Science.gov

Sample records for glial precursors clear

  1. Glial-restricted precursors as potential candidates for ALS cell-replacement therapy.

    PubMed

    Kruminis-Kaszkiel, Ewa; Wojtkiewicz, Joanna; Maksymowicz, Wojciech

    2014-01-01

    Amyotrophic lateral sclerosis is a multifactorial progressive neurodegenerative disorder leading to severe disability and death within 3-5 years after diagnosis. The main mechanisms underlying the disease progression are poorly known but according to the current knowledge, neuroinflammation is a key player in motor neurons damage. Astrocytes constitute an important cell population involved in neuroinflammatory reaction. Many studies confirmed their striking connection with motor neuron pathology and therefore they might be a target for the treatment of ALS. Cell-based therapy appears to be a promising strategy. Since direct replacement or restoring of motor neurons using various stem cells is challenging, enrichment of healthy donor-derived astrocytes appears to be a more realistic and beneficial approach. The effects of astrocytes have been examined using transplantation of glial-restricted precursors (GRPs) that represent one of the earliest precursors within the oligodendrocytic and astrocytic cell lineage. In this review, we focused on evidence-based data on astrocyte replacement transplantation therapy using GRPs in animal models of motor neuron diseases. The efficacy of GRPs engrafting is very encouraging. Furthermore, the lesson learned from application of lineage-restricted precursors in spinal cord injury (SCI) indicates that differentiation of GRPs into astrocytes before transplantation might be more advantageous in the context of axon regeneration. To sum up, the studies of glial-restricted precursors have made a step forward to ALS research and might bring breakthroughs to the field of ALS therapy in the future.

  2. Glial expression of the {beta}-Amyloid Precursor Protein (APP) in global ischemia

    SciTech Connect

    Banati, R.B.; Gehrmann, J.; Kreutzberg, G.W. ||

    1995-07-01

    The {beta}-amyloid precursor protein (APP) bears characteristics of an acute-phase protein and therefore is likely to be involved in the glial response to brain injury. In the brain, APP is rapidly synthesized by activated glial cells in response to comparatively mild neuronal lesions, e.g., a remote peripheral nerve injury. Perfusion deficits in the brain result largely in neuronal necrosis and are a common condition in elderly patients. This neuronal necrosis is accompanied by a pronounced reaction of astrocytes and microglia, which can also be observed in animal models. We have therefore studied in the rat, immunocytochemically, the induction of APP after 30 min of global ischemia caused by four-vessel occlusion. The postischemic brain injuries were examined at survival times from 12 h to 7 days. From day 3 onward, APP immunoreactivity was strongly induced in the CA{sub 1} and CA{sub 4} regions of the rat dorsal hippocampus as well as in the dorsolateral striatum. In these areas, the majority of APP-immunoreactive cells were reactive glial fibrillary acidic protein (GFAP)-positive astrocytes, as shown by double-immunofluorescence labeling for GFAP and APP. Additionally, small ramified cells, most likely activated microglia, expressed APP immunoreactivity. In contrast, in the parietal cortex, APP immunoreactivity occurred focally in clusters of activated microglia rather than in astrocytes, as demonstrated by double-immunofluorescence labeling for APP and the microglia-binding lectin Griffonia simplicifolia isolectin B{sub 4}. In conclusion, following global ischemia, APP is induced in reactive glial cells with spatial differences in the distribution pattern of APP induction in actrocytes and microglia. 51 refs., 4 figs.

  3. Expression profiling of Aldh1l1-precursors in the developing spinal cord reveals glial lineage-specific genes and direct Sox9-Nfe2l1 interactions.

    PubMed

    Molofsky, Anna V; Glasgow, Stacey M; Chaboub, Lesley S; Tsai, Hui-Hsin; Murnen, Alice T; Kelley, Kevin W; Fancy, Stephen P J; Yuen, Tracy J; Madireddy, Lohith; Baranzini, Sergio; Deneen, Benjamin; Rowitch, David H; Oldham, Michael C

    2013-09-01

    Developmental regulation of gliogenesis in the mammalian CNS is incompletely understood, in part due to a limited repertoire of lineage-specific genes. We used Aldh1l1-GFP as a marker for gliogenic radial glia and later-stage precursors of developing astrocytes and performed gene expression profiling of these cells. We then used this dataset to identify candidate transcription factors that may serve as glial markers or regulators of glial fate. Our analysis generated a database of developmental stage-related markers of Aldh1l1+ cells between murine embryonic day 13.5-18.5. Using these data we identify the bZIP transcription factor Nfe2l1 and demonstrate that it promotes glial fate under direct Sox9 regulatory control. Thus, this dataset represents a resource for identifying novel regulators of glial development.

  4. Glial versus melanocyte cell fate choice: Schwann cell precursors as a cellular origin of melanocytes.

    PubMed

    Adameyko, Igor; Lallemend, Francois

    2010-09-01

    Melanocytes and Schwann cells are derived from the multipotent population of neural crest cells. Although both cell types were thought to be generated through completely distinct pathways and molecular processes, a recent study has revealed that these different cell types are intimately interconnected far beyond previously postulated limits in that they share a common post-neural crest progenitor, i.e. the Schwann cell precursor. This finding raises interesting questions about the lineage relationships of hitherto unrelated cell types such as melanocytes and Schwann cells, and may provide clinical insights into mechanisms of pigmentation disorders and for cancer involving Schwann cells and melanocytes.

  5. Glial-Restricted Precursors Protect Neonatal Brain Slices from Hypoxic-Ischemic Cell Death Without Direct Tissue Contact.

    PubMed

    Sweda, Romy; Phillips, Andre W; Marx, Joel; Johnston, Michael V; Wilson, Mary Ann; Fatemi, Ali

    2016-07-01

    Glial-Restricted Precursors (GRPs) are tripotential progenitors that have been shown to exhibit beneficial effects in several preclinical models of neurological disorders, including neonatal brain injury. The mechanisms of action of these cells, however, require further study, as do clinically relevant questions such as timing and route of cell administration. Here, we explored the effects of GRPs on neonatal hypoxia-ischemia during acute and subacute stages, using an in vitro transwell co-culture system with organotypic brain slices exposed to oxygen-glucose deprivation (OGD). OGD-exposed slices that were then co-cultured with GRPs without direct cell contact had decreased tissue injury and cortical cell death, as evaluated by lactate dehydrogenase (LDH) release and propidium iodide (PI) staining. This effect was more pronounced when cells were added during the subacute phase of the injury. Furthermore, GRPs reduced the amount of glutamate in the slice supernatant and changed the proliferation pattern of endogenous progenitor cells in brain slices. In summary, we show that GRPs exert a neuroprotective effect on neonatal hypoxia-ischemia without the need for direct cell-cell contact, thus confirming the rising view that beneficial actions of stem cells are more likely attributable to trophic or immunomodulatory support rather than to long-term integration. PMID:27149035

  6. A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin.

    PubMed

    Hunt, David P J; Morris, Paul N; Sterling, Jane; Anderson, Jane A; Joannides, Alexis; Jahoda, Colin; Compston, Alastair; Chandran, Siddharthan

    2008-01-01

    Skin-derived precursor cells (SKPs) are multipotent neural crest-related stem cells that grow as self-renewing spheres and are capable of generating neurons and myelinating glial cells. SKPs are of clinical interest because they are accessible and potentially autologous. However, although spheres can be readily isolated from embryonic and neonatal skin, SKP frequency falls away sharply in adulthood, and primary sphere generation from adult human skin is more problematic. In addition, the culture-initiating cell population is undefined and heterogeneous, limiting experimental studies addressing important aspects of these cells such as the behavior of endogenous precursors in vivo and the molecular mechanisms of neural generation. Using a combined fate-mapping and microdissection approach, we identified and characterized a highly enriched niche of neural crest-derived sphere-forming cells within the dermal papilla of the hair follicle of adult skin. We demonstrated that the dermal papilla of the rodent vibrissal follicle is 1,000-fold enriched for sphere-forming neural crest-derived cells compared with whole facial skin. These "papillaspheres" share a phenotypic and developmental profile similar to that of SKPs, can be readily expanded in vitro, and are able to generate both neuronal and glial cells in response to appropriate cues. We demonstrate that papillaspheres can be efficiently generated and expanded from adult human facial skin by microdissection of a single hair follicle. This strategy of targeting a highly enriched niche of sphere-forming cells provides a novel and efficient method for generating neuronal and glial cells from an accessible adult somatic source that is both defined and minimally invasive.

  7. A highly enriched niche of precursor cells with neuronal and glial potential within the hair follicle dermal papilla of adult skin.

    PubMed

    Hunt, David P J; Morris, Paul N; Sterling, Jane; Anderson, Jane A; Joannides, Alexis; Jahoda, Colin; Compston, Alastair; Chandran, Siddharthan

    2008-01-01

    Skin-derived precursor cells (SKPs) are multipotent neural crest-related stem cells that grow as self-renewing spheres and are capable of generating neurons and myelinating glial cells. SKPs are of clinical interest because they are accessible and potentially autologous. However, although spheres can be readily isolated from embryonic and neonatal skin, SKP frequency falls away sharply in adulthood, and primary sphere generation from adult human skin is more problematic. In addition, the culture-initiating cell population is undefined and heterogeneous, limiting experimental studies addressing important aspects of these cells such as the behavior of endogenous precursors in vivo and the molecular mechanisms of neural generation. Using a combined fate-mapping and microdissection approach, we identified and characterized a highly enriched niche of neural crest-derived sphere-forming cells within the dermal papilla of the hair follicle of adult skin. We demonstrated that the dermal papilla of the rodent vibrissal follicle is 1,000-fold enriched for sphere-forming neural crest-derived cells compared with whole facial skin. These "papillaspheres" share a phenotypic and developmental profile similar to that of SKPs, can be readily expanded in vitro, and are able to generate both neuronal and glial cells in response to appropriate cues. We demonstrate that papillaspheres can be efficiently generated and expanded from adult human facial skin by microdissection of a single hair follicle. This strategy of targeting a highly enriched niche of sphere-forming cells provides a novel and efficient method for generating neuronal and glial cells from an accessible adult somatic source that is both defined and minimally invasive. PMID:17901404

  8. NG2-expressing glial precursor cells are a new potential oligodendroglioma cell initiating population in N-ethyl-N-nitrosourea-induced gliomagenesis.

    PubMed

    Briançon-Marjollet, Anne; Balenci, Laurent; Fernandez, Manuel; Estève, François; Honnorat, Jérôme; Farion, Régine; Beaumont, Marine; Barbier, Emmanuel; Rémy, Chantal; Baudier, Jacques

    2010-10-01

    Gliomas are the most common primary brain tumor affecting human adults and remain a therapeutic challenge because cells of origin are still unknown. Here, we investigated the cellular origin of low-grade gliomas in a rat model based on transplacental exposure to N-ethyl-N-nitrosourea (ENU). Longitudinal magnetic resonance imaging coupled to immunohistological and immunocytochemical analyses were used to further characterize low-grade rat gliomas at different stages of evolution. We showed that early low-grade gliomas have characteristics of oligodendroglioma-like tumors and exclusively contain NG2-expressing slow dividing precursor cells, which express early markers of oligodendroglial lineage. These tumor-derived precursors failed to fully differentiate into oligodendrocytes and exhibited multipotential abilities in vitro. Moreover, a few glioma NG2+ cells are resistant to radiotherapy and may be responsible for tumor recurrence, frequently observed in humans. Overall, these findings suggest that transformed multipotent NG2 glial precursor cell may be a potential cell of origin in the genesis of rat ENU-induced oligodendroglioma-like tumors. This work may open up new perspectives for understanding biology of human gliomas.

  9. Glial Restricted Precursor Cell Transplant with Cyclic Adenosine Monophosphate Improved Some Autonomic Functions but Resulted in a Reduced Graft Size after Spinal Cord Contusion Injury in Rats

    PubMed Central

    Nout, Yvette S.; Culp, Esther; Schmidt, Markus H.; Tovar, C. Amy; Pröschel, Christoph; Mayer-Pröschel, Margot; Noble, Mark D.; Beattie, Michael S.; Bresnahan, Jacqueline C.

    2010-01-01

    Transplantation of glial restricted precursor (GRP) cells has been shown to reduce glial scarring after spinal cord injury (SCI) and, in combination with neuronal restricted precursor (NRP) cells or enhanced expression of neurotrophins, to improve recovery of function after SCI. We hypothesized that combining GRP transplants with rolipram and cAMP would improve functional recovery, similar to that seen after combining Schwann cell transplants with increasing cAMP. A short term study, 1)uninjured control, 2)SCI+vehicle, and 3)SCI+cAMP, showed that spinal cord [cAMP] were increased 14 days after SCI. We used 51 male rats subjected to a thoracic SCI for a 12-week survival study: 1)SCI+vehicle, 2)SCI+GRP, 3)SCI+cAMP, 4)SCI+GRP+cAMP, and 5)uninjured endpoint age-matched control (AM). Rolipram was administered for 2 weeks after SCI. At 9 days after SCI, GRP transplantation and injection of dibutyryl-cAMP into the spinal cord were performed. GRP cells survived, differentiated, and formed extensive transplants that were well integrated with host tissue. Presence of GRP cells increased the amount of tissue in the lesion; however, cAMP reduced the graft size. White matter sparing at the lesion epicenter was not affected. Serotonergic input to the lumbosacral spinal cord was not affected by treatment, but the amount of serotonin immediately caudal to the lesion was reduced in the cAMP groups. Using telemetric monitoring of corpus spongiosum penis pressure we show that the cAMP groups regained the same number of micturitions per 24 hrs when compared to the AM group, however, the frequency of peak pressures was increased in these groups compared to the AM group. In contrast, the GRP groups had similar frequency of peak pressures compared to baseline and the AM group. Animals that received GRP cells regained the same number of erectile events per 24 hrs compared to baseline and the AM group. Since cAMP reduced the GRP transplant graft, and some modest positive effects were seen

  10. Transplanted astrocytes derived from BMP- or CNTF-treated glial-restricted precursors have opposite effects on recovery and allodynia after spinal cord injury

    PubMed Central

    Davies, Jeannette E; Pröschel, Christoph; Zhang, Ningzhe; Noble, Mark; Mayer-Pröschel, Margot; Davies, Stephen JA

    2008-01-01

    Background Two critical challenges in developing cell-transplantation therapies for injured or diseased tissues are to identify optimal cells and harmful side effects. This is of particular concern in the case of spinal cord injury, where recent studies have shown that transplanted neuroepithelial stem cells can generate pain syndromes. Results We have previously shown that astrocytes derived from glial-restricted precursor cells (GRPs) treated with bone morphogenetic protein-4 (BMP-4) can promote robust axon regeneration and functional recovery when transplanted into rat spinal cord injuries. In contrast, we now show that transplantation of GRP-derived astrocytes (GDAs) generated by exposure to the gp130 agonist ciliary neurotrophic factor (GDAsCNTF), the other major signaling pathway involved in astrogenesis, results in failure of axon regeneration and functional recovery. Moreover, transplantation of GDACNTF cells promoted the onset of mechanical allodynia and thermal hyperalgesia at 2 weeks after injury, an effect that persisted through 5 weeks post-injury. Delayed onset of similar neuropathic pain was also caused by transplantation of undifferentiated GRPs. In contrast, rats transplanted with GDAsBMP did not exhibit pain syndromes. Conclusion Our results show that not all astrocytes derived from embryonic precursors are equally beneficial for spinal cord repair and they provide the first identification of a differentiated neural cell type that can cause pain syndromes on transplantation into the damaged spinal cord, emphasizing the importance of evaluating the capacity of candidate cells to cause allodynia before initiating clinical trials. They also confirm the particular promise of GDAs treated with bone morphogenetic protein for spinal cord injury repair. PMID:18803859

  11. A combination therapy of neural and glial restricted precursor cells and chronic quipazine treatment paired with passive cycling promotes quipazine-induced stepping in adult spinalized rats

    PubMed Central

    Shumsky, Jed S.

    2015-01-01

    Introduction In order to develop optimal treatments to promote recovery from complete spinal cord injury (SCI), we examined the combination of: (1) a cellular graft of neural and glial restricted precursor (NRP/GRP) cells, (2) passive exercise, and (3) chronic quipazine treatment on behavioral outcomes and compared them with the individual treatment elements. NRP/GRP cells were transplanted at the time of spinalization. Methods Daily passive exercise began 1 week after injury to give sufficient time for the animals to recover. Chronic quipazine administration began 2 weeks after spinalization to allow for sufficient receptor upregulation permitting the expression of its behavioral effects. Behavioral measures consisted of the Basso, Beattie, and Bresnahan (BBB) locomotor score and percent of weight-supported steps and hops on a treadmill. Results Rats displayed an increased response to quipazine (BBB ≥ 9) beginning at 8 weeks post-injury in all the animals that received the combination therapy. This increase in BBB score was persistent through the end of the study (12 weeks post-injury). Conclusion Unlike the individual treatment groups which never achieved weight support, the combination therapy animals were able to perform uncoordinated weight-supported stepping without a body weight support system while on a moving treadmill (6.5 m per minute) and were capable of supporting their own weight in stance during open field locomotion testing. No regeneration of descending serotonergic projections into and through the lesion cavity was observed. Furthermore, these results are a testament to the capacity of the lumbar spinal cord, when properly stimulated, to sustain functioning locomotor circuitry following complete SCI. PMID:25329574

  12. Transcriptional regulation of glial cell specification.

    PubMed

    Ragone, Gianluca; Van De Bor, Véronique; Sorrentino, Sandro; Kammerer, Martial; Galy, Anne; Schenck, Annette; Bernardoni, Roberto; Miller, Alita A; Roy, Nivedita; Giangrande, Angela

    2003-03-01

    Neuronal differentiation relies on proneural factors that also integrate positional information and contribute to the specification of the neuronal type. The molecular pathway triggering glial specification is not understood yet. In Drosophila, all lateral glial precursors and glial-promoting activity have been identified, which provides us with a unique opportunity to dissect the regulatory pathways controlling glial differentiation and specification. Although glial lineages are very heterogeneous with respect to position, time of differentiation, and lineage tree, they all express and require two homologous genes, glial cell deficient/glial cell missing (glide/gcm) and glide2, that act in concert, with glide/gcm constituting the major glial-promoting factor. Here, we show that glial specification resides in glide/gcm transcriptional regulation. The glide/gcm promoter contains lineage-specific elements as well as quantitative and turmoil elements scattered throughout several kilobases. Interestingly, there is no correlation between a specific regulatory element and the type of glial lineage. Thus, the glial-promoting factor acts as a naive switch-on button that triggers gliogenesis in response to multiple pathways converging onto its promoter. Both negative and positive regulation are required to control glide/gcm expression, indicating that gliogenesis is actively repressed in some neural lineages. PMID:12618139

  13. Intrinsic dorsoventral patterning and extrinsic EGFR signaling genes control glial cell development in the Drosophila nervous system.

    PubMed

    Kim, H J; Ahn, H J; Lee, S; Kim, J H; Park, J; Jeon, S-H; Kim, S H

    2015-10-29

    Dorsoventral patterning and epidermal growth factor receptor (EGFR) signaling genes are essential for determining neural identity and differentiation of the Drosophila nervous system. Their role in glial cell development in the Drosophila nervous system is not clearly established. Our study demonstrated that the dorsoventral patterning genes, vnd, ind, and msh, are intrinsically essential for the proper expression of a master glial cell regulator, gcm, and a differentiation gene, repo, in the lateral glia. In addition, we showed that esg is particularly required for their expression in the peripheral glia. These results indicate that the dorsoventral patterning and EGFR signaling genes are essential for identity determination and differentiation of the lateral glia by regulating proper expression of gcm and repo in the lateral glia from the early glial development. In contrast, overexpression of vnd, msh, spi, and Egfr genes repressed the expression of Repo in the ventral neuroectoderm, indicating that maintenance of correct columnar identity along the dorsoventral axis by proper expression of these genes is essential for restrictive formation of glial precursor cells in the lateral neuroectoderm. Therefore, the dorsoventral patterning and EGFR signaling genes play essential roles in correct identity determination and differentiation of lateral glia in the Drosophila nervous system.

  14. Intrinsic dorsoventral patterning and extrinsic EGFR signaling genes control glial cell development in the Drosophila nervous system.

    PubMed

    Kim, H J; Ahn, H J; Lee, S; Kim, J H; Park, J; Jeon, S-H; Kim, S H

    2015-10-29

    Dorsoventral patterning and epidermal growth factor receptor (EGFR) signaling genes are essential for determining neural identity and differentiation of the Drosophila nervous system. Their role in glial cell development in the Drosophila nervous system is not clearly established. Our study demonstrated that the dorsoventral patterning genes, vnd, ind, and msh, are intrinsically essential for the proper expression of a master glial cell regulator, gcm, and a differentiation gene, repo, in the lateral glia. In addition, we showed that esg is particularly required for their expression in the peripheral glia. These results indicate that the dorsoventral patterning and EGFR signaling genes are essential for identity determination and differentiation of the lateral glia by regulating proper expression of gcm and repo in the lateral glia from the early glial development. In contrast, overexpression of vnd, msh, spi, and Egfr genes repressed the expression of Repo in the ventral neuroectoderm, indicating that maintenance of correct columnar identity along the dorsoventral axis by proper expression of these genes is essential for restrictive formation of glial precursor cells in the lateral neuroectoderm. Therefore, the dorsoventral patterning and EGFR signaling genes play essential roles in correct identity determination and differentiation of lateral glia in the Drosophila nervous system. PMID:26318336

  15. Glial cells generate neurons: the role of the transcription factor Pax6.

    PubMed

    Heins, Nico; Malatesta, Paolo; Cecconi, Francesco; Nakafuku, Masato; Tucker, Kerry Lee; Hack, Michael A; Chapouton, Prisca; Barde, Yves-Alain; Götz, Magdalena

    2002-04-01

    Radial glial cells, ubiquitous throughout the developing CNS, guide radially migrating neurons and are the precursors of astrocytes. Recent evidence indicates that radial glial cells also generate neurons in the developing cerebral cortex. Here we investigated the role of the transcription factor Pax6 expressed in cortical radial glia. We showed that radial glial cells isolated from the cortex of Pax6 mutant mice have a reduced neurogenic potential, whereas the neurogenic potential of non-radial glial precursors is not affected. Consistent with defects in only one neurogenic lineage, the number of neurons in the Pax6 mutant cortex in vivo is reduced by half. Conversely, retrovirally mediated Pax6 expression instructs neurogenesis even in astrocytes from postnatal cortex in vitro. These results demonstrated an important role of Pax6 as intrinsic fate determinant of the neurogenic potential of glial cells.

  16. Distribution and Development of Peripheral Glial Cells in the Human Fetal Cochlea

    PubMed Central

    Locher, Heiko; de Groot, John C. M. J.; van Iperen, Liesbeth; Huisman, Margriet A.; Frijns, Johan H. M.; Chuva de Sousa Lopes, Susana M.

    2014-01-01

    The adult human cochlea contains various types of peripheral glial cells that envelop or myelinate the three different domains of the spiral ganglion neurons: the central processes in the cochlear nerve, the cell bodies in the spiral ganglia, and the peripheral processes in the osseous spiral lamina. Little is known about the distribution, lineage separation and maturation of these peripheral glial cells in the human fetal cochlea. In the current study, we observed peripheral glial cells expressing SOX10, SOX9 and S100B as early as 9 weeks of gestation (W9) in all three neuronal domains. We propose that these cells are the common precursor to both mature Schwann cells and satellite glial cells. Additionally, the peripheral glial cells located along the peripheral processes expressed NGFR, indicating a phenotype distinct from the peripheral glial cells located along the central processes. From W12, the spiral ganglion was gradually populated by satellite glial cells in a spatiotemporal gradient. In the cochlear nerve, radial sorting was accomplished by W22 and myelination started prior to myelination of the peripheral processes. The developmental dynamics of the peripheral glial cells in the human fetal cochlea is in support of a neural crest origin. Our study provides the first overview of the distribution and maturation of peripheral glial cells in the human fetal cochlea from W9 to W22. PMID:24498246

  17. Functional N-methyl-D-aspartate receptors in O-2A glial precursor cells: a critical role in regulating polysialic acid-neural cell adhesion molecule expression and cell migration

    PubMed Central

    1996-01-01

    The capacity for long-distance migration of the oligodendrocyte precursor cell, oligodendrocyte-type 2 astrocyte (O-2A), is essential for myelin formation. To study the molecular mechanisms that control this process, we used an in vitro migration assay that uses neurohypophysial explants. We provide evidence that O-2A cells in these preparations express functional N-methyl-D-aspartate (NMDA) receptors, most likely as homomeric complexes of the NR1 subunit. We show that NMDA evokes an increase in cytosolic Ca2+ that can be blocked by the NMDA receptor antagonist AP-5 and by Mg2+. Blocking the activity of these receptors dramatically diminished O-2A cell migration from explants. We also show that NMDA receptor activity is necessary for the expression by O-2A cells of the highly sialylated polysialic acid- neural cell adhesion molecule (PSA-NCAM) that is required for their migration. Thus, glutamate or glutamate receptor ligands may regulate O- 2A cell migration by modulating expression of PSA-NCAM. These studies demonstrate how interactions between ionotropic receptors, intracellular signaling, and cell adhesion molecule expression influence cell surface properties, which in turn are critical determinants of cell migration. PMID:8978823

  18. Modeling cognition and disease using human glial chimeric mice.

    PubMed

    Goldman, Steven A; Nedergaard, Maiken; Windrem, Martha S

    2015-08-01

    As new methods for producing and isolating human glial progenitor cells (hGPCs) have been developed, the disorders of myelin have become especially compelling targets for cell-based therapy. Yet as animal modeling of glial progenitor cell-based therapies has progressed, it has become clear that transplanted hGPCs not only engraft and expand within murine hosts, but dynamically outcompete the resident progenitors so as to ultimately dominate the host brain. The engrafted human progenitor cells proceed to generate parenchymal astrocytes, and when faced with a hypomyelinated environment, oligodendrocytes as well. As a result, the recipient brains may become inexorably humanized with regards to their resident glial populations, yielding human glial chimeric mouse brains. These brains provide us a fundamentally new tool by which to assess the species-specific attributes of glia in modulating human cognition and information processing. In addition, the cellular humanization of these brains permits their use in studying glial infectious and inflammatory disorders unique to humans, and the effects of those disorders on the glial contributions to cognition. Perhaps most intriguingly, by pairing our ability to construct human glial chimeras with the production of patient-specific hGPCs derived from pluripotential stem cells, we may now establish mice in which a substantial proportion of resident glia are both human and disease-derived. These mice in particular may provide us new opportunities for studying the human-specific contributions of glia to psychopathology, as well as to higher cognition. As such, the assessment of human glial chimeric mice may provide us new insight into the species-specific contributions of glia to human cognitive evolution, as well as to the pathogenesis of human neurological and neuropsychiatric disease.

  19. Glial control of neuronal development.

    PubMed

    Lemke, G

    2001-01-01

    Reciprocal interactions between differentiating glial cells and neurons define the course of nervous system development even before the point at which these two cell types become definitively recognizable. Glial cells control the survival of associated neurons in both Drosophila and mammals, but this control is dependent on the prior neuronal triggering of glial cell fate commitment and trophic factor expression. In mammals, the growth factor neuregulin-1 and its receptors of the ErbB family play crucial roles in both events. Similarly, early differentiating neurons and their associated glia rely on reciprocal signaling to establish the basic axon scaffolds from which neuronal connections evolve. The importance of this interactive signaling is illustrated by the action of glial transcription factors and of glial axon guidance cues such as netrin and slit, which together regulate the commissural crossing of pioneer axons at the neural midline. In these and related events, the defining principle is one of mutually reinforced and mutually dependent signaling that occurs in a network of developing neurons and glia.

