Molecular modeling of mechanical stresses on proteins in glassy matrices: Formalism
NASA Astrophysics Data System (ADS)
Hatch, Harold W.; Debenedetti, Pablo G.
2012-07-01
We present an expression for the calculation of microscopic stresses in molecular simulation, which is compatible with the use of electrostatic lattice sums such as the Ewald sum, with the presence of many-body interactions, and which allows local stresses to be calculated on surfaces of arbitrarily complex shape. The ultimate goal of this work is to investigate microscopic stresses on proteins in glassy matrices, which are used in the pharmaceutical industry for the long-term storage and stabilization of labile biomolecules. We demonstrate the formalism's usefulness through selected results on ubiquitin and an α-keratin fragment, in liquid and glassy states. We find that atomic-level normal stresses on hydrophilic side-chains exhibit a similar fingerprint in both proteins, and protein-level normal stresses increase upon vitrification. Both proteins experience compressive stresses of the order of 102 bar in the glassy state.
Glassy state and thermal inactivation of invertase and lactase in dried amorphous matrices.
Schebor, C; Burin, L; Buera, M P; Aguilera, J M; Chirife, J
1997-01-01
The thermal stability of enzymes lactase and invertase in dried, amorphous matrices of sugars (trehalose, maltose, lactose, sucrose, raffinose) and some other selected systems (casein, PVP, milk) was studied. The glass transition temperature (Tg) was limited as a threshold parameter for predicting enzyme inactivation because (a) enzyme inactivation was observed in glassy matrices, (b) a specific effect of enzyme stabilization by certain matrices particularly trehalose was observed, and (c) enzyme stability appeared to depend on heating temperature (T) "per se" rather than (T-Tg). For these reasons, a protective mechanism by sugars related to the maintenance of the tertiary structure of the enzyme was favored. A rapid loss of enzyme (lactase) activity was observed in heated sucrose systems at T > Tg, and this was attributed to sucrose crystallization since it is known that upon crystallization the protective effect of sugars is lost. Thus, the stabilizing effect could be indirectly affected by the Tg of the matrix, since crystallization of sugars only occurs above Tg. Trehalose model systems (with added invertase) showed an exceptional stability toward "darkening" (e.g., non-enzymatic browning) when heated in the dried state to elevated temperatures and for long periods of time.
NASA Astrophysics Data System (ADS)
Baccaro, S.; Cemmi, A.
2016-10-01
The aim of this work is to give an overall picture of the activity on gamma radiation effects in the field of scintillators (crystals, glasses) with specific mention to the role of ions doped in different crystalline and glassy matrices. Interesting results were obtained in terms of radiation hardness improvement and of physical-chemical properties modification as a function of the nature of dopant (i.e. rare earth as well as metallic ions) and of the scintillating host glassy and glass-ceramic matrix (silicate, phosphate, borate, oxyfluoride and mixed oxides glasses). The research activities were carried out at the 60Co gamma Calliope plant, a pool-type irradiation facility located at the Research Centre ENEA-Casaccia (Rome). Since the eighties, the Calliope facility is deeply involved in radiation processing research on materials and on devices to be used in hostile radiation environment such as nuclear plants, aerospace and High Energy Physics experiments, in the framework of international projects and collaboration with industries and research institutions.
NASA Astrophysics Data System (ADS)
Favre, Audrey
Rubber composites are widely used in several engineering fields, such as automotive, and more recently for inflatable dams and other innovative underwater applications. These rubber materials are composed by an elastomeric matrix while the reinforcing phase is a synthetic fabric. Since these components are expected to operate several years in water environment, their durability must be guaranteed. The use of rubber materials immersed in water is not new, in fact, these materials have been studied for almost one century. However, the knowledge on reinforced rubber composites immersed several years in water is still limited. In this work, investigations on reinforced rubbers were carried out in the framework of a research project in partnership with Alstom and Hydro-Quebec. The objective of this study was to identify rubber composites that could be used under water for long periods. Various rubber composites with ethylene-propylene-diene monomer (EPDM), silicone, EPDM/silicone and polychloroprene (Neoprene) matrices reinforced with E-glass fabric were studied. Thus, these materials were exposed to an accelerated ageing at 85 °C underwater for periods varying from 14 to 365 days. For comparison purposes, they were also immersed and aged one year at room temperature (21 °C). The impact of accelerated aging was estimated through three different characterization methods. Scanning electron microscopy (SEM) was first used to assess the quality of fiber-matrix interface. Then, water absorption tests were performed to quantify the rate of water absorption during immersion. Finally the evolution of the mechanical properties was followed by the determination of Young's modulus (E) and ultimate stress (sigmau) using a dedicated traction test. This analysis allowed to point out that the quality of the fiber-matrix interface was the main factor influencing the drop of the mechanical properties and their durability. Moreover, it was noticed that this interface could be improved
Abd El-Hady, D; Albishri, H M
2015-07-01
Two novel sensors based on human serum albumin (HSA)-ionic liquid (IL) and bovine serum albumin (BSA)-ionic liquid (IL) composites modified glassy carbon electrode (GCE) were produced for simultaneous determination of water soluble vitamins B2, B6 and C in human plasma following analytes focusing by IL micelles collapse (AFILMC). For selective and efficient extraction, vitamins were dissolved in 3.0molL(-1) micellar solution of 1-octyl-3-methyl imidazolium bromide IL. The extracted vitamins were hydrodynamically injected by 25mbar for 20s into a running buffer of 12.5mmolL(-1) phosphate at pH 6.0 followed by electrochemical detection (ECD) on protein/1-octyl-3-methyl imidazolium hexafluorophosphate IL/GC sensors. The chemical stability of proposed sensors was achieved up to 7 days without any decomposition of PF6-based IL/protein and adsorption of interfering ions. In the current work, the sensitivity enhancement factor (SEF) up to 5000-fold was achieved using the AFILMC/ECD setup compared to conventional CE/UV. Under optimal conditions, linear calibration graphs were obtained from 0.5, 0.5 and 1.0 to 1500.0µgmL(-1) of vitamins B2, B6 and C, respectively. Detection limits of analytes were ranged from 180.0 to 520.0ngmL(-1). The proposed AFILMC/ECD setup was successfully applied to the assay of trace level quantification of vitamins in human plasma samples and also their binding constants with HSA and BSA were determined. The concurrent use of IL micelles for the proposed separation and detection processes exhibited some advantages, such as, a reduction of use toxic solvents, an efficient extraction and a direct injection of samples with a short-single run. Furthermore, IL micelles, having variable possibility of interactions, facilitated the successful achievements of AFILMC/ECD setup for the quantification of vitamins in plasma matrices.
NASA Astrophysics Data System (ADS)
Bendaikha, T.; Boussaad, S.; Boutamdja, M.
2005-05-01
Un matériau polymère semi-interpénétré a été obtenu par polymérisation d'un monomère diacrylate, le tripropylène glycol diacrylate (TPGDA) ou le 1,6-hexanediol diacrylate (HDDA) dispersé dans une matrice organique qui est le polystyrène ou le copolymère élastomérique SBS. L'amorçage de la réaction se fait par voie photochimique en utilisant des photoamorceurs qui se décomposent rapidement sous l'action des radiations UV émises par une lampe à vapeur de mercure. La cinétique de la réaction a été suivie quantitativement par spectroscopie IR. Les effets de plusieurs paramètres sur la vitesse de la polymérisation ont été étudiés.
NASA Astrophysics Data System (ADS)
Shurtleff, Richard
2004-10-01
Translation matrices together with rotation and boost matrices combine to represent spacetime symmetry transformations. A brief introduction to some of the properties of some not-so-well-known translation and momentum matrices is presented.
ERIC Educational Resources Information Center
Wallace, Edward C.
1985-01-01
Explains an application of matrix algebra which involves probability matrices and weather predictions. Using probabilities of sunny or cloudy weather students can determine the effect weather on day one will have on subsequent days. (DH)
ERIC Educational Resources Information Center
Wallace, Edward C.
1985-01-01
Explains an application of matrix algebra which involves probability matrices and weather predictions. Using probabilities of sunny or cloudy weather students can determine the effect weather on day one will have on subsequent days. (DH)
Melvin T. Tyree
2003-01-01
Matric potential, r, is a component of water potential, ?, but has different meanings in plant physiology vs. soil science. A rigorous definition of r requires a reference to principles of thermodynamics (both classical and irreversible thermodynamics). A rigorous treatment is beyond the scope of this brief overview. Readers...
Glassy correlations in nematic elastomers
NASA Astrophysics Data System (ADS)
Lu, Bing; Goldbart, Paul; Mao, Xiaoming
2009-03-01
We address the physical properties of an isotropic melt or solution of nematogenic polymers that is then cross-linked beyond the vulcanization point. To do this, we construct a replica Landau theory involving a coupled pair of order- parameter fields: one describing vulcanization, the other describing local nematic order. Thermal nematic fluctuations, present at the time of cross-linking, are trapped by cross- linking into the vulcanized network. The resulting glassy nematic fluctuations are analyzed in the Gaussian approximation in two regimes. When the localization length is shorter than the thermal nematic correlation length, the nematic correlations are well captured as glassy correlations. In the opposite regime, fluctuations in the positions of the localized polymers partially wash out the glassy nematic correlations.
Glassy composition for hermetic seals
Wilder, Jr., James A.
1980-01-01
The invention relates to a glassy composition adaptable for sealing to aluminum-based alloys to form a hermetically-sealed insulator body. The composition may either be employed as a glass or, after devitrifying heat treatment, as a glass-ceramic.
1994-04-01
Kapoor M.R. Rao § Kristina Vu~kovic ¶ DTIC April 1994 ELECTE 1 SJjUN 01 1994uG - ,)ýK94-16267 "Dipartimento di Matematica Pura ed Applicata...introduce the connection with propositional logic and nonlinear 0, 1 optimization. In Section 3, we show how to sign a 0,1 matrix into a 0, ±1 balanced...polytope P(A) is irreducible. Then A is perfect if and only if all the monotone completions of A are perfect 0, 1 matrices. 2.4 Propositional Logic In
Thermal expansion of glassy polymers.
Davy, K W; Braden, M
1992-01-01
The thermal expansion of a number of glassy polymers of interest in dentistry has been studied using a quartz dilatometer. In some cases, the expansion was linear and therefore the coefficient of thermal expansion readily determined. Other polymers exhibited non-linear behaviour and values appropriate to different temperature ranges are quoted. The linear coefficient of thermal expansion was, to a first approximation, a function of both the molar volume and van der Waal's volume of the repeating unit.
Glassy features of crystal plasticity
NASA Astrophysics Data System (ADS)
Lehtinen, Arttu; Costantini, Giulio; Alava, Mikko J.; Zapperi, Stefano; Laurson, Lasse
2016-08-01
Crystal plasticity occurs by deformation bursts due to the avalanchelike motion of dislocations. Here we perform extensive numerical simulations of a three-dimensional dislocation dynamics model under quasistatic stress-controlled loading. Our results show that avalanches are power-law distributed and display peculiar stress and sample size dependence: The average avalanche size grows exponentially with the applied stress, and the amount of slip increases with the system size. These results suggest that intermittent deformation processes in crystalline materials exhibit an extended critical-like phase in analogy to glassy systems instead of originating from a nonequilibrium phase transition critical point.
Ending Aging in Super Glassy Polymer Membranes
Lau, CH; Nguyen, PT; Hill, MR; Thornton, AW; Konstas, K; Doherty, CM; Mulder, RJ; Bourgeois, L; Liu, ACY; Sprouster, DJ; Sullivan, JP; Bastow, TJ; Hill, AJ; Gin, DL; Noble, RD
2014-04-16
Aging in super glassy polymers such as poly(trimethylsilylpropyne) (PTMSP), poly(4-methyl-2-pentyne) (PMP), and polymers with intrinsic microporosity (PIM-1) reduces gas permeabilities and limits their application as gas-separation membranes. While super glassy polymers are initially very porous, and ultra-permeable, they quickly pack into a denser phase becoming less porous and permeable. This age-old problem has been solved by adding an ultraporous additive that maintains the low density, porous, initial stage of super glassy polymers through absorbing a portion of the polymer chains within its pores thereby holding the chains in their open position. This result is the first time that aging in super glassy polymers is inhibited whilst maintaining enhanced CO2 permeability for one year and improving CO2/N-2 selectivity. This approach could allow super glassy polymers to be revisited for commercial application in gas separations.
Ionisation en couche K et effet biologique
NASA Astrophysics Data System (ADS)
L'Hoir, A.; Herve Du Penhoat, M. A.; Champion, C.; Fayard, B.; Touati, A.; Abel, F.; Politis, M. F.; Despiney-Bailly, I.; Sabatier, L.; Chetioui, A.
1998-04-01
Initial steps of radiation action mechanism on biological targets are still undnown. The strong correlation observed between inactivation cross sections by heavy ions and K-vacancy production cross sections has drawn the attention on this process. Although quite minor in the energy deposition of these particles, the K-ionization process gives rise to quite efficient ionization clusters. Values of K-ionization biological effectivenesses extracted from measured relative biological efficiencies of ultra soft X-rays support the idea of a major -may be a dominant- contribution of the K-vacancy process to the biological effect of heavy ions. Les étapes initiales des mécanismes d'effet biologique des radiations sont encore mal connues. La forte corrélation observée entre sections efficaces d'inactivation par ions lourds et sections efficaces d'ionisation K a attiré l'attention sur ce processus. Bien que de faible probabilité, l'ionisation K engendre des grappes d'ionisation très efficaces. Les valeurs de rendement létal extraites des efficacités biologiques relatives mesurées pour les rayonnements X ultra-mous suggèrent une contribution majeure -peut-être dominante- de l'ionisation K à l'effet biologique des ions.
Cooperative strings and glassy interfaces
Salez, Thomas; Salez, Justin; Dalnoki-Veress, Kari; Raphaël, Elie; Forrest, James A.
2015-01-01
We introduce a minimal theory of glass formation based on the ideas of molecular crowding and resultant string-like cooperative rearrangement, and address the effects of free interfaces. In the bulk case, we obtain a scaling expression for the number of particles taking part in cooperative strings, and we recover the Adam–Gibbs description of glassy dynamics. Then, by including thermal dilatation, the Vogel–Fulcher–Tammann relation is derived. Moreover, the random and string-like characters of the cooperative rearrangement allow us to predict a temperature-dependent expression for the cooperative length ξ of bulk relaxation. Finally, we explore the influence of sample boundaries when the system size becomes comparable to ξ. The theory is in agreement with measurements of the glass-transition temperature of thin polymer films, and allows quantification of the temperature-dependent thickness hm of the interfacial mobile layer. PMID:26100908
Cooperative strings and glassy interfaces.
Salez, Thomas; Salez, Justin; Dalnoki-Veress, Kari; Raphaël, Elie; Forrest, James A
2015-07-07
We introduce a minimal theory of glass formation based on the ideas of molecular crowding and resultant string-like cooperative rearrangement, and address the effects of free interfaces. In the bulk case, we obtain a scaling expression for the number of particles taking part in cooperative strings, and we recover the Adam-Gibbs description of glassy dynamics. Then, by including thermal dilatation, the Vogel-Fulcher-Tammann relation is derived. Moreover, the random and string-like characters of the cooperative rearrangement allow us to predict a temperature-dependent expression for the cooperative length ξ of bulk relaxation. Finally, we explore the influence of sample boundaries when the system size becomes comparable to ξ. The theory is in agreement with measurements of the glass-transition temperature of thin polymer films, and allows quantification of the temperature-dependent thickness hm of the interfacial mobile layer.
Molecular mobility in glassy dispersions.
Mehta, Mehak; McKenna, Gregory B; Suryanarayanan, Raj
2016-05-28
Dielectric spectroscopy was used to characterize the structural relaxation in pharmaceutical dispersions containing nifedipine (NIF) and either poly(vinyl) pyrrolidone (PVP) or hydroxypropyl methylcellulose acetate succinate (HPMCAS). The shape of the dielectric response (permittivity versus log time) curve was observed to be independent of temperature. Thus, for the pure NIF as well as the dispersions, the validity of the time-temperature superposition principle was established. Furthermore, though the shape of the full dielectric response varied with polymer concentration, the regime related to the α- or structural relaxation was found to superimpose for the dispersions, though not with the response of the NIF itself. Hence, there is a limited time-temperature-concentration superposition for these systems as well. Therefore, in this polymer concentration range, calculation of long relaxation times in these glass-forming systems becomes possible. We found that strong drug-polymer hydrogen bonding interactions improved the physical stability (i.e., delayed crystallization) by reducing the molecular mobility. The strength of hydrogen bonding, structural relaxation time, and crystallization followed the order: NIF-PV P>NIF-HPMCAS>NIF. With an increase in polymer concentration, the relaxation times were longer indicating a decrease in molecular mobility. The temperature dependence of relaxation time, in other words fragility, was independent of polymer concentration. This is the first application of the superposition principle to characterize structural relaxation in glassy pharmaceutical dispersions.
Molecular mobility in glassy dispersions
Mehta, Mehak; McKenna, Gregory B.; Suryanarayanan, Raj
2016-05-27
Dielectric spectroscopy was used to characterize the structural relaxation in pharmaceutical dispersions containing nifedipine (NIF) and either poly(vinyl) pyrrolidone (PVP) or hydroxypropyl methylcellulose acetate succinate (HPMCAS). The shape of the dielectric response (permittivity versus log time) curve was observed to be independent of temperature. Thus, for the pure NIF as well as the dispersions, the validity of the time-temperature superposition principle was established. Furthermore, though the shape of the full dielectric response varied with polymer concentration, the regime related to the α- or structural relaxation was found to superimpose for the dispersions, though not with the response of the NIF itself. Hence, there is a limited time-temperature-concentration superposition for these systems as well. Therefore, in this polymer concentration range, calculation of long relaxation times in these glass-forming systems becomes possible. We found that strong drug-polymer hydrogen bonding interactions improved the physical stability (i.e., delayed crystallization) by reducing the molecular mobility. The strength of hydrogen bonding, structural relaxation time, and crystallization followed the order: NIF$-$PV P>NIF$-$HPMCAS>NIF. With an increase in polymer concentration, the relaxation times were longer indicating a decrease in molecular mobility. The temperature dependence of relaxation time, in other words fragility, was independent of polymer concentration. This is the first application of the superposition principle to characterize structural relaxation in glassy pharmaceutical dispersions.
Molecular mobility in glassy dispersions
NASA Astrophysics Data System (ADS)
Mehta, Mehak; McKenna, Gregory B.; Suryanarayanan, Raj
2016-05-01
Dielectric spectroscopy was used to characterize the structural relaxation in pharmaceutical dispersions containing nifedipine (NIF) and either poly(vinyl) pyrrolidone (PVP) or hydroxypropyl methylcellulose acetate succinate (HPMCAS). The shape of the dielectric response (permittivity versus log time) curve was observed to be independent of temperature. Thus, for the pure NIF as well as the dispersions, the validity of the time-temperature superposition principle was established. Furthermore, though the shape of the full dielectric response varied with polymer concentration, the regime related to the α- or structural relaxation was found to superimpose for the dispersions, though not with the response of the NIF itself. Hence, there is a limited time-temperature-concentration superposition for these systems as well. Therefore, in this polymer concentration range, calculation of long relaxation times in these glass-forming systems becomes possible. We found that strong drug-polymer hydrogen bonding interactions improved the physical stability (i.e., delayed crystallization) by reducing the molecular mobility. The strength of hydrogen bonding, structural relaxation time, and crystallization followed the order: NIF-PV P>NIF-HPMCAS>NIF. With an increase in polymer concentration, the relaxation times were longer indicating a decrease in molecular mobility. The temperature dependence of relaxation time, in other words fragility, was independent of polymer concentration. This is the first application of the superposition principle to characterize structural relaxation in glassy pharmaceutical dispersions.
Understanding rheological hysteresis in soft glassy materials.
Radhakrishnan, Rangarajan; Divoux, Thibaut; Manneville, Sébastien; Fielding, Suzanne M
2017-03-01
Motivated by recent experimental studies of rheological hysteresis in soft glassy materials, we study numerically strain rate sweeps in simple yield stress fluids and viscosity bifurcating yield stress fluids. Our simulations of downward followed by upward strain rate sweeps, performed within fluidity models and the soft glassy rheology model, successfully capture the experimentally observed monotonic decrease of the area of the rheological hysteresis loop with sweep time in simple yield stress fluids, and the bell shaped dependence of hysteresis loop area on sweep time in viscosity bifurcating fluids. We provide arguments explaining these two different functional forms in terms of differing tendencies of simple and viscosity bifurcating fluids to form shear bands during the sweeps, and show that the banding behaviour captured by our simulations indeed agrees with that reported experimentally. We also discuss the difference in hysteresis behaviour between inelastic and viscoelastic fluids. Our simulations qualitatively agree with the experimental data discussed here for four different soft glassy materials.
Spectral Theory of Matrices. I. General Matrices.
1980-05-01
criterion for similarity of two matrices 93 1.23 The equation AX - XB = C 98 1.24 A case of two nilpotent matrices 101 1.25 Components of a matrix and...following result is needed later. Theorem 1.24.1. Let A C M n(F) be a nilpotent matrix . Put XX . {xlx C in, A kx = 0), k - 0,1 ...... Assume that o - x 0 x x...establishes the theorem in case that A(x) is a nilpotent matrix . Next consider the case where A(x) is an upper triangular matrix whose diagonal entries
NASA Astrophysics Data System (ADS)
Roussenova, M.; Enrione, J.; Diaz-Calderon, P.; Taylor, A. J.; Ubbink, J.; Alam, M. A.
2012-03-01
The effects of low molecular weight diluents (namely water and glycerol) on the nanostructure and thermodynamic state of low water content gelatin matrices are explored systematically by combining positron annihilation lifetime spectroscopy (PALS) with calorimetric measurements. Bovine gelatin matrices with a variation in the glycerol content (0-10 wt.%) are equilibrated in a range of water activities (aw = 0.11-0.68, T = 298 K). Both water and glycerol reduce the glass transition temperature, Tg, and the temperature of dissociation of the ordered triple helical segments, Tm, while having no significant effect on the level of re-naturation of the gelatin matrices. Our PALS measurements show that over the concentration range studied, glycerol acts as a packing enhancer and in the glassy state it causes a nonlinear decrease in the average hole size, vh, of the gelatin matrices. Finally, we report complex changes in vh for the gelatin matrices as a function of the increasing level of hydration. At low water contents (Qw ˜ 0.01-0.10), water acts as a plasticizer, causing a systematic increase in vh. Conversely, for water contents higher than Qw ˜ 0.10, vh is found to decrease, as small clusters of water begin to form between the polypeptide chains.
On the Marginal Stability of Glassy Systems
NASA Astrophysics Data System (ADS)
Yan, Le; Baity-Jesi, Marco; Müller, Markus; Wyart, Matthieu
2015-03-01
In various glassy systems that are out of equilibrium, like spin glasses and granular packings, the dynamics appears to be critical: avalanches involving almost the whole system could happen. A recent conceptual breakthrough argues that such glassy systems sample the ensemble of marginal stable states, which inevitably results into critical dynamics. However, it is unclear how the marginal stability is dynamically guaranteed. We investigate this marginal stability assumption by studying specifically the critical athermal dynamics of the Sherrington-Kirkpatrick model. We discuss how a pseudo-gap in the density distribution of local fields characterizing the marginal stability arises dynamically.
NASA Astrophysics Data System (ADS)
Justino, Júlia
2017-06-01
Matrices with coefficients having uncertainties of type o (.) or O (.), called flexible matrices, are studied from the point of view of nonstandard analysis. The uncertainties of the afore-mentioned kind will be given in the form of the so-called neutrices, for instance the set of all infinitesimals. Since flexible matrices have uncertainties in their coefficients, it is not possible to define the identity matrix in an unique way and so the notion of spectral identity matrix arises. Not all nonsingular flexible matrices can be turned into a spectral identity matrix using Gauss-Jordan elimination method, implying that that not all nonsingular flexible matrices have the inverse matrix. Under certain conditions upon the size of the uncertainties appearing in a nonsingular flexible matrix, a general theorem concerning the boundaries of its minors is presented which guarantees the existence of the inverse matrix of a nonsingular flexible matrix.
Absorption Of Gases By Glassy Polymers
NASA Technical Reports Server (NTRS)
Fedors, Robert F.
1990-01-01
Report discusses solubility of gas in glassy polymer, both above and below glass-transition temperature (Tg). Thermodynamic arguments brought to bear on previously-developed mathematical models, result being new model that enables calculation of infinite-dilution partial molar volume of solvent in glass or liquid solvent from data on pressure, volume, and temperature of solute in equilibrium with solvent.
On the cytoskeleton and soft glassy rheology.
Mandadapu, Kranthi K; Govindjee, Sanjay; Mofrad, Mohammad R K
2008-01-01
The cytoskeleton is a complex structure within the cellular corpus that is responsible for the main structural properties and motilities of cells. A wide range of models have been utilized to understand cytoskeletal rheology and mechanics (see e.g. [Mofrad, M., Kamm, R., 2006. Cytoskeletal Mechanics: Models and Measurements. Cambridge University Press, Cambridge]). From this large collection of proposed models, the soft glassy rheological model (originally developed for inert soft glassy materials) has gained a certain traction in the literature due to the close resemblance of its predictions to certain mechanical data measured on cell cultures [Fabry, B., Maksym, G., Butler, J., Glogauer, M., Navajas, D., Fredberg, J., 2001. Scaling the microrheology of living cells. Physical Review Letters 87, 14102]. We first review classical linear rheological theory in a concise fashion followed by an examination of the soft glassy rheological theory. With this background we discuss the observed behavior of the cytoskeleton and the inherent limitations of classical rheological models for the cytoskeleton. This then leads into a discussion of the advantages and disadvantages presented to us by the soft glassy rheological model. We close with some comments of caution and recommendations on future avenues of exploration.
Inelastic Deformation and Fracture of Glassy Solids
1991-05-31
cyclic energy loss but also the so-called dinamic modulus as a function of temperature at a given frequency. As in the case of metal- lic glasses the...interactions molecular structures of several glassy polymers have been obtained by static energy minimization techniques. These include polypropy- lene
Deformation and Fracture Behavior of Metallic Glassy Alloys and Glassy-Crystal Composites
NASA Astrophysics Data System (ADS)
Louzguine-Luzgin, D. V.; Vinogradov, A.; Li, S.; Kawashima, A.; Xie, G.; Yavari, A. R.; Inoue, A.
2011-06-01
The present work demonstrates the deformation behavior of Zr-Cu-Ni-Al bulk glassy alloys and Zr-Ni-Cu-Al-Pd glassy foils as well as Ni-Cu-Ti-Zr bulk crystal-glassy composites. Fracture of Zr60Cu16Ni14Al10 and Zr64.13Ni10.12Cu15.75Al10 bulk glassy alloys is featured by nearly equal fraction areas of cleavage-like and vein-type relief. The observed pattern of alternating cleavage-like and vein-type patterns illustrates a result of dynamically self-organizing shear propagation at the final catastrophic stage. The deformation behavior of Zr64.13Ni10.12Cu15.75Al10 alloy has also been tested at LN2 temperature. The strength of the sample decreases with temperature, and no clear serrated flow typical for bulk glassy samples tested at room temperature is observed in the case of the samples tested at LN2 temperature. We also studied the deformation behavior of Zr-Ni-Cu-Al-Pd glassy foils thinned to electron transparency in situ in tension in a transmission electron microscope. We also present a Ni-Cu-Ti-Zr crystal-glassy composite material having a superior strength paired with a considerable ductility exceeding 10 pct. The metastable cP2 crystalline phase promotes a strain-induced martensitic transformation leading to pseudoelastic behavior as well as enhanced plasticity at room temperature. Underlying mechanisms of plastic deformation are discussed in terms of the interplay between the dislocation slip in the crystalline phase and the shear deformation in the glassy matrix.
STRUMPACK -- STRUctured Matrices PACKage
2014-12-01
STRUMPACK - STRUctured Matrices PACKage - is a package for computations with sparse and dense structured matrix, i.e., matrices that exhibit some kind of low-rank property, in particular Hierarchically Semi Separable structure (HSS). Such matrices appear in many applications, e.g., FEM, BEM, Integral equations. etc. Exploiting this structure using certain compression algorithms allow for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. STRUMPACK has presently two main components: a distributed-memory dense matrix computations package and a shared-memory sparse direct solver.
Effets perturbateurs endocriniens des pesticides organochlores.
Charlier, C; Plomteux, G
2002-01-01
Xenoestrogens such organochlorine pesticides are known to induce changes in reproductive development, function or behaviour in wildlife. Because these compounds are able to modify the estrogens metabolism, or to compete with estradiol for binding to the estrogen receptor, it may be possible that these products affect the risk of developing impaired fertility, precocious puberty or some kinds of cancer in man. Le plus ancien récit de lutte contre la pollution remonte à une légende indienne racontant que la divinité Sing-bonga était incommodée par les émanations des fours dans lesquels les Asuras fondaient leurs métaux (1). Evidemment depuis, la problématique n-a cessé de s-accroître et la contamination de la Terre par de nombreux polluants est devenue aujourd-hui un problème majeur de notre Société. La protection de notre environnement est une question capitale qui doit être respectée malgré la pression économique actuelle et qui ne cessera de croître au cours des prochaines années même si l-identification objective et indiscutable de ce qui est essentiel - donc devant être prioritairement garanti sur la planète - est difficile à cerner (2). « Un oiseau en mauvais état ne pond pas de bons oeufs » disait un proverbe grec. Mais ce n-est qu-à partir de la seconde moitié du XXème siècle que les toxicologues ont commencé à identifier les effets qu-avaient entraînés à l-échelle mondiale les pollutions émises aux XIXème siècle sur la faune sauvage et sur le cheptel (3). L-histoire contemporaine des pesticides industriels commence vers 1874 (synthèse des organochlorés) et se poursuit tout au long de ces 2 siècles en passant par la synthèse des organophosphorés (1950), des carbamates (1970) et des pyréthroïdes (1975) (4). Le dichlorodiphényltrichloroéthane (DDT) a été synthétisé pour la première fois par un étudiant en cours de préparation de sa thèse de doctorat : Othmer Zeidler. La production, reprise par les
Plastic flow modeling in glassy polymers
Clements, Brad
2010-12-13
Glassy amorphous and semi-crystalline polymers exhibit strong rate, temperature, and pressure dependent polymeric yield. As a rule of thumb, in uniaxial compression experiments the yield stress increases with the loading rate and applied pressure, and decreases as the temperature increases. Moreover, by varying the loading state itself complex yield behavior can be observed. One example that illustrates this complexity is that most polymers in their glassy regimes (i.e., when the temperature is below their characteristic glass transition temperature) exhibit very pronounced yield in their uniaxial stress stress-strain response but very nebulous yield in their uniaxial strain response. In uniaxial compression, a prototypical glassy-polymer stress-strain curve has a stress plateau, often followed by softening, and upon further straining, a hardening response. Uniaxial compression experiments of this type are typically done from rates of 10{sup -5} s{sup -1} up to about 1 s{sup -1}. At still higher rates, say at several thousands per second as determined from Split Hopkinson Pressure Bar experiments, the yield can again be measured and is consistent with the above rule of thumb. One might expect that that these two sets of experiments should allow for a successful extrapolation to yet higher rates. A standard means to probe high rates (on the order of 105-107 S-I) is to use a uniaxial strain plate impact experiment. It is well known that in plate impact experiments on metals that the yield stress is manifested in a well-defined Hugoniot Elastic Limit (HEL). In contrast however, when plate impact experiments are done on glassy polymers, the HEL is arguably not observed, let alone observed at the stress estimated by extrapolating from the lower strain rate experiments. One might argue that polymer yield is still active but somehow masked by the experiment. After reviewing relevant experiments, we attempt to address this issue. We begin by first presenting our recently
Almost strictly totally positive matrices
NASA Astrophysics Data System (ADS)
Gasca, M.; Micchelli, Charles; Peña, J.
1992-06-01
A determinantal identity, frequently used in the study of totally positive matrices, is extended, and then used to re-prove the well-known univariate knot insertion formula for B-splines. Also we introduce a class of matrices, intermediate between totally positive and strictly totally positive matrices. The determinantal identity is used to show any minor of such matrices is positive if and only if its diagonal entries are positive. Among others, this class of matrices includes B-splines collocation matrices and Hurwitz matrices.
Equation of state of heated glassy carbon
NASA Technical Reports Server (NTRS)
Sekine, Toshimori; Ahrens, Thomas J.
1991-01-01
New Hugoniot data are presented for glassy carbon preheated to 1550 K and shocked to 20 GPa. The high-temperature Hugoniot is very similar to the principal Hugoniot. This results argues against the diffusional mechanism for the shock-induced transformaton of amorphous carbon to diamond, although the present results are obviously limited to below 20 GPa. This study provides the first Higoniot data for carbon preheated to significantly high temperatures.
Wafer-level microstructuring of glassy carbon
NASA Astrophysics Data System (ADS)
Hans, Loïc. E.; Prater, Karin; Kilchoer, Cédric; Scharf, Toralf; Herzig, Hans Peter; Hermerschmidt, Andreas
2014-03-01
Glassy carbon is used nowadays for a variety of applications because of its mechanical strength, thermal stability and non-sticking adhesion properties. One application is glass molding that allows to realize high resolution diffractive optical elements on large areas and at affordable price appropriate for mass production. We study glassy carbon microstructuring for future precision compression molding of low and high glass-transition temperature. For applications in optics the uniformity, surface roughness, edge definition and lateral resolution are very important parameters for a stamp and the final product. We study different methods of microstructuring of glassy carbon by etching and milling. Reactive ion etching with different protection layers such as photoresists, aluminium and titanium hard masks have been performed and will be compare with Ion beam etching. We comment on the quality of the structure definition and give process details as well as drawbacks for the different methods. In our fabrications we were able to realize optically flat diffractive structures with slope angles of 80° at typical feature sizes of 5 micron and 700 nm depth qualified for high precision glass molding.
Glassy dynamics of kinetically constrained models
NASA Astrophysics Data System (ADS)
Ritort, F.; Sollich, P.
2003-06-01
We review the use of kinetically constrained models (KCMs) for the study of dynamics in glassy systems. The characteristic feature of KCMs is that they have trivial, often non-interacting, equilibrium behaviour but interesting slow dynamics due to restrictions on the allowed transitions between configurations. The basic question which KCMs ask is therefore how much glassy physics can be understood without an underlying 'equilibrium glass transition'. After a brief review of glassy phenomenology, we describe the main model classes, which include spin-facilitated (Ising) models, constrained lattice gases, models inspired by cellular structures such as soap froths, models obtained via mappings from interacting systems without constraints, and finally related models such as urn, oscillator, tiling and needle models. We then describe the broad range of techniques that have been applied to KCMs, including exact solutions, adiabatic approximations, projection and mode-coupling techniques, diagrammatic approaches and mappings to quantum systems or effective models. Finally, we give a survey of the known results for the dynamics of KCMs both in and out of equilibrium, including topics such as relaxation time divergences and dynamical transitions, nonlinear relaxation, ageing and effective temperatures, cooperativity and dynamical heterogeneities, and finally non-equilibrium stationary states generated by external driving. We conclude with a discussion of open questions and possibilities for future work.
Vapor Condensed and Supercooled Glassy Nanoclusters.
Qi, Weikai; Bowles, Richard K
2016-03-22
We use molecular simulation to study the structural and dynamic properties of glassy nanoclusters formed both through the direct condensation of the vapor below the glass transition temperature, without the presence of a substrate, and via the slow supercooling of unsupported liquid nanodroplets. An analysis of local structure using Voronoi polyhedra shows that the energetic stability of the clusters is characterized by a large, increasing fraction of bicapped square antiprism motifs. We also show that nanoclusters with similar inherent structure energies are structurally similar, independent of their history, which suggests the supercooled clusters access the same low energy regions of the potential energy landscape as the vapor condensed clusters despite their different methods of formation. By measuring the intermediate scattering function at different radii from the cluster center, we find that the relaxation dynamics of the clusters are inhomogeneous, with the core becoming glassy above the glass transition temperature while the surface remains mobile at low temperatures. This helps the clusters sample the highly stable, low energy structures on the potential energy surface. Our work suggests the nanocluster systems are structurally more stable than the ultrastable glassy thin films, formed through vapor deposition onto a cold substrate, but the nanoclusters do not exhibit the superheating effects characteristic of the ultrastable glass states.
Depolarizing differential Mueller matrices.
Ortega-Quijano, Noé; Arce-Diego, José Luis
2011-07-01
The evolution of a polarized beam can be described by the differential formulation of Mueller calculus. The nondepolarizing differential Mueller matrices are well known. However, they only account for 7 out of the 16 independent parameters that are necessary to model a general anisotropic depolarizing medium. In this work we present the nine differential Mueller matrices for general depolarizing media, highlighting the physical implications of each of them. Group theory is applied to establish the relationship between the differential matrix and the set of transformation generators in the Minkowski space, of which Lorentz generators constitute a particular subgroup.
1985-03-13
AD-Ri55 296 ALGEBRA OF NEURON MATRICES(U) FOREIGN TECHNOLOGY DIV i/i WRIGHT-PATTERSON RF8 ON K~ G RGRBRBYRN 13 MAR 85 FTD-ID(RS)T-8@4i-85...ANCLASSIFIED F/G6/6 NL I. 1j.2 U .611111 ’’ K1*10 Vl( PIH OPY Pl (iLUTION TL T CHART I-" FTD-ID(RS )T-0041-85 FOREIGN TECHNOLOGY DIVISION In ALGEBRA OF NEURON ... NEURON MATRICES DTIC TAB Unannounced Q By: K.G. Agababyan JustLficatlon English pages: 10 By Distribution/ Source: Doklady Akademii Nauk SSSR, Vol. 199
Etude des effets du martelage repetitif sur les contraintes residuelles
NASA Astrophysics Data System (ADS)
Hacini, Lyes
L'assemblage par soudage peut engendrer des contraintes residuelles. Ces contraintes provoquent des fissurations prematurees et un raccourcissement de la duree de vie des composants. Dans ce contexte, le martelage robotise est utilise pour relaxer ces contraintes residuelles. Trois volets sont presentes: le premier est l'evaluation des effets des impacts unitaires repetes sur le champ de contraintes developpe dans des plaques d'acier inoxydable austenitique 304L vierges ou contenant des contraintes residuelles initiales. Dans la deuxieme partie de ce projet, le martelage est applique grace au robot SCOMPI. Les contraintes residuelles induites et relaxees par martelage sont ensuite mesurees par la methode des contours, qui a ete adaptee a cet effet. Dans la troisieme partie, le martelage est modelise par la methode des elements finis. Un modele axisymetrique developpe grace au logiciel ANSYS permet de simuler des impacts repetes d'un marteau elastique sur une plaque ayant un comportement elastoplastique.
Destructive Clustering of Metal Nanoparticles in Chalcogenide and Oxide Glassy Matrices.
Shpotyuk, M V; Shpotyuk, O I; Cebulski, J; Kozyukhin, S
2016-12-01
The energetic χ-criterion is developed to parameterize difference in the origin of high-order optical non-linearity associated with metallic atoms (Cu, Ag, Au) embedded destructively in oxide- and chalcogenide glasses. Within this approach, it is unambiguously proved that covalent-bonded networks of soft semiconductor chalcogenides exemplified by binary As(Ge)-S(Se) glasses differ essentially from those typical for hard dielectric oxides like vitreous silica by impossibility to accommodate pure agglomerates of metallic nanoparticles. In an excellence according to known experimental data, it is suggested that destructive clustering of nanoparticles is possible in Cu-, Ag-, and Au-ion-implanted dielectric oxide glass media, possessing a strongly negative χ-criterion. Some recent speculations trying to ascribe equally this ability to soft chalcogenide glasses despite an obvious difference in the corresponding bond dissociation energies have been disclosed and criticized as inconclusive.
Destructive Clustering of Metal Nanoparticles in Chalcogenide and Oxide Glassy Matrices
NASA Astrophysics Data System (ADS)
Shpotyuk, M. V.; Shpotyuk, O. I.; Cebulski, J.; Kozyukhin, S.
2016-01-01
The energetic χ-criterion is developed to parameterize difference in the origin of high-order optical non-linearity associated with metallic atoms (Cu, Ag, Au) embedded destructively in oxide- and chalcogenide glasses. Within this approach, it is unambiguously proved that covalent-bonded networks of soft semiconductor chalcogenides exemplified by binary As(Ge)-S(Se) glasses differ essentially from those typical for hard dielectric oxides like vitreous silica by impossibility to accommodate pure agglomerates of metallic nanoparticles. In an excellence according to known experimental data, it is suggested that destructive clustering of nanoparticles is possible in Cu-, Ag-, and Au-ion-implanted dielectric oxide glass media, possessing a strongly negative χ-criterion. Some recent speculations trying to ascribe equally this ability to soft chalcogenide glasses despite an obvious difference in the corresponding bond dissociation energies have been disclosed and criticized as inconclusive.
Glassy aerosols heterogeneously nucleate cirrus ice particles
NASA Astrophysics Data System (ADS)
Wilson, Theodore W.; Murray, Benjamin J.; Dobbie, Steven; Cui, Zhiqiang; Al-Jumur, Sardar M. R. K.; Möhler, Ottmar; Schnaiter, Martin; Wagner, Robert; Benz, Stefan; Niemand, Monika; Saathoff, Harald; Ebert, Volker; Wagner, Steven; Kärcher, Bernd
2010-05-01
Ice clouds in the tropical tropopause layer (TTL, ~12-18 km, ~180-200 K) play a key role in dehydrating air entering the stratosphere. However, in-situ measurements show that air within these clouds is unexpectedly supersaturated(1); normally the growth of ice crystals rapidly quenches any supersaturation. A number of explanations for high in-cloud humidity have been put forward, but recent research suggests high humidity may be related to the low numbers of ice crystals found within these clouds(1). Low ice number densities can be produced through selective nucleation by a small subset of aerosol particles. This is inconsistent with homogeneous nucleation of ice in liquid aerosols. However, droplets rich in organic material, ubiquitous in the TTL, are known to become glassy (amorphous, non-crystalline solid) under TTL conditions(2,3). Here we show, using a large cloud simulation chamber, that glassy solution droplets nucleate ice heterogeneously at low supersaturations. Using a one-dimensional cirrus model we also show that nucleation by glassy aerosol in the TTL may explain low TTL ice number densities and high in-cloud humidity. Recent measurements of the composition of TTL cirrus residues are consistent with our findings(4). (1) Krämer, M. et al. Ice supersaturations and cirrus cloud crystal numbers. Atm. Chem. Phys. 9, 3505-3522 (2009). (2) Murray, B. J. Inhibition of ice crystallisation in highly viscous aqueous organic acid droplets. Atm. Chem. Phys. 8, 5423-5433 (2008). (3) Zobrist, B., Marcolli, C., Pedernera, D. A. & Koop, T. Do atmospheric aerosols form glasses? Atm. Chem. Phys. 8, 5221-5244 (2008). (4) Froyd, K. D., Murphy, D. M., Lawson, P., Baumgardner, D. & Herman, R. L. Aerosols that form subvisible cirrus at the tropical tropopause. Atmos. Chem. Phys. 10, 209-218 (2010).
Glassy dynamics in thin films of polystyrene
NASA Astrophysics Data System (ADS)
Fukao, Koji; Koizumi, Hiroki
2008-02-01
Glassy dynamics was investigated for thin films of atactic polystyrene by complex electric capacitance measurements using dielectric relaxation spectroscopy. During the isothermal aging process the real part of the electric capacitance increased with time, whereas the imaginary part decreased with time. It follows that the aging time dependences of real and imaginary parts of the electric capacitance were primarily associated with change in volume (film thickness) and dielectric permittivity, respectively. Further, dielectric permittivity showed memory and rejuvenation effects in a similar manner to those observed for poly(methyl methacrylate) thin films. On the other hand, volume did not show a strong rejuvenation effect.
Water uptake impedance of glassy organic aerosols
NASA Astrophysics Data System (ADS)
Peter, T.; Zobrist, B.; Krieger, U. K.; Luo, B. P.; Soonsin, V.; Marcolli, C.; Koop, T.
2009-04-01
Depending on their concentration and composition, aerosols affect various atmospheric properties and processes, such as atmospheric chemistry and Earth's radiative budget. The atmospheric aerosol itself is a complex mixture of various inorganic and organic components, whereas the organic fraction can represent more than 50% of the total aerosol mass. It was recently shown that aerosols high in organics may be present in a glassy state (Zobrist et al., ACP, 8, 5221-5244, 2008). The glassy nature of the aerosols may influence their properties and restrict their functionalities severely, e.g. their water uptake, heterogeneous chemical reactions in their bulk or on their surfaces, as well as ice nucleation and ice crystal growth. Here, we present the first experiments on the water uptake by single levitated glassy aerosol particles using an electrodynamic balance (EDB). Sucrose was chosen as a model substance, which comprises functional groups typical of organic species in the atmosphere. In addition we developed a microphysical model, which enables us to calculate the liquid diffusion inside a glassy particle using water diffusion coefficients in aqueous sucrose particles adapted from the literature. As the diffusion coefficient of water in the particle, D(cH2O), depends on the water concentration cH2O itself, the solution of the diffusion equation presents an interesting non-linear problem. The combined experimental and modelling approach allows describing in detail the water uptake by glassy aerosols at atmospherically relevant temperatures and relative humidities (RH). Hygroscopicity cycles were perfomed in the EDB starting from a crystalline (non-spherical) sucrose particle at 291 K. No water uptake was observed while RH was increased until the particle deliquesces at roughly 85% RH leading to a liquid (spherical) particle. In the subsequent drying cycle, surprisingly no efflorescence was observed when the particle was dried to below 5% and it remained spherical
Mono- and biphotonic photochemistry in glass matrices
NASA Astrophysics Data System (ADS)
Kaupp, Gerd
2006-04-01
Photochemistry in hard glassy solvent matrices gives different results than in gas matrices. It is performed at 83, 77, and ≥10 K by continuous irradiation and by pulsed multi MW cm -2 peak intensity excitation for those systems that do not react monophotonically. The highly structured matrix spectra should be taken as a basis for the interpretation of transient spectra to avoid ambiguities. Numerous [2.2]paracyclophanes are photolyzed. Most of them give stable diradical and quinodimethane spectra in addition to fluorescence and phosphorescence. Some benzylic diradicals undergo chemiluminescence after their photochemical generation. Matrix isolation spectroscopy is at variance with common interpretations in the lepidopterene case. A [2+4]-photocycloreversion of a substituted cyclohexene at 83 K leads to diene stereoisomers/rotamers that isomerize upon further irradiation. E/Z-photoequilibria are obtained in MTHF matrix from both sides with ω-nitrostyrene and α-benzylidene-γ-butyrolactone at 83 K, the latter stereoisomerization was also successfully studied at 10 K. Pulsed irradiation of technical photostabilizers at 10 K leads to stable zwitterion formation by proton migration that cannot be seen by continuous excitation. Inter- and intramolecular donor acceptor systems provide stable charge separation at 15 or 77 K upon pulsed laser irradiation and radicalanion spectra are recorded. Biphotonic photochemistry at ≥10 K allows for the formation of new ring systems such as dioxathiirane ( cyclo-SO 2), several aryldioxaziridines, and an electron rich triaziridine, compounds that revert upon thawing and could not be obtained by continuous irradiation, except cyclo-SO 2 that can also be formed after absorption of the long lived SO 2 triplet by another two-photon process.
Effets Josephson generalises entre antiferroaimants et entre supraconducteurs antiferromagnetiques
NASA Astrophysics Data System (ADS)
Chasse, Dominique
L'effet Josephson est generalement presente comme le resultat de l'effet tunnel coherent de paires de Cooper a travers une jonction tunnel entre deux supraconducteurs, mais il est possible de l'expliquer dans un contexte plus general. Par exemple, Esposito & al. ont recemment demontre que l'effet Josephson DC peut etre decrit a l'aide du boson pseudo-Goldstone de deux systemes couples brisant chacun la symetrie abelienne U(1). Puisque cette description se generalise de facon naturelle a des brisures de symetries continues non-abeliennes, l'equivalent de l'effet Josephson devrait donc exister pour des types d'ordre a longue portee differents de la supraconductivite. Le cas de deux ferroaimants itinerants (brisure de symetrie 0(3)) couples a travers une jonction tunnel a deja ete traite dans la litterature Afin de mettre en evidence la generalite du phenomene et dans le but de faire des predictions a partir d'un modele realiste, nous etudions le cas d'une jonction tunnel entre deux antiferroaimants itinerants. En adoptant une approche Similaire a celle d'Ambegaokar & Baratoff pour une jonction Josephson, nous trouvons un courant d'aimantation alternee a travers la jonction qui est proportionnel a sG x sD ou fG et sD sont les vecteurs de Neel de part et d'autre de la jonction. La fonction sinus caracteristique du courant Josephson standard est donc remplacee.ici par un produit vectoriel. Nous montrons que, d'un point de vue microscopique, ce phenomene resulte de l'effet tunnel coherent de paires particule-trou de spin 1 et de vecteur d'onde net egal au vecteur d'onde antiferromagnetique Q. Nous trouvons egalement la dependance en temperature de l'analogue du courant critique. En presence d'un champ magnetique externe, nous obtenons l'analogue de l'effet Josephson AC et la description complete que nous en donnons s'applique aussi au cas d'une jonction tunnel entre ferroaimants (dans ce dernier cas, les traitements anterieurs de cet effet AC s'averent incomplets). Nous
Salmon, Philip S; Barnes, Adrian C; Martin, Richard A; Cuello, Gabriel J
2007-10-17
The full set of partial structure factors for glassy germania, or GeO2, were accurately measured by using the method of isotopic substitution in neutron diffraction in order to elucidate the nature of the pair correlations for this archetypal strong glass former. The results show that the basic tetrahedral Ge(O1/2)4 building blocks share corners with a mean inter-tetrahedral Ge-Ô-Ge bond angle of 132(2)°. The topological and chemical ordering in the resultant network displays two characteristic length scales at distances greater than the nearest neighbour. One of these describes the intermediate range order, and manifests itself by the appearance of a first sharp diffraction peak in the measured diffraction patterns at a scattering vector kFSDP≈1.53 Å(-1), while the other describes so-called extended range order, and is associated with the principal peak at kPP = 2.66(1) Å(-1). We find that there is an interplay between the relative importance of the ordering on these length scales for tetrahedral network forming glasses that is dominated by the extended range ordering with increasing glass fragility. The measured partial structure factors for glassy GeO2 are used to reproduce the total structure factor measured by using high energy x-ray diffraction and the experimental results are also compared to those obtained by using classical and first principles molecular dynamics simulations.
How Glassy States Affect Brown Carbon Production?
NASA Astrophysics Data System (ADS)
Liu, P.; Li, Y.; Wang, Y.; Bateman, A. P.; Zhang, Y.; Gong, Z.; Gilles, M. K.; Martin, S. T.
2015-12-01
Secondary organic material (SOM) can become light-absorbing (i.e. brown carbon) via multiphase reactions with nitrogen-containing species such as ammonia and amines. The physical states of SOM, however, potentially slow the diffusion of reactant molecules in organic matrix under conditions that semisolids or solids prevail, thus inhibiting the browning reaction pathways. In this study, the physical states and the in-particle diffusivity were investigated by measuring the evaporation kinetics of both water and organics from aromatic-derived SOMs using a quartz-crystal-microbalance (QCM). The results indicate that the SOMs derived from aromatic precursors toluene and m-xylene became solid (glassy) and the in particle diffusion was significantly impeded for sufficiently low relative humidity ( < 20% RH) at 293 K. Optical properties and the AMS spectra were measured for toluene-derived SOM after ammonia exposure at varied RHs. The results suggest that the production of light-absorbing nitrogen-containing compounds from multiphase reactions with ammonia was kinetically limited in the glassy organic matrix, which otherwise produce brown carbon. The results of this study have significant implications for production and optical properties of brown carbon in urban atmospheres that ultimately influence the climate and tropospheric photochemistry.
2014-04-01
bottom image is an overlay of two images where one image was taken without filters and the other with the DAPI filter cube . This image shows that the...without any filters. The bottom images are an overlay of two images, one taken without filters and another taken using the DAPI filter cube . Figure...these capture matrices address integrating the device with “real-world” sampling. Depending on the chemical nature of the affinity ligands, capture
Amare, Meareg; Admassie, Shimelis
2012-05-15
4-Amino-3-hydroxynaphthalene sulfonic acid (AHNSA) was electropolymerized on a glassy carbon electrode. The deposited film showed electrocatalytic activity towards the oxidation of caffeine. The polymer-modified electrode showed high sensitivity, selectivity and stability in the determination of caffeine in coffee. The peak current increased linearly with the concentration of caffeine in the range of 6 × 10(-8) to 4 × 10(-5) mol L(-1), with a detection limit of 1.37 × 10(-7) mol L(-1) (LoD = 3δ/slope). Analysis of caffeine in coffee was affected neither by sample matrices nor by structurally similar compounds. Recoveries ranging between 93.75 ± 2.32 and 100.75 ± 3.32 were achieved from coffee extracts indicating the applicability of the developed method for real sample analyses.
Deformation and failure of glassy materials
NASA Astrophysics Data System (ADS)
Rottler, Joerg Gerhard
Elastoplastic deformation of disordered solids and the formation of polymer crazes in amorphous polymer glasses are studied using large-scale molecular dynamics simulations. It is shown that the pressure-modified von Mises criterion accurately describes the maximum shear yield stress under general loading conditions. The pressure coefficient is insensitive to most model parameters, but is related to the bead geometry in analogy to friction coefficients. The yield stress decreases linearly with rising temperature and the strain rate dependence can be described by a power-law, or in a limited range, by a logarithm. The rate dependence does not vary with temperature, which is inconsistent with simple rate-state models of thermal activation such as the Eyring model. An analysis of the dynamics of the local stress distribution as well as modern phenomenological theories of rheology of glassy materials are discussed in light of these findings. We then present a comprehensive investigation of the deformation of glassy polymeric systems into a dense load-bearing network of fibrils and voids called a craze at large strains. This expansion takes place in the form of a drawing process, where the strain rate is strongly localized in a narrow interface region between dense polymer and craze. The expansion is controlled by some polymer chain segments between entanglements that are stretched taut during crazing. We also find that the distribution of tension in the craze develops an exponential force tail in close analogy to compressed jammed systems such as granular media. This highly anisotropic stress distribution and the localization of large forces on relatively few chains indicate that earlier models of the crazing process that treat the polymer as a viscous fluid with hydrodynamic interactions are incorrect. Simulations and simple scaling arguments are presented that describe craze breakdown through disentanglement or chain scission. Glassy polymers exhibit an unusually
Active fluidization in dense glassy systems.
Mandal, Rituparno; Bhuyan, Pranab Jyoti; Rao, Madan; Dasgupta, Chandan
2016-07-20
Dense soft glasses show strong collective caging behavior at sufficiently low temperatures. Using molecular dynamics simulations of a model glass former, we show that the incorporation of activity or self-propulsion, f0, can induce cage breaking and fluidization, resulting in the disappearance of the glassy phase beyond a critical f0. The diffusion coefficient crosses over from being strongly to weakly temperature dependent as f0 is increased. In addition, we demonstrate that activity induces a crossover from a fragile to a strong glass and a tendency of active particles to cluster. Our results are of direct relevance to the collective dynamics of dense active colloidal glasses and to recent experiments on tagged particle diffusion in living cells.
Simulations of Soft Glassy Matter with Ripening
NASA Astrophysics Data System (ADS)
Hwang, Hyun Joo; Riggleman, Robert; Crocker, John
2015-03-01
Soft glassy matter (SGM) such as foams, emulsions, and colloids, exhibit interesting rheological properties that have long defied explanation. In particular, the shear modulus of these materials displays weak power law frequency dependence. To understand the origin of this property in more depth, we have built a three-dimensional, modified Bubble Dynamics model. The bubbles interact with a purely repulsive harmonic potential and ripen according to diffusion-based governing equations. An energy minimizer is implemented to quasi-statically relax topological rearrangements in the system as ripening proceeds. Preliminary results show that the model displays expected intermittent particle rearrangements and a weakly frequency-dependent shear modulus behaving like a power law fluid. We find that the anomalous relaxation properties and avalanche-like nature of the rearrangements can be related to different measures of the systems potential energy landscape.
Glassy Dynamics, Cell Mechanics and Endothelial Permeability
Hardin, Corey; Rajendran, Kavitha; Manomohan, Greeshma; Tambe, Dhananjay T.; Butler, James P.; Fredberg, Jeffrey J.; Martinelli, Roberta; Carman, Christopher V.; Krishnan, Ramaswamy
2013-01-01
A key feature of all inflammatory processes is disruption of the vascular endothelial barrier. Such disruption is initiated in part through active contraction of the cytoskeleton of the endothelial cell (EC). Because contractile forces are propagated from cell to cell across a great many cell-cell junctions, this contractile process is strongly cooperative and highly nonlocal. We show here that the characteristic length scale of propagation is modulated by agonists and antagonists that impact permeability of the endothelial barrier. In the presence of agonists including thrombin, histamine, and H202, force correlation length increases, whereas in the presence of antagonists including sphingosine-1-phosphate, hepatocyte growth factor, and the rho kinase inhibitor, Y27632, force correlation length decreases. Intercellular force chains and force clusters are also evident, both of which are reminiscent of soft glassy materials approaching a glass transition. PMID:23638866
Neutron scattering studies of glassy Li+ superionics
NASA Astrophysics Data System (ADS)
Heitmann, Tom; Zella, Leo; Zaidi, Ali; Rathore, Munesh; Dalvi, Anshuman; Mitra, Saibal
2013-03-01
Two distinct neutron scattering techniques were implemented in the study of glassy superionic materials composed of a complex network of their interconnected sub-units: Li2O, NH4H2PO2, and Li2SO4. The use of disordered materials underlies an effort to promote Li+ mobility, while suppressing e- conductivity, which makes them good candidates for use as electrolytes in lithium ion batteries. We present triple-axis spectrometer results of energy resolved vs. energy integrated neutron scattering that indicate the presence of a broad range of dynamic processes in the materials, rather than well-defined excitations. Additionally, we report on neutron diffraction data that demonstrates the formation of crystallites within the material upon annealing up to 450 °C. Such crystallites hinder the performance of the materials as electrolytes, which is evident in thin film devices where heating is unavoidable during fabrication.
