Sample records for glassy matrices effets

  1. Solubility of gases and liquids in glassy polymers.

    PubMed

    De Angelis, Maria Grazia; Sarti, Giulio C

    2011-01-01

    This review discusses a macroscopic thermodynamic procedure to calculate the solubility of gases, vapors, and liquids in glassy polymers that is based on the general procedure provided by the nonequilibrium thermodynamics for glassy polymers (NET-GP) method. Several examples are presented using various nonequilibrium (NE) models including lattice fluid (NELF), statistical associating fluid theory (NE-SAFT), and perturbed hard sphere chain (NE-PHSC). Particular applications illustrate the calculation of infinite-dilution solubility coefficients in different glassy polymers and the prediction of solubility isotherms for different gases and vapors in pure polymers as well as in polymer blends. The determination of model parameters is discussed, and the predictive abilities of the models are illustrated. Attention is also given to the solubility of gas mixtures and solubility isotherms in nanocomposite mixed matrices. The fractional free volume determined from solubility data can be used to correlate solute diffusivities in mixed matrices.

  2. Simulation studies of glassy nanoclusters

    NASA Astrophysics Data System (ADS)

    Bowles, Richard

    2015-03-01

    Glassy materials are amorphous solids usually formed by rapidly cooling a liquid below its equilibrium freezing temperature, trapping the particles in a liquid-like structure at the glass transition temperature. While appearing throughout nature and industry, these systems continue to challenge the way we think about the dynamics and thermodynamics of condensed matter and a fundamental understanding of the glass state remains elusive. This talk describes molecular simulation studies of glassy behaviour in binary Lennard-Jones nanoclusters. We show that the relaxation dynamics of the clusters is nonuniform and the core of the cluster goes through a glass transition at higher temperatures than at the surface. As the nanoclusters are cooled, they also exhibit a fragile-strong crossover in their dynamics and we explore how this phenomena is linked to the potential energy landscape of the clusters. Finally, we compare the properties of nanoclusters formed through vapour condensation, directly to the glassy state, with those of glassy clusters formed through traditional supercooling. The condensation clusters are shown to form ultra-stable glassy states analogous to the ultra-stable glasses formed by thin film vapour deposition onto a cold substrate. In all, our work suggests that nanoscale clusters exhibit some unique glassy features, while also offering potential insights into the fundamental nature of the glass transition.

  3. Ultra-smooth glassy graphene thin films for flexible transparent circuits

    PubMed Central

    Dai, Xiao; Wu, Jiang; Qian, Zhicheng; Wang, Haiyan; Jian, Jie; Cao, Yingjie; Rummeli, Mark H.; Yi, Qinghua; Liu, Huiyun; Zou, Guifu

    2016-01-01

    Large-area graphene thin films are prized in flexible and transparent devices. We report on a type of glassy graphene that is in an intermediate state between glassy carbon and graphene and that has high crystallinity but curly lattice planes. A polymer-assisted approach is introduced to grow an ultra-smooth (roughness, <0.7 nm) glassy graphene thin film at the inch scale. Owing to the advantages inherited by the glassy graphene thin film from graphene and glassy carbon, the glassy graphene thin film exhibits conductivity, transparency, and flexibility comparable to those of graphene, as well as glassy carbon–like mechanical and chemical stability. Moreover, glassy graphene–based circuits are fabricated using a laser direct writing approach. The circuits are transferred to flexible substrates and are shown to perform reliably. The glassy graphene thin film should stimulate the application of flexible transparent conductive materials in integrated circuits. PMID:28138535

  4. Constitutive modeling of glassy shape memory polymers

    NASA Astrophysics Data System (ADS)

    Khanolkar, Mahesh

    The aim of this research is to develop constitutive models for non-linear materials. Here, issues related for developing constitutive model for glassy shape memory polymers are addressed in detail. Shape memory polymers are novel material that can be easily formed into complex shapes, retaining memory of their original shape even after undergoing large deformations. The temporary shape is stable and return to the original shape is triggered by a suitable mechanism such heating the polymer above a transition temperature. Glassy shape memory polymers are called glassy because the temporary shape is fixed by the formation of a glassy solid, while return to the original shape is due to the melting of this glassy phase. The constitutive model has been developed to capture the thermo-mechanical behavior of glassy shape memory polymers using elements of nonlinear mechanics and polymer physics. The key feature of this framework is that a body can exist stress free in numerous natural configurations, the underlying natural configuration of the body changing during the process, with the response of the body being elastic from these evolving natural configurations. The aim of this research is to formulate a constitutive model for glassy shape memory polymers (GSMP) which takes in to account the fact that the stress-strain response depends on thermal expansion of polymers. The model developed is for the original amorphous phase, the temporary glassy phase and transition between these phases. The glass transition process has been modeled using a framework that was developed recently for studying crystallization in polymers and is based on the theory of multiple natural configurations. Using the same frame work, the melting of the glassy phase to capture the return of the polymer to its original shape is also modeled. The effect of nanoreinforcement on the response of shape memory polymers (GSMP) is studied and a model is developed. In addition to modeling and solving boundary

  5. Effets thermoelectrique et thermomagnetique du yttrium barium copper oxide monocristallin

    NASA Astrophysics Data System (ADS)

    Ghamlouche, Hassan

    1998-09-01

    Des la decouverte des supraconducteurs a haute temperature critique, les recherches se sont intensifiees afin de comprendre les mecanismes qui sont a l'origine des proprietes de ces materiaux L'etat mixte, tout comme l'etat supraconducteur pur et l'etat normal, a fait l'objet de nombreux travaux de recherche. En particulier, la structure des vortex a l'etat mixte, et leur mouvement sous l'effet d'une force quelconque, etaient et restent le centre de preoccupation. Les effets thermoelectrique (Seebeck) et thermomagnetique (Nernst) sont parmi les differentes mesures qui peuvent donner de l'information sur les etats des vortex a l'etat mixte. L'avantage essentiel de ces deux effets est l'absence d'un courant electrique applique. Ce dernier peut donner des perturbations indesirables durant les mesures. D'autre pari, nous avons utilise la methode CA (Courant Alternatif) pour effectuer nos mesures. Cette methode est caracterisee par une meilleure resolution par rapport a la methode CC (Courant Continu) conventionnelle. Nous avons etudie autant des echantillons macles que des echantillons sans macles. D'abord nous avons teste notre montage a champ magnetique nul. Nous avons alors montre que le pic rapporte par certains dans l'effet Seebeck a la transition supraconductrice ne correspond pas a une realite physique mais a un artefact experimental. On avait associe ce pic aux fluctuations. Par la suite, nous avons mis en evidence et etudie pour la premiere fois avec les effets Seebeck et Nernst le phenomene de la fusion du reseau de vortex grace a des mesures sur les echantillons sans macles. Cette etude s'est faite pour deux concentrations d'oxygene differentes et pour un gradient de temperature parallele, consecutivement, aux deux axes cristallographiques dans le plan ab. Finalement, nous avons etudie l'effet des plans de maclage sur le mouvement des vortex. Ceci a ete realise en appliquant le gradient de temperature selon trois directions differentes (0, 45 et 90°) avec

  6. L'effet Hall Quantique

    NASA Astrophysics Data System (ADS)

    Samson, Thomas

    Nous proposons une methode permettant d'obtenir une expression pour la conductivite de Hall de structures electroniques bidimensionnelles et nous examinons celle -ci a la limite d'une temperature nulle dans le but de verifier l'effet Hall quantique. Nous allons nous interesser essentiellement a l'effet Hall quantique entier et aux effets fractionnaires inferieurs a un. Le systeme considere est forme d'un gaz d'electrons en interaction faible avec les impuretes de l'echantillon. Le modele du gaz d'electrons consiste en un gaz bidimensionnel d'electrons sans spin expose perpendiculairement a un champ magnetique uniforme. Ce dernier est decrit par le potentiel vecteur vec{rm A} defini dans la jauge de Dingle ou jauge symetrique. Conformement au formalisme de la seconde quantification, l'hamiltonien de ce gaz est represente dans la base des etats a un-corps de Dingle |n,m> et exprime ainsi en terme des operateurs de creation et d'annihilation correspondants a_sp{ rm n m}{dag} et a _{rm n m}. Nous supposons de plus que les electrons du niveau fondamental de Dingle interagissent entre eux via le potentiel coulombien. La methode utilisee fait appel a une equation mai tresse a N-corps, de nature quantique et statistique, et verifiant le second principe de la thermodynamique. A partir de celle-ci, nous obtenons un systeme d'equations differentielles appele hierarchie d'equations quantique dont la resolution nous permet de determiner une equation a un-corps, dite de Boltzmann quantique, et dictant l'evolution de la moyenne statistique de l'operateur non-diagonal a _sp{rm n m}{dag } a_{rm n}, _{rm m}, sous l'action du champ electrique applique vec{rm E}(t). C'est sa solution Tr(p(t) a _sp{rm n m}{dag} a_{rm n},_ {rm m}), qui definit la relation de convolution entre la densite courant de Hall vec{rm J}_{rm H }(t) et le champ electrique vec {rm E}(t) dont la transformee de Laplace-Fourier du noyau nous fournit l'expression de la conductivite de Hall desiree. Pour une valeur de

  7. Shock-wave studies of anomalous compressibility of glassy carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molodets, A. M., E-mail: molodets@icp.ac.ru; Golyshev, A. A.; Savinykh, A. S.

    2016-02-15

    The physico-mechanical properties of amorphous glassy carbon are investigated under shock compression up to 10 GPa. Experiments are carried out on the continuous recording of the mass velocity of compression pulses propagating in glassy carbon samples with initial densities of 1.502(5) g/cm{sup 3} and 1.55(2) g/cm{sup 3}. It is shown that, in both cases, a compression wave in glassy carbon contains a leading precursor with amplitude of 0.135(5) GPa. It is established that, in the range of pressures up to 2 GPa, a shock discontinuity in glassy carbon is transformed into a broadened compression wave, and shock waves are formedmore » in the release wave, which generally means the anomalous compressibility of the material in both the compression and release waves. It is shown that, at pressure higher than 3 GPa, anomalous behavior turns into normal behavior, accompanied by the formation of a shock compression wave. In the investigated area of pressure, possible structural changes in glassy carbon under shock compression have a reversible character. A physico-mechanical model of glassy carbon is proposed that involves the equation of state and a constitutive relation for Poisson’s ratio and allows the numerical simulation of physico-mechanical and thermophysical properties of glassy carbon of different densities in the region of its anomalous compressibility.« less

  8. Graphene Reinforced Glassy Carbon (GRGC) Beam Windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renomeron, Lynda L.

    Secondary particle beams require beam windows that isolate the target (usually in air) from the primary particle beam vacuum. Advanced beam window solutions are needed that can withstand anticipated increases in beam power and intensity that will result in higher thermal shock on the window and increased oxidative erosion rates on the air-side caused by increased temperatures. Carbon-based windows, in particular, glassy carbon windows are of interest to minimize interaction with the beam. The attractive properties of glassy carbon are: 1. Low atomic number 2. Low thermal expansion 3. High strength and low Young's modulus 4. Low gas permeability andmore » low outgassing for ultrahigh vacuum use The one liability of glassy carbon is its low thermal conductivity, nominally 5 W/mK, which will exacerbate temperature rise, oxidation, and thermal shock concerns as beam powers increase. TA&T proposes the development of graphene reinforced glassy carbon (GRGC) composites to increase the thermal conductivity and address this Achilles heel of glassy carbon. Graphene as a reinforcing phase has shown the capability to increase the thermal conductivity of the matrix material by up to two orders of magnitude. For beam windows this would substantially increase heat spreading away from the beam zone of the window and improve thermal shock resistance, and reduce maximum temperature and air-side oxidation of the window. Increased thermal conductivity would also improve the effectiveness of edge-cooling schemes to minimize temperature increase. In the Phase I effort, graphene oxide (GO) particles were dispersed into glassy carbon precursor at different content levels and cast into solid shapes. The goal was to determine the effect of graphene concentration on the mechanical properties (flexure strength), and thermal (thermal conductivity). The Phase I results indicated that addition of graphene did have a significant effect on thermal conductivity; however the microstructural

  9. Polymer modified glassy carbon electrode for the electrochemical determination of caffeine in coffee.

    PubMed

    Amare, Meareg; Admassie, Shimelis

    2012-05-15

    4-Amino-3-hydroxynaphthalene sulfonic acid (AHNSA) was electropolymerized on a glassy carbon electrode. The deposited film showed electrocatalytic activity towards the oxidation of caffeine. The polymer-modified electrode showed high sensitivity, selectivity and stability in the determination of caffeine in coffee. The peak current increased linearly with the concentration of caffeine in the range of 6 × 10(-8) to 4 × 10(-5) mol L(-1), with a detection limit of 1.37 × 10(-7) mol L(-1) (LoD = 3δ/slope). Analysis of caffeine in coffee was affected neither by sample matrices nor by structurally similar compounds. Recoveries ranging between 93.75 ± 2.32 and 100.75 ± 3.32 were achieved from coffee extracts indicating the applicability of the developed method for real sample analyses. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Effets Josephson generalises entre antiferroaimants et entre supraconducteurs antiferromagnetiques

    NASA Astrophysics Data System (ADS)

    Chasse, Dominique

    L'effet Josephson est generalement presente comme le resultat de l'effet tunnel coherent de paires de Cooper a travers une jonction tunnel entre deux supraconducteurs, mais il est possible de l'expliquer dans un contexte plus general. Par exemple, Esposito & al. ont recemment demontre que l'effet Josephson DC peut etre decrit a l'aide du boson pseudo-Goldstone de deux systemes couples brisant chacun la symetrie abelienne U(1). Puisque cette description se generalise de facon naturelle a des brisures de symetries continues non-abeliennes, l'equivalent de l'effet Josephson devrait donc exister pour des types d'ordre a longue portee differents de la supraconductivite. Le cas de deux ferroaimants itinerants (brisure de symetrie 0(3)) couples a travers une jonction tunnel a deja ete traite dans la litterature Afin de mettre en evidence la generalite du phenomene et dans le but de faire des predictions a partir d'un modele realiste, nous etudions le cas d'une jonction tunnel entre deux antiferroaimants itinerants. En adoptant une approche Similaire a celle d'Ambegaokar & Baratoff pour une jonction Josephson, nous trouvons un courant d'aimantation alternee a travers la jonction qui est proportionnel a sG x sD ou fG et sD sont les vecteurs de Neel de part et d'autre de la jonction. La fonction sinus caracteristique du courant Josephson standard est donc remplacee.ici par un produit vectoriel. Nous montrons que, d'un point de vue microscopique, ce phenomene resulte de l'effet tunnel coherent de paires particule-trou de spin 1 et de vecteur d'onde net egal au vecteur d'onde antiferromagnetique Q. Nous trouvons egalement la dependance en temperature de l'analogue du courant critique. En presence d'un champ magnetique externe, nous obtenons l'analogue de l'effet Josephson AC et la description complete que nous en donnons s'applique aussi au cas d'une jonction tunnel entre ferroaimants (dans ce dernier cas, les traitements anterieurs de cet effet AC s'averent incomplets). Nous

  11. Water clustering in glassy polymers.

    PubMed

    Davis, Eric M; Elabd, Yossef A

    2013-09-12

    In this study, water solubility and water clustering in several glassy polymers, including poly(methyl methacrylate) (PMMA), poly(styrene) (PS), and poly(vinylpyrrolidone) (PVP), were measured using both quartz spring microbalance (QSM) and Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy. Specifically, QSM was used to determine water solubility, while FTIR-ATR spectroscopy provided a direct, molecular-level measurement of water clustering. The Flory-Huggins theory was employed to obtain a measure of water-polymer interaction and water solubility, through both prediction and regression, where the theory failed to predict water solubility in both PMMA and PVP. Furthermore, a comparison of water clustering between direct FTIR-ATR spectroscopy measurements and predictions from the Zimm-Lundberg clustering analysis produced contradictory results. The failure of the Flory-Huggins theory and Zimm-Lundberg clustering analysis to describe water solubility and water clustering, respectively, in these glassy polymers is in part due to the equilibrium constraints under which these models are derived in contrast to the nonequilibrium state of glassy polymers. Additionally, FTIR-ATR spectroscopy results were compared to temperature-dependent diffusivity data, where a correlation between the activation energy for diffusion and the measured water clustering was observed.

  12. Non-Equilibrium Water-Glassy Polymer Dynamics

    NASA Astrophysics Data System (ADS)

    Davis, Eric; Minelli, Matteo; Baschetti, Marco; Sarti, Giulio; Elabd, Yossef

    2012-02-01

    For many applications (e.g., medical implants, packaging), an accurate assessment and fundamental understanding of the dynamics of water-glassy polymer interactions is of great interest. In this study, sorption and diffusion of pure water in several glassy polymers films, such as poly(styrene) (PS), poly(methyl methacrylate) (PMMA), poly(lactide) (PLA), were measured over a wide range of vapor activities and temperatures using several experimental techniques, including quartz spring microbalance (QSM), quartz crystal microbalance (QCM), and time-resolved Fourier transform infrared-attenuated total reflectance (FTIR-ATR) spectroscopy. Non-Fickian behavior (diffusion-relaxation phenomena) was observed by all three techniques, while FTIR-ATR spectroscopy also provides information about the distribution of the states of water and water transport mechanisms on a molecular-level. Specifically, the states of water are significantly different in PS compared to PMMA and PLA. Additionally, a purely predictive non-equilibrium lattice fluid (NELF) model was applied to predict the sorption isotherms of water in these glassy polymers.

  13. Crystallization of the glassy grain boundary phase in silicon nitride ceramics

    NASA Technical Reports Server (NTRS)

    Drummond, Charles H., III

    1991-01-01

    The role was studied of the intergranular glassy phase in silicon nitride as-processed with yttria as a sintering aid. The microstructure, crystallization, and viscosity of the glassy phase were areas studied. Crystallization of the intergranular glassy phase to more refractory crystalline phases should improve the high temperature mechanical properties of the silicon nitride. The addition of a nucleating agent will increase the rate of crystallization. The measurement of the viscosity of the glassy phase will permit the estimation of the high temperature deformation of the silicon nitride.

  14. New model system in radiation cryochemistry:. hyperquenched glassy water

    NASA Astrophysics Data System (ADS)

    Bednarek, Janusz; Plonka, Andrzej; Hallbrucker, Andreas; Mayer, Erwin

    1999-08-01

    Radicals generated by high-energy irradiation of liquid water, short-lived at ambient temperature, can be studied at cryogenic temperatures after irradiating water and dilute aqueous solutions in their glassy states which can be obtained by so-called hyperquenching of the liquids at cooling rates of ˜10 6-10 7 K s -1. In the glassy states of hyperquenched dilute aqueous solutions there is no problem with phase separation and radiolysis of glassy water is quite distinct from radiolysis of polycrystalline ice obtained from liquid water on slow-cooling in liquid nitrogen.

  15. Plastic flow modeling in glassy polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clements, Brad

    2010-12-13

    Glassy amorphous and semi-crystalline polymers exhibit strong rate, temperature, and pressure dependent polymeric yield. As a rule of thumb, in uniaxial compression experiments the yield stress increases with the loading rate and applied pressure, and decreases as the temperature increases. Moreover, by varying the loading state itself complex yield behavior can be observed. One example that illustrates this complexity is that most polymers in their glassy regimes (i.e., when the temperature is below their characteristic glass transition temperature) exhibit very pronounced yield in their uniaxial stress stress-strain response but very nebulous yield in their uniaxial strain response. In uniaxial compression,more » a prototypical glassy-polymer stress-strain curve has a stress plateau, often followed by softening, and upon further straining, a hardening response. Uniaxial compression experiments of this type are typically done from rates of 10{sup -5} s{sup -1} up to about 1 s{sup -1}. At still higher rates, say at several thousands per second as determined from Split Hopkinson Pressure Bar experiments, the yield can again be measured and is consistent with the above rule of thumb. One might expect that that these two sets of experiments should allow for a successful extrapolation to yet higher rates. A standard means to probe high rates (on the order of 105-107 S-I) is to use a uniaxial strain plate impact experiment. It is well known that in plate impact experiments on metals that the yield stress is manifested in a well-defined Hugoniot Elastic Limit (HEL). In contrast however, when plate impact experiments are done on glassy polymers, the HEL is arguably not observed, let alone observed at the stress estimated by extrapolating from the lower strain rate experiments. One might argue that polymer yield is still active but somehow masked by the experiment. After reviewing relevant experiments, we attempt to address this issue. We begin by first presenting our

  16. Disconnecting structure and dynamics in glassy thin films

    PubMed Central

    Sussman, Daniel M.; Cubuk, Ekin D.; Liu, Andrea J.

    2017-01-01

    Nanometrically thin glassy films depart strikingly from the behavior of their bulk counterparts. We investigate whether the dynamical differences between a bulk and thin film polymeric glass former can be understood by differences in local microscopic structure. Machine learning methods have shown that local structure can serve as the foundation for successful, predictive models of particle rearrangement dynamics in bulk systems. By contrast, in thin glassy films, we find that particles at the center of the film and those near the surface are structurally indistinguishable despite exhibiting very different dynamics. Next, we show that structure-independent processes, already present in bulk systems and demonstrably different from simple facilitated dynamics, are crucial for understanding glassy dynamics in thin films. Our analysis suggests a picture of glassy dynamics in which two dynamical processes coexist, with relative strengths that depend on the distance from an interface. One of these processes depends on local structure and is unchanged throughout most of the film, while the other is purely Arrhenius, does not depend on local structure, and is strongly enhanced near the free surface of a film. PMID:28928147

  17. SPM investigation of local aging effects in glassy polymers

    NASA Astrophysics Data System (ADS)

    Crider, Philip

    2005-03-01

    We investigate the cooperative and heterogeneous nature of glassy dynamics by nanometer-scale probing in a glassy polymer, Polyvinyl-Actetate (PVAc), with a Scanning Force Microscope (SFM). Using ultra-high-vacuum (UHV) Scanning Capacitive Force Microscopy techniques, nanometer-scale capacitive responses are probed. Dielectric relaxation near the glass transition is investigated, and scanning capabilities are utilized to analyze spatial response on a nanometer scale. The results of these studies may yield insight into the understanding of temperature-dependent cooperative length scales, local aging properties, and energy landscape properties of evolving dipole clusters on a mesoscopic scale. Results are used to test the validity and relevance of current models of glassy dynamics.

  18. Protein/ionic liquid/glassy carbon sensors following analyte focusing by ionic liquid micelle collapse for simultaneous determination of water soluble vitamins in plasma matrices.

    PubMed

    Abd El-Hady, D; Albishri, H M

    2015-07-01

    Two novel sensors based on human serum albumin (HSA)-ionic liquid (IL) and bovine serum albumin (BSA)-ionic liquid (IL) composites modified glassy carbon electrode (GCE) were produced for simultaneous determination of water soluble vitamins B2, B6 and C in human plasma following analytes focusing by IL micelles collapse (AFILMC). For selective and efficient extraction, vitamins were dissolved in 3.0molL(-1) micellar solution of 1-octyl-3-methyl imidazolium bromide IL. The extracted vitamins were hydrodynamically injected by 25mbar for 20s into a running buffer of 12.5mmolL(-1) phosphate at pH 6.0 followed by electrochemical detection (ECD) on protein/1-octyl-3-methyl imidazolium hexafluorophosphate IL/GC sensors. The chemical stability of proposed sensors was achieved up to 7 days without any decomposition of PF6-based IL/protein and adsorption of interfering ions. In the current work, the sensitivity enhancement factor (SEF) up to 5000-fold was achieved using the AFILMC/ECD setup compared to conventional CE/UV. Under optimal conditions, linear calibration graphs were obtained from 0.5, 0.5 and 1.0 to 1500.0µgmL(-1) of vitamins B2, B6 and C, respectively. Detection limits of analytes were ranged from 180.0 to 520.0ngmL(-1). The proposed AFILMC/ECD setup was successfully applied to the assay of trace level quantification of vitamins in human plasma samples and also their binding constants with HSA and BSA were determined. The concurrent use of IL micelles for the proposed separation and detection processes exhibited some advantages, such as, a reduction of use toxic solvents, an efficient extraction and a direct injection of samples with a short-single run. Furthermore, IL micelles, having variable possibility of interactions, facilitated the successful achievements of AFILMC/ECD setup for the quantification of vitamins in plasma matrices. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Periodic GMP Matrices

    NASA Astrophysics Data System (ADS)

    Eichinger, Benjamin

    2016-07-01

    We recall criteria on the spectrum of Jacobi matrices such that the corresponding isospectral torus consists of periodic operators. Motivated by those known results for Jacobi matrices, we define a new class of operators called GMP matrices. They form a certain Generalization of matrices related to the strong Moment Problem. This class allows us to give a parametrization of almost periodic finite gap Jacobi matrices by periodic GMP matrices. Moreover, due to their structural similarity we can carry over numerous results from the direct and inverse spectral theory of periodic Jacobi matrices to the class of periodic GMP matrices. In particular, we prove an analogue of the remarkable ''magic formula'' for this new class.

  20. Thermodynamic behavior of glassy state of structurally related compounds.

    PubMed

    Kaushal, Aditya Mohan; Bansal, Arvind Kumar

    2008-08-01

    Thermodynamic properties of amorphous pharmaceutical forms are responsible for enhanced solubility as well as poor physical stability. The present study was designed to investigate the differences in thermodynamic parameters arising out of disparate molecular structures and associations for four structurally related pharmaceutical compounds--celecoxib, valdecoxib, rofecoxib, and etoricoxib. Conventional and modulated temperature differential scanning calorimetry were employed to study glass forming ability and thermodynamic behavior of the glassy state of model compounds. Glass transition temperature of four glassy compounds was in a close range of 327.6-331.8 K, however, other thermodynamic parameters varied considerably. Kauzmann temperature, strength parameter and fragility parameter showed rofecoxib glass to be most fragile of the four compounds. Glass forming ability of the compounds fared similar in the critical cooling rate experiments, suggesting that different factors were determining the glass forming ability and subsequent behavior of the compounds in glassy state. A comprehensive understanding of such thermodynamic facets of amorphous form would help in rationalizing the approaches towards development of stable glassy pharmaceuticals.

  1. Glassy composition for hermetic seals

    DOEpatents

    Wilder, Jr., James A.

    1980-01-01

    The invention relates to a glassy composition adaptable for sealing to aluminum-based alloys to form a hermetically-sealed insulator body. The composition may either be employed as a glass or, after devitrifying heat treatment, as a glass-ceramic.

  2. Glassy dynamics of landscape evolution

    PubMed Central

    Ortiz, Carlos P.; Jerolmack, Douglas J.

    2018-01-01

    Soil creeps imperceptibly downhill, but also fails catastrophically to create landslides. Despite the importance of these processes as hazards and in sculpting landscapes, there is no agreed-upon model that captures the full range of behavior. Here we examine the granular origins of hillslope soil transport by discrete element method simulations and reanalysis of measurements in natural landscapes. We find creep for slopes below a critical gradient, where average particle velocity (sediment flux) increases exponentially with friction coefficient (gradient). At critical gradient there is a continuous transition to a dense-granular flow rheology. Slow earthflows and landslides thus exhibit glassy dynamics characteristic of a wide range of disordered materials; they are described by a two-phase flux equation that emerges from grain-scale friction alone. This glassy model reproduces topographic profiles of natural hillslopes, showing its promise for predicting hillslope evolution over geologic timescales. PMID:29686102

  3. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors.

    PubMed

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T; Evoy, Stephane

    2016-03-14

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors.

  4. Aryl Diazonium Chemistry for the Surface Functionalization of Glassy Biosensors

    PubMed Central

    Zheng, Wei; van den Hurk, Remko; Cao, Yong; Du, Rongbing; Sun, Xuejun; Wang, Yiyu; McDermott, Mark T.; Evoy, Stephane

    2016-01-01

    Nanostring resonator and fiber-optics-based biosensors are of interest as they offer high sensitivity, real-time measurements and the ability to integrate with electronics. However, these devices are somewhat impaired by issues related to surface modification. Both nanostring resonators and photonic sensors employ glassy materials, which are incompatible with electrochemistry. A surface chemistry approach providing strong and stable adhesion to glassy surfaces is thus required. In this work, a diazonium salt induced aryl film grafting process is employed to modify a novel SiCN glassy material. Sandwich rabbit IgG binding assays are performed on the diazonium treated SiCN surfaces. Fluorescently labelled anti-rabbit IgG and anti-rabbit IgG conjugated gold nanoparticles were used as markers to demonstrate the absorption of anti-rabbit IgG and therefore verify the successful grafting of the aryl film. The results of the experiments support the effectiveness of diazonium chemistry for the surface functionalization of SiCN surfaces. This method is applicable to other types of glassy materials and potentially can be expanded to various nanomechanical and optical biosensors. PMID:26985910

  5. Evaluation of grapevine as a host for the glassy-winged sharpshooter

    USDA-ARS?s Scientific Manuscript database

    Grapevine was evaluated as a feeding and oviposition host for the glassy-winged sharpshooter. Two sets of experiments were conducted. The first set compared performance and preference of glassy-winged sharpshooter females for grapevine (cv. Chardonnay) versus cowpea (Vigna unguiculata cultivar black...

  6. Parametrisation D'effets Non-Standard EN Phenomenologie Electrofaible

    NASA Astrophysics Data System (ADS)

    Maksymyk, Ivan

    Cette these pat articles porte sur la parametrisation d'effets non standard en physique electrofaible. Dans chaque analyse, nous avons ajoute plusieurs operateurs non standard au lagrangien du modele standard electrofaible. Les operateurs non standard decrivent les nouveaux effets decoulant d'un modele sous-jacent non-specefie. D'emblee, le nombre d'operateurs non standard que l'on peut inclure dans une telle analyse est illimite. Mais pour une classe specifique de modeles sous-jacents, les effets non standard peuvent etre decrits par un nombre raisonnable d'operateurs. Dans chaque analyse nous avons developpe des expressions pour des observables electrofaibles, en fonction des coefficients des operateurs nouveaux. En effectuant un "fit" statistique sur un ensemble de donnees experimentales precises, nous avons obtenu des contraintes phenomenologiques sur ces coefficients. Dans "Model-Independent Global Constraints on New Physics", nous avons adopte des hypotheses tres peu contraignantes relatives aux modeles sous-jacents. Nous avons tronque le lagrangien effectif a la dimension cinq (inclusivement). Visant la plus grande generalite possible, nous avons admis des interactions qui ne respectent pas les symetries discretes (soit C, P et CP) ainsi que des interactions qui ne conservent pas la saveur. Le lagrangien effectif contient une quarantaine d'operateurs nouveaux. Nous avons determine que, pour la plupart des coefficients des nouveaux operateurs, les contraintes sont assez serrees (2 ou 3%), mais il y a des exceptions interessantes. Dans "Bounding Anomalous Three-Gauge-Boson Couplings", nous avons determine des contraintes phenomenologiques sur les deviations des couplages a trois bosons de jauge par rapport aux interactions prescrites par le modele standard. Pour ce faire, nous avons calcule les contributions indirectes des CTBJ non standard aux observables de basse energie. Puisque le lagrangien effectif est non-renormalisable, certaines difficultes techniques

  7. Glassy dynamics of landscape evolution.

    PubMed

    Ferdowsi, Behrooz; Ortiz, Carlos P; Jerolmack, Douglas J

    2018-05-08

    Soil creeps imperceptibly downhill, but also fails catastrophically to create landslides. Despite the importance of these processes as hazards and in sculpting landscapes, there is no agreed-upon model that captures the full range of behavior. Here we examine the granular origins of hillslope soil transport by discrete element method simulations and reanalysis of measurements in natural landscapes. We find creep for slopes below a critical gradient, where average particle velocity (sediment flux) increases exponentially with friction coefficient (gradient). At critical gradient there is a continuous transition to a dense-granular flow rheology. Slow earthflows and landslides thus exhibit glassy dynamics characteristic of a wide range of disordered materials; they are described by a two-phase flux equation that emerges from grain-scale friction alone. This glassy model reproduces topographic profiles of natural hillslopes, showing its promise for predicting hillslope evolution over geologic timescales. Copyright © 2018 the Author(s). Published by PNAS.

  8. Pressure-induced transformations in computer simulations of glassy water.

    PubMed

    Chiu, Janet; Starr, Francis W; Giovambattista, Nicolas

    2013-11-14

    Glassy water occurs in at least two broad categories: low-density amorphous (LDA) and high-density amorphous (HDA) solid water. We perform out-of-equilibrium molecular dynamics simulations to study the transformations of glassy water using the ST2 model. Specifically, we study the known (i) compression-induced LDA-to-HDA, (ii) decompression-induced HDA-to-LDA, and (iii) compression-induced hexagonal ice-to-HDA transformations. We study each transformation for a broad range of compression/decompression temperatures, enabling us to construct a "P-T phase diagram" for glassy water. The resulting phase diagram shows the same qualitative features reported from experiments. While many simulations have probed the liquid-state phase behavior, comparatively little work has examined the transitions of glassy water. We examine how the glass transformations relate to the (first-order) liquid-liquid phase transition previously reported for this model. Specifically, our results support the hypothesis that the liquid-liquid spinodal lines, between a low-density and high-density liquid, are extensions of the LDA-HDA transformation lines in the limit of slow compression. Extending decompression runs to negative pressures, we locate the sublimation lines for both LDA and hyperquenched glassy water (HGW), and find that HGW is relatively more stable to the vapor. Additionally, we observe spontaneous crystallization of HDA at high pressure to ice VII. Experiments have also seen crystallization of HDA, but to ice XII. Finally, we contrast the structure of LDA and HDA for the ST2 model with experiments. We find that while the radial distribution functions (RDFs) of LDA are similar to those observed in experiments, considerable differences exist between the HDA RDFs of ST2 water and experiment. The differences in HDA structure, as well as the formation of ice VII (a tetrahedral crystal), are a consequence of ST2 overemphasizing the tetrahedral character of water.

  9. Pressure-induced transformations in computer simulations of glassy water

    NASA Astrophysics Data System (ADS)

    Chiu, Janet; Starr, Francis W.; Giovambattista, Nicolas

    2013-11-01

    Glassy water occurs in at least two broad categories: low-density amorphous (LDA) and high-density amorphous (HDA) solid water. We perform out-of-equilibrium molecular dynamics simulations to study the transformations of glassy water using the ST2 model. Specifically, we study the known (i) compression-induced LDA-to-HDA, (ii) decompression-induced HDA-to-LDA, and (iii) compression-induced hexagonal ice-to-HDA transformations. We study each transformation for a broad range of compression/decompression temperatures, enabling us to construct a "P-T phase diagram" for glassy water. The resulting phase diagram shows the same qualitative features reported from experiments. While many simulations have probed the liquid-state phase behavior, comparatively little work has examined the transitions of glassy water. We examine how the glass transformations relate to the (first-order) liquid-liquid phase transition previously reported for this model. Specifically, our results support the hypothesis that the liquid-liquid spinodal lines, between a low-density and high-density liquid, are extensions of the LDA-HDA transformation lines in the limit of slow compression. Extending decompression runs to negative pressures, we locate the sublimation lines for both LDA and hyperquenched glassy water (HGW), and find that HGW is relatively more stable to the vapor. Additionally, we observe spontaneous crystallization of HDA at high pressure to ice VII. Experiments have also seen crystallization of HDA, but to ice XII. Finally, we contrast the structure of LDA and HDA for the ST2 model with experiments. We find that while the radial distribution functions (RDFs) of LDA are similar to those observed in experiments, considerable differences exist between the HDA RDFs of ST2 water and experiment. The differences in HDA structure, as well as the formation of ice VII (a tetrahedral crystal), are a consequence of ST2 overemphasizing the tetrahedral character of water.

  10. Electrical properties of carbon nanotubes modified GaSe glassy system

    NASA Astrophysics Data System (ADS)

    Khan, Hana; Khan, Zubair M. S. H.; Islam, Shama; Rahman, Raja Saifu; Husain, M.; Zulfequar, M.

    2018-05-01

    In this paper we report the investigation of the effect of Carbon Nanotubes (CNT) addition on the electrical properties of GaSe Glassy system. Dielectric constant and dielectric loss of GaSe glassy system are found to increase on CNT addition. The conductivity of GaSe glasy systems is also found to increase on CNT addition. This behavior is attributed to the excellent conduction properties of Carbon Nanotube.

  11. The superconducting state parameters of glassy superconductors

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2011-11-01

    We present theoretical investigations of the superconducting state parameters (SSPs), i.e. the electron-phonon coupling strength, λ, Coulomb pseudopotential, μ*, transition temperature, Tc, isotope effect exponent, α, and effective interaction strength, N0V, of glassy superconductors by employing Ashcroft's well know empty core model potential for the first time using five screening functions proposed by Hartree (H), Taylor, Ichimaru-Utsumi (IU), Farid et al and Sarkar et al. The Tc obtained from the H and IU screening functions is found to be in excellent agreement with available experimental data. Also, the present results confirm the superconducting phase in bulk metallic glass superconductors. A strong dependency of the SSPs of the glassy superconductors on the 'Z' valence is found.

  12. Low-temperature methyl group dynamics of hexamethylbenzene in crystalline and glassy matrices as studied by 2H NMR

    NASA Astrophysics Data System (ADS)

    Börner, K.; Diezemann, G.; Rössler, E.; Vieth, H. M.

    1991-07-01

    2H NMR spectra of hexamethylbenzene (HMB) in protonated crystalline and amorphous matrices at low temperatures are presented. All spectra reveal lineshape changes which can be attributed to methyl group tunnelling. Compared to neat HMB, a drastic increase of the tunnelling frequency is found for all systems. This indicates that the hindering potential originates predominantly from intermolecular forces. We studied the temperature dependence of these spectra and the spin-lattice relaxation in order to exclude a distribution of motional correlation times describing a thermally activated process. In addition, we find a distortion of the methyl tetrahedron.

  13. Invertible flexible matrices

    NASA Astrophysics Data System (ADS)

    Justino, Júlia

    2017-06-01

    Matrices with coefficients having uncertainties of type o (.) or O (.), called flexible matrices, are studied from the point of view of nonstandard analysis. The uncertainties of the afore-mentioned kind will be given in the form of the so-called neutrices, for instance the set of all infinitesimals. Since flexible matrices have uncertainties in their coefficients, it is not possible to define the identity matrix in an unique way and so the notion of spectral identity matrix arises. Not all nonsingular flexible matrices can be turned into a spectral identity matrix using Gauss-Jordan elimination method, implying that that not all nonsingular flexible matrices have the inverse matrix. Under certain conditions upon the size of the uncertainties appearing in a nonsingular flexible matrix, a general theorem concerning the boundaries of its minors is presented which guarantees the existence of the inverse matrix of a nonsingular flexible matrix.

  14. Compound matrices

    NASA Astrophysics Data System (ADS)

    Kravvaritis, Christos; Mitrouli, Marilena

    2009-02-01

    This paper studies the possibility to calculate efficiently compounds of real matrices which have a special form or structure. The usefulness of such an effort lies in the fact that the computation of compound matrices, which is generally noneffective due to its high complexity, is encountered in several applications. A new approach for computing the Singular Value Decompositions (SVD's) of the compounds of a matrix is proposed by establishing the equality (up to a permutation) between the compounds of the SVD of a matrix and the SVD's of the compounds of the matrix. The superiority of the new idea over the standard method is demonstrated. Similar approaches with some limitations can be adopted for other matrix factorizations, too. Furthermore, formulas for the n - 1 compounds of Hadamard matrices are derived, which dodge the strenuous computations of the respective numerous large determinants. Finally, a combinatorial counting technique for finding the compounds of diagonal matrices is illustrated.

  15. Glassy nature and glass-to-crystal transition in the binary metallic glass CuZr

    NASA Astrophysics Data System (ADS)

    Wei, Zi-Yang; Shang, Cheng; Zhang, Xiao-Jie; Liu, Zhi-Pan

    2017-06-01

    The prediction for the stability of glassy material is a key challenge in physical science. Here, we report a theoretical framework to predict the glass stability based on stochastic surface walking global optimization and reaction pathway sampling. This is demonstrated by revealing for the first time the global potential energy surface (PES) of two systems, CuZr binary metallic glass and nonglassy pure Cu systems, and establishing the lowest energy pathways linking glassy/amorphous structures with crystalline structures. The CuZr system has a significant number of glassy structures on PES that are ˜0.045 eV /atom above the crystal structure. Two clear trends are identified from global PES in the glass-to-crystal transition of the CuZr system: (i) the local Zr-Cu coordination (nearest neighbor) increases, and (ii) the local Zr bonding environment becomes homogeneous. This allows us to introduce quantitative structural and energetics conditions to distinguish the glassy structures from the crystalline structures. Because of the local Zr-Cu exchange in the glass-to-crystal transition, a high reaction barrier (>0.048 eV /atom ) is present to separate the glassy structures and the crystals in CuZr. By contrast, the Cu system, although it does possess amorphous structures that appear at much higher energy (˜0.075 eV /atom ) with respect to the crystal structure, has very low reaction barriers for the crystallization of amorphous structures, i.e. <0.011 eV /atom . The quantitative data on PES now available from global optimization techniques deepens our understanding on the microscopic nature of glassy material and might eventually facilitate the design of stable glassy materials.

  16. Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery

    DOEpatents

    Neudecker, Bernd J.; Bates, John B.

    2001-01-01

    Disclosed are silicon-tin oxynitride glassy compositions which are especially useful in the construction of anode material for thin-film electrochemical devices including rechargeable lithium-ion batteries, electrochromic mirrors, electrochromic windows, and actuators. Additional applications of silicon-tin oxynitride glassy compositions include optical fibers and optical waveguides.

  17. Graphitization of Glassy Carbon after Compression at Room Temperature

    NASA Astrophysics Data System (ADS)

    Shiell, T. B.; McCulloch, D. G.; McKenzie, D. R.; Field, M. R.; Haberl, B.; Boehler, R.; Cook, B. A.; de Tomas, C.; Suarez-Martinez, I.; Marks, N. A.; Bradby, J. E.

    2018-05-01

    Glassy carbon is a technologically important material with isotropic properties that is nongraphitizing up to ˜3000 °C and displays complete or "superelastic" recovery from large compression. The pressure limit of these properties is not yet known. Here we use experiments and modeling to show permanent densification, and preferred orientation occurs in glassy carbon loaded to 45 GPa and above, where 45 GPa represents the limit to the superelastic and nongraphitizing properties of the material. The changes are explained by a transformation from its s p2 rich starting structure to a s p3 rich phase that reverts to fully s p2 bonded oriented graphite during pressure release.

  18. The viscoelastic behavior of notched glassy polymers

    NASA Technical Reports Server (NTRS)

    Crook, R. A.; Letton, Alan

    1993-01-01

    In the bulk, glassy polymers exhibit a nonlinear viscoelastic response during deformation. Stress or strain induced damage (i.e. crazing, microshear banding) results in the production of nonrecoverable work and observed nonlinearity. Stress or strain dependent shift factors have been used to mathematically model the mechanical behavior of these polymers. Glassy polymers that have been notched, may exhibit very different load displacement response compared to the same material under bulk deformation. If a sharp notch is introduced into the body then loaded, the load displacement trace may appear to be single-valued in the absence of viscoelasticity and crack growth. This suggests the volume of damaged material is small compared to the overall dimensions of the specimen. The ability to produce a single-valued load-load-line displacement trace through the use of the Correspondence Principle may prove to be useful for fracture of viscoelastic materials.

  19. Scalable Synthesis of Cholesteric Glassy Liquid Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Jason U.; Shestopalov, Alexander; Kosc, Tanya

    2018-03-08

    Capable of non-absorbing circular polarization of unpolarized incident light, cholesteric glassy liquid crystals consisting of hybrid chiral-nematic pendants to volume-excluding cores are potentially useful for the fabrication of various robust optical devices. As illustrated in this study, the well-oriented glassy film of enantiomeric Bz3ChN, with a glass transition at 73 oC and a cholesteric-to-isotropic transition at 295 oC, exhibits a selective reflection band centered at approximately 410 nm, an exceptional set of properties well suited for optical device exploration. To enable sustainable, large-scale synthesis of this material class for widespread applications, a productive strategy has been established, requiring a meremore » three-step scheme with an overall yield, atom economy, and reaction mass efficiency at 34, 33 and 12 %, respectively. While amenable to improvements, the resultant green chemistry metrics are encouraging as the first attempt.« less

  20. The Erevan howardite: Petrology of glassy clasts and mineral chemistry

    NASA Technical Reports Server (NTRS)

    Nazarov, M. A.; Ariskin, A. A.

    1993-01-01

    The Erevan howardite is a polymict regolith breccia containing xenoliths of carbonaceous chondrites. In this work, we studied glassy clasts, which could be considered as primary quenched melts, and mineral chemistry of the breccia. The study reveals that the Erevan howardite consists of common rocks of the HED suite. However, unique glassy clasts, which are present in some eucritic melts, were identified. The mineral chemistry and the simulation of crystallization of the melts suggest that the compositions of the melts reflect those of some primary lithologies of EPB.

  1. Field matric potential sensor

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    2001-01-01

    A method of determining matric potential of a sample, the method comprising placing the sample in a container, the container having an opening; and contacting the sample with a tensiometer via the opening. An apparatus for determining matric potential of a sample, the apparatus comprising a housing configured to receive a sample; a portable matric potential sensing device extending into the housing and having a porous member; and a wall closing the housing to insulate the sample and at least a portion of the matric potential sensing device including the porous member.

  2. Development of the Ni-based Metallic glassy bipolar plates for Proton Exchange Membrane Fuel Cell (PEMFC)

    NASA Astrophysics Data System (ADS)

    Yamaura, S.; Yokoyama, M.; Kimura, H. M.; Inoue, A.

    2009-01-01

    Alloy optimization in the Ni80-xCrxP16B4 (x = 9-30 at%) alloy system was conducted in order to achieve low Tg, Tx and a large ΔTx. From this study, the Ni65Cr15P16B4 glassy alloy was found to be the optimal alloy. The static and potentiodynamic corrosion behaviours of this alloy were measured. As a result of polarization measurements, it was found that the current density of the non-polished glassy alloy sample was smaller than that of a SUS316L sample. By contrast, the current density of the surface-polished glassy sample was slightly larger than that of the SUS316L sample in the voltage range of 0.3-0.8 V. A bipolar plate was successfully produced by hot-pressing the glassy alloy sheet in a supercooled liquid state. The I-V characteristics of a single cell with the glassy bipolar plates were measured.

  3. Optical and mechanical behaviors of glassy silicone networks derived from linear siloxane precursors

    NASA Astrophysics Data System (ADS)

    Jang, Heejun; Seo, Wooram; Kim, Hyungsun; Lee, Yoonjoo; Kim, Younghee

    2016-01-01

    Silicon-based inorganic polymers are promising materials as matrix materials for glass fiber composites because of their good process ability, transparency, and thermal property. In this study, for utilization as a matrix precursor for a glass-fiber-reinforced composite, glassy silicone networks were prepared via hydrosilylation of linear/pendant Si-H polysiloxanes and the C=C bonds of viny-lterminated linear/cyclic polysiloxanes. 13C nuclear magnetic resonance spectroscopy was used to determine the structure of the cross-linked states, and a thermal analysis was performed. To assess the mechanical properties of the glassy silicone networks, we performed nanoindentation and 4-point bending tests. Cross-linked networks derived from siloxane polymers are thermally and optically more stable at high temperatures. Different cross-linking agents led to final networks with different properties due to differences in the molecular weights and structures. After stepped postcuring, the Young's modulus and the hardness of the glassy silicone networks increased; however, the brittleness also increased. The characteristics of the cross-linking agent played an important role in the functional glassy silicone networks.

  4. Voltammetric pH sensing using carbon electrodes: glassy carbon behaves similarly to EPPG.

    PubMed

    Lu, Min; Compton, Richard G

    2014-09-21

    Developing and building on recent work based on a simple sensor for pH determination using unmodified edge plane pyrolytic graphite (EPPG) electrodes, we present a voltammetric method for pH determination using a bare unmodified glassy carbon (GC) electrode. By exploiting the pH sensitive nature of quinones present on carbon edge-plane like sites within the GC, we show how GC electrodes can be used to measure pH. The electro-reduction of surface quinone groups on the glassy carbon electrode was characterised using cyclic voltammetry (CV) and optimised with square-wave voltammetry (SWV) at 298 K and 310 K. At both temperatures, a linear correlation was observed, corresponding to a 2 electron, 2 proton Nernstian response over the aqueous pH range 1.0 to 13.1. As such, unmodified glassy carbon electrodes are seen to be pH dependent, and the Nernstian response suggests its facile use for pH sensing. Given the widespread use of glassy carbon electrodes in electroanalysis, the approach offers a method for the near-simultaneous measurement and monitoring of pH during such analyses.

  5. Scalable Synthesis of Cholesteric Glassy Liquid Crystals

    DOE PAGES

    Wallace, Jason U.; Shestopalov, Alexander; Kosc, Tanya; ...

    2018-03-15

    Capable of non-absorbing circular polarization of unpolarized incident light, cholesteric glassy liquid crystals consisting of hybrid chiral-nematic pendants to volume-excluding cores are potentially useful for the fabrication of various robust optical devices. As illustrated in this study, the well-oriented glassy film of enantiomeric Bz3ChN, with a glass transition at 73 °C and a cholesteric-to-isotropic transition at 295 °C, exhibits a selective reflection band centered at approximately 410 nm, an exceptional set of properties well suited for optical device exploration. To enable sustainable, large-scale synthesis of this material class for widespread applications, a productive strategy has been established, requiring a meremore » three-step scheme with an overall yield, atom economy, and reaction mass efficiency at 34%, 33% and 12%, respectively. Lastly, while amenable to improvements, the resultant green chemistry metrics are encouraging as the first attempt.« less

  6. Thermodynamic Modeling of Gas Transport in Glassy Polymeric Membranes.

    PubMed

    Minelli, Matteo; Sarti, Giulio Cesare

    2017-08-19

    Solubility and permeability of gases in glassy polymers have been considered with the aim of illustrating the applicability of thermodynamically-based models for their description and prediction. The solubility isotherms are described by using the nonequilibrium lattice fluid (NELF) (model, already known to be appropriate for nonequilibrium glassy polymers, while the permeability isotherms are described through a general transport model in which diffusivity is the product of a purely kinetic factor, the mobility coefficient, and a thermodynamic factor. The latter is calculated from the NELF model and mobility is considered concentration-dependent through an exponential relationship containing two parameters only. The models are tested explicitly considering solubility and permeability data of various penetrants in three glassy polymers, PSf, PPh and 6FDA-6FpDA, selected as the reference for different behaviors. It is shown that the models are able to calculate the different behaviors observed, and in particular the permeability dependence on upstream pressure, both when it is decreasing as well as when it is increasing, with no need to invoke the onset of additional plasticization phenomena. The correlations found between polymer and penetrant properties with the two parameters of the mobility coefficient also lead to the predictive ability of the transport model.

  7. Thermodynamic Modeling of Gas Transport in Glassy Polymeric Membranes

    PubMed Central

    Minelli, Matteo; Sarti, Giulio Cesare

    2017-01-01

    Solubility and permeability of gases in glassy polymers have been considered with the aim of illustrating the applicability of thermodynamically-based models for their description and prediction. The solubility isotherms are described by using the nonequilibrium lattice fluid (NELF) (model, already known to be appropriate for nonequilibrium glassy polymers, while the permeability isotherms are described through a general transport model in which diffusivity is the product of a purely kinetic factor, the mobility coefficient, and a thermodynamic factor. The latter is calculated from the NELF model and mobility is considered concentration-dependent through an exponential relationship containing two parameters only. The models are tested explicitly considering solubility and permeability data of various penetrants in three glassy polymers, PSf, PPh and 6FDA-6FpDA, selected as the reference for different behaviors. It is shown that the models are able to calculate the different behaviors observed, and in particular the permeability dependence on upstream pressure, both when it is decreasing as well as when it is increasing, with no need to invoke the onset of additional plasticization phenomena. The correlations found between polymer and penetrant properties with the two parameters of the mobility coefficient also lead to the predictive ability of the transport model. PMID:28825619

  8. Fungible Correlation Matrices: A Method for Generating Nonsingular, Singular, and Improper Correlation Matrices for Monte Carlo Research.

    PubMed

    Waller, Niels G

    2016-01-01

    For a fixed set of standardized regression coefficients and a fixed coefficient of determination (R-squared), an infinite number of predictor correlation matrices will satisfy the implied quadratic form. I call such matrices fungible correlation matrices. In this article, I describe an algorithm for generating positive definite (PD), positive semidefinite (PSD), or indefinite (ID) fungible correlation matrices that have a random or fixed smallest eigenvalue. The underlying equations of this algorithm are reviewed from both algebraic and geometric perspectives. Two simulation studies illustrate that fungible correlation matrices can be profitably used in Monte Carlo research. The first study uses PD fungible correlation matrices to compare penalized regression algorithms. The second study uses ID fungible correlation matrices to compare matrix-smoothing algorithms. R code for generating fungible correlation matrices is presented in the supplemental materials.

  9. Playback interference of glassy-winged sharp shooter communication

    USDA-ARS?s Scientific Manuscript database

    Animal communication is vital to reproduction, particularly for securing a mate. Insects commonly communicate by exchanging vibrational signals that are transmitted through host plants. The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is an important vector of Xylella fastidiosa, a pl...

  10. Mating interference of glassy-winged sharpshooters, Homalodisca vitripennis

    USDA-ARS?s Scientific Manuscript database

    Animal signaling is a complex behavior that is influenced by abiotic and biotic factors of the environment. Glassy-winged sharpshooters (GWSS), Homalodisca vitripennis (Hemiptera: Cicadellidae), primarily use vibrational signaling for courtship. Because GWSS is a major pest, transmitting the plant ...

  11. Glassy selenium at high pressure: Le Chatelier's principle still works

    NASA Astrophysics Data System (ADS)

    Brazhkin, V. V.; Tsiok, O. B.

    2017-10-01

    Selenium is the only easily vitrified elementary substance. Numerous experimental studies of glassy Se (g -Se) at high pressures show a large spread in the data on the compressibility and electrical resistivity of g -Se. Furthermore, H. Liu et al. [Proc. Natl. Acad. Sci. USA 105, 13229 (2008), 10.1073/pnas.0806857105] have arrived at the surprising conclusion that the volume of glass increases during pressure-induced crystallization. We have performed high-precision measurements of the specific volume and electrical resistivity of glassy selenium (g -Se) at high hydrostatic pressures up to 9 GPa. The measured bulk modulus at normal pressure is B =(9.0 5 ±0.15 ) GPa and its pressure derivative is BP'=6.4 ±0.2 . In the pressure range P <3 GPa, glassy selenium has an anomalously large negative second derivative of the bulk modulus. The electrical resistivity of g -Se decreases almost exponentially with increasing pressure and reaches 20 Ω cm at a pressure of 8.75 GPa. The inelastic behavior and weak relaxation of the volume for g -Se begin at pressures above 3.5 GPa; the volume and logarithm of the electrical resistivity relax significantly (logarithmically with the time) at pressures above 8 GPa. Bulk measurements certainly indicate that the volume of g -Se glass in the crystallization pressure range is larger than the volumes of both appearing crystalline phases (by 2% and 4%). Therefore, the "volume expansion phenomenon" suggested in [H. Liu et al., Proc. Natl. Acad. Sci. USA 105, 13229 (2008), 10.1073/pnas.0806857105] is not observed, and the pressure-induced crystallization of glassy selenium is consistent with the laws of thermodynamics.

  12. Glassy materials for lithium batteries: electrochemical properties and devices performances

    NASA Astrophysics Data System (ADS)

    Duclot, Michel; Souquet, Jean-Louis

    Amorphous or glassy materials may be used as electrolyte or electrode materials for lithium primary or secondary batteries. A first generation proceeded from classical coin cells in which the organic electrolyte was replaced by a high lithium conductive glassy electrolyte. The solid components were assembled under isostatic pressure. The main advantages of such cells are a good storage stability and ability to operate until 200°C. Nevertheless, the high resistivity of the glassy electrolyte below room temperature and a limited depth for charge and discharge cycles makes these cells not competitive compared to conventional lithium-ion batteries. More promising, are the thin films solid state microbatteries realised by successive depositions of electrodes and electrolyte. The low resistance of the electrolyte amorphous layer allows cycling at temperatures as low as -10°C. The total thickness of thin film batteries, including packaging is less than 100 μm. A capacity of about 100 μAh cm -2 with over 10 4 charge-discharge cycles at 90% in depth of discharge is well suited for energy independent smart cards or intelligent labels, which represent for these devices a large and unrivalled market.

  13. Comment on ``Glassy Potts model: A disordered Potts model without a ferromagnetic phase''

    NASA Astrophysics Data System (ADS)

    Carlucci, Domenico M.

    1999-10-01

    We report the equivalence of the ``glassy Potts model,'' recently introduced by Marinari et al. and the ``chiral Potts model'' investigated by Nishimori and Stephen. Both models do not exhibit any spontaneous magnetization at low temperature, differently from the ordinary glass Potts model. The phase transition of the glassy Potts model is easily interpreted as the spin-glass transition of the ordinary random Potts model.

  14. Spatial and mesoscopic fluctuations in glassy dynamics

    NASA Astrophysics Data System (ADS)

    Chamon, Claudio C.; Cugliandolo, Leticia F.

    2004-05-01

    One of the striking properties of a glassy system is that many material properties depend on its age, i.e., the time since the system entered its glassy phase. In this this talk we shall review some recent progress (work in collaboration with H. E. Castillo, P. Charbonneau, J. L. Iguain, M. P. Kennett, D. R. Reichman and M. Sellitto) in understanding local aging, through the study of local observable quantities, which reveal that there are spatial heterogeneities and fluctuations in the aging process of macroscopic systems. We show that a number of universal properties are shared by many non-equilibrium systems, both with and without quenched disorder, such as the 3D Edwards-Anderson model and some kinetically constrained non-interacting 2D and 3D spin models, for example. Similar scaling relations are found for mesoscopic sample-to-sample fluctuations of global quantities in small size systems. We discuss how the emergence of a symmetry in aging systems, time-reparametrization invariance, could be responsible for the observed universal behavior of the local and mesoscopic non-equilibrium fluctuations.

  15. Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices

    PubMed Central

    Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan; Gross, Sam; Hills, Gage; Hornstein, Michael; Lakkam, Milinda; Lee, Jason; Li, Jian; Liu, Linxi; Sing-Long, Carlos; Marx, Mike; Mittal, Akshay; Monajemi, Hatef; No, Albert; Omrani, Reza; Pekelis, Leonid; Qin, Junjie; Raines, Kevin; Ryu, Ernest; Saxe, Andrew; Shi, Dai; Siilats, Keith; Strauss, David; Tang, Gary; Wang, Chaojun; Zhou, Zoey; Zhu, Zhen

    2013-01-01

    In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the same phase transition location—holds for a wide range of non-Gaussian random matrix ensembles. We report extensive experiments showing that the Gaussian phase transition also describes numerous deterministic matrices, including Spikes and Sines, Spikes and Noiselets, Paley Frames, Delsarte-Goethals Frames, Chirp Sensing Matrices, and Grassmannian Frames. Namely, for each of these deterministic matrices in turn, for a typical k-sparse object, we observe that convex optimization is successful over a region of the phase diagram that coincides with the region known for Gaussian random matrices. Our experiments considered coefficients constrained to for four different sets , and the results establish our finding for each of the four associated phase transitions. PMID:23277588

  16. Shear-transformation-zone theory of linear glassy dynamics.

    PubMed

    Bouchbinder, Eran; Langer, J S

    2011-06-01

    We present a linearized shear-transformation-zone (STZ) theory of glassy dynamics in which the internal STZ transition rates are characterized by a broad distribution of activation barriers. For slowly aging or fully aged systems, the main features of the barrier-height distribution are determined by the effective temperature and other near-equilibrium properties of the configurational degrees of freedom. Our theory accounts for the wide range of relaxation rates observed in both metallic glasses and soft glassy materials such as colloidal suspensions. We find that the frequency-dependent loss modulus is not just a superposition of Maxwell modes. Rather, it exhibits an α peak that rises near the viscous relaxation rate and, for nearly jammed, glassy systems, extends to much higher frequencies in accord with experimental observations. We also use this theory to compute strain recovery following a period of large, persistent deformation and then abrupt unloading. We find that strain recovery is determined in part by the initial barrier-height distribution, but that true structural aging also occurs during this process and determines the system's response to subsequent perturbations. In particular, we find by comparison with experimental data that the initial deformation produces a highly disordered state with a large population of low activation barriers, and that this state relaxes quickly toward one in which the distribution is dominated by the high barriers predicted by the near-equilibrium analysis. The nonequilibrium dynamics of the barrier-height distribution is the most important of the issues raised and left unresolved in this paper.

  17. Observation of glassy state relaxation during annealing of frozen sugar solutions by X-ray computed tomography.

    PubMed

    Nakagawa, Kyuya; Tamiya, Shinri; Do, Gabsoo; Kono, Shinji; Ochiai, Takaaki

    2018-06-01

    Glassy phase formation in a frozen product determines various properties of the freeze-dried products. When an aqueous solution is subjected to freezing, a glassy phase forms as a consequence of freeze-concentration. During post-freezing annealing, the relaxation of the glassy phase and the ripening of ice crystals (i.e. Ostwald ripening) spontaneously occur, where the kinetics are controlled by the annealing and glass transition temperatures. This study was motivated to observe the progress of glassy state relaxation separate from ice coarsening during annealing. X-ray computed tomography (CT) was used to observe a frozen and post-freezing annealed solutions by using monochromatized X-ray from the synchrotron radiation. CT images were successfully obtained, and the frozen matrix were analyzed based on the gray level values that were equivalent to the linear X-ray attenuation coefficients of the observed matters. The CT images obtained from rapidly frozen sucrose and dextrin solutions with different concentrations gave clear linear relationships between the linear X-ray attenuation coefficients values and the solute concentrations. It was confirmed that the glassy state relaxation progressed as increasing annealing time, and this trend was larger in the order of the glass transition temperature of the maximally freeze-concentrated phase. The sucrose-water system required nearly 20 h of annealing time at -5 °C for the completion of the glassy phase relaxation, whereas dextrin-water systems required much longer periods because of their higher glass transition temperatures. The trends of ice coarsening, however, did not perfectly correspond to the trends of the relaxation, suggesting that the glassy phase relaxation and Ostwald ripening would jointly control the ice crystal growth/ripening kinetics, and the dominant mechanism differed by the annealing stage. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Interplay between local dynamics and mechanical reinforcement in glassy polymer nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, Adam P.; Bocharova, Vera; Cheng, Shiwang

    The modification of polymer dynamics in the presence of strongly interacting nanoparticles has been shown to significantly change themacroscopic properties above the glass transition temperature of polymer nanocomposites (PNCs). However, much less attention has been paid to changes in the dynamics of glassy PNCs. Analysis of neutron and light scattering data presented herein reveals a surprising enhancement of local dynamics, e.g., fast picosecond and secondary relaxations, in glassy PNCs accompanied with a strengthening of mechanical modulus. Here we ascribe this counter-intuitive behavior to the complex interplay between chain packing and stretching within the interfacial layer formed at the polymer-nanoparticle interface.

  19. Interplay between local dynamics and mechanical reinforcement in glassy polymer nanocomposites

    DOE PAGES

    Holt, Adam P.; Bocharova, Vera; Cheng, Shiwang; ...

    2017-11-17

    The modification of polymer dynamics in the presence of strongly interacting nanoparticles has been shown to significantly change themacroscopic properties above the glass transition temperature of polymer nanocomposites (PNCs). However, much less attention has been paid to changes in the dynamics of glassy PNCs. Analysis of neutron and light scattering data presented herein reveals a surprising enhancement of local dynamics, e.g., fast picosecond and secondary relaxations, in glassy PNCs accompanied with a strengthening of mechanical modulus. Here we ascribe this counter-intuitive behavior to the complex interplay between chain packing and stretching within the interfacial layer formed at the polymer-nanoparticle interface.

  20. Anomalous glassy dynamics in simple models of dense biological tissue

    NASA Astrophysics Data System (ADS)

    Sussman, Daniel M.; Paoluzzi, M.; Marchetti, M. Cristina; Manning, M. Lisa

    2018-02-01

    In order to understand the mechanisms for glassy dynamics in biological tissues and shed light on those in non-biological materials, we study the low-temperature disordered phase of 2D vertex-like models. Recently it has been noted that vertex models have quite unusual behavior in the zero-temperature limit, with rigidity transitions that are controlled by residual stresses and therefore exhibit very different scaling and phenomenology compared to particulate systems. Here we investigate the finite-temperature phase of two-dimensional Voronoi and Vertex models, and show that they have highly unusual, sub-Arrhenius scaling of dynamics with temperature. We connect the anomalous glassy dynamics to features of the potential energy landscape associated with zero-temperature inherent states.