  20. The purinergic system and glial cells: emerging costars in nociception.

    PubMed

    Magni, Giulia; Ceruti, Stefania

    2014-01-01

    It is now well established that glial cells not only provide mechanical and trophic support to neurons but can directly contribute to neurotransmission, for example, by release and uptake of neurotransmitters and by secreting pro- and anti-inflammatory mediators. This has greatly changed our attitude towards acute and chronic disorders, paving the way for new therapeutic approaches targeting activated glial cells to indirectly modulate and/or restore neuronal functions. A deeper understanding of the molecular mechanisms and signaling pathways involved in neuron-to-glia and glia-to-glia communication that can be pharmacologically targeted is therefore a mandatory step toward the success of this new healing strategy. This holds true also in the field of pain transmission, where the key involvement of astrocytes and microglia in the central nervous system and satellite glial cells in peripheral ganglia has been clearly demonstrated, and literally hundreds of signaling molecules have been identified. Here, we shall focus on one emerging signaling system involved in the cross talk between neurons and glial cells, the purinergic system, consisting of extracellular nucleotides and nucleosides and their membrane receptors. Specifically, we shall summarize existing evidence of novel "druggable" glial purinergic targets, which could help in the development of innovative analgesic approaches to chronic pain states. PMID:25276794

  1. Honeybee retinal glial cells transform glucose and supply the neurons with metabolic substrate

    SciTech Connect

    Tsacopoulos, M.; Evequoz-Mercier, V.; Perrottet, P.; Buchner, E.

    1988-11-01

    The retina of the honeybee drone is a nervous tissue in which glial cells and photoreceptor cells (sensory neurons) constitute two distinct metabolic compartments. Retinal slices incubated with 2-deoxy(/sup 3/H)glucose convert this glucose analogue to 2-deoxy(/sup 3/H)glucose 6-phosphate, but this conversion is made only in the glial cells. Hence, glycolysis occurs only in glial cells. In contrast, the neurons consume O/sub 2/ and this consumption is sustained by the hydrolysis of glycogen, which is contained in large amounts in the glia. During photostimulation the increased oxidative metabolism of the neurons is sustained by a higher supply of carbohydrates from the glia. This clear case of metabolic interaction between neurons and glial cells supports Golgi's original hypothesis, proposed nearly 100 years ago, about the nutritive function of glial cells in the nervous system.

  2. Honeybee Retinal Glial Cells Transform Glucose and Supply the Neurons with Metabolic Substrate

    NASA Astrophysics Data System (ADS)

    Tsacopoulos, M.; Evequoz-Mercier, V.; Perrottet, P.; Buchner, E.

    1988-11-01

    The retina of the honeybee drone is a nervous tissue in which glial cells and photoreceptor cells (sensory neurons) constitute two distinct metabolic compartments. Retinal slices incubated with 2-deoxy[3H]glucose convert this glucose analogue to 2-deoxy[3H]glucose 6-phosphate, but this conversion is made only in the glial cells. Hence, glycolysis occurs only in glial cells. In contrast, the neurons consume O2 and this consumption is sustained by the hydrolysis of glycogen, which is contained in large amounts in the glia. During photostimulation the increased oxidative metabolism of the neurons is sustained by a higher supply of carbohydrates from the glia. This clear case of metabolic interaction between neurons and glial cells supports Golgi's original hypothesis, proposed nearly 100 years ago, about the nutritive function of glial cells in the nervous system.

  3. Honeybee retinal glial cells transform glucose and supply the neurons with metabolic substrate.

    PubMed

    Tsacopoulos, M; Evêquoz-Mercier, V; Perrottet, P; Buchner, E

    1988-11-01

    The retina of the honeybee drone is a nervous tissue in which glial cells and photoreceptor cells (sensory neurons) constitute two distinct metabolic compartments. Retinal slices incubated with 2-deoxy[3H]glucose convert this glucose analogue to 2-deoxy[3H]glucose 6-phosphate, but this conversion is made only in the glial cells. Hence, glycolysis occurs only in glial cells. In contrast, the neurons consume O2 and this consumption is sustained by the hydrolysis of glycogen, which is contained in large amounts in the glia. During photostimulation the increased oxidative metabolism of the neurons is sustained by a higher supply of carbohydrates from the glia. This clear case of metabolic interaction between neurons and glial cells supports Golgi's original hypothesis, proposed nearly 100 years ago, about the nutritive function of glial cells in the nervous system.

  4. Early postnatal development of glial cells in the canine cervical spinal cord.

    PubMed

    Lord, K E; Duncan, I D

    1987-11-01

    To study qualitative and quantitative changes in the glial cell population of young postnatal dogs, the cervical spinal cords of 20 beagle pups, ranging in age from 1 to 28 days, were prepared for light and electron microscopy. Glial cells in the lateral corticospinal tract were classified and quantified directly on the electron microscope. Quantification was performed by means of a stereological method designed to correct for sampling bias, and glia were classified according to morphological criteria as immature glial cell precursors, light and dark oligodendrocytes, astrocytes, and microglia. Glial cell precursors, which include undifferentiated glioblasts, oligodendroblasts, and astroblasts, predominated in the first few days after birth, constituting 43% of the glial cell population, and then declined to less than 5% by 28 days. Light and dark oligodendrocytes differed morphologically in their electron density and the appearance of their organelles. Light oligodendrocytes increased slightly prior to myelination, and then declined, whereas dark oligodendrocytes continued to increase throughout the 4-week period and became the predominant cell type at 28 days (66%). In contrast to the oligodendroglial population, the sizes of the astroglial and microglial cell populations were relatively stable. This study shows that the population of immature glial cell precursors, abundant at birth in the lateral corticospinal tract, appear to be differentiating primarily into oligodendroglia, because this population exhibits a rapid increase in size, and relatively little change occurs in the astrocyte population. The trends in glial cell development in the dog are similar to those reported for rodents, although there may be some variation in the maturation and activity of oligodendrocytes.

  5. Methylphenidate Increases Glutamate Uptake in Bergmann Glial Cells.

    PubMed

    Guillem, Alain M; Martínez-Lozada, Zila; Hernández-Kelly, Luisa C; López-Bayghen, Esther; López-Bayghen, Bruno; Calleros, Oscar A; Campuzano, Marco R; Ortega, Arturo

    2015-11-01

    Glutamate, the main excitatory transmitter in the vertebrate brain, exerts its actions through the activation of specific membrane receptors present in neurons and glial cells. Over-stimulation of glutamate receptors results in neuronal death, phenomena known as excitotoxicity. A family of glutamate uptake systems, mainly expressed in glial cells, removes the amino acid from the synaptic cleft preventing an excessive glutamatergic stimulation and thus neuronal damage. Autism spectrum disorders comprise a group of syndromes characterized by impaired social interactions and anxiety. One or the most common drugs prescribed to treat these disorders is Methylphenidate, known to increase dopamine extracellular levels, although it is not clear if its sedative effects are related to a plausible regulation of the glutamatergic tone via the regulation of the glial glutamate uptake systems. To gain insight into this possibility, we used the well-established model system of cultured chick cerebellum Bergmann glia cells. A time and dose-dependent increase in the activity and protein levels of glutamate transporters was detected upon Methylphenidate exposure. Interestingly, this increase is the result of an augmentation of both the synthesis as well as the insertion of these protein complexes in the plasma membrane. These results favour the notion that glial cells are Methylphenidate targets, and that by these means could regulate dopamine turnover.

  6. Physiology of transformed glial cells.

    PubMed

    Brismar, T

    1995-11-01

    Much of our present knowledge of glial cell function stems from studies of glioma cell lines, both rodent (C6, C6 polyploid, and TR33B) and human (1321N1, 138MG, D384, R-111, T67, Tp-276MG, Tp-301MG, Tp-483MG, Tp-387MG, U-118MG, U-251MG, U-373MG, U-787MG, U-1242MG, and UC-11MG). New methods such as patch clamp and Ca2+ imaging have lead to rapid progress the last few years in our knowledge about glial cells, where an unexpected presence and diversity of receptors and ion channels have emerged. Basic mechanisms related to membrane potential and K+ transport and the presence of voltage gated ion channels (Na+, inwardly rectifying K+, Ca(2+)-activated K+, Ca2+, and Cl- channels) have been identified. Receptor function and intracellular signaling for glutamate, acetylcholine, histamine, serotonin, cathecolamines, and a large number of neuropeptides (bradykinin, cholecystokinin, endothelin, opioids, and tachykinins) have been characterized. Such studies are facilitated in cell lines which offer a more homogenous material than primary cultures. Although the expression of ion channels and receptors vary considerably between different cell lines and comparative studies are rare, a few differences (compared to astrocytes in primary culture) have been identified which may turn out to be characteristic for glioma cells. Future identification of specific markers for receptors on glial and glioma cells related to cell type and growth properties may have great potential in clinical diagnosis and therapy. PMID:8586460

  7. Sodium channels in axons and glial cells of the optic nerve of Necturus maculosa

    PubMed Central

    1979-01-01

    Experiments investigating both the binding of radioactively labelled saxitoxin (STX) and the electrophysiological response to drugs that increase the sodium permeability of excitable membranes were conducted in an effort to detect sodium channels in glial cells of the optic nerve of Necturus maculosa, the mudpuppy. Glial cells in nerves from chronically enucleated animals, which lack optic nerve axons, show no saturable uptake of STX whereas a saturable uptake is clearly present in normal optic nerves. The normal nerve is depolarized by aconitine, batrachotoxin, and veratridine (10(-6)-10(-5) M), whereas the all-glial preparation is only depolarized by veratridine and at concentrations greater than 10(-3) M. Unlike the depolarization caused by veratridine in normal nerves, the response in the all-glial tissue is not blocked by tetrodotoxin nor enhanced by scorpion venom (Leiurus quinquestriatus). In glial cells of the normal nerve, where axons are also present, the addition of 10(-5) M veratridine does lead to a transient depolarization; however, it is much briefer than the axonal response to veratridine in this same tissue. This glial response to veratridine could be caused by the efflux of K+ from the drug- depolarized axons, and is similar to the glial response to extracellular K+ accumulation resulting from action potentials in the axon. PMID:512633

  8. Nerve impulses increase glial intercellular permeability.

    PubMed

    Marrero, H; Orkand, R K

    1996-03-01

    Coordinating the activity of neurons and their satellite glial cells requires mechanisms by which glial cells detect neuronal activity and change their properties as a result. This study monitors the intercellular diffusion of the fluorescent dye Lucifer Yellow (LY), following its injection into glial cells of the frog optic nerve, and demonstrates that nerve impulses increase the permeability of interglial gap junctions. Consequently, the spatial buffer capacity of the neuroglial cell syncytium for potassium, other ions, and small molecules will be enhanced; this may facilitate glial function in maintaining homeostasis of the neuronal microenvironment. PMID:8833199

  9. Review: Glial lineages and myelination in the central nervous system

    PubMed Central

    COMPSTON, ALASTAIR; ZAJICEK, JOHN; SUSSMAN, JON; WEBB, ANNA; HALL, GILLIAN; MUIR, DAVID; SHAW, CHRISTOPHER; WOOD, ANDREW; SCOLDING, NEIL

    1997-01-01

    Oligodendrocytes, derived from stem cell precursors which arise in subventricular zones of the developing central nervous system, have as their specialist role the synthesis and maintenance of myelin. Astrocytes contribute to the cellular architecture of the central nervous system and act as a source of growth factors and cytokines; microglia are bone-marrow derived macrophages which function as primary immunocompetent cells in the central nervous system. Myelination depends on the establishment of stable relationships between each differentiated oligodendrocyte and short segments of several neighbouring axons. There is growing evidence, especially from studies of glial cell implantation, that oligodendrocyte precursors persist in the adult nervous system and provide a limited capacity for the restoration of structure and function in myelinated pathways damaged by injury or disease. PMID:9061442

  10. Glial Cells are Involved in Itch Processing.

    PubMed

    Andersen, Hjalte H; Arendt-Nielsen, Lars; Gazerani, Parisa

    2016-08-23

    Recent discoveries in itch neurophysiology include itch-selective neuronal pathways, the clinically relevant non-histaminergic pathway, and elucidation of the notable similarities and differences between itch and pain. Potential involvement of glial cells in itch processing and the possibility of glial modulation of chronic itch have recently been identified, similarly to the established glial modulation of pain processing. This review outlines the similarities and differences between itch and pain, and how different types of central and peripheral glial cells may be differentially involved in the development of chronic itch akin to their more investigated role in chronic pain. Improvements are needed in the management of chronic itch, and future basic and interventional studies on glial activity modulation would both enhance our understanding of mechanisms underlying the chronification of itch and provide novel opportunities for the prevention or treatment of this debilitating and common condition.

  11. Telmisartan Modulates Glial Activation: In Vitro and In Vivo Studies

    PubMed Central

    Torika, Nofar; Asraf, Keren; Danon, Abraham; Apte, Ron N.; Fleisher-Berkovich, Sigal

    2016-01-01

    The circulating renin-angiotensin system (RAS), including the biologically active angiotensin II, is a fundamental regulatory mechanism of blood pressure conserved through evolution. Angiotensin II components of the RAS have also been identified in the brain. In addition to pro-inflammatory cytokines, neuromodulators, such as angiotensin II can induce (through angiotensin type 1 receptor (AT1R)) some of the inflammatory actions of brain glial cells and influence brain inflammation. Moreover, in Alzheimer’s disease (AD) models, where neuroinflammation occurs, increased levels of cortical AT1Rs have been shown. Still, the precise role of RAS in neuroinflammation is not completely clear. The overall aim of the present study was to elucidate the role of RAS in the modulation of glial functions and AD pathology. To reach this goal, the specific aims of the present study were a. to investigate the long term effect of telmisartan (AT1R blocker) on tumor necrosis factor-α (TNF-α), interleukin 1-β (IL1-β) and nitric oxide (NO) release from glial cells. b. to examine the effect of intranasally administered telmisartan on amyloid burden and microglial activation in 5X familial AD (5XFAD) mice. Telmisartan effects in vivo were compared to those of perindopril (angiotensin converting enzyme inhibitor). Long-term-exposure of BV2 microglia to telmisartan significantly decreased lipopolysaccharide (LPS) -induced NO, inducible NO synthase, TNF-α and IL1-β synthesis. The effect of Telmisartan on NO production in BV2 cells was confirmed also in primary neonatal rat glial cells. Intranasal administration of telmisartan (1 mg/kg/day) for up to two months significantly reduced amyloid burden and CD11b expression (a marker for microglia) both in the cortex and hipoccampus of 5XFAD. Based on the current view of RAS and our data, showing reduced amyloid burden and glial activation in the brains of 5XFAD transgenic mice, one may envision potential intervention with the progression

  12. Telmisartan Modulates Glial Activation: In Vitro and In Vivo Studies.

    PubMed

    Torika, Nofar; Asraf, Keren; Danon, Abraham; Apte, Ron N; Fleisher-Berkovich, Sigal

    2016-01-01

    The circulating renin-angiotensin system (RAS), including the biologically active angiotensin II, is a fundamental regulatory mechanism of blood pressure conserved through evolution. Angiotensin II components of the RAS have also been identified in the brain. In addition to pro-inflammatory cytokines, neuromodulators, such as angiotensin II can induce (through angiotensin type 1 receptor (AT1R)) some of the inflammatory actions of brain glial cells and influence brain inflammation. Moreover, in Alzheimer's disease (AD) models, where neuroinflammation occurs, increased levels of cortical AT1Rs have been shown. Still, the precise role of RAS in neuroinflammation is not completely clear. The overall aim of the present study was to elucidate the role of RAS in the modulation of glial functions and AD pathology. To reach this goal, the specific aims of the present study were a. to investigate the long term effect of telmisartan (AT1R blocker) on tumor necrosis factor-α (TNF-α), interleukin 1-β (IL1-β) and nitric oxide (NO) release from glial cells. b. to examine the effect of intranasally administered telmisartan on amyloid burden and microglial activation in 5X familial AD (5XFAD) mice. Telmisartan effects in vivo were compared to those of perindopril (angiotensin converting enzyme inhibitor). Long-term-exposure of BV2 microglia to telmisartan significantly decreased lipopolysaccharide (LPS) -induced NO, inducible NO synthase, TNF-α and IL1-β synthesis. The effect of Telmisartan on NO production in BV2 cells was confirmed also in primary neonatal rat glial cells. Intranasal administration of telmisartan (1 mg/kg/day) for up to two months significantly reduced amyloid burden and CD11b expression (a marker for microglia) both in the cortex and hipoccampus of 5XFAD. Based on the current view of RAS and our data, showing reduced amyloid burden and glial activation in the brains of 5XFAD transgenic mice, one may envision potential intervention with the progression of

  13. Activated Scavenger Receptor A Promotes Glial Internalization of Aβ

    PubMed Central

    Zhou, Wei-wei; Wang, Shao-wei; Xu, Peng-xin; Yu, Xiao-lin; Liu, Rui-tian

    2014-01-01

    Beta-amyloid (Aβ) aggregates have a pivotal role in pathological processing of Alzheimer’s disease (AD). The clearance of Aβ monomer or aggregates is a causal strategy for AD treatment. Microglia and astrocytes are the main macrophages that exert critical neuroprotective roles in the brain. They may effectively clear the toxic accumulation of Aβ at the initial stage of AD, however, their functions are attenuated because of glial overactivation. In this study, we first showed that heptapeptide XD4 activates the class A scavenger receptor (SR-A) on the glia by increasing the binding of Aβ to SR-A, thereby promoting glial phagocytosis of Aβ oligomer in microglia and astrocytes and triggering intracellular mitogen-activated protein kinase (MAPK) signaling cascades. Moreover, XD4 enhances the internalization of Aβ monomers to microglia and astrocytes through macropinocytosis or SR-A-mediated phagocytosis. Furthermore, XD4 significantly inhibits Aβ oligomer-induced cytotoxicity to glial cells and decreases the production of proinflammatory cytokines, such as TNF-α and IL-1β, in vitro and in vivo. Our findings may provide a novel strategy for AD treatment by activating SR-A. PMID:24718459

  14. Connexin-deficiency affects expression levels of glial glutamate transporters within the cerebrum.

    PubMed

    Unger, Tina; Bette, Stefanie; Zhang, Jiong; Theis, Martin; Engele, Jürgen

    2012-01-01

    The glial glutamate transporter subtypes, GLT-1/EAAT-2 and GLAST/EAAT-1 clear the bulk of extracellular glutamate and are severely dysregulated in various acute and chronic brain diseases. Despite the previous identification of several extracellular factors modulating glial glutamate transporter expression, our knowledge of the regulatory network controlling glial glutamate transport in health and disease still remains incomplete. In studies with cultured cortical astrocytes, we previously obtained evidence that glial glutamate transporter expression is also affected by gap junctions/connexins. To assess whether gap junctions would likewise control the in vivo expression of glial glutamate transporters, we have now assessed their expression levels in brains of conditional Cx43 knockout mice, total Cx30 knockouts, as well as Cx43/Cx30 double knockouts. We found that either knocking out Cx30, Cx43, or both increases GLT-1/EAAT-2 protein levels in the cerebral cortex to a similar extent. By contrast, GLAST/EAAT-1 protein levels maximally increased in cerebral cortices of Cx30/Cx43 double knockouts, implying that gap junctions differentially affect the expression of GLT-1/EAAT-2 and GLAST/EAAT-1. Quantitative PCR analysis further revealed that increases in glial glutamate transporter expression are brought about by transcriptional and translational/posttranslational processes. Moreover, GLT-1/EAAT-2- and GLAST/EAAT-1 protein levels remained unchanged in the hippocampi of Cx43/Cx30 double knockouts when compared to Cx43fl/fl controls, indicating brain region-specific effects of gap junctions on glial glutamate transport. Since astrocytic gap junction coupling is affected in various forms of brain injuries, our findings point to gap junctions/connexins as important regulators of glial glutamate turnover in the diseased cerebral cortex.

  15. Glial choristoma of the middle ear.

    PubMed

    Shemanski, Karen A; Voth, Spencer E; Patitucci, Lana B; Ma, Yuxiang; Popnikolov, Nikolay; Katsetos, Christos D; Sataloff, Robert T

    2013-12-01

    Glial choristomas are isolated masses of mature brain tissue that are found outside the spinal cord or cranial cavity. These masses are rare, especially in the middle ear. We describe the case of an 81-year-old man who presented with left-sided chronic otitis media, mastoiditis, hearing loss, tinnitus, and aural fullness. He was found to have a glial choristoma of the middle ear on the left. Otologic surgeons should be aware of the possibility of finding such a mass in the middle ear and be familiar with the differences in treatment between glial choristomas and the more common encephaloceles.

  16. Physiology of neuronal-glial networking.

    PubMed

    Verkhratsky, Alexei

    2010-11-01

    Neuronal-glial networks are the substrate for the brain function. Evolution of the nervous system resulted in the appearance of highly specialized neuronal web optimized for rapid information transfer. This neuronal web is embedded into glial syncytium, thereby creating sophisticated neuronal-glial circuitry were both types of neural cells are working in concert, ensuring amplification of brain computational power. In addition neuroglial cells are fundamental for control of brain homeostasis and they represent the intrinsic brain defence system, being thus intimately involved in pathogenesis of neurological diseases.

  17. Neuronal or glial progeny: regional differences in radial glia fate.

    PubMed

    Malatesta, Paolo; Hack, Michael A; Hartfuss, Eva; Kettenmann, Helmut; Klinkert, Wolfgang; Kirchhoff, Frank; Götz, Magdalena

    2003-03-01

    The precursor function of the ubiquitous glial cell type in the developing central nervous system (CNS), the radial glia, is largely unknown. Using Cre/loxP in vivo fate mapping studies, we found that radial glia generate virtually all cortical projection neurons but not the interneurons originating in the ventral telencephalon. In contrast to the cerebral cortex, few neurons in the basal ganglia originate from radial glia, and in vitro lineage analysis revealed intrinsic differences in the potential of radial glia from the dorsal and ventral telencephalon. This shows that the progeny of radial glia not only differs profoundly between brain regions but also includes the majority of neurons in some parts of the CNS.

  18. Glial Progenitors as Targets for Transformation in Glioma

    PubMed Central

    Ilkanizadeh, Shirin; Lau, Jasmine; Huang, Miller; Foster, Daniel J.; Wong, Robyn; Frantz, Aaron; Wang, Susan; Weiss, William A.; Persson, Anders I.

    2014-01-01

    Glioma is the most common primary malignant brain tumor and arises throughout the central nervous system (CNS). Recent focus on stem-like glioma cells has implicated neural stem cells (NSCs), a minor precursor population restricted to germinal zones, as a potential source of gliomas. In this review, we will focus on the relationship between oligodendrocyte progenitor cells (OPCs), the largest population of cycling glial progenitors in the postnatal brain, and gliomas. Recent studies suggest that OPCs can give rise to gliomas. Furthermore, signaling pathways often associated with NSCs also play key roles during OPC lineage development. Recent advances suggesting that gliomas can undergo a switch from progenitor- to stem-like phenotype after therapy, implicating that an OPC-origin is more likely than previously recognized. Future in-depth studies of OPC biology may shed light on the etiology of OPC-derived gliomas and reveal new therapeutic avenues. PMID:24889528

  19. GLIAL ANKYRINS FACILITATE PARANODAL AXOGLIAL JUNCTION ASSEMBLY

    PubMed Central

    Chang, Kae-Jiun; Zollinger, Daniel R.; Susuki, Keiichiro; Sherman, Diane L.; Makara, Michael A.; Brophy, Peter J.; Cooper, Edward C.; Bennett, Vann; Mohler, Peter J.; Rasband, Matthew N.

    2014-01-01

    Neuron-glia interactions establish functional membrane domains along myelinated axons. These include nodes of Ranvier, paranodal axoglial junctions, and juxtaparanodes. Paranodal junctions are the largest vertebrate junctional adhesion complex, are essential for rapid saltatory conduction, and contribute to assembly and maintenance of nodes. However, the molecular mechanisms underlying paranodal junction assembly are poorly understood. Ankyrins are cytoskeletal scaffolds traditionally associated with Na+ channel clustering in neurons and important for membrane domain establishment and maintenance in many cell types. Here, we show that ankyrinB, expressed by Schwann cells, and ankyrinG, expressed by oligodendrocytes, are highly enriched at the glial side of paranodal junctions where they interact with the essential glial junctional component neurofascin 155. Conditional knockout of ankyrins in oligodendrocytes disrupts paranodal junction assembly and delays nerve conduction during early development in mice. Thus, glial ankyrins function as major scaffolds that facilitate early and efficient paranodal junction assembly in the developing central nervous system. PMID:25362471

  20. Glial Cell Regulation of Rhythmic Behavior

    PubMed Central

    Jackson, F. Rob; Ng, Fanny S.; Sengupta, Sukanya; You, Samantha; Huang, Yanmei

    2015-01-01

    Brain glial cells, in particular astrocytes and microglia, secrete signaling molecules that regulate glia–glia or glia–neuron communication and synaptic activity. While much is known about roles of glial cells in nervous system development, we are only beginning to understand the physiological functions of such cells in the adult brain. Studies in vertebrate and invertebrate models, in particular mice and Drosophila, have revealed roles of glia–neuron communication in the modulation of complex behavior. This chapter emphasizes recent evidence from studies of rodents and Drosophila that highlight the importance of glial cells and similarities or differences in the neural circuits regulating circadian rhythms and sleep in the two models. The chapter discusses cellular, molecular, and genetic approaches that have been useful in these models for understanding how glia–neuron communication contributes to the regulation of rhythmic behavior. PMID:25707272

  1. Diet - clear liquid

    MedlinePlus

    ... It includes things such as: Clear broth Tea Cranberry juice Jell-O Popsicles This diet is easier ... such as grape juice, filtered apple juice, and cranberry juice Soup broth (bouillon or consommé) Clear sodas, ...

  2. The 6-hydroxydopamine-induced nigrostriatal neurodegeneration produces microglia-like NG2 glial cells in the rat substantia nigra.

    PubMed

    Kitamura, Yoshihisa; Inden, Masatoshi; Minamino, Hideaki; Abe, Mari; Takata, Kazuyuki; Taniguchi, Takashi

    2010-11-01

    Neuron/glial 2 (NG2)-expressing cells are often referred to as oligodendrocyte precursor cells. NG2-expressing cells have also been identified as multipotent progenitor cells. However, microglia-like NG2 glial cells have not been fully examined in neurodegenerative disorders such as Parkinson's disease (PD). In the present study, we chose two rat models of PD, i.e., intranigral or intrastriatal injection of 6-hydroxydopamine (6-OHDA), since the cell bodies of dopamine (DA) neurons, which form a nigrostriatal pathway, are in the substantia nigra pars compacta (SNpc) while their nerve terminals are in the striatum. In the nigral 6-OHDA-injected model, activated NG2-positive cells were detected in the SNpc but not in the striatum. In contrast, in the striatal 6-OHDA-injected model, these cells were detected in both the SNpc and the striatum. In both models, activated NG2-positive cells were located close to surviving tyrosine hydroxylase (TH)-positive neurons in the SNpc. In addition, activated NG2-positive cells in the SNpc coexpressed ionized calcium-binding adaptor molecule 1 (Iba1), a microglia/macrophage marker. Interestingly, these double-positive glial cells coexpressed glial cell line-derived neurotrophic factor (GDNF). These results suggest that microglia-like NG2 glial cells may help protect DA neurons and may lead to new therapeutic targets in PD.

  3. Glial Cell Contributions to Auditory Brainstem Development

    PubMed Central

    Cramer, Karina S.; Rubel, Edwin W

    2016-01-01

    Glial cells, previously thought to have generally supporting roles in the central nervous system, are emerging as essential contributors to multiple aspects of neuronal circuit function and development. This review focuses on the contributions of glial cells to the development of auditory pathways in the brainstem. These pathways display specialized synapses and an unusually high degree of precision in circuitry that enables sound source localization. The development of these pathways thus requires highly coordinated molecular and cellular mechanisms. Several classes of glial cells, including astrocytes, oligodendrocytes and microglia, have now been explored in these circuits in both avian and mammalian brainstems. Distinct populations of astrocytes are found over the course of auditory brainstem maturation. Early appearing astrocytes are associated with spatial compartments in the avian auditory brainstem. Factors from late appearing astrocytes promote synaptogenesis and dendritic maturation, and astrocytes remain integral parts of specialized auditory synapses. Oligodendrocytes play a unique role in both birds and mammals in highly regulated myelination essential for proper timing to decipher interaural cues. Microglia arise early in brainstem development and may contribute to maturation of auditory pathways. Together these studies demonstrate the importance of non-neuronal cells in the assembly of specialized auditory brainstem circuits.