Computer simulations of athermal and glassy systems
NASA Astrophysics Data System (ADS)
Xu, Ning
2005-12-01
We performed extensive molecular dynamics simulations to better understand athermal and glassy systems near jamming transitions. We focused on four related projects. In the first project, we decomposed the probability distribution P(φ) of finding a collectively jammed state at packing fraction φ into two distinct contributions: the density of CJ states rho(φ) and their basins of attraction beta(φ). In bidisperse systems, it is likely that rho(φ) controls the shape of P(φ) in the large system size limit, and thus the most likely random jammed state may be used as a protocol independent definition of random close packing in this system. In the second project, we measured the yield stress in two different ensembles: constant shear rate and constant stress. The yield stress measured in the constant stress ensemble is larger than that measured in the constant shear rate ensemble, however, the difference between these two measurements decreases with increasing system size. In the third project, we investigated under what circumstances nonlinear velocity profiles form in frictionless granular systems undergoing boundary driven planar shear flow. Nonlinear velocity profiles occur at short times, but evolve into linear profiles at long times. Nonlinear velocity profiles can be stabilized by vibrating these systems. The velocity profile can become highly localized when the shear stress of the system is below the constant force yield stress, provided that the granular temperature difference across the system is sufficiently large. In the fourth project, we measured the effective temperature defined from equilibrium fluctuation-dissipation relations in athermal and glassy systems sheared at constant pressure. We found that the effective temperature is strongly controlled by pressure in the slowly sheared regime. Thus, this effective temperature and pressure are not independent variables in this regime.
Glassy slag from rotary hearth vitrification
Eschenbach, R.C.; Simpson, M.D.; Paulson, W.S.; Whitworth, C.G.
1995-12-31
Use of a Plasma Arc Centrifugal Treatment (PACT) system for treating mixed wastes containing significant quantities of soil results in formation of a glassy slag which melts at significantly higher temperatures than the borosilicate glasses. The slag typically contains mostly crystalline material, frequently in an amorphous matrix, thus the appellation {open_quotes}glassy slag.{close_quotes} Details of the PACT process are given. The process will be used for treating buried wastes from Pit 9 at the Idaho National Engineering Laboratory and low-level mixed wastes from nuclear power plants in Switzerland. Properties of the slag after cooling to room temperature are reported, in particular the Product Consistency Test, for a number of different feedstocks. In almost all cases, the results compare favorably with conventional borosilicate glasses. In the PACT system, a transferred arc carries current from the plasma torch to a rotating molten bed of slag, which is the material being heated. Thus this transferred arc adds energy where it is needed - at and near the surface of the molten bath. Material is fed into the furnace through a sealed feeder, and falls into a rotating tub which is heated by the arc. Any organic material is quickly vaporized into the space above the slag bed and burned by the oxygen in the furnace. Metal oxides in the charge are melted into the slag. Metal in the feed tends to melt and collect as a separate phase underneath the slag, but can be oxidized if desired. When oxidized, it unites with other constituents forming a homogeneous slag.
Shear banding in soft glassy materials.
Fielding, S M
2014-10-01
Many soft materials, including microgels, dense colloidal emulsions, star polymers, dense packings of multilamellar vesicles, and textured morphologies of liquid crystals, share the basic 'glassy' features of structural disorder and metastability. These in turn give rise to several notable features in the low frequency shear rheology (deformation and flow properties) of these materials: in particular, the existence of a yield stress below which the material behaves like a solid, and above which it flows like a liquid. In the last decade, intense experimental activity has also revealed that these materials often display a phenomenon known as shear banding, in which the flow profile across the shear cell exhibits macroscopic bands of different viscosity. Two distinct classes of yield stress fluid have been identified: those in which the shear bands apparently persist permanently (for as long as the flow remains applied), and those in which banding arises only transiently during a process in which a steady flowing state is established out of an initial rest state (for example, in a shear startup or step stress experiment). Despite being technically transient, such bands may in practice persist for a very long time and so be mistaken for the true steady state response of the material in experimental practice. After surveying the motivating experimental data, we describe recent progress in addressing it theoretically, using the soft glassy rheology model and a simple fluidity model. We also briefly place these theoretical approaches in the context of others in the literature, including elasto-plastic models, shear transformation zone theories, and molecular dynamics simulations. We discuss finally some challenges that remain open to theory and experiment alike.
Shock-wave studies of anomalous compressibility of glassy carbon
Molodets, A. M. Golyshev, A. A.; Savinykh, A. S.; Kim, V. V.
2016-02-15
The physico-mechanical properties of amorphous glassy carbon are investigated under shock compression up to 10 GPa. Experiments are carried out on the continuous recording of the mass velocity of compression pulses propagating in glassy carbon samples with initial densities of 1.502(5) g/cm{sup 3} and 1.55(2) g/cm{sup 3}. It is shown that, in both cases, a compression wave in glassy carbon contains a leading precursor with amplitude of 0.135(5) GPa. It is established that, in the range of pressures up to 2 GPa, a shock discontinuity in glassy carbon is transformed into a broadened compression wave, and shock waves are formed in the release wave, which generally means the anomalous compressibility of the material in both the compression and release waves. It is shown that, at pressure higher than 3 GPa, anomalous behavior turns into normal behavior, accompanied by the formation of a shock compression wave. In the investigated area of pressure, possible structural changes in glassy carbon under shock compression have a reversible character. A physico-mechanical model of glassy carbon is proposed that involves the equation of state and a constitutive relation for Poisson’s ratio and allows the numerical simulation of physico-mechanical and thermophysical properties of glassy carbon of different densities in the region of its anomalous compressibility.
A Statistical Approach to Relaxation in Glassy Materials.
1984-11-01
Approach to Relaxation in Glassy Materials bya by DTIC Et. ECTE Karina Weron M A. and S "z’ Aleksander Weron ApptovC fcv - " Technical Report No. 82...STATISTICAL APPROACH TO RELAXATION IN GLASSY MATERIALS 12. PERSONAL AUTHOR(S) Karina Weron and Aleksander Weron 13.. TYPE OF REPORT 13b. TIME COVERED 14. DATE...CLASSIFICATION OF THIS PAGE A Statistical Approach to Relaxation in Glassy Materials1 Karina Weron Institute of Physics Technical University of Wroclaw 50-370
Anodic electrosynthesis of some peroxy compounds on glassy carbon electrodes
Khomutov, N.E.; Zakhodyakina, N.A.; Svirida, L.V.; Nesvat, N.V.
1987-11-10
The authors present the results of a study of the anodic electrosynthesis of hydrogen peroxide and its derivatives on glassy carbon in solutions of sodium carbonate and sodium carbonate with sodium borate. We studied the kinetics of anodic processes on glassy carbon with the aid of polarization measurements and a method for determining the concentrations of active oxygen in the anolyte and the current efficiency. The current efficiencies with respect to active oxygen obtained on glassy carbon in the mixed solution of sodium borate and sodium carbonate are close to the current efficiencies which are observed on platinum anodes in the industrial electrosynthesis of perborates.
Parametrisation D'effets Non-Standard EN Phenomenologie Electrofaible
NASA Astrophysics Data System (ADS)
Maksymyk, Ivan
Cette these pat articles porte sur la parametrisation d'effets non standard en physique electrofaible. Dans chaque analyse, nous avons ajoute plusieurs operateurs non standard au lagrangien du modele standard electrofaible. Les operateurs non standard decrivent les nouveaux effets decoulant d'un modele sous-jacent non-specefie. D'emblee, le nombre d'operateurs non standard que l'on peut inclure dans une telle analyse est illimite. Mais pour une classe specifique de modeles sous-jacents, les effets non standard peuvent etre decrits par un nombre raisonnable d'operateurs. Dans chaque analyse nous avons developpe des expressions pour des observables electrofaibles, en fonction des coefficients des operateurs nouveaux. En effectuant un "fit" statistique sur un ensemble de donnees experimentales precises, nous avons obtenu des contraintes phenomenologiques sur ces coefficients. Dans "Model-Independent Global Constraints on New Physics", nous avons adopte des hypotheses tres peu contraignantes relatives aux modeles sous-jacents. Nous avons tronque le lagrangien effectif a la dimension cinq (inclusivement). Visant la plus grande generalite possible, nous avons admis des interactions qui ne respectent pas les symetries discretes (soit C, P et CP) ainsi que des interactions qui ne conservent pas la saveur. Le lagrangien effectif contient une quarantaine d'operateurs nouveaux. Nous avons determine que, pour la plupart des coefficients des nouveaux operateurs, les contraintes sont assez serrees (2 ou 3%), mais il y a des exceptions interessantes. Dans "Bounding Anomalous Three-Gauge-Boson Couplings", nous avons determine des contraintes phenomenologiques sur les deviations des couplages a trois bosons de jauge par rapport aux interactions prescrites par le modele standard. Pour ce faire, nous avons calcule les contributions indirectes des CTBJ non standard aux observables de basse energie. Puisque le lagrangien effectif est non-renormalisable, certaines difficultes techniques
Metagenomics of Glassy-Winged Sharpshooter, Homalodisca vitripennis (Hemiptera: Cicadellidae)
USDA-ARS?s Scientific Manuscript database
A Metagenomics approach was used to identify unknown organisms which live in association with the glassy-winged sharpshooter, Homalodisca vitripennis (Hemiptera: Cicadellidae). Metagenomics combines molecular biology and genetics to identify, and characterize genetic material from unique biological ...
Adhesion in hydrogels and model glassy polymers
NASA Astrophysics Data System (ADS)
Guvendiren, Murat
Two main topics are addressed in this dissertation: (1) adhesion in hydrogels; (2) interfacial interactions between model glassy polymers. A self-assembly technique for the formation of hydrogels from acrylic triblock copolymer solutions was developed, based on vapor phase solvent exchange. Structure formation in the gels was characterized by small angle X-ray scattering, and swelling was measured in controlled pH buffer solutions. Strong gels are formed with polymer weight fractions between 0.01 and 0.15, and with shear moduli between 0.6 kPa and 3.5 kPa. Adhesive functionality, based on 3,4-dihydroxy-L-phenylalanine (DOPA) was also incorporated into the triblock copolymers. The effect of DOPA concentration on gel formation and swelling was investigated in detail. The adhesive properties of DOPA-functionalized hydrogels on TiO2 were investigated with an axisymmetric adhesion method. It was shown that the presence of DOPA enhances the adhesive properties of the hydrogels, but that the effect is minimized at pH values below 10, where the DOPA groups are hydrophobic. Thin film membranes were produced in order to study the specific interactions between DOPA and TiO2 and DOPA and tissue, using a membrane inflation method. The presence of DOPA in the membranes enhances the adhesion on TiO 2 and tissue, although adhesion to tissue requires that the DOPA groups be oxidized while in contact with the tissue of interest. Porous hydrogel scaffolds for tissue engineering applications were formed by adding salt crystals to the triblock copolymer solution prior to solvent exchange. Salt was then leached out by immersing the gel into water. Structures of the porous hydrogels were characterized by confocal laser scanning microscopy. These hydrogels were shown to be suitable for tissue regeneration and drug delivery applications. Diffusion-mediated adhesion between two component miscible polymer systems having very different glassy temperatures was also investigated. Axisymmetric
High Strain Rate Mechanical Properties of Glassy Polymers
2012-07-25
Force Materiel Command United States Air Force Eglin Air Force Base AFRL-RW-EG-TP-2012-008 High Strain Rate...TITLE AND SUBTITLE High Strain Rate Mechanical Properties of Glassy Polymers 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...1990s, a range of experimental data has been generated describing the response of glassy polymers to high strain rate loading in compression. More
No inherent glassiness in a Penrose tiling quasicrystal
Strandburg, K.J.; Dressel, P.R.
1988-11-01
Consideration of the structure of the Penrose pattern has led to speculation that a system with a Penrose tiling ground state might be subject to inherent glassy behavior. Monte Carol simulations show, using a simple model of the energetics, that there is no inherent glassiness in the Penrose tiling. Thermodynamic quantities measured are completely reversible, displaying no observable hysterisis, and the system may be easily cooled from a highly disordered configuration into its lowest energy state. 11 refs., 7 figs.
Singular-potential random-matrix model arising in mean-field glassy systems
NASA Astrophysics Data System (ADS)
Akemann, Gernot; Villamaina, Dario; Vivo, Pierpaolo
2014-06-01
We consider an invariant random matrix ensemble where the standard Gaussian potential is distorted by an additional single pole of arbitrary fixed order. Potentials with first- and second-order poles have been considered previously and found applications in quantum chaos and number theory. Here we present an application to mean-field glassy systems. We derive and solve the loop equation in the planar limit for the corresponding class of potentials. We find that the resulting mean or macroscopic spectral density is generally supported on two disconnected intervals lying on the two sides of the repulsive pole, whose edge points can be completely determined imposing the additional constraint of traceless matrices on average. For an unbounded potential with an attractive pole, we also find a possible one-cut solution for certain values of the couplings, which is ruled out when the traceless condition is imposed. Motivated by the calculation of the distribution of the spin-glass susceptibility in the Sherrington-Kirkpatrick spin-glass model, we consider in detail a second-order pole for a zero-trace model and provide the most explicit solution in this case. In the limit of a vanishing pole, we recover the standard semicircle. Working in the planar limit, our results apply to matrices with orthogonal, unitary, and symplectic invariance. Numerical simulations and an independent analytical Coulomb fluid calculation for symmetric potentials provide an excellent confirmation of our results.
Singular-potential random-matrix model arising in mean-field glassy systems.
Akemann, Gernot; Villamaina, Dario; Vivo, Pierpaolo
2014-06-01
We consider an invariant random matrix ensemble where the standard Gaussian potential is distorted by an additional single pole of arbitrary fixed order. Potentials with first- and second-order poles have been considered previously and found applications in quantum chaos and number theory. Here we present an application to mean-field glassy systems. We derive and solve the loop equation in the planar limit for the corresponding class of potentials. We find that the resulting mean or macroscopic spectral density is generally supported on two disconnected intervals lying on the two sides of the repulsive pole, whose edge points can be completely determined imposing the additional constraint of traceless matrices on average. For an unbounded potential with an attractive pole, we also find a possible one-cut solution for certain values of the couplings, which is ruled out when the traceless condition is imposed. Motivated by the calculation of the distribution of the spin-glass susceptibility in the Sherrington-Kirkpatrick spin-glass model, we consider in detail a second-order pole for a zero-trace model and provide the most explicit solution in this case. In the limit of a vanishing pole, we recover the standard semicircle. Working in the planar limit, our results apply to matrices with orthogonal, unitary, and symplectic invariance. Numerical simulations and an independent analytical Coulomb fluid calculation for symmetric potentials provide an excellent confirmation of our results.
Enhancing Understanding of Transformation Matrices
ERIC Educational Resources Information Center
Dick, Jonathan; Childrey, Maria
2012-01-01
With the Common Core State Standards' emphasis on transformations, teachers need a variety of approaches to increase student understanding. Teaching matrix transformations by focusing on row vectors gives students tools to create matrices to perform transformations. This empowerment opens many doors: Students are able to create the matrices for…
Enhancing Understanding of Transformation Matrices
ERIC Educational Resources Information Center
Dick, Jonathan; Childrey, Maria
2012-01-01
With the Common Core State Standards' emphasis on transformations, teachers need a variety of approaches to increase student understanding. Teaching matrix transformations by focusing on row vectors gives students tools to create matrices to perform transformations. This empowerment opens many doors: Students are able to create the matrices for…
Soft glassy rheology of supercooled molecular liquids
Zondervan, Rob; Xia, Ted; van der Meer, Harmen; Storm, Cornelis; Kulzer, Florian; van Saarloos, Wim; Orrit, Michel
2008-01-01
We probe the mechanical response of two supercooled liquids, glycerol and ortho-terphenyl, by conducting rheological experiments at very weak stresses. We find a complex fluid behavior suggesting the gradual emergence of an extended, delicate solid-like network in both materials in the supercooled state—i.e., above the glass transition. This network stiffens as it ages, and very early in this process it already extends over macroscopic distances, conferring all well known features of soft glassy rheology (yield-stress, shear thinning, aging) to the supercooled liquids. Such viscoelastic behavior of supercooled molecular glass formers is difficult to observe because the large stresses in conventional rheology can easily shear-melt the solid-like structure. The work presented here, combined with evidence for long-lived heterogeneity from previous single-molecule studies [Zondervan R, Kulzer F, Berkhout GCG, Orrit M (2007) Local viscosity of supercooled glycerol near Tg probed by rotational diffusion of ensembles and single dye molecules. Proc Natl Acad Sci USA 104:12628–12633], has a profound impact on the understanding of the glass transition because it casts doubt on the widely accepted assumption of the preservation of ergodicity in the supercooled state. PMID:18362347
Structural Properties of Defects in Glassy Liquids.
Cubuk, Ekin D; Schoenholz, Samuel S; Kaxiras, Efthimios; Liu, Andrea J
2016-07-07
At zero temperature a disordered solid corresponds to a local minimum in the energy landscape. As the temperature is raised or the system is driven with a mechanical load, the system explores different minima via dynamical events in which particles rearrange their relative positions. We have shown recently that the dynamics of particle rearrangements are strongly correlated with a structural quantity associated with each particle, "softness", which we can identify using supervised machine learning. Particles of a given softness have a well-defined energy scale that governs local rearrangements; because of this property, softness greatly simplifies our understanding of glassy dynamics. Here we investigate the correlation of softness with other commonly used structural quantities, such as coordination number and local potential energy. We show that although softness strongly correlates with these properties, its predictive power for rearrangement dynamics is much higher. We introduce a useful metric for quantifying the quality of structural quantities as predictors of dynamics. We hope that, in the future, authors introducing new structural measures of dynamics will compare their proposals quantitatively to softness using this metric. We also show how softness correlations give insight into rearrangements. Finally, we explore the physical meaning of softness using unsupervised dimensionality reduction and reduced curve-fitting models, and show that softness can be recast in a form that is amenable to analytical treatment.
Glassy States of Aging Social Networks
NASA Astrophysics Data System (ADS)
Hassanibesheli, Foroogh; Hedayatifar, Leila; Safdari, Hadise; Ausloos, Marcel; Jafari, G.
2017-05-01
Individuals often develop reluctance to change their social relations, called "secondary homebody", even though their interactions with their environment evolve with time. Some memory effect is loosely present deforcing changes. In other words, in presence of memory, relations do not change easily. In order to investigate some history or memory effect on social networks, we introduce a temporal kernel function into the Heider conventional balance theory, allowing for the "quality" of past relations to contribute to the evolution of the system. This memory effect is shown to lead to the emergence of aged networks, thereby perfectly describing and the more so measuring the aging process of links ("social relations"). It is shown that such a memory does not change the dynamical attractors of the system, but does prolong the time necessary to reach the "balanced states". The general trend goes toward obtaining either global ("paradise" or "bipolar") or local ("jammed") balanced states, but is profoundly affected by aged relations. The resistance of elder links against changes decelerates the evolution of the system and traps it into so named glassy states. In contrast to balance
Glassy state of native collagen fibril?
NASA Astrophysics Data System (ADS)
Gevorkian, S. G.; Allahverdyan, A. E.; Gevorgyan, D. S.; Hu, C.-K.
2011-07-01
Our micromechanical experiments show that viscoelastic features of type-I collagen fibril at physiological temperatures display essential dependence on the frequency and speed of heating. For temperatures of 20-30 °C the internal friction has a sharp maximum for a frequency less than 2 kHz. Upon heating the internal friction displays a peak at a temperature Tsoft(v) that essentially depends on the speed of heating v: Tsoft≈70°C for v=1°C/min, and Tsoft≈25°C for v=0.1°C/min. At the same temperature Tsoft(v) Young's modulus passes through a minimum. All these effects are specific for the native state of the fibril and disappear after heat-denaturation. Taken together with the known facts that the fibril is axially ordered as quasicrystal, but disordered laterally, we interpret our findings as indications of a glassy state, where Tsoft is the softening transition.
Intrinsic character of Stokes matrices
NASA Astrophysics Data System (ADS)
Gagnon, Jean-François; Rousseau, Christiane
2017-02-01
Two germs of linear analytic differential systems x k + 1Y‧ = A (x) Y with a non-resonant irregular singularity are analytically equivalent if and only if they have the same eigenvalues and equivalent collections of Stokes matrices. The Stokes matrices are the transition matrices between sectors on which the system is analytically equivalent to its formal normal form. Each sector contains exactly one separating ray for each pair of eigenvalues. A rotation in S allows supposing that R+ lies in the intersection of two sectors. Reordering of the coordinates of Y allows ordering the real parts of the eigenvalues, thus yielding triangular Stokes matrices. However, the choice of the rotation in x is not canonical. In this paper we establish how the collection of Stokes matrices depends on this rotation, and hence on a chosen order of the projection of the eigenvalues on a line through the origin.
On Some Properties of Gamma Matrices
ERIC Educational Resources Information Center
Dumais, Jean-Francois
1977-01-01
Discusses the problem of the order, reducibility, and equivalence of systems of Dirac gamma matrices. Gives a simple systematic method for finding the matrices connecting different systems of 4 x 4 gamma matrices. (MLH)
On Some Properties of Gamma Matrices
ERIC Educational Resources Information Center
Dumais, Jean-Francois
1977-01-01
Discusses the problem of the order, reducibility, and equivalence of systems of Dirac gamma matrices. Gives a simple systematic method for finding the matrices connecting different systems of 4 x 4 gamma matrices. (MLH)
Ultra-smooth glassy graphene thin films for flexible transparent circuits
Dai, Xiao; Wu, Jiang; Qian, Zhicheng; Wang, Haiyan; Jian, Jie; Cao, Yingjie; Rummeli, Mark H.; Yi, Qinghua; Liu, Huiyun; Zou, Guifu
2016-01-01
Large-area graphene thin films are prized in flexible and transparent devices. We report on a type of glassy graphene that is in an intermediate state between glassy carbon and graphene and that has high crystallinity but curly lattice planes. A polymer-assisted approach is introduced to grow an ultra-smooth (roughness, <0.7 nm) glassy graphene thin film at the inch scale. Owing to the advantages inherited by the glassy graphene thin film from graphene and glassy carbon, the glassy graphene thin film exhibits conductivity, transparency, and flexibility comparable to those of graphene, as well as glassy carbon–like mechanical and chemical stability. Moreover, glassy graphene–based circuits are fabricated using a laser direct writing approach. The circuits are transferred to flexible substrates and are shown to perform reliably. The glassy graphene thin film should stimulate the application of flexible transparent conductive materials in integrated circuits. PMID:28138535
Estimating sparse precision matrices
NASA Astrophysics Data System (ADS)
Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross
2016-08-01
We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic 1/sqrt{N_sim} rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the 1/sqrt{N_sim} limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example, we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.
Shear banding in soft glassy materials
NASA Astrophysics Data System (ADS)
Fielding, S. M.
2014-10-01
Many soft materials, including microgels, dense colloidal emulsions, star polymers, dense packings of multilamellar vesicles, and textured morphologies of liquid crystals, share the basic ‘glassy’ features of structural disorder and metastability. These in turn give rise to several notable features in the low frequency shear rheology (deformation and flow properties) of these materials: in particular, the existence of a yield stress below which the material behaves like a solid, and above which it flows like a liquid. In the last decade, intense experimental activity has also revealed that these materials often display a phenomenon known as shear banding, in which the flow profile across the shear cell exhibits macroscopic bands of different viscosity. Two distinct classes of yield stress fluid have been identified: those in which the shear bands apparently persist permanently (for as long as the flow remains applied), and those in which banding arises only transiently during a process in which a steady flowing state is established out of an initial rest state (for example, in a shear startup or step stress experiment). Despite being technically transient, such bands may in practice persist for a very long time and so be mistaken for the true steady state response of the material in experimental practice. After surveying the motivating experimental data, we describe recent progress in addressing it theoretically, using the soft glassy rheology model and a simple fluidity model. We also briefly place these theoretical approaches in the context of others in the literature, including elasto-plastic models, shear transformation zone theories, and molecular dynamics simulations. We discuss finally some challenges that remain open to theory and experiment alike.
Numerical inversion of finite Toeplitz matrices and vector Toeplitz matrices
NASA Technical Reports Server (NTRS)
Bareiss, E. H.
1969-01-01
Numerical technique increases the efficiencies of the numerical methods involving Toeplitz matrices by reducing the number of multiplications required by an N-order Toeplitz matrix from N-cubed to N-squared multiplications. Some efficient algorithms are given.
Daly, D J; O'Sullivan, C K; Guilbault, G G
2000-02-01
The use of electrochemically grown polymers has expanded dramatically in the last couple of years, and they are now well established as membranes for immobilizing components. The evidence here for their anti-fouling properties is good. The poly(1,3-diaminobenzene)-covered electrodes performed well in the buffer, urine, plasma and serum samples, but not so well in the blood. The Ru/Rh/Pt, Rh/Rh and the Pt-on-glassy carbon electrodes covered with poly(1,3-diaminobenzene) were the best electrodes in the blood. The Pt disc seemed to exhibit the largest irrepeatability in most of the biological matrices.
Hoobin, Pamela; Burgar, Iko; Zhu, ShouChuang; Ying, DanYang; Sanguansri, Luz; Augustin, Mary Ann
2013-09-01
The moisture uptake and molecular mobility of freeze-dried powders containing whey protein isolate-carbohydrate matrices (1WPI:2maltodextrin; 1WPI:1maltodextrin:1d-glucose; and 1WPI:1maltodextrin:1l-glucose) and encapsulated Lactobacillus rhamnosus GG (LGG) in these matrices were investigated at 25 °C and 33% and 70% relative humidity (RH). The inactivation rate constant for probiotics in freeze-dried matrices were positively correlated (R(2) = 0.98) to moisture uptake and molecular mobility measured by NMR relaxometry. The stability of probiotics in glassy protein-carbohydrate matrices was dependent on the composition of the matrix. The partial substitution of maltodextrin with glucose (d- or l-) which improved microbial survival at 33% RH was related to the reduced molecular mobility and lower water uptake of the matrix. This study suggests that moisture uptake properties and molecular mobility of the matrix composition, as opposed to the relative humidity of the environment, are better determinants of probiotic viability during storage. Dynamic vapour sorption and NMR relaxometry are promising tools to assist in the selection of protein-carbohydrate matrices for enhancing probiotic viability during storage.
Effect of additives on physicochemical properties in amorphous starch matrices.
Liang, Jun; Wang, Simon; Ludescher, Richard D
2015-03-15
The effect of the addition of non-reducing sugars or methylcellulose on the matrix physical properties and rate of non-enzymatic browning (NBR) between exogenous glucose+lysine in a starch-based glassy matrix were studied, using the methods of luminescence and FTIR. Amorphous starch-based matrices were formulated by rapidly dehydrating potato starch gel mixed with additives at weight ratios of 7:93 (additive:starch). Data on the phosphorescence emission energy and lifetime from erythrosin B dispersed in the matrices indicated that sugars decreased starch matrix mobility in a Tg-dependent manner, except for trehalose that interacted with starch in a unique mode, while methylcellulose, the additive with the highest Tg, increased the molecular mobility. Using FTIR, we found that methylcellulose decreased the strength of hydrogen bond network and sugars enhanced the hydrogen bond strength in the order: trehalose>maltitol>sucrose. Comparing those changes with the rate of NBR between exogenous glucose+lysine, we suggest that NBR rates are primarily influenced by matrix mobility, which is modulated by the hydrogen bond network, and interactions among components.
Probing Properties of Glassy Water and Other Liquids with Site Selective Spectroscopies
Dang, Nhan Chuong
2005-01-01
The standard non-photochemical hole burning (NPHB) mechanism, which involves phonon-assisted tunneling in the electronically excited state, was originally proposed to explain the light-induced frequency change of chemically stable molecules in glassy solids at liquid helium temperatures by this research group more than two decades ago. The NPHB mechanism was then further elucidated and the concept of intrinsic to glass configurational relaxation processes as pre-mediating step to the hole burning process was introduced. The latter provided the theoretical basis for NPHB to evolve into a powerful tool probing the dynamics and nature of amorphous media, which aside from ''simple'' inorganic glasses may include also ''complex'' biological systems such as living cells and cancerous/normal tissues. Presented in this dissertation are the experimental and theoretical results of hole burning properties of aluminum phthalocyanine tetrasulphonate (APT) in several different matrices: (1) hyperquenched glassy water (HGW); (2) cubic ice (I_{c}); and (3) water confined into poly(2-hydroxyethylmethacrylate) (poly-HEMA). In addition, results of photochemical hole burning (PHB) studies obtained for phthalocyanine tetrasulphonate (P_{cT}) in HGW and free base phthalocyanine (P_{c}) in ortho-dichlorobenzene (DCB) glass are reported. The goal of this dissertation was to provide further evidence supporting the NPHB mechanism and to provide more insight that leads to a better understanding of the kinetic events (dynamics) in glasses, and various dynamical processes of different fluorescent chromorphores in various amorphous solids and the liquid that exist above the glass transition temperature (T_{g}). The following issues are addressed in detail: (1) time evolution of hole being burned under different conditions and in different hole burning systems; (2) temperature dependent hole profile; and (3) the structure/dynamics of water in confined space, which
Matrices of carbonaceous chondrite meteorites
NASA Technical Reports Server (NTRS)
Buseck, Peter R.; Hua, Xin
1993-01-01
The morphology, classification, and chemistry of the matrices of carbonaceous chondrite (CC) meteorites is reviewed based on recent research results. The various kinds of CCs are examined in terms of their matrix mineralogy. Alteration processes in CCs are discussed.
NASA Technical Reports Server (NTRS)
Collins, Earl R., Jr.
1990-01-01
Authorized users respond to changing challenges with changing passwords. Scheme for controlling access to computers defeats eavesdroppers and "hackers". Based on password system of challenge and password or sign, challenge, and countersign correlated with random alphanumeric codes in matrices of two or more dimensions. Codes stored on floppy disk or plug-in card and changed frequently. For even higher security, matrices of four or more dimensions used, just as cubes compounded into hypercubes in concurrent processing.
NASA Technical Reports Server (NTRS)
Collins, Earl R., Jr.
1990-01-01
Authorized users respond to changing challenges with changing passwords. Scheme for controlling access to computers defeats eavesdroppers and "hackers". Based on password system of challenge and password or sign, challenge, and countersign correlated with random alphanumeric codes in matrices of two or more dimensions. Codes stored on floppy disk or plug-in card and changed frequently. For even higher security, matrices of four or more dimensions used, just as cubes compounded into hypercubes in concurrent processing.
Thermal Barrier Coatings Resistant to Glassy Deposits
NASA Astrophysics Data System (ADS)
Drexler, Julie Marie
Engineering of alloys has for years allowed aircraft turbine engines to become more efficient and operate at higher temperatures. As advancements in these alloy systems have become more difficult, ceramic thermal barrier coatings (TBCs), often yttria (7 wt %) stabilized zirconia (7YSZ), have been utilized for thermal protection. TBCs have allowed for higher engine operating temperatures and better fuel efficiency but have also created new engineering problems. Specifically, silica based particles such as sand and volcanic ash that enter the engine during operation form glassy deposits on the TBCs. These deposits can cause the current industrial 7YSZ thermal barrier coatings to fail since the glass formed penetrates and chemically interacts with the TBC. When this occurs, coating failure may occur due to a loss of strain tolerance, which can lead to fracture, and phase changes of the TBC material. There have been several approaches used to stop calcium-magnesium aluminio-silcate (CMAS) glasses (molten sand) from destroying the entire TBC, but overall there is still limited knowledge. In this thesis, 7YSZ and new TBC materials will be examined for thermochemical and thermomechanical performance in the presence of molten CMAS and volcanic ash. Two air plasma sprayed TBCs will be shown to be resistant to volcanic ash and CMAS. The first type of coating is a modified 7YSZ coating with 20 mol% Al2O3 and 5 mol% TiO2 in solid solution (YSZ+20Al+5Ti). The second TBC is made of gadolinium zirconate. These novel TBCs impede CMAS and ash penetration by interacting with the molten CMAS or ash and drastically changing the chemistry. The chemically modified CMAS or ash will crystallize into an apatite or anorthite phase, blocking the CMAS or ash from further destroying the coating. A presented mechanism study will show these coatings are effective due to the large amount of solute (Gd, Al) in the zirconia structure, which is the key to creating the crystalline apatite or
Thermodynamics of Supercooled and Glassy Water
NASA Astrophysics Data System (ADS)
Debenedetti, Pablo G.
1998-03-01
The behavior of metastable water at low temperatures is unusual. The isothermal compressibility, the isobaric heat capacity, and the magnitude of the thermal expansion coefficient increase sharply upon supercooling, and structural relaxation becomes extremely sluggish at temperatures far above the glass transition(Angell, C.A., Annu. Rev. Phys. Chem., 34, 593, 1983)(Debenedetti, P.G., Metastable Liquids. Concepts and Principles, Princeton University Press, 1996). Water has two distinct glassy phases, low- and high-density amorphous ice (LDA, HDA). The transition between LDA and HDA is accompanied by sharp volume and enthalpy changes, and appears to be first-order(Mishima, O., L.D.Calvert, and E. Whalley, Nature, 314, 76, 1985)(Mishima, O., J. Chem. Phys., 100, 5910, 1994). The understanding of these observations in terms of an underlying global phase behavior remains incomplete(Speedy, R.J., J. Phys. Chem., 86, 982, 1982)(Poole, P.H., F. Sciortino, U. Essman, and H.E. Stanley, Nature, 360, 324, 1992)(Sastry, S., P.G. Debenedetti, F. Sciortino, and H.E. Stanley, Phys. Rev. E, 53, 6144, 1996)(Tanaka, H., Nature, 380, 328, 1996)(Xie, Y., K.F. Ludwig, G. Morales, D.E. Hare, and C.M. Sorensen, Phys. Rev. Lett., 71, 2050, 1993). Microscopic theories and computer simulations suggest several scenarios that can reproduce some experimental observations. Interesting and novel ideas have resulted from this body of theoretical work, such as the possibility of liquid-liquid immiscibility in a pure substance(Poole, P.H., F.Sciortino, T.Grande, H.E. Stanley, and C.A. Angell, Phys. Rev. Lett., 73, 1632, 1994)(Roberts, C.J., and P.G. Debenedetti, J. Chem. Phys., 105, 658, 1996)(Roberts, C.J., P.G. Debenedetti, and A.Z. Panagiotopoulos, Phys. Rev. Lett., 77, 4386, 1996)(Harrington, S., R. Zhang, P.H. Poole, F. Sciortino, and H.E. Stanley, Phys. Rev. Lett., 78, 2409, 1997). In this talk I will review the experimental facts, discuss their theoretical interpretation, and identify key
Peculiarities of the enthalpy relaxation of a glassy crystal
NASA Astrophysics Data System (ADS)
Delcourt, O.; Descamps, M.; Even, J.; Bertault, M.; Willart, J. F.
1997-02-01
The relaxation of a supercooled orientational glassy crystal is investigated by differential scanning calorimetry. Aging performed both below and above Tg reveal two original features. (i) The glassy compound relaxes beyond the simple return to equilibration of the metastable rotator phase. The state which is reached upon aging however reverses back to the metastable state when crossing Tg. (ii) Upon reheating a transition between a low temperature ordered phase and the rotator phase is observed whose occurrence strongly depends on the aging conditions. The calorimetric signature of this transition and the usual glass relaxation endotherm are superimposed when annealing is performed below Tg. These results suggest that the peculiarities of the structure and dynamics of orientational glassy crystals lead to an effective acceleration of the relaxation process and enable the system to search for enthalpy states lower than it is usual for a glass.
Optical speckles of blood proteins embedded in porous glassy substrate
NASA Astrophysics Data System (ADS)
Holden, T.; Dehipawala, S.; Kokkinos, D.; Berisha, A.; Cheung, E.; Nguyen, A.; Golebiewska, U.; Schneider, P.; Tremberger, G., Jr.; Lieberman, D.; Cheung, T.
2012-03-01
Blood protein molecules could be embedded in porous glassy substrate with 10-nm pores. The embedding principle is based on blood cell dehydration with the destruction of the cell membrane, and reconstitution and centrifuge could yield a suitable solution for doping into a porous glassy medium. The doped glassy substrate speckle pattern under laser illumination could be used to characterize the protein size distribution. Calibration with known protein embedded samples would result in an optical procedure for the characterization of a blood sample. Samples embedded with larger kilo-Dalton protein molecule show more variation in the speckle patterns, consistent with protein folding interaction inside a pore cavity. A regression model has been used to correlate the protein molecule sizes with speckle sizes. The use of diffusion mean free path information to study protein folding in the embedding process is briefly discussed.
Void nucleation and disentanglement in glassy amorphous polymers
NASA Astrophysics Data System (ADS)
Mahajan, Dhiraj K.; Singh, Bhupinder; Basu, Sumit
2010-07-01
Cavitation in glassy polymers is known to result from highly triaxial states of local stress and the presence of impurities. Understanding of cavitation, particularly void nucleation, is important as cavities are precursors to crazes, which in turn lead to fracture. In this work we study the early stages of void nucleation in glassy amorphous polymers by imposing, in well designed molecular dynamics simulations, highly triaxial states of stress on ensembles of entangled linear macromolecular chains and monitoring the evolution of the entanglement network. Our results demonstrate that deformation induced disentanglement and rearrangement of topological constraints along individual chains play an important role in the early stages of void nucleation. Even in the glassy state, deformation causes significant changes in the rheological constraints on a chain though the number of interchain binary contacts may not change much.
Quasi-equilibrium in glassy dynamics: an algebraic view
NASA Astrophysics Data System (ADS)
Franz, Silvio; Parisi, Giorgio
2013-02-01
We study a chain of identical glassy systems in a constrained equilibrium, where each bond of the chain is forced to remain at a preassigned distance to the previous one. We apply this description to mean-field glassy systems in the limit of a long chain where each bond is close to the previous one. We show that this construction defines a pseudo-dynamic process that in specific conditions can formally describe real relaxational dynamics for long times. In particular, in mean-field spin glass models we can recover in this way the equations of Langevin dynamics in the long time limit at the dynamical transition temperature and below. We interpret the formal identity as evidence that in these situations the configuration space is explored in a quasi-equilibrium fashion. Our general formalism, which relates dynamics to equilibrium, puts slow dynamics in a new perspective and opens the way to the computation of new dynamical quantities in glassy systems.
Glassy Spin Dynamics in Geometrically Frustrated Buckled Colloidal Crystals
NASA Astrophysics Data System (ADS)
Zhou, Di; Wang, Feng; Li, Bo; Lou, Xiaojie; Han, Yilong
2017-04-01
Geometrical frustration arises when the lattice geometry prevents local interaction energies from minimizing simultaneously. Whether and how geometrically frustrated spins or charges in clean crystals exhibit glassy dynamics remain elusive due to the lack of measurements on microscopic dynamics. Here, we employ buckled monolayer colloidal crystals to mimic frustrated antiferromagnetic Ising spins on triangular lattices and measure single-spin dynamics using video microscopy. Both attractive and repulsive colloidal crystals buckled into zigzag stripes with glassy dynamics at low effective temperatures in experiment and simulation. The simple local spin configurations enable uncovering correlations among structure, dynamics, and soft vibrational modes. Machine learning analysis further reveals facilitated dynamics to be an important mechanism of structural relaxation. Moreover, our simulation reveals a similar structure and dynamics in lattice Coulomb liquids. Hence, spin-lattice coupling and long-range interaction can similarly lift degeneracy, induce a rugged landscape, and, thus, produce glassy dynamics.
Scaling of Memories and Crossover in Glassy Magnets.
Samarakoon, A M; Takahashi, M; Zhang, D; Yang, J; Katayama, N; Sinclair, R; Zhou, H D; Diallo, S O; Ehlers, G; Tennant, D A; Wakimoto, S; Yamada, K; Chern, G-W; Sato, T J; Lee, S-H
2017-09-21
Glassiness is ubiquitous and diverse in characteristics in nature. Understanding their differences and classification remains a major scientific challenge. Here, we show that scaling of magnetic memories with time can be used to classify magnetic glassy materials into two distinct classes. The systems studied are high temperature superconductor-related materials, spin-orbit Mott insulators, frustrated magnets, and dilute magnetic alloys. Our bulk magnetization measurements reveal that most densely populated magnets exhibit similar memory behavior characterized by a relaxation exponent of [Formula: see text]. This exponent is different from [Formula: see text] of dilute magnetic alloys that was ascribed to their hierarchical and fractal energy landscape, and is also different from [Formula: see text] of the conventional Debye relaxation expected for a spin solid, a state with long range order. Furthermore, our systematic study on dilute magnetic alloys with varying magnetic concentration exhibits crossovers among the two glassy states and spin solid.
The Erevan howardite: Petrology of glassy clasts and mineral chemistry
NASA Technical Reports Server (NTRS)
Nazarov, M. A.; Ariskin, A. A.
1993-01-01
The Erevan howardite is a polymict regolith breccia containing xenoliths of carbonaceous chondrites. In this work, we studied glassy clasts, which could be considered as primary quenched melts, and mineral chemistry of the breccia. The study reveals that the Erevan howardite consists of common rocks of the HED suite. However, unique glassy clasts, which are present in some eucritic melts, were identified. The mineral chemistry and the simulation of crystallization of the melts suggest that the compositions of the melts reflect those of some primary lithologies of EPB.
The Erevan howardite: Petrology of glassy clasts and mineral chemistry
NASA Technical Reports Server (NTRS)
Nazarov, M. A.; Ariskin, A. A.
1993-01-01
The Erevan howardite is a polymict regolith breccia containing xenoliths of carbonaceous chondrites. In this work, we studied glassy clasts, which could be considered as primary quenched melts, and mineral chemistry of the breccia. The study reveals that the Erevan howardite consists of common rocks of the HED suite. However, unique glassy clasts, which are present in some eucritic melts, were identified. The mineral chemistry and the simulation of crystallization of the melts suggest that the compositions of the melts reflect those of some primary lithologies of EPB.
Course 14: Hiking through Glassy Phases: Physics beyond Aging
NASA Astrophysics Data System (ADS)
Berthier, L.; Viasnoff, V.; White, O.; et al.
Experiments performed on a wide range of glassy materials display many interesting phenomena, such as aging behavior. In recent years, a large body of experiments probed this nonequilibrium glassy dynamics through elaborate protocols, in which external parameters are shifted, or cycled in the course of the experiment. We review here these protocols, as well as experimental and numerical results. Then, we critically discuss various theoretical approaches put forward in this context. Emphasis is put more on the generality of the phenomena than on a specific system. Experiments are also suggested.
Immunological detection of glassy-winged sharpshooter saliva in grapevine
USDA-ARS?s Scientific Manuscript database
Glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is a major vector for transmission of Xylella fastidiosa (Xf), the causative agent of Pierce’s Disease in grapevine. During the feeding process of stylet penetration and xylem fluid ingestion, GWSS inject saliva into the plant. Inoculation...
Playback interference of glassy-winged sharp shooter communication
USDA-ARS?s Scientific Manuscript database
Animal communication is vital to reproduction, particularly for securing a mate. Insects commonly communicate by exchanging vibrational signals that are transmitted through host plants. The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is an important vector of Xylella fastidiosa, a pl...
Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors
Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T.; Evoy, Stephane
2016-01-01
Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors. PMID:26985910
Broadband nanoindentation of glassy polymers: Part I Viscoelasticity
Joesph E. Jakes; Rod S. Lakes; Don S. Stone
2012-01-01
Protocols are developed to assess viscoelastic moduli from unloading slopes in Berkovich nanoindentation across four orders of magnitude in time scale (0.01-100 s unloading time). Measured viscoelastic moduli of glassy polymers poly(methyl methacrylate), polystyrene, and polycarbonate follow the same trends with frequency (1/unloading time) as viscoelastic moduli...
Thermodynamic behavior of glassy state of structurally related compounds.
Kaushal, Aditya Mohan; Bansal, Arvind Kumar
2008-08-01
Thermodynamic properties of amorphous pharmaceutical forms are responsible for enhanced solubility as well as poor physical stability. The present study was designed to investigate the differences in thermodynamic parameters arising out of disparate molecular structures and associations for four structurally related pharmaceutical compounds--celecoxib, valdecoxib, rofecoxib, and etoricoxib. Conventional and modulated temperature differential scanning calorimetry were employed to study glass forming ability and thermodynamic behavior of the glassy state of model compounds. Glass transition temperature of four glassy compounds was in a close range of 327.6-331.8 K, however, other thermodynamic parameters varied considerably. Kauzmann temperature, strength parameter and fragility parameter showed rofecoxib glass to be most fragile of the four compounds. Glass forming ability of the compounds fared similar in the critical cooling rate experiments, suggesting that different factors were determining the glass forming ability and subsequent behavior of the compounds in glassy state. A comprehensive understanding of such thermodynamic facets of amorphous form would help in rationalizing the approaches towards development of stable glassy pharmaceuticals.
Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors.
Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T; Evoy, Stephane
2016-03-14
Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors.
Mating interference of glassy-winged sharpshooters, Homalodisca vitripennis
USDA-ARS?s Scientific Manuscript database
Animal signaling is a complex behavior that is influenced by abiotic and biotic factors of the environment. Glassy-winged sharpshooters (GWSS), Homalodisca vitripennis (Hemiptera: Cicadellidae), primarily use vibrational signaling for courtship. Because GWSS is a major pest, transmitting the plant ...
A method to quantify glassy-winged sharpshooter egg maturation
USDA-ARS?s Scientific Manuscript database
To identify factors affecting glassy-winged sharpshooter egg production, a method to accurately estimate the number of mature eggs produced during a short-term assay is needed. Egg production is typically quantified by determining the number of eggs deposited during the assay plus the number of matu...
Broadband nanoindentation of glassy polymers: Part II. Viscoplasticity
Joseph E. Jakes; Rod S. Lakes; Don S. Stone
2012-01-01
The relationship between hardness and flow stress in glassy polymers is examined. Materials studied include poly(methylmethacrylate), polystyrene, and polycarbonate. Properties are strongly rate dependent, so broadband nanoindentation creep (BNC) is used to measure hardness across a broad range of indentation strain rates (10-4 to 10 s
Iterative methods for Toeplitz-like matrices
Huckle, T.
1994-12-31
In this paper the author will give a survey on iterative methods for solving linear equations with Toeplitz matrices, Block Toeplitz matrices, Toeplitz plus Hankel matrices, and matrices with low displacement rank. He will treat the following subjects: (1) optimal (w)-circulant preconditioners is a generalization of circulant preconditioners; (2) Optimal implementation of circulant-like preconditioners in the complex and real case; (3) preconditioning of near-singular matrices; what kind of preconditioners can be used in this case; (4) circulant preconditioning for more general classes of Toeplitz matrices; what can be said about matrices with coefficients that are not l{sub 1}-sequences; (5) preconditioners for Toeplitz least squares problems, for block Toeplitz matrices, and for Toeplitz plus Hankel matrices.
Symmetric Toeplitz-Structured Compressed Sensing Matrices
NASA Astrophysics Data System (ADS)
Huang, Tao; Fan, Yi-Zheng; Zhu, Ming
2015-11-01
How to construct a suitable measurement matrix is an important topic in compressed sensing. A significant part of the recent work is that the measurement matrices are not completely random on the entries but exhibit some considerable structures. In this paper, we proved that a symmetric Toeplitz matrix and its variant can be used as measurement matrices and recovery signal with high probability. Compared with random matrices (e.g. Gaussian and Bernoulli matrices) and some structured matrices (e.g. Toeplitz and circulant matrices), we need to generate fewer independent entries to obtain the measurement matrix while the effectiveness of the recovery keeps good.
Fibonacci Identities, Matrices, and Graphs
ERIC Educational Resources Information Center
Huang, Danrun
2005-01-01
General strategies used to help discover, prove, and generalize identities for Fibonacci numbers are described along with some properties about the determinants of square matrices. A matrix proof for identity (2) that has received immense attention from many branches of mathematics, like linear algebra, dynamical systems, graph theory and others…
Making almost commuting matrices commute
Hastings, Matthew B
2008-01-01
Suppose two Hermitian matrices A, B almost commute ({parallel}[A,B]{parallel} {<=} {delta}). Are they close to a commuting pair of Hermitian matrices, A', B', with {parallel}A-A'{parallel},{parallel}B-B'{parallel} {<=} {epsilon}? A theorem of H. Lin shows that this is uniformly true, in that for every {epsilon} > 0 there exists a {delta} > 0, independent of the size N of the matrices, for which almost commuting implies being close to a commuting pair. However, this theorem does not specifiy how {delta} depends on {epsilon}. We give uniform bounds relating {delta} and {epsilon}. The proof is constructive, giving an explicit algorithm to construct A' and B'. We provide tighter bounds in the case of block tridiagonal and tridiagnonal matrices. Within the context of quantum measurement, this implies an algorithm to construct a basis in which we can make a projective measurement that approximately measures two approximately commuting operators simultaneously. Finally, we comment briefly on the case of approximately measuring three or more approximately commuting operators using POVMs (positive operator-valued measures) instead of projective measurements.
Open string fields as matrices
NASA Astrophysics Data System (ADS)
Kishimoto, Isao; Masuda, Toru; Takahashi, Tomohiko; Takemoto, Shoko
2015-03-01
We show that the action expanded around Erler-Maccaferri's N D-brane solution describes the N+1 D-brane system where one D-brane disappears due to tachyon condensation. String fields on multi-branes can be regarded as block matrices of a string field on a single D-brane in the same way as matrix theories.
Fibonacci Identities, Matrices, and Graphs
ERIC Educational Resources Information Center
Huang, Danrun
2005-01-01
General strategies used to help discover, prove, and generalize identities for Fibonacci numbers are described along with some properties about the determinants of square matrices. A matrix proof for identity (2) that has received immense attention from many branches of mathematics, like linear algebra, dynamical systems, graph theory and others…
Fluctuations of eigenvalues of patterned random matrices
NASA Astrophysics Data System (ADS)
Adhikari, Kartick; Saha, Koushik
2017-06-01
In this article, we study the fluctuations of linear statistics of eigenvalues of circulant, symmetric circulant, reverse circulant, and Hankel matrices. We show that the linear spectral statistics of these matrices converge to the Gaussian distribution in total variation norm when the matrices are constructed using independent copies of a standard normal random variable. We also calculate the limiting variance of the linear spectral statistics for circulant, symmetric circulant, and reverse circulant matrices.
Effet Hall et Magnetisme des Alliages Amorphes Nickel-Zirconium Fabriques Par Pulverisation
NASA Astrophysics Data System (ADS)
Morel, Robert
Cette these se situe dans le cadre d'une etude des proprietes electroniques et structurales des alliages metalliques amorphes, en cours depuis quelques annees a l'Universite de Montreal. Ce programme nous a entre autres amene a caracteriser la magnetoresistivite et l'effet Hall d'alliages FeZr, CoZr et NiZr, ce qui a permis de mettre en evidence deux caracteristiques de l'effet Hall: Dans les alliages amorphes ferromagnetiques, la resistivite elevee engendre un effet Hall extraordinaire beaucoup plus important que celui enregistre dans les metaux cristallins. La polarisation des spins entrai ne une asymetrie de la diffusion qui, tant dans les phases cristalline et amorphe, est tenue responsable de cette contribution. L'autre particularite du comportement de Hall de ces systemes est le renversement de signe du coefficient de Hall ordinaire, qui passe du negatif au positif dans les echantillons plus riches en zirconium. Dans les metaux cristallins, un modele d'electrons libres predit un signe negatif a moins que la conduction ne soit dominee par les trous. Or, dans un milieu desordonne les memes concepts sont difficilement applicables et de nouvelles theories ont du etre elaborees pour expliquer ce phenomene. Jusqu'a maintenant, l'etude des alliages amorphes nickel-zirconium s'est faite surtout a partir d'echantillons fabriques par trempe sur roue. Malheureusement cette technique ne permet pas la fabrication d'alliages contenant plus de 70% de nickel, a l'exception du seul compose Ni _{90}Zr_{10 }. Pour pallier a cette lacune et etendre nos connaissance a l'ensemble de la gamme de compositions, nous avons fabrique par pulverisation cathodique des echantillons NiZr amorphes--et quelques alliages cristallins tres riches en nickel--couvrant une bonne partie de la gamme interdite par la technique de trempe sur roue. Dans un premier temps, par comparaison avec les resultats connus nous avons mis en evidence les similitudes et les differences entre les alliages obtenus par
Glassy correlations and thermal fluctuations in nematic elastomers
NASA Astrophysics Data System (ADS)
Lu, Bing; Xing, Xiangjun; Ye, Fangfu; Goldbart, Paul
2010-03-01
By means of the vulcanization theory framework we address the properties of nematic elastomers prepared in the isotropic liquid state and subsequently randomly cross-linked beyond the gelation point. We base our analysis on a model replica Landau free energy, in which the vulcanization order parameter is coupled to the order parameter describing the local degree of nematic ordering, retaining fluctuation terms to the Gaussian level. We explore how the cross-linking renormalizes the thermal correlations of the local nematic order, and also results in frozen-in, glassy nematic correlations. We examine these thermal and glassy correlations for two different preparation histories of the system: in the first, the cross-linking is done at temperatures close to the isotropic-nematic transition; in the other, the cross-linking is done at higher temperatures, but the system is subsequently cooled to near this transition temperature.
2H NMR studies of supercooled and glassy aspirin
NASA Astrophysics Data System (ADS)
Nath, R.; Nowaczyk, A.; Geil, B.; Bohmer, R.
2007-11-01
Acetyl salicylic acid, deuterated at the methyl group, was investigated using 2H-NMR in its supercooled and glassy states. Just above the glass transition temperature the molecular reorientations were studied using stimulated-echo spectroscopy and demonstrated a large degree of similarity with other glass formers. Deep in the glassy phase the NMR spectra look similar to those reported for the crystal [A. Detken, P. Focke, H. Zimmermann, U. Haeberlen, Z. Olejniczak, Z. T. Lalowicz, Z. Naturforsch. A 50 (1995) 95] and below 20 K they are indicative for rotational tunneling with a relatively large tunneling frequency. Measurements of the spin-lattice relaxation times for temperatures below 150 K reveal a broad distribution of correlation times in the glass. The dominant energy barrier characterizing the slow-down of the methyl group is significantly smaller than the well defined barrier in the crystal.
Loss of halogens from crystallized and glassy silicic volcanic rocks
Noble, D.C.; Smith, V.C.; Peck, L.C.
1967-01-01
One hundred and sixty-four F and Cl analyses of silicic welded tuffs and lavas and glass separates are presented. Comparison of the F and Cl contents of crystallized rocks with those of nonhydrated glass and hydrated glassy rocks from the same rock units shows that most of the halogens originally present were lost on crystallization. An average of about half of the F and four-fifths of the Cl originally present was lost. Analyses of hydrated natural glasses and of glassy rocks indicate that in some cases significant amounts of halogens may be removed from or added to hydrated glass through prolonged contact with ground water. The data show that the original halogen contents of the groundmass of a silicic volcanic rock can be reliably determined only from nonhydrated glass. ?? 1967.
Morphology and formation process of diamond from glassy carbon
NASA Astrophysics Data System (ADS)
Miyamoto, Manabu; Akaishi, Minoru; Ohsawa, Toshikazu; Yamaoka, Shinobu; Fukunaga, Osamu
1989-10-01
Under static high pressure conditions in the presence of a catalyst metal, a diamond formation process was studied using glassy carbon as a starting source, which was prepared by pyrolysis of furfuryl alcohol resin. Above 1200 °C of the pyrolysis temperature, diamond formation was clearly observed in Ni, Fe, Co and their alloy catalysts. The hydrogen content in the starting carbon has a drastic effect on the diamond formation. The maximum content of the hydrogen in the glassy carbon had to be between 1200 and 2200 ppm to see diamond formation. In the Fe-rich catalyst, a characteristic needle-like diamond was formed due to the texture of the carbon source and the nature of the catalyst.
Understanding soft glassy materials using an energy landscape approach.
Hwang, Hyun Joo; Riggleman, Robert A; Crocker, John C
2016-09-01
Many seemingly different soft materials-such as soap foams, mayonnaise, toothpaste and living cells-display strikingly similar viscoelastic behaviour. A fundamental physical understanding of such soft glassy rheology and how it can manifest in such diverse materials, however, remains unknown. Here, by using a model soap foam consisting of compressible spherical bubbles, whose sizes slowly evolve and whose collective motion is simply dictated by energy minimization, we study the foam's dynamics as it corresponds to downhill motion on an energy landscape function spanning a high-dimensional configuration space. We find that these downhill paths, when viewed in this configuration space, are, surprisingly, fractal. The complex behaviour of our model, including power-law rheology and non-diffusive bubble motion and avalanches, stems directly from the fractal dimension and energy function of these paths. Our results suggest that ubiquitous soft glassy rheology may be a consequence of emergent fractal geometry in the energy landscapes of many complex fluids.
Diamond film growth on Ti-implanted glassy carbon
NASA Astrophysics Data System (ADS)
Brewer, M. A.; Brown, I. G.; Evans, P. J.; Hoffman, A.