  1. Quantifying glassy and crystalline basalt partitioning in the oceanic crust

    NASA Astrophysics Data System (ADS)

    Moore, Rachael; Ménez, Bénédicte

    2016-04-01

    The upper layers of the oceanic crust are predominately basaltic rock, some of which hosts microbial life. Current studies of microbial life within the ocean crust mainly focus on the sedimentary rock fraction, or those organisms found within glassy basalts while the potential habitability of crystalline basalts are poorly explored. Recently, there has been recognition that microbial life develops within fractures and grain boundaries of crystalline basalts, therefore estimations of total biomass within the oceanic crust may be largely under evaluated. A deeper understanding of the bulk composition and fractionation of rocks within the oceanic crust is required before more accurate estimations of biomass can be made. To augment our understanding of glassy and crystalline basalts within the oceanic crust we created two end-member models describing basalt fractionation: a pillow basalt with massive, or sheet, flows crust and a pillow basalt with sheeted dike crust. Using known measurements of massive flow thickness, dike thickness, chilled margin thickness, pillow lava size, and pillow lava glass thickness, we have calculated the percentage of glassy versus crystalline basalts within the oceanic crust for each model. These models aid our understanding of textural fractionation within the oceanic crust, and can be applied with bioenergetics models to better constrain deep biomass estimates.

  2. Broadband nanoindentation of glassy polymers: Part II. Viscoplasticity

    Treesearch

    Joseph E. Jakes; Rod S. Lakes; Don S. Stone

    2012-01-01

    The relationship between hardness and flow stress in glassy polymers is examined. Materials studied include poly(methylmethacrylate), polystyrene, and polycarbonate. Properties are strongly rate dependent, so broadband nanoindentation creep (BNC) is used to measure hardness across a broad range of indentation strain rates (10-4 to 10 s

  3. Synthesis and characterization of Ag+ ion conducting glassy electrolytes

    NASA Astrophysics Data System (ADS)

    Chandra, Angesh; Bhatt, Alok; Chandra, Archana

    2013-07-01

    Synthesis and characterization of new Ag+ ion conducting glassy systems: x[0.75AgI:0.25AgC1]: (1 - x)[Ag2O:P2O5], where 0.1 < x < 1 in molar weight fraction, are reported. The present glassy electrolytes have been synthesized by melt-quench technique using a high-speed twin roller-quencher. An alternate host salt: "quenched [0.75AgI:0.25AgC1] mixed system/solid solution", has been used in place of the traditional host AgI. The compositional dependence conductivity studies on the glassy systems: x[0.75AgI:0.25AgC1]:(1 - x)[Ag2O:P2O5] as well as xAgI:(1 - x)[Ag2O:P2O5] prepared identically, indicated that the composition at x = 0.75 exhibited the highest room temperature conductivity (σ ~ 5.5 x 10-3 S cm-1). The composition: 0.75[0.75AgI:0.25AgC1]:0.25[Ag2O:P2O5] has been referred to as optimum conducting composition (OCC). The some basic ion transport parameters viz. ionic conductivity (σ), ionic mobility (μ), mobile ion concentration (n), ionic drift velocity (vd), ion transference number (tion) and activation energy (Ea) values have been characterized with the help of various experimental techniques. A solid state battery was fabricated and its basic cell parameters calculated.

  4. L’effet du yoga chez les patients atteints de cancer

    PubMed Central

    Côté, Andréanne; Daneault, Serge

    2012-01-01

    Résumé Objectif Déterminer si le yoga thérapeutique améliore la qualité de vie de patients atteints de cancer. Sources des données Recherche effectuée avec la base de données MEDLINE (1950–2010) en utilisant les mots-clés yoga, cancer et quality of life. Sélection des études Priorité accordée aux études cliniques randomisées contrôlées évaluant l’effet du yoga sur différents symptômes susceptibles de se présenter chez des patients atteints de cancer en Amérique du Nord. Synthèse Quatre études cliniques randomisées contrôlées ont d’abord été analysées, puis 2 études sans groupe-contrôle. Trois études réalisées en Inde et au Proche-Orient ont également apporté des éléments intéressants au plan méthodologique. Les interventions proposées comprenaient des séances de yoga d’une durée et d’une fréquence variables. Les paramètres mesurés variaient également d’une étude à l’autre. Plusieurs symptômes ont connu des améliorations significatives avec le yoga (meilleure qualité du sommeil, diminution des symptômes anxieux ou dépressifs, amélioration du bien-être spirituel, etc.). Il a aussi semblé que la qualité de vie, dans sa globalité ou dans certaines de ses composantes spécifiques, s’améliorait. Conclusion La variété des effets bénéfiques produits, l’absence d’effet secondaire et le rapport coût-bénéfice avantageux du yoga thérapeutique en fait une intervention intéressante à suggérer par les médecins de famille aux patients atteints de cancer. Certaines lacunes méthodologiques ont pu diminuer la puissance statistique des études présentées, à commencer par la taille restreinte des échantillons et par l’assiduité variable des patients soumis à l’intervention. Il est également possible que les échelles de mesure utilisées ne convenaient pas à ce type de situation et de clientèle pour qu’en soit dégagé un effet significatif. Toutefois, les commentaires

  5. Graphene oxide-mediated electrochemistry of glucose oxidase on glassy carbon electrodes.

    PubMed

    Castrignanò, Silvia; Valetti, Francesca; Gilardi, Gianfranco; Sadeghi, Sheila J

    2016-01-01

    Glucose oxidase (GOD) was immobilized on glassy carbon electrodes in the presence of graphene oxide (GO) as a model system for the interaction between GO and biological molecules. Lyotropic properties of didodecyldimethylammonium bromide (DDAB) were used to stabilize the enzymatic layer on the electrode surface resulting in a markedly improved electrochemical response of the immobilized GOD. Transmission electron microscopy images of the GO with DDAB confirmed the distribution of the GO in a two-dimensional manner as a foil-like material. Although it is known that glassy carbon surfaces are not ideal for hydrogen peroxide detection, successful chronoamperometric titrations of the GOD in the presence of GO with β-d-glucose were performed on glassy carbon electrodes, whereas no current response was detected upon β-d-glucose addition in the absence of GO. The GOD-DDAB-GO system displayed a high turnover efficiency and substrate affinity as a glucose biosensor. The simplicity and ease of the electrode preparation procedure of this GO/DDAB system make it a good candidate for immobilizing other biomolecules for fabrication of amperometric biosensors. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  6. Broadband nanoindentation of glassy polymers: Part I Viscoelasticity

    Treesearch

    Joesph E. Jakes; Rod S. Lakes; Don S. Stone

    2012-01-01

    Protocols are developed to assess viscoelastic moduli from unloading slopes in Berkovich nanoindentation across four orders of magnitude in time scale (0.01-100 s unloading time). Measured viscoelastic moduli of glassy polymers poly(methyl methacrylate), polystyrene, and polycarbonate follow the same trends with frequency (1/unloading time) as viscoelastic moduli...

  7. Intrinsic character of Stokes matrices

    NASA Astrophysics Data System (ADS)

    Gagnon, Jean-François; Rousseau, Christiane

    2017-02-01

    Two germs of linear analytic differential systems x k + 1Y‧ = A (x) Y with a non-resonant irregular singularity are analytically equivalent if and only if they have the same eigenvalues and equivalent collections of Stokes matrices. The Stokes matrices are the transition matrices between sectors on which the system is analytically equivalent to its formal normal form. Each sector contains exactly one separating ray for each pair of eigenvalues. A rotation in S allows supposing that R+ lies in the intersection of two sectors. Reordering of the coordinates of Y allows ordering the real parts of the eigenvalues, thus yielding triangular Stokes matrices. However, the choice of the rotation in x is not canonical. In this paper we establish how the collection of Stokes matrices depends on this rotation, and hence on a chosen order of the projection of the eigenvalues on a line through the origin.

  8. Permeation of Mixed Penetrants through Glassy Polymer Membranes.

    DTIC Science & Technology

    1985-03-15

    and LOPE. Also, ESCA was used in conjunction with plasma etching to determine the effects of the gas phase fluorine concentration and fluorination...at 35 3C. ARD-AISS5 65 PERMEATION OF MIXED PENETRANTS THROUGH GLASSY POLYMER 213 MENBRANES (U) NORTH CAROLINA STATE UNIV AT RALEIGH R T CHERN ET AL. 15

  9. Thermodynamics of water sorption in high performance glassy thermoplastic polymers

    PubMed Central

    Scherillo, Giuseppe; Petretta, Mauro; Galizia, Michele; La Manna, Pietro; Musto, Pellegrino; Mensitieri, Giuseppe

    2014-01-01

    Sorption thermodynamics of water in two glassy polymers, polyetherimide (PEI) and polyetheretherketone (PEEK), is investigated by coupling gravimetry and on line FTIR spectroscopy in order to gather information on the total amount of sorbed water as well as on the different species of water molecules absorbed within the polymers, addressing the issue of cross- and self-interactions occurring in the polymer/water systems. Water sorption isotherms have been determined at temperatures ranging from 30 to 70°C while FTIR spectroscopy has been performed only at 30°C. The experimental analysis provided information on the groups present on the polymer backbones involved in hydrogen bonding interactions with absorbed water molecules. Moreover, it also supplied qualitative indications about the different “populations” of water molecules present within the PEEK and a quantitative assessment of these “populations” in the case of PEI. The results of the experimental analysis have been interpreted using an equation of state theory based on a compressible lattice fluid model for the Gibbs energy of the polymer-water mixture, developed by extending to the case of out of equilibrium glassy polymers a previous model intended for equilibrium rubbery polymers. The model accounts for the non-equilibrium nature of glassy polymers as well as for mean field and for hydrogen bonding interactions, providing a satisfactory quantitative interpretation of the experimental data. PMID:24860802

  10. Glassy aging with modified Kohlrausch-Williams-Watts form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen Gupta, Bhaskar; Das, Shankar P.

    2007-12-15

    In this paper, we address the question of whether aging in the nonequilibrium glassy state is controlled by the equilibrium {alpha}-relaxation process, which occurs at temperatures above T{sub g}. Recently, Lunkenheimer et al. [Phys. Rev. Lett. 95, 055702 (2005)] proposed a model for the glassy aging data of dielectric relaxation using a modified Kohlrausch-Williams-Watts form exp[-(t{sub age}/{tau}{sub age}){sup {beta}{sub age}}]. The aging time t{sub age} dependence of the relaxation time {tau}{sub age} is defined by these authors through a functional relation involving the corresponding frequency {nu}(t{sub age})=1/(2{pi}{tau}{sub age}), but the stretching exponent {beta}{sub age} is the same as {beta}{sub {alpha}},more » the {alpha}-relaxation stretching exponent. We present here an alternative functional form for {tau}{sub age}(t{sub age}) directly involving the relaxation time itself. The proposed model fits the data of Lunkenheimer et al. perfectly with a stretching exponent {beta}{sub age} different from {beta}{sub {alpha}}.« less

  11. Effects of nymphal diet and adult feeding on allocation of resources to glassy-winged sharpshooter egg production

    USDA-ARS?s Scientific Manuscript database

    The glassy-winged sharpshooter is an invasive insect capable of transmitting the bacterial pathogen Xylella fastidiosa. Pre-oviposition periods of laboratory reared glassy-winged sharpshooters are variable. Here, two questions were addressed: does nymphal diet affect pre-oviposition period and how d...

  12. Loss of halogens from crystallized and glassy silicic volcanic rocks

    USGS Publications Warehouse

    Noble, D.C.; Smith, V.C.; Peck, L.C.

    1967-01-01

    One hundred and sixty-four F and Cl analyses of silicic welded tuffs and lavas and glass separates are presented. Comparison of the F and Cl contents of crystallized rocks with those of nonhydrated glass and hydrated glassy rocks from the same rock units shows that most of the halogens originally present were lost on crystallization. An average of about half of the F and four-fifths of the Cl originally present was lost. Analyses of hydrated natural glasses and of glassy rocks indicate that in some cases significant amounts of halogens may be removed from or added to hydrated glass through prolonged contact with ground water. The data show that the original halogen contents of the groundmass of a silicic volcanic rock can be reliably determined only from nonhydrated glass. ?? 1967.

  13. Effet de la teneur en carbone sur la resistance du CA6NM a la propagation des fissures de fatigue

    NASA Astrophysics Data System (ADS)

    Akhiate, Aziz

    L'amelioration des performances des roues de turbines hydrauliques a fait l'objet de plusieurs etudes. Dans ce memoire, on s'est interesse a l'effet de la teneur en carbone du materiau de base de type CA6NM des aubes de turbines sur la microstructure et les proprietes mecaniques en general et en particulier sur le comportement en fatigue propagation. De maniere a bien atteindre cet objectif, on a choisi trois differentes nuances d'acier a faible 0.018% C, moyenne 0.033% C et elevee 0.067% C teneurs en carbone. Le 0.018% C et 0.067% C ont ete fabriques par le meme facturier et ils ont subi des traitements thermiques differents. De meme, le 0.033% C a subi des traitements thermiques differents des deux autres apres avoir ete coule par un autre fabricant. Afin d'effacer l'historique des traitements thermiques prealablement effectues et d'avoir la meme taille de grains parents austenitiques (GPA), on a austenitise les trois nuances d'acier a la meme temperature 1040°C, a differentes periodes suivant la teneur en carbone. Apres avoir homogeneise la GPA, on a entame le revenu. Le carbone a une influence sur la microstructure revenue notamment la quantite d'austenite de reversion ainsi que sur sa stabilite thermique et mecanique. Pour mettre en evidence l'effet de la teneur en carbone, on a trouve raisonnable d'isoler les effets relies a la temperature de revenu, en particulier la formation d'austenite de reversion. En effet, on a choisi deux temperatures de revenu. La premiere temperature est a 550°C pendant 2h imposee aux trois materiaux afin d'avoir une microstructure sans austenite de reversion. La deuxieme temperature choisie est a 610°C pour avoir un maximum et une identique quantite d'austenite de reversion sans presence de martensite fraiche. A la lumiere de ces deux microstructures, nous pouvons etablir une relation entre les proprietes mecaniques du CA6NM et la teneur en carbone, ainsi qu'entre les effets de la presence ou non d'austenite de reversion sur les

  14. Equation of state of heated glassy carbon

    NASA Technical Reports Server (NTRS)

    Sekine, Toshimori; Ahrens, Thomas J.

    1991-01-01

    New Hugoniot data are presented for glassy carbon preheated to 1550 K and shocked to 20 GPa. The high-temperature Hugoniot is very similar to the principal Hugoniot. This results argues against the diffusional mechanism for the shock-induced transformaton of amorphous carbon to diamond, although the present results are obviously limited to below 20 GPa. This study provides the first Higoniot data for carbon preheated to significantly high temperatures.

  15. Genetic code, hamming distance and stochastic matrices.

    PubMed

    He, Matthew X; Petoukhov, Sergei V; Ricci, Paolo E

    2004-09-01

    In this paper we use the Gray code representation of the genetic code C=00, U=10, G=11 and A=01 (C pairs with G, A pairs with U) to generate a sequence of genetic code-based matrices. In connection with these code-based matrices, we use the Hamming distance to generate a sequence of numerical matrices. We then further investigate the properties of the numerical matrices and show that they are doubly stochastic and symmetric. We determine the frequency distributions of the Hamming distances, building blocks of the matrices, decomposition and iterations of matrices. We present an explicit decomposition formula for the genetic code-based matrix in terms of permutation matrices, which provides a hypercube representation of the genetic code. It is also observed that there is a Hamiltonian cycle in a genetic code-based hypercube.

  16. Understanding soft glassy materials using an energy landscape approach

    NASA Astrophysics Data System (ADS)

    Hwang, Hyun Joo; Riggleman, Robert A.; Crocker, John C.

    2016-09-01

    Many seemingly different soft materials--such as soap foams, mayonnaise, toothpaste and living cells--display strikingly similar viscoelastic behaviour. A fundamental physical understanding of such soft glassy rheology and how it can manifest in such diverse materials, however, remains unknown. Here, by using a model soap foam consisting of compressible spherical bubbles, whose sizes slowly evolve and whose collective motion is simply dictated by energy minimization, we study the foam's dynamics as it corresponds to downhill motion on an energy landscape function spanning a high-dimensional configuration space. We find that these downhill paths, when viewed in this configuration space, are, surprisingly, fractal. The complex behaviour of our model, including power-law rheology and non-diffusive bubble motion and avalanches, stems directly from the fractal dimension and energy function of these paths. Our results suggest that ubiquitous soft glassy rheology may be a consequence of emergent fractal geometry in the energy landscapes of many complex fluids.

  17. Preparation and Relaxation of Very Stable Glassy States of a Simulated Liquid

    NASA Astrophysics Data System (ADS)

    Jack, Robert L.; Hedges, Lester O.; Garrahan, Juan P.; Chandler, David

    2011-12-01

    We prepare metastable glassy states in a model glass former made of Lennard-Jones particles by sampling biased ensembles of trajectories with low dynamical activity. These trajectories form an inactive dynamical phase whose “fast” vibrational degrees of freedom are maintained at thermal equilibrium by contact with a heat bath, while the “slow” structural degrees of freedom are located in deep valleys of the energy landscape. We examine the relaxation to equilibrium and the vibrational properties of these metastable states. The glassy states we prepare by our trajectory sampling method are very stable to thermal fluctuations and also more mechanically rigid than low-temperature equilibrated configurations.

  18. Electrochemiluminescence of luminol at the titanate nanotubes modified glassy carbon electrode.

    PubMed

    Xu, Guifang; Zeng, Xiaoxue; Lu, Shuangyan; Dai, Hong; Gong, Lingshan; Lin, Yanyu; Wang, Qingping; Tong, Yuejin; Chen, Guonan

    2013-01-01

    A new strategy for the construction of a sensitive and stable electrochemiluminescent platform based on titanate nanotubes (TNTs) and Nafion composite modified electrode for luminol is described, TNTs contained composite modified electrodes that showed some photocatalytic activity toward luminol electrochemiluminescence emission, and thus could dramatically enhance luminol light emission. This extremely sensitive and stable platform allowed a decrease of the experiment electrochemiluminescence luminol reagent. In addition, in luminol solution at low concentrations, we compared the capabilities of a bare glassy carbon electrode with the TNT composite modified electrode for hydrogen peroxide detection. The results indicated that compared with glassy carbon electrode this platform was extraordinarily sensitive to hydrogen peroxide. Therefore, by combining with an appropriate enzymatic reaction, this platform would be a sensitive matrix for many biomolecules.

  19. Disentangling the Role of Entanglement Density and Molecular Alignment in the Mechanical Response of Glassy Polymers

    NASA Astrophysics Data System (ADS)

    O'Connor, Thomas; Robbins, Mark

    Glassy polymers are a ubiquitous part of modern life, but much about their mechanical properties remains poorly understood. Since chains in glassy states are hindered from exploring their conformational entropy, they can't be understood with common entropic network models. Additionally, glassy states are highly sensitive to material history and nonequilibrium distributions of chain alignment and entanglement can be produced during material processing. Understanding how these far-from equilibrium states impact mechanical properties is analytically challenging but essential to optimizing processing methods. We use molecular dynamics simulations to study the yield and strain hardening of glassy polymers as separate functions of the degree of molecular alignment and inter-chain entanglement. We vary chain alignment and entanglement with three different preparation protocols that mimic common processing conditions in and out of solution. We compare our results to common mechanical models of amorphous polymers and assess their applicability to different experimental processing conditions. This research was performed within the Center for Materials in Extreme Dynamic Environments (CMEDE) under the Hopkins Extreme Materials Institute at Johns Hopkins University. Financial support was provided by Grant W911NF-12-2-0022.

  20. Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network

    PubMed Central

    Hu, Meng; He, Julong; Zhao, Zhisheng; Strobel, Timothy A.; Hu, Wentao; Yu, Dongli; Sun, Hao; Liu, Lingyu; Li, Zihe; Ma, Mengdong; Kono, Yoshio; Shu, Jinfu; Mao, Ho-kwang; Fei, Yingwei; Shen, Guoyin; Wang, Yanbin; Juhl, Stephen J.; Huang, Jian Yu; Liu, Zhongyuan; Xu, Bo; Tian, Yongjun

    2017-01-01

    Carbon’s unique ability to have both sp2 and sp3 bonding states gives rise to a range of physical attributes, including excellent mechanical and electrical properties. We show that a series of lightweight, ultrastrong, hard, elastic, and conductive carbons are recovered after compressing sp2-hybridized glassy carbon at various temperatures. Compression induces the local buckling of graphene sheets through sp3 nodes to form interpenetrating graphene networks with long-range disorder and short-range order on the nanometer scale. The compressed glassy carbons have extraordinary specific compressive strengths—more than two times that of commonly used ceramics—and simultaneously exhibit robust elastic recovery in response to local deformations. This type of carbon is an optimal ultralight, ultrastrong material for a wide range of multifunctional applications, and the synthesis methodology demonstrates potential to access entirely new metastable materials with exceptional properties. PMID:28630918

  1. Miscellaneous methods for measuring matric or water potential

    USGS Publications Warehouse

    Scanlon, Bridget R.; Andraski, Brian J.; Bilskie, Jim; Dane, Jacob H.; Topp, G. Clarke

    2002-01-01

    A variety of techniques to measure matric potential or water potential in the laboratory and in the field are described in this section. The techniques described herein require equilibration of some medium whose matric or water potential can be determined from previous calibration or can be measured directly. Under equilibrium conditions the matric or water potential of the medium is equal to that of the soil. The techniques can be divided into: (i) those that measure matric potential and (ii) those that measure water potential (sum of matric and osmotic potentials). Matric potential is determined when the sensor matrix is in direct contact with the soil, so salts are free to diffuse in or out of the sensor matrix, and the equilibrium measurement therefore reflects matric forces acting on the water. Water potential is determined when the sensor is separated from the soil by a vapor gap, so salts are not free to move in or out of the sensor, and the equilibrium measurement reflects the sum of the matric and osmotic forces acting on the water.Seven different techniques are described in this section. Those that measure matric potential include (i) heat dissipation sensors, (ii) electrical resistance sensors, (iii) frequency domain and time domain sensors, and (iv) electro-optical switches. A method that can be used to measure matric potential or water potential is the (v) filter paper method. Techniques that measure water potential include (vi) the Dew Point Potentiameter (Decagon Devices, Inc., Pullman, WA1) (water activity meter) and (vii) vapor equilibration.The first four techniques are electronically based methods for measuring matric potential. Heat dissipation sensors and electrical resistance sensors infer matric potential from previously determined calibration relations between sensor heat dissipation or electrical resistance and matric potential. Frequency-domain and timedomain matric potential sensors measure water content, which is related to matric

  2. Complex symmetric matrices with strongly stable iterates

    NASA Technical Reports Server (NTRS)

    Tadmor, E.

    1985-01-01

    Complex-valued symmetric matrices are studied. A simple expression for the spectral norm of such matrices is obtained, by utilizing a unitarily congruent invariant form. A sharp criterion is provided for identifying those symmetric matrices whose spectral norm is not exceeding one: such strongly stable matrices are usually sought in connection with convergent difference approximations to partial differential equations. As an example, the derived criterion is applied to conclude the strong stability of a Lax-Wendroff scheme.

  3. Chemiluminescence in cryogenic matrices

    NASA Astrophysics Data System (ADS)

    Lotnik, S. V.; Kazakov, Valeri P.

    1989-04-01

    The literature data on chemiluminescence (CL) in cryogenic matrices have been classified and correlated for the first time. The role of studies on phosphorescence and CL at low temperatures in the development of cryochemistry is shown. The features of low-temperature CL in matrices of nitrogen and inert gases (fine structure of spectra, matrix effects) and the data on the mobility and reactivity of atoms and radicals at very low temperatures are examined. The trends in the development of studies on CL in cryogenic matrices, such as the search for systems involving polyatomic molecules and extending the forms of CL reactions, are followed. The reactions of active nitrogen with hydrocarbons that are accompanied by light emission and CL in the oxidation of carbenes at T >= 77 K are examined. The bibliography includes 112 references.

  4. Study of the physical properties of Ge-S-Ga glassy alloy

    NASA Astrophysics Data System (ADS)

    Rana, Anjli; Sharma, Raman

    2018-05-01

    In the present work, we have studied the effect of Ga doping on the physical properties of Ge20S80-xGax glassy alloy. The basic physical parameters which have important role in determining the structure and strength of the material viz. average coordination number, lone-pair electrons, mean bond energy, glass transition temperature, electro negativity, probabilities for bond distribution and cohesive energy have been computed theoretically for Ge-S-Ga glassy alloy. Here, the glass transition temperature and mean bond energy have been investigated using the Tichy-Ticha approach. The cohesive energy has been calculated by using chemical bond approach (CBA) method. It has been found that while average coordination number increases, all the other parameters decrease with the increase in Ga content in Ge-S-Ga system.

  5. Effects of xylem-sap composition on glassy-winged sharpshooter egg maturation on high and low quality host plants

    USDA-ARS?s Scientific Manuscript database

    Glassy-winged sharpshooters must feed as adults to produce mature eggs. Cowpea and sunflower are both readily accepted by the glassy-winged sharpshooter for feeding, but egg production on sunflower was reported to be lower than egg production on cowpea. To better understand the role of adult diet in...

  6. Condition Number Estimation of Preconditioned Matrices

    PubMed Central

    Kushida, Noriyuki

    2015-01-01

    The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager’s method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei’s matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei’s matrix, and matrices generated with the finite element method. PMID:25816331

  7. Condition number estimation of preconditioned matrices.

    PubMed

    Kushida, Noriyuki

    2015-01-01

    The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager's method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei's matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei's matrix, and matrices generated with the finite element method.

  8. Enhancing Understanding of Transformation Matrices

    ERIC Educational Resources Information Center

    Dick, Jonathan; Childrey, Maria

    2012-01-01

    With the Common Core State Standards' emphasis on transformations, teachers need a variety of approaches to increase student understanding. Teaching matrix transformations by focusing on row vectors gives students tools to create matrices to perform transformations. This empowerment opens many doors: Students are able to create the matrices for…

  9. Isothermal enthalpy relaxation of glassy 1,2,6-hexanetriol

    NASA Astrophysics Data System (ADS)

    Fransson, Å.; Bäckström, G.

    The isothermal enthalpy relaxation of glassy 1,2,6-hexanetriol has been measured at six temperatures. The relaxation time and the distribution parameters extracted from fits of the Williams-Watts relaxation function are compared with parameters obtained by other techniques and on other substances. A detailed comparison of the Williams-Watts and the Davidson-Cole relaxation functions is presented.

  10. The underexposed role of food matrices in probiotic products: Reviewing the relationship between carrier matrices and product parameters.

    PubMed

    Flach, Joost; van der Waal, Mark B; van den Nieuwboer, Maurits; Claassen, Eric; Larsen, Olaf F A

    2017-06-13

    Probiotic microorganisms are increasingly incorporated into food matrices in order to confer proposed health benefits on the consumer. It is important that the health benefits, sensory properties, shelf-life and probiotic gastrointestinal tract (GIT) survival of these products are carefully balanced as they determine functionality and drive consumer acceptance. The strain-specific effects of probiotic species are imperative in this process but carrier matrices may play a pivotal role as well. This study therefore recapitulates the wealth of knowledge on carrier matrices and their interaction with probiotic strains. The most substantiated carrier matrices, factors that influence probiotic functionality and matrix effects on shelf-life, GIT survival and clinical efficacy are reviewed. Results indicate that carrier matrices have a significant impact on the quality of probiotic products. Matrix components, such as proteins, carbohydrates and flavoring agents are shown to alter probiotic efficacy and viability. In vivo studies furthermore revealed strain-dependent matrix effects on the GIT survival of probiotic bacteria. However, only a limited number of studies have specifically addressed the effects of carrier matrices on the aforementioned product-parameters; most studies seem to focus solely on the strain-specific effects of probiotic microorganisms. This hampers the innovation of probiotic products. More human studies, comparing not only different probiotic strains but different carrier matrices as well, are needed to drive the innovation cycle.

  11. Electrical resistivity in Zr48Nb8Cu12Fe8Be24 glassy and crystallized alloys

    NASA Astrophysics Data System (ADS)

    Bai, H. Y.; Tong, C. Z.; Zheng, P.

    2004-02-01

    The electrical resistivity of Zr48Nb8Cu12Fe8Be24 bulk metallic glassy and crystallized alloys in the temperature range of 4.2-293 K is investigated. It is found that the resistivity in glassy and crystallized states shows opposite temperature coefficients. For the metallic glass, the resistivity shows a negative logarithmic dependence at temperatures below 16 K, whereas it has more normal behavior for the crystallized alloy. At higher temperatures, the resistivity in both glassy and crystallized alloys shows dependence upon both T and T2, but the signs of the T and T2 terms are opposite. The results are interpreted in terms of scattering from two-level tunneling states in glasses and the generalized Ziman diffraction model.

  12. Low substrate temperature deposition of diamond coatings derived from glassy carbon

    DOEpatents

    Holcombe, Jr., Cressie E.; Seals, Roland D.

    1995-01-01

    A process for depositing a diamond coating on a substrate at temperatures less than about 550.degree. C. A powder mixture of glassy carbon and diamond particles is passed through a high velocity oxy-flame apparatus whereupon the powders are heated prior to impingement at high velocity against the substrate. The powder mixture contains between 5 and 50 powder volume percent of the diamond particles, and preferably between 5 and 15 powder volume percent. The particles have a size from about 5 to about 100 micrometers, with the diamond particles being about 5 to about 30 micrometers. The flame of the apparatus provides a velocity of about 350 to about 1000 meters per second, with the result that upon impingement upon the substrate, the glassy carbon is phase transformed to diamond as coaxed by the diamond content of the powder mixture.

  13. Unraveling the Mechanism of Nanoscale Mechanical Reinforcement in Glassy Polymer Nanocomposites

    DOE PAGES

    Cheng, Shiwang; Bocharova, Vera; Belianinov, Alex; ...

    2016-05-20

    The mechanical reinforcement of polymer nanocomposites (PNCs) above the glass transition temperature, T g, has been extensively researched. However, not much is known about the origin of this effect below T g. In this paper, we unravel the mechanism of PNC reinforcement within the glassy state by directly probing nanoscale mechanical properties with atomic force microscopy and macroscopic properties with Brillouin light scattering. Our results unambiguously show that the "glassy" Young's modulus in the interfacial polymer layer of PNCs is two-times higher than in the bulk polymer, which results in significant reinforcement below T g. We ascribe this phenomenon tomore » a high stretching of the chains within the interfacial layer. Since the interfacial chain packing is essentially temperature independent, these findings provide a new insight into the mechanical reinforcement of PNCs also above T g.« less

  14. Gels from soft hairy nanoparticles in polymeric matrices

    NASA Astrophysics Data System (ADS)

    Vlassopoulos, Dimitris

    2013-03-01

    Hairy particles represent a huge class of soft colloids with tunable interactions and properties. Advances in synthetic chemistry have enabled obtaining well-characterized such systems for specific needs. In this talk we present two model hairy soft particles with diameters of the order of tens of nanometers, star polymers and polymerically grafted spherical particles. In particular, we discuss design strategies for dispersing them in polymeric matrices and eventually creating and breaking gels. Control parameters are the matrix molar mass, the grafting density (or functionality) and the size of the grafts (or arms). The linear viscoelastic properties and slow time evolution of the gels are examined in view of the existing knowledge from colloidal gels consisting of micron-sized particles, and compared. In the case of stars we start from a concentrated glassy suspension in molecular solvent and add homopolymer at increasing concentration, and as a result of the induced osmotic pressure the stars shrink and a depletion gel is formed. For the grafted colloidal particles, they are added at low concentration to a polymer matrix, and it has been shown that under certain conditions the anisotropy of interactions gives rise to network formation. We then focus on the nonlinear rheological response and in particular the effect of shear flow in inducing a solid to liquid transition. Our studies show that the yielding process is gradual and shares many common features with that of flocculated colloidal suspensions, irrespectively of the shape of the building block of the gel. Whereas shear can melt such a gel, it cannot break it into its constituent blocks and hence fully disperse the hairy nanoparticles. On the other hand, the hairy particles are intrinsically hybrid. We show how this important feature is reflected on the heating of the gels. In that case, the mismatch of thermal expansion coefficients of core and shell appears to play a role on the particle response as it

  15. Inference for High-dimensional Differential Correlation Matrices *

    PubMed Central

    Cai, T. Tony; Zhang, Anru

    2015-01-01

    Motivated by differential co-expression analysis in genomics, we consider in this paper estimation and testing of high-dimensional differential correlation matrices. An adaptive thresholding procedure is introduced and theoretical guarantees are given. Minimax rate of convergence is established and the proposed estimator is shown to be adaptively rate-optimal over collections of paired correlation matrices with approximately sparse differences. Simulation results show that the procedure significantly outperforms two other natural methods that are based on separate estimation of the individual correlation matrices. The procedure is also illustrated through an analysis of a breast cancer dataset, which provides evidence at the gene co-expression level that several genes, of which a subset has been previously verified, are associated with the breast cancer. Hypothesis testing on the differential correlation matrices is also considered. A test, which is particularly well suited for testing against sparse alternatives, is introduced. In addition, other related problems, including estimation of a single sparse correlation matrix, estimation of the differential covariance matrices, and estimation of the differential cross-correlation matrices, are also discussed. PMID:26500380

  16. Inference for High-dimensional Differential Correlation Matrices.

    PubMed

    Cai, T Tony; Zhang, Anru

    2016-01-01

    Motivated by differential co-expression analysis in genomics, we consider in this paper estimation and testing of high-dimensional differential correlation matrices. An adaptive thresholding procedure is introduced and theoretical guarantees are given. Minimax rate of convergence is established and the proposed estimator is shown to be adaptively rate-optimal over collections of paired correlation matrices with approximately sparse differences. Simulation results show that the procedure significantly outperforms two other natural methods that are based on separate estimation of the individual correlation matrices. The procedure is also illustrated through an analysis of a breast cancer dataset, which provides evidence at the gene co-expression level that several genes, of which a subset has been previously verified, are associated with the breast cancer. Hypothesis testing on the differential correlation matrices is also considered. A test, which is particularly well suited for testing against sparse alternatives, is introduced. In addition, other related problems, including estimation of a single sparse correlation matrix, estimation of the differential covariance matrices, and estimation of the differential cross-correlation matrices, are also discussed.

  17. Computer-Access-Code Matrices

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1990-01-01

    Authorized users respond to changing challenges with changing passwords. Scheme for controlling access to computers defeats eavesdroppers and "hackers". Based on password system of challenge and password or sign, challenge, and countersign correlated with random alphanumeric codes in matrices of two or more dimensions. Codes stored on floppy disk or plug-in card and changed frequently. For even higher security, matrices of four or more dimensions used, just as cubes compounded into hypercubes in concurrent processing.

  18. Making almost commuting matrices commute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hastings, Matthew B

    Suppose two Hermitian matrices A, B almost commute ({parallel}[A,B]{parallel} {<=} {delta}). Are they close to a commuting pair of Hermitian matrices, A', B', with {parallel}A-A'{parallel},{parallel}B-B'{parallel} {<=} {epsilon}? A theorem of H. Lin shows that this is uniformly true, in that for every {epsilon} > 0 there exists a {delta} > 0, independent of the size N of the matrices, for which almost commuting implies being close to a commuting pair. However, this theorem does not specifiy how {delta} depends on {epsilon}. We give uniform bounds relating {delta} and {epsilon}. The proof is constructive, giving an explicit algorithm to construct A'more » and B'. We provide tighter bounds in the case of block tridiagonal and tridiagnonal matrices. Within the context of quantum measurement, this implies an algorithm to construct a basis in which we can make a projective measurement that approximately measures two approximately commuting operators simultaneously. Finally, we comment briefly on the case of approximately measuring three or more approximately commuting operators using POVMs (positive operator-valued measures) instead of projective measurements.« less

  19. Mesure Objective De L'attenuation et De L'effet D'occlusion Des Protecteurs Auditifs a Partir Des Potentiels Evoques Stationnaires et Multiples =

    NASA Astrophysics Data System (ADS)

    Valentin, Olivier

    Selon l'Organisation mondiale de la sante, le nombre de travailleurs exposes quotidiennement a des niveaux de bruit prejudiciables a leur audition est passe de 120 millions en 1995 a 250 millions en 2004. Meme si la reduction du bruit a la source devrait etre toujours privilegiee, la solution largement utilisee pour lutter contre le bruit au travail reste la protection auditive individuelle. Malheureusement, le port des protecteurs auditifs n'est pas toujours respecte par les travailleurs car il est difficile de fournir un protecteur auditif dont le niveau d'attenuation effective est approprie a l'environnement de travail d'un individu. D'autre part, l'occlusion du canal auditif induit une modification de la perception de la parole, ce qui cree un inconfort incitant les travailleurs a retirer leurs protecteurs. Ces deux problemes existent parce que les methodes actuelles de mesure de l'effet d'occlusion et de l'attenuation sont limitees. Les mesures objectives basees sur des mesures microphoniques intra-auriculaires ne tiennent pas compte de la transmission directe du son a la cochlee par conduction osseuse. Les mesures subjectives au seuil de l'audition sont biaisees a cause de l'effet de masquage aux basses frequences induit par le bruit physiologique. L'objectif principal de ce travail de these de doctorat est d'ameliorer la mesure de l'attenuation et de l'effet d'occlusion des protecteurs auditifs intra-auriculaires. L'approche generale consiste a : (i) verifier s'il est possible de mesurer l'attenuation des protecteurs auditifs grâce au recueil des potentiels evoques stationnaires et multiples (PEASM) avec et sans protecteur auditif (protocole 1), (ii) adapter cette methodologie pour mesurer l'effet d'occlusion induit par le port de protecteur auditifs intra-auriculaires (protocole 2), et (iii) valider chaque protocole par l'intermediaire de mesures realisees sur sujets humains. Les resultats du protocole 1 demontrent que les PEASM peuvent etre utilises pour

  20. Low substrate temperature deposition of diamond coatings derived from glassy carbon

    DOEpatents

    Holcombe, C.E. Jr.; Seals, R.D.

    1995-09-26

    A process is disclosed for depositing a diamond coating on a substrate at temperatures less than about 550 C. A powder mixture of glassy carbon and diamond particles is passed through a high velocity oxy-flame apparatus whereupon the powders are heated prior to impingement at high velocity against the substrate. The powder mixture contains between 5 and 50 powder volume percent of the diamond particles, and preferably between 5 and 15 powder volume percent. The particles have a size from about 5 to about 100 micrometers, with the diamond particles being about 5 to about 30 micrometers. The flame of the apparatus provides a velocity of about 350 to about 1000 meters per second, with the result that upon impingement upon the substrate, the glassy carbon is phase transformed to diamond as coaxed by the diamond content of the powder mixture. 2 figs.

  1. A Brief Historical Introduction to Matrices and Their Applications

    ERIC Educational Resources Information Center

    Debnath, L.

    2014-01-01

    This paper deals with the ancient origin of matrices, and the system of linear equations. Included are algebraic properties of matrices, determinants, linear transformations, and Cramer's Rule for solving the system of algebraic equations. Special attention is given to some special matrices, including matrices in graph theory and electrical…

  2. A Thermodynamic Theory of Solid Viscoelasticity. Part 3: Nonlinear Glassy Viscoelasticity, Stability Constraints, Specifications

    NASA Technical Reports Server (NTRS)

    Freed, Alan; Leonov, Arkady I.

    2002-01-01

    This paper, the last in the series, continues developing the nonlinear constitutive relations for non-isothermal, compressible, solid viscoelasticity. We initially discuss a single integral approach, more suitable for the glassy state of rubber-like materials, with basic functionals involved in the thermodynamic description for this type of viscoelasticity. Then we switch our attention to analyzing stability constraints, imposed on the general formulation of the nonlinear theory of solid viscoelasticity. Finally, we discuss specific (known from the literature or new) expressions for material functions that are involved in the constitutive formulations of both the rubber-like and glassy-like, complementary parts of the theory.

  3. Cooperativity in glassy dynamics investigated by higher-harmonic dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Bauer, Thomas; Lunkenheimer, Peter; Loidl, Alois; Experimental Physics V Team

    2014-03-01

    In recent years, due to experimental advances initiated by hole burning experiments, nonlinear dielectric spectroscopy has gained increasing interest in the field of glass-forming matter. For example, refining the technique of high-field permittivity measurements, we found a surprising lack of nonlinearity in the so-called excess wing region, that could not be accessed by this method before. In the present contribution, we report new, detailed measurements of the third-order nonlinear dielectric susceptibility χ3 of four glass-forming liquids for a broad temperature range. We find a significant hump in χ3(ν) , from which we deduce the number of correlated molecules Ncorr. We detect a continuous increase of Ncorr on approaching the glass-transition temperature. Comparing these results with the temperature-dependent apparent energy barriers in these systems, our experiments finally prove the old notion that intermolecular correlations of glassy systems are responsible for the non-canonical temperature development of glassy dynamics. This work was supported by the Deutsche Forschungsgemeinschaft via Research Unit FOR1394.

  4. Arrowheaded enhanced multivariance products representation for matrices (AEMPRM): Specifically focusing on infinite matrices and converting arrowheadedness to tridiagonality

    NASA Astrophysics Data System (ADS)

    Özdemir, Gizem; Demiralp, Metin

    2015-12-01

    In this work, Enhanced Multivariance Products Representation (EMPR) approach which is a Demiralp-and-his- group extension to the Sobol's High Dimensional Model Representation (HDMR) has been used as the basic tool. Their discrete form have also been developed and used in practice by Demiralp and his group in addition to some other authors for the decomposition of the arrays like vectors, matrices, or multiway arrays. This work specifically focuses on the decomposition of infinite matrices involving denumerable infinitely many rows and columns. To this end the target matrix is first decomposed to the sum of certain outer products and then each outer product is treated by Tridiagonal Matrix Enhanced Multivariance Products Representation (TMEMPR) which has been developed by Demiralp and his group. The result is a three-matrix- factor-product whose kernel (the middle factor) is an arrowheaded matrix while the pre and post factors are invertable matrices decomposed of the support vectors of TMEMPR. This new method is called as Arrowheaded Enhanced Multivariance Products Representation for Matrices. The general purpose is approximation of denumerably infinite matrices with the new method.

  5. ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES.

    PubMed

    Fan, Jianqing; Rigollet, Philippe; Wang, Weichen

    High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓ r norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics.

  6. ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES

    PubMed Central

    Fan, Jianqing; Rigollet, Philippe; Wang, Weichen

    2016-01-01

    High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓr norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics. PMID:26806986

  7. On Fluctuations of Eigenvalues of Random Band Matrices

    NASA Astrophysics Data System (ADS)

    Shcherbina, M.

    2015-10-01

    We consider the fluctuations of linear eigenvalue statistics of random band matrices whose entries have the form with i.i.d. possessing the th moment, where the function u has a finite support , so that M has only nonzero diagonals. The parameter b (called the bandwidth) is assumed to grow with n in a way such that . Without any additional assumptions on the growth of b we prove CLT for linear eigenvalue statistics for a rather wide class of test functions. Thus we improve and generalize the results of the previous papers (Jana et al., arXiv:1412.2445; Li et al. Random Matrices 2:04, 2013), where CLT was proven under the assumption . Moreover, we develop a method which allows to prove automatically the CLT for linear eigenvalue statistics of the smooth test functions for almost all classical models of random matrix theory: deformed Wigner and sample covariance matrices, sparse matrices, diluted random matrices, matrices with heavy tales etc.

  8. Relationship between local structure and relaxation in out-of-equilibrium glassy systems

    DOE PAGES

    Schoenholz, Samuel S.; Cubuk, Ekin D.; Kaxiras, Efthimios; ...

    2016-12-27

    The dynamical glass transition is typically taken to be the temperature at which a glassy liquid is no longer able to equilibrate on experimental timescales. Consequently, the physical properties of these systems just above or below the dynamical glass transition, such as viscosity, can change by many orders of magnitude over long periods of time following external perturbation. During this progress toward equilibrium, glassy systems exhibit a history dependence that has complicated their study. In previous work, we bridged the gap between structure and dynamics in glassy liquids above their dynamical glass transition temperatures by introducing a scalar field calledmore » “softness,” a quantity obtained using machine-learning methods. Softness is designed to capture the hidden patterns in relative particle positions that correlate strongly with dynamical rearrangements of particle positions. Here we show that the out-of-equilibrium behavior of a model glass-forming system can be understood in terms of softness. We first demonstrate that the evolution of behavior following a temperature quench is a primarily structural phenomenon: The structure changes considerably, but the relationship between structure and dynamics remains invariant. We then show that the relaxation time can be robustly computed from structure as quantified by softness, with the same relation holding both in equilibrium and as the system ages. Together, these results show that the history dependence of the relaxation time in glasses requires knowledge only of the softness in addition to the usual state variables.« less

  9. Generation of fine hydromagmatic ash by growth and disintegration of glassy rinds

    USGS Publications Warehouse

    Mastin, L.G.

    2007-01-01

    The deposits of mafic hydromagmatic eruptions are more fine grained and variable in vesicularity than dry magmatic deposits. Blocky, equant shapes of many hydromagmatic clasts also contrast with droplet, thread, and bubble wall morphology of dry magmatic fragments. Small (glassy rinds on pyroclast surfaces as they deform within turbulent flows. This process, termed "turbulent shedding", may occur during the expansion phase of vapor explosions or during turbulent but nonexplosive mixing of magma with water, steam, or water sprays. The occurrence of turbulent shedding and the resulting fragment sizes depend on the timescale for rind growth and the timescale between disturbances that remove or disintegrate glassy rinds. Turbulent shedding is directly observable in some small littoral jets at Kilauea. Calculations suggest that, in the presence of liquid water or water sprays, glassy rinds having a thickness of microns to millimeters should form in milliseconds to seconds. This is similar to the timescale between turbulent velocity fluctuations that can shred lava globules and remove such rinds. The fraction of a deposit consisting of fine ash should increase with the duration of this process: Large-scale Surtseyan jets generate hundreds or thousands of shedding events; bubble bursts or tephra jets at Kilauea's coast may produce only a few.

  10. Relationship between local structure and relaxation in out-of-equilibrium glassy systems.

    PubMed

    Schoenholz, Samuel S; Cubuk, Ekin D; Kaxiras, Efthimios; Liu, Andrea J

    2017-01-10

    The dynamical glass transition is typically taken to be the temperature at which a glassy liquid is no longer able to equilibrate on experimental timescales. Consequently, the physical properties of these systems just above or below the dynamical glass transition, such as viscosity, can change by many orders of magnitude over long periods of time following external perturbation. During this progress toward equilibrium, glassy systems exhibit a history dependence that has complicated their study. In previous work, we bridged the gap between structure and dynamics in glassy liquids above their dynamical glass transition temperatures by introducing a scalar field called "softness," a quantity obtained using machine-learning methods. Softness is designed to capture the hidden patterns in relative particle positions that correlate strongly with dynamical rearrangements of particle positions. Here we show that the out-of-equilibrium behavior of a model glass-forming system can be understood in terms of softness. To do this we first demonstrate that the evolution of behavior following a temperature quench is a primarily structural phenomenon: The structure changes considerably, but the relationship between structure and dynamics remains invariant. We then show that the relaxation time can be robustly computed from structure as quantified by softness, with the same relation holding both in equilibrium and as the system ages. Together, these results show that the history dependence of the relaxation time in glasses requires knowledge only of the softness in addition to the usual state variables.

  11. Dielectric relaxation studies in super-cooled liquid and glassy phases of anti-cancerous alkaloid: Brucine

    NASA Astrophysics Data System (ADS)

    Afzal, Aboothahir; Shahin Thayyil, M.; Sulaiman, M. K.; Kulkarni, A. R.

    2018-05-01

    Brucine has good anti-tumor effects, on both liver cancer and breast cancer. It has bioavailability of 40.83%. Since the bioavailability of the drug is low, an alternative method to increase its bioavailability and solubility is by changing the drug into glassy form. We used Differential Scanning Calorimetry (DSC) for studying the glass forming ability of the drug. Brucine was found to be a very good glass former glass transition temperature 365 K. Based on the DSC analysis we have used broadband dielectric spectroscopy (BDS) for studying the drug in the super cooled and glassy state. BDS is an effective tool to probe the molecular dynamics in the super cooled and glassy state. Molecular mobility is found to be present even in the glassy state of this active pharmaceutical ingredient (API) which is responsible for the instability. Our aim is to study the factors responsible for instability of this API in amorphous form. Cooling curves for dielectric permittivity and dielectric loss revealed the presence of structural (α) and secondary relaxations (β and γ). Temperature dependence of relaxation time is fitted by Vogel-Fulcher-Tammann equation and found the values of activation energy of the α relaxation, fragility and glass transition temperature. Paluch's anti correlation is also verified, that the width of the α-loss peak at or near the glass transition temperature Tg is strongly anticorrelated with the polarity of the molecule. The larger the dielectric relaxation strength Δɛ (Tg) of the system, the narrower is the α-loss peak (higher value of βKWW).

  12. Mating behavior and vibrational mimicry in the glassy-winged sharpshooter, Homalodisca vitripennis

    USDA-ARS?s Scientific Manuscript database

    Vibrational communication is widespread in insects, particularly in leafhoppers where the pair formation process is mediated by species-specific vibrational signals. One important pest using vibrational communication, glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is a vector of Xylella...

  13. Matric potential

    Treesearch

    Melvin T. Tyree

    2003-01-01

    Matric potential, r, is a component of water potential, ?, but has different meanings in plant physiology vs. soil science. A rigorous definition of r requires a reference to principles of thermodynamics (both classical and irreversible thermodynamics). A rigorous treatment is beyond the scope of this brief overview. Readers...

  14. Systemes Fermioniques a Basse Dimension D'espace: Supraconductivite, Effet Hall Quantique et Statistique Fractionnaire

    NASA Astrophysics Data System (ADS)

    Sakhi, Said

    Cette these est constituee de trois sujets de recherche distincts. Les deux premiers articles traitent du phenomene de supraconductivite dans un modele bidimensionnel, dans le troisieme article on etudie l'action effective d'un systeme electronique soumis a l'effet d'un champ magnetique (systeme de Hall) et le dernier article examine la quantification d'un systeme de particules identiques en deux dimensions d'espace et la possibilite des anyons. Le modele qu'on analyse dans les deux premiers articles est un systeme fermionique dont les particules chargees et de masse nulle interagissent entre elles avcc un couplage attractif et fort. L'analyse de l'action effective decrivant la physique a basse energie nous permet d'examiner la structure de l'espace de phase. A temperature nulle, le parametre d'ordre du systeme prend une valeur moyenne non nulle. Consequemment, la symetrie continue U(1) du modele est spontanement brisee et il en resulte l'apparition d'un mode de Goldstone. En presence d'un champ electromagnetique externe, ce mode disparait et le champ de jauge acquiert une masse donc l'effet Meissner caracteristique d'un supraconducteur. Bien que le modele ne soit pas renormalisable dans le sens perturbatif, on montre qu'il l'est dans le cadre du developpement en 1/N ou N est le nombre d'especes fermioniques. En outre, on montre que l'inclusion des effets thermiques change radicalement le mecanisme de supraconductivite. En effet, on montre que la brisure spontanee de la symetrie U(1) n'est plus possible a temperature finie a cause de tres severes divergences infrarouges. Par contre, la dynamique des tourbillons (vortex) existant dans le plan devient essentielle. On montre que le phenomene de supraconductivite resulte du confinement de ces objets topologiques et que la temperature critique s'identifie a celle de Kosterlitz -Thouless. Ce mecanisme de supraconductivite presente l'avantage d'aboutir a un rapport gap a la temperature critique plus eleve que celui du

  15. Substrate-borne vibrational signals in intraspecific communication of glassy-winged sharpshooters (GWSS)

    USDA-ARS?s Scientific Manuscript database

    Exploitation of vibrational signals for suppressing glassy-winged sharpshooter (GWSS) populations could prove to be a useful tool. However, existing knowledge on GWSS vibrational communication is insufficient to implement a management program for this pest in California. Therefore, the objective of ...

  16. Effets Seebeck et Nernst dans les cuprates: Etude de la reconstruction de la surface de Fermi sous champ magnetique intense

    NASA Astrophysics Data System (ADS)

    Laliberte, Francis

    2010-06-01

    Ce memoire presente des mesures de transport thermoelectrique, les effets Seebeck et Nernst, dans une serie d'echantillons de supraconducteurs a haute temperature critique. Des resultats obtenus recemment au Laboratoire National des Champs Magnetiques Intenses a Grenoble sur La1.7Eu0.2Sr0.1 CuO4, La1.675Eu0.2Sr0.125CuO 4, La1.64Eu0.2Sr0.16CuO4, La1.74Eu0.1Sr0.16CuO4 et La 1.4Nd0.4Sr0.2CuO4 sont analyses. Une attention particuliere est accordee aux equations de la theorie semi-classique du transport et leur validite est verifiee. La procedure experimentale et les materiaux utilises pour concevoir les montages de mesures sont expliques en detail. Enfin, un chapitre est dedie a l'explication et l'interpretation des resultats de transport thermoelectrique sur YBa2Cu3O6+delta publies au cours de l'hiver 2010 dans les revues Nature et Physical Review Letters. Les donnees d'effet Seebeck dans les echantillons de La 1.8-x,Eu0.2SrxCuO 4, ou un changement de signe est observe, permettent de conclure a la presence d'une poche d'electrons dans la surface de Fermi qui domine le transport a basse temperature dans la region sous-dopee du diagramme de phase. Cette conclusion est similaire a celle obtenue par des mesures d'effet Hall dans YBa 2Cu3O6+delta et elle cadre bien dans un scenario de reconstruction de la surface de Fermi. Les donnees d'effet Nernst recueillies indiquent que la contribution des fluctuations supraconductrices est limitee a un modeste intervalle de temperature au-dessus de la temperature critique.

  17. Homology search with binary and trinary scoring matrices.

    PubMed

    Smith, Scott F

    2006-01-01

    Protein homology search can be accelerated with the use of bit-parallel algorithms in conjunction with constraints on the values contained in the scoring matrices. Trinary scoring matrices (containing only the values -1, 0, and 1) allow for significant acceleration without significant reduction in the receiver operating characteristic (ROC) score of a Smith-Waterman search. Binary scoring matrices (containing the values 0 and 1) result in some reduction in ROC score, but result in even more acceleration. Binary scoring matrices and five-bit saturating scores can be used for fast prefilters to the Smith-Waterman algorithm.

  18. Comparaison des effets des irradiations γ, X et UV dans les fibres optiques

    NASA Astrophysics Data System (ADS)

    Girard, S.; Ouerdane, Y.; Baggio, J.; Boukenter, A.; Meunier, J.-P.; Leray, J.-L.

    2005-06-01

    Les fibres optiques présentent de nombreux avantages incitant à les intégrer dans des applications devant résister aux environnements radiatifs associés aux domaines civil, spatial ou militaire. Cependant, leur exposition à un rayonnement entraîne la création de défauts ponctuels dans la silice amorphe pure ou dopée qui constitue les différentes parties de la fibre optique. Ces défauts causent, en particulier, une augmentation transitoire de l'atténuation linéique des fibres optiques responsable de la dégradation voire de la perte du signal propagé dans celles-ci. Dans cet article, nous comparons les effets de deux types d'irradiation: une impulsion X et une dose γ cumulée. Les effets de ces irradiations sont ensuite comparés avec ceux induits par une insolation ultraviolette (244 nm) sur les propriétés d'absorption des fibres optiques. Nous montrons qu'il existe des similitudes entre ces différentes excitations et qu'il est possible, sous certaines conditions, d'utiliser celles-ci afin d'évaluer la capacité de certaines fibres optiques à fonctionner dans un environnement nucléaire donné.

  19. Virial expansion for almost diagonal random matrices

    NASA Astrophysics Data System (ADS)

    Yevtushenko, Oleg; Kravtsov, Vladimir E.

    2003-08-01

    Energy level statistics of Hermitian random matrices hat H with Gaussian independent random entries Higeqj is studied for a generic ensemble of almost diagonal random matrices with langle|Hii|2rangle ~ 1 and langle|Hi\

  20. Elastic properties of aspirin in its crystalline and glassy phases studied by micro-Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Ko, Jae-Hyeon; Lee, Kwang-Sei; Ike, Yuji; Kojima, Seiji

    2008-11-01

    The acoustic waves propagating along the direction perpendicular to the (1 0 0) cleavage plane of aspirin crystal were investigated using micro-Brillouin spectroscopy from which C11, C55 and C66 were obtained. The temperature dependence of the longitudinal acoustic waves could be explained by normal anharmonic lattice models, while the transverse acoustic waves showed an abnormal increase in the hypersonic attenuation at low temperatures indicating their coupling to local remnant dynamics. The sound velocity as well as the attenuation of the longitudinal acoustic waves of glassy aspirin showed a substantial change at ˜235 K confirming a transition from glassy to supercooled liquid state in vitreous aspirin.

  1. Synchronous correlation matrices and Connes’ embedding conjecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykema, Kenneth J., E-mail: kdykema@math.tamu.edu; Paulsen, Vern, E-mail: vern@math.uh.edu

    In the work of Paulsen et al. [J. Funct. Anal. (in press); preprint arXiv:1407.6918], the concept of synchronous quantum correlation matrices was introduced and these were shown to correspond to traces on certain C*-algebras. In particular, synchronous correlation matrices arose in their study of various versions of quantum chromatic numbers of graphs and other quantum versions of graph theoretic parameters. In this paper, we develop these ideas further, focusing on the relations between synchronous correlation matrices and microstates. We prove that Connes’ embedding conjecture is equivalent to the equality of two families of synchronous quantum correlation matrices. We prove thatmore » if Connes’ embedding conjecture has a positive answer, then the tracial rank and projective rank are equal for every graph. We then apply these results to more general non-local games.« less

  2. Boson peak as a probe of quantum effects in a glassy state of biomolecules: the case of L-cysteine.

    PubMed

    Lima, T A; Ishikawa, M S; Martinho, H S

    2014-02-01

    Some physical properties of hydrated biomolecules, e.g., the occurrence of a boson peak, have been recognized to resemble those of glassy states. The present work shows that quantum fluctuations play a fundamental role in describing the glassy state of biomolecules, particularly at lower hydration levels. There is a linear relationship between the quantumness and the slope of the temperature dependence of the boson peak frequency, which is used to classify the extent of quantum contributions to the glassy state of glasses in general. Lastly, we demonstrate that the boson peak two-band spectral structure that is observed in some cases can be directly linked to the anisotropy of the elastic properties of the material. The amino acid L-cysteine is studied in detail. The findings are compared with previously reported data for other macromolecules.

  3. Cooperative strings and glassy interfaces

    PubMed Central

    Salez, Thomas; Salez, Justin; Dalnoki-Veress, Kari; Raphaël, Elie; Forrest, James A.

    2015-01-01

    We introduce a minimal theory of glass formation based on the ideas of molecular crowding and resultant string-like cooperative rearrangement, and address the effects of free interfaces. In the bulk case, we obtain a scaling expression for the number of particles taking part in cooperative strings, and we recover the Adam–Gibbs description of glassy dynamics. Then, by including thermal dilatation, the Vogel–Fulcher–Tammann relation is derived. Moreover, the random and string-like characters of the cooperative rearrangement allow us to predict a temperature-dependent expression for the cooperative length ξ of bulk relaxation. Finally, we explore the influence of sample boundaries when the system size becomes comparable to ξ. The theory is in agreement with measurements of the glass-transition temperature of thin polymer films, and allows quantification of the temperature-dependent thickness hm of the interfacial mobile layer. PMID:26100908

  4. Diazonium Chemistry for the Bio-Functionalization of Glassy Nanostring Resonator Arrays

    PubMed Central

    Zheng, Wei; Du, Rongbing; Cao, Yong; Mohammad, Mohammad A.; Dew, Steven K.; McDermott, Mark T.; Evoy, Stephane

    2015-01-01

    Resonant glassy nanostrings have been employed for the detection of biomolecules. These devices offer high sensitivity and amenability to large array integration and multiplexed assays. Such a concept has however been impaired by the lack of stable and biocompatible linker chemistries. Diazonium salt reduction-induced aryl grafting is an aqueous-based process providing strong chemical adhesion. In this work, diazonium-based linker chemistry was performed for the first time on glassy nanostrings, which enabled the bio-functionalization of such devices. Large arrays of nanostrings with ultra-narrow widths down to 10 nm were fabricated employing electron beam lithography. Diazonium modification was first developed on SiCN surfaces and validated by X-ray photoelectron spectroscopy. Similarly modified nanostrings were then covalently functionalized with anti-rabbit IgG as a molecular probe. Specific enumeration of rabbit IgG was successfully performed through observation of downshifts of resonant frequencies. The specificity of this enumeration was confirmed through proper negative control experiments. Helium ion microscopy further verified the successful functionalization of nanostrings. PMID:26263989

  5. Diazonium Chemistry for the Bio-Functionalization of Glassy Nanostring Resonator Arrays.

    PubMed

    Zheng, Wei; Du, Rongbing; Cao, Yong; Mohammad, Mohammad A; Dew, Steven K; McDermott, Mark T; Evoy, Stephane

    2015-07-30

    Resonant glassy nanostrings have been employed for the detection of biomolecules. These devices offer high sensitivity and amenability to large array integration and multiplexed assays. Such a concept has however been impaired by the lack of stable and biocompatible linker chemistries. Diazonium salt reduction-induced aryl grafting is an aqueous-based process providing strong chemical adhesion. In this work, diazonium-based linker chemistry was performed for the first time on glassy nanostrings, which enabled the bio-functionalization of such devices. Large arrays of nanostrings with ultra-narrow widths down to 10 nm were fabricated employing electron beam lithography. Diazonium modification was first developed on SiCN surfaces and validated by X-ray photoelectron spectroscopy. Similarly modified nanostrings were then covalently functionalized with anti-rabbit IgG as a molecular probe. Specific enumeration of rabbit IgG was successfully performed through observation of downshifts of resonant frequencies. The specificity of this enumeration was confirmed through proper negative control experiments. Helium ion microscopy further verified the successful functionalization of nanostrings.

  6. Time series, correlation matrices and random matrix models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinayak; Seligman, Thomas H.

    2014-01-08

    In this set of five lectures the authors have presented techniques to analyze open classical and quantum systems using correlation matrices. For diverse reasons we shall see that random matrices play an important role to describe a null hypothesis or a minimum information hypothesis for the description of a quantum system or subsystem. In the former case various forms of correlation matrices of time series associated with the classical observables of some system. The fact that such series are necessarily finite, inevitably introduces noise and this finite time influence lead to a random or stochastic component in these time series.more » By consequence random correlation matrices have a random component, and corresponding ensembles are used. In the latter we use random matrices to describe high temperature environment or uncontrolled perturbations, ensembles of differing chaotic systems etc. The common theme of the lectures is thus the importance of random matrix theory in a wide range of fields in and around physics.« less

  7. Quantum Entanglement and Reduced Density Matrices

    NASA Astrophysics Data System (ADS)

    Purwanto, Agus; Sukamto, Heru; Yuwana, Lila

    2018-05-01

    We investigate entanglement and separability criteria of multipartite (n-partite) state by examining ranks of its reduced density matrices. Firstly, we construct the general formula to determine the criterion. A rank of origin density matrix always equals one, meanwhile ranks of reduced matrices have various ranks. Next, separability and entanglement criterion of multipartite is determined by calculating ranks of reduced density matrices. In this article we diversify multipartite state criteria into completely entangled state, completely separable state, and compound state, i.e. sub-entangled state and sub-entangledseparable state. Furthermore, we also shorten the calculation proposed by the previous research to determine separability of multipartite state and expand the methods to be able to differ multipartite state based on criteria above.

  8. Temperature-dependent microindentation data of an epoxy composition in the glassy region

    NASA Astrophysics Data System (ADS)

    Minster, Jiří; Králík, Vlastimil

    2015-02-01

    The short-term instrumented microindentation technique was applied for assessing the influence of temperature in the glassy region on the time-dependent mechanical properties of an average epoxy resin mix near to its native state. Linear viscoelasticity theory with the assumption of time-independent Poisson ratio value forms the basis for processing the experimental results. The sharp standard Berkovich indenter was used to measure the local mechanical properties at temperatures 20, 24, 28, and 35 °C. The short-term viscoelastic compliance histories were defined by the Kohlrausch-Williams-Watts double exponential function. The findings suggest that depth-sensing indentation data of thermorheologically simple materials influenced by different temperatures in the glassy region can also be used, through the time-temperature superposition, to extract viscoelastic response functions accurately. This statement is supported by the comparison of the viscoelastic compliance master curve of the tested material with data derived from standard macro creep measurements under pressure on the material in a conformable state.