  4. Glial involvement in diffuse Lewy body disease.

    PubMed

    Terada, Seishi; Ishizu, Hideki; Yokota, Osamu; Tsuchiya, Kuniaki; Nakashima, Hanae; Ishihara, Takeshi; Fujita, Daisuke; Uéda, Kenji; Ikeda, Kenji; Kuroda, Shigetoshi

    2003-02-01

    Diffuse Lewy body disease (DLBD) is characterized by the presence of Lewy bodies (LB) in the neurons and neurites of cortical, subcortical, and brain stem structures. Recently, alpha-synuclein (alphaS) has been found to be a central constituent of LB. In DLBD, abnormal accumulation of alphaS has been reported in both neurons and glia, but studies on glial lesions in DLBD have been limited. We examined in detail the constituents and distribution of glial lesions in eight patients with DLBD and report the pathogenesis of the glial lesions. alphaS-positive neuronal cytoplasmic inclusions (NI), neuropil threads (NT), and coiled bodies (CB) showed similar immunostaining profiles. Without pretreatment, NI, NT, and CB were detected by all antibodies against alphaS. The immunostaining profile of star-like astrocytes (SLA) was quite different from those of NI, NT, and CB. A few SLA were stained by an antibody against the non-Abeta component portion of alphaS without pretreatment, but formic acid pretreatment dramatically enhanced SLA immunoreactivity. SLA and CB were found in all eight brains with DLBD. SLA were scarce in the brain stem, but there were hundreds of SLA per visual field at x100 magnification in the temporal cortex of most cases, while CB were found diffusely in both the cerebral cortex and brain stem, similar to NI. This suggests that the pathogenesis of SLA is different from those of NI and CB.

  5. Chronic glial activation, neurodegeneration, and APP immunoreactive deposits following acute administration of double-stranded RNA.

    PubMed

    Melton, Lisa M; Keith, Alexander B; Davis, Sue; Oakley, Arthur E; Edwardson, James A; Morris, Christopher M

    2003-10-01

    Several neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, are associated with immunocompetent microglia, leading to the suggestion that chronic glial-mediated inflammation contributes to the neurodegeneration seen in these diseases. Little direct evidence supports this hypothesis, and no suitable rodent models exist that do not involve the use of blunt trauma or ischaemia, events that are infrequently encountered in the human disease state. In the present study, we report that administration of double-stranded RNA, a classical inducer of interferon-gamma (IFN-gamma), causes rapid and persistent activation of microglia and astrocytes, as well as induction of interleukin-1beta (IL-beta) and nitric oxide synthase. In close temporal succession to glial activation, there is neurodegeneration, with neuron loss involving apoptosis in selected brain regions including the septal nucleus, hippocampus, cortex and thalamus, along with hippocampal atrophy. This neuronal loss is accompanied by punctate deposits of material that are immunoreactive for amyloid precursor protein, beta-amyloid peptide (Abeta), and apolipoprotein E. The findings may have clinical relevance, since the administration of the nonsteroidal antiinflammatory agent (NSAID) ibuprofen markedly reduces the neurodegeneration observed in the absence of significant glial inhibition. These findings may be relevant to the pathogenesis of Alzheimer's disease in particular, and to other neurodegenerative diseases involving inflammation.

  6. Radial glial cell: critical functions and new perspective as a steroid synthetic cell.

    PubMed

    Xing, L; Goswami, M; Trudeau, V L

    2014-07-01

    The radial glial cell (RGC) is a glial cell type in the central nervous system of all vertebrates. Adult teleost fish have abundant RGCs in the brain in contrast to mammals. Adult fish RGCs have many important functions, including forming a structural scaffold to guide neuronal migration and serving as the progenitor cells in the brain to generate neurons. The role of the RGC in adult neurogenesis explains the high regenerative capacity of adult fish brain. There is increasing evidence from several species that some glial cells produce or metabolize steroids. It is now well-known that teleost RGCs express aromatase and produce estrogens from androgen precursors, which may be important for local neuroendocrine functions and regulation of neurogenesis. The question of whether RGCs are capable of de novo steroid synthesis from cholesterol remains unanswered. However, the expression of steroidogenic acute regulatory protein, and the key enzyme cytochrome P450 17alpha-hydroxylase in primary cultures of goldfish RGCs indicate the potential to produce 17α-hydroxy-pregnenolone and thus other steroid intermediates. The possibility of synthesizing additional non-estrogenic steroids may indicate new functions for the RGC.

  7. Primary culture of glial cells from mouse sympathetic cervical ganglion: a valuable tool for studying glial cell biology.

    PubMed

    de Almeida-Leite, Camila Megale; Arantes, Rosa Maria Esteves

    2010-12-15

    Central nervous system glial cells as astrocytes and microglia have been investigated in vitro and many intracellular pathways have been clarified upon various stimuli. Peripheral glial cells, however, are not as deeply investigated in vitro despite its importance role in inflammatory and neurodegenerative diseases. Based on our previous experience of culturing neuronal cells, our objective was to standardize and morphologically characterize a primary culture of mouse superior cervical ganglion glial cells in order to obtain a useful tool to study peripheral glial cell biology. Superior cervical ganglia from neonatal C57BL6 mice were enzymatically and mechanically dissociated and cells were plated on diluted Matrigel coated wells in a final concentration of 10,000cells/well. Five to 8 days post plating, glial cell cultures were fixed for morphological and immunocytochemical characterization. Glial cells showed a flat and irregular shape, two or three long cytoplasm processes, and round, oval or long shaped nuclei, with regular outline. Cell proliferation and mitosis were detected both qualitative and quantitatively. Glial cells were able to maintain their phenotype in our culture model including immunoreactivity against glial cell marker GFAP. This is the first description of immunocytochemical characterization of mouse sympathetic cervical ganglion glial cells in primary culture. This work discusses the uses and limitations of our model as a tool to study many aspects of peripheral glial cell biology.

  8. Glial enriched gene expression profiling identifies novel factors regulating the proliferation of specific glial subtypes in the Drosophila brain

    PubMed Central

    Avet-Rochex, Amélie; Maierbrugger, Katja T.; Bateman, Joseph M.

    2014-01-01

    Glial cells constitute a large proportion of the central nervous system (CNS) and are critical for the correct development and function of the adult CNS. Recent studies have shown that specific subtypes of glia are generated through the proliferation of differentiated glial cells in both the developing invertebrate and vertebrate nervous systems. However, the factors that regulate glial proliferation in specific glial subtypes are poorly understood. To address this we have performed global gene expression analysis of Drosophila post-embryonic CNS tissue enriched in glial cells, through glial specific overexpression of either the FGF or insulin receptor. Analysis of the differentially regulated genes in these tissues shows that the expression of known glial genes is significantly increased in both cases. Conversely, the expression of neuronal genes is significantly decreased. FGF and insulin signalling drive the expression of overlapping sets of genes in glial cells that then activate proliferation. We then used these data to identify novel transcription factors that are expressed in glia in the brain. We show that two of the transcription factors identified in the glial enriched gene expression profiles, foxO and tramtrack69, have novel roles in regulating the proliferation of cortex and perineurial glia. These studies provide new insight into the genes and molecular pathways that regulate the proliferation of specific glial subtypes in the Drosophila post-embryonic brain. PMID:25217886

  9. Indicators of glial activation and brain oxidative stress after intraventricular infusion of endotoxin.

    PubMed

    Sugaya, K; Chou, S; Xu, S J; McKinney, M

    1998-07-15

    Glial activation and oxidative stress are both consequences of brain aging. To investigate whether glial activation causes oxidative stress or not, the immune activator, lipopolysaccharide (LPS), was intraventricularly injected into the rat brain. The expression of candidate genes were examined by in situ hybridization histochemistry (ISHH) combined with immunohistochemistry for glial markers over a period of time up to 24 h after the LPS injection. The mRNA for glial fibrillary acidic protein (GFAP) was elevated around the injection site by 2 h, and the volume of elevated expression spread to the entire brain after 6 h, with higher levels present in the injected hemisphere. The level of inducible isoform of nitric oxide synthase (i-NOS) mRNA increased in a punctate-like pattern in the region of the injection by 6 h and this response spread to the entire brain after 12 h. These results indicate that the glia are activated for at least 24 h after a single LPS injection. The mRNAs for a heat-shock protein (HSP70) and for the manganese-dependent superoxide dismutase (Mn-SOD) were elevated in the ipsilateral hemisphere as early as 2 h post-injection, but these responses subsided nearly to basal levels by 4 h. These levels of mRNAs for these genes increased again after 6 h of the LPS injection; thus, the earlier increases of the messages appeared to be associated with the survival surgery procedure. With microautoradiographic analysis, scattered OX-42 positive cells expressed i-NOS mRNA after 6 h post-injection, but elevation of Mn-SOD mRNA was not detected in either microglia or astrocytes at any time point examined. The level for Cu/Zn-SOD mRNA did not alter at any time point. The beta-amyloid precursor protein (betaAPP) mRNAs were elevated beginning at 6 h. These results indicate that chronic glial activation leads to a condition of oxidative stress in the brain. The data also suggest that LPS injection could be used to study the effects of chronic glial activation

  10. GnRH Episodic Secretion Is Altered by Pharmacological Blockade of Gap Junctions: Possible Involvement of Glial Cells.

    PubMed

    Pinet-Charvet, Caroline; Geller, Sarah; Desroziers, Elodie; Ottogalli, Monique; Lomet, Didier; Georgelin, Christine; Tillet, Yves; Franceschini, Isabelle; Vaudin, Pascal; Duittoz, Anne

    2016-01-01

    Episodic release of GnRH is essential for reproductive function. In vitro studies have established that this episodic release is an endogenous property of GnRH neurons and that GnRH secretory pulses are associated with synchronization of GnRH neuron activity. The cellular mechanisms by which GnRH neurons synchronize remain largely unknown. There is no clear evidence of physical coupling of GnRH neurons through gap junctions to explain episodic synchronization. However, coupling of glial cells through gap junctions has been shown to regulate neuron activity in their microenvironment. The present study investigated whether glial cell communication through gap junctions plays a role in GnRH neuron activity and secretion in the mouse. Our findings show that Glial Fibrillary Acidic Protein-expressing glial cells located in the median eminence in close vicinity to GnRH fibers expressed Gja1 encoding connexin-43. To study the impact of glial-gap junction coupling on GnRH neuron activity, an in vitro model of primary cultures from mouse embryo nasal placodes was used. In this model, GnRH neurons possess a glial microenvironment and were able to release GnRH in an episodic manner. Our findings show that in vitro glial cells forming the microenvironment of GnRH neurons expressed connexin-43 and displayed functional gap junctions. Pharmacological blockade of the gap junctions with 50 μM 18-α-glycyrrhetinic acid decreased GnRH secretion by reducing pulse frequency and amplitude, suppressed neuronal synchronization and drastically reduced spontaneous electrical activity, all these effects were reversed upon 18-α-glycyrrhetinic acid washout.

  11. [Studies on potassium transport through glial cell membranes (author's transl)].

    PubMed

    Coles, J A; Gardner-Medwin, A R; Tsacopoulos, M

    1980-04-01

    The retina of the honeybee drone is used as a model for the study of ion movements across the membranes of the glial cells caused by changes in the extracellular potassium concentration. The values found for changes in extracellular potential suggest that at least some of the potassium that enters glial cells in an active region of tissue is associated with an efflux of potassium from parts of the glial syncytium not affected by an increase in extracellular potassium concentration. In addition, it appears that ions other than K+ cross the glial membrane.

  12. Clarifying Tissue Clearing

    PubMed Central

    Richardson, Douglas S.; Lichtman, Jeff W.

    2015-01-01

    Summary Biological specimens are intrinsically three dimensional; however because of the obscuring effects of light scatter, imaging deep into a tissue volume is problematic. Although efforts to eliminate the scatter by “clearing” the tissue have been ongoing for over a century, there have been a large number of recent innovations. This review introduces the physical basis for light-scatter in tissue, describes the mechanisms underlying various clearing techniques, and discusses several of the major advances in light microscopy for imaging cleared tissue. PMID:26186186

  13. Enteric glial cells have specific immunosuppressive properties.

    PubMed

    Kermarrec, Laetitia; Durand, Tony; Neunlist, Michel; Naveilhan, Philippe; Neveu, Isabelle

    2016-06-15

    Enteric glial cells (EGC) have trophic and neuroregulatory functions in the enteric nervous system, but whether they exert a direct effect on immune cells is unknown. Here, we used co-cultures to show that human EGC can inhibit the proliferation of activated T lymphocytes. Interestingly, EGC from Crohn's patients were effective at one EGC for two T cells whereas EGC from control patients required a ratio of 1:1. These data suggest that EGC contribute to local immune homeostasis in the gastrointestinal wall. They also raise the possibility that EGC have particular immunosuppressive properties in inflammatory bowel diseases such as Crohn's disease. PMID:27235353

  14. Experimentally induced diabetes causes glial activation, glutamate toxicity and cellular damage leading to changes in motor function

    PubMed Central

    Nagayach, Aarti; Patro, Nisha; Patro, Ishan

    2014-01-01

    Behavioral impairments are the most empirical consequence of diabetes mellitus documented in both humans and animal models, but the underlying causes are still poorly understood. As the cerebellum plays a major role in coordination and execution of the motor functions, we investigated the possible involvement of glial activation, cellular degeneration and glutamate transportation in the cerebellum of rats, rendered diabetic by a single injection of streptozotocin (STZ; 45 mg/kg body weight; intraperitoneally). Motor function alterations were studied using Rotarod test (motor coordination) and grip strength (muscle activity) at 2nd, 4th, 6th, 8th, 10th, and 12th week post-diabetic confirmation. Scenario of glial (astroglia and microglia) activation, cell death and glutamate transportation was gaged using immunohistochemistry, histological study and image analysis. Cellular degeneration was clearly demarcated in the diabetic cerebellum. Glial cells were showing sequential and marked activation following diabetes in terms of both morphology and cell number. Bergmann glial cells were hypertrophied and distorted. Active caspase-3 positive apoptotic cells were profoundly present in all three cerebellar layers. Reduced co-labeling of GLT-1 and GFAP revealed the altered glutamate transportation in cerebellum following diabetes. These results, exclusively derived from histology, immunohistochemistry and cellular quantification, provide first insight over the associative reciprocity between the glial activation, cellular degeneration and reduced glutamate transportation, which presumably lead to the behavioral alterations following STZ-induced diabetes. PMID:25400546

  15. Clear cell odontogenic carcinoma.

    PubMed

    Iezzi, G; Rubini, C; Fioroni, M; Piattelli, A

    2002-02-01

    Clear cell tumours, in the head and neck region, are usually derived from salivary or odontogenic tissues, or may be metastatic. A few clear cells may be present in odontogenic cysts, while, odontogenic neoplasms composed predominantly of clear cells are quite rare. They include calcifying epithelial odontogenic tumours (CEOT), ameloblastoma and odontogenic carcinoma. Clear cell odontogenic tumour (CCOT) has been classified in the last WHO classification as a benign tumour, but it is now recognized as a more sinister lesion and current opinion is that CCOT should be designated as a carcinoma. These tumours are characterized by aggressive growth, recurrences, and metastatic disease. A recent review of the literature has yielded 30 cases of tumours with similar characteristics. These tumours have a peak incidence in the 5th-7th decades, with a female predilection. The anterior portions of the jaws, especially the mandible, are most frequently affected. The aggressive potential of these neoplasms is well documented by the extensive invasion of adjacent tissues, multiple recurrences and regional or distant metastases.

  16. Fine Surface Images That Reflect Cytoskeletal Structures in Cultured Glial Cells by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Yamane, Yukako; Hatakeyama, Dai; Tojima, Takuro; Kawabata, Kazushige; Ushiki, Tatsuo; Ogura, Shigeaki; Abe, Kazuhiro; Ito, Etsuro

    1998-06-01

    The morphology of cultured glial cells was examined using a combination of atomic force microscopy (AFM) and immunofluorescence staining for cytoskeletons. The meshwork of type-1 astrocytes consisted of thick longitudinal and thin lateral lines on the cell surfaces observed by AFM; the former lines were confirmed to be reflections of actin filaments. The astrocytic processes of type-2 astrocytes were observed to be rugged on AFM. These structures were mainly affected by microtubules. Immunofluorescence imaging of microglia revealed that actin filaments and microtubules were arranged radially and wavily along the cell edge, respectively. AFM could detect these radial and wavy structures clearly. These results show that AFM can provide information on the cytoskeletons of glial cells, indicating that AFM is a useful tool for the morphological characterization of cells.

  17. Landmarks in the application of 13C-magnetic resonance spectroscopy to studies of neuronal/glial relationships.

    PubMed

    Bachelard, H

    1998-01-01

    The development of the use of carbon isotopes as metabolic tracers is briefly described. 13C-labelled precursors (13CO2, 13CH4) first became available in 1940 and were studied in microorganisms, but their use was limited by very low enrichments and lack of suitable analytical equipment. More success was achieved with 11C and especially 14C, as these radioactive tracers did not need to be highly enriched. Although the stable 13C isotope can be used at a low percentage enrichment in mass spectrometry, its application to magnetic resonance spectroscopy (MRS) requires very highly enriched precursors, due to its low natural abundance and low sensitivity. Despite such limitations, however, the great advantage of 13C-MRS lies in its exquisite chemical specificity, in that labelling of different carbon atoms can be distinguished within the same molecule. Effective exploitation became feasible in the early 1970s with the advent of stable instruments, Fourier transform 13C-MRS, and the availability of highly enriched precursors. Reports of its use in brain research began to appear in the mid-1980s. The applications of 13C isotopomer analysis to research on neuronal/glial relationships are reviewed. The presence of neighbouring 13C-labelled atoms affects the appearance of the resonances (splitting due to C-C coupling), and so allows for unique quantification of rates through different and possibly competing pathways. Isotopomer patterns in resonances labelled from a combination of [1-13C]glucose and [1, 2-13C2]acetate have revealed aspects of neuronal/glial metabolic trafficking on depolarization and under hypoxic conditions in vitro. This approach has now been applied to in vivo studies on inhibition of glial metabolism using fluoroacetate. The results confirm the glial specificity of the toxin and demonstrate that it does not affect entry of acetate. When the glial TCA cycle is inhibited, the ability of the glia to participate in the glutamate/glutamine cycle remains

  18. Glial cells: Old cells with new twists

    PubMed Central

    Ndubaku, Ugo; de Bellard, Maria Elena

    2008-01-01

    Summary Based on their characteristics and function – migration, neural protection, proliferation, axonal guidance and trophic effects – glial cells may be regarded as probably the most versatile cells in our body. For many years, these cells were considered as simply support cells for neurons. Recently, it has been shown that they are more versatile than previously believed – as true stem cells in the nervous system – and are important players in neural function and development. There are several glial cell types in the nervous system: the two most abundant are oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system. Although both of these cells are responsible for myelination, their developmental origins are quite different. Oligodendrocytes originate from small niche populations from different regions of the central nervous system, while Schwann cells develop from a stem cell population (the neural crest) that gives rise to many cell derivatives besides glia and which is a highly migratory group of cells. PMID:18068219

  19. Protein kinase activators alter glial cholesterol esterification

    SciTech Connect

    Jeng, I.; Dills, C.; Klemm, N.; Wu, C.

    1986-05-01

    Similar to nonneural tissues, the activity of glial acyl-CoA cholesterol acyltransferase is controlled by a phosphorylation and dephosphorylation mechanism. Manipulation of cyclic AMP content did not alter the cellular cholesterol esterification, suggesting that cyclic AMP is not a bioregulator in this case. Therefore, the authors tested the effect of phorbol-12-myristate 13-acetate (PMA) on cellular cholesterol esterification to determine the involvement of protein kinase C. PMA has a potent effect on cellular cholesterol esterification. PMA depresses cholesterol esterification initially, but cells recover from inhibition and the result was higher cholesterol esterification, suggesting dual effects of protein kinase C. Studies of other phorbol analogues and other protein kinase C activators such as merezein indicate the involvement of protein kinase C. Oleoyl-acetyl glycerol duplicates the effect of PMA. This observation is consistent with a diacyl-glycerol-protein kinase-dependent reaction. Calcium ionophore A23187 was ineffective in promoting the effect of PMA. They concluded that a calcium-independent and protein C-dependent pathway regulated glial cholesterol esterification.

  20. Who Clears Probation?

    ERIC Educational Resources Information Center

    Wisconsin Univ., Stevens Point. Office of Institutional Research.

    After the first semester of 1969-70, 413 freshmen who had entered the University of Wisconsin-Stevens Point in the fall were placed on academic probation with grade point ratios (GPR) ranging from 0.75 to 1.59. After 3 semesters, 73 or 17.7% had cleared probation and another 5% were still on probation. The rest had dropped from school or were…

  1. Glial cells as drug targets: What does it take?

    PubMed

    Möller, Thomas; Boddeke, Hendrikus W G M

    2016-10-01

    The last two decades have brought a significant increase in our understanding of glial biology and glial contribution to CNS disease. Yet, despite the fact that glial cells make up the majority of CNS cells, no drug specifically targeting glial cells is on the market. Given the long development times of CNS drugs, on average over 12 years, this is not completely surprising. However, there is increasing interest from academia and industry to exploit glial targets to develop drugs for the benefit of patients with currently limited or no therapeutic options. CNS drug development has a high attrition rate and has encountered many challenges. It seems unlikely that developing drugs against glial targets would be any less demanding. However, the knowledge generated in traditional CNS drug discovery teaches valuable lessons, which could enable the glial community to accelerate the cycle time from basic discovery to drug development. In this review we will discuss steps necessary to bring a "glial target idea" to a clinical development program. GLIA 2016;64:1742-1754.

  2. Glial cells as drug targets: What does it take?

    PubMed

    Möller, Thomas; Boddeke, Hendrikus W G M

    2016-10-01

    The last two decades have brought a significant increase in our understanding of glial biology and glial contribution to CNS disease. Yet, despite the fact that glial cells make up the majority of CNS cells, no drug specifically targeting glial cells is on the market. Given the long development times of CNS drugs, on average over 12 years, this is not completely surprising. However, there is increasing interest from academia and industry to exploit glial targets to develop drugs for the benefit of patients with currently limited or no therapeutic options. CNS drug development has a high attrition rate and has encountered many challenges. It seems unlikely that developing drugs against glial targets would be any less demanding. However, the knowledge generated in traditional CNS drug discovery teaches valuable lessons, which could enable the glial community to accelerate the cycle time from basic discovery to drug development. In this review we will discuss steps necessary to bring a "glial target idea" to a clinical development program. GLIA 2016;64:1742-1754. PMID:27121701

  3. Glial heterotopia of the lip: A rare presentation

    PubMed Central

    Dadaci, Mehmet; Bayram, Fazli Cengiz; Ince, Bilsev; Bilgen, Fatma

    2016-01-01

    Glial heterotopia represents collections of normal glial tissue in an abnormal location distant to the central nervous system or spinal canal with no intracranial connectivity. Nasal gliomas are non-neoplastic midline tumours, with limited growth potential and no similarity to the central nervous system gliomas. The nose and the nasopharynx are the most common sites of location. Existence of glial heterotopia in the lip region is a rare developmental disorder. We report a case of large glial heterotopia in the upper lip region in a full-term female newborn which had intracranial extension with a fibrotic band. After the surgery, there was no recurrence in the follow-up period of 3 years. When glial heterotopia, which is a rare midline anomaly, is suspected, possible intracranial connection and properties of the mass should be evaluated by magnetic resonance imaging. By this way, lower complication rate and better aesthetic results can be achieved with early diagnosis and proper surgery. PMID:27274134

  4. Photodynamic damage of glial cells in crayfish ventral nerve cord

    NASA Astrophysics Data System (ADS)

    Kolosov, M. S.; Duz, E.; Uzdensky, A. B.

    2010-10-01

    Photodynamic therapy (PDT) is a promising method for treatment of brain tumors, the most of which are of glial origin. In the present work we studied PDT-mediated injury of glial cells in nerve tissue, specifically, in abdominal connectives in the crayfish ventral nerve cord. The preparation was photosensitized with alumophthalocyanine Photosens and irradiated 30 min with the diode laser (670 nm, 0.1 or 0.15 W/cm2). After following incubation in the darkness during 1- 10 hours it was fluorochromed with Hoechst 33342 and propidium iodide to reveal nuclei of living, necrotic and apoptotic cells. The chain-like location of the glial nuclei allowed visualization of those enveloping giant axons and blood vessels. The level of glial necrosis in control preparations was about 2-5 %. Apoptosis was not observed in control preparations. PDT significantly increased necrosis of glial cells to 52 or 67 % just after irradiation with 0.1 or 0.15 W/cm2, respectively. Apoptosis of glial cells was observed only at 10 hours after light exposure. Upper layers of the glial envelope of the connectives were injured stronger comparing to deep ones: the level of glial necrosis decreased from 100 to 30 % upon moving from the connective surface to the plane of the giant axon inside the connective. Survival of glial cells was also high in the vicinity of blood vessels. One can suggest that giant axons and blood vessels protect neighboring glial cells from photodynamic damage. The mechanism of such protective action remains to be elucidated.

  5. Photodynamic damage of glial cells in crayfish ventral nerve cord

    NASA Astrophysics Data System (ADS)

    Kolosov, M. S.; Duz, E.; Uzdensky, A. B.

    2011-03-01

    Photodynamic therapy (PDT) is a promising method for treatment of brain tumors, the most of which are of glial origin. In the present work we studied PDT-mediated injury of glial cells in nerve tissue, specifically, in abdominal connectives in the crayfish ventral nerve cord. The preparation was photosensitized with alumophthalocyanine Photosens and irradiated 30 min with the diode laser (670 nm, 0.1 or 0.15 W/cm2). After following incubation in the darkness during 1- 10 hours it was fluorochromed with Hoechst 33342 and propidium iodide to reveal nuclei of living, necrotic and apoptotic cells. The chain-like location of the glial nuclei allowed visualization of those enveloping giant axons and blood vessels. The level of glial necrosis in control preparations was about 2-5 %. Apoptosis was not observed in control preparations. PDT significantly increased necrosis of glial cells to 52 or 67 % just after irradiation with 0.1 or 0.15 W/cm2, respectively. Apoptosis of glial cells was observed only at 10 hours after light exposure. Upper layers of the glial envelope of the connectives were injured stronger comparing to deep ones: the level of glial necrosis decreased from 100 to 30 % upon moving from the connective surface to the plane of the giant axon inside the connective. Survival of glial cells was also high in the vicinity of blood vessels. One can suggest that giant axons and blood vessels protect neighboring glial cells from photodynamic damage. The mechanism of such protective action remains to be elucidated.

  6. CLEARING OUT A GALAXY

    SciTech Connect

    Zubovas, Kastytis; King, Andrew

    2012-02-15

    It is widely suspected that active galactic nucleus (AGN) activity ultimately sweeps galaxies clear of their gas. We work out the observable properties required to achieve this. Large-scale AGN-driven outflows should have kinetic luminosities {approx}{eta} L{sub Edd}/2 {approx} 0.05 L{sub Edd} and momentum rates {approx}20 L{sub Edd}/c, where L{sub Edd} is the Eddington luminosity of the central black hole and {eta} {approx} 0.1 its radiative accretion efficiency. This creates an expanding two-phase medium in which molecular species coexist with hot gas, which can persist after the central AGN has switched off. This picture predicts outflow velocities {approx}1000-1500 km s{sup -1} and mass outflow rates up to 4000 M{sub Sun} yr{sup -1} on kpc scales, fixed mainly by the host galaxy velocity dispersion (or equivalently black hole mass). All these features agree with those of outflows observed in galaxies such as Mrk231. This strongly suggests that AGN activity is what sweeps galaxies clear of their gas on a dynamical timescale and makes them red and dead. We suggest future observational tests of this picture.

