete/APC-mediated degradation of Cyclin A is essential for the maintenance of germline stem cells in Drosophila. Given that the regulation of mitotic Cyclins is evolutionarily conserved between flies and mammals, our study also implies that a similar mechanism may be conserved in mammals.

  14. X-ray parabolic lenses made from glassy carbon by means of laser

    NASA Astrophysics Data System (ADS)

    Artemiev, A.; Snigirev, A.; Kohn, V.; Snigireva, I.; Artemiev, N.; Grigoriev, M.; Peredkov, S.; Glikin, L.; Levtonov, M.; Kvardakov, V.; Zabelin, A.; Maevskiy, A.

    2006-06-01

    Parabolic planar compound refractive lenses (CRLs) made from glassy carbon by means of laser ablation are presented. They have radii of curvatures of 5 and 200μm and geometric apertures of 40 and 900μm, respectively. The numbers of biconcave elements in the CRLs were 4, 7, and 200. The planar lenses allow formation of a linear focus of length comparable with the depths of their profiles. Usage of two CRLs in a crossed geometry provides formation of two-dimensional focus. The lenses were tested at the European Synchrotron Radiation Facility at the bending magnet beam line BM-5. The minimum experimental size of the focus has been achieved as 1.4μm.

  15. Glassy Dynamics in Disordered Electronic Systems Reveal Striking Thermal Memory Effects

    NASA Astrophysics Data System (ADS)

    Eisenbach, A.; Havdala, T.; Delahaye, J.; Grenet, T.; Amir, A.; Frydman, A.

    2016-09-01

    Memory is one of the unique qualities of a glassy system. The relaxation of a glass to equilibrium contains information on the sample's excitation history, an effect often refer to as "aging." We demonstrate that under the right conditions a glass can also possess a different type of memory. We study the conductance relaxation of electron glasses that are fabricated at low temperatures. Remarkably, the dynamics are found to depend not only on the ambient measurement temperature but also on the maximum temperature to which the system was exposed. Hence the system "remembers" its highest temperature. This effect may be qualitatively understood in terms of energy barriers and local minima in configuration space and therefore may be a general property of the glass state.

  16. Synthesis of One-Dimensional SiC Nanostructures from a Glassy Buckypaper

    SciTech Connect

    Ding, Mengning; Star, Alexander

    2013-02-21

    A simple and scalable synthetic strategy was developed for the fabrication of one-dimensional SiC nanostructures - nanorods and nanowires. Thin sheets of single-walled carbon nanotubes (SWNTs) were prepared by vacuum filtration and were washed repeatedly with sodium silicate (Na₂SiO₃) solution. The resulting “glassy buckypaper” was heated at 1300 - 1500 °C under Ar/H₂ to allow a solid state reaction between C and Si precursors to form a variety of SiC nanostructures. The morphology and crystal structures of SiC nanorods and nanowires were characterized using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), energy dispersive xray spectroscopy (EDX), electron diffraction (ED) and x-ray diffraction (XRD) techniques. Furthermore, electrical conductance measurements were performed on SiC nanorods, demonstrating their potential applications in high-temperature sensors and control systems.

  17. Raman spectroscopy of crystalline, glassy, and molten states of lead diborate

    NASA Astrophysics Data System (ADS)

    Sobol, A. A.; Shukshin, V. E.; Zaitsev, A. I.

    2016-12-01

    Polarized Raman spectra of single crystals of lead diborate, PbB4O7 (PBO), are studied in detail at 300 K. The TO-, LO-, and IO-phonon lines of the A 1, A 2, B 1, and B 2 symmetries in the Raman spectra of this compound are assigned. Changes in the Raman spectra of the internal vibrations of boron-oxygen complexes upon transition from the crystalline to the glassy and the molten states of PBO are observed. On the basis of the obtained results, the regularities in the formation of boron-oxygen complexes in glasses, melts, and crystals of the PbO · 2B2O3, SrO · 2B2O3, and Li2O · 2B2O3. diborate compositions are analyzed.

  18. Can Stress Relaxation Experiments be Used to Assess Deformation Induced Mobility in Glassy Polymers?

    NASA Astrophysics Data System (ADS)

    Kropka, Jamie; Long, Kevin

    The observance of an increase in glassy polymer relaxation rates under a mechanical deformation is often referred to as deformation induced mobility (DIM). It has been argued that stress relaxation experiments can provide indirect evidence of this phenomenon. Recently, stress relaxation experiments have been interpreted as demonstrating a mobility decrease with increased deformation when very slow strain rates, 1.2 x 10-5 s-1, are used to apply the deformation. This would suggest against generality of DIM and would have significant implications to constitutive models founded on this principle. Here, a mathematical exercise is performed to evaluate the implications of DIM on stress relaxation response. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  19. Amperometric ascorbic acid sensor based on doped ferrites nanoparticles modified glassy carbon paste electrode.

    PubMed

    Dimitrijević, Teodora; Vulić, Predrag; Manojlović, Dragan; Nikolić, Aleksandar S; Stanković, Dalibor M

    2016-07-01

    In this study, a novel electrochemical sensor for quantification of ascorbic acid with amperometric detection in physiological conditions was constructed. For this purpose, cobalt and nickel ferrites were synthesized using microwave and ultrasound assistance, characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray powder diffraction (XRPD), and used for modification of glassy carbon paste electrode (GCPE). It was shown that introducing these nanoparticles to the structure of GCPE led to increasing analytical performance. Co ferrite modified GCPE (CoFeGCPE) showed better characteristics toward ascorbic acid sensing. The limit of detection (LOD) obtained by sensor was calculated to be 0.0270 mg/L, with linear range from 0.1758 to 2.6010 mg/L. This sensor was successfully applied for practical analysis, and the obtained results demonstrated that the proposed procedure could be a promising replacement for the conventional electrode materials and time-consuming and expensive separation methods.

  20. Fast Electrocatalytic Determination of Methimazole at an Activated Glassy Carbon Electrode

    PubMed Central

    Jalali, Fahimeh; Hatami, Zahra

    2016-01-01

    A fast and simple voltammetric method for the determination of methimazole in pharmaceutical products was reported. A glassy carbon electrode was pretreated by anodization at +1.75 V (vs. SCE) for 5 min, followed by potential cycling in the range of 0.3-1.3 V (20 cycles). The pretreated electrode showed an excellent electrocatalytic effect on the oxidation of methimazole. Compared with untreated electrode, a large decrease (~300 mV) in the oxidation peak of methimazole was observed. The oxidation peak current at the new potential (0.4 V vs. SCE) was linearly dependent on the concentration of methimazole in the range of 7.0 - 130 μM with a detection limit of 3.7 μM (S/N = 3). The method was successfully used in the determination of methimazole in thyramozol tablets. Due to the simple and fast electrode preparation, there is no need for electrode cleaning or storage. PMID:28243269

  1. Vacancy analysis in a Ni-Nb-Zr-H glassy alloy by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Fukuhara, Mikio

    2012-02-01

    The positron lifetimes of Ni36Nb24Zr40 and (Ni0.36Nb0.24Zr0.40)90H10 glassy alloys are almost the same but longer than those of pure Zr, Nb, and Ni crystals, indicating that they have higher density of vacancies with smaller size than in crystals. The coincidence Doppler broadening spectrum for both specimens shows that the contribution of Ni around the vacancies is lower than that of Zr and Nb, suggesting that hydrogen atoms favour to exist between Ni atoms comprising neighboring distorted icosahedral Zr5Ni5Nb3 clusters. Thus, these results provide a substitute model of quantum dot tunneling along Ni-H-Ni atomic bond arrays among the clusters.

  2. Models of glassy behavior that attempt to understand mode coupling theories

    SciTech Connect

    Kawasaki, Kyozi,

    2002-01-01

    Glass transitions are said to be long time scale and short length scale phenomena. This makes the problem extremely difficult to treat theoretically. In this respect the current mode coupling theory (MCT) for glassy behavior, which is the only existing first principle dynamical theory has conceptual problems despite its spectacular successes. Proper understanding for the reasons of success is still lacking. There is an urgent need for deeper understanding and proper extention of the theory below the so-called mode coupling temperature below which the theory generally fails. With this aim in mind we have been developing a mean field type toy model. We are also developing a dynamical generalization of van der Waals model with Kac-type long range interaction. The talk will try to explain these and related developments in a plain language.