  9. A thermo-chemo-mechanically coupled constitutive model for curing of glassy polymers

    NASA Astrophysics Data System (ADS)

    Sain, Trisha; Loeffel, Kaspar; Chester, Shawn

    2018-07-01

    Curing of a polymer is the process through which a polymer liquid transitions into a solid polymer, capable of bearing mechanical loads. The curing process is a coupled thermo-chemo-mechanical conversion process which requires a thorough understanding of the system behavior to predict the cure dependent mechanical behavior of the solid polymer. In this paper, a thermodynamically consistent, frame indifferent, thermo-chemo-mechanically coupled continuum level constitutive framework is proposed for thermally cured glassy polymers. The constitutive framework considers the thermodynamics of chemical reactions, as well as the material behavior for a glassy polymer. A stress-free intermediate configuration is introduced within a finite deformation setting to capture the formation of the network in a stress-free configuration. This work considers a definition for the degree of cure based on the chemistry of the curing reactions. A simplified version of the proposed model has been numerically implemented, and simulations are used to understand the capabilities of the model and framework.

  10. Estimating soil matric potential in Owens Valley, California

    USGS Publications Warehouse

    Sorenson, Stephen K.; Miller, R.F.; Welch, M.R.; Groeneveld, D.P.; Branson, F.A.

    1988-01-01

    Much of the floor of the Owens Valley, California, is covered with alkaline scrub and alkaline meadow plant communities, whose existence is dependent partly on precipitation and partly on water infiltrated into the rooting zone from the shallow water table. The extent to which these plant communities are capable of adapting to and surviving fluctuations in the water table depends on physiological adaptations of the plants and on the water content, matric potential characteristics of the soils. Two methods were used to estimate soil matric potential in test sites in Owens Valley. The first was the filter-paper method, which uses water content of filter papers equilibrated to water content of soil samples taken with a hand auger. The other method of estimating soil matric potential was a modeling approach based on data from this and previous investigations. These data indicate that the base 10 logarithm of soil matric potential is a linear function of gravimetric soil water content for a particular soil. Estimates of soil water characteristic curves were made at two sites by averaging the gravimetric soil water content and soil matric potential values from multiple samples at 0.1 m depths derived by using the hand auger and filter paper method and entering these values in the soil water model. The characteristic curves then were used to estimate soil matric potential from estimates of volumetric soil water content derived from neutron-probe readings. Evaluation of the modeling technique at two study sites indicated that estimates of soil matric potential within 0.5 pF units of the soil matric potential value derived by using the filter paper method could be obtained 90 to 95% of the time in soils where water content was less than field capacity. The greatest errors occurred at depths where there was a distinct transition between soils of different textures. (Lantz-PTT)

  11. Tensor Sparse Coding for Positive Definite Matrices.

    PubMed

    Sivalingam, Ravishankar; Boley, Daniel; Morellas, Vassilios; Papanikolopoulos, Nikos

    2013-08-02

    In recent years, there has been extensive research on sparse representation of vector-valued signals. In the matrix case, the data points are merely vectorized and treated as vectors thereafter (for e.g., image patches). However, this approach cannot be used for all matrices, as it may destroy the inherent structure of the data. Symmetric positive definite (SPD) matrices constitute one such class of signals, where their implicit structure of positive eigenvalues is lost upon vectorization. This paper proposes a novel sparse coding technique for positive definite matrices, which respects the structure of the Riemannian manifold and preserves the positivity of their eigenvalues, without resorting to vectorization. Synthetic and real-world computer vision experiments with region covariance descriptors demonstrate the need for and the applicability of the new sparse coding model. This work serves to bridge the gap between the sparse modeling paradigm and the space of positive definite matrices.

  12. Tensor sparse coding for positive definite matrices.

    PubMed

    Sivalingam, Ravishankar; Boley, Daniel; Morellas, Vassilios; Papanikolopoulos, Nikolaos

    2014-03-01

    In recent years, there has been extensive research on sparse representation of vector-valued signals. In the matrix case, the data points are merely vectorized and treated as vectors thereafter (for example, image patches). However, this approach cannot be used for all matrices, as it may destroy the inherent structure of the data. Symmetric positive definite (SPD) matrices constitute one such class of signals, where their implicit structure of positive eigenvalues is lost upon vectorization. This paper proposes a novel sparse coding technique for positive definite matrices, which respects the structure of the Riemannian manifold and preserves the positivity of their eigenvalues, without resorting to vectorization. Synthetic and real-world computer vision experiments with region covariance descriptors demonstrate the need for and the applicability of the new sparse coding model. This work serves to bridge the gap between the sparse modeling paradigm and the space of positive definite matrices.

  13. Malware analysis using visualized image matrices.

    PubMed

    Han, KyoungSoo; Kang, BooJoong; Im, Eul Gyu

    2014-01-01

    This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API) calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively.

  14. Malware Analysis Using Visualized Image Matrices

    PubMed Central

    Im, Eul Gyu

    2014-01-01

    This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API) calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively. PMID:25133202

  15. Les effets des interfaces sur les proprietes magnetiques et de transport des multicouches nickel/iron et cobalt/silver

    NASA Astrophysics Data System (ADS)

    Veres, Teodor

    Cette these est consacree a l'etude de l'evolution structurale des proprietes magnetiques et de transport des multicouches Ni/Fe et nanostructures a base de Co et de l'Ag. Dans une premiere partie, essentiellement bibliographique, nous introduisons quelques concepts de base relies aux proprietes magnetiques et de transport des multicouches metalliques. Ensuite, nous presentons une breve description des methodes d'analyse des resultats. La deuxieme partie est consacree a l'etude des proprietes magnetiques et de transport des multicouches ferromagnetiques/ferromagnetiques Ni/Fe. Nous montrerons qu'une interpretation coherente de ces proprietes necessite la prise en consideration des effets des interfaces. Nous nous attacherons a mettre en evidence, a evaluer et a etudier les effets de ces interfaces ainsi que leur evolution, et ce, suite a des traitements thermiques tel que le depot a temperature elevee et l'irradiation ionique. Les analyses correlees de la structure et de la magnetoresistance nous permettront d'emettre des conclusions sur l'influence des couches tampons entre l'interface et le substrat ainsi qu'entre les couches elles-memes sur le comportement magnetique des couches F/F. La troisieme partie est consacree aux systemes a Magneto-Resistance Geante (MRG) a base de Co et Ag. Nous allons etudier l'evolution de la microstructure suite a l'irradiation avec des ions Si+ ayant une energie de 1 MeV, ainsi que les effets de ces changements sur le comportement magnetique. Cette partie debutera par l'analyse des proprietes d'une multicouche hybride, intermediaire entre les multicouches et les materiaux granulaires. Nous analyserons a l'aide des mesures de diffraction, de relaxation superparamagnetique et de magnetoresistance, les evolutions structurales produites par l'irradiation ionique. Nous etablirons des modeles qui nous aideront a interpreter les resultats pour une serie des multicouches qui couvrent un large eventail de differents comportements magnetiques

  16. "Non-equilibrium" block copolymer micelles with glassy cores: a predictive approach based on theory of equilibrium micelles.

    PubMed

    Nagarajan, Ramanathan

    2015-07-01

    Micelles generated in water from most amphiphilic block copolymers are widely recognized to be non-equilibrium structures. Typically, the micelles are prepared by a kinetic process, first allowing molecular scale dissolution of the block copolymer in a common solvent that likes both the blocks and then gradually replacing the common solvent by water to promote the hydrophobic blocks to aggregate and create the micelles. The non-equilibrium nature of the micelle originates from the fact that dynamic exchange between the block copolymer molecules in the micelle and the singly dispersed block copolymer molecules in water is suppressed, because of the glassy nature of the core forming polymer block and/or its very large hydrophobicity. Although most amphiphilic block copolymers generate such non-equilibrium micelles, no theoretical approach to a priori predict the micelle characteristics currently exists. In this work, we propose a predictive approach for non-equilibrium micelles with glassy cores by applying the equilibrium theory of micelles in two steps. In the first, we calculate the properties of micelles formed in the mixed solvent while true equilibrium prevails, until the micelle core becomes glassy. In the second step, we freeze the micelle aggregation number at this glassy state and calculate the corona dimension from the equilibrium theory of micelles. The condition when the micelle core becomes glassy is independently determined from a statistical thermodynamic treatment of diluent effect on polymer glass transition temperature. The predictions based on this "non-equilibrium" model compare reasonably well with experimental data for polystyrene-polyethylene oxide diblock copolymer, which is the most extensively studied system in the literature. In contrast, the application of the equilibrium model to describe such a system significantly overpredicts the micelle core and corona dimensions and the aggregation number. The non-equilibrium model suggests ways to

  17. Computation of transform domain covariance matrices

    NASA Technical Reports Server (NTRS)

    Fino, B. J.; Algazi, V. R.

    1975-01-01

    It is often of interest in applications to compute the covariance matrix of a random process transformed by a fast unitary transform. Here, the recursive definition of fast unitary transforms is used to derive recursive relations for the covariance matrices of the transformed process. These relations lead to fast methods of computation of covariance matrices and to substantial reductions of the number of arithmetic operations required.

  18. A Novel Method for Electroplating Ultra-High-Strength Glassy Metals

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian; Engelhaupt, Darell; Six, N. Frank (Technical Monitor)

    2002-01-01

    A novel method for electroplating ultra-high-strength glassy metals, nickel-phosphorous and nickel-cobalt-phosphorous, has been developed at NASA Marshall Space Flight Center, cooperatively with the University of Alabama in Huntsville. Traditionally, thin coatings of these metals are achieved via electroless deposition. Benefits of the new electrolytic process include thick, low-stress deposits, free standing shapes, lower plating temperature, low maintenance, and safer operation with substantially lower cost.

  19. Decision Matrices: Tools to Enhance Middle School Engineering Instruction

    ERIC Educational Resources Information Center

    Gonczi, Amanda L.; Bergman, Brenda G.; Huntoon, Jackie; Allen, Robin; McIntyre, Barb; Turner, Sheri; Davis, Jen; Handler, Rob

    2017-01-01

    Decision matrices are valuable engineering tools. They allow engineers to objectively examine solution options. Decision matrices can be incorporated in K-12 classrooms to support authentic engineering instruction. In this article we provide examples of how decision matrices have been incorporated into 6th and 7th grade classrooms as part of an…

  20. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301, containing...

  1. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301, containing...

  2. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301, containing...

  3. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301, containing...

  4. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301, containing...

  5. Effets non lineaires transversaux dans les guides d'ondes plans

    NASA Astrophysics Data System (ADS)

    Dumais, Patrick

    Les effets non lineaires transversaux dus a l'effet Kerr optique non resonant sont etudies dans deux types de guides a geometrie plane. D'abord (au chapitre 2), l'emission de solitons spatiaux d'un guide de type canal est etudie historiquement, analytiquement et numeriquement dans le but d'en faire la conception et la fabrication, en AlGaAs, dans la region spectrale en deca de la moitie de la bande interdite de ce materiau, soit autour de 1,5 microns. Le composant, tel que concu, comporte une structure de multipuits quantiques. Le desordonnement local de cette structure permet une variation locale du coefficient Kerr dans le guide, ce qui mene a l'emission d'un soliton spatial au-dela d'une puissance optique de seuil. L'observation experimentale d'un changement en fonction de l'intensite du profil de champ a la sortie du guide realise est presentee. Deuxiemement (au chapitre 3) une technique de mesure du coefficient Kerr dans un guide plan est presentee. Cette technique consiste a mesurer le changement de transmission au travers d'un cache place a la sortie du guide en fonction de l'intensite crete a l'entree du guide plan. Une methode pour determiner les conditions optimales pour la sensibilite de la mesure est presentee, illustree de plusieurs exemples. Finalement, la realisation d'un oscillateur parametrique optique basee sur un cristal de niobate de lithium a domaines periodiquement inverses est presentee. La theorie des oscillateurs parametriques optiques est exposee avec une emphase sur la generation d'impulsions intenses a des longueurs d'onde autour de 1,5 microns a partir d'un laser Ti:saphir, dans le but d'obtenir une source pour faire les experiences sur l'emission solitonique.

  6. Laminin active peptide/agarose matrices as multifunctional biomaterials for tissue engineering.

    PubMed

    Yamada, Yuji; Hozumi, Kentaro; Aso, Akihiro; Hotta, Atsushi; Toma, Kazunori; Katagiri, Fumihiko; Kikkawa, Yamato; Nomizu, Motoyoshi

    2012-06-01

    Cell adhesive peptides derived from extracellular matrix components are potential candidates to afford bio-adhesiveness to cell culture scaffolds for tissue engineering. Previously, we covalently conjugated bioactive laminin peptides to polysaccharides, such as chitosan and alginate, and demonstrated their advantages as biomaterials. Here, we prepared functional polysaccharide matrices by mixing laminin active peptides and agarose gel. Several laminin peptide/agarose matrices showed cell attachment activity. In particular, peptide AG73 (RKRLQVQLSIRT)/agarose matrices promoted strong cell attachment and the cell behavior depended on the stiffness of agarose matrices. Fibroblasts formed spheroid structures on the soft AG73/agarose matrices while the cells formed a monolayer with elongated morphologies on the stiff matrices. On the stiff AG73/agarose matrices, neuronal cells extended neuritic processes and endothelial cells formed capillary-like networks. In addition, salivary gland cells formed acini-like structures on the soft matrices. These results suggest that the peptide/agarose matrices are useful for both two- and three-dimensional cell culture systems as a multifunctional biomaterial for tissue engineering. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Topological structure and mechanics of glassy polymer networks.

    PubMed

    Elder, Robert M; Sirk, Timothy W

    2017-11-22

    The influence of chain-level network architecture (i.e., topology) on mechanics was explored for unentangled polymer networks using a blend of coarse-grained molecular simulations and graph-theoretic concepts. A simple extension of the Watts-Strogatz model is proposed to control the graph properties of the network such that the corresponding physical properties can be studied with simulations. The architecture of polymer networks assembled with a dynamic curing approach were compared with the extended Watts-Strogatz model, and found to agree surprisingly well. The final cured structures of the dynamically-assembled networks were nearly an intermediate between lattice and random connections due to restrictions imposed by the finite length of the chains. Further, the uni-axial stress response, character of the bond breaking, and non-affine displacements of fully-cured glassy networks were analyzed as a function of the degree of disorder in the network architecture. It is shown that the architecture strongly affects the network stability, flow stress, onset of bond breaking, and ultimate stress while leaving the modulus and yield point nearly unchanged. The results show that internal restrictions imposed by the network architecture alter the chain-level response through changes to the crosslink dynamics in the flow regime and through the degree of coordinated chain failure at the ultimate stress. The properties considered here are shown to be sensitive to even incremental changes to the architecture and, therefore, the overall network architecture, beyond simple defects, is predicted to be a meaningful physical parameter in the mechanics of glassy polymer networks.

  8. Estimating soil matric potential in Owens Valley, California

    USGS Publications Warehouse

    Sorenson, Stephen K.; Miller, Reuben F.; Welch, Michael R.; Groeneveld, David P.; Branson, Farrel A.

    1989-01-01

    Much of the floor of Owens Valley, California, is covered with alkaline scrub and alkaline meadow plant communities, whose existence is dependent partly on precipitation and partly on water infiltrated into the rooting zone from the shallow water table. The extent to which these plant communities are capable of adapting to and surviving fluctuations in the water table depends on physiological adaptations of the plants and on the water content, matric potential characteristics of the soils. Two methods were used to estimate soil matric potential in test sites in Owens Valley. The first, the filter-paper method, uses water content of filter papers equilibrated to water content of soil samples taken with a hand auger. The previously published calibration relations used to estimate soil matric potential from the water content of the filter papers were modified on the basis of current laboratory data. The other method of estimating soil matric potential was a modeling approach based on data from this and previous investigations. These data indicate that the base-10 logarithm of soil matric potential is a linear function of gravimetric soil water content for a particular soil. The slope and intercepts of this function vary with the texture and saturation capacity of the soil. Estimates of soil water characteristic curves were made at two sites by averaging the gravimetric soil water content and soil matric potential values from multiple samples at 0.1-m depth intervals derived by using the hand auger and filter-paper method and entering these values in the soil water model. The characteristic curves then were used to estimate soil matric potential from estimates of volumetric soil water content derived from neutron-probe readings. Evaluation of the modeling technique at two study sites indicated that estimates of soil matric potential within 0.5 pF units of the soil matric potential value derived by using the filter-paper method could be obtained 90 to 95 percent of the

  9. Effects of energy reserves and diet on glassy-winged sharpshooter egg maturation

    USDA-ARS?s Scientific Manuscript database

    Effects of stored energy and diet quality on glassy-winged sharpshooter egg maturation were evaluated. To evaluate effects of diet quality on egg maturation, egg load weights of females at the end of a 6-day feeding period on cowpea or grapevine were compared. To estimate energy reserves available a...

  10. Pair distribution function analysis of sulfide glassy electrolytes for all-solid-state batteries: Understanding the improvement of ionic conductivity under annealing condition.

    PubMed

    Shiotani, Shinya; Ohara, Koji; Tsukasaki, Hirofumi; Mori, Shigeo; Kanno, Ryoji

    2017-08-01

    In general, the ionic conductivity of sulfide glasses decreases with their crystallization, although it increases for a few sulphide glasses owing to the crystallization of a highly conductive new phase (e.g., Li 7 P 3 S 11 : 70Li 2 S-30P 2 S 5 ). We found that the ionic conductivity of 75Li 2 S-25P 2 S 5 sulfide glass, which consists of glassy and crystalline phases, is improved by optimizing the conditions of the heat treatment, i.e., annealing. A different mechanism of high ionic conductivity from the conventional mechanism is expected in the glassy phase. Here, we report the glassy structure of 75Li 2 S-25P 2 S 5 immediately before the crystallization by using the differential pair distribution function (d-PDF) analysis of high-energy X-ray diffraction. Even though the ionic conductivity increases during the optimum annealing, the d-PDF analysis indicated that the glassy structure undergoes no structural change in the sulfide glass-ceramic electrolyte at a crystallinity of 33.1%. We observed the formation of a nanocrystalline phase in the X-ray and electron diffraction patterns before the crystallization, which means that Bragg peaks were deformed. Thus, the ionic conductivity in the mixture of glassy and crystalline phases is improved by the coexistence of the nanocrystalline phase.

  11. CMV matrices in random matrix theory and integrable systems: a survey

    NASA Astrophysics Data System (ADS)

    Nenciu, Irina

    2006-07-01

    We present a survey of recent results concerning a remarkable class of unitary matrices, the CMV matrices. We are particularly interested in the role they play in the theory of random matrices and integrable systems. Throughout the paper we also emphasize the analogies and connections to Jacobi matrices.

  12. Laser micromilling of convex microfluidic channels onto glassy carbon for glass molding dies

    NASA Astrophysics Data System (ADS)

    Tseng, Shih-Feng; Chen, Ming-Fei; Hsiao, Wen-Tse; Huang, Chien-Yao; Yang, Chung-Heng; Chen, Yu-Sheng

    2014-06-01

    This study reports the fabrication of convex microfluidic channels on glassy carbon using an ultraviolet laser processing system to produce glass molding dies. The laser processing parameters, including various laser fluences and scanning speeds of galvanometers, were adjusted to mill a convex microchannel on a glassy carbon substrate to identify the effects of material removal. The machined glassy carbon substrate was then applied as a glass molding die to fabricate a glass-based microfluidic biochip. The surface morphology, milled width and depth, and surface roughness of the microchannel die after laser micromilling were examined using a three-dimensional confocal laser scanning microscope. This study also investigates the transcription rate of microchannels after the glass molding process. To produce a 180 μm high microchannel on the GC substrate, the optimal number of milled cycles, laser fluence, and scanning speed were 25, 4.9 J/cm2, and 200 mm/s, respectively. The width, height, and surface roughness of milled convex microchannels were 119.6±0.217 μm, 180.26±0.01 μm, and 0.672±0.08 μm, respectively. These measured values were close to the predicted values and suitable for a glass molding die. After the glass molding process, a typical glass-based microchannel chip was formed at a molding temperature of 660 °C and the molding force of 0.45 kN. The transcription rates of the microchannel width and depth were 100% and 99.6%, respectively. Thus, the proposed approach is suitable for performing in chemical, biochemical, or medical reactions.

  13. Dynamical singularities of glassy systems in a quantum quench.

    PubMed

    Obuchi, Tomoyuki; Takahashi, Kazutaka

    2012-11-01

    We present a prototype of behavior of glassy systems driven by quantum dynamics in a quenching protocol by analyzing the random energy model in a transverse field. We calculate several types of dynamical quantum amplitude and find a freezing transition at some critical time. The behavior is understood by the partition-function zeros in the complex temperature plane. We discuss the properties of the freezing phase as a dynamical chaotic phase, which are contrasted to those of the spin-glass phase in the static system.

  14. Molecular dynamics and crystallization phenomenon of supercooled and glassy DNA and RNA nucleosides: β-adenosine, β-thymidine, and β-uridine

    NASA Astrophysics Data System (ADS)

    Adrjanowicz, K.; Wojnarowska, Z.; Grzybowska, K.; Hawelek, L.; Kaminski, K.; Paluch, M.; Kasprzycka, A.; Walczak, K.

    2011-11-01

    Nucleosides are chemical compounds that have an extremely important biological role; they can be found in all types of living organisms. They are crucial components from which DNA and RNA acids are built. In addition, nucleosides are key regulators of many physiological processes. In this paper, the molecular dynamics in the liquid and glassy state of three selected nucleosides, β-adenosine, β-thymidine, and β-uridine, was investigated by means of dielectric spectroscopy. Our results revealed multiple relaxation processes associated with different types of molecular motions. Besides the primary α relaxation, two secondary modes in the glassy states of examined compounds were identified. Crystallization progress monitored by dielectric spectroscopy and x-ray diffraction technique at isostructural relaxation conditions revealed that the examined nucleosides possess completely different tendencies to recrystallize from the liquid as well as the glassy state. We have also made an attempt to predict the time scale of molecular motion below the glass transition temperatures of the respective nucleosides to discuss their potential stability at room temperature over prolonged storage time. Finally, combination of molecular mobility studies with evaluation of thermodynamic parameters from calorimetric measurements allowed us to discuss the fundamental roles of both kinetic and thermodynamic factors in governing the physical stability of the glassy state.

  15. Relation between the Dynamics of Glassy Clusters and Characteristic Features of their Energy Landscape

    NASA Astrophysics Data System (ADS)

    De, Sandip; Schaefer, Bastian; Sadeghi, Ali; Sicher, Michael; Kanhere, D. G.; Goedecker, Stefan

    2014-02-01

    Based on a recently introduced metric for measuring distances between configurations, we introduce distance-energy (DE) plots to characterize the potential energy surface of clusters. Producing such plots is computationally feasible on the density functional level since it requires only a few hundred stable low energy configurations including the global minimum. By using standard criteria based on disconnectivity graphs and the dynamics of Lennard-Jones clusters, we show that the DE plots convey the necessary information about the character of the potential energy surface and allow us to distinguish between glassy and nonglassy systems. We then apply this analysis to real clusters at the density functional theory level and show that both glassy and nonglassy clusters can be found in simulations. It turns out that among our investigated clusters only those can be synthesized experimentally which exhibit a nonglassy landscape.

  16. Electrochemical synthesis of gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode and their application

    NASA Astrophysics Data System (ADS)

    Song, Y. Z.; Li, X.; Song, Y.; Cheng, Z. P.; Zhong, H.; Xu, J. M.; Lu, J. S.; Wei, C. G.; Zhu, A. F.; Wu, F. Y.; Xu, J.

    2013-01-01

    Gold nanoparticles on the surface of multi-walled carbon nanotubes with glassy carbon electrode were prepared using electrochemical synthesis method. The thin films of gold Nanoparticles/multi-walled carbon nanotubes were characterized by scanning electron microscopy, powder X-ray diffraction, and cyclic voltammetry. Electrochemical behavior of adrenaline hydrochloride at gold nanoparticles/multi-walled carbon nanotube modified glassy carbon electrode was investigated. A simple, sensitive, and inexpensive method for determination of adrenaline hydrochloride was proposed.

  17. Introduction to the QIAT Self-Evaluation Matrices

    ERIC Educational Resources Information Center

    Zabala, Joy Smiley; Carl, Diana F.

    2004-01-01

    The QIAT Self-Evaluation Matrices (QILT, 2001) were developed in response to formative evaluation data indicating a need for a model that could assist in the application of the Quality Indicators for Assistive Technology Services in Schools (Zabala, et al, 2000). The QIAT Matrices are based on the idea that change does not happen immediately, but…

  18. Glassy-winged sharpshooter can use a mechanical mechanism to inoculate Xylella fastidiosa into grapevines

    USDA-ARS?s Scientific Manuscript database

    Xylem-feeding leafhoppers such as the glassy-winged sharpshooter, Homalodisca vitripennis (Cicadellidae: Cicadellinae), are thought to inoculate the bacterium Xylella fastidiosa (Xf) from colonies bound to cuticle of the sharpshooter’s functional foregut (precibarium and cibarium). The mechanism of ...

  19. "G.P.S Matrices" programme: A method to improve the mastery level of social science students in matrices operations

    NASA Astrophysics Data System (ADS)

    Lee, Ken Voon

    2013-04-01

    The purpose of this action research was to increase the mastery level of Form Five Social Science students in Tawau II National Secondary School in the operations of addition, subtraction and multiplication of matrices in Mathematics. A total of 30 students were involved. Preliminary findings through the analysis of pre-test results and questionnaire had identified the main problem faced in which the students felt confused with the application of principles of the operations of matrices when performing these operations. Therefore, an action research was conducted using an intervention programme called "G.P.S Matrices" to overcome the problem. This programme was divided into three phases. 'Gift of Matrices' phase aimed at forming matrix teaching aids. The second and third phases were 'Positioning the Elements of Matrices' and 'Strenghtening the Concept of Matrices'. These two phases were aimed at increasing the level of understanding and memory of the students towards the principles of matrix operations. Besides, this third phase was also aimed at creating an interesting learning environment. A comparison between the results of pre-test and post-test had shown a remarkable improvement in students' performances after implementing the programme. In addition, the analysis of interview findings also indicated a positive feedback on the changes in students' attitude, particularly in the aspect of students' understanding level. Moreover, the level of students' memory also increased following the use of the concrete matrix teaching aids created in phase one. Besides, teachers felt encouraging when conducive learning environment was created through students' presentation activity held in third phase. Furthermore, students were voluntarily involved in these student-centred activities. In conclusion, this research findings showed an increase in the mastery level of students in these three matrix operations and thus the objective of the research had been achieved.

  20. Positronics of radiation-induced effects in chalcogenide glassy semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shpotyuk, O.; Kozyukhin, S. A., E-mail: sergkoz@igic.ras.ru; Shpotyuk, M.

    2015-03-15

    Using As{sub 2}S{sub 3} and AsS{sub 2} glasses as an example, the principal possibility of using positron annihilation spectroscopy methods for studying the evolution of the free volume of hollow nanoobjects in chalcogenide glassy semiconductors exposed to radiation is shown. The results obtained by measurements of the positron annihilation lifetime and Doppler broadening of the annihilation line in reverse chronological order are in full agreement with the optical spectroscopy data in the region of the fundamental absorption edge, being adequately described within coordination defect-formation and physical-aging models.

  1. Glassy phase in quenched disordered crystalline membranes

    NASA Astrophysics Data System (ADS)

    Coquand, O.; Essafi, K.; Kownacki, J.-P.; Mouhanna, D.

    2018-03-01

    We investigate the flat phase of D -dimensional crystalline membranes embedded in a d -dimensional space and submitted to both metric and curvature quenched disorders using a nonperturbative renormalization group approach. We identify a second-order phase transition controlled by a finite-temperature, finite-disorder fixed point unreachable within the leading order of ɛ =4 -D and 1 /d expansions. This critical point divides the flow diagram into two basins of attraction: that associated with the finite-temperature fixed point controlling the long-distance behavior of disorder-free membranes and that associated with the zero-temperature, finite-disorder fixed point. Our work thus strongly suggests the existence of a whole low-temperature glassy phase for quenched disordered crystalline membranes and, possibly, for graphene and graphene-like compounds.

  2. M-matrices with prescribed elementary divisors

    NASA Astrophysics Data System (ADS)

    Soto, Ricardo L.; Díaz, Roberto C.; Salas, Mario; Rojo, Oscar

    2017-09-01

    A real matrix A is said to be an M-matrix if it is of the form A=α I-B, where B is a nonnegative matrix with Perron eigenvalue ρ (B), and α ≥slant ρ (B) . This paper provides sufficient conditions for the existence and construction of an M-matrix A with prescribed elementary divisors, which are the characteristic polynomials of the Jordan blocks of the Jordan canonical form of A. This inverse problem on M-matrices has not been treated until now. We solve the inverse elementary divisors problem for diagonalizable M-matrices and the symmetric generalized doubly stochastic inverse M-matrix problem for lists of real numbers and for lists of complex numbers of the form Λ =\\{λ 1, a+/- bi, \\ldots, a+/- bi\\} . The constructive nature of our results allows for the computation of a solution matrix. The paper also discusses an application of M-matrices to a capacity problem in wireless communications.

  3. Glassy-winged sharpshooter oviposition effects on foliar grapevine and red-tipped photinia terpenoid levels

    USDA-ARS?s Scientific Manuscript database

    The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is an important vector of Xylella fastidiosa, the bacterium that causes Pierce's disease of grapevine and is a threat to grape production throughout the United States. Female GWSS deposit egg masses be...

  4. Egg maturation by the glassy-winged sharpshooter (Hemiptera: Cicadellidae); a vector of Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    Rates of spread of insect-transmitted plant pathogens are a function of vector abundance. Despite this, factors affecting population growth rates of insects that transmit plant pathogens have received limited attention. The glassy-winged sharpshooter (Homalodisca vitripennis) feeds on xylem-sap and ...

  5. The Modern Origin of Matrices and Their Applications

    ERIC Educational Resources Information Center

    Debnath, L.

    2014-01-01

    This paper deals with the modern development of matrices, linear transformations, quadratic forms and their applications to geometry and mechanics, eigenvalues, eigenvectors and characteristic equations with applications. Included are the representations of real and complex numbers, and quaternions by matrices, and isomorphism in order to show…

  6. Flux Jacobian Matrices For Equilibrium Real Gases

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1990-01-01

    Improved formulation includes generalized Roe average and extension to three dimensions. Flux Jacobian matrices derived for use in numerical solutions of conservation-law differential equations of inviscid flows of ideal gases extended to real gases. Real-gas formulation of these matrices retains simplifying assumptions of thermodynamic and chemical equilibrium, but adds effects of vibrational excitation, dissociation, and ionization of gas molecules via general equation of state.

  7. Controlled growth factor release from synthetic extracellular matrices

    NASA Astrophysics Data System (ADS)

    Lee, Kuen Yong; Peters, Martin C.; Anderson, Kenneth W.; Mooney, David J.

    2000-12-01

    Polymeric matrices can be used to grow new tissues and organs, and the delivery of growth factors from these matrices is one method to regenerate tissues. A problem with engineering tissues that exist in a mechanically dynamic environment, such as bone, muscle and blood vessels, is that most drug delivery systems have been designed to operate under static conditions. We thought that polymeric matrices, which release growth factors in response to mechanical signals, might provide a new approach to guide tissue formation in mechanically stressed environments. Critical design features for this type of system include the ability to undergo repeated deformation, and a reversible binding of the protein growth factors to polymeric matrices to allow for responses to repeated stimuli. Here we report a model delivery system that can respond to mechanical signalling and upregulate the release of a growth factor to promote blood vessel formation. This approach may find a number of applications, including regeneration and engineering of new tissues and more general drug-delivery applications.

  8. A geochemical approach to constraining the formation of glassy fallout debris from nuclear tests

    DOE PAGES

    Bonamici, Chloë E.; Kinman, William S.; Fournelle, John H.; ...

    2016-12-15

    Reprocessed earth material is a glassy nuclear fallout debris from near-surface nuclear tests. A geochemical approach to analysis of glassy fallout is uniquely suited to determine the means of reprocessing and shed light on the mechanisms of fallout formation. An improved understanding of fallout formation is of interest both for its potential to guide post-detonation nuclear forensic investigations and in the context of possible affinities between glassy debris and other glasses generated by high-energy natural events, such as meteorite impacts and lightning strikes. Our study presents a large major-element compositional dataset for glasses within aerodynamic fallout from the Trinity nuclearmore » test (“trinitite”) and a geochemically based analysis of the glass compositional trends. Silica-rich and alkali-rich trinitite glasses show compositions and textures consistent with formation through melting of individual mineral grains—quartz and alkali feldspar, respectively—from the test-site sediment. Furthermore, the volumetrically dominant glass phase—called the CaMgFe glass—shows extreme major-element compositional variability. Compositional trends in the CaMgFe glass are most consistent with formation through volatility-controlled condensation from compositionally heterogeneous plasma. Radioactivity occurs only in CaMgFe glass, indicating that co-condensation of evaporated bulk ground material and trace device material was the main mechanism of radioisotope incorporation into trinitite. CaMgFe trinitite glasses overlap compositionally with basalts, rhyolites, fulgurites, tektites, and microtektites but display greater compositional diversity than all of these naturally formed glasses. Indeed, the most refractory CaMgFe glasses compositionally resemble early solar system condensates—specifically, CAIs.« less

  9. A geochemical approach to constraining the formation of glassy fallout debris from nuclear tests

    NASA Astrophysics Data System (ADS)

    Bonamici, Chloë E.; Kinman, William S.; Fournelle, John H.; Zimmer, Mindy M.; Pollington, Anthony D.; Rector, Kirk D.

    2017-01-01

    Glassy nuclear fallout debris from near-surface nuclear tests is fundamentally reprocessed earth material. A geochemical approach to analysis of glassy fallout is uniquely suited to determine the means of reprocessing and shed light on the mechanisms of fallout formation. An improved understanding of fallout formation is of interest both for its potential to guide post-detonation nuclear forensic investigations and in the context of possible affinities between glassy debris and other glasses generated by high-energy natural events, such as meteorite impacts and lightning strikes. This study presents a large major-element compositional dataset for glasses within aerodynamic fallout from the Trinity nuclear test ("trinitite") and a geochemically based analysis of the glass compositional trends. Silica-rich and alkali-rich trinitite glasses show compositions and textures consistent with formation through melting of individual mineral grains—quartz and alkali feldspar, respectively—from the test-site sediment. The volumetrically dominant glass phase—called the CaMgFe glass—shows extreme major-element compositional variability. Compositional trends in the CaMgFe glass are most consistent with formation through volatility-controlled condensation from compositionally heterogeneous plasma. Radioactivity occurs only in CaMgFe glass, indicating that co-condensation of evaporated bulk ground material and trace device material was the main mechanism of radioisotope incorporation into trinitite. CaMgFe trinitite glasses overlap compositionally with basalts, rhyolites, fulgurites, tektites, and microtektites but display greater compositional diversity than all of these naturally formed glasses. Indeed, the most refractory CaMgFe glasses compositionally resemble early solar system condensates—specifically, CAIs.

  10. Matrices. New Topics for Secondary School Mathematics: Materials and Software.

    ERIC Educational Resources Information Center

    North Carolina School of Science and Mathematics. Dept. of Mathematics and Computer Science.

    This material on matrices is part of "Introduction to College Mathematics" (ICM), designed to prepare high school students who have students who have completed algebra II for the variety of mathematics they will encounter in college and beyond. The concept goals of this unit are to use matrices to model real-world phenomena, to use matrices as…

  11. Nucleation and growth of thin films of the organic conductor TTF-iodide over glassy carbon. Electrochemical and spectroelectrochemical study.

    PubMed

    Gómez, L; Rodríguez-Amaro, R

    2009-04-21

    On the basis of the electrochemical and spectroelectrochemical behavior of thin films of TTF over a glassy carbon electrode in iodide media, a new, more complete mechanism for the electrode processes involved is proposed. The voltammetric and chronoamperometric results for the films can be explained in light of a recently developed nucleation-growth model involving a layer-by-layer mechanism. Also, their in situ UV-vis spectral data expand the available knowledge about the overall mechanism and the nature of the compound formed over the glassy carbon electrode.

  12. Effet Bauschinger lors de la plasticité cyclique de l'aluminium pur monocristallin

    NASA Astrophysics Data System (ADS)

    Alhamany, A.; Chicois, J.; Fougères, R.; Hamel, A.

    1992-08-01

    This paper is concerned with the study of microscopic mechanisms which control the cyclic deformation of pure aluminium and especially with the analysis of the Bauschinger effect which appears in aluminium single crystals deformed by cyclic straining. Fatigue tests are performed on Al single crystals with the crystal axis parallel to [ overline{1}23] at room temperature, at plastic shear strain amplitudes in the range from 10^{-4} to 3× 10^{-3}. Mechanical saturation is not obtained at any strain level. Instead, a hardening-softening-secondary hardening sequence is found. The magnitude of the Bauschinger effect as the difference between yield stresses in traction and in compression, changes all along the fatigue loop and during the fatigue test. The Bauschinger effect disappears at two points of the fatigue loop, one in the traction part, the other in the compression one. At these points, the Bauschinger effect is inverted. Dislocation arrangement evolutions with fatigue conditions can explain the cyclic behaviour of Al single crystals. An heterogeneous dislocation distribution can be observed in the cyclically strained metal : dislocation tangles, long dislocation walls and dislocation cell walls, separated by dislocation poor channels appear in the material as a function of the cycle number. The long range internal stress necessary to ensure the compatibility of deformation between the hard and soft regions controls the observed Bauschinger effect. Ce travail s'inscrit dans le cadre de l'étude des mécanismes microsocopiques intervenant lors de la déformation cyclique de l'aluminium pur et concerne en particulier l'analyse de l'effet Bauschinger apparaissant au cours de la solliciation cyclique des monocristaux. L'étude a été menée à température ambiante sur des monocristaux d'aluminium pur orientés pour un glissement simple (axe [ overline{1}23] ), à des amplitudes de déformation plastique comprise entre 10^{-4} et quelques 10^{-3}. Nous n'avons pas

  13. Almost commuting self-adjoint matrices: The real and self-dual cases

    NASA Astrophysics Data System (ADS)

    Loring, Terry A.; Sørensen, Adam P. W.

    2016-08-01

    We show that a pair of almost commuting self-adjoint, symmetric matrices is close to a pair of commuting self-adjoint, symmetric matrices (in a uniform way). Moreover, we prove that the same holds with self-dual in place of symmetric and also for paths of self-adjoint matrices. Since a symmetric, self-adjoint matrix is real, we get a real version of Huaxin Lin’s famous theorem on almost commuting matrices. Similarly, the self-dual case gives a version for matrices over the quaternions. To prove these results, we develop a theory of semiprojectivity for real C*-algebras and also examine various definitions of low-rank for real C*-algebras.

  14. Structural characterization and aging of glassy pharmaceuticals made using acoustic levitation.

    PubMed

    Benmore, Chris J; Weber, J K R; Tailor, Amit N; Cherry, Brian R; Yarger, Jeffery L; Mou, Qiushi; Weber, Warner; Neuefeind, Joerg; Byrn, Stephen R

    2013-04-01

    Here, we report the structural characterization of several amorphous drugs made using the method of quenching molten droplets suspended in an acoustic levitator. (13) C NMR, X-ray, and neutron diffraction results are discussed for glassy cinnarizine, carbamazepine, miconazole nitrate, probucol, and clotrimazole. The (13) C NMR results did not find any change in chemical bonding induced by the amorphization process. High-energy X-ray diffraction results were used to characterize the ratio of crystalline to amorphous material present in the glasses over a period of 8 months. All the glasses were stable for at least 6 months except carbamazepine, which has a strong tendency to crystallize within a few months. Neutron and X-ray pair distribution function analyses were applied to the glassy materials, and the results were compared with their crystalline counterparts. The two diffraction techniques yielded similar results in most cases and identified distinct intramolecular and intermolecular correlations. The intramolecular scattering was calculated based on the crystal structure and fit to the measured X-ray structure factor. The resulting intermolecular pair distribution functions revealed broad-nearest and next-nearest neighbor molecule-molecule correlations. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1290-1300, 2013. Copyright © 2013 Wiley Periodicals, Inc.

  15. Bunch-Kaufman factorization for real symmetric indefinite banded matrices

    NASA Technical Reports Server (NTRS)

    Jones, Mark T.; Patrick, Merrell L.

    1989-01-01

    The Bunch-Kaufman algorithm for factoring symmetric indefinite matrices was rejected for banded matrices because it destroys the banded structure of the matrix. Herein, it is shown that for a subclass of real symmetric matrices which arise in solving the generalized eigenvalue problem using Lanczos's method, the Bunch-Kaufman algorithm does not result in major destruction of the bandwidth. Space time complexities of the algorithm are given and used to show that the Bunch-Kaufman algorithm is a significant improvement over LU factorization.

  16. Crystallization of the glassy phase of grain boundaries in silicon nitride

    NASA Technical Reports Server (NTRS)

    Jefferson, D. A.; Thomas, J. M.; Wen, S.

    1984-01-01

    Three types of hot-pressed silicon nitride specimens (containing 5wt% Y2O3 and 2wt% Al2O3 additives) which were subjected to different temperature heat treatments were studied by X-ray diffraction, X-ray microanalysis and high resolution electron microscopy. The results indicated that there were phase changes in the grain boundaries after heat treatment and the glassy phase at the grain boundaries was crystallized by heat treatment.

  17. Prévalence et caractéristiques des effets indésirables des antihypertenseurs chez les patients suivis en ambulatoire au Centre Hospitalier Universitaire Yalgado Ouédraogo

    PubMed Central

    Millogo, Georges Rosario Christian; Zongo, Ragomzingba Frank Edgard; Benao, Anita; Youl, Estelle Noëla Hoho; Bassoleth, Blaise Alexandre Bazona; Ouédraogo, Moussa; Zabsonré, Patrice; Guissou, Innocent Pierre

    2018-01-01

    La prise en charge médicamenteuse de l'hypertension artérielle (HTA) entraine des effets indésirables qui peuvent être gênants et ainsi influencer l'observance du patient. Nous avons étudié ces effets indésirables dans le service de cardiologie du Centre hospitalier universitaire Yalgado Ouédraogo afin de déterminer leurs fréquences et leurs caractéristiques. Il s'agissait d'une étude transversale de juillet à septembre 2015 chez les patients suivis en ambulatoire pour HTA. Les données ont été obtenues à partir de l'interrogatoire, des carnets de suivi des patients et des fiches de consultations. Au total 278 patients ont été inclus. La population d'étude incluait 69,1% de femmes. L'âge moyen était de 52,2 ans avec des extrêmes de 23 et 86 ans. Quatre vingt et sept virgule huit pourcent (87,8%) vivaient en milieu urbain. Le tabagisme, la dyslipidémie et les antécédents familiaux d'HTA représentaient respectivement 9%, 35,6% et 57,2%. Au plan thérapeutique, 43,2% étaient sous monothérapie, 35,6% sous bithérapie à l'initiation du traitement. Les inhibiteurs calciques (59,7%) étaient la classe thérapeutique la plus utilisée. La prévalence globale des effets indésirables était de 60,1%. Les inhibiteurs calciques étaient impliqués dans 53,6% suivis des diurétiques (48,6%) dans la survenue de l'effet indésirable. La prévalence spécifique par molécule était 28,1% pour l'amlodipine et 24,5% pour l'hydrochlorothiazide. La diurèse excessive (13,7%), la toux (12,9%) et les vertiges (11,5%) étaient les effets indésirables les plus fréquemment évoqués par les patients. Le système nerveux central et périphérique et le système ostéo-musculaire étaient les systèmes les plus atteints. Les effets indésirables sont un déterminant majeur de l'adhésion aux traitements antihypertenseur, car leur impact sur la vie quotidienne des patients peut s'avérer significatif. PMID:29875965

  18. Glassiness versus Order in Densely Frustrated Josephson Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, P.; Teitel, S.; Gingras, M.J.

    1998-01-01

    We carry out extensive Monte Carlo simulations of the Coulomb gas dual to the uniformly frustrated two-dimensional XY model, for a sequence of frustrations f converging to the irrational (3{minus}{radical}(5))/ 2. We find in these systems a sharp first order equilibrium phase transition to an ordered vortex structure at a T{sub c} which varies only slightly with f . This ordered vortex structure remains, in general, phase incoherent until a lower vortex pinning transition T{sub p}(f) that varies with f. We argue that the glassy behaviors reported for this model in earlier simulations are dynamic effects. {copyright} {ital 1997} {italmore » The American Physical Society}« less

  19. Microwave enhanced electroanalysis of formulations: processes in micellar media at glassy carbon and at platinum electrodes.

    PubMed

    Ghanem, Mohamed A; Compton, Richard G; Coles, Barry A; Canals, Antonio; Marken, Frank

    2005-10-01

    The direct electroanalysis of complex formulations containing alpha-tocopherol (vitamin E) is possible in micellar solution and employing microwave-enhanced voltammetry. In the presence of microwave radiation substantial heating and current enhancement effects have been observed at 330 microm diameter glassy carbon electrodes placed into a micellar aqueous solution and both hydrophilic and highly hydrophobic redox systems are detected. For the water soluble Fe(CN)(6)(3-/4-) redox system in micellar aqueous solutions of 0.1 M NaCl and 0.1 M sodium dodecylsulfate (SDS) at low to intermediate microwave power, thermal effects and convection effects are observed. At higher microwave power, thermal cavitation is induced and dominates the mass transport at the electrode surface. For the micelle-soluble redox systems tert-butylferrocene and 2,5-di-tert-butyl-1,4-benzoquinone, strong and concentration dependent current responses are observed only in the presence of microwave radiation. For the oxidation of micelle-soluble alpha-tocopherol current responses at glassy carbon electrodes are affected by adsorption and desorption processes whereas at platinum electrodes, analytical limiting currents are obtained over a wide range of alpha-tocopherol concentrations. However, for the determination of alpha-tocopherol in a commercial formulation interference from proteins is observed at platinum electrodes and direct measurements are possible only over a limited concentration range and at glassy carbon electrodes.

  20. Molecular Packing, Hydrogen Bonding, and Fast Dynamics in Lysozyme/Trehalose/Glycerol and Trehalose/Glycerol Glasses at Low Hydration.

    PubMed

    Lerbret, Adrien; Affouard, Frédéric

    2017-10-12

    Water and glycerol are well-known to facilitate the structural relaxation of amorphous protein matrices. However, several studies evidenced that they may also limit fast (∼picosecond-nanosecond, ps-ns) and small-amplitude (∼Å) motions of proteins, which govern their stability in freeze-dried sugar mixtures. To determine how they interact with proteins and sugars in glassy matrices and, thereby, modulate their fast dynamics, we performed molecular dynamics (MD) simulations of lysozyme/trehalose/glycerol (LTG) and trehalose/glycerol (TG) mixtures at low glycerol and water concentrations. Upon addition of glycerol and/or water, the glass transition temperature, T g , of LTG and TG mixtures decreases, the molecular packing of glasses is improved, and the mean-square displacements (MSDs) of lysozyme and trehalose either decrease or increase, depending on the time scale and on the temperature considered. A detailed analysis of the hydrogen bonds (HBs) formed between species reveals that water and glycerol may antiplasticize the fast dynamics of lysozyme and trehalose by increasing the total number and/or the strength of the HBs they form in glassy matrices.

  1. The glassy random laser: replica symmetry breaking in the intensity fluctuations of emission spectra

    PubMed Central

    Antenucci, Fabrizio; Crisanti, Andrea; Leuzzi, Luca

    2015-01-01

    The behavior of a newly introduced overlap parameter, measuring the correlation between intensity fluctuations of waves in random media, is analyzed in different physical regimes, with varying amount of disorder and non-linearity. This order parameter allows to identify the laser transition in random media and describes its possible glassy nature in terms of emission spectra data, the only data so far accessible in random laser measurements. The theoretical analysis is performed in terms of the complex spherical spin-glass model, a statistical mechanical model describing the onset and the behavior of random lasers in open cavities. Replica Symmetry Breaking theory allows to discern different kinds of randomness in the high pumping regime, including the most complex and intriguing glassy randomness. The outcome of the theoretical study is, eventually, compared to recent intensity fluctuation overlap measurements demonstrating the validity of the theory and providing a straightforward interpretation of qualitatively different spectral behaviors in different random lasers. PMID:26616194

  2. Playback of natural vibrational signals in vineyard trellis for mating disruption of glassy-winged sharpshooter

    USDA-ARS?s Scientific Manuscript database

    The glassy-winged sharpshooter, Homalodisca vitripennis (Germar) (Hemiptera: Cicadellidae), is a vector of Xylella fastidiosa, an important bacterial pathogen of several crops in the Americas and Europe. Mating communication of this and many other cicadellid pests involves the exchange of substrate-...

  3. Effect of osmotic dehydration pretreatment and glassy state storage on the quality attributes of frozen mangoes under long-term storage.

    PubMed

    Zhao, Jin-Hong; Xiao, Hong-Wei; Ding, Yang; Nie, Ying; Zhang, Yu; Zhu, Zhen; Tang, Xuan-Ming

    2017-05-01

    Changes in the quality of frozen mango cuboids were investigated during long-term glassy state storage with and without osmotic dehydration pretreatment. The mango cuboids were dehydrated in mixed solutions (sucrose: glucose: fructose in a ratio of 3.6:1:3) of different concentrations (30, 40, and 50% (wt/wt)) prior to freezing and then stored at -55 °C (in the glassy state) for 6 months. The results revealed that compared with the untreated samples, osmotic pretreatment decreased total color difference (reduced by 15.6-62.3%), drip loss (reduced by 8.2-29.5%) and titration acidity (reduced by 1.3-9.4%), while increasing hardness (increased by 48.8-82.3%), vitamin C content (increased by 72.5-120.6%) and total soluble solids (increased by 21.8-53.7%) of frozen mangoes after 6 months. Dehydration with a sugar concentration of 40% was considered as the optimal pretreatment condition. In addition, a storage temperature of -55 °C provided better retention of quality than rubbery state storage at -18 °C. With prolonged storage time, the quality of frozen mangoes continued to change, even in the glassy state. However, the changes in quality of the osmotic-dehydrated samples were less than those of the untreated samples. The current work indicates that osmotic pretreatment and glassy state storage significantly improved the quality of frozen mangoes during long-term storage.

  4. Estimation for the Linear Model With Uncertain Covariance Matrices

    NASA Astrophysics Data System (ADS)

    Zachariah, Dave; Shariati, Nafiseh; Bengtsson, Mats; Jansson, Magnus; Chatterjee, Saikat

    2014-03-01

    We derive a maximum a posteriori estimator for the linear observation model, where the signal and noise covariance matrices are both uncertain. The uncertainties are treated probabilistically by modeling the covariance matrices with prior inverse-Wishart distributions. The nonconvex problem of jointly estimating the signal of interest and the covariance matrices is tackled by a computationally efficient fixed-point iteration as well as an approximate variational Bayes solution. The statistical performance of estimators is compared numerically to state-of-the-art estimators from the literature and shown to perform favorably.

  5. Noisy covariance matrices and portfolio optimization

    NASA Astrophysics Data System (ADS)

    Pafka, S.; Kondor, I.

    2002-05-01

    According to recent findings [#!bouchaud!#,#!stanley!#], empirical covariance matrices deduced from financial return series contain such a high amount of noise that, apart from a few large eigenvalues and the corresponding eigenvectors, their structure can essentially be regarded as random. In [#!bouchaud!#], e.g., it is reported that about 94% of the spectrum of these matrices can be fitted by that of a random matrix drawn from an appropriately chosen ensemble. In view of the fundamental role of covariance matrices in the theory of portfolio optimization as well as in industry-wide risk management practices, we analyze the possible implications of this effect. Simulation experiments with matrices having a structure such as described in [#!bouchaud!#,#!stanley!#] lead us to the conclusion that in the context of the classical portfolio problem (minimizing the portfolio variance under linear constraints) noise has relatively little effect. To leading order the solutions are determined by the stable, large eigenvalues, and the displacement of the solution (measured in variance) due to noise is rather small: depending on the size of the portfolio and on the length of the time series, it is of the order of 5 to 15%. The picture is completely different, however, if we attempt to minimize the variance under non-linear constraints, like those that arise e.g. in the problem of margin accounts or in international capital adequacy regulation. In these problems the presence of noise leads to a serious instability and a high degree of degeneracy of the solutions.

  6. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  7. Exploring glassy-winged sharpshooter microbiota using deep 16S rRNA sequencing from individual insects

    USDA-ARS?s Scientific Manuscript database

    The glassy-winged sharpshooter (GWSS) is an invasive insect species that transmits Xylella fastidiosa, the bacterium causing Pierce’s disease of grapevine and other leaf scorch diseases. X. fastidiosa has been shown to colonize the anterior foregut (cibarium and precibarium) of sharpshooters, where ...

  8. Glassy-winged sharpshooter Microbiota explored using deep 16S rRNA sequencing from individual insects

    USDA-ARS?s Scientific Manuscript database

    The glassy-winged sharpshooter (GWSS) is an invasive insect species that transmits Xylella fastidiosa, the bacterium causing Pierce’s disease of grapevine and other leaf scorch diseases. X. fastidiosa has been shown to colonize the anterior foregut (cibarium and precibarium) of sharpshooters, where ...

  9. Grapevines respond to glassy-winged sharpshooter (Homalodisca vitripennis) oviposition by increasing local and systemic terpenoid levels

    USDA-ARS?s Scientific Manuscript database

    Grapevines (Vitis vinifera) have been observed to respond to oviposition by glassy-winged sharpshooters [Homalodisca vitripennis (Germar)(Hemiptera: Cicadellidae)] by producing volatile compounds that attract egg parasitoids such as Gonatocerus ashmeadi Girault (Hymenoptera: Mymaridae). Recent work ...

  10. The asymptotic spectra of banded Toeplitz and quasi-Toeplitz matrices

    NASA Technical Reports Server (NTRS)

    Beam, Richard M.; Warming, Robert F.

    1991-01-01

    Toeplitz matrices occur in many mathematical, as well as, scientific and engineering investigations. This paper considers the spectra of banded Toeplitz and quasi-Toeplitz matrices with emphasis on non-normal matrices of arbitrarily large order and relatively small bandwidth. These are the type of matrices that appear in the investigation of stability and convergence of difference approximations to partial differential equations. Quasi-Toeplitz matrices are the result of non-Dirichlet boundary conditions for the difference approximations. The eigenvalue problem for a banded Toeplitz or quasi-Toeplitz matrix of large order is, in general, analytically intractable and (for non-normal matrices) numerically unreliable. An asymptotic (matrix order approaches infinity) approach partitions the eigenvalue analysis of a quasi-Toeplitz matrix into two parts, namely the analysis for the boundary condition independent spectrum and the analysis for the boundary condition dependent spectrum. The boundary condition independent spectrum is the same as the pure Toeplitz matrix spectrum. Algorithms for computing both parts of the spectrum are presented. Examples are used to demonstrate the utility of the algorithms, to present some interesting spectra, and to point out some of the numerical difficulties encountered when conventional matrix eigenvalue routines are employed for non-normal matrices of large order. The analysis for the Toeplitz spectrum also leads to a diagonal similarity transformation that improves conventional numerical eigenvalue computations. Finally, the algorithm for the asymptotic spectrum is extended to the Toeplitz generalized eigenvalue problem which occurs, for example, in the stability of Pade type difference approximations to differential equations.

  11. Crosslinked type II collagen matrices: preparation, characterization, and potential for cartilage engineering.

    PubMed

    Pieper, J S; van der Kraan, P M; Hafmans, T; Kamp, J; Buma, P; van Susante, J L C; van den Berg, W B; Veerkamp, J H; van Kuppevelt, T H

    2002-08-01

    The limited intrinsic repair capacity of articular cartilage has stimulated continuing efforts to develop tissue engineered analogues. Matrices composed of type II collagen and chondroitin sulfate (CS), the major constituents of hyaline cartilage, may create an appropriate environment for the generation of cartilage-like tissue. In this study, we prepared, characterized, and evaluated type 11 collagen matrices with and without CS. Type II collagen matrices were prepared using purified, pepsin-treated, type II collagen. Techniques applied to prepare type I collagen matrices were found unsuitable for type II collagen. Crosslinking of collagen and covalent attachment of CS was performed using 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide. Porous matrices were prepared by freezing and lyophilization, and their physico-chemical characteristics (degree of crosslinking, denaturing temperature, collagenase-resistance, amount of CS incorporated) established. Matrices were evaluated for their capacity to sustain chondrocyte proliferation and differentiation in vitro. After 7 d of culture, chondrocytes were mainly located at the periphery of the matrices. In contrast to type I collagen, type II collagen supported the distribution of cells throughout the matrix. After 14 d of culture, matrices were surfaced with a cartilagenous-like layer, and occasionally clusters of chondrocytes were present inside the matrix. Chondrocytes proliferated and differentiated as indicated by biochemical analyses, ultrastructural observations, and reverse transcriptase PCR for collagen types I, II and X. No major differences were observed with respect to the presence or absence of CS in the matrices.

  12. Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices

    NASA Astrophysics Data System (ADS)

    Böttcher, A.; Bogoya, J. M.; Grudsky, S. M.; Maximenko, E. A.

    2017-11-01

    Analysis of the asymptotic behaviour of the spectral characteristics of Toeplitz matrices as the dimension of the matrix tends to infinity has a history of over 100 years. For instance, quite a number of versions of Szegő's theorem on the asymptotic behaviour of eigenvalues and of the so-called strong Szegő theorem on the asymptotic behaviour of the determinants of Toeplitz matrices are known. Starting in the 1950s, the asymptotics of the maximum and minimum eigenvalues were actively investigated. However, investigation of the individual asymptotics of all the eigenvalues and eigenvectors of Toeplitz matrices started only quite recently: the first papers on this subject were published in 2009-2010. A survey of this new field is presented here. Bibliography: 55 titles.

  13. Detection and typing of Xylella fastidiosa from glassy-winged sharpshooter for Pierce’s disease epidemiology

    USDA-ARS?s Scientific Manuscript database

    Epidemiology of Pierce’s disease of grape, caused by the bacterial pathogen Xylella fastidiosa (Xf), is largely dependent on populations of insect vectors such as the invasive glassy-winged sharpshooter (GWSS) (Homalodisca vitripennis). In the grape-growing regions of the southern San Joaquin Valley...

  14. Perceptual Optimization of DCT Color Quantization Matrices

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    Many image compression schemes employ a block Discrete Cosine Transform (DCT) and uniform quantization. Acceptable rate/distortion performance depends upon proper design of the quantization matrix. In previous work, we showed how to use a model of the visibility of DCT basis functions to design quantization matrices for arbitrary display resolutions and color spaces. Subsequently, we showed how to optimize greyscale quantization matrices for individual images, for optimal rate/perceptual distortion performance. Here we describe extensions of this optimization algorithm to color images.

  15. Effets de la taille finie du milieu non-linéaire sur le bruit quantique spatial généré par un oscillateur paramétrique optique confocal

    NASA Astrophysics Data System (ADS)

    Lopez, L.; Gatti, A.; Maitre, A.; Treps, N.; Gigan, S.; Fabre, C.

    2004-11-01

    Nous nous intéressons au comportement spatial des fluctuations quantiques à la sortie d'un oscillateur paramétrique optique dégénéré en modes transverses, sous le seuil. En vue de futures expériences, nous étudions les effets de la diffraction dans le milieu paramétrique sur le bruit quantique spatial. Nous montrons que l'on voit apparaître une aire de cohérence de taille finie pour les effets quantiques transverses.

  16. Electronic structure and bonding of intergranular glassy films in polycrystalline Si3 N4 : Ab initio studies and classical molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Rulis, P.; Chen, J.; Ouyang, L.; Ching, W.-Y.; Su, X.; Garofalini, S. H.

    2005-06-01

    The electronic structure and bonding of a realistic model of an intergranular glassy film (IGF) was studied with multiple computational methods. The model has a Si-O-N glassy region sandwiched between crystalline basal planes of β-Si3N4 and contains a total of 798 atoms. It was constructed with periodic boundary conditions via classical molecular dynamics (MD) techniques using an accurate multibody atomic potential. The model was then further relaxed by the VASP (Vienna ab initio simulation package) program. It is shown that the VASP-relaxed structure reduces the total energy from the MD-relaxed structure by only 47.38eV , validating the accuracy of the multiatom potential used. The calculated electronic structure shows the IGF model to be an insulator with a sizable gap of almost 3eV . Quasidefectlike states can be identified near the band edges arising from the more strained Si-N and Si-O bonds at the interface. Calculation of the Mulliken effective charge and bond order values indicates that the bonds in the glassy region and at the interface can be enhanced and weakened by distortions in the bond length and bond angle. The states at the top of the valence band are derived mostly from the crystalline part of the Si-N bonding while the states at the bottom of the conduction band are dominated by the Si-O bonding in the glassy region. Calculation of the electrostatic potential across the interface shows an average band offset of about 1.5eV between the crystalline β-Si3N4 and the glassy Si-O-N region which could be related to the space charge model for IGF.

  17. Calibration and temperature correction of heat dissipation matric potential sensors

    USGS Publications Warehouse

    Flint, A.L.; Campbell, G.S.; Ellett, K.M.; Calissendorff, C.

    2002-01-01

    This paper describes how heat dissipation sensors, used to measure soil water matric potential, were analyzed to develop a normalized calibration equation and a temperature correction method. Inference of soil matric potential depends on a correlation between the variable thermal conductance of the sensor's porous ceramic and matric poten-tial. Although this correlation varies among sensors, we demonstrate a normalizing procedure that produces a single calibration relationship. Using sensors from three sources and different calibration methods, the normalized calibration resulted in a mean absolute error of 23% over a matric potential range of -0.01 to -35 MPa. Because the thermal conductivity of variably saturated porous media is temperature dependent, a temperature correction is required for application of heat dissipation sensors in field soils. A temperature correction procedure is outlined that reduces temperature dependent errors by 10 times, which reduces the matric potential measurement errors by more than 30%. The temperature dependence is well described by a thermal conductivity model that allows for the correction of measurements at any temperature to measurements at the calibration temperature.

  18. Annealing effect on thermal conductivity and microhardness of carbon nanotube containing Se80Te16Cu4 glassy composites

    NASA Astrophysics Data System (ADS)

    Upadhyay, A. N.; Tiwari, R. S.; Singh, Kedar

    2018-02-01

    This study deals with the effect of thermal annealing on structural/microstructural, thermal and mechanical behavior of pristine Se80Te16Cu4 and carbon nanotubes (CNTs) containing Se80Te16Cu4 glassy composites. Pristine Se80Te16Cu4, 3 and 5 wt%CNTs-Se80Te16Cu4 glassy composites are annealed in the vicinity of glass transition temperature to onset crystallization temperature (340-380 K). X-ray diffraction (XRD) pattern revealed formation of polycrystalline phases of hexagonal CuSe and trigonal selenium. The indexed d-values in XRD patterns are in well conformity with the d-values obtained after the indexing of the ring pattern of selected area electron diffraction pattern of TEM images. The SEM investigation exhibited that the grain size of the CNTs containing Se80Te16Cu4 glassy composites increased with increasing annealing temperature and decreased at further higher annealing temperature. Thermal conductivity, microhardness exhibited a substantial increase with increasing annealing temperature of 340-360 K and slightly decreases for 380 K. The variation of thermal conductivity and microhardness can be explained by cross-linking formation and voids reduction.

  19. Reflectionless CMV Matrices and Scattering Theory

    NASA Astrophysics Data System (ADS)

    Chu, Sherry; Landon, Benjamin; Panangaden, Jane

    2015-04-01

    Reflectionless CMV matrices are studied using scattering theory. By changing a single Verblunsky coefficient, a full-line CMV matrix can be decoupled and written as the sum of two half-line operators. Explicit formulas for the scattering matrix associated to the coupled and decoupled operators are derived. In particular, it is shown that a CMV matrix is reflectionless iff the scattering matrix is off-diagonal which in turn provides a short proof of an important result of Breuer et al. (Commun Math Phys 295:531-550, 2010). These developments parallel those recently obtained for Jacobi matrices Jakšić et al. (Commun Math Phys 827-838, 2014).