  7. Glial repair in an insect central nervous system: effects of selective glial disruption.

    PubMed

    Smith, P J; Leech, C A; Treherne, J E

    1984-11-01

    In vivo application of ethidium bromide to cockroach central nervous connectives caused extensive disruption of the neuroglia within 24 hr. Axonal conduction persisted following treatment with the glial toxin. A consistent feature of glial damage and repair was the prominent involvement of granule-containing cells. These cells (which were never seen in control cords) shared a number of cytological features with hemocytes that were seen adhering to and penetrating the neural lamella, in the early stages of glial damage. The granule-containing cells appear to serve dual functions: phagocytosis and structural repair. After 48 hr, granule-containing cells, or their processes, formed layers at the periphery of the connectives. By 4 to 6 days after treatment, the peripheral cells had assumed the morphological characteristics of normal perineurial cells and by 28 days were indistinguishable, ultrastructurally, from those of the perineurium of normal, untreated animals. These structural changes paralleled the re-establishment of the normal permeability properties of the blood-brain interface revealed by the exclusion of an extracellular tracer, ionic lanthanum, and electrophysiological observations.

  8. Neuronal vs glial glutamate uptake: Resolving the conundrum.

    PubMed

    Danbolt, N C; Furness, D N; Zhou, Y

    2016-09-01

    Neither normal brain function nor the pathological processes involved in neurological diseases can be adequately understood without knowledge of the release, uptake and metabolism of glutamate. The reason for this is that glutamate (a) is the most abundant amino acid in the brain, (b) is at the cross-roads between several metabolic pathways, and (c) serves as the major excitatory neurotransmitter. In fact most brain cells express glutamate receptors and are thereby influenced by extracellular glutamate. In agreement, brain cells have powerful uptake systems that constantly remove glutamate from the extracellular fluid and thereby limit receptor activation. It has been clear since the 1970s that both astrocytes and neurons express glutamate transporters. However the relative contribution of neuronal and glial transporters to the total glutamate uptake activity, however, as well as their functional importance, has been hotly debated ever since. The present short review provides (a) an overview of what we know about neuronal glutamate uptake as well as an historical description of how we got there, and (b) a hypothesis reconciling apparently contradicting observations thereby possibly resolving the paradox. PMID:27235987

  9. How Does Transcranial Magnetic Stimulation Influence Glial Cells in the Central Nervous System?

    PubMed Central

    Cullen, Carlie L.; Young, Kaylene M.

    2016-01-01

    Transcranial magnetic stimulation (TMS) is widely used in the clinic, and while it has a direct effect on neuronal excitability, the beneficial effects experienced by patients are likely to include the indirect activation of other cell types. Research conducted over the past two decades has made it increasingly clear that a population of non-neuronal cells, collectively known as glia, respond to and facilitate neuronal signaling. Each glial cell type has the ability to respond to electrical activity directly or indirectly, making them likely cellular effectors of TMS. TMS has been shown to enhance adult neural stem and progenitor cell (NSPC) proliferation, but the effect on cell survival and differentiation is less certain. Furthermore there is limited information regarding the response of astrocytes and microglia to TMS, and a complete paucity of data relating to the response of oligodendrocyte-lineage cells to this treatment. However, due to the critical and yet multifaceted role of glial cells in the central nervous system (CNS), the influence that TMS has on glial cells is certainly an area that warrants careful examination. PMID:27092058

  10. Glial-, neuronal- and photoreceptor-specific cell markers in rosettes of retinoblastoma and retinal dysplasia.

    PubMed

    Ohira, A; Yamamoto, M; Honda, O; Ohnishi, Y; Inomata, H; Honda, Y

    1994-11-01

    Previous studies have shown that a rosette formation represents an attempt to form embryonic retinal tissue, primarily rods and cones. To test the theories as to the origin and characteristics of retinoblastoma cells, we compared the characteristics of tumor rosettes with those of dysplastic rosettes seen in retinal dysplasia using the glial, neuronal and photoreceptor markers. Forty-four retinoblastoma and one retinal dysplasia specimens were analyzed by indirect immunohistochemistry, using specific antibodies against glial fibrillary acidic protein, S-100 protein, myelin basic protein, neuron-specific enolase, neurofilament, retinal S-antigen and retinal pigment epithelial antigen. In human retinoblastoma, all the glial, neuronal, retinal pigment epithelial, and photoreceptor cell markers, except for the neurofilament, were present in parts of rosette-forming tumor cells. However, their localization was different for each antigen and it was not clear whether each tumor cell possesses several antigens. These immuno-positive tumor cells were cytologically indistinguishable from other rosette-forming cells at the light microscopic level. In retinal dysplasia, neuron specific enolase and retinal S-antigen were diffusely expressed in the dysplastic rosettes, however, other antigen were not seen in those rosettes. The staining pattern by immunocytochemistry is totally different in tumor rosettes from dysplastic ones. We found varying localizations of different immunoreactivities within tumor rosettes. These results led us to suggest that tumor cells in the rosettes of retinoblastoma may have the ability to differentiate into neural and glial cells. To prove the theory that retinoblastoma cells may have originated from a primitive neuroectodermal cell capable of multipotentiality, further investigation is needed.

  11. Neuronal and glial purinergic receptors functions in neuron development and brain disease

    PubMed Central

    del Puerto, Ana; Wandosell, Francisco; Garrido, Juan José

    2013-01-01

    Brain development requires the interaction of complex signaling pathways, involving different cell types and molecules. For a long time, most attention has focused on neurons in a neuronocentric conceptualization of central nervous system development, these cells fulfilling an intrinsic program that establishes the brain’s morphology and function. By contrast, glia have mainly been studied as support cells, offering guidance or as the cells that react to brain injury. However, new evidence is appearing that demonstrates a more fundamental role of glial cells in the control of different aspects of neuronal development and function, events in which the influence of neurons is at best weak. Moreover, it is becoming clear that the function and organization of the nervous system depends heavily on reciprocal neuron–glia interactions. During development, neurons are often generated far from their final destination and while intrinsic mechanisms are responsible for neuronal migration and growth, they need support and regulatory influences from glial cells in order to migrate correctly. Similarly, the axons emitted by neurons often have to reach faraway targets and in this sense, glia help define the way that axons grow. Moreover, oligodendrocytes and Schwann cells ultimately envelop axons, contributing to the generation of nodes of Ranvier. Finally, recent publications show that astrocytes contribute to the modulation of synaptic transmission. In this sense, purinergic receptors are expressed widely by glial cells and neurons, and recent evidence points to multiple roles of purines and purinergic receptors in neuronal development and function, from neurogenesis to axon growth and functional axonal maturation, as well as in pathological conditions in the brain. This review will focus on the role of glial and neuronal secreted purines, and on the purinergic receptors, fundamentally in the control of neuronal development and function, as well as in diseases of the

  12. Clear cell papulosis of the skin.

    PubMed

    Lee, J Y; Chao, S C

    1998-04-01

    Clear cell papulosis is a new entity first described in 1987. To date, six patients have been reported: all were young Taiwanese children. The disease is characterized clinically by multiple small, whitish maculopapules distributed along the milk line and by the presence of large, benign pagetoid cells in the epidermis resembling the clear cell of the nipple. The significance of this entity lies in its potential histogenetic link with Paget's disease of the skin. We report four new Taiwanese patients, three girls and one boy, aged between 21 months and 4 years. Two were sisters. Small hypopigmented macules first appeared on the pubis. They were eventually distributed bilaterally along the milk line but were most numerous in the public area. The disease may easily be overlooked when the macules are tiny or few in number and thus display no clear milk-line distribution, or when they occur in white-skinned individuals. Histologically, solitary large clear cells with large, round pale nuclei were detected in the basal layer of the hypomelaninized epidermis. The numbers of clear cells varied on haematoxylin and eosin staining and were only small in two patients. The cytoplasm of the clear cells was decorated by antikeratin AE1 and anticarcinoembryonic antigen antibodies. AE1 was the best marker of the clear cell. Some of the AE1-positive cells were tadpole-like in shape and were situated well above the basal layer. Ultrastructurally, large clumps of disintegrated or vacuolated mucin granules were present in the cytoplasm of the clear cells. The melanocytes appeared normal; the suprabasal keratinocytes were essentially devoid of melanosomes. The pathological findings in the present study support the hypothesis that these clear cells are an aberrant derivative of sweat gland cells in the epidermis and are potentially the precursor cells giving rise to mammary and extramammary Paget's disease. The differential diagnosis includes chicken pox scars, idiopathic guttate

  13. Disrupting MLC1 and GlialCAM and ClC-2 interactions in leukodystrophy entails glial chloride channel dysfunction

    NASA Astrophysics Data System (ADS)

    Hoegg-Beiler, Maja B.; Sirisi, Sònia; Orozco, Ian J.; Ferrer, Isidre; Hohensee, Svea; Auberson, Muriel; Gödde, Kathrin; Vilches, Clara; de Heredia, Miguel López; Nunes, Virginia; Estévez, Raúl; Jentsch, Thomas J.

    2014-03-01

    Defects in the astrocytic membrane protein MLC1, the adhesion molecule GlialCAM or the chloride channel ClC-2 underlie human leukoencephalopathies. Whereas GlialCAM binds ClC-2 and MLC1, and modifies ClC-2 currents in vitro, no functional connections between MLC1 and ClC-2 are known. Here we investigate this by generating loss-of-function Glialcam and Mlc1 mouse models manifesting myelin vacuolization. We find that ClC-2 is unnecessary for MLC1 and GlialCAM localization in brain, whereas GlialCAM is important for targeting MLC1 and ClC-2 to specialized glial domains in vivo and for modifying ClC-2’s biophysical properties specifically in oligodendrocytes (OLs), the cells chiefly affected by vacuolization. Unexpectedly, MLC1 is crucial for proper localization of GlialCAM and ClC-2, and for changing ClC-2 currents. Our data unmask an unforeseen functional relationship between MLC1 and ClC-2 in vivo, which is probably mediated by GlialCAM, and suggest that ClC-2 participates in the pathogenesis of megalencephalic leukoencephalopathy with subcortical cysts.

  14. Functions of glial cells in the retina of the honeybee drone.

    PubMed

    Coles, J A

    1989-01-01

    In the retina of the honey bee drone, Apis mellifera male, physiological interactions between glial cells and neurons (the photoreceptors) are exceptionally clear-cut and amenable to investigation. The principal glia (outer pigment cells) contribute to the homeostasis of extracellular [K+] and [Na+] by 1) spatial buffering of K+ and 2) net uptake of K+ and Cl-. The glia supply carbohydrate metabolic substrate to the neurons; only the glia take up and phosphorylate glucose. Neuronal activity 1) modifies glycogen metabolism in the glia, and 2) can be signalled to the glia in the absence of elevated extracellular [K+].

  15. Globular glial tauopathies (GGT): consensus recommendations

    PubMed Central

    Bigio, Eileen H.; Budka, Herbert; Dickson, Dennis W.; Ferrer, Isidro; Ghetti, Bernardino; Giaccone, Giorgio; Hatanpaa, Kimmo J.; Holton, Janice L.; Josephs, Keith A.; Powers, James; Spina, Salvatore; Takahashi, Hitoshi; White, Charles L.; Revesz, Tamas

    2014-01-01

    Rrecent studies have highlighted a group of 4-repeat (4R) tauopathies that are characterised neuropathologically by widespread, globular glial inclusions (GGIs). Tau immunohistochemistry reveals 4R immunore-active globular oligodendroglial and astrocytic inclusions and the latter are predominantly negative for Gallyas silver staining. These cases are associated with a range of clinical presentations, which correlate with the severity and distribution of underlying tau pathology and neurodegeneration. Their heterogeneous clinicopathological features combined with their rarity and under-recognition have led to cases characterised by GGIs being described in the literature using various and redundant terminologies. In this report, a group of neuropathologists form a consensus on the terminology and classification of cases with GGIs. After studying microscopic images from previously reported cases with suspected GGIs (n = 22), this panel of neuropathologists with extensive experience in the diagnosis of neurodegenerative diseases and a documented record of previous experience with at least one case with GGIs, agreed that (1) GGIs were present in all the cases reviewed; (2) the morphology of globular astrocytic inclusions was different to tufted astrocytes and finally that (3) the cases represented a number of different neuropathological subtypes. They also agreed that the different morphological subtypes are likely to be part of a spectrum of a distinct disease entity, for which they recommend that the overarching term globular glial tauopathy (GGT) should be used. Type I cases typically present with frontotemporal dementia, which correlates with the fronto-temporal distribution of pathology. Type II cases are characterised by pyramidal features reflecting motor cortex involvement and corticospinal tract degeneration. Type III cases can present with a combination of frontotemporal dementia and motor neuron disease with fronto-temporal cortex, motor cortex and

  16. Glial cell biology in the Great Lakes region.

    PubMed

    Feinstein, Douglas L; Skoff, Robert P

    2016-01-01

    We report on the tenth bi-annual Great Lakes Glial meeting, held in Traverse City, Michigan, USA, September 27-29 2015. The GLG meeting is a small conference that focuses on current research in glial cell biology. The array of functions that glial cells (astrocytes, microglia, oligodendrocytes, Schwann cells) play in health and disease is constantly increasing. Despite this diversity, GLG meetings bring together scientists with common interests, leading to a better understanding of these cells. This year's meeting included two keynote speakers who presented talks on the regulation of CNS myelination and the consequences of stress on Schwann cell biology. Twenty-two other talks were presented along with two poster sessions. Sessions covered recent findings in the areas of microglial and astrocyte activation; age-dependent changes to glial cells, Schwann cell development and pathology, and the role of stem cells in glioma and neural regeneration.

  17. Nitric oxide mediates glial-induced neurodegeneration in Alexander disease

    PubMed Central

    Wang, Liqun; Hagemann, Tracy L.; Kalwa, Hermann; Michel, Thomas; Messing, Albee; Feany, Mel B.

    2015-01-01

    Glia play critical roles in maintaining the structure and function of the nervous system; however, the specific contribution that astroglia make to neurodegeneration in human disease states remains largely undefined. Here we use Alexander disease, a serious degenerative neurological disorder caused by astrocyte dysfunction, to identify glial-derived NO as a signalling molecule triggering astrocyte-mediated neuronal degeneration. We further find that NO acts through cGMP signalling in neurons to promote cell death. Glial cells themselves also degenerate, via the DNA damage response and p53. Our findings thus define a specific mechanism for glial-induced non-cell autonomous neuronal cell death, and identify a potential therapeutic target for reducing cellular toxicity in Alexander disease, and possibly other neurodegenerative disorders with glial dysfunction. PMID:26608817

  18. Glial cell biology in the Great Lakes region.

    PubMed

    Feinstein, Douglas L; Skoff, Robert P

    2016-01-01

    We report on the tenth bi-annual Great Lakes Glial meeting, held in Traverse City, Michigan, USA, September 27-29 2015. The GLG meeting is a small conference that focuses on current research in glial cell biology. The array of functions that glial cells (astrocytes, microglia, oligodendrocytes, Schwann cells) play in health and disease is constantly increasing. Despite this diversity, GLG meetings bring together scientists with common interests, leading to a better understanding of these cells. This year's meeting included two keynote speakers who presented talks on the regulation of CNS myelination and the consequences of stress on Schwann cell biology. Twenty-two other talks were presented along with two poster sessions. Sessions covered recent findings in the areas of microglial and astrocyte activation; age-dependent changes to glial cells, Schwann cell development and pathology, and the role of stem cells in glioma and neural regeneration. PMID:27029404

  19. Nitric oxide mediates glial-induced neurodegeneration in Alexander disease.

    PubMed

    Wang, Liqun; Hagemann, Tracy L; Kalwa, Hermann; Michel, Thomas; Messing, Albee; Feany, Mel B

    2015-01-01

    Glia play critical roles in maintaining the structure and function of the nervous system; however, the specific contribution that astroglia make to neurodegeneration in human disease states remains largely undefined. Here we use Alexander disease, a serious degenerative neurological disorder caused by astrocyte dysfunction, to identify glial-derived NO as a signalling molecule triggering astrocyte-mediated neuronal degeneration. We further find that NO acts through cGMP signalling in neurons to promote cell death. Glial cells themselves also degenerate, via the DNA damage response and p53. Our findings thus define a specific mechanism for glial-induced non-cell autonomous neuronal cell death, and identify a potential therapeutic target for reducing cellular toxicity in Alexander disease, and possibly other neurodegenerative disorders with glial dysfunction. PMID:26608817

  20. Delayed glial clearance of degenerating axons in aged Drosophila is due to reduced PI3K/Draper activity.

    PubMed

    Purice, Maria D; Speese, Sean D; Logan, Mary A

    2016-01-01

    Advanced age is the greatest risk factor for neurodegenerative disorders, but the mechanisms that render the senescent brain vulnerable to disease are unclear. Glial immune responses provide neuroprotection in a variety of contexts. Thus, we explored how glial responses to neurodegeneration are altered with age. Here we show that glia-axon phagocytic interactions change dramatically in the aged Drosophila brain. Aged glia clear degenerating axons slowly due to low phosphoinositide-3-kinase (PI3K) signalling and, subsequently, reduced expression of the conserved phagocytic receptor Draper/MEGF10. Importantly, boosting PI3K/Draper activity in aged glia significantly reverses slow phagocytic responses. Moreover, several hours post axotomy, early hallmarks of Wallerian degeneration (WD) are delayed in aged flies. We propose that slow clearance of degenerating axons is mechanistically twofold, resulting from deferred initiation of axonal WD and reduced PI3K/Draper-dependent glial phagocytic function. Interventions that boost glial engulfment activity, however, can substantially reverse delayed clearance of damaged neuronal debris. PMID:27647497

  1. Delayed glial clearance of degenerating axons in aged Drosophila is due to reduced PI3K/Draper activity

    PubMed Central

    Purice, Maria D.; Speese, Sean D.; Logan, Mary A.

    2016-01-01

    Advanced age is the greatest risk factor for neurodegenerative disorders, but the mechanisms that render the senescent brain vulnerable to disease are unclear. Glial immune responses provide neuroprotection in a variety of contexts. Thus, we explored how glial responses to neurodegeneration are altered with age. Here we show that glia–axon phagocytic interactions change dramatically in the aged Drosophila brain. Aged glia clear degenerating axons slowly due to low phosphoinositide-3-kinase (PI3K) signalling and, subsequently, reduced expression of the conserved phagocytic receptor Draper/MEGF10. Importantly, boosting PI3K/Draper activity in aged glia significantly reverses slow phagocytic responses. Moreover, several hours post axotomy, early hallmarks of Wallerian degeneration (WD) are delayed in aged flies. We propose that slow clearance of degenerating axons is mechanistically twofold, resulting from deferred initiation of axonal WD and reduced PI3K/Draper-dependent glial phagocytic function. Interventions that boost glial engulfment activity, however, can substantially reverse delayed clearance of damaged neuronal debris. PMID:27647497

  2. Extracellular protein deposition correlates with glial activation and oxidative stress in Creutzfeldt-Jakob and Alzheimer's disease.

    PubMed

    Van Everbroeck, Bart; Dobbeleir, Itte; De Waele, Michèle; De Leenheir, Evelyn; Lübke, Ursula; Martin, Jean-Jacques; Cras, Patrick

    2004-09-01

    The relation of protein deposition with glial cells and oxidative stress was studied in Creutzfeldt-Jakob disease (CJD), Alzheimer's disease (AD) and neurologically healthy control patients. Three neocortical areas, the hippocampus, and the cerebellum of 20 CJD, 10 AD and 10 control patients were immunohistochemically examined for the presence of astroglia, microglia, and protein depositions. To investigate the level of oxidative stress the percentage of neurons with cytoplasmic hydroxylated DNA was determined. Astroglia, microglia and oxidative stress were located around amyloid-beta depositions and a clear quantitative relation was identified. These markers were only increased in the hippocampus of AD compared to controls. Quantitative analysis in these groups showed a correlation between the oxidative stress level and the number of microglia in the grey matter. All markers were increased in the grey matter and the cerebellum of CJD when compared to AD and controls. The highest numbers of lesions were observed in a CJD population with a rapid disease progression. Quantitative analysis showed a correlation between the oxidative stress level and all glial cells. Further analysis showed that the number of microglia was related to the intensity of the prion depositions. Glial cells in the brain are thought to be the main producers of oxidative stress, resulting in neuronal death. Our results confirm that this close relationship exists in both AD and CJD. We also show that an increased number of glial cells and therefore possibly oxidative stress is associated with the disease progression.

  3. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury

    PubMed Central

    Laranjeira, Catia; Sandgren, Katarina; Kessaris, Nicoletta; Richardson, William; Potocnik, Alexandre; Vanden Berghe, Pieter; Pachnis, Vassilis

    2011-01-01

    The enteric nervous system (ENS) in mammals forms from neural crest cells during embryogenesis and early postnatal life. Nevertheless, multipotent progenitors of the ENS can be identified in the adult intestine using clonal cultures and in vivo transplantation assays. The identity of these neurogenic precursors in the adult gut and their relationship to the embryonic progenitors of the ENS are currently unknown. Using genetic fate mapping, we here demonstrate that mouse neural crest cells marked by SRY box–containing gene 10 (Sox10) generate the neuronal and glial lineages of enteric ganglia. Most neurons originated from progenitors residing in the gut during mid-gestation. Afterward, enteric neurogenesis was reduced, and it ceased between 1 and 3 months of postnatal life. Sox10-expressing cells present in the myenteric plexus of adult mice expressed glial markers, and we found no evidence that these cells participated in neurogenesis under steady-state conditions. However, they retained neurogenic potential, as they were capable of generating neurons with characteristics of enteric neurons in culture. Furthermore, enteric glia gave rise to neurons in vivo in response to chemical injury to the enteric ganglia. Our results indicate that despite the absence of constitutive neurogenesis in the adult gut, enteric glia maintain limited neurogenic potential, which can be activated by tissue dissociation or injury. PMID:21865647

  4. Approaches to studies on neuronal/glial relationships by 13C-MRS analysis.

    PubMed

    Taylor, A; McLean, M; Morris, P; Bachelard, H

    1996-01-01

    The use of different 13C-labelled precursors alone or in combination ([1-13C]glucose, [2-13C]glucose, [1-13C]acetate, [2-13C]acetate and [1,2-13C2]acetate) to study neuronal/glial metabolic relationships by MRS is discussed. Glutamine and citrate resonances represent glial metabolism if a combination of [1-13C]glucose + [2-13C]acetate is used, but only for short time periods. A combination of [2-13C]glucose + [2-13C]acetate will label -COO- groups from glucose and -CH2 groups from acetate, respectively, which distinguish well in theory. However, this approach is severely limited by the long T1S of -COO- groups and low S/N. Contributions of the anaplerotic pathway can be assessed using [2-13C]glucose, but again can be limited by the long T1S of -COO- groups. Labelling of glycerol-3-phosphate (believed to be produced in glia) from [1-13C]glucose is difficult to see under normal conditions but has proved useful in, e.g., hypoxia. We believe the most promising approach is the use of [1-13C] glucose with [1,2-13C2]acetate, by analysis of the multiplets ('isotopomers') of the amino acid resonances.

  5. Phenotype overlap in glial cell populations: astroglia, oligodendroglia and NG-2(+) cells

    PubMed Central

    Alghamdi, Badrah; Fern, Robert

    2015-01-01

    The extent to which NG-2(+) cells form a distinct population separate from astrocytes is central to understanding whether this important cell class is wholly an oligodendrocyte precursor cell (OPC) or has additional functions akin to those classically ascribed to astrocytes. Early immuno-staining studies indicate that NG-2(+) cells do not express the astrocyte marker GFAP, but orthogonal reconstructions of double-labeled confocal image stacks here reveal a significant degree of co-expression in individual cells within post-natal day 10 (P10) and adult rat optic nerve (RON) and rat cortex. Extensive scanning of various antibody/fixation/embedding approaches identified a protocol for selective post-embedded immuno-gold labeling. This first ultrastructural characterization of identified NG-2(+) cells revealed populations of both OPCs and astrocytes in P10 RON. NG-2(+) astrocytes had classic features including the presence of glial filaments but low levels of glial filament expression were also found in OPCs and myelinating oligodendrocytes. P0 RONs contained few OPCs but positively identified astrocytes were observed to ensheath pre-myelinated axons in a fashion previously described as a definitive marker of the oligodendrocyte lineage. Astrocyte ensheathment was also apparent in P10 RONs, was absent from developing nodes of Ranvier and was never associated with compact myelin. Astrocyte processes were also shown to encapsulate some oligodendrocyte somata. The data indicate that common criteria for delineating astrocytes and oligodendroglia are insufficiently robust and that astrocyte features ascribed to OPCs may arise from misidentification. PMID:26106302

  6. Migration of neuronal precursors from the telencephalic ventricular zone into the olfactory bulb in adult zebrafish.

    PubMed

    Kishimoto, Norihito; Alfaro-Cervello, Clara; Shimizu, Kohei; Asakawa, Kazuhide; Urasaki, Akihiro; Nonaka, Shigenori; Kawakami, Koichi; Garcia-Verdugo, Jose Manuel; Sawamoto, Kazunobu

    2011-12-01

    In the brain of adult mammals, neuronal precursors are generated in the subventricular zone in the lateral wall of the lateral ventricles and migrate into the olfactory bulbs (OBs) through a well-studied route called the rostral migratory stream (RMS). Recent studies have revealed that a comparable neural stem cell niche is widely conserved at the ventricular wall of adult vertebrates. However, little is known about the migration route of neuronal precursors in nonmammalian adult brains. Here, we show that, in the adult zebrafish, a cluster of neuronal precursors generated in the telencephalic ventricular zone migrates into the OB via a route equivalent to the mammalian RMS. Unlike the mammalian RMS, these neuronal precursors are not surrounded by glial tubes, although radial glial cells with a single cilium lined the telencephalic ventricular wall, much as in embryonic and neonatal mammals. To observe the migrating neuronal precursors in living brain tissue, we established a brain hemisphere culture using a zebrafish line carrying a GFP transgene driven by the neurogenin1 (ngn1) promoter. In these fish, GFP was observed in the neuronal precursors migrating in the RMS, some of which were aligned with blood vessels. Numerous ngn1:gfp-positive cells were observed migrating tangentially in the RMS-like route medial to the OB. Taken together, our results suggest that the RMS in the adult zebrafish telencephalon is a functional migratory pathway. This is the first evidence for the tangential migration of neuronal precursors in a nonmammalian adult telencephalon.

  7. Neuron-glial trafficking of NH4+ and K+: separate routes of uptake into glial cells of bee retina.

    PubMed

    Marcaggi, Païkan; Jeanne, Marion; Coles, Jonathan A

    2004-02-01

    Ammonium (NH4+ and/or NH3) and K+ are released from active neurons and taken up by glial cells, and can modify glial cell behaviour. Study of these fluxes is most advanced in the retina of the honeybee drone, which consists essentially of identical neurons (photoreceptors) and identical glial cells (outer pigment cells). In isolated bee retinal glial cells, ammonium crosses the membrane as NH4+ on a Cl- cotransporter. We have now investigated, in the more physiological conditions of a retinal slice, whether the NH4+-Cl- cotransporter can transport K+ and whether the major K+ conductance can transport NH4+. We increased [NH4+] or [K+] in the superfusate and monitored uptake by recording from the glial cell syncytium or from interstitial space with microelectrodes selective for H+ or K+. In normal superfusate solution, ammonium acidified the glial cells but, after 6 min superfusion in low [Cl-] solution, ammonium alkalinized them. In the same low [Cl-] conditions, the rise in intraglial [K+] induced by an increase in superfusate [K+] was unchanged, i.e. no K+ flux on the Cl- cotransporter was detected. Ba2+ (5 mm) abolished the glial depolarization induced by K+ released from photoreceptors but did not reduce NH4+uptake. We estimate that when extracellular [NH4+] is increased, 62-100% is taken up by the NH4+-Cl- cotransporter and that when K+ is increased, 77-100% is taken up by routes selective for K+. This separation makes it possible that the glial uptake of NH4+ and of K+, and hence their signalling roles, might be regulated separately.