1993-09-01
The growth of diamond thin films on glassy carbon substrates has been investigated as a function of deposition time for different surface treatments. Implantation of Ti to a dose of 1.7 x 10 exp 17/sq cm and abrasion with diamond powder have both been examined to determine their effect on film nucleation and growth. At the shorter deposition times studied, diamond nucleation was observed on all test samples with those subjected to the abrasive pretreatment exhibiting the higher growth rates. However, the adhesion and uniformity of films on unimplanted glassy carbon were found to deteriorate significantly following deposition runs of 14 and 21 h duration. This was attributed to a destabilization of the underlying surface caused by plasma erosion.
Probing glassy states in binary mixtures of soft interpenetrable colloids.
Stiakakis, E; Erwin, B M; Vlassopoulos, D; Cloitre, M; Munam, A; Gauthier, M; Iatrou, H; Hadjichristidis, N
2011-06-15
We present experimental evidence confirming the recently established rich dynamic state diagram of asymmetric binary mixtures of soft colloidal spheres. These mixtures consist of glassy suspensions of large star polymers to which different small stars are added at varying concentrations. Using rheology and dynamic light scattering measurements along with a simple phenomenological analysis, we show the existence of re-entrance and multiple glassy states, which exhibit distinct features. Cooperative diffusion, as a probe for star arm interpenetration, is proven to be sensitive to the formation of the liquid pockets which signal the melting of the large-star-glass upon addition of small stars. These results provide ample opportunities for tailoring the properties of soft colloidal glasses.
Understanding soft glassy materials using an energy landscape approach
NASA Astrophysics Data System (ADS)
Hwang, Hyun Joo; Riggleman, Robert A.; Crocker, John C.
2016-09-01
Many seemingly different soft materials--such as soap foams, mayonnaise, toothpaste and living cells--display strikingly similar viscoelastic behaviour. A fundamental physical understanding of such soft glassy rheology and how it can manifest in such diverse materials, however, remains unknown. Here, by using a model soap foam consisting of compressible spherical bubbles, whose sizes slowly evolve and whose collective motion is simply dictated by energy minimization, we study the foam's dynamics as it corresponds to downhill motion on an energy landscape function spanning a high-dimensional configuration space. We find that these downhill paths, when viewed in this configuration space, are, surprisingly, fractal. The complex behaviour of our model, including power-law rheology and non-diffusive bubble motion and avalanches, stems directly from the fractal dimension and energy function of these paths. Our results suggest that ubiquitous soft glassy rheology may be a consequence of emergent fractal geometry in the energy landscapes of many complex fluids.
2H NMR studies of glycerol dynamics in protein matrices
NASA Astrophysics Data System (ADS)
Herbers, C. R.; Sauer, D.; Vogel, M.
2012-03-01
We use 2H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.
2H NMR studies of glycerol dynamics in protein matrices.
Herbers, C R; Sauer, D; Vogel, M
2012-03-28
We use (2)H NMR spectroscopy to investigate the rotational motion of glycerol molecules in matrices provided by the connective tissue proteins elastin and collagen. Analyzing spin-lattice relaxation, line-shape properties, and stimulated-echo decays, we determine the rates and geometries of the motion as a function of temperature and composition. It is found that embedding glycerol in an elastin matrix leads to a mild slowdown of glycerol reorientation at low temperatures and glycerol concentrations, while the effect vanishes at ambient temperatures or high solvent content. Furthermore, it is observed that the nonexponential character of the rotational correlation functions is much more prominent in the elastin matrix than in the bulk liquid. Results from spin-lattice relaxation and line shape measurements indicate that, in the mixed systems, the strong nonexponentiality is in large part due to the existence of distributions of correlation times, which are broader on the long-time flank and, hence, more symmetric than in the neat system. Stimulated-echo analysis of slow glycerol dynamics reveals that, when elastin is added, the mechanism for the reorientation crosses over from small-angle jump dynamics to large-angle jump dynamics and the geometry of the motion changes from isotropic to anisotropic. The results are discussed against the background of present and previous findings for glycerol and water dynamics in various protein matrices and compared with observations for other dynamically highly asymmetric mixtures so as to ascertain in which way the viscous freezing of a fast component in the matrix of a slow component differs from the glassy slowdown in neat supercooled liquids.
Ultrasonic treatment of glassy carbon for nanoparticle preparation.
Levêque, Jean-Marc; Duclaux, Laurent; Rouzaud, Jean-Noël; Reinert, Laurence; Komatsu, Naoki; Desforges, Alexandre; Afreen, Sadia; Sivakumar, Manickam; Kimura, Takahide
2017-03-01
Glassy carbon particles (millimetric or micrometric sizes) dispersions in water were treated by ultrasound at 20kHz, either in a cylindrical reactor, or in a "Rosette" type reactor, for various time lengths ranging from 3h to 10h. Further separations sedimentation allowed obtaining few nanoparticles of glassy carbon in the supernatant (diameter <200nm). Thought the yield of nanoparticle increased together with the sonication time at high power, it tended to be nil after sonication in the cylindrical reactor. The sonication of glassy carbon micrometric particles in water using "Rosette" instead of cylindrical reactor, allowed preparing at highest yield (1-2wt%), stable suspensions of carbon nanoparticles, easily separated from the sedimented particles. Both sediment and supernatant separated by decantation of the sonicated dispersions were characterized by laser granulometry, scanning electron microscopy, X-ray microanalysis, and Raman and infrared spectroscopies. Their multiscale organization was investigated by transmission electron microscopy as a function of the sonication time. For sonication longer than 10h, these nanoparticles from supernatant (diameter <50nm) are aggregated. Their structures are more disordered than the sediment particles showing typical nanometer-sized aromatic layer arrangement of glassy carbon, with closed mesopores (diameter ∼3nm). Sonication time longer than 5h has induced not only a strong amorphization (subnanometric and disoriented aromatic layer) but also a loss of the mesoporous network nanostructure. These multi-scale organizational changes took place because of both cavitation and shocks between particles, mainly at the particle surface. The sonication in water has induced also chemical effects, leading to an increase in the oxygen content of the irradiated material together with the sonication time.
Localization and Glassy Dynamics in the Immune System
NASA Astrophysics Data System (ADS)
Sun, Jun; Earl, David J.; Deem, Michael W.
We discuss use of the generalized NK model to examine evolutionary dynamics within the immune system. We describe how randomness and diversity play key roles in the immune response and how their effects are captured by this hierarchical spin glass model. We discuss analytical aspects of the model as well as practical applications to design of the annual influenza vaccine. We discuss the subtle role that the glassy evolutionary dynamics plays in suppressing autoimmune disease.
High Strain Rate Tensile and Compressive Effects in Glassy Polymers
2013-02-08
polymers under high strain rates has been determined in compression. Some research programs have studied the combined effects of temperature and strain rate...glassy polymers to high strain rate loading in compression. More recently, research programs that study the combined effects of temperature and strain...Force Materiel Command United States Air Force Eglin Air Force Base AFRL-RW-EG-TP-2013-006 High Strain Rate
Global equation of state for a glassy material: Fused silica
Boettger, J.C.
1994-09-01
A new SESAME equation of state (EOS) for fused silica has been generated using the computer program GRIZZLY and will be added to the SESAME library as material number 7387. This new EOS provides better agreement with experimental data than was achieved by all previous SESAME EOSs for fused silica. Material number 7387 also constitutes the most realistic SESAME-type EOS generated for any glassy material thus far.
Thermodynamics of water sorption in high performance glassy thermoplastic polymers
Scherillo, Giuseppe; Petretta, Mauro; Galizia, Michele; La Manna, Pietro; Musto, Pellegrino; Mensitieri, Giuseppe
2014-01-01
Sorption thermodynamics of water in two glassy polymers, polyetherimide (PEI) and polyetheretherketone (PEEK), is investigated by coupling gravimetry and on line FTIR spectroscopy in order to gather information on the total amount of sorbed water as well as on the different species of water molecules absorbed within the polymers, addressing the issue of cross- and self-interactions occurring in the polymer/water systems. Water sorption isotherms have been determined at temperatures ranging from 30 to 70°C while FTIR spectroscopy has been performed only at 30°C. The experimental analysis provided information on the groups present on the polymer backbones involved in hydrogen bonding interactions with absorbed water molecules. Moreover, it also supplied qualitative indications about the different “populations” of water molecules present within the PEEK and a quantitative assessment of these “populations” in the case of PEI. The results of the experimental analysis have been interpreted using an equation of state theory based on a compressible lattice fluid model for the Gibbs energy of the polymer-water mixture, developed by extending to the case of out of equilibrium glassy polymers a previous model intended for equilibrium rubbery polymers. The model accounts for the non-equilibrium nature of glassy polymers as well as for mean field and for hydrogen bonding interactions, providing a satisfactory quantitative interpretation of the experimental data. PMID:24860802
Magnetoresistance, electrical conductivity, and Hall effect of glassy carbon
Baker, D.F.
1983-02-01
These properties of glassy carbon heat treated for three hours between 1200 and 2700/sup 0/C were measured from 3 to 300/sup 0/K in magnetic fields up to 5 tesla. The magnetoresistance was generally negative and saturated with reciprocal temperature, but still increased as a function of magnetic field. The maximum negative magnetoresistance measured was 2.2% for 2700/sup 0/C material. Several models based on the negative magnetoresistance being proportional to the square of the magnetic moment were attempted; the best fit was obtained for the simplest model combining Curie and Pauli paramagnetism for heat treatments above 1600/sup 0/C. Positive magnetoresistance was found only in less than 1600/sup 0/C treated glassy carbon. The electrical conductivity, of the order of 200 (ohm-cm)/sup -1/ at room temperature, can be empirically written as sigma = A + Bexp(-CT/sup -1/4) - DT/sup -1/2. The Hall coefficient was independent of magnetic field, insensitive to temperature, but was a strong function of heat treatment temperature, crossing over from negative to positive at about 1700/sup 0/C and ranging from -0.048 to 0.126 cm/sup 3//coul. The idea of one-dimensional filaments in glassy carbon suggested by the electrical conductivity is compatible with the present consensus view of the microstructure.
Thermodynamics of Water Sorption in High Performance Glassy Thermoplastic Polymers
NASA Astrophysics Data System (ADS)
Mensitieri, Giuseppe; Scherillo, Giuseppe; Petretta, Mauro; Galizia, Michele; La Manna, Pietro; Musto, Pellegrino
2014-05-01
Sorption thermodynamics of water in two glassy polymers, polyetherimide (PEI) and polyetheretherketone (PEEK), is investigated by coupling gravimetry and on line FTIR spectroscopy in order to gather information on the total amount of sorbed water as well as on the different species of water molecules absorbed within the polymers, addressing the issue of cross- and self-interactions occurring in the polymer/water systems. Water sorption isotherms have been determined at temperatures ranging fro 30 to 70°C while FTIR spectroscopy has been performed only at 30°C. The experimental analysis provided information on the groups present on the polymer backbones involved in hydrogen bonding interactions with absorbed water molecules. Moreover, it also supplied qualitative indications about the different’populations’ of water molecules present within the PEEK and a quantitative assessment of these ‘populations’ in the case of PEI.The results of the experimental analysis have been interpreted using an equation of state theory based on a compressible lattice fluid model for the Gibbs energy of the polymer-water mixture, developed by extending to the case of out of equilibrium glassy polymers a previous model intended for equilibrium rubbery polymers. The model accounts for the non equilibrium nature of glassy poymers as well as for mean field and for hydrogen bonding interactions, providing a satisfactory quantitative interpretation of the experimental data.
Yield Stress Enhancement in Glassy-Polyethylene Block Copolymers
NASA Astrophysics Data System (ADS)
Mulhearn, William; Register, Richard
Polyethylene (PE) has the highest annual production volume of all synthetic polymers worldwide, and is valuable across many applications due to its low cost, toughness, processability, and chemical resistance. However, PE is not well suited to certain applications due to its modest yield stress and Young's modulus (approximately 30 MPa and 1 GPa, respectively for linear, high-density PE). Irreversible deformation of PE results from dislocation of crystal stems and eventual crystal fragmentation under applied stress. The liquid-like amorphous fraction provides no useful mechanical support to the crystal fold surface in a PE homopolymer, so the only method to enhance the force required for crystal slip, and hence the yield stress, is crystal thickening via thermal treatment. An alternative route towards modifying the mechanical properties of PE involves copolymerization of a minority high-glass transition temperature block into a majority-PE block copolymer. In this work, we investigate a system of glassy/linear-PE block copolymers prepared via ring-opening metathesis polymerization of cyclopentene and substituted norbornene monomers followed by hydrogenation. We demonstrate that a large change in mechanical properties can be achieved with the addition of a short glassy block (e.g. a doubling of the yield stress and Young's modulus versus PE homopolymer with the addition of 25 percent glassy block). Furthermore, owing to the low interaction energy between PE and the substituted polynorbornene blocks employed, these high-yield PE block copolymers can exhibit single-phase melts for ease of processability.
Glassy materials for lithium batteries: electrochemical properties and devices performances
NASA Astrophysics Data System (ADS)
Duclot, Michel; Souquet, Jean-Louis
Amorphous or glassy materials may be used as electrolyte or electrode materials for lithium primary or secondary batteries. A first generation proceeded from classical coin cells in which the organic electrolyte was replaced by a high lithium conductive glassy electrolyte. The solid components were assembled under isostatic pressure. The main advantages of such cells are a good storage stability and ability to operate until 200°C. Nevertheless, the high resistivity of the glassy electrolyte below room temperature and a limited depth for charge and discharge cycles makes these cells not competitive compared to conventional lithium-ion batteries. More promising, are the thin films solid state microbatteries realised by successive depositions of electrodes and electrolyte. The low resistance of the electrolyte amorphous layer allows cycling at temperatures as low as -10°C. The total thickness of thin film batteries, including packaging is less than 100 μm. A capacity of about 100 μAh cm -2 with over 10 4 charge-discharge cycles at 90% in depth of discharge is well suited for energy independent smart cards or intelligent labels, which represent for these devices a large and unrivalled market.
Exploration for facultative endosymbionts of glassy-wingedsharpshooter (Hemiptera: Cicadellidae)
Montllor-Curley, C.; Brodie, E.L.; Lechner, M.G.; Purcell, A.H.
2006-07-01
Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae),glassy-winged sharpshooter, was collected in California and severalstates in the southeastern United States in 2002 and 2003 and analyzedfor endosymbiotic bacteria. Hemolymph, eggs, and bacteriomes wereexamined for the presence of bacteria by polymerase chain reaction. Asubset of hemolymph and egg samples had their 16S rRNA gene ampliconscloned and sequenced or analyzed by restriction digest patterns ofsamples compared with known bacterial DNA. Baumannia cicadellinicola, oneof the primary symbionts of glassy-winged sharpshooter, was found in themajority of hemolymph samples, although it has been considered until nowto reside primarily inside the specialized host bacteriocytes. Wolbachiasp., a common secondary symbiont in many insect taxa investigated todate, was the second most frequently detected bacterium in hemolymphsamples. In addition, we detected bacteria that were most closely related(by 16S rRNA gene sequence) to Pseudomonas, Stenotrophomonas, andAcinetobacter in hemolymph samples of one and/or two glassy-wingedsharpshooters, but their origin is uncertain.
Quantifying glassy and crystalline basalt partitioning in the oceanic crust
NASA Astrophysics Data System (ADS)
Moore, Rachael; Ménez, Bénédicte
2016-04-01
The upper layers of the oceanic crust are predominately basaltic rock, some of which hosts microbial life. Current studies of microbial life within the ocean crust mainly focus on the sedimentary rock fraction, or those organisms found within glassy basalts while the potential habitability of crystalline basalts are poorly explored. Recently, there has been recognition that microbial life develops within fractures and grain boundaries of crystalline basalts, therefore estimations of total biomass within the oceanic crust may be largely under evaluated. A deeper understanding of the bulk composition and fractionation of rocks within the oceanic crust is required before more accurate estimations of biomass can be made. To augment our understanding of glassy and crystalline basalts within the oceanic crust we created two end-member models describing basalt fractionation: a pillow basalt with massive, or sheet, flows crust and a pillow basalt with sheeted dike crust. Using known measurements of massive flow thickness, dike thickness, chilled margin thickness, pillow lava size, and pillow lava glass thickness, we have calculated the percentage of glassy versus crystalline basalts within the oceanic crust for each model. These models aid our understanding of textural fractionation within the oceanic crust, and can be applied with bioenergetics models to better constrain deep biomass estimates.
Thermodynamic Modeling of Gas Transport in Glassy Polymeric Membranes.
Minelli, Matteo; Sarti, Giulio Cesare
2017-08-19
Solubility and permeability of gases in glassy polymers have been considered with the aim of illustrating the applicability of thermodynamically-based models for their description and prediction. The solubility isotherms are described by using the nonequilibrium lattice fluid (NELF) (model, already known to be appropriate for nonequilibrium glassy polymers, while the permeability isotherms are described through a general transport model in which diffusivity is the product of a purely kinetic factor, the mobility coefficient, and a thermodynamic factor. The latter is calculated from the NELF model and mobility is considered concentration-dependent through an exponential relationship containing two parameters only. The models are tested explicitly considering solubility and permeability data of various penetrants in three glassy polymers, PSf, PPh and 6FDA-6FpDA, selected as the reference for different behaviors. It is shown that the models are able to calculate the different behaviors observed, and in particular the permeability dependence on upstream pressure, both when it is decreasing as well as when it is increasing, with no need to invoke the onset of additional plasticization phenomena. The correlations found between polymer and penetrant properties with the two parameters of the mobility coefficient also lead to the predictive ability of the transport model.
Fast algorithms for glassy materials: methods and explorations
NASA Astrophysics Data System (ADS)
Middleton, A. Alan
2014-03-01
Glassy materials with frozen disorder, including random magnets such as spin glasses and interfaces in disordered materials, exhibit striking non-equilibrium behavior such as the ability to store a history of external parameters (memory). Precisely due to their glassy nature, direct simulation of models of these materials is very slow. In some fortunate cases, however, algorithms exist that exactly compute thermodynamic quantities. Such cases include spin glasses in two dimensions and interfaces and random field magnets in arbitrary dimensions at zero temperature. Using algorithms built using ideas developed by computer scientists and mathematicians, one can even directly sample equilibrium configurations in very large systems, as if one picked the configurations out of a ``hat'' of all configurations weighted by their Boltzmann factors. This talk will provide some of the background for these methods and discuss the connections between physics and computer science, as used by a number of groups. Recent applications of these methods to investigating phase transitions in glassy materials and to answering qualitative questions about the free energy landscape and memory effects will be discussed. This work was supported in part by NSF grant DMR-1006731. Creighton Thomas and David Huse also contributed to much of the work to be presented.
Effets des electrons secondaires sur l'ADN
NASA Astrophysics Data System (ADS)
Boudaiffa, Badia
Les interactions des electrons de basse energie (EBE) representent un element important en sciences des radiations, particulierement, les sequences se produisant immediatement apres l'interaction de la radiation ionisante avec le milieu biologique. Il est bien connu que lorsque ces radiations deposent leur energie dans la cellule, elles produisent un grand nombre d'electrons secondaires (4 x 104/MeV), qui sont crees le long de la trace avec des energies cinetiques initiales bien inferieures a 20 eV. Cependant, il n'y a jamais eu de mesures directes demontrant l'interaction de ces electrons de tres basse energie avec l'ADN, du principalement aux difficultes experimentales imposees par la complexite du milieu biologique. Dans notre laboratoire, les dernieres annees ont ete consacrees a l'etude des phenomenes fondamentaux induits par impact des EBE sur differentes molecules simples (e.g., N2, CO, O2, H2O, NO, C2H 4, C6H6, C2H12) et quelques molecules complexes dans leur phase solide. D'autres travaux effectues recemment sur des bases de l'ADN et des oligonucleotides ont montre que les EBE produisent des bris moleculaires sur les biomolecules. Ces travaux nous ont permis d'elaborer des techniques pour mettre en evidence et comprendre les interactions fondamentales des EBE avec des molecules d'interet biologique, afin d'atteindre notre objectif majeur d'etudier l'effet direct de ces particules sur la molecule d'ADN. Les techniques de sciences des surfaces developpees et utilisees dans les etudes precitees peuvent etre etendues et combinees avec des methodes classiques de biologie pour etudier les dommages de l'ADN induits par l'impact des EBE. Nos experiences ont montre l'efficacite des electrons de 3--20 eV a induire des coupures simple et double brins dans l'ADN. Pour des energies inferieures a 15 eV, ces coupures sont induites par la localisation temporaire d'un electron sur une unite moleculaire de l'ADN, ce qui engendre la formation d'un ion negatif transitoire
NASA Astrophysics Data System (ADS)
Bombardelli, Diego
2016-08-01
In these notes we review the S-matrix theory in (1+1)-dimensional integrable models, focusing mainly on the relativistic case. Once the main definitions and physical properties are introduced, we discuss the factorization of scattering processes due to integrability. We then focus on the analytic properties of the two-particle scattering amplitude and illustrate the derivation of the S-matrices for all the possible bound states using the so-called bootstrap principle. General algebraic structures underlying the S-matrix theory and its relation with the form factors axioms are briefly mentioned. Finally, we discuss the S-matrices of sine-Gordon and SU(2), SU(3) chiral Gross-Neveu models. In loving memory of Lilia Grandi.
Threaded Operations on Sparse Matrices
Sneed, Brett
2015-09-01
We investigate the use of sparse matrices and OpenMP multi-threading on linear algebra operations involving them. Several sparse matrix data structures are presented. Implementation of the multi- threading primarily occurs in the level one and two BLAS functions used within the four algorithms investigated{the Power Method, Conjugate Gradient, Biconjugate Gradient, and Jacobi's Method. The bene ts of launching threads once per high level algorithm are explored.
Investigation of glassy state molecular motions in thermoset polymers
NASA Astrophysics Data System (ADS)
Tu, Jianwei
This dissertation presents the investigation of the glassy state molecular motions in isomeric thermoset epoxies by means of solid-state deuterium (2H) NMR spectroscopy technique. The network structure of crosslinked epoxies was altered through monomer isomerism; specifically, diglycidyl ether of bisphenol A (DGEBA) was cured with isomeric amine curatives, i.e., the meta-substituted diaminodiphenylsulfone (33DDS) and para-substituted diaminodiphenylsulfone (44DDS). The use of structural isomerism provided a path way for altering macroscopic material properties while maintaining identical chemical composition within the crosslinked networks. The effects of structural isomerism on the glassy state molecular motions were studied using solid-state 2H NMR spectroscopy, which offers unrivaled power to monitor site-specific molecular motions. Three distinctive molecular groups on each isomeric network, i.e., the phenylene rings in the bisphenol A structure (BPA), the phenylene rings in the diaminodiphenylsulfone structure (DDS), and the hydroxypropoyl ether group (HPE) have been selectively deuterated for a comprehensive study of the structure-dynamics- property relationships in thermoset epoxies. Quadrupolar echo experiments and line shape simulations were employed as the main research approach to gain both qualitative and quantitative motional information of the epoxy networks in the glassy state. Quantitative information on the geometry and rate of the molecular motions allows the elucidation of the relationship between molecular motions and macro physical properties and the role of these motions in the mechanical relaxation. Specifically, it is revealed that both the BPA and HPE moieties in the isomeric networks have almost identical behaviors in the deep glassy state, which indicates that the molecular motions in the glassy state are localized, and the correlation length of the motions does not exceed the length of the DGEBA repeat unit. BPA ring motions contribute
Effets de la formation sur la violence conjugale
Zaher, Eman; Keogh, Kelly; Ratnapalan, Savithiri
2014-01-01
Résumé Objectif Décrire et évaluer l’efficacité de la formation concernant la violence conjugale pour améliorer les connaissances et permettre la reconnaissance et la prise en charge par les médecins des femmes victimes de violence. Sources des données On a fait une recension dans la base de données des révisions systématiques de Cochrane, MEDLINE, PubMed, PsycINFO, ERIC et EMBASE pour trouver des articles publiés entre le 1e janvier 2000 et le 1e novembre 2012. Des recherches manuelles ont complété cette recension pour cerner des articles pertinents à l’aide d’une stratégie de recherche combinant des textes, mots et expressions MeSH. Sélection des études On a choisi des études randomisées contrôlées qui portaient sur des interventions éducatives à l’intention des médecins et fournissaient des données sur les effets des interventions. Synthèse On a inclus 9 études randomisées contrôlées qui décrivaient différentes approches pédagogiques et diverses mesures des résultats. Trois études examinaient les effets d’interventions éducatives pour des médecins en formation postdoctorale et ont constaté une augmentation des connaissances, mais il n’y a eu aucun changement dans le comportement en ce qui a trait à l’identification des victimes de violence conjugale. Six études portaient sur des interventions éducatives pour des médecins en pratique active. Trois d’entre elles utilisaient une approche à multiples facettes pour les médecins, qui combinait une formation ainsi que des interventions de soutien de la part du système pour changer les comportements des médecins, comme une sensibilisation générale accrue à la violence conjugale au moyen de brochures et d’affiches, des aide-mémoire pour rappeler aux médecins comment identifier les victimes, des moyens pour faciliter l’accès des médecins à des services de soutien pour les victimes, la réalisation d’audits et la fourniture de rétroaction. Les
Genetic code, hamming distance and stochastic matrices.
He, Matthew X; Petoukhov, Sergei V; Ricci, Paolo E
2004-09-01
In this paper we use the Gray code representation of the genetic code C=00, U=10, G=11 and A=01 (C pairs with G, A pairs with U) to generate a sequence of genetic code-based matrices. In connection with these code-based matrices, we use the Hamming distance to generate a sequence of numerical matrices. We then further investigate the properties of the numerical matrices and show that they are doubly stochastic and symmetric. We determine the frequency distributions of the Hamming distances, building blocks of the matrices, decomposition and iterations of matrices. We present an explicit decomposition formula for the genetic code-based matrix in terms of permutation matrices, which provides a hypercube representation of the genetic code. It is also observed that there is a Hamiltonian cycle in a genetic code-based hypercube.
Rotationally invariant ensembles of integrable matrices
NASA Astrophysics Data System (ADS)
Yuzbashyan, Emil A.; Shastry, B. Sriram; Scaramazza, Jasen A.
2016-05-01
We construct ensembles of random integrable matrices with any prescribed number of nontrivial integrals and formulate integrable matrix theory (IMT)—a counterpart of random matrix theory (RMT) for quantum integrable models. A type-M family of integrable matrices consists of exactly N -M independent commuting N ×N matrices linear in a real parameter. We first develop a rotationally invariant parametrization of such matrices, previously only constructed in a preferred basis. For example, an arbitrary choice of a vector and two commuting Hermitian matrices defines a type-1 family and vice versa. Higher types similarly involve a random vector and two matrices. The basis-independent formulation allows us to derive the joint probability density for integrable matrices, similar to the construction of Gaussian ensembles in the RMT.
Rotationally invariant ensembles of integrable matrices.
Yuzbashyan, Emil A; Shastry, B Sriram; Scaramazza, Jasen A
2016-05-01
We construct ensembles of random integrable matrices with any prescribed number of nontrivial integrals and formulate integrable matrix theory (IMT)-a counterpart of random matrix theory (RMT) for quantum integrable models. A type-M family of integrable matrices consists of exactly N-M independent commuting N×N matrices linear in a real parameter. We first develop a rotationally invariant parametrization of such matrices, previously only constructed in a preferred basis. For example, an arbitrary choice of a vector and two commuting Hermitian matrices defines a type-1 family and vice versa. Higher types similarly involve a random vector and two matrices. The basis-independent formulation allows us to derive the joint probability density for integrable matrices, similar to the construction of Gaussian ensembles in the RMT.
The equipment for the preparation of micro and nanoscale metallic glassy fibers.
Ding, D W; Yi, J; Liu, G L; Sun, Y T; Zhao, D Q; Pan, M X; Bai, H Y; Wang, W H
2014-10-01
A supercooled liquid extraction method and apparatus for micro and nanoscale metallic glassy fiber preparation was developed. Using the fiber fabrication equipment, micro to nanoscale metallic glassy fibers with diameter ranging from 70 nm to 300 μm can be obtained by wire drawing in the supercooled liquid region of metallic glasses via superplastic deformation. The obtained metallic glassy fibers possess precisely designed and controlled sizes, high structural uniformity and high degree of surface smoothness.
The equipment for the preparation of micro and nanoscale metallic glassy fibers
NASA Astrophysics Data System (ADS)
Ding, D. W.; Yi, J.; Liu, G. L.; Sun, Y. T.; Zhao, D. Q.; Pan, M. X.; Bai, H. Y.; Wang, W. H.
2014-10-01
A supercooled liquid extraction method and apparatus for micro and nanoscale metallic glassy fiber preparation was developed. Using the fiber fabrication equipment, micro to nanoscale metallic glassy fibers with diameter ranging from 70 nm to 300 μm can be obtained by wire drawing in the supercooled liquid region of metallic glasses via superplastic deformation. The obtained metallic glassy fibers possess precisely designed and controlled sizes, high structural uniformity and high degree of surface smoothness.
Crystallization of the glassy grain boundary phase in silicon nitride ceramics
NASA Technical Reports Server (NTRS)
Drummond, Charles H., III
1991-01-01
The role was studied of the intergranular glassy phase in silicon nitride as-processed with yttria as a sintering aid. The microstructure, crystallization, and viscosity of the glassy phase were areas studied. Crystallization of the intergranular glassy phase to more refractory crystalline phases should improve the high temperature mechanical properties of the silicon nitride. The addition of a nucleating agent will increase the rate of crystallization. The measurement of the viscosity of the glassy phase will permit the estimation of the high temperature deformation of the silicon nitride.
Canonical form of Hamiltonian matrices
NASA Astrophysics Data System (ADS)
Zuker, A. P.; Waha Ndeuna, L.; Nowacki, F.; Caurier, E.
2001-08-01
On the basis of shell model simulations, it is conjectured that the Lanczos construction at fixed quantum numbers defines-within fluctuations and behavior very near the origin-smooth canonical matrices whose forms depend on the rank of the Hamiltonian, dimensionality of the vector space, and second and third moments. A framework emerges that amounts to a general Anderson model capable of dealing with ground state properties and strength functions. The smooth forms imply binomial level densities. A simplified approach to canonical thermodynamics is proposed.
Arabidopsis GLASSY HAIR genes promote trichome papillae development
Kirik, Viktor
2013-01-01
Specialized plant cells form cell walls with distinct composition and properties pertinent to their function. Leaf trichomes in Arabidopsis form thick cell walls that support the upright growth of these large cells and, curiously, have strong light-reflective properties. To understand the process of trichome cell-wall maturation and the molecular origins of this optical property, mutants affected in trichome light reflection were isolated and characterized. It was found that GLASSY HAIR (GLH) genes are required for the formation of surface papillae structures at late stages of trichome development. Trichomes in these mutants appeared transparent due to unobstructed light transmission. Genetic analysis of the isolated mutants revealed seven different gene loci. Two—TRICHOME BIREFRINGENCE (TBR) and NOK (Noeck)—have been reported previously to have the glassy trichome mutant phenotype. The other five glh mutants were analysed for cell-wall-related phenotypes. A significant reduction was found in cellulose content in glh2 and glh4 mutant trichomes. In addition to the glassy trichome phenotype, the glh6 mutants showed defects in leaf cuticular wax, and glh6 was found to represent a new allele of the eceriferum 10 (cer10) mutation. Trichomes of the glh1 and glh3 mutants did not show any other phenotypes beside reduced papillae formation. These data suggest that the GLH1 and GLH3 genes may have specific functions in trichome papillae formation, whereas GLH2, GLH4, and GLH6 genes are also involved in deposition of other cell-wall components. PMID:24014871
Some Recent Developments in Structure and Glassy Behavior of Proteins
NASA Astrophysics Data System (ADS)
Hu, Chin-Kun
2012-02-01
We have used ARVO developed by us to find that the ratio of volume and surface area of proteins in Protein Data Bank distributed in a very narrow region [1]. Such result is useful for the determination of protein 3D structures. It has been widely known that a spin glass model can be used to understand the slow relaxation behavior of a glass at low temperatures [2]. We have used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that polymer chains with neighboring monomers connected by rigid bonds can relax very slowly and show glassy behavior [3]. We have also found that native collagen fibrils show glassy behavior at room temperatures [4]. The results of [3] and [4] about the glassy behavior of polymers or proteins are useful for understanding the mechanism for a biological system to maintain in a non-equilibrium state, including the ancient seed [5], which can maintain in a non-equilibrium state for a very long time. (1) M.-C. Wu, M. S. Li, W.-J. Ma, M. Kouza, and C.-K. Hu, EPL, in press (2011); (2) C. Dasgupta, S.-K. Ma, and C.-K. Hu. Phys. Rev. B 20, 3837-3849 (1979); (3) W.-J. Ma and C.-K. Hu, J. Phys. Soc. Japan 79, 024005, 024006, 054001, and 104002 (2010), C.-K. Hu and W.-J. Ma, Prog. Theor. Phys. Supp. 184, 369 (2010); S. G. Gevorkian, A. E. Allahverdyan, D. S. Gevorgyan and C.-K. Hu, EPL 95, 23001 (2011); S. Sallon, et al. Science 320, 1464 (2008).
Transparent, superhard amorphous carbon phase from compressing glassy carbon
NASA Astrophysics Data System (ADS)
Yao, Mingguang; Xiao, Junping; Fan, Xianhong; Liu, Ran; Liu, Bingbing
2014-01-01
Raman spectroscopy has been used to study the transformations of glassy carbon (GC) under high pressure. A GC sphere has been observed to transform into a transparent carbon phase above 33 GPa. The transformation is associated with a change in bonding character of carbon from sp2 to sp3 hybridization and an increase in hardness. The yield strength of the GC sphere reaches a value of 120 GPa at a confining pressure of 62 GPa, which is comparable to that of diamond at ambient conditions. The stress induced by the pressure medium is important for the observed transformations of GC under pressure.
Evidence for a glassy state in strongly driven carbon
NASA Astrophysics Data System (ADS)
Brown, C. R. D.; Gericke, D. O.; Cammarata, M.; Cho, B. I.; Döppner, T.; Engelhorn, K.; Förster, E.; Fortmann, C.; Fritz, D.; Galtier, E.; Glenzer, S. H.; Harmand, M.; Heimann, P.; Kugland, N. L.; Lamb, D. Q.; Lee, H. J.; Lee, R. W.; Lemke, H.; Makita, M.; Moinard, A.; Murphy, C. D.; Nagler, B.; Neumayer, P.; Plagemann, K.-U.; Redmer, R.; Riley, D.; Rosmej, F. B.; Sperling, P.; Toleikis, S.; Vinko, S. M.; Vorberger, J.; White, S.; White, T. G.; Wünsch, K.; Zastrau, U.; Zhu, D.; Tschentscher, T.; Gregori, G.
2014-06-01
Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen close to their original positions in the fluid.
Nonequilibrium thermodynamics of the soft glassy rheology model
NASA Astrophysics Data System (ADS)
Fuereder, Ingo; Ilg, Patrick
2013-10-01
The soft glassy rheology (SGR) model is a mesoscopic framework which proved to be very successful in describing flow and deformation of various amorphous materials phenomenologically (e.g., pastes, slurries, foams, etc.). In this paper, we cast SGR in a general, model-independent framework for nonequilibrium thermodynamics called general equation for the nonequilibrium reversible-irreversible coupling. This leads to a formulation of SGR which clarifies how it can properly be coupled to hydrodynamic fields, resulting in a thermodynamically consistent, local, continuum version of SGR. Additionally, we find that compliance with thermodynamics imposes the existence of a modification to the stress tensor as predicted by SGR.
Uniaxial-stress-driven transformation in cold compressed glassy carbon
NASA Astrophysics Data System (ADS)
Yao, Mingguang; Fan, Xianhong; Zhang, Weiwei; Bao, Yongjun; Liu, Ran; Sundqvist, Bertil; Liu, Bingbing
2017-09-01
We show that transformation of glassy carbon (GC) into a translucent superhard carbon phase by cold-compression is obtained in the presence of a uniaxial stress field. This transition accompanies with sp2 to sp3 bonding change in GC, and it is found that the uniaxial stress strongly favors this bonding transition. The transformation of GC causes photoluminescence and significantly increases light transmissivity. Upon decompression, the high pressure phase can be maintained under large uniaxial stress at a chamber pressure even down to ˜10 GPa. We discuss possible mechanisms of these transitions by a distinct bonding process that occurs in noncrystalline carbon.
Microscale rheology of a soft glassy material close to yielding.
Jop, Pierre; Mansard, Vincent; Chaudhuri, Pinaki; Bocquet, Lydéric; Colin, Annie
2012-04-06
Using confocal microscopy, we study the flow of a model soft glassy material: a concentrated emulsion. We demonstrate the micro-macro link between in situ measured movements of droplets during the flow and the macroscopic rheological response of a concentrated emulsion, in the form of scaling relationships connecting the rheological "fluidity" with local standard deviation of the strain-rate tensor. Furthermore, we measure correlations between these local fluctuations, thereby extracting a correlation length which increases while approaching the yielding transition, in accordance with recent theoretical predictions.
Evidence for a glassy state in strongly driven carbon.
Brown, C R D; Gericke, D O; Cammarata, M; Cho, B I; Döppner, T; Engelhorn, K; Förster, E; Fortmann, C; Fritz, D; Galtier, E; Glenzer, S H; Harmand, M; Heimann, P; Kugland, N L; Lamb, D Q; Lee, H J; Lee, R W; Lemke, H; Makita, M; Moinard, A; Murphy, C D; Nagler, B; Neumayer, P; Plagemann, K-U; Redmer, R; Riley, D; Rosmej, F B; Sperling, P; Toleikis, S; Vinko, S M; Vorberger, J; White, S; White, T G; Wünsch, K; Zastrau, U; Zhu, D; Tschentscher, T; Gregori, G
2014-06-09
Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen close to their original positions in the fluid.
Investigation of nonlinear effects in glassy matter using dielectric methods
NASA Astrophysics Data System (ADS)
Lunkenheimer, P.; Michl, M.; Bauer, Th.; Loidl, A.
2017-08-01
We summarize current developments in the investigation of glassy matter using nonlinear dielectric spectroscopy. This work also provides a brief introduction into the phenomenology of the linear dielectric response of glass-forming materials and discusses the main mechanisms that can give rise to nonlinear dielectric response in this material class. Here we mainly concentrate on measurements of the conventional dielectric permittivity at high fields and the higher-order susceptibilities characterizing the 3ω and 5ω components of the dielectric response as performed in our group. Typical results on canonical glass-forming liquids and orientationally disordered plastic crystals are discussed, also treating the special case of supercooled monohydroxy alcohols.
Evidence for a glassy state in strongly driven carbon
Brown, C. R. D.; Gericke, D. O.; Cammarata, M.; Cho, B. I.; Gwangju Inst. of Science and Technology, Gwangju; Inst. for Basic Science, Gwangju ; Döppner, T.; Engelhorn, K.; Förster, E.; Fortmann, C.; Fritz, D.; Galtier, E.; Glenzer, S. H.; Harmand, M.; Heimann, P.; Kugland, N. L.; Lamb, D. Q.; Lee, H. J.; Lee, R. W.; Lemke, H.; Makita, M.; Moinard, A.; Murphy, C. D.; Nagler, B.; Neumayer, P.; Plagemann, K. -U.; Redmer, R.; Riley, D.; Rosmej, F. B.; Sperling, P.; Toleikis, S.; Vinko, S. M.; Vorberger, J.; White, S.; White, T. G.; Wünsch, K.; Zastrau, U.; Zhu, D.; Tschentscher, T.; Gregori, G.
2014-06-09
Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen close to their original positions in the fluid.
Positronics of radiation-induced effects in chalcogenide glassy semiconductors
Shpotyuk, O.; Kozyukhin, S. A.; Shpotyuk, M.; Ingram, A.; Szatanik, R.
2015-03-15
Using As{sub 2}S{sub 3} and AsS{sub 2} glasses as an example, the principal possibility of using positron annihilation spectroscopy methods for studying the evolution of the free volume of hollow nanoobjects in chalcogenide glassy semiconductors exposed to radiation is shown. The results obtained by measurements of the positron annihilation lifetime and Doppler broadening of the annihilation line in reverse chronological order are in full agreement with the optical spectroscopy data in the region of the fundamental absorption edge, being adequately described within coordination defect-formation and physical-aging models.
Nonlocal Parameters for Multiparticle Density Matrices
NASA Astrophysics Data System (ADS)
Linden, N.; Popescu, S.; Sudbery, A.
1999-07-01
As far as entanglement is concerned, two density matrices of n particles are completely equivalent if one can be transformed into the other by local unitary transformations. We present two methods to find whether or not two generic density matrices of arbitrary numbers of spin-1/2 particles are equivalent. Both methods describe density matrices in terms of a finite number of invariant parameters.
The lower bounds for the rank of matrices and some sufficient conditions for nonsingular matrices.
Wang, Dafei; Zhang, Xumei
2017-01-01
The paper mainly discusses the lower bounds for the rank of matrices and sufficient conditions for nonsingular matrices. We first present a new estimation for [Formula: see text] ([Formula: see text] is an eigenvalue of a matrix) by using the partitioned matrices. By using this estimation and inequality theory, the new and more accurate estimations for the lower bounds for the rank are deduced. Furthermore, based on the estimation for the rank, some sufficient conditions for nonsingular matrices are obtained.
Electrical studies on silver based fast ion conducting glassy materials
Rao, B. Appa Kumar, E. Ramesh Kumari, K. Rajani Bhikshamaiah, G.
2014-04-24
Among all the available fast ion conductors, silver based glasses exhibit high conductivity. Further, glasses containing silver iodide enhances fast ion conducting behavior at room temperature. Glasses of various compositions of silver based fast ion conductors in the AgI−Ag{sub 2}O−[(1−x)B{sub 2}O{sub 3}−xTeO{sub 2}] (x=0 to1 mol% in steps of 0.2) glassy system have been prepared by melt quenching method. The glassy nature of the compounds has been confirmed by X-ray diffraction. The electrical conductivity (AC) measurements have been carried out in the frequency range of 1 KHz–3MHz by Impedance Analyzer in the temperature range 303–423K. The DC conductivity measurements were also carried out in the temperature range 300–523K. From both AC and DC conductivity studies, it is found that the conductivity increases and activation energy decreases with increasing the concentration of TeO{sub 2} as well as with temperature. The conductivity of the present glass system is found to be of the order of 10{sup −2} S/cm at room temperature. The ionic transport number of these glasses is found to be 0.999 indicating that these glasses can be used as electrolyte in batteries.
Deformation in Thin Glassy Polymer Films from Surface towards Interior
NASA Astrophysics Data System (ADS)
Chowdhury, Mithun; de Silva, Johann P.; Cross, Graham L. W.
Polymer thin glassy films occupy an important place in last two decades of condensed matter research, concerning its surprising surface mobility and spatially dependent structural relaxation. However, ranges of cleverly designed indirect measurements on confined polymer glassy films already probed its mechanical properties; it is still a challenging task to directly probe such small confined volume through conventional mechanical testing. We have designed confined layer compression testing with a precisely designed and aligned flat probe during nanoindentation, which was further accompanied with atomic force microscopy. Due to natural confinement from the surrounding material, we show that a state of `uniaxial strain' is created beneath the probe under small axial strains. By this methodology we are able to directly probe uniaxial flows under both anelastic and plastic conditions while doing controlled creep studies at different positions in the film starting from surface towards interior. Depending on the extent of deformation, we found ranges of effects, such as densification, anelastic yield, and plastic yield. Enhanced creep rate upon deformation supports the idea of `deformation induced mobility'. Work performed at Trinity College Dublin.
Modeling VOC Sorption and Transport in Glassy Polymeric Membranes
NASA Astrophysics Data System (ADS)
De Angelis, Maria Grazia; Olivieri, Luca; Sarti, G. C.
2010-06-01
In this work we evaluated the sorption, diffusion and permeation of a series of volatile organic compounds (VOCs) (acetone, n-butane, n-pentane, n-hexane, ethanol, methanol, chloroform and toluene) into glassy polymers of increasing fractional free volume (FFV): Polycarbonate (PC), Amorphous Teflon AF1600 and AF2400, poly-trimethylsilyl norbornene (PTMSN) and poly[1-(trimethylsilyl)-1-propyne] (PTMSP). Based on some experimental data of sorption and diffusion, and on theoretical and empirical models for the solubility and diffusion coefficients, the permeability for vapor/N2 mixtures was evaluated. These parameters are useful for the membrane separation processes and for other applications such as chemical sensors. The ideal separation factors of glassy polymeric membranes versus mixtures of VOCs and N2 were estimated at various pressures and compositions and at 25° C. The selectivity vs. permeability maps for the mixtures considered were plotted, showing that some of these materials show potentially the same selective ability of rubbery polymeric films. In particular it is shown that, the higher the FFV, the better the vapor/gas selectivity.
Effect of glassy modes on electron spin-lattice relaxation in solid ethanol
NASA Astrophysics Data System (ADS)
Merunka, Dalibor; Kveder, Marina; Jokić, Milan; Rakvin, Boris
2013-03-01
Electron spin-lattice relaxation (SLR) of TEMPO radical was measured in the crystalline and glassy states of deuterated ethanol in the temperature range 5-80 K using X-band electron paramagnetic resonance (EPR). The measured SLR rates are higher in the glassy than in crystalline state and the excess SLR rate in glassy state is much lower than in ethanol. This result suggests that extra modes in glassy state, i.e. glassy modes, produce the excess SLR rate via the electron-nuclear dipolar (END) interaction between the electron spin of radical and the matrix protons or deuterons. Using the soft-potential model and assuming the END interaction between the electron spin and the matrix protons, the contributions to SLR rate of various mechanisms of glassy modes were theoretically analyzed. The evaluations of SLR rates in glassy ethanol indicate two main mechanisms of glassy modes: thermally activated relaxation of double-well systems and phonon-induced relaxation of quasi-harmonic local modes. The SLR rates induced by these mechanisms correlate well with the experimental data.
Effects of glassy-winged sharpshooter feeding, size, and lipid content on egg maturation
USDA-ARS?s Scientific Manuscript database
The glassy-winged sharpshooter (Homalodisca vitripennis) is synovigenic and must feed during the adult stage to produce eggs. While glassy-winged sharpshooter egg production is related to adult feeding, rates of egg production are variable. In this study, effects of lipid allocation to eggs and fema...
Evaluation of grapevine as a host for the glassy-winged sharpshooter
USDA-ARS?s Scientific Manuscript database
Grapevine was evaluated as a feeding and oviposition host for the glassy-winged sharpshooter. Two sets of experiments were conducted. The first set compared performance and preference of glassy-winged sharpshooter females for grapevine (cv. Chardonnay) versus cowpea (Vigna unguiculata cultivar black...
Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery
Neudecker, Bernd J.; Bates, John B.
2001-01-01
Disclosed are silicon-tin oxynitride glassy compositions which are especially useful in the construction of anode material for thin-film electrochemical devices including rechargeable lithium-ion batteries, electrochromic mirrors, electrochromic windows, and actuators. Additional applications of silicon-tin oxynitride glassy compositions include optical fibers and optical waveguides.
Lowest matric potential in quartz: Metadynamics evidence
NASA Astrophysics Data System (ADS)
Zhang, Chao; Dong, Yi; Liu, Zhen
2017-02-01
The lowest matric potential is an important soil property characterizing the strength of retaining water molecules and a key parameter in defining a complete soil water retention curve. However, the exact value of the lowest matric potential is still unclear and cannot be measured due to the limitation of current experimental technology. In this study, a general theoretical framework based on metadynamics was proposed to determine the lowest matric potential in quartz minerals. The matric potential was derived from partial volume free energy and can be further calculated by the difference between the adsorption free energy and self-hydration free energy. Metadynamics was employed to enhance molecular dynamics for determination of the adsorption free energy. In addition to the water-mineral interaction, the adsorptive water layer structure was identified as an important mechanism that may lower the free energy of water molecules. The lowest matric potential for quartz mineral was found as low as -2.00 GPa.
Carbon in the matrices of ordinary chondrites
NASA Astrophysics Data System (ADS)
Makjanic, J.; Vis, R. D.; Hovenier, J. W.; Heymann, D.
1993-03-01
Carbon in the petrologic matrices of a number of ordinary chondrites of groups H, L, and LL, and of types 3 through 6 was studied with a nuclear microprobe and a Raman microprobe. The majority of the matrices had carbon contents in the narrow range between 0.03 and 0.2 wt pct. The carbon content decreased only slightly with increasing petrologic type. Carbon-rich coats around troilite and/or metal phases occurred in five meteorites. Poorly ordered carbon was found in the matrices. The carbon in the meteorites of higher petrologic types was slightly better ordered than in the meteorites of lower types. The narrow range of carbon contents and the similarity of the structural form of carbon in the matrices of the measured ordinary chondrites, which represent all groups and types, imply that their matrices may contain a common component, which might be of interstellar origin.
Gels from soft hairy nanoparticles in polymeric matrices
NASA Astrophysics Data System (ADS)
Vlassopoulos, Dimitris
2013-03-01
Hairy particles represent a huge class of soft colloids with tunable interactions and properties. Advances in synthetic chemistry have enabled obtaining well-characterized such systems for specific needs. In this talk we present two model hairy soft particles with diameters of the order of tens of nanometers, star polymers and polymerically grafted spherical particles. In particular, we discuss design strategies for dispersing them in polymeric matrices and eventually creating and breaking gels. Control parameters are the matrix molar mass, the grafting density (or functionality) and the size of the grafts (or arms). The linear viscoelastic properties and slow time evolution of the gels are examined in view of the existing knowledge from colloidal gels consisting of micron-sized particles, and compared. In the case of stars we start from a concentrated glassy suspension in molecular solvent and add homopolymer at increasing concentration, and as a result of the induced osmotic pressure the stars shrink and a depletion gel is formed. For the grafted colloidal particles, they are added at low concentration to a polymer matrix, and it has been shown that under certain conditions the anisotropy of interactions gives rise to network formation. We then focus on the nonlinear rheological response and in particular the effect of shear flow in inducing a solid to liquid transition. Our studies show that the yielding process is gradual and shares many common features with that of flocculated colloidal suspensions, irrespectively of the shape of the building block of the gel. Whereas shear can melt such a gel, it cannot break it into its constituent blocks and hence fully disperse the hairy nanoparticles. On the other hand, the hairy particles are intrinsically hybrid. We show how this important feature is reflected on the heating of the gels. In that case, the mismatch of thermal expansion coefficients of core and shell appears to play a role on the particle response as it
Sex Differences in Performance on Raven's Progressive Matrices: A Review.
ERIC Educational Resources Information Center
Court, John H.
1983-01-01
The article reviews the application of Raven's Progressive Matrices (RPM) on the performance of the sexes based on scholarly achievements. It also compares the result of the RPM to Standard Progressive Matrices and to Colored Progressive Matrices. (TLJ)
Surface treatment of Glassy Polymeric Carbon artifacts for medical applications
Rodrigues, M. G.; Zimmerman, R. L.; Rezende, M. C.
1999-06-10
Glassy Polymeric Carbon (GPC) has been used for mechanical cardiac valves. GCP valves are chemically biocompatible and durable, but less thromboresistant than biological valves. Enhanced thromboresistance of mechanical cardiac components with porous surface has been demonstrated. The endothelialized tissue blood-contacting surface adheres to the porous prosthetic component and decreases the formation of thrombus. Our experience has shown that the porosity of GPC can be increased and controlled by MeV ion bombardment. We report here that the surface roughness of heat-treated GPC bombarded with C, O, Si and Au is also enhanced. The surface roughness of the ion-bombarded samples is on a smaller scale than those roughened by sand blasting (measurements made with Perthomete S and P). The roughness decreases slightly after heat treatment, in linear proportion to the shrinkage of the test piece. Possible beneficial effects of the imbedded ions on tissue adherence and thromboresistance must be determined by in vivo animal experiments.
Glassy dynamics of nanoparticles in semiflexible ring polymer nanocomposite melts
NASA Astrophysics Data System (ADS)
Zhou, Xiaolin; Jiang, Yangwei; Deng, Zhenyu; Zhang, Linxi
2017-03-01
By employing molecular dynamics simulations, we explore the dynamics of NPs in semiflexible ring polymer nanocomposite melts. A novel glass transition is observed for NPs in semiflexible ring polymer melts as the bending energy (Kb) of ring polymers increases. For NPs in flexible ring polymer melts (Kb = 0), NPs move in the classic diffusive behavior. However, for NPs in semiflexible ring polymer melts with large bending energy, NPs diffuse very slowly and exhibit the glassy state in which the NPs are all irreversibly caged be the neighbouring semiflexible ring polymers. This glass transition occurs well above the classical glass transition temperature at which microscopic mobility is lost, and the topological interactions of semiflexible ring polymers play an important role in this non-classical glass transition. This investigation can help us understand the nature of the glass transition in polymer systems.
Development of an Automatic Fabrication System for Cast Glassy Alloys
NASA Astrophysics Data System (ADS)
Yokoyama, Yoshihiko
2015-04-01
The developed automatic fabrication system comprised three component functions: weighing, alloying, and casting. The measurement error of automatic weighing specimen was about less 1 pct for Zr-based master alloys (approximately 30 g). Especially, sufficient stirrer effect of arc-melting ingot for homogeneity can be achieved by the development of sinusoidal arcing and applying magnetic field. In order to achieve superior homogeneity of the glass structure with no secondary phase ( i.e., an intermetallic compound with a high melting temperature), a prealloying process should be advisable. In this study, high reliability of the density and mechanical properties of automatic processed cast glassy alloys (CGAs) was successfully obtained. The developed automatic fabrication process has a potential to accelerate the industrial application of CGAs in the near future.
Evidence for a glassy state in strongly driven carbon
Brown, C. R. D.; Gericke, D. O.; Cammarata, M.; Cho, B. I.; Döppner, T.; Engelhorn, K.; Förster, E.; Fortmann, C.; Fritz, D.; Galtier, E.; Glenzer, S. H.; Harmand, M.; Heimann, P.; Kugland, N. L.; Lamb, D. Q.; Lee, H. J.; Lee, R. W.; Lemke, H.; Makita, M.; Moinard, A.; Murphy, C. D.; Nagler, B.; Neumayer, P.; Plagemann, K.-U.; Redmer, R.; Riley, D.; Rosmej, F. B.; Sperling, P.; Toleikis, S.; Vinko, S. M.; Vorberger, J.; White, S.; White, T. G.; Wünsch, K.; Zastrau, U.; Zhu, D.; Tschentscher, T.; Gregori, G.
2014-01-01
Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen close to their original positions in the fluid. PMID:24909903
Evidence for a glassy state in strongly driven carbon
Brown, C. R. D.; Gericke, D. O.; Cammarata, M.; ...
2014-06-09
Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen closemore » to their original positions in the fluid.« less
Determination of Fracture Patterns in Glass and Glassy Polymers.
Baca, Allison C; Thornton, John I; Tulleners, Frederic A
2016-01-01
The study of fractures of glass, glassy-type materials, and plastic has long been of interest to the forensic community. The focus of this interest has been the use of glass and polymer fractures to associate items of evidence under the assumption that each fracture is different. Generally, it is well-accepted that deviations exist; however, the emphasis has been on classifying and predicting fracture rather than determining that each fracture is different. This study documented the controlled fracture patterns of 60 glass panes, 60 glass bottles, and 60 plastic tail light lens covers using both dynamic impact and static pressure methods under closely controlled conditions. Each pattern was intercompared, and based on the limited specimens tested in this study, the results illustrate that the fracture patterns are different. Further repetitive studies, under controlled conditions, will be needed to provide more statistical significance to the theory that each fracture forms a nonreproducible fracture pattern.
Fundamental differences between glassy dynamics in two and three dimensions.
Flenner, Elijah; Szamel, Grzegorz
2015-06-12
The two-dimensional freezing transition is very different from its three-dimensional counterpart. In contrast, the glass transition is usually assumed to have similar characteristics in two and three dimensions. Using computer simulations, here we show that glassy dynamics in supercooled two- and three-dimensional fluids are fundamentally different. Specifically, transient localization of particles on approaching the glass transition is absent in two dimensions, whereas it is very pronounced in three dimensions. Moreover, the temperature dependence of the relaxation time of orientational correlations is decoupled from that of the translational relaxation time in two dimensions but not in three dimensions. Last, the relationships between the characteristic size of dynamically heterogeneous regions and the relaxation time are very different in two and three dimensions. These results strongly suggest that the glass transition in two dimensions is different than in three dimensions.
Glassy boundary layers vs enhanced mobility in capped polymer films
NASA Astrophysics Data System (ADS)
Batistakis, C.; Michels, M. A. J.; Lyulin, A. V.
2013-07-01
Molecular-dynamics simulations have been carried out for a coarse-grained model of a random AB-copolymer confined between two crystalline substrates. The strength of substrate-polymer interactions, and the distance between the two substrates have been varied in a wide range. For thick films the film-averaged segmental mobility decreases for intermediate adsorption strengths, but start to increase for very high substrate-polymer attraction strength. We saw that this non-monotonic behavior is caused by a very strong heterogeneity of the segmental dynamics above the glass-transition temperature: the segmental mobility slows down drastically close to adsorbing substrates, but strongly increases in the middle part of the film. This effect, and its sensitive dependence on film thickness, are explained by finite-size effects in confinement, in combination with glassy boundary layers. It is demonstrated that film-averaged mobility as often measured cannot be understood without resolving local mobility in space and time.
Electrochemical Determination of Albendazole at Glassy Carbon Electrode.
Gowda, Jayant I; Kantikar, Rahul B; Harakuni, Devaraddi G; Jadhav, Kirankumar Y; Chanagoudar, Vinay C; Nandibewoor, Sharanappa T
2016-11-01
In this article, the electrochemical behavior on a glassy carbon electrode (GCE) was investigated and the electrochemical parameters of albendazole (ALB) were calculated. ALB effectively accumulated on the GCE surface and caused a pair of redox peaks at around 1.095 V and 1.028 V and an oxidation peak at 0.844 V (versus saturated calomel electrode) in 0.2 M phosphate buffer solution (pH 3.0). Under optimized conditions, the anodic peak current was linear to the ALB concentration the range of 1.5 × 10(-7) M to 4.0 × 10(-5) M. The regression equation was: Ipa (10(-6) A) = 0.79 [ALB] (μM) + 0.84 (R2 = 0.982). The detection limit 6.08 × 10(-8) M was obtained. The proposed method was successfully used to determine ALB content in tablet samples, with satisfactory results.