  20. A neutron-X-ray, NMR and calorimetric study of glassy Probucol synthesized using containerless techniques

    NASA Astrophysics Data System (ADS)

    Weber, J. K. R.; Benmore, C. J.; Tailor, A. N.; Tumber, S. K.; Neuefeind, J.; Cherry, B.; Yarger, J. L.; Mou, Q.; Weber, W.; Byrn, S. R.

    2013-10-01

    Acoustic levitation was used to trap 1-3 mm diameter drops of Probucol and other pharmaceutical materials in containerless conditions. Samples were studied in situ using X-ray diffraction and ex situ using neutron diffraction, NMR and DSC techniques. The materials were brought into non-equilibrium states by supersaturating solutions or by supercooling melts. The glass transition and crystallization temperatures of glassy Probucol were 29 ± 1 and 71 ± 1 °C respectively. The glassy form was stable with a shelf life of at least 8 months. A neutron/X-ray difference function of the glass showed that while molecular sub-groups remain rigid, many of the hydrogen correlations observed in the crystal become smeared out in the disordered material. The glass is principally comprised of slightly distorted Form I Probucol molecules with disordered packing rather than large changes in the individual molecular structure. Avoiding surface contact-induced nucleation provided access to highly non-equilibrium phases and enabled synthesis of phase-pure glasses.

  1. The Approximation of Two-Mode Proximity Matrices by Sums of Order-Constrained Matrices.

    ERIC Educational Resources Information Center

    Hubert, Lawrence; Arabie, Phipps

    1995-01-01

    A least-squares strategy is proposed for representing a two-mode proximity matrix as an approximate sum of a small number of matrices that satisfy certain simple order constraints on their entries. The primary class of constraints considered defines Q-forms for particular conditions in a two-mode matrix. (SLD)

  2. Tellurium-nanowire-coated glassy carbon electrodes for selective and sensitive detection of dopamine.

    PubMed

    Tsai, Hsiang-Yu; Lin, Zong-Hong; Chang, Huan-Tsung

    2012-05-15

    Tellurium-nanowire-coated glassy carbon electrodes (TNGCEs) have been fabricated and employed for selective and sensitive detection of dopamine (DA). TNGCEs were prepared by direct deposition of tellurium nanowires, 600 ± 150 nm in length and 16 ± 3 nm in diameter, onto glassy carbon electrodes, which were further coated with Nafion to improve their selectivity and stability. Compared to the GCE, the TNGCE is more electroactive (by approximately 1.9-fold) for DA, and its selectivity toward DA over ascorbic acid (AA) and uric acid (UA) is also greater. By applying differential pulse voltammetry, at a signal-to-noise ratio of 3, the TNGCE provides a limit of detection of 1 nM for DA in the presence of 0.5mM AA and UA. Linearity (R(2)=0.9955) of the oxidation current at 0.19 V against the concentration of DA is found over the range 5 nM-1 μM. TNGCEs have been applied to determine the concentration of dopamine to be 0.59 ± 0.07 μM in PC12 cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Mating vibrational signal transmission through and between plants of an agricultural pest, the Glassy-Winged Sharpshooter

    USDA-ARS?s Scientific Manuscript database

    The agricultural pest, glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, relies primarily on successful vibrational communication across its home plant. Males and females engage in a vibrational duet to identify correct species, attractiveness of mate, and location on the plant. The signal...

  4. Effets de la pollution de l’air sur la santé

    PubMed Central

    Abelsohn, Alan; Stieb, Dave M.

    2011-01-01

    Résumé Objectif Faire connaître aux médecins de famille les effets de la pollution atmosphérique sur la santé et indiquer quels conseils donner aux patients vulnérables pour qu’ils soient moins exposés. Sources de l’information On a consulté MEDLINE à l’aide des termes relatifs à la pollution atmosphérique et à ses effets indésirables. On a révisé les articles en anglais publiés entre janvier 2008 et décembre 2009. La plupart des études contenaient des preuves de niveau II. Principal message Au Canada, la pollution de l’air extérieur cause une morbidité et une mortalité importantes. Elle peut affecter le système respiratoire (exacerbation de l’asthme et de la maladie pulmonaire obstructive chronique) et le système cardiovasculaire (déclencher l’arythmie, l’insuffisance cardiaque et les AVC). La cote air santé (CAS) est un nouvel outil de communication mis au point par Santé Canada et Environnement Canada qui indique sur une échelle de 1 à 10, le risque pour la santé causé par la pollution atmosphérique. La CAS est largement diffusée dans les médias et cet outil pourrait être utile au médecin de famille pour inciter les patients à haut risque (comme ceux qui souffrent d’asthme, de maladie pulmonaire obstructive chronique ou d’insuffisance cardiaque) à réduire leur exposition à la pollution atmosphérique. Conclusion Le médecin de famille peut se servir de la CAS et de ses messages sur la santé pour enseigner aux asthmatiques et aux autres patients à risque élevé la façon de réduire les risques pour la santé causés par la pollution atmosphérique.

  5. Solute induced relaxation in glassy polymers: Experimental measurements and nonequilibrium thermodynamic model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minelli, Matteo; Doghieri, Ferruccio

    2014-05-15

    Data for kinetics of mass uptake from vapor sorption experiments in thin glassy polymer samples are here interpreted in terms of relaxation times for volume dilation. To this result, both models from non-equilibrium thermodynamics and from mechanics of volume relaxation contribute. Different kind of sorption experiments have been considered in order to facilitate the direct comparison between kinetics of solute induced volume dilation and corresponding data from process driven by pressure or temperature jumps.

  6. Glassy dynamics of dense particle assemblies on a spherical substrate.

    PubMed

    Vest, Julien-Piera; Tarjus, Gilles; Viot, Pascal

    2018-04-28

    We study by molecular dynamics simulation a dense one-component system of particles confined on a spherical substrate. We more specifically investigate the evolution of the structural and dynamical properties of the system when changing the control parameters, the temperature and the curvature of the substrate. We find that the dynamics become glassy at low temperature, with a strong slowdown of the relaxation and the emergence of dynamical heterogeneity. The prevalent local 6-fold order is frustrated by curvature and we analyze in detail the role of the topological defects in the statics and the dynamics of the particle assembly.

  7. Use of job-exposure matrices to estimate occupational exposure to pesticides: A review.

    PubMed

    Carles, Camille; Bouvier, Ghislaine; Lebailly, Pierre; Baldi, Isabelle

    2017-03-01

    The health effects of pesticides have been extensively studied in epidemiology, mainly in agricultural populations. However, pesticide exposure assessment remains a key methodological issue for epidemiological studies. Besides self-reported information, expert assessment or metrology, job-exposure matrices still appear to be an interesting tool. We reviewed all existing matrices assessing occupational exposure to pesticides in epidemiological studies and described the exposure parameters they included. We identified two types of matrices, (i) generic ones that are generally used in case-control studies and document broad categories of pesticides in a large range of jobs, and (ii) specific matrices, developed for use in agricultural cohorts, that generally provide exposure metrics at the active ingredient level. The various applications of these matrices in epidemiological studies have proven that they are valuable tools to assess pesticide exposure. Specific matrices are particularly promising for use in agricultural cohorts. However, results obtained with matrices have rarely been compared with those obtained with other tools. In addition, the external validity of the given estimates has not been adequately discussed. Yet, matrices would help in reducing misclassification and in quantifying cumulated exposures, to improve knowledge about the chronic health effects of pesticides.

  8. Sparse Matrices in MATLAB: Design and Implementation

    NASA Technical Reports Server (NTRS)

    Gilbert, John R.; Moler, Cleve; Schreiber, Robert

    1992-01-01

    The matrix computation language and environment MATLAB is extended to include sparse matrix storage and operations. The only change to the outward appearance of the MATLAB language is a pair of commands to create full or sparse matrices. Nearly all the operations of MATLAB now apply equally to full or sparse matrices, without any explicit action by the user. The sparse data structure represents a matrix in space proportional to the number of nonzero entries, and most of the operations compute sparse results in time proportional to the number of arithmetic operations on nonzeros.

  9. Cure kinetics, morphologies, and mechanical properties of thermoplastic/MWCNT modified multifunctional glassy epoxies prepared via continuous reaction methods

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaole

    The primary goal of this dissertation is to develop a novel continuous reactor method to prepare partially cured epoxy prepolymers for aerospace prepreg applications with the aim of replacing traditional batch reactors. Compared to batch reactors, the continuous reactor is capable of solubilizing and dispersing a broad range of additives including thermoplastic tougheners, stabilizers, nanoparticles and curatives and advancing epoxy molecular weights and viscosities while reducing energy consumption. In order to prove this concept, polyethersulfone (PES) modified 4, 4'-diaminodiphenylsulfone (44DDS)/tetraglycidyl-4, 4'-diaminodiphenylmethane (TGDDM) epoxy prepolymers were firstly prepared using both continuous reactor and batch reactor methods. Kinetic studies confirmed the chain extension reaction in the continuous reactor is similar to the batch reactor, and the molecular weights and viscosities of prepolymers were readily controlled through reaction kinetics. Atomic force microscopy (AFM) confirmed similar cured network morphologies for formulations prepared from batch and continuous reactors. Additionally tensile strength, tensile modulus and fracture toughness analyses concluded mechanical properties of cured epoxy matrices produced from both reactors were equivalent. Effects of multifunctional epoxy compositions on thermoplastics phase-separated morphologies were systematically studied using a combination of AFM with nanomechanical mapping, spectroscopic and calorimetric techniques to provide new insights to tailor cured reaction induced phase separation (CRIPS) in multifunctional epoxy blend networks. Furthermore, how resultant crosslinked glassy polymer network and phase-separated morphologies correlated with mechanical properties are discussed in detail. Multiwall carbon nanotube (MWCNT)/TGDDM epoxy prepolymers were further prepared by combining the successful strategies for advancing epoxy chemistries and dispersing nanotubes using the continuous reactor

  10. Matrices of carbonaceous chondrite meteorites

    NASA Technical Reports Server (NTRS)

    Buseck, Peter R.; Hua, Xin

    1993-01-01

    The morphology, classification, and chemistry of the matrices of carbonaceous chondrite (CC) meteorites is reviewed based on recent research results. The various kinds of CCs are examined in terms of their matrix mineralogy. Alteration processes in CCs are discussed.

  11. Agricultural matrices affect ground ant assemblage composition inside forest fragments

    PubMed Central

    Dos Santos, Iracenir Andrade; Ramos, Flavio Nunes; Majer, Jonathan David; Vilela, Evaldo Ferreira

    2018-01-01

    The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices) on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates); sugarcane (3); and pasture (3). At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart). Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was ‘generalist’ both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an ‘ocean of crops’. PMID:29791493

  12. Agricultural matrices affect ground ant assemblage composition inside forest fragments.

    PubMed

    Assis, Diego Santana; Dos Santos, Iracenir Andrade; Ramos, Flavio Nunes; Barrios-Rojas, Katty Elena; Majer, Jonathan David; Vilela, Evaldo Ferreira

    2018-01-01

    The establishment of agricultural matrices generally involves deforestation, which leads to fragmentation of the remaining forest. This fragmentation can affect forest dynamics both positively and negatively. Since most animal species are affected, certain groups can be used to measure the impact of such fragmentation. This study aimed to measure the impacts of agricultural crops (matrices) on ant communities of adjacent lower montane Atlantic rainforest fragments. We sampled nine forest fragments at locations surrounded by different agricultural matrices, namely: coffee (3 replicates); sugarcane (3); and pasture (3). At each site we installed pitfall traps along a 500 m transect from the interior of the matrix to the interior of the fragment (20 pitfall traps ~25 m apart). Each transect was partitioned into four categories: interior of the matrix; edge of the matrix; edge of the fragment; and interior of the fragment. For each sample site, we measured ant species richness and ant community composition within each transect category. Ant richness and composition differed between fragments and matrices. Each sample location had a specific composition of ants, probably because of the influence of the nature and management of the agricultural matrices. Species composition in the coffee matrix had the highest similarity to its corresponding fragment. The variability in species composition within forest fragments surrounded by pasture was greatest when compared with forest fragments surrounded by sugarcane or, to a lesser extent, coffee. Functional guild composition differed between locations, but the most representative guild was 'generalist' both in the agricultural matrices and forest fragments. Our results are important for understanding how agricultural matrices act on ant communities, and also, how these isolated forest fragments could act as an island of biodiversity in an 'ocean of crops'.

  13. Design of a candidate vibrational signal for mating disruption against the glassy-winged sharpshooter, Homalodisca Vitripennis

    USDA-ARS?s Scientific Manuscript database

    The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, is an important pest of grapevines due to its ability to transmit Xylella fastidiosa, the causal agent of Pierce’s disease. GWSS mating communication is based on vibrational signals; therefore, vibrational mating disruption could be an ...

  14. MALDI matrices for low molecular weight compounds: an endless story?

    PubMed

    Calvano, Cosima Damiana; Monopoli, Antonio; Cataldi, Tommaso R I; Palmisano, Francesco

    2018-04-23

    Since its introduction in the 1980s, matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has gained a prominent role in the analysis of high molecular weight biomolecules such as proteins, peptides, oligonucleotides, and polysaccharides. Its application to low molecular weight compounds has remained for long time challenging due to the spectral interferences produced by conventional organic matrices in the low m/z window. To overcome this problem, specific sample preparation such as analyte/matrix derivatization, addition of dopants, or sophisticated deposition technique especially useful for imaging experiments, have been proposed. Alternative approaches based on second generation (rationally designed) organic matrices, ionic liquids, and inorganic matrices, including metallic nanoparticles, have been the object of intense and continuous research efforts. Definite evidences are now provided that MALDI MS represents a powerful and invaluable analytical tool also for small molecules, including their quantification, thus opening new, exciting applications in metabolomics and imaging mass spectrometry. This review is intended to offer a concise critical overview of the most recent achievements about MALDI matrices capable of specifically address the challenging issue of small molecules analysis. Graphical abstract An ideal Book of matrices for MALDI MS of small molecules.

  15. The recurrence sequences via Sylvester matrices

    NASA Astrophysics Data System (ADS)

    Karaduman, Erdal; Deveci, Ömür

    2017-07-01

    In this work, we define the Pell-Jacobsthal-Slyvester sequence and the Jacobsthal-Pell-Slyvester sequence by using the Slyvester matrices which are obtained from the characteristic polynomials of the Pell and Jacobsthal sequences and then, we study the sequences defined modulo m. Also, we obtain the cyclic groups and the semigroups from the generating matrices of these sequences when read modulo m and then, we derive the relationships among the orders of the cyclic groups and the periods of the sequences. Furthermore, we redefine Pell-Jacobsthal-Slyvester sequence and the Jacobsthal-Pell-Slyvester sequence by means of the elements of the groups and then, we examine them in the finite groups.

  16. Performance Properties of Graphite Reinforced Composites with Advanced Resin Matrices

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1980-01-01

    This article looks at the effect of different resin matrices on thermal and mechanical properties of graphite composites, and relates the thermal and flammability properties to the anaerobic char yield of the resins. The processing parameters of graphite composites utilizing graphite fabric and epoxy or other advanced resins as matrices are presented. Thermoset resin matrices studied were: aminecured polyfunctional glycidyl aminetype epoxy (baseline), phenolicnovolac resin based on condensation of dihydroxymethyl-xylene and phenol cured with hexamine, two types of polydismaleimide resins, phenolic resin, and benzyl resin. The thermoplastic matrices studied were polyethersulfone and polyphenylenesulfone. Properties evaluated in the study included anaerobic char yield, limiting oxygen index, smoke evolution, moisture absorption, and mechanical properties at elevated temperatures including tensile, compressive, and short-beam shear strengths. Generally, it was determined that graphite composites with the highest char yield exhibited optimum fire-resistant properties.

  17. Eigenvalue statistics for the sum of two complex Wishart matrices

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh

    2014-09-01

    The sum of independent Wishart matrices, taken from distributions with unequal covariance matrices, plays a crucial role in multivariate statistics, and has applications in the fields of quantitative finance and telecommunication. However, analytical results concerning the corresponding eigenvalue statistics have remained unavailable, even for the sum of two Wishart matrices. This can be attributed to the complicated and rotationally noninvariant nature of the matrix distribution that makes extracting the information about eigenvalues a nontrivial task. Using a generalization of the Harish-Chandra-Itzykson-Zuber integral, we find exact solution to this problem for the complex Wishart case when one of the covariance matrices is proportional to the identity matrix, while the other is arbitrary. We derive exact and compact expressions for the joint probability density and marginal density of eigenvalues. The analytical results are compared with numerical simulations and we find perfect agreement.

  18. Quantitative mass spectrometry of unconventional human biological matrices

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Ewelina P.; Urban, Pawel L.

    2016-10-01

    The development of sensitive and versatile mass spectrometric methodology has fuelled interest in the analysis of metabolites and drugs in unconventional biological specimens. Here, we discuss the analysis of eight human matrices-hair, nail, breath, saliva, tears, meibum, nasal mucus and skin excretions (including sweat)-by mass spectrometry (MS). The use of such specimens brings a number of advantages, the most important being non-invasive sampling, the limited risk of adulteration and the ability to obtain information that complements blood and urine tests. The most often studied matrices are hair, breath and saliva. This review primarily focuses on endogenous (e.g. potential biomarkers, hormones) and exogenous (e.g. drugs, environmental contaminants) small molecules. The majority of analytical methods used chromatographic separation prior to MS; however, such a hyphenated methodology greatly limits analytical throughput. On the other hand, the mass spectrometric methods that exclude chromatographic separation are fast but suffer from matrix interferences. To enable development of quantitative assays for unconventional matrices, it is desirable to standardize the protocols for the analysis of each specimen and create appropriate certified reference materials. Overcoming these challenges will make analysis of unconventional human biological matrices more common in a clinical setting. This article is part of the themed issue 'Quantitative mass spectrometry'.

  19. Evidence for a glassy state in strongly driven carbon

    DOE PAGES

    Brown, C. R. D.; Gericke, D. O.; Cammarata, M.; ...

    2014-06-09

    Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen closemore » to their original positions in the fluid.« less

  20. Ion beam promoted lithium absorption in glassy polymeric carbon

    NASA Astrophysics Data System (ADS)

    Ila, D.; Zimmerman, R. L.; Jenkins, G. M.; Maleki, H.; Poker, D. B.

    1995-12-01

    Glassy Polymeric Carbon (GPC) samples prepared from a precursor possess accessible pore volume that depends on the heat treatment temperature. We have shown that lithium percolates without diffusion into the accessible pores of GPC samples immersed in a molten lithium salt bath at 700°C. Ion bombardment with 10 MeV Au atoms increases the total pore volume available for lithium occupation even for samples normally impermeable to lithium. The lithium concentration depth profile is measured using Li7(p,2α) nuclear reaction analysis. We will report on lithium percolation into GPC prepared at temperatures between 500°C and 1000°C and activated by a 10 MeV gold ion bombardment.

  1. Boundary reflection matrices for nonsimply laced affine Toda field theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.D.

    The boundary reflection matrices for nonsimply laced affine Toda field theories defined on a half line with the Neumann boundary condition are investigated. The boundary reflection matrices for some pairs of the models are evaluated up to one loop order by perturbation theory. Then the exact boundary reflection matrices which are consistent with the one loop result are found under the assumption of {open_quote}{open_quote}duality{close_quote}{close_quote} and tested against algebraic consistency such as the boundary bootstrap equation and boundary crossing-unitarity relation. {copyright} {ital 1996 The American Physical Society.}

  2. Comparing the mechanism of water condensation and evaporation in glassy aerosol.

    PubMed

    Bones, David L; Reid, Jonathan P; Lienhard, Daniel M; Krieger, Ulrich K

    2012-07-17

    Atmospheric models generally assume that aerosol particles are in equilibrium with the surrounding gas phase. However, recent observations that secondary organic aerosols can exist in a glassy state have highlighted the need to more fully understand the kinetic limitations that may control water partitioning in ambient particles. Here, we explore the influence of slow water diffusion in the condensed aerosol phase on the rates of both condensation and evaporation, demonstrating that significant inhibition in mass transfer occurs for ultraviscous aerosol, not just for glassy aerosol. Using coarse mode (3-4 um radius) ternary sucrose/sodium chloride/aqueous droplets as a proxy for multicomponent ambient aerosol, we demonstrate that the timescale for particle equilibration correlates with bulk viscosity and can be ≫10(3) s. Extrapolation of these timescales to particle sizes in the accumulation mode (e.g., approximately 100 nm) by applying the Stokes-Einstein equation suggests that the kinetic limitations imposed on mass transfer of water by slow bulk phase diffusion must be more fully investigated for atmospheric aerosol. Measurements have been made on particles covering a range in dynamic viscosity from < 0.1 to > 10(13) Pa s. We also retrieve the radial inhomogeneities apparent in particle composition during condensation and evaporation and contrast the dynamics of slow dissolution of a viscous core into a labile shell during condensation with the slow percolation of water during evaporation through a more homogeneous viscous particle bulk.

  3. Boundary transfer matrices and boundary quantum KZ equations

    NASA Astrophysics Data System (ADS)

    Vlaar, Bart

    2015-07-01

    A simple relation between inhomogeneous transfer matrices and boundary quantum Knizhnik-Zamolodchikov (KZ) equations is exhibited for quantum integrable systems with reflecting boundary conditions, analogous to an observation by Gaudin for periodic systems. Thus, the boundary quantum KZ equations receive a new motivation. We also derive the commutativity of Sklyanin's boundary transfer matrices by merely imposing appropriate reflection equations, in particular without using the conditions of crossing symmetry and unitarity of the R-matrix.

  4. Analysing generator matrices G of similar state but varying minimum determinants

    NASA Astrophysics Data System (ADS)

    Harun, H.; Razali, M. F.; Rahman, N. A. Abdul

    2016-10-01

    Since Tarokh discovered Space-Time Trellis Code (STTC) in 1998, a considerable effort has been done to improve the performance of the original STTC. One way of achieving enhancement is by focusing on the generator matrix G, which represents the encoder structure for STTC. Until now, researchers have only concentrated on STTCs of different states in analyzing the performance of generator matrix G. No effort has been made on different generator matrices G of similar state. The reason being, it is difficult to produce a wide variety of generator matrices G with diverse minimum determinants. In this paper a number of generator matrices G with minimum determinant of four (4), eight (8) and sixteen (16) of the same state (i.e., 4-PSK) have been successfully produced. The performance of different generator matrices G in term of their bit error rate and signal-to-noise ratio for a Rayleigh fading environment are compared and evaluated. It is found from the MATLAB simulation that at low SNR (<8), the BER of generator matrices G with smaller minimum determinant is comparatively lower than those of higher minimum determinant. However, at high SNR (>14) there is no significant difference between the BER of these generator matrices G.

  5. Computing partial traces and reduced density matrices

    NASA Astrophysics Data System (ADS)

    Maziero, Jonas

    Taking partial traces (PTrs) for computing reduced density matrices, or related functions, is a ubiquitous procedure in the quantum mechanics of composite systems. In this paper, we present a thorough description of this function and analyze the number of elementary operations (ops) needed, under some possible alternative implementations, to compute it on a classical computer. As we note, it is worthwhile doing some analytical developments in order to avoid making null multiplications and sums, what can considerably reduce the ops. For instance, for a bipartite system ℋa⊗ℋb with dimensions da=dimℋa and db=dimℋb and for da,db≫1, while a direct use of PTr definition applied to ℋb requires 𝒪(da6db6) ops, its optimized implementation entails 𝒪(da2db) ops. In the sequence, we regard the computation of PTrs for general multipartite systems and describe Fortran code provided to implement it numerically. We also consider the calculation of reduced density matrices via Bloch’s parametrization with generalized Gell Mann’s matrices.

  6. Caracterisation de l'effet du vieillissement en milieu aqueux sur les proprietes mecaniques de composites a matrice elastomere

    NASA Astrophysics Data System (ADS)

    Favre, Audrey

    Rubber composites are widely used in several engineering fields, such as automotive, and more recently for inflatable dams and other innovative underwater applications. These rubber materials are composed by an elastomeric matrix while the reinforcing phase is a synthetic fabric. Since these components are expected to operate several years in water environment, their durability must be guaranteed. The use of rubber materials immersed in water is not new, in fact, these materials have been studied for almost one century. However, the knowledge on reinforced rubber composites immersed several years in water is still limited. In this work, investigations on reinforced rubbers were carried out in the framework of a research project in partnership with Alstom and Hydro-Quebec. The objective of this study was to identify rubber composites that could be used under water for long periods. Various rubber composites with ethylene-propylene-diene monomer (EPDM), silicone, EPDM/silicone and polychloroprene (Neoprene) matrices reinforced with E-glass fabric were studied. Thus, these materials were exposed to an accelerated ageing at 85 °C underwater for periods varying from 14 to 365 days. For comparison purposes, they were also immersed and aged one year at room temperature (21 °C). The impact of accelerated aging was estimated through three different characterization methods. Scanning electron microscopy (SEM) was first used to assess the quality of fiber-matrix interface. Then, water absorption tests were performed to quantify the rate of water absorption during immersion. Finally the evolution of the mechanical properties was followed by the determination of Young's modulus (E) and ultimate stress (sigmau) using a dedicated traction test. This analysis allowed to point out that the quality of the fiber-matrix interface was the main factor influencing the drop of the mechanical properties and their durability. Moreover, it was noticed that this interface could be improved

  7. Component Identification and Item Difficulty of Raven's Matrices Items.

    ERIC Educational Resources Information Center

    Green, Kathy E.; Kluever, Raymond C.

    Item components that might contribute to the difficulty of items on the Raven Colored Progressive Matrices (CPM) and the Standard Progressive Matrices (SPM) were studied. Subjects providing responses to CPM items were 269 children aged 2 years 9 months to 11 years 8 months, most of whom were referred for testing as potentially gifted. A second…

  8. Salivary enzymes are injected into xylem by the glassy-winged sharpshooter, a vector of Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    Certain hemipteran insects such as the glassy-winged sharpshooter, Homalodisca vitripennis, subsist entirely on xylem fluid, notwithstanding the poor nutrition of such food. Among many adaptations enabling xylem-feeding are aspects of the insect’s salivation that may also allow these insects to tra...

  9. Exceptional effect of glassy lithium fluorophosphate on Mn-rich olivine cathode material for high-performance Li ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Jongsoon; Kim, Hyungsub; Myung, Seung-Taek; Yoo, Jung-Keun; Lee, Seongsu

    2018-01-01

    Mn-rich olivine LiFe0.3Mn0.7PO4 is homogenously encapsulated by an ∼3-nm-thick conductive nanolayer composed of the glassy lithium fluorophosphate through simple non-stoichiometric synthesis using additives of small amounts of LiF and a phosphorus source. The coating of the glassy lithium fluorophosphate nanolayer is clearly verified using transmission electron microscopy and X-ray photoelectron spectroscopy. It enables significant decrease in charge transfer resistance of LiFe0.3Mn0.7PO4 and improvement of its sluggish Li diffusion. At a rate of 10C, the LiFe0.3Mn0.7PO4 encapsulated by conductive glassy lithium fluorophosphate (LiFe0.3Mn0.7PO4-GLFP) electrode delivers a capacity of ∼130 mAh g-1, which is ∼77% of its theoretical capacity (∼170 mAh g-1) and ∼1.5 times higher than that of the pristine counterpart at 10C. Furthermore, LiFe0.3Mn0.7PO4-GLFP achieves outstanding cycle stability (∼75% retention of its initial capacity over 500 cycles at 1C). The proposed olivine LiFe0.3Mn0.7PO4-GLFP battery is thus expected to be a promising candidate for large-scale energy storage applications.

  10. Highly Selective Membranes For The Separation Of Organic Vapors Using Super-Glassy Polymers

    DOEpatents

    Pinnau, Ingo; Lokhandwala, Kaaeid; Nguyen, Phuong; Segelke, Scott

    1997-11-18

    A process for separating hydrocarbon gases of low boiling point, particularly methane, ethane and ethylene, from nitrogen. The process is performed using a membrane made from a super-glassy material. The gases to be separated are mixed with a condensable gas, such as a C.sub.3+ hydrocarbon. In the presence of the condensable gas, improved selectivity for the low-boiling-point hydrocarbon gas over nitrogen is achieved.

  11. User-Friendly Tools for Random Matrices: An Introduction

    DTIC Science & Technology

    2012-12-03

    T 2011 , Oliveira 2010, Mackey et al . 2012, ... Joel A. Tropp, User-Friendly Tools for Random Matrices, NIPS, 3 December 2012 47 To learn more... E...the matrix product Y = AΩ 3. Construct an orthonormal basis Q for the range of Y [Ref] Halko –Martinsson–T, SIAM Rev. 2011 . Joel A. Tropp, User-Friendly...concentration inequalities...” with L. Mackey et al .. Submitted 2012. § “User-Friendly Tools for Random Matrices: An Introduction.” 2012. See also

  12. Diffusion of liquid polystyrene into glassy poly(phenylene oxide) characterized by DSC

    NASA Astrophysics Data System (ADS)

    Li, Linling; Wang, Xiaoliang; Zhou, Dongshan; Xue, Gi

    2013-03-01

    We report a diffusion study on the polystyrene/poly(phenylene oxide) (PS/PPO) mixture consisted by the PS and PPO nanoparticles. Diffusion of liquid PS into glassy PPO (l-PS/g-PPO) is promoted by annealing the PS/PPO mixture at several temperatures below Tg of the PPO. By tracing the Tgs of the PS-rich domain behind the diffusion front using DSC, we get the relationships of PS weight fractions and diffusion front advances with the elapsed diffusion times at different diffusion temperatures using the Gordon-Taylor equation and core-shell model. We find that the plots of weight fraction of PS vs. elapsed diffusion times at different temperatures can be converted to a master curve by Time-Temperature superposition, and the shift factors obey the Arrhenius equation. Besides, the diffusion front advances of l-PS into g-PPO show an excellent agreement with the t1/2 scaling law at the beginning of the diffusion process, and the diffusion coefficients of different diffusion temperatures also obey the Arrhenius equation. We believe the diffusion mechanism for l-PS/g-PPO should be the Fickean law rather than the Case II, though there are departures of original linearity at longer diffusion times due to the limited liquid supply system. Diffusion of liquid polystyrene into glassy poly(phenylene oxide) characterized by DSC

  13. Random matrices and condensation into multiple states

    NASA Astrophysics Data System (ADS)

    Sadeghi, Sina; Engel, Andreas

    2018-03-01

    In the present work, we employ methods from statistical mechanics of disordered systems to investigate static properties of condensation into multiple states in a general framework. We aim at showing how typical properties of random interaction matrices play a vital role in manifesting the statistics of condensate states. In particular, an analytical expression for the fraction of condensate states in the thermodynamic limit is provided that confirms the result of the mean number of coexisting species in a random tournament game. We also study the interplay between the condensation problem and zero-sum games with correlated random payoff matrices.

  14. Asymmetric correlation matrices: an analysis of financial data

    NASA Astrophysics Data System (ADS)

    Livan, G.; Rebecchi, L.

    2012-06-01

    We analyse the spectral properties of correlation matrices between distinct statistical systems. Such matrices are intrinsically non-symmetric, and lend themselves to extend the spectral analyses usually performed on standard Pearson correlation matrices to the realm of complex eigenvalues. We employ some recent random matrix theory results on the average eigenvalue density of this type of matrix to distinguish between noise and non-trivial correlation structures, and we focus on financial data as a case study. Namely, we employ daily prices of stocks belonging to the American and British stock exchanges, and look for the emergence of correlations between two such markets in the eigenvalue spectrum of their non-symmetric correlation matrix. We find several non trivial results when considering time-lagged correlations over short lags, and we corroborate our findings by additionally studying the asymmetric correlation matrix of the principal components of our datasets.

  15. More about unphysical zeroes in quark mass matrices

    NASA Astrophysics Data System (ADS)

    Emmanuel-Costa, David; González Felipe, Ricardo

    2017-01-01

    We look for all weak bases that lead to texture zeroes in the quark mass matrices and contain a minimal number of parameters in the framework of the standard model. Since there are ten physical observables, namely, six nonvanishing quark masses, three mixing angles and one CP phase, the maximum number of texture zeroes in both quark sectors is altogether nine. The nine zero entries can only be distributed between the up- and down-quark sectors in matrix pairs with six and three texture zeroes or five and four texture zeroes. In the weak basis where a quark mass matrix is nonsingular and has six zeroes in one sector, we find that there are 54 matrices with three zeroes in the other sector, obtainable through right-handed weak basis transformations. It is also found that all pairs composed of a nonsingular matrix with five zeroes and a nonsingular and nondecoupled matrix with four zeroes simply correspond to a weak basis choice. Without any further assumptions, none of these pairs of up- and down-quark mass matrices has physical content. It is shown that all non-weak-basis pairs of quark mass matrices that contain nine zeroes are not compatible with current experimental data. The particular case of the so-called nearest-neighbour-interaction pattern is also discussed.

  16. Analyzing Matrices of Meta-Analytic Correlations: Current Practices and Recommendations

    ERIC Educational Resources Information Center

    Sheng, Zitong; Kong, Wenmo; Cortina, Jose M.; Hou, Shuofei

    2016-01-01

    Researchers have become increasingly interested in conducting analyses on meta-analytic correlation matrices. Methodologists have provided guidance and recommended practices for the application of this technique. The purpose of this article is to review current practices regarding analyzing meta-analytic correlation matrices, to identify the gaps…

  17. Basal Cell Carcinoma With Matrical Differentiation: Clinicopathologic, Immunohistochemical, and Molecular Biological Study of 22 Cases.

    PubMed

    Kyrpychova, Liubov; Carr, Richard A; Martinek, Petr; Vanecek, Tomas; Perret, Raul; Chottová-Dvořáková, Magdalena; Zamecnik, Michal; Hadravsky, Ladislav; Michal, Michal; Kazakov, Dmitry V

    2017-06-01

    Basal cell carcinoma (BCC) with matrical differentiation is a fairly rare neoplasm, with about 30 cases documented mainly as isolated case reports. We studied a series of this neoplasm, including cases with an atypical matrical component, a hitherto unreported feature. Lesions coded as BCC with matrical differentiation were reviewed; 22 cases were included. Immunohistochemical studies were performed using antibodies against BerEp4, β-catenin, and epithelial membrane antigen (EMA). Molecular genetic studies using Ion AmpliSeq Cancer Hotspot Panel v2 by massively parallel sequencing on Ion Torrent PGM were performed in 2 cases with an atypical matrical component (1 was previously subjected to microdissection to sample the matrical and BCC areas separately). There were 13 male and 9 female patients, ranging in age from 41 to 89 years. Microscopically, all lesions manifested at least 2 components, a BCC area (follicular germinative differentiation) and areas with matrical differentiation. A BCC component dominated in 14 cases, whereas a matrical component dominated in 4 cases. Matrical differentiation was recognized as matrical/supramatrical cells (n=21), shadow cells (n=21), bright red trichohyaline granules (n=18), and blue-gray corneocytes (n=18). In 2 cases, matrical areas manifested cytologic atypia, and a third case exhibited an infiltrative growth pattern, with the tumor metastasizing to a lymph node. BerEP4 labeled the follicular germinative cells, whereas it was markedly reduced or negative in matrical areas. The reverse pattern was seen with β-catenin. EMA was negative in BCC areas but stained a proportion of matrical/supramatrical cells. Genetic studies revealed mutations of the following genes: CTNNB1, KIT, CDKN2A, TP53, SMAD4, ERBB4, and PTCH1, with some differences between the matrical and BCC components. It is concluded that matrical differentiation in BCC in most cases occurs as multiple foci. Rare neoplasms manifest atypia in the matrical areas

  18. Structural modifications of polymethacrylates: impact on thermal behavior and release characteristics of glassy solid solutions.

    PubMed

    Claeys, Bart; De Coen, Ruben; De Geest, Bruno G; de la Rosa, Victor R; Hoogenboom, Richard; Carleer, Robert; Adriaensens, Peter; Remon, Jean Paul; Vervaet, Chris

    2013-11-01

    Polymethacrylates such as Eudragit® polymers are well established as drug delivery matrix. Here, we synthesize several Eudragit E PO (n-butyl-, dimethylaminoethyl-, methyl-methacrylate-terpolymer) analogues via free radical polymerization. These polymers are processed via hot melt extrusion, followed by injection molding and evaluated as carriers to produce immediate release solid solution tablets. Three chemical modifications increased the glass transition temperature of the polymer: (a) substitution of n-butyl by t-butyl groups, (b) reduction of the dimethylaminoethyl methacrylate (DMAEMA) content, and (c) incorporation of a bulky isobornyl repeating unit. These structural modifications revealed the possibility to increase the mechanical stability of the tablets via altering the polymer Tg without influencing the drug release characteristics and glassy solid solution forming properties. The presence of DMAEMA units proved to be crucial with respect to API/polymer interaction (essential in creating glassy solid solutions) and drug release characteristics. Moreover, these chemical modifications accentuate the need for a more rational design of (methacrylate) polymer matrix excipients for drug formulation via hot melt extrusion and injection molding. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Glassy and Metastable Crystalline BaTi2O5 by Containerless Processing

    NASA Astrophysics Data System (ADS)

    Yoda, Shinichi; Kentei Yu, Yu; Kumar, Vijaya; Kameko, Masashi

    Many efforts have been devoted to forming bulk glass from the melt of ferroelectric crystalline materials without adding any network-forming oxides such as SiO2 due to the potential for producing transparent glass ceramics with high dielectric constant and enhanced piezoelectric, pyroelectric and electro-optic use. The containerless processing is an attractive synthesis tech-nique as it can prevent melt contamination, minimize heterogeneous nucleation, and allow melt to achieve deep undercooling for forming metastable and glassy materials. We have fabricated a new ferroelectric materiel BaTi2 O5 [1] as bulk glass from melt by us-ing containerless processing and studied the phase relationship between microstructure and ferroelectric properties of BaTi2 O5 [2]. The structures of glassy and metastable crystalline BaTi2 O5 fabricated by the containerless pro-cessing were comprehensively investigated by combined X-ray and neutron diffractions, XANES analyses and computer simulations [3]. The 3-dimensional atomic structure of glassy BaTi2 O5 (g-BaTi2 O5 ), simulated by Reverse Monte Carlo (RMC) modelling on diffraction data, shows that extremely distorted TiO5 polyhedra interconnected with both corner-and edge-shared oxy-gen, formed a higher packing density structure than that of conventional silicate glass linked with only corner-sharing of SiO4 polyhedra. In addition, XANES measurement reveales that five-coordinated TiO5 polyhedra were formable in the crystallized metastable a-and b-BaTi2 O5 phases. The structure of metastable b-BaTi2 O5 was solved by ab initio calculation, and refined by Rietveld refinement as group Pnma with unit lattices a = 10.23784 ˚, b = 3.92715 ˚, c A A = 10.92757 A ˚. Our results show that the glass-forming ability enhanced by containerless pro-cessing, not by `strong glass former', fabricated new bulk oxide glasses with peculiar structures and properties. The intermediate-range structure of g-BaTi2 O5 and the crystalline structure of

  20. Further thoughts on the utility of risk matrices.

    PubMed

    Ball, David J; Watt, John

    2013-11-01

    Risk matrices are commonly encountered devices for rating hazards in numerous areas of risk management. Part of their popularity is predicated on their apparent simplicity and transparency. Recent research, however, has identified serious mathematical defects and inconsistencies. This article further examines the reliability and utility of risk matrices for ranking hazards, specifically in the context of public leisure activities including travel. We find that (1) different risk assessors may assign vastly different ratings to the same hazard, (2) even following lengthy reflection and learning scatter remains high, and (3) the underlying drivers of disparate ratings relate to fundamentally different worldviews, beliefs, and a panoply of psychosocial factors that are seldom explicitly acknowledged. It appears that risk matrices when used in this context may be creating no more than an artificial and even untrustworthy picture of the relative importance of hazards, which may be of little or no benefit to those trying to manage risk effectively and rationally. © 2013 Society for Risk Analysis.

  1. Light Activated Cell Migration in Synthetic Extracellular Matrices

    PubMed Central

    Guo, Qiongyu; Wang, Xiaobo; Tibbitt, Mark W.; Anseth, Kristi S.; Montell, Denise J.; Elisseeff, Jennifer H.

    2012-01-01

    Synthetic extracellular matrices provide a framework in which cells can be exposed to defined physical and biological cues. However no method exists to manipulate single cells within these matrices. It is desirable to develop such methods in order to understand fundamental principles of cell migration and define conditions that support or inhibit cell movement within these matrices. Here, we present a strategy for manipulating individual mammalian stem cells in defined synthetic hydrogels through selective optical activation of Rac, which is an intracellular signaling protein that plays a key role in cell migration. Photoactivated cell migration in synthetic hydrogels depended on mechanical and biological cues in the biomaterial. Real-time hydrogel photodegradation was employed to create geometrically defined channels and spaces in which cells could be photoactivated to migrate. Cell migration speed was significantly higher in the photo-etched channels and cells could easily change direction of movement compared to the bulk hydrogels. PMID:22889487

  2. Effects of Xylem-Sap Composition on Glassy-Winged Sharpshooter (Hemiptera: Cicadellidae) Egg Maturation on High- and Low-Quality Host Plants.

    PubMed

    Sisterson, Mark S; Wallis, Christopher M; Stenger, Drake C

    2017-04-01

    Glassy-winged sharpshooters must feed as adults to produce mature eggs. Cowpea and sunflower are both readily accepted by the glassy-winged sharpshooter for feeding, but egg production on sunflower was reported to be lower than egg production on cowpea. To better understand the role of adult diet in egg production, effects of xylem-sap chemistry on glassy-winged sharpshooter egg maturation was compared for females confined to cowpea and sunflower. Females confined to cowpea consumed more xylem-sap than females held on sunflower. In response, females held on cowpea produced more eggs, had heavier bodies, and greater lipid content than females held on sunflower. Analysis of cowpea and sunflower xylem-sap found that 17 of 19 amino acids were more concentrated in cowpea xylem-sap than in sunflower xylem-sap. Thus, decreased consumption of sunflower xylem-sap was likely owing to perceived lower quality, with decreased egg production owing to a combination of decreased feeding and lower return per unit volume of xylem-sap consumed. Examination of pairwise correlation coefficients among amino acids indicated that concentrations of several amino acids within a plant species were correlated. Principal component analyses identified latent variables describing amino acid composition of xylem-sap. For females held on cowpea, egg maturation was affected by test date, volume of excreta produced, and principal components describing amino acid composition of xylem-sap. Principal component analyses aided in identifying amino acids that were positively or negatively associated with egg production, although determining causality with respect to key nutritional requirements for glassy-winged sharpshooter egg production will require additional testing. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  3. Evaluation of a method to quantify glassy-winged sharpshooter (Hemiptera: Cicadellidae) egg maturation during a feeding assay

    USDA-ARS?s Scientific Manuscript database

    Methods to improve an assay relating adult feeding to egg maturation by the glassy-winged sharpshooter (Hemiptera: Cicadellidae) were evaluated. The assay consisted of confining adult females to cowpea stems in parafilm enclosures and quantifying adult feeding and egg maturation. Adult feeding was...

  4. Hurwitz numbers and products of random matrices

    NASA Astrophysics Data System (ADS)

    Orlov, A. Yu.

    2017-09-01

    We study multimatrix models, which may be viewed as integrals of products of tau functions depending on the eigenvalues of products of random matrices. We consider tau functions of the two-component Kadomtsev-Petviashvili (KP) hierarchy (semi-infinite relativistic Toda lattice) and of the B-type KP (BKP) hierarchy introduced by Kac and van de Leur. Such integrals are sometimes tau functions themselves. We consider models that generate Hurwitz numbers HE,F, where E is the Euler characteristic of the base surface and F is the number of branch points. We show that in the case where the integrands contain the product of n > 2 matrices, the integral generates Hurwitz numbers with E ≤ 2 and F ≤ n+2. Both the numbers E and F depend both on n and on the order of the factors in the matrix product. The Euler characteristic E can be either an even or an odd number, i.e., it can match both orientable and nonorientable (Klein) base surfaces depending on the presence of the tau function of the BKP hierarchy in the integrand. We study two cases, the products of complex and the products of unitary matrices.

  5. Spectral density of mixtures of random density matrices for qubits

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Wang, Jiamei; Chen, Zhihua

    2018-06-01

    We derive the spectral density of the equiprobable mixture of two random density matrices of a two-level quantum system. We also work out the spectral density of mixture under the so-called quantum addition rule. We use the spectral densities to calculate the average entropy of mixtures of random density matrices, and show that the average entropy of the arithmetic-mean-state of n qubit density matrices randomly chosen from the Hilbert-Schmidt ensemble is never decreasing with the number n. We also get the exact value of the average squared fidelity. Some conjectures and open problems related to von Neumann entropy are also proposed.

  6. Efficient linear algebra routines for symmetric matrices stored in packed form.

    PubMed

    Ahlrichs, Reinhart; Tsereteli, Kakha

    2002-01-30

    Quantum chemistry methods require various linear algebra routines for symmetric matrices, for example, diagonalization or Cholesky decomposition for positive matrices. We present a small set of these basic routines that are efficient and minimize memory requirements.

  7. The diagonalization of cubic matrices

    NASA Astrophysics Data System (ADS)

    Cocolicchio, D.; Viggiano, M.

    2000-08-01

    This paper is devoted to analysing the problem of the diagonalization of cubic matrices. We extend the familiar algebraic approach which is based on the Cardano formulae. We rewrite the complex roots of the associated resolvent secular equation in terms of transcendental functions and we derive the diagonalizing matrix.

  8. Communication Optimal Parallel Multiplication of Sparse Random Matrices

    DTIC Science & Technology

    2013-02-21

    Definition 2.1), and (2) the algorithm is sparsity- independent, where the computation is statically partitioned to processors independent of the sparsity...struc- ture of the input matrices (see Definition 2.5). The second assumption applies to nearly all existing al- gorithms for general sparse matrix-matrix...where A and B are n× n ER(d) matrices: Definition 2.1 An ER(d) matrix is an adjacency matrix of an Erdős-Rényi graph with parameters n and d/n. That

  9. Statistical potential-based amino acid similarity matrices for aligning distantly related protein sequences.

    PubMed

    Tan, Yen Hock; Huang, He; Kihara, Daisuke

    2006-08-15

    Aligning distantly related protein sequences is a long-standing problem in bioinformatics, and a key for successful protein structure prediction. Its importance is increasing recently in the context of structural genomics projects because more and more experimentally solved structures are available as templates for protein structure modeling. Toward this end, recent structure prediction methods employ profile-profile alignments, and various ways of aligning two profiles have been developed. More fundamentally, a better amino acid similarity matrix can improve a profile itself; thereby resulting in more accurate profile-profile alignments. Here we have developed novel amino acid similarity matrices from knowledge-based amino acid contact potentials. Contact potentials are used because the contact propensity to the other amino acids would be one of the most conserved features of each position of a protein structure. The derived amino acid similarity matrices are tested on benchmark alignments at three different levels, namely, the family, the superfamily, and the fold level. Compared to BLOSUM45 and the other existing matrices, the contact potential-based matrices perform comparably in the family level alignments, but clearly outperform in the fold level alignments. The contact potential-based matrices perform even better when suboptimal alignments are considered. Comparing the matrices themselves with each other revealed that the contact potential-based matrices are very different from BLOSUM45 and the other matrices, indicating that they are located in a different basin in the amino acid similarity matrix space.

  10. Commutative semigroups of real and complex matrices. [with use of the jordan form

    NASA Technical Reports Server (NTRS)

    Brown, D. R.

    1974-01-01

    The computation of divergence is studied. Covariance matrices to be analyzed admit a common diagonalization, or even triangulation. Sufficient conditions are given for such phenomena to take place, the arguments cover both real and complex matrices, and are not restricted to Hermotian or other special forms. Specifically, it is shown to be sufficient that the matrices in question commute in order to admit a common triangulation. Several results hold in the case that the matrices in question form a closed and bounded set, rather than only in the finite case.

  11. Cell-adhesive RGD peptide-displaying M13 bacteriophage/PLGA nanofiber matrices for growth of fibroblasts.

    PubMed

    Shin, Yong Cheol; Lee, Jong Ho; Jin, Linhua; Kim, Min Jeong; Oh, Jin-Woo; Kim, Tai Wan; Han, Dong-Wook

    2014-01-01

    M13 bacteriophages can be readily fabricated as nanofibers due to non-toxic bacterial virus with a nanofiber-like shape. In the present study, we prepared hybrid nanofiber matrices composed of poly(lactic-co-glycolic acid, PLGA) and M13 bacteriophages which were genetically modified to display the RGD peptide on their surface (RGD-M13 phage). The surface morphology and chemical composition of hybrid nanofiber matrices were characterized by scanning electron microscopy (SEM) and Raman spectroscopy, respectively. Immunofluorescence staining was conducted to investigate the existence of M13 bacteriophages in RGD-M13 phage/PLGA hybrid nanofibers. In addition, the attachment and proliferation of three different types of fibroblasts on RGD-M13 phage/PLGA nanofiber matrices were evaluated to explore how fibroblasts interact with these matrices. SEM images showed that RGD-M13 phage/PLGA hybrid matrices had the non-woven porous structure, quite similar to that of natural extracellular matrices, having an average fiber diameter of about 190 nm. Immunofluorescence images and Raman spectra revealed that RGD-M13 phages were homogeneously distributed in entire matrices. Moreover, the attachment and proliferation of fibroblasts cultured on RGD-M13 phage/PLGA matrices were significantly enhanced due to enriched RGD moieties on hybrid matrices. These results suggest that RGD-M13 phage/PLGA matrices can be efficiently used as biomimetic scaffolds for tissue engineering applications.

  12. The performance of the Congruence Among Distance Matrices (CADM) test in phylogenetic analysis

    PubMed Central

    2011-01-01

    Background CADM is a statistical test used to estimate the level of Congruence Among Distance Matrices. It has been shown in previous studies to have a correct rate of type I error and good power when applied to dissimilarity matrices and to ultrametric distance matrices. Contrary to most other tests of incongruence used in phylogenetic analysis, the null hypothesis of the CADM test assumes complete incongruence of the phylogenetic trees instead of congruence. In this study, we performed computer simulations to assess the type I error rate and power of the test. It was applied to additive distance matrices representing phylogenies and to genetic distance matrices obtained from nucleotide sequences of different lengths that were simulated on randomly generated trees of varying sizes, and under different evolutionary conditions. Results Our results showed that the test has an accurate type I error rate and good power. As expected, power increased with the number of objects (i.e., taxa), the number of partially or completely congruent matrices and the level of congruence among distance matrices. Conclusions Based on our results, we suggest that CADM is an excellent candidate to test for congruence and, when present, to estimate its level in phylogenomic studies where numerous genes are analysed simultaneously. PMID:21388552

  13. In-Vivo Characterization of Glassy Carbon Micro-Electrode Arrays for Neural Applications and Histological Analysis of the Brain Tissue

    NASA Astrophysics Data System (ADS)

    Vomero, Maria

    The aim of this work is to fabricate and characterize glassy carbon Microelectrode Arrays (MEAs) for sensing and stimulating neural activity, and conduct histological analysis of the brain tissue after the implant to determine long-term performance. Neural applications often require robust electrical and electrochemical response over a long period of time, and for those applications we propose to replace the commonly used noble metals like platinum, gold and iridium with glassy carbon. We submit that such material has the potential to improve the performances of traditional neural prostheses, thanks to better charge transfer capabilities and higher electrochemical stability. Great interest and attention is given in this work, in particular, to the investigation of tissue response after several weeks of implants in rodents' brain motor cortex and the associated materials degradation. As part of this work, a new set of devices for Electrocorticography (ECoG) has been designed and fabricated to improve durability and quality of the previous generation of devices, designed and manufactured by the same research group in 2014. In-vivo long-term impedance measurements and brain activity recordings were performed to test the functionality of the neural devices. In-vitro electrical characterization of the carbon electrodes, as well as the study of the adhesion mechanisms between glassy carbon and different substrates is also part of the research described in this book.

  14. Fibonacci Identities, Matrices, and Graphs

    ERIC Educational Resources Information Center

    Huang, Danrun

    2005-01-01

    General strategies used to help discover, prove, and generalize identities for Fibonacci numbers are described along with some properties about the determinants of square matrices. A matrix proof for identity (2) that has received immense attention from many branches of mathematics, like linear algebra, dynamical systems, graph theory and others…

  15. Effets de l'humidite sur la propagation du delaminage dans un composite carbone/epoxy sollicite en mode mixte I/II

    NASA Astrophysics Data System (ADS)

    LeBlanc, Luc R.

    Les materiaux composites sont de plus en plus utilises dans des domaines tels que l'aerospatiale, les voitures a hautes performances et les equipements sportifs, pour en nommer quelques-uns. Des etudes ont demontre qu'une exposition a l'humidite nuit a la resistance des composites en favorisant l'initiation et la propagation du delaminage. De ces etudes, tres peu traitent de l'effet de l'humidite sur l'initiation du delaminage en mode mixte I/II et aucune ne traite des effets de l'humidite sur le taux de propagation du delaminage en mode mixte I/II dans un composite. La premiere partie de cette these consiste a determiner les effets de l'humidite sur la propagation du delaminage lors d'une sollicitation en mode mixte I/II. Des eprouvettes d'un composite unidirectionnel de carbone/epoxy (G40-800/5276-1) ont ete immergees dans un bain d'eau distillee a 70°C jusqu'a leur saturation. Des essais experimentaux quasi-statiques avec des chargements d'une gamme de mixites des modes I/II (0%, 25%, 50%, 75% et 100%) ont ete executes pour determiner les effets de l'humidite sur la resistance au delaminage du composite. Des essais de fatigue ont ete realises, avec la meme gamme de mixite des modes I/II, pour determiner 1'effet de 1'humidite sur l'initiation et sur le taux de propagation du delaminage. Les resultats des essais en chargement quasi-statique ont demontre que l'humidite reduit la resistance au delaminage d'un composite carbone/epoxy pour toute la gamme des mixites des modes I/II, sauf pour le mode I ou la resistance au delaminage augmente apres une exposition a l'humidite. Pour les chargements en fatigue, l'humidite a pour effet d'accelerer l'initiation du delaminage et d'augmenter le taux de propagation pour toutes les mixites des modes I/II. Les donnees experimentales recueillies ont ete utilisees pour determiner lesquels des criteres de delaminage en statique et des modeles de taux de propagation du delaminage en fatigue en mode mixte I/II proposes dans la

  16. Central Limit Theorems for Linear Statistics of Heavy Tailed Random Matrices

    NASA Astrophysics Data System (ADS)

    Benaych-Georges, Florent; Guionnet, Alice; Male, Camille

    2014-07-01

    We show central limit theorems (CLT) for the linear statistics of symmetric matrices with independent heavy tailed entries, including entries in the domain of attraction of α-stable laws and entries with moments exploding with the dimension, as in the adjacency matrices of Erdös-Rényi graphs. For the second model, we also prove a central limit theorem of the moments of its empirical eigenvalues distribution. The limit laws are Gaussian, but unlike the case of standard Wigner matrices, the normalization is the one of the classical CLT for independent random variables.

  17. Schur Complement Inequalities for Covariance Matrices and Monogamy of Quantum Correlations

    NASA Astrophysics Data System (ADS)

    Lami, Ludovico; Hirche, Christoph; Adesso, Gerardo; Winter, Andreas

    2016-11-01

    We derive fundamental constraints for the Schur complement of positive matrices, which provide an operator strengthening to recently established information inequalities for quantum covariance matrices, including strong subadditivity. This allows us to prove general results on the monogamy of entanglement and steering quantifiers in continuous variable systems with an arbitrary number of modes per party. A powerful hierarchical relation for correlation measures based on the log-determinant of covariance matrices is further established for all Gaussian states, which has no counterpart among quantities based on the conventional von Neumann entropy.

  18. Schur Complement Inequalities for Covariance Matrices and Monogamy of Quantum Correlations.

    PubMed

    Lami, Ludovico; Hirche, Christoph; Adesso, Gerardo; Winter, Andreas

    2016-11-25

    We derive fundamental constraints for the Schur complement of positive matrices, which provide an operator strengthening to recently established information inequalities for quantum covariance matrices, including strong subadditivity. This allows us to prove general results on the monogamy of entanglement and steering quantifiers in continuous variable systems with an arbitrary number of modes per party. A powerful hierarchical relation for correlation measures based on the log-determinant of covariance matrices is further established for all Gaussian states, which has no counterpart among quantities based on the conventional von Neumann entropy.

  19. Technological optimization of manufacture of probiotic whey cheese matrices.

    PubMed

    Madureira, Ana R; Brandão, Teresa; Gomes, Ana M; Pintado, Manuela E; Malcata, F Xavier

    2011-03-01

    In attempts to optimize their manufacture, whey cheese matrices obtained via thermal processing of whey (leading to protein precipitation) and inoculated with probiotic cultures were tested. A central composite, face-centered design was followed, so a total of 16 experiments were run using fractional addition of bovine milk to feedstock whey, homogenization time, and storage time of whey cheese as processing parameters. Probiotic whey cheese matrices were inoculated with Lactobacillus casei LAFTIL26 at 10% (v/v), whereas control whey cheese matrices were added with skim milk previously acidified with lactic acid to the same level. All whey cheeses were stored at 7 °C up to 14 d. Chemical and sensory analyses were carried out for all samples, as well as rheological characterization by oscillatory viscometry and textural profiling. As expected, differences were found between control and probiotic matrices: fractional addition of milk and storage time were the factors accounting for the most important effects. Estimation of the best operating parameters was via response surface analysis: milk addition at a rate of 10% to 15% (v/v), and homogenization for 5 min led to the best probiotic whey cheeses in terms of texture and organoleptic properties, whereas the best time for consumption was found to be by 9 d of storage following manufacture.

  20. Remarks on a one-parameter family of singular matrices

    NASA Astrophysics Data System (ADS)

    Sharma, Ramesh; Pariso, Chris; Duda, Michelle

    2015-01-01

    This short article will present to the reader a family of matrices that form an algebra over the reals. This presentation provides both current and former students of modern abstract algebra a better illustration of the concepts of rings, fields, and algebra itself. In addition, this article relates eigenspaces of 3×3 matrices with the arithmetic-geometric mean equality, an attribute that teachers might enjoy utilizing as a teaching tool in their classes.

  1. Teaching Fourier optics through ray matrices

    NASA Astrophysics Data System (ADS)

    Moreno, I.; Sánchez-López, M. M.; Ferreira, C.; Davis, J. A.; Mateos, F.

    2005-03-01

    In this work we examine the use of ray-transfer matrices for teaching and for deriving some topics in a Fourier optics course, exploiting the mathematical simplicity of ray matrices compared to diffraction integrals. A simple analysis of the physical meaning of the elements of the ray matrix provides a fast derivation of the conditions to obtain the optical Fourier transform. We extend this derivation to fractional Fourier transform optical systems, and derive the order of the transform from the ray matrix. Some examples are provided to stress this point of view, both with classical and with graded index lenses. This formulation cannot replace the complete explanation of Fourier optics provided by the wave theory, but it is a complementary tool useful to simplify many aspects of Fourier optics and to relate them to geometrical optics.

  2. Efficient computer algebra algorithms for polynomial matrices in control design

    NASA Technical Reports Server (NTRS)

    Baras, J. S.; Macenany, D. C.; Munach, R.

    1989-01-01

    The theory of polynomial matrices plays a key role in the design and analysis of multi-input multi-output control and communications systems using frequency domain methods. Examples include coprime factorizations of transfer functions, cannonical realizations from matrix fraction descriptions, and the transfer function design of feedback compensators. Typically, such problems abstract in a natural way to the need to solve systems of Diophantine equations or systems of linear equations over polynomials. These and other problems involving polynomial matrices can in turn be reduced to polynomial matrix triangularization procedures, a result which is not surprising given the importance of matrix triangularization techniques in numerical linear algebra. Matrices with entries from a field and Gaussian elimination play a fundamental role in understanding the triangularization process. In the case of polynomial matrices, matrices with entries from a ring for which Gaussian elimination is not defined and triangularization is accomplished by what is quite properly called Euclidean elimination. Unfortunately, the numerical stability and sensitivity issues which accompany floating point approaches to Euclidean elimination are not very well understood. New algorithms are presented which circumvent entirely such numerical issues through the use of exact, symbolic methods in computer algebra. The use of such error-free algorithms guarantees that the results are accurate to within the precision of the model data--the best that can be hoped for. Care must be taken in the design of such algorithms due to the phenomenon of intermediate expressions swell.

  3. Core-shell alginate-ghatti gum modified montmorillonite composite matrices for stomach-specific flurbiprofen delivery.

    PubMed

    Bera, Hriday; Ippagunta, Sohitha Reddy; Kumar, Sanoj; Vangala, Pavani

    2017-07-01

    Novel alginate-arabic gum (AG) gel membrane coated alginate-ghatti gum (GG) modified montmorillonite (MMT) composite matrices were developed for intragastric flurbiprofen (FLU) delivery by combining floating and mucoadhesion mechanisms. The clay-biopolymer composite matrices containing FLU as core were accomplished by ionic-gelation technique. Effects of polymer-blend (alginate:GG) ratios and crosslinker (CaCl 2 ) concentrations on drug entrapment efficiency (DEE, %) and cumulative drug release after 8h (Q 8h , %) were studied to optimize the core matrices by a 3 2 factorial design. The optimized matrices (F-O) demonstrated DEE of 91.69±1.43% and Q 8h of 74.96±1.56% with minimum errors in prediction. The alginate-AG gel membrane enveloped optimized matrices (F-O, coated) exhibited superior buoyancy, better ex vivo mucoadhesion and slower drug release rate. The drug release profile of FLU-loaded uncoated and coated optimized matrices was best fitted in Korsmeyer-Peppas model with anomalous diffusion and case-II transport driven mechanism, respectively. The uncoated and coated matrices containing FLU were also characterized for drug-excipients compatibility, drug crystallinity, thermal behaviour and surface morphology. Thus, the newly developed alginate-AG gel membrane coated alginate-GG modified MMT composite matrices are appropriate for intragastric delivery of FLU over an extended period of time with improved therapeutic benefits. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Fabrication of chemically cross-linked porous gelatin matrices.

    PubMed

    Bozzini, Sabrina; Petrini, Paola; Altomare, Lina; Tanzi, Maria Cristina

    2009-01-01

    The aim of this study was to chemically cross-link gelatin, by reacting its free amino groups with an aliphatic diisocyanate. To produce hydrogels with controllable properties, the number of reacting amino groups was carefully determined. Porosity was introduced into the gelatin-based hydrogels through the lyophilization process. Porous and non-porous matrices were characterized with respect to their chemical structure, morphology, water uptake and mechanical properties. The physical, chemical and mechanical properties of the porous matrices are related to the extent of their cross-linking, showing that they can be controlled by varying the reaction parameters. Water uptake values (24 hours) vary between 160% and 200% as the degree of cross-linking increases. The flexibility of the samples also decreases by changing the extent of cross-linking. Young's modulus shows values between 0.188 KPa, for the highest degree, and 0.142 KPa for the lowest degree. The matrices are potential candidates for use as tissue-engineering scaffolds by modulating their physical chemical properties according to the specific application.

  5. Large-deviation theory for diluted Wishart random matrices

    NASA Astrophysics Data System (ADS)

    Castillo, Isaac Pérez; Metz, Fernando L.

    2018-03-01

    Wishart random matrices with a sparse or diluted structure are ubiquitous in the processing of large datasets, with applications in physics, biology, and economy. In this work, we develop a theory for the eigenvalue fluctuations of diluted Wishart random matrices based on the replica approach of disordered systems. We derive an analytical expression for the cumulant generating function of the number of eigenvalues IN(x ) smaller than x ∈R+ , from which all cumulants of IN(x ) and the rate function Ψx(k ) controlling its large-deviation probability Prob[IN(x ) =k N ] ≍e-N Ψx(k ) follow. Explicit results for the mean value and the variance of IN(x ) , its rate function, and its third cumulant are discussed and thoroughly compared to numerical diagonalization, showing very good agreement. The present work establishes the theoretical framework put forward in a recent letter [Phys. Rev. Lett. 117, 104101 (2016), 10.1103/PhysRevLett.117.104101] as an exact and compelling approach to deal with eigenvalue fluctuations of sparse random matrices.

  6. In situ AFM investigation of slow crack propagation mechanisms in a glassy polymer

    NASA Astrophysics Data System (ADS)

    George, M.; Nziakou, Y.; Goerke, S.; Genix, A.-C.; Bresson, B.; Roux, S.; Delacroix, H.; Halary, J.-L.; Ciccotti, M.