  8. 77 FR 21277 - Customer Clearing Documentation, Timing of Acceptance for Clearing, and Clearing Member Risk...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-09

    ... (``DCO'') level.\\3\\ \\3\\ Derivatives Clearing Organization General Provisions and Core Principles, 76 FR... Clearing Documentation and Timing of Acceptance for Clearing, 76 FR 45730 (Aug. 1, 2011). \\5\\ Requirements for Processing, Clearing, and Transfer of Customer Positions, 76 FR 13101 (Mar. 10, 2011)....

  9. Stereological assessment of the dorsal anterior cingulate cortex in schizophrenia: absence of changes in neuronal and glial densities

    PubMed Central

    Höistad, Malin; Heinsen, Helmut; Wicinski, Bridget; Schmitz, Christoph; Hof, Patrick R.

    2012-01-01

    Aims The prefrontal and anterior cingulate cortices are implicated in schizophrenia, and many studies have assessed volume, cortical thickness, and neuronal densities or numbers in these regions. Available data however are rather conflicting and no clear cortical alteration pattern has been established. Changes in oligodendrocytes and white matter have been observed in schizophrenia, introducing a hypothesis about a myelin deficit as a key event in disease development. Methods We investigated the dorsal anterior cingulate cortex (dACC) in 13 males with schizophrenia and 13 age- and gender-matched controls. We assessed stereologically the dACC volume, neuronal and glial densities, total neuron and glial numbers, and glia/neuron (GNI) ratios in both layers II-III and V-VI. Results We observed no differences in neuronal or glial densities. No changes were observed in dACC cortical volume, total neuron numbers, and total glial numbers in schizophrenia. This contrasts with previous findings and suggests that the dACC may not undergo as severe changes in schizophrenia as is generally believed. However, we observed higher glial densities in layers V-VI than in layers II-III in both controls and patients with schizophrenia, pointing to possible layer-specific effects on oligodendrocyte distribution during development. Conclusions Using rigorous stereological methods, we demonstrate a seemingly normal cortical organization in an important neocortical area for schizophrenia, emphasizing the importance of such morphometric approaches in quantitative neuropathology. We discuss the significance of subregion- and layer-specific alterations in the development of schizophrenia, and the discrepancies between post-mortem histopathological studies and in vivo brain imaging findings in patients. PMID:22860626

  10. Polyimide Precursor Solid Residuum

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2001-01-01

    A polyimide precursor solid residuum is an admixture of an aromatic dianhydride or derivative thereof and an aromatic diamine or derivative thereof plus a complexing agent, which is complexed with the admixture by hydrogen bonding. The polyimide precursor solid residuum is effectively employed in the preparation of polyimide foam and the fabrication of polyimide foam structures.

  11. Distinctive response of CNS glial cells in oro-facial pain associated with injury, infection and inflammation.

    PubMed

    Lee, SeungHwan; Zhao, Yuan Qing; Ribeiro-da-Silva, Alfredo; Zhang, Ji

    2010-01-01

    injection led to minor microglial morphological changes and an induction of IκB-α mRNA in the CVO regions; a significant increase in IL-1β and IL-6 mRNA started only at 48 hours post-injection, when the induced pain-related behavior started to resolve. Our detailed analysis of CNS glial response clearly revealed that both nerve injury and oro-facial infection/inflammation induced CNS glial activation, but in a completely different pattern, which suggests a remarkable plasticity of glial cells in response to dynamic changes in their microenvironment and different potential involvement of this non-neuronal cell population in pathological pain development. PMID:21067602

  12. Astrocytes Promote TNF-Mediated Toxicity to Oligodendrocyte Precursors

    PubMed Central

    Kim, SunJa; Steelman, Andrew J.; Koito, Hisami; Li, Jianrong

    2010-01-01

    Neuroinflammation and increased production of tumor necrosis factor (TNF) in the central nervous system have been implicated in many neurological diseases including white matter disorders periventricular leukomalacia and multiple sclerosis. However, the exact role of TNF in these diseases and how it mediates oligodendrocyte injury remain unclear. Previously we demonstrated that lipopolysaccharide (LPS) selectively kills oligodendrocyte precursors (preOLs) in a non-cell autonomous fashion through the induction of TNF in mixed glial cultures. Here we report that activation of oligodendroglial, but not astroglial and microglial, TNFR1 is required for LPS toxicity, and that astrocytes promote TNF-mediated preOL death through a cell contact-dependent mechanism. Microglia were the sole source for TNF production in LPS-treated mixed glial cultures. Ablation of TNFR1 in mixed glia completely prevented LPS-induced death of preOLs. TNFR1-expressing preOLs were similarly susceptible to LPS treatment when seeded into wildtype and TNFR1−/− mixed glial cultures, demonstrating a requirement for oligodendroglial TNFR1 in the cell death. Although exogenous TNF failed to cause significant cell death in enriched preOL cultures, it became cytotoxic when preOLs were in contact with astrocytes. Collectively, our results demonstrate oligodendroglial TNFR1 in mediating inflammatory destruction of preOLs and suggest a previously unrecognized role for astrocytes in promoting TNF toxicity to preOLs. PMID:21044081

  13. Epidemiology of glial and non-glial brain tumours in Europe.

    PubMed

    Crocetti, Emanuele; Trama, Annalisa; Stiller, Charles; Caldarella, Adele; Soffietti, Riccardo; Jaal, Jana; Weber, Damien C; Ricardi, Umberto; Slowinski, Jerzy; Brandes, Alba

    2012-07-01

    To the central nervous system (CNS) belong a heterogeneous group of glial and non glial rare cancers. The aim of the present study was to estimate the burden (incidence, prevalence, survival and proportion of cured) for the principal CNS cancers in Europe (EU27) and in European regions using population-based data from cancer registries participating in the RARECARE project. We analysed 44,947 rare CNS cancers diagnosed from 1995 to 2002 (with follow up at 31st December 2003): 86.0% astrocytic (24% low grade, 63% high grade and 13% glioma NOS), 6.4% oligodendroglial (74% low grade), 3.6% ependymal (85% low grade), 4.1% Embryonal tumours and 0.1% choroid plexus carcinoma. Incidence rates vary widely across European regions especially for astrocytic tumours ranging from 3/100,000 in Eastern Europe to 5/100,000 in United Kingdom and Ireland. Overall, about 27,700 new rare CNS cancers were estimated every year in EU27, for an annual incidence rate of 4.8 per 100,000 for astrocytic, 0.4 for oligodendroglial, 0.2 for ependymal and embryonal tumours and less than 0.1 for choroid plexus carcinoma. More than 154,000 persons with rare CNS were estimated alive (prevalent cases) in the EU at the beginning of 2008. Five-year relative survival was 14.5% for astrocytic tumours (42.6% for low grade, 4.9% for high grade and 17.5% for glioma NOS), 54.5% for oligodendroglial (64.9% high grade and 29.6% low grade), 74.2% for ependymal (80.4% low grade and 36.6% high grade), 62.8% for choroid plexus carcinomas and 56.8% for embryonal tumours. Survival rates for astrocytic tumours were relatively higher in Northern and Central Europe than in Eastern Europe and in UK and Ireland. The different availability of diagnostic imaging techniques and/or radiation therapy equipment across Europe may contribute to explain the reported survival differences. The estimated proportion of cured patients was 7.9% for the 'glial' group to which belong astrocytic tumours. Overall results are strongly

  14. Modification of glial response in hibernation: a patch-clamp study on glial cells acutely isolated from hibernating land snail.

    PubMed

    Nikolic, Ljiljana; Bataveljic, Danijela; Andjus, Pavle R; Moldovan, Ivana; Nedeljkovic, Miodrag; Petkovic, Branka

    2014-12-01

    Hibernation is a dormant state of some animal species that enables them to survive harsh environmental conditions during the winter seasons. In the hibernating state, preservation of neuronal rhythmic activity at a low level is necessary for maintenance of suspended forms of behavior. As glial cells support rhythmic activity of neurons, preservation of brain function in the hibernating state implies accompanying modification of glial activity. A supportive role of glia in regulating neuronal activity is reflected through the activity of inwardly rectifying K+ channels (Kir). Therefore, we examined electrophysiological response, particularly Kir current response, of glial cells in mixture with neurons acutely isolated from active and hibernating land snail Helix pomatia. Our data show that hibernated glia have significantly lower inward current density, specific membrane conductance, and conductance density compared with active glia. The observed reduction could be attributed to the Kir currents, since the Ba2+-sensitive Kir current density was significantly lower in hibernated glia. Accordingly, a significant positive shift of the current reversal potential indicated a more depolarized state of hibernated glia. Data obtained show that modification of glial current response could be regulated by serotonin (5-HT) through an increase of cGMP as a secondary messenger, since extracellular addition of 5-HT or intracellular administration of cGMP to active glia induced a significant reduction of inward current density and thus mimicked the reduced response of hibernated glia. Lower Kir current density of hibernated glia accompanied the lower electrical activity of hibernated neurons, as revealed by a decrease in neuronal fast inward Na+ current density. Our findings reveal that glial response is reduced in the hibernating state and suggest seasonal modulation of glial activity. Maintenance of low glial activity in hibernation could be important for preservation of brain

  15. Strategies for metabolic exchange between glial cells and neurons.

    PubMed

    Deitmer, J W

    2001-12-01

    The brain is a major energy consumer and dependent on carbohydrate and oxygen supply. Electrical and synaptic activity of neurons can only be sustained given sufficient availability of ATP. Glial cells, which have long been assigned trophic functions, seem to play a pivotal role in meeting the energy requirements of active neurons. Under conditions of high neuronal activity, a number of glial functions, such as the maintenance of ion homeostasis, neurotransmitter clearance from synaptic domains, the supply of energetic compounds and calcium signalling, are challenged. In the vertebrate brain, astrocytes may increase glucose utilization and release lactate, which is taken up and consumed by neurons to generate ATP by oxidative metabolism. The CO(2) produced is processed primarily in astrocytes, which display the major activity of carboanhydrase in the brain. Protons and bicarbonate in turn may contribute to drive acid/base-coupled transporters. In the present article a scenario is discussed which couples the transfer of energy and the conversion of CO(2) with the high-affinity glutamate uptake and other transport processes at glial and neuronal cell membranes. The transporters can be linked to glial signalling and may cooperate with each other at the cellular level. This could save energy, and would render energy exchange processes between glial cells and neurons more effective. Functions implications and physiological responses, in particular in chemosensitive brain areas, are discussed.

  16. Distinctive glial and neuronal interfacing on nanocrystalline diamond.

    PubMed

    Bendali, Amel; Agnès, Charles; Meffert, Simone; Forster, Valérie; Bongrain, Alexandre; Arnault, Jean-Charles; Sahel, José-Alain; Offenhäusser, Andreas; Bergonzo, Philippe; Picaud, Serge

    2014-01-01

    Direct electrode/neuron interfacing is a key challenge to achieve high resolution of neuronal stimulation required for visual prostheses. Neuronal interfacing on biomaterials commonly requires the presence of glial cells and/or protein coating. Nanocrystalline diamond is a highly mechanically stable biomaterial with a remarkably large potential window for the electrical stimulation of tissues. Using adult retinal cell cultures from rats, we found that glial cells and retinal neurons grew equally well on glass and nanocrystalline diamond. The use of a protein coating increased cell survival, particularly for glial cells. However, bipolar neurons appeared to grow even in direct contact with bare diamond. We investigated whether the presence of glial cells contributed to this direct neuron/diamond interface, by using purified adult retinal ganglion cells to seed diamond and glass surfaces with and without protein coatings. Surprisingly, these fully differentiated spiking neurons survived better on nanocrystalline diamond without any protein coating. This greater survival was indicated by larger cell numbers and the presence of longer neurites. When a protein pattern was drawn on diamond, neurons did not grow preferentially on the coated area, by contrast to their behavior on a patterned glass. This study highlights the interesting biocompatibility properties of nanocrystalline diamond, allowing direct neuronal interfacing, whereas a protein coating was required for glial cell growth.

  17. Strategies for metabolic exchange between glial cells and neurons.

    PubMed

    Deitmer, J W

    2001-12-01

    The brain is a major energy consumer and dependent on carbohydrate and oxygen supply. Electrical and synaptic activity of neurons can only be sustained given sufficient availability of ATP. Glial cells, which have long been assigned trophic functions, seem to play a pivotal role in meeting the energy requirements of active neurons. Under conditions of high neuronal activity, a number of glial functions, such as the maintenance of ion homeostasis, neurotransmitter clearance from synaptic domains, the supply of energetic compounds and calcium signalling, are challenged. In the vertebrate brain, astrocytes may increase glucose utilization and release lactate, which is taken up and consumed by neurons to generate ATP by oxidative metabolism. The CO(2) produced is processed primarily in astrocytes, which display the major activity of carboanhydrase in the brain. Protons and bicarbonate in turn may contribute to drive acid/base-coupled transporters. In the present article a scenario is discussed which couples the transfer of energy and the conversion of CO(2) with the high-affinity glutamate uptake and other transport processes at glial and neuronal cell membranes. The transporters can be linked to glial signalling and may cooperate with each other at the cellular level. This could save energy, and would render energy exchange processes between glial cells and neurons more effective. Functions implications and physiological responses, in particular in chemosensitive brain areas, are discussed. PMID:11738647

  18. Glial regulation of neuronal function: from synapse to systems physiology.

    PubMed

    Tasker, J G; Oliet, S H R; Bains, J S; Brown, C H; Stern, J E

    2012-04-01

    Classically, glia have been regarded as non-excitable cells that provide nourishment and physical scaffolding for neurones. However, it is now generally accepted that glia are active participants in brain function that can modulate neuronal communication via several mechanisms. Investigations of anatomical plasticity in the magnocellular neuroendocrine system of the hypothalamic paraventricular and supraoptic nuclei led the way in the development of much of our understanding of glial regulation of neuronal activity. In this review, we provide an overview of glial regulation of magnocellular neurone activity from a historical perspective of the development of our knowledge of the morphological changes that are evident in the paraventricular and supraoptic nuclei. We also focus on recent data from the authors' laboratories presented at the 9th World Congress on Neurohypophysial Hormones that have contributed to our understanding of the multiple mechanisms by which glia modulate the activity of neurones, including: gliotransmitter modulation of synaptic transmission; trans-synaptic modulation by glial neurotransmitter transporter regulation of neurotransmitter spillover; and glial neurotransmitter transporter modulation of excitability by regulation of ambient neurotransmitter levels and their action on extrasynaptic receptors. The magnocellular neuroendocrine system secretes oxytocin and vasopressin from the posterior pituitary gland to control birth, lactation and body fluid balance, and we finally speculate as to whether glial regulation of individual magnocellular neurones might co-ordinate population activity to respond appropriately to altered physiological circumstances.

  19. Symptomatic glial cysts of the pineal gland.

    PubMed

    Fain, J S; Tomlinson, F H; Scheithauer, B W; Parisi, J E; Fletcher, G P; Kelly, P J; Miller, G M

    1994-03-01

    Small asymptomatic cysts of the pineal gland represent a common incidental finding in adults undergoing computerized tomography or magnetic resonance (MR) imaging or at postmortem examination. In contrast, large symptomatic pineal cysts are rare, being limited to individual case reports or small series. The authors have reviewed 24 cases of large pineal cysts. The mean patient age at presentation was 28.7 years (range 15 to 46 years); 18 were female and six male. Presenting features in 20 symptomatic cases included: headache in 19; nausea and/or vomiting in seven; papilledema in five; visual disturbances in five (diplopia in three, "blurred vision" in two, and unilateral partial oculomotor nerve palsy in one); Parinaud's syndrome in two; hemiparesis in one; hemisensory aberration in one; and seizures in one. Four lesions were discovered incidentally. Magnetic resonance imaging typically demonstrated a 0.8- to 3.0-cm diameter mass (mean 1.7 cm) with homogeneous decreased signal intensity on T1-weighted images, increased signal intensity on T2-weighted images, and a distinct margin. Hydrocephalus was present in eight cases. The cysts were surgically excised via an infratentorial/supracerebellar approach (23 cases) or stereotactically biopsied (one case). Histological examination revealed a cyst wall 0.5 to 2.0 mm thick comprised of three layers: an outer fibrous layer, a middle layer of pineal parenchymal cells with variable calcification, and an inner layer of hypocellular glial tissue often exhibiting Rosenthal fibers and/or granular bodies. Evidence of prior hemorrhage, mild astrocytic degenerative atypia, and disorganization of pineal parenchyma were often present. Postoperative follow-up review in all 24 cases (range 3 months to 10 years) revealed no complications in 21, mild ocular movement deficit in one, gradually resolving Parinaud's syndrome in one, and radiographic evidence of a postoperative venous infarct of the superior cerebellum with ataxia of 1 week

  20. Quetiapine Attenuates Glial Activation and Proinflammatory Cytokines in APP/PS1 Transgenic Mice via Inhibition of Nuclear Factor-κB Pathway

    PubMed Central

    Zhu, Shenghua; Shi, Ruoyang; Li, Victor; Wang, Junhui; Zhang, Ruiguo; Tempier, Adrien; He, Jue; Kong, Jiming; Wang, Jun-Feng

    2015-01-01

    Background: In Alzheimer’s disease, growing evidence has shown that uncontrolled glial activation and neuroinflammation may contribute independently to neurodegeneration. Antiinflammatory strategies might provide benefits for this devastating disease. The aims of the present study are to address the issue of whether glial activation and proinflammatory cytokine increases could be modulated by quetiapine in vivo and in vitro and to explore the underlying mechanism. Methods: Four-month–old amyloid precursor protein (APP) and presenilin 1 (PS1) transgenic and nontransgenic mice were treated with quetiapine (5mg/kg/d) in drinking water for 8 months. Animal behaviors, total Aβ levels, and glial activation were evaluated by behavioral tests, enzyme-linked immunosorbent assay, immunohistochemistry, and Western blot accordingly. Inflammatory cytokines and the nuclear factor kappa B pathway were analyzed in vivo and in vitro. Results: Quetiapine improves behavioral performance, marginally affects total Aβ40 and Aβ42 levels, attenuates glial activation, and reduces proinflammatory cytokines in APP/PS1 mice. Quetiapine suppresses Aβ1-42-induced activation of primary microglia by decresing proinflammatory cytokines. Quetiapine inhibits the activation of nuclear factor kappa B p65 pathway in both transgenic mice and primary microglia stimulated by Aβ1–42. Conclusions: The antiinflammatory effects of quetiapine in Alzheimer’s disease may be involved in the nuclear factor kappa B pathway. Quetiapine may be an efficacious and promising treatment for Alzheimer’s disease targeting on neuroinflammation. PMID:25618401

  1. Connecting Malfunctioning Glial Cells and Brain Degenerative Disorders.

    PubMed

    Kaminsky, Natalie; Bihari, Ofer; Kanner, Sivan; Barzilai, Ari

    2016-06-01

    The DNA damage response (DDR) is a complex biological system activated by different types of DNA damage. Mutations in certain components of the DDR machinery can lead to genomic instability disorders that culminate in tissue degeneration, premature aging, and various types of cancers. Intriguingly, malfunctioning DDR plays a role in the etiology of late onset brain degenerative disorders such as Parkinson's, Alzheimer's, and Huntington's diseases. For many years, brain degenerative disorders were thought to result from aberrant neural death. Here we discuss the evidence that supports our novel hypothesis that brain degenerative diseases involve dysfunction of glial cells (astrocytes, microglia, and oligodendrocytes). Impairment in the functionality of glial cells results in pathological neuro-glial interactions that, in turn, generate a "hostile" environment that impairs the functionality of neuronal cells. These events can lead to systematic neural demise on a scale that appears to be proportional to the severity of the neurological deficit. PMID:27245308

  2. Implanted neural progenitor cells regulate glial reaction to brain injury and establish gap junctions with host glial cells.

    PubMed

    Talaverón, Rocío; Matarredona, Esperanza R; de la Cruz, Rosa R; Macías, David; Gálvez, Victoria; Pastor, Angel M

    2014-04-01

    Transplantation of neural stem/progenitor cells (NPCs) in the lesioned brain is able to restore morphological and physiological alterations induced by different injuries. The local microenvironment created at the site of grafting and the communication between grafted and host cells are crucial in the beneficial effects attributed to the NPC implants. We have previously described that NPC transplantation in an animal model of central axotomy restores firing properties and synaptic coverage of lesioned neurons and modulates their trophic factor content. In this study, we aim to explore anatomical relationships between implanted NPCs and host glia that might account for the implant-induced neuroprotective effects. Postnatal rat subventricular zone NPCs were isolated and grafted in adult rats after transection of the medial longitudinal fascicle. Brains were removed and analyzed eight weeks later. Immunohistochemistry for different glial markers revealed that NPC-grafted animals displayed significantly greater microglial activation than animals that received only vehicle injections. Implanted NPCs were located in close apposition to activated microglia and reactive astrocytes. The gap junction protein connexin43 was present in NPCs and glial cells at the lesion site and was often found interposed within adjacent implanted and glial cells. Gap junctions were identified between implanted NPCs and host astrocytes and less frequently between NPCs and microglia. Our results show that implanted NPCs modulate the glial reaction to lesion and establish the possibility of communication through gap junctions between grafted and host glial cells which might be involved in the restorative effects of NPC implants.

  3. Effects of therapeutic hypothermia on the glial proteome and phenotype.

    PubMed

    Kim, Jong-Heon; Seo, Minchul; Suk, Kyoungho

    2013-02-01

    Therapeutic hypothermia is a useful intervention against brain injury in experimental models and patients, but its therapeutic applications are limited due to its ill-defined mode of action. Glia cells maintain homeostasis and protect the central nervous system from environmental change, but after brain injury, glia are activated and induce glial scar formation and secondary injury. On the other hand, therapeutic hypothermia has been shown to modulate glial hyperactivation under various brain injury conditions. We considered that knowledge of the effect of hypothermia on the molecular profiles of glia and on their phenotypes would improve our understanding of the neuroprotective mechanism of hypothermia. Here, we review the findings of recent studies that examined the effect of hypothermia on proteome changes in reactive glial cells in vitro and in vivo. The therapeutic effects of hypothermia are associated with the inhibition of reactive oxygen species generation, the maintenance of ion homeostasis, and the protection of neurovascular units in cultured glial cells. In an animal model, a distinct pattern of protein alterations was detected in glia following hypothermia under ischemic/reperfusion conditions. In particular, hypothermia was found to exert a neuroprotective effect against ischemic brain injury by regulating specific glial signaling pathways, such as, glutamate signaling, cell death, and stress response, and by influencing neural dysfunction, neurogenesis, neural plasticity, cell differentiation, and neurotrophic activity. Furthermore, the proteins that were differentially expressed belonged to various pathways and could mediate diverse phenotypic changes of glia in vitro or in vivo. Therefore, hypothermia-modulated glial proteins and subsequent phenotypic changes may form the basis of the therapeutic effects of hypothermia. PMID:23441897

  4. Bilateral macrostomia associated with aqueductal stenosis and glial heterotopias.

    PubMed

    Pepe, Ernesto; Petricig, Paola; Peretta, Paola; Cinalli, Giuseppe

    2007-09-01

    We report on an Italian boy, born to normal and nonconsanguineous parents with a prenatal diagnosis of ventriculomegaly and subependymal glial heterotopias. At birth bilateral macrostomia was diagnosed without other evident facial anomalies. Magnetic resonance imaging (MRI) showed triventricular hydrocephalus and aqueductal stenosis and confirmed the nodules of glial heterotopia. The bilateral macrostomia was surgically corrected with the vermilion square flap method and W-plasty technique and follow up MRI at 6 months showed mild increase of ventricular dilatation without signs of active hydrocephalus. The association between macrostomia and hydrocephalus has been reported only in rare cases of complex malformative syndromes but never with isolated macrostomia.

  5. Earthquakes: hydrogeochemical precursors

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  6. Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia.

    PubMed

    Zhang, X; Chen, Y; Wang, C; Huang, L-Y M

    2007-06-01

    It has been generally assumed that the cell body (soma) of a neuron, which contains the nucleus, is mainly responsible for synthesis of macromolecules and has a limited role in cell-to-cell communication. Using sniffer patch recordings, we show here that electrical stimulation of dorsal root ganglion (DRG) neurons elicits robust vesicular ATP release from their somata. The rate of release events increases with the frequency of nerve stimulation; external Ca(2+) entry is required for the release. FM1-43 photoconversion analysis further reveals that small clear vesicles participate in exocytosis. In addition, the released ATP activates P2X7 receptors in satellite cells that enwrap each DRG neuron and triggers the communication between neuronal somata and glial cells. Blocking L-type Ca(2+) channels completely eliminates the neuron-glia communication. We further show that activation of P2X7 receptors can lead to the release of tumor necrosis factor-alpha (TNFalpha) from satellite cells. TNFalpha in turn potentiates the P2X3 receptor-mediated responses and increases the excitability of DRG neurons. This study provides strong evidence that somata of DRG neurons actively release transmitters and play a crucial role in bidirectional communication between neurons and surrounding satellite glial cells. These results also suggest that, contrary to the conventional view, neuronal somata have a significant role in cell-cell signaling.

  7. Glial cell development and function in the Drosophila visual system

    PubMed Central

    CHOTARD, CAROLE; SALECKER, IRIS

    2008-01-01

    In the developing nervous system, building a functional neuronal network relies on coordinating the formation, specification and survival to diverse neuronal and glial cell subtypes. The establishment of neuronal connections further depends on sequential neuron–neuron and neuron–glia interactions that regulate cell-migration patterns and axon guidance. The visual system of Drosophila has a highly regular, retinotopic organization into reiterated interconnected synaptic circuits. It is therefore an excellent invertebrate model to investigate basic cellular strategies and molecular determinants regulating the different developmental processes that lead to network formation. Studies in the visual system have provided important insights into the mechanisms by which photoreceptor axons connect with their synaptic partners within the optic lobe. In this review, we highlight that this system is also well suited for uncovering general principles that underlie glial cell biology. We describe the glial cell subtypes in the visual system and discuss recent findings about their development and migration. Finally, we outline the pivotal roles of glial cells in mediating neural circuit assembly, boundary formation, neural proliferation and survival, as well as synaptic function. PMID:18333286

  8. Mechanisms of Aβ Clearance and Degradation by Glial Cells

    PubMed Central

    Ries, Miriam; Sastre, Magdalena

    2016-01-01

    Glial cells have a variety of functions in the brain, ranging from immune defense against external and endogenous hazardous stimuli, regulation of synaptic formation, calcium homeostasis, and metabolic support for neurons. Their dysregulation can contribute to the development of neurodegenerative disorders, including Alzheimer’s disease (AD). One of the most important functions of glial cells in AD is the regulation of Amyloid-β (Aβ) levels in the brain. Microglia and astrocytes have been reported to play a central role as moderators of Aβ clearance and degradation. The mechanisms of Aβ degradation by glial cells include the production of proteases, including neprilysin, the insulin degrading enzyme, and the endothelin-converting enzymes, able to hydrolyse Aβ at different cleavage sites. Besides these enzymes, other proteases have been described to have some role in Aβ elimination, such as plasminogen activators, angiotensin-converting enzyme, and matrix metalloproteinases. Other relevant mediators that are released by glial cells are extracellular chaperones, involved in the clearance of Aβ alone or in association with receptors/transporters that facilitate their exit to the blood circulation. These include apolipoproteins, α2macroglobulin, and α1-antichymotrypsin. Finally, astrocytes and microglia have an essential role in phagocytosing Aβ, in many cases via a number of receptors that are expressed on their surface. In this review, we examine all of these mechanisms, providing an update on the latest research in this field. PMID:27458370

  9. Mechanisms of Aβ Clearance and Degradation by Glial Cells.

    PubMed

    Ries, Miriam; Sastre, Magdalena

    2016-01-01

    Glial cells have a variety of functions in the brain, ranging from immune defense against external and endogenous hazardous stimuli, regulation of synaptic formation, calcium homeostasis, and metabolic support for neurons. Their dysregulation can contribute to the development of neurodegenerative disorders, including Alzheimer's disease (AD). One of the most important functions of glial cells in AD is the regulation of Amyloid-β (Aβ) levels in the brain. Microglia and astrocytes have been reported to play a central role as moderators of Aβ clearance and degradation. The mechanisms of Aβ degradation by glial cells include the production of proteases, including neprilysin, the insulin degrading enzyme, and the endothelin-converting enzymes, able to hydrolyse Aβ at different cleavage sites. Besides these enzymes, other proteases have been described to have some role in Aβ elimination, such as plasminogen activators, angiotensin-converting enzyme, and matrix metalloproteinases. Other relevant mediators that are released by glial cells are extracellular chaperones, involved in the clearance of Aβ alone or in association with receptors/transporters that facilitate their exit to the blood circulation. These include apolipoproteins, α2macroglobulin, and α1-antichymotrypsin. Finally, astrocytes and microglia have an essential role in phagocytosing Aβ, in many cases via a number of receptors that are expressed on their surface. In this review, we examine all of these mechanisms, providing an update on the latest research in this field. PMID:27458370

  10. Membrane currents and morphological properties of neurons and glial cells in the spinal cord and filum terminale of the frog.