Glassy behavior of a homopolymer from molecular dynamics simulations.
Dokholyan, Nikolay V; Pitard, Estelle; Buldyrev, Sergey V; Stanley, H Eugene
2002-03-01
We study at- and out-of-equilibrium dynamics of a single homopolymer chain at low temperature using molecular dynamics. The main quantities of interest are the average root mean square displacement of the monomers below the theta point, and the structure factor, as a function of time. The observation of these quantities show a close resemblance to those measured in structural glasses and suggest that the polymer chain in its low temperature phase is in a glassy phase, with its dynamics dominated by traps. In equilibrium, at low temperature, we observe the trapping of the monomers and a slowing down of the overall motion of the polymer as well as nonexponential relaxation of the structure factor. Out of equilibrium, at low temperatures, we compute the two-time quantities and observe breaking of ergodicity in a range of waiting times, with the onset of aging.
Glassy behavior of a homopolymer from molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Dokholyan, Nikolay V.; Pitard, Estelle; Buldyrev, Sergey V.; Stanley, H. Eugene
2002-03-01
We study at- and out-of-equilibrium dynamics of a single homopolymer chain at low temperature using molecular dynamics. The main quantities of interest are the average root mean square displacement of the monomers below the θ point, and the structure factor, as a function of time. The observation of these quantities show a close resemblance to those measured in structural glasses and suggest that the polymer chain in its low temperature phase is in a glassy phase, with its dynamics dominated by traps. In equilibrium, at low temperature, we observe the trapping of the monomers and a slowing down of the overall motion of the polymer as well as nonexponential relaxation of the structure factor. Out of equilibrium, at low temperatures, we compute the two-time quantities and observe breaking of ergodicity in a range of waiting times, with the onset of aging.
Glassy dynamics of nanoparticles in semiflexible ring polymer nanocomposite melts
Zhou, Xiaolin; Jiang, Yangwei; Deng, Zhenyu; Zhang, Linxi
2017-01-01
By employing molecular dynamics simulations, we explore the dynamics of NPs in semiflexible ring polymer nanocomposite melts. A novel glass transition is observed for NPs in semiflexible ring polymer melts as the bending energy (Kb) of ring polymers increases. For NPs in flexible ring polymer melts (Kb = 0), NPs move in the classic diffusive behavior. However, for NPs in semiflexible ring polymer melts with large bending energy, NPs diffuse very slowly and exhibit the glassy state in which the NPs are all irreversibly caged be the neighbouring semiflexible ring polymers. This glass transition occurs well above the classical glass transition temperature at which microscopic mobility is lost, and the topological interactions of semiflexible ring polymers play an important role in this non-classical glass transition. This investigation can help us understand the nature of the glass transition in polymer systems. PMID:28290546
Surface treatment of Glassy Polymeric Carbon artifacts for medical applications
NASA Astrophysics Data System (ADS)
Rodrigues, M. G.; Ila, D.; Rezende, M. C.; Damiao, A.; Zimmerman, R. L.
1999-06-01
Glassy Polymeric Carbon (GPC) has been used for mechanical cardiac valves. GCP valves are chemically biocompatible and durable, but less thromboresistant than biological valves. Enhanced thromboresistance of mechanical cardiac components with porous surface has been demonstrated. The endothelialized tissue blood-contacting surface adheres to the porous prosthetic component and decreases the formation of thrombus. Our experience has shown that the porosity of GPC can be increased and controlled by MeV ion bombardment. We report here that the surface roughness of heat-treated GPC bombarded with C, O, Si and Au is also enhanced. The surface roughness of the ion-bombarded samples is on a smaller scale than those roughened by sand blasting (measurements made with Perthomete S&P). The roughness decreases slightly after heat treatment, in linear proportion to the shrinkage of the test piece. Possible beneficial effects of the imbedded ions on tissue adherence and thromboresistance must be determined by in vivo animal experiments.
Poly(4-vinylpyridine)-coated glassy carbon flow detectors
Wang, J.; Golden, T.; Tuzhi, P.
1987-03-01
The performance of a thin-layer flow detector with a glassy carbon electrode coated with a film of protonated poly(4-vinylpyridine) is described. Substantial improvement in the selectivity of amperometric detection for liquid chromatography and flow injection systems is observed as a result of excluding cationic species from the surface. The detector response was evaluated with respect to flow rate, solute concentration, coating scheme, film-to-film reproducibility, and other variables. Despite the increase in diffusional resistance, low detection limits of ca. 0.04 and 0.10 ng of ascorbic acid and uric acid, respectively, are maintained. Protection from organic surfactants can be coupled to the charge exclusion effect by using a bilayer coating, with a cellulose acetate film atop the poly(4-vinylpyridine) layer. Applicability to urine sample is demonstrated.
Rotationally invariant ensembles of integrable matrices
NASA Astrophysics Data System (ADS)
Scaramazza, Jasen; Yuzbashyan, Emil; Shastry, Sriram
We construct ensembles of random integrable matrices with any prescribed number of nontrivial integrals and formulate integrable matrix theory (IMT) - a counterpart of random matrix theory (RMT) for quantum integrable models. A type- M family of integrable matrices consists of exactly N - M independent commuting N × N matrices linear in a real parameter. We first develop a rotationally invariant parameterization of such matrices, previously only constructed in a preferred basis. For example, an arbitrary choice of a vector and two commuting Hermitian matrices defines a type-1 family and vice-versa. Higher types similarly involve a random vector and two matrices. The basis-independent formulation allows us to derive the joint probability density for integrable matrices, in a manner similar to the construction of Gaussian ensembles in the RMT. This work was supported in part by the David and Lucille Packard Foundation. The work at UCSC was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under Award # FG02-06ER46319.
Glassy fragmental rocks of Macquarie Island (Southern Ocean): Mechanism of formation and deposition
NASA Astrophysics Data System (ADS)
Dickinson, J. A.; Harb, N.; Portner, R. A.; Daczko, N. R.
2009-04-01
Glassy fragmental rocks are interlayered with pillow basalt and tabular basalt on Macquarie Island (54°30' S, 158°54' E). These facies formed along the Proto-Macquarie Spreading Ridge between 6 and 12 Ma and have since been uplifted and exposed on the apex of the Macquarie Ridge Complex. Through a combination of field and microscopic analyses, we investigate the submarine production, transportation, deposition and lithification of basalt and sideromelane clasts within a spreading-ridge environment. The findings of this study indicate that these glassy grains form predominantly by cooling-contraction granulation of pillow lava rinds while crystalline basalt clasts are derived from the fragmentation of pillows along concentric and radial cooling joints. Hyaloclastite breccias consist of crystalline volcanic clasts in a matrix of glassy fragments, and are termed pillow-fragment breccias when clasts identifiable as pillows account for > 25% of the cobble-sized fraction. This glassy fragmental sediment was transported predominantly by short-lived grain flows and deposited as a result of syn-eruptive talus accumulation. The above interpretations culminate in the production of a depositional model: these glassy fragmental rocks formed on the slopes of pillow cones following gravitational collapse of a destabilised cone flank along the Proto-Macquarie Spreading Ridge. Scanning electron microscopy reveals that palagonite alteration rims on glassy grains lithify the sediment. The findings may be used as an analogue for the formation of glassy fragmental rocks along past and present mid-oceanic ridges.
Community Detection for Correlation Matrices
NASA Astrophysics Data System (ADS)
MacMahon, Mel; Garlaschelli, Diego
2015-04-01
A challenging problem in the study of complex systems is that of resolving, without prior information, the emergent, mesoscopic organization determined by groups of units whose dynamical activity is more strongly correlated internally than with the rest of the system. The existing techniques to filter correlations are not explicitly oriented towards identifying such modules and can suffer from an unavoidable information loss. A promising alternative is that of employing community detection techniques developed in network theory. Unfortunately, this approach has focused predominantly on replacing network data with correlation matrices, a procedure that we show to be intrinsically biased because of its inconsistency with the null hypotheses underlying the existing algorithms. Here, we introduce, via a consistent redefinition of null models based on random matrix theory, the appropriate correlation-based counterparts of the most popular community detection techniques. Our methods can filter out both unit-specific noise and system-wide dependencies, and the resulting communities are internally correlated and mutually anticorrelated. We also implement multiresolution and multifrequency approaches revealing hierarchically nested subcommunities with "hard" cores and "soft" peripheries. We apply our techniques to several financial time series and identify mesoscopic groups of stocks which are irreducible to a standard, sectorial taxonomy; detect "soft stocks" that alternate between communities; and discuss implications for portfolio optimization and risk management.
Special symmetric quark mass matrices
NASA Astrophysics Data System (ADS)
Silva-Marcos, J. I.
1998-12-01
We give a procedure to construct a special class of symmetric quark mass matrices near the democratic limit of equal Yukawa couplings for each sector. It is shown that within appropriate weak-bases, the requirements of symmetry and arg[det(M)]=0 are very strong conditions, that necessarily lead to a Cabibbo angle given by Vus=sqrt(md/ms), and to Vcb~ms/mb, in first order. In addition, we prove that the recently classified ansätze, which also reproduce these mixing matrix relations, and which were based on the hypothesis of the Universal Strength for Yukawa couplings, where all Yukawa couplings have equal moduli while the flavour dependence is only in their phases, are, in fact, particular cases of the generalized symmetric quark mass matrix ansätze we construct here. In an excellent numerical example, the experimental values on all quark mixings and masses are accommodated, and the CP violation phase parameter is shown to be crucially dependent on the values of mu and Vus.
Takahashi, Hiroki; Fernández-de-Alba, Carlos; Lee, Daniel; Maurel, Vincent; Gambarelli, Serge; Bardet, Michel; Hediger, Sabine; Barra, Anne-Laure; De Paëpe, Gaël
2014-02-01
Thanks to instrumental and theoretical development, notably the access to high-power and high-frequency microwave sources, high-field dynamic nuclear polarization (DNP) on solid-state NMR currently appears as a promising solution to enhance nuclear magnetization in many different types of systems. In magic-angle-spinning DNP experiments, systems of interest are usually dissolved or suspended in glass-forming matrices doped with polarizing agents and measured at low temperature (down to ∼100K). In this work, we discuss the influence of sample conditions (radical concentration, sample temperature, etc.) on DNP enhancements and various nuclear relaxation times which affect the absolute sensitivity of DNP spectra, especially in multidimensional experiments. Furthermore, DNP-enhanced solid-state NMR experiments performed at 9.4 T are complemented by high-field CW EPR measurements performed at the same magnetic field. Microwave absorption by the DNP glassy matrix is observed even below the glass transition temperature caused by softening of the glass. Shortening of electron relaxation times due to glass softening and its impact in terms of DNP sensitivity is discussed. Copyright © 2014. Published by Elsevier Inc.
Random Matrices and Lyapunov Coefficients Regularity
NASA Astrophysics Data System (ADS)
Gallavotti, Giovanni
2017-02-01
Analyticity and other properties of the largest or smallest Lyapunov exponent of a product of real matrices with a "cone property" are studied as functions of the matrices entries, as long as they vary without destroying the cone property. The result is applied to stability directions, Lyapunov coefficients and Lyapunov exponents of a class of products of random matrices and to dynamical systems. The results are not new and the method is the main point of this work: it is is based on the classical theory of the Mayer series in Statistical Mechanics of rarefied gases.
[Basal cell carcinoma with matrical differentiation].
Goldman-Lévy, Gabrielle; Frouin, Eric; Soubeyran, Isabelle; Maury, Géraldine; Guillot, Bernard; Costes, Valérie
2015-04-01
Basal cell carcinoma with matrical differentiation is a very rare variant of basal cell carcinoma. To our knowledge, less than 30 cases have been reported. This tumor is composed of basaloid lobules showing a differentiation toward the pilar matrix cells. Recently, it has been demonstrated that beta-catenin would interfer with physiopathogenesis of matrical tumors, in particular pilomatricomas, but also basal cell carcinomas with matrical differentiation. This is a new case, with immunohistochemical and molecular analysis of beta-catenin, in order to explain its histogenesis.
Probabilistic Signal Recovery and Random Matrices
2016-12-08
AFRL-AFOSR-VA-TR-2016-0369 Probabilistic Signal Recovery and Random Matrices Roman Vershynin UNIVERSITY OF MICHIGAN Final Report 12/08/2016...SUBTITLE Probabilistic Signal Recovery and Random Matrices 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-14-1-0009 5c. PROGRAM ELEMENT NUMBER 61102F 6...computing the permanents of matrices with non-negative entries. In computational graph theory, we studied a randomized algorithm for estimating the number of
Revisiting the texture zero neutrino mass matrices
NASA Astrophysics Data System (ADS)
Singh, Madan; Ahuja, Gulsheen; Gupta, Manmohan
2016-12-01
In the light of refined and large measurements of the reactor mixing angle θ, we have revisited the texture three- and two-zero neutrino mass matrices in the flavor basis. For Majorana neutrinos, it has been explicitly shown that all the texture three-zero mass matrices remain ruled out. Further, for both normal and inverted mass ordering, for the texture two-zero neutrino mass matrices one finds interesting constraints on the Dirac-like CP-violating phase δ and Majorana phases ρ and σ.
Kerov's interlacing sequences and random matrices
NASA Astrophysics Data System (ADS)
Bufetov, Alexey
2013-11-01
To a N × N real symmetric matrix Kerov assigns a piecewise linear function whose local minima are the eigenvalues of this matrix and whose local maxima are the eigenvalues of its (N - 1) × (N - 1) submatrix. We study the scaling limit of Kerov's piecewise linear functions for Wigner and Wishart matrices. For Wigner matrices the scaling limit is given by the Verhik-Kerov-Logan-Shepp curve which is known from asymptotic representation theory. For Wishart matrices the scaling limit is also explicitly found, and we explain its relation to the Marchenko-Pastur limit spectral law.
Kerov's interlacing sequences and random matrices
Bufetov, Alexey
2013-11-15
To a N × N real symmetric matrix Kerov assigns a piecewise linear function whose local minima are the eigenvalues of this matrix and whose local maxima are the eigenvalues of its (N − 1) × (N − 1) submatrix. We study the scaling limit of Kerov's piecewise linear functions for Wigner and Wishart matrices. For Wigner matrices the scaling limit is given by the Verhik-Kerov-Logan-Shepp curve which is known from asymptotic representation theory. For Wishart matrices the scaling limit is also explicitly found, and we explain its relation to the Marchenko-Pastur limit spectral law.
Direct dialling of Haar random unitary matrices
NASA Astrophysics Data System (ADS)
Russell, Nicholas J.; Chakhmakhchyan, Levon; O’Brien, Jeremy L.; Laing, Anthony
2017-03-01
Random unitary matrices find a number of applications in quantum information science, and are central to the recently defined boson sampling algorithm for photons in linear optics. We describe an operationally simple method to directly implement Haar random unitary matrices in optical circuits, with no requirement for prior or explicit matrix calculations. Our physically motivated and compact representation directly maps independent probability density functions for parameters in Haar random unitary matrices, to optical circuit components. We go on to extend the results to the case of random unitaries for qubits.
Au nanoparticles and graphene quantum dots co-modified glassy carbon electrode for catechol sensing
NASA Astrophysics Data System (ADS)
Zhao, Xuan; He, Dawei; Wang, Yongsheng; Hu, Yin; Fu, Chen
2016-03-01
In this letter, the gold nanoparticles and graphene quantum dots were applied to the modification of glassy carbon electrode for the detection of catechol. The synergist cooperation between gold nanoparticles and graphene quantum dots can increase specific surface area and enhance electronic and catalytic properties of glassy carbon electrode. The detection limit of catechol is 0.869 μmol/L, demonstrating the superior detection efficiency of the gold nanoparticles and graphene quantum dots co-modified glassy carbon electrode as a new sensing platform.
Polymorphism in glassy silicon: Inherited from liquid-liquid phase transition in supercooled liquid
Zhang, Shiliang; Wang, Li-Min; Zhang, Xinyu; Qi, Li; Zhang, Suhong; Ma, Mingzhen; Liu, Riping
2015-01-01
Combining molecular dynamics (MD) simulation and Voronoi polyhedral analyses, we discussed the microstructure evolution in liquid and glassy silicon during cooling by focusing on the fraction of various clusters. Liquid-liquid phase transition (LLPT) is detected in supercooled liquid silicon However, freezing the high-density liquid (HDL) to the glassy state is not achieved as the quenching rate goes up to 1014 K/s. The polyamorphism in glassy silicon is found to be mainly associated with low-density liquid (LDL). PMID:25716054
Polymorphism in glassy silicon: Inherited from liquid-liquid phase transition in supercooled liquid
NASA Astrophysics Data System (ADS)
Zhang, Shiliang; Wang, Li-Min; Zhang, Xinyu; Qi, Li; Zhang, Suhong; Ma, Mingzhen; Liu, Riping
2015-02-01
Combining molecular dynamics (MD) simulation and Voronoi polyhedral analyses, we discussed the microstructure evolution in liquid and glassy silicon during cooling by focusing on the fraction of various clusters. Liquid-liquid phase transition (LLPT) is detected in supercooled liquid silicon However, freezing the high-density liquid (HDL) to the glassy state is not achieved as the quenching rate goes up to 1014 K/s. The polyamorphism in glassy silicon is found to be mainly associated with low-density liquid (LDL).
ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES.
Fan, Jianqing; Rigollet, Philippe; Wang, Weichen
High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓ r norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics.
Synchronous correlation matrices and Connes’ embedding conjecture
Dykema, Kenneth J.; Paulsen, Vern
2016-01-15
In the work of Paulsen et al. [J. Funct. Anal. (in press); preprint arXiv:1407.6918], the concept of synchronous quantum correlation matrices was introduced and these were shown to correspond to traces on certain C*-algebras. In particular, synchronous correlation matrices arose in their study of various versions of quantum chromatic numbers of graphs and other quantum versions of graph theoretic parameters. In this paper, we develop these ideas further, focusing on the relations between synchronous correlation matrices and microstates. We prove that Connes’ embedding conjecture is equivalent to the equality of two families of synchronous quantum correlation matrices. We prove that if Connes’ embedding conjecture has a positive answer, then the tracial rank and projective rank are equal for every graph. We then apply these results to more general non-local games.
ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES
Fan, Jianqing; Rigollet, Philippe; Wang, Weichen
2016-01-01
High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓr norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics. PMID:26806986
Modulated filter bank design with nilpotent matrices
NASA Astrophysics Data System (ADS)
Schuller, Gerald; Sweldens, Wim
1999-10-01
We present a technique based on nilpotent matrices for building filter banks with FIR filters and perfect reconstruction. The general design method can be used to design bi-orthogonal filters with unequal filter lengths between analysis and synthesis. This is useful for audio or image coding applications. We can also explicitly control the overall system delay of causal filter banks. The design method is based on a factorization of the polyphase matrices into factors with nilpotent matrices. These factors guarantee mathematical perfect reconstruction of the filter bank, and lead to FIR filters for analysis and synthesis. Using matrices with nilpotency of higher order than 2 leads to FIR filter banks with unequal filter length for analysis and synthesis. The general theory is then applied to the design of cosine modulated filter banks. This leads to an efficient implementation, and it is shown that in this case the filters have to have the same length for analysis and synthesis.
Infinite Products of Random Isotropically Distributed Matrices
NASA Astrophysics Data System (ADS)
Il'yn, A. S.; Sirota, V. A.; Zybin, K. P.
2017-01-01
Statistical properties of infinite products of random isotropically distributed matrices are investigated. Both for continuous processes with finite correlation time and discrete sequences of independent matrices, a formalism that allows to calculate easily the Lyapunov spectrum and generalized Lyapunov exponents is developed. This problem is of interest to probability theory, statistical characteristics of matrix T-exponentials are also needed for turbulent transport problems, dynamical chaos and other parts of statistical physics.
Fast Array Algorithms for Structured Matrices
1989-06-01
matrices and operators, Akademie-Verlag, Berlin, 1984. [111. T. Kailath , Linear Systems , Prentice-Hall, Englewood Cliffs, New Jersey, 1980. [121. T... Linear Systems Prentice-Hall, Englewood Cliffs, New Jersey, 1980. [131. T. Kailath, Signal processing in the VLSI era, VLSI and Modem Signal Processing...vol 5, No. 1., (1984), pp. 237-254. [11]. F. Gantmacher The theory of matrices, vol. 2, Chelsea Publishing Comp., New York, 1960. [121. T. Kailath
Flux Jacobian Matrices For Equilibrium Real Gases
NASA Technical Reports Server (NTRS)
Vinokur, Marcel
1990-01-01
Improved formulation includes generalized Roe average and extension to three dimensions. Flux Jacobian matrices derived for use in numerical solutions of conservation-law differential equations of inviscid flows of ideal gases extended to real gases. Real-gas formulation of these matrices retains simplifying assumptions of thermodynamic and chemical equilibrium, but adds effects of vibrational excitation, dissociation, and ionization of gas molecules via general equation of state.
Decomposition of Balanced Matrices. Part 5: Goggles
1991-10-01
A D-A 247 462 Management Science Research Report #MSRR-573 1~ ~~112 Eil 11 I Decomposition of Balanced Matrices . Part V: Goggles Michele Conforti 12...9001705. I Dipartimento di Matematica Pura ed Applicata, UniversitA di Padova, Via Belzoni 7, 35131 Padova, Italy.f 2 Carnegie Mellon University...NUMBER 4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED DECOMPOSITION OF BALANCED MATRICES . Technical Report, Oct 1991 PART V: GOGGLES 6
Morris, W.
1994-12-31
One can define for an LCP (A, b) with artificial vector d, n internally vertex disjoint Lemke paths to solve the LCP, where A is an n {times} n matrix. The lengths of the set of Lemke paths are investigated in the case that A is a P-matrix. We introduce a class of matrices, the complete hidden Minkowski matrices, that guarantee a set of short Lemke paths.
Flux Jacobian Matrices For Equilibrium Real Gases
NASA Technical Reports Server (NTRS)
Vinokur, Marcel
1990-01-01
Improved formulation includes generalized Roe average and extension to three dimensions. Flux Jacobian matrices derived for use in numerical solutions of conservation-law differential equations of inviscid flows of ideal gases extended to real gases. Real-gas formulation of these matrices retains simplifying assumptions of thermodynamic and chemical equilibrium, but adds effects of vibrational excitation, dissociation, and ionization of gas molecules via general equation of state.
Block Lanczos tridiagonalization of complex symmetric matrices
NASA Astrophysics Data System (ADS)
Qiao, Sanzheng; Liu, Guohong; Xu, Wei
2005-08-01
The classic Lanczos method is an effective method for tridiagonalizing real symmetric matrices. Its block algorithm can significantly improve performance by exploiting memory hierarchies. In this paper, we present a block Lanczos method for tridiagonalizing complex symmetric matrices. Also, we propose a novel componentwise technique for detecting the loss of orthogonality to stablize the block Lanczos algorithm. Our experiments have shown our componentwise technique can reduce the number of orthogonalizations.
Modelisations des effets de surface sur les jets horizontaux subsoniques d'hydrogene et de methane
NASA Astrophysics Data System (ADS)
Gomez, Luis Fernando
Le developpement des codes et de normes bases sur une methodologie scientifique requiert la capacite de predire l'etendue inflammable de deversements gazeux d'hydrogene sous differentes conditions. Des etudes anterieures ont deja etabli des modeles bases sur les lois de conservation de la mecanique des fluides basees sur des correlations experimentales qui permettent de predire la decroissance de la concentration et de la vitesse d'un gaz le long de l'axe d'un jet libre vertical. Cette etude s'interesse aux effets de proximite a une surface horizontale parallele sur un jet turbulent. Nous nous interessons a son impact sur l'etendue du champ de la concentration et sur l'enveloppe inflammable en particulier. Cette etude est comparative : l'hydrogene est compare au methane. Ceci permet de degager l'influence des effets de difference de la densite sur le comportement du jet, et de comparer le comportement de l'hydrogene aux correlations experimentales, qui ont ete essentiellement etablies pour le methane. Un modele decrivant l'evolution spatio-temporelle du champ de concentration du gaz dilue est propose, base sur la mecanique des fluides computationnelle. Cette approche permet de varier systematiquement les conditions aux frontieres (proximite du jet a la surface, par exemple) et de connaitre en detail les proprietes de l'ecoulement. Le modele est implemente dans le code de simulations par volumes finis de FLUENT. Les resultats des simulations sont compares avec les lois de similitudes decoulant de la theorie des jets d'ecoulements turbulents libres ainsi qu'avec les resultats experimentaux disponibles. L'effet de la difference des masses molaires des constituantes du jet et des constituantes du milieu de dispersion est egalement etudie dans le contexte du comportement d'echelle de la region developpee du jet.
USDA-ARS?s Scientific Manuscript database
Vibrational communication is widespread in insects, particularly in leafhoppers where the pair formation process is mediated by species-specific vibrational signals. One important pest using vibrational communication, glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is a vector of Xylella...
Determination of Volatility and Element Fractionation in Glassy Fallout Debris by SIMS
Williamson, Todd L.; Tenner, Travis Jay; Bonamici, Chloe Elizabeth; Kinman, William Scott; Pollington, Anthony Douglas; Steiner, Robert Ernest
2016-05-10
The purpose of this report is to characterize glassy fallout debris using the Trinity Test and then characterize the U-isotopes of U_{3}O_{8} reference materials that contain weaponized debris.
NASA Astrophysics Data System (ADS)
Yoshimoto, Mamoru
2015-11-01
In the nanoimprint process, the resolution limit of patterning has attracted much attention from both scientific and industrial aspects. In this article, we briefly review the main achievements of our research group on sub-nanoscale nanoimprint fabrication of atomically patterned glassy substrates of oxide glass and polymer. By applying the sapphire (α-Al2O3 single crystal) wafers with self-organized nanopatterns of atomic steps as thermal nanoimprinting molds, we successfully transferred their nanoscale patterns onto the surfaces of glassy substrates such as soda-lime silicate glasses and poly(methyl methacrylate) polymers. The surfaces of nanoimprinted glassy materials exhibited regularly arrayed atomic stairs with 0.2-0.3 nm step height, which were in good agreement with the sub-nanopatterns of sapphire molds. These atomically stepped morphologies on the glassy substrates were found to be stable for about 1 year.
Effects of niobium on thermal stability and corrosion behavior of glassy Cu Zr Al Nb alloys
NASA Astrophysics Data System (ADS)
Tam, M. K.; Pang, S. J.; Shek, C. H.
2006-04-01
The corrosion behavior of Cu95-xZrxAl5 (x=40, 42.5 and 45 at.%) in 1 N HCl, 3 mass% NaCl and 1 N H2SO4 solutions was studied. As Zr content increases, the corrosion resistance is slightly enhanced. In order to improve the corrosion resistance of the Cu Zr Al glassy alloy, Nb was selected to substitute Cu. Although the supercooled liquid region ΔTx of the Cu Zr Al glassy alloys decreases with increasing Nb content, the alloys still retain high glass-forming ability and bulk glassy samples with 1.5 mm diameter can be obtained when up to 5 at.% Nb was added. It is found that the addition of Nb results in improvement of the corrosion resistance of the glassy Cu Zr Al alloys.
Probing the viscoelastic response of glassy polymer films using atomic force microscopy.
Yang, Guanwen; Rao, Nanxia; Yin, Zejie; Zhu, Da-Ming
2006-05-01
The mechanical properties of glassy films and glass surfaces have been studied using an atomic force microscope (AFM) through various imaging modes and measuring methods. In this paper, we discuss the viscoelastic response of a glassy surface probed using an AFM. We analyzed the force-distance curves measured on a glassy film or a glassy surface at temperatures near the glass transition temperature, Tg, using a Burgers model. We found that the material's characteristics of reversible anelastic response and viscous creep can be extracted from a force-distance curve. Anelastic response shifts the repulsive force-distance curve while viscous creep strongly affects the slope of the repulsive force-distance curve. When coupled with capillary force, due to the condensation of a thin layer of liquid film at the tip-surface joint, the anelasticity and viscous creep can alter the curve significantly in the attractive region.
L'effet dynamo et le champ magnétique solaire.
NASA Astrophysics Data System (ADS)
Leorat, J.
Contents: (1) Introduction. (2) Propriétés générales des équations d'évolution. (3) Définition de l'effet dynamo et condition nécessaire. (4) Dynamos phénoménologiques; théorèmes antidynamos. (5) Exemples de dynamos à champ de vitesse stationnaire. (6) Dynamos dépendant du temps. (7) Dynamos homogènes expérimentales. (8) Remarques finales.
Experimental melting and crystallisation of glassy olivine melilitites
NASA Astrophysics Data System (ADS)
Lloyd, F. E.
1985-07-01
A remarkable variety of unusual melilite and feldspathoid-bearing lavas characterises the volcanism of Katwe-Kikorongo and Bunyaruguru, central South West Uganda. The magmas were silica undersaturated, mafic, highly potassic and volatile-rich. The most peralkaline compositions are found in rapidly quenched small bombs and lapilli, which are invariably glass enclosing olivine and melilite phenocrysts. Slowly cooled lava flows and ejected blocks are non-glassy, feldspathoid-bearing, clinopyroxene-rich assemblages with mol. Na2O+K2O∶Al2O3 close to unity or less. One atmosphere melting experiments were carried out between 1,330 and 1,050° C for two glassy olivine melilitites. Both have identical mineralogy and similar chemistry, except that one is more hydrated, carbonated and oxidised and has lost alkalis, principally sodium. The fresher material crystallised, in the following order, olivine-melilite-leucite-clinopyroxene-kalsilite. The other sample crystallised olivine-leucite-clinopyroxene-kalsilite and melilite was absent at all temperatures. The separate addition to this sample (BN20,A) of (i) Na2CO3 (ii) K2CO3 (iii) CaCO3, in each case induced melilite to crystallise. Adition of ammonium carbonate, however, did not, showing that melilite appearance is not linked solely with the presence of CO2. The separate and combined roles of Na, K and Ca, in the crystallisation of melilite, were examined by comparing the chemistry of melilite-bearing with related melilite-free, highly alkaline lavas, that had been melted and recrystallised at one atmosphere (this study and published material). The data indicate that high Na∶Si + Al favours melilite separation, while K and Ca, and by inference any element capable of reducing the influence of Si and Al, serve effectively to increase this ratio. Loss of Na and K from BN20,A led to direct and indirect reduction of the Na∶Si+Al ratio and consequent inhibition of melilite crystallisation. Thus loss of alkalis, in particular
Quasi-one-dimensional models for glassy dynamics
NASA Astrophysics Data System (ADS)
Pal, Prasanta
2011-12-01
We describe analytical calculations and simulations of the quasi-one-dimensional (Q1-D) model for glassy dynamics. In the Q1-D models, hard rods undergo single-file diffusion through a series of narrow channels connected by J intersections. The topology of the model is specified by J, the maximum number of rods in each middle channel K, and the number of rods N. We assume that the rods cannot turn at the intersections, and thus there is a single, continuous route through the system. This model displays hallmarks of glassy dynamics including caging behavior and subdiffusion, rapid growth in the structural relaxation time and collective particle rearrangements. The mean-square displacement Sigma(t) for the Q1-D model displays four dynamical regimes: 1) short-time diffusion Sigma( t) ˜ t, 2) a plateau Sigma(t) ˜ t0 caused by caging behavior, 3) single-file diffusion characterized by anomalous scaling Sigma(t) ˜ t0.5 at intermediate times, and 4) a crossover to long-tine diffusion Sigma(t) ˜ t for times that grow with the system size. We develop a general procedure for calculating analytically the structural relaxation time tD, beyond which the system undergoes long-time diffusion, as a function of density and system topology. The method involves several steps: 1) uniquely defining the set of microstates for the system and transitions among them, 2) constructing networks of connected microstates and identifying minimal, closed, directed loops that give rise to structural relaxation, 3) calculating the probabilities for obtaining each of the microstates that form the closed loops and for transitioning from one microstate to another, and 4) using these probabilities to deduce the dependence of tD on packing fraction. We find that to obeys power-law scaling tD ˜ (φ g-φ)-alpha, where φ g (the packing fraction corresponding to complete kinetic arrest) and alpha depend on the system topology, and can be calculated exactly. The analytical calculations are supported
2016-10-03
Typically this method is associated with dispersing nanoparticles within high molecular weight linear thermoplastic polymers . In this process...AFRL-AFOSR-VA-TR-2016-0330 Optimizing Glassy Polymer Network Morphology for Nano-particle Dispersion, Stabilization Jeffrey Wiggins UNIVERSITY OF...TYPE Final Report 3. DATES COVERED (From - To) March 1, 2013 to February 28, 2016 4. TITLE AND SUBTITLE Optimizing Glassy Polymer Network Morphology
A Brief Historical Introduction to Matrices and Their Applications
ERIC Educational Resources Information Center
Debnath, L.
2014-01-01
This paper deals with the ancient origin of matrices, and the system of linear equations. Included are algebraic properties of matrices, determinants, linear transformations, and Cramer's Rule for solving the system of algebraic equations. Special attention is given to some special matrices, including matrices in graph theory and electrical…
A Brief Historical Introduction to Matrices and Their Applications
ERIC Educational Resources Information Center
Debnath, L.
2014-01-01
This paper deals with the ancient origin of matrices, and the system of linear equations. Included are algebraic properties of matrices, determinants, linear transformations, and Cramer's Rule for solving the system of algebraic equations. Special attention is given to some special matrices, including matrices in graph theory and electrical…
Role of glassy state on stabilities of freeze-dried probiotics.
Santivarangkna, Chalat; Aschenbrenner, Mathias; Kulozik, Ulrich; Foerst, Petra
2011-10-01
High viability of dried probiotics is of great importance for immediate recovery of activity in fermented foods and for health-promoting effects of nutraceuticals. The conventional process for the production of dried probiotics is freeze-drying. However, loss of viability occurs during the drying and storage of the dried powder. It is believed that achieving the "glassy state" is necessary for survival, and the glassy state should be retained during freezing, drying, and storage of cells. Insight into the role of glassy state has been largely adopted from studies conducted with proteins and foods. However, studies on the role of glassy state particularly with probiotic cells are on the increase, and both common and explicit findings have been reported. Current understanding of the role of the glassy state on viability of probiotics is not only valuable for the production of fermented foods and nutraceuticals but also for the development of nonfermented functional foods that use the dried powder as an adjunct. Therefore, the aim of this review is to bring together recent findings on the role of glassy state on survival of probiotics during each step of production and storage. The prevailing state of knowledge and recent finding are discussed. The major gaps of knowledge have been identified and the perspective of ongoing and future research is addressed. © 2011 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Prater, Karin; Dukwen, Julia; Scharf, Toralf; Herzig, Hans Peter; Hermerschmidt, Andreas
2014-09-01
Glassy carbon is used nowadays for a variety of applications because of its mechanical strength, thermal stability and non-sticking adhesion properties. This makes it also a suitable candidate as mold material for precision compression molding of low and high glass-transition temperature materials. To fabricate molds for diffractive optics a highresolution structuring technique is needed. We introduce a process that allows the micro-structuring of glassy carbon by reactive ion etching. Key parameters such as uniformity, surface roughness, edge definition and lateral resolution are discussed. They are the most relevant parameters for a stamp in optical applications. The use of titanium as a hard mask makes it possible to achieve a reasonable selectivity of 4:1, which has so far been one of the main problems in microstructuring of glassy carbon. We investigate the titanium surface structure with its 5-10 nm thick layer of TiO2 grains and its influence on the shape of the hard mask. In our fabrication procedure we were able to realize optically flat diffractive structures with slope angles of more than 80° at typical feature sizes of 5 μm and at 700 nm depth. The fabricated glassy carbon molds were applied to thermal imprinting onto different glasses. Glassy carbon molds with 1 mm thickness were tested with binary optical structures. Our experiments show the suitability of glassy carbon as molds for cost efficient mass production with a high quality.
Surface temperatures and glassy state investigations in tribology, part 1
NASA Technical Reports Server (NTRS)
Winer, W. O.; Sanborn, D. M.
1978-01-01
The research in this report is divided into two categories: (1) lubricant rheological behavior, and (2) thermal behavior of a simulated elastohydrodynamic contact. The studies of the lubricant rheological behavior consists of high pressure, low shear rate viscosity measurements, viscoelastic transition measurements, by volume dilatometry, dielectric transitions at atmospheric pressure and light scattering transitions. Lubricant shear stress-strain behavior in the amorphous glassy state was measured on several fluids. It appears clear from these investigations that many lubricants undergo viscoplastic transitions in typical EHD contacts and that the lubricant has a limiting maximum shear stress it can support which in turn will determine the traction in the contact except in cases of very low slide-roll ratio. Surface temperature measurements were made for a naphthenic mineral oil and a polyphenyl ether. The maximum surface temperature in these experiments was approximately symmetrical about the zero slide-roll ration except for absolute values of slide-roll ratio greater than about 0.9. Additional surface temperature measurements were made in contacts with rough surfaces where the composite surface roughness was approximately equal to the EHD film thickness. A regression analysis was done to obtain a predictive equation for surface temperatures as a function of pressure, sliding speed, and surface roughness. A correction factor for surface roughness effects to the typical flash temperature analysis was found.
Redox behavior of biofilm on glassy carbon electrode.
Sridharan, D; Manoharan, S P; Palaniswamy, N
2011-10-01
Marine and freshwater biofilm usually shift the open circuit potential (OCP) of stainless steel towards the electropositive direction by +450 mV vs SCE. The nature of oxide film and bacterial metabolism were also correlated with ennoblement process by various investigators. Glassy carbon electrode (GCE) was used in the present study and a shifting of potential in the positive side (+450 mV) was noticed. It indicates that biofilm contributes to the ennoblement process without any n/p-type semiconducting oxide film. The nature of the cathodic curve for the biofilm covered GCE is compared with the previous literature on the electrochemical behavior of stainless steel. The present study explains the oxidation and reduction peaks of biofilm covered GCE by cyclic voltammetry. Electrochemical impedance result reveals the diffusion process within the manganese biofilm. The present study confirms the previous investigations that the manganese biofilm rules the electrochemical behavior of materials and suggests that oxide film is not necessary to assist the ennoblement process.
Mechanics of particulate composites with glassy polymer binders in compression.
Jordan, J L; Spowart, J E; Kendall, M J; Woodworth, B; Siviour, C R
2014-05-13
Whether used as structural components in design or matrix materials for composites, the mechanical properties of polymers are increasingly important. The compressive response of extruded polymethyl methacrylate (PMMA) rod with aligned polymer chains and Al-Ni-PMMA particulate composites are investigated across a range of strain rates and temperatures. The particulate composites were prepared using an injection-moulding technique resulting in highly anisotropic microstructures. The mechanics of these materials are discussed in the light of theories of deformation for glassy polymers. The experimental data from this study are compared with PMMA results from the literature as well as epoxy-based composites with identical particulates. The PMMA exhibited the expected strain rate and temperature dependence and brittle failure was observed at the highest strain rates and lowest temperatures. The Al-Ni-PMMA composites were found to have similar stress-strain response to the PMMA with reduced strain softening after yield. Increasing volume fraction of particulates in the composite resulted in decreased strength.
Mechanics of particulate composites with glassy polymer binders in compression
Jordan, J. L.; Spowart, J. E.; Kendall, M. J.; Woodworth, B.; Siviour, C. R.
2014-01-01
Whether used as structural components in design or matrix materials for composites, the mechanical properties of polymers are increasingly important. The compressive response of extruded polymethyl methacrylate (PMMA) rod with aligned polymer chains and Al–Ni–PMMA particulate composites are investigated across a range of strain rates and temperatures. The particulate composites were prepared using an injection-moulding technique resulting in highly anisotropic microstructures. The mechanics of these materials are discussed in the light of theories of deformation for glassy polymers. The experimental data from this study are compared with PMMA results from the literature as well as epoxy-based composites with identical particulates. The PMMA exhibited the expected strain rate and temperature dependence and brittle failure was observed at the highest strain rates and lowest temperatures. The Al–Ni–PMMA composites were found to have similar stress–strain response to the PMMA with reduced strain softening after yield. Increasing volume fraction of particulates in the composite resulted in decreased strength. PMID:24711495
Cryptoachneliths: Hidden glassy ash in composite spheroidal lapilli
NASA Astrophysics Data System (ADS)
Carracedo Sánchez, M.; Arostegui, J.; Sarrionandia, F.; Larrondo, E.; Gil Ibarguchi, J. I.
2010-09-01
Cryptoachneliths, perceptible by means of electron microscopy but unresolved under the optical microscope, occur unnoticed inside spheroidal lapilli of ultrabasic composition of the Cabezo Segura volcano (Calatrava volcanic province, Spain). The cryptoachneliths are glassy spherical particles that have compositions of Al-rich silicate with minor amounts of Fe, Ca and other elements. The smallest cryptoachneliths of < 1 μm in diameter (nanoachneliths) joined by coalescence to form microspheres > 1 μm (microachneliths) and homogeneous less regular masses of similar composition. Nano and microachneliths welded each other or to other types of volcanic particles (crystals, crystal fragments, spinning droplets, cognate lithic clasts, etc.) to form spheroidal lapilli and even bomb size clasts within proximal fall deposits of the Cabezo Segura volcano. The welding processes took place inside the eruptive column, previous to the fall of the spheroidal lapilli on top of the volcanic cone. The presence of the cryptoachneliths implies that lapilli and even bomb size tephra within deposits formed during explosive eruptions of low-viscosity basic to ultrabasic magmas should be carefully examined in order to establish key parameters of eruption dynamics, like size, amount and distribution of juvenile fine particles.
Time evolution of quenched state and correlation to glassy effects
NASA Astrophysics Data System (ADS)
Kiliç, K.; Kiliç, A.; Altinkok, A.; Yetiş, H.; Çetin, O.; Durust, Y.
2005-03-01
In this work, dynamic changes generated by the driving current were studied in superconducting bulk polycrystalline YBCO sample via transport relaxation measurements ( V- t curves). The evolution of nonlinear V- t curves was interpreted in terms of the formation of resistive and nonresistive flow channels and the spatial reorganization of the transport current in a multiply connected network of weak-link structure. The dynamic re-organization of driving current could cause an enhancement or suppression in the superconducting order parameter due to the magnitude of the driving current and coupling strength of weak-link structure along with the chemical and anisotropic states of the sample as the time proceeds. A nonzero voltage decaying with time, correlated to the quenched state, was recorded when the magnitude of initial driving current is reduced to a finite value. It was found that, after sufficiently long waiting time, the evolution of the quenched state could result in a superconducting state, depending on the magnitude of the driving current and temperature. We showed that the decays in voltage over time are consistent with an exponential time dependence which is related to the glassy state. Further, the effect of doping of organic material Bis dimethyl-glyoximato Copper (II) to YBCO could be monitored apparently via the comparison of the V- t curves corresponding to doped and undoped YBCO samples.
Dielectric studies of molecular motions in glassy and liquid nicotine
NASA Astrophysics Data System (ADS)
Kaminski, K.; Paluch, M.; Ziolo, J.; Ngai, K. L.
2006-06-01
The dielectric permittivity and loss spectra of glassy and liquid states of nicotine have been measured over the frequency range 10-2-109 Hz. The relaxation spectra are similar to common small molecular glass-forming substances, showing the structural α-relaxation and its precursor, the Johari-Goldstein β-relaxation. The α-relaxation is well described by the Fourier transform of the Kohlrausch-Williams-Watts stretched exponential function with an approximately constant stretch exponent that is equal to 0.70 as the glass transition temperature is approached. The dielectric α-relaxation time measured over 11 orders of magnitude cannot be described by a single Vogel-Fulcher-Tamman-Hesse equation. The most probable Johari-Goldstein β-relaxation time determined from the dielectric spectra is in good agreement with the primitive relaxation time of the coupling model calculated from parameters of the structural α-relaxation. The shape of the dielectric spectra of nicotine is compared with that of other glass-formers having about the same stretch exponent, and they are shown to be nearly isomorphic. The results indicate that the molecular dynamics of nicotine conform to the general pattern found in other glass-formers, and the presence of the universal Johari-Goldstein secondary relaxation, which plays a role in the crystallization of amorphous pharmaceuticals.
Terbium induced glassy magnetism in La,Ca-based cobaltites
Maryško, M. Hejtmánek, J.; Jirák, Z.; Kaman, O.; Knížek, K.
2014-05-07
The La{sub 0.8–x}Tb{sub x}Ca{sub 0.2}CoO{sub 3} cobaltites of orthoperovskite Pbnm structure were investigated by the X-ray and neutron diffraction, specific heat, and magnetization measurements. The terbium doping has two important effects, it increases the size disorder on perovskite A-sites and influences the magnetic properties due to large Ising-type moments (∼8.9 Bohr magnetons per Tb). The compounds show a bulk magnetic moment below T{sub C} = 82 K, 53 K, and 30 K for x = 0.1, 0.2, and 0.3, respectively. The neutron diffraction evidences a long-range ferromagnetic arrangement of cobalt moments, combined below ∼20 K with ordering of terbium moments in a canted arrangement. A homogeneous magnetic phase is proved for the x = 0.1 sample, while x = 0.2 and 0.3 are in an intrinsically non-homogeneous magnetic state with long-range ordering only comprising 55% and 30% of the sample volumes. The ac susceptibility experiments prove a glassy character of the terbium doped samples and provide arguments for the short-range ordering above T{sub C} and wide distribution of relaxation times.
Strain localization in glassy polymers under cylindrical confinement.
Shavit, Amit; Riggleman, Robert A
2014-06-14
Although the origin of ductility in crystalline materials is well understood through the motion of dislocations and defects, a similar framework for understanding deformation in amorphous materials remains elusive. In particular, the difference in the mechanical response for small-molecule amorphous solids, such as organic glasses that are typically brittle, and polymer glasses, which are frequently very tough, has not been systematically explored. Here, we employ molecular dynamics simulations to investigate the mechanical response of model glassy polymers confined to a nanoscopic pillar under tensile deformation. We vary the chain length, cooling rate for forming the glass, and the deformation rate and investigate the changes in the mechanical response. We find that samples that are cooled at a slower rate and deformed at a slower rate are more prone to localization of the strain response, or shear banding. Interestingly, this effect is independent of chain length over the range of parameters we have investigated so far, and we believe this is the first direct observation of shear banding in deformed polymer glasses under cylindrical confinement. Finally, by using the isoconfigurational ensemble approach, we provide evidence that the location where the shear band forms is due to structural features that are frozen in place during sample preparation.
Mathematical modeling of glassy-winged sharpshooter population.
Yoon, Jeong-Mi; Hrynkiv, Volodymyr; Morano, Lisa; Nguyen, Anh Tuan; Wilder, Sara; Mitchell, Forrest
2014-06-01
Pierce's disease (PD) is a fatal disease of grapevines which results from an infection by the plant pathogen Xyllela fastidiosa. This bacterium grows in the xylem (water-conducting) vessels of the plant blocking movement of water. PD can kill vines in one year and poses a serious threat to both the California and the expanding Texas wine industries. Bacteria are vectored from one vine to the next by a number of xylem feeding insect species. Of these, the Glassy-winged Sharpshooter (GWSS) is considered to be the primary xylem feeding insect in Texas vineyards. An extensive database of the xylem-feeding population frequencies was collected by USDA-APHIS for Texas vineyards over multiple years. This project focused on a subset of data, GWSS frequencies within 25 vineyards in Edwards Plateau located in central Texas. The proposed model investigates the natural population dynamics and the decline in GWSS, likely the result of pest management campaigns on the insects within the region. The model is a delay Gompertz differential equation with harvesting and immigration terms, and we use the data to estimate the model parameters.
Frequency-dependent conductivity in bismuth-vanadate glassy semiconductors
NASA Astrophysics Data System (ADS)
Ghosh, Aswini
1990-01-01
The first measurements are reported for the frequency-dependent (ac) conductivity (real as well as imaginary parts) for various compositions of the bismuth-vanadate glassy semiconductors in the frequency range 102-105 Hz and in the temperature range 77-420 K. The behavior of the ac conductivity is broadly similar to what has been observed previously in many other types of amorphous semiconductors, namely, nearly linear frequency dependence and weak temperature dependence. The experimental results are analyzed with reference to various theoretical models based on quantum-mechanical tunneling and classical hopping over barriers. The analysis shows that the temperature dependence of the ac conductivity is consistent with the simple quantum-mechanical tunneling model at low temperatures; however, this model completely fails to predict the observed temperature dependence of the frequency exponent. The overlapping-large-polaron tunneling model can explain the temperature dependence of the frequency exponent at low temperatures. Fitting of this model to the low-temperature data yields a reasonable value of the wave-function decay constant. However, this model predicts the temperature dependence of the ac conductivity much higher than what actual data showed. The correlated barrier hopping model is consistent with the temperature dependence of both the ac conductivity and its frequency exponent. This model provides reasonable values of the maximum barrier heights but higher values of characteristic relaxation times.
Glassy quantum dynamics in translation invariant fracton models
NASA Astrophysics Data System (ADS)
Prem, Abhinav; Haah, Jeongwan; Nandkishore, Rahul
2017-04-01
We investigate relaxation in the recently discovered "fracton" models and discover that these models naturally host glassy quantum dynamics in the absence of quenched disorder. We begin with a discussion of "type I" fracton models, in the taxonomy of Vijay, Haah, and Fu. We demonstrate that in these systems, the mobility of charges is suppressed exponentially in the inverse temperature. We further demonstrate that when a zero-temperature type I fracton model is placed in contact with a finite-temperature heat bath, the approach to equilibrium is a logarithmic function of time over an exponentially wide window of time scales. Generalizing to the more complex "type II" fracton models, we find that the charges exhibit subdiffusion up to a relaxation time that diverges at low temperatures as a superexponential function of inverse temperature. This behavior is reminiscent of "nearly localized" disordered systems, but occurs with a translation invariant three-dimensional Hamiltonian. We also conjecture that fracton models with conserved charge may support a phase which is a thermal metal but a charge insulator.
Crystallization of probucol from solution and the glassy state.
Kawakami, Kohsaku; Ohba, Chie
2017-01-30
Crystallization of probucol (PBL) from both solution and glassy solid state was investigated. In the crystallization study from solution, six solvents and three methods, i.e., evaporation, addition of a poor solvent, and cooling on ice, were used to obtain various crystal forms. In addition to common two crystal forms (forms I and II), two further forms (forms III and cyclohexane-solvate) were found in this study, and their thermodynamic relationships were determined. Forms I and II are likely to be enantiotropically related with thermodynamic transition temperature below 5°C. Isothermal crystallization studies revealed that PBL glass initially crystallized into form III between 25 and 50°C, and then transformed to form I. The isothermal crystallization appears to be a powerful option to find uncommon crystal forms. The crystallization of PBL was identified to be pressure controlled, thus the physical stability of PBL glass is higher than that of typical compounds. Copyright © 2016 Elsevier B.V. All rights reserved.
Condition Number Estimation of Preconditioned Matrices
Kushida, Noriyuki
2015-01-01
The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager’s method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei’s matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei’s matrix, and matrices generated with the finite element method. PMID:25816331
Condition number estimation of preconditioned matrices.
Kushida, Noriyuki
2015-01-01
The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager's method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei's matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei's matrix, and matrices generated with the finite element method.
NASA Astrophysics Data System (ADS)
Sakhi, Said
Cette these est constituee de trois sujets de recherche distincts. Les deux premiers articles traitent du phenomene de supraconductivite dans un modele bidimensionnel, dans le troisieme article on etudie l'action effective d'un systeme electronique soumis a l'effet d'un champ magnetique (systeme de Hall) et le dernier article examine la quantification d'un systeme de particules identiques en deux dimensions d'espace et la possibilite des anyons. Le modele qu'on analyse dans les deux premiers articles est un systeme fermionique dont les particules chargees et de masse nulle interagissent entre elles avcc un couplage attractif et fort. L'analyse de l'action effective decrivant la physique a basse energie nous permet d'examiner la structure de l'espace de phase. A temperature nulle, le parametre d'ordre du systeme prend une valeur moyenne non nulle. Consequemment, la symetrie continue U(1) du modele est spontanement brisee et il en resulte l'apparition d'un mode de Goldstone. En presence d'un champ electromagnetique externe, ce mode disparait et le champ de jauge acquiert une masse donc l'effet Meissner caracteristique d'un supraconducteur. Bien que le modele ne soit pas renormalisable dans le sens perturbatif, on montre qu'il l'est dans le cadre du developpement en 1/N ou N est le nombre d'especes fermioniques. En outre, on montre que l'inclusion des effets thermiques change radicalement le mecanisme de supraconductivite. En effet, on montre que la brisure spontanee de la symetrie U(1) n'est plus possible a temperature finie a cause de tres severes divergences infrarouges. Par contre, la dynamique des tourbillons (vortex) existant dans le plan devient essentielle. On montre que le phenomene de supraconductivite resulte du confinement de ces objets topologiques et que la temperature critique s'identifie a celle de Kosterlitz -Thouless. Ce mecanisme de supraconductivite presente l'avantage d'aboutir a un rapport gap a la temperature critique plus eleve que celui du
Bayesian Nonparametric Clustering for Positive Definite Matrices.
Cherian, Anoop; Morellas, Vassilios; Papanikolopoulos, Nikolaos
2016-05-01
Symmetric Positive Definite (SPD) matrices emerge as data descriptors in several applications of computer vision such as object tracking, texture recognition, and diffusion tensor imaging. Clustering these data matrices forms an integral part of these applications, for which soft-clustering algorithms (K-Means, expectation maximization, etc.) are generally used. As is well-known, these algorithms need the number of clusters to be specified, which is difficult when the dataset scales. To address this issue, we resort to the classical nonparametric Bayesian framework by modeling the data as a mixture model using the Dirichlet process (DP) prior. Since these matrices do not conform to the Euclidean geometry, rather belongs to a curved Riemannian manifold,existing DP models cannot be directly applied. Thus, in this paper, we propose a novel DP mixture model framework for SPD matrices. Using the log-determinant divergence as the underlying dissimilarity measure to compare these matrices, and further using the connection between this measure and the Wishart distribution, we derive a novel DPM model based on the Wishart-Inverse-Wishart conjugate pair. We apply this model to several applications in computer vision. Our experiments demonstrate that our model is scalable to the dataset size and at the same time achieves superior accuracy compared to several state-of-the-art parametric and nonparametric clustering algorithms.
Shift products and factorizations of wavelet matrices
NASA Astrophysics Data System (ADS)
Turcajová, Radka; Kautsky, Jaroslav
1994-03-01
A class of so-called shift products of wavelet matrices is introduced. These products are based on circulations of columns of orthogonal banded block circulant matrices arising in applications of discrete orthogonal wavelet transforms (or paraunitary multirate filter banks) or, equivalently, on augmentations of wavelet matrices by zero columns (shifts). A special case is no shift; a product which is closely related to the Pollen product is then obtained. Known decompositions using factors formed by two blocks are described and additional conditions such that uniqueness of the factorization is guaranteed are given. Next it is shown that when nonzero shifts are used, an arbitrary wavelet matrix can be factorized into a sequence of shift products of square orthogonal matrices. Such a factorization, as well as those mentioned earlier, can be used for the parameterization and construction of wavelet matrices, including the costruction from the first row. Moreover, it is also suitable for efficient implementations of discrete orthogonal wavelet transforms and paraunitary filter banks.
Effet de l'acide ascorbique sur la détermination du plomb dans des matrices végétales par ETA-AAS
NASA Astrophysics Data System (ADS)
Hoenig, Michel; Van Hoeyweghen, Paul
Sulphuric acid used in wet oxidation of plant material and the matrix elements are responsible for a strong suppression of lead absorption signals and for the poor reproducibility of the measurements with ETA-AAS. Addition of ascorbic acid to samples (2% m/V) provides an enhancement in sensitivity by more than 200% and leads to acceptable values of the relative error. The results obtained with the 283.3 nm line are better than those obtained with the 217.0 nm line.
PRM: A database of planetary reflection matrices
NASA Astrophysics Data System (ADS)
Stam, D. M.; Batista, S. F. A.
2014-04-01
We present the PRM database with reflection matrices of various types of planets. With the matrices, users can calculate the total, and the linearly and circularly polarized fluxes of incident unpolarized light that is reflected by a planet for arbitrary illumination and viewing geometries. To allow for flexibility in these geometries, the database does not contain the elements of reflection matrices, but the coefficients of their Fourier series expansion. We describe how to sum these coefficients for given illumination and viewing geometries to obtain the local reflection matrix. The coefficients in the database can also be used to calculate flux and polarization signals of exoplanets, by integrating, for a given planetary phase angle, locally reflected fluxes across the visible part of the planetary disk. Algorithms for evaluating the summation for locally reflected fluxes, as applicable to spatially resolved observations of planets, and the subsequent integration for the disk-integrated fluxes, as applicable to spatially unresolved exoplanets are also in the database
Advanced incomplete factorization algorithms for Stiltijes matrices
Il`in, V.P.
1996-12-31
The modern numerical methods for solving the linear algebraic systems Au = f with high order sparse matrices A, which arise in grid approximations of multidimensional boundary value problems, are based mainly on accelerated iterative processes with easily invertible preconditioning matrices presented in the form of approximate (incomplete) factorization of the original matrix A. We consider some recent algorithmic approaches, theoretical foundations, experimental data and open questions for incomplete factorization of Stiltijes matrices which are {open_quotes}the best{close_quotes} ones in the sense that they have the most advanced results. Special attention is given to solving the elliptic differential equations with strongly variable coefficients, singular perturbated diffusion-convection and parabolic equations.