  3. Simultaneous evaluation of viscosity and retardation time in glassy polymers by a parallel-plate technique

    NASA Astrophysics Data System (ADS)

    Macho, E.; Alegría, A.; Colmenero, J.

    1988-07-01

    In this work we describe a new experimental procedure for parallel-plate rheometry of glassy polymers above the glass-transition temperature range. This method has been used with an automated setup built by us which is linked to a HP-86 desk computer. Both our experimental procedure and experimental setup allow us not only to determine the Newtonian viscosity in the wide 104-109 Pa s range, but also the evaluation of a kind of retardation time. This is related to the time that the sample needs to reach the viscous behavior. Moreover, this time can be identified with the retardation time corresponding to the effects of the entanglements in the polymer melt, at least for the two polymers investigated here: polycarbonate and polysulfone.

  4. Amperometric biosensor based on glassy carbon electrode modified with long-length carbon nanotube and enzyme

    NASA Astrophysics Data System (ADS)

    Furutaka, Hajime; Nemoto, Kentaro; Inoue, Yuki; Hidaka, Hiroki; Muguruma, Hitoshi; Inoue, Hitoshi; Ohsawa, Tatsuya

    2016-05-01

    An amperometric biosensor based on a glassy carbon electrode modified with long-length multiwalled carbon nanotubes (MWCNTs) and enzyme nicotinamide-adenine-dinucleotide-dependent glucose dehydrogenase (GDH) is presented. We demonstrate the effect of the MWCNT length on the amperometric response of the enzyme biosensor. The long length of MWCNT is 200 µm (average), whereas the normal length of MWCNT is 1 µm (average). The response of the long MWCNT-GDH electrode is 2 times more sensitive than that of the normal-length MWCNT-GDH electrode in the concentration range from 0.25-35 mM. The result of electrochemical impedance spectroscopy measurements suggest that the long-length MWCNT-GDH electrode formed a better electron transfer network than the normal-length one.

  5. Electrochemical determination of glycoalkaloids using a carbon nanotubes-phenylboronic acid modified glassy carbon electrode.

    PubMed

    Wang, Huiying; Liu, Mingyue; Hu, Xinxi; Li, Mei; Xiong, Xingyao

    2013-11-27

    A versatile strategy for electrochemical determination of glycoalkaloids (GAs) was developed by using a carbon nanotubes-phenylboronic acid (CNTs-PBA) modified glassy carbon electrode. PBA reacts with α-solanine and α-chaconine to form a cyclic ester, which could be utilized to detect GAs. This method allowed GA detection from 1 μM to 28 μM and the detection limit was 0.3 μM. Affinity interaction of GAs and immobilized PBA caused an essential change of the peak current. The CNT-PBA modified electrodes were sensitive for detection of GAs, and the peak current values were in quite good agreement with those measured by the sensors.

  6. Amperometric sensing of hydrogen peroxide using glassy carbon electrode modified with copper nanoparticles

    SciTech Connect

    Sophia, J.; Muralidharan, G.

    2015-10-15

    In this paper, fabrication of glassy carbon electrode (GCE) modified with nano copper particles is discussed. The modified electrode has been tested for the non-enzymatic electrochemical detection of hydrogen peroxide (H{sub 2}O{sub 2}). The copper nanoparticles (Cu NPs) were prepared employing a simple chemical reduction method. The presence of Cu NPs was confirmed through UV–visible (UV–vis) absorption spectroscopy and X-ray diffraction (XRD) analysis. The size and morphology of the particles were investigated using transmission electron microscopy (TEM). The electrochemical properties of the fabricated sensor were studied via cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy (EIS). The electrochemical sensor displayed excellent performance features towards H{sub 2}O{sub 2} detection exhibiting wide linear range, low detection limit, swift response time, good reproducibility and stability.

  7. Mechanoluminescent Imaging of Osmotic Stress-Induced Damage in a Glassy Polymer Network

    PubMed Central

    2017-01-01

    A chemiluminescent mechanophore, bis(adamantyl-1,2-dioxetane), is used to investigate the covalent bond scission resulting from the sorption of chloroform by glassy poly(methyl methacrylate) (PMMA) networks. Bis(adamantyl)-1,2-dioxetane units incorporated as cross-linkers underwent mechanoluminescent scission, demonstrating that solvent ingress caused covalent bond scission. At higher cross-linking densities, the light emission took the form of hundreds of discrete bursts, widely varying in intensity, with each burst composed of 107–109 photons. Camera imaging indicated a relatively slow propagation of bursts through the material and permitted analysis of the spatial correlation between the discrete bond-breaking events. The implications of these observations for the mechanism of sorption and fracture are discussed. PMID:28316344

  8. Toward the Control of the Creation of Mixed Monolayers on Glassy Carbon Surfaces by Amine Oxidation.

    PubMed

    Groppi, Jessica; Bartlett, Philip N; Kilburn, Jeremy D

    2016-01-18

    A versatile and simple methodology for the creation of mixed monolayers on glassy carbon (GC) surfaces was developed, using an osmium-bipyridyl complex and anthraquinone as model redox probes. The work consisted in the electrochemical grafting on GC of a mixture of mono-protected diamine linkers in varying ratios which, after attachment to the surface, allowed orthogonal deprotection. After optimisation of the deprotection conditions, it was possible to remove one of the protecting groups selectively, couple a suitable osmium complex and cap the residual free amines. The removal of the second protecting group allowed the coupling of anthraquinone. The characterisation of the resulting surfaces by cyclic voltammetry showed the variation of the surface coverage of the two redox centres in relation to the initial ratio of the linking amine in solution.

  9. NMR evidence for inhomogeneous glassy behavior driven by nematic fluctuations in iron arsenide superconductors

    DOE PAGES

    Dioguardi, A. P.; Lawson, M. M.; Bush, B. T.; ...

    2015-10-16

    We present 75As nuclear magnetic resonance spin-lattice and spin-spin relaxation rate data in Ba(Fe1–xCox)2As2 and Ba(Fe1–xCux)2As2 as a function of temperature, doping, and magnetic field. The relaxation curves exhibit a broad distribution of relaxation rates, consistent with inhomogeneous glassy behavior up to 100 K. The doping and temperature response of the width of the dynamical heterogeneity is similar to that of the nematic susceptibility measured by elastoresistance measurements. In this study, we argue that quenched random fields which couple to the nematic order give rise to a nematic glass that is reflected in the spin dynamics.

  10. Spatially resolved lasers using a glassy cholesteric liquid crystal film with lateral pitch gradient

    NASA Astrophysics Data System (ADS)

    Wei, Simon K. H.; Chen, Shaw H.

    2011-03-01

    To fabricate spatially resolved glassy cholesteric liquid crystal (CLC) lasers, a lateral pitch gradient was introduced by thermally activated diffusion across the interface of two films comprising nematic and cholesteric oligofluorene doped with a red-emitting oligifluorene. The formation of spatially resolved Grandjean-Cano bands was accountable by strong surface anchoring at substrates and the qualitative chiral concentration profile. Across each band there was a common stop band, and a set of bands produced multiple lasing peaks across the spectral range determined by light-emitter's fluorescence spectrum. The resultant lasing thresholds, 6.6-7.6 mJ/cm2, and slope efficiencies, 0.2%-1.5%, are superior to those reported to date for gradient-pitch CLC lasers.

  11. NMR evidence for inhomogeneous glassy behavior driven by nematic fluctuations in iron arsenide superconductors

    SciTech Connect

    Dioguardi, A. P.; Lawson, M. M.; Bush, B. T.; Crocker, J.; Shirer, K. R.; Nisson, D. M.; Kissikov, T.; Ran, S.; Bud'ko, S. L.; Canfield, P. C.; Yuan, S.; Kuhns, P. L.; Reyes, A. P.; Grafe, H. -J.; Curro, N. J.