    PubMed

    Chvátal, A; Andĕrová, M; Ziak, D; Orkand, R K; Syková, E

    2001-05-01

    Using the patch-clamp technique in the whole-cell configuration combined with intracellular dialysis of the fluorescent dye Lucifer yellow (LY), the membrane properties of cells in slices of the lumbar portion of the frog spinal cord (n=64) and the filum terminale (FT, n=48) have been characterized and correlated with their morphology. Four types of cells were found in lumbar spinal cord and FT with membrane and morphological properties similar to those of cells that were previously identified in the rat spinal cord (Chvátal, A., Pastor, A., Mauch, M., Syková, E., Kettenmann, H., 1995. Distinct populations of identified glial cells in the developing rat spinal cord: Ion channel properties and cell morphology. Eur. J. Neurosci. 7, 129-142). Neurons, in response to a series of symmetrical voltage steps, displayed large repetitive voltage-dependent Na(+) inward currents and K(+) delayed rectifying outward currents. Three distinct types of non-neuronal cells were found. First, cells that exhibited passive symmetrical non-decaying currents were identified as astrocytes. These cells immunostained for GFAP and typically had at least one thick process and a number of fine processes. Second, cells with the characteristic properties of rat spinal cord oligodendrocytes, with passive symmetrical decaying currents and large tail currents after the end of the voltage step. These cells exhibited either long parallel or short hairy processes. Third, cells that expressed small brief inward currents in response to depolarizing steps, delayed rectifier outward currents and small sustained inward currents identical to rat glial precursor cells. Morphologically, they were characterized by round cell bodies with a number of finely branched processes. LY dye-coupling in the frog spinal cord gray matter and FT was observed in neurons and in all glial populations. All four cell types were found in both the spinal cord gray matter and FT. The glia/neuron ratio in the spinal cord was 0

  11. Membrane currents and morphological properties of neurons and glial cells in the spinal cord and filum terminale of the frog.

    PubMed

    Chvátal, A; Andĕrová, M; Ziak, D; Orkand, R K; Syková, E

    2001-05-01

    Using the patch-clamp technique in the whole-cell configuration combined with intracellular dialysis of the fluorescent dye Lucifer yellow (LY), the membrane properties of cells in slices of the lumbar portion of the frog spinal cord (n=64) and the filum terminale (FT, n=48) have been characterized and correlated with their morphology. Four types of cells were found in lumbar spinal cord and FT with membrane and morphological properties similar to those of cells that were previously identified in the rat spinal cord (Chvátal, A., Pastor, A., Mauch, M., Syková, E., Kettenmann, H., 1995. Distinct populations of identified glial cells in the developing rat spinal cord: Ion channel properties and cell morphology. Eur. J. Neurosci. 7, 129-142). Neurons, in response to a series of symmetrical voltage steps, displayed large repetitive voltage-dependent Na(+) inward currents and K(+) delayed rectifying outward currents. Three distinct types of non-neuronal cells were found. First, cells that exhibited passive symmetrical non-decaying currents were identified as astrocytes. These cells immunostained for GFAP and typically had at least one thick process and a number of fine processes. Second, cells with the characteristic properties of rat spinal cord oligodendrocytes, with passive symmetrical decaying currents and large tail currents after the end of the voltage step. These cells exhibited either long parallel or short hairy processes. Third, cells that expressed small brief inward currents in response to depolarizing steps, delayed rectifier outward currents and small sustained inward currents identical to rat glial precursor cells. Morphologically, they were characterized by round cell bodies with a number of finely branched processes. LY dye-coupling in the frog spinal cord gray matter and FT was observed in neurons and in all glial populations. All four cell types were found in both the spinal cord gray matter and FT. The glia/neuron ratio in the spinal cord was 0

  12. Identification of Desirable Precursor Properties for Solution Precursor Plasma Spray

    NASA Astrophysics Data System (ADS)

    Muoto, Chigozie K.; Jordan, Eric H.; Gell, Maurice; Aindow, Mark

    2011-06-01

    In solution precursor plasma spray chemical precursor solutions are injected into a standard plasma torch and the final material is formed and deposited in a single step. This process has several attractive features, including the ability to rapidly explore new compositions and to form amorphous and metastable phases from molecularly mixed precursors. Challenges include: (a) moderate deposition rates due to the need to evaporate the precursor solvent, (b) dealing on a case by case basis with precursor characteristics that influence the spray process (viscosity, endothermic and exothermic reactions, the sequence of physical states through which the precursor passes before attaining the final state, etc.). Desirable precursor properties were identified by comparing an effective precursor for yttria-stabilized zirconia with four less effective candidate precursors for MgO:Y2O3. The critical parameters identified were a lack of major endothermic events during precursor decomposition and highly dense resultant particles.

  13. Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model.

    PubMed

    Borges, Karin; Gearing, Marla; McDermott, Dayna L; Smith, Amy B; Almonte, Antoine G; Wainer, Bruce H; Dingledine, Raymond

    2003-07-01

    The rodent pilocarpine model of epilepsy exhibits hippocampal sclerosis and spontaneous seizures and thus resembles human temporal lobe epilepsy. Use of the many available mouse mutants to study this epilepsy model would benefit from a detailed neuropathology study. To identify new features of epileptogenesis, we characterized glial and neuronal pathologies after pilocarpine-induced status epilepticus (SE) in CF1 and C57BL/6 mice focusing on the hippocampus. All CF1 mice showed spontaneous seizures by 17-27 days after SE. By 6 h there was virtually complete loss of hilar neurons, but the extent of pyramidal cell death varied considerably among mice. In the mossy fiber pathway, neuropeptide Y (NPY) was persistently upregulated beginning 1 day after SE; NPY immunoreactivity in the supragranular layer after 31 days indicated mossy fiber sprouting. beta2 microglobulin-positive activated microglia, normally absent in brains without SE, became abundant over 3-31 days in regions of neuronal loss, including the hippocampus and the amygdala. Astrogliosis developed after 10 days in damaged areas. Amyloid precursor protein immunoreactivity in the thalamus at 10 days suggested delayed axonal degeneration. The mortality after pilocarpine injection was very high in C57BL/6 mice from Jackson Laboratories but not those from Charles River, suggesting that mutant mice in the C57BL/6(JAX) strain will be difficult to study in the pilocarpine model, although their neuropathology was similar to CF1 mice. Major neuropathological changes not previously studied in the rodent pilocarpine model include widespread microglial activation, delayed thalamic axonal death, and persistent NPY upregulation in mossy fibers, together revealing extensive and persistent glial as well as neuronal pathology.

  14. Glial fibrillary acidic protein is a body fluid biomarker for glial pathology in human disease.

    PubMed

    Petzold, Axel

    2015-03-10

    This review on the role of glial fibrillary acidic protein (GFAP) as a biomarker for astroglial pathology in neurological diseases provides background to protein synthesis, assembly, function and degeneration. Qualitative and quantitative analytical techniques for the investigation of human tissue and biological fluid samples are discussed including partial lack of parallelism and multiplexing capabilities. Pathological implications are reviewed in view of immunocytochemical, cell-culture and genetic findings. Particular emphasis is given to neurodegeneration related to autoimmune astrocytopathies and to genetic gain of function mutations. The current literature on body fluid levels of GFAP in human disease is summarised and illustrated by disease specific meta-analyses. In addition to the role of GFAP as a diagnostic biomarker for chronic disease, there are important data on the prognostic value for acute conditions. The published evidence permits to classify the dominant GFAP signatures in biological fluids. This classification may serve as a template for supporting diagnostic criteria of autoimmune astrocytopathies, monitoring disease progression in toxic gain of function mutations, clinical treatment trials (secondary outcome and toxicity biomarker) and provide prognostic information in neurocritical care if used within well defined time-frames.

  15. Glial U87 cells protect neuronal SH-SY5Y cells from indirect effect of radiation by reducing oxidative stress and apoptosis.

    PubMed

    Saeed, Yasmeen; Xie, Bingjie; Xu, Jin; Rehman, Abdur; Hong, Ma; Hong, Qing; Deng, Yulin

    2015-04-01

    Recent studies have demonstrated the role of indirect effect of radiation in neurodegeneration. However, the role of glial cells in neuroprotection against indirect effect of radiation is still not clear, although they are known to protect neurons under stress conditions in central nervous system. Our study showed that indirect effect of radiation increased the oxidative stress that further enhances the expression of key apoptotic proteins and leads to neuronal cell death. We also investigated the indirect effect of radiation on neuronal cells in the presence of glial cells in a transwell co-culture system, while our analysis was focused on neuronal cells. Irradiated cell-conditioned medium (ICCM) was used as source of indirect radiation and neuroprotective effect was analyzed by various endpoints. It was observed that ICCM-induced reactive oxidative species level was significantly reduced in SH-SY5Y cells co-cultured with glial U87 cells, which might help to maintain the integrity of mitochondrial membrane potential. Increased levels of antioxidant enzyme superoxide dismutase and antioxidant glutathione were observed in SH-SY5Y cells co-cultured with glial U87 cells. Moreover, it was also observed that co-culture with glial cells inhibits the expression of ICCM-induced apoptotic proteins, i.e. Bax, cytochrome c, and caspase-3 in SH-SY5Y cells. Hence, it can be speculated that in co-culture system glial cells may protect the neuronal SH-SY5Y cells by reducing the ICCM-induced oxidative stress and apoptotic death.

  16. Glial glutamate transporters: new actors in brain signaling.

    PubMed

    López-Bayghen, Esther; Ortega, Arturo

    2011-10-01

    Glutamate, the main excitatory amino acid in the vertebrate brain, is critically involved in most of the physiological functions of the central nervous system. It has traditionally been assumed that glutamate triggers a wide array of signaling cascades through the activation of specific membrane receptors. The extracellular levels are tightly regulated to prevent neurotoxic insults. Electrogenic Na(+)-dependent glial glutamate transporters remove the bulk of the neurotransmitter from the synaptic cleft. An exquisitely ordered coupling between glutamatergic neurons and surrounding glia cells is fundamental for excitatory transmission. The glutamate/glutamine and astrocyte/neuron lactate shuttles provide the biochemical framework of this compulsory association. In this context, recent advances show that glial glutamate transporters act as signal transducers that regulate the expression of proteins involved in their compartmentalization with neurons in the so-called tripartite synapse.

  17. Glial β-Oxidation regulates Drosophila Energy Metabolism

    PubMed Central

    Schulz, Joachim G.; Laranjeira, Antonio; Van Huffel, Leen; Gärtner, Annette; Vilain, Sven; Bastianen, Jarl; Van Veldhoven, Paul P.; Dotti, Carlos G.

    2015-01-01

    The brain's impotence to utilize long-chain fatty acids as fuel, one of the dogmas in neuroscience, is surprising, since the nervous system is the tissue most energy consuming and most vulnerable to a lack of energy. Challenging this view, we here show in vivo that loss of the Drosophila carnitine palmitoyltransferase 2 (CPT2), an enzyme required for mitochondrial β-oxidation of long-chain fatty acids as substrates for energy production, results in the accumulation of triacylglyceride-filled lipid droplets in adult Drosophila brain but not in obesity. CPT2 rescue in glial cells alone is sufficient to restore triacylglyceride homeostasis, and we suggest that this is mediated by the release of ketone bodies from the rescued glial cells. These results demonstrate that the adult brain is able to catabolize fatty acids for cellular energy production. PMID:25588812

  18. Alcohol alters hypothalamic glial-neuronal communications involved in the neuroendocrine control of puberty: In vivo and in vitro assessments.

    PubMed

    Dees, W L; Hiney, J K; Srivastava, V K

    2015-11-01

    The onset of puberty is the result of the increased secretion of hypothalamic luteinizing hormone-releasing hormone (LHRH). The pubertal process can be altered by substances that can affect the prepubertal secretion of this peptide. Alcohol is one such substance known to diminish LHRH secretion and delay the initiation of puberty. The increased secretion of LHRH that normally occurs at the time of puberty is due to a decrease of inhibitory tone that prevails prior to the onset of puberty, as well as an enhanced development of excitatory inputs to the LHRH secretory system. Additionally, it has become increasingly clear that glial-neuronal communications are important for pubertal development because they play an integral role in facilitating the pubertal rise in LHRH secretion. Thus, in recent years attempts have been made to identify specific glial-derived components that contribute to the development of coordinated communication networks between glia and LHRH cell bodies, as well as their nerve terminals. Transforming growth factor-α and transforming growth factor-β1 are two such glial substances that have received attention in this regard. This review summarizes the use of multiple neuroendocrine research techniques employed to assess these glial-neuronal communication pathways involved in regulating prepubertal LHRH secretion and the effects that alcohol can have on their respective functions. PMID:26362096

  19. In vivo long-term synaptic plasticity of glial cells.

    PubMed

    Bélair, Eve-Lyne; Vallée, Joanne; Robitaille, Richard

    2010-04-01

    Evidence showing the ability of glial cells to detect, respond to and modulate synaptic transmission and plasticity has contributed to the notion of glial cells as active synaptic partners. However, synaptically induced plasticity of glia themselves remains ill defined. Here we used the amphibian neuromuscular junction (NMJ) to study plasticity of perisynaptic Schwann cells (PSCs), glial cells at this synapse, following long-term in vivo modifications of synaptic activity. We used two models that altered synaptic activity in different manners. First, chronic blockade of postsynaptic nicotinic receptors using alpha-bungarotoxin (alpha-BTx) decreased facilitation, increased synaptic depression and decreased post-tetanic potentiation (PTP). Second, chronic nerve stimulation increased facilitation and resistance to synaptic depression, while leaving PTP unaltered. Our results indicate that there is no direct relationship between transmitter release and PSC calcium responses. Indeed, despite changes in transmitter release and plasticity in stimulated NMJs, nerve-evoked PSC calcium responses were similar to control. Similarly, PSC calcium responses in alpha-BTx treated NMJs were delayed and smaller in amplitude, even though basal level of transmitter release was increased. Also, when isolating purinergic and muscarinic components of PSC calcium responses, we found an increased sensitivity to ATP and a decreased sensitivity to muscarine in chronically stimulated NMJs. Conversely, in alpha-BTx treated NMJs, PSC sensitivity remained unaffected, but ATP- and muscarine-induced calcium responses were prolonged. Thus, our results reveal complex modifications of PSC properties, with differential modulation of signalling pathways that might underlie receptor regulation or changes in Ca(2+) handling. Importantly, similar to neurons, perisynaptic glial cells undergo plastic changes induced by altered synaptic activity.

  20. Technical Snobbery Versus Clear Communicating.

    ERIC Educational Resources Information Center

    Ransone, R. K.

    Jargon, when used properly, defines precisely and concisely the concepts peculiar to a profession. Within a profession, it meets the criteria for clear, brief, specific communication. When used outside that profession, however, it tries to impress rather than to express. Engineers and other professionals need to be taught when--and when not--to…

  1. Plain Language Clear and Simple.

    ERIC Educational Resources Information Center

    National Literacy Secretariat, Ottawa (Ontario).

    Written for Canadian public servants and written with their help, this handbook presents principles and tips to make official writing clear, concise, and well organized. The handbook defines "plain language" writing as a technique of organizing information in ways that make sense to the reader--using familiar, straightforward words. The handbook…

  2. Glial-neuronal interactions in Alzheimer's disease: the potential role of a 'cytokine cycle' in disease progression.

    PubMed

    Griffin, W S; Sheng, J G; Royston, M C; Gentleman, S M; McKenzie, J E; Graham, D I; Roberts, G W; Mrak, R E

    1998-01-01

    The role of glial inflammatory processes in Alzheimer's disease has been highlighted by recent epidemiological work establishing head trauma as an important risk factor, and the use of anti-inflammatory agents as an important ameliorating factor, in this disease. This review advances the hypothesis that chronic activation of glial inflammatory processes, arising from genetic or environmental insults to neurons and accompanied by chronic elaboration of neuroactive glia-derived cytokines and other proteins, sets in motion a cytokine cycle of cellular and molecular events with neurodegenerative consequences. In this cycle, interleukin-1 is a key initiating and coordinating agent. Interleukin-1 promotes neuronal synthesis and processing of the beta-amyloid precursor protein, thus favoring continuing deposition of beta-amyloid, and activates astrocytes and promotes astrocytic synthesis and release of a number of inflammatory and neuroactive molecules. One of these, S100beta, is a neurite growth-promoting cytokine that stresses neurons through its trophic actions and fosters neuronal cell dysfunction and death by raising intraneuronal free calcium concentrations. Neuronal injury arising from these cytokine-induced neuronal insults can activate microglia with further overexpression of interleukin-1, thus producing feedback amplification and self-propagation of this cytokine cycle. Additional feedback amplification is provided through other elements of the cycle. Chronic propagation of this cytokine cycle represents a possible mechanism for progression of neurodegenerative changes culminating in Alzheimer's disease.

  3. Glial biomarkers in human central nervous system disease.

    PubMed

    Garden, Gwenn A; Campbell, Brian M

    2016-10-01

    There is a growing understanding that aberrant GLIA function is an underlying factor in psychiatric and neurological disorders. As drug discovery efforts begin to focus on glia-related targets, a key gap in knowledge includes the availability of validated biomarkers to help determine which patients suffer from dysfunction of glial cells or who may best respond by targeting glia-related drug mechanisms. Biomarkers are biological variables with a significant relationship to parameters of disease states and can be used as surrogate markers of disease pathology, progression, and/or responses to drug treatment. For example, imaging studies of the CNS enable localization and characterization of anatomical lesions without the need to isolate tissue for biopsy. Many biomarkers of disease pathology in the CNS involve assays of glial cell function and/or response to injury. Each major glia subtype (oligodendroglia, astroglia and microglia) are connected to a number of important and useful biomarkers. Here, we describe current and emerging glial based biomarker approaches for acute CNS injury and the major categories of chronic nervous system dysfunction including neurodegenerative, neuropsychiatric, neoplastic, and autoimmune disorders of the CNS. These descriptions are highlighted in the context of how biomarkers are employed to better understand the role of glia in human CNS disease and in the development of novel therapeutic treatments. GLIA 2016;64:1755-1771.

  4. Responses of fibroblasts and glial cells to nanostructured platinum surfaces

    NASA Astrophysics Data System (ADS)

    Pennisi, C. P.; Sevcencu, C.; Dolatshahi-Pirouz, A.; Foss, M.; Lundsgaard Hansen, J.; Nylandsted Larsen, A.; Zachar, V.; Besenbacher, F.; Yoshida, K.

    2009-09-01

    The chronic performance of implantable neural prostheses is affected by the growth of encapsulation tissue onto the stimulation electrodes. Encapsulation is associated with activation of connective tissue cells at the electrode's metallic contacts, usually made of platinum. Since surface nanotopography can modulate the cellular responses to materials, the aim of the present work was to evaluate the 'in vitro' responses of connective tissue cells to platinum strictly by modulating its surface nanoroughness. Using molecular beam epitaxy combined with sputtering, we produced platinum nanostructured substrates consisting of irregularly distributed nanopyramids and investigated their effect on the proliferation, cytoskeletal organization and cellular morphology of primary fibroblasts and transformed glial cells. Cells were cultured on these substrates and their responses to surface roughness were studied. After one day in culture, the fibroblasts were more elongated and their cytoskeleton less mature when cultured on rough substrates. This effect increased as the roughness of the surface increased and was associated with reduced cell proliferation throughout the observation period (4 days). Morphological changes also occurred in glial cells, but they were triggered by a different roughness scale and did not affect cellular proliferation. In conclusion, surface nanotopography modulates the responses of fibroblasts and glial cells to platinum, which may be an important factor in optimizing the tissue response to implanted neural electrodes.

  5. Glial biomarkers in human central nervous system disease.

    PubMed

    Garden, Gwenn A; Campbell, Brian M

    2016-10-01

    There is a growing understanding that aberrant GLIA function is an underlying factor in psychiatric and neurological disorders. As drug discovery efforts begin to focus on glia-related targets, a key gap in knowledge includes the availability of validated biomarkers to help determine which patients suffer from dysfunction of glial cells or who may best respond by targeting glia-related drug mechanisms. Biomarkers are biological variables with a significant relationship to parameters of disease states and can be used as surrogate markers of disease pathology, progression, and/or responses to drug treatment. For example, imaging studies of the CNS enable localization and characterization of anatomical lesions without the need to isolate tissue for biopsy. Many biomarkers of disease pathology in the CNS involve assays of glial cell function and/or response to injury. Each major glia subtype (oligodendroglia, astroglia and microglia) are connected to a number of important and useful biomarkers. Here, we describe current and emerging glial based biomarker approaches for acute CNS injury and the major categories of chronic nervous system dysfunction including neurodegenerative, neuropsychiatric, neoplastic, and autoimmune disorders of the CNS. These descriptions are highlighted in the context of how biomarkers are employed to better understand the role of glia in human CNS disease and in the development of novel therapeutic treatments. GLIA 2016;64:1755-1771. PMID:27228454

  6. Role of satellite glial cells in gastrointestinal pain

    PubMed Central

    Hanani, Menachem

    2015-01-01

    Gastrointestinal (GI) pain is a common clinical problem, for which effective therapy is quite limited. Sensations from the GI tract, including pain, are mediated largely by neurons in the dorsal root ganglia (DRG), and to a smaller extent by vagal afferents emerging from neurons in the nodose/jugular ganglia. Neurons in rodent DRG become hyperexcitable in models of GI pain (e.g., gastric or colonic inflammation), and can serve as a source for chronic pain. Glial cells are another element in the pain signaling pathways, and there is evidence that spinal glial cells (microglia and astrocytes) undergo activation (gliosis) in various pain models and contribute to pain. Recently it was found that satellite glial cells (SGCs), the main type of glial cells in sensory ganglia, might also contribute to chronic pain in rodent models. Most of that work focused on somatic pain, but in several studies GI pain was also investigated, and these are discussed in the present review. We have shown that colonic inflammation induced by dinitrobenzene sulfonic acid (DNBS) in mice leads to the activation of SGCs in DRG and increases gap junction-mediated coupling among these cells. This coupling appears to contribute to the hyperexcitability of DRG neurons that innervate the colon. Blocking gap junctions (GJ) in vitro reduced neuronal hyperexcitability induced by inflammation, suggesting that glial GJ participate in SGC-neuron interactions. Moreover, blocking GJ by carbenoxolone and other agents reduces pain behavior. Similar changes in SGCs were also found in the mouse nodose ganglia (NG), which provide sensory innervation to most of the GI tract. Following systemic inflammation, SGCs in these ganglia were activated, and displayed augmented coupling and greater sensitivity to the pain mediator ATP. The contribution of these changes to visceral pain remains to be determined. These results indicate that although visceral pain is unique, it shares basic mechanisms with somatic pain

  7. CLEAR LAKE BASIN 2000 PROJECT

    SciTech Connect

    LAKE COUNTY SANITATION DISTRICT

    2003-03-31

    The following is a final report for the Clear Lake Basin 2000 project. All of the major project construction work was complete and this phase generally included final details and testing. Most of the work was electrical. Erosion control activities were underway to prepare for the rainy season. System testing including pump stations, electrical and computer control systems was conducted. Most of the project focus from November onward was completing punch list items.

  8. Writing clear animal activity proposals.

    PubMed

    Pinson, David M

    2011-06-01

    Although IACUC-related topics are frequently discussed in the literature, there is little published information about how to write animal activity proposals. In this article, the author discusses key considerations in the writing and review of animal activity proposals. The author then describes a framework for developing and writing clear animal activity proposals that highlight animal welfare concerns. Though these recommendations are aimed at individuals writing and reviewing research proposals, the framework can be modified for other types of animal activity proposals.

  9. Ideas for clear technical writing

    USGS Publications Warehouse

    Robinson, B.P.

    1984-01-01

    The three greatest obstacles to clear technical-report writing are probably (1) imprecise words, (2) wordiness, and (3) poorly constructed sentences. Examples of category 1 include abstract words, jargon, and vogue words; of category 2, sentences containing impersonal construction superfluous words; and of category 3, sentences lacking parallel construction and proper order of related words and phrases. These examples and other writing-related subjects are discussed in the report, which contains a cross-referenced index and 24 references.

  10. The EM Earthquake Precursor

    NASA Astrophysics Data System (ADS)

    Jones, K. B., II; Saxton, P. T.

    2013-12-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After the 1989 Loma Prieta Earthquake, American earthquake investigators predetermined magnetometer use and a minimum earthquake magnitude necessary for EM detection. This action was set in motion, due to the extensive damage incurred and public outrage concerning earthquake forecasting; however, the magnetometers employed, grounded or buried, are completely subject to static and electric fields and have yet to correlate to an identifiable precursor. Secondly, there is neither a networked array for finding any epicentral locations, nor have there been any attempts to find even one. This methodology needs dismissal, because it is overly complicated, subject to continuous change, and provides no response time. As for the minimum magnitude threshold, which was set at M5, this is simply higher than what modern technological advances have gained. Detection can now be achieved at approximately M1, which greatly improves forecasting chances. A propagating precursor has now been detected in both the field and laboratory. Field antenna testing conducted outside the NE Texas town of Timpson in February, 2013, detected three strong EM sources along with numerous weaker signals. The antenna had mobility, and observations were noted for recurrence, duration, and frequency response. Next, two

  11. Transplantation of Glial Progenitors That Overexpress Glutamate Transporter GLT1 Preserves Diaphragm Function Following Cervical SCI

    PubMed Central

    Li, Ke; Javed, Elham; Hala, Tamara J; Sannie, Daniel; Regan, Kathleen A; Maragakis, Nicholas J; Wright, Megan C; Poulsen, David J; Lepore, Angelo C

    2015-01-01

    Approximately half of traumatic spinal cord injury (SCI) cases affect cervical regions, resulting in chronic respiratory compromise. The majority of these injuries affect midcervical levels, the location of phrenic motor neurons (PMNs) that innervate the diaphragm. A valuable opportunity exists following SCI for preventing PMN loss that occurs during secondary degeneration. One of the primary causes of secondary injury is excitotoxicity due to dysregulation of extracellular glutamate homeostasis. Astrocytes express glutamate transporter 1 (GLT1), which is responsible for the majority of CNS glutamate clearance. Given our observations of GLT1 dysfunction post-SCI, we evaluated intraspinal transplantation of Glial-Restricted Precursors (GRPs)—a class of lineage-restricted astrocyte progenitors—into ventral horn following cervical hemicontusion as a novel strategy for reconstituting GLT1 function, preventing excitotoxicity and protecting PMNs in the acutely injured spinal cord. We find that unmodified transplants express low levels of GLT1 in the injured spinal cord. To enhance their therapeutic properties, we engineered GRPs with AAV8 to overexpress GLT1 only in astrocytes using the GFA2 promoter, resulting in significantly increased GLT1 protein expression and functional glutamate uptake following astrocyte differentiation in vitro and after transplantation into C4 hemicontusion. Compared to medium-only control and unmodified GRPs, GLT1-overexpressing transplants reduced lesion size, diaphragm denervation and diaphragm dysfunction. Our findings demonstrate transplantation-based replacement of astrocyte GLT1 is a promising approach for SCI. PMID:25492561

  12. NG2 glial cells integrate synaptic input in global and dendritic calcium signals

    PubMed Central

    Sun, Wenjing; Matthews, Elizabeth A; Nicolas, Vicky; Schoch, Susanne; Dietrich, Dirk

    2016-01-01

    Synaptic signaling to NG2-expressing oligodendrocyte precursor cells (NG2 cells) could be key to rendering myelination of axons dependent on neuronal activity, but it has remained unclear whether NG2 glial cells integrate and respond to synaptic input. Here we show that NG2 cells perform linear integration of glutamatergic synaptic inputs and respond with increasing dendritic calcium elevations. Synaptic activity induces rapid Ca2+ signals mediated by low-voltage activated Ca2+ channels under strict inhibitory control of voltage-gated A-type K+ channels. Ca2+ signals can be global and originate throughout the cell. However, voltage-gated channels are also found in thin dendrites which act as compartmentalized processing units and generate local calcium transients. Taken together, the activity-dependent control of Ca2+ signals by A-type channels and the global versus local signaling domains make intracellular Ca2+ in NG2 cells a prime signaling molecule to transform neurotransmitter release into activity-dependent myelination. DOI: http://dx.doi.org/10.7554/eLife.16262.001 PMID:27644104

  13. SOX1 links the function of neural patterning and Notch signalling in the ventral spinal cord during the neuron-glial fate switch

    SciTech Connect

    Genethliou, Nicholas; Panayiotou, Elena; Panayi, Helen; Orford, Michael; Mean, Richard; Lapathitis, George; Gill, Herman; Raoof, Sahir; Gasperi, Rita De; Elder, Gregory; Kessaris, Nicoletta; Richardson, William D.; Malas, Stavros

    2009-12-25

    During neural development the transition from neurogenesis to gliogenesis, known as the neuron-glial ({Nu}/G) fate switch, requires the coordinated function of patterning factors, pro-glial factors and Notch signalling. How this process is coordinated in the embryonic spinal cord is poorly understood. Here, we demonstrate that during the N/G fate switch in the ventral spinal cord (vSC) SOX1 links the function of neural patterning and Notch signalling. We show that, SOX1 expression in the vSC is regulated by PAX6, NKX2.2 and Notch signalling in a domain-specific manner. We further show that SOX1 regulates the expression of Hes1 and that loss of Sox1 leads to enhanced production of oligodendrocyte precursors from the pMN. Finally, we show that Notch signalling functions upstream of SOX1 during this fate switch and is independently required for the acquisition of the glial fate perse by regulating Nuclear Factor I A expression in a PAX6/SOX1/HES1/HES5-independent manner. These data integrate functional roles of neural patterning factors, Notch signalling and SOX1 during gliogenesis.