Fabrication of Ni-Nb-Sn metallic glassy alloy powder and its microwave-induced sintering behavior.
Xie, Guoqiang; Li, Song; Louzguine-Luzgin, D V; Cao, Ziping; Yoshikawa, Noboru; Sato, Motoyasu; Inoue, Akihisa
2009-01-01
In the present study, we prepared Ni59.35Nb34.45Sn6.2 metallic glassy alloy powder by an argon gas atomization process. Microwave (MW)-induced heating and sintering was carried out by a single-mode 2.45 GHz MW applicator in the separated magnetic field or electric field using the obtained glassy powders. The structure and thermal stability of the sintered glassy alloy specimens were investigated.
Glassy nature and glass-to-crystal transition in the binary metallic glass CuZr
NASA Astrophysics Data System (ADS)
Wei, Zi-Yang; Shang, Cheng; Zhang, Xiao-Jie; Liu, Zhi-Pan
2017-06-01
The prediction for the stability of glassy material is a key challenge in physical science. Here, we report a theoretical framework to predict the glass stability based on stochastic surface walking global optimization and reaction pathway sampling. This is demonstrated by revealing for the first time the global potential energy surface (PES) of two systems, CuZr binary metallic glass and nonglassy pure Cu systems, and establishing the lowest energy pathways linking glassy/amorphous structures with crystalline structures. The CuZr system has a significant number of glassy structures on PES that are ˜0.045 eV /atom above the crystal structure. Two clear trends are identified from global PES in the glass-to-crystal transition of the CuZr system: (i) the local Zr-Cu coordination (nearest neighbor) increases, and (ii) the local Zr bonding environment becomes homogeneous. This allows us to introduce quantitative structural and energetics conditions to distinguish the glassy structures from the crystalline structures. Because of the local Zr-Cu exchange in the glass-to-crystal transition, a high reaction barrier (>0.048 eV /atom ) is present to separate the glassy structures and the crystals in CuZr. By contrast, the Cu system, although it does possess amorphous structures that appear at much higher energy (˜0.075 eV /atom ) with respect to the crystal structure, has very low reaction barriers for the crystallization of amorphous structures, i.e. <0.011 eV /atom . The quantitative data on PES now available from global optimization techniques deepens our understanding on the microscopic nature of glassy material and might eventually facilitate the design of stable glassy materials.
Immobilization of DNA at Glassy Ccarbon Electrodes: A Critical Study of Adsorbed Layer
Pedano, M. L.; Rivas, G. A.
2005-01-01
In this work we present a critical study of the nucleic acid layer immobilized at glassy carbon electrodes. Different studies were performed in order to assess the nature of the interaction between DNA and the electrode surface. The adsorption and electrooxidation of DNA demonstrated to be highly dependent on the surface and nature of the glassy carbon electrode. The DNA layer immobilized at a freshly polished glassy carbon electrode was very stable even after applying highly negative potentials. The electron transfer of potassium ferricyanide, catechol and dopamine at glassy carbon surfaces modified with thin (obtained by adsorption under controlled potential conditions) and thick (obtained by casting the glassy carbon surface with highly concentrated DNA solutions) DNA layers was slower than that at the bare glassy carbon electrode, although this effect was dependent on the thickness of the layer and was not charge selective. Raman experiments showed an important decrease of the vibrational modes assigned to the nucleobases residues, suggesting a strong interaction of these residues with the electrode surface. The hybridization of oligo(dG)21 and oligo(dC)21 was evaluated from the guanine oxidation signal and the reduction of the redox indicator Co(phen)33+. In both cases the chronopotentiometric response indicated that the compromise of the bases in the interaction of DNA with the electrode surface is too strong, preventing further hybridization. In summary, glassy carbon is a useful electrode material to detect DNA in a direct and very sensitive way, but not to be used for the preparation of biorecognition layers by direct adsorption of the probe sequence on the electrode surface for detecting the hybridization event.
How important are glassy SOA ice nuclei for the formation of cirrus clouds?
NASA Astrophysics Data System (ADS)
Zhou, C.; Penner, J. E.; Lin, G.; Liu, X.; Wang, M.
2014-12-01
Extremely low ice numbers (i.e. 5 - 100 / L) have been observed in the tropical troposphere layer (TTL) in a variety of field campaigns. Various mechanisms have been proposed to explain these low numbers, including the effect of glassy secondary organic aerosol acting as heterogeneous ice nuclei (IN). In this study, we explored these effects using the CAM5.3 model. SOA fields were provided by an offline version of the University of Michigan-IMPACT model, which has a detailed process-based mechanism that describes aerosol microphysics and SOA formation through both gas phase and multiphase reactions. The transition criterion of SOA to glassy heterogeneous IN follows the parameterization developed by Wang et al. 2012. With this parameterization, glassy SOA IN form mainly when the temperature (T) is lower than 210K. In the default CAM5.3 set-up in which only the fraction of Aitken mode sulfate aerosols with diameter larger than 100nm participate in the ice nucleation (Liu and Penner 2005 parameterization), glassy SOA IN are shown to decrease the ice number (Ni) by suppressing some of the homogeneous freezing at low temperatures thereby leading to an improved representation of the relationship between Ni and T compared to the observations summarized by Kramer et al. 2009. However, when we allow the total number of the Aitken mode sulfate particles to participate in homogeneous freezing, glassy SOA IN have only a small impact on the relationship between Ni and T. If the subgrid updraft velocity is decreased to 0.1 m/s (compared to 0.2 m/s in the default set-up), there is a large decrease of Ni, since homogeneous freezing is more easily suppressed by glassy SOA IN at these updrafts. We also present the effects of glassy SOA IN using an alternative ice nucleation scheme (Barahona and Nenes, 2009).
How fast is water uptake on glassy and amorphous aerosol?
NASA Astrophysics Data System (ADS)
Bones, D. L.; Lienhard, D. M.; Krieger, U.; Reid, J. P.
2011-12-01
Atmospheric aerosol particles are typically complex mixtures of organic and inorganic species with correspondingly complex behaviour in their response to changes in humidity. Indeed, it has been recently recognised that many aerosols exist as highly viscous solutions or as amorphous glasses, rather than a crystalline state, over a wide range of relative humidities (Virtanen, et al. 2010). In this work, we investigate the formation of glassy or highly viscous phases in aqueous sugar aerosols such as sucrose and levoglucosan and aerosols of mixtures of sugars and inorganic compounds, reporting the timescale for the mass transfer of water between the particle and the gas phase with variation in water activity. Optical tweezers are used to trap single aerosol particles and examine the time-dependent response in their size to stepwise changes in RH, which result in the evaporation or condensation of water. The evolving particle size and homogeneity in composition are estimated from the wavelengths of specific resonance modes of the cavity enhanced Raman scattering spectra, deducing size changes with an accuracy of better than 1 nm. The experimental data is compared with a kinetic model of diffusional limited size change (Zobrist, et al. 2011), in which the diffusion of water within the particle bulk limits the rate of water transport between the gas and condensed phases. We report measurements in which ternary mixtures, with varying mole ratios of sucrose and sodium chloride, have allowed us to examine the water transport and response time in particle size over a wide range of bulk viscosities. Changes in size are dramatically hindered at low RH, with time scales approaching 10000s, for both increasing and decreasing RH regimes (Tong, et al. 2011). We also observe a marked relative shift in resonance modes, suggesting initial formation of a layer of water on the surface of the glassy particle and subsequent establishment of a steep concentration gradient within the
Rodrigues Filho, Guimes; Almeida, Flávia; Ribeiro, Sabrina D; Tormin, Thiago F; Muñoz, Rodrigo A A; Assunção, Rosana M N; Barud, Hernane
2016-01-01
In this paper, cellulose triacetate (CTA) was produced from sugarcane bagasse and used as matrices for controlled release of paracetamol. Symmetric and asymmetric membranes were obtained by formulations of CTA/dichloromethane/drug and CTA/dichloromethane/water/drug, respectively, and they were characterized by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). Different morphologies of membranes were observed by SEM, and the incorporation of paracetamol was confirmed by lowering of the glass transition temperature (Tg) in the DSC curves. This indicates the existence of interactions between the matrix and the drug. The evaluation of drug release was based on the electrochemical monitoring of paracetamol through its oxidation at a glassy carbon electrode surface using square-wave voltammetry (SWV), which provides fast, precise and accurate in situ measurements. The studies showed a content release of 27% and 45% by the symmetric and asymmetric membranes, respectively, during 8 h.
Glassy dynamics in CuMn thin-film multilayers
NASA Astrophysics Data System (ADS)
Zhai, Qiang; Harrison, David C.; Tennant, Daniel; Dalhberg, E. Dan; Kenning, Gregory G.; Orbach, Raymond L.
2017-02-01
Thin-film multilayered spin-glass CuMn/Cu structures display glassy dynamics. The freezing temperature Tf was measured for 40 layers of CuMn films of thickness L =4.5 ,9.0 , and 20.0 nm, sandwiched between nonmagnetic Cu layers of thickness ≈60 nm. The Kenning effect, Tf∝lnL , is shown to follow from power-law dynamics where the correlation length grows from nucleation as ξ (t ,T ) =c1a0(t/τ0) c2(T /Tg) , leading to [(Tf/Tg) c2ln(tco/τ0) ] +lnc1=ln(L /a0) . Here, Tg is the bulk spin-glass temperature, c1 and c2 are constants determined from the spin-glass dynamics, tco is the time for the correlation length to grow to the film thickness, τ0 is a characteristic exchange time ≈ℏ /kBTg , and a0 is the average Mn-Mn separation. For t ≥tco , the magnetization dynamics are simple activated, with a single activation energy Δmax(L ) /kBTg=(1 /c2) [ln(L /a0) -lnc1] that does not change with time. Values for all these parameters are found for the three values of L explored in these measurements. We find experimentally Δmax(L ) /kB =907 , 1246, and 1650 K, respectively, for the three CuMn thin-film multilayer thicknesses, consistent with power-law dynamics. We perform a similar analysis based on the activated dynamics of the droplet model and find a much larger spread for Δmax(L ) than found experimentally.
Modeling mechanophore activation within a crosslinked glassy matrix
NASA Astrophysics Data System (ADS)
Silberstein, Meredith N.; Min, Kyoungmin; Cremar, Lee D.; Degen, Cassandra M.; Martinez, Todd J.; Aluru, Narayana R.; White, Scott R.; Sottos, Nancy R.
2013-07-01
Mechanically induced reactivity is a promising means for designing self-reporting materials. Mechanically sensitive chemical groups called mechanophores are covalently linked into polymers in order to trigger specific chemical reactions upon mechanical loading. These mechanophores can be linked either within the backbone or as crosslinks between backbone segments. Mechanophore response is sensitive to both the matrix properties and placement within the matrix, providing two avenues for material design. A model framework is developed to describe reactivity of mechanophores located as crosslinks in a glassy polymer matrix. Simulations are conducted at the molecular and macromolecular scales in order to develop macroscale constitutive relations. The model is developed specifically for the case of spiropyran (SP) in lightly crosslinked polymethylmethacrylate (PMMA). This optically trackable mechanophore (fluorescent when activated) allows the model to be assessed in terms of observed experimental behavior. The force modified potential energy surface (FMPES) framework is used in conjunction with ab initio steered molecular dynamics (MD) simulations of SP to determine the mechanophore kinetics. MD simulations of the crosslinked PMMA structure under shear deformation are used to determine the relationship between macroscale stress and local force on the crosslinks. A continuum model implemented in a finite element framework synthesizes these mechanochemical relations with the mechanical behavior. The continuum model with parameters taken directly from the FMPES and MD analyses under predicts stress-driven activation relative to experimental data. The continuum model, with the physically motivated modification of force fluctuations, provides an accurate prediction for monotonic loading across three decades of strain rate and creep loading, suggesting that the fundamental physics are captured.
Charge Transport and Glassy Dynamics in Ionic Liquids
Sangoro, Joshua R; Kremer, Friedrich
2012-01-01
Ionic liquids (ILs) exhibit unique features such as low melting points, low vapor pressures, wide liquidus temperature ranges, high thermal stability, high ionic conductivity, and wide electrochemical windows. As a result, they show promise for use in variety of applications: as reaction media, in batteries and supercapacitors, in solar and fuel cells, for electrochemical deposition of metals and semiconductors, for protein extraction and crystallization, and many others. Because of the ease with which they can be supercooled, ionic liquids offer new opportunities to investigate long-standing questions regarding the nature of the dynamic glass transition and its possible link to charge transport. Despite the significant steps achieved from experimental and theoretical studies, no generally accepted quantitative theory of dynamic glass transition to date has been capable of reproducing all the experimentally observed features. In this Account, we discuss recent studies of the interplay between charge transport and glassy dynamics in ionic liquids as investigated by a combination of several experimental techniques including broadband dielectric spectroscopy, pulsed field gradient nuclear magnetic resonance, dynamic mechanical spectroscopy, and differential scanning calorimetry. Based on EinsteinSmoluchowski relations, we use dielectric spectra of ionic liquids to determine diffusion coefficients in quantitative agreement with independent pulsed field gradient nuclear magnetic resonance measurements, but spanning a broader range of more than 10 orders of magnitude. This approach provides a novel opportunity to determine the electrical mobility and effective number density of charge carriers as well as their types of thermal activation from the measured dc conductivity separately. We also unravel the origin of the remarkable universality of charge transport in different classes of glass-forming ionic liquids.
Oligonucleotide formation catalyzed by mononucleotide matrices
NASA Technical Reports Server (NTRS)
Lohrmann, R.
1982-01-01
Pb(2+)-containing precipitates of mononucleotides form matrices which catalyze the self-condensation of nucleotide 5-prime-phosphorimidazolides and their condensation with nucleosides. The reactions exhibit base-pairing specificity between matrix nucleotide and substrate, and usually follow the Watson-Crick pairing rules. Although purine polynucleotides do not facilitate the oligomerization of pyrimidine nucleotide monomers in solution, it is interesting that purine-containing matrices do catalyze such a reaction. The significance of the results in the context of the prebiotic evolution of polynucleotides is discussed.
Spectral properties of ghost Neumann matrices
Bonora, L.; Santos, R. J. Scherer; Tolla, D. D.
2008-05-15
We continue the analysis of the ghost wedge states in the oscillator formalism by studying the spectral properties of the ghost matrices of Neumann coefficients. We show that the traditional spectral representation is not valid for these matrices and propose a new heuristic formula that allows one to reconstruct them from the knowledge of their eigenvalues and eigenvectors. It turns out that additional data, which we call boundary data, are needed in order to actually implement the reconstruction. In particular our result lends support to the conjecture that there exists a ghost three strings vertex with properties parallel to those of the matter three strings vertex.
Partitioning sparse rectangular matrices for parallel processing
Kolda, T.G.
1998-05-01
The authors are interested in partitioning sparse rectangular matrices for parallel processing. The partitioning problem has been well-studied in the square symmetric case, but the rectangular problem has received very little attention. They will formalize the rectangular matrix partitioning problem and discuss several methods for solving it. They will extend the spectral partitioning method for symmetric matrices to the rectangular case and compare this method to three new methods -- the alternating partitioning method and two hybrid methods. The hybrid methods will be shown to be best.
Photochemistry of chloropicrin in cryogenic matrices
NASA Astrophysics Data System (ADS)
Wade, Elisabeth A.; Reak, Kristina E.; Parsons, Bradley F.; Clemes, Thomas P.; Singmaster, Karen A.
2002-11-01
The photolysis of chloropicrin (CCl 3NO 2) was investigated in Ar and N 2 cryogenic matrices. The extent of reaction was monitored using FT-IR spectroscopy. Phosgene and nitrosyl chloride were the observed photoproducts at all wavelengths investigated (220, 251, 313, 365, and 405 nm). When the photolysis was performed with 220, 251, or 313 nm light, two additional bands were also observed. These bands have been assigned to CCl 3ONO. Chloropicrin was also photolyzed in the presence of O 2 and 18O2. 18O-labeled photoproducts were not detected in cryogenic matrices.
Balanced 0, + or - Matrices. Part 1. Decomposition,
1994-01-22
AD-A278 170 Management Science Research Report Number *600 Balanced 0, ± Matrices Part 1: DecompositionDTIC~ SD’.I.CT 1 Michele Conforti:. F I, ECTE...G6rard CornuJ6jgsQE R15� Ajai Kapuur 00 P 1 4 Kristina Vuskovic U F January 22, 1994 Dipartimento di Matematica Pura ed Applicata Universiti di...two nonzero entries per row and column, the sum of the entries is a multiple of four. This paper extends the decomposition of balanced 0, 1 matrices
Sparse Matrices in MATLAB: Design and Implementation
NASA Technical Reports Server (NTRS)
Gilbert, John R.; Moler, Cleve; Schreiber, Robert
1992-01-01
The matrix computation language and environment MATLAB is extended to include sparse matrix storage and operations. The only change to the outward appearance of the MATLAB language is a pair of commands to create full or sparse matrices. Nearly all the operations of MATLAB now apply equally to full or sparse matrices, without any explicit action by the user. The sparse data structure represents a matrix in space proportional to the number of nonzero entries, and most of the operations compute sparse results in time proportional to the number of arithmetic operations on nonzeros.
Oligonucleotide formation catalyzed by mononucleotide matrices
NASA Technical Reports Server (NTRS)
Lohrmann, R.
1982-01-01
Pb(2+)-containing precipitates of mononucleotides form matrices which catalyze the self-condensation of nucleotide 5-prime-phosphorimidazolides and their condensation with nucleosides. The reactions exhibit base-pairing specificity between matrix nucleotide and substrate, and usually follow the Watson-Crick pairing rules. Although purine polynucleotides do not facilitate the oligomerization of pyrimidine nucleotide monomers in solution, it is interesting that purine-containing matrices do catalyze such a reaction. The significance of the results in the context of the prebiotic evolution of polynucleotides is discussed.
Sparse Matrices in MATLAB: Design and Implementation
NASA Technical Reports Server (NTRS)
Gilbert, John R.; Moler, Cleve; Schreiber, Robert
1992-01-01
The matrix computation language and environment MATLAB is extended to include sparse matrix storage and operations. The only change to the outward appearance of the MATLAB language is a pair of commands to create full or sparse matrices. Nearly all the operations of MATLAB now apply equally to full or sparse matrices, without any explicit action by the user. The sparse data structure represents a matrix in space proportional to the number of nonzero entries, and most of the operations compute sparse results in time proportional to the number of arithmetic operations on nonzeros.
Mechanisms of crazing in glassy polymers revealed by molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Mahajan, Dhiraj K.; Hartmaier, Alexander
2012-08-01
Mechanisms leading to initiation of crazing type failure in a glassy polymer are not clearly understood. This is mainly due to the difficulty in characterizing the stress state and polymer configuration sufficiently locally at the craze initiation site. Using molecular dynamics simulations, we have now been able to access this information and have shown that the local heterogeneous deformation leads to craze initiation in glassy polymers. We found that zones of high plastic activity are constrained by their neighborhood and become unstable, initiating crazing from these sites. Furthermore, based on the constant flow stresses observed in the unstable zones, we conclude that microcavitation is the essential local deformation mode to trigger crazing in glassy polymers. Our results demonstrate the basic difference in the local deformation mode as well as the conditions that lead to either shear-yielding or crazing type failures in glassy polymers. We anticipate our paper to help in devising a new criterion for craze initiation that not only considers the stress state, but also considers local deformation heterogeneities that form the necessary condition for crazing in glassy polymers.
NASA Astrophysics Data System (ADS)
Roth, Connie; Rauscher, Phil; Pye, Justin; Baglay, Roman
2014-03-01
Recent advances in synthesis strategies and processing methods have led to new nanostructured polymer blend and block-copolymer materials containing domain sizes less than 100 nm with glassy and rubbery domains in close proximity. Given the outsized role interfacial perturbations have played in causing large changes in the glass transition temperature Tg and physical aging of ultrathin single-layer films, we are interested in studying how the presence of glassy-rubbery interfaces between neighboring polymer domains may alter the local stability and physical aging of confined glassy layers. Using a polystyrene (PS) / poly(n-butyl methacrylate) (PnBMA) weakly immiscible system with 7 nm interfacial width, we demonstrate how ellipsometry can be used to isolate the physical aging rate of thin PS layers atop rubbery PnBMA layers. Despite a 25-30 K reduction in the average Tg of 84 nm thick PS layers atop PnBMA as measured by fluorescence, we observe no change in the PS aging rate relative to bulk. These results are in contrast with previous works on single-layer polymer films that have found the local aging rate to often be correlated with local Tg changes. This appears not to be the case for glassy PS layers atop rubbery PnBMA suggesting some additional factor is affecting the structural relaxation occurring near the glassy-rubbery interface.
Co-Fe-B-Si-Nb bulk glassy alloys with superhigh strength and extremely low magnetostriction
Chang Chuntao; Shen Baolong; Inoue, Akihisa
2006-01-02
Co-based bulk glassy alloys with diameters up to 4 mm were formed in a [(Co{sub 1-x}Fe{sub x}){sub 0.75}B{sub 0.2}Si{sub 0.05}]{sub 96}Nb{sub 4} system. The bulk glassy alloys exhibit a superhigh fracture strength of 3980-4170 MPa and Young's modulus of 190-210 GPa. The bulk glassy alloys also exhibit excellent soft-magnetic properties, i.e., high saturation magnetization of 0.71-0.97 T, low coercive force of 0.7-1.8 A/m, high permeability of 1.48-3.25x10{sup 4}, and extremely low saturation magnetostriction of 0.55-5.76x10{sup -6}. The first successful synthesis of the Co-Fe-B-Si-based bulk glassy alloys exhibiting superhigh fracture strength and excellent soft-magnetic properties with extremely low magnetostriction is encouraging for future development of Co-based bulk glassy alloys as new engineering and functional materials.
NASA Astrophysics Data System (ADS)
Cheng, Xiaole
The primary goal of this dissertation is to develop a novel continuous reactor method to prepare partially cured epoxy prepolymers for aerospace prepreg applications with the aim of replacing traditional batch reactors. Compared to batch reactors, the continuous reactor is capable of solubilizing and dispersing a broad range of additives including thermoplastic tougheners, stabilizers, nanoparticles and curatives and advancing epoxy molecular weights and viscosities while reducing energy consumption. In order to prove this concept, polyethersulfone (PES) modified 4, 4'-diaminodiphenylsulfone (44DDS)/tetraglycidyl-4, 4'-diaminodiphenylmethane (TGDDM) epoxy prepolymers were firstly prepared using both continuous reactor and batch reactor methods. Kinetic studies confirmed the chain extension reaction in the continuous reactor is similar to the batch reactor, and the molecular weights and viscosities of prepolymers were readily controlled through reaction kinetics. Atomic force microscopy (AFM) confirmed similar cured network morphologies for formulations prepared from batch and continuous reactors. Additionally tensile strength, tensile modulus and fracture toughness analyses concluded mechanical properties of cured epoxy matrices produced from both reactors were equivalent. Effects of multifunctional epoxy compositions on thermoplastics phase-separated morphologies were systematically studied using a combination of AFM with nanomechanical mapping, spectroscopic and calorimetric techniques to provide new insights to tailor cured reaction induced phase separation (CRIPS) in multifunctional epoxy blend networks. Furthermore, how resultant crosslinked glassy polymer network and phase-separated morphologies correlated with mechanical properties are discussed in detail. Multiwall carbon nanotube (MWCNT)/TGDDM epoxy prepolymers were further prepared by combining the successful strategies for advancing epoxy chemistries and dispersing nanotubes using the continuous reactor
Polarization Scattering Matrices for Polarimetric Radar
1983-03-01
16 D. Odd- Bounce Targets ....................................... 17 C. Dihedral Target...discussed in section IV, are derived for three types of simple targets: the dipole, the odd bounce reflector, and the dihedral corner reflector. In...monostatic scattering matrices for a dipole, an odd- bounce reflector (e.g., plate, sphere, curved surface, or trihedral corner reflector), and a dihedral
Universal portfolios generated by Toeplitz matrices
NASA Astrophysics Data System (ADS)
Tan, Choon Peng; Chu, Sin Yen; Pan, Wei Yeing
2014-06-01
Performance of universal portfolios generated by Toeplitz matrices is studied in this paper. The general structure of the companion matrix of the generating Toeplitz matrix is determined. Empirical performance of the threeband and nine-band Toeplitz universal portfolios on real stock data is presented. Pseudo Toeplitz universal portfolios are studied with promising empirical achievement of wealth demonstrated.
Malware analysis using visualized image matrices.
Han, KyoungSoo; Kang, BooJoong; Im, Eul Gyu
2014-01-01
This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API) calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively.
Noisy covariance matrices and portfolio optimization
NASA Astrophysics Data System (ADS)
Pafka, S.; Kondor, I.
2002-05-01
According to recent findings [#!bouchaud!#,#!stanley!#], empirical covariance matrices deduced from financial return series contain such a high amount of noise that, apart from a few large eigenvalues and the corresponding eigenvectors, their structure can essentially be regarded as random. In [#!bouchaud!#], e.g., it is reported that about 94% of the spectrum of these matrices can be fitted by that of a random matrix drawn from an appropriately chosen ensemble. In view of the fundamental role of covariance matrices in the theory of portfolio optimization as well as in industry-wide risk management practices, we analyze the possible implications of this effect. Simulation experiments with matrices having a structure such as described in [#!bouchaud!#,#!stanley!#] lead us to the conclusion that in the context of the classical portfolio problem (minimizing the portfolio variance under linear constraints) noise has relatively little effect. To leading order the solutions are determined by the stable, large eigenvalues, and the displacement of the solution (measured in variance) due to noise is rather small: depending on the size of the portfolio and on the length of the time series, it is of the order of 5 to 15%. The picture is completely different, however, if we attempt to minimize the variance under non-linear constraints, like those that arise e.g. in the problem of margin accounts or in international capital adequacy regulation. In these problems the presence of noise leads to a serious instability and a high degree of degeneracy of the solutions.
Circulant Matrices and Time-Series Analysis
ERIC Educational Resources Information Center
Pollock, D. S. G.
2002-01-01
This paper sets forth some salient results in the algebra of circulant matrices which can be used in time-series analysis. It provides easy derivations of some results that are central to the analysis of statistical periodograms and empirical spectral density functions. A statistical test for the stationarity or homogeneity of empirical processes…
SPECIATION OF ARSENIC IN EXPOSURE ASSESSMENT MATRICES
The speciaton of arsenic in water, food and urine are analytical capabilities which are an essential part in arsenic risk assessment. The cancer risk associated with arsenic has been the driving force in generating the analytical research in each of these matrices. This presentat...
Constructing random matrices to represent real ecosystems.
James, Alex; Plank, Michael J; Rossberg, Axel G; Beecham, Jonathan; Emmerson, Mark; Pitchford, Jonathan W
2015-05-01
Models of complex systems with n components typically have order n(2) parameters because each component can potentially interact with every other. When it is impractical to measure these parameters, one may choose random parameter values and study the emergent statistical properties at the system level. Many influential results in theoretical ecology have been derived from two key assumptions: that species interact with random partners at random intensities and that intraspecific competition is comparable between species. Under these assumptions, community dynamics can be described by a community matrix that is often amenable to mathematical analysis. We combine empirical data with mathematical theory to show that both of these assumptions lead to results that must be interpreted with caution. We examine 21 empirically derived community matrices constructed using three established, independent methods. The empirically derived systems are more stable by orders of magnitude than results from random matrices. This consistent disparity is not explained by existing results on predator-prey interactions. We investigate the key properties of empirical community matrices that distinguish them from random matrices. We show that network topology is less important than the relationship between a species' trophic position within the food web and its interaction strengths. We identify key features of empirical networks that must be preserved if random matrix models are to capture the features of real ecosystems.
Circulant Matrices and Time-Series Analysis
ERIC Educational Resources Information Center
Pollock, D. S. G.
2002-01-01
This paper sets forth some salient results in the algebra of circulant matrices which can be used in time-series analysis. It provides easy derivations of some results that are central to the analysis of statistical periodograms and empirical spectral density functions. A statistical test for the stationarity or homogeneity of empirical processes…
SPECIATION OF ARSENIC IN EXPOSURE ASSESSMENT MATRICES
The speciaton of arsenic in water, food and urine are analytical capabilities which are an essential part in arsenic risk assessment. The cancer risk associated with arsenic has been the driving force in generating the analytical research in each of these matrices. This presentat...
Bruit thermique et effets quantiques dans une cavité optique de grande finesse
NASA Astrophysics Data System (ADS)
Caniard, T.; Briant, T.; Heidmann, A.; Pinard, M.
2006-10-01
Nous nous intéressons aux bruits dans les mesures optiques de très grande sensibilité et aux limites associées. Une des limitations fondamentales des mesures interférométriques, telles que les détections d'ondes gravitationnelles, est liée aux fluctuations de la pression de radiation exercée par la lumière sur les miroirs. Celle-ci induit des corrélations quantiques entre la position des miroirs et les fluctuations de la lumière. L'observation de ces effets quantiques ouvrirait de nombreuses perspectives: étude de la limite quantique standard, production d'états comprimés, réalisation d'une mesure quantique non destructive ldots
L'effet Casimir : théorie et expériences
NASA Astrophysics Data System (ADS)
Lambrecht, A.; Genet, C.; Intravaia, F.; Reynaud, S.
2004-11-01
L'existence de fluctuations irréductibles de champ dans le vide est une prédiction importante de la théorie quantique. Ces fluctuations ont de nombreuses conséquences observables comme l'effet Casimir, qui est maintenant mesuré avec une bonne précision et un bon accord avec la théorie, pourvu que celle-ci tienne compte des différences entre les expériences rélles et la situation idéale considérée par H.G.B. Casimir. Nous présenterons quelqu'unes des expériences récentes et discuterons les principales corrections à la force de Casimir liées à la situation expérimentale.
Effet Bauschinger lors de la plasticité cyclique de l'aluminium pur monocristallin
NASA Astrophysics Data System (ADS)
Alhamany, A.; Chicois, J.; Fougères, R.; Hamel, A.
1992-08-01
This paper is concerned with the study of microscopic mechanisms which control the cyclic deformation of pure aluminium and especially with the analysis of the Bauschinger effect which appears in aluminium single crystals deformed by cyclic straining. Fatigue tests are performed on Al single crystals with the crystal axis parallel to [ overline{1}23] at room temperature, at plastic shear strain amplitudes in the range from 10^{-4} to 3× 10^{-3}. Mechanical saturation is not obtained at any strain level. Instead, a hardening-softening-secondary hardening sequence is found. The magnitude of the Bauschinger effect as the difference between yield stresses in traction and in compression, changes all along the fatigue loop and during the fatigue test. The Bauschinger effect disappears at two points of the fatigue loop, one in the traction part, the other in the compression one. At these points, the Bauschinger effect is inverted. Dislocation arrangement evolutions with fatigue conditions can explain the cyclic behaviour of Al single crystals. An heterogeneous dislocation distribution can be observed in the cyclically strained metal : dislocation tangles, long dislocation walls and dislocation cell walls, separated by dislocation poor channels appear in the material as a function of the cycle number. The long range internal stress necessary to ensure the compatibility of deformation between the hard and soft regions controls the observed Bauschinger effect. Ce travail s'inscrit dans le cadre de l'étude des mécanismes microsocopiques intervenant lors de la déformation cyclique de l'aluminium pur et concerne en particulier l'analyse de l'effet Bauschinger apparaissant au cours de la solliciation cyclique des monocristaux. L'étude a été menée à température ambiante sur des monocristaux d'aluminium pur orientés pour un glissement simple (axe [ overline{1}23] ), à des amplitudes de déformation plastique comprise entre 10^{-4} et quelques 10^{-3}. Nous n'avons pas
L’effet du yoga chez les patients atteints de cancer
Côté, Andréanne; Daneault, Serge
2012-01-01
Résumé Objectif Déterminer si le yoga thérapeutique améliore la qualité de vie de patients atteints de cancer. Sources des données Recherche effectuée avec la base de données MEDLINE (1950–2010) en utilisant les mots-clés yoga, cancer et quality of life. Sélection des études Priorité accordée aux études cliniques randomisées contrôlées évaluant l’effet du yoga sur différents symptômes susceptibles de se présenter chez des patients atteints de cancer en Amérique du Nord. Synthèse Quatre études cliniques randomisées contrôlées ont d’abord été analysées, puis 2 études sans groupe-contrôle. Trois études réalisées en Inde et au Proche-Orient ont également apporté des éléments intéressants au plan méthodologique. Les interventions proposées comprenaient des séances de yoga d’une durée et d’une fréquence variables. Les paramètres mesurés variaient également d’une étude à l’autre. Plusieurs symptômes ont connu des améliorations significatives avec le yoga (meilleure qualité du sommeil, diminution des symptômes anxieux ou dépressifs, amélioration du bien-être spirituel, etc.). Il a aussi semblé que la qualité de vie, dans sa globalité ou dans certaines de ses composantes spécifiques, s’améliorait. Conclusion La variété des effets bénéfiques produits, l’absence d’effet secondaire et le rapport coût-bénéfice avantageux du yoga thérapeutique en fait une intervention intéressante à suggérer par les médecins de famille aux patients atteints de cancer. Certaines lacunes méthodologiques ont pu diminuer la puissance statistique des études présentées, à commencer par la taille restreinte des échantillons et par l’assiduité variable des patients soumis à l’intervention. Il est également possible que les échelles de mesure utilisées ne convenaient pas à ce type de situation et de clientèle pour qu’en soit dégagé un effet significatif. Toutefois, les commentaires
Chlorate analyses in matrices of animal origin.
Smith, David J; Taylor, Joshua B
2011-03-09
Sodium chlorate is being developed as a potential food-safety tool for use in the livestock industry because of its effectiveness in decreasing concentrations of certain Gram-negative pathogens in the gastrointestinal tracts of food animals. A number of studies with sodium chlorate in animals have demonstrated that concentrations of chlorate in meat, milk, wastes, and gastrointestinal contents range from parts per billion to parts per thousand, depending upon chlorate dose, matrix, and time lapse after dosing. Although a number of analytical methods exist for chlorate salts, very few were developed for use in animal-derived matrices, and none have anticipated the range of chlorate concentrations that have been observed in animal wastes and products. To meet the analytical needs of this development work, LC-MS, ion chromatographic, and colorimetric methods were developed to measure chlorate residues in a variety of matrices. The LC-MS method utilizes a Cl(18)O(3)(-) internal standard, is applicable to a variety of matrices, and provides quantitative assessment of samples from 0.050 to 2.5 ppm. Due to ion suppression, matrix-matched standard curves are appropriate when using LC-MS to measure chlorate in animal-derived matrices. A colorimetric assay based on the acid-catalyzed oxidation of o-tolidine proved valuable for measuring ≥20 ppm quantities of chlorate in blood serum and milk, but not urine, samples. Ion chromatography was useful for measuring chlorate residues in urine and in feces when chlorate concentrations exceeded 100 ppm, but no effort was made to maximize ion chromatographic sensitivity. Collectively, these methods offer the utility of measuring chlorate in a variety of animal-derived matrices over a wide range of chlorate concentrations.
Effect of entanglements on mechanical properties of glassy polymers
NASA Astrophysics Data System (ADS)
Hoy, Robert Scott
Glass forming polymers are of great industrial importance and scientific interest because of their unique mechanical properties, which arise from the connectivity and random-walk-like structure of the constituent chains. In this thesis I study the relation of entanglements to the mechanical properties of model polymer glasses and brushes using molecular dynamics simulations. We perform extensive studies of glassy strain hardening, which stabilizes polymers against strain localization and fracture. Fundamental inconsistencies in existing entropic models of strain hardening imply that our understanding of its microscopic origins is far from complete. The dependence of stress on strain and entanglement density is consistent with experiment and entropic models. However, many of the assumptions of these models are totally inconsistent with our simulation results. The dependence on temperature, rate and interaction strength can be understood as reflecting changes in the plastic flow stress rather than a network entropy. A substantial energetic contribution to the stress rises rapidly as segments between entanglements are pulled taut. The thermal component of stress is less sensitive to entanglements, mostly irreversible, and directly related to the rate of local plastic arrangements. The deformation of the entanglement network is not affine to the macroscopic stretch. Entangled and unentangled chains show the same strain hardening when plotted against the microscopic chain orientation rather than the macroscopic strain. The entropic back stress responsible for shape recovery arises from chain orientation rather than entanglement. We also present some other results unrelated to strain hardening. We analyze the entanglement of polymer brushes embedded in long-chain melts and in implicit good and theta solvents. The melt-embedded brushes are more self-entangled than those in the solvents. The degree of self-entanglement of the brushes in the solvents follows a simple
Temporal disconnectivity of the energy landscape in glassy systems
NASA Astrophysics Data System (ADS)
Lempesis, Nikolaos; Boulougouris, Georgios C.; Theodorou, Doros N.
2013-03-01
An alternative graphical representation of the potential energy landscape (PEL) has been developed and applied to a binary Lennard-Jones glassy system, providing insight into the unique topology of the system's potential energy hypersurface. With the help of this representation one is able to monitor the different explored basins of the PEL, as well as how - and mainly when - subsets of basins communicate with each other via transitions in such a way that details of the prior temporal history have been erased, i.e., local equilibration between the basins in each subset has been achieved. In this way, apart from detailed information about the structure of the PEL, the system's temporal evolution on the PEL is described. In order to gather all necessary information about the identities of two or more basins that are connected with each other, we consider two different approaches. The first one is based on consideration of the time needed for two basins to mutually equilibrate their populations according to the transition rate between them, in the absence of any effect induced by the rest of the landscape. The second approach is based on an analytical solution of the master equation that explicitly takes into account the entire explored landscape. It is shown that both approaches lead to the same result concerning the topology of the PEL and dynamical evolution on it. Moreover, a "temporal disconnectivity graph" is introduced to represent a lumped system stemming from the initial one. The lumped system is obtained via a specially designed algorithm [N. Lempesis, D. G. Tsalikis, G. C. Boulougouris, and D. N. Theodorou, J. Chem. Phys. 135, 204507 (2011), 10.1063/1.3663207]. The temporal disconnectivity graph provides useful information about both the lumped and the initial systems, including the definition of "metabasins" as collections of basins that communicate with each other via transitions that are fast relative to the observation time. Finally, the two examined
NASA Astrophysics Data System (ADS)
Delisle, Sonya
Des observations spectroscopiques de 3 galaxies elliptiques normales, 4 lenticulaires, 2 bulbes de spirales (dont celui de la Voie Lactée) et 2 elliptiques naines péculières sont analysées. Les spectres couvrent d'environ 3900 à 10000 Å, donnant accès aux raies du visible qui sont sensibles soit à la métallicité, soit à l'âge. Les largeurs équivalentes des raies sont mesurées selon deux systèmes d'indices spectroscopiques. Les mesures sont faites à plusieurs distances radiales du centre de chaque galaxie afin d'obtenir des gradients. Les indices Hβ,
Direct Imaging of Dynamic Glassy Behavior in a Strained Manganite Film.
Kundhikanjana, Worasom; Sheng, Zhigao; Yang, Yongliang; Lai, Keji; Ma, Eric Yue; Cui, Yong-Tao; Kelly, Michael A; Nakamura, Masao; Kawasaki, Masashi; Tokura, Yoshinori; Tang, Qiaochu; Zhang, Kun; Li, Xinxin; Shen, Zhi-Xun
2015-12-31
Complex many-body interaction in perovskite manganites gives rise to a strong competition between ferromagnetic metallic and charge-ordered phases with nanoscale electronic inhomogeneity and glassy behaviors. Investigating this glassy state requires high-resolution imaging techniques with sufficient sensitivity and stability. Here, we present the results of a near-field microwave microscope imaging on the strain-driven glassy state in a manganite film. The high contrast between the two electrically distinct phases allows direct visualization of the phase separation. The low-temperature microscopic configurations differ upon cooling with different thermal histories. At sufficiently high temperatures, we observe switching between the two phases in either direction. The dynamic switching, however, stops below the glass transition temperature. Compared with the magnetization data, the phase separation was microscopically frozen, while spin relaxation was found in a short period of time.
Broadband terahertz time-domain spectroscopy : crystalline and glassy drug materials
NASA Astrophysics Data System (ADS)
Kojima, Seiji; Shibata, Tomohiko; Igawa, Hikaru; Mori, Tatsuya
2014-03-01
Low-energy IR active modes of glassy and crystalline drug materials were studied by the broadband Terahertz Time Domain Spectroscopy (THz-TDS) in the frequency range from 0.5 to 6.5 THz using a Cherenkov type THz generator. In order to determine the real and imaginary parts of complex dielectric constant, all samples were measured by the transmission using a pure pellet without mixing polyethylene. For glassy indomethacine, the broadband THz spectrum of real part of dielectric constant shows step-wise decrease with the increase of frequency, while the imaginary part shows a broad peak at about 3 THz reflecting quenched glassy disordered structure. The observed spectra of crystalline racemic ketoprofen show the noncoincidence of peak frequencies between low-frequency Raman scattering and THz absorbance spectra. It can be attributed to the fact that the mutual exclusion principle between Raman and IR activities holds below 6 THz.
Glassy cell carcinoma of the endometrium: a case report and review of the literature.
Ferrandina, Gabriella; Zannoni, Gian Franco; Petrillo, Marco; Vellone, Valerio; Martinelli, Enrica; Scambia, Giovanni
2007-01-01
Glassy cell carcinomas are composed of malignant cells showing a "ground glass" cytoplasm, distinct cell membranes, and large nuclei with prominent nucleoli. To our knowledge, only 12 cases of glassy cell endometrial carcinomas (EGCC) have been reported until now. A 63-year-old patient complaining of irregular vaginal bleeding underwent hysteroscopy-guided biopsy revealing a well-differentiated endometrial endometrioid adenocarcinoma. The patient underwent left salpingo-oophorectomy, total abdominal hysterectomy, and pelvic lymphadenectomy. The final diagnosis was FIGO stage IB poorly differentiated endometrial adenosquamous carcinoma with > 90% of glassy tumor cells. The patient is alive, with no evidence of disease for 69 months after diagnosis. We describe an additional case of EGCC and review the data of the literature, emphasizing the need to strictly define the criteria for the diagnosis and the potential usefulness of assessing biologic parameters for the prognostic characterization of this rare entity.
Direct Imaging of Dynamic Glassy Behavior in a Strained Manganite Film
NASA Astrophysics Data System (ADS)
Kundhikanjana, Worasom; Sheng, Zhigao; Yang, Yongliang; Lai, Keji; Ma, Eric Yue; Cui, Yong-Tao; Kelly, Michael A.; Nakamura, Masao; Kawasaki, Masashi; Tokura, Yoshinori; Tang, Qiaochu; Zhang, Kun; Li, Xinxin; Shen, Zhi-Xun
2015-12-01
Complex many-body interaction in perovskite manganites gives rise to a strong competition between ferromagnetic metallic and charge-ordered phases with nanoscale electronic inhomogeneity and glassy behaviors. Investigating this glassy state requires high-resolution imaging techniques with sufficient sensitivity and stability. Here, we present the results of a near-field microwave microscope imaging on the strain-driven glassy state in a manganite film. The high contrast between the two electrically distinct phases allows direct visualization of the phase separation. The low-temperature microscopic configurations differ upon cooling with different thermal histories. At sufficiently high temperatures, we observe switching between the two phases in either direction. The dynamic switching, however, stops below the glass transition temperature. Compared with the magnetization data, the phase separation was microscopically frozen, while spin relaxation was found in a short period of time.
Ramirez, José L; Perring, Thomas M; Miller, Thomas A
2008-10-01
Symbiotic control is a new strategy being investigated to prevent the spread of insect-transmitted pathogens by reducing vector competence. We are developing this strategy to reduce the spread of Xylella fastidiosa by Homalodisca vitripennis (Germar) [formerly Homalodisca coagulata (Say)] (Hemiptera: Cicadellidae), the glassy-winged sharpshooter. In this study, the fate of a transformed symbiotic bacterium, Alcaligenes xylosoxidans variety denitriicans (S1Axd), in the foregut of glassy-winged sharpshooter when fed on citrus (Citrus spp.) and grape (Vitris spp.) was assessed. TaqMan-based quantitative real-time polymerase chain reaction (PCR) was used to detect and quantify bacterial cells remaining in the foregut at 0, 2, 4, 9, and 12 d after acquisition. S1Axd titer dropped rapidly by 2 d after acquisition, but in spite of this, at end of the 12-d experimental period, 45 and 38% of the glassy-winged sharpshooters retained the transformed bacteria, when fed on grape and citrus, respectively.
Klich, I; Lee, S-H; Iida, K
2014-04-01
When spins are arranged in a lattice of triangular motif, the phenomenon of frustration leads to numerous energetically equivalent ground states, and results in exotic states such as spin liquid and spin ice. Here we report an alternative situation: a system, classically a liquid, freezes in the clean limit into a glassy state induced by quantum fluctuations. We call such glassy state a spin jam. The case in point is a frustrated magnet, where spins are arranged in a triangular network of bipyramids. Quantum corrections break the classical degeneracy into a set of aperiodic spin configurations forming local minima in a rugged energy landscape. This is established by mapping the problem into tiling with hexagonal tiles. The number of tessellations scales with the boundary length rather than its volume, showing the absence of local zero-energy modes. Low-temperature thermodynamics is discussed to compare it with other glassy materials.
2009-01-01
2009 Recommended by Enrico Capobianco This paper considers the lower and upper bounds of eigenvalues of arrow-head matrices. We propose a parameterized...arrowhead matrices have been used to describe radiationless transitions in isolated molecules [1] and oscillators vibrationally coupled with a Fermi ...Journal of Chemical Physics, vol. 48, no. 2, pp. 715– 726, 1968. [2] J. W. Gadzuk, “Localized vibrational modes in Fermi liquids. General theory
Electrospun human keratin matrices as templates for tissue regeneration.
Sow, Wan Ting; Lui, Yuan Siang; Ng, Kee Woei
2013-04-01
The aim of this work was to study the feasibility of fabricating human hair keratin matrices through electrospinning and to evaluate the potential of these matrices for tissue regeneration. Keratin was extracted from human hair using Na2S and blended with poly(ethylene oxide) in the weight ratio of 60:1 for electrospinning. Physical morphology and chemical properties of the matrices were characterized using scanning electron microscopy and Fourier transform infrared spectroscopy, respectively. Cell viability and morphology of murine and human fibroblasts cultured on the matrices were evaluated through the Live/Dead(®) assay and scanning electron microscopy. Electrospun keratin matrices were successfully produced without affecting the chemical conformation of keratin. Fibroblasts cultured on keratin matrices showed healthy morphology and penetration into matrices at day 7. Electrospun human hair keratin matrices provide a bioinductive and structural environment for cell growth and are thus attractive as alternative templates for tissue regeneration.
NASA Technical Reports Server (NTRS)
Freed, Alan; Leonov, Arkady I.
2002-01-01
This paper, the last in the series, continues developing the nonlinear constitutive relations for non-isothermal, compressible, solid viscoelasticity. We initially discuss a single integral approach, more suitable for the glassy state of rubber-like materials, with basic functionals involved in the thermodynamic description for this type of viscoelasticity. Then we switch our attention to analyzing stability constraints, imposed on the general formulation of the nonlinear theory of solid viscoelasticity. Finally, we discuss specific (known from the literature or new) expressions for material functions that are involved in the constitutive formulations of both the rubber-like and glassy-like, complementary parts of the theory.
Tolansky, S
1970-01-30
Over two hundred spherules and cylinders were extracted from the lunar dust sample. Sizes ranged from 0.7 to 0.03 millimeters, and most were shiny glassy objects, which were studied by interferometry. This study reveals very high spcular feflection, frequentperfect sphericity, and clear evidence n some objects of micracking and microchipping. Many spheres were once projectiles. Some have inpacted in free flight with much smaller pices of rocky material, which embedded in the surface. It is conjectured that the glassy spherules originated as a gas-blown shower from a pool of molten glass.
NASA Astrophysics Data System (ADS)
Ko, Jae-Hyeon; Lee, Kwang-Sei; Ike, Yuji; Kojima, Seiji
2008-11-01
The acoustic waves propagating along the direction perpendicular to the (1 0 0) cleavage plane of aspirin crystal were investigated using micro-Brillouin spectroscopy from which C11, C55 and C66 were obtained. The temperature dependence of the longitudinal acoustic waves could be explained by normal anharmonic lattice models, while the transverse acoustic waves showed an abnormal increase in the hypersonic attenuation at low temperatures indicating their coupling to local remnant dynamics. The sound velocity as well as the attenuation of the longitudinal acoustic waves of glassy aspirin showed a substantial change at ˜235 K confirming a transition from glassy to supercooled liquid state in vitreous aspirin.
SUPERNOVA SHOCK-WAVE-INDUCED CO-FORMATION OF GLASSY CARBON AND NANODIAMOND
Stroud, Rhonda; Chisholm, Matthew F; Heck, Phillipp; Alexander, Conel; Nittler, Larry
2011-01-01
Nanodiamond (ND) was the first extrasolar dust phase to be identified in meteorites. However, the 2 nm average size of the NDs precludes isotopic analysis of individual particles, and thus their origin(s) remains controversial. Using electron microscopy with subnanometer resolution, we show that ND separates from the Allende and Murchison meteorites are actually a two-phase mixture of ND and glassy carbon. This phase mixture is likely the product of supernova shock-wave transformation of pre-formed organics in the interstellar medium (ISM). The glassy carbon ND mixture is also a plausible contributor to the 2175 extinction feature in the diffuse ISM.
2012-08-09
with Mg-Y-Cu BGA, MgY phase also has a cP2 B2 structure), Mg-Y-Ag (AgMg phase also has a cP2 B2 structure and is ductile) and Y-Cu-Zn and some other...result were obtained is connected with cP2 TiNi phase which demonstrates martensitic transformations. Choice of alloys and sample preparation...1. The tentative compositions at which bulk glassy phase formation and possible formation of cP2 crystal-glassy composites are Cu-Y (starting from
USDA-ARS?s Scientific Manuscript database
Glassy-winged sharpshooters must feed as adults to produce mature eggs. Cowpea and sunflower are both readily accepted by the glassy-winged sharpshooter for feeding, but egg production on sunflower was reported to be lower than egg production on cowpea. To better understand the role of adult diet in...
USDA-ARS?s Scientific Manuscript database
Seed glasses form during maturation drying and regulate seed longevity. Seeds continue to age within the glassy state and, even during cryogenic storage, viability eventually declines. Inevitability of aging suggests some level of molecular motion within the glassy matrix and quantifying these “rel...
Stiffness and mass matrices for shells of revolution (SAMMSOR II)
NASA Technical Reports Server (NTRS)
Tillerson, J. R.; Haisler, W. E.
1974-01-01
Utilizing element properties, structural stiffness and mass matrices are generated for as many as twenty harmonics and stored on magnetic tape. Matrices generated constitute input data to be used by other stiffness of revolution programs. Variety of boundary and loading conditions can be employed without having to create new mass and stiffness matrices for each case.
Decision Matrices: Tools to Enhance Middle School Engineering Instruction
ERIC Educational Resources Information Center
Gonczi, Amanda L.; Bergman, Brenda G.; Huntoon, Jackie; Allen, Robin; McIntyre, Barb; Turner, Sheri; Davis, Jen; Handler, Rob
2017-01-01
Decision matrices are valuable engineering tools. They allow engineers to objectively examine solution options. Decision matrices can be incorporated in K-12 classrooms to support authentic engineering instruction. In this article we provide examples of how decision matrices have been incorporated into 6th and 7th grade classrooms as part of an…
Decision Matrices: Tools to Enhance Middle School Engineering Instruction
ERIC Educational Resources Information Center
Gonczi, Amanda L.; Bergman, Brenda G.; Huntoon, Jackie; Allen, Robin; McIntyre, Barb; Turner, Sheri; Davis, Jen; Handler, Rob
2017-01-01
Decision matrices are valuable engineering tools. They allow engineers to objectively examine solution options. Decision matrices can be incorporated in K-12 classrooms to support authentic engineering instruction. In this article we provide examples of how decision matrices have been incorporated into 6th and 7th grade classrooms as part of an…
Improved Separability Criteria Based on Bloch Representation of Density Matrices
Shen, Shu-Qian; Yu, Juan; Li, Ming; Fei, Shao-Ming
2016-01-01
The correlation matrices or tensors in the Bloch representation of density matrices are encoded with entanglement properties. In this paper, based on the Bloch representation of density matrices, we give some new separability criteria for bipartite and multipartite quantum states. Theoretical analysis and some examples show that the proposed criteria can be more efficient than the previous related criteria. PMID:27350031
19 CFR 10.90 - Master records and metal matrices.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 19 Customs Duties 1 2012-04-01 2012-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301,...
19 CFR 10.90 - Master records and metal matrices.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 1 2010-04-01 2010-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301,...
19 CFR 10.90 - Master records and metal matrices.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 19 Customs Duties 1 2013-04-01 2013-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301,...
19 CFR 10.90 - Master records and metal matrices.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 1 2011-04-01 2011-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301,...
19 CFR 10.90 - Master records and metal matrices.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 1 2014-04-01 2014-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301,...
Waller, Niels G
2016-01-01
For a fixed set of standardized regression coefficients and a fixed coefficient of determination (R-squared), an infinite number of predictor correlation matrices will satisfy the implied quadratic form. I call such matrices fungible correlation matrices. In this article, I describe an algorithm for generating positive definite (PD), positive semidefinite (PSD), or indefinite (ID) fungible correlation matrices that have a random or fixed smallest eigenvalue. The underlying equations of this algorithm are reviewed from both algebraic and geometric perspectives. Two simulation studies illustrate that fungible correlation matrices can be profitably used in Monte Carlo research. The first study uses PD fungible correlation matrices to compare penalized regression algorithms. The second study uses ID fungible correlation matrices to compare matrix-smoothing algorithms. R code for generating fungible correlation matrices is presented in the supplemental materials.
Approximate inverse preconditioners for general sparse matrices
Chow, E.; Saad, Y.
1994-12-31
Preconditioned Krylov subspace methods are often very efficient in solving sparse linear matrices that arise from the discretization of elliptic partial differential equations. However, for general sparse indifinite matrices, the usual ILU preconditioners fail, often because of the fact that the resulting factors L and U give rise to unstable forward and backward sweeps. In such cases, alternative preconditioners based on approximate inverses may be attractive. We are currently developing a number of such preconditioners based on iterating on each column to get the approximate inverse. For this approach to be efficient, the iteration must be done in sparse mode, i.e., we must use sparse-matrix by sparse-vector type operatoins. We will discuss a few options and compare their performance on standard problems from the Harwell-Boeing collection.
Characteristic Matrices for Spherical Shell Photonic Systems
NASA Technical Reports Server (NTRS)
Fuller, Kirk A.; Smith, David D.
2004-01-01
We establish a parallel between the transfer matrix used in the study of plane-parallel photonic structures and the matrix characterizing transfer of partial waves in concentric spheres. We derive explicit expressions for the elements of the transfer matrix for concentric spherical layers, and from those expressions derive the scattering coefficients of a multilayered sphere. The transfer matrices are 4x4 block diagonal with only four independent elements. Matrix elements for the case of TM waves are related to those for the case of TE waves through simple interchange and multiplicative constants. In analogy with plane parallel layers, the transfer matrix for concentric multilayers is simply the product of the transfer matrices of the individual layers.
Characteristic Matrices for Spherical Shell Photonic Systems
NASA Technical Reports Server (NTRS)
Fuller, Kirk A.; Smith, David D.
2004-01-01
We establish a parallel between the transfer matrix used in the study of plane-parallel photonic structures and the matrix characterizing transfer of partial waves in concentric spheres. We derive explicit expressions for the elements of the transfer matrix for concentric spherical layers, and from those expressions derive the scattering coefficients of a multilayered sphere. The transfer matrices are 4x4 block diagonal with only four independent elements. Matrix elements for the case of TM waves are related to those for the case of TE waves through simple interchange and multiplicative constants. In analogy with plane parallel layers, the transfer matrix for concentric multilayers is simply the product of the transfer matrices of the individual layers.
Edge universality for deformed Wigner matrices
NASA Astrophysics Data System (ADS)
Lee, Ji Oon; Schnelli, Kevin
2015-09-01
We consider N × N random matrices of the form H = W + V where W is a real symmetric Wigner matrix and V a random or deterministic, real, diagonal matrix whose entries are independent of W. We assume subexponential decay for the matrix entries of W and we choose V so that the eigenvalues of W and V are typically of the same order. For a large class of diagonal matrices V, we show that the rescaled distribution of the extremal eigenvalues is given by the Tracy-Widom distribution F1 in the limit of large N. Our proofs also apply to the complex Hermitian setting, i.e. when W is a complex Hermitian Wigner matrix.
Evolutionary Games with Randomly Changing Payoff Matrices
NASA Astrophysics Data System (ADS)
Yakushkina, Tatiana; Saakian, David B.; Bratus, Alexander; Hu, Chin-Kun
2015-06-01
Evolutionary games are used in various fields stretching from economics to biology. In most of these games a constant payoff matrix is assumed, although some works also consider dynamic payoff matrices. In this article we assume a possibility of switching the system between two regimes with different sets of payoff matrices. Potentially such a model can qualitatively describe the development of bacterial or cancer cells with a mutator gene present. A finite population evolutionary game is studied. The model describes the simplest version of annealed disorder in the payoff matrix and is exactly solvable at the large population limit. We analyze the dynamics of the model, and derive the equations for both the maximum and the variance of the distribution using the Hamilton-Jacobi equation formalism.