    2015-10-16

    We present 75As nuclear magnetic resonance spin-lattice and spin-spin relaxation rate data in Ba(Fe1–xCox)2As2 and Ba(Fe1–xCux)2As2 as a function of temperature, doping, and magnetic field. The relaxation curves exhibit a broad distribution of relaxation rates, consistent with inhomogeneous glassy behavior up to 100 K. The doping and temperature response of the width of the dynamical heterogeneity is similar to that of the nematic susceptibility measured by elastoresistance measurements. In this study, we argue that quenched random fields which couple to the nematic order give rise to a nematic glass that is reflected in the spin dynamics.

  12. Plutonium segregation in glassy aerodynamic fallout from a nuclear weapon test.

    PubMed

    Holliday, K S; Dierken, J M; Monroe, M L; Fitzgerald, M A; Marks, N E; Gostic, R C; Knight, K B; Czerwinski, K R; Hutcheon, I D; McClory, J W

    2017-02-14

    This study combines electron microscopy equipped with energy dispersive spectroscopy to probe major element composition and autoradiography to map plutonium in order to examine the spatial relationships between plutonium and fallout composition in aerodynamic glassy fallout from a nuclear weapon test. A sample set of 48 individual fallout specimens were interrogated to reveal that the significant chemical heterogeneity of this sample set could be described compositionally with a relatively small number of compositional endmembers. Furthermore, high concentrations of plutonium were never associated with several endmember compositions and concentrated with the so-called mafic glass endmember. This result suggests that it is the physical characteristics of the compositional endmembers and not the chemical characteristics of the individual component elements that govern the un-burnt plutonium distribution with respect to major element composition in fallout.

  13. Amended tunneling model to explain the anisotropy of the glassy properties of crystals and quasicrystals

    NASA Astrophysics Data System (ADS)

    Anghel, Dragos-Victor; Churochkin, Dmitry

    2012-02-01

    The low temperature acoustic and thermal properties of amorphous, glassy materials are remarkably similar and they can be explained to a large extent by assuming that the material contains a large number of dynamic defects. These dynamic defects are tunneling systems and are modeled by an ensemble of two-level systems (TLS). Crystals with defects--with a large enough amount of disorder--exhibit also glass-like properties, but these properties are not so universal and, even more, they are not isotropic. In Phys. Rev. B 75, 064202 (2007) we proposed an amended model for the description of the interaction of two-level systems with arbitrary strain fields. Here we show how this model explains the anisotropy of the glass-like properties of disordered crystals and quasicrystals.

  14. Synthesis of one-dimensional SiC nanostructures from a glassy buckypaper.

    PubMed

    Ding, Mengning; Star, Alexander

    2013-03-01

    A simple and scalable synthetic strategy was developed for the fabrication of one-dimensional SiC nanostructures-nanorods and nanowires. Thin sheets of single-walled carbon nanotubes (SWNTs) were prepared by vacuum filtration and were washed repeatedly with sodium silicate (Na2SiO3) solution. The resulting "glassy buckypaper" was heated at 1300-1500 °C under Ar/H2 to allow a solid state reaction between C and Si precursors to form a variety of SiC nanostructures. The morphology and crystal structures of SiC nanorods and nanowires were characterized using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDX), electron diffraction (ED), and X-ray diffraction (XRD) techniques. Furthermore, electrical conductance measurements were performed on SiC nanorods, demonstrating their potential applications in high-temperature sensors and control systems.

  15. Voltammetric Determination of Flunixin on Molecularly Imprinted Polypyrrole Modified Glassy Carbon Electrode.

    PubMed

    Radi, Abd-Elgawad; Abd El-Ghany, Nadia; Wahdan, Tarek

    2016-01-01

    A novel electrochemical sensing approach, based on electropolymerization of a molecularly imprinted polypyrrole (MIPpy) film onto a glassy carbon electrode (GCE) surface, was developed for the detection of flunixin (FXN). The sensing conditions and the performance of the constructed sensor were assessed by cyclic, differential pulse and (DPV) square wave voltammetry (SWV). The sensor exhibited high sensitivity, with linear responses in the range of 5.0 to 50.0 µM with detection limits of 1.5 and 1.0 µM for DPV and SWV, respectively. In addition, the sensor showed high selectivity towards FXN in comparison to other interferents. The sensor was successfully utilized for the direct determination of FXN in buffalo raw milk samples.

  16. Voltammetric Determination of Flunixin on Molecularly Imprinted Polypyrrole Modified Glassy Carbon Electrode

    PubMed Central

    Radi, Abd-Elgawad; Abd El-Ghany, Nadia; Wahdan, Tarek

    2016-01-01

    A novel electrochemical sensing approach, based on electropolymerization of a molecularly imprinted polypyrrole (MIPpy) film onto a glassy carbon electrode (GCE) surface, was developed for the detection of flunixin (FXN). The sensing conditions and the performance of the constructed sensor were assessed by cyclic, differential pulse and (DPV) square wave voltammetry (SWV). The sensor exhibited high sensitivity, with linear responses in the range of 5.0 to 50.0 µM with detection limits of 1.5 and 1.0 µM for DPV and SWV, respectively. In addition, the sensor showed high selectivity towards FXN in comparison to other interferents. The sensor was successfully utilized for the direct determination of FXN in buffalo raw milk samples. PMID:27242945

  17. Thermal conductivity of glassy GeTe4 by first-principles molecular dynamics.

    PubMed

    Bouzid, Assil; Zaoui, Hayat; Luca Palla, Pier; Ori, Guido; Boero, Mauro; Massobrio, Carlo; Cleri, Fabrizio; Lampin, Evelyne

    2017-03-29

    A transient thermal regime is achieved in glassy GeTe4 by first-principles molecular dynamics following the recently proposed "approach-to-equilibrium" methodology. The temporal and spatial evolution of the temperature do comply with the time-dependent solution of the heat equation. We demonstrate that the time scales required to create the hot and the cold parts of the system and observe the resulting approach to equilibrium are accessible to first-principles molecular dynamics. Such a strategy provides the thermal conductivity from the characteristic decay time. We rationalize in detail the impact on the thermal conductivity of the initial temperature difference, the equilibration duration, and the main simulation features.

  18. Glassy and Metastable Crystalline BaTi2O5 by Containerless Processing

    NASA Astrophysics Data System (ADS)

    Yoda, Shinichi; Kentei Yu, Yu; Kumar, Vijaya; Kameko, Masashi

    Many efforts have been devoted to forming bulk glass from the melt of ferroelectric crystalline materials without adding any network-forming oxides such as SiO2 due to the potential for producing transparent glass ceramics with high dielectric constant and enhanced piezoelectric, pyroelectric and electro-optic use. The containerless processing is an attractive synthesis tech-nique as it can prevent melt contamination, minimize heterogeneous nucleation, and allow melt to achieve deep undercooling for forming metastable and glassy materials. We have fabricated a new ferroelectric materiel BaTi2 O5 [1] as bulk glass from melt by us-ing containerless processing and studied the phase relationship between microstructure and ferroelectric properties of BaTi2 O5 [2]. The structures of glassy and metastable crystalline BaTi2 O5 fabricated by the containerless pro-cessing were comprehensively investigated by combined X-ray and neutron diffractions, XANES analyses and computer simulations [3]. The 3-dimensional atomic structure of glassy BaTi2 O5 (g-BaTi2 O5 ), simulated by Reverse Monte Carlo (RMC) modelling on diffraction data, shows that extremely distorted TiO5 polyhedra interconnected with both corner-and edge-shared oxy-gen, formed a higher packing density structure than that of conventional silicate glass linked with only corner-sharing of SiO4 polyhedra. In addition, XANES measurement reveales that five-coordinated TiO5 polyhedra were formable in the crystallized metastable a-and b-BaTi2 O5 phases. The structure of metastable b-BaTi2 O5 was solved by ab initio calculation, and refined by Rietveld refinement as group Pnma with unit lattices a = 10.23784 ˚, b = 3.92715 ˚, c A A = 10.92757 A ˚. Our results show that the glass-forming ability enhanced by containerless pro-cessing, not by `strong glass former', fabricated new bulk oxide glasses with peculiar structures and properties. The intermediate-range structure of g-BaTi2 O5 and the crystalline structure of