  14. Precursors and pathogenesis of ovarian carcinoma.

    PubMed

    Lim, D; Oliva, E

    2013-04-01

    The ultimate goal of defining cancer specific precursors is to facilitate early detection and intervention before the development of invasive malignancy. Unlike other malignancies involving the female genital tract such as cervical or endometrial carcinomas, precursor lesions of ovarian carcinomas have not been well characterised, resulting in a failure to develop effective screening programs. Recent clinicopathological and molecular studies have provided new insight into the origin and pathogenesis of ovarian carcinomas. It has been shown that ovarian cancer is comprised of different tumour types differing not only in morphology, but also in pathogenesis, molecular alterations and clinical progression. A dualistic model of ovarian carcinogenesis has been proposed. Type I tumours which include low grade serous, low grade endometrioid, clear cell, mucinous carcinomas and Brenner tumours, are generally indolent and tend to be genetically stable, although clear cell carcinoma would probably belong to an intermediate category. They demonstrate a step-wise progression from a benign precursor such as a benign to borderline tumour or endometriosis and are characterised by genetic aberrations targeting specific cell signalling pathways. Type II tumours comprise high grade serous, high grade endometrioid, and undifferentiated carcinomas as well as malignant mixed mesodermal tumours. They are clinically aggressive and exhibit high genetic instability with frequent p53 mutations. Mounting evidence suggests that many high grade serous carcinomas originate from the epithelium of the distal fallopian tube, and that serous tubal intraepithelial carcinoma (STIC) represents the putative precursor of these neoplasms. Low grade serous carcinomas arise via transformation of benign and borderline serous tumours, thought to be derived from inclusion cysts originating from the ovarian surface or tubal epithelium. Recently it has been suggested that papillary tubal hyperplasia may be a

  15. Arsenite exposure downregulates EAAT1/GLAST transporter expression in glial cells.

    PubMed

    Castro-Coronel, Yaneth; Del Razo, Luz María; Huerta, Miriam; Hernandez-Lopez, Angeles; Ortega, Arturo; López-Bayghen, Esther

    2011-08-01

    Chronic exposure to inorganic arsenic severely damages the central nervous system (CNS). Glutamate (GLU) is the major excitatory amino acid and is highly neurotoxic when levels in the synaptic cleft are not properly regulated by a family of Na⁺-dependent excitatory amino acid transporters. Within the cerebellum, the activity of the Bergmann glia Na⁺-dependent GLU/aspartate transporter (GLAST) excitatory amino acid transporter 1 (EAAT1/GLAST) accounts for more than 90% of GLU uptake. Because exposure to the metalloid arsenite results in CNS toxicity, we examined whether EAAT1/GLAST constitutes a molecular target. To this end, primary cultures of chick cerebellar Bergmann glial cells were exposed to sodium arsenite for 24 h, and EAAT1/GLAST activity was evaluated via ³H-D-aspartate uptake. A sharp decrease in GLU transport was observed, and kinetic studies revealed protein kinase A, protein kinase C, and p38 mitogen-activated protein kinase-dependent decreases in K(M) and V(max) concomitant with diminished chglast transcription. To gain insight into the molecular mechanisms involved in these phenomena, we investigated the generation of reactive oxidative species and the lipid peroxidative damage caused by arsenite exposure. None of these responses were found, although we did observe an increase in nuclear factor (erythroid-derived 2)-like 2 DNA-binding activity correlated with a rise in total glutathione levels. Our results clearly suggest that EAAT1/GLAST is a molecular target of arsenite and support the critical involvement of glial cells in brain function and dysfunction.

  16. Fine Astrocyte Processes Contain Very Small Mitochondria: Glial Oxidative Capability May Fuel Transmitter Metabolism.

    PubMed

    Derouiche, Amin; Haseleu, Julia; Korf, Horst-Werner

    2015-12-01

    The peripheral astrocyte process (PAP) is the glial compartment largely handling inactivation of transmitter glutamate, and supplying glutamate to the axon terminal. It is not clear how these energy demanding processes are fueled, and whether the PAP exhibits oxidative capability. Whereas the GFAP-positive perinuclear cytoplasm and stem process are rich in mitochondria, the PAP is often considered too narrow to contain mitochondria and might thus not rely on oxidative metabolism. Applying high resolution light microscopy, we investigate here the presence of mitochondria in the PAPs of freshly dissociated, isolated astrocytes. We provide an overview of the subcellular distribution and the approximate size of astrocytic mitochondria. A substantial proportion of the astrocyte's mitochondria are contained in the PAPs and, on the average, they are smaller there than in the stem processes. The majority of mitochondria in the stem and peripheral processes are surprisingly small (0.2-0.4 µm), spherical and not elongate, or tubular, which is supported by electron microscopy. The density of mitochondria is two to several times lower in the PAPs than in the stem processes. Thus, PAPs do not constitute a mitochondria free glial compartment but contain mitochondria in large numbers. No juxtaposition of mitochondria-containing PAPs and glutamatergic synapses has been reported. However, the issue of sufficient ATP concentrations in perisynaptic PAPs can be seen in the light of (1) the rapid, activity dependent PAP motility, and (2) the recently reported activity-dependent mitochondrial transport and immobilization leading to spatial, subcellular organisation of glutamate uptake and oxidative metabolism.

  17. Io's Sodium Cloud (Clear Filter)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of Jupiter's moon Io and its surrounding sky is shown in false color. It was taken at 5 hours 30 minutes Universal Time on Nov. 9, 1996 by the solid state imaging (CCD) system aboard NASA's Galileo spacecraft, using a clear filter whose wavelength range was approximately 400 to 1100 nanometers. This picture differs in two main ways from the green-yellow filter image of the same scene which was released yesterday.

    First, the sky around Io is brighter, partly because the wider wavelength range of the clear filter lets in more scattered light from Io's illuminated crescent and from Prometheus' sunlit plume. Nonetheless, the overall sky brightness in this frame is comparable to that seen through the green-yellow filter, indicating that even here much of the diffuse sky emission is coming from the wavelength range of the green-yellow filter (i.e., from Io's Sodium Cloud).

    The second major difference is that a quite large roundish spot has appeared in Io's southern hemisphere. This spot -- which has been colored red -- corresponds to thermal emission from the volcano Pele. The green-yellow filter image bears a much smaller trace of this emission because the clear filter is far more sensitive to those relatively long wavelengths where thermal emission is strongest.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  18. Chamber Clearing First Principles Modeling

    SciTech Connect

    Loosmore, G

    2009-06-09

    LIFE fusion is designed to generate 37.5 MJ of energy per shot, at 13.3 Hz, for a total average fusion power of 500 MW. The energy from each shot is partitioned among neutrons ({approx}78%), x-rays ({approx}12%), and ions ({approx}10%). First wall heating is dominated by x-rays and debris because the neutron mean free path is much longer than the wall thickness. Ion implantation in the first wall also causes damage such as blistering if not prevented. To moderate the peak-pulse heating, the LIFE fusion chamber is filled with a gas (such as xenon) to reduce the peak-pulse heat load. The debris ions and majority of the x-rays stop in the gas, which re-radiates this energy over a longer timescale (allowing time for heat conduction to cool the first wall sufficiently to avoid damage). After a shot, because of the x-ray and ion deposition, the chamber fill gas is hot and turbulent and contains debris ions. The debris needs to be removed. The ions increase the gas density, may cluster or form aerosols, and can interfere with the propagation of the laser beams to the target for the next shot. Moreover, the tritium and high-Z hohlraum debris needs to be recovered for reuse. Additionally, the cryogenic target needs to survive transport through the gas mixture to the chamber center. Hence, it will be necessary to clear the chamber of the hot contaminated gas mixture and refill it with a cool, clean gas between shots. The refilling process may create density gradients that could interfere with beam propagation, so the fluid dynamics must be studied carefully. This paper describes an analytic modeling effort to study the clearing and refilling process for the LIFE fusion chamber. The models used here are derived from first principles and balances of mass and energy, with the intent of providing a first estimate of clearing rates, clearing times, fractional removal of ions, equilibrated chamber temperatures, and equilibrated ion concentrations for the chamber. These can be used

  19. Ion clearing in an ERL

    NASA Astrophysics Data System (ADS)

    Hoffstaetter, Georg H.; Liepe, Matthias

    2006-02-01

    The rest-gas in the beam-pipe of a particle accelerator is readily ionized by effects like collisions, synchrotron radiation and field emission. Positive ions are attracted to electron beams and create a nonlinear potential in the vicinity of the beam which can lead to beam halo, particle loss, optical errors or transverse and longitudinal instabilities. In an energy recovery linac (ERL) where beam-loss has to be minimal, and where beam positions and emittances have to be very stable in time, these ion effects have to be avoided. Here we investigate three measures of avoiding ion accumulation: (a) A long gap between linac bunch trains that allows ions to drift out of the beam region, a measure regularly applied in linacs; (b) a short ion clearing gap in the beam that leads to a time varying beam potential and produces large excited oscillations of ions around the electron beam, a measure regularly applied in storage rings; (c) Clearing electrodes that create a sufficient voltage to draw ions out of the beam potential, a measure used for DC electron beams and for antiproton beams. For the parameters of the X-ray ERL planned at Cornell University we show that method (a) cannot be applied, method (b) is technically cumbersome, and (c) should be most easily applicable.

  20. Comparative study of muscarinic acetylcholine receptors of human and rat cortical glial cells

    SciTech Connect

    Demushkin, V.P.; Burbaeva, G.S.; Dzhaliashvili, T.A.; Plyashkevich, Y.G.

    1985-04-01

    The aim of the present investigation was a comparative studyof muscarinic acetylcholine receptors in human and rat glial cells. (/sup 3/H)Quinuclidinyl-benzylate ((/sup 3/H)-QB), atropine, platiphylline, decamethonium, carbamylcholine, tubocurarine, and nicotine were used. The glial cell fraction was obtained from the cerebral cortex of rats weighing 130-140 g and from the frontal pole of the postmortem brain from men aged 60-70 years. The use of the method of radioimmune binding of (/sup 3/H)-QB with human and rat glial cell membranes demonstrated the presence of a muscarinic acetylcholine receptor in the glial cells.

  1. Guanosine protects glial cells against 6-hydroxydopamine toxicity.

    PubMed

    Giuliani, Patricia; Ballerini, Patrizia; Buccella, Silvana; Ciccarelli, Renata; Rathbone, Michel P; Romano, Silvia; D'Alimonte, Iolanda; Caciagli, Francesco; Di Iorio, Patrizia; Pokorski, Mieczyslaw

    2015-01-01

    Increasing body of evidence indicates that neuron-neuroglia interaction may play a key role in determining the progression of neurodegenerative diseases including Parkinson's disease (PD), a chronic pathological condition characterized by selective loss of dopaminergic (DA) neurons in the substantia nigra. We have previously reported that guanosine (GUO) antagonizes MPP(+)-induced cytotoxicity in neuroblastoma cells and exerts neuroprotective effects against 6-hydroxydopamine (6-OHDA) and beta-amyloid-induced apoptosis of SH-SY5Y cells. In the present study we demonstrate that GUO protected C6 glioma cells, taken as a model system for astrocytes, from 6-OHDA-induced neurotoxicity. We show that GUO, either alone or in combination with 6-OHDA activated the cell survival pathways ERK and PI3K/Akt. The involvement of these signaling systems in the mechanism of the nucleoside action was strengthened by a reduction of the protective effect when glial cells were pretreated with U0126 or LY294002, the specific inhibitors of MEK1/2 and PI3K, respectively. Since the protective effect on glial cell death of GUO was not affected by pretreatment with a cocktail of nucleoside transporter blockers, GUO transport and its intracellular accumulation were not at play in our in vitro model of PD. This fits well with our data which pointed to the presence of specific binding sites for GUO on rat brain membranes. On the whole, the results described in the present study, along with our recent evidence showing that GUO when administered to rats via intraperitoneal injection is able to reach the brain and with previous data indicating that it stimulates the release of neurotrophic factors, suggest that GUO, a natural compound, by acting at the glial level could be a promising agent to be tested against neurodegeneration. PMID:25310956

  2. Precursors of prostate cancer.

    PubMed

    Bostwick, David G; Cheng, Liang

    2012-01-01

    High-grade prostatic intraepithelial neoplasia (PIN) is the only accepted precursor of prostatic adenocarcinoma, according to numerous studies of animal models and man; other proposed precursors include atrophy and malignancy-associated changes (with no morphologic changes). PIN is characterized by progressive abnormalities of phenotype and genotype that are intermediate between benign prostatic epithelium and cancer, indicating impairment of cell differentiation and regulatory control with advancing stages of prostatic carcinogenesis. The only method of detection of PIN is biopsy because it does not significantly elevate serum prostate-specific antigen concentration and cannot be detected by ultrasonography. The mean incidence of PIN in biopsies is 9% (range, 4%-16%), representing about 115,000 new cases of isolated PIN diagnosed each year in the United States. The clinical importance of PIN is its high predictive value as a marker for adenocarcinoma, and its identification warrants repeat biopsy for concurrent or subsequent carcinoma, especially when multifocal or observed in association with atypical small acinar proliferation (ASAP). Carcinoma develops in most patients with PIN within 10 years. Androgen deprivation therapy and radiation therapy decrease the prevalence and extent of PIN, suggesting that these forms of treatment may play a role in prevention of subsequent cancer. Multiple clinical trials to date of men with PIN have had modest success in delaying or preventing subsequent cancer. PMID:22212075

  3. A glial palisade delineates the ipsilateral optic projection in Monodelphis.

    PubMed

    MacLaren, R E

    1998-01-01

    In developing marsupials, the path taken through the optic chiasm by ipsilaterally projecting retinal ganglion cells is complicated. Just prior to entry into the chiasm, ganglion cells destined for the ipsilateral optic tract separate from the remainder of axons by turning abruptly downwards to take a position in the ventral part of the optic nerve. In this report, it is shown that a discrete population of about 10-15 large glial cells transiently form a linear array across the prechiasmatic part of the optic nerve, precisely at this axon turning point. The distinct morphology of these cells and their novel location may reflect a specialized role in axon guidance.

  4. Progressing from identification and functional analysis of precursor behavior to treatment of self-injurious behavior.

    PubMed

    Dracobly, Joseph D; Smith, Richard G

    2012-01-01

    This multiple-study experiment evaluated the utility of assessing and treating severe self-injurious behavior SIB based on the outcomes of a functional analysis of precursor behavior. In Study 1, a precursor to SIB was identified using descriptive assessment and conditional probability analyses. In Study 2, a functional analysis of precursor behavior was conducted. Finally, study 3 evaluated the effects of a treatment in which precursor behavior produced the maintaining variable identified in the precursor functional analysis. Studies 1 and 3 were conducted in two settings in the participants natural environment, where data collection was ongoing throughout the course of the study. Results showed that it was possible to identify a precursor to infrequent but severe SIB, that a functional analysis of precursor behavior suggested a clear operant function, and that treatment based on the results of the precursor functional analysis reduced SIB in the natural environment.

  5. PROGRESSING FROM IDENTIFICATION AND FUNCTIONAL ANALYSIS OF PRECURSOR BEHAVIOR TO TREATMENT OF SELFINJURIOUS BEHAVIOR

    PubMed Central

    Dracobly, Joseph D; Smith, Richard G

    2012-01-01

    This multiplestudy experiment evaluated the utility of assessing and treating severe selfinjurious behavior SIB based on the outcomes of a functional analysis of precursor behavior. In Study 1, a precursor to SIB was identified using descriptive assessment and conditional probability analyses. In Study 2, a functional analysis of precursor behavior was conducted. Finally, Study 3 evaluated the effects of a treatment in which precursor behavior produced the maintaining variable identified in the precursor functional analysis. Studies 1 and 3 were conducted in two settings in the participants natural environment, where data collection was ongoing throughout the course of the study. Results showed that it was possible to identify a precursor to infrequent but severe SIB, that a functional analysis of precursor behavior suggested a clear operant function, and that treatment based on the results of the precursor functional analysis reduced SIB in the natural environment. PMID:22844142

  6. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R. G.; Norton, H. N.; Stearns, J. W.; Stimpson, L.; Weissman, P.

    1977-01-01

    A mission out of the planetary system, with launch about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low energy cosmic rays, interplanetary gas distribution, and mass of the solar system. Secondary objectives include investigation of Pluto. Candidate science instruments are suggested. Individual spacecraft systems for the mission were considered, technology requirements and problem areas noted, and a number of recommendations made for technology study and advanced development. The most critical technology needs include attainment of 50-yr spacecraft lifetime and development of a long-life NEP system.

  7. Identified EM Earthquake Precursors

    NASA Astrophysics Data System (ADS)

    Jones, Kenneth, II; Saxton, Patrick

    2014-05-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After a number of custom rock experiments, two hypotheses were formed which could answer the EM wave model. The first hypothesis concerned a sufficient and continuous electron movement either by surface or penetrative flow, and the second regarded a novel approach to radio transmission. Electron flow along fracture surfaces was determined to be inadequate in creating strong EM fields, because rock has a very high electrical resistance making it a high quality insulator. Penetrative flow could not be corroborated as well, because it was discovered that rock was absorbing and confining electrons to a very thin skin depth. Radio wave transmission and detection worked with every single test administered. This hypothesis was reviewed for propagating, long-wave generation with sufficient amplitude, and the capability of penetrating solid rock. Additionally, fracture spaces, either air or ion-filled, can facilitate this concept from great depths and allow for surficial detection. A few propagating precursor signals have been detected in the field occurring with associated phases using custom-built loop antennae. Field testing was conducted in Southern California from 2006-2011, and outside the NE Texas town of Timpson in February, 2013. The antennae have mobility and observations were noted for

  8. Biomechanical properties of retinal glial cells: comparative and developmental data.

    PubMed

    Lu, Yun-Bi; Pannicke, Thomas; Wei, Er-Qing; Bringmann, Andreas; Wiedemann, Peter; Habermann, Gunnar; Buse, Eberhard; Käs, Josef A; Reichenbach, Andreas

    2013-08-01

    The biomechanical properties of Müller glial cells may have importance in understanding the retinal tissue alterations after retinal surgery with removal of the inner limiting membrane and during the ontogenetic development, respectively. Here, we compared the viscoelastic properties of Müller cells from man and monkey as well as from different postnatal developmental stages of the rat. We determined the complex Young's modulus E = E' + iE″ in a defined range of deforming frequencies (30, 100, and 200 Hz) using a scanning force microscope, where the real part E' reflects the elastic property (energy storage or elastic stiffness) and the imaginary part E″ reflects the viscous property (energy dissipation) of the cells. The viscoelastic properties were similar in Müller cells from man, monkey, and rat. In general, the elastic behavior dominated over the viscous behavior (E' > E″). The inner process of the Müller cell was the softest region, the soma the stiffest (Einnerprocess(')glial cells (Eneuron(')>Eglia(')). These relations were also observed during the postnatal development of the rat. It is concluded that, generally, retinal cells display mechanics of elastic solids. In addition, the data indicate that the rodent retina is a reliable model to investigate retinal mechanics and tissue alterations after retinal surgery. During retinal development, neuronal branching and synaptogenesis might be particularly stimulated by the viscoelastic properties of Müller cell processes in the inner plexiform layer.

  9. Neuronal and glial properties of a murine transgenic retinoblastoma model.

    PubMed Central

    Kivelä, T.; Virtanen, I.; Marcus, D. M.; O'Brien, J. M.; Carpenter, J. L.; Brauner, E.; Tarkkanen, A.; Albert, D. M.

    1991-01-01

    Antigenic properties of a murine transgenic model for hereditary retinoblastoma, induced by a chimeric gene coding for Simian virus 40 large T antigen, an oncogene that inactivates the retinoblastoma susceptibility gene product, were studied by immunohistochemistry. All transgenic mice develop bilateral intraocular retinal tumors in the inner nuclear layer with Homer Wright-like rosettes, and one quarter develop midbrain tumors resembling trilateral retinoblastoma. Cell lines TE-1 and TM-1 were established from intraocular and metastatic tumors, respectively. Intraocular tumors reacted with antibodies to neuron-specific enolase and synaptophysin, while vimentin, glial fibrillary acidic, and S-100 proteins were detected only in reactive glia derived from adjacent retina. The midbrain tumors showed weak reactivity to synaptophysin, and they blended with reactive astrocytes positive for glial markers. The tumors were negative for cytokeratins. Finally both derived cell lines expressed synaptophysin and individual neurofilament triplet proteins in immunofluorescence and Western blotting, supporting their essentially neuronal nature. The antigenic profile resembles human retinoblastoma, but differences in morphology and antigen distribution suggest a more close relationship to neurons of the inner nuclear layer than to photoreceptor cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:1708946

  10. Dual polarization of microglia isolated from mixed glial cell cultures.

    PubMed

    Ju, Lili; Zeng, Hui; Chen, Yun; Wu, Yanhong; Wang, Beibei; Xu, Qunyuan

    2015-09-01

    Microglia are versatile immune effector cells of the CNS and are sensitive to various stimuli. The different methods used to isolate microglia may affect some of their characteristics, such as their polarization state. The influence of cell sorting methods on the polarization state of microglia has never been studied. Mixed glial culture system (MGCS) and magnetic activated cell sorting (MACS) are two methods that are commonly used to purify microglia. This study compares the immunological states between microglia isolated by MGCS and microglia isolated by MACS. We show that microglia isolated by MGCS exhibit a stronger immune-activated state than microglia isolated by MACS. They present an elevated phagocytic ability and high levels of markers associated with classical activation (M1) and alternative activation (M2). In addition, high levels of M1-type and M2-type chemokine (C-C motif) ligand 2 and transforming growth factor-β1 were detected in the culture medium of mixed glial cells. Our results show that microglia isolated by MGCS are in an immune-activated state, whereas microglia isolated by MACS appear to be closer to their primary in vivo state. Therefore, the immune status of microglia, depending on the protocol used to purify them, should be carefully considered in neuropathology research.

  11. Neuropeptide Y is important for basal and seizure-induced precursor cell proliferation in the hippocampus.

    PubMed

    Howell, Owain W; Silva, Sharmalene; Scharfman, Helen E; Sosunov, Alexander A; Zaben, Malik; Shtaya, Anan; Shatya, Anan; McKhann, Guy; Herzog, Herbert; Laskowski, Alexandra; Gray, William P

    2007-04-01

    We have shown that neuropeptide Y (NPY) regulates neurogenesis in the normal dentate gyrus (DG) via Y(1) receptors (Howell, O.W., Scharfman, H.E., Herzog, H., Sundstrom, L.E., Beck-Sickinger, A. and Gray, W.P. (2003) Neuropeptide Y is neuroproliferative for post-natal hippocampal precursor cells. J Neurochem, 86, 646-659; Howell, O.W., Doyle, K., Goodman, J.H., Scharfman, H.E., Herzog, H., Pringle, A., Beck-Sickinger, A.G. and Gray, W.P. (2005) Neuropeptide Y stimulates neuronal precursor proliferation in the post-natal and adult dentate gyrus. J Neurochem, 93, 560-570). This regulation may be relevant to epilepsy, because seizures increase both NPY expression and precursor cell proliferation in the DG. Therefore, the effects of NPY on DG precursors were evaluated in normal conditions and after status epilepticus. In addition, potentially distinct NPY-responsive precursors were identified, and an analysis performed not only of the DG, but also the caudal subventricular zone (cSVZ) and subcallosal zone (SCZ) where seizures modulate glial precursors. We show a proliferative effect of NPY on multipotent nestin cells expressing the stem cell marker Lewis-X from both the DG and the cSVZ/SCZ in vitro. We confirm an effect on proliferation in the cSVZ/SCZ of Y(1) receptor(-/-) mice and demonstrate a significant reduction in basal and seizure-induced proliferation in the DG of NPY(-/-) mice.

  12. A Novel Bidirectional Interaction between endothelin-3 and Retinoic Acid in Rat Enteric Nervous System Precursors

    PubMed Central

    Gisser, Jonathan M.; Cohen, Ariella R.; Yin, Han; Gariepy, Cheryl E.

    2013-01-01

    Background Signaling through the endothelin receptor B (EDNRB) is critical for the development of the enteric nervous system (ENS) and mutations in endothelin system genes cause Hirschsprung’s aganglionosis in humans. Penetrance of the disease is modulated by other genetic factors. Mutations affecting retinoic acid (RA) signaling also produce aganglionosis in mice. Thus, we hypothesized that RA and endothelin signaling pathways may interact in controlling development of the ENS. Methods Rat immunoselected ENS precursor cells were cultured with the EDNRB ligand endothelin-3, an EDNRB-selective antagonist (BQ-788), and/or RA for 3 or 14 days. mRNA levels of genes related to ENS development, RA- and EDNRB-signaling were measured at 3 days. Proliferating cells and cells expressing neuronal, glial, and myofibroblast markers were quantified. Results Culture of isolated ENS precursors for 3 days with RA decreases expression of the endothelin-3 gene and that of its activation enzyme. These changes are associated with glial proliferation, a higher percentage of glia, and a lower percentage of neurons compared to cultures without RA. These changes are independent of EDNRB signaling. Conversely, EDNRB activation in these cultures decreases expression of RA receptors β and γ mRNA and affects the expression of the RA synthetic and degradative enzymes. These gene expression changes are associated with reduced glial proliferation and a lower percentage of glia in the culture. Over 14 days in the absence of EDNRB signaling, RA induces the formation of a heterocellular plexus replete with ganglia, glia and myofibroblasts. Conclusions A complex endothelin-RA interaction exists that coordinately regulates the development of rat ENS precursors in vitro. These results suggest that environmental RA may modulate the expression of aganglionosis in individuals with endothelin mutations. PMID:24040226

  13. Generation of Nonlinear Vortex Precursors.

    PubMed

    Chen, Yue-Yue; Feng, Xun-Li; Liu, Chengpu

    2016-07-01

    We numerically study the propagation of a few-cycle pulse carrying orbital angular momentum (OAM) through a dense atomic system. Nonlinear precursors consisting of high-order vortex harmonics are generated in the transmitted field due to carrier effects associated with ultrafast Bloch oscillation. The nonlinear precursors survive to propagation effects and are well separated with the main pulse, which provides a straightforward way to measure precursors. By virtue of carrying high-order OAM, the obtained vortex precursors as information carriers have potential applications in optical information and communication fields where controllable loss, large information-carrying capacity, and high speed communication are required.