Fabrication of Glassy and Crystalline Ferroelectric Oxide by Containerless Processing
NASA Astrophysics Data System (ADS)
Yoda, Shinichi
1. Instruction Much effort has been devoted to forming bulk glass from the melt of ferroelectric crystalline materials without adding any network-forming oxides such as SiO2 due to the potential for producing transparent glass ceramics with high dielectric constant and enhanced piezoelectric, pyroelectric and electro-optic effects. However, they require a higher cooling rate than glass formed by conventional techniques. Therefore, only amorphous thin-films have been formed, using rapid quenching with a cooling rate >105 K/s. The containerless processing is an attractive synthesis technique as it can prevent melt contamination, minimize heterogeneous nucleation, and allow melt to achieve deep undercooling for forming metastable phase and glassy material. Recently a new ferroelectric materiel, monoclinic BaTi2 O5 , with Currie temperature as 747 K was reported. In this study, we fabricated a bulk BaTi2 O5 glass from melt using containerless processing to study the phase relations and ferroelectric properties of BaTi2 O5 . To our knowledge, this was the first time that a bulk glass of ferroelectric material was fabricated from melt without adding any network-forming oxide. 2. Experiments BaTi2 O5 sphere glass with 2mm diameter was fabricated using containerless processing in an Aerodynamic Levitation Furnace (ALF). The containerless processing allowed the melt to achieve deep undercooling for glass forming. High purity commercial BaTiO3 and TiO2 powders were mixed with a mole ratio of 1:1 and compressed into rods and then sintered at 1427 K for 10 h. Bulk samples with a mass of about 20 mg were cut from the rod, levitated with the ALF, and then melted by a CO2 laser beam. After quenching with a cooling rate of about 1000 K/s, 2 mm diameter sphere glass could be obtained. To analyze the glass structure, a high-energy x-ray diffraction experiment was performed using an incident photon energy of 113.5 keV at the high-energy x-ray diffraction beamline BL04B2 of SPring-8
Analysis of thematic map classification error matrices.
Rosenfield, G.H.
1986-01-01
The classification error matrix expresses the counts of agreement and disagreement between the classified categories and their verification. Thematic mapping experiments compare variables such as multiple photointerpretation or scales of mapping, and produce one or more classification error matrices. This paper presents a tutorial to implement a typical problem of a remotely sensed data experiment for solution by the linear model method.-from Author
Eigenvalue spectra of large correlated random matrices
NASA Astrophysics Data System (ADS)
Kuczala, Alexander; Sharpee, Tatyana O.
2016-11-01
Using the diagrammatic method, we derive a set of self-consistent equations that describe eigenvalue distributions of large correlated asymmetric random matrices. The matrix elements can have different variances and be correlated with each other. The analytical results are confirmed by numerical simulations. The results have implications for the dynamics of neural and other biological networks where plasticity induces correlations in the connection strengths within the network. We find that the presence of correlations can have a major impact on network stability.
Some physical applications of random hierarchical matrices
Avetisov, V. A.; Bikulov, A. Kh.; Vasilyev, O. A.; Nechaev, S. K.; Chertovich, A. V.
2009-09-15
The investigation of spectral properties of random block-hierarchical matrices as applied to dynamic and structural characteristics of complex hierarchical systems with disorder is proposed for the first time. Peculiarities of dynamics on random ultrametric energy landscapes are discussed and the statistical properties of scale-free and polyscale (depending on the topological characteristics under investigation) random hierarchical networks (graphs) obtained by multiple mapping are considered.
Preconditioning matrices for Chebyshev derivative operators
NASA Technical Reports Server (NTRS)
Rothman, Ernest E.
1986-01-01
The problem of preconditioning the matrices arising from pseudo-spectral Chebyshev approximations of first order operators is considered in both one and two dimensions. In one dimension a preconditioner represented by a full matrix which leads to preconditioned eigenvalues that are real, positive, and lie between 1 and pi/2, is already available. Since there are cases in which it is not computationally convenient to work with such a preconditioner, a large number of preconditioners were studied which were more sparse (in particular three and four diagonal matrices). The eigenvalues of such preconditioned matrices are compared. The results were applied to the problem of finding the steady state solution to an equation of the type u sub t = u sub x + f, where the Chebyshev collocation is used for the spatial variable and time discretization is performed by the Richardson method. In two dimensions different preconditioners are proposed for the matrix which arises from the pseudo-spectral discretization of the steady state problem. Results are given for the CPU time and the number of iterations using a Richardson iteration method for the unpreconditioned and preconditioned cases.
Computing partial traces and reduced density matrices
NASA Astrophysics Data System (ADS)
Maziero, Jonas
Taking partial traces (PTrs) for computing reduced density matrices, or related functions, is a ubiquitous procedure in the quantum mechanics of composite systems. In this paper, we present a thorough description of this function and analyze the number of elementary operations (ops) needed, under some possible alternative implementations, to compute it on a classical computer. As we note, it is worthwhile doing some analytical developments in order to avoid making null multiplications and sums, what can considerably reduce the ops. For instance, for a bipartite system ℋa⊗ℋb with dimensions da=dimℋa and db=dimℋb and for da,db≫1, while a direct use of PTr definition applied to ℋb requires 𝒪(da6db6) ops, its optimized implementation entails 𝒪(da2db) ops. In the sequence, we regard the computation of PTrs for general multipartite systems and describe Fortran code provided to implement it numerically. We also consider the calculation of reduced density matrices via Bloch’s parametrization with generalized Gell Mann’s matrices.
M-matrices with prescribed elementary divisors
NASA Astrophysics Data System (ADS)
Soto, Ricardo L.; Díaz, Roberto C.; Salas, Mario; Rojo, Oscar
2017-09-01
A real matrix A is said to be an M-matrix if it is of the form A=α I-B, where B is a nonnegative matrix with Perron eigenvalue ρ (B), and α ≥slant ρ (B) . This paper provides sufficient conditions for the existence and construction of an M-matrix A with prescribed elementary divisors, which are the characteristic polynomials of the Jordan blocks of the Jordan canonical form of A. This inverse problem on M-matrices has not been treated until now. We solve the inverse elementary divisors problem for diagonalizable M-matrices and the symmetric generalized doubly stochastic inverse M-matrix problem for lists of real numbers and for lists of complex numbers of the form Λ =\\{λ 1, a+/- bi, \\ldots, a+/- bi\\} . The constructive nature of our results allows for the computation of a solution matrix. The paper also discusses an application of M-matrices to a capacity problem in wireless communications.
Scattering Matrices and Conductances of Leaky Tori
NASA Astrophysics Data System (ADS)
Pnueli, A.
1994-04-01
Leaky tori are two-dimensional surfaces that extend to infinity but which have finite area. It is a tempting idea to regard them as models of mesoscopic systems connected to very long leads. Because of this analogy-scattering matrices on leaky tori are potentially interesting, and indeed-the scattering matrix on one such object-"the" leaky torus-was studied by M. Gutzwiller, who showed that it has chaotic behavior. M. Antoine, A. Comtet and S. Ouvry generalized Gutzwiller‧s result by calculating the scattering matrix in the presence of a constant magnetic field B perpendicular to the surface. Motivated by these results-we generalize them further. We define scattering matrices for spinless electrons on a general leaky torus in the presence of a constant magnetic field "perpendicular" to the surface. From the properties of these matrices we show the following: (a) For integer values of B, Tij (the transition probability from cusp i to cusp j), and hence also the Büttiker conductances of the surfaces, are B-independent (this cannot be interpreted as a kind of Aharonov-Bohm effect since a magnetic force is acting on the electrons). (b) The Wigner time-delay is a monotonically increasing function of B.
The modern origin of matrices and their applications
NASA Astrophysics Data System (ADS)
Debnath, L.
2014-05-01
This paper deals with the modern development of matrices, linear transformations, quadratic forms and their applications to geometry and mechanics, eigenvalues, eigenvectors and characteristic equations with applications. Included are the representations of real and complex numbers, and quaternions by matrices, and isomorphism in order to show that matrices form a ring in abstract algebra. Some special matrices, including Hilbert's matrix, Toeplitz's matrix, Pauli's and Dirac's matrices in quantum mechanics, and Einstein's Pythagorean formula are discussed to illustrate diverse applications of matrix algebra. Included also is a modern piece of information that puts mathematics, science and mathematics education professionals at the forefront of advanced study and research on linear algebra and its applications.
Cornicchi, E.; Marconi, M.; Onori, G.; Paciaroni, A.
2006-01-01
Through elastic neutron scattering we measured the mean-square displacements of the hydrogen atoms of lysozyme embedded in a glucose-water glassy matrix as a function of the temperature and at various water contents. The elastic intensity of all the samples has been interpreted in terms of the double-well model in the whole temperature range. The dry sample shows an onset of anharmonicity at ∼100 K, which can be attributed to the activation of methyl group reorientations. Such a protein intrinsic dynamics is decoupled from the external environment on the whole investigated temperature range. In the hydrated samples an additional and larger anharmonic contribution is provided by the protein dynamical transition, which appears at a higher temperature Td. As hydration increases the coupling between the protein internal dynamics and the surrounding matrix relaxations becomes more effective. The behavior of Td that, as a function of the water content, diminishes by ∼60 K, supports the picture of the protein dynamics as driven by solvent relaxations. A possible connection between the protein dynamical response versus T and the thermal stability in glucose-water bioprotectant matrices is proposed. PMID:16617083
NASA Astrophysics Data System (ADS)
Laliberte, Francis
2010-06-01
Ce memoire presente des mesures de transport thermoelectrique, les effets Seebeck et Nernst, dans une serie d'echantillons de supraconducteurs a haute temperature critique. Des resultats obtenus recemment au Laboratoire National des Champs Magnetiques Intenses a Grenoble sur La1.7Eu0.2Sr0.1 CuO4, La1.675Eu0.2Sr0.125CuO 4, La1.64Eu0.2Sr0.16CuO4, La1.74Eu0.1Sr0.16CuO4 et La 1.4Nd0.4Sr0.2CuO4 sont analyses. Une attention particuliere est accordee aux equations de la theorie semi-classique du transport et leur validite est verifiee. La procedure experimentale et les materiaux utilises pour concevoir les montages de mesures sont expliques en detail. Enfin, un chapitre est dedie a l'explication et l'interpretation des resultats de transport thermoelectrique sur YBa2Cu3O6+delta publies au cours de l'hiver 2010 dans les revues Nature et Physical Review Letters. Les donnees d'effet Seebeck dans les echantillons de La 1.8-x,Eu0.2SrxCuO 4, ou un changement de signe est observe, permettent de conclure a la presence d'une poche d'electrons dans la surface de Fermi qui domine le transport a basse temperature dans la region sous-dopee du diagramme de phase. Cette conclusion est similaire a celle obtenue par des mesures d'effet Hall dans YBa 2Cu3O6+delta et elle cadre bien dans un scenario de reconstruction de la surface de Fermi. Les donnees d'effet Nernst recueillies indiquent que la contribution des fluctuations supraconductrices est limitee a un modeste intervalle de temperature au-dessus de la temperature critique.
Optical and mechanical behaviors of glassy silicone networks derived from linear siloxane precursors
NASA Astrophysics Data System (ADS)
Jang, Heejun; Seo, Wooram; Kim, Hyungsun; Lee, Yoonjoo; Kim, Younghee
2016-01-01
Silicon-based inorganic polymers are promising materials as matrix materials for glass fiber composites because of their good process ability, transparency, and thermal property. In this study, for utilization as a matrix precursor for a glass-fiber-reinforced composite, glassy silicone networks were prepared via hydrosilylation of linear/pendant Si-H polysiloxanes and the C=C bonds of viny-lterminated linear/cyclic polysiloxanes. 13C nuclear magnetic resonance spectroscopy was used to determine the structure of the cross-linked states, and a thermal analysis was performed. To assess the mechanical properties of the glassy silicone networks, we performed nanoindentation and 4-point bending tests. Cross-linked networks derived from siloxane polymers are thermally and optically more stable at high temperatures. Different cross-linking agents led to final networks with different properties due to differences in the molecular weights and structures. After stepped postcuring, the Young's modulus and the hardness of the glassy silicone networks increased; however, the brittleness also increased. The characteristics of the cross-linking agent played an important role in the functional glassy silicone networks.
NASA Astrophysics Data System (ADS)
Wang, Yang; Chen, Zhaofeng; Yu, Shengjie; Pan, Ning; Liao, Jiahao
2017-09-01
Glassy carbon (GC), characterized by a homogeneous structure and glass-like fracture surface once broken, has attracted increasing attention because of its excellent performance. In this paper, a dense graphite/glassy carbon composite coating with low gas permeability was introduced. In this composite coating, small graphite particles acting as second phase were wrapped by glassy carbon matrix. The composite coatings with different mass fractions of graphite particles were prepared. The mass loss of phenolic resin was determined by TG (thermogravimetry) analysis to determine the pyrolysis process. Raman spectrum analysis indicates that graphite content in composite coatings affected the G/D ratio significantly. The permeability of composite coatings with 50% and 100% graphite particles was almost same, which was ranged from 6 × 10‑13 m3 · µm/m2 · s · Pa to 3 × 10‑13 m3 · µm/m2 · s · Pa within the differential pressure from 100 kPa to 70 kPa. While the composite coating with 150% graphite particles had higher gas permeability due to the tiny micro-cracks and micro-pores produced. What was more, the densification mechanism of graphite/glassy carbon composite coating was also discussed in detail.
Phylogenetic analysis of heat shock proteins in Glassy-winged sharpshooter (Homalodisca vitripennis)
USDA-ARS?s Scientific Manuscript database
Heat shock proteins were identified in the glassy-winged sharpshooter, GWSS, Homalodisca vitripennis. The overall importance and function of HSPs lie in their ability to maintain protein integrity and activity during stressful conditions, such as extreme heat, cold, drought, or other stresses. The G...
Phylogenetic analysis of heat shock proteins in Glassy-winged sharpshooter
USDA-ARS?s Scientific Manuscript database
Four heat shock protein transcripts were produced from the glassy-winged sharpshooter Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae) which is the major vector of Xylella fastidiosa, the causal agent of Pierce’s disease of grapes. As genomic information has continued to be produced resea...
USDA-ARS?s Scientific Manuscript database
Exploitation of vibrational signals for suppressing glassy-winged sharpshooter (GWSS) populations could prove to be a useful tool. However, existing knowledge on GWSS vibrational communication is insufficient to implement a management program for this pest in California. Therefore, the objective of ...
Movement of Glassy-Winged Sharpshooters in a Deficit Irrigated Citrus Orchard
USDA-ARS?s Scientific Manuscript database
A two-year study was conducted in a citrus orchard [Citrus sinensis (L.) Osbeck cv. ‘Valencia’] to determine the effects of plant water stress on population density and movement glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar). Experimental treatments included irrigation at 100% ...
USDA-ARS?s Scientific Manuscript database
We identified several genes from the pathway which controls leafhopper diapause. Diapause in the glassy-winged sharpshooter, GWSS, Homalodisca vitripennis, is poorly understood, yet is an important physiological condition which permits leafhoppers to survive adverse conditions such as winter tempera...
USDA-ARS?s Scientific Manuscript database
The condition of diapause in the glassy-winged sharpshooter, GWSS, Homalodisca vitripennis, is poorly understood. Diapause is better known from other, non hemipteran insects. We used oligonucleotide microarrays to address the specificities of transcriptional responses of adult female GWSS, which wer...
USDA-ARS?s Scientific Manuscript database
The glassy-winged sharpshooter (GWSS; Homalodisca vitripennis Germar) is an invasive insect introduced to California circa 1989. Native to the southeastern U.S. and northeastern Mexico, GWSS is of economic concern as a vector of the Pierce’s disease bacterium Xylella fastidiosa. Recently, a novel ...
USDA-ARS?s Scientific Manuscript database
Xylem-feeding leafhoppers such as the glassy-winged sharpshooter, Homalodisca vitripennis (Cicadellidae: Cicadellinae), are thought to inoculate the bacterium Xylella fastidiosa (Xf) from colonies bound to cuticle of the sharpshooter’s functional foregut (precibarium and cibarium). The mechanism of ...
Effects of feeding on glassy-winged sharpshooter lipid content and egg production
USDA-ARS?s Scientific Manuscript database
Glassy-winged sharpshooter females emerge without mature eggs, and females must feed to produce mature eggs. As a result, allocation of incoming resources must be balanced between egg production and maintenance of other critical biological functions. Central to this process is allocation of lipids s...
Kinetics of phase transformation of carbon nanotubes containing Se85Te10Ag5 glassy composites
NASA Astrophysics Data System (ADS)
Upadhyay, A. N.; Singh, Kedar
2016-12-01
Carbon nanotubes (CNTs) containing glassy composites [(Se85Te10Ag5)100-X(CNT)X] (X = 0, 3 and 5) have been prepared by the melt-quenching technique. The differential scanning calorimetry (DSC) technique was used to study changes in the kinetics of phase transformations of [(Se85Te10Ag5)100-X(CNT)X] (X = 0, 3 and 5) after the incorporation of CNTs under non-isothermal conditions at different heating rates (5, 10, 15 and 20 K min-1). The calculated values of the activation energy of crystallization (E c) and the Avrami index (n) decrease whereas the activation energy of the glass transition (E g) increases for CNTs containing glass composites; such effects are explained on the basis of effective CNTs mediating through a cross-link with the pure-Se85Te10Ag5 glassy matrix. The superiority of the CNT-Se85Te10Ag5 glassy composite over the pure glassy alloy have also been briefly mentioned in regard to electrical, thermal and mechanical properties at room temperature.
USDA-ARS?s Scientific Manuscript database
Homalodisca vitripennis, also known as the glassy-winged sharpshooter, is a primary vector of phony peach and plum leaf scald diseases caused by Xylella fastidiosa Wells et al. Two of the following scions, (Prunus persica L. Batch cvs. Flordaking and June Gold and Prunus salicina L. cvs. Methley an...
Genomic Characterization of a Phytoreovirus species infecting the glassy-winged sharpshooter
USDA-ARS?s Scientific Manuscript database
A new Phytoreovirus species was isolated from glassy-winged sharpshooter (GWSS; Homalodisca vitripennis Germar) in California. Double-shelled isometric virus particles purified from adults resembled those observed in thin sections of salivary glands by transmission electron microscopy. Purified vir...
The Glassy-Winged Sharpshooter Vector of Xylella fastidiosa Harbors a Phytoreovirus
USDA-ARS?s Scientific Manuscript database
The glassy-winged sharpshooter (GWSS) vector of Xylella fastidiosa harbors a phytoreovirus species designated as Homalodisca vitripennis reovirus (HoVRV). Double-shelled isometric virus particles purified from GWSS adults resembled those observed in thin sections of GWSS salivary glands by transmis...
USDA-ARS?s Scientific Manuscript database
An effective way to limit incidence of Pierce’s disease of grapevine is to reduce populations of glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), which transmit the causal bacterium, Xylella fastidiosa. One strategy is to utilize egg parasitoids such as ...
USDA-ARS?s Scientific Manuscript database
The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is an important vector of Xylella fastidiosa, the bacterium that causes Pierce's disease of grapevine and is a threat to grape production throughout the United States. Female GWSS deposit egg masses be...
NASA Astrophysics Data System (ADS)
Davis, K.; Wolff, J.; Rowe, M. C.; Neill, O. K.
2015-12-01
Primary eruptive vent areas for several lavas in the Imnaha and Grande Ronde Formations of the Columbia River Basalt exhibit phreatomagmatic character, due to the interaction of rising flood basalt magma with groundwater and/or surface water. Vent constructional forms range from extensive (>1 km) maar complexes with abundant basement lithics to small (<<1 km), lithic-poor low-angle cones. Phreatomagmatic tephra is lithified and variably palagonitized, but glassy basaltic lapilli can be recovered from many locations. Many lapilli have experienced variable degrees of Na leaching but preserve magmatic abundances of most other elements; nonetheless in many cases pristine, unmodified glass is amenable to analysis. In addition, phenocrysts in lapilli have fully glassy melt inclusions. Glassy lapilli have highly variable S contents between ~100 and ~1300 ppm. This is consistent with quenching before degassing was complete, a common feature of phreatomagmatic eruptions. Melt inclusions have ≤2900 ppm S, ≤3400 ppm CO2 and ≤2.6 wt% H2O, allowing estimates of atmospheric input from the main phase of Columbia River volcanism. In addition, the lithophile trace element contents, and petrogenetically significant ratios such as Ba/Nb, of glassy lapilli exhibit differ from those in the equivalent 'stony' lava flows by up to a factor of 2. This suggests that processes in the flow and crystallization of lava serve to modify trace element abundances, and may place limits on the petrogenetic significance of trace element data from crystalline lava samples.
NASA Astrophysics Data System (ADS)
Rottler, Joerg; Kennett, Malcolm; Stamp, Philip
2008-06-01
This special issue highlights some of the research topics presented at the workshop on Mechanical Behavior of Glassy Materials, which took place in Vancouver, Canada from 21-23 July 2007. The workshop was organized under the auspices of the Pacific Institute of Theoretical Physics (PITP) with support from the Pacific Institute of Mathematical Sciences (PIMS) and Simon Fraser University (SFU). During this three-day event, 23 invited lectures were presented to an international group of about 40 participants. The full conference program as well as an archive of all presentations can be found online at www.pitp.physics.ubc.ca/confs/glass07/ The aim of the workshop was to bring together theorists and experimentalists working on glassy systems, with mechanical properties as the unifying theme. The talks touched on many aspects of the glass problem, from theories of the glass transition and mode coupling approaches to glassy dynamics, to spin glasses, simulations and theories of amorphous plasticity, the universal origin of ageing and dynamical heterogeneity in glasses, and glassy phenomena in biological systems. The interplay of ideas from high- and low-temperature (quantum) regimes of glasses led to lively discussions that brought researchers in both communities to explore similarities and differences in their respective ideas and physical systems. Progress was made on several fronts, and we hope that everyone involved left with some new perspective on their particular corner of interest in a class of problems that continues to present many challenges.
Deterministic sensing matrices in compressive sensing: a survey.
Nguyen, Thu L N; Shin, Yoan
2013-01-01
Compressive sensing is a sampling method which provides a new approach to efficient signal compression and recovery by exploiting the fact that a sparse signal can be suitably reconstructed from very few measurements. One of the most concerns in compressive sensing is the construction of the sensing matrices. While random sensing matrices have been widely studied, only a few deterministic sensing matrices have been considered. These matrices are highly desirable on structure which allows fast implementation with reduced storage requirements. In this paper, a survey of deterministic sensing matrices for compressive sensing is presented. We introduce a basic problem in compressive sensing and some disadvantage of the random sensing matrices. Some recent results on construction of the deterministic sensing matrices are discussed.
Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices
Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan; Gross, Sam; Hills, Gage; Hornstein, Michael; Lakkam, Milinda; Lee, Jason; Li, Jian; Liu, Linxi; Sing-Long, Carlos; Marx, Mike; Mittal, Akshay; Monajemi, Hatef; No, Albert; Omrani, Reza; Pekelis, Leonid; Qin, Junjie; Raines, Kevin; Ryu, Ernest; Saxe, Andrew; Shi, Dai; Siilats, Keith; Strauss, David; Tang, Gary; Wang, Chaojun; Zhou, Zoey; Zhu, Zhen
2013-01-01
In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the same phase transition location—holds for a wide range of non-Gaussian random matrix ensembles. We report extensive experiments showing that the Gaussian phase transition also describes numerous deterministic matrices, including Spikes and Sines, Spikes and Noiselets, Paley Frames, Delsarte-Goethals Frames, Chirp Sensing Matrices, and Grassmannian Frames. Namely, for each of these deterministic matrices in turn, for a typical k-sparse object, we observe that convex optimization is successful over a region of the phase diagram that coincides with the region known for Gaussian random matrices. Our experiments considered coefficients constrained to for four different sets , and the results establish our finding for each of the four associated phase transitions. PMID:23277588
NASA Astrophysics Data System (ADS)
Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Skrotzki, J.; Leisner, T.; Wilson, T. W.; Malkin, T. L.; Murray, B. J.
2012-09-01
The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA), levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition) before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosol particles that have re-vitrified in contact
NASA Astrophysics Data System (ADS)
Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Skrotzki, J.; Leisner, T.; Wilson, T. W.; Malkin, T. L.; Murray, B. J.
2012-04-01
The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA), levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition) before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosols that have re-vitrified in contact with the
NASA Astrophysics Data System (ADS)
Abdikalykov, A. K.
2015-05-01
The following problem is discussed: what are unitary n × n matrices U that map the linear space of ( T + H)-matrices into itself by similarity transformations? Analogous problems for the spaces of Toeplitz and Hankel matrices were solved recently. For ( T + H)-matrices, the problem of describing appropriate matrices U appears to be considerably more complex and is still open. The result proved in this paper may contribute to the complete solution of this problem. Namely, every such matrix U is either centrosymmetric or skew-centrosymmetric; moreover, only the first variant is possible for odd n.
NASA Astrophysics Data System (ADS)
Vomero, Maria; van Niekerk, Pieter; Nguyen, Vivian; Gong, Nick; Hirabayashi, Mieko; Cinopri, Alessio; Logan, Kyle; Moghadasi, Ali; Varma, Priya; Kassegne, Sam
2016-02-01
We present a novel technology for transferring glassy carbon microstructures, originally fabricated on a silicon wafer through a high-temperature process, to a polymeric flexible substrate such as polyimide. This new transfer technique addresses a major barrier in Carbon-MEMS technology whose widespread use so has been hampered by the high-temperature pyrolysis process (⩾900 °C), which limits selection of substrates. In the new approach presented, patterning and pyrolysis of polymer precursor on silicon substrate is carried out first, followed by coating with a polymer layer that forms a hydrogen bond with glassy carbon and then releasing the ensuing glassy carbon structure; hence, transferring it to a flexible substrate. This enables the fabrication of a unique set of glassy carbon microstructures critical in applications that demand substrates that conform to the shape of the stimulated/actuated or sensed surface. Our findings based on Fourier transform infared spectroscopy on the complete electrode set demonstrate—for the first time—that carbonyl groups on polyimide substrate form a strong hydrogen bond with hydroxyl groups on glassy carbon resulting in carboxylic acid dimers (peaks at 2660 and 2585 cm-1). This strong bond is further confirmed by a tensile test that demonstrated an almost perfect bond between these materials that behave as an ideal composite material. Further, mechanical characterization shows that ultimate strain for such a structure is as high as 15% with yield stress of ~20 MPa. We propose that this novel technology not only offers a compelling case for the widespread use of carbon-MEMS, but also helps move the field in new and exciting directions.
Sandanayaka, W R M; Backus, E A
2008-08-01
New Zealand is threatened by invasion of the glassy-winged sharpshooter, Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), an important vector of Xylella fastidiosa, a gram-negative bacterium that causes Pierce's disease in grape (Vitis spp.) and scorch diseases in many other horticultural crops. Therefore, an understanding of the host acceptability, feeding behavior, and potential vector efficiency of glassy-winged sharpshooter on New Zealand crops is important. We tested host plant acceptance and feeding behaviors of glassy-winged sharpshooter on three common horticultural crops grown in New Zealand (apple [Malus spp.], grape, and citrus [Citrus spp.]), and a native plant (Metrosideros excelsa [=tomentosa] Richard, pohutukawa), using the electrical penetration graph (EPG) technique. Probing (stylet penetration) behaviors varied among the host plants, primarily due to differences in waveform event durations. Apple and grape were the most accepted host plants, on which glassy-winged sharpshooter spent the majority of its time on the plant probing and readily located and accepted a xylem cell for ingestion. This resulted in long durations of sustained xylem fluid ingestion. In contrast, pohutukawa was the least accepted host. On this plant, glassy-winged sharpshooter spent less time probing and engaged in longer and more frequent testing/searching and xylem-testing activities, rejected xylem cells frequently, and spent less time with stylets resting, before accepting a xylem cell and ultimately performing the same amount of sustained ingestion. Citrus plants contaminated with sublethal insecticide residues were intermediate between these extremes, with some acceptance of xylem, but less ingestion, probably due to presumed partial paralysis of the cibarial muscles. Implications of the results in terms of host plant acceptance and the development of a stylet penetration index are discussed.
Annealing effects on the migration of ion-implanted cadmium in glassy carbon
NASA Astrophysics Data System (ADS)
Hlatshwayo, T. T.; Sebitla, L. D.; Njoroge, E. G.; Mlambo, M.; Malherbe, J. B.
2017-03-01
The migration behaviour of cadmium (Cd) implanted into glassy carbon and the effects of annealing on radiation damage introduced by ion implantation were investigated. The glassy carbon substrates were implanted with Cd at a dose of 2 × 1016 ions/cm2 and energy of 360 keV. The implantation was performed at room temperature (RT), 430 °C and 600 °C. The RT implanted samples were isochronally annealed in vacuum at 350, 500 and 600 °C for 1 h and isothermally annealed at 350 °C up to 4 h. The as-implanted and annealed samples were characterized by Raman spectroscopy and Rutherford backscattering spectrometry (RBS). Raman results revealed that implantation at room temperature amorphized the glassy carbon structure while high temperature implantations resulted in slightly less radiation damage. Isochronal annealing of the RT implanted samples resulted in some recrystallization as a function of increasing temperature. The original glassy carbon structure was not achieved at the highest annealing temperature of 600 °C. Diffusion of Cd in glassy carbon was already taking place during implantation at 430 °C. This diffusion of Cd was accompanied by significant loss from the surface during implantation at 600 °C. Isochronal annealing of the room temperature implanted samples at 350 °C for 1 h caused Cd to diffuse towards the bulk while isothermal annealing at 500 and 600 °C resulted in the migration of implanted Cd toward the surface accompanied by a loss of Cd from the surface. Isothermal annealing at 350 °C for 1 h caused Cd to diffuse towards the bulk while for annealing time >1 h Cd diffused towards the surface. These results were interpreted in terms of trapping and de-trapping of implanted Cd by radiation damage.
Feng, X.; Wronkiewicz, D.J.; Bates, J.K.; Brown, N.R.; Buck, E.C.; Dietz, N.L.; Gong, M.; Emery, J.W.
1994-05-01
Glassy slag waste forms are being developed to complement glass waste forms in implementing Minimum Additive Waste Stabilization (MAWS) for supporting DOE`s environmental restoration efforts. The glassy slag waste form is composed of various crystalline and metal oxide phases embedded in a silicate glass phase. The MAWS approach was adopted by blending multiple waste streams to achieve up to 100% waste loadings. The crystalline phases, such as spinels, are very durable and contain hazardous and radioactive elements in their lattice structures. These crystalline phases may account for up to 80% of the total volume of slags having over 80% metal loading. The structural bond strength model was used to quantify the correlation between glassy slag composition and chemical durability so that optimized slag compositions were obtained with limited crucible melting and testing. Slag compositions developed through crucible melts were also successfully generated in a pilot-scale Retech plasma centrifugal furnace at Ukiah, California. Utilization of glassy slag waste forms allows the MAWS approach to be applied to a much wider range of waste streams than glass waste forms. The initial work at ANL has indicated that glassy slags are good final waste forms because of (1) their high chemical durability; (2) their ability to incorporate large amounts of metal oxides; (3) their ability to incorporate waste streams having low contents of flux components; (4) their less stringent requirements on processing parameters, compared to glass waste forms; and (5) their low requirements for purchased additives, which means greater waste volume reduction and treatment cost savings.
Effets de la pollution de l’air sur la santé
Abelsohn, Alan; Stieb, Dave M.
2011-01-01
Résumé Objectif Faire connaître aux médecins de famille les effets de la pollution atmosphérique sur la santé et indiquer quels conseils donner aux patients vulnérables pour qu’ils soient moins exposés. Sources de l’information On a consulté MEDLINE à l’aide des termes relatifs à la pollution atmosphérique et à ses effets indésirables. On a révisé les articles en anglais publiés entre janvier 2008 et décembre 2009. La plupart des études contenaient des preuves de niveau II. Principal message Au Canada, la pollution de l’air extérieur cause une morbidité et une mortalité importantes. Elle peut affecter le système respiratoire (exacerbation de l’asthme et de la maladie pulmonaire obstructive chronique) et le système cardiovasculaire (déclencher l’arythmie, l’insuffisance cardiaque et les AVC). La cote air santé (CAS) est un nouvel outil de communication mis au point par Santé Canada et Environnement Canada qui indique sur une échelle de 1 à 10, le risque pour la santé causé par la pollution atmosphérique. La CAS est largement diffusée dans les médias et cet outil pourrait être utile au médecin de famille pour inciter les patients à haut risque (comme ceux qui souffrent d’asthme, de maladie pulmonaire obstructive chronique ou d’insuffisance cardiaque) à réduire leur exposition à la pollution atmosphérique. Conclusion Le médecin de famille peut se servir de la CAS et de ses messages sur la santé pour enseigner aux asthmatiques et aux autres patients à risque élevé la façon de réduire les risques pour la santé causés par la pollution atmosphérique.
NASA Astrophysics Data System (ADS)
Cargo, Patricia; Gallice, Gérard
1997-09-01
In this paper, the construction of a Roe's scheme for the conservative system of ideal magnetohydrodynamics (MHD) is presented. As this method relies on the computation of a Roe matrix, the problem is to find a matrixA(Ul,Ur) which satisfies the following properties. It is required to be consistent with the jacobian of the fluxF, to have real eigenvalues, a complete set of eigenvectors and to satisfy the relation: ΔF=A(Ul,Ur) ΔU, whereUlandUrare two admissible states and ΔUtheir difference. For the ideal MHD system, using eulerian coordinates, a Roe matrix is obtained without any hypothesis on the specific heat ratio. Especially, its construction relies on an original expression of the magnetic pressure jump. Moreover, a Roe matrix is computed for lagrangian ideal MHD, by extending the results of Munz who obtained such a matrix for the system of lagrangian gas dynamics. So this second matrix involves arithmetic averages unlike the eulerian one, which contains classical Roe averages like in eulerian gas dynamics. In this paper, a systematic construction of lagrangian Roe matrices in terms of eulerian Roe matrices for a general system of conservation laws is also presented. This result, applied to the above eulerian and lagrangian matrices for ideal MHD, gives two new matrices for this system. In the same way, by applying this construction to the gas dynamics equations new Roe matrices are also obtained. All these matrices allow the construction of Roe type schemes. Some numerical examples on the shock tube problem show the applicability of this method.
Tan, Guoqiang; Wu, Feng; Zhan, Chun; Wang, Jing; Mu, Daobin; Lu, Jun; Amine, Khalil
2016-03-09
The development of safe, stable, and long-life Li-ion batteries is being intensively pursued to enable the electrification of transportation and intelligent grid applications. Here, we report a new solid-state Li-ion battery technology, using a solid nanocomposite electrolyte composed of porous silica matrices with in situ immobilizing Li(+)-conducting ionic liquid, anode material of MCMB, and cathode material of LiCoO2, LiNi1/3Co1/3Mn1/3O2, or LiFePO4. An injection printing method is used for the electrode/electrolyte preparation. Solid nanocomposite electrolytes exhibit superior performance to the conventional organic electrolytes with regard to safety and cycle-life. They also have a transparent glassy structure with high ionic conductivity and good mechanical strength. Solid-state full cells tested with the various cathodes exhibited high specific capacities, long cycling stability, and excellent high temperature performance. This solid-state battery technology will provide new avenues for the rational engineering of advanced Li-ion batteries and other electrochemical devices.
Tan, Guoqiang; Wu, Feng; Zhan, Chun; Wang, Jing; Mu, Daobin; Lu, Jun; Amine, Khalil
2016-03-09
The development of safe, stable, and long-life Li-ion batteries is being intensively pursued to enable the electrification of transportation and intelligent grid applications. Here, we report a new solid-state Li-ion battery technology, using a solid nanocomposite electrolyte composed of porous silica matrices with in situ immobilizing Li+ conducting ionic liquid, anode material of MCMB, and cathode material of LiCoO_{2}, LiNi_{1/3}Co_{1/3}Mn_{1/3}O_{2}, or LiFePO_{4}. An injection printing method is used for the electrode/electrolyte preparation. Solid nanocomposite electrolytes exhibit superior performance to the conventional organic electrolytes with regard to safety and cycle-life. They also have a transparent glassy structure with high ionic conductivity and good mechanical strength. Solid-state full cells tested with the various cathodes exhibited high specific capacities, long cycling stability, and excellent high temperature performance. This solid-state battery technology will provide new avenues for the rational engineering of advanced Li-ion batteries and other electrochemical devices.
Comportement instationnaire des thermoéléments à effet Peltier multi-étages
NASA Astrophysics Data System (ADS)
Monchoux, F.; Zély, D.; Cordier, A.
1995-01-01
The analysis of thermoelectric phenomena is possible based on non-equilibrium thermodynamics. Integration of the thermal balance equation leads to an analytical solution for the non-stationnary behaviour. The influence to Thomson effect is commmented. The model, introduced in the complete software TRNSYS, permits the modelling of complex systems including such elements in their thermal regulation. La thermodynamique des processus irréversibles permet l'analyse des phénomènes thermoélectriques. Par intégration de l'équation de bilan thermique, on a obtenu une solution analytique pour le régime non stationnaire donnant la température en tous points et le flux absorbé. On a analysé l'influence de l'effet Thomson. Le modèle a été inclu dans le code plus général TRNSYS qui permet la modélisation de systèmes complexes.
Hearing random matrices and random waves
NASA Astrophysics Data System (ADS)
Berry, M. V.; Shukla, Pragya
2013-01-01
The eigenangles of random matrices in the three standard circular ensembles are rendered as sounds in several different ways. The different fluctuation properties of these ensembles can be heard, and distinguished from the two extreme cases, of angles that are distributed uniformly round the unit circle and those that are random and uncorrelated. Similarly, in Gaussian random superpositions of monochromatic plane waves in one, two and three dimensions, the dimensions can be distinguished in sounds created from one-dimensional sections. This paper is dedicated to the memory of Richard E Crandall.
Parallel mergs sort using comparison matrices. I
Romm, Y.E.
1995-05-01
The topics discussed in this paper are connected with internal merge sorting by a key (in short, M-sorting or M-sort). Originally developed by von Neumann, this is one of the first sorting methods. It still remains one of the fastest, involving Nlog{sub 2}N comparisons. The purpose of our article is to demonstrate the use of comparison matrices (CMs) for merging in M-sort. While preserving the known advantages of the sequential implementation of M-sort. CMs ensure more efficient use of main memory (one of the known weaknesses of M-sort is its large memory requirements) and effective parallelizability.
Asymptotic properties of infinite Leslie matrices.
Gosselin, Frédéric; Lebreton, Jean-Dominique
2009-01-21
The stable population theory is classically applicable to populations in which there is a maximum age after which individuals die. Demetrius [1972. On an infinite population matrix. Math. Biosci. 13, 133-137] extended this theory to infinite Leslie matrices, in which the longevity of individuals is potentially infinite. However, Demetrius had to assume that the survival probability per time step tends to 0 with age. We generalise here the conditions of application of the stable population theory to infinite Leslie matrix models and apply these results to two examples, including or not senescence.
Ejection of Chondrules from Fluffy Matrices
NASA Astrophysics Data System (ADS)
Arakawa, Sota
2017-09-01
Chondritic meteorites primarily contain millimeter-sized spherical objects, chondrules; however, the co-accretion process of chondrules and matrix grains is not yet understood. In this study, we investigate the ejection process of chondrules via collisions of fluffy aggregates composed of chondrules and matrices. We reveal that fluffy aggregates cannot grow into planetesimals without losing chondrules if we assume that the chondrite parent bodies are formed via direct aggregation of similar-sized aggregates. Therefore, an examination of other growth pathways is necessary to explain the formation of rocky planetesimals in our solar system.
Computing Riemann matrices of algebraic curves
NASA Astrophysics Data System (ADS)
Deconinck, Bernard; van Hoeij, Mark
2001-05-01
A black-box program for the explicit calculation of Riemann matrices of arbitrary compact connected Riemann surfaces is presented. All such Riemann surfaces are represented as plane algebraic curves. These algebraic curves are allowed to have arbitrary singularities. The method of calculation of the Riemann matrix is essentially its definition: we numerically integrate the holomorphic differentials of the Riemann surface over the cycles of a canonical basis of the homology of the Riemann surface. Both the holomorphic differentials and the canonical basis of the homology of the Riemann surface are obtained exactly through symbolic calculations. This program is included in Maple 6, as part of the algcurves package.
NASA Astrophysics Data System (ADS)
Acosta-vigil, A.; Cesare, B.; London, D.; Morgan, G. B., VI; Buick, I.; Hermann, J.; Bartoli, O.; Remusat, L.
2014-12-01
Crustal anatexis, together with melt extraction and ascent to upper crustal levels, generate plutons and volcanic edifices of granitoid composition. This process constitutes the main mechanism for the differentiation of the continental crust. A recent breakthrough in the study of crustal anatexis is the discovery of former melt inclusions in peritectic minerals of anatectic rocks. These melt droplets show now as glassy inclusions in rapidly cooled anatectic enclaves within volcanic rocks, or as polycrystalline aggregates (nanogranites) in migmatites. Analysis of glassy inclusions and of rehomogenized nanogranites provide direct information on the composition of crustal melts at the source of crustal magmas, on the extent of equilibration between melt and residue, and on the fluid regime during anatexis. A comprehensive geochemical study (≈350 EMP, 100 LA-ICPMS and 80 nanoSIMS analyses) of matrix glasses and glassy melt inclusions in Pl and Grt of anatectic enclaves within El Hoyazo dacite (Betic Cordillera, S Spain), recording melt compositions during regional anatexis at ≈700-850 °C and 0.5-0.7 GPa, shows that melts are leucogranitic (FeOt+MgO+TiO2=1.0-2.0 wt%), moderately to strongly peraluminous (ASI=1.10-1.25), with H2O concentrations well below saturation (3-5 wt%). They are heterogeneous and spread around the 0.5-0.7 GPa haplogranite H2O-undersaturated eutectics. Glassy inclusions in Pl are more heterogeneous, richer in normative Qtz and H2O, and poorer in FeOt and CaO compared to glassy inclusions in Grt and matrix glass. All glasses have moderate to high concentrations of LILE and low to very low concentrations in FRTE, HFSE and REE. Glass inclusions in Pl and Grt have higher concentrations of LILE, lower concentrations of Y, Zr, REE, and lower values of Th/U compared to matrix glasses. Surprisingly, and in spite of the compositional heterogeneity, glasses are at or close to equilibrium with their residue regarding most of the trace elements, except
Effects of molecular architecture on fluid ingress behavior of glassy polymer networks
NASA Astrophysics Data System (ADS)
Jaskson, Matthew Blaine
This manuscript demonstrates the synthesis of glassy polymer network isomers to control morphological variations and study solvent ingress behavior independent of chemical affinity. Well-controlled network architectures with varying free volume average hole-sizes have been shown to substantially influence solvent ingress within glassy polymer networks. Bisphenol-A diglycidyl ether (DGEBA), bisphenol-F diglycidyl ether (DGEBF), Triglycidyl p-aminophenol (pAP, MY0510), Triglycidyl maminophenol (mAP, MY0610), and tetraglydicyl-4,4'-diamino-diphenyl methane (TGDDM, MY721) were cured with 3,3'- and 4,4'-diaminodiphenyl sulfone (DDS) at a stoichiometric ratio of 1:1 oxirane to amine active hydrogen to generate a series of network architectures with an average free volume hole-size (Vh) ranging between 54-82 A3. Polymer networks were exposed to water and a broad range of organic solvents ranging in van der Waals (vdW) volumes from 18-88 A3 for up to 10,000h time. A clear relationship between glassy polymer network Vh and fluid penetration has been established. As penetrant vdW volume approached Vh, uptake kinetics significantly decreased, and as penetrant vdW volume exceeded Vh, a blocking mechanism dominated ingress and prevented penetrant transport. These results suggest that reducing the free volume hole-size is a reasonable approach to control solvent properties for glassy polymer networks. New techniques to monitor and predict the diffusion behavior of liquids through glassy networks are also presented. Digital Image Correlation (DIC) was employed to accurately measure the strain developed during case II diffusion. This technique also presented a new theory for a relationship between sample topology and irreversible macroscopic brittle failure induced by solvent absorption. A new modeling technique has been developed which can accurately predict the chemical and physical interactions a solvent may have with a glassy network. This new model can be used as a
Wagner, C.
1996-12-31
In 1992, Wittum introduced the frequency filtering decompositions (FFD), which yield a fast method for the iterative solution of large systems of linear equations. Based on this method, the tangential frequency filtering decompositions (TFFD) have been developed. The TFFD allow the robust and efficient treatment of matrices with strongly varying coefficients. The existence and the convergence of the TFFD can be shown for symmetric and positive definite matrices. For a large class of matrices, it is possible to prove that the convergence rate of the TFFD and of the FFD is independent of the number of unknowns. For both methods, schemes for the construction of frequency filtering decompositions for unsymmetric matrices have been developed. Since, in contrast to Wittums`s FFD, the TFFD needs only one test vector, an adaptive test vector can be used. The TFFD with respect to the adaptive test vector can be combined with other iterative methods, e.g. multi-grid methods, in order to improve the robustness of these methods. The frequency filtering decompositions have been successfully applied to the problem of the decontamination of a heterogeneous porous medium by flushing.
Bromination of selected pharmaceuticals in water matrices.
Benitez, F Javier; Acero, Juan L; Real, Francisco J; Roldan, Gloria; Casas, Francisco
2011-11-01
The bromination of five selected pharmaceuticals (metoprolol, naproxen, amoxicillin, phenacetin, and hydrochlorothiazide) was studied with these compounds individually dissolved in ultra-pure water. The apparent rate constants for the bromination reaction were determined as a function of the pH, obtaining the sequence amoxicillin>naproxen>hydrochlorothiazide≈phenacetin≈metoprolol. A kinetic mechanism specifying the dissociation reactions and the species formed for each compound according to its pK(a) value and the pH allowed the intrinsic rate constants to be determined for each elementary reaction. There was fairly good agreement between the experimental and calculated values of the apparent rate constants, confirming the goodness of the proposed reaction mechanism. In a second stage, the bromination of the selected pharmaceuticals simultaneously dissolved in three water matrices (a groundwater, a surface water from a public reservoir, and a secondary effluent from a WWTP) was investigated. The pharmaceutical elimination trend agreed with the previously determined rate constants. The influence of the main operating conditions (pH, initial bromine dose, and characteristics of the water matrix) on the degradation of the pharmaceuticals was established. An elimination concentration profile for each pharmaceutical in the water matrices was proposed based on the use of the previously evaluated apparent rate constants, and the theoretical results agreed satisfactorily with experiment. Finally, chlorination experiments performed in the presence of bromide showed that low bromide concentrations slightly accelerate the oxidation of the selected pharmaceuticals during chlorine disinfection.
Cl2 deposition on soil matrices.
Hearn, John; Eichler, Jeffery; Hare, Christopher; Henley, Michael
2012-10-30
Deposition of chlorine gas, Cl(2), on synthetic soil sample matrices was examined in a small chamber to ascertain its potential significance as a chemical sink during large-scale releases. The effects of organic matter, clay and sand mass fractions of the soil matrix, soil packing, and exposure to ultraviolet (UV) light on the observed Cl(2) deposition were examined. Organic matter content was found to be the dominant soil variable investigated that affected Cl(2) deposition; all other variables exhibited no measurable effect. Analytical results from the top 8.5mm of soil columns exposed to Cl(2) were fit to a simple kinetic model with six adjustable parameters. The kinetic model included two reactive bins to account for fast- and slow-reacting material in the soil matrices. The resulting empirical equation agreed with the data to within a factor of two and accurately predicted results from soil mixes not used to optimize the adjustable parameters. Total Cl(2) deposition, assuming a penetration depth of 8.5mm, was calculated to be as high as 160 metric tons per square kilometer for soil with an organic content of 10%, and inferred deposition velocities were as high as 0.5 cm/s for organically rich soil. Published by Elsevier B.V.
Tensor Dictionary Learning for Positive Definite Matrices.
Sivalingam, Ravishankar; Boley, Daniel; Morellas, Vassilios; Papanikolopoulos, Nikolaos
2015-11-01
Sparse models have proven to be extremely successful in image processing and computer vision. However, a majority of the effort has been focused on sparse representation of vectors and low-rank models for general matrices. The success of sparse modeling, along with popularity of region covariances, has inspired the development of sparse coding approaches for these positive definite descriptors. While in earlier work, the dictionary was formed from all, or a random subset of, the training signals, it is clearly advantageous to learn a concise dictionary from the entire training set. In this paper, we propose a novel approach for dictionary learning over positive definite matrices. The dictionary is learned by alternating minimization between sparse coding and dictionary update stages, and different atom update methods are described. A discriminative version of the dictionary learning approach is also proposed, which simultaneously learns dictionaries for different classes in classification or clustering. Experimental results demonstrate the advantage of learning dictionaries from data both from reconstruction and classification viewpoints. Finally, a software library is presented comprising C++ binaries for all the positive definite sparse coding and dictionary learning approaches presented here.
Gupta, Ruma; Gamare, Jayashree S; Pandey, Ashok K; Tyagi, Deepak; Kamat, Jayshree V
2016-02-16
Metallic ruthenium nanoparticles (Ru NPs) are formed on the glassy carbon electrode (GC) at electrodeposition potential of -0.75 V, as observed from X-ray photoelectron spectroscopy. Thus formed Ru NPs have the arsenite selective surface and conducting core that is ideally suited for designing a highly sensitive and reproducible response generating matrix for the arsenite detection at an ultratrace concentration in aqueous matrices. Contrary to this, arsenate ions sorb via chemical interactions on the ruthenium oxide (RuO2 and RuO3) NPs formed at -0.25 V, but not on the Ru NPs. For exploring a possibility of the quantification of arsenite in the ultratrace concentration range, the Ru NPs have been deposited on the GC by a potentiostatic pulse method of electrodeposition at optimized -0.75 V for 1000 s. Arsenite preconcentrates onto the Ru surface just by dipping the RuNPs/GC into the arsenite solution as it interacts chemically with Ru NPs. Electrochemical impedance spectroscopy of As(III) loaded RuNPs/GC shows a linear increase in the charge transfer resistance with an increase in As(III) conc. Using a differential pulse voltammetric technique, arsenite is oxidized to arsenate leading to its quantitative determination without any interference of Cu(2+) ions that are normally encountered in the water systems. Thus, the use of RuNPs/GC eliminates the need for a preconcentration step in stripping voltammetry, which requires optimization of the parameters like preconcentration potential, time, stirring, inferences, and so on. The RuNPs/GC based differential pulse voltammetric (DPV) technique can determine the concentration of arsenite in a few min with a detection limit of 0.1 ppb and 5.4% reproducibility. The sensitivity of 2.38 nA ppb(-1) obtained in the present work for As(III) quantification is considerably better than that reported in the literature, with a similar detection limit and mild conditions (pH = 2). The RuNPs/GC based DPV has been evaluated for its
Generating correlation matrices based on the boundaries of their coefficients.
Numpacharoen, Kawee; Atsawarungruangkit, Amporn
2012-01-01
Correlation coefficients among multiple variables are commonly described in the form of matrices. Applications of such correlation matrices can be found in many fields, such as finance, engineering, statistics, and medicine. This article proposes an efficient way to sequentially obtain the theoretical bounds of correlation coefficients together with an algorithm to generate n × n correlation matrices using any bounded random variables. Interestingly, the correlation matrices generated by this method using uniform random variables as an example produce more extreme relationships among the variables than other methods, which might be useful for modeling complex biological systems where rare cases are very important.
Multicanonical sampling of rare events in random matrices
Saito, Nen; Iba, Yukito; Hukushima, Koji
2010-09-15
A method based on multicanonical Monte Carlo is applied to the calculation of large deviations in the largest eigenvalue of random matrices. The method is successfully tested with the Gaussian orthogonal ensemble, sparse random matrices, and matrices whose components are subject to uniform density. Specifically, the probability that all eigenvalues of a matrix are negative is estimated in these cases down to the values of {approx}10{sup -200}, a region where simple random sampling is ineffective. The method can be applied to any ensemble of matrices and used for sampling rare events characterized by any statistics.
Multicanonical sampling of rare events in random matrices.
Saito, Nen; Iba, Yukito; Hukushima, Koji
2010-09-01
A method based on multicanonical Monte Carlo is applied to the calculation of large deviations in the largest eigenvalue of random matrices. The method is successfully tested with the Gaussian orthogonal ensemble, sparse random matrices, and matrices whose components are subject to uniform density. Specifically, the probability that all eigenvalues of a matrix are negative is estimated in these cases down to the values of ∼10(-200), a region where simple random sampling is ineffective. The method can be applied to any ensemble of matrices and used for sampling rare events characterized by any statistics.
A multiple shift QR-step for structured rank matrices
NASA Astrophysics Data System (ADS)
Vandebril, Raf; van Barel, Marc; Mastronardi, Nicola
2010-01-01
Eigenvalue computations for structured rank matrices are the subject of many investigations nowadays. There exist methods for transforming matrices into structured rank form, QR-algorithms for semiseparable and semiseparable plus diagonal form, methods for reducing structured rank matrices efficiently to Hessenberg form and so forth. Eigenvalue computations for the symmetric case, involving semiseparable and semiseparable plus diagonal matrices have been thoroughly explored. A first attempt for computing the eigenvalues of nonsymmetric matrices via intermediate Hessenberg-like matrices (i.e. a matrix having all subblocks in the lower triangular part of rank at most one) was restricted to the single shift strategy. Unfortunately this leads in general to the use of complex shifts switching thereby from real to complex operations. This paper will explain a general multishift implementation for Hessenberg-like matrices (semiseparable matrices are a special case and hence also admit this approach). Besides a general multishift QR-step, this will also admit restriction to real computations when computing the eigenvalues of arbitrary real matrices. Details on the implementation are provided as well as numerical experiments proving the viability of the presented approach.
USDA-ARS?s Scientific Manuscript database
Development, survivorship, longevity, reproduction and life table parameters of the glassy-winged sharpshooter, Homalodisca vitripennis (Germar), were examined in the laboratory using three host plants, sunflower (Helianthus annuus L.), Chrysanthemum morifolium L. and euonymus (Euonymus japonica Thu...
USDA-ARS?s Scientific Manuscript database
Grapevines (Vitis vinifera) have been observed to respond to oviposition by glassy-winged sharpshooters [Homalodisca vitripennis (Germar)(Hemiptera: Cicadellidae)] by producing volatile compounds that attract egg parasitoids such as Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae). Recent work ...
Investigation of basic thermal behavior of a-Te-Se-Ge-Sb glassy system
NASA Astrophysics Data System (ADS)
Nidhi, Anant Vidya; Modgil, Vivek; Chaudhary, Shobhna; Kumar, Prashant; Rangra, V. S.
2015-05-01
The bulk material Te9Se72Ge19-xSbx (8≤x≤12) has been prepared by melt quenching technique. The amorphous and glassy nature has been confirmed using XRD and DSC analysis respectively. The thermal kinetics of material is studied through differential scanning calorimetry under non-isothermal condition at constant heating rate. The thermal behavior, activation energy of glass transition and crystallization has been determined using appropriate models. The thermal parameter accounting for thermal stability and quality has been explored along with compositional dependence. A stable glass with high value of Tg and quality has been formed. The mild phase separation has been observed in the material at x=8, 9 and this phase separation dissolves when the Sb content further increases in glassy matrix.
Unraveling the Mechanism of Nanoscale Mechanical Reinforcement in Glassy Polymer Nanocomposites
Cheng, Shiwang; Bocharova, Vera; Belianinov, Alex; Xiong, Shaomin; Kisliuk, Alexander; Somnath, Suhas; Holt, Adam P.; Ovchinnikova, Olga S.; Jesse, Stephen; Martin, Halie J.; Etampawala, Thusitha N.; Dadmun, Mark D.; Sokolov, Alexei P.
2016-05-20
The mechanical reinforcement of polymer nanocomposites (PNCs) above the glass transition temperature, T_{g}, has been extensively researched. However, not much is known about the origin of this effect below T_{g}. In this paper, we unravel the mechanism of PNC reinforcement within the glassy state by directly probing nanoscale mechanical properties with atomic force microscopy and macroscopic properties with Brillouin light scattering. Our results unambiguously show that the "glassy" Young's modulus in the interfacial polymer layer of PNCs is two-times higher than in the bulk polymer, which results in significant reinforcement below T_{g}. We ascribe this phenomenon to a high stretching of the chains within the interfacial layer. Since the interfacial chain packing is essentially temperature independent, these findings provide a new insight into the mechanical reinforcement of PNCs also above T_{g}.
Radi, Abd-Elgawad; Wahdan, Tarek; Anwar, Zeinab; Mostafa, Hend
2010-08-01
Three fluoroquinolones; gatifloxacin (GAT), moxifloxacin (MOX) and sparfloxacin (SPAR) were electrochemically studied in various buffer systems at different pH values, using a glassy carbon electrode. The three fluoroquinolones were electrochemically oxidized at potential range (0.65-1.1 V) vs Ag-AgCl-KCl. The oxidation was irreversible and exhibited adsorption-controlled process behavior at all pH values and buffers studied. An electroanalytical methodology based on the adsorptive behavior of fluoroquinolones on glassy carbon electrode (GCE) and according to the linear relation between peak current and concentration using differential pulse voltammetry (DPV) method was successfully applied to the determination of the three fluoroquinolones in bulk and tablets. The proposed methods were statistically in agreement with that obtained by spectrophotometric comparison method. Copyright © 2010 John Wiley & Sons, Ltd.
Low substrate temperature deposition of diamond coatings derived from glassy carbon
Holcombe, C.E. Jr.; Seals, R.D.
1995-09-26
A process is disclosed for depositing a diamond coating on a substrate at temperatures less than about 550 C. A powder mixture of glassy carbon and diamond particles is passed through a high velocity oxy-flame apparatus whereupon the powders are heated prior to impingement at high velocity against the substrate. The powder mixture contains between 5 and 50 powder volume percent of the diamond particles, and preferably between 5 and 15 powder volume percent. The particles have a size from about 5 to about 100 micrometers, with the diamond particles being about 5 to about 30 micrometers. The flame of the apparatus provides a velocity of about 350 to about 1000 meters per second, with the result that upon impingement upon the substrate, the glassy carbon is phase transformed to diamond as coaxed by the diamond content of the powder mixture. 2 figs.