  19. Electrochemical Determination of Glycoalkaloids Using a Carbon Nanotubes-Phenylboronic Acid Modified Glassy Carbon Electrode

    PubMed Central

    Wang, Huiying; Liu, Mingyue; Hu, Xinxi; Li, Mei; Xiong, Xingyao

    2013-01-01

    A versatile strategy for electrochemical determination of glycoalkaloids (GAs) was developed by using a carbon nanotubes-phenylboronic acid (CNTs-PBA) modified glassy carbon electrode. PBA reacts with α-solanine and α-chaconine to form a cyclic ester, which could be utilized to detect GAs. This method allowed GA detection from 1 μM to 28 μM and the detection limit was 0.3 μM. Affinity interaction of GAs and immobilized PBA caused an essential change of the peak current. The CNT-PBA modified electrodes were sensitive for detection of GAs, and the peak current values were in quite good agreement with those measured by the sensors. PMID:24287539

  20. An electrochemically aminated glassy carbon electrode for simultaneous determination of hydroquinone and catechol.

    PubMed

    Wang, Xiuyun; Xi, Min; Guo, Mengmeng; Sheng, Fangmeng; Xiao, Guang; Wu, Shuo; Uchiyama, Shunichi; Matsuura, Hiroaki

    2016-02-07

    In this contribution, a very simple and reliable strategy based on the easy modification of a glassy carbon electrode (GCE) by pre-electrolyzing GCE in ammonium carbamate aqueous solution was employed for the simultaneous determination of hydroquinone (HQ) and catechol (CC). Compared with bare GCE, the incorporation of nitrogen into the GCE surface structure improved the electrocatalytic properties of GCE towards the electro-oxidation of HQ and CC. The nitrogen-introduced GCE (N-GCE) was evaluated for the simultaneous detection of HQ and CC and the linear ranges for HQ and CC were both from 5 to 260 μM. Their detection limits were both evaluated to be 0.2 μM (S/N = 3). The present method was applied for the determination of HQ and CC in real river water samples with recoveries of 95.0-102.1%. In addition, a possible detection mechanism of HQ and CC was discussed.

  1. Glassy phases and driven response of the phase-field-crystal model with random pinning.

    PubMed

    Granato, E; Ramos, J A P; Achim, C V; Lehikoinen, J; Ying, S C; Ala-Nissila, T; Elder, K R

    2011-09-01

    We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations, even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then, finally, a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes.

  2. Dynamic structure factor of a stiff polymer in a glassy solution.

    PubMed

    Glaser, J; Hallatschek, O; Kroy, K

    2008-01-01

    We provide a comprehensive overview of the current theoretical understanding of the dynamic structure factor of stiff polymers in semidilute solution based on the wormlike chain (WLC) model. We extend previous work by computing exact numerical coefficients and an expression for the dynamic mean square displacement (MSD) of a free polymer and compare various common approximations for the hydrodynamic interactions, which need to be treated accurately if one wants to extract quantitative estimates for model parameters from experimental data. A recent controversy about the initial slope of the dynamic structure factor is thereby resolved. To account for the interactions of the polymer with a surrounding (sticky) polymer solution, we analyze an extension of the WLC model, the glassy wormlike chain (GWLC), which predicts near power law and logarithmic long-time tails in the dynamic structure factor.

  3. Voltammetric Determination of Dopamine in Human Serum with Amphiphilic Chitosan Modified Glassy Carbon Electrode

    PubMed Central

    Wang, Cheng Yin; Wang, Zhi Xian; Zhu, Ai Ping; Hu, Xiao Ya

    2006-01-01

    An improvement of selectivity for electrochemical detection of dopamine (DA) with differential pulse voltammetry is achieved by covalently modifying a glassy carbon electrode (GCE) with O-carboxymethylchitosan (OCMCS). The amphiphilic chitosan provides electrostatic accumulation of DA onto the electrode surface. In a phosphate buffer solution (pH 6.0), a pair of well-defined reversible redox waves of DA was observed at the OCMCS/GCE with a ΔEp of 52 mV. The anodic peak current obtained from the differential pulse voltammetry of dopamine was linearly dependent on its concentration in the range of 6.0 × 10-8 to 7.0 × 10-6 M, with a correlation coefficient of 0.998. The detection limit (S/N = 3) was found to be 1.5 × 10-9 M. The modified electrode had been applied to the determination of DA in human serum samples with satisfactory results.

  4. Thermomechanical processing of metallic glasses: extending the range of the glassy state

    NASA Astrophysics Data System (ADS)

    Sun, Yonghao; Concustell, Amadeu; Greer, A. Lindsay

    2016-09-01

    For crystalline metals, the science, technology and application of thermomechanical processing are established, but this is not true for glasses. Metallic glasses — because they can be plastically deformed — offer a unique opportunity to study the effects of thermomechanical treatments on the structure and properties of glasses. Depending on the rate of cooling, various glassy states can form from a liquid. Slower cooling gives states of lower enthalpy and smaller volume; such states might also be reached by annealing, which induces structural ‘relaxation’. A reduction in the degree of relaxation, or ‘rejuvenation’, is achievable through processes such as irradiation and mechanical deformation. In this Review, we explore the extent of relaxation and rejuvenation induced by thermomechanical processing (that is, elastic and plastic deformation, including cold and hot working, and cyclic loading). The issues that remain to be investigated and the prospects for further progress are discussed.

  5. Balanced 0, + or - Matrices. Part 2. Recognition Algorithm

    DTIC Science & Technology

    1994-01-22

    Matrices MAY 101994 Part II: Recognition Algorithm D Michele ConfortlI G6rard Cornu6j~ls2 Ajai Kapoor Krisina Vuskovi 2 January 22, 1994 Dipartimento...di Matematica Pura ed Applicata Universiti di Padova, Via Belzoni 7, 94-13892 35131 Padova, Italy I IIII In II ii I l1i III Graduate School of...for balanced 0, ± matrices . This algorithm is based on a decomposition theorem proved in a companion paper. Acce166 ýr7 NTIS CRA& D’BC TAB L 1 U

  6. Random reverse-cyclic matrices and screened harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Srivastava, Shashi C. L.; Jain, Sudhir R.

    2012-04-01

    We have calculated the joint probability distribution function for random reverse-cyclic matrices and shown that it is related to an N-body exactly solvable model. We refer to this well-known model potential as a screened harmonic oscillator. The connection enables us to obtain all the correlations among the particle positions moving in a screened harmonic potential. The density of nontrivial eigenvalues of this ensemble is found to be of the Wigner form and admits a hole at the origin, in contrast to the semicircle law of the Gaussian orthogonal ensemble of random matrices. The spacing distributions assume different forms ranging from Gaussian-like to Wigner.

  7. The algebraic theory of latent projectors in lambda matrices

    NASA Technical Reports Server (NTRS)

    Denman, E. D.; Leyva-Ramos, J.; Jeon, G. J.

    1981-01-01

    Multivariable systems such as a finite-element model of vibrating structures, control systems, and large-scale systems are often formulated in terms of differential equations which give rise to lambda matrices. The present investigation is concerned with the formulation of the algebraic theory of lambda matrices and the relationship of latent roots, latent vectors, and latent projectors to the eigenvalues, eigenvectors, and eigenprojectors of the companion form. The chain rule for latent projectors and eigenprojectors for the repeated latent root or eigenvalues is given.

  8. Quantum hidden Markov models based on transition operation matrices

    NASA Astrophysics Data System (ADS)

    Cholewa, Michał; Gawron, Piotr; Głomb, Przemysław; Kurzyk, Dariusz

    2017-04-01

    In this work, we extend the idea of quantum Markov chains (Gudder in J Math Phys 49(7):072105 [3]) in order to propose quantum hidden Markov models (QHMMs). For that, we use the notions of transition operation matrices and vector states, which are an extension of classical stochastic matrices and probability distributions. Our main result is the Mealy QHMM formulation and proofs of algorithms needed for application of this model: Forward for general case and Vitterbi for a restricted class of QHMMs. We show the relations of the proposed model to other quantum HMM propositions and present an example of application.