    2018-03-01

    A novel experimental technique based on in situ AFM monitoring of the mechanisms of damage and the strain fields associated to the slow steady-state propagation of a fracture in glassy polymers is presented. This micron-scale investigation is complemented by optical measurements of the sample deformation up to the millimetric macroscopic scale of the sample in order to assess the proper crack driving conditions. These multi-scale observations provide important insights towards the modeling of the fracture toughness of glassy polymers and its relationship with the macromolecular structure and non-linear rheological properties. This novel technique is first tested on a standard PMMA thermoplastic in order to both evaluate its performance and the richness of this new kind of observations. Although the fracture propagation in PMMA is well known to proceed through crazing in the bulk of the samples, our observations provide a clear description and quantitative evaluation of a change of fracture mechanism towards shear yielding fracture accompanied by local necking close to the free surface of the sample, which can be explained by the local change of stress triaxiality. Moreover, this primary surface necking mechanism is shown to be accompanied by a network of secondary grooves that can be related to surface crazes propagating towards the interior of the sample. This overall scenario is validated by post-mortem fractographic investigations by scanning electron microscopy.

  7. Structural and surface changes in glassy carbon due to strontium implantation and heat treatment

    NASA Astrophysics Data System (ADS)

    Odutemowo, O. S.; Malherbe, J. B.; Prinsloo, L. C.; Njoroge, E. G.; Erasmus, R.; Wendler, E.; Undisz, A.; Rettenmayr, M.

    2018-01-01

    There are still questions around the microstructure of glassy carbon (GC), like the observation of the micropores. These were proposed to explain the low density of GC. This paper explains the effect of ion bombardment (200 keV Sr+, 1 × 1016 Sr+/cm2 at RT) on the microstructure of GC. TEM and AFM show that micropores in pristine GC are destroyed leading to densification of GC from 1.42 g/cm3 to 2.03 g/cm3. The amorphisation of glassy carbon was also not complete with graphitic strands embedded within the GC. These were relatively few, as Raman analysis showed that the Sr implantation resulted in a typical amorphous Raman spectrum. Annealing of the sample at 900 °C only resulted in a slight recovery of the GC structure. AFM and SEM analysis showed that the surface of the sample became rougher after Sr implantation. The roughness increased after the sample was annealed at 600 °C due to segregation of Sr towards the surface of the GC. SEM measurements of a sample with both implanted and un-implanted edges after annealing at 900 °C, showed that the high temperature heat treatment did not affect the surface topography of un-irradiated GC.

  8. Mediatorless solar energy conversion by covalently bonded thylakoid monolayer on the glassy carbon electrode.

    PubMed

    Lee, Jinhwan; Im, Jaekyun; Kim, Sunghyun

    2016-04-01

    Light reactions of photosynthesis that take place in thylakoid membranes found in plants or cyanobacteria are among the most effective ways of utilizing light. Unlike most researches that use photosystem I or photosystem II as conversion units for converting light to electricity, we have developed a simple method in which the thylakoid monolayer was covalently immobilized on the glassy carbon electrode surface. The activity of isolated thylakoid membrane was confirmed by measuring evolving oxygen under illumination. Glassy carbon surfaces were first modified with partial or full monolayers of carboxyphenyl groups by reductive C-C coupling using 4-aminobenzoic acid and aniline and then thylakoid membrane was bioconjugated through the peptide bond between amine residues of thylakoid and carboxyl groups on the surface. Surface properties of modified surfaces were characterized by cyclic voltammetry, contact angle measurements, and electrochemical impedance spectroscopy. Photocurrent of 230 nA cm(-2) was observed when the thylakoid monolayer was formed on the mixed monolayer of 4-carboxylpheny and benzene at applied potential of 0.4V vs. Ag/AgCl. A small photocurrent resulted when the 4-carboxyphenyl full monolayer was used. This work shows the possibility of solar energy conversion by directly employing the whole thylakoid membrane through simple surface modification. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Temperature and frequency response of conductivity in Ag2S doped chalcogenide glassy semiconductor

    NASA Astrophysics Data System (ADS)

    Ojha, Swarupa; Das, Anindya Sundar; Roy, Madhab; Bhattacharya, Sanjib

    2018-06-01

    The electric conductivity of chalcogenide glassy semiconductor xAg2S-(1-x)(0.5S-0.5Te) has been presented here as a function of temperature and frequency. Formation of different nanocrystallites has been confirmed from X-ray diffraction study. It is also noteworthy that average size of nanocrystallites decreases with the increase of dislocation density. Dc conductivity data have been interpreted using Mott's model and Greaves's model in low and high temperature regions respectively. Ac conductivity above the room temperature has been analyzed using Meyer-Neldel (MN) conduction rule. It is interestingly noted that Correlated Barrier Hopping (CBH) model is the most appropriate conduction mechanism for x = 0.35, where pairs of charge carrier are considered to hop over the potential barrier between the sites via thermal activation. To interpret experimental data for x = 0.45, modified non-overlapping small polaron tunnelling (NSPT) model is supposed to be appropriate model due to tunnelling through grain boundary. The conductivity spectra at various temperatures have been analyzed using Almond-West Formalism (power law model). Scaling of conductivity spectra reveals that electrical relaxation process of charge carriers (polaron) is temperature independent but depends upon the composition of the present chalcogenide glassy system.

  10. Electrochemical behavior of an antiviral drug acyclovir at fullerene-C(60)-modified glassy carbon electrode.

    PubMed

    Shetti, Nagaraj P; Malode, Shweta J; Nandibewoor, Sharanappa T

    2012-12-01

    Electrochemical oxidation of acyclovir at fullerene-C(60)-modified glassy carbon electrode has been investigated using cyclic and differential pulse voltammetry. In pH 7.4 phosphate buffer, acyclovir showed an irreversible oxidation peak at about 0.96V. The cyclic voltammetric results showed that fullerene-C(60)-modified glassy carbon electrode can remarkably enhance electrocatalytic activity towards the oxidation of acyclovir. The electrocatalytic behavior was further exploited as a sensitive detection scheme for the acyclovir determination by differential pulse voltammetry. Effects of anodic peak potential (E(p)/V), anodic peak current (I(p)/μA) and heterogeneous rate constant (k(0)) have been discussed. Under optimized conditions, the concentration range and detection limit were 9.0×10(-8) to 6.0×10(-6)M and 1.48×10(-8)M, respectively. The proposed method was applied to acyclovir determination in pharmaceutical samples and human biological fluids such as urine and blood plasma as a real sample. This method can also be employed in quality control and routine determination of drugs in pharmaceutical formulations. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Soluble organic matrices of aragonitic skeletons of Merulinidae (Cnidaria, Anthozoa).

    PubMed

    Dauphin, Yannicke; Cuif, Jean-Pierre; Williams, C Terry

    2008-05-01

    Our interpretation of the overall taxonomy and evolution of the Scleractinia, the most important reef builders in tropical areas, has long depended exclusively on morphology of the calcareous skeletons. The reported series of physical and biochemical characterizations of skeletons and the mineralizing matrices extracted from the skeletons allow, for the first time, the level of biochemical diversity among corallites of the same family to be estimated. Similarities and differences observed in the micro- and nanostructures of the skeletons reflect those of the soluble organic matrices. Sulphur is mainly associated with sulphated acidic sugars. The role of sulphated sugars on the biomineralization processes is still underestimated. The resulting data suggest that environmental conditions may act on the mineralization process through the detailed compositions of the mineralizing matrices.

  12. Theory of quark mixing matrix and invariant functions of mass matrices

    NASA Astrophysics Data System (ADS)

    Jarloskog, C.

    1987-10-01

    The origin of the quark mixing matrix; super elementary theory of flavor projection operators; equivalences and invariances; the commutator formalism and CP violation; CP conditions for any number of families; the angle between the quark mass matrices; and application to Fritzsch and Stech mass matrices are discussed.

  13. Novel Heating-Induced Reversion during Crystallization of Al-based Glassy Alloys

    NASA Astrophysics Data System (ADS)

    Han, F. F.; Inoue, A.; Han, Y.; Kong, F. L.; Zhu, S. L.; Shalaan, E.; Al-Marzouki, F.; Greer, A. L.

    2017-04-01

    Thermal stability and crystallization of three multicomponent glassy alloys, Al86Y7Ni5Co1Fe0.5Pd0.5, Al85Y8Ni5Co1Fe0.5Pd0.5 and Al84Y9Ni4Co1.5Fe0.5Pd1, were examined to assess the ability to form the mixture of amorphous (am) and fcc-aluminum (α-Al) phases. On heating, the glass transition into the supercooled liquid is shown by the 85Al and 84Al glasses. The crystallization sequences are [am] → [am + α-Al] → [α-Al + compounds] for the 86Al and 85Al alloys, and [am] → [am + α-Al + cubic AlxMy (M = Y, Ni, Co, Fe, Pd)] → [am + α-Al] → [α-Al + Al3Y + Al9(Co, Ni)2 + unknown phase] for the 84Al alloy. The glass transition appears even for the 85Al alloy where the primary phase is α-Al. The heating-induced reversion from [am + α-Al + multicomponent AlxMy] to [am + α-Al] for the 84Al alloy is abnormal, not previously observed in crystallization of glassy alloys, and seems to originate from instability of the metastable AlxMy compound, in which significant inhomogeneous strain is caused by the mixture of solute elements. This novel reversion phenomenon is encouraging for obtaining the [am + α-Al] mixture over a wide range of high temperature effective for the formation of Al-based high-strength nanostructured bulk alloys by warm working.

  14. Scattering matrices of Lamb waves at irregular surface and void defects.

    PubMed

    Feng, Feilong; Shen, Jianzhong; Lin, Shuyu

    2012-08-01

    Time-harmonic solution of Lamb wave scattering in a plane-strain waveguide with irregular thickness is investigated based on stair-step discretization and stepwise mode matching. The transfer relations of the transmission matrices and reflection matrices are derived in both directions of the waveguide. With these, an explicit expression of the scattering matrix is derived. When the scattering region of an inner irregular defect is geometrically divided into several parts composed of sub-waveguides with variable thicknesses and void regions with vertical free edges corresponding to the plate surfaces, the scattering matrix of the whole region could then be derived by modal matching along the artificial boundaries, as explicit functions of all the scattering matrices of the sub-waveguides and reflection matrices of the free edges. The effectiveness of the formulation is examined by numerical examples; the calculated scattering coefficients are in good accordance with those obtained from numerical simulation models. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. On the Wigner law in dilute random matrices

    NASA Astrophysics Data System (ADS)

    Khorunzhy, A.; Rodgers, G. J.

    1998-12-01

    We consider ensembles of N × N symmetric matrices whose entries are weakly dependent random variables. We show that random dilution can change the limiting eigenvalue distribution of such matrices. We prove that under general and natural conditions the normalised eigenvalue counting function coincides with the semicircle (Wigner) distribution in the limit N → ∞. This can be explained by the observation that dilution (or more generally, random modulation) eliminates the weak dependence (or correlations) between random matrix entries. It also supports our earlier conjecture that the Wigner distribution is stable to random dilution and modulation.

  16. Graph-Theoretic Representations for Proximity Matrices through Strongly-Anti-Robinson or Circular Strongly-Anti-Robinson Matrices.

    ERIC Educational Resources Information Center

    Hubert, Lawrence; Arabie, Phipps; Meulman, Jacqueline

    1998-01-01

    Introduces a method for fitting order-constrained matrices that satisfy the strongly anti-Robinson restrictions (SAR). The method permits a representation of the fitted values in a (least-squares) SAR approximating matrix as lengths of paths in a graph. The approach is illustrated with a published proximity matrix. (SLD)

  17. Evolutionary Games with Randomly Changing Payoff Matrices

    NASA Astrophysics Data System (ADS)

    Yakushkina, Tatiana; Saakian, David B.; Bratus, Alexander; Hu, Chin-Kun

    2015-06-01

    Evolutionary games are used in various fields stretching from economics to biology. In most of these games a constant payoff matrix is assumed, although some works also consider dynamic payoff matrices. In this article we assume a possibility of switching the system between two regimes with different sets of payoff matrices. Potentially such a model can qualitatively describe the development of bacterial or cancer cells with a mutator gene present. A finite population evolutionary game is studied. The model describes the simplest version of annealed disorder in the payoff matrix and is exactly solvable at the large population limit. We analyze the dynamics of the model, and derive the equations for both the maximum and the variance of the distribution using the Hamilton-Jacobi equation formalism.

  18. Reduction theorems for optimal unambiguous state discrimination of density matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raynal, Philippe; Luetkenhaus, Norbert; Enk, Steven J. van

    2003-08-01

    We present reduction theorems for the problem of optimal unambiguous state discrimination of two general density matrices. We show that this problem can be reduced to that of two density matrices that have the same rank n and are described in a Hilbert space of dimensions 2n. We also show how to use the reduction theorems to discriminate unambiguously between N mixed states (N{>=}2)

  19. Reductions in finite-dimensional integrable systems and special points of classical r-matrices

    NASA Astrophysics Data System (ADS)

    Skrypnyk, T.

    2016-12-01

    For a given 𝔤 ⊗ 𝔤-valued non-skew-symmetric non-dynamical classical r-matrices r(u, v) with spectral parameters, we construct the general form of 𝔤-valued Lax matrices of finite-dimensional integrable systems satisfying linear r-matrix algebra. We show that the reduction in the corresponding finite-dimensional integrable systems is connected with "the special points" of the classical r-matrices in which they become degenerated. We also propose a systematic way of the construction of additional integrals of the Lax-integrable systems associated with the symmetries of the corresponding r-matrices. We consider examples of the Lax matrices and integrable systems that are obtained in the framework of the general scheme. Among them there are such physically important systems as generalized Gaudin systems in an external magnetic field, ultimate integrable generalization of Toda-type chains (including "modified" or "deformed" Toda chains), generalized integrable Jaynes-Cummings-Dicke models, integrable boson models generalizing Bose-Hubbard dimer models, etc.

  20. Consequences experimentales des effets des fluctuations du vide sur la fluorescence parametrique et la generation du second harmonique en milieu confine

    NASA Astrophysics Data System (ADS)

    Robichaud, Luc

    Les fluctuations du vide, qui consistent en l'apparition momentanee de particules, ce qui est permit par le principe d'incertitude de Heisenberg, joue un role primordial dans les processus photoniques, en particulier les processus non-lineaires. Par la manipulation de ces fluctuations du vide a l'aide de confinement optique, on retrouve deux phenomenes particuliers : l'intensification de la fluorescence parametrique (Walker, 2008) et l'inhibition de la generation du second harmonique (Collette, 2013). Dans ce travail, on presente les resultats dans le cas classique ; c'est-a-dire sans fluctuations du vide et confinement. Par la suite, on presente les effets des fluctuations du vide et du confinement, ce qui mene aux deux effets mentionnes. Dans le cas de la fluorescence parametrique, le bruit quantique sur le champ interne et externe est calcule, le role du desaccord de phase dans le modele est expose et une generalisation tridimensionnelle est etudiee afin de generaliser la conception du modele d'un cas unidimensionnel a un cas tridimensionnel planaire. Dans le cas de la generation du second harmonique, les difficultes d'un modele purement tridimensionnel sont exposees et ensuite le cas limite planaire est etudie.

  1. A hypothetical learning trajectory for conceptualizing matrices as linear transformations

    NASA Astrophysics Data System (ADS)

    Andrews-Larson, Christine; Wawro, Megan; Zandieh, Michelle

    2017-08-01

    In this paper, we present a hypothetical learning trajectory (HLT) aimed at supporting students in developing flexible ways of reasoning about matrices as linear transformations in the context of introductory linear algebra. In our HLT, we highlight the integral role of the instructor in this development. Our HLT is based on the 'Italicizing N' task sequence, in which students work to generate, compose, and invert matrices that correspond to geometric transformations specified within the problem context. In particular, we describe the ways in which the students develop local transformation views of matrix multiplication (focused on individual mappings of input vectors to output vectors) and extend these local views to more global views in which matrices are conceptualized in terms of how they transform a space in a coordinated way.

  2. Efficiency of fly ash belite cement and zeolite matrices for immobilizing cesium.

    PubMed

    Goñi, S; Guerrero, A; Lorenzo, M P

    2006-10-11

    The efficiency of innovative matrices for immobilizing cesium is presented in this work. The matrix formulation included the use of fly ash belite cement (FABC-2-W) and gismondine-type Na-P1 zeolite, both of which are synthesized from fly ash of coal combustion. The efficiency for immobilizing cesium is evaluated from the leaching test ANSI/ANS 16.1-1986 at the temperature of 40 degrees C, from which the apparent diffusion coefficient of cesium is obtained. Matrices with 100% of FABC-2-W are used as a reference. The integrity of matrices is evaluated by porosity and pore-size distribution from mercury intrusion porosimetry, X-ray diffraction and nitrogen adsorption analyses. Both matrices can be classified as good solidify systems for cesium, specially the FABC-2-W/zeolite matrix in which the replacement of 50% of belite cement by the gismondine-type Na-P1 zeolite caused a decrease of two orders of magnitude of cesium mean Effective Diffusion Coefficient (D(e)) (2.8e-09 cm(2)/s versus 2.2e-07 cm(2)/s, for FABC-2-W/zeolite and FABC-2-W matrices, respectively).

  3. Evidence for the absence of enzymatic reactions in the glassy state. A case study of xanthophyll cycle pigments in the desiccation-tolerant moss Syntrichia ruralis

    PubMed Central

    Fernández-Marín, Beatriz; Kranner, Ilse; Sebastián, María San; Artetxe, Unai; Laza, José Manuel; Vilas, José Luis; Pritchard, Hugh W.; Nadajaran, Jayanthi; Míguez, Fátima; Becerril, José María; García-Plazaola, José Ignacio

    2013-01-01

    Desiccation-tolerant plants are able to withstand dehydration and resume normal metabolic functions upon rehydration. These plants can be dehydrated until their cytoplasm enters a ‘glassy state’ in which molecular mobility is severely reduced. In desiccation-tolerant seeds, longevity can be enhanced by drying and lowering storage temperature. In these conditions, they still deteriorate slowly, but it is not known if deteriorative processes include enzyme activity. The storage stability of photosynthetic organisms is less studied, and no reports are available on the glassy state in photosynthetic tissues. Here, the desiccation-tolerant moss Syntrichia ruralis was dehydrated at either 75% or <5% relative humidity, resulting in slow (SD) or rapid desiccation (RD), respectively, and different residual water content of the desiccated tissues. The molecular mobility within dry mosses was assessed through dynamic mechanical thermal analysis, showing that at room temperature only rapidly desiccated samples entered the glassy state, whereas slowly desiccated samples were in a ‘rubbery’ state. Violaxanthin cycle activity, accumulation of plastoglobules, and reorganization of thylakoids were observed upon SD, but not upon RD. Violaxanthin cycle activity critically depends on the activity of violaxanthin de-epoxidase (VDE). Hence, it is proposed that enzymatic activity occurred in the rubbery state (after SD), and that in the glassy state (after RD) no VDE activity was possible. Furthermore, evidence is provided that zeaxanthin has some role in recovery apparently independent of its role in non-photochemical quenching of chlorophyll fluorescence. PMID:23761488

  4. VNIR reflectance spectroscopy of glassy igneous material with variable oxidation states

    NASA Astrophysics Data System (ADS)

    Carli, Cristian; Di Genova, Danilo; Roush, Ted L.; Ertel-Ingrisch, Werner; Capaccioni, Fabrizio; Dingwell, Donald B.

    2017-04-01

    Silicate glasses with igneous compositions may represent an abundant component of planetary surface material via effusive volcanism or impact cratering processes. Several planetary surfaces are mapped with hyper-spectrometers in the visible and near-infrared (VNIR). In this spectral range, crystal field (C.F.) absorptions are useful to discriminate iron-bearing silicate components. At the same time, in the VNIR reflectance spectroscopy iron bearing glasses may exhibit a C.F. absorption at ˜1.1 μm. A weak C.F. absorption is also present at ˜1.9 μm. These absorptions can be therefore diagnostic for glassy component and can also affect the C.F. absorptions of mafic minerals when mixed in the regolith. So far, few studies investigated the spectral properties of systematic glasses compositions and at different oxygen fucacity. For these reasons studying glassy materials, and their optical constants, represents an important effort to document and to interpret, spectral features of Solar System silicate crusts where glasses are present, but may be difficult to map. In previous work Carli et al. (2016) considered the composition of glassy igneous materials produced in Earth-like atmospheric conditions (i.e. oxidized conditions). Here, we expand on that effort by including glasses formed under more reducing condition. In this study, glasses were produced at -9.3 log fO2 and 1400 ˚ C for a duration of 4 h at the Department of Earth and Environmental Sciences at the University of Munich using a gas-mixing furnace. The major element composition, sample homogeneity, and the Fe3+/Fetot. ratio of run products were analytically determined. Moreover, Raman spectra of the same samples were also acquired. Afterwards, powders were produced with nine-grain size from 250-224 μm to 50-20 μm and measured in bidirectional reflectance at Spectroscopy LABoratory (IAPS-INAF, Rome). Reflectance spectra were acquired from 0.35 to 2.5 μm with a Field-Pro Spectrometer mounted on a

  5. The algebraic theory of latent projectors in lambda matrices

    NASA Technical Reports Server (NTRS)

    Denman, E. D.; Leyva-Ramos, J.; Jeon, G. J.

    1981-01-01

    Multivariable systems such as a finite-element model of vibrating structures, control systems, and large-scale systems are often formulated in terms of differential equations which give rise to lambda matrices. The present investigation is concerned with the formulation of the algebraic theory of lambda matrices and the relationship of latent roots, latent vectors, and latent projectors to the eigenvalues, eigenvectors, and eigenprojectors of the companion form. The chain rule for latent projectors and eigenprojectors for the repeated latent root or eigenvalues is given.

  6. Evaluation of Commercially Available Cyanide Test Kits against Various Matrices

    DTIC Science & Technology

    2016-08-01

    further evaluation in a second phase of testing. Cyantesmo paper was tested against 15 matrices, including baking soda, boric acid, brewer’s yeast...matrices were baking soda, boric acid, brewer’s yeast, chalk dust, chitin, coffee powder (instant coffee), cornstarch, drywall dust, flour, kaolin...TN);  DG powdered sugar;  DG talcum powder (Lot 14312THW);  DG Clover Valley baking soda (Lot PMHB51);  Boric acid (Lot 766965; Fisher

  7. Evaluation of the relevance of the glassy state as stability criterion for freeze-dried bacteria by application of the Arrhenius and WLF model.

    PubMed

    Aschenbrenner, Mathias; Kulozik, Ulrich; Foerst, Petra

    2012-12-01

    The aim of this work was to describe the temperature dependence of microbial inactivation for several storage conditions and protective systems (lactose, trehalose and dextran) in relation to the physical state of the sample, i.e. the glassy or non-glassy state. The resulting inactivation rates k were described by applying two models, Arrhenius and Williams-Landel-Ferry (WLF), in order to evaluate the relevance of diffusional limitation as a protective mechanism. The application of the Arrhenius model revealed a significant decrease in activation energy E(a) for storage conditions close to T(g). This finding is an indication that the protective effect of a surrounding glassy matrix can, at least, partly be ascribed to its inherent restricted diffusion and mobility. The application of the WLF model revealed that the temperature dependence of microbial inactivation above T(g) is significantly weaker than predicted by the universal coefficients. Thus, it can be concluded that microbial inactivation is not directly linked with the mechanical relaxation behavior of the surrounding matrix as it was reported for viscosity and crystallization phenomena in case of disaccharide systems. Copyright © 2012. Published by Elsevier Inc.

  8. A 3D Microfluidic Chip for Electrochemical Detection of Hydrolysed Nucleic Bases by a Modified Glassy Carbon Electrode

    PubMed Central

    Vlachova, Jana; Tmejova, Katerina; Kopel, Pavel; Korabik, Maria; Zitka, Jan; Hynek, David; Kynicky, Jindrich; Adam, Vojtech; Kizek, Rene

    2015-01-01

    Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE) modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion) for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH). It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE. PMID:25621613

  9. A 3D microfluidic chip for electrochemical detection of hydrolysed nucleic bases by a modified glassy carbon electrode.

    PubMed

    Vlachova, Jana; Tmejova, Katerina; Kopel, Pavel; Korabik, Maria; Zitka, Jan; Hynek, David; Kynicky, Jindrich; Adam, Vojtech; Kizek, Rene

    2015-01-22

    Modification of carbon materials, especially graphene-based materials, has wide applications in electrochemical detection such as electrochemical lab-on-chip devices. A glassy carbon electrode (GCE) modified with chemically alternated graphene oxide was used as a working electrode (glassy carbon modified by graphene oxide with sulphur containing compounds and Nafion) for detection of nucleobases in hydrolysed samples (HCl pH = 2.9, 100 °C, 1 h, neutralization by NaOH). It was found out that modification, especially with trithiocyanuric acid, increased the sensitivity of detection in comparison with pure GCE. All processes were finally implemented in a microfluidic chip formed with a 3D printer by fused deposition modelling technology. As a material for chip fabrication, acrylonitrile butadiene styrene was chosen because of its mechanical and chemical stability. The chip contained the one chamber for the hydrolysis of the nucleic acid and another for the electrochemical detection by the modified GCE. This chamber was fabricated to allow for replacement of the GCE.

  10. Effect of solute nature on the polyamorphic transition in glassy polyol aqueous solutions.

    PubMed

    Suzuki, Yoshiharu

    2017-08-14

    I examined the polyamorphic behavior of glassy dilute aqueous solutions of polyols (ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol) under pressure at low temperatures. Although the volume change of the glassy aqueous solution varied continuously against pressure, the rate of the volume change appeared to vary discontinuously at the onset pressure of the gradual polyamorphic transition. It is thought that low-density liquid-like solvent water and high-density liquid-like solvent water coexist during the transition. Moreover, the existence of a solute induces the shift of polyamorphic transition to the lower-pressure side. The effect of a solute on the polyamorphic transition becomes larger in the order ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol. Therefore, the solute can become a variable controlling the polyamorphic state of liquid water. This experimental result suggests that the metastable-equilibrium phase boundary between the low-density and the high-density amorphs for pure water is likely to be located at 0.22-0.23 GPa at about 150 K, which is slightly larger than the previously estimated pressure. Moreover, the solute-nature dependence on the polyamorphic transition seems to connect to that on the homogeneous nucleation temperature of polyol aqueous solution at ambient pressure. The region in which a low-density liquid appears coincides with the region in which the nucleus of ice Ih appears, suggesting that the formation of a low-density liquid is a precursory phenomenon of the nucleation of ice Ih.

  11. Effect of solute nature on the polyamorphic transition in glassy polyol aqueous solutions

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshiharu

    2017-08-01

    I examined the polyamorphic behavior of glassy dilute aqueous solutions of polyols (ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol) under pressure at low temperatures. Although the volume change of the glassy aqueous solution varied continuously against pressure, the rate of the volume change appeared to vary discontinuously at the onset pressure of the gradual polyamorphic transition. It is thought that low-density liquid-like solvent water and high-density liquid-like solvent water coexist during the transition. Moreover, the existence of a solute induces the shift of polyamorphic transition to the lower-pressure side. The effect of a solute on the polyamorphic transition becomes larger in the order ethylene glycol, glycerol, meso-erythritol, xylitol, and D-sorbitol. Therefore, the solute can become a variable controlling the polyamorphic state of liquid water. This experimental result suggests that the metastable-equilibrium phase boundary between the low-density and the high-density amorphs for pure water is likely to be located at 0.22-0.23 GPa at about 150 K, which is slightly larger than the previously estimated pressure. Moreover, the solute-nature dependence on the polyamorphic transition seems to connect to that on the homogeneous nucleation temperature of polyol aqueous solution at ambient pressure. The region in which a low-density liquid appears coincides with the region in which the nucleus of ice Ih appears, suggesting that the formation of a low-density liquid is a precursory phenomenon of the nucleation of ice Ih.

  12. Transfer-matrices for series-type microwave antenna circuits. [L-band radiometer

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1981-01-01

    Transfer matrices are developed which permit analysis and computer evaluation of certain series type microwave antenna circuits associated with an L-Band microwave radiometer (LBMR) under investigation at Goddard Space Flight Center. This radiometer is one of several diverse instrument designs to be used for the determination of soil moisture, sea state, salinity, and temperature data. Four port matrix notation is used throughout for the evaluation of LBMR circuits with mismatched couplers and lossy transmission lines. Matrix parameters in examples are predicted on an impedance analysis and an assumption of an array aperture distribution. The notation presented is easily adapted to longer and more varied chains of matrices, and to matrices of larger dimension.

  13. Study on vulnerability matrices of masonry buildings of mainland China

    NASA Astrophysics Data System (ADS)

    Sun, Baitao; Zhang, Guixin

    2018-04-01

    The degree and distribution of damage to buildings subjected to earthquakes is a concern of the Chinese Government and the public. Seismic damage data indicates that seismic capacities of different types of building structures in various regions throughout mainland China are different. Furthermore, the seismic capacities of the same type of structure in different regions may vary. The contributions of this research are summarized as follows: 1) Vulnerability matrices and earthquake damage matrices of masonry structures in mainland China were chosen as research samples. The aim was to analyze the differences in seismic capacities of sample matrices and to present general rules for categorizing seismic resistance. 2) Curves relating the percentage of damaged masonry structures with different seismic resistances subjected to seismic demand in different regions of seismic intensity (VI to X) have been developed. 3) A method has been proposed to build vulnerability matrices of masonry structures. The damage ratio for masonry structures under high-intensity events such as the Ms 6.1 Panzhihua earthquake in Sichuan province on 30 August 2008, was calculated to verify the applicability of this method. This research offers a significant theoretical basis for predicting seismic damage and direct loss assessment of groups of buildings, as well as for earthquake disaster insurance.

  14. Testing Pattern Hypotheses for Correlation Matrices

    ERIC Educational Resources Information Center

    McDonald, Roderick P.

    1975-01-01

    The treatment of covariance matrices given by McDonald (1974) can be readily modified to cover hypotheses prescribing zeros and equalities in the correlation matrix rather than the covariance matrix, still with the convenience of the closed-form Least Squares solution and the classical Newton method. (Author/RC)

  15. Novel Heating-Induced Reversion during Crystallization of Al-based Glassy Alloys.

    PubMed

    Han, F F; Inoue, A; Han, Y; Kong, F L; Zhu, S L; Shalaan, E; Al-Marzouki, F; Greer, A L

    2017-04-13

    Thermal stability and crystallization of three multicomponent glassy alloys, Al 86 Y 7 Ni 5 Co 1 Fe 0.5 Pd 0.5 , Al 85 Y 8 Ni 5 Co 1 Fe 0.5 Pd 0.5 and Al 84 Y 9 Ni 4 Co 1.5 Fe 0.5 Pd 1 , were examined to assess the ability to form the mixture of amorphous (am) and fcc-aluminum (α-Al) phases. On heating, the glass transition into the supercooled liquid is shown by the 85Al and 84Al glasses. The crystallization sequences are [am] → [am + α-Al] → [α-Al + compounds] for the 86Al and 85Al alloys, and [am] → [am + α-Al + cubic Al x M y (M = Y, Ni, Co, Fe, Pd)] → [am + α-Al] → [α-Al + Al 3 Y + Al 9 (Co, Ni) 2  + unknown phase] for the 84Al alloy. The glass transition appears even for the 85Al alloy where the primary phase is α-Al. The heating-induced reversion from [am + α-Al + multicomponent Al x M y ] to [am + α-Al] for the 84Al alloy is abnormal, not previously observed in crystallization of glassy alloys, and seems to originate from instability of the metastable Al x M y compound, in which significant inhomogeneous strain is caused by the mixture of solute elements. This novel reversion phenomenon is encouraging for obtaining the [am + α-Al] mixture over a wide range of high temperature effective for the formation of Al-based high-strength nanostructured bulk alloys by warm working.

  16. A wrinkling-based method for investigating glassy polymer film relaxation as a function of film thickness and temperature.

    PubMed

    Chung, Jun Young; Douglas, Jack F; Stafford, Christopher M

    2017-10-21

    We investigate the relaxation dynamics of thin polymer films at temperatures below the bulk glass transition T g by first compressing polystyrene films supported on a polydimethylsiloxane substrate to create wrinkling patterns and then observing the slow relaxation of the wrinkled films back to their final equilibrium flat state by small angle light scattering. As with recent relaxation measurements on thin glassy films reported by Fakhraai and co-workers, we find the relaxation time of our wrinkled films to be strongly dependent on film thickness below an onset thickness on the order of 100 nm. By varying the temperature between room temperature and T g (≈100 °C), we find that the relaxation time follows an Arrhenius-type temperature dependence to a good approximation at all film thicknesses investigated, where both the activation energy and the relaxation time pre-factor depend appreciably on film thickness. The wrinkling relaxation curves tend to cross at a common temperature somewhat below T g , indicating an entropy-enthalpy compensation relation between the activation free energy parameters. This compensation effect has also been observed recently in simulated supported polymer films in the high temperature Arrhenius relaxation regime rather than the glassy state. In addition, we find that the film stress relaxation function, as well as the height of the wrinkle ridges, follows a stretched exponential time dependence and the short-time effective Young's modulus derived from our modeling decreases sigmoidally with increasing temperature-both characteristic features of glassy materials. The relatively facile nature of the wrinkling-based measurements in comparison to other film relaxation measurements makes our method attractive for practical materials development, as well as fundamental studies of glass formation.

  17. A wrinkling-based method for investigating glassy polymer film relaxation as a function of film thickness and temperature

    NASA Astrophysics Data System (ADS)

    Chung, Jun Young; Douglas, Jack F.; Stafford, Christopher M.

    2017-10-01

    We investigate the relaxation dynamics of thin polymer films at temperatures below the bulk glass transition Tg by first compressing polystyrene films supported on a polydimethylsiloxane substrate to create wrinkling patterns and then observing the slow relaxation of the wrinkled films back to their final equilibrium flat state by small angle light scattering. As with recent relaxation measurements on thin glassy films reported by Fakhraai and co-workers, we find the relaxation time of our wrinkled films to be strongly dependent on film thickness below an onset thickness on the order of 100 nm. By varying the temperature between room temperature and Tg (≈100 °C), we find that the relaxation time follows an Arrhenius-type temperature dependence to a good approximation at all film thicknesses investigated, where both the activation energy and the relaxation time pre-factor depend appreciably on film thickness. The wrinkling relaxation curves tend to cross at a common temperature somewhat below Tg, indicating an entropy-enthalpy compensation relation between the activation free energy parameters. This compensation effect has also been observed recently in simulated supported polymer films in the high temperature Arrhenius relaxation regime rather than the glassy state. In addition, we find that the film stress relaxation function, as well as the height of the wrinkle ridges, follows a stretched exponential time dependence and the short-time effective Young's modulus derived from our modeling decreases sigmoidally with increasing temperature—both characteristic features of glassy materials. The relatively facile nature of the wrinkling-based measurements in comparison to other film relaxation measurements makes our method attractive for practical materials development, as well as fundamental studies of glass formation.

  18. Penile Reconstruction with Skin Grafts and Dermal Matrices: Indications and Management

    PubMed Central

    Triana Junco, Paloma; Dore, Mariela; Nuñez Cerezo, Vanesa; Jimenez Gomez, Javier; Miguel Ferrero, Miriam; Díaz González, Mercedes; Lopez-Pereira, Pedro; Lopez-Gutierrez, Juan Carlos

    2017-01-01

    Introduction  The penis eventually needs specific cutaneous coverage in the context of reconstructive procedures following trauma or congenital anomalies. Local flaps are the first choice but are not always available after multiple previous procedures. In these cases, skin graft and dermal matrices should be considered. Materials and Methods  This study was a retrospective review of the past 4 years of four patients with severe loss of penile shaft skin who underwent skin reconstruction. Dermal matrices and skin grafts were utilized. Dermal matrices were placed for a median of 4.5 weeks (3.0–6.0 weeks). The skin graft was harvested from the inner thigh region for split-thickness skin graft (STSG) and the inguinal region for full-thickness skin graft (FTSG). Results  The four patients presented with complete loss of skin in the penile shaft. One patient had a vesical exstrophy, one had a buried penis with only one corpus cavernosum, one had a wide congenital lymphedema of the genitalia, and one had a lack of skin following circumcision at home. They underwent reconstruction with three patients undergoing split-thickness skin graft; two dermal matrices; and one full-thickness graft, respectively, thereby achieving a good cosmetic and functional result. There were no complications, and all the patients successfully accepted the graft. Conclusion  Dermal matrices and skin grafts may serve as effective tools in the management of severe penile skin defects unable to be covered with local flaps. PMID:28868232

  19. Calculation of controllability and observability matrices for special case of continuous-time multi-order fractional systems.

    PubMed

    Hassanzadeh, Iman; Tabatabaei, Mohammad

    2017-03-28

    In this paper, controllability and observability matrices for pseudo upper or lower triangular multi-order fractional systems are derived. It is demonstrated that these systems are controllable and observable if and only if their controllability and observability matrices are full rank. In other words, the rank of these matrices should be equal to the inner dimension of their corresponding state space realizations. To reduce the computational complexities, these matrices are converted to simplified matrices with smaller dimensions. Numerical examples are provided to show the usefulness of the mentioned matrices for controllability and observability analysis of this case of multi-order fractional systems. These examples clarify that the duality concept is not necessarily true for these special systems. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Electrochemical reduction of nalidixic acid at glassy carbon electrode modified with multi-walled carbon nanotubes.

    PubMed

    Patiño, Yolanda; Pilehvar, Sanaz; Díaz, Eva; Ordóñez, Salvador; De Wael, Karolien

    2017-02-05

    The aqueous phase electrochemical degradation of nalidixic acid (NAL) is studied in this work, using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) as instrumental techniques. The promotional effect of multi-walled carbon nanotubes (MWCNT) on the performance of glassy carbon electrodes is demonstrated, being observed that these materials catalyze the NAL reduction. The effect of surface functional groups on MWCNT -MWCNT-COOH and MWCNT-NH 2 -was also studied. The modification of glassy carbon electrode (GCE) with MWCNT leads to an improved performance for NAL reduction following the order of MWCNT>MWCNT-NH 2 >MWCNT-COOH. The best behavior at MWCNT-GCE is mainly due to both the increased electrode active area and the enhanced MWCNT adsorption properties. The NAL degradation was carried out under optimal conditions (pH=5.0, deposition time=20s and volume of MWCNT=10μL) using MWCNT-GCE obtaining an irreversible reduction of NAL to less toxic products. Paramaters as the number of DPV cycles and the volume/area (V/A) ratio were optimized for maximize pollutant degradation. It was observed that after 15 DPV scans and V/A=8, a complete reduction was obtained, obtaining two sub-products identified by liquid chromatography-mass spectrometry (LC-MS). Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Glassy behavior and dynamic tweed in defect-free multiferroics

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofei; Salje, Ekhard K. H.; Sun, Jun; Ding, Xiangdong

    2018-01-01

    Multiferroics often show significant elastic fluctuations even when the transition is strongly stepwise. Molecular dynamics simulations of a generic toy model show the appearance of tweed nanostructures (cross hatched patterns) in the paraelastic phase just above the transition point. This tweed lowers the elastic modulus C12 when approaching the transition temperature. The spatial and temporal correlations of the tweed structure follow the Vogel-Fulcher relationship, and the Vogel-Fulcher temperature is slightly below the transition temperature Ttrans, preventing this glassy state to freeze completely. Spatial correlations of shear strain show that the size of tweed patches reaches about eight lattice spacings near Ttrans. Cross- and rod-shaped diffuse scattering, similar to that in relaxors, emerges around {hh0}* and {h00}* Bragg reflections. The viscosity of the sample increases dramatically at the transition point with a significant precursor increase in the tweed regime.

  2. Thermodynamics and glassy phase transition of regular black holes

    NASA Astrophysics Data System (ADS)

    Javed, Wajiha; Yousaf, Z.; Akhtar, Zunaira

    2018-05-01

    This paper is aimed to study thermodynamical properties of phase transition for regular charged black holes (BHs). In this context, we have considered two different forms of BH metrics supplemented with exponential and logistic distribution functions and investigated the recent expansion of phase transition through grand canonical ensemble. After exploring the corresponding Ehrenfest’s equation, we found the second-order background of phase transition at critical points. In order to check the critical behavior of regular BHs, we have evaluated some corresponding explicit relations for the critical temperature, pressure and volume and draw certain graphs with constant values of Smarr’s mass. We found that for the BH metric with exponential configuration function, the phase transition curves are divergent near the critical points, while glassy phase transition has been observed for the Ayón-Beato-García-Bronnikov (ABGB) BH in n = 5 dimensions.

  3. The Development of Novel Nanodiamond Based MALDI Matrices for the Analysis of Small Organic Pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Chitanda, Jackson M.; Zhang, Haixia; Pahl, Erica; Purves, Randy W.; El-Aneed, Anas

    2016-10-01

    The utility of novel functionalized nanodiamonds (NDs) as matrices for matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) is described herein. MALDI-MS analysis of small organic compounds (<1000 Da) is typically complex because of interferences from numerous cluster ions formed when using conventional matrices. To expand the use of MALDI for the analysis of small molecules, novel matrices were designed by covalently linking conventional matrices (or a lysine moiety) to detonated NDs. Four new functionalized NDs were evaluated for their ionization capabilities using five pharmaceuticals with varying molecular structures. Two ND matrices were able to ionize all tested pharmaceuticals in the negative ion mode, producing the deprotonated ions [M - H]-. Ion intensity for target analytes was generally strong with enhanced signal-to-noise ratios compared with conventional matrices. The negative ion mode is of great importance for biological samples as interference from endogenous compounds is inherently minimized in the negative ion mode. Since the molecular structures of the tested pharmaceuticals did not suggest that negative ion mode would be preferable, this result magnifies the importance of these findings. On the other hand, conventional matrices primarily facilitated the ionization as expected in the positive ion mode, producing either the protonated molecules [M + H]+ or cationic adducts (typically producing complex spectra with numerous adduct peaks). The data presented in this study suggests that these matrices may offer advantages for the analysis of low molecular weight pharmaceuticals/metabolites.

  4. The Development of Novel Nanodiamond Based MALDI Matrices for the Analysis of Small Organic Pharmaceuticals.

    PubMed

    Chitanda, Jackson M; Zhang, Haixia; Pahl, Erica; Purves, Randy W; El-Aneed, Anas

    2016-10-01

    The utility of novel functionalized nanodiamonds (NDs) as matrices for matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) is described herein. MALDI-MS analysis of small organic compounds (<1000 Da) is typically complex because of interferences from numerous cluster ions formed when using conventional matrices. To expand the use of MALDI for the analysis of small molecules, novel matrices were designed by covalently linking conventional matrices (or a lysine moiety) to detonated NDs. Four new functionalized NDs were evaluated for their ionization capabilities using five pharmaceuticals with varying molecular structures. Two ND matrices were able to ionize all tested pharmaceuticals in the negative ion mode, producing the deprotonated ions [M - H](-). Ion intensity for target analytes was generally strong with enhanced signal-to-noise ratios compared with conventional matrices. The negative ion mode is of great importance for biological samples as interference from endogenous compounds is inherently minimized in the negative ion mode. Since the molecular structures of the tested pharmaceuticals did not suggest that negative ion mode would be preferable, this result magnifies the importance of these findings. On the other hand, conventional matrices primarily facilitated the ionization as expected in the positive ion mode, producing either the protonated molecules [M + H](+) or cationic adducts (typically producing complex spectra with numerous adduct peaks). The data presented in this study suggests that these matrices may offer advantages for the analysis of low molecular weight pharmaceuticals/metabolites. Graphical Abstract ᅟ.

  5. Hierarchical matrices implemented into the boundary integral approaches for gravity field modelling

    NASA Astrophysics Data System (ADS)

    Čunderlík, Róbert; Vipiana, Francesca

    2017-04-01

    Boundary integral approaches applied for gravity field modelling have been recently developed to solve the geodetic boundary value problems numerically, or to process satellite observations, e.g. from the GOCE satellite mission. In order to obtain numerical solutions of "cm-level" accuracy, such approaches require very refined level of the disretization or resolution. This leads to enormous memory requirements that need to be reduced. An implementation of the Hierarchical Matrices (H-matrices) can significantly reduce a numerical complexity of these approaches. A main idea of the H-matrices is based on an approximation of the entire system matrix that is split into a family of submatrices. Large submatrices are stored in factorized representation, while small submatrices are stored in standard representation. This allows reducing memory requirements significantly while improving the efficiency. The poster presents our preliminary results of implementations of the H-matrices into the existing boundary integral approaches based on the boundary element method or the method of fundamental solution.

  6. Stabilization of chromium-bearing electroplating sludge with MSWI fly ash-based Friedel matrices.

    PubMed

    Qian, Guangren; Yang, Xiaoyan; Dong, Shixiang; Zhou, Jizhi; Sun, Ying; Xu, Yunfeng; Liu, Qiang

    2009-06-15

    This work investigated the feasibility and effectiveness of MSWI fly ash-based Friedel matrices on stabilizing/solidifying industrial chromium-bearing electroplating sludge using MSWI fly ash as the main raw material with a small addition of active aluminum. The compressive strength, leaching behavior and chemical speciation of heavy metals and hydration phases of matrices were characterized by TCLP, XRD, FTIR and other experimental methods. The results revealed that MSWI fly ash-based Friedel matrices could effectively stabilize chromium-bearing electroplating sludge, the formed ettringite and Friedel phases played a significant role in the fixation of heavy metals in electroplating sludge. The co-disposal of chromium-bearing electroplating sludge and MSWI fly ash-based Friedel matrices with a small addition of active aluminum is promising to be an effective way of stabilizing chromium-bearing electroplating sludge.

  7. Manufacturing of glassy thin shell for adaptive optics: results achieved

    NASA Astrophysics Data System (ADS)

    Poutriquet, F.; Rinchet, A.; Carel, J.-L.; Leplan, H.; Ruch, E.; Geyl, R.; Marque, G.

    2012-07-01

    Glassy thin shells are key components for the development of adaptive optics and are part of future & innovative projects such as ELT. However, manufacturing thin shells is a real challenge. Even though optical requirements for the front face - or optical face - are relaxed compared to conventional passive mirrors, requirements concerning thickness uniformity are difficult to achieve. In addition, process has to be completely re-defined as thin mirror generates new manufacturing issues. In particular, scratches and digs requirement is more difficult as this could weaken the shell, handling is also an important issue due to the fragility of the mirror. Sagem, through REOSC program, has recently manufactured different types of thin shells in the frame of European projects: E-ELT M4 prototypes and VLT Deformable Secondary Mirror (VLT DSM).

  8. Drinfeld-Sokolov reduction in quantum algebras: canonical form of generating matrices

    NASA Astrophysics Data System (ADS)

    Gurevich, Dimitri; Saponov, Pavel; Talalaev, Dmitry

    2018-04-01

    We define the second canonical forms for the generating matrices of the Reflection Equation algebras and the braided Yangians, associated with all even skew-invertible involutive and Hecke symmetries. By using the Cayley-Hamilton identities for these matrices, we show that they are similar to their canonical forms in the sense of Chervov and Talalaev (J Math Sci (NY) 158:904-911, 2008).

  9. Destructive Clustering of Metal Nanoparticles in Chalcogenide and Oxide Glassy Matrices.

    PubMed

    Shpotyuk, M V; Shpotyuk, O I; Cebulski, J; Kozyukhin, S

    2016-12-01

    The energetic χ-criterion is developed to parameterize difference in the origin of high-order optical non-linearity associated with metallic atoms (Cu, Ag, Au) embedded destructively in oxide- and chalcogenide glasses. Within this approach, it is unambiguously proved that covalent-bonded networks of soft semiconductor chalcogenides exemplified by binary As(Ge)-S(Se) glasses differ essentially from those typical for hard dielectric oxides like vitreous silica by impossibility to accommodate pure agglomerates of metallic nanoparticles. In an excellence according to known experimental data, it is suggested that destructive clustering of nanoparticles is possible in Cu-, Ag-, and Au-ion-implanted dielectric oxide glass media, possessing a strongly negative χ-criterion. Some recent speculations trying to ascribe equally this ability to soft chalcogenide glasses despite an obvious difference in the corresponding bond dissociation energies have been disclosed and criticized as inconclusive.

  10. Properties of Zero-Free Transfer Function Matrices

    NASA Astrophysics Data System (ADS)

    D. O. Anderson, Brian; Deistler, Manfred

    Transfer functions of linear, time-invariant finite-dimensional systems with more outputs than inputs, as arise in factor analysis (for example in econometrics), have, for state-variable descriptions with generic entries in the relevant matrices, no finite zeros. This paper gives a number of characterizations of such systems (and indeed square discrete-time systems with no zeros), using state-variable, impulse response, and matrix-fraction descriptions. Key properties include the ability to recover the input values at any time from a bounded interval of output values, without any knowledge of an initial state, and an ability to verify the no-zero property in terms of a property of the impulse response coefficient matrices. Results are particularized to cases where the transfer function matrix in question may or may not have a zero at infinity or a zero at zero.

  11. Effets perturbateurs endocriniens des pesticides organochlores.

    PubMed

    Charlier, C; Plomteux, G

    2002-01-01

    Xenoestrogens such organochlorine pesticides are known to induce changes in reproductive development, function or behaviour in wildlife. Because these compounds are able to modify the estrogens metabolism, or to compete with estradiol for binding to the estrogen receptor, it may be possible that these products affect the risk of developing impaired fertility, precocious puberty or some kinds of cancer in man. Le plus ancien récit de lutte contre la pollution remonte à une légende indienne racontant que la divinité Sing-bonga était incommodée par les émanations des fours dans lesquels les Asuras fondaient leurs métaux (1). Evidemment depuis, la problématique n-a cessé de s-accroître et la contamination de la Terre par de nombreux polluants est devenue aujourd-hui un problème majeur de notre Société. La protection de notre environnement est une question capitale qui doit être respectée malgré la pression économique actuelle et qui ne cessera de croître au cours des prochaines années même si l-identification objective et indiscutable de ce qui est essentiel - donc devant être prioritairement garanti sur la planète - est difficile à cerner (2). « Un oiseau en mauvais état ne pond pas de bons oeufs » disait un proverbe grec. Mais ce n-est qu-à partir de la seconde moitié du XXème siècle que les toxicologues ont commencé à identifier les effets qu-avaient entraînés à l-échelle mondiale les pollutions émises aux XIXème siècle sur la faune sauvage et sur le cheptel (3). L-histoire contemporaine des pesticides industriels commence vers 1874 (synthèse des organochlorés) et se poursuit tout au long de ces 2 siècles en passant par la synthèse des organophosphorés (1950), des carbamates (1970) et des pyréthroïdes (1975) (4). Le dichlorodiphényltrichloroéthane (DDT) a été synthétisé pour la première fois par un étudiant en cours de préparation de sa thèse de doctorat : Othmer Zeidler. La production, reprise par les

  12. VX fate on common matrices: evaporation versus degradation.

    PubMed

    Columbus, Ishay; Waysbort, Daniel; Marcovitch, Itzhak; Yehezkel, Lea; Mizrahi, Dana M

    2012-04-03

    A study of the volatilization rate of the nerve agent VX (O-ethyl S-2-(N,N-diisopropylamino)ethyl methylphosphonothiolate) from various urban matrices in a specially designed climatic chamber (model system) is described. The performance of the model system combined with the analytical procedure produced profiles of vapor concentration obtained from samples of VX dispersed as small droplets on the surfaces of the matrices. The results indicated that the bitumen-containing surfaces such as asphalt blocks and bitumen sheets conserve VX and slow-release part of it over a long period of time. No complete mass balance could be obtained for these surfaces. Influence of environmental and experimental parameters as well as the efficacy of decontamination procedure were also measured. From smooth surface tiles a fast release of VX was measured and almost a complete mass balance was obtained, which characterizes the behavior of inert surfaces. Experiments carried out on concrete blocks showed fast decay of the concentration profile along with a very poor reconstruction of the initial quantity of VX, implying that this matrix degraded VX actively due to its multiple basic catalytic sites. To complement this study, solid-state NMR measurements were compared to add data concerning agent-fate within the matrices.

  13. Sports drug testing using complementary matrices: Advantages and limitations.

    PubMed

    Thevis, Mario; Geyer, Hans; Tretzel, Laura; Schänzer, Wilhelm

    2016-10-25

    Today, routine doping controls largely rely on testing whole blood, serum, and urine samples. These matrices allow comprehensively covering inorganic as well as low and high molecular mass organic analytes relevant to doping controls and are collecting and transferring from sampling sites to accredited anti-doping laboratories under standardized conditions. Various aspects including time and cost-effectiveness as well as intrusiveness and invasiveness of the sampling procedure but also analyte stability and breadth of the contained information have been motivation to consider and assess values potentially provided and added to modern sports drug testing programs by alternative matrices. Such alternatives could be dried blood spots (DBS), dried plasma spots (DPS), oral fluid (OF), exhaled breath (EB), and hair. In this review, recent developments and test methods concerning these alternative matrices and expected or proven contributions as well as limitations of these specimens in the context of the international anti-doping fight are presented and discussed, guided by current regulations for prohibited substances and methods of doping as established by the World Anti-Doping Agency (WADA). Focusing on literature published between 2011 and 2015, examples for doping control analytical assays concerning non-approved substances, anabolic agents, peptide hormones/growth factors/related substances and mimetics, β 2 -agonists, hormone and metabolic modulators, diuretics and masking agents, stimulants, narcotics, cannabinoids, glucocorticoids, and beta-blockers were selected to outline the advantages and limitations of the aforementioned alternative matrices as compared to conventional doping control samples (i.e. urine and blood/serum). Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aptekarev, Alexander I; Lysov, Vladimir G; Tulyakov, Dmitrii N

    2011-02-28

    Ensembles of random Hermitian matrices with a distribution measure defined by an anharmonic potential perturbed by an external source are considered. The limiting characteristics of the eigenvalue distribution of the matrices in these ensembles are related to the asymptotic behaviour of a certain system of multiple orthogonal polynomials. Strong asymptotic formulae are derived for this system. As a consequence, for matrices in this ensemble the limit mean eigenvalue density is found, and a variational principle is proposed to characterize this density. Bibliography: 35 titles.

  15. To enhance the efficiency of a power supply circuit by the use of Fe-P-B-Nb-type ultralow loss glassy metal core

    NASA Astrophysics Data System (ADS)

    Matsumoto, H.; Urata, A.; Yamada, Y.; Makino, A.

    2009-04-01

    The inductor in a power supply is required to be capable of dealing satisfactorily with the high-current supply and to improve the power loss characteristic. A novel glassy metal powder with a chemical composition Fe77P7B13Nb3 features both a high saturated magnetic flux density of 1.3 T and a low coercive force of 2.0 A/m, which has a stable amorphous structure suitable for glassy metal composite cores. Hence there is no magnetic saturation even under a high-current supply, and it is confirmed to have significantly low magnetic loss resulting from the low coercive force. As a result of using the glassy metal alloy Fe77P7B13Nb3 powder in an inductor core, we have achieved improvement in power supply efficiency by up to roughly 2.0%. Moreover, the reduction in the standby power requirement by the improvement in the power supply efficiency in the low load current case, where the core loss occupies a high ratio in the entire loss, can be expected. Additionally, heat generation in a core is suppressed by using the low loss powder, and it becomes easy to design a temperature rise in the entire power supply circuit.

  16. On r-circulant matrices with Fibonacci and Lucas numbers having arithmetic indices

    NASA Astrophysics Data System (ADS)

    Bueno, Aldous Cesar F.

    2017-11-01

    We investigate r-circulant matrices whose entries are Fibonacci and Lucas numbers having arithmetic indices. We then solve for the eigenvalues, determinant, Euclidean norm and the bounds for the spectral norm of the matrices. We also present some special cases and some results on identities and divisibility. Lastly, we present an open problem.

  17. Anterior foregut microbiota of the glassy-winged sharpshooter explored using deep 16S rRNA gene sequencing from individual insects

    USDA-ARS?s Scientific Manuscript database

    The glassy-winged sharpshooter (GWSS) is an invasive insect species that transmits Xylella fastidiosa, the bacterium causing Pierce’s disease of grapevine and other leaf scorch diseases. X. fastidiosa has been shown to colonize the anterior foregut (cibarium and precibarium) of sharpshooters, where ...

  18. Determination of Fracture Patterns in Glass and Glassy Polymers.

    PubMed

    Baca, Allison C; Thornton, John I; Tulleners, Frederic A

    2016-01-01

    The study of fractures of glass, glassy-type materials, and plastic has long been of interest to the forensic community. The focus of this interest has been the use of glass and polymer fractures to associate items of evidence under the assumption that each fracture is different. Generally, it is well-accepted that deviations exist; however, the emphasis has been on classifying and predicting fracture rather than determining that each fracture is different. This study documented the controlled fracture patterns of 60 glass panes, 60 glass bottles, and 60 plastic tail light lens covers using both dynamic impact and static pressure methods under closely controlled conditions. Each pattern was intercompared, and based on the limited specimens tested in this study, the results illustrate that the fracture patterns are different. Further repetitive studies, under controlled conditions, will be needed to provide more statistical significance to the theory that each fracture forms a nonreproducible fracture pattern. © 2015 American Academy of Forensic Sciences.

  19. Crystallization of probucol from solution and the glassy state.

    PubMed

    Kawakami, Kohsaku; Ohba, Chie

    2017-01-30

    Crystallization of probucol (PBL) from both solution and glassy solid state was investigated. In the crystallization study from solution, six solvents and three methods, i.e., evaporation, addition of a poor solvent, and cooling on ice, were used to obtain various crystal forms. In addition to common two crystal forms (forms I and II), two further forms (forms III and cyclohexane-solvate) were found in this study, and their thermodynamic relationships were determined. Forms I and II are likely to be enantiotropically related with thermodynamic transition temperature below 5°C. Isothermal crystallization studies revealed that PBL glass initially crystallized into form III between 25 and 50°C, and then transformed to form I. The isothermal crystallization appears to be a powerful option to find uncommon crystal forms. The crystallization of PBL was identified to be pressure controlled, thus the physical stability of PBL glass is higher than that of typical compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Ion beam promoted lithium absorption in glassy polymeric carbon

    NASA Astrophysics Data System (ADS)

    Zimmerman, R. L.; Ila, D.; Jenkins, G. M.; Maleki, H.; Poker, D. B.

    1995-12-01

    Glassy Polymeric Carbon (GPC) samples prepared from a precursor possess accessible pore volume that depends on the heat treatment temperature [G.M. Jenkins and K. Kawamura, Polymeric Carbons - Carbon Fiber, Glass and Char (Cambridge University Press, Cambridge, 1976) p. 140]. We have shown that lithium percolates without diffusion into the accessible pores of GPC samples immersed in a molten lithium salt bath at 700°C [D. Ila, G.M. Jenkins, L.R. Holland, A.L. Evelyn and H. Jena, Vacuum 45 (1994) 451]. Ion bombardment with 10 MeV Au atoms increases the total pore volume available for lithium occupation even for samples normally impermeable to lithium. The lithium concentration depth profile is measured using Li 7(p,2α) nuclear reaction analysis. We will report on lithium percolation into GPC prepared at temperatures between 500°C and 1000°C and activated by a 10 MeV gold ion bombardment.

  1. Structural and spectroscopic studies of a commercial glassy carbon

    NASA Astrophysics Data System (ADS)

    Parker, Stewart F.; Imberti, Silvia; Callear, Samantha K.; Albers, Peter W.

    2013-12-01

    Glassy carbon is a form of carbon made by heating a phenolic resin to high temperature in an inert atmosphere. It has been suggested that it is composed of fullerene-like structures. The aim of the present work was to characterize the material using both structural (neutron diffraction and transmission electron microscopy) and spectroscopic (inelastic neutron scattering, Raman and X-ray photoelectron spectroscopies) methods. We find no evidence to support the suggestion of fullerene-like material being present to a significant extent, rather the model that emerges from all of the techniques is that the material is very like amorphous carbon, consisting of regions of small graphite-like basic structural units of partly stacked but mismatched structure with the edges terminated by hydrogen or hydroxyls. We do find evidence for the presence of a small quantity of water trapped in the network and suggest that this may account for batch-to-batch variation in properties that may occur.

  2. A novel highly selective and sensitive detection of serotonin based on Ag/polypyrrole/Cu2O nanocomposite modified glassy carbon electrode.

    PubMed

    Selvarajan, S; Suganthi, A; Rajarajan, M

    2018-06-01

    A silver/polypyrrole/copper oxide (Ag/PPy/Cu 2 O) ternary nanocomposite was prepared by sonochemical and oxidative polymerization simple way, in which Cu 2 O was decorated with Ag nanoparticles, and covered by polyprrole (PPy) layer. The as prepared materials was characterized by UV-vis-spectroscopy (UV-vis), FT-IR, X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM) with EDX, high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Sensing of serotonin (5HT) was evaluated electrocatalyst using polypyrrole/glassy carbon electrode (PPy/GCE), polypyrrole/copper oxide/glassy carbon electrode (PPy/Cu 2 O/GCE) and silver/polypyrrole/copper oxide/glassy carbon electrode (Ag/PPy/Cu 2 O/GCE). The Ag/PPy/Cu 2 O/GCE was electrochemically treated in 0.1MPBS solution through cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The peak current response increases linearly with 5-HT concentration from 0.01 to 250 µmol L -1 and the detection limit was found to be 0.0124 μmol L -1 . It exhibits high electrocatalytic activity, satisfactory repeatability, stability, fast response and good selectivity against potentially interfering species, which suggests its potential in the development of sensitive, selective, easy-operation and low-cost serotonin sensor for practical routine analyses. The proposed method is potential to expand the possible applied range of the nanocomposite material for detection of various concerned electro active substances. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Fundamental differences between glassy dynamics in two and three dimensions.

    PubMed

    Flenner, Elijah; Szamel, Grzegorz

    2015-06-12

    The two-dimensional freezing transition is very different from its three-dimensional counterpart. In contrast, the glass transition is usually assumed to have similar characteristics in two and three dimensions. Using computer simulations, here we show that glassy dynamics in supercooled two- and three-dimensional fluids are fundamentally different. Specifically, transient localization of particles on approaching the glass transition is absent in two dimensions, whereas it is very pronounced in three dimensions. Moreover, the temperature dependence of the relaxation time of orientational correlations is decoupled from that of the translational relaxation time in two dimensions but not in three dimensions. Last, the relationships between the characteristic size of dynamically heterogeneous regions and the relaxation time are very different in two and three dimensions. These results strongly suggest that the glass transition in two dimensions is different than in three dimensions.

  4. Fundamental differences between glassy dynamics in two and three dimensions

    PubMed Central

    Flenner, Elijah; Szamel, Grzegorz

    2015-01-01

    The two-dimensional freezing transition is very different from its three-dimensional counterpart. In contrast, the glass transition is usually assumed to have similar characteristics in two and three dimensions. Using computer simulations, here we show that glassy dynamics in supercooled two- and three-dimensional fluids are fundamentally different. Specifically, transient localization of particles on approaching the glass transition is absent in two dimensions, whereas it is very pronounced in three dimensions. Moreover, the temperature dependence of the relaxation time of orientational correlations is decoupled from that of the translational relaxation time in two dimensions but not in three dimensions. Last, the relationships between the characteristic size of dynamically heterogeneous regions and the relaxation time are very different in two and three dimensions. These results strongly suggest that the glass transition in two dimensions is different than in three dimensions. PMID:26067877

  5. SPECIATION OF ARSENIC IN EXPOSURE ASSESSMENT MATRICES

    EPA Science Inventory

    The speciaton of arsenic in water, food and urine are analytical capabilities which are an essential part in arsenic risk assessment. The cancer risk associated with arsenic has been the driving force in generating the analytical research in each of these matrices. This presentat...

  6. Products of random matrices from fixed trace and induced Ginibre ensembles

    NASA Astrophysics Data System (ADS)

    Akemann, Gernot; Cikovic, Milan

    2018-05-01

    We investigate the microcanonical version of the complex induced Ginibre ensemble, by introducing a fixed trace constraint for its second moment. Like for the canonical Ginibre ensemble, its complex eigenvalues can be interpreted as a two-dimensional Coulomb gas, which are now subject to a constraint and a modified, collective confining potential. Despite the lack of determinantal structure in this fixed trace ensemble, we compute all its density correlation functions at finite matrix size and compare to a fixed trace ensemble of normal matrices, representing a different Coulomb gas. Our main tool of investigation is the Laplace transform, that maps back the fixed trace to the induced Ginibre ensemble. Products of random matrices have been used to study the Lyapunov and stability exponents for chaotic dynamical systems, where the latter are based on the complex eigenvalues of the product matrix. Because little is known about the universality of the eigenvalue distribution of such product matrices, we then study the product of m induced Ginibre matrices with a fixed trace constraint—which are clearly non-Gaussian—and M  ‑  m such Ginibre matrices without constraint. Using an m-fold inverse Laplace transform, we obtain a concise result for the spectral density of such a mixed product matrix at finite matrix size, for arbitrary fixed m and M. Very recently local and global universality was proven by the authors and their coworker for a more general, single elliptic fixed trace ensemble in the bulk of the spectrum. Here, we argue that the spectral density of mixed products is in the same universality class as the product of M independent induced Ginibre ensembles.