Low substrate temperature deposition of diamond coatings derived from glassy carbon
Holcombe, Jr., Cressie E.; Seals, Roland D.
1995-01-01
A process for depositing a diamond coating on a substrate at temperatures less than about 550.degree. C. A powder mixture of glassy carbon and diamond particles is passed through a high velocity oxy-flame apparatus whereupon the powders are heated prior to impingement at high velocity against the substrate. The powder mixture contains between 5 and 50 powder volume percent of the diamond particles, and preferably between 5 and 15 powder volume percent. The particles have a size from about 5 to about 100 micrometers, with the diamond particles being about 5 to about 30 micrometers. The flame of the apparatus provides a velocity of about 350 to about 1000 meters per second, with the result that upon impingement upon the substrate, the glassy carbon is phase transformed to diamond as coaxed by the diamond content of the powder mixture.
Elastic Properties of 4-6 nm-thick Glassy Carbon Thin Films
NASA Astrophysics Data System (ADS)
Manoharan, M. P.; Lee, H.; Rajagopalan, R.; Foley, H. C.; Haque, M. A.
2010-09-01
Glassy carbon is a disordered, nanoporous form of carbon with superior thermal and chemical stability in extreme environments. Freestanding glassy carbon specimens with 4-6 nm thickness and 0.5 nm average pore size were synthesized and fabricated from polyfurfuryl alcohol precursors. Elastic properties of the specimens were measured in situ inside a scanning electron microscope using a custom-built micro-electro-mechanical system. The Young's modulus, fracture stress and strain values were measured to be about 62 GPa, 870 MPa and 1.3%, respectively; showing strong size effects compared to a modulus value of 30 GPa at the bulk scale. This size effect is explained on the basis of the increased significance of surface elastic properties at the nanometer length-scale.
Electrochemiluminescence of luminol at the titanate nanotubes modified glassy carbon electrode.
Xu, Guifang; Zeng, Xiaoxue; Lu, Shuangyan; Dai, Hong; Gong, Lingshan; Lin, Yanyu; Wang, Qingping; Tong, Yuejin; Chen, Guonan
2013-01-01
A new strategy for the construction of a sensitive and stable electrochemiluminescent platform based on titanate nanotubes (TNTs) and Nafion composite modified electrode for luminol is described, TNTs contained composite modified electrodes that showed some photocatalytic activity toward luminol electrochemiluminescence emission, and thus could dramatically enhance luminol light emission. This extremely sensitive and stable platform allowed a decrease of the experiment electrochemiluminescence luminol reagent. In addition, in luminol solution at low concentrations, we compared the capabilities of a bare glassy carbon electrode with the TNT composite modified electrode for hydrogen peroxide detection. The results indicated that compared with glassy carbon electrode this platform was extraordinarily sensitive to hydrogen peroxide. Therefore, by combining with an appropriate enzymatic reaction, this platform would be a sensitive matrix for many biomolecules.
The glassy random laser: replica symmetry breaking in the intensity fluctuations of emission spectra
Antenucci, Fabrizio; Crisanti, Andrea; Leuzzi, Luca
2015-01-01
The behavior of a newly introduced overlap parameter, measuring the correlation between intensity fluctuations of waves in random media, is analyzed in different physical regimes, with varying amount of disorder and non-linearity. This order parameter allows to identify the laser transition in random media and describes its possible glassy nature in terms of emission spectra data, the only data so far accessible in random laser measurements. The theoretical analysis is performed in terms of the complex spherical spin-glass model, a statistical mechanical model describing the onset and the behavior of random lasers in open cavities. Replica Symmetry Breaking theory allows to discern different kinds of randomness in the high pumping regime, including the most complex and intriguing glassy randomness. The outcome of the theoretical study is, eventually, compared to recent intensity fluctuation overlap measurements demonstrating the validity of the theory and providing a straightforward interpretation of qualitatively different spectral behaviors in different random lasers. PMID:26616194
NASA Astrophysics Data System (ADS)
Andersen, Jens E. T.; Møller, Per; Pedersen, Marianne V.; Ulstrup, Jens
1995-02-01
We have investigated the absorption of cytochrome c on gold and glassy carbon substrates by in situ scanning tunnel microscopy under potentiostatic control of both substrate and tip. Low ionic strength and potential ranges where no Faradaic current flows were used. Cyt c aggregates into flat composite structures of about 50 nm lateral extension at gold surfaces. The aggregates evolve in time, and structures resembling individual cyt c molecules can be distinguished in the space between the 50 nm structures. Cyt c aggregates also form at glassy carbon but have a different, unbroken character where cyt c both sticks well to the surface and exhibits notable mobility. The observations suggest that characteristic surface specific, internally mobile protein aggregates are formed at both surfaces and that in situ molecular resolution of the STM pictures may have been achieved.
Relaxation of enthalpy fluctuations during sub-T(g) annealing of glassy selenium.
Gulbiten, Ozgur; Mauro, John C; Lucas, Pierre
2013-06-28
The relaxation behavior of glass is influenced by the presence of dynamical heterogeneities, which lead to an intrinsically non-monotonic decay of fluctuations in density and enthalpy during isothermal annealing. This is apparently a universal feature of fragile glass forming systems associated with localized spatial variations in relaxation time. Here we present direct experimental observation of the nonmonotonic evolution of enthalpy fluctuations in glassy selenium annealed near room temperature. The nonmonotonic change in the distribution of enthalpy fluctuations measured by heat capacity spectroscopy offers direct evidence for the presence of dynamical heterogeneity in this glass. An enthalpy landscape model of selenium is then used to simulate annealing under identical conditions. The simulation results closely follow the evolution of enthalpy fluctuations observed experimentally. The close match between model and experiment demonstrate that enthalpy and density fluctuations are sources of dynamical heterogeneities in glassy materials.
Connection between NMR and electrical conductivity in glassy chalcogenide fast ionic conductors
Kim, Kyung -Han
1995-07-07
The work documented in this thesis follows the traditional order. In this chapter a general discussion of ionic conduction and of glassy materials are followed by a brief outline of the experimental techniques for the investigation of fast ionic conduction in glassy materials, including NMR and impedance spectroscopy techniques. A summary of the previous and present studies is presented in the last section of this introductory chapter. The details of the background theory and models are found in the Chapter II, followed by the description of the experimental details in Chapter III. Chapter IV of the thesis describes the experimental results and the analysis of the experimental observations followed by the conclusions in chapter V.
Repetition and pair-interaction of string-like hopping motions in glassy polymers
NASA Astrophysics Data System (ADS)
Lam, Chi-Hang
2017-06-01
The dynamics of many glassy systems are known to exhibit string-like hopping motions each consisting of a line of particles displacing one another. By using the molecular dynamics simulations of glassy polymers, we show that these motions become highly repetitive back-and-forth motions as temperature decreases and do not necessarily contribute to net displacements. Particle hops which constitute string-like motions are reversed with a high probability, reaching 73% and beyond at low temperature. The structural relaxation rate is then dictated not by a simple particle hopping rate but instead by the rate at which particles break away from hopping repetitions. We propose that disruption of string repetitions and hence also structural relaxations are brought about by pair-interactions between strings.
Unraveling the Mechanism of Nanoscale Mechanical Reinforcement in Glassy Polymer Nanocomposites
Cheng, Shiwang; Bocharova, Vera; Belianinov, Alex; Xiong, Shaomin; Kisliuk, Alexander; Somnath, Suhas; Holt, Adam P.; Ovchinnikova, Olga S.; Jesse, Stephen; Martin, Halie J.; Etampawala, Thusitha N.; Dadmun, Mark D.; Sokolov, Alexei P.
2016-05-20
The mechanical reinforcement of polymer nanocomposites (PNCs) above the glass transition temperature, T_{g}, has been extensively researched. However, not much is known about the origin of this effect below T_{g}. In this paper, we unravel the mechanism of PNC reinforcement within the glassy state by directly probing nanoscale mechanical properties with atomic force microscopy and macroscopic properties with Brillouin light scattering. Our results unambiguously show that the "glassy" Young's modulus in the interfacial polymer layer of PNCs is two-times higher than in the bulk polymer, which results in significant reinforcement below T_{g}. We ascribe this phenomenon to a high stretching of the chains within the interfacial layer. Since the interfacial chain packing is essentially temperature independent, these findings provide a new insight into the mechanical reinforcement of PNCs also above T_{g}.
NASA Astrophysics Data System (ADS)
Nguyen, Duc; Nienhaus, Lea; Haasch, Richard T.; Lyding, Joseph; Gruebele, Martin
2015-03-01
Glassy dynamics can be controlled by light irradiation. Sub- and above-bandgap irradiation cause numerous phenomena in glasses including photorelaxation, photoexpansion, photodarkening and pohtoinduced fluidity. We used scanning tunneling microscopy to study surface glassy dynamics of amorphous silicon carbide irradiated with above- bandgap 532 nm light. Surface clusters of ~ 4-5 glass forming unit in diameter hop mostly in a two-state fashion, both without and with irradiation. Upon irradiation, the average surface hopping activity increases by a factor of 3. A very long (~1 day) movie of individual clusters with varying laser power density provides direct evidence for photoinduced enhanced hopping on the glass surfaces. We propose two mechanisms: heating and electronic for the photoenhanced surface dynamics.
Unraveling the Mechanism of Nanoscale Mechanical Reinforcement in Glassy Polymer Nanocomposites
Cheng, Shiwang; Bocharova, Vera; Belianinov, Alex; ...
2016-05-20
The mechanical reinforcement of polymer nanocomposites (PNCs) above the glass transition temperature, Tg, has been extensively researched. However, not much is known about the origin of this effect below Tg. In this paper, we unravel the mechanism of PNC reinforcement within the glassy state by directly probing nanoscale mechanical properties with atomic force microscopy and macroscopic properties with Brillouin light scattering. Our results unambiguously show that the "glassy" Young's modulus in the interfacial polymer layer of PNCs is two-times higher than in the bulk polymer, which results in significant reinforcement below Tg. We ascribe this phenomenon to a high stretchingmore » of the chains within the interfacial layer. Since the interfacial chain packing is essentially temperature independent, these findings provide a new insight into the mechanical reinforcement of PNCs also above Tg.« less
Growth of InP single crystals by liquid encapsulated Czochralski (LEC) using glassy-carbon crucibles
Oliveira, C.E.M. de; Miskys, C.R.; Carvalho, M.M.G. de
1996-12-31
Using a high pressure puller and Glassy-Carbon crucibles, undoped InP single crystals weighing 100g and with 25 mm diameter were grown in the <100> direction. The residual carrier concentration of samples, measure by the Van der Pauw method at 300K, was about 5 {times} 10{sup 15}cm{sup {minus}3}, result as good as those obtained with Quartz crucibles with the advantage that Glassy-Carbon crucibles are fully reusable.
Infrared spectra of crystalline and glassy silicates and application to interstellar dust
NASA Technical Reports Server (NTRS)
Stephens, John R.; Blanco, A.; Borghesi, A.; Fonti, Sergio; Bussoletti, E.
1989-01-01
The infrared spectra of crystalline minerals predicted in theoretical condensation sequences do not match the astronomical observations. Since the astronomical spectra are a closer match to glassy silicates, the authors undertook a study to measure the infrared spectra of glassy silicates that have compositions similar to silicate minerals predicted in theoretical condensation sequences. The data should support observations aimed at elucidating condensation chemistry in dust forming regions. The authors measured the mass absorption coefficients, from 2.5 to 25 microns, of ground samples of olivine, diopside, and serpentine and also smoke samples that were prepared from these minerals. The smoke samples prepared in this way are predominantly glassy with nearly the same composition as the parent minerals. The crystalline samples consisted of pure olivine ((Fe(0.1)Mg(0.9))(2)SiO(4)), serpentine, diopside. Sample purity was confirmed by x ray diffraction. Each mineral was ground for 10 hours and a measured mass of the powder was mixed with KBr powder for absorption measurements using the method of Borghesi et a. (1985). The smoke samples were prepared from the same samples used for grinding by vaporizing the minerals using pulsed laser radiation in air. The smoke samples formed by condensation of the resulting vapor. The smoke settled onto infrared transparent KRS-5 substrates and onto a quartz crystal microbalance used to obtain mass measurements. A description of the preparation method is given in Stephens (1980). The glassy diopside showed only diffuse electron diffraction peaks and hence was nearly amorphous, while the serpentine smoke showed a weak diffraction pattern corresponding to MgO. The smoke from olivine showed a weak diffraction pattern corresponding to Fe2O3 and/or Fe3O4. The mass absorption coefficients, from 2.5 to 25 microns, of crystalline diopside, olivine, and serpentine and their corresponding smoke samples are shown in figures.
Complex nonlinear deformation of nanometer intergranular glassy films in beta-Si3N4.
Chen, Jun; Ouyang, Lizhi; Rulis, Paul; Misra, Anil; Ching, W Y
2005-12-16
The mechanical properties of a model of Y-doped intergranular glassy film in silicon nitride ceramics are studied by large-scale ab initio modeling. By linking directly to its electronic structure, it is shown that this microstructure has a complex nonlinear deformation under stress and Y doping significantly enhances the mechanical properties. The calculation of the electrostatic potential across the film supports the space charge model in ceramic microstructures.
A Novel Method for Electroplating Ultra-High-Strength Glassy Metals
NASA Technical Reports Server (NTRS)
Ramsey, Brian; Engelhaupt, Darell; Six, N. Frank (Technical Monitor)
2002-01-01
A novel method for electroplating ultra-high-strength glassy metals, nickel-phosphorous and nickel-cobalt-phosphorous, has been developed at NASA Marshall Space Flight Center, cooperatively with the University of Alabama in Huntsville. Traditionally, thin coatings of these metals are achieved via electroless deposition. Benefits of the new electrolytic process include thick, low-stress deposits, free standing shapes, lower plating temperature, low maintenance, and safer operation with substantially lower cost.
Crystallization of the glassy phase of grain boundaries in silicon nitride
NASA Technical Reports Server (NTRS)
Jefferson, D. A.; Thomas, J. M.; Wen, S.
1984-01-01
Three types of hot-pressed silicon nitride specimens (containing 5wt% Y2O3 and 2wt% Al2O3 additives) which were subjected to different temperature heat treatments were studied by X-ray diffraction, X-ray microanalysis and high resolution electron microscopy. The results indicated that there were phase changes in the grain boundaries after heat treatment and the glassy phase at the grain boundaries was crystallized by heat treatment.
Highly Selective Membranes For The Separation Of Organic Vapors Using Super-Glassy Polymers
Pinnau, Ingo; Lokhandwala, Kaaeid; Nguyen, Phuong; Segelke, Scott
1997-11-18
A process for separating hydrocarbon gases of low boiling point, particularly methane, ethane and ethylene, from nitrogen. The process is performed using a membrane made from a super-glassy material. The gases to be separated are mixed with a condensable gas, such as a C.sub.3+ hydrocarbon. In the presence of the condensable gas, improved selectivity for the low-boiling-point hydrocarbon gas over nitrogen is achieved.
NASA Astrophysics Data System (ADS)
Minelli, Matteo; Doghieri, Ferruccio
2014-05-01
Data for kinetics of mass uptake from vapor sorption experiments in thin glassy polymer samples are here interpreted in terms of relaxation times for volume dilation. To this result, both models from non-equilibrium thermodynamics and from mechanics of volume relaxation contribute. Different kind of sorption experiments have been considered in order to facilitate the direct comparison between kinetics of solute induced volume dilation and corresponding data from process driven by pressure or temperature jumps.
Carbonization Studies of Glassy Carbon Derived from Bis-Ortho-Diynylarenes (BODA) (Postprint)
2007-02-26
Derived from Bis-Ortho-Diynylarenes ( BODA ) (Postprint) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Scott T. Iacono, Mark W. Perpall...have demonstrated bis-ortho-diynylarene ( BODA ) monomers undergo Bergman cyclopolymerizations to form hyper-branched, rigid naphthalene networks that...Std. 239.18 CARBONIZATION STUDIES OF GLASSY CARBON DERIVED FROM BIS-ORTHO-DIYNYLARENES ( BODA ) Scott T. Iacono1, Mark W. Perpall1, Wesley P
Noisy covariance matrices and portfolio optimization II
NASA Astrophysics Data System (ADS)
Pafka, Szilárd; Kondor, Imre
2003-03-01
Recent studies inspired by results from random matrix theory (Galluccio et al.: Physica A 259 (1998) 449; Laloux et al.: Phys. Rev. Lett. 83 (1999) 1467; Risk 12 (3) (1999) 69; Plerou et al.: Phys. Rev. Lett. 83 (1999) 1471) found that covariance matrices determined from empirical financial time series appear to contain such a high amount of noise that their structure can essentially be regarded as random. This seems, however, to be in contradiction with the fundamental role played by covariance matrices in finance, which constitute the pillars of modern investment theory and have also gained industry-wide applications in risk management. Our paper is an attempt to resolve this embarrassing paradox. The key observation is that the effect of noise strongly depends on the ratio r= n/ T, where n is the size of the portfolio and T the length of the available time series. On the basis of numerical experiments and analytic results for some toy portfolio models we show that for relatively large values of r (e.g. 0.6) noise does, indeed, have the pronounced effect suggested by Galluccio et al. (1998), Laloux et al. (1999) and Plerou et al. (1999) and illustrated later by Laloux et al. (Int. J. Theor. Appl. Finance 3 (2000) 391), Plerou et al. (Phys. Rev. E, e-print cond-mat/0108023) and Rosenow et al. (Europhys. Lett., e-print cond-mat/0111537) in a portfolio optimization context, while for smaller r (around 0.2 or below), the error due to noise drops to acceptable levels. Since the length of available time series is for obvious reasons limited in any practical application, any bound imposed on the noise-induced error translates into a bound on the size of the portfolio. In a related set of experiments we find that the effect of noise depends also on whether the problem arises in asset allocation or in a risk measurement context: if covariance matrices are used simply for measuring the risk of portfolios with a fixed composition rather than as inputs to optimization, the
Yoon, Nara; Kim, Ji-Ye; Kim, Hyun-Soo
2016-01-01
We performed a retrospective analysis of the clinical features and patient outcomes for advanced-stage glassy cell carcinoma of the uterine cervix. The study was restricted to cases in which the glassy cell features constituted at least 95% of the biopsied specimen. During the study period, 675 patients were diagnosed with primary cervical carcinoma. Five (0.7%) of the 675 patients had cervical glassy cell carcinoma; of these, three were premenopausal, and two were postmenopausal. Abnormal vaginal bleeding was the most frequent presenting symptom. Glassy cell carcinoma presented as a fungating, exophytic, or infiltrative mass. The greatest tumor dimension ranged from 3 to 9 cm. All patients had parametrial extension. Four patients had stage IIB tumors, and one had a stage IIIB tumor. All patients received concurrent chemoradiation therapy. The patient with a stage IIIB tumor died of hypovolemic shock caused by upper gastrointestinal bleeding during radiation therapy. Three patients with stage IIB tumors survived for more than 8 years without tumor recurrence or metastasis. One of these three patients died of pelvic recurrence 10 years after the initial diagnosis. Cervical glassy cell carcinoma has traditionally been considered an aggressive, highly malignant tumor with poor prognosis, but our data suggest that patient survival is not significantly decreased compared with other histological types of cervical carcinoma. It will be necessary to analyze patient outcomes using a larger number of cervical glassy cell carcinoma cases to confirm our findings. PMID:27793022
Relationship between local structure and relaxation in out-of-equilibrium glassy systems
NASA Astrophysics Data System (ADS)
Schoenholz, Samuel S.; Cubuk, Ekin D.; Kaxiras, Efthimios; Liu, Andrea J.
2017-01-01
The dynamical glass transition is typically taken to be the temperature at which a glassy liquid is no longer able to equilibrate on experimental timescales. Consequently, the physical properties of these systems just above or below the dynamical glass transition, such as viscosity, can change by many orders of magnitude over long periods of time following external perturbation. During this progress toward equilibrium, glassy systems exhibit a history dependence that has complicated their study. In previous work, we bridged the gap between structure and dynamics in glassy liquids above their dynamical glass transition temperatures by introducing a scalar field called “softness,” a quantity obtained using machine-learning methods. Softness is designed to capture the hidden patterns in relative particle positions that correlate strongly with dynamical rearrangements of particle positions. Here we show that the out-of-equilibrium behavior of a model glass-forming system can be understood in terms of softness. To do this we first demonstrate that the evolution of behavior following a temperature quench is a primarily structural phenomenon: The structure changes considerably, but the relationship between structure and dynamics remains invariant. We then show that the relaxation time can be robustly computed from structure as quantified by softness, with the same relation holding both in equilibrium and as the system ages. Together, these results show that the history dependence of the relaxation time in glasses requires knowledge only of the softness in addition to the usual state variables.
Generation of fine hydromagmatic ash by growth and disintegration of glassy rinds
Mastin, L.G.
2007-01-01
The deposits of mafic hydromagmatic eruptions are more fine grained and variable in vesicularity than dry magmatic deposits. Blocky, equant shapes of many hydromagmatic clasts also contrast with droplet, thread, and bubble wall morphology of dry magmatic fragments. Small (glassy rinds on pyroclast surfaces as they deform within turbulent flows. This process, termed "turbulent shedding", may occur during the expansion phase of vapor explosions or during turbulent but nonexplosive mixing of magma with water, steam, or water sprays. The occurrence of turbulent shedding and the resulting fragment sizes depend on the timescale for rind growth and the timescale between disturbances that remove or disintegrate glassy rinds. Turbulent shedding is directly observable in some small littoral jets at Kilauea. Calculations suggest that, in the presence of liquid water or water sprays, glassy rinds having a thickness of microns to millimeters should form in milliseconds to seconds. This is similar to the timescale between turbulent velocity fluctuations that can shred lava globules and remove such rinds. The fraction of a deposit consisting of fine ash should increase with the duration of this process: Large-scale Surtseyan jets generate hundreds or thousands of shedding events; bubble bursts or tephra jets at Kilauea's coast may produce only a few.
Glassy slags as novel waste forms for remediating mixed wastes with high metal contents
Feng, X.; Wronkiewicz, D.J.; Bates, J.K.; Brown, N.R.; Buck, E.C.; Gong, M.; Ebert, W.L.
1994-03-01
Argonne National Laboratory (ANL) is developing a glassy slag final waste form for the remediation of low-level radioactive and mixed wastes with high metal contents. This waste form is composed of various crystalline and metal oxide phases embedded in a silicate glass phase. This work indicates that glassy slag shows promise as final waste form because (1) it has similar or better chemical durability than high-level nuclear waste (HLW) glasses, (2) it can incorporate large amounts of metal wastes, (3) it can incorporate waste streams having low contents of flux components (boron and alkalis), (4) it has less stringent processing requirements (e.g., viscosity and electric conductivity) than glass waste forms, (5) its production can require little or no purchased additives, which can result in greater reduction in waste volume and overall treatment costs. By using glassy slag waste forms, minimum additive waste stabilization approach can be applied to a much wider range of waste streams than those amenable only to glass waste forms.
Generation of fine hydromagmatic ash by growth and disintegration of glassy rinds
NASA Astrophysics Data System (ADS)
Mastin, Larry G.
2007-02-01
The deposits of mafic hydromagmatic eruptions are more fine grained and variable in vesicularity than dry magmatic deposits. Blocky, equant shapes of many hydromagmatic clasts also contrast with droplet, thread, and bubble wall morphology of dry magmatic fragments. Small (<˜180 μm), blocky hydromagmatic pyroclasts have traditionally been interpreted to result from discrete vapor explosions, although such explosions tend to occur only under certain conditions. This paper considers a process of hydromagmatic ash formation that involves repeated growth and disintegration of glassy rinds on pyroclast surfaces as they deform within turbulent flows. This process, termed "turbulent shedding", may occur during the expansion phase of vapor explosions or during turbulent but nonexplosive mixing of magma with water, steam, or water sprays. The occurrence of turbulent shedding and the resulting fragment sizes depend on the timescale for rind growth and the timescale between disturbances that remove or disintegrate glassy rinds. Turbulent shedding is directly observable in some small littoral jets at Kilauea. Calculations suggest that, in the presence of liquid water or water sprays, glassy rinds having a thickness of microns to millimeters should form in milliseconds to seconds. This is similar to the timescale between turbulent velocity fluctuations that can shred lava globules and remove such rinds. The fraction of a deposit consisting of fine ash should increase with the duration of this process: Large-scale Surtseyan jets generate hundreds or thousands of shedding events; bubble bursts or tephra jets at Kilauea's coast may produce only a few.
Cooling Rate Dependent Ellipsometry Measurements to Determine the Dynamics of Thin Glassy Films.
Glor, Ethan C; Fakhraai, Zahra
2016-01-26
This report aims to fully describe the experimental technique of using ellipsometry for cooling rate dependent Tg (CR-Tg) experiments. These measurements are simple high-throughput characterization experiments, which can determine the glass transition temperature (Tg), average dynamics, fragility and the expansion coefficient of the super-cooled liquid and glassy states for a variety of glassy materials. This technique allows for these parameters to be measured in a single experiment, while other methods must combine a variety of different techniques to investigate all of these properties. Measurements of dynamics close to Tg are particularly challenging. The advantage of cooling rate dependent Tg measurements over other methods which directly probe bulk and surface relaxation dynamics is that they are relatively quick and simple experiments, which do not utilize fluorophores or other complicated experimental techniques. Furthermore, this technique probes the average dynamics of technologically relevant thin films in temperature and relaxation time (τα) regimes relevant to the glass transition (τα > 100 sec). The limitation to using ellipsometry for cooling rate dependent Tg experiments is that it cannot probe relaxation times relevant to measurements of viscosity (τα < 1 sec). Other cooling rate dependent Tg measurement techniques, however, can extend the CR-Tg method to faster relaxation times. Furthermore, this technique can be used for any glassy system so long as the integrity of the film remains throughout the experiment.
Relationship between local structure and relaxation in out-of-equilibrium glassy systems
Cubuk, Ekin D.; Kaxiras, Efthimios; Liu, Andrea J.
2017-01-01
The dynamical glass transition is typically taken to be the temperature at which a glassy liquid is no longer able to equilibrate on experimental timescales. Consequently, the physical properties of these systems just above or below the dynamical glass transition, such as viscosity, can change by many orders of magnitude over long periods of time following external perturbation. During this progress toward equilibrium, glassy systems exhibit a history dependence that has complicated their study. In previous work, we bridged the gap between structure and dynamics in glassy liquids above their dynamical glass transition temperatures by introducing a scalar field called “softness,” a quantity obtained using machine-learning methods. Softness is designed to capture the hidden patterns in relative particle positions that correlate strongly with dynamical rearrangements of particle positions. Here we show that the out-of-equilibrium behavior of a model glass-forming system can be understood in terms of softness. To do this we first demonstrate that the evolution of behavior following a temperature quench is a primarily structural phenomenon: The structure changes considerably, but the relationship between structure and dynamics remains invariant. We then show that the relaxation time can be robustly computed from structure as quantified by softness, with the same relation holding both in equilibrium and as the system ages. Together, these results show that the history dependence of the relaxation time in glasses requires knowledge only of the softness in addition to the usual state variables. PMID:28028217
Shear Banding of Soft Glassy Materials in Large Amplitude Oscillatory Shear
NASA Astrophysics Data System (ADS)
Radhakrishnan, Rangarajan; Fielding, Suzanne M.
2016-10-01
We study shear banding in soft glassy materials subject to a large amplitude oscillatory shear flow (LAOS). By numerical simulations of the widely used soft glassy rheology model, supplemented by more general physical arguments, we demonstrate strong banding over an extensive range of amplitudes and frequencies of the imposed shear rate γ ˙(t )=γ˙0cos (ω t ), even in materials that do not permit banding as their steady state response to a steadily imposed shear flow γ ˙=γ˙0=const. Highly counterintuitively, banding persists in LAOS even in the limit of zero frequency ω →0 , where one might a priori have expected a homogeneous flow response in a material that does not display banding under conditions of steadily imposed shear. We explain this finding in terms of an alternating competition within each cycle between glassy aging and flow rejuvenation. Our predictions have far-reaching implications for the flow behavior of aging yield stress fluids, suggesting a generic expectation of shear banding in flows of even arbitrarily slow time variation.
Glassy carbon as an absolute intensity calibration standard for small-angle scattering.
Zhang, F.; Ilavsky, J.; Long, G.; Allen, A.; Quintana, J.; Jemian, P.; NIST
2010-05-01
Absolute calibration of small-angle scattering (SAS) intensity data (measured in terms of the differential scattering cross section per unit sample volume per unit solid angle) is essential for many important aspects of quantitative SAS analysis, such as obtaining the number density, volume fraction, and specific surface area of the scatterers. It also enables scattering data from different instruments (light, X-ray, or neutron scattering) to be combined, and it can even be useful to detect the existence of artifacts in the experimental data. Different primary or secondary calibration methods are available. In the latter case, absolute intensity calibration requires a stable artifact with the necessary scattering profile. Glassy carbon has sometimes been selected as this intensity calibration standard. Here we review the spatial homogeneity and temporal stability of one type of commercially available glassy carbon that is being used as an intensity calibration standard at a number of SAS facilities. We demonstrate that glassy carbon is sufficiently homogeneous and stable during routine use to be relied upon as a suitable standard for absolute intensity calibration of SAS data.
Thermal and elastic characterization of glassy carbon thin films by photoacoustic measurements
NASA Astrophysics Data System (ADS)
Markushev, D. D.; Ordonez-Miranda, J.; Rabasović, M. D.; Chirtoc, M.; Todorović, D. M.; Bialkowski, S. E.; Korte, D.; Franko, M.
2017-01-01
A portable photoacoustic device is designed and applied to measure thermal diffusivity and linear thermal expansion coefficient of glassy carbon by means of the standard photoacoustic model involving both the thermal diffusion and thermoelastic contributions. This is done by measuring the evolution of the open-cell photoacoustic signal within the modulation frequency interval of 20 Hz-10 kHz, for four samples with thicknesses of 180μm, 140μm, 100μm, and 60μm. A proper fitting procedure of the theoretical amplitude and phase to their corresponding experimental counterparts yielded an average thermal diffusivity of 0.68mm^2·s^-1 and expansion coefficient of 4.3× 10^{-6} K-1 which are in good agreement with their values reported in the literature for glassy carbon. Furthermore, we demonstrate that the theoretical amplitude does not properly describe the thermoelastic behavior of the samples thinner than l ≤ 100 μm, due to their strong bending and vibrations driven by the highly disordered fullerene microstructure of glassy carbon followed by the increasing non-homogeneity effects violating 1D heat conduction.
NASA Astrophysics Data System (ADS)
Engqvist, Jonas; Wallin, Mathias; Ristinmaa, Matti; Hall, Stephen A.; Plivelic, Tomás S.
2016-11-01
Novel experimental data, obtained recently using advanced multi-scale experiments, have been used to develop a micro-mechanically motivated constitutive model for amorphous glassy polymers. Taking advantage of the experiments, the model makes use of a microstructural deformation gradient to incorporate the experimentally obtained deformation of the microstructure, as well as its evolving orientation. By comparing results from the model to experimental data, it is shown that the proposed approach is able to accurately predict glassy polymer deformation over a wide range of length-scales, from the macroscopic response (mm range) down to the deformation of the microstructure (nm range). The proposed model is evaluated by comparing the numerical response to experimental results on multiple scales from an inhomogeneous cold drawing experiment of glassy polycarbonate. Besides the macroscopic force-displacement response, a qualitative comparison of the deformation field at the surface of the specimen is performed. Furthermore, the predicted evolution of the fabric orientation is compared to experimental results obtained from X-ray scattering experiments. The model shows very good agreement with the experimental data over a wide range of length scales.
Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose
NASA Astrophysics Data System (ADS)
Chang, Gang; Shu, Honghui; Ji, Kai; Oyama, Munetaka; Liu, Xiong; He, Yunbin
2014-01-01
This work describes controllable preparation of gold nanoparticles on glassy carbon electrodes by using the seed mediated growth method, which contains two steps, namely, nanoseeds attachment and nanocrystals growth. The size and the dispersion of gold nanoparticles grown on glassy carbon electrodes could be easily tuned through the growth time based on results of field-emission scanning electron microscopy. Excellent electrochemical catalytic characteristics for glucose oxidation were observed for the gold nanoparticles modified glassy carbon electrodes (AuNPs/GC), resulting from the extended active surface area provided by the dense gold nanoparticles attached. It exhibited a wide linear range from 0.1 mM to 25 mM with the sensitivity of 87.5 μA cm-2 mM-1 and low detection limit down to 0.05 mM for the sensing of glucose. The common interfering species such as chloride ion, ascorbic acid, uric acid and 4-acetamidophenol were verified having no interference effect on the detection of glucose. It is demonstrated that the seed mediated method is one of the facile approaches for fabricating Au nanoparticles modified substrates, which could work as one kind of promising electrode materials for the glucose nonenzymatic sensing.
Modèle de diélectrique associant les effets Poole-Frenkel et Maxwell-Wagner
NASA Astrophysics Data System (ADS)
Pillonnet, Alain; Ongaro, Roger; Garoum, Mohammed
1992-06-01
The model presented here combines Poole-Frenkel (PF) and Maxwell-Wagner (MW) effects to determine the equivalent conductivity σ of a plane double-layered dielectric. PF effect is introduced first under its usual form (Boltzmann statistics), and then under a more general form (Fermi-Dirac statistics). The curves log (σ) versus the electric field (sqrt{F}) generally display one or two linear parts, with the low-field slopes always larger than the high-field ones. These slopes are dependent on the layer's thickness ration and may greatly differ from slopes associated with PF effect in an homogeneous dielectric. The computer simulations show that this behaviour results from the fact that the potential can dominate successively in each layer. Le modèle présenté associe les effets Poole-Frenkel (PF) et Maxwell-Wagner (MW) dans la détermination de la conductivité équivalente σ d'un diélectrique plan à deux couches. L'effet PF y est introduit sous sa forme usuelle (statistique de Boltzmann), puis sous une forme plus générale (statistique de Fermi-Dirac). Les courbes log σ en fonction du champ électrique (sqrt{F}) présentent généralement une ou deux parties linéaires, la pente en bas champs étant toujours supérieure à la pente en hauts champs. Ces pentes sont fonctions du rapport des épaisseurs des couches et peuvent différer beaucoup des pentes relevant de l'effet PF dans un diélectrique homogène. Les simulations numériques montrent que ce comportement résulte du fait que le potentiel peut être successivement prépondérant dans chacune des couches.
Quantum State Tomography via Reduced Density Matrices
NASA Astrophysics Data System (ADS)
Xin, Tao; Lu, Dawei; Klassen, Joel; Yu, Nengkun; Ji, Zhengfeng; Chen, Jianxin; Ma, Xian; Long, Guilu; Zeng, Bei; Laflamme, Raymond
2017-01-01
Quantum state tomography via local measurements is an efficient tool for characterizing quantum states. However, it requires that the original global state be uniquely determined (UD) by its local reduced density matrices (RDMs). In this work, we demonstrate for the first time a class of states that are UD by their RDMs under the assumption that the global state is pure, but fail to be UD in the absence of that assumption. This discovery allows us to classify quantum states according to their UD properties, with the requirement that each class be treated distinctly in the practice of simplifying quantum state tomography. Additionally, we experimentally test the feasibility and stability of performing quantum state tomography via the measurement of local RDMs for each class. These theoretical and experimental results demonstrate the advantages and possible pitfalls of quantum state tomography with local measurements.
Investigation of degradation mechanisms in composite matrices
NASA Technical Reports Server (NTRS)
Giori, C.; Yamauchi, T.
1982-01-01
Degradation mechanisms were investigated for graphite/polysulfone and graphite/epoxy laminates exposed to ultraviolet and high-energy electron radiations in vacuum up to 960 equivalent sun hours and 10 to the ninth power rads respectively. Based on GC and combined GC/MS analysis of volatile by-products evolved during irradiation, several free radical mechanisms of composite degradation were identified. The radiation resistance of different matrices was compared in terms of G values and quantum yields for gas formation. All the composite materials evaluated show high electron radiation stability and relatively low ultraviolet stability as indicated by low G values and high quantum for gas formation. Mechanical property measurements of irradiated samples did not reveal significant changes, with the possible exception of UV exposed polysulfone laminates. Hydrogen and methane were identified as the main by-products of irradiation, along with unexpectedly high levels of CO and CO2.
Applications of Random Matrices in Physics
NASA Astrophysics Data System (ADS)
Brezin, Edouard; Kazakov, Vladimir; Serban, Didina; Wiegmann, Paul; Zabrodin, Anton
Random matrices are widely and successfully used in physics for almost 60-70 years, beginning with the works of Dyson and Wigner. Although it is an old subject, it is constantly developing into new areas of physics and mathematics. It constitutes now a part of the generalculture of a theoretical physicist. Mathematical methods inspired by random matrix theory become more powerful, sophisticated and enjoy rapidly growing applications in physics. Recent examples include the calculation of universal correlations in the mesoscopic system, new applications in disordered and quantum chaotic systems, in combinatorial and growth models, as well as the recent breakthrough, due to the matrix models, in two dimensional gravity and string theory and the non-abelian gauge theories.
Carbon nanomaterials in silica aerogel matrices
Hamilton, Christopher E; Chavez, Manuel E; Duque, Juan G; Gupta, Gautam; Doorn, Stephen K; Dattelbaum, Andrew M; Obrey, Kimberly A D
2010-01-01
Silica aerogels are ultra low-density, high surface area materials that are extremely good thermal insulators and have numerous technical applications. However, their mechanical properties are not ideal, as they are brittle and prone to shattering. Conversely, single-walled carbon nanotubes (SWCNTs) and graphene-based materials, such as graphene oxide, have extremely high tensile strength and possess novel electronic properties. By introducing SWCNTs or graphene-based materials into aerogel matrices, it is possible to produce composites with the desirable properties of both constituents. We have successfully dispersed SWCNTs and graphene-based materials into silica gels. Subsequent supercritical drying results in monolithic low-density composites having improved mechanical properties. These nanocomposite aerogels have great potential for use in a wide range of applications.
Association of scattering matrices in quantum networks
Almeida, F.A.G.; Macêdo, A.M.S.
2013-06-15
Algorithms based on operations that associate scattering matrices in series or in parallel (analogous to impedance association in a classical circuit) are developed here. We exemplify their application by calculating the total scattering matrix of several types of quantum networks, such as star graphs and a chain of chaotic quantum dots, obtaining results with good agreement with the literature. Through a computational-time analysis we compare the efficiency of two algorithms for the simulation of a chain of chaotic quantum dots based on series association operations of (i) two-by-two centers and (ii) three-by-three ones. Empirical results point out that the algorithm (ii) is more efficient than (i) for small number of open scattering channels. A direct counting of floating point operations justifies quantitatively the superiority of the algorithm (i) for large number of open scattering channels.
Liouville Equations for Neutrino Distribution Matrices
Cardall, Christian Y
2008-10-01
The classical notion of a single-particle scalar distribution function or phase space density can be generalized to a matrix in order to accommodate superpositions of states of discrete quantum numbers, such as neutrino mass/flavor. Such a 'neutrino distribution matrix' is thus an appropriate construct to describe a neutrino gas that may vary in space as well as time and in which flavor mixing competes with collisions. The Liouville equations obeyed by neutrino distribution matrices, including the spatial derivative and vacuum flavor mixing terms, can be explicitly but elegantly derived in two new ways: from a covariant version of the familiar simple model of flavor mixing, and from the Klein-Gordon equations satisfied by a quantum 'density function' (mean value of paired quantum field operators). Associated with the latter derivation is a case study in how the joint position/momentum dependence of a classical gas (albeit with Fermi statistics) emerges from a formalism built on quantum fields.
Random matrices and holographic tensor models
NASA Astrophysics Data System (ADS)
Krishnan, Chethan; Kumar, K. V. Pavan; Sanyal, Sambuddha
2017-06-01
We further explore the connection between holographic O( n) tensor models and random matrices. First, we consider the simplest non-trivial uncolored tensor model and show that the results for the density of states, level spacing and spectral form factor are qualitatively identical to the colored case studied in arXiv:1612.06330. We also explain an overall 16-fold degeneracy by identifying various symmetries, some of which were unavailable in SYK and the colored models. Secondly, and perhaps more interestingly, we systematically identify the Spectral Mirror Symmetry and the Time-Reversal Symmetry of both the colored and uncolored models for all values of n, and use them to identify the Andreev ensembles that control their random matrix behavior. We find that the ensembles that arise exhibit a refined version of Bott periodicity in n.
NASA Astrophysics Data System (ADS)
Veres, Teodor
Cette these est consacree a l'etude de l'evolution structurale des proprietes magnetiques et de transport des multicouches Ni/Fe et nanostructures a base de Co et de l'Ag. Dans une premiere partie, essentiellement bibliographique, nous introduisons quelques concepts de base relies aux proprietes magnetiques et de transport des multicouches metalliques. Ensuite, nous presentons une breve description des methodes d'analyse des resultats. La deuxieme partie est consacree a l'etude des proprietes magnetiques et de transport des multicouches ferromagnetiques/ferromagnetiques Ni/Fe. Nous montrerons qu'une interpretation coherente de ces proprietes necessite la prise en consideration des effets des interfaces. Nous nous attacherons a mettre en evidence, a evaluer et a etudier les effets de ces interfaces ainsi que leur evolution, et ce, suite a des traitements thermiques tel que le depot a temperature elevee et l'irradiation ionique. Les analyses correlees de la structure et de la magnetoresistance nous permettront d'emettre des conclusions sur l'influence des couches tampons entre l'interface et le substrat ainsi qu'entre les couches elles-memes sur le comportement magnetique des couches F/F. La troisieme partie est consacree aux systemes a Magneto-Resistance Geante (MRG) a base de Co et Ag. Nous allons etudier l'evolution de la microstructure suite a l'irradiation avec des ions Si+ ayant une energie de 1 MeV, ainsi que les effets de ces changements sur le comportement magnetique. Cette partie debutera par l'analyse des proprietes d'une multicouche hybride, intermediaire entre les multicouches et les materiaux granulaires. Nous analyserons a l'aide des mesures de diffraction, de relaxation superparamagnetique et de magnetoresistance, les evolutions structurales produites par l'irradiation ionique. Nous etablirons des modeles qui nous aideront a interpreter les resultats pour une serie des multicouches qui couvrent un large eventail de differents comportements magnetiques
Novel Factor-loaded Polyphosphazene Matrices
Oredein-McCoy, Olugbemisola; Krogman, Nicholas R.; Weikel, Arlin L.; Hindenlang, Mark D.; Allcock, Harry R.; Laurencin, Cato T.
2009-01-01
Currently employed bone tissue engineered scaffolds often lack the potential for vascularization, which may be enhanced through the incorporation of and regulated release of angiogenic factors. For this reason, our objective was to fabricate and characterize protein-loaded amino acid ester polyphosphazene (Pphos)-based scaffolds and evaluate the novel sintering method used for protein incorporation, a method which will ultimately allow for the incorporation of proangiogenic agents. To test the hypothesis, Pphos and their composite microspheres with nanocrystalline hydroxyapatite (Pphos-HAp) were fabricated via the emulsion solvent evaporation method. Next, bovine serum albumin (BSA)-containing microsphere matrices were created using a novel solvent-non solvent approach for protein loading. The resulting protein (BSA) loaded-circular porous microsphere based scaffolds were characterized for morphology, porosity, protein structure, protein distribution, and subsequent protein release pattern. Scanning electron microscopy revealed porous microsphere scaffolds with a smooth surface and sufficient level of sintering, illustrated by fusion of adjacent microspheres. The porosity measured for the PNPhGly and PNPhGly-HAp scaffolds were 23 +/- 0.11% and 18+/- 4.02%, respectively, and within the range of trabecular bone. Circular dichroism confirmed an intact secondary protein structure for BSA following the solvent sintering method used for loading, and confocal microscopy verified that FITC-BSA was successfully entrapped both between adjacent microspheres and within the surface of the microspheres while sintering. For both Pphos and their composite microsphere scaffolds, BSA was released at a steady rate over a 21day time period, following a zero order release profile. HAp particles in the composite scaffolds served to improve the release profile pattern, underscoring the potential of HAp for growth factor delivery. Moreover, the results of this work suggests that the
Robust Generalized Low Rank Approximations of Matrices.
Shi, Jiarong; Yang, Wei; Zheng, Xiuyun
2015-01-01
In recent years, the intrinsic low rank structure of some datasets has been extensively exploited to reduce dimensionality, remove noise and complete the missing entries. As a well-known technique for dimensionality reduction and data compression, Generalized Low Rank Approximations of Matrices (GLRAM) claims its superiority on computation time and compression ratio over the SVD. However, GLRAM is very sensitive to sparse large noise or outliers and its robust version does not have been explored or solved yet. To address this problem, this paper proposes a robust method for GLRAM, named Robust GLRAM (RGLRAM). We first formulate RGLRAM as an l1-norm optimization problem which minimizes the l1-norm of the approximation errors. Secondly, we apply the technique of Augmented Lagrange Multipliers (ALM) to solve this l1-norm minimization problem and derive a corresponding iterative scheme. Then the weak convergence of the proposed algorithm is discussed under mild conditions. Next, we investigate a special case of RGLRAM and extend RGLRAM to a general tensor case. Finally, the extensive experiments on synthetic data show that it is possible for RGLRAM to exactly recover both the low rank and the sparse components while it may be difficult for previous state-of-the-art algorithms. We also discuss three issues on RGLRAM: the sensitivity to initialization, the generalization ability and the relationship between the running time and the size/number of matrices. Moreover, the experimental results on images of faces with large corruptions illustrate that RGLRAM obtains the best denoising and compression performance than other methods.
Robust Generalized Low Rank Approximations of Matrices
Shi, Jiarong; Yang, Wei; Zheng, Xiuyun
2015-01-01
In recent years, the intrinsic low rank structure of some datasets has been extensively exploited to reduce dimensionality, remove noise and complete the missing entries. As a well-known technique for dimensionality reduction and data compression, Generalized Low Rank Approximations of Matrices (GLRAM) claims its superiority on computation time and compression ratio over the SVD. However, GLRAM is very sensitive to sparse large noise or outliers and its robust version does not have been explored or solved yet. To address this problem, this paper proposes a robust method for GLRAM, named Robust GLRAM (RGLRAM). We first formulate RGLRAM as an l1-norm optimization problem which minimizes the l1-norm of the approximation errors. Secondly, we apply the technique of Augmented Lagrange Multipliers (ALM) to solve this l1-norm minimization problem and derive a corresponding iterative scheme. Then the weak convergence of the proposed algorithm is discussed under mild conditions. Next, we investigate a special case of RGLRAM and extend RGLRAM to a general tensor case. Finally, the extensive experiments on synthetic data show that it is possible for RGLRAM to exactly recover both the low rank and the sparse components while it may be difficult for previous state-of-the-art algorithms. We also discuss three issues on RGLRAM: the sensitivity to initialization, the generalization ability and the relationship between the running time and the size/number of matrices. Moreover, the experimental results on images of faces with large corruptions illustrate that RGLRAM obtains the best denoising and compression performance than other methods. PMID:26367116
Viscous hydrophilic injection matrices for serial crystallography
Kovácsová, Gabriela; Grünbein, Marie Luise; Kloos, Marco; Barends, Thomas R. M.; Heberle, Joachim; Kabsch, Wolfgang; Shoeman, Robert L.; Doak, R. Bruce; Schlichting, Ilme
2017-01-01
Serial (femtosecond) crystallography at synchrotron and X-ray free-electron laser (XFEL) sources distributes the absorbed radiation dose over all crystals used for data collection and therefore allows measurement of radiation damage prone systems, including the use of microcrystals for room-temperature measurements. Serial crystallography relies on fast and efficient exchange of crystals upon X-ray exposure, which can be achieved using a variety of methods, including various injection techniques. The latter vary significantly in their flow rates – gas dynamic virtual nozzle based injectors provide very thin fast-flowing jets, whereas high-viscosity extrusion injectors produce much thicker streams with flow rates two to three orders of magnitude lower. High-viscosity extrusion results in much lower sample consumption, as its sample delivery speed is commensurate both with typical XFEL repetition rates and with data acquisition rates at synchrotron sources. An obvious viscous injection medium is lipidic cubic phase (LCP) as it is used for in meso membrane protein crystallization. However, LCP has limited compatibility with many crystallization conditions. While a few other viscous media have been described in the literature, there is an ongoing need to identify additional injection media for crystal embedding. Critical attributes are reliable injection properties and a broad chemical compatibility to accommodate samples as heterogeneous and sensitive as protein crystals. Here, the use of two novel hydrogels as viscous injection matrices is described, namely sodium carboxymethyl cellulose and the thermo-reversible block polymer Pluronic F-127. Both are compatible with various crystallization conditions and yield acceptable X-ray background. The stability and velocity of the extruded stream were also analysed and the dependence of the stream velocity on the flow rate was measured. In contrast with previously characterized injection media, both new matrices
Dirac matrices for Chern-Simons gravity
Izaurieta, Fernando; Ramirez, Ricardo; Rodriguez, Eduardo
2012-10-06
A genuine gauge theory for the Poincare, de Sitter or anti-de Sitter algebras can be constructed in (2n- 1)-dimensional spacetime by means of the Chern-Simons form, yielding a gravitational theory that differs from General Relativity but shares many of its properties, such as second order field equations for the metric. The particular form of the Lagrangian is determined by a rank n, symmetric tensor invariant under the relevant algebra. In practice, the calculation of this invariant tensor can be reduced to the computation of the trace of the symmetrized product of n Dirac Gamma matrices {Gamma}{sub ab} in 2n-dimensional spacetime. While straightforward in principle, this calculation can become extremely cumbersome in practice. For large enough n, existing computer algebra packages take an inordinate long time to produce the answer or plainly fail having used up all available memory. In this talk we show that the general formula for the trace of the symmetrized product of 2n Gamma matrices {Gamma}{sub ab} can be written as a certain sum over the integer partitions s of n, with every term being multiplied by a numerical cofficient {alpha}{sub s}. We then give a general algorithm that computes the {alpha}-coefficients as the solution of a linear system of equations generated by evaluating the general formula for different sets of tensors B{sup ab} with random numerical entries. A recurrence relation between different coefficients is shown to hold and is used in a second, 'minimal' algorithm to greatly speed up the computations. Runtime of the minimal algorithm stays below 1 min on a typical desktop computer for up to n = 25, which easily covers all foreseeable applications of the trace formula.
Dirac matrices for Chern-Simons gravity
NASA Astrophysics Data System (ADS)
Izaurieta, Fernando; Ramírez, Ricardo; Rodríguez, Eduardo
2012-10-01
A genuine gauge theory for the Poincaré, de Sitter or anti-de Sitter algebras can be constructed in (2n - 1)-dimensional spacetime by means of the Chern-Simons form, yielding a gravitational theory that differs from General Relativity but shares many of its properties, such as second order field equations for the metric. The particular form of the Lagrangian is determined by a rank n, symmetric tensor invariant under the relevant algebra. In practice, the calculation of this invariant tensor can be reduced to the computation of the trace of the symmetrized product of n Dirac Gamma matrices Γab in 2n-dimensional spacetime. While straightforward in principle, this calculation can become extremely cumbersome in practice. For large enough n, existing computer algebra packages take an inordinate long time to produce the answer or plainly fail having used up all available memory. In this talk we show that the general formula for the trace of the symmetrized product of 2n Gamma matrices Γab can be written as a certain sum over the integer partitions s of n, with every term being multiplied by a numerical cofficient αs. We then give a general algorithm that computes the α-coefficients as the solution of a linear system of equations generated by evaluating the general formula for different sets of tensors Bab with random numerical entries. A recurrence relation between different coefficients is shown to hold and is used in a second, "minimal" algorithm to greatly speed up the computations. Runtime of the minimal algorithm stays below 1 min on a typical desktop computer for up to n = 25, which easily covers all foreseeable applications of the trace formula.
Computing Vibration-Mode Matrices From Finite-Element Output
NASA Technical Reports Server (NTRS)
Levy, Roy
1993-01-01
Postprocessing algorithms devised to facilitate vibrational-mode analyses of dynamics of complicated structures. Yields inertia matrices and elastic/rigid-coupling matrices. Such analyses important in simulation and control in active suppression of vibrations in large building or in precise aiming of large antenna.
The Modern Origin of Matrices and Their Applications
ERIC Educational Resources Information Center
Debnath, L.
2014-01-01
This paper deals with the modern development of matrices, linear transformations, quadratic forms and their applications to geometry and mechanics, eigenvalues, eigenvectors and characteristic equations with applications. Included are the representations of real and complex numbers, and quaternions by matrices, and isomorphism in order to show…
Component Identification and Item Difficulty of Raven's Matrices Items.
ERIC Educational Resources Information Center
Green, Kathy E.; Kluever, Raymond C.
Item components that might contribute to the difficulty of items on the Raven Colored Progressive Matrices (CPM) and the Standard Progressive Matrices (SPM) were studied. Subjects providing responses to CPM items were 269 children aged 2 years 9 months to 11 years 8 months, most of whom were referred for testing as potentially gifted. A second…
Computing Vibration-Mode Matrices From Finite-Element Output
NASA Technical Reports Server (NTRS)
Levy, Roy
1993-01-01
Postprocessing algorithms devised to facilitate vibrational-mode analyses of dynamics of complicated structures. Yields inertia matrices and elastic/rigid-coupling matrices. Such analyses important in simulation and control in active suppression of vibrations in large building or in precise aiming of large antenna.
Infinite Töplitz Lipschitz matrices and operators
NASA Astrophysics Data System (ADS)
Eliasson, H. L.; Kuksin, S. B.
2008-01-01
We introduce a class of infinite matrices {(A_{ss', s, s' in mathbb{Z}^d)} , which are asymptotically ( as | s| + | s'| → ∞) close to Hankel Töplitz matrices. We prove that this class forms an algebra, and that flow-maps of nonautonomous linear equations with coefficients from the class also belong to it.
The Modern Origin of Matrices and Their Applications
ERIC Educational Resources Information Center
Debnath, L.
2014-01-01
This paper deals with the modern development of matrices, linear transformations, quadratic forms and their applications to geometry and mechanics, eigenvalues, eigenvectors and characteristic equations with applications. Included are the representations of real and complex numbers, and quaternions by matrices, and isomorphism in order to show…
Revisiting amino acid substitution matrices for identifying distantly related proteins.
Yamada, Kazunori; Tomii, Kentaro
2014-02-01
Although many amino acid substitution matrices have been developed, it has not been well understood which is the best for similarity searches, especially for remote homology detection. Therefore, we collected information related to existing matrices, condensed it and derived a novel matrix that can detect more remote homology than ever. Using principal component analysis with existing matrices and benchmarks, we developed a novel matrix, which we designate as MIQS. The detection performance of MIQS is validated and compared with that of existing general purpose matrices using SSEARCH with optimized gap penalties for each matrix. Results show that MIQS is able to detect more remote homology than the existing matrices on an independent dataset. In addition, the performance of our developed matrix was superior to that of CS-BLAST, which was a novel similarity search method with no amino acid matrix. We also evaluated the alignment quality of matrices and methods, which revealed that MIQS shows higher alignment sensitivity than that with the existing matrix series and CS-BLAST. Fundamentally, these results are expected to constitute good proof of the availability and/or importance of amino acid matrices in sequence analysis. Moreover, with our developed matrix, sophisticated similarity search methods such as sequence-profile and profile-profile comparison methods can be improved further. Newly developed matrices and datasets used for this study are available at http://csas.cbrc.jp/Ssearch/.
Efficient quantum circuits for Toeplitz and Hankel matrices
NASA Astrophysics Data System (ADS)
Mahasinghe, A.; Wang, J. B.
2016-07-01
Toeplitz and Hankel matrices have been a subject of intense interest in a wide range of science and engineering related applications. In this paper, we show that quantum circuits can efficiently implement sparse or Fourier-sparse Toeplitz and Hankel matrices. This provides an essential ingredient for solving many physical problems with Toeplitz or Hankel symmetry in the quantum setting with deterministic queries.
Asymptotic Spectra Of Banded Quasi-Toeplitz Matrices
NASA Technical Reports Server (NTRS)
Beam, Richard; Warming, Robert
1995-01-01
Paper presents theoretical and numerical study of asymptotic spectra of eigenvalues of banded Toeplitz and quasi-Toeplitz matrices. Emphasis in study on non-normal banded Toeplitz and quasi-Toeplitz matrices of arbitrarily large order and relatively small bandwidth.
User-Friendly Tools for Random Matrices: An Introduction
2012-12-03
zeros of the Riemann zeta function [Mon73]). 1.2 The Modern Random Matrix By now, random matrices are ubiquitous. They arise throughout modern ... mathematics and statistics, as well as in many branches of science and engineering. Random matrices have sev- eral different purposes that we may wish to
Random Matrices, Combinatorics, Numerical Linear Algebra and Complex Networks
2012-02-16
Rudelson and R. Vershynin, The Littlewood -Offord Problem and invertibility of random matrices, Advances in Mathematics 218 (2008), 600–633. [25] L... Littlewood -Offord theorems and the condition number of random discrete matrices, Annals of Mathematics, to appear. [29] T. Tao and V. Vu, The condition
Time series, correlation matrices and random matrix models
Vinayak; Seligman, Thomas H.
2014-01-08
In this set of five lectures the authors have presented techniques to analyze open classical and quantum systems using correlation matrices. For diverse reasons we shall see that random matrices play an important role to describe a null hypothesis or a minimum information hypothesis for the description of a quantum system or subsystem. In the former case various forms of correlation matrices of time series associated with the classical observables of some system. The fact that such series are necessarily finite, inevitably introduces noise and this finite time influence lead to a random or stochastic component in these time series. By consequence random correlation matrices have a random component, and corresponding ensembles are used. In the latter we use random matrices to describe high temperature environment or uncontrolled perturbations, ensembles of differing chaotic systems etc. The common theme of the lectures is thus the importance of random matrix theory in a wide range of fields in and around physics.