  9. "Non-equilibrium" block copolymer micelles with glassy cores: a predictive approach based on theory of equilibrium micelles.

    PubMed

    Nagarajan, Ramanathan

    2015-07-01

    Micelles generated in water from most amphiphilic block copolymers are widely recognized to be non-equilibrium structures. Typically, the micelles are prepared by a kinetic process, first allowing molecular scale dissolution of the block copolymer in a common solvent that likes both the blocks and then gradually replacing the common solvent by water to promote the hydrophobic blocks to aggregate and create the micelles. The non-equilibrium nature of the micelle originates from the fact that dynamic exchange between the block copolymer molecules in the micelle and the singly dispersed block copolymer molecules in water is suppressed, because of the glassy nature of the core forming polymer block and/or its very large hydrophobicity. Although most amphiphilic block copolymers generate such non-equilibrium micelles, no theoretical approach to a priori predict the micelle characteristics currently exists. In this work, we propose a predictive approach for non-equilibrium micelles with glassy cores by applying the equilibrium theory of micelles in two steps. In the first, we calculate the properties of micelles formed in the mixed solvent while true equilibrium prevails, until the micelle core becomes glassy. In the second step, we freeze the micelle aggregation number at this glassy state and calculate the corona dimension from the equilibrium theory of micelles. The condition when the micelle core becomes glassy is independently determined from a statistical thermodynamic treatment of diluent effect on polymer glass transition temperature. The predictions based on this "non-equilibrium" model compare reasonably well with experimental data for polystyrene-polyethylene oxide diblock copolymer, which is the most extensively studied system in the literature. In contrast, the application of the equilibrium model to describe such a system significantly overpredicts the micelle core and corona dimensions and the aggregation number. The non-equilibrium model suggests ways to

  10. Cytomorphological characteristics of glassy cell carcinoma of the uterine cervix: histopathological correlation and human papillomavirus genotyping

    PubMed Central

    Jung, Yoon Yang; Nahm, Ji Hae; Kim, Hyun-Soo

    2016-01-01

    A retrospective analysis was performed to describe the cytomorphological and histopathological findings and human papillomavirus (HPV) genotypes for glassy cell carcinoma (GCC) of the uterine cervix. Five cases of cervical GCC, in which the glassy cell features constituted at least 95% of the specimen, were included. Four patients had stage IIB GCCs and one had stage IIIB GCC. All patients underwent concurrent chemoradiation therapy. Based on pretreatment cytology, only 1 of the 5 cases was correctly diagnosed as GCC. The remaining cases were diagnosed as carcinoma of undetermined type, adenocarcinoma, poorly differentiated carcinoma, or unsatisfactory for evaluation. Cytological specimens had moderate cellularity and contained small clusters of tumor cells admixed with amphophilic, granular tumor diathesis. The tumor cells possessed large, round to oval nuclei and abundant, granular, ground-glass cytoplasm. The nuclei exhibited prominent eosinophilic nucleoli. The cytoplasm displayed sharp margins and molding, resulting in “intercellular windows” between neighboring attached cells. HPV genotyping revealed that high-risk HPV types 18, 16, and 31 were detected in 3, 1, and 1 cases, respectively. Consistent with this finding, all cases exhibited block p16 positivity, confirming the association of HPV infection with GCC. In conclusion, a distinct cytoplasmic margin, the characteristic histopathological feature of GCC, was observed in liquid-based cytological preparations. We suggest that sharp cytoplasmic outlines with molding and intercellular windows are characteristic cytomorphological features of GCC. Detection of high-risk HPV in all cases strongly supported the notion that high-risk HPV is involved in the pathogenesis of GCC. PMID:27708230

  11. Asphaltene-laden interfaces form soft glassy layers in contraction experiments: a mechanism for coalescence blocking.

    PubMed

    Pauchard, Vincent; Rane, Jayant P; Banerjee, Sanjoy

    2014-11-04

    In previous studies, the adsorption kinetics of asphaltenes at the water-oil interface were interpreted utilizing a Langmuir equation of state (EOS) based on droplet expansion experiments.1-3 Long-term adsorption kinetics followed random sequential adsorption (RSA) theory predictions, asymptotically reaching ∼85% limiting surface coverage, which is similar to limiting random 2D close packing of disks. To extend this work beyond this slow adsorption process, we performed rapid contractions and contraction-expansions of asphaltene-laden interfaces using the pendant drop experiment to emulate a Langmuir trough. This simulates the rapid increase in interfacial asphaltene concentration that occurs during coalescence events. For the contraction of droplets aged in asphaltene solutions, deviation from the EOS consistently occurs at a surface pressure value ∼21 mN/m corresponding to a surface coverage ∼80%. At this point droplets lose the shape required for validity of the Laplace-Young equation, indicating solidlike surface behavior. On further contraction wrinkles appear, which disappear when the droplet is held at constant volume. Surface pressure also decreases down to an equilibrium value near that measured for slow adsorption experiments. This behavior appears to be due to a transition to a glassy interface on contraction past the packing limit, followed by relaxation toward equilibrium by desorption at constant volume. This hypothesis is supported by cycling experiments around the close-packed limit where the transition to and from a solidlike state appears to be both fast and reversible, with little hysteresis. Also, the soft glass rheology model of Sollich is shown to capture previously reported shear behavior during adsorption. The results suggest that the mechanism by which asphaltenes stabilize water-in-oil emulsions is by blocking coalescence due to rapid formation of a glassy interface, in turn caused by interfacial asphaltenes rapidly increasing in

  12. Determining the structural relaxation times deep in the glassy state of the pharmaceutical Telmisartan

    NASA Astrophysics Data System (ADS)

    Adrjanowicz, K.; Paluch, M.; Ngai, K. L.

    2010-03-01

    By using the dielectric relaxation method proposed recently by Casalini and Roland (2009 Phys. Rev. Lett. 102 035701), we were able to determine the structural α-relaxation times deep in the glassy state of the pharmaceutical, Telmisartan. Normally, deep in the glassy state τα is so long that it cannot be measured but τβ, which is usually much shorter, can be directly determined. The method basically takes advantage of the connection between the α-relaxation and the secondary β-relaxation of the Johari-Goldstein kind, including a relation between their relaxation times τα and τβ, respectively. Thus, τα of Telmisartan were determined by monitoring the change of the dielectric β-loss, ɛ'', with physical aging time at temperatures well below the vitrification temperature. The values of τα were compared with those expected by the coupling model (CM). Unequivocal comparison cannot be made in the case of Telmisartan because its β-loss peak is extremely broad, and the CM predicts only an order of magnitude agreement between the primitive relaxation frequency and the β-peak frequency. We also made an attempt to analyze all isothermal and aging susceptibility data after transformation into the electric modulus representation. The τα found in the glass state by using the method of Casalini and Roland in the modulus representation are similar to those obtained in the susceptibility representation. However, it is remarkable that the stretching parameter βKWW - M = 0.51 in the electric modulus representation gives more precise fits to the aging data than in the susceptibility representation with βKWW = 0.61. Our results suggest that the electric modulus representation may be useful as an alternative to analyze aging data, especially in the case of highly polar glassformers having a large ratio of low frequency and high frequency dielectric constants, such as the Telmisartan studied.