  7. Oligo p-Phenylenevinylene Derivatives as Electron Transfer Matrices for UV-MALDI

    NASA Astrophysics Data System (ADS)

    Castellanos-García, Laura J.; Agudelo, Brian Castro; Rosales, Hernando F.; Cely, Melissa; Ochoa-Puentes, Christian; Blanco-Tirado, Cristian; Sierra, Cesar A.; Combariza, Marianny Y.

    2017-12-01

    Phenylenevinylene oligomers (PVs) have outstanding photophysical characteristics for applications in the growing field of organic electronics. Yet, PVs are also versatile molecules, the optical and physicochemical properties of which can be tuned by manipulation of their structure. We report the synthesis, photophysical, and MS characterization of eight PV derivatives with potential value as electron transfer (ET) matrices for UV-MALDI. UV-vis analysis show the presence of strong characteristic absorption bands in the UV region and molar absorptivities at 355 nm similar or higher than those of traditional proton (CHCA) and ET (DCTB) MALDI matrices. Most of the PVs exhibit non-radiative quantum yields (φ) above 0.5, indicating favorable thermal decay. Ionization potential values (IP) for PVs, calculated by the Electron Propagator Theory (EPT), range from 6.88 to 7.96 eV, making these oligomers good candidates as matrices for ET ionization. LDI analysis of PVs shows only the presence of radical cations (M+.) in positive ion mode and absence of clusters, adducts, or protonated species; in addition, M+. threshold energies for PVs are lower than for DCTB. We also tested the performance of four selected PVs as ET MALDI matrices for analytes ranging from porphyrins and phthalocyanines to polyaromatic compounds. Two of the four PVs show S/N enhancement of 1961% to 304% in comparison to LDI, and laser energy thresholds from 0.17 μJ to 0.47 μJ compared to 0.58 μJ for DCTB. The use of PV matrices also results in lower LODs (low fmol range) whereas LDI LODs range from pmol to nmol. [Figure not available: see fulltext.

  8. EXACT S-MATRICES FOR AdS3/CFT2

    NASA Astrophysics Data System (ADS)

    Ahn, Changrim; Bombardelli, Diego

    2013-12-01

    We propose exact S-matrices for the AdS3/CFT2 duality between type IIB strings on AdS3×S3×M4 with M4 = S3×S1 or T4 and the corresponding two-dimensional conformal field theories. We fix the two-particle S-matrices on the basis of the symmetries su(1|1) and su(1|1)×su(1|1). A crucial justification comes from the derivation of the all-loop Bethe ansatz matching exactly the recent conjecture proposed by Babichenko et al. [J. High Energy Phys.1003, 058 (2010), arXiv:0912.1723 [hep-th

  9. Cationized pullulan 3D matrices as new materials for gene transfer.

    PubMed

    San Juan, Aurélie; Hlawaty, Hanna; Chaubet, Frédéric; Letourneur, Didier; Feldman, Laurent J

    2007-08-01

    This study deals with the development of a novel biocompatible cationized pullulan three-dimensional matrix for gene delivery. A water-soluble cationic polysaccharide, diethylaminoethyl-pullulan (DEAE-pullulan), was first synthesized and characterized. Fluorescence quenching and gel retardation assays evidenced the complexation in solution of DNA with DEAE-pullulan, but not with neutral pullulan. On cultured smooth muscle cells (SMCs) incubated with DEAE-pullulan and a plasmid vector expressing a secreted form of alkaline phosphatase (pSEAP), SEAP activity was 150-fold higher than with pSEAP alone or pSEAP with neutral pullulan. DEAE-pullulan was then chemically crosslinked using phosphorus oxychloride. The resulting matrices were obtained in less than a minute and molded as discs of 12 mm diameter and 2 mm thickness. Such DEAE-pullulan 3D matrices were loaded with up to 50 microg of plasmid DNA, with a homogeneous plasmid loading observed with YOYO-1 fluorescence staining. Moreover, the DEAE-pullulan matrix was shown to protect pSEAP from DNase I degradation. Incubation of cultured SMCs with pSEAP-loaded DEAE-pullulan matrices resulted in significant gene transfer without cell toxicity. This study suggests that these cationized pullulan 3D matrices could be useful biomaterials for local gene transfer.

  10. Dense tissue-like collagen matrices formed in cell-free conditions.

    PubMed

    Mosser, Gervaise; Anglo, Anny; Helary, Christophe; Bouligand, Yves; Giraud-Guille, Marie-Madeleine

    2006-01-01

    A new protocol was developed to produce dense organized collagen matrices hierarchically ordered on a large scale. It consists of a two stage process: (1) the organization of a collagen solution and (2) the stabilization of the organizations by a sol-gel transition that leads to the formation of collagen fibrils. This new protocol relies on the continuous injection of an acid-soluble collagen solution into glass microchambers. It leads to extended concentration gradients of collagen, ranging from 5 to 1000 mg/ml. The self-organization of collagen solutions into a wide array of spatial organizations was investigated. The final matrices obtained by this procedure varied in concentration, structure and density. Changes in the liquid state of the samples were followed by polarized light microscopy, and the final stabilized gel states obtained after fibrillogenesis were analyzed by both light and electron microscopy. Typical organizations extended homogeneously by up to three centimetres in one direction and several hundreds of micrometers in other directions. Fibrillogenesis of collagen solutions of high and low concentrations led to fibrils spatially arranged as has been described in bone and derm, respectively. Moreover, a relationship was revealed between the collagen concentration and the aggregation of and rotational angles between lateral fibrils. These results constitute a strong base from which to further develop highly enriched collagen matrices that could lead to substitutes that mimic connective tissues. The matrices thus obtained may also be good candidates for the study of the three-dimensional migration of cells.

  11. Electrochemical Determination of Caffeine Content in Ethiopian Coffee Samples Using Lignin Modified Glassy Carbon Electrode.

    PubMed

    Amare, Meareg; Aklog, Senait

    2017-01-01

    Lignin film was deposited at the surface of glassy carbon electrode potentiostatically. In contrast to the unmodified glassy carbon electrode, an oxidative peak with an improved current and overpotential for caffeine at modified electrode showed catalytic activity of the modifier towards oxidation of caffeine. Linear dependence of peak current on caffeine concentration in the range 6 × 10 -6 to 100 × 10 -6  mol L -1 with determination coefficient and method detection limit (LoD = 3 s/slope) of 0.99925 and 8.37 × 10 -7  mol L -1 , respectively, supplemented by recovery results of 93.79-102.17% validated the developed method. An attempt was made to determine the caffeine content of aqueous coffee extracts of Ethiopian coffees grown in four coffee cultivating localities (Wonbera, Wolega, Finoteselam, and Zegie) and hence to evaluate the correlation between users preference and caffeine content. In agreement with reported works, caffeine contents (w/w%) of 0.164 in Wonbera coffee; 0.134 in Wolega coffee; 0.097 in Finoteselam coffee; and 0.089 in Zegie coffee were detected confirming the applicability of the developed method for determination of caffeine in a complex matrix environment. The result indicated that users' highest preference for Wonbera and least preference for Zegie cultivated coffees are in agreement with the caffeine content.

  12. Classical r-matrices for the generalised Chern–Simons formulation of 3d gravity

    NASA Astrophysics Data System (ADS)

    Osei, Prince K.; Schroers, Bernd J.

    2018-04-01

    We study the conditions for classical r-matrices to be compatible with the generalised Chern–Simons action for 3d gravity. Compatibility means solving the classical Yang–Baxter equations with a prescribed symmetric part for each of the real Lie algebras and bilinear pairings arising in the generalised Chern–Simons action. We give a new construction of r-matrices via a generalised complexification and derive a non-linear set of matrix equations determining the most general compatible r-matrix. We exhibit new families of solutions and show that they contain some known r-matrices for special parameter values.

  13. Electrochemical behavior of triflusal, aspirin and their metabolites at glassy carbon and boron doped diamond electrodes.

    PubMed

    Enache, Teodor Adrian; Fatibello-Filho, Orlando; Oliveira-Brett, Ana Maria

    2010-08-01

    The electrochemical behavior of triflusal (TRF) and aspirin (ASA), before and after hydrolysis in water and in alkaline medium using two different electrode surfaces, glassy carbon and boron doped diamond, was study by differential pulse voltammetry over a wide pH range. The hydrolysis products are 2-(hydroxyl)-4-(trifluoromethyl)-benzoic acid (HTB) for triflusal and salicylic acid (SA) for aspirin, which in vivo represent their main metabolites. The hydrolysis processes were also followed by spectrophotometry. The UV results showed complete hydrolysis after one hour for TRF and after two hours for ASA in alkaline solution. The glassy carbon electrode enables only indirect determination of TRF and ASA through the electrochemical detection of their hydrolysis products HTB and SA, respectively. The oxidation processes of HTB and SA are pH dependent and involve different numbers of electrons and protons. Moreover, the difference between the oxidation peak potential of SA and HTB was equal to 100 mV in the studied pH range from 1 to 8 due to the CF3 of the aromatic ring of HTB molecule. Due to its wider oxidation potential range, the boron doped diamond electrode was used to study the direct oxidation of TRF and ASA, as well as of their respective metabolites HTB and SA.

  14. Dimension from covariance matrices.

    PubMed

    Carroll, T L; Byers, J M

    2017-02-01

    We describe a method to estimate embedding dimension from a time series. This method includes an estimate of the probability that the dimension estimate is valid. Such validity estimates are not common in algorithms for calculating the properties of dynamical systems. The algorithm described here compares the eigenvalues of covariance matrices created from an embedded signal to the eigenvalues for a covariance matrix of a Gaussian random process with the same dimension and number of points. A statistical test gives the probability that the eigenvalues for the embedded signal did not come from the Gaussian random process.

  15. Low Young's modulus Ti-based porous bulk glassy alloy without cytotoxic elements.

    PubMed

    Nicoara, M; Raduta, A; Parthiban, R; Locovei, C; Eckert, J; Stoica, M

    2016-05-01

    A new a biocompatible Ti42Zr40Ta3Si15 (atomic %) porous bulk glassy alloy was produced by combination of rapid solidification and powder metallurgy techniques. Amorphous alloy ribbons were fabricated by melt spinning, i.e. extremely fast quenching the molten alloy with 10(6)K/s from T=1973K down to room temperature. The ribbons were then cryo-milled at liquid nitrogen temperature in order to produce powder, which was subsequently hot pressed. The resulting thick pellets have a porosity of about 14vol%, a high compression strength of 337MPa and a Young's modulus of about E=52GPa, values very close to those characteristic of cortical bone. Moreover, the morphology of the samples is very similar to that of cortical bone. The biocompatibility, which is due to the absence of any toxic element in the chemical composition, together with the suitable mechanical behavior, make these samples promising for orthopedic and dentistry applications. Ti-based alloys are nowadays the standard solution for biomedical implants. However, both the conventional crystalline and amorphous alloys have higher rigidity as the human bone, leading to the damage of the bone at the interface, and contains harmful elements like vanadium, aluminum, nickel or beryllium. The hierarchical porous structures based on glassy alloys with biocompatible elements is a much better alternative. This work presents for the first time the manufacturing of such porous bodies starting from Ti-based amorphous alloy ribbons, which contains only non-harmful elements. The morphology and the compressive mechanical properties of these new products are analyzed in regard with those characteristic to the cortical bone. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Toward a better determination of dairy powders surface composition through XPS matrices development.

    PubMed

    Nikolova, Y; Petit, J; Sanders, C; Gianfrancesco, A; Scher, J; Gaiani, C

    2015-01-01

    The surface composition of dairy powders prepared by mixing various amounts of micellar casein (MC), whey proteins isolate (WPI), lactose, and anhydrous milk fat (AMF) was investigated by XPS measurements. The use of matrices are generally accepted to transform surface atomic composition (i.e., C, O, N contents) into surface component composition (i.e., lactose, proteins, lipids). These atomic-based matrices were revisited and two new matrices based on the surface bond composition were developed. Surface compositions obtained from atomic and bond-based matrices were compared. A successful matrix allowing good correlations between XPS predicted and theoretical surface composition for powders free from fat was identified. Nevertheless, samples containing milk fat were found to present a possible segregation of components owing to the AMF overrepresentation on the surface. Supplementary analyses (FTIR, SEM) were carried out in order to investigate the homogeneity of the mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Evaluation of ceramic packed-rod regenerator matrices

    NASA Technical Reports Server (NTRS)

    Lawless, W. N.; Arenz, R. W.

    1981-01-01

    An extensive evaluation of a modified cryocooler with various regenerator matrices is reported. The matrices examined are 0.015 in. diam. Pb spheres and 0.008, 0.015, and 0.030 in. diam. rods of a 0.2% SnCl2 doped ceramic labelled LS-8A. Specific heat and thermal conductivity data on these rod materials are also reported. The chronic pulverization/dusting problem common to Pb spheres was investigated. During a 1000 hr life test with 0.0008 in. diam. rods there was no degradation of the refrigerator performance, and a subsequent examination of the rods themselves revealed no evidence of breakage or pulverization. The load temperature characteristics for the rod packed regenerators were inferior to that for the Pb spheres, the effect being to shift the Pb spheres load curve up in temperature. This temperature shift was 5.0, 7.4, and 11.6K for the 0.0008, 0.015, and 0.030 in. diam. rods, respectively.

  18. Amino acid "little Big Bang": representing amino acid substitution matrices as dot products of Euclidian vectors.

    PubMed

    Zimmermann, Karel; Gibrat, Jean-François

    2010-01-04

    Sequence comparisons make use of a one-letter representation for amino acids, the necessary quantitative information being supplied by the substitution matrices. This paper deals with the problem of finding a representation that provides a comprehensive description of amino acid intrinsic properties consistent with the substitution matrices. We present a Euclidian vector representation of the amino acids, obtained by the singular value decomposition of the substitution matrices. The substitution matrix entries correspond to the dot product of amino acid vectors. We apply this vector encoding to the study of the relative importance of various amino acid physicochemical properties upon the substitution matrices. We also characterize and compare the PAM and BLOSUM series substitution matrices. This vector encoding introduces a Euclidian metric in the amino acid space, consistent with substitution matrices. Such a numerical description of the amino acid is useful when intrinsic properties of amino acids are necessary, for instance, building sequence profiles or finding consensus sequences, using machine learning algorithms such as Support Vector Machine and Neural Networks algorithms.

  19. On functions of quasi-Toeplitz matrices

    NASA Astrophysics Data System (ADS)

    Bini, D. A.; Massei, S.; Meini, B.

    2017-11-01

    Let a(z)=\\sumi\\in Za_iz^i be a complex-valued function, defined for |z|=1, such that \\sumi=-∞+∞|ia_i|<∞. Consider the semi-infinite Toeplitz matrix T(a)=(ti,j)i,j\\in Z^+ associated with the symbol a(z) such that {ti,j=aj-i}. A quasi-Toeplitz matrix associated with the symbol a(z) is a matrix of the form A=T(a)+E where E=(ei,j), \\sumi,j\\in Z^+|ei,j|<∞, and is called a {QT}-matrix. Given a function f(x) and a {QT}-matrix M, we provide conditions under which f(M) is well defined and is a {QT}-matrix. Moreover, we introduce a parametrization of {QT}-matrices and algorithms for the computation of f(M). We treat the case where f(x) is given in terms of power series and the case where f(x) is defined in terms of a Cauchy integral. This analysis is also applied to finite matrices which can be written as the sum of a Toeplitz matrix and a low rank correction. Bibliography: 27 titles.

  20. Prediction of Ras-effector interactions using position energy matrices.

    PubMed

    Kiel, Christina; Serrano, Luis

    2007-09-01

    One of the more challenging problems in biology is to determine the cellular protein interaction network. Progress has been made to predict protein-protein interactions based on structural information, assuming that structural similar proteins interact in a similar way. In a previous publication, we have determined a genome-wide Ras-effector interaction network based on homology models, with a high accuracy of predicting binding and non-binding domains. However, for a prediction on a genome-wide scale, homology modelling is a time-consuming process. Therefore, we here successfully developed a faster method using position energy matrices, where based on different Ras-effector X-ray template structures, all amino acids in the effector binding domain are sequentially mutated to all other amino acid residues and the effect on binding energy is calculated. Those pre-calculated matrices can then be used to score for binding any Ras or effector sequences. Based on position energy matrices, the sequences of putative Ras-binding domains can be scanned quickly to calculate an energy sum value. By calibrating energy sum values using quantitative experimental binding data, thresholds can be defined and thus non-binding domains can be excluded quickly. Sequences which have energy sum values above this threshold are considered to be potential binding domains, and could be further analysed using homology modelling. This prediction method could be applied to other protein families sharing conserved interaction types, in order to determine in a fast way large scale cellular protein interaction networks. Thus, it could have an important impact on future in silico structural genomics approaches, in particular with regard to increasing structural proteomics efforts, aiming to determine all possible domain folds and interaction types. All matrices are deposited in the ADAN database (http://adan-embl.ibmc.umh.es/). Supplementary data are available at Bioinformatics online.

  1. Algorithm 782 : codes for rank-revealing QR factorizations of dense matrices.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bischof, C. H.; Quintana-Orti, G.; Mathematics and Computer Science

    1998-06-01

    This article describes a suite of codes as well as associated testing and timing drivers for computing rank-revealing QR (RRQR) factorizations of dense matrices. The main contribution is an efficient block algorithm for approximating an RRQR factorization, employing a windowed version of the commonly used Golub pivoting strategy and improved versions of the RRQR algorithms for triangular matrices originally suggested by Chandrasekaran and Ipsen and by Pan and Tang, respectively, We highlight usage and features of these codes.

  2. One-electron reduced density matrices of strongly correlated harmonium atoms.

    PubMed

    Cioslowski, Jerzy

    2015-03-21

    Explicit asymptotic expressions are derived for the reduced one-electron density matrices (the 1-matrices) of strongly correlated two- and three-electron harmonium atoms in the ground and first excited states. These expressions, which are valid at the limit of small confinement strength ω, yield electron densities and kinetic energies in agreement with the published values. In addition, they reveal the ω(5/6) asymptotic scaling of the exchange components of the electron-electron repulsion energies that differs from the ω(2/3) scaling of their Coulomb and correlation counterparts. The natural orbitals of the totally symmetric ground state of the two-electron harmonium atom are found to possess collective occupancies that follow a mixed power/Gaussian dependence on the angular momentum in variance with the simple power-law prediction of Hill's asymptotics. Providing rigorous constraints on energies as functionals of 1-matrices, these results are expected to facilitate development of approximate implementations of the density matrix functional theory and ensure their proper description of strongly correlated systems.

  3. Approximate Joint Diagonalization and Geometric Mean of Symmetric Positive Definite Matrices

    PubMed Central

    Congedo, Marco; Afsari, Bijan; Barachant, Alexandre; Moakher, Maher

    2015-01-01

    We explore the connection between two problems that have arisen independently in the signal processing and related fields: the estimation of the geometric mean of a set of symmetric positive definite (SPD) matrices and their approximate joint diagonalization (AJD). Today there is a considerable interest in estimating the geometric mean of a SPD matrix set in the manifold of SPD matrices endowed with the Fisher information metric. The resulting mean has several important invariance properties and has proven very useful in diverse engineering applications such as biomedical and image data processing. While for two SPD matrices the mean has an algebraic closed form solution, for a set of more than two SPD matrices it can only be estimated by iterative algorithms. However, none of the existing iterative algorithms feature at the same time fast convergence, low computational complexity per iteration and guarantee of convergence. For this reason, recently other definitions of geometric mean based on symmetric divergence measures, such as the Bhattacharyya divergence, have been considered. The resulting means, although possibly useful in practice, do not satisfy all desirable invariance properties. In this paper we consider geometric means of covariance matrices estimated on high-dimensional time-series, assuming that the data is generated according to an instantaneous mixing model, which is very common in signal processing. We show that in these circumstances we can approximate the Fisher information geometric mean by employing an efficient AJD algorithm. Our approximation is in general much closer to the Fisher information geometric mean as compared to its competitors and verifies many invariance properties. Furthermore, convergence is guaranteed, the computational complexity is low and the convergence rate is quadratic. The accuracy of this new geometric mean approximation is demonstrated by means of simulations. PMID:25919667

  4. The Inverse of Banded Matrices

    DTIC Science & Technology

    2013-01-01

    indexed entries all zeros. In this paper, generalizing a method of Mallik (1999) [5], we give the LU factorization and the inverse of the matrix Br,n (if it...r ≤ i ≤ r, 1 ≤ j ≤ r, with the remaining un-indexed entries all zeros. In this paper generalizing a method of Mallik (1999) [5...matrices and applications to piecewise cubic approximation, J. Comput. Appl. Math. 8 (4) (1982) 285–288. [5] R.K. Mallik , The inverse of a lower

  5. The thermal stability of photoacid generators in phenolic matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barclay, G.G.; Medeiros, D.R.; Sinta, R.F.

    1993-12-31

    The thermal stability of various photolabile sulfonate esters in phenolic matrices have been investigated by differential scanning calorimetry and thermogravimetric analysis. It was observed that the thermal stability of these photoacid generators is lowered in the presence of phenolic groups. As a result acid can be thermally generated, thereby reducing the selectivity of photoacid generation. The sulfonate esters investigated in phenolic matrices included nitrobenzyl tosylates, imino sulfonates, benzoin tosylate and 1,2,3-tris(methanesulfonyloxy)benzene. Also the effect of the thermal generation of acid from these photoacid generators on the temperature and rate of deprotection of partially t-butoxycarbonate blocked poly (vinylphenol) was studied bymore » thermogravimetric analysis and FTIR.« less

  6. Preparation of theophylline-hydroxypropylmethylcellulose matrices using supercritical antisolvent precipitation: a preliminary study.

    PubMed

    Moneghini, M; Perissutti, B; Kikic, I; Grassi, M; Cortesi, A; Princivalle, F

    2006-01-01

    Several controlled release systems of drugs have been elaborated using a supercritical fluid process. Indeed, recent techniques using a supercritical fluid as a solvent or as an antisolvent are considered to be useful alternatives to produce fine powders. In this preliminary study, the effect of Supercritical Anti Solvent process (SAS) on the release of theophylline from matrices manufactured with hydroxypropylmethylcellulose (HPMC) was investigated. Two grades of HPMC (HPMC E5 and K100) as carriers were considered in order to prepare a sustained delivery system for theophylline which was used as a model drug. The characterization of the drug before and after SAS treatment, and the coprecipitates with carriers, was performed by X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). The dissolution rate of theophylline, theophylline-coprecipitates, and matricial tablets prepared with coprecipitates were determined. The physical characterizations revealed a substantial correspondence of the drug solid state before and after supercritical fluid treatment while drug-polymer interactions in the SAS-coprecipitates were attested. The dissolution studies of the matrices prepared compressing the coprecipitated systems showed that the matrices based on HPMC K100 were able to promote a sustained release of the drug. Further, this advantageous dissolution performance was found to be substantially independent of the pH of the medium. The comparison with the matrices prepared with untreated substances demonstrated that matrices obtained with SAS technique can provide a slower theophylline release rate. A new mathematical model describing the in vitro dissolution kinetics was proposed and successfully tested on these systems.

  7. [Morphology of collagen matrices for tissue engineering (biocompatibility, biodegradation, tissue response)].

    PubMed

    Shekhter, A B; Guller, A E; Istranov, L P; Istranova, E V; Butnaru, D V; Vinarov, A Z; Zakharkina, O L; Kurkov, A V; Kantimerov, D F; Antonov, E N; Marisov, L V; Glybochko, P V

    2015-01-01

    to perform a comparative morphological study of biocompatibility, biodegradation, and tissue response to implantation of collagen matrices (scaffolds) for tissue engineering in urology and other areas of medicine. Nine matrix types, such as porous materials reconstructed from collagen solution; a collagen sponge-vicryl mesh composite; decellularized and freeze-dried bovine, equine, and fish dermis; small intestinal submucosa, decellularized bovine dura mater; and decellularized human femoral artery, were implanted subcutaneously in 225 rats. The tissues at the implantation site were investigated for a period of 5 to 90 days. Classical histology and nonlinear optical microscopy (NLOM) were applied. The investigations showed no rejection of all the collagen materials. The period of matrix bioresorption varied from 10 days for collagen sponges to 2 months for decellularized and freeze-dried vessels and vicryl meshes. Collagen was prone to macrophage resorption and enzymatic lysis, being replaced by granulation tissue and then fibrous tissue, followed by its involution. NLOM allowed the investigators to study the number, density, interposition, and spatial organization of collagen structures in the matrices and adjacent tissues, and their change over time during implantation. The performed investigation could recommend three matrices: hybrid collagen/vicryl composite; decellularized bovine dermis; and decellularized porcine small intestinal submucosa, which are most adequate for tissue engineering in urology. These and other collagen matrices may be used in different areas of regenerative medicine.

  8. Cryptoachneliths: Hidden glassy ash in composite spheroidal lapilli

    NASA Astrophysics Data System (ADS)

    Carracedo Sánchez, M.; Arostegui, J.; Sarrionandia, F.; Larrondo, E.; Gil Ibarguchi, J. I.

    2010-09-01

    Cryptoachneliths, perceptible by means of electron microscopy but unresolved under the optical microscope, occur unnoticed inside spheroidal lapilli of ultrabasic composition of the Cabezo Segura volcano (Calatrava volcanic province, Spain). The cryptoachneliths are glassy spherical particles that have compositions of Al-rich silicate with minor amounts of Fe, Ca and other elements. The smallest cryptoachneliths of < 1 μm in diameter (nanoachneliths) joined by coalescence to form microspheres > 1 μm (microachneliths) and homogeneous less regular masses of similar composition. Nano and microachneliths welded each other or to other types of volcanic particles (crystals, crystal fragments, spinning droplets, cognate lithic clasts, etc.) to form spheroidal lapilli and even bomb size clasts within proximal fall deposits of the Cabezo Segura volcano. The welding processes took place inside the eruptive column, previous to the fall of the spheroidal lapilli on top of the volcanic cone. The presence of the cryptoachneliths implies that lapilli and even bomb size tephra within deposits formed during explosive eruptions of low-viscosity basic to ultrabasic magmas should be carefully examined in order to establish key parameters of eruption dynamics, like size, amount and distribution of juvenile fine particles.

  9. Random density matrices versus random evolution of open system

    NASA Astrophysics Data System (ADS)

    Pineda, Carlos; Seligman, Thomas H.

    2015-10-01

    We present and compare two families of ensembles of random density matrices. The first, static ensemble, is obtained foliating an unbiased ensemble of density matrices. As criterion we use fixed purity as the simplest example of a useful convex function. The second, dynamic ensemble, is inspired in random matrix models for decoherence where one evolves a separable pure state with a random Hamiltonian until a given value of purity in the central system is achieved. Several families of Hamiltonians, adequate for different physical situations, are studied. We focus on a two qubit central system, and obtain exact expressions for the static case. The ensemble displays a peak around Werner-like states, modulated by nodes on the degeneracies of the density matrices. For moderate and strong interactions good agreement between the static and the dynamic ensembles is found. Even in a model where one qubit does not interact with the environment excellent agreement is found, but only if there is maximal entanglement with the interacting one. The discussion is started recalling similar considerations for scattering theory. At the end, we comment on the reach of the results for other convex functions of the density matrix, and exemplify the situation with the von Neumann entropy.

  10. Extraction and Analysis of Sulfur Mustard (HD) from Various Food Matrices by Gas ChromatographyMass Spectrometry

    DTIC Science & Technology

    2016-01-01

    EXTRACTION AND ANALYSIS OF SULFUR MUSTARD (HD) FROM VARIOUS FOOD MATRICES BY GAS CHROMATOGRAPHY–MASS...Sulfur Mustard (HD) from Various Food Matrices by Gas Chromatography–Mass Spectrometry 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...spectrometry was used to analyze sulfur mustard (HD) in various food matrices. The development of a solid-phase extraction method using a normal

  11. Electronic Transport Behaviors due to Charge Density Waves in Ni-Nb-Zr-H Glassy Alloys

    NASA Astrophysics Data System (ADS)

    Fukuhara, Mikio; Umemori, Yoshimasa

    2013-11-01

    The amorphous Ni-Nb-Zr-H glassy alloy containing subnanometer-sized icosahedral Zr5 Nb5Ni3 clusters exhibited four types of electronic phenomena: a metal/insulator transition, an electric current-induced voltage oscillation (Coulomb oscillation), giant capacitor behavior and an electron avalanche with superior resistivity. These findings could be excluded by charge density waves that the low-dimensional component of clusters, in which the atoms are lined up in chains along the [130] direction, plays important roles in various electron transport phenomena.

  12. Differences in Stylet Penetration Behaviors of Glassy-winged Sharpshooters on Xylella-Resistant Vitis candicans vs. Susceptible Vitis vinifera cv. ‘Chardonnay’

    USDA-ARS?s Scientific Manuscript database

    Electrical penetration graph (EPG) monitoring was used to compare stylet penetration behaviors of glassy-winged sharpshooter (GWSS), a vector of Xylella fastidiosa (Xf), on Xf-resistant Vitis candicans grape vs. susceptible V. vinifera cv. ‘Chardonnay.’ Frequency of occurrence of X waves (represent...

  13. Intermittency and random matrices

    NASA Astrophysics Data System (ADS)

    Sokoloff, Dmitry; Illarionov, E. A.

    2015-08-01

    A spectacular phenomenon of intermittency, i.e. a progressive growth of higher statistical moments of a physical field excited by an instability in a random medium, attracted the attention of Zeldovich in the last years of his life. At that time, the mathematical aspects underlying the physical description of this phenomenon were still under development and relations between various findings in the field remained obscure. Contemporary results from the theory of the product of independent random matrices (the Furstenberg theory) allowed the elaboration of the phenomenon of intermittency in a systematic way. We consider applications of the Furstenberg theory to some problems in cosmology and dynamo theory.

  14. An efficient parallel-processing method for transposing large matrices in place.

    PubMed

    Portnoff, M R

    1999-01-01

    We have developed an efficient algorithm for transposing large matrices in place. The algorithm is efficient because data are accessed either sequentially in blocks or randomly within blocks small enough to fit in cache, and because the same indexing calculations are shared among identical procedures operating on independent subsets of the data. This inherent parallelism makes the method well suited for a multiprocessor computing environment. The algorithm is easy to implement because the same two procedures are applied to the data in various groupings to carry out the complete transpose operation. Using only a single processor, we have demonstrated nearly an order of magnitude increase in speed over the previously published algorithm by Gate and Twigg for transposing a large rectangular matrix in place. With multiple processors operating in parallel, the processing speed increases almost linearly with the number of processors. A simplified version of the algorithm for square matrices is presented as well as an extension for matrices large enough to require virtual memory.

  15. Speciation of nanoscale objects by nanoparticle imprinted matrices

    NASA Astrophysics Data System (ADS)

    Hitrik, Maria; Pisman, Yamit; Wittstock, Gunther; Mandler, Daniel

    2016-07-01

    The toxicity of nanoparticles is not only a function of the constituting material but depends largely on their size, shape and stabilizing shell. Hence, the speciation of nanoscale objects, namely, their detection and separation based on the different species, similarly to heavy metals, is of outmost importance. Here we demonstrate the speciation of gold nanoparticles (AuNPs) and their electrochemical detection using the concept of ``nanoparticles imprinted matrices'' (NAIM). Negatively charged AuNPs are adsorbed as templates on a conducting surface previously modified with polyethylenimine (PEI). The selective matrix is formed by the adsorption of either oleic acid (OA) or poly(acrylic acid) (PAA) on the non-occupied areas. The AuNPs are removed by electrooxidation to form complementary voids. These voids are able to recognize the AuNPs selectively based on their size. Furthermore, the selectivity could be improved by adsorbing an additional layer of 1-hexadecylamine, which deepened the voids. Interestingly, silver nanoparticles (AgNPs) were also recognized if their size matched those of the template AuNPs. The steps in assembling the NAIMs and the reuptake of the nanoparticles were characterized carefully. The prospects for the analytical use of NAIMs, which are simple, of small dimension, cost-efficient and portable, are in the sensing and separation of nanoobjects.The toxicity of nanoparticles is not only a function of the constituting material but depends largely on their size, shape and stabilizing shell. Hence, the speciation of nanoscale objects, namely, their detection and separation based on the different species, similarly to heavy metals, is of outmost importance. Here we demonstrate the speciation of gold nanoparticles (AuNPs) and their electrochemical detection using the concept of ``nanoparticles imprinted matrices'' (NAIM). Negatively charged AuNPs are adsorbed as templates on a conducting surface previously modified with polyethylenimine (PEI). The

  16. Electrocatalytic activity of spots of electrodeposited noble-metal catalysts on carbon nanotubes modified glassy carbon.

    PubMed

    Chen, Xingxing; Eckhard, Kathrin; Zhou, Min; Bron, Michael; Schuhmann, Wolfgang

    2009-09-15

    A strategy for the screening of the electrocatalytic activity of electrocatalysts for possible application in fuel cells and other devices is presented. In this approach, metal nanoclusters (Pt, Au, Ru, and Rh and their codeposits) were prepared using a capillary-based droplet-cell by pulsed electrodeposition in a diffusion-restricted viscous solution. A glassy carbon surface was modified with carbon nanotubes (CNTs) by electrophoretic accumulation and was used as substrate for metal nanoparticle deposition. The formed catalyst spots on the CNT-modified glassy carbon surface were investigated toward their catalytic activity for oxygen reduction as a test reaction employing the redox competition mode of scanning electrochemical microscopy (RC-SECM). Qualitative information on the electrocatalytic activity of the catalysts was obtained by varying the potential applied to the substrate; semiquantitative evaluation was based on the determination of the electrochemically deposited catalyst loading by means of the charge transferred during the metal nanoparticle deposition. Qualitatively, Au showed the highest electrocatalytic activity toward the oxygen reduction reaction (ORR) in phosphate buffer among all investigated single metal catalysts which was attributed to the much higher loading of Au achieved during electrodeposition. Coelectrodeposited Au-Pt catalysts showed a more positive onset potential (-150 mV in RC-SECM experiments) of the ORR in phosphate buffer at pH 6.7. After normalizing the SECM image by the charge during the metal nanocluster deposition which represents the mass loading of the catalyst, Ru showed a higher electrocatalytic activity toward the ORR than Au.

  17. Atomistic interpretation of the ac-dc crossover frequency in crystalline and glassy ionic conductors

    NASA Astrophysics Data System (ADS)

    Marple, M. A. T.; Avila-Paredes, H.; Kim, S.; Sen, S.

    2018-05-01

    A comprehensive analysis of the ionic dynamics in a wide variety of crystalline and glassy ionic conductors, obtained in recent studies using a combination of electrochemical impedance and nuclear magnetic resonance spectroscopic techniques, is presented. These results demonstrate that the crossover frequency, between the frequency-independent dc conductivity and the frequency-dependent ac conductivity, corresponds to the time scale of "successful" diffusive hops of the mobile ions between the trapping sites in the structure. These inter-site hops are typically compound in nature and consist of several elementary hops in the intervening region between the neighboring trapping sites.

  18. Atomistic interpretation of the ac-dc crossover frequency in crystalline and glassy ionic conductors.

    PubMed

    Marple, M A T; Avila-Paredes, H; Kim, S; Sen, S

    2018-05-28

    A comprehensive analysis of the ionic dynamics in a wide variety of crystalline and glassy ionic conductors, obtained in recent studies using a combination of electrochemical impedance and nuclear magnetic resonance spectroscopic techniques, is presented. These results demonstrate that the crossover frequency, between the frequency-independent dc conductivity and the frequency-dependent ac conductivity, corresponds to the time scale of "successful" diffusive hops of the mobile ions between the trapping sites in the structure. These inter-site hops are typically compound in nature and consist of several elementary hops in the intervening region between the neighboring trapping sites.

  19. Les effets bénéfiques de l'accompagnement du patient cancéreux: particularités du Maroc

    PubMed Central

    Lkhoyaali, Sihame; Aitelhaj, Meryem; Errihani, Hassan

    2014-01-01

    Au Maroc la majorité des patients âgés cancéreux sont pris en charge par leurs proches l'accompagnement des patients est à l'origine de conséquences émotionnelles psychiques et financières négatives mais en contrepartie il est à l'origine de plusieurs effets bénéfiques à savoir un resserrement des liens familiaux, une surestime du soi et il est la source d'un bien-être affectif et spirituel qui permet de faire face à la maladie. PMID:25722766

  20. Use of Mueller and non-Mueller matrices to describe polarization properties of telescope-based polarimeters

    NASA Astrophysics Data System (ADS)

    Seagraves, P. H.; Elmore, David F.

    1994-09-01

    Systems using optical elements such as linear polarizers, retarders, and mirrors can be represented by Mueller matrices. Some polarimeters include elements with time-varying polarization properties, multiple light beams, light detectors, and signal processing equipment. Standard Mueller matrix forms describing time-varying retarders, and beam splitters are presented, as well as non-Mueller matrices which describe detection and signal processing. These matrices provide a compact and intuitive mathematical description of polarimeter response which can aid in the refining of instrument designs.

  1. Simultaneous Quantitation of Atenolol, Metoprolol, and Propranolol in Biological Matrices Via LC/MS

    DTIC Science & Technology

    2005-05-01

    Simultaneous Quantitation of Atenolol, Metoprolol , and Propranolol in Biological Matrices Via LC/MS Robert D. Johnson Russell J. Lewis Civil...authorized 1 SIMULTANEOUS QUANTITATION OF ATENOLOL, METOPROLOL , AND PROPRANOLOL IN BIOLOGICAL MATRICES VIA LC/MS INTRODUCTION The Federal Aviation...detect beta-blocker compounds such as atenolol, metoprolol , or propranolol in the submitted biological samples. In forensic toxicol- ogy laboratories

  2. Thermal and Compositional Variation of Glassy Metal Structure Factors.

    NASA Astrophysics Data System (ADS)

    From, Milton

    The x-ray total structure factor of the glassy -metal alloys Mg_{70}Zn_ {30}, Ca_{70}Mg_{30 } and Mg_{85.5}Cu _{14.5} has been measured at three temperatures: 9K, 150K, and 300K. The data have a statistical precision of about.8% and an absolute accuracy of roughly 3%. Percus-Yevick hard sphere structure factors may be fitted quite accurately to the data in the region of the first peak. In addition, the variation of the experimental structure factor with composition is found to be consistent with the Percus-Yevick theory. At low k values, Percus -Yevick and other theoretical model structure factors are in poor agreement with the data. Within experimental error, the temperature dependence of the structure factors is in agreement with the Debye plane wave phonon model of atomic vibrations. The measured structure factors are used to calculate the electrical resistivity from the Faber-Ziman equation. In most cases, the calculations yield both the correct magnitude of resistivity and sign of the temperature coefficient of resistivity.

  3. SAR matrices: automated extraction of information-rich SAR tables from large compound data sets.

    PubMed

    Wassermann, Anne Mai; Haebel, Peter; Weskamp, Nils; Bajorath, Jürgen

    2012-07-23

    We introduce the SAR matrix data structure that is designed to elucidate SAR patterns produced by groups of structurally related active compounds, which are extracted from large data sets. SAR matrices are systematically generated and sorted on the basis of SAR information content. Matrix generation is computationally efficient and enables processing of large compound sets. The matrix format is reminiscent of SAR tables, and SAR patterns revealed by different categories of matrices are easily interpretable. The structural organization underlying matrix formation is more flexible than standard R-group decomposition schemes. Hence, the resulting matrices capture SAR information in a comprehensive manner.

  4. A glassy carbon electrode modified with poly(2,4-dinitrophenylhydrazine) for simultaneous detection of dihydroxybenzene isomers.

    PubMed

    Lopa, Nasrin Siraj; Rahman, Md Mahbubur; Jang, Hohyoun; Sutradhar, Sabuj Chandra; Ahmed, Faiz; Ryu, Taewook; Kim, Whangi

    2017-12-06

    2,4-Dinitrophenylhydrazine (DNPH) was electropolymerized on the surface of an anodized glassy carbon electrode by cyclic voltammetry. The anodized electrode has a highly electroactive surface due to the creation of chemically functionalized graphitic nanoparticles, and this facilitates the formation of poly-DNPH via radical polymerization. Poly-DNPH displays excellent redox activity due to the presence of nitro groups on its backbone. These catalyze the electro-oxidation of hydroquinone (HQ) and catechol (CT). The peak-to-peak separation is around 109 mV, while a bare GCE cannot resolve the peaks (located at 165 and 274 mV vs. Ag/AgCl). Sensitivity is also enhanced to ∼1.20 and 1.19 μA·cm -2 ·μM -1 , respectively. The sensor has a linear response that covers the 20-250 μM concentration range for both HQ and CT, with 0.75 and 0.76 μM detection limits, respectively, at simultaneous detection. Commonly present species do not interfere. Graphical abstract A novel conducting poly(2,4-dinitrophenylhydrazine)-modified anodized glassy carbon electrode (pDNPH/AGCE) was developed by electrochemical method. The electro-catalytic activity of pDNPH/AGCE sensor was investigated for the selective and simultaneous electrochemical detection of hydroquinone (HQ) and catechol (CT), which revealed high sensitivities and low detection limits with excellent stability.

  5. New Scenario of Dynamical Heterogeneity in Supercooled Liquid and Glassy States of 2D Monatomic System.

    PubMed

    Van Hoang, Vo; Teboul, Victor; Odagaki, Takashi

    2015-12-24

    Via analysis of spatiotemporal arrangements of atoms based on their dynamics in supercooled liquid and glassy states of a 2D monatomic system with a double-well Lennard-Jones-Gauss (LJG) interaction potential, we find a new scenario of dynamical heterogeneity. Atoms with the same or very close mobility have a tendency to aggregate into clusters. The number of atoms with high mobility (and size of their clusters) increases with decreasing temperature passing over a maximum before decreasing down to zero. Position of the peak moves toward a lower temperature if mobility of atoms in clusters is lower together with an enhancement of height of the peak. In contrast, the number of atoms with very low mobility or solidlike atoms (and size of their clusters) has a tendency to increase with decreasing temperature and then it suddenly increases in the vicinity of the glass transition temperature leading to the formation of a glassy state. A sudden increase in the number of strongly correlated solidlike atoms in the vicinity of a glass transition temperature (Tg) may be an origin of a drastical increase in viscosity of the glass-forming systems approaching the glass transition. In fact, we find that the diffusion coefficient decays exponentially with a fraction of solidlike atoms exhibiting a sudden decrease in the vicinity of the glass transition region.

  6. Transformation matrices between non-linear and linear differential equations

    NASA Technical Reports Server (NTRS)

    Sartain, R. L.

    1983-01-01

    In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.

  7. RGD peptide-displaying M13 bacteriophage/PLGA nanofibers as cell-adhesive matrices for smooth muscle cells

    NASA Astrophysics Data System (ADS)

    Shin, Yong Cheol; Lee, Jong Ho; Jin, Oh Seong; Lee, Eun Ji; Jin, Lin Hua; Kim, Chang-Seok; Hong, Suck Won; Han, Dong-Wook; Kim, Chuntae; Oh, Jin-Woo

    2015-01-01

    Extracellular matrices (ECMs) are network structures that play an essential role in regulating cellular growth and differentiation. In this study, novel nanofibrous matrices were fabricated by electrospinning M13 bacteriophage and poly(lactic- co-glycolic acid) (PLGA) and were shown to be structurally and functionally similar to natural ECMs. A genetically-engineered M13 bacteriophage was constructed to display Arg-Gly-Asp (RGD) peptides on its surface. The physicochemical properties of RGD peptide-displaying M13 bacteriophage (RGD-M13 phage)/PLGA nanofibers were characterized by using scanning electron microscopy and Fourier-transform infrared spectroscopy. We used immunofluorescence staining to confirm that M13 bacteriophages were homogenously distributed in RGD-M13 phage/PLGA matrices. Furthermore, RGD-M13 phage/PLGA nanofibrous matrices, having excellent biocompatibility, can enhance the behaviors of vascular smooth muscle cells. This result suggests that RGD-M13 phage/PLGA nanofibrous matrices have potentials to serve as tissue engineering scaffolds.

  8. Hydrogen and Sulfur from Hydrogen Sulfide. 5. Anodic Oxidation of Sulfur on Activated Glassy Carbon

    DTIC Science & Technology

    1988-12-05

    electrolyses of H S can probably be carried out at high rates with modest cell voltages in the range 1-1.5 V. The variation in anode current densities...of H2S from solutions of NaSH in aqueous NaOH was achieved using suitably ac- tivated glassy carbon anodes. Thus electrolyses of H2S can probably be...passivation by using a basic solvent at 850C. Using an H2S-saturated 6M NaOH solution, they conducted electrolyses for extended periods at current densities

  9. ELECTRONIC SPECTRA OF AZA-AROMATICS IN POLYMER MATRICES.

    DTIC Science & Technology

    The absorption and fluorescence of acridine, phenazine , their cations, and phenazine -di-N-oxide were studied in polymer matrices. The correspondence...spectral properties are compared. The extent of solid solvent perturbation on spectral location and bandwidth is illustrated for acridine and phenazine

  10. Analysis of Subjective Judgment Matrices.

    DTIC Science & Technology

    1980-05-01

    Matrices.i. Crawford, Gordon, 1936- joint author. 11. Title. Ill Series: Rad Coporation . Rand reports o R-2572-0. A036-.13 R-2572 (E*278.2) 081s (519.5�...scaling the worth of a set of objects or entities . For problems that fit the Saaty framework, this report details aa ImpEuveNeL ua Sd4Ly’b "CtSgeLVCLLuL...Analysis for Siting of Nuclear Plants: The Relevance of Multiattribute Utility Theory ," Technical Report No. 96, Operations Research Center, MIT, 1974. 8

  11. Bush v. Bin Laden: Effect of State Emotion on Perceived Threat is Mediated by Emotion Towards the Threat Agent (Bush vs. Ben Laden: l’Effet de l’Emotion etat sur la Menace Percue est Mediatisees par l’Emotion vis-a-vis de l’Agent Menacant)

    DTIC Science & Technology

    2009-07-01

    auteurs discu- tent des implications des resultats pour les theories qui postulent un effet de I’emotion sur la perception du risque et pour com...effect of global negative emotion on perceived threat . The authors discuss implications of the findings for theories that postulate an effect of... auteurs ont mene une etude perception j emotion j experimentale afin d’examiner les effets d’etats emotionnels Specifi- ques (peur et colere) et globaux

  12. Plutonium segregation in glassy aerodynamic fallout from a nuclear weapon test

    DOE PAGES

    Holliday, K. S.; Dierken, J. M.; Monroe, M. L.; ...

    2017-01-11

    Our study combines electron microscopy equipped with energy dispersive spectroscopy to probe major element composition and autoradiography to map plutonium in order to examine the spatial relationships between plutonium and fallout composition in aerodynamic glassy fallout from a nuclear weapon test. We interrogated a sample set of 48 individual fallout specimens in order to reveal that the significant chemical heterogeneity of this sample set could be described compositionally with a relatively small number of compositional endmembers. Furthermore, high concentrations of plutonium were never associated with several endmember compositions and concentrated with the so-called mafic glass endmember. Our result suggests thatmore » it is the physical characteristics of the compositional endmembers and not the chemical characteristics of the individual component elements that govern the un-burnt plutonium distribution with respect to major element composition in fallout.« less

  13. Reflection matrices with U q [osp(2) (2|2m)] symmetry

    NASA Astrophysics Data System (ADS)

    Vieira, R. S.; Lima-Santos, A.

    2017-09-01

    We propose a classification of the reflection K-matrices (solutions of the boundary Yang-Baxter equation) for the Uq[osp(2)(2\\vert 2m)]=Uq[C(2)(m+1)] vertex-model. We found four families of solutions, namely, the complete solutions, in which no elements of the reflection K-matrix is null, the block-diagonal solutions, the X-shape solutions and the diagonal solutions. We highlight that these diagonal K-matrices also hold for the Uq[osp(2)(2n+2\\vert 2m)]=Uq[D(2)(n+1, m)] vertex-model.

  14. A Comparison between Element Salience versus Context as Item Difficulty Factors in Raven's Matrices

    ERIC Educational Resources Information Center

    Perez-Salas, Claudia P.; Streiner, David L.; Roberts, Maxwell J.

    2012-01-01

    The nature of contextual facilitation effects for items derived from Raven's Progressive Matrices was investigated in two experiments. For these, the original matrices were modified, creating either abstract versions with high element salience, or versions which comprised realistic entities set in familiar contexts. In order to replicate and…

  15. Chitosan-Based Matrices Prepared by Gamma Irradiation for Tissue Regeneration: Structural Properties vs. Preparation Method.

    PubMed

    Casimiro, Maria Helena; Lancastre, Joana J H; Rodrigues, Alexandra P; Gomes, Susana R; Rodrigues, Gabriela; Ferreira, Luís M

    2017-02-01

    In the last decade, new generations of biopolymer-based materials have attracted attention, aiming its application as scaffolds for tissue engineering. These engineered three-dimensional scaffolds are designed to improve or replace damaged, missing, or otherwise compromised tissues or organs. Despite the number of promising methods that can be used to generate 3D cell-instructive matrices, the innovative nature of the present work relies on the application of ionizing radiation technology to form and modify surfaces and matrices with advantage over more conventional technologies (room temperature reaction, absence of harmful initiators or solvents, high penetration through the bulk materials, etc.), and the possibility of preparation and sterilization in one single step. The current chapter summarizes the work done by the authors in the gamma radiation processing of biocompatible and biodegradable chitosan-based matrices for skin regeneration. Particular attention is given to the correlation between the different preparation conditions and the final polymeric matrices' properties. We therefore expect to demonstrate that instructive matrices produced and improved by radiation technology bring to the field of skin regenerative medicine a supplemental advantage over more conservative techniques.

  16. Molecular t-matrices for Low-Energy Electron Diffraction (TMOL v1.1)

    NASA Astrophysics Data System (ADS)

    Blanco-Rey, Maria; de Andres, Pedro; Held, Georg; King, David A.

    2004-08-01

    We describe a FORTRAN-90 program that computes scattering t-matrices for a molecule. These can be used in a Low-Energy Electron Diffraction program to solve the molecular structural problem very efficiently. The intramolecular multiple scattering is computed within a Dyson-like approach, using free space Green propagators in a basis of spherical waves. The advantage of this approach is related to exploiting the chemical identity of the molecule, and to the simplicity to translate and rotate these t-matrices without performing a new multiple-scattering calculation for each configuration. FORTRAN-90 routines for rotating the resulting t-matrices using Wigner matrices are also provided. Program summaryTitle of program: TMOL Catalogue number: ADUF Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUF Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland. Computers: Alpha ev6-21264 (700 MHz) and Pentium-IV. Operating systems: Digital UNIX V5.0 and Linux (Red Hat 8.0). Programming language: FORTRAN-90/95 (Compaq True64 compiler, and Intel Fortran Compiler 7.0 for Linux). High-speed storage required for the test run: minimum 64 Mbytes, it can grow to more depending on the system considered. Disk storage required: None. No. of bits in a word: 64 and 32. No. of lines in distributed program, including test data etc.: 5404 No. of bytes in distributed program, including test data etc.: 59 856 Distribution format: tar.gz Nature of problem: We describe the FORTRAN-90 program TMOL (v1.1) for the computation of non-diagonal scattering t-matrices for molecules or any other poly-atomic sub-unit of surface structures. These matrices can be used in an standard Low-Energy Electron Diffraction program, such as LEED90 or CLEED. Method of solution: A general non-diagonal t-matrix is assumed for the atoms or more general scatterers forming the molecule. The molecular t-matrix is solved adding the possible intramolecular multiple scattering events

  17. Selective electrochemical detection of 2,4,6-trinitrotoluene (TNT) in water based on poly(styrene-co-acrylic acid) PSA/SiO2/Fe3O4/AuNPs/lignin-modified glassy carbon electrode.

    PubMed

    Mahmoud, Khaled A; Abdel-Wahab, Ahmed; Zourob, Mohammed

    2015-01-01

    A new versatile electrochemical sensor based on poly(styrene-co-acrylic acid) PSA/SiO2/Fe3O4/AuNPs/lignin (L-MMS) modified glassy carbon electrode (GCE) was developed for the selective detection of trace trinitrotoluene (TNT) from aqueous media with high sensitivity. The fabricated magnetic microspheres were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). L-MMS films were cast on the GCE surface to fabricate the TNT sensing electrode. The limit of detection (LOD) of TNT determined by the amperometric i-t curve reached 35 pM. The lignin film and well packed Fe3O4/AuNPs facilitated the pre-concentration of trace TNT on the electrode surface resulting in a fast amperometric response of 3 seconds near the detection limit. The high sensitivity and excellent catalytic activity of the modified electrode could be attributed to the lignin layer and highly packed Fe3O4/AuNPs on the electrode surface. The total recovery of TNT from tapwater and seawater matrices was 98% and 96%, respectively. The electrode film was highly stable after five repeated adsorption/desorption cycles. The new electrochemical sensing scheme provides a highly selective, sensitive and versatile assay for the in-situ detection of TNT in complex water media.

  18. Scanning Electron Microscopy and Petrography of Glassy Particles Produced by Lava Fountain Eruptions. Ph.D. Thesis - Final Report

    NASA Technical Reports Server (NTRS)

    Ladle, G. H.

    1978-01-01

    A conceptual model of a lava fountain consists of a vent, spatter ramparts, fountain column, downwind plume and associated pumice deposits. Glassy particles produced by lava fountain eruptions consist primarily of sideromelane glass and minor to moderate amounts of vesicles and crystals. Particles are classified on the basis of morphology as: (1) spherical, (2) elongate, (3) glass-coated mineral grain, (4) shard, (5) reticulite, (6) composite particle, and (7) lithic fragment.

  19. Trans- and cis-stilbene isolated in cryogenic argon and xenon matrices.

    PubMed

    Ünsalan, Ozan; Kuş, Nihal; Jarmelo, Susana; Fausto, Rui

    2015-02-05

    Monomers of trans- (TS) and cis-stilbene (CS) were isolated in cryogenic argon and xenon matrices, and their infrared (IR) spectra were fully assigned and interpreted. The interpretation of the vibrational spectra received support from theoretical calculations undertaken at the DFT(B3LYP)/6-311++G(d,p) level of theory. In situ broadband UV irradiation of the matrix-isolated CS led to its isomerization to TS, which appeared in the photolysed matrices in both non-planar and planar configurations. The non-planar species was found to convert into the more stable planar form upon subsequent annealing of the matrices at higher temperature. TS was found to be photostable under the used experimental conditions. The structure of the non-planar TS form was assigned based on the comparison of its observed IR spectrum with those theoretically predicted for different conformations of TS. Chemometrics was used to make this assignment. Additional reasoning on the structure of the studied stilbenes is presented taking as basis results of the Natural Bond Orbital analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Comparison of Different Matrices as Potential Quality Control Samples for Neurochemical Dementia Diagnostics.

    PubMed

    Lelental, Natalia; Brandner, Sebastian; Kofanova, Olga; Blennow, Kaj; Zetterberg, Henrik; Andreasson, Ulf; Engelborghs, Sebastiaan; Mroczko, Barbara; Gabryelewicz, Tomasz; Teunissen, Charlotte; Mollenhauer, Brit; Parnetti, Lucilla; Chiasserini, Davide; Molinuevo, Jose Luis; Perret-Liaudet, Armand; Verbeek, Marcel M; Andreasen, Niels; Brosseron, Frederic; Bahl, Justyna M C; Herukka, Sanna-Kaisa; Hausner, Lucrezia; Frölich, Lutz; Labonte, Anne; Poirier, Judes; Miller, Anne-Marie; Zilka, Norbert; Kovacech, Branislav; Urbani, Andrea; Suardi, Silvia; Oliveira, Catarina; Baldeiras, Ines; Dubois, Bruno; Rot, Uros; Lehmann, Sylvain; Skinningsrud, Anders; Betsou, Fay; Wiltfang, Jens; Gkatzima, Olymbia; Winblad, Bengt; Buchfelder, Michael; Kornhuber, Johannes; Lewczuk, Piotr

    2016-03-01

    Assay-vendor independent quality control (QC) samples for neurochemical dementia diagnostics (NDD) biomarkers are so far commercially unavailable. This requires that NDD laboratories prepare their own QC samples, for example by pooling leftover cerebrospinal fluid (CSF) samples. To prepare and test alternative matrices for QC samples that could facilitate intra- and inter-laboratory QC of the NDD biomarkers. Three matrices were validated in this study: (A) human pooled CSF, (B) Aβ peptides spiked into human prediluted plasma, and (C) Aβ peptides spiked into solution of bovine serum albumin in phosphate-buffered saline. All matrices were tested also after supplementation with an antibacterial agent (sodium azide). We analyzed short- and long-term stability of the biomarkers with ELISA and chemiluminescence (Fujirebio Europe, MSD, IBL International), and performed an inter-laboratory variability study. NDD biomarkers turned out to be stable in almost all samples stored at the tested conditions for up to 14 days as well as in samples stored deep-frozen (at - 80°C) for up to one year. Sodium azide did not influence biomarker stability. Inter-center variability of the samples sent at room temperature (pooled CSF, freeze-dried CSF, and four artificial matrices) was comparable to the results obtained on deep-frozen samples in other large-scale projects. Our results suggest that it is possible to replace self-made, CSF-based QC samples with large-scale volumes of QC materials prepared with artificial peptides and matrices. This would greatly facilitate intra- and inter-laboratory QC schedules for NDD measurements.

  1. Mode coupling theory for nonequilibrium glassy dynamics of thermal self-propelled particles.

    PubMed

    Feng, Mengkai; Hou, Zhonghuai

    2017-06-28

    We present a mode coupling theory study for the relaxation and glassy dynamics of a system of strongly interacting self-propelled particles, wherein the self-propulsion force is described by Ornstein-Uhlenbeck colored noise and thermal noises are included. Our starting point is an effective Smoluchowski equation governing the distribution function of particle positions, from which we derive a memory function equation for the time dependence of density fluctuations in nonequilibrium steady states. With the basic assumption of the absence of macroscopic currents and standard mode coupling approximation, we can obtain expressions for the irreducible memory function and other relevant dynamic terms, wherein the nonequilibrium character of the active system is manifested through an averaged diffusion coefficient D[combining macron] and a nontrivial structural function S 2 (q) with q being the magnitude of wave vector q. D[combining macron] and S 2 (q) enter the frequency term and the vertex term for the memory function, and thus influence both the short time and the long time dynamics of the system. With these equations obtained, we study the glassy dynamics of this thermal self-propelled particle system by investigating the Debye-Waller factor f q and relaxation time τ α as functions of the persistence time τ p of self-propulsion, the single particle effective temperature T eff as well as the number density ρ. Consequently, we find the critical density ρ c for given τ p shifts to larger values with increasing magnitude of propulsion force or effective temperature, in good accordance with previously reported simulation work. In addition, the theory facilitates us to study the critical effective temperature T for fixed ρ as well as its dependence on τ p . We find that T increases with τ p and in the limit τ p → 0, it approaches the value for a simple passive Brownian system as expected. Our theory also well recovers the results for passive systems and can be

  2. Bi-dimensional null model analysis of presence-absence binary matrices.

    PubMed

    Strona, Giovanni; Ulrich, Werner; Gotelli, Nicholas J

    2018-01-01

    Comparing the structure of presence/absence (i.e., binary) matrices with those of randomized counterparts is a common practice in ecology. However, differences in the randomization procedures (null models) can affect the results of the comparisons, leading matrix structural patterns to appear either "random" or not. Subjectivity in the choice of one particular null model over another makes it often advisable to compare the results obtained using several different approaches. Yet, available algorithms to randomize binary matrices differ substantially in respect to the constraints they impose on the discrepancy between observed and randomized row and column marginal totals, which complicates the interpretation of contrasting patterns. This calls for new strategies both to explore intermediate scenarios of restrictiveness in-between extreme constraint assumptions, and to properly synthesize the resulting information. Here we introduce a new modeling framework based on a flexible matrix randomization algorithm (named the "Tuning Peg" algorithm) that addresses both issues. The algorithm consists of a modified swap procedure in which the discrepancy between the row and column marginal totals of the target matrix and those of its randomized counterpart can be "tuned" in a continuous way by two parameters (controlling, respectively, row and column discrepancy). We show how combining the Tuning Peg with a wise random walk procedure makes it possible to explore the complete null space embraced by existing algorithms. This exploration allows researchers to visualize matrix structural patterns in an innovative bi-dimensional landscape of significance/effect size. We demonstrate the rational and potential of our approach with a set of simulated and real matrices, showing how the simultaneous investigation of a comprehensive and continuous portion of the null space can be extremely informative, and possibly key to resolving longstanding debates in the analysis of ecological

  3. Solution of the determinantal assignment problem using the Grassmann matrices

    NASA Astrophysics Data System (ADS)

    Karcanias, Nicos; Leventides, John

    2016-02-01

    The paper provides a direct solution to the determinantal assignment problem (DAP) which unifies all frequency assignment problems of the linear control theory. The current approach is based on the solvability of the exterior equation ? where ? is an n -dimensional vector space over ? which is an integral part of the solution of DAP. New criteria for existence of solution and their computation based on the properties of structured matrices are referred to as Grassmann matrices. The solvability of this exterior equation is referred to as decomposability of ?, and it is in turn characterised by the set of quadratic Plücker relations (QPRs) describing the Grassmann variety of the corresponding projective space. Alternative new tests for decomposability of the multi-vector ? are given in terms of the rank properties of the Grassmann matrix, ? of the vector ?, which is constructed by the coordinates of ?. It is shown that the exterior equation is solvable (? is decomposable), if and only if ? where ?; the solution space for a decomposable ?, is the space ?. This provides an alternative linear algebra characterisation of the decomposability problem and of the Grassmann variety to that defined by the QPRs. Further properties of the Grassmann matrices are explored by defining the Hodge-Grassmann matrix as the dual of the Grassmann matrix. The connections of the Hodge-Grassmann matrix to the solution of exterior equations are examined, and an alternative new characterisation of decomposability is given in terms of the dimension of its image space. The framework based on the Grassmann matrices provides the means for the development of a new computational method for the solutions of the exact DAP (when such solutions exist), as well as computing approximate solutions, when exact solutions do not exist.

  4. The algebra of complex 2 × 2 matrices and a general closed Baker-Campbell-Hausdorff formula

    NASA Astrophysics Data System (ADS)

    Foulis, D. L.

    2017-07-01

    We derive a closed formula for the Baker-Campbell-Hausdorff series expansion in the case of complex 2×2 matrices. For arbitrary matrices A and B, and a matrix Z such that \\exp Z = \\exp A \\exp B , our result expresses Z as a linear combination of A and B, their commutator [A, B] , and the identity matrix I. The coefficients in this linear combination are functions of the traces and determinants of A and B, and the trace of their product. The derivation proceeds purely via algebraic manipulations of the given matrices and their products, making use of relations developed here, based on the Cayley-Hamilton theorem, as well as a characterization of the consequences of [A, B] and/or its determinant being zero or otherwise. As a corollary of our main result we also derive a closed formula for the Zassenhaus expansion. We apply our results to several special cases, most notably the parametrization of the product of two SU(2) matrices and a verification of the recent result of Van-Brunt and Visser (2015 J. Phys. A: Math. Theor. 48 225207) for complex 2×2 matrices, in this latter case deriving also the related Zassenhaus formula which turns out to be quite simple. We then show that this simple formula should be valid for all matrices and operators.

  5. Behavior of sulfur mustard in sand, concrete, and asphalt matrices: Evaporation, degradation, and decontamination.

    PubMed

    Jung, Hyunsook; Choi, Seungki

    2017-10-15

    The evaporation, degradation, and decontamination of sulfur mustard on environmental matrices including sand, concrete, and asphalt are described. A specially designed wind tunnel and thermal desorber in combination with gas chromatograph (GC) produced profiles of vapor concentration obtained from samples of the chemical agent deposited as a drop on the surfaces of the matrices. The matrices were exposed to the chemical agent at room temperature, and the degradation reactions were monitored and characterized. A vapor emission test was also performed after a decontamination process. The results showed that on sand, the drop of agent spread laterally while evaporating. On concrete, the drop of the agent was absorbed immediately into the matrix while spreading and evaporating. However, the asphalt surface conserved the agent and slowly released parts of the agent over an extended period of time. The degradation reactions of the agent followed pseudo first order behavior on the matrices. Trace amounts of the residual agent present at the surface were also released as vapor after decontamination, posing a threat to the exposed individual and environment.