Tissue engineered cartilage on collagen and PHBV matrices.
Köse, Gamze Torun; Korkusuz, Feza; Ozkul, Aykut; Soysal, Yasemin; Ozdemir, Taner; Yildiz, Cemil; Hasirci, Vasif
2005-09-01
Cartilage engineering is a very novel approach to tissue repair through use of implants. Matrices of collagen containing calcium phosphate (CaP-Gelfix), and matrices of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) were produced to create a cartilage via tissue engineering. The matrices were characterized by scanning electron microscopy (SEM) and electron diffraction spectroscopy (EDS). Porosity and void volume analysis were carried out to characterize the matrices. Chondrocytes were isolated from the proximal humerus of 22 week-old male, adult, local albino rabbits. For cell type characterization, Type II collagen was measured by Western Blot analysis. The foams were seeded with 1x10(6) chondrocytes and histological examinations were carried out to assess cell-matrix interaction. Macroscopic examination showed that PHBV (with or without chondrocytes) maintained its integrity for 21 days, while CaP-Gelfix was deformed and degraded within 15 days. Cell-containing and cell-free matrices were implanted into full thickness cartilage defects (4.5 mm in diameter and 4 mm in depth) at the patellar groove on the right and left knees of eight rabbits, respectively. In vivo results at 8 and 20 weeks with chondrocyte seeded PHBV matrices presented early cartilage formation resembling normal articular cartilage and revealed minimal foreign body reaction. In CaP-Gelfix matrices, fibrocartilage formation and bone invasion was noted in 20 weeks. Cells maintained their phenotype in both matrices. PHBV had better healing response than CaP-Gelfix. Both matrices were effective in cartilage regeneration. These matrices have great potential for use in the repair of joint cartilage defects.
Generating Dynamic System Matrices for Dynamic SPECT
2011-02-01
The purpose of the computer program is to generate system matrices that model data acquisition process in dynamic single photon emission computed tomography (SPECT). The application is for the reconstruction of dynamic data from projection measurements that provide the time evolution of activity uptake and wash out in an organ of interest. The measurement of the time activity in the blood and organ tissue provide time-activity curves (TACs) that are used to estimate kinetic parameters. The program provides a correct model of the in vivo spatial and temporal distribution of radioactive in organs. The model accounts for the attenuation of the internal emitting radioactivity, it accounts for the vary point response of the collimators, and correctly models the time variation of the activity in the organs. One important application where the software is being used in a measuring the arterial input function (AIF) in a dynamic SPECT study where the data are acquired from a slow camera rotation. Measurement of the arterial input function (AIF) is essential to deriving quantitative estimates of regional myocardial blood flow using kinetic models. A study was performed to evaluate whether a slowly rotating SPECT system could provide accurate AIF's for myocardial perfusion imaging (MPI). Methods: Dynamic cardiac SPECT was first performed in human subjects at rest using a Phillips Precedence SPECT/CT scanner. Dynamic measurements of Tc-99m-tetrofosmin in the myocardium were obtained using an infusion time of 2 minutes. Blood input, myocardium tissue and liver TACs were estimated using spatiotemporal splines. These were fit to a one-compartment perfusion model to obtain wash-in rate parameters K1. Results: The spatiotemporal 4D ML-EM reconstructions gave more accurate reconstructions that did standard frame-by-frame 3D ML-EM reconstructions. From additional computer simulations and phantom studies, it was determined that a 1 minute infusion with a SPECT system rotation speed
Mechanically implementable accommodation matrices for passive force control
Goswami, A.; Peshkin, M.
1999-08-01
Robot force control implemented by means of passive mechanical devices has inherent advantages over active implementations with regard to stability, response rapidity, and physical robustness. The class of devices considered in this paper consists of a Stewart platform-type mechanism interconnected with a network of adjustable mechanical elements such as springs and dampers. The control law repertoire of such a device, imagined as a robot wrist, is given by the range of admittance matrices that it may be programmed to possess. This paper focuses on wrists incorporating damper networks for which the admittance matrices reduce to accommodation or inverse-damping matrices. The authors show that a hydraulic network of fully adjustable damper elements may attain any diagonally dominant accommodation matrix. They describe the technique of selecting the individual damping coefficients to design a desired matrix. They identify the set of dominant matrices as a polyhedral convex cone in the space of matrix entries, and show that each dominant matrix can be composed of a positive linear combination of a fixed set of basis matrices. The overall wrist-accommodation matrix is obtained by projecting the accommodation matrix of the damper network through the wrist kinematics. The linear combination of the dominant basis matrices projected through the wrist kinematics generates the entire space of mechanically implementable force-control laws. The authors quantify the versatility of mechanically implementable force-control laws by comparing this space to the space of all matrices.
Modeling Covariance Matrices via Partial Autocorrelations
Daniels, M.J.; Pourahmadi, M.
2009-01-01
Summary We study the role of partial autocorrelations in the reparameterization and parsimonious modeling of a covariance matrix. The work is motivated by and tries to mimic the phenomenal success of the partial autocorrelations function (PACF) in model formulation, removing the positive-definiteness constraint on the autocorrelation function of a stationary time series and in reparameterizing the stationarity-invertibility domain of ARMA models. It turns out that once an order is fixed among the variables of a general random vector, then the above properties continue to hold and follows from establishing a one-to-one correspondence between a correlation matrix and its associated matrix of partial autocorrelations. Connections between the latter and the parameters of the modified Cholesky decomposition of a covariance matrix are discussed. Graphical tools similar to partial correlograms for model formulation and various priors based on the partial autocorrelations are proposed. We develop frequentist/Bayesian procedures for modelling correlation matrices, illustrate them using a real dataset, and explore their properties via simulations. PMID:20161018
Substituted amylose matrices for oral drug delivery
NASA Astrophysics Data System (ADS)
Moghadam, S. H.; Wang, H. W.; Saddar El-Leithy, E.; Chebli, C.; Cartilier, L.
2007-03-01
High amylose corn starch was used to obtain substituted amylose (SA) polymers by chemically modifying hydroxyl groups by an etherification process using 1,2-epoxypropanol. Tablets for drug-controlled release were prepared by direct compression and their release properties assessed by an in vitro dissolution test (USP XXIII no 2). The polymer swelling was characterized by measuring gravimetrically the water uptake ability of polymer tablets. SA hydrophilic matrix tablets present sequentially a burst effect, typical of hydrophilic matrices, and a near constant release, typical of reservoir systems. After the burst effect, surface pores disappear progressively by molecular association of amylose chains; this allows the creation of a polymer layer acting as a diffusion barrier and explains the peculiar behaviour of SA polymers. Several formulation parameters such as compression force, drug loading, tablet weight and insoluble diluent concentration were investigated. On the other hand, tablet thickness, scanning electron microscope analysis and mercury intrusion porosimetry showed that the high crushing strength values observed for SA tablets were due to an unusual melting process occurring during tabletting although the tablet external layer went only through densification, deformation and partial melting. In contrast, HPMC tablets did not show any traces of a melting process.
Generalized graph states based on Hadamard matrices
Cui, Shawn X.; Yu, Nengkun; Zeng, Bei
2015-07-15
Graph states are widely used in quantum information theory, including entanglement theory, quantum error correction, and one-way quantum computing. Graph states have a nice structure related to a certain graph, which is given by either a stabilizer group or an encoding circuit, both can be directly given by the graph. To generalize graph states, whose stabilizer groups are abelian subgroups of the Pauli group, one approach taken is to study non-abelian stabilizers. In this work, we propose to generalize graph states based on the encoding circuit, which is completely determined by the graph and a Hadamard matrix. We study the entanglement structures of these generalized graph states and show that they are all maximally mixed locally. We also explore the relationship between the equivalence of Hadamard matrices and local equivalence of the corresponding generalized graph states. This leads to a natural generalization of the Pauli (X, Z) pairs, which characterizes the local symmetries of these generalized graph states. Our approach is also naturally generalized to construct graph quantum codes which are beyond stabilizer codes.
Photochemistry of glycolaldehyde in cryogenic matrices
Chin, W. Chevalier, M.; Thon, R.; Crépin, C.; Pollet, R.
2014-06-14
The photochemistry of glycolaldehyde (GA) upon irradiation at 266 nm is investigated in argon, nitrogen, neon, and para-hydrogen matrices by IR spectroscopy. Isomerization and fragmentation processes are found to compete. The hydrogen-bonded Cis-Cis form of GA is transformed mainly to the open Trans-Trans conformer and to CO and CH{sub 3}OH fragments and their mixed complexes. Different photo-induced behaviours appear depending on the matrix. In nitrogen, small amounts of Trans-Gauche and Trans-Trans conformers are detected after deposition and grow together upon irradiation. The Trans-Gauche conformer is characterized for the first time. In para-hydrogen due to a weaker cage effect additional H{sub 2}CO and HCO fragments are seen. Calculations of the potential energy surfaces of S{sub 0}, S{sub 1}, and T{sub 1} states – to analyse the torsional deformations which are involved in the isomerization process – and a kinetic analysis are presented to investigate the different relaxation pathways of GA. Fragmentation of GA under UV irradiation through the CO+CH{sub 3}OH molecular channel is a minor process, as in the gas phase.
Visualizing complex (hydrological) systems with correlation matrices
NASA Astrophysics Data System (ADS)
Haas, J. C.
2016-12-01
When trying to understand or visualize the connections of different aspects of a complex system, this often requires deeper understanding to start with, or - in the case of geo data - complicated GIS software. To our knowledge, correlation matrices have rarely been used in hydrology (e.g. Stoll et al., 2011; van Loon and Laaha, 2015), yet they do provide an interesting option for data visualization and analysis. We present a simple, python based way - using a river catchment as an example - to visualize correlations and similarities in an easy and colorful way. We apply existing and easy to use python packages from various disciplines not necessarily linked to the Earth sciences and can thus quickly show how different aquifers work or react, and identify outliers, enabling this system to also be used for quality control of large datasets. Going beyond earlier work, we add a temporal and spatial element, enabling us to visualize how a system reacts to local phenomena such as for example a river, or changes over time, by visualizing the passing of time in an animated movie. References: van Loon, A.F., Laaha, G.: Hydrological drought severity explained by climate and catchment characteristics, Journal of Hydrology 526, 3-14, 2015, Drought processes, modeling, and mitigation Stoll, S., Hendricks Franssen, H. J., Barthel, R., Kinzelbach, W.: What can we learn from long-term groundwater data to improve climate change impact studies?, Hydrology and Earth System Sciences 15(12), 3861-3875, 2011
Dynamic Condensation of Mass and Stiffness Matrices
NASA Astrophysics Data System (ADS)
Zhang, N.
1995-12-01
Details are given of a procedure for condensing the mass and stiffness matrices of a structure for dynamic analysis. The condensed model is based on choosing ncnatural frequencies and the corresponding modes of original model. The model is constructed so that (1) it has ncnatural frequencies equal to those of the original model, (2) the modes φ ifcless than i,j = 1, 2, . . . , ncare the same as those for the master co-ordinates in the corresponding modes of the original and (3) the responses of the condensed system at the co-ordinates Xcdue to forces at these co-ordinates, at one particular chosen frequency, are the same as those of the original system. The natural frequencies, the corresponding modes and the dynamic responses used for the condensation can be obtained from finite element analysis of the original structure. The method has been applied to the modelling of two common structures to examine its applicability. Comparisons between the performance of the condensed models obtained by means of the dynamic condensation method and that of the models obtained by the Guyan method have been conducted. The results of the example show that the condensed models determined by the dynamic condensation method retain the natural frequencies and modal shapes and perform better in describing the dynamic responses of the structures than do the corresponding models obtained by the Guyan method.
Latest Developments in the Matrics Process
Green, Michael Foster; Nuechterlein, Keith H
2010-01-01
The Measurement and Treatment Research to Improve Cognition in Schizophrenia Research process has led to several developments in the assessment of cognitive functioning for schizophrenia-treatment studies. The first development was the development of a consensus cognitive battery and a United States Food and Drug Administration-endorsed research design. Since the development of the cognitive battery, interest has been spurred in clinical trials in different countries and the development of co-primary functional outcomes measures for these. The MATRICS Consensus Cognitive Battery has been translated into 11 different languages and is being translated into even more. A study has been completed that compared the usefulness of multiple potential co-primary measures, suggesting that the University of California San Diego Performance-Based skills assessment, version II (UPSA-II) is the most suitable for studies conducted in English. These findings suggest that reliable performance-based measures that are easy to administer and highly correlated with cognitive functioning are now available for use in treatment studies. PMID:20622946
On polynomial preconditioning for indefinite Hermitian matrices
NASA Technical Reports Server (NTRS)
Freund, Roland W.
1989-01-01
The minimal residual method is studied combined with polynomial preconditioning for solving large linear systems (Ax = b) with indefinite Hermitian coefficient matrices (A). The standard approach for choosing the polynomial preconditioners leads to preconditioned systems which are positive definite. Here, a different strategy is studied which leaves the preconditioned coefficient matrix indefinite. More precisely, the polynomial preconditioner is designed to cluster the positive, resp. negative eigenvalues of A around 1, resp. around some negative constant. In particular, it is shown that such indefinite polynomial preconditioners can be obtained as the optimal solutions of a certain two parameter family of Chebyshev approximation problems. Some basic results are established for these approximation problems and a Remez type algorithm is sketched for their numerical solution. The problem of selecting the parameters such that the resulting indefinite polynomial preconditioners speeds up the convergence of minimal residual method optimally is also addressed. An approach is proposed based on the concept of asymptotic convergence factors. Finally, some numerical examples of indefinite polynomial preconditioners are given.
Nanostructured mesoporous silica matrices in nanomedicine.
Vallet-Regí, M
2010-01-01
In the last few years the biomedical research field has shown a growing interest towards nanostructured mesoporous silica materials, whose chemical composition is silica and present nanometric pores. These bioceramics exhibit two important features: they can regenerate osseous tissues--the bond bioactivity of these materials has been confirmed by the formation of biological-like nanoapatites on their surface when in contact with physiological fluids--and they are able to act as controlled release systems. Drugs in the nanometre scale can be loaded on those matrices and then locally released in a controlled fashion. It is possible to chemically modify the silica walls to favour the adsorption of certain biomolecules such as peptides, proteins or growth factors. It is even possible to design smart biomaterials where the drug is released under an external stimulus. Thus, looking at all those properties, a question arises: Have these bioceramics good expectations to be used in clinical medical practice? Their biocompatibility, bioactivity, capacity to regenerate bone and ability to act as controlled release systems of biologically active species have been confirmed. In fact, their preliminary in vitro and in vivo essays have been positive. Now it is the time to adequate all these properties to the actual clinical problems, and to evaluate their efficiency in comparison with materials already known and currently employed such as bioglasses.
Photochemistry of glycolaldehyde in cryogenic matrices.
Chin, W; Chevalier, M; Thon, R; Pollet, R; Ceponkus, J; Crépin, C
2014-06-14
The photochemistry of glycolaldehyde (GA) upon irradiation at 266 nm is investigated in argon, nitrogen, neon, and para-hydrogen matrices by IR spectroscopy. Isomerization and fragmentation processes are found to compete. The hydrogen-bonded Cis-Cis form of GA is transformed mainly to the open Trans-Trans conformer and to CO and CH3OH fragments and their mixed complexes. Different photo-induced behaviours appear depending on the matrix. In nitrogen, small amounts of Trans-Gauche and Trans-Trans conformers are detected after deposition and grow together upon irradiation. The Trans-Gauche conformer is characterized for the first time. In para-hydrogen due to a weaker cage effect additional H2CO and HCO fragments are seen. Calculations of the potential energy surfaces of S0, S1, and T1 states--to analyse the torsional deformations which are involved in the isomerization process--and a kinetic analysis are presented to investigate the different relaxation pathways of GA. Fragmentation of GA under UV irradiation through the CO+CH3OH molecular channel is a minor process, as in the gas phase.
Decellularized matrices for cardiovascular tissue engineering
Moroni, Francesco; Mirabella, Teodelinda
2014-01-01
Cardiovascular disease (CVD) is one of the leading causes of death in the Western world. The replacement of damaged vessels and valves has been practiced since the 1950’s. Synthetic grafts, usually made of bio-inert materials, are long-lasting and mechanically relevant, but fail when it comes to “biointegration”. Decellularized matrices, instead, can be considered biological grafts capable of stimulating in vivo migration and proliferation of endothelial cells (ECs), recruitment and differentiation of mural cells, finally, culminating in the formation of a biointegrated tissue. Decellularization protocols employ osmotic shock, ionic and non-ionic detergents, proteolitic digestions and DNase/RNase treatments; most of them effectively eliminate the cellular component, but show limitations in preserving the native structure of the extracellular matrix (ECM). In this review, we examine the current state of the art relative to decellularization techniques and biological performance of decellularized heart, valves and big vessels. Furthermore, we focus on the relevance of ECM components, native and resulting from decellularization, in mediating in vivo host response and determining repair and regeneration, as opposed to graft corruption. PMID:24660110
Partitioning sparse matrices with eigenvectors of graphs
NASA Technical Reports Server (NTRS)
Pothen, Alex; Simon, Horst D.; Liou, Kang-Pu
1990-01-01
The problem of computing a small vertex separator in a graph arises in the context of computing a good ordering for the parallel factorization of sparse, symmetric matrices. An algebraic approach for computing vertex separators is considered in this paper. It is shown that lower bounds on separator sizes can be obtained in terms of the eigenvalues of the Laplacian matrix associated with a graph. The Laplacian eigenvectors of grid graphs can be computed from Kronecker products involving the eigenvectors of path graphs, and these eigenvectors can be used to compute good separators in grid graphs. A heuristic algorithm is designed to compute a vertex separator in a general graph by first computing an edge separator in the graph from an eigenvector of the Laplacian matrix, and then using a maximum matching in a subgraph to compute the vertex separator. Results on the quality of the separators computed by the spectral algorithm are presented, and these are compared with separators obtained from other algorithms for computing separators. Finally, the time required to compute the Laplacian eigenvector is reported, and the accuracy with which the eigenvector must be computed to obtain good separators is considered. The spectral algorithm has the advantage that it can be implemented on a medium-size multiprocessor in a straightforward manner.
First-principles molecular dynamics study of glassy GeS2: Atomic structure and bonding properties
NASA Astrophysics Data System (ADS)
Celino, M.; Le Roux, S.; Ori, G.; Coasne, B.; Bouzid, A.; Boero, M.; Massobrio, C.
2013-11-01
The structure of glassy GeS2 is studied in the framework of density functional theory, by using a fully self-consistent first-principles molecular dynamics (FPMD) scheme. A comparative analysis is performed with previous molecular dynamics data obtained within the Harris functional (HFMD) total energy approach. The calculated total neutron structure factor exhibits an unprecedented agreement with the experimental counterpart. In particular, the height of the first sharp diffraction peak (FSDP) improves considerably upon the HFMD results. Both the Ge and the S subnetworks are affected by a consistent number of miscoordinations, coexisting with the main tetrahedral structural motif. Glassy GeS2 features a short-range order quite similar to the one found in glassy GeSe2, a notable exception being the larger number of edge-sharing connections. An electronic structure localization analysis, based on the Wannier functions formalism, provides evidence of a more enhanced ionic character in glassy GeS2 when compared to glassy GeSe2.
Random matrices as models for the statistics of quantum mechanics
NASA Astrophysics Data System (ADS)
Casati, Giulio; Guarneri, Italo; Mantica, Giorgio
1986-05-01
Random matrices from the Gaussian unitary ensemble generate in a natural way unitary groups of evolution in finite-dimensional spaces. The statistical properties of this time evolution can be investigated by studying the time autocorrelation functions of dynamical variables. We prove general results on the decay properties of such autocorrelation functions in the limit of infinite-dimensional matrices. We discuss the relevance of random matrices as models for the dynamics of quantum systems that are chaotic in the classical limit. Permanent address: Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy.
On the asymptotic distribution of block-modified random matrices
Arizmendi, Octavio; Nechita, Ion; Vargas, Carlos
2016-01-15
We study random matrices acting on tensor product spaces which have been transformed by a linear block operation. Using operator-valued free probability theory, under some mild assumptions on the linear map acting on the blocks, we compute the asymptotic eigenvalue distribution of the modified matrices in terms of the initial asymptotic distribution. Moreover, using recent results on operator-valued subordination, we present an algorithm that computes, numerically but in full generality, the limiting eigenvalue distribution of the modified matrices. Our analytical results cover many cases of interest in quantum information theory: we unify some known results and we obtain new distributions and various generalizations.
ANOVA like analysis for structured families of stochastic matrices
NASA Astrophysics Data System (ADS)
Dias, Cristina; Santos, Carla; Varadinov, Maria; Mexia, João T.
2016-12-01
Symmetric stochastic matrices width a width a dominant eigenvalue λ and the corresponding eigenvector α appears in many applications. Such matrices can be written as M =λ α αt+E¯. Thus β = λ α will be the structure vector. When the matrices in such families correspond to the treatments of a base design we can carry out a ANOVA like analysis of the action of the treatments in the model on the structured vectors. This analysis can be transversal-when we worked width homologous components and - longitudinal when we consider contrast on the components of each structure vector. The analysis will be briefly considered at the end of our presentation.
The explosive divergence in iterative maps of matrices
NASA Astrophysics Data System (ADS)
Navickas, Zenonas; Ragulskis, Minvydas; Vainoras, Alfonsas; Smidtaite, Rasa
2012-11-01
The effect of explosive divergence in generalized iterative maps of matrices is defined and described using formal algebraic techniques. It is shown that the effect of explosive divergence can be observed in an iterative map of square matrices of order 2 if and only if the matrix of initial conditions is a nilpotent matrix and the Lyapunov exponent of the corresponding scalar iterative map is greater than zero. Computational experiments with the logistic map and the circle map are used to illustrate the effect of explosive divergence occurring in iterative maps of matrices.
Bunch-Kaufman factorization for real symmetric indefinite banded matrices
NASA Technical Reports Server (NTRS)
Jones, Mark T.; Patrick, Merrell L.
1989-01-01
The Bunch-Kaufman algorithm for factoring symmetric indefinite matrices was rejected for banded matrices because it destroys the banded structure of the matrix. Herein, it is shown that for a subclass of real symmetric matrices which arise in solving the generalized eigenvalue problem using Lanczos's method, the Bunch-Kaufman algorithm does not result in major destruction of the bandwidth. Space time complexities of the algorithm are given and used to show that the Bunch-Kaufman algorithm is a significant improvement over LU factorization.
A geochemical approach to constraining the formation of glassy fallout debris from nuclear tests
Bonamici, Chloë E.; Kinman, William S.; Fournelle, John H.; Zimmer, Mindy M.; Pollington, Anthony D.; Rector, Kirk D.
2016-12-15
Reprocessed earth material is a glassy nuclear fallout debris from near-surface nuclear tests. A geochemical approach to analysis of glassy fallout is uniquely suited to determine the means of reprocessing and shed light on the mechanisms of fallout formation. An improved understanding of fallout formation is of interest both for its potential to guide post-detonation nuclear forensic investigations and in the context of possible affinities between glassy debris and other glasses generated by high-energy natural events, such as meteorite impacts and lightning strikes. Our study presents a large major-element compositional dataset for glasses within aerodynamic fallout from the Trinity nuclear test (“trinitite”) and a geochemically based analysis of the glass compositional trends. Silica-rich and alkali-rich trinitite glasses show compositions and textures consistent with formation through melting of individual mineral grains—quartz and alkali feldspar, respectively—from the test-site sediment. Furthermore, the volumetrically dominant glass phase—called the CaMgFe glass—shows extreme major-element compositional variability. Compositional trends in the CaMgFe glass are most consistent with formation through volatility-controlled condensation from compositionally heterogeneous plasma. Radioactivity occurs only in CaMgFe glass, indicating that co-condensation of evaporated bulk ground material and trace device material was the main mechanism of radioisotope incorporation into trinitite. CaMgFe trinitite glasses overlap compositionally with basalts, rhyolites, fulgurites, tektites, and microtektites but display greater compositional diversity than all of these naturally formed glasses. Indeed, the most refractory CaMgFe glasses compositionally resemble early solar system condensates—specifically, CAIs.
A geochemical approach to constraining the formation of glassy fallout debris from nuclear tests
NASA Astrophysics Data System (ADS)
Bonamici, Chloë E.; Kinman, William S.; Fournelle, John H.; Zimmer, Mindy M.; Pollington, Anthony D.; Rector, Kirk D.
2017-01-01
Glassy nuclear fallout debris from near-surface nuclear tests is fundamentally reprocessed earth material. A geochemical approach to analysis of glassy fallout is uniquely suited to determine the means of reprocessing and shed light on the mechanisms of fallout formation. An improved understanding of fallout formation is of interest both for its potential to guide post-detonation nuclear forensic investigations and in the context of possible affinities between glassy debris and other glasses generated by high-energy natural events, such as meteorite impacts and lightning strikes. This study presents a large major-element compositional dataset for glasses within aerodynamic fallout from the Trinity nuclear test ("trinitite") and a geochemically based analysis of the glass compositional trends. Silica-rich and alkali-rich trinitite glasses show compositions and textures consistent with formation through melting of individual mineral grains—quartz and alkali feldspar, respectively—from the test-site sediment. The volumetrically dominant glass phase—called the CaMgFe glass—shows extreme major-element compositional variability. Compositional trends in the CaMgFe glass are most consistent with formation through volatility-controlled condensation from compositionally heterogeneous plasma. Radioactivity occurs only in CaMgFe glass, indicating that co-condensation of evaporated bulk ground material and trace device material was the main mechanism of radioisotope incorporation into trinitite. CaMgFe trinitite glasses overlap compositionally with basalts, rhyolites, fulgurites, tektites, and microtektites but display greater compositional diversity than all of these naturally formed glasses. Indeed, the most refractory CaMgFe glasses compositionally resemble early solar system condensates—specifically, CAIs.
NASA Astrophysics Data System (ADS)
Smuda, Christoph; Busch, Sebastian; Wagner, Bernd; Unruh, Tobias
2008-08-01
The methyl group rotation of coenzyme Q10 confined in nanosized droplets was studied using quasielastic neutron scattering (QENS). Q10 as an oligoisoprene derivative with ten isoprene units can easily be supercooled in nanodroplets. Fixed window scans and QENS spectra at several temperatures of glassy Q10 were recorded to study the methyl group rotation which can be described by a logarithmic Gaussian distribution of hopping rates for temperatures below the glass transition temperature (Tg~200 K). A mean activation energy of 4.8 kJ/mol with a distribution width of 2.1 kJ/mol was obtained from the evaluation of the QENS spectra. A corresponding analysis of a fixed window scan yielded an average activation energy of 5.1 kJ/mol with a distribution width of 1.8 kJ/mol. The results are compared and discussed with those of chain deuterated polyisoprene-d5. For polycrystalline Q10, the QENS spectra could be described by the same model yielding a similar average activation energy as found for glassy Q10. However, no temperature dependence of the distribution width was observed. Based on the performed low-temperature measurements, the correlation times for the methyl group rotation were extrapolated to temperatures of liquid Q10. The complex dynamics of liquid Q10 could be described by a model yielding an apparent diffusion coefficient, the jump rate of the methyl groups, as well as an overall molecular rotational diffusion coefficient. The correlation times of the methyl group rotation in liquid Q10 at a given temperature T0 coincide with values determined in the glassy phase and extrapolated to T0.
A geochemical approach to constraining the formation of glassy fallout debris from nuclear tests
Bonamici, Chloë E.; Kinman, William S.; Fournelle, John H.; ...
2016-12-15
Reprocessed earth material is a glassy nuclear fallout debris from near-surface nuclear tests. A geochemical approach to analysis of glassy fallout is uniquely suited to determine the means of reprocessing and shed light on the mechanisms of fallout formation. An improved understanding of fallout formation is of interest both for its potential to guide post-detonation nuclear forensic investigations and in the context of possible affinities between glassy debris and other glasses generated by high-energy natural events, such as meteorite impacts and lightning strikes. Our study presents a large major-element compositional dataset for glasses within aerodynamic fallout from the Trinity nuclearmore » test (“trinitite”) and a geochemically based analysis of the glass compositional trends. Silica-rich and alkali-rich trinitite glasses show compositions and textures consistent with formation through melting of individual mineral grains—quartz and alkali feldspar, respectively—from the test-site sediment. Furthermore, the volumetrically dominant glass phase—called the CaMgFe glass—shows extreme major-element compositional variability. Compositional trends in the CaMgFe glass are most consistent with formation through volatility-controlled condensation from compositionally heterogeneous plasma. Radioactivity occurs only in CaMgFe glass, indicating that co-condensation of evaporated bulk ground material and trace device material was the main mechanism of radioisotope incorporation into trinitite. CaMgFe trinitite glasses overlap compositionally with basalts, rhyolites, fulgurites, tektites, and microtektites but display greater compositional diversity than all of these naturally formed glasses. Indeed, the most refractory CaMgFe glasses compositionally resemble early solar system condensates—specifically, CAIs.« less
Sisterson, Mark S; Yacoub, Rosie; Montez, Greg; Grafton-Cardwell, Elizabeth E; Groves, Russell L
2008-08-01
The epidemiology of Pierce's disease of grape (Vitis spp.) in California has changed over the past 10 yr due to the introduction of an exotic vector, Homalodisca vitripennis (Germar), the glassy-winged sharpshooter. Although this insect is highly polyphagous, citrus (Citrus spp.) is considered a preferred host and proximity to citrus has been implicated as a significant risk factor in recent epidemics of Pierce's disease in southern California. Consequently, a detailed knowledge of the distribution and management of citrus in relation to grape is needed to improve insect and disease management. Analysis of data on the area planted to these two commodities indicates that only five counties in California concomitantly grow >1,000 ha of grape and >1,000 ha of citrus: Riverside, Kern, Tulare, Fresno, and Madera counties. Comparison of the distribution of grape and citrus within each of these counties indicates that the percentage of grape that is in proximity to citrus is greatest for Riverside County, but the total area of grape that is in proximity to citrus is greater for Fresno, Kern, and Tulare counties. The use of carbamates, neonicotinoids, organophosphates, and pyrethroids as part of the citrus pest management program for control of key insect pests was compared among the same five counties plus Ventura County from 1995 to 2006. Ventura County was included in this analysis as this county grows >10,000 ha of citrus and has established glassy-winged sharpshooter populations. The use of these broad-spectrum insecticides was lowest in Riverside and Ventura counties compared with the other four counties. Analysis of historical trapping data at the county scale indicates a negative association of broad-spectrum insecticide use with glassy-winged sharpshooter abundance. These results are used to retrospectively analyze the Pierce's disease outbreaks in Kern and Riverside counties.
Laser micromilling of convex microfluidic channels onto glassy carbon for glass molding dies
NASA Astrophysics Data System (ADS)
Tseng, Shih-Feng; Chen, Ming-Fei; Hsiao, Wen-Tse; Huang, Chien-Yao; Yang, Chung-Heng; Chen, Yu-Sheng
2014-06-01
This study reports the fabrication of convex microfluidic channels on glassy carbon using an ultraviolet laser processing system to produce glass molding dies. The laser processing parameters, including various laser fluences and scanning speeds of galvanometers, were adjusted to mill a convex microchannel on a glassy carbon substrate to identify the effects of material removal. The machined glassy carbon substrate was then applied as a glass molding die to fabricate a glass-based microfluidic biochip. The surface morphology, milled width and depth, and surface roughness of the microchannel die after laser micromilling were examined using a three-dimensional confocal laser scanning microscope. This study also investigates the transcription rate of microchannels after the glass molding process. To produce a 180 μm high microchannel on the GC substrate, the optimal number of milled cycles, laser fluence, and scanning speed were 25, 4.9 J/cm2, and 200 mm/s, respectively. The width, height, and surface roughness of milled convex microchannels were 119.6±0.217 μm, 180.26±0.01 μm, and 0.672±0.08 μm, respectively. These measured values were close to the predicted values and suitable for a glass molding die. After the glass molding process, a typical glass-based microchannel chip was formed at a molding temperature of 660 °C and the molding force of 0.45 kN. The transcription rates of the microchannel width and depth were 100% and 99.6%, respectively. Thus, the proposed approach is suitable for performing in chemical, biochemical, or medical reactions.
NASA Astrophysics Data System (ADS)
Ostiguy, Pierre-Claude
Les matériaux composites sont de plus en plus utilisés en aéronautique. Leurs excellentes propriétés mécaniques et leur faible poids leur procurent un avantage certain par rapport aux matériaux métalliques. Ceux-ci étant soumis à diverses conditions de chargement et environnementales, ils sont suceptibles de subir plusieurs types d'endommagements, compromettant leur intégrité. Des méthodes fiables d'inspection sont donc nécessaires pour évaluer leur intégrité. Néanmoins, peu d'approches non destructives, embarquées et efficaces sont présentement utilisées. Ce travail de recherche se penche sur l'étude de l'effet de la composition des matériaux composites sur la détection et la caractérisation par ondes guidées. L'objectif du projet est de développer une approche de caractérisation mécanique embarquée permettant d'améliorer la performance d'une approche d'imagerie par antenne piézoélectriques sur des structures composite et métalliques. La contribution de ce projet est de proposer une approche embarquée de caractérisation mécanique par ultrasons qui ne requiert pas une mesure sur une multitude d'échantillons et qui est non destructive. Ce mémoire par articles est divisé en quatre parties, dont les parties deux A quatre présentant les articles publiés et soumis. La première partie présente l'état des connaissances dans la matière nécessaires à l'acomplissement de ce projet de maîtrise. Les principaux sujets traités portent sur les matériaux composites, propagation d'ondes, la modélisation des ondes guidées, la caractérisation par ondes guidées et la surveillance embarquée des structures. La deuxième partie présente une étude de l'effet des propriétés mécaniques sur la performance de l'algorithme d'imagerie Excitelet. L'étude est faite sur une structure isotrope. Les résultats ont démontré que l'algorithme est sensible à l'exactitude des propriétés mécaniques utilisées dans le modèle. Cette
Influence of elastic strains on the mask ratio in glassy polymer nanoimprint
NASA Astrophysics Data System (ADS)
Cross, Graham L. W.; O'Connell, Barry S.; Pethica, John B.
2005-02-01
During glassy polymer nanoimprint, a supported film is extruded from protruding (punch) to recessed (cavity) regions of a patterned stamp. The completeness of this extrusion determines the mask ratio for lithographic applications. We show that, for a given punch contact size, there is a residual layer of unextruded material with a mean thickness that is independent of initial film thickness, stamping time, or applied maximum load. Depth sensing indentation enables us to monitor deformation during the imprinting as well as after, and so understand the deformation process involved. It is found that both the geometry and mean thickness of the residual layer are influenced by the overall elastic properties of the stamping system.
Permanent photoalignment of liquid crystals on nanostructured chalcogenide glassy thin films
Gelbaor, Miri; Abdulhalim, I.; Klebanov, Matvey; Lyubin, Victor
2011-02-14
Photoalignment of nematic liquid crystals is obtained on the chalcogenide glassy thin film of As{sub 2}S{sub 3} using irradiation with polarized blue light. A uniform homogeneously aligned device is obtained with high contrast and strong anchoring. The device alignment quality is permanent as checked by following its functionality over a period of few months. The origin of the observed photoalignment is attributed to the photoinduced anisotropy in chalcogenide glasses. No differences between the different As{sub 2}S{sub 3} film thicknesses observed, thus supporting the proposition that some orientational order is photoinduced on the surface of the glass and responsible for the photoalignment.
An impedance study of the adsorption of nucleic acid bases at glassy carbon electrodes.
Oliveira-Brett, A M; Brett, C M A; Silva, L A
2002-05-15
Electrochemical impedance has been used to study the adsorption at glassy carbon electrodes of guanine, its corresponding nucleoside, guanosine, and adenine. Impedance studies at different concentrations and applied potentials show clearly that all three bases are adsorbed on the electrode, blocking the surface. Irradiating the electrode with low-frequency (20 kHz) ultrasound whilst recording the impedance spectra increased transport of molecules to the electrode surface with cavitation cleaning the surface and removing strongly adsorbed molecules of bases. In this way, sonoelectrochemical experiments enabled the electrode processes to be studied in the absence of adsorption.
Non-Gaussian nature of glassy dynamics by cage to cage motion
Vorselaars, Bart; Lyulin, Alexey V.; Michels, M. A. J.; Karatasos, K.
2007-01-15
A model based on a single Brownian particle moving in a periodic effective field is used to understand the non-Gaussian dynamics in glassy systems of cage escape and subsequent recaging, often thought to be caused by a heterogeneous glass structure. The results are compared to molecular-dynamics simulations of systems with varying complexity: quasi-two-dimensional colloidlike particles, atactic polystyrene, and a dendritic glass. The model nicely describes generic features of all three topologically different systems, in particular around the maximum of the non-Gaussian parameter. This maximum is a measure for the average distance between cages.
Dielectric relaxation studies in Se90Cd8Sb2 glassy alloy
NASA Astrophysics Data System (ADS)
Shukla, Nitesh; Rao, Vandita; Dwivedi, D. K.
2016-05-01
Se90Cd8Sb2 chalcogenide semiconducting alloy was prepared by melt quench technique. The prepared glassy alloy has been characterized by techniques such as scanning electron microscopy (SEM) and energy dispersive X-ray (EDAX).Dielectric properties of Se90Cd8Sb2 chalcogenide semiconductor have been studied using impedance spectroscopic technique in the frequency range 5×102Hz - 1×105Hz and in temperature range 303-318K. It is found that dielectric constant ɛ' and dielectric loss factor ɛ″ are dependent on frequency and temperature.
Glassy behavior of denatured DNA films studied by differential scanning calorimetry.
Valle-Orero, Jessica; Garden, Jean-Luc; Richard, Jacques; Wildes, Andrew; Peyrard, Michel
2012-04-12
We use differential scanning calorimetry (DSC) to study the properties of DNA films, made of oriented fibers, heated above the thermal denaturation temperature of the double helical form. The films show glassy properties that we investigate in two series of experiments, a slow cooling at different rates followed by a DSC scan upon heating and aging at a temperature below the glass transition. Introducing the fictive temperature to characterize the glass allows us to derive quantitative information on the relaxations of the DNA films, in particular to evaluate their enthalpy barrier. A comparison with similar aging studies on PVAc highlights some specificities of the DNA samples.
Analysis of glassy spherules extracted from Carpathian Mesozoic lime stone by μPIXE method
NASA Astrophysics Data System (ADS)
Uzonyi, I.; Kiss, Á. Z.; Solt, P.; Dosztály, L.; Kákay Szabó, O.; Detre, Cs. H.
1998-04-01
Twenty-four glassy spherules collected from three Mesozoic sites of the Carpathian Basin have been analysed for major, minor and trace element composition using the scanning proton microprobe facility of the Institute of Nuclear Research (ATOMKI) in Debrecen. μPIXE analyses revealed surprisingly high Ca and Ba concentrations (CaO ˜40%, BaO ˜2.5%) which have never been reported before. Samples proved to be homogeneous for the major elements (Si, Ca). From geological considerations it may be inferred that these spherules are terrestrial impact products, though, the details of the impact events have not been fully cleared yet.
Multiple Uses of Hydrogen Isotopes as a Tracer of Rehydration Processes in Glassy Lavas
NASA Astrophysics Data System (ADS)
Cameron, B. I.; Fink, J. H.; Guan, Y.; Leshin, L. A.
2001-12-01
Silicic lava flows contain zones of enhanced vesicularity with high total H2O contents. This relationship between volatile content and vesicularity has promoted the monitoring of active lava domes using remote sensing techniques in an effort to forecast explosive activity. A persistent complication in attempts to relate surface texture to H2O content and explosivity was the confounding effect of meteoric H2O. Glassy and vesicular lavas exposed at the surface of the Earth for prolonged periods readily interact with meteoric H2O. Rehydration is a time-, temperature-, and porosity-dependent process governed by the slow diffusion of molecular H2O into the glass. This inevitable addition of secondary H2O obscures the spatial distribution of juvenile H2O in lava flows. The ability to distinguish magmatic from meteoric H2O in glassy lavas would help identify regions of overpressure on active domes and thereby improve hazard assessment. Three types of hydrogen isotopic studies of glassy lavas have been utilized to disentangle rehydration processes from primary magmatic ones. First, bulk hydrogen isotopic data on variably textured lava flows reveal enrichments in both δ D and total H2O as vesicularity increases. Mixing between a degassed magmatic and a partially evaporated meteoric H2O best explains the observed trend from lower δ D values in the interior massive obsidian samples to higher δ D in the most surficial vesicular pumice. Second, step-heated hydrogen isotopic analyses further prove that the vesicular samples contain a high percentage of meteoric H2O. Whereas dense massive obsidian samples release a large fraction of deuterium-depleted H2O at temperatures above 600° C, the bubble-rich pumiceous samples lose a majority of their H2O at temperatures below 400° C. Lastly, the Cameca 6f ion microprobe at ASU was used to measure hydrogen isotope transects into the vesicle-melt interface. The gradation from depleted δ D values in the glassy interstices to more
Transmission of phage by glassy-winged sharpshooters, a vector of Xylella fastidiosa
Bhowmick, Tushar Suvra; Das, Mayukh; Heinz, Kevin M.; Krauter, Peter C.; Gonzalez, Carlos F.
2016-01-01
ABSTRACT Xylella fastidiosa subsp. fastidiosa (Xff) is the causal agent of Pierce's Disease (PD) of grapevines and is vectored by the glassy-winged sharpshooter (GWSS, Homalodisca vitripennis). Previously we have reported the development of a bacteriophage (phage) based biocontrol system for PD, but no information on insect transmission of phages has been reported. Here we communicate that laboratory reared GWSSs fed on cowpea plants (Vigna unguiculata subsp. unguiculata) harboring the virulent phage Paz were able to uptake of phage efficiently when the phage was present in high concentration, but were inefficient in transfer to plants. PMID:27738554
Flach, Joost; van der Waal, Mark B; van den Nieuwboer, Maurits; Claassen, Eric; Larsen, Olaf F A
2017-06-13
Probiotic microorganisms are increasingly incorporated into food matrices in order to confer proposed health benefits on the consumer. It is important that the health benefits, sensory properties, shelf-life and probiotic gastrointestinal tract (GIT) survival of these products are carefully balanced as they determine functionality and drive consumer acceptance. The strain-specific effects of probiotic species are imperative in this process but carrier matrices may play a pivotal role as well. This study therefore recapitulates the wealth of knowledge on carrier matrices and their interaction with probiotic strains. The most substantiated carrier matrices, factors that influence probiotic functionality and matrix effects on shelf-life, GIT survival and clinical efficacy are reviewed. Results indicate that carrier matrices have a significant impact on the quality of probiotic products. Matrix components, such as proteins, carbohydrates and flavoring agents are shown to alter probiotic efficacy and viability. In vivo studies furthermore revealed strain-dependent matrix effects on the GIT survival of probiotic bacteria. However, only a limited number of studies have specifically addressed the effects of carrier matrices on the aforementioned product-parameters; most studies seem to focus solely on the strain-specific effects of probiotic microorganisms. This hampers the innovation of probiotic products. More human studies, comparing not only different probiotic strains but different carrier matrices as well, are needed to drive the innovation cycle.
Wiranidchapong, Chutima; Ruangpayungsak, Nuchnan; Suwattanasuk, Pattaraporn; Shuwisitkul, Duangratana; Tanvichien, Sujimon
2015-06-01
The objectives of this study were to investigate the effect of storage temperature on drug release from matrices containing 10, 40 and 70% w/w ibuprofen in Kollidon® SR (KSR). The matrix tablets were produced by direct compression and then kept at 30 and 45 °C for 3 months. Drug release from the matrix tablets was examined after storage for 0, 1, 4 and 12 weeks. Scanning electron microscope was used to reveal physical appearance of the tablet surface at the respective time intervals. In addition, differential scanning calorimeter was used to investigate glass transition temperature (Tg) of ibuprofen in KSR at 0-100% w/w based on the principle of Gordon-Taylor equation. At 45 °C, the dissolution of ibuprofen in KSR as well as the coalescence of polymer particles were observed to be higher than those of storage at 30 °C. The physical state of ibuprofen dispersed in the polymeric matrix and degree of polymer coalescence led to the variation of drug release. The coalescence of polymer particles was a result of the polymer transition from glassy to rubbery state according to water absorption of KSR and plasticizing effect of ibuprofen. The reduction of the Tg of ibuprofen blended with KSR could be better described by the Kwei equation, a modified version of Gordon-Taylor equation.
Radiative Properties of Silica Nanoporous Matrices
NASA Astrophysics Data System (ADS)
Lallich, Sylvain; Enguehard, Franck; Baillis, Dominique
2008-08-01
Superinsulating materials are currently of much interest because of the price of energy on the one hand and CO2 emissions attributed to offices and houses cooling and heating on the other hand. In this work, we aim at understanding and modeling the radiative transfer within silica nanoporous matrices that are the principal components of nanoporous superinsulating materials. We first elaborate samples of various thicknesses from a pyrogenic silica powder. These samples are characterized using two spectrophotometers on the whole wavelength range [250 nm; 20 μm]. Using a parameter identification technique, we compute the radiative properties of the various samples. Then, our samples being made of packed quasi-spherical particles, we use the Mie theory to model the radiative properties of these materials. Due to the observed discrepancies between the experimental radiative properties and those computed from the Mie theory with a uniform value of 10 nm for the scatterer diameter (value derived from TEM images), we determine an effective scatterer diameter that allows a good agreement between the experimental radiative properties and the Mie results. Nevertheless, in the short wavelength range, the Mie theory gives results that significantly differ from the experimental radiative properties. This behavior is attributed to structure effects as the wavelength is of the same order of magnitude as the diameter of the scatterer that is now regarded as an aggregate of nanoparticles. Hence, to take into account these effects, we use the discrete dipole approximation (DDA). The DDA extinction coefficient spectra appear to be much closer to the experimental results than the Mie spectra, and these first results are quite encouraging.
Bone Regeneration Using Gene-Activated Matrices.
D'Mello, Sheetal; Atluri, Keerthi; Geary, Sean M; Hong, Liu; Elangovan, Satheesh; Salem, Aliasger K
2017-01-01
Gene delivery to bone is a potential therapeutic strategy for directed, sustained, and regulated protein expression. Tissue engineering strategies for bone regeneration include delivery of proteins, genes (viral and non-viral-mediated delivery), and/or cells to the bone defect site. In addition, biomimetic scaffolds and scaffolds incorporating bone anabolic agents greatly enhance the bone repair process. Regional gene therapy has the potential of enhancing bone defect healing and bone regeneration by delivering osteogenic genes locally to the osseous lesions, thereby reducing systemic toxicity and the need for using supraphysiological dosages of therapeutic proteins. By implanting gene-activated matrices (GAMs), sustained gene expression and continuous osteogenic protein production in situ can be achieved in a way that stimulates osteogenesis and bone repair within osseous defects. Critical parameters substantially affecting the therapeutic efficacy of gene therapy include the choice of osteogenic transgene(s), selection of non-viral or viral vectors, the wound environment, and the selection of ex vivo and in vivo gene delivery strategies, such as GAMs. It is critical for gene therapy applications that clinically beneficial amounts of proteins are synthesized endogenously within and around the lesion in a sustained manner. It is therefore necessary that reliable and reproducible methods of gene delivery be developed and tested for their efficacy and safety before translating into clinical practice. Practical considerations such as the age, gender, and systemic health of patients and the nature of the disease process also need to be taken into account in order to personalize the treatments and progress towards developing a clinically applicable gene therapy for healing bone defects. This review discusses tissue engineering strategies to regenerate bone with specific focus on non-viral gene delivery systems.
ON THE STIFFNESS OF DEMINERALIZED DENTIN MATRICES
Ryou, Heonjune; Turco, Gianluca; Breschi, Lorenzo; Tay, Franklin R.; Pashley, David H.; Arola, Dwayne
2015-01-01
Resin bonding to dentin requires the use of self-etching primers or acid etching to decalcify the surface and expose a layer of collagen fibrils of the dentin matrix. Acid-etching reduces the stiffness of demineralized dentin from approximately 19 GPa to 1 MPa, requiring that it floats in water to prevent it from collapsing during bonding procedures. Several publications show that crosslinking agents like gluteraladehyde, carbodiimide or grape seed extract can stiffen collagen and improve resin-dentin bond strength. Objective The objective was to assess a new approach for evaluating the changes in stiffness of decalcified dentin by polar solvents and a collagen cross-linker. Methods Fully demineralized dentin beams and sections of etched coronal dentin were subjected to indentation loading using a cylindrical flat indenter in water, and after treatment with ethanol or ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). The stiffness was measured as a function of strain and as a function of loading rate from 1 to 50 µm/sec. Results At a strain of 0.25% the elastic modulus of the fully demineralized dentin was approximately 0.20 MPa. It increased to over 0.90 MPa at strains of 1%. Exposure to ethanol caused an increase in elastic modulus of up to four times. Increasing the loading rate from 1 to 50 µm/sec caused an increase in the apparent modulus of up to three times in both water and ethanol. EDC treatment caused increases in the stiffness in fully demineralized samples and in acid-etched demineralized dentin surfaces in situ. Significance Changes in the mechanical behavior of demineralized collagen matrices can be measured effectively under hydration via indentation with cylindrical flat indenters. This approach can be used for quantifying the effects of bonding treatments on the properties of decalcified dentin after acid etching, as well as to follow the loss of stiffness over time due to enzymatic degradation. PMID:26747822
Modular Extracellular Matrices: Solutions for the Puzzle
Serban, Monica A.; Prestwich, Glenn D.
2008-01-01
The common technique of growing cells in two-dimensions (2-D) is gradually being replaced by culturing cells on matrices with more appropriate composition and stiffness, or by encapsulation of cells in three-dimensions (3-D). The universal acceptance of the new 3-D paradigm has been constrained by the absence of a commercially available, biocompatible material that offers ease of use, experimental flexibility, and a seamless transition from in vitro to in vivo applications. The challenge – the puzzle that needs a solution – is to replicate the complexity of the native extracellular matrix (ECM) environment with the minimum number of components necessary to allow cells to rebuild and replicate a given tissue. For use in drug discovery, toxicology, cell banking, and ultimately in reparative medicine, the ideal matrix would therefore need to be highly reproducible, manufacturable, approvable, and affordable. Herein we describe the development of a set of modular components that can be assembled into biomimetic materials that meet these requirements. These semi-synthetic ECMs, or sECMs, are based on hyaluronan derivatives that form covalently crosslinked, biodegradable hydrogels suitable for 3-D culture of primary and stem cells in vitro, and for tissue formation in vivo. The sECMs can be engineered to provide appropriate biological cues needed to recapitulate the complexity of a given ECM environment. Specific applications for different sECM compositions include stem cell expansion with control of differentiation, scar-free wound healing, growth factor delivery, cell delivery for osteochondral defect and liver repair, and development of vascularized tumor xenografts for personalized chemotherapy. PMID:18442709
Spectral density of a Wishart model for nonsymmetric correlation matrices.
Vinayak
2013-10-01
The Wishart model for real symmetric correlation matrices is defined as W=AA^{t}, where matrix A is usually a rectangular Gaussian random matrix and A^{t} is the transpose of A. Analogously, for nonsymmetric correlation matrices, a model may be defined for two statistically equivalent but different matrices A and B as AB^{t}. The corresponding Wishart model, thus, is defined as C=AB^{t}BA^{t}. We study the spectral density of C for the case when A and B are not statistically independent. The ensemble average of such nonsymmetric matrices, therefore, does not simply vanishes to a null matrix. In this paper we derive a Pastur self-consistent equation which describes spectral density of C at large matrix dimension. We complement our analytic results with numerics.
Morphic images of binary words and Parikh matrices
NASA Astrophysics Data System (ADS)
Isawasan, Pradeep; Venkat, Ibrahim; Subramanian, K. G.; Sarmin, Nor Haniza
2014-07-01
A word is a finite sequence of symbols. Parikh matrix of a word, introduced by Mateescu et al (2000), has become an effective tool in the study of certain numerical properties of words based on subwords. There have been several investigations on various properties of Parikh matrices such as M-ambiguity, M-equivalence, subword equalities and inequalities, commutativity and so on. Recently, Parikh matrices of words that are images under certain morphisms have been studied for their properties. On the other hand, Parikh matrices of words involving a certain ratio property called weak-ratio property have been investigated by Subramanian et al (2009). Here we consider two special morphisms called Fibonacci and Tribonacci morphisms and obtain properties of Parikh matrices of images of binary words under these morphisms, utilizing the notion of weak-ratio property.
Separation of traces of metal ions from sodium matrices
NASA Technical Reports Server (NTRS)
Korkisch, J.; Orlandini, K. A.
1969-01-01
Method for isolating metal ion traces from sodium matrices consists of two extractions and an ion exchange step. Extraction is accomplished by using 2-thenoyltrifluoracetone and dithizone followed by cation exchange.
A tale of two matrices: multivariate approaches in evolutionary biology.
Blows, M W
2007-01-01
Two symmetric matrices underlie our understanding of microevolutionary change. The first is the matrix of nonlinear selection gradients (gamma) which describes the individual fitness surface. The second is the genetic variance-covariance matrix (G) that influences the multivariate response to selection. A common approach to the empirical analysis of these matrices is the element-by-element testing of significance, and subsequent biological interpretation of pattern based on these univariate and bivariate parameters. Here, I show why this approach is likely to misrepresent the genetic basis of quantitative traits, and the selection acting on them in many cases. Diagonalization of square matrices is a fundamental aspect of many of the multivariate statistical techniques used by biologists. Applying this, and other related approaches, to the analysis of the structure of gamma and G matrices, gives greater insight into the form and strength of nonlinear selection, and the availability of genetic variance for multiple traits.
Eigenvalue statistics for the sum of two complex Wishart matrices
NASA Astrophysics Data System (ADS)
Kumar, Santosh
2014-09-01
The sum of independent Wishart matrices, taken from distributions with unequal covariance matrices, plays a crucial role in multivariate statistics, and has applications in the fields of quantitative finance and telecommunication. However, analytical results concerning the corresponding eigenvalue statistics have remained unavailable, even for the sum of two Wishart matrices. This can be attributed to the complicated and rotationally noninvariant nature of the matrix distribution that makes extracting the information about eigenvalues a nontrivial task. Using a generalization of the Harish-Chandra-Itzykson-Zuber integral, we find exact solution to this problem for the complex Wishart case when one of the covariance matrices is proportional to the identity matrix, while the other is arbitrary. We derive exact and compact expressions for the joint probability density and marginal density of eigenvalues. The analytical results are compared with numerical simulations and we find perfect agreement.
Factor Analysis of Genetic and Environmental Correlation Matrices
ERIC Educational Resources Information Center
Crawford, Charles B.; DeFries, J. C.
1978-01-01
The application of component analysis to phenotypic, genetic, and environmental correlation matrices is discussed. Formulas for computation of component scores and the interpretation of factors is discussed. An example is presented. (Author/JKS)
Systems of Differential Equations with Skew-Symmetric, Orthogonal Matrices
ERIC Educational Resources Information Center
Glaister, P.
2008-01-01
The solution of a system of linear, inhomogeneous differential equations is discussed. The particular class considered is where the coefficient matrix is skew-symmetric and orthogonal, and where the forcing terms are sinusoidal. More general matrices are also considered.
Systems of Differential Equations with Skew-Symmetric, Orthogonal Matrices
ERIC Educational Resources Information Center
Glaister, P.
2008-01-01
The solution of a system of linear, inhomogeneous differential equations is discussed. The particular class considered is where the coefficient matrix is skew-symmetric and orthogonal, and where the forcing terms are sinusoidal. More general matrices are also considered.
Elimination techniques: from extrapolation to totally positive matrices and CAGD
NASA Astrophysics Data System (ADS)
Gasca, M.; Mühlbach, G.
2000-10-01
In this survey, we will show some connections between several mathematical problems such as extrapolation, linear systems, totally positive matrices and computer-aided geometric design, with elimination techniques as the common tool to deal with all of them.
Performance Properties of Graphite Reinforced Composites with Advanced Resin Matrices
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A.
1980-01-01
This article looks at the effect of different resin matrices on thermal and mechanical properties of graphite composites, and relates the thermal and flammability properties to the anaerobic char yield of the resins. The processing parameters of graphite composites utilizing graphite fabric and epoxy or other advanced resins as matrices are presented. Thermoset resin matrices studied were: aminecured polyfunctional glycidyl aminetype epoxy (baseline), phenolicnovolac resin based on condensation of dihydroxymethyl-xylene and phenol cured with hexamine, two types of polydismaleimide resins, phenolic resin, and benzyl resin. The thermoplastic matrices studied were polyethersulfone and polyphenylenesulfone. Properties evaluated in the study included anaerobic char yield, limiting oxygen index, smoke evolution, moisture absorption, and mechanical properties at elevated temperatures including tensile, compressive, and short-beam shear strengths. Generally, it was determined that graphite composites with the highest char yield exhibited optimum fire-resistant properties.
Spectral density of a Wishart model for nonsymmetric correlation matrices
NASA Astrophysics Data System (ADS)
Vinayak
2013-10-01
The Wishart model for real symmetric correlation matrices is defined as W=AAt, where matrix A is usually a rectangular Gaussian random matrix and At is the transpose of A. Analogously, for nonsymmetric correlation matrices, a model may be defined for two statistically equivalent but different matrices A and B as ABt. The corresponding Wishart model, thus, is defined as C=ABtBAt. We study the spectral density of C for the case when A and B are not statistically independent. The ensemble average of such nonsymmetric matrices, therefore, does not simply vanishes to a null matrix. In this paper we derive a Pastur self-consistent equation which describes spectral density of C at large matrix dimension. We complement our analytic results with numerics.