  13. Effects of Glassy-Winged Sharpshooter (Hemiptera: Cicadellidae) Feeding, Size, and Lipid Content on Egg Maturation.

    PubMed

    Sisterson, Mark S; Wallis, Christopher M; Stenger, Drake C

    2015-06-01

    The glassy-winged sharpshooter (Homalodisca vitripennis) is synovigenic and must feed as an adult to produce eggs. Egg maturation rates depend on the host plant species provided to the adult female for feeding and are variable for females provided with the same host plant species. Here, the contribution of female size and lipid content to variation in egg maturation rates among females held on the same host plant species was assessed. To assess effects of female size and lipid content on egg maturation, feeding assays followed by measurements of egg load, female size, and lipid content were conducted. To accomplish this, females were field collected and held on cowpea until producing approximately 0, 12, 25, or 50 ml of excreta. After reaching prescribed excreta thresholds, females were dissected to determine egg load, hind tibia length, and head capsule width. Mature eggs were removed from the abdomen and dry weight of eggs and bodies (head, thorax, and abdomen) were obtained. Lipid content of eggs and bodies were determined using a quantitative colorimetric assay. Rates of body weight gain and body lipid gain were rapid with low levels of feeding (12 ml of excreta) but decelerated with additional feeding (>12 ml of excreta). In contrast, low levels of feeding (12 ml of excreta) resulted in little egg production, with rates of egg production accelerating with additional feeding (>12 ml of excreta). Accordingly, egg production was preceded by an increase in body dry weight and body lipid content. In agreement, probability that a female carried eggs increased with body lipid content in the 0-, 12-, and 25-ml feeding treatments. Across treatments, larger females carried more eggs than smaller females. Collectively, results suggest that variation in glassy-winged sharpshooter egg maturation rates partially may be explained by availability of lipid reserves at the start of a feeding bout and female size.

  14. Contrasting the Evaporation and Condensation of Water from Glassy and Amorphous Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Reid, J. P.; Bones, D. L.; Power, R.; Lienhard, D.; Krieger, U. K.

    2012-04-01

    The partitioning of water between the condensed and gas phases in atmospheric aerosol is usually assumed to occur instantaneously and to be regulated by solution thermodynamics. However, the persistence of high viscosity, glassy and amorphous aerosol to low relative humidity without crystallisation occurring is now widely recognised, suggesting that the timescale for water transport to or from the particle during condensation or evaporation may be significant. A kinetic limitation on water transport could have important implications for understanding hygroscopic growth measurements made on ambient particles, the ability of particles to act as ice nuclei or cloud condensation nuclei, the kinetics of chemical aging/heterogeneous chemistry, and the rate or condensation/evaporation of semi-volatile organic components. In this study we will report on measurements of the timescale of water transport to and from glassy aerosol and ultra-high viscosity solution droplets using aerosol optical tweezers to investigate the time-response of single particles to changes in relative humidity. As a benchmark system, mixed component aerosol particles containing sucrose and sodium chloride have been used; varying the mole fractions of the two solutes allows a wide range of solution viscosities to be studied. We will show that coarse particles can take many thousands of seconds to equilibrate in size and that the timescale correlates with the estimated bulk viscosity of the particle. We will also confirm that significant inhomogeneities in particle composition can be established during evaporation or condensation. Using the experimental data to benchmark a model for equilibration time, predictions can be made of the timescale for the equilibration of accumulation mode particles during water condensation or evaporation and these predictions will be described and their significance explored. Finally, the coalescence dynamics of highly viscous aerosol particles will be reported

  15. Permeability of Rubbery and Glassy Membranes of Ionic Liquid Filled Polymersome Nanoreactors in Water.

    PubMed

    So, Soonyong; Yao, Letitia J; Lodge, Timothy P

    2015-12-03

    Nanoemulsion-like polymer vesicles (polymersomes) having ionic liquid interiors dispersed in water are attractive for nanoreactor applications. In a previous study, we demonstrated that small molecules could pass through rubbery polybutadiene membranes on a time scale of seconds, which is practical for chemical transformations. It is of interest to determine how sensitive the rate of transport is to temperature, particularly for membranes in the vicinity of the glass transition (Tg). In this work, the molecular exchange rate of 1-butylimidazole through glassy polystyrene (PS) bilayer membranes is investigated via pulsed field gradient nuclear magnetic resonance (PFG-NMR) over the temperature range from 25 to 70 °C. The vesicles were prepared by the cosolvent method in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([EMIM][TFSI]), and four different polystyrene-b-poly(ethylene oxide) (PS-PEO) diblock polymers with varying PS molecular weights were examined. The vesicles were transferred from the ionic liquid to water at room temperature to form nanoemulsion solutions of polymer vesicles in water. The exchange rate of 1-butylimidazole added to the aqueous solutions was observed under equilibrium conditions at each temperature. The exchange rate decreased as the membrane thickness increased, and the exchange rate through the glassy membranes was three to four times slower than through the rubbery polybutadiene membranes under the same experimental conditions. These results demonstrate that the permeability through nanosized membranes depends on both the dimension and chemistry of membrane-forming blocks. Furthermore, the exchange rate was investigated as a function of temperature in the vicinity of the Tg of PS-PEO membranes. The exchange rate, however, is not a strong function of the temperature in the vicinity of the membrane Tg, due to a combination of the nanoscopic dimension of the membrane, and some degree of solvent

  16. Quantitative mass spectrometry of unconventional human biological matrices

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Ewelina P.; Urban, Pawel L.

    2016-10-01

    The development of sensitive and versatile mass spectrometric methodology has fuelled interest in the analysis of metabolites and drugs in unconventional biological specimens. Here, we discuss the analysis of eight human matrices-hair, nail, breath, saliva, tears, meibum, nasal mucus and skin excretions (including sweat)-by mass spectrometry (MS). The use of such specimens brings a number of advantages, the most important being non-invasive sampling, the limited risk of adulteration and the ability to obtain information that complements blood and urine tests. The most often studied matrices are hair, breath and saliva. This review primarily focuses on endogenous (e.g. potential biomarkers, hormones) and exogenous (e.g. drugs, environmental contaminants) small molecules. The majority of analytical methods used chromatographic separation prior to MS; however, such a hyphenated methodology greatly limits analytical throughput. On the other hand, the mass spectrometric methods that exclude chromatographic separation are fast but suffer from matrix interferences. To enable development of quantitative assays for unconventional matrices, it is desirable to standardize the protocols for the analysis of each specimen and create appropriate certified reference materials. Overcoming these challenges will make analysis of unconventional human biological matrices more common in a clinical setting. This article is part of the themed issue 'Quantitative mass spectrometry'.

  17. Technologies for detecting botulinum neurotoxins in biological and environmental matrices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomonitoring of food and environmental matrices is critical for the rapid and sensitive diagnosis, treatment, and prevention of diseases caused by toxins. The United States Centers for Disease Control and Prevention (CDC) has noted that toxins from bacteria, fungi, algae, and plants present an ongo...

  18. Controlled growth factor release from synthetic extracellular matrices

    NASA Astrophysics Data System (ADS)

    Lee, Kuen Yong; Peters, Martin C.; Anderson, Kenneth W.; Mooney, David J.

    2000-12-01

    Polymeric matrices can be used to grow new tissues and organs, and the delivery of growth factors from these matrices is one method to regenerate tissues. A problem with engineering tissues that exist in a mechanically dynamic environment, such as bone, muscle and blood vessels, is that most drug delivery systems have been designed to operate under static conditions. We thought that polymeric matrices, which release growth factors in response to mechanical signals, might provide a new approach to guide tissue formation in mechanically stressed environments. Critical design features for this type of system include the ability to undergo repeated deformation, and a reversible binding of the protein growth factors to polymeric matrices to allow for responses to repeated stimuli. Here we report a model delivery system that can respond to mechanical signalling and upregulate the release of a growth factor to promote blood vessel formation. This approach may find a number of applications, including regeneration and engineering of new tissues and more general drug-delivery applications.

  19. Advances in detection of antipsychotics in biological matrices.

    PubMed

    Patteet, Lisbeth; Cappelle, Delphine; Maudens, Kristof E; Crunelle, Cleo L; Sabbe, Bernard; Neels, Hugo

    2015-02-20

    Measuring antipsychotic concentrations in human matrices is important for both therapeutic drug monitoring and forensic toxicology. This review provides a critical overview of the analytical methods for detection and quantification of antipsychotics published in the last four years. Focus lies on advances in sample preparation, analytical techniques and alternative matrices. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is used most often for quantification of antipsychotics. This sensitive technique makes it possible to determine low concentrations not only in serum, plasma or whole blood, but also in alternative matrices like oral fluid, dried blood spots, hair, nails and other body tissues. Current literature on analytical techniques for alternative matrices is still limited and often requires a more thorough validation including a comparison between conventional and alternative results to determine their actual value. Ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) makes it possible to quantify a high amount of compounds within a shorter run time. This technique is widely used for multi-analyte methods. Only recently, high-resolution mass spectrometry has gained importance when a combination of screening of (un)known metabolites, and quantification is required.