  6. The spectra of reducible matrices over complete commutative idempotent semifields and their spectral lattices

    NASA Astrophysics Data System (ADS)

    José Valverde-Albacete, Francisco; Peláez-Moreno, Carmen

    2016-02-01

    Previous work has shown a relation between L-valued extensions of Formal Concept Analysis and the spectra of some matrices related to L-valued contexts. To clarify this relation, we investigated elsewhere the nature of the spectra of irreducible matrices over idempotent semifields in the framework of dioids, naturally ordered semirings, that encompass several of those extensions. This initial work already showed many differences with respect to their counterparts over incomplete idempotent semifields, in what concerns the definition of the spectrum and the eigenvectors. Considering special sets of eigenvectors also brought out complete lattices in the picture and we argue that such structure may be more important than standard eigenspace structure for matrices over completed idempotent semifields. In this paper, we complete that investigation in the sense that we consider the spectra of reducible matrices over completed idempotent semifields and dioids, giving, as a result, a constructive solution to the all-eigenvectors problem in this setting. This solution shows that the relation of complete lattices to eigenspaces is even tighter than suspected.

  7. Effets de la formation sur la violence conjugale

    PubMed Central

    Zaher, Eman; Keogh, Kelly; Ratnapalan, Savithiri

    2014-01-01

    Résumé Objectif Décrire et évaluer l’efficacité de la formation concernant la violence conjugale pour améliorer les connaissances et permettre la reconnaissance et la prise en charge par les médecins des femmes victimes de violence. Sources des données On a fait une recension dans la base de données des révisions systématiques de Cochrane, MEDLINE, PubMed, PsycINFO, ERIC et EMBASE pour trouver des articles publiés entre le 1e janvier 2000 et le 1e novembre 2012. Des recherches manuelles ont complété cette recension pour cerner des articles pertinents à l’aide d’une stratégie de recherche combinant des textes, mots et expressions MeSH. Sélection des études On a choisi des études randomisées contrôlées qui portaient sur des interventions éducatives à l’intention des médecins et fournissaient des données sur les effets des interventions. Synthèse On a inclus 9 études randomisées contrôlées qui décrivaient différentes approches pédagogiques et diverses mesures des résultats. Trois études examinaient les effets d’interventions éducatives pour des médecins en formation postdoctorale et ont constaté une augmentation des connaissances, mais il n’y a eu aucun changement dans le comportement en ce qui a trait à l’identification des victimes de violence conjugale. Six études portaient sur des interventions éducatives pour des médecins en pratique active. Trois d’entre elles utilisaient une approche à multiples facettes pour les médecins, qui combinait une formation ainsi que des interventions de soutien de la part du système pour changer les comportements des médecins, comme une sensibilisation générale accrue à la violence conjugale au moyen de brochures et d’affiches, des aide-mémoire pour rappeler aux médecins comment identifier les victimes, des moyens pour faciliter l’accès des médecins à des services de soutien pour les victimes, la réalisation d’audits et la fourniture de rétroaction. Les

  8. Structures and textures of the Murchison and Mighei carbonaceous chondrite matrices

    NASA Technical Reports Server (NTRS)

    Mackinnon, I. D. R.

    1980-01-01

    High-resolution transmission electron microscopy has confirmed earlier observations that the character of the Murchison and Mighei fine-grained matrices is complex in mineralogy and texture. Layer structure minerals occur as planar laths, rounded grains or subhedral grains, and range in size from less than 100 A to about 1 micrometer. Serpentine-type and brucite-type structures predominate in the CM matrices. The occurrence of Povlen chrysolite and a vein of disordered mixed-layer and brucite-type material cutting a large lizardite-type grain suggests that at least some of the matrix materials were formed by alteration of preexisting material.

  9. Visualization of newt aragonitic otoconial matrices using transmission electron microscopy

    NASA Technical Reports Server (NTRS)

    Steyger, P. S.; Wiederhold, M. L.

    1995-01-01

    Otoconia are calcified protein matrices within the gravity-sensing organs of the vertebrate vestibular system. These protein matrices are thought to originate from the supporting or hair cells in the macula during development. Previous studies of mammalian calcitic, barrel-shaped otoconia revealed an organized protein matrix consisting of a thin peripheral layer, a well-defined organic core and a flocculent matrix inbetween. No studies have reported the microscopic organization of the aragonitic otoconial matrix, despite its protein characterization. Pote et al. (1993b) used densitometric methods and inferred that prismatic (aragonitic) otoconia have a peripheral protein distribution, compared to that described for the barrel-shaped, calcitic otoconia of birds, mammals, and the amphibian utricle. By using tannic acid as a negative stain, we observed three kinds of organic matrices in preparations of fixed, decalcified saccular otoconia from the adult newt: (1) fusiform shapes with a homogenous electron-dense matrix; (2) singular and multiple strands of matrix; and (3) more significantly, prismatic shapes outlined by a peripheral organic matrix. These prismatic shapes remain following removal of the gelatinous matrix, revealing an internal array of organic matter. We conclude that prismatic otoconia have a largely peripheral otoconial matrix, as inferred by densitometry.

  10. Two-dimensional integrating matrices on rectangular grids. [solving differential equations associated with rotating structures

    NASA Technical Reports Server (NTRS)

    Lakin, W. D.

    1981-01-01

    The use of integrating matrices in solving differential equations associated with rotating beam configurations is examined. In vibration problems, by expressing the equations of motion of the beam in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the spatial dependence is removed from the governing partial differential equations and the resulting ordinary differential equations can be cast into standard eigenvalue form. Integrating matrices are derived based on two dimensional rectangular grids with arbitrary grid spacings allowed in one direction. The derivation of higher dimensional integrating matrices is the initial step in the generalization of the integrating matrix methodology to vibration and stability problems involving plates and shells.

  11. Evaluation of an Approximate Method for Synthesizing Covariance Matrices for Use in Meta-Analytic SEM

    ERIC Educational Resources Information Center

    Beretvas, S. Natasha; Furlow, Carolyn F.

    2006-01-01

    Meta-analytic structural equation modeling (MA-SEM) is increasingly being used to assess model-fit for variables' interrelations synthesized across studies. MA-SEM researchers have analyzed synthesized correlation matrices using structural equation modeling (SEM) estimation that is designed for covariance matrices. This can produce incorrect…

  12. Potential applications of cold sprayed Cu50Ti20Ni30 metallic glassy alloy powders for antibacterial protective coating in medical and food sectors.

    PubMed

    El-Eskandrany, M Sherif; Al-Azmi, Ahmed

    2016-03-01

    Mechanical alloying was utilized for synthesizing of metallic glassy Cu50Ti20Ni30 alloy powders, using a low energy ball milling technique. The metallic glassy powders obtained after 100 h of ball milling had an average particle size of 1.7 mm in diameter and possessed excellent thermal stability, indexed by a relatively high glass transition temperature (358.3 °C) with a wide supercooled liquid region (61 °C). This amorphous phase crystallized into Ti2Cu and CuTiNi2 ordered phases through two overlapped crystallization temperatures at 419.3 °C and 447.5 °C, respectively. The total enthalpy change of crystallization was -4.8 kJ/mol. The glassy powders were employed as feedstock materials to double-face coating the surface of SUS 304 substrate, using cold spraying process under helium gas pressure at 400 °C. This coating material had an extraordinary high nanohardness value of 3.1 GPa. Moreover, it showed a high resistance to wear with a low value of the coefficient of friction ranging from 0.45 to 0.45. Biofilms were grown on 20-mm(2) SUS304 sheets coated coupons inoculated with 1.5 × 10(8) CFU ml(-1)E. coli. Significant biofilm inhibition (p The inhibition of biofilm formation by nanocrystalline powders of Cu-based provides a practical approach to achieve the inhibition of biofilms formation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Comportement instationnaire des thermoéléments à effet Peltier multi-étages

    NASA Astrophysics Data System (ADS)

    Monchoux, F.; Zély, D.; Cordier, A.

    1995-01-01

    The analysis of thermoelectric phenomena is possible based on non-equilibrium thermodynamics. Integration of the thermal balance equation leads to an analytical solution for the non-stationnary behaviour. The influence to Thomson effect is commmented. The model, introduced in the complete software TRNSYS, permits the modelling of complex systems including such elements in their thermal regulation. La thermodynamique des processus irréversibles permet l'analyse des phénomènes thermoélectriques. Par intégration de l'équation de bilan thermique, on a obtenu une solution analytique pour le régime non stationnaire donnant la température en tous points et le flux absorbé. On a analysé l'influence de l'effet Thomson. Le modèle a été inclu dans le code plus général TRNSYS qui permet la modélisation de systèmes complexes.

  14. ReplacementMatrix: a web server for maximum-likelihood estimation of amino acid replacement rate matrices.

    PubMed

    Dang, Cuong Cao; Lefort, Vincent; Le, Vinh Sy; Le, Quang Si; Gascuel, Olivier

    2011-10-01

    Amino acid replacement rate matrices are an essential basis of protein studies (e.g. in phylogenetics and alignment). A number of general purpose matrices have been proposed (e.g. JTT, WAG, LG) since the seminal work of Margaret Dayhoff and co-workers. However, it has been shown that matrices specific to certain protein groups (e.g. mitochondrial) or life domains (e.g. viruses) differ significantly from general average matrices, and thus perform better when applied to the data to which they are dedicated. This Web server implements the maximum-likelihood estimation procedure that was used to estimate LG, and provides a number of tools and facilities. Users upload a set of multiple protein alignments from their domain of interest and receive the resulting matrix by email, along with statistics and comparisons with other matrices. A non-parametric bootstrap is performed optionally to assess the variability of replacement rate estimates. Maximum-likelihood trees, inferred using the estimated rate matrix, are also computed optionally for each input alignment. Finely tuned procedures and up-to-date ML software (PhyML 3.0, XRATE) are combined to perform all these heavy calculations on our clusters. http://www.atgc-montpellier.fr/ReplacementMatrix/ olivier.gascuel@lirmm.fr Supplementary data are available at http://www.atgc-montpellier.fr/ReplacementMatrix/

  15. Tensor Dictionary Learning for Positive Definite Matrices.

    PubMed

    Sivalingam, Ravishankar; Boley, Daniel; Morellas, Vassilios; Papanikolopoulos, Nikolaos

    2015-11-01

    Sparse models have proven to be extremely successful in image processing and computer vision. However, a majority of the effort has been focused on sparse representation of vectors and low-rank models for general matrices. The success of sparse modeling, along with popularity of region covariances, has inspired the development of sparse coding approaches for these positive definite descriptors. While in earlier work, the dictionary was formed from all, or a random subset of, the training signals, it is clearly advantageous to learn a concise dictionary from the entire training set. In this paper, we propose a novel approach for dictionary learning over positive definite matrices. The dictionary is learned by alternating minimization between sparse coding and dictionary update stages, and different atom update methods are described. A discriminative version of the dictionary learning approach is also proposed, which simultaneously learns dictionaries for different classes in classification or clustering. Experimental results demonstrate the advantage of learning dictionaries from data both from reconstruction and classification viewpoints. Finally, a software library is presented comprising C++ binaries for all the positive definite sparse coding and dictionary learning approaches presented here.

  16. Highly Stable Glassy Carbon Interfaces for Long-Term Neural Stimulation and Low-Noise Recording of Brain Activity

    PubMed Central

    Vomero, Maria; Castagnola, Elisa; Ciarpella, Francesca; Maggiolini, Emma; Goshi, Noah; Zucchini, Elena; Carli, Stefano; Fadiga, Luciano; Kassegne, Sam; Ricci, Davide

    2017-01-01

    We report on the superior electrochemical properties, in-vivo performance and long term stability under electrical stimulation of a new electrode material fabricated from lithographically patterned glassy carbon. For a direct comparison with conventional metal electrodes, similar ultra-flexible, micro-electrocorticography (μ-ECoG) arrays with platinum (Pt) or glassy carbon (GC) electrodes were manufactured. The GC microelectrodes have more than 70% wider electrochemical window and 70% higher CTC (charge transfer capacity) than Pt microelectrodes of similar geometry. Moreover, we demonstrate that the GC microelectrodes can withstand at least 5 million pulses at 0.45 mC/cm2 charge density with less than 7.5% impedance change, while the Pt microelectrodes delaminated after 1 million pulses. Additionally, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) was selectively electrodeposited on both sets of devices to specifically reduce their impedances for smaller diameters (<60 μm). We observed that PEDOT-PSS adhered significantly better to GC than Pt, and allowed drastic reduction of electrode size while maintaining same amount of delivered current. The electrode arrays biocompatibility was demonstrated through in-vitro cell viability experiments, while acute in vivo characterization was performed in rats and showed that GC microelectrode arrays recorded somatosensory evoked potentials (SEP) with an almost twice SNR (signal-to-noise ratio) when compared to the Pt ones. PMID:28084398

  17. Dielectric relaxation studies in Se{sub 90}Cd{sub 8}Sb{sub 2} glassy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Nitesh; Rao, Vandita; Dwivedi, D. K.

    2016-05-06

    Se{sub 90}Cd{sub 8}Sb{sub 2} chalcogenide semiconducting alloy was prepared by melt quench technique. The prepared glassy alloy has been characterized by techniques such as scanning electron microscopy (SEM) and energy dispersive X-ray (EDAX).Dielectric properties of Se{sub 90}Cd{sub 8}Sb{sub 2} chalcogenide semiconductor have been studied using impedance spectroscopic technique in the frequency range 5×10{sup 2}Hz - 1×10{sup 5}Hz and in temperature range 303-318K. It is found that dielectric constant ε′ and dielectric loss factor ε″ are dependent on frequency and temperature.

  18. Definition of a parametric form of nonsingular Mueller matrices.

    PubMed

    Devlaminck, Vincent; Terrier, Patrick

    2008-11-01

    The goal of this paper is to propose a mathematical framework to define and analyze a general parametric form of an arbitrary nonsingular Mueller matrix. Starting from previous results about nondepolarizing matrices, we generalize the method to any nonsingular Mueller matrix. We address this problem in a six-dimensional space in order to introduce a transformation group with the same number of degrees of freedom and explain why subsets of O(5,1), the orthogonal group associated with six-dimensional Minkowski space, is a physically admissible solution to this question. Generators of this group are used to define possible expressions of an arbitrary nonsingular Mueller matrix. Ultimately, the problem of decomposition of these matrices is addressed, and we point out that the "reverse" and "forward" decomposition concepts recently introduced may be inferred from the formalism we propose.

  19. Some physiological responses of wheat and bean to soil salinity at low matric suctions

    NASA Astrophysics Data System (ADS)

    Khatar, Mahnaz; Mohammadi, Mohammad Hossein; Shekari, Farid

    2017-01-01

    The effect of soil matric suction (2-33 kPa) and salinity (soil solution electrical conductivity 0.7-8 dS m-1 for bean and 2-20 dS m-1 for wheat) on some physiological characteristics of bean and wheat in a clay loam soil under greenhouse condition was investigated. The results showed that the leaf chlorophyll content index and potassium concentration decrease under salinity stress and increase with matric suction from 2 to 33 kPa suction for both plants. The wheat chlorophyll content index declines during the stress spell but bean chlorophyll content index remains nearly constant. The lowest values of the content of soluble sugars and the highest values of leaf proline content are observed at2 kPa matric suction (highest aeration stress) for bean and wheat. As matric suction increases from 2 to 6 kPa, the soluble sugars increases and proline content decreases significantly and then soluble sugars decreases and proline content increases until 10 kPa suction, and the soluble sugars remains nearly constant at the higher matric suctions for both plants. While the electrical conductivity effect on the soluble sugars is not significant, the values of proline content for both crop increase significantly with electrical conductivity. It was shown that the aeration stress can result in more considerable and rapid physiological responses, in comparison with salinity stress. There is a strong correlation between wheat and bean chlorophyll content index and potassium concentration under salinity and aeration stresses.

  20. Systems of Differential Equations with Skew-Symmetric, Orthogonal Matrices

    ERIC Educational Resources Information Center

    Glaister, P.

    2008-01-01

    The solution of a system of linear, inhomogeneous differential equations is discussed. The particular class considered is where the coefficient matrix is skew-symmetric and orthogonal, and where the forcing terms are sinusoidal. More general matrices are also considered.

  1. Dynamical Analogy of Cabibbo-Kobayashi-Maskawa Matrices

    NASA Astrophysics Data System (ADS)

    Beshtoev, Khamidbi M.

    1996-12-01

    The dynamical analogy of Cabibbo-Kobayashi-Maskawa matrices is built, i.e. the phenomenological expansion of the weak interaction theory with the inclusion of three doublets of the vector bosons B±,C±,D±, leading to quark mixing is suggested. But this expansion works only on a tree level. Estimate of the bosons masses is performed. The quasielastic processes proceeding through exchange of bosons are given.

  2. Electronic and magnetic properties of Ni nanoparticles embedded in various organic semiconductor matrices.

    PubMed

    Bräuer, Björn; Vaynzof, Yana; Zhao, Wei; Kahn, Antoine; Li, Wen; Zahn, Dietrich R T; Fernández, César de Julián; Sangregorio, Claudio; Salvan, Georgeta

    2009-04-09

    Ni nanoparticles with a size distribution from 2 to 6 nm, embedded in various organic matrices, were fabricated in ultrahigh vacuum. For this purpose metal free and Ni phthalocyanine, fullerene C(60), and pentacene were coevaporated with Ni. When coevaporated, Ni and H(2)Pc react, leading to the formation of NiPc and Ni nanoparticles. The molecular structure of the matrix was found to have negligible effect on the size of the nanoparticles but to influence the magnetic anisotropy of the nanoparticles: Ni nanoparticles formed in the buckyball matrix have a cubic symmetry, while nanoparticles formed in matrices consisting of planar molecules exhibit a uniaxial symmetry. After exposure to atmosphere, photoelectron spectroscopy investigations demonstrate the presence of metallic Ni nanoparticles accompanied by Ni oxide and the existence of a charge transfer from the organic matrix to the particles in all investigated systems. The oxidized Ni nanoparticles exhibit a larger magnetic anisotropy compared to the freshly prepared particles which show superparamagnetic properties above 17 K. Moreover, photoelectron spectroscopy was used to probe the oxidation process of the Ni nanoparticles in different organic matrices. It could thus be shown that a matrix consisting of spherical molecules like C(60) prevent the particles much better from oxidation compared to matrices of flat molecules.

  3. General design approach and practical realization of decoupling matrices for parallel transmission coils.

    PubMed

    Mahmood, Zohaib; McDaniel, Patrick; Guérin, Bastien; Keil, Boris; Vester, Markus; Adalsteinsson, Elfar; Wald, Lawrence L; Daniel, Luca

    2016-07-01

    In a coupled parallel transmit (pTx) array, the power delivered to a channel is partially distributed to other channels because of coupling. This power is dissipated in circulators resulting in a significant reduction in power efficiency. In this study, a technique for designing robust decoupling matrices interfaced between the RF amplifiers and the coils is proposed. The decoupling matrices ensure that most forward power is delivered to the load without loss of encoding capabilities of the pTx array. The decoupling condition requires that the impedance matrix seen by the power amplifiers is a diagonal matrix whose entries match the characteristic impedance of the power amplifiers. In this work, the impedance matrix of the coupled coils is diagonalized by a successive multiplication by its eigenvectors. A general design procedure and software are developed to generate automatically the hardware that implements diagonalization using passive components. The general design method is demonstrated by decoupling two example parallel transmit arrays. Our decoupling matrices achieve better than -20 db decoupling in both cases. A robust framework for designing decoupling matrices for pTx arrays is presented and validated. The proposed decoupling strategy theoretically scales to any arbitrary number of channels. Magn Reson Med 76:329-339, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  4. The method of similar operators in the study of the spectra of the adjacency matrices of graphs

    NASA Astrophysics Data System (ADS)

    Kozlukov, Serge

    2018-03-01

    The method of similar operators [1, 2, 3] is used to investigate spectral properties of a certain class of matrices in the context of graphs [4, 5]. Specifically, we consider the adjacency matrix of an “almost-complete graph”. Then we generalize the result to allow the matrices obtained as combinations of the Kronecker products [6, 7] and the small-norm perturbations. We derive the estimates of the spectra and the eigenvectors of such matrices.

  5. Energy barriers, entropy barriers, and non-Arrhenius behavior in a minimal glassy model.

    PubMed

    Du, Xin; Weeks, Eric R

    2016-06-01

    We study glassy dynamics using a simulation of three soft Brownian particles confined to a two-dimensional circular region. If the circular region is large, the disks freely rearrange, but rearrangements are rarer for smaller system sizes. We directly measure a one-dimensional free-energy landscape characterizing the dynamics. This landscape has two local minima corresponding to the two distinct disk configurations, separated by a free-energy barrier that governs the rearrangement rate. We study several different interaction potentials and demonstrate that the free-energy barrier is composed of a potential-energy barrier and an entropic barrier. The heights of both of these barriers depend on temperature and system size, demonstrating how non-Arrhenius behavior can arise close to the glass transition.

  6. Understanding glass-forming ability through sluggish crystallization of atomically thin metallic glassy films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Y. T.; Cao, C. R.; Huang, K. Q.

    2014-08-04

    The glass-forming ability (GFA) of an alloy, closely related to its ability to resist crystallization, is a crucial issue in condensed matter physics. So far, the studies on GFA are mostly statistical and empirical guides. Benefiting from the ultrahigh thermal stability of ultrathin metallic glassy film and high resolution spherical aberration-corrected transmission electron microscope, the crystallization of atomically thin ZrCu and its microalloyed ZrCuAl glasses with markedly different GFA was investigated at the atomic scale. We find the Zr diffusivity estimated from the density of nuclei is dramatically decreased by adding of Al, which is the major reason for themore » much better GFA of the ZrCuAl metallic glass.« less

  7. Pressure-induced positive electrical resistivity coefficient in Ni-Nb-Zr-H glassy alloy

    NASA Astrophysics Data System (ADS)

    Fukuhara, M.; Gangli, C.; Matsubayashi, K.; Uwatoko, Y.

    2012-06-01

    Measurements under hydrostatic pressure of the electrical resistivity of (Ni0.36Nb0.24Zr0.40)100-xHx (x = 9.8, 11.5, and 14) glassy alloys have been made in the range of 0-8 GPa and 0.5-300 K. The resistivity of the (Ni0.36Nb0.24Zr0.40)86H14 alloy changed its sign from negative to positive under application of 2-8 GPa in the temperature range of 300-22 K, coming from electron-phonon interaction in the cluster structure under pressure, accompanied by deformation of the clusters. In temperature region below 22 K, the resistivity showed negative thermal coefficient resistance by Debye-Waller factor contribution, and superconductivity was observed at 1.5 K.

  8. Poly(amidosulfonic acid) modified glassy carbon electrode for determination of isoniazid in pharmaceuticals.

    PubMed

    Yang, Gongjun; Wang, Cunxiao; Zhang, Rui; Wang, Chenying; Qu, Qishu; Hu, Xiaoya

    2008-06-01

    Amidosulfonic acid was electropolymerized by cyclic voltammetry onto the surface of glassy carbon electrode (GCE) to fabricate the chemically modified electrode, which showed high stability, good selectivity and reproducibility for determination of isoniazid. The modified electrode showed an excellent electrocatalytical effect on the oxidation of isoniazid. Under the optimum conditions, there was a good linear relationship between anodic peak current and isoniazid concentration in the range of 5.0 x 10(-8)- 1.0 x 10(-5) M, and a detection limit of 1.0 x 10(-8) M (S/N = 3) was obtained after 120 s at the accumulation potential of - 0.2 V (vs. SCE). This developed method had been applied to the direct determination of isoniazid in injection and tablet samples with satisfactory results.

  9. Graphene oxide-stimulated myogenic differentiation of C2C12 cells on PLGA/RGD peptide nanofiber matrices

    NASA Astrophysics Data System (ADS)

    Shin, Y. C.; Lee, J. H.; Kim, M. J.; Hong, S. W.; Oh, J.-W.; Kim, C.-S.; Kim, B.; Hyun, J. K.; Kim, Y.-J.; Han, D.-W.

    2015-07-01

    During the last decade, much attention has been paid to graphene-based nanomaterials because they are considered as potential candidates for biomedical applications such as scaffolds for tissue engineering and substrates for the differentiation of stem cells. Until now, electrospun matrices composed of various biodegradable copolymers have been extensively developed for tissue engineering and regeneration; however, their use in combination with graphene oxide (GO) is novel and challenging. In this study, nanofiber matrices composed of poly(lactic-co-glycolic acid, PLGA) and M13 phage with RGD peptide displayed on its surface (RGD peptide-M13 phage) were prepared as extracellular matrix (ECM)-mimicking substrates. RGD peptide is a tripeptide (Arg-Gly-Asp) found on ECM proteins that promotes various cellular behaviors. The physicochemical properties of PLGA and RGD peptide-M13 phage (PLGA/RGD peptide) nanofiber matrices were characterized by atomic force microscopy, Fourier-transform infrared spectroscopy and thermogravimetric analysis. In addition, the growth of C2C12 mouse myoblasts on the PLGA/RGD peptide matrices was examined by measuring the metabolic activity. Moreover, the differentiation of C2C12 mouse myoblasts on the matrices when treated with GO was evaluated. The cellular behaviors, including growth and differentiation of C2C12 mouse myoblasts, were substantially enhanced on the PLGA/RGD peptide nanofiber matrices when treated with GO. Overall, these findings suggest that the PLGA/RGD peptide nanofiber matrices can be used in combination with GO as a novel strategy for skeletal tissue regeneration.

  10. Evaluation of hydrophobic materials as matrices for controlled-release drug delivery.

    PubMed

    Quadir, Mohiuddin Abdul; Rahman, M Sharifur; Karim, M Ziaul; Akter, Sanjida; Awkat, M Talat Bin; Reza, Md Selim

    2003-07-01

    The present study was undertaken to evaluate the effect of different insoluble and erodable wax-lipid based materials and their content level on the release profile of drug from matrix systems. Matrix tablets of theophylline were prepared using carnauba wax, bees wax, stearic acid, cetyl alcohol, cetostearyl alcohol and glyceryl monostearate as rate-retarding agents by direct compression process. The release of theophylline from these hydrophobic matrices was studied over 8-hours in buffer media of pH 6.8. Statistically significant difference was found among the drug release profile from different matrices. The release kinetics was found to be governed by the type and content of hydrophobic materials in the matrix. At lower level of wax matrices (25%), a potential burst release was observed with all the materials being studied. Bees wax could not exert any sustaining action while an extensive burst release was found with carnauba wax at this hydrophobic load. Increasing the concentration of fat-wax materials significantly decreased the burst effect of drug from the matrix. At higher hydrophobic level (50% of the matrix), the rate and extent of drug release was significantly reduced due to increased tortuosity and reduced porosity of the matrix. Cetostearyl alcohol imparted the strongest retardation of drug release irrespective of fat-wax level. Numerical fits indicate that the Higuchi square root of time model was the most appropriate one for describing the release profile of theophylline from hydrophobic matrices. The release mechanism was also explored and explained with biexponential equation. Application of this model indicates that Fickian or case I kinetics is the predominant mechanism of drug release from these wax-lipid matrices. The mean dissolution time (MDT) was calculated for all the formulations and the highest MDT value was obtained with cetostearyl matrix. The greater sustaining activity of cetostearyl alcohol can be attributed to some level of

  11. Fluorescence spectroscopy of UV-MALDI matrices and implications of ionization mechanisms

    NASA Astrophysics Data System (ADS)

    Lin, Hou-Yu; Hsu, Hsu Chen; Lu, I.-Chung; Hsu, Kuo-Tung; Liao, Chih-Yu; Lee, Yin-Yu; Tseng, Chien-Ming; Lee, Yuan-Tseh; Ni, Chi-Kung

    2014-10-01

    Matrix-assisted laser desorption ionization (MALDI) has been widely used in the mass analysis of biomolecules; however, there are a lot of debates about the ionization mechanisms. Previous studies have indicated that S1-S1 annihilation might be a key process in the generation of primary ions. This study investigates S1-S1 annihilation by examining the time-resolved fluorescence spectra of 12 matrices. No S1-S1 annihilation was observed in six of these matrices (3-hydroxy-picolinic acid, 6-aza-2-thiothymine, 2,4-dihydroxy-acetophenone, 2,6-dihydroxy-acetophenone, 2,4,6-trihydroxy-acetophenone, and ferulic acid). We observed two matrix molecules reacting in an electronically excited state (S1) in five of these matrices (2,5-dihydroxybenzoic acid, α-cyano-4-hydroxycinnamic acid, 2,5-dihydroxy-acetophenone, 2,3-dihydroxybenzoic acid, and 2,6-dihydroxybenzoic acid), and S1-S1 annihilation was a possible reaction. Among these five matrices, no S1-S1 annihilation was observed for 2,3-dihydroxybenzoic acid in typical peak power region of nanosecond laser pulses in MALDI, but a very small value of reaction rate constant was observed only in the high peak power region. The excited-state lifetime of sinapinic acid was too short to determine whether the molecules reacted in an electronically excited state. No correlation was observed between the ion generation efficiency of MALDI and S1-S1 annihilation. The results indicate that the proposal of S1-S1 annihilation is unnecessary in MALDI and energy pooling model for MALDI ionization mechanism has to be modified.

  12. Nanoscale Motion of Soft Nanoparticles in Unentangled and Entangled Polymer Matrices

    NASA Astrophysics Data System (ADS)

    Lungova, M.; Krutyeva, M.; Pyckhout-Hintzen, W.; Wischnewski, A.; Monkenbusch, M.; Allgaier, J.; Ohl, M.; Sharp, M.; Richter, D.

    2016-09-01

    We have studied the motion of polyhedral oligomeric silsesquioxane (POSS) nanoparticles modified with poly(ethylene glycol) (PEG) arms immersed in PEG matrices of different molecular weight. Employing neutron spin echo spectroscopy in combination with pulsed field gradient (PFG) NMR we found the following. (i) For entangled matrices the center of mass mean square displacement (MSD) of the PEG-POSS particles is subdiffusive following a t0.56 power law. (ii) The diffusion coefficient as well as the crossover to Fickian diffusion is independent of the matrix molecular weight and takes place as soon as the center of mass has moved a distance corresponding to the particle radius—this holds also for unentangled hosts. (iii) For the entangled matrices Rubinstein's scaling theory is validated; however, the numbers indicate that beyond Rouse friction the entanglement constraints appear to strongly increase the effective friction even on the nanoparticle length scale imposing a caveat on the interpretation of microrheological experiments. (iv) The oligomer decorated PEG-POSS particles exhibit the dynamics of a Gaussian star with an internal viscosity that rises with an increase of the host molecular weight.

  13. On the representation matrices of the spin permutation group. [for atomic and molecular electronic structures

    NASA Technical Reports Server (NTRS)

    Wilson, S.

    1977-01-01

    A method is presented for the determination of the representation matrices of the spin permutation group (symmetric group), a detailed knowledge of these matrices being required in the study of the electronic structure of atoms and molecules. The method is characterized by the use of two different coupling schemes. Unlike the Yamanouchi spin algebraic scheme, the method is not recursive. The matrices for the fundamental transpositions can be written down directly in one of the two bases. The method results in a computationally significant reduction in the number of matrix elements that have to be stored when compared with, say, the standard Young tableaux group theoretical approach.

  14. Confinement-Induced Glassy Dynamics in a Model for Chromosome Organization

    NASA Astrophysics Data System (ADS)

    Kang, Hongsuk; Yoon, Young-Gui; Thirumalai, D.; Hyeon, Changbong

    2015-11-01

    Recent experiments showing scaling of the intrachromosomal contact probability, P (s )˜s-1 with the genomic distance s , are interpreted to mean a self-similar fractal-like chromosome organization. However, scaling of P (s ) varies across organisms, requiring an explanation. We illustrate dynamical arrest in a highly confined space as a discriminating marker for genome organization, by modeling chromosomes inside a nucleus as a homopolymer confined to a sphere of varying sizes. Brownian dynamics simulations show that the chain dynamics slows down as the polymer volume fraction (ϕ ) inside the confinement approaches a critical value ϕc. The universal value of ϕc∞≈0.44 for a sufficiently long polymer (N ≫1 ) allows us to discuss genome dynamics using ϕ as the sole parameter. Our study shows that the onset of glassy dynamics is the reason for the segregated chromosome organization in humans (N ≈3 ×109, ϕ ≳ϕc∞), whereas chromosomes of budding yeast (N ≈108, ϕ <ϕc∞) are equilibrated with no clear signature of such organization.

  15. Secondary relaxations in supercooled and glassy sucrose-borate aqueous solutions.

    PubMed

    Longinotti, M Paula; Corti, Horacio R; Pablo, Juan J de

    2008-10-13

    The dielectric relaxation spectra of concentrated aqueous solutions of sucrose-borate mixtures have been measured in the supercooled and glassy regions in the frequency range of 40Hz to 2MHz. The secondary (beta) relaxation process was analyzed in the temperature range 183-233K at water contents between 20 and 30wt%. The relaxation times were obtained, and the activation energy of that process was calculated. In order to assess the effect of borate on the relaxation of disaccharide-water mixtures, we also studied the dielectric behavior of sucrose aqueous solutions in the same range of temperatures and water contents. Our findings support the view that, beyond a water content of approximately 20wt%, the secondary relaxation of water-sucrose and water-sucrose-borate mixtures adopts a universal character that can be explained in terms of a simple exponential function of the temperature scaled by the glass transition temperature (T(g)). The behavior observed for water-sucrose and water-sucrose-borate mixtures is compared with previous results obtained in other water-carbohydrate systems.

  16. Gold nanoparticles embedded electropolymerized thin film of pyrimidine derivative on glassy carbon electrode for highly sensitive detection of l-cysteine.

    PubMed

    Kannan, Ayyadurai; Sevvel, Ranganathan

    2017-09-01

    This paper demonstrates the fabrication of novel gold nanoparticles incorporated poly (4-amino-6-hydroxy-2-mercaptopyrimidine) (Nano-Au/Poly-AHMP) film modified glassy carbon electrode and it is employed for highly sensitive detection of l-cysteine (CYS). The modified electrode was characterized by scanning electron microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). SEM images of modified electrode revealed the homogeneous distribution of gold nanoparticles on poly (4-amino-6-hydroxy-2-mercaptopyrimidine) thin film modified glassy carbon electrode. The modified electrode was successfully utilized for highly selective and sensitive determination of l-cysteine at physiological pH7.0. The present electrochemical sensor successfully resolved the voltammetric signals of ascorbic acid (AA) and l-cysteine with peak separation of 0.510V. To the best of our knowledge, this is the first report of larger peak separation between AA and CYS. Wide linear concentration ranges (2μM-500μM), low detection limit (0.020μM), an excellent reproducibility and stability are achieved for cysteine sensing with this Nano-Au/Poly-AHMP/GCE. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Optical detection of parasitic protozoa in sol-gel matrices

    NASA Astrophysics Data System (ADS)

    Livage, Jacques; Barreau, J. Y.; Da Costa, J. M.; Desportes, I.

    1994-10-01

    Whole cell parasitic protozoa have been entrapped within sol-gel porous silica matrices. Stationary phase promastigote cells of Leishmania donovani infantum are mixed with a silica sol before gelation occurs. They remain trapped within the growing oxide network and their cellular organization appears to be well preserved. Moreover protozoa retain their antigenic properties in the porous gel. They are still able to detect parasite specific antibodies in serum samples from infected patients via an enzyme linked immunosorbent assay (ELISA). Antigen- antibody associations occurring in the gel are optically detected via the reactions of a peroxidase conjugate with ortho-phenylenediamine leading to the formation of a yellow coloration. A clear-cut difference in optical density is measured between positive and negative sera. Such an entrapment of antigenic species into porous sol-gel matrices avoids the main problems due to non specific binding and could be advantageously used in diagnostic kits.

  18. Molecular dynamics simulation of melting of 2D glassy monatomic system

    NASA Astrophysics Data System (ADS)

    Nhu Tranh, Duong Thi; Van Hoang, Vo; Thu Hanh, Tran Thi

    2018-01-01

    The melting of two-dimensional (2D) glassy monatomic systems is studied using the molecular dynamics simulation with Lennard-Jones-Gauss interaction potential. The temperature dependence of various structural and dynamical properties of the systems during heating is analyzed and discussed via the radial distribution functions, the coordination number distributions, the ring statistics, the mobility of atoms and their clustering. Atomic mechanism of melting is also analyzed via tendency to increase mobility and breaking clusters of atoms upon heating. We found that melting of a 2D glass does not follow any theory of the melting of 2D crystals proposed in the past. The melting exhibits a homogeneous nature, i.e. liquid-like atoms occur homogeneously throughout the system and melting proceeds further leading to the formation of an entire liquid phase. In addition, we found a defined transition temperature region in which structural and dynamical properties of systems strongly change with increasing temperature.

  19. Skin Equivalent Tissue-Engineered Construct: Co-Cultured Fibroblasts/ Keratinocytes on 3D Matrices of Sericin Hope Cocoons

    PubMed Central

    Nayak, Sunita; Dey, Sancharika; Kundu, Subhas C.

    2013-01-01

    The development of effective and alternative tissue-engineered skin replacements to autografts, allografts and xenografts has became a clinical requirement due to the problems related to source of donor tissue and the perceived risk of disease transmission. In the present study 3D tissue engineered construct of sericin is developed using co-culture of keratinocytes on the upper surface of the fabricated matrices and with fibroblasts on lower surface. Sericin is obtained from “Sericin Hope” silkworm of Bombyx mori mutant and is extracted from cocoons by autoclave. Porous sericin matrices are prepared by freeze dried method using genipin as crosslinker. The matrices are characterized biochemically and biophysically. The cell proliferation and viability of co-cultured fibroblasts and keratinocytes on matrices for at least 28 days are observed by live/dead assay, Alamar blue assay, and by dual fluorescent staining. The growth of the fibroblasts and keratinocytes in co-culture is correlated with the expression level of TGF-β, b-FGF and IL-8 in the cultured supernatants by enzyme-linked immunosorbent assay. The histological analysis further demonstrates a multi-layered stratified epidermal layer of uninhibited keratinocytes in co-cultured constructs. Presence of involucrin, collagen IV and the fibroblast surface protein in immuno-histochemical stained sections of co-cultured matrices indicates the significance of paracrine signaling between keratinocytes and fibroblasts in the expression of extracellular matrix protein for dermal repair. No significant amount of pro inflammatory cytokines (TNF-α, IL-1β and nitric oxide) production are evidenced when macrophages grown on the sericin matrices. The results all together depict the potentiality of sericin 3D matrices as skin equivalent tissue engineered construct in wound repair. PMID:24058626

  20. Skin equivalent tissue-engineered construct: co-cultured fibroblasts/ keratinocytes on 3D matrices of sericin hope cocoons.

    PubMed

    Nayak, Sunita; Dey, Sancharika; Kundu, Subhas C

    2013-01-01

    The development of effective and alternative tissue-engineered skin replacements to autografts, allografts and xenografts has became a clinical requirement due to the problems related to source of donor tissue and the perceived risk of disease transmission. In the present study 3D tissue engineered construct of sericin is developed using co-culture of keratinocytes on the upper surface of the fabricated matrices and with fibroblasts on lower surface. Sericin is obtained from "Sericin Hope" silkworm of Bombyx mori mutant and is extracted from cocoons by autoclave. Porous sericin matrices are prepared by freeze dried method using genipin as crosslinker. The matrices are characterized biochemically and biophysically. The cell proliferation and viability of co-cultured fibroblasts and keratinocytes on matrices for at least 28 days are observed by live/dead assay, Alamar blue assay, and by dual fluorescent staining. The growth of the fibroblasts and keratinocytes in co-culture is correlated with the expression level of TGF-β, b-FGF and IL-8 in the cultured supernatants by enzyme-linked immunosorbent assay. The histological analysis further demonstrates a multi-layered stratified epidermal layer of uninhibited keratinocytes in co-cultured constructs. Presence of involucrin, collagen IV and the fibroblast surface protein in immuno-histochemical stained sections of co-cultured matrices indicates the significance of paracrine signaling between keratinocytes and fibroblasts in the expression of extracellular matrix protein for dermal repair. No significant amount of pro inflammatory cytokines (TNF-α, IL-1β and nitric oxide) production are evidenced when macrophages grown on the sericin matrices. The results all together depict the potentiality of sericin 3D matrices as skin equivalent tissue engineered construct in wound repair.

  1. A note on the Drazin indices of square matrices.

    PubMed

    Yu, Lijun; Bu, Tianyi; Zhou, Jiang

    2014-01-01

    For a square matrix A, the smallest nonnegative integer k such that rank (A(k)) =rank (A(k+1)) is called the Drazin index of A. In this paper, we give some results on the Drazin indices of sum and product of square matrices.

  2. Current technologies for detection of ricin in different matrices

    USDA-ARS?s Scientific Manuscript database

    Ricin is a convenient, potent, and available toxin for terrorist acts. The importance of detecting it in various matrices is obvious. This chapter reviews methods for ricin detection based on the mechanisms used for assay development. Five detection approaches are reviewed: 1. Antibody-based metho...

  3. Enantioselective determination of metconazole in multi matrices by high-performance liquid chromatography.

    PubMed

    He, Rujian; Fan, Jun; Tan, Qi; Lai, Yecai; Chen, Xiaodong; Wang, Tai; Jiang, Ying; Zhang, Yaomou; Zhang, Weiguang

    2018-02-01

    A reliable and effective HPLC analytical method has been developed to stereoselectively quantify metconazole in soil and flour matrices. Effects of polysaccharide chiral stationary phase, type and content of alcoholic modifier on separation of racemic metconazole have been discussed in detail. Resolution and quantitative determination of metconazole stereoisomers were performed by using an Enantiopak OD column, with the n-hexane-ethanol mixture (97:3, v/v) at the flow rate of 1.0mL/min. Then, extraction and cleanup procedures followed by the modified QuEChERS (quick, easy, cheap, effective, rugged and safe) method were used for metconazole racemate in soil and flour matrices. The residual analysis method was validated. Good linearity (R 2 ≥ 0.9997) and recoveries (94.98-104.89%, RSD ≤ 2.0%) for four metconazole stereoisomers were obtained. In brief, this proposed method showed good accuracy and precision, which might be applied in enantioselective determination, residual quantitative analysis, and degradation of metconazole in food and environmental matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. An Easily Fabricated Electrochemical Sensor Based on a Graphene-Modified Glassy Carbon Electrode for Determination of Octopamine and Tyramine

    PubMed Central

    Zhang, Yang; Zhang, Meiqin; Wei, Qianhui; Gao, Yongjie; Guo, Lijuan; Al-Ghanim, Khalid A.; Mahboob, Shahid; Zhang, Xueji

    2016-01-01

    A simple electrochemical sensor has been developed for highly sensitive detection of octopamine and tyramine by electrodepositing reduced graphene oxide (ERGO) nanosheets onto the surface of a glassy carbon electrode (GCE). The electrocatalytic oxidation of octopamine and tyramine is individually investigated at the surface of the ERGO modified glassy carbon electrode (ERGO/GCE) by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Several essential factors including the deposition cycle of reduced graphene oxide nanosheets and the pH of the running buffer were investigated in order to determine the optimum conditions. Furthermore, the sensor was applied to the quantification of octopamine and tyramine by DPV in the concentration ranges from 0.5 to 40 μM and 0.1 to 25 μM, respectively. In addition, the limits of detection of octopamine and tyramine were calculated to be 0.1 μM and 0.03 μM (S/N = 3), respectively. The sensor showed good reproducibility, selectivity and stability. Finally, the sensor successfully detected octopamine and tyramine in commercially available beer with satisfactory recovery ranges which were 98.5%–104.7% and 102.2%–103.1%, respectively. These results indicate the ERGO/GCE based sensor is suitable for the detection of octopamine and tyramine. PMID:27089341

  5. Clay-based matrices incorporating radioactive silts: A case study of sediments from spent fuel pool

    NASA Astrophysics Data System (ADS)

    Antonenko, Mikhail; Myshkin, Vyacheslav; Grigoriev, Alexander; Chubreev, Dmitry

    2018-03-01

    Radioactive silt sediments from uranium reactors may be effectively and safely included by ceramic compounds. The purpose of the paper is to determine the influence of composition and preparation conditions on physicochemical and mechanical properties of clay-based matrices containing radioactive silt. Clay matrices were prepared from four minerals, took from Siberian regions, as kaolin, loan, bentonite and red clay, and they included radioactive silt sediments collected from Spent Fuel Pool of a Uranium-graphite Reactor. The rate of 137Cs leaching from the matrices of different compositions was studied. The results of the studies allowed determining the optimal compositions and the preparation conditions of the matrices. It has been shown that red clay from "Zykovskaya" career (Krasnoyarsk region, Russia) is preferable for use as a matrix for incorporating the silt sediments compared to kaolin, loam and bentonite due to the maximum values tensile strength and minimal change in ultimate strength for compression after irradiation, freezing and water exposure. Nevertheless, 137Cs leaching rate of all studied composites did not exceed 10-3 g/cm2.day.

  6. Conserved G-matrices of morphological and life-history traits among continental and island blue tit populations.

    PubMed

    Delahaie, B; Charmantier, A; Chantepie, S; Garant, D; Porlier, M; Teplitsky, C

    2017-08-01

    The genetic variance-covariance matrix (G-matrix) summarizes the genetic architecture of multiple traits. It has a central role in the understanding of phenotypic divergence and the quantification of the evolutionary potential of populations. Laboratory experiments have shown that G-matrices can vary rapidly under divergent selective pressures. However, because of the demanding nature of G-matrix estimation and comparison in wild populations, the extent of its spatial variability remains largely unknown. In this study, we investigate spatial variation in G-matrices for morphological and life-history traits using long-term data sets from one continental and three island populations of blue tit (Cyanistes caeruleus) that have experienced contrasting population history and selective environment. We found no evidence for differences in G-matrices among populations. Interestingly, the phenotypic variance-covariance matrices (P) were divergent across populations, suggesting that using P as a substitute for G may be inadequate. These analyses also provide the first evidence in wild populations for additive genetic variation in the incubation period (that is, the period between last egg laid and hatching) in all four populations. Altogether, our results suggest that G-matrices may be stable across populations inhabiting contrasted environments, therefore challenging the results of previous simulation studies and laboratory experiments.

  7. Glassy dynamics of polymethylphenylsiloxane in one- and two-dimensional nanometric confinement—A comparison

    NASA Astrophysics Data System (ADS)

    Kipnusu, Wycliffe K.; Elsayed, Mohamed; Krause-Rehberg, Reinhard; Kremer, Friedrich

    2017-05-01

    Glassy dynamics of polymethylphenylsiloxane (PMPS) is studied by broadband dielectric spectroscopy in one-dimensional (1D) and two-dimensional (2D) nanometric confinement; the former is realized in thin polymer layers having thicknesses down to 5 nm, and the latter in unidirectional (thickness 50 μm) nanopores with diameters varying between 4 and 8 nm. Based on the dielectric measurements carried out in a broad spectral range at widely varying temperatures, glassy dynamics is analyzed in detail in 1D and in 2D confinements with the following results: (i) the segmental dynamics (dynamic glass transition) of PMPS in 1D confinement down to thicknesses of 5 nm is identical to the bulk in the mean relaxation rate and the width of the relaxation time distribution function; (ii) additionally a well separated surface induced relaxation is observed, being assigned to adsorption and desorption processes of polymer segments with the solid interface; (iii) in 2D confinement with native inner pore walls, the segmental dynamics shows a confinement effect, i.e., the smaller the pores are, the faster the segmental dynamics; on silanization, this dependence on the pore diameter vanishes, but the mean relaxation rate is still faster than in 1D confinement; (iv) in a 2D confinement, a pronounced surface induced relaxation process is found, the strength of which increases with the decreasing pore diameter; it can be fully removed by silanization of the inner pore walls; (v) the surface induced relaxation depends on its spectral position only negligibly on the pore diameter; (vi) comparing 1D and 2D confinements, the segmental dynamics in the latter is by about two orders of magnitude faster. All these findings can be comprehended by considering the density of the polymer; in 1D it is assumed to be the same as in the bulk, hence the dynamic glass transition is not altered; in 2D it is reduced due to a frustration of packaging resulting in a higher free volume, as proven by ortho

  8. Electric resistivity and thermoelectricity of Ni-Nb-Zr and Ni-Nb-Zr-H glassy alloys

    NASA Astrophysics Data System (ADS)

    Fukuhara, Mikio; Inoue, Akihisa

    2010-09-01

    Electric resistivity ρ and thermoelectric power S of Ni 36Nb 24Zr 40 and (Ni 0.36Nb 0.24Zr 0.4) 90H 10 glassy alloys were investigated in temperature region between 1.5 and 300 K. After resistivity curves of both alloys increase gradually with decreasing temperature down to around 6 K, they dropped suddenly and then reached zero resistivity at 2.1 K, leading to superconductivity. Linear curve with negative TCR of ρ vs T2 and slight increase of S/ T in temperature region down to around 6 K clearly reveal Fermi-liquid phenomenon in electronic state for both alloys independent of hydrogen content.

  9. Fluorescence spectroscopy of UV-MALDI matrices and implications of ionization mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Hou-Yu; Hsu, Hsu Chen; Lu, I-Chung

    2014-10-28

    Matrix-assisted laser desorption ionization (MALDI) has been widely used in the mass analysis of biomolecules; however, there are a lot of debates about the ionization mechanisms. Previous studies have indicated that S{sub 1}-S{sub 1} annihilation might be a key process in the generation of primary ions. This study investigates S{sub 1}-S{sub 1} annihilation by examining the time-resolved fluorescence spectra of 12 matrices. No S{sub 1}-S{sub 1} annihilation was observed in six of these matrices (3-hydroxy-picolinic acid, 6-aza-2-thiothymine, 2,4-dihydroxy-acetophenone, 2,6-dihydroxy-acetophenone, 2,4,6-trihydroxy-acetophenone, and ferulic acid). We observed two matrix molecules reacting in an electronically excited state (S{sub 1}) in five of thesemore » matrices (2,5-dihydroxybenzoic acid, α-cyano-4-hydroxycinnamic acid, 2,5-dihydroxy-acetophenone, 2,3-dihydroxybenzoic acid, and 2,6-dihydroxybenzoic acid), and S{sub 1}-S{sub 1} annihilation was a possible reaction. Among these five matrices, no S{sub 1}-S{sub 1} annihilation was observed for 2,3-dihydroxybenzoic acid in typical peak power region of nanosecond laser pulses in MALDI, but a very small value of reaction rate constant was observed only in the high peak power region. The excited-state lifetime of sinapinic acid was too short to determine whether the molecules reacted in an electronically excited state. No correlation was observed between the ion generation efficiency of MALDI and S{sub 1}-S{sub 1} annihilation. The results indicate that the proposal of S{sub 1}-S{sub 1} annihilation is unnecessary in MALDI and energy pooling model for MALDI ionization mechanism has to be modified.« less

  10. Nanocomposites from Stable Dispersions of Carbon Nanotubes in Polymeric Matrices Using Dispersion Interaction

    NASA Technical Reports Server (NTRS)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Kang, Jin Ho (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor)

    2016-01-01

    Stable dispersions of carbon nanotubes (CNTs) in polymeric matrices include CNTs dispersed in a host polymer or copolymer whose monomers have delocalized electron orbitals, so that a dispersion interaction results between the host polymer or copolymer and the CNTs dispersed therein. Nanocomposite products, which are presented in bulk, or when fabricated as a film, fiber, foam, coating, adhesive, paste, or molding, are prepared by standard means from the present stable dispersions of CNTs in polymeric matrices, employing dispersion interactions, as presented hereinabove.

  11. Persistent optical hole-burning spectroscopy of nano-confined dye molecules in liquid at room temperature: Spectral narrowing due to a glassy state and extraordinary relaxation in a nano-cage

    NASA Astrophysics Data System (ADS)

    Murakami, Hiroshi

    2018-04-01

    Persistent optical hole-burning spectroscopy has been conducted for a dye molecule within a very small (˜1 nm) reverse micelle at room temperature. The spectra show a spectral narrowing due to site-selective excitation. This definitely demonstrates that the surroundings of the dye molecule are in a glassy state regardless of a solution at room temperature. On the other hand, the hole-burning spectra exhibit large shifts from excitation frequencies, and their positions are almost independent of excitation frequencies. The hole-burning spectra have been theoretically calculated by taking account of a vibronic absorption band of the dye molecule under the assumption that the surroundings of the dye molecule are in a glassy state. The calculated results agree with the experimental ones that were obtained for the dye molecule in a polymer glass for comparison, where it has been found that the ratio of hole-burning efficiencies of vibronic- to electronic-band excitations is quite high. On the other hand, the theoretical results do not explain the large spectral shift from the excitation frequency and small spectral narrowing observed in the hole-burning spectra measured for the dye-containing reverse micelle. It is thought that the spectral shift and broadening occur within the measurement time owing to the relaxation process of the surroundings that are hot with the thermal energy deposited by the dye molecule optically excited. Furthermore, the relaxation should be temporary because the cooling of the inside of the reverse micelle takes place with the dissipation of the excess thermal energy to the outer oil solvent, and so the surroundings of the dye molecule return to the glassy state and do not attain the thermal equilibrium. These results suggest that a very small reverse micelle provides a unique reaction field in which the diffusional motion can be controlled by light in a glassy state.

  12. Nouvelles approches en theorie du champ moyen dynamique: le cas du pouvoir thermoelectrique et celui de l'effet orbital d'un champ magnetique

    NASA Astrophysics Data System (ADS)

    Arsenault, Louis-Francois

    , cette approche donne une bonne representation de S lorsque le systeme devient coherent. Les calculs montrent aussi que la formule Kelvin est precise lorsque la fonction spectrale des electrons devient incoherente, soit a plus haute temperature. Dans la limite Kelvin, S est essentiellement l'entropie par particule, tel que propose il y a longtemps. Nos resultats demontrent ainsi que la vision purement entropique de S est la bonne dans le regime incoherent, alors que dans le regime coherent, l'approche a frequence infinie est meilleure. Nous avons utilise une methode a la fine pointe, soit le Monte-Carlo quantique en temps continu pour resoudre la DMFT. Pour permettre une exploration rapide du diagramme de phase, nous avons du developper une nouvelle version de la methode des perturbations iterees pour qu'elle soit applicable aussi a forte interaction au-dela de la valeur critique de la transition de Mott. Un autre sujet a aussi ete aborde. L'effet orbital du champ magnetique dans les systemes electroniques fortement correles est une question tres importante et peu developpee. Cela est d'autant plus essentiel depuis la decouverte des oscillations quantiques dans les supraconducteurs a haute temperature (haut- Tc). Par desir de developper une methode la moins biaisee possible, nous avons derive la DMFT lorsqu'un champ se couplant a l'operateur energie cinetique par la substitution de Peierls est present. Ce type d'approche est necessaire pour comprendre entre autres l'effet de la physique de Mott sur des phenomenes tels que les oscillations quantiques. Nous avons obtenu un resultat tres important en demontrant rigoureusement que la relation d'auto-coherence de la DMFT et le systeme intermediaire d'impurete quantique restent les memes. L'effet du champ peut etre contenu dans la fonction de Green locale, ce qui constitue la grande difference avec le cas habituel. Ceci permet de continuer a utiliser les solutionneurs d'impuretes standards, qui sont de plus en plus puissants

  13. Algorithm-Eigenvalue Estimation of Hyperspectral Wishart Covariance Matrices from a Limited Number of Samples

    DTIC Science & Technology

    2015-03-01

    ALGORITHM—EIGENVALUE ESTIMATION OF HYPERSPECTRAL WISHART COVARIANCE MATRICES FROM A LIMITED NUMBER OF SAMPLES ECBC-TN-067 Avishai Ben- David ...NUMBER 6. AUTHOR(S) Ben- David , Avishai (ECBC) and Davidson, Charles E. (STC) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7...and published by Avishai Ben- David and Charles E. Davidson (Eigenvalue Estimation of Hyperspectral WishartCovariance Matrices from Limited Number of

  14. Quantum-inspired algorithm for estimating the permanent of positive semidefinite matrices

    NASA Astrophysics Data System (ADS)

    Chakhmakhchyan, L.; Cerf, N. J.; Garcia-Patron, R.

    2017-08-01

    We construct a quantum-inspired classical algorithm for computing the permanent of Hermitian positive semidefinite matrices by exploiting a connection between these mathematical structures and the boson sampling model. Specifically, the permanent of a Hermitian positive semidefinite matrix can be expressed in terms of the expected value of a random variable, which stands for a specific photon-counting probability when measuring a linear-optically evolved random multimode coherent state. Our algorithm then approximates the matrix permanent from the corresponding sample mean and is shown to run in polynomial time for various sets of Hermitian positive semidefinite matrices, achieving a precision that improves over known techniques. This work illustrates how quantum optics may benefit algorithm development.

  15. PALS: A unique probe for the molecular organisation of biopolymer matrices

    NASA Astrophysics Data System (ADS)

    Roussenova, M.; Alam, M. A.

    2013-06-01

    This short review aims to illustrate the versatility of Positron Annihilation Lifetime Spectroscopy (PALS) when utilized for the characterization of biopolymers (e.g.: starch, fractionated maltooligomers, gelatin and cellulose derivatives) commonly used for the formulation of pharmaceutical encapsulants. By showing examples from a number of recent PALS studies, we illustrate that this technique can be used to probe the changes in thermodynamic state and molecular packing for a wide range of biopolymer matrices as a function of temperature, matrix composition and water content. This provides a basis for establishing composition-structure-property relationships for these materials, which would eventually enable the rational control of their macroscopic properties and the design of optimal encapsulating matrices and intelligent drug delivery systems.

  16. An automated procedure for calculating system matrices from perturbation data generated by an EAI Pacer and 100 hybrid computer system

    NASA Technical Reports Server (NTRS)

    Milner, E. J.; Krosel, S. M.

    1977-01-01

    Techniques are presented for determining the elements of the A, B, C, and D state variable matrices for systems simulated on an EAI Pacer 100 hybrid computer. An automated procedure systematically generates disturbance data necessary to linearize the simulation model and stores these data on a floppy disk. A separate digital program verifies this data, calculates the elements of the system matrices, and prints these matrices appropriately labeled. The partial derivatives forming the elements of the state variable matrices are approximated by finite difference calculations.

  17. Novel strategies for capturing health-protective mango phytochemicals in shelf stable food matrices.

    PubMed

    Guzman, Ivette; Grace, Mary H; Yousef, Gad G; Raskin, Ilya; Lila, Mary Ann

    2015-03-01

    Cost-effective methods for concentration and stabilization of otherwise perishable mango fruit phytoactives into shelf stable high protein ingredients were developed to combat stunting (malnutrition) in rural Africa. Mango juices complexed with sunflower oil and protein-rich legume flours yielded carotenoid-enriched oils and pelleted polyphenol-enriched flour matrices. Carotenoids from juices were concentrated 9-10 times in the fortified sunflower oil. Protein-rich soy and peanut flours captured 2.2-3.2 mg/g polyphenols from the juices. Alternatively, mango juice was sorbed and co-dried with flours, which stably bound the polyphenols, carotenoids, and natural sugars in soy or peanut protein-rich matrices. The concentration of provitamin A carotenoids was almost doubled and total polyphenols were enriched 4-5 times higher in the matrices compared to fresh pureed juice. Both strategies require minimal instrumentation, are compatible with rural village dietary practices; and capture the benefits of otherwise perishable seasonal resources by complexing healthful proteins together with phytoactive compounds.

  18. Flavonoids as matrices for MALDI-TOF mass spectrometric analysis of transition metal complexes

    NASA Astrophysics Data System (ADS)

    Petkovic, Marijana; Petrovic, Biljana; Savic, Jasmina; Bugarcic, Zivadin D.; Dimitric-Markovic, Jasmina; Momic, Tatjana; Vasic, Vesna

    2010-02-01

    Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a suitable method for the analysis of inorganic and organic compounds and biomolecules. This makes MALDI-TOF MS convenient for monitoring the interaction of metallo-drugs with biomolecules. Results presented in this manuscript demonstrate that flavonoids such as apigenin, kaempferol and luteolin are suitable for MALDI-TOF MS analysis of Pt(II), Pd(II), Pt(IV) and Ru(III) complexes, giving different signal-to-noise ratios of the analyte peak. The MALDI-TOF mass spectra of inorganic complexes acquired with these flavonoid matrices are easy to interpret and have some advantages over the application of other commonly used matrices: a low number of matrix peaks are detectable and the coordinative metal-ligand bond is, in most cases, preserved. On the other hand, flavonoids do not act as typical matrices, as their excess is not required for the acquisition of MALDI-TOF mass spectra of inorganic complexes.

  19. Realistic Many-Body Quantum Systems vs. Full Random Matrices: Static and Dynamical Properties

    NASA Astrophysics Data System (ADS)

    Karp, Jonathan; Torres-Herrera, Jonathan; TáVora, Marco; Santos, Lea

    We study the static and dynamical properties of isolated spin 1/2 systems as prototypes of many-body quantum systems and compare the results to those of full random matrices from a Gaussian orthogonal ensemble. Full random matrices do not represent realistic systems, because they imply that all particles interact at the same time, as opposed to realistic Hamiltonians, which are sparse and have only few-body interactions. Nevertheless, with full random matrices we can derive analytical results that can be used as references and bounds for the corresponding properties of realistic systems. In particular, we show that the results for the Shannon information entropy are very similar to those for the von Neumann entanglement entropy, with the former being computationally less expensive. We also discuss the behavior of the survival probability of the initial state at different time scales and show that it contains more information about the system than the entropies. Support from the NSF Grant No. DMR-1147430.

  20. Glucose biosensing using glassy carbon electrode modified with polyhydroxy-C60, glucose oxidase and ionic-liquid.

    PubMed

    Yang, Tian; Yang, Xiao-Lu; Zhang, Yu-Shuai; Xiao, BaoLin; Hong, Jun

    2014-01-01

    Direct electrochemistry of glucose oxidase (GOD) was achieved when an ionic liquid/GOD-Polyhydroxy-C60 functional membrane was confined on a glassy carbon electrode (GCE). The cyclic voltammograms (CVs) of the modified GCE showed a pair of redox peaks with a formal potential (E°') of - 329 ± 2 mV. The heterogeneous electron transfer constant (k(s)) was 1.43 s-1. The modified GCE response to glucose was linear in the range from 0.02 to 2.0 mM. The detection limit was 1 μM. The apparent Michaelis-Menten constant (K(m)(app)) was 1.45 mM.

  1. Do complex matrices modify the sorptive properties of polydimethylsiloxane (PDMS) for non-polar organic chemicals?

    PubMed

    Jahnke, Annika; Mayer, Philipp

    2010-07-16

    The partitioning of non-polar analytes into the silicone polydimethylsiloxane (PDMS) is the basis for many analytical approaches such as solid phase microextraction (SPME), stir bar sorptive extraction (SBSE) and environmental passive sampling. Recently, the methods have been applied to increasingly complex sample matrices. The present work investigated the possible effect of complex matrices on the sorptive properties of PDMS. First, SPME fibers with a 30 microm PDMS coating were immersed in 15 different matrices, including sediment, suspensions of soil and humic substances, mayonnaise, meat, fish, olive oil and fish oil. Second, the surface of the fibers was wiped clean, and together with matrix-free control fibers, they were exposed via headspace to 7 non-polar halogenated organic chemicals in spiked olive oil. The fibers were then solvent-extracted, analyzed, and the ratios of the mean concentrations in the matrix-immersed fibers to the control fibers were determined for all matrices. These ratios ranged from 92% to 112% for the four analytes with the highest analytical precision (i.e. polychlorinated biphenyls (PCBs) 3, 28, 52 and brominated diphenyl ether (BDE) 3), and they ranged from 74% to 133% for the other three compounds (i.e. PCBs 101, 105 and gamma-hexachlorocyclohexane (HCH)). We conclude that, for non-polar, hydrophobic chemicals, the sorptive properties of the PDMS were not modified by the diverse investigated media and consequently that PDMS is suited for sampling of these analytes even in highly complex matrices. 2010 Elsevier B.V. All rights reserved.

  2. Molecular motions in glassy crystal cyanoadamantane : a proton spin-lattice relaxation study

    NASA Astrophysics Data System (ADS)

    Amoureux, J. P.; Decressain, R.; Sahour, M.; Cochon, E.

    1992-02-01

    Cyanoadamantane C{10}H{15}CN exhibits four different solid phases : two cubic plastic (I and I'), one cubic glassy (Ig) and one monoclinic ordered (II). In cubic plastic phases (I, I') three types of motion coexist : a uniaxial rotation of the molecule around its C—CequivN axis, a tumbling reorientation of this dipolar axis between the <~ngle 001rangle directions and a vacancy self-diffusion. In the cubic glassy state (Ig) the tumbling motion is frozen and therefore only the uniaxial rotation survives. In the ordered phase (II), the molecules only perform a 3-fold uniaxial rotation among identical positions. These different molecular motions in the four solid phases have been studied by the analysis of the T_{1 z} and T_{1 ρ} spin-lattice relaxation times in ^1H-NMR. The derived residence time are compared, when possible, to values previously deduced from quasi-elastic neutron scattering, dielectric relaxation and second moment of the ^1H-NMR lineshape. Le cyanoadamantane C{10}H{15}CN possède quatre phases solides différentes : deux plastiques cubiques (I et I'), une vitreuse cubique (Ig) et une ordonnée monoclinique (II). Dans les phases plastiques cubiques (I, I') trois types de mouvements coexistent : une rotation uniaxiale de la molécule autour de son axe C—CequivN, un basculement de cet axe dipolaire entre les directions <~ngle 001rangle et une diffusion moléculaire. Dans l'état vitreux cubique (Ig), le mouvement de basculement est gelé et seule la rotation uniaxiale subsiste. Enfin dans la phase ordonnée (II), les molécules effectuent une rotation uniaxiale d'ordre 3 entre positions indiscernables. Ces différents mouvements dans les quatre phases solides ont été évalués par l'analyse des temps de relaxation spin-réseau T_{1 z} et T_{1 ρ} en ^1H-RMN. Les temps de résidence qui en sont déduits sont comparés (lorsque cela est possible) aux valeurs correspondantes déduites précédemment par diffusion quasi-élastique des neutrons, par

  3. Proteoform-specific protein binding of small molecules in complex matrices

    USDA-ARS?s Scientific Manuscript database

    Characterizing the specific binding between protein targets and small molecules is critically important for drug discovery. Conventional assays require isolation and purification of small molecules from complex matrices through multistep chromatographic fractionation, which may alter their original ...

  4. Factoring symmetric indefinite matrices on high-performance architectures

    NASA Technical Reports Server (NTRS)

    Jones, Mark T.; Patrick, Merrell L.

    1990-01-01

    The Bunch-Kaufman algorithm is the method of choice for factoring symmetric indefinite matrices in many applications. However, the Bunch-Kaufman algorithm does not take advantage of high-performance architectures such as the Cray Y-MP. Three new algorithms, based on Bunch-Kaufman factorization, that take advantage of such architectures are described. Results from an implementation of the third algorithm are presented.

  5. Diffusivity Measurements of Volatile Organics in Levitated Viscous Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Bastelberger, Sandra; Krieger, Ulrich; Luo, Beiping; Peter, Thomas

    2017-04-01

    Field measurements indicating that atmospheric secondary aerosol (SOA) particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low water diffusivities in glassy aerosols, focusing on kinetic limitations to hygroscopic growth and the plasticizing effect of water. Less is known about diffusion limitations of organic molecules and oxidants in viscous matrices and how these might affect atmospheric chemistry and gas-particle phase partitioning of complex mixtures with constituents of different volatility. Often viscosity data has been used to infer diffusivity via the Stokes- Einstein relationship even though strong deviations from this relationship have been observed for matrices of high viscosity. In this study, we provide a quantitative estimate for the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and a small quantity of volatile tetraethylene glycol (PEG-4) is investigated in an electrodynamic balance at controlled relative humidity (RH) and temperature conditions, thereby varying the viscosity of the sucrose matrix. The evaporative loss of tetraethylene glycol as determined by Mie resonance spectroscopy is used in conjunction with a diffusion model to retrieve translational diffusion coefficients of tetraethylene glycol. The evaporation of PEG-4 shows a pronounced RH and temperature dependence and is severely depressed for RH 30% corresponding to diffusivities < 10-14 cm2/s at temperatures as high as 15 °C, implying that atmospheric volatile organic compounds (VOC) can be subject to severe diffusion limitations in glassy SOA. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes-Einstein relationship.

  6. Synergistic administration of photothermal therapy and chemotherapy to cancer cells using polypeptide-based degradable plasmonic matrices

    PubMed Central

    Huang, Huang-Chiao; Yang, Yoonsun; Nanda, Alisha; Koria, Piyush; Rege, Kaushal

    2012-01-01

    Aim Resistance of cancer cells to hyperthermic temperatures and spatial limitations of nanoparticle-induced hyperthermia necessitates the identification of effective combination treatments that can enhance the efficacy of this treatment. Here we show that novel polypeptide-based degradable plasmonic matrices can be employed for simultaneous administration of hyperthermia and chemotherapeutic drugs as an effective combination treatment that can overcome cancer cell resistance to hyperthermia. Method Novel gold nanorod elastin-like polypeptide matrices were generated and characterized. The matrices were also loaded with the heat-shock protein (HSP)90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), currently in clinical trials for different malignancies, in order to deliver a combination of hyperthermia and chemotherapy. Results Laser irradiation of cells cultured over the plasmonic matrices (without 17-AAG) resulted in the death of cells directly in the path of the laser, while cells outside the laser path did not show any loss of viability. Such spatial limitations, in concert with expression of prosurvival HSPs, reduce the efficacy of hyperthermia treatment. 17-AAG–gold nanorod–polypeptide matrices demonstrated minimal leaching of the drug to surrounding media. The combination of hyperthermic temperatures and the release of 17-AAG from the matrix, both induced by laser irradiation, resulted in significant (>90%) death of cancer cells, while ‘single treatments’ (i.e., hyperthermia alone and 17-AAG alone) demonstrated minimal loss of cancer cell viability (<10%). Conclusion Simultaneous administration of hyperthermia and HSP inhibitor release from plasmonic matrices is a powerful approach for the ablation of malignant cells and can be extended to different combinations of nanoparticles and chemotherapeutic drugs for a variety of malignancies. PMID:21542685

  7. Retrieval of the non-depolarizing components of depolarizing Mueller matrices by using symmetry conditions and least squares minimization

    NASA Astrophysics Data System (ADS)

    Kuntman, Ertan; Canillas, Adolf; Arteaga, Oriol

    2017-11-01

    Experimental Mueller matrices contain certain amount of uncertainty in their elements and these uncertainties can create difficulties for decomposition methods based on analytic solutions. In an earlier paper [1], we proposed a decomposition method for depolarizing Mueller matrices by using certain symmetry conditions. However, because of the experimental error, that method creates over-determined systems with non-unique solutions. Here we propose to use least squares minimization approach in order to improve the accuracy of our results. In this method, we are taking into account the number of independent parameters of the corresponding symmetry and the rank constraints on the component matrices to decide on our fitting model. This approach is illustrated with experimental Mueller matrices that include material media with different Mueller symmetries.

  8. Pressure Dependence of the Boson Peak of Glassy Glycerol

    DOE PAGES

    Ahart, Muhtar; Aihaiti, Dilare; Hemley, Russell J.; ...

    2017-05-31

    The pressure dependence of the Boson peak (BP) of glycerol, including its behavior across the liquid-glass transition, has been studied under pressure using Raman scattering. A significant increase of the BP frequency was observed with pressure up to 11 GPa at room temperature. The pressure dependence of BP frequency ν BP is proportional to (1+P/P 0) 1/3, where P and P 0 are the pressure and a constant, respectively, the spectra are consistent with a soft potential model. The characteristic length of medium range order is close in size to a cyclic trimer of glycerol molecules, which is predicted asmore » the medium range order of a BP vibration using molecular dynamics simulations. The pressure dependence of a characteristic length of medium range order is nearly constant. The pressure induced structural changes in glycerol can be understood in terms of the shrinkage of voids with cyclic trimers remaining up to at least 11 GPa. Lastly, the pressure dependence of intermolecular O-H stretching mode indicates that the intermolecular hydrogen bond distance gradually decreases below the glass transition pressure of ~5 GPa, while it becomes nearly constant in the glassy state indicating the disappearance of the free volume in the dense glass.« less

  9. Immobilization of plutonium from solutions on porous matrices by the method of high temperature sorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nardova, A.K.; Filippov, E.A.; Glagolenko, Y.B.

    1996-05-01

    This report presents the results of investigations of plutonium immobilization from solutions on inorganic matrices with the purpose of producing a solid waste form. High-temperature sorption is described which entails the adsorption of radionuclides from solutions on porous, inorganic matrices, as for example silica gel. The solution is brought to a boil with additional thermal process (calcination) of the saturated granules.

  10. Noisy covariance matrices and portfolio optimization II

    NASA Astrophysics Data System (ADS)

    Pafka, Szilárd; Kondor, Imre

    2003-03-01

    Recent studies inspired by results from random matrix theory (Galluccio et al.: Physica A 259 (1998) 449; Laloux et al.: Phys. Rev. Lett. 83 (1999) 1467; Risk 12 (3) (1999) 69; Plerou et al.: Phys. Rev. Lett. 83 (1999) 1471) found that covariance matrices determined from empirical financial time series appear to contain such a high amount of noise that their structure can essentially be regarded as random. This seems, however, to be in contradiction with the fundamental role played by covariance matrices in finance, which constitute the pillars of modern investment theory and have also gained industry-wide applications in risk management. Our paper is an attempt to resolve this embarrassing paradox. The key observation is that the effect of noise strongly depends on the ratio r= n/ T, where n is the size of the portfolio and T the length of the available time series. On the basis of numerical experiments and analytic results for some toy portfolio models we show that for relatively large values of r (e.g. 0.6) noise does, indeed, have the pronounced effect suggested by Galluccio et al. (1998), Laloux et al. (1999) and Plerou et al. (1999) and illustrated later by Laloux et al. (Int. J. Theor. Appl. Finance 3 (2000) 391), Plerou et al. (Phys. Rev. E, e-print cond-mat/0108023) and Rosenow et al. (Europhys. Lett., e-print cond-mat/0111537) in a portfolio optimization context, while for smaller r (around 0.2 or below), the error due to noise drops to acceptable levels. Since the length of available time series is for obvious reasons limited in any practical application, any bound imposed on the noise-induced error translates into a bound on the size of the portfolio. In a related set of experiments we find that the effect of noise depends also on whether the problem arises in asset allocation or in a risk measurement context: if covariance matrices are used simply for measuring the risk of portfolios with a fixed composition rather than as inputs to optimization, the

  11. Proanthocyanidin: a natural crosslinking reagent for stabilizing collagen matrices.

    PubMed

    Han, Bo; Jaurequi, Jason; Tang, Bao Wei; Nimni, Marcel E

    2003-04-01

    While attempting to find a suitable crosslinking reagent for biopolymers, a naturally occurring proanthocyanidin (PA) obtained from grape seeds was selected to fix biological tissues. The cytotoxicity and crosslinking rate, reflected by the in vitro and in vivo degradation of fixed matrices has been studied. The shrinkage temperature of the fixed bovine pericardium increased from 66 to 86 degrees C. A cytotoxicity assay using fibroblast cultures revealed that PA is approximately 120 times less toxic than glutaraldehyde (GA), a currently used tissue stabilizer. In vitro degradation studies showed that fixed tissue was resistant to digestion by bacterial collagenase. Crosslinks between PA and tissues can be stabilized by decreasing the dielectric constant of the solution during storage. After subcutaneous implantation for periods ranging between 3 and 6 weeks, we found no apparent degradation of the GA- or PA-fixed tissues, whereas fresh tissue controls rapidly disintegrated. Beyond 6 weeks PA crosslinks began to degrade. More fibroblasts migrated and proliferated inside the PA-fixed implants compared with GA counterparts. Tissues crosslinked with PA manifested an enhanced collagen expression and deposition and did not calcify after implantation. GA, on the other hand, even after thorough rinsing continued to be cytotoxic, inhibited collagen synthesis and encouraged dystrophic calcification. Collagen matrices crosslinked with PA are expected to be of value in the design of matrices that will encourage cell ingrowth and proliferation, which are temporary in nature, and that are intended to regenerate or replace missing tissues, which can delay the biogradation of collagen. As such they should be of significant value in the emerging field of tissue engineering. Copyright 2003 Wiley Periodicals, Inc.

  12. Electrochemical and spectroelectrochemical behavior of the TCNQ(0/)(-) couple on a glassy carbon electrode. Layer-by-layer nucleation and growth.

    PubMed

    Gómez, L; Rodríguez-Amaro, R

    2006-08-15

    On the basis of the electrochemical results obtained for thin films of 7,7,8,8- tetracyanoquinodimethane (TCNQ) on a glassy carbon electrode, the reduction and oxidation of the [TCNQ](0/)(-) couple in KCl aqueous media occurs via a mechanism involving layer-by-layer nucleation and growth. In situ recorded UV-visible spectroelectrochemical data allow two different crystal structures for the oxidized form of TCNQ to be discriminated.

  13. Parameterization of Transport and Period Matrices with X-Y Coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courant, E. D.

    A parameterization of 4x4 matrices describing linear beam transport systems has been obtained by Edwards and Teng. Here we extend their formalism to include dispersive effects, and give perscriptions for incorporating it in the program SYNCH.

  14. Glassy phases and driven response of the phase-field-crystal model with random pinning.

    PubMed

    Granato, E; Ramos, J A P; Achim, C V; Lehikoinen, J; Ying, S C; Ala-Nissila, T; Elder, K R

    2011-09-01

    We study the structural correlations and the nonlinear response to a driving force of a two-dimensional phase-field-crystal model with random pinning. The model provides an effective continuous description of lattice systems in the presence of disordered external pinning centers, allowing for both elastic and plastic deformations. We find that the phase-field crystal with disorder assumes an amorphous glassy ground state, with only short-ranged positional and orientational correlations, even in the limit of weak disorder. Under increasing driving force, the pinned amorphous-glass phase evolves into a moving plastic-flow phase and then, finally, a moving smectic phase. The transverse response of the moving smectic phase shows a vanishing transverse critical force for increasing system sizes.

  15. Human elastin polypeptides improve the biomechanical properties of three-dimensional matrices through the regulation of elastogenesis.

    PubMed

    Boccafoschi, Francesca; Ramella, Martina; Sibillano, Teresa; De Caro, Liberato; Giannini, Cinzia; Comparelli, Roberto; Bandiera, Antonella; Cannas, Mario

    2015-03-01

    The replacement of diseased tissues with biological substitutes with suitable biomechanical properties is one of the most important goal in tissue engineering. Collagen represents a satisfactory choice for scaffolds. Unfortunately, the lack of elasticity represents a restriction to a wide use of collagen for several applications. In this work, we studied the effect of human elastin-like polypeptide (HELP) as hybrid collagen-elastin matrices. In particular, we studied the biomechanical properties of collagen/HELP scaffolds considering several components involved in ECM remodeling (elastin, collagen, fibrillin, lectin-like receptor, metalloproteinases) and cell phenotype (myogenin, myosin heavy chain) with particular awareness for vascular tissue engineering applications. Elastin and collagen content resulted upregulated in collagen-HELP matrices, even showing an improved structural remodeling through the involvement of proteins to a ECM remodeling activity. Moreover, the hybrid matrices enhanced the contractile activity of C2C12 cells concurring to improve the mechanical properties of the scaffold. Finally, small-angle X-ray scattering analyses were performed to enable a very detailed analysis of the matrices at the nanoscale, comparing the scaffolds with native blood vessels. In conclusion, our work shows the use of recombinant HELP, as a very promising complement able to significantly improve the biomechanical properties of three-dimensional collagen matrices in terms of tensile stress and elastic modulus. © 2014 Wiley Periodicals, Inc.

  16. Evaluation of polycaprolactone matrices for the intravaginal delivery of metronidazole in the treatment of bacterial vaginosis.

    PubMed

    Pathak, Meenakshi; Turner, Mark; Palmer, Cheryn; Coombes, Allan G A

    2014-09-01

    Microporous, poly (ɛ-caprolactone) (PCL) matrices loaded with the antibacterial, metronidazole were produced by rapidly cooling suspensions of drug powder in PCL solutions in acetone. Drug incorporation in the matrices increased from 2.0% to 10.6% w/w on raising the drug loading of the PCL solution from 5% to 20% w/w measured with respect to the PCL content. Drug loading efficiencies of 40-53% were obtained. Rapid 'burst release' of 35-55% of the metronidazole content was recorded over 24 h when matrices were immersed in simulated vaginal fluid (SVF), due to the presence of large amounts of drug on matrix surface as revealed by Raman microscopy. Gradual release of around 80% of the drug content occurred over the following 12 days. Metronidazole released from PCL matrices in SVF retained antimicrobial activity against Gardnerella vaginalis in vitro at levels up to 97% compared to the free drug. Basic modelling predicted that the concentrations of metronidazole released into vaginal fluid in vivo from a PCL matrix in the form of an intravaginal ring would exceed the minimum inhibitory concentration of metronidazole against G. vaginalis. These findings recommend further investigation of PCL matrices as intravaginal devices for controlled delivery of metronidazole in the treatment and prevention of bacterial vaginosis. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. Influence of thermal annealing and radiation enhanced diffusion processes on surface plasmon resonance of gold implanted dielectric matrices

    NASA Astrophysics Data System (ADS)

    Devi, Ksh. Devarani; Ojha, Sunil; Singh, Fouran

    2018-03-01

    Gold nanoparticles (AuNPs) embedded in fused silica and sapphire dielectric matrices were synthesized by Au ion implantation. Systematic investigations were carried out to study the influence of implantation dose, post annealing temperature, swift heavy ion (SHI) irradiation and radiation enhanced diffusion (RED). Rutherford Backscattering Spectrometry (RBS) measurements were carried out to quantify concentration and depth profile of Au present in the host matrices. X-ray diffraction (XRD) was employed to characterize AuNPs formation. As-implanted and post-annealed films were irradiated using 100 MeV Ag ions to investigate the effect of electronic energy deposition on size and shape of NPs, which is estimated indirectly by the peak shape analysis of surface plasmon resonance (SPR). The effect of volume fraction of Au and their redistribution is also reported. A strong absorption in near infra red region is also noticed and understood by the formation of percolated NPs in dielectric matrices. It is quite clear from these results that the effect of RED assisted Oswald ripening is much more pronounced than the conventional Oswald ripening for the growth of NPs in the case of silica host matrices. However for sapphire matrices, it seems that growth of NPs already completed during implantation and it may be attributed to the high diffusivity of Au in sapphire matrices during implantation process.

  18. CONTRIBUTION TO THE THEORY OF MATRICES PARTITIONED INTO BLOCKS.

    DTIC Science & Technology

    results were obtained on cones of matrices and vectors, and an extension of the well-known Perron - Frobenius theorem was proved. Also a necessary and...sufficient condition was derived, in order that to a given matrix corresponds a cone on which it is a positive operator. Easily computed upper and

  19. Toeplitz matrices for LTI systems, an illustration of their application to Wiener filters and estimators

    NASA Astrophysics Data System (ADS)

    Moir, T. J.

    2018-03-01

    The Wiener-Kolmogorov theory of filtering has been with us since the first half of the twentieth century. A later matrix-based approach which was more general was derived with the steady-state Kalman filter. This approach uses a novel method of representing causal and uncausal systems in the form of convolution matrices and leads to a Wiener solution which is much easier to calculate than either the Kalman or Wiener approaches. For coloured additive noise, it avoids the use of Diophantine equations. The key idea missing in previous work is the close link between polynomials and Toeplitz matrices which are lower triangular in form. There is already a reasonably sized literature in the mathematics field on such matrices and so the area is ripe for exploration. Although the method does not offer a different or better solution, it shows a completely new way of defining linear time-invariant (LTI) systems which is neither transfer-function nor state-space-based. This is achieved by exploiting the connection between polynomials and Toeplitz matrices. The application here is the Wiener filter but there could well be many more as this is a generic approach.

  20. Photophysics of Ru(II)— and Os(II)—polypyridine complexes in poly(ethyleneoxide) matrices

    NASA Astrophysics Data System (ADS)

    Campagna, Sebastiano; Bartolotta, Antonino; Marco, Gaetano Di

    1993-04-01

    Photophysical properties of Ru(bpy) 32+, Ru(bpy) 2(biq) 2+, and Os(bpy) 32+ (bpy=2,2'-bipyridine; biq=2,2'-biquinoline) in poly(ethyleneoxide) matrices (PEO) constituted by (CH 2CH 2O) repeating units, with average molecular weight 400 (PEO-400, a highly viscous fluid) and 600000 dalton (PEO-600000, a semicrystalline solid) have been studied at room temperature and 77 K. Comparison with similar systems is made. The absorption spectra, luminescence spectra and lifetimes at room temperature of the three complexes in both matrices are in agreement with the typical features reported for the same complexes in fluid solutions, and indicate that fast excited state relaxation via solvent reorganization occurs in both PEO matrices at room temperature. Such behaviour is not usual for solid matrices and is attributed to the microheterogeneous nature of PEO-600000 and to the ability of the solid PEO amorphous region to stabilize polar species within the timescale of radiative relaxation. The results suggest that PEO-600000 is a promising medium for studying electron and energy transfer processes having mild driving forces in the solid state at room temperature.

  1. Arikan and Alamouti matrices based on fast block-wise inverse Jacket transform

    NASA Astrophysics Data System (ADS)

    Lee, Moon Ho; Khan, Md Hashem Ali; Kim, Kyeong Jin

    2013-12-01

    Recently, Lee and Hou (IEEE Signal Process Lett 13: 461-464, 2006) proposed one-dimensional and two-dimensional fast algorithms for block-wise inverse Jacket transforms (BIJTs). Their BIJTs are not real inverse Jacket transforms from mathematical point of view because their inverses do not satisfy the usual condition, i.e., the multiplication of a matrix with its inverse matrix is not equal to the identity matrix. Therefore, we mathematically propose a fast block-wise inverse Jacket transform of orders N = 2 k , 3 k , 5 k , and 6 k , where k is a positive integer. Based on the Kronecker product of the successive lower order Jacket matrices and the basis matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse and fast algorithms of Arikan polar binary and Alamouti multiple-input multiple-output (MIMO) non-binary matrices, which are obtained from BIJTs, they can be applied in areas such as 3GPP physical layer for ultra mobile broadband permutation matrices design, first-order q-ary Reed-Muller code design, diagonal channel design, diagonal subchannel decompose for interference alignment, and 4G MIMO long-term evolution Alamouti precoding design.

  2. The food matrix affects the anthocyanin profile of fortified egg and dairy matrices during processing and in vitro digestion.

    PubMed

    Pineda-Vadillo, Carlos; Nau, Françoise; Guerin-Dubiard, Catherin; Jardin, Julien; Lechevalier, Valérie; Sanz-Buenhombre, Marisa; Guadarrama, Alberto; Tóth, Tamás; Csavajda, Éva; Hingyi, Hajnalka; Karakaya, Sibel; Sibakov, Juhani; Capozzi, Francesco; Bordoni, Alessandra; Dupont, Didier

    2017-01-01

    The aim of the present study was to understand to what extent the inclusion of anthocyanins into dairy and egg matrices could affect their stability after processing and their release and solubility during digestion. For this purpose, individual and total anthocyanin content of four different enriched matrices, namely custard dessert, milkshake, pancake and omelettete, was determined after their manufacturing and during in vitro digestion. Results showed that anthocyanin recovery after processing largely varied among matrices, mainly due to the treatments applied and the interactions developed with other food components. In terms of digestion, the present study showed that the inclusion of anthocyanins into food matrices could be an effective way to protect them against intestinal degradation, and also the incorporation of anthocyanins into matrices with different compositions and structures could represent an interesting and effective method to control the delivery of anthocyanins within the different compartments of the digestive tract. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Emerging spectra of singular correlation matrices under small power-map deformations

    NASA Astrophysics Data System (ADS)

    Vinayak; Schäfer, Rudi; Seligman, Thomas H.

    2013-09-01

    Correlation matrices are a standard tool in the analysis of the time evolution of complex systems in general and financial markets in particular. Yet most analysis assume stationarity of the underlying time series. This tends to be an assumption of varying and often dubious validity. The validity of the assumption improves as shorter time series are used. If many time series are used, this implies an analysis of highly singular correlation matrices. We attack this problem by using the so-called power map, which was introduced to reduce noise. Its nonlinearity breaks the degeneracy of the zero eigenvalues and we analyze the sensitivity of the so-emerging spectra to correlations. This sensitivity will be demonstrated for uncorrelated and correlated Wishart ensembles.

  4. Emerging spectra of singular correlation matrices under small power-map deformations.

    PubMed

    Vinayak; Schäfer, Rudi; Seligman, Thomas H

    2013-09-01

    Correlation matrices are a standard tool in the analysis of the time evolution of complex systems in general and financial markets in particular. Yet most analysis assume stationarity of the underlying time series. This tends to be an assumption of varying and often dubious validity. The validity of the assumption improves as shorter time series are used. If many time series are used, this implies an analysis of highly singular correlation matrices. We attack this problem by using the so-called power map, which was introduced to reduce noise. Its nonlinearity breaks the degeneracy of the zero eigenvalues and we analyze the sensitivity of the so-emerging spectra to correlations. This sensitivity will be demonstrated for uncorrelated and correlated Wishart ensembles.

  5. Asphaltene-laden interfaces form soft glassy layers in contraction experiments: a mechanism for coalescence blocking.

    PubMed

    Pauchard, Vincent; Rane, Jayant P; Banerjee, Sanjoy

    2014-11-04

    In previous studies, the adsorption kinetics of asphaltenes at the water-oil interface were interpreted utilizing a Langmuir equation of state (EOS) based on droplet expansion experiments.1-3 Long-term adsorption kinetics followed random sequential adsorption (RSA) theory predictions, asymptotically reaching ∼85% limiting surface coverage, which is similar to limiting random 2D close packing of disks. To extend this work beyond this slow adsorption process, we performed rapid contractions and contraction-expansions of asphaltene-laden interfaces using the pendant drop experiment to emulate a Langmuir trough. This simulates the rapid increase in interfacial asphaltene concentration that occurs during coalescence events. For the contraction of droplets aged in asphaltene solutions, deviation from the EOS consistently occurs at a surface pressure value ∼21 mN/m corresponding to a surface coverage ∼80%. At this point droplets lose the shape required for validity of the Laplace-Young equation, indicating solidlike surface behavior. On further contraction wrinkles appear, which disappear when the droplet is held at constant volume. Surface pressure also decreases down to an equilibrium value near that measured for slow adsorption experiments. This behavior appears to be due to a transition to a glassy interface on contraction past the packing limit, followed by relaxation toward equilibrium by desorption at constant volume. This hypothesis is supported by cycling experiments around the close-packed limit where the transition to and from a solidlike state appears to be both fast and reversible, with little hysteresis. Also, the soft glass rheology model of Sollich is shown to capture previously reported shear behavior during adsorption. The results suggest that the mechanism by which asphaltenes stabilize water-in-oil emulsions is by blocking coalescence due to rapid formation of a glassy interface, in turn caused by interfacial asphaltenes rapidly increasing in

  6. Estimation and prediction of origin-destination matrices for I-66.

    DOT National Transportation Integrated Search

    2011-09-01

    This project uses the Box-Jenkins time-series technique to model and forecast the traffic flows and then : uses the flow forecasts to predict the origin-destination matrices. First, a detailed analysis was conducted : to investigate the best data cor...

  7. Combining Correlation Matrices: Simulation Analysis of Improved Fixed-Effects Methods

    ERIC Educational Resources Information Center

    Hafdahl, Adam R.

    2007-01-01

    The originally proposed multivariate meta-analysis approach for correlation matrices--analyze Pearson correlations, with each study's observed correlations replacing their population counterparts in its conditional-covariance matrix--performs poorly. Two refinements are considered: Analyze Fisher Z-transformed correlations, and substitute better…

  8. Experimental characterization and modeling of isothermal and nonisothermal physical aging in glassy polymer films

    NASA Astrophysics Data System (ADS)

    Guo, Yunlong

    This dissertation focuses on nonisothermal physical aging of polymers from both experimental and theoretical aspects. The study concentrates on pure polymers rather than fiber-reinforced composites; this step removes several complicating factors to simplify the study. It is anticipated that the findings of this work can then be applied to composite materials applications. The physical aging tests in this work are performed using a dynamic mechanical analyzer (DMA). The viscoelastic response of glassy polymers under various loading and thermal histories are observed as stress-strain data at a series of time points. The first stage of the experimental work involves the characterization of the isothermal physical aging behavior of two advanced thermoplastics. The second stage conducts tests on the same materials with varying thermal histories and with long-term test duration. This forms the basis to assess and modify a nonisothermal physical aging model (KAHR-ate model). Based on the experimental findings, the KAHR-ate model has been revised by new correlations between aging shift factors and volume response; this revised model performed well in predicting the nonisothermal physical aging behavior of glassy polymers. In the work on isothermal physical aging, short-term creep and stress relaxation tests were performed at several temperatures within 15-35°C below the glass transition temperature (Tg) at various aging times, using the short-term test method established by Struik. Stress and strain levels were such that the materials remained in the linear viscoelastic regime. These curves were then shifted together to determine momentary master curves and shift rates. In order to validate the obtained isothermal physical aging behavior, the results of creep and stress relaxation testing were compared and shown to be consistent with one another using appropriate interconversion of the viscoelastic material functions. Time-temperature superposition of the master curves

  9. Stimulating effect of graphene oxide on myogenesis of C2C12 myoblasts on RGD peptide-decorated PLGA nanofiber matrices.

    PubMed

    Shin, Yong Cheol; Lee, Jong Ho; Kim, Min Jeong; Hong, Suck Won; Kim, Bongju; Hyun, Jung Keun; Choi, Yu Suk; Park, Jong-Chul; Han, Dong-Wook

    2015-01-01

    In the field of biomedical engineering, many studies have focused on the possible applications of graphene and related nanomaterials due to their potential for use as scaffolds, coating materials and delivery carriers. On the other hand, electrospun nanofiber matrices composed of diverse biocompatible polymers have attracted tremendous attention for tissue engineering and regenerative medicine. However, their combination is intriguing and still challenging. In the present study, we fabricated nanofiber matrices composed of M13 bacteriophage with RGD peptide displayed on its surface (RGD-M13 phage) and poly(lactic-co-glycolic acid, PLGA) and characterized their physicochemical properties. In addition, the effect of graphene oxide (GO) on the cellular behaviors of C2C12 myoblasts, which were cultured on PLGA decorated with RGD-M13 phage (RGD/PLGA) nanofiber matrices, was investigated. Our results revealed that the RGD/PLGA nanofiber matrices have suitable physicochemical properties as a tissue engineering scaffold and the growth of C2C12 myoblasts were significantly enhanced on the matrices. Moreover, the myogenic differentiation of C2C12 myoblasts was substantially stimulated when they were cultured on the RGD/PLGA matrices in the presence of GO. In conclusion, these findings propose that the combination of RGD/PLGA nanofiber matrices and GO can be used as a promising strategy for skeletal tissue engineering and regeneration.

  10. Electrocatalytic oxidation of hydrazine and hydroxylamine by graphene oxide-Pd nanoparticle-modified glassy carbon electrode.

    PubMed

    Lee, Eunhee; Kim, Daekun; You, Jung-Min; Kim, Seul Ki; Yun, Mira; Jeon, Seungwon

    2012-12-01

    Pd nanoparticle catalysts supported by thiolated graphene oxide (tGO) on a glassy carbon electrode (GCE), and denoted as tGO-Pd/GCE, are used in this study for the electrochemical determination of hydroxylamine and hydrazine. The physicochemical properties of tGO-Pd were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS). They showed strong catalytic activity toward the oxidation of hydroxylamine and hydrazine. Cyclic voltammetry (CV) and amperometry were used to characterize the sensors' performances. The detection limits of hydroxylamine and hydrazine by tGO-Pd/GCE were 0.31 and 0.25 microM (s/n = 3), respectively. The sensors' sensitivity, selectivity, and stability were also investigated.

  11. Multimodal approach to characterization of hydrophilic matrices manufactured by wet and dry granulation or direct compression methods.

    PubMed

    Kulinowski, Piotr; Woyna-Orlewicz, Krzysztof; Obrał, Jadwiga; Rappen, Gerd-Martin; Haznar-Garbacz, Dorota; Węglarz, Władysław P; Jachowicz, Renata; Wyszogrodzka, Gabriela; Klaja, Jolanta; Dorożyński, Przemysław P

    2016-02-29

    The purpose of the research was to investigate the effect of the manufacturing process of the controlled release hydrophilic matrix tablets on their hydration behavior, internal structure and drug release. Direct compression (DC) quetiapine hemifumarate matrices and matrices made of powders obtained by dry granulation (DG) and high shear wet granulation (HS) were prepared. They had the same quantitative composition and they were evaluated using X-ray microtomography, magnetic resonance imaging and biorelevant stress test dissolution. Principal results concerned matrices after 2 h of hydration: (i) layered structure of the DC and DG hydrated tablets with magnetic resonance image intensity decreasing towards the center of the matrix was observed, while in HS matrices layer of lower intensity appeared in the middle of hydrated part; (ii) the DC and DG tablets retained their core and consequently exhibited higher resistance to the physiological stresses during simulation of small intestinal passage than HS formulation. Comparing to DC, HS granulation changed properties of the matrix in terms of hydration pattern and resistance to stress in biorelevant dissolution apparatus. Dry granulation did not change these properties-similar hydration pattern and dissolution in biorelevant conditions were observed for DC and DG matrices. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Amperometric sensing of hydrogen peroxide using glassy carbon electrode modified with copper nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sophia, J.; Muralidharan, G., E-mail: muraligru@gmail.com

    2015-10-15

    In this paper, fabrication of glassy carbon electrode (GCE) modified with nano copper particles is discussed. The modified electrode has been tested for the non-enzymatic electrochemical detection of hydrogen peroxide (H{sub 2}O{sub 2}). The copper nanoparticles (Cu NPs) were prepared employing a simple chemical reduction method. The presence of Cu NPs was confirmed through UV–visible (UV–vis) absorption spectroscopy and X-ray diffraction (XRD) analysis. The size and morphology of the particles were investigated using transmission electron microscopy (TEM). The electrochemical properties of the fabricated sensor were studied via cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy (EIS). The electrochemical sensor displayedmore » excellent performance features towards H{sub 2}O{sub 2} detection exhibiting wide linear range, low detection limit, swift response time, good reproducibility and stability.« less

  13. Reduced electronegativity difference as a factor leading to the formation of Al-based glassy alloys with a large supercooled liquid region of 50 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louzguine-Luzgin, Dmitri V.; Inoue, Akihisa; Botta, Walter Jose

    2006-01-02

    The influence of the electronegativity difference among the constituent elements on the stability of the supercooled liquid in two Al-based glassy alloys is studied. A record-large value of the supercooled liquid region of about 50 K is obtained based on the electronegativity difference concept within a certain composition range.

  14. Raman Spectroscopy of Isotopic Water Diffusion in Ultraviscous, Glassy, and Gel States in Aerosol by Use of Optical Tweezers.

    PubMed

    Davies, James F; Wilson, Kevin R

    2016-02-16

    The formation of ultraviscous, glassy, and amorphous gel states in aqueous aerosol following the loss of water results in nonequilibrium dynamics due to the extended time scales for diffusive mixing. Existing techniques for measuring water diffusion by isotopic exchange are limited by contact of samples with the substrate, and methods applied to infer diffusion coefficients from mass transport in levitated droplets requires analysis by complex coupled differential equations to derive diffusion coefficients. We present a new technique that combines contactless levitation with aerosol optical tweezers with isotopic exchange (D2O/H2O) to measure the water diffusion coefficient over a broad range (Dw ≈ 10(-12)-10(-17) m(2)·s(-1)) in viscous organic liquids (citric acid, sucrose, and shikimic acid) and inorganic gels (magnesium sulfate, MgSO4). For the organic liquids in binary and ternary mixtures, Dw depends on relative humidity and follows a simple compositional Vignes relationship. In MgSO4 droplets, water diffusivity decreases sharply with water activity and is consistent with predictions from percolation theory. These measurements show that, by combining micrometer-sized particle levitation (a contactless measurement with rapid mixing times) with an established probe of water diffusion, Dw can be simply and directly quantified for amorphous and glassy states that are inaccessible to existing methods.

  15. Raman Spectroscopy of Isotopic Water Diffusion in Ultraviscous, Glassy, and Gel States in Aerosol by Use of Optical Tweezers

    DOE PAGES

    Davies, James F.; Wilson, Kevin R.

    2016-01-11

    The formation of ultraviscous, glassy, and amorphous gel states in aqueous aerosol following the loss of water results in nonequilibrium dynamics due to the extended time scales for diffusive mixing. Existing techniques for measuring water diffusion by isotopic exchange are limited by contact of samples with the substrate, and methods applied to infer diffusion coefficients from mass transport in levitated droplets requires analysis by complex coupled differential equations to derive diffusion coefficients. Here, we present a new technique that combines contactless levitation with aerosol optical tweezers with isotopic exchange (D 2O/H 2O) to measure the water diffusion coefficient over amore » broad range (D w ≈ 10 -12-10 -17 m 2s -1) in viscous organic liquids (citric acid, sucrose, and shikimic acid) and inorganic gels (magnesium sulfate, MgSO 4). For the organic liquids in binary and ternary mixtures, D w depends on relative humidity and follows a simple compositional Vignes relationship. In MgSO 4 droplets, water diffusivity decreases sharply with water activity and is consistent with predictions from percolation theory. These measurements show that, by combining micrometer-sized particle levitation (a contactless measurement with rapid mixing times) with an established probe of water diffusion, D w can be simply and directly quantified for amorphous and glassy states that are inaccessible to existing methods.« less

  16. Resampling-based Methods in Single and Multiple Testing for Equality of Covariance/Correlation Matrices

    PubMed Central

    Yang, Yang; DeGruttola, Victor

    2016-01-01

    Traditional resampling-based tests for homogeneity in covariance matrices across multiple groups resample residuals, that is, data centered by group means. These residuals do not share the same second moments when the null hypothesis is false, which makes them difficult to use in the setting of multiple testing. An alternative approach is to resample standardized residuals, data centered by group sample means and standardized by group sample covariance matrices. This approach, however, has been observed to inflate type I error when sample size is small or data are generated from heavy-tailed distributions. We propose to improve this approach by using robust estimation for the first and second moments. We discuss two statistics: the Bartlett statistic and a statistic based on eigen-decomposition of sample covariance matrices. Both statistics can be expressed in terms of standardized errors under the null hypothesis. These methods are extended to test homogeneity in correlation matrices. Using simulation studies, we demonstrate that the robust resampling approach provides comparable or superior performance, relative to traditional approaches, for single testing and reasonable performance for multiple testing. The proposed methods are applied to data collected in an HIV vaccine trial to investigate possible determinants, including vaccine status, vaccine-induced immune response level and viral genotype, of unusual correlation pattern between HIV viral load and CD4 count in newly infected patients. PMID:22740584

  17. Resampling-based methods in single and multiple testing for equality of covariance/correlation matrices.

    PubMed

    Yang, Yang; DeGruttola, Victor

    2012-06-22

    Traditional resampling-based tests for homogeneity in covariance matrices across multiple groups resample residuals, that is, data centered by group means. These residuals do not share the same second moments when the null hypothesis is false, which makes them difficult to use in the setting of multiple testing. An alternative approach is to resample standardized residuals, data centered by group sample means and standardized by group sample covariance matrices. This approach, however, has been observed to inflate type I error when sample size is small or data are generated from heavy-tailed distributions. We propose to improve this approach by using robust estimation for the first and second moments. We discuss two statistics: the Bartlett statistic and a statistic based on eigen-decomposition of sample covariance matrices. Both statistics can be expressed in terms of standardized errors under the null hypothesis. These methods are extended to test homogeneity in correlation matrices. Using simulation studies, we demonstrate that the robust resampling approach provides comparable or superior performance, relative to traditional approaches, for single testing and reasonable performance for multiple testing. The proposed methods are applied to data collected in an HIV vaccine trial to investigate possible determinants, including vaccine status, vaccine-induced immune response level and viral genotype, of unusual correlation pattern between HIV viral load and CD4 count in newly infected patients.

  18. On-Chip Neural Data Compression Based On Compressed Sensing With Sparse Sensing Matrices.

    PubMed

    Zhao, Wenfeng; Sun, Biao; Wu, Tong; Yang, Zhi

    2018-02-01

    On-chip neural data compression is an enabling technique for wireless neural interfaces that suffer from insufficient bandwidth and power budgets to transmit the raw data. The data compression algorithm and its implementation should be power and area efficient and functionally reliable over different datasets. Compressed sensing is an emerging technique that has been applied to compress various neurophysiological data. However, the state-of-the-art compressed sensing (CS) encoders leverage random but dense binary measurement matrices, which incur substantial implementation costs on both power and area that could offset the benefits from the reduced wireless data rate. In this paper, we propose two CS encoder designs based on sparse measurement matrices that could lead to efficient hardware implementation. Specifically, two different approaches for the construction of sparse measurement matrices, i.e., the deterministic quasi-cyclic array code (QCAC) matrix and -sparse random binary matrix [-SRBM] are exploited. We demonstrate that the proposed CS encoders lead to comparable recovery performance. And efficient VLSI architecture designs are proposed for QCAC-CS and -SRBM encoders with reduced area and total power consumption.

  19. T-Reg Comparator: an analysis tool for the comparison of position weight matrices

    PubMed Central

    Roepcke, Stefan; Grossmann, Steffen; Rahmann, Sven; Vingron, Martin

    2005-01-01

    T-Reg Comparator is a novel software tool designed to support research into transcriptional regulation. Sequence motifs representing transcription factor binding sites are usually encoded as position weight matrices. The user inputs a set of such weight matrices or binding site sequences and our program matches them against the T-Reg database, which is presently built on data from the Transfac [E. Wingender (2004) In Silico Biol., 4, 55–61] and Jaspar [A. Sandelin, W. Alkema, P. Engstrom, W. W. Wasserman and B. Lenhard (2004) Nucleic Acids Res., 32, D91–D94]. Our tool delivers a detailed report on similarities between user-supplied motifs and motifs in the database. Apart from simple one-to-one relationships, T-Reg Comparator is also able to detect similarities between submatrices. In addition, we provide a user interface to a program for sequence scanning with weight matrices. Typical areas of application for T-Reg Comparator are motif and regulatory module finding and annotation of regulatory genomic regions. T-Reg Comparator is available at . PMID:15980506

  20. T-Reg Comparator: an analysis tool for the comparison of position weight matrices.

    PubMed

    Roepcke, Stefan; Grossmann, Steffen; Rahmann, Sven; Vingron, Martin

    2005-07-01

    T-Reg Comparator is a novel software tool designed to support research into transcriptional regulation. Sequence motifs representing transcription factor binding sites are usually encoded as position weight matrices. The user inputs a set of such weight matrices or binding site sequences and our program matches them against the T-Reg database, which is presently built on data from the Transfac [E. Wingender (2004) In Silico Biol., 4, 55-61] and Jaspar [A. Sandelin, W. Alkema, P. Engstrom, W. W. Wasserman and B. Lenhard (2004) Nucleic Acids Res., 32, D91-D94]. Our tool delivers a detailed report on similarities between user-supplied motifs and motifs in the database. Apart from simple one-to-one relationships, T-Reg Comparator is also able to detect similarities between submatrices. In addition, we provide a user interface to a program for sequence scanning with weight matrices. Typical areas of application for T-Reg Comparator are motif and regulatory module finding and annotation of regulatory genomic regions. T-Reg Comparator is available at http://treg.molgen.mpg.de.

  1. NDMA formation kinetics from three pharmaceuticals in four water matrices.

    PubMed

    Shen, Ruqiao; Andrews, Susan A

    2011-11-01

    N, N-nitrosodimethylamine (NDMA) is an emerging disinfection by-product (DBP) that has been widely detected in many drinking water systems and commonly associated with the chloramine disinfection process. Some amine-based pharmaceuticals have been demonstrated to form NDMA during chloramination, but studies regarding the reaction kinetics are largely lacking. This study investigates the NDMA formation kinetics from ranitidine, chlorphenamine, and doxylamine under practical chloramine disinfection conditions. The formation profile was monitored in both lab-grade water and real water matrices, and a statistical model is proposed to describe and predict the NDMA formation from selected pharmaceuticals in various water matrices. The results indicate the significant impact of water matrix components and reaction time on the NDMA formation from selected pharmaceuticals, and provide fresh insights on the estimation of ultimate NDMA formation potential from pharmaceutical precursors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Universality for 1d Random Band Matrices: Sigma-Model Approximation

    NASA Astrophysics Data System (ADS)

    Shcherbina, Mariya; Shcherbina, Tatyana

    2018-02-01

    The paper continues the development of the rigorous supersymmetric transfer matrix approach to the random band matrices started in (J Stat Phys 164:1233-1260, 2016; Commun Math Phys 351:1009-1044, 2017). We consider random Hermitian block band matrices consisting of W× W random Gaussian blocks (parametrized by j,k \\in Λ =[1,n]^d\\cap Z^d ) with a fixed entry's variance J_{jk}=δ _{j,k}W^{-1}+β Δ _{j,k}W^{-2} , β >0 in each block. Taking the limit W→ ∞ with fixed n and β , we derive the sigma-model approximation of the second correlation function similar to Efetov's one. Then, considering the limit β , n→ ∞, we prove that in the dimension d=1 the behaviour of the sigma-model approximation in the bulk of the spectrum, as β ≫ n , is determined by the classical Wigner-Dyson statistics.

  3. Spinodals with Disorder: From Avalanches in Random Magnets to Glassy Dynamics

    NASA Astrophysics Data System (ADS)

    Nandi, Saroj Kumar; Biroli, Giulio; Tarjus, Gilles

    2016-04-01

    We revisit the phenomenon of spinodals in the presence of quenched disorder and develop a complete theory for it. We focus on the spinodal of an Ising model in a quenched random field (RFIM), which has applications in many areas from materials to social science. By working at zero temperature in the quasistatically driven RFIM, thermal fluctuations are eliminated and one can give a rigorous content to the notion of spinodal. We show that the latter is due to the depinning and the subsequent expansion of rare droplets. We work out the associated critical behavior, which, in any finite dimension, is very different from the mean-field one: the characteristic length diverges exponentially and the thermodynamic quantities display very mild nonanalyticities much like in a Griffith phenomenon. From the recently established connection between the spinodal of the RFIM and glassy dynamics, our results also allow us to conclusively assess the physical content and the status of the dynamical transition predicted by the mean-field theory of glass-forming liquids.

  4. MIP-graphene-modified glassy carbon electrode for the determination of trimethoprim.

    PubMed

    da Silva, Hélder; Pacheco, João G; Magalhães, Júlia M C S; Viswanathan, Subramanian; Delerue-Matos, Cristina

    2014-02-15

    A novel sensitive electrochemical sensor was developed by electropolymerization of pyrrole (PY) and molecularly imprinted polymer (MIP) which was synthesized onto a glassy carbon electrode (GCE) in aqueous solution using cyclic voltammetry in the presence of Trimethoprim (TMP) as template molecules. Furthermore, a previous electrode modification was performed by deposition of a suspension of graphene on the electrode's surface. The performance of the imprinted and non-imprinted (NIP) films was evaluated by impedance spectroscopy (EIS) and cyclic voltammetry (CV) of a ferric solution. The molecularly imprinted film exhibited a high selectivity and sensitivity toward TMP. The sensor presented a linear range, between peak current intensity and logarithm of TMP concentration between 1.0 × 10(-6) and 1.0 × 10(-4)M. The results were accurate (with recoveries higher than 94%), precise (with standard deviations less than 5%) and the detection limit was 1.3 × 10(-7)M. The new sensor is selective, simple to construct and easy to operate. The MIP sensor was successfully applied to quantify TMP in urine samples. © 2013 Elsevier B.V. All rights reserved.

  5. Effects of kaolin particle film and imidacloprid on glassy-winged sharpshooter (Homalodisca vitripennis) (Hemiptera: Cicadellidae)populations and the prevention of spread of Xylella fastidiosa in grape

    USDA-ARS?s Scientific Manuscript database

    The glassy-winged sharpshooter (GWSS), Homalodisca coagulata (Say), was introduced into California and soon became a major pest of important agronomic, horticultural, landscape, ornamental crops and native trees in California. This pest feeds readily on grape and, in doing so, transmits X. fastidio...

  6. Validating Alternative Modes of Scoring for Coloured Progressive Matrices.

    ERIC Educational Resources Information Center

    Razel, Micha; Eylon, Bat-Sheva

    Conventional scoring of the Coloured Progressive Matrices (CPM) was compared with three methods of multiple weight scoring. The methods include: (1) theoretical weighting in which the weights were based on a theory of cognitive processing; (2) judged weighting in which the weights were given by a group of nine adult expert judges; and (3)…

  7. Multivariate statistics of the Jacobian matrices in tensor based morphometry and their application to HIV/AIDS.

    PubMed

    Lepore, Natasha; Brun, Caroline A; Chiang, Ming-Chang; Chou, Yi-Yu; Dutton, Rebecca A; Hayashi, Kiralee M; Lopez, Oscar L; Aizenstein, Howard J; Toga, Arthur W; Becker, James T; Thompson, Paul M

    2006-01-01

    Tensor-based morphometry (TBM) is widely used in computational anatomy as a means to understand shape variation between structural brain images. A 3D nonlinear registration technique is typically used to align all brain images to a common neuroanatomical template, and the deformation fields are analyzed statistically to identify group differences in anatomy. However, the differences are usually computed solely from the determinants of the Jacobian matrices that are associated with the deformation fields computed by the registration procedure. Thus, much of the information contained within those matrices gets thrown out in the process. Only the magnitude of the expansions or contractions is examined, while the anisotropy and directional components of the changes are ignored. Here we remedy this problem by computing multivariate shape change statistics using the strain matrices. As the latter do not form a vector space, means and covariances are computed on the manifold of positive-definite matrices to which they belong. We study the brain morphology of 26 HIV/AIDS patients and 14 matched healthy control subjects using our method. The images are registered using a high-dimensional 3D fluid registration algorithm, which optimizes the Jensen-Rényi divergence, an information-theoretic measure of image correspondence. The anisotropy of the deformation is then computed. We apply a manifold version of Hotelling's T2 test to the strain matrices. Our results complement those found from the determinants of the Jacobians alone and provide greater power in detecting group differences in brain structure.

  8. Efficient Numerical Diagonalization of Hermitian 3 × 3 Matrices

    NASA Astrophysics Data System (ADS)

    Kopp, Joachim

    A very common problem in science is the numerical diagonalization of symmetric or hermitian 3 × 3 matrices. Since standard "black box" packages may be too inefficient if the number of matrices is large, we study several alternatives. We consider optimized implementations of the Jacobi, QL, and Cuppen algorithms and compare them with an alytical method relying on Cardano's formula for the eigenvalues and on vector cross products for the eigenvectors. Jacobi is the most accurate, but also the slowest method, while QL and Cuppen are good general purpose algorithms. The analytical algorithm outperforms the others by more than a factor of 2, but becomes inaccurate or may even fail completely if the matrix entries differ greatly in magnitude. This can mostly be circumvented by using a hybrid method, which falls back to QL if conditions are such that the analytical calculation might become too inaccurate. For all algorithms, we give an overview of the underlying mathematical ideas, and present detailed benchmark results. C and Fortran implementations of our code are available for download from .

  9. Effect of Polydispersity on Diffusion in Random Obstacle Matrices

    NASA Astrophysics Data System (ADS)

    Cho, Hyun Woo; Kwon, Gyemin; Sung, Bong June; Yethiraj, Arun

    2012-10-01

    The dynamics of tracers in disordered matrices is of interest in a number of diverse areas of physics such as the biophysics of crowding in cells and cell membranes, and the diffusion of fluids in porous media. To a good approximation the matrices can be modeled as a collection of spatially frozen particles. In this Letter, we consider the effect of polydispersity (in size) of the matrix particles on the dynamics of tracers. We study a two dimensional system of hard disks diffusing in a sea of hard disk obstacles, for different values of the polydispersity of the matrix. We find that for a given average size and area fraction, the diffusion of tracers is very sensitive to the polydispersity. We calculate the pore percolation threshold using Apollonius diagrams. The diffusion constant, D, follows a scaling relation D˜(ϕc-ϕm)μ-β for all values of the polydispersity, where ϕm is the area fraction and ϕc is the value of ϕm at the percolation threshold.

  10. Effect of polydispersity on diffusion in random obstacle matrices.

    PubMed

    Cho, Hyun Woo; Kwon, Gyemin; Sung, Bong June; Yethiraj, Arun

    2012-10-12

    The dynamics of tracers in disordered matrices is of interest in a number of diverse areas of physics such as the biophysics of crowding in cells and cell membranes, and the diffusion of fluids in porous media. To a good approximation the matrices can be modeled as a collection of spatially frozen particles. In this Letter, we consider the effect of polydispersity (in size) of the matrix particles on the dynamics of tracers. We study a two dimensional system of hard disks diffusing in a sea of hard disk obstacles, for different values of the polydispersity of the matrix. We find that for a given average size and area fraction, the diffusion of tracers is very sensitive to the polydispersity. We calculate the pore percolation threshold using Apollonius diagrams. The diffusion constant, D, follows a scaling relation D~(φ(c)-φ(m))(μ-β) for all values of the polydispersity, where φ(m) is the area fraction and φ(c) is the value of φ(m) at the percolation threshold.

  11. Characterization of a New Heat Dissipation Matric Potential Sensor

    PubMed Central

    Matile, Luzius; Berger, Roman; Wächter, Daniel; Krebs, Rolf

    2013-01-01

    Soil moisture sensors can help to reduce the amount of water needed for irrigation. In this paper we describe the PlantCare soil moisture sensor as a new type of heat dissipation sensor, its calibration and the correction for temperature changes. With the PlantCare sensor it is possible to measure the matric potential indirectly to monitor or control irrigation. This sensor is based on thermal properties of a synthetic felt. After a defined heating phase the cooling time to a threshold temperature is a function of the water content in the synthetic felt. The water content in this porous matrix is controlled by the matric potential in the surrounding soil. Calibration measurements have shown that the sensor is most sensitive to −400 hPa and allows lower sensitivity measurements to −800 hPa. The disturbing effect of the temperature change during the measurement on the cooling time can be corrected by a linear function and the differences among sensors are minimized by a two point calibration. PMID:23344384

  12. Universal Racah matrices and adjoint knot polynomials: Arborescent knots

    NASA Astrophysics Data System (ADS)

    Mironov, A.; Morozov, A.

    2016-04-01

    By now it is well established that the quantum dimensions of descendants of the adjoint representation can be described in a universal form, independent of a particular family of simple Lie algebras. The Rosso-Jones formula then implies a universal description of the adjoint knot polynomials for torus knots, which in particular unifies the HOMFLY (SUN) and Kauffman (SON) polynomials. For E8 the adjoint representation is also fundamental. We suggest to extend the universality from the dimensions to the Racah matrices and this immediately produces a unified description of the adjoint knot polynomials for all arborescent (double-fat) knots, including twist, 2-bridge and pretzel. Technically we develop together the universality and the "eigenvalue conjecture", which expresses the Racah and mixing matrices through the eigenvalues of the quantum R-matrix, and for dealing with the adjoint polynomials one has to extend it to the previously unknown 6 × 6 case. The adjoint polynomials do not distinguish between mutants and therefore are not very efficient in knot theory, however, universal polynomials in higher representations can probably be better in this respect.

  13. Effect of chain rigidity on network architecture and deformation behavior of glassy polymer networks

    NASA Astrophysics Data System (ADS)

    Knowles, Kyler Reser

    Processing carbon fiber composite laminates creates molecular-level strains in the thermoset matrix upon curing and cooling which can lead to failures such as geometry deformations, micro-cracking, and other issues. It is known strain creation is attributed to the significant volume and physical state changes undergone by the polymer matrix throughout the curing process, though storage and relaxation of cure-induced strains remain poorly understood. This dissertation establishes two approaches to address the issue. The first establishes testing methods to simultaneously measure key volumetric properties of a carbon fiber composite laminate and its polymer matrix. The second approach considers the rigidity of the polymer matrix in regards to strain storage and relaxation mechanisms which ultimately control composite performance throughout manufacturing and use. Through the use of a non-contact, full-field strain measurement technique known as digital image correlation (DIC), we describe and implement useful experiments which quantify matrix and composite parameters necessary for simulation efforts and failure models. The methods are compared to more traditional techniques and show excellent correlation. Further, we established relationships which represent matrix-fiber compatibility in regards to critical processing constraints. The second approach involves a systematic study of epoxy-amine networks which are chemically-similar but differ in chain segment rigidity. Prior research has investigated the isomer effect of glassy polymers, showing sizeable differences in thermal, volumetric, physical, and mechanical properties. This work builds on these themes and shows the apparent isomer effect is rather an effect of chain rigidity. Indeed, it was found that structurally-dissimilar polymer networks exhibit very similar properties as a consequence of their shared average network rigidity. Differences in chain packing, as a consequence of chain rigidity, were shown to

  14. Corrosion fatigue studies on a bulk glassy Zr-based alloy under three-point bending

    NASA Astrophysics Data System (ADS)

    Grell, Daniel; Wilkin, Yannic; Gostin, Petre F.; Gebert, Annett; Kerscher, Eberhard

    2016-12-01

    Corrosion fatigue (CF) tests were carried out on bulk glassy Zr52.5Cu17.9Al10Ni14.6Ti5 (Vitreloy 105) samples under load-controlled three-point bending conditions with a load ratio of R = 0.1 in 0.01 M Na2SO4 + 0.01 M NaCl electrolyte. During cyclic testing, the bar-shaped specimens were polarized in situ at constant potentials and the current was monitored. Three different anodic potentials within the interval between the pitting potential EP and the repassivation potential ER, and three different load amplitudes were applied. In some cases, in situ microscopic observations revealed the formation of black corrosion products in the vicinity of the crack tip during anodic polarization. Fractographic analysis revealed a clear distinction between two modes of crack growth characterized by smooth dissolution induced regions on the one hand and slim fast fracture areas on the other hand. Both alternating features contributed to a broad striated corrosion fatigue fracture surface. Moreover, further fatigue tests were carried out under free corrosion conditions yielding additional information on crack initiation and crack propagation period by means of the open circuit potential (OCP) changes. Thereby, a slight increase in OCP was detected after rupture of the passive layer due to bare metal exposed to the electrolyte. The electrochemical response increased continuously according to stable crack propagation until fracture occurred. Finally, the fracture surfaces of the corrosion fatigue samples were investigated by energy dispersive X-ray with the objective of analyzing the elemental distribution after anodic dissolution. Interestingly, anodic polarization at a near repassivation potential of -50 mV vs. SCE (Saturated Calomel Electrode, E = 0.241 V vs. SHE, Standard Hydrogen Electrode) led to favorable effects on the fatigue lifetime. In conclusion, all results are conflated to a corrosion fatigue model for bulk glassy Vitreloy 105 under anodic polarization in chloride

  15. Unbiased reduced density matrices and electronic properties from full configuration interaction quantum Monte Carlo.

    PubMed

    Overy, Catherine; Booth, George H; Blunt, N S; Shepherd, James J; Cleland, Deidre; Alavi, Ali

    2014-12-28

    Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the full configuration interaction quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamic itself) and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems.

  16. Excipient foods: designing food matrices that improve the oral bioavailability of pharmaceuticals and nutraceuticals.

    PubMed

    McClements, David Julian; Xiao, Hang

    2014-07-25

    The oral bioavailability of many lipophilic bioactive agents (pharmaceuticals and nutraceuticals) is limited due to various physicochemical and physiological processes: poor release from food or drug matrices; low solubility in gastrointestinal fluids; metabolism or chemical transformation within the gastrointestinal tract; low epithelium cell permeability. The bioavailability of these agents can be improved by specifically designing food matrices that control their release, solubilization, transport, metabolism, and absorption within the gastrointestinal tract. This article discusses the impact of food composition and structure on oral bioavailability, and how this knowledge can be used to design excipient foods for improving the oral bioavailability of lipophilic bioactives. Excipient foods contain ingredients or structures that may have no bioactivity themselves, but that are able to promote the bioactivity of co-ingested bioactives. These bioactives may be lipophilic drugs in pharmaceutical preparations (such as capsules, pills, or syrups) or nutraceuticals present within food matrices (such as natural or processed foods and beverages).

  17. Interstellar matrices: the chemical composition and evolution of interstellar ices as observed by ISO.

    PubMed

    d'Hendecourt, L; Dartois, E

    2001-03-15

    Matrix isolation techniques have been developed in the early sixties as a tool for studying the spectroscopic properties of out of equilibrium species (atoms, radicals, ions, reactive molecules), embedded in rare gas inert matrices at low temperatures. Cold interstellar grains surfaces are able to condense out gas phase molecules, routinely observed by radioastronomy. These grain 'mantles' can be considered as 'interstellar matrices'. However, these matrices are not clean and unreactive. They are made principally of dirty ices whose composition must be determined carefully to assess the importance of the solid state chemistry that takes place in the Interstellar Medium. Infrared spectroscopy, both in astronomy and in the laboratory, is the unique tool to determine the chemical composition of these ices. Astronomical spectra can directly be compared with laboratory ones obtained using classical matrix isolation techniques. Furthermore, dedicated experiments may be undertaken to further improve the understanding of the basic physico-chemical processes that take place in cosmic ices.

  18. Phytosterols and their extraction from various plant matrices using supercritical carbon dioxide: a review.

    PubMed

    Uddin, Md Salim; Sarker, Md Zaidul Islam; Ferdosh, Sahena; Akanda, Md Jahurul Haque; Easmin, Mst Sabina; Bt Shamsudin, Siti Hadijah; Bin Yunus, Kamaruzzaman

    2015-05-01

    Phytosterols provide important health benefits: in particular, the lowering of cholesterol. From environmental and commercial points of view, the most appropriate technique has been searched for extracting phytosterols from plant matrices. As a green technology, supercritical fluid extraction (SFE) using carbon dioxide (CO2) is widely used to extract bioactive compounds from different plant matrices. Several studies have been performed to extract phytosterols using supercritical CO2 (SC-CO2) and this technology has clearly offered potential advantages over conventional extraction methods. However, the efficiency of SFE technology fully relies on the processing parameters, chemistry of interest compounds, nature of the plant matrices and expertise of handling. This review covers SFE technology with particular reference to phytosterol extraction using SC-CO2. Moreover, the chemistry of phytosterols, properties of supercritical fluids (SFs) and the applied experimental designs have been discussed for better understanding of phytosterol solubility in SC-CO2. © 2014 Society of Chemical Industry.

  19. Extraction of fullerenes from environmental matrices as affected by solvent characteristics and analyte concentration.

    PubMed

    Place, Benjamin J; Kleber, Markus; Field, Jennifer A

    2013-03-01

    Fullerenes possess unique chemical properties that make the isolation of these compounds from heterogeneous environmental matrices difficult. For example, previous reports indicate that toluene-based extraction techniques vary in their ability to extract C60, especially from highly carbonaceous solid matrices. Here, we examined the effects of (i) solvent type (toluene alone versus an 80:20 v/v mixture of toluene and 1-methylnaphthalene) and (ii) analyte concentration on the extraction efficiency of an isotopically labeled surrogate compound, (13)C60. The toluene/1-methylnaphthalene mixture increased fullerene extraction efficiency from carbon lampblack by a factor of five, but was not significantly different from 100% toluene when applied to wood stove soot or montmorillonite. Recovery of the (13)C60 surrogate declined with decreasing analyte concentration. The usefulness of isotopically labeled surrogate is demonstrated and the study provides a quantitative assessment regarding the dependence of fullerene extraction efficiencies on the geochemical characteristics of solid matrices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Unbiased reduced density matrices and electronic properties from full configuration interaction quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overy, Catherine; Blunt, N. S.; Shepherd, James J.

    2014-12-28

    Properties that are necessarily formulated within pure (symmetric) expectation values are difficult to calculate for projector quantum Monte Carlo approaches, but are critical in order to compute many of the important observable properties of electronic systems. Here, we investigate an approach for the sampling of unbiased reduced density matrices within the full configuration interaction quantum Monte Carlo dynamic, which requires only small computational overheads. This is achieved via an independent replica population of walkers in the dynamic, sampled alongside the original population. The resulting reduced density matrices are free from systematic error (beyond those present via constraints on the dynamicmore » itself) and can be used to compute a variety of expectation values and properties, with rapid convergence to an exact limit. A quasi-variational energy estimate derived from these density matrices is proposed as an accurate alternative to the projected estimator for multiconfigurational wavefunctions, while its variational property could potentially lend itself to accurate extrapolation approaches in larger systems.« less