  20. A Role for M-Matrices in Modelling Population Growth

    ERIC Educational Resources Information Center

    James, Glyn; Rumchev, Ventsi

    2006-01-01

    Adopting a discrete-time cohort-type model to represent the dynamics of a population, the problem of achieving a desired total size of the population under a balanced growth (contraction) and the problem of maintaining the desired size, once achieved, are studied. Properties of positive-time systems and M-matrices are used to develop the results,…

  1. Development of epoxy matrices for filament-wound graphite structures

    SciTech Connect

    Morgan, R.J.; Walkup, C.M.; Kong, F.M.; Mones, E.T.

    1984-11-27

    This paper reviews our program to develop epoxy matrix systems for filament-wound graphite structures. The criteria for this matrix development program requires that the epoxide and amine components are processible and non-toxic; and the corresponding matrix itself is tough, possesses a Tg > 120/sup 0/C and does not lose its mechanical-thermal properties upon exposure to service environment conditions. We report our data on processible, hindered amine cured-epoxide matrices such as menthane or 2,5 dimethyl 2,5 hexane diamine cured bis-phenol-A-diglycidyl ether (DGEBA) epoxide systems in the presence of viscosity-lowering diluents. To produce tough, processible matrices that do not deteriorate upon exposure to service environment conditions requires a knowledge of the network structure formed and how such structure may deteriorate under molecular flow associated with the shear-band toughening mechanisms. For amine-cured DGEBA matrices we report deterioration in the mechanical response and Tg after plastic flow has occurred in such glasses. Permanent chemical changes that occur during this flow induced degradation process were monitored by stress-Fourier transform infrared spectroscopy. The ability to eliminate the aging of tough, cross-linked composite matrices upon molecular flow is discussed in terms of networks with segments of equal extensibility. 15 references, 4 figures, 2 tables.

  2. A Note on the Drazin Indices of Square Matrices

    PubMed Central

    Yu, Lijun; Bu, Tianyi; Zhou, Jiang

    2014-01-01

    For a square matrix A, the smallest nonnegative integer k such that rank (Ak) = rank (Ak+1) is called the Drazin index of A. In this paper, we give some results on the Drazin indices of sum and product of square matrices. PMID:24683337

  3. Automorphisms of semigroups of invertible matrices with nonnegative integer elements

    SciTech Connect

    Semenov, Pavel P

    2012-09-30

    Let G{sub n}(Z) be the subsemigroup of GL{sub n}(Z) consisting of the matrices with nonnegative integer coefficients. In the paper, the automorphisms of this semigroup are described for n{>=}2. Bibliography: 5 titles.

  4. Current technologies for detection of ricin in different matrices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ricin is a convenient, potent, and available toxin for terrorist acts. The importance of detecting it in various matrices is obvious. This chapter reviews methods for ricin detection based on the mechanisms used for assay development. Five detection approaches are reviewed: 1. Antibody-based metho...

  5. Validating Alternative Modes of Scoring for Coloured Progressive Matrices.

    ERIC Educational Resources Information Center

    Razel, Micha; Eylon, Bat-Sheva

    Conventional scoring of the Coloured Progressive Matrices (CPM) was compared with three methods of multiple weight scoring. The methods include: (1) theoretical weighting in which the weights were based on a theory of cognitive processing; (2) judged weighting in which the weights were given by a group of nine adult expert judges; and (3)…

  6. Inverse of polynomial matrices in the irreducible form

    NASA Technical Reports Server (NTRS)

    Chang, Fan R.; Shieh, Leang S.; Mcinnis, Bayliss C.

    1987-01-01

    An algorithm is developed for finding the inverse of polynomial matrices in the irreducible form. The computational method involves the use of the left (right) matrix division method and the determination of linearly dependent vectors of the remainders. The obtained transfer function matrix has no nontrivial common factor between the elements of the numerator polynomial matrix and the denominator polynomial.

  7. Cluster Matrices for Health Occupations. Education for Employment Task Lists.

    ERIC Educational Resources Information Center

    Lathrop, Janice

    These cluster matrices provide duties and tasks that form the basis of instructional content for secondary, postsecondary, and adult training programs for health occupations. The eight clusters (and the job titles included in each cluster) are as follows: (1) dental assisting (dental assistant); (2) dental laboratory technology (dental laboratory…

  8. Dimensionality of Data Matrices with Applications to Gene Expression Profiles

    ERIC Educational Resources Information Center

    Feng, Xingdong

    2009-01-01

    Probe-level microarray data are usually stored in matrices. Take a given probe set (gene), for example, each row of the matrix corresponds to an array, and each column corresponds to a probe. Often, people summarize each array by the gene expression level. Is one number sufficient to summarize a whole probe set for a specific gene in an array?…

  9. Evaluation of Commercially Available Cyanide Test Kits against Various Matrices

    DTIC Science & Technology

    2016-08-01

    EVALUATION OF COMMERCIALLY AVAILABLE CYANIDE TEST KITS AGAINST VARIOUS MATRICES ECBC-TR-1382 Darren W. Hicklin...3. DATES COVERED (From - To) Mar 2015 – Sep 2015 4. TITLE AND SUBTITLE Evaluation of Commercially Available Cyanide Test Kits against Various...available cyanide -detection test kits or strips were selected for evaluation based upon a premarket survey: Quantofix test strips, Cyantesmo test paper

  10. Products of rectangular random matrices: singular values and progressive scattering.

    PubMed

    Akemann, Gernot; Ipsen, Jesper R; Kieburg, Mario

    2013-11-01

    We discuss the product of M rectangular random matrices with independent Gaussian entries, which have several applications, including wireless telecommunication and econophysics. For complex matrices an explicit expression for the joint probability density function is obtained using the Harish-Chandra-Itzykson-Zuber integration formula. Explicit expressions for all correlation functions and moments for finite matrix sizes are obtained using a two-matrix model and the method of biorthogonal polynomials. This generalizes the classical result for the so-called Wishart-Laguerre Gaussian unitary ensemble (or chiral unitary ensemble) at M=1, and previous results for the product of square matrices. The correlation functions are given by a determinantal point process, where the kernel can be expressed in terms of Meijer G-functions. We compare the results with numerical simulations and known results for the macroscopic level density in the limit of large matrices. The location of the end points of support for the latter are analyzed in detail for general M. Finally, we consider the so-called ergodic mutual information, which gives an upper bound for the spectral efficiency of a MIMO communication channel with multifold scattering.

  11. Generalized Pure Density Matrices and the Standard Model

    NASA Astrophysics Data System (ADS)

    Brannen, Carl

    2015-04-01

    We consider generalizations of pure density matrices that have ρρ = ρ , but give up the trace=1 requirement. Given a representation of a quantum algebra in N × N complex matrices, the elements that satisfy ρρ = ρ can be taken to be pure density matrix states. In the Standard Model, particles from different ``superselection sectors'' cannot form linear superpositions. For example, it is impossible to form a linear superposition between an electron and a neutrino. We report that some quantum algebras give symmetry, particle and generation content, gauge freedom, and superselection sectors that are similar to those of the Standard Model. Our lecture will consider as an example the 4 × 4 complex matrices. There are 16 that are diagonal with ρρ = ρ . The 4 with trace=1 give the usual pure density matrices. We will show that the 6 with trace=2 form an SU(3) triplet of three superselection sectors, with each sector consisting of an SU(2) doublet. Considering one of these sectors, the mapping to SU(2) is not unique; there is an SU(2) gauge freedom. This gauge freedom is an analogy to the U(1) gauge freedom that arises when converting a pure density matrix to a state vector.

  12. More about unphysical zeroes in quark mass matrices

    NASA Astrophysics Data System (ADS)

    Emmanuel-Costa, David; González Felipe, Ricardo

    2017-01-01

    We look for all weak bases that lead to texture zeroes in the quark mass matrices and contain a minimal number of parameters in the framework of the standard model. Since there are ten physical observables, namely, six nonvanishing quark masses, three mixing angles and one CP phase, the maximum number of texture zeroes in both quark sectors is altogether nine. The nine zero entries can only be distributed between the up- and down-quark sectors in matrix pairs with six and three texture zeroes or five and four texture zeroes. In the weak basis where a quark mass matrix is nonsingular and has six zeroes in one sector, we find that there are 54 matrices with three zeroes in the other sector, obtainable through right-handed weak basis transformations. It is also found that all pairs composed of a nonsingular matrix with five zeroes and a nonsingular and nondecoupled matrix with four zeroes simply correspond to a weak basis choice. Without any further assumptions, none of these pairs of up- and down-quark mass matrices has physical content. It is shown that all non-weak-basis pairs of quark mass matrices that contain nine zeroes are not compatible with current experimental data. The particular case of the so-called nearest-neighbour-interaction pattern is also discussed.

  13. Cleaning large correlation matrices: Tools from Random Matrix Theory

    NASA Astrophysics Data System (ADS)

    Bun, Joël; Bouchaud, Jean-Philippe; Potters, Marc

    2017-01-01

    This review covers recent results concerning the estimation of large covariance matrices using tools from Random Matrix Theory (RMT). We introduce several RMT methods and analytical techniques, such as the Replica formalism and Free Probability, with an emphasis on the Marčenko-Pastur equation that provides information on the resolvent of multiplicatively corrupted noisy matrices. Special care is devoted to the statistics of the eigenvectors of the empirical correlation matrix, which turn out to be crucial for many applications. We show in particular how these results can be used to build consistent "Rotationally Invariant" estimators (RIE) for large correlation matrices when there is no prior on the structure of the underlying process. The last part of this review is dedicated to some real-world applications within financial markets as a case in point. We establish empirically the efficacy of the RIE framework, which is found to be superior in this case to all previously proposed methods. The case of additively (rather than multiplicatively) corrupted noisy matrices is also dealt with in a special Appendix. Several open problems and interesting technical developments are discussed throughout the paper.

  14. Graph-Theoretic Representations for Proximity Matrices through Strongly-Anti-Robinson or Circular Strongly-Anti-Robinson Matrices.

    ERIC Educational Resources Information Center

    Hubert, Lawrence; Arabie, Phipps; Meulman, Jacqueline

    1998-01-01

    Introduces a method for fitting order-constrained matrices that satisfy the strongly anti-Robinson restrictions (SAR). The method permits a representation of the fitted values in a (least-squares) SAR approximating matrix as lengths of paths in a graph. The approach is illustrated with a published proximity matrix. (SLD)

  15. Efficient linear algebra routines for symmetric matrices stored in packed form.

    PubMed

    Ahlrichs, Reinhart; Tsereteli, Kakha

    2002-01-30

    Quantum chemistry methods require various linear algebra routines for symmetric matrices, for example, diagonalization or Cholesky decomposition for positive matrices. We present a small set of these basic routines that are efficient and minimize memory requirements.

  16. Mean Atomic Weight of Chondrules and Matrices in Semarkona, Allende and Sharps Meteorites

    NASA Astrophysics Data System (ADS)

    Szurgot, M.

    2017-02-01

    Mean atomic weight Amean of chondrules and matrices of Semarkona, Allende and Sharps meteorites was determined using chemical composition and Amean(Fe/Si) dependence. Amean values of matrices are higher than chondrules and meteorites.

  17. CHRONICLE: Fifth Conference of Scientists from Socialist Countries on Amorphous and Glassy Semiconductors ("Amorphous Semiconductors-80"), Kishinev, October 20-24, 1980

    NASA Astrophysics Data System (ADS)

    Semenov, A. S.; Smirnov, V. L.

    1981-05-01

    A brief review is given of the papers and communications on the optical properties of glassy chalcogenide semiconductors and their optical data storage applications, presented at the Amorphous Semiconductors-80 Conference.

  18. Constituent Property - Composite Property Relationships in Thermoset Matrices

    NASA Technical Reports Server (NTRS)

    Diamant, J.; Moulton, R. J.

    1984-01-01

    A procedure to effectively screen and evaluate resins for aerospace structures and advanced composites is described. The following conclusions were advanced: (1) laminate damage tolerance correlates positively with neat resin G sub IC; (2) TGDDM/DDS resins can be toughened; (3) using butadiene-nitrile rubbers, neat resin G sub IC and ultimate strain increase with increasing nitrile content, with the number of chemically reactive groups per molecule, and with increasing molecular weight; (4) better balance of properties combined with high G sub IC may be achieved by using tough glassy thermoplastics instead of rubbers to modify TGDDM/DDS resins; (5) both toughening mechanisms require good phase separation with an effective interphase; (6) the kind and the amount of thermoplastic modifier remain to be selected; and (7) presently only about a fourfold increase in G sub IC was achieved, whereas a forty fold increase is sought; modification of the matrix backbone and of crosslinking is required.

  19. Molecular motions in glassy crystal cyanoadamantane : a proton spin-lattice relaxation study

    NASA Astrophysics Data System (ADS)

    Amoureux, J. P.; Decressain, R.; Sahour, M.; Cochon, E.

    1992-02-01

    Cyanoadamantane C{10}H{15}CN exhibits four different solid phases : two cubic plastic (I and I'), one cubic glassy (Ig) and one monoclinic ordered (II). In cubic plastic phases (I, I') three types of motion coexist : a uniaxial rotation of the molecule around its C—CequivN axis, a tumbling reorientation of this dipolar axis between the <~ngle 001rangle directions and a vacancy self-diffusion. In the cubic glassy state (Ig) the tumbling motion is frozen and therefore only the uniaxial rotation survives. In the ordered phase (II), the molecules only perform a 3-fold uniaxial rotation among identical positions. These different molecular motions in the four solid phases have been studied by the analysis of the T_{1 z} and T_{1 ρ} spin-lattice relaxation times in ^1H-NMR. The derived residence time are compared, when possible, to values previously deduced from quasi-elastic neutron scattering, dielectric relaxation and second moment of the ^1H-NMR lineshape. Le cyanoadamantane C{10}H{15}CN possède quatre phases solides différentes : deux plastiques cubiques (I et I'), une vitreuse cubique (Ig) et une ordonnée monoclinique (II). Dans les phases plastiques cubiques (I, I') trois types de mouvements coexistent : une rotation uniaxiale de la molécule autour de son axe C—CequivN, un basculement de cet axe dipolaire entre les directions <~ngle 001rangle et une diffusion moléculaire. Dans l'état vitreux cubique (Ig), le mouvement de basculement est gelé et seule la rotation uniaxiale subsiste. Enfin dans la phase ordonnée (II), les molécules effectuent une rotation uniaxiale d'ordre 3 entre positions indiscernables. Ces différents mouvements dans les quatre phases solides ont été évalués par l'analyse des temps de relaxation spin-réseau T_{1 z} et T_{1 ρ} en ^1H-RMN. Les temps de résidence qui en sont déduits sont comparés (lorsque cela est possible) aux valeurs correspondantes déduites précédemment par diffusion quasi-élastique des neutrons, par

  20. The fabrication of artifacts out of glassy carbon and carbon-fiber-reinforced carbon for biomedical applications.

    PubMed

    Jenkins, G M; Grigson, C J

    1979-05-01

    Polymeric carbons are produced by the carbonization of a wide range of organic polymeric systems. We have concentrated on the fabrication of two types of polymeric carbons, glassy carbon and carbon-fiber-reinforced carbon (CFRC), both involving phenolic resin precursors. We describe herein the technology which enables us to make dental implants and heart valves out of glassy carbon. We also show how carbon-fiber-reinforced carbon can be made in the form of rods and plates for orthopedic use and molded before firing to produce complex, rigid, individually sculptured shapes suitable for maxillofacial bone replacement. The mechanical properties will be discussed in relation to the structure of these various forms of polymeric carbon. The main purpose of the work is to show that the technology of polymeric-carbon manufacture is essentially simple and the manufacturing process is readily carried out in laboratories which have already been equipped to fabricate standard dental prostheses.