  14. Generation of Nonlinear Vortex Precursors.

    PubMed

    Chen, Yue-Yue; Feng, Xun-Li; Liu, Chengpu

    2016-07-01

    We numerically study the propagation of a few-cycle pulse carrying orbital angular momentum (OAM) through a dense atomic system. Nonlinear precursors consisting of high-order vortex harmonics are generated in the transmitted field due to carrier effects associated with ultrafast Bloch oscillation. The nonlinear precursors survive to propagation effects and are well separated with the main pulse, which provides a straightforward way to measure precursors. By virtue of carrying high-order OAM, the obtained vortex precursors as information carriers have potential applications in optical information and communication fields where controllable loss, large information-carrying capacity, and high speed communication are required. PMID:27447507

  15. Ability of retinal Müller glial cells to protect neurons against excitotoxicity in vitro depends upon maturation and neuron-glial interactions.

    PubMed

    Heidinger, V; Hicks, D; Sahel, J; Dreyfus, H

    1999-02-01

    Glutamate is the most abundant excitatory amino acid in the central nervous system. It has also been described as a potent toxin when present in high concentrations because excessive stimulation of its receptors leads to neuronal death. Glial influence on neuronal survival has already been shown in the central nervous system, but the mechanisms underlying glial neuroprotection are only partly known. When cells isolated from newborn rat retina were maintained in culture as enriched neuronal populations, 80% of the cells were destroyed by application of excitotoxic concentrations of glutamate. Massive neuronal death was also observed in newborn retinal cultures containing large numbers of glia, or when neurons were seeded onto feeder layers of purified cells prepared from immature (postnatal 8 day) rat retina. When newborn retinal neurons were seeded onto feeder layers of purified glial cells prepared from adult retinas, application of excitotoxic amino acids no longer led to neuronal death. Furthermore, neuronal death was not observed in mixed neuron/glial cultures prepared from adult retina. However, in all cases (newborn and adult) application of kainate led to amacrine cell-specific death. Activity of glutamine synthetase, a key glial enzyme involved in glutamate detoxification, was assayed in these cultures in the presence or absence of exogenous glutamate. Whereas pure glial cultures alone (from young or adult retina) showed low activity that was not stimulated by glutamate addition, mixed or co-cultured neurons and adult glia exhibited up to threefold higher levels of activity following glutamate treatment. These data indicate that two conditions must be satisfied to observe glial neuroprotection: maturation of glutamine synthetase expression, and neuron-glial signalling through glutamate-elicited responses. PMID:9932869

  16. A Mathematical Model of Regenerative Axon Growing along Glial Scar after Spinal Cord Injury.

    PubMed

    Chen, Xuning; Zhu, Weiping

    2016-01-01

    A major factor in the failure of central nervous system (CNS) axon regeneration is the formation of glial scar after the injury of CNS. Glial scar generates a dense barrier which the regenerative axons cannot easily pass through or by. In this paper, a mathematical model was established to explore how the regenerative axons grow along the surface of glial scar or bypass the glial scar. This mathematical model was constructed based on the spinal cord injury (SCI) repair experiments by transplanting Schwann cells as bridge over the glial scar. The Lattice Boltzmann Method (LBM) was used in this model for three-dimensional numerical simulation. The advantage of this model is that it provides a parallel and easily implemented algorithm and has the capability of handling complicated boundaries. Using the simulated data, two significant conclusions were made in this study: (1) the levels of inhibitory factors on the surface of the glial scar are the main factors affecting axon elongation and (2) when the inhibitory factor levels on the surface of the glial scar remain constant, the longitudinal size of the glial scar has greater influence on the average rate of axon growth than the transverse size. These results will provide theoretical guidance and reference for researchers to design efficient experiments. PMID:27274762

  17. Ultrastructure of the subpial glial limitans in the cerebellum of the lizard (Lacerta lepida).

    PubMed

    Bodega, G; Suarez, I; Oteruelo, F; Fernandez, B; Gianonatti, C

    1990-01-01

    The subpial glial limitans in the cerebellum of the lizard (Lacerta lepida) is a single layer formed by the extensions of the fibers of Bergmann's glia. These subpial extensions present a prismatic aspect, few organelles and abundant whorls of smooth endoplasmic reticulum. These whorls of endoplasmic reticulum appear as concentric and tubular membranous formations. The glial limitans is not continuous at times.

  18. Sympathetic glial cells and macrophages develop different responses to Trypanosoma cruzi infection or lipopolysaccharide stimulation

    PubMed Central

    de Almeida-Leite, Camila Megale; Silva, Isabel Cristina Costa; Galvão, Lúcia Maria da Cunha; Arantes, Rosa Maria Esteves

    2014-01-01

    Nitric oxide (NO) participates in neuronal lesions in the digestive form of Chagas disease and the proximity of parasitised glial cells and neurons in damaged myenteric ganglia is a frequent finding. Glial cells have crucial roles in many neuropathological situations and are potential sources of NO. Here, we investigate peripheral glial cell response to Trypanosoma cruzi infection to clarify the role of these cells in the neuronal lesion pathogenesis of Chagas disease. We used primary glial cell cultures from superior cervical ganglion to investigate cell activation and NO production after T. cruzi infection or lipopolysaccharide (LPS) exposure in comparison to peritoneal macrophages. T. cruzi infection was greater in glial cells, despite similar levels of NO production in both cell types. Glial cells responded similarly to T. cruzi and LPS, but were less responsive to LPS than macrophages were. Our observations contribute to the understanding of Chagas disease pathogenesis, as based on the high susceptibility of autonomic glial cells to T. cruzi infection with subsequent NO production. Moreover, our findings will facilitate future research into the immune responses and activation mechanisms of peripheral glial cells, which are important for understanding the paradoxical responses of this cell type in neuronal lesions and neuroprotection. PMID:25075784

  19. Sympathetic glial cells and macrophages develop different responses to Trypanosoma cruzi infection or lipopolysaccharide stimulation.

    PubMed

    de Almeida-Leite, Camila Megale; Silva, Isabel Cristina Costa; Galvão, Lúcia Maria da Cunha; Arantes, Rosa Maria Esteves

    2014-07-01

    Nitric oxide (NO) participates in neuronal lesions in the digestive form of Chagas disease and the proximity of parasitised glial cells and neurons in damaged myenteric ganglia is a frequent finding. Glial cells have crucial roles in many neuropathological situations and are potential sources of NO. Here, we investigate peripheral glial cell response to Trypanosoma cruzi infection to clarify the role of these cells in the neuronal lesion pathogenesis of Chagas disease. We used primary glial cell cultures from superior cervical ganglion to investigate cell activation and NO production after T. cruzi infection or lipopolysaccharide (LPS) exposure in comparison to peritoneal macrophages. T. cruzi infection was greater in glial cells, despite similar levels of NO production in both cell types. Glial cells responded similarly to T. cruzi and LPS, but were less responsive to LPS than macrophages were. Our observations contribute to the understanding of Chagas disease pathogenesis, as based on the high susceptibility of autonomic glial cells to T. cruzi infection with subsequent NO production. Moreover, our findings will facilitate future research into the immune responses and activation mechanisms of peripheral glial cells, which are important for understanding the paradoxical responses of this cell type in neuronal lesions and neuroprotection.

  20. A Mathematical Model of Regenerative Axon Growing along Glial Scar after Spinal Cord Injury

    PubMed Central

    Chen, Xuning; Zhu, Weiping

    2016-01-01

    A major factor in the failure of central nervous system (CNS) axon regeneration is the formation of glial scar after the injury of CNS. Glial scar generates a dense barrier which the regenerative axons cannot easily pass through or by. In this paper, a mathematical model was established to explore how the regenerative axons grow along the surface of glial scar or bypass the glial scar. This mathematical model was constructed based on the spinal cord injury (SCI) repair experiments by transplanting Schwann cells as bridge over the glial scar. The Lattice Boltzmann Method (LBM) was used in this model for three-dimensional numerical simulation. The advantage of this model is that it provides a parallel and easily implemented algorithm and has the capability of handling complicated boundaries. Using the simulated data, two significant conclusions were made in this study: (1) the levels of inhibitory factors on the surface of the glial scar are the main factors affecting axon elongation and (2) when the inhibitory factor levels on the surface of the glial scar remain constant, the longitudinal size of the glial scar has greater influence on the average rate of axon growth than the transverse size. These results will provide theoretical guidance and reference for researchers to design efficient experiments. PMID:27274762

  1. Protein misfolding and oxidative stress promote glial-mediated neurodegeneration in an Alexander disease model

    PubMed Central

    Wang, Liqun; Colodner, Kenneth J.; Feany, Mel B.

    2011-01-01

    Although alterations in glial structure and function commonly accompany death of neurons in neurodegenerative diseases, the role glia play in modulating neuronal loss is poorly understood. We have created a model of Alexander disease in Drosophila by expressing disease-linked mutant versions of glial fibrillary acidic protein (GFAP) in fly glia. We find aggregation of mutant human GFAP into inclusions bearing the hallmarks of authentic Rosenthal fibers. We also observe significant toxicity of mutant human GFAP to glia, which is mediated by protein aggregation and oxidative stress. Both protein aggregation and oxidative stress contribute to activation of a robust autophagic response in glia. Toxicity of mutant GFAP to glial cells induces a non-cell autonomous stress response and subsequent apoptosis in neurons, which is dependent on glial glutamate transport. Our findings thus establish a simple genetic model of Alexander disease and further identify cellular pathways critical for glial-induced neurodegeneration. PMID:21414908

  2. Clear cell adenocarcinoma present exclusively within endometrial polyp: report of two cases.

    PubMed

    Ishida, Mitsuaki; Iwai, Muneo; Yoshida, Keiko; Kagotani, Akiko; Okabe, Hidetoshi

    2014-01-01

    Endometrial polyp is a common benign lesion that protrudes into the endometrial surface. The incidence of carcinoma within endometrial polyp is thought to be low, however, postmenopausal women with endometrial polyps are at an increased risk. Endometrial clear cell adenocarcinoma is a distinct and relatively rare subtype of endometrial carcinoma, and recent studies have proposed putative precursor lesions of clear cell adenocarcinoma, namely clear cell endometrial glandular dysplasia (EmGD) and clear cell endometrial intraepithelial carcinoma (EIC). Herein, we describe two cases of clear cell adenocarcinoma present exclusively within endometrial polyp and discuss the association of its precursor. Two postmenopausal Japanese females, 66-year-old (Case 1) and 54-year-old (Case 2) presented with abnormal genital bleeding. Cytological examination of both cases revealed adenocarcinoma, thus, hysterectomy was performed. Histopathological studies demonstrated clear cell adenocarcinoma within exclusively endometrial polyp in both cases. The peculiar finding in Case 1 was presence of atypical glandular cells with large round to oval nuclei and clear cytoplasm within the atrophic endometrial glands in the surrounding endometrial tissue, which corresponded to clear cell EIC. A recent study showed that 33% of uteri had at least one focus of clear cell EmGD in endometrial polyps. Accordingly, clear cell adenocarcinoma and clear cell EmGD can occur in association with endometrial polyps more frequently than previously thought. Therefore, detailed histopathological examination is important in diagnosis of endometrial polyps, especially in the postmenopausal women, moreover cytological examination is a useful tool in the postmenopausal women with endometrial polyps.

  3. Sox2 promotes survival of satellite glial cells in vitro

    SciTech Connect

    Koike, Taro Wakabayashi, Taketoshi; Mori, Tetsuji; Hirahara, Yukie; Yamada, Hisao

    2015-08-14

    Sox2 is a transcriptional factor expressed in neural stem cells. It is known that Sox2 regulates cell differentiation, proliferation and survival of the neural stem cells. Our previous study showed that Sox2 is expressed in all satellite glial cells of the adult rat dorsal root ganglion. In this study, to examine the role of Sox2 in satellite glial cells, we establish a satellite glial cell-enriched culture system. Our culture method succeeded in harvesting satellite glial cells with the somata of neurons in the dorsal root ganglion. Using this culture system, Sox2 was downregulated by siRNA against Sox2. The knockdown of Sox2 downregulated ErbB2 and ErbB3 mRNA at 2 and 4 days after siRNA treatment. MAPK phosphorylation, downstream of ErbB, was also inhibited by Sox2 knockdown. Because ErbB2 and ErbB3 are receptors that support the survival of glial cells in the peripheral nervous system, apoptotic cells were also counted. TUNEL-positive cells increased at 5 days after siRNA treatment. These results suggest that Sox2 promotes satellite glial cell survival through the MAPK pathway via ErbB receptors. - Highlights: • We established satellite glial cell culture system. • Function of Sox2 in satellite glial cell was examined using siRNA. • Sox2 knockdown downregulated expression level of ErbB2 and ErbB3 mRNA. • Sox2 knockdown increased apoptotic satellite glial cell. • Sox2 promotes satellite glial cell survival through ErbB signaling.

  4. Involvement of nucleotides in glial growth following scratch injury in avian retinal cell monolayer cultures.

    PubMed

    Silva, Thayane Martins; França, Guilherme Rapozeiro; Ornelas, Isis Moraes; Loiola, Erick Correia; Ulrich, Henning; Ventura, Ana Lucia Marques

    2015-06-01

    When retinal cell cultures were mechanically scratched, cell growth over the empty area was observed. Only dividing and migrating, 2 M6-positive glial cells were detected. Incubation of cultures with apyrase (APY), suramin, or Reactive Blue 2 (RB-2), but not MRS 2179, significantly attenuated the growth of glial cells, suggesting that nucleotide receptors other than P2Y1 are involved in the growth of glial cells. UTPγS but not ADPβS antagonized apyrase-induced growth inhibition in scratched cultures, suggesting the participation of UTP-sensitive receptors. No decrease in proliferating cell nuclear antigen (PCNA(+)) cells was observed at the border of the scratch in apyrase-treated cultures, suggesting that glial proliferation was not affected. In apyrase-treated cultures, glial cytoplasm protrusions were smaller and unstable. Actin filaments were less organized and alfa-tubulin-labeled microtubules were mainly parallel to scratch. In contrast to control cultures, very few vinculin-labeled adhesion sites could be noticed in these cultures. Increased Akt and ERK phosphorylation was observed in UTP-treated cultures, effect that was inhibited by SRC inhibitor 1 and PI3K blocker LY294002. These inhibitors and the FAK inhibitor PF573228 also decreased glial growth over the scratch, suggesting participation of SRC, PI3K, and FAK in UTP-induced growth of glial cells in scratched cultures. RB-2 decreased dissociated glial cell attachment to fibronectin-coated dishes and migration through transwell membranes, suggesting that nucleotides regulated adhesion and migration of glial cells. In conclusion, mechanical scratch of retinal cell cultures induces growth of glial cells over the empty area through a mechanism that is dependent on activation of UTP-sensitive receptors, SRC, PI3K, and FAK.

  5. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R.; Norton, H. N.; Stearns, J. W.; Stimpson, L. D.; Weissman, P.

    1980-01-01

    A mission out of the planetary system, launched about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low-energy cosmic rays, interplanetary gas distribution, and the mass of the solar system. Secondary objectives include investigation of Pluto. The mission should extend to 400-1000 AU from the sun. A heliocentric hyperbolic escape velocity of 50-100 km/sec or more is needed to attain this distance within a reasonable mission duration (20-50 years). The trajectory should be toward the incoming interstellar gas. For a year 2000 launch, a Pluto encounter and orbiter can be included. A second mission targeted parallel to the solar axis would also be worthwhile. The mission duration is 20 years, with an extended mission to a total of 50 years. A system using one or two stages of nuclear electric propulsion (NEP) was selected as a possible baseline. The most promising alternatives are ultralight solar sails or laser sailing, with the lasers in earth orbit, for example. The NEP baseline design allows the option of carrying a Pluto orbiter as a daughter spacecraft.

  6. Downregulation of amyloid precursor protein inhibits neurite outgrowth in vitro

    PubMed Central

    1995-01-01

    The amyloid precursor protein (APP) is a transmembrane protein expressed in several cell types. In the nervous system, APP is expressed by glial and neuronal cells, and several lines of evidence suggest that it plays a role in normal and pathological phenomena. To address the question of the actual function of APP in normal developing neurons, we undertook a study aimed at blocking APP expression using antisense oligonucleotides. Oligonucleotide internalization was achieved by linking them to a vector peptide that translocates through biological membranes. This original technique, which is very efficient and gives direct access to the cell cytosol and nucleus, allowed us to work with extracellular oligonucleotide concentrations between 40 and 200 nM. Internalization of antisense oligonucleotides overlapping the origin of translation resulted in a marked but transient decrease in APP neosynthesis that was not observed with the vector peptide alone, or with sense oligonucleotides. Although transient, the decrease in APP neosynthesis was sufficient to provoke a distinct decrease in axon and dendrite outgrowth by embryonic cortical neurons developing in vitro. The latter decrease was not accompanied by changes in the spreading of the cell bodies. A single exposure to coupled antisense oligonucleotides at the onset of the culture was sufficient to produce significant morphological effects 6, 18, and 24 h later, but by 42 h, there were no remaining significant morphologic changes. This report thus demonstrates that amyloid precursor protein plays an important function in the morphological differentiation of cortical neurons in primary culture. PMID:7876315

  7. Astrocyte-like glial cells physiologically regulate olfactory processing through the modification of ORN-PN synaptic strength in Drosophila.

    PubMed

    Liu, He; Zhou, Bangyu; Yan, Wenjun; Lei, Zhengchang; Zhao, Xiaoliang; Zhang, Ke; Guo, Aike

    2014-09-01

    Astrocyte-like glial cells are abundant in the central nervous system of adult Drosophila and exhibit morphology similar to astrocytes of mammals. Previous evidence has shown that astrocyte-like glial cells are strongly associated with synapses in the antennal lobe (AL), the first relay of the olfactory system, where olfactory receptor neurons (ORNs) transmit information into projection neurons (PNs). However, the function of astrocyte-like glia in the AL remains obscure. In this study, using in vivo calcium imaging, we found that astrocyte-like glial cells exhibited spontaneous microdomain calcium elevations. Using simultaneous manipulation of glial activity and monitoring of neuronal function, we found that the astrocyte-like glial activation, but not ensheathing glial activation, could inhibit odor-evoked responses of PNs. Ensheathing glial cells are another subtype of glia, and are of functional importance in the AL. Electrophysiological experiments indicated that astrocyte-like glial activation decreased the amplitude and slope of excitatory postsynaptic potentials evoked through electrical stimulation of the antennal nerve. These results suggest that astrocyte-like glial cells may regulate olfactory processing through negative regulation of ORN-PN synaptic strength. Beyond the antennal lobe we observed astrocyte-like glial spontaneous calcium activities in the ventromedial protocerebrum, indicating that astrocyte-like glial spontaneous calcium elevations might be general in the adult fly brain. Overall, our study demonstrates a new function for astrocyte-like glial cells in the physiological modulation of olfactory information transmission, possibly through regulating ORN-PN synapse strength.

  8. PRECURSOR FLARES IN OJ 287

    SciTech Connect

    Pihajoki, P.; Berdyugin, A.; Lindfors, E.; Reinthal, R.; Sillanpaeae, A.; Takalo, L.; Valtonen, M.; Nilsson, K.; Zola, S.; Koziel-Wierzbowska, D.; Liakos, A.; Drozdz, M.; Winiarski, M.; Ogloza, W.; Provencal, J.; Santangelo, M. M. M.; Salo, H.; Chandra, S.; Ganesh, S.; Baliyan, K. S.; and others

    2013-02-10

    We have studied three most recent precursor flares in the light curve of the blazar OJ 287 while invoking the presence of a precessing binary black hole in the system to explain the nature of these flares. Precursor flare timings from the historical light curves are compared with theoretical predictions from our model that incorporate effects of an accretion disk and post-Newtonian description for the binary black hole orbit. We find that the precursor flares coincide with the secondary black hole descending toward the accretion disk of the primary black hole from the observed side, with a mean z-component of approximately z{sub c} = 4000 AU. We use this model of precursor flares to predict that precursor flare of similar nature should happen around 2020.96 before the next major outburst in 2022.

  9. Stable isotope-resolved metabolomic analysis of lithium effects on glial-neuronal metabolism and interactions.

    PubMed

    Fan, Teresa W-M; Yuan, Peixiong; Lane, Andrew N; Higashi, Richard M; Wang, Yun; Hamidi, Anahita B; Zhou, Rulun; Guitart, Xavier; Chen, Guang; Manji, Husseini K; Kaddurah-Daouk, Rima

    2010-06-01

    Despite the long-established therapeutic efficacy of lithium in the treatment of bipolar disorder (BPD), its molecular mechanism of action remains elusive. Newly developed stable isotope-resolved metabolomics (SIRM) is a powerful approach that can be used to elucidate systematically how lithium impacts glial and neuronal metabolic pathways and activities, leading ultimately to deciphering its molecular mechanism of action. The effect of lithium on the metabolism of three different (13)C-labeled precursors ([U-(13)C]-glucose, (13)C-3-lactate or (13)C-2,3-alanine) was analyzed in cultured rat astrocytes and neurons by nuclear magnetic resonance (NMR) spectroscopy and gas chromatography mass spectrometry (GC-MS). Using [U-(13)C]-glucose, lithium was shown to enhance glycolytic activity and part of the Krebs cycle activity in both astrocytes and neurons, particularly the anaplerotic pyruvate carboxylation (PC). The PC pathway was previously thought to be active in astrocytes but absent in neurons. Lithium also stimulated the extracellular release of (13)C labeled-lactate, -alanine (Ala), -citrate, and -glutamine (Gln) by astrocytes. Interrogation of neuronal pathways using (13)C-3-lactate or (13)C-2,3-Ala as tracers indicated a high capacity of neurons to utilize lactate and Ala in the Krebs cycle, particularly in the production of labeled Asp and Glu via PC and normal cycle activity. Prolonged lithium treatment enhanced lactate metabolism via PC but inhibited lactate oxidation via the normal Krebs cycle in neurons. Such lithium modulation of glycolytic, PC and Krebs cycle activity in astrocytes and neurons as well as release of fuel substrates by astrocytes should help replenish Krebs cycle substrates for Glu synthesis while meeting neuronal demands for energy. Further investigations into the molecular regulation of these metabolic traits should provide new insights into the pathophysiology of mood disorders and early diagnostic markers, as well as new target(s) for

  10. New advances on glial activation in health and disease

    PubMed Central

    Lee, Kim Mai; MacLean, Andrew G

    2015-01-01

    In addition to being the support cells of the central nervous system (CNS), astrocytes are now recognized as active players in the regulation of synaptic function, neural repair, and CNS immunity. Astrocytes are among the most structurally complex cells in the brain, and activation of these cells has been shown in a wide spectrum of CNS injuries and diseases. Over the past decade, research has begun to elucidate the role of astrocyte activation and changes in astrocyte morphology in the progression of neural pathologies, which has led to glial-specific interventions for drug development. Future therapies for CNS infection, injury, and neurodegenerative disease are now aimed at targeting astrocyte responses to such insults including astrocyte activation, astrogliosis and other morphological changes, and innate and adaptive immune responses. PMID:25964871

  11. Regulation of radial glial survival by signals from the meninges.

    PubMed

    Radakovits, Randor; Barros, Claudia S; Belvindrah, Richard; Patton, Bruce; Müller, Ulrich

    2009-06-17

    Radial glial cells (RGCs) in the developing cerebral cortex are progenitors for neurons and glia, and their processes serve as guideposts for migrating neurons. So far, it has remained unclear whether RGC processes also control the function of RGCs more directly. Here, we show that RGC numbers and cortical size are reduced in mice lacking beta1 integrins in RGCs. TUNEL stainings and time-lapse video recordings demonstrate that beta1-deficient RGCs processes detach from the meningeal basement membrane (BM) followed by apoptotic death of RGCs. Apoptosis is also induced by surgical removal of the meninges. Finally, mice lacking the BM components laminin alpha2 and alpha4 show defects in the attachment of RGC processes at the meninges, a reduction in cortical size, and enhanced apoptosis of RGC cells. Our findings demonstrate that attachment of RGC processes at the meninges is important for RGC survival and the control of cortical size.

  12. Neuronal-glial networks as substrate for CNS integration

    PubMed Central

    Verkhratsky, A; Toescu, E C

    2006-01-01

    Astrocytes have been considered, for a long time, as the support and house-keeping cells of the nervous system. Indeed, the astrocytes play very important metabolic roles in the brain, but the catalogue of nervous system functions or activities that involve directly glial participation has extended dramatically in the last decade. In addition to the further refining of the signalling capacity of the neuroglial networks and the detailed reassessment of the interactions between glia and vascular bed in the brain, one of the important salient features of the increased glioscience activity in the last few years was the morphological and functional demonstration that protoplasmic astrocytes occupy well defined spatial territories, with only limited areas of morphological overlapping, but still able to communicate with adjacent neighbours through intercellular junctions. All these features form the basis for a possible reassessment of the nature of integration of activity in the central nervous system that could raise glia to a role of central integrator.

  13. Neuronal-glial mechanisms of exercise-evoked stress robustness.

    PubMed

    Fleshner, Monika; Greenwood, Benjamin N; Yirmiya, Raz

    2014-01-01

    Stress robustness by definition, incorporates both stress resistance (organisms endure greater stressor intensity or duration before suffering negative consequences) and stress resilience (organisms recover faster after suffering negative consequences). Factors that influence stress robustness include the nature of the stressor, (i.e., controllability, intensity, chronicity) and features of the organism (i.e., age, genetics, sex, and physical activity status). Here we present a novel hypothesis for how physically active versus sedentary living promotes stress robustness in the face of intense uncontrollable stress. Advances in neurobiology have established microglia as an active player in the regulation of synaptic activity, and recent work has revealed mechanisms for modulating glial function, including cross talk between neurons and glia. This chapter presents supporting evidence that the physical activity status of an organism may modulate stress-evoked neuronal-glial responses by changing the CX3CL1-CX3CR1 axis. Specifically, we propose that sedentary animals respond to an intense acute uncontrollable stressor with excessive serotonin (5-HT) and noradrenergic (NE) activity and/or prolonged down-regulation of the CX3CL1-CX3CR1 axis resulting in activation and proliferation of hippocampal microglia in the absence of pathogenic signals and consequent hippocampal-dependent memory deficits and reduced neurogenesis. In contrast, physically active animals respond to the same stressor with constrained 5-HT and NE activity and rapidly recovering CX3CL1-CX3CR1 axis responses resulting in the quieting of microglia, and protection from negative cognitive and neurobiological effects of stress. PMID:24481547

  14. Depression as a Glial-Based Synaptic Dysfunction.

    PubMed

    Rial, Daniel; Lemos, Cristina; Pinheiro, Helena; Duarte, Joana M; Gonçalves, Francisco Q; Real, Joana I; Prediger, Rui D; Gonçalves, Nélio; Gomes, Catarina A; Canas, Paula M; Agostinho, Paula; Cunha, Rodrigo A

    2015-01-01

    Recent studies combining pharmacological, behavioral, electrophysiological and molecular approaches indicate that depression results from maladaptive neuroplastic processes occurring in defined frontolimbic circuits responsible for emotional processing such as the prefrontal cortex, hippocampus, amygdala and ventral striatum. However, the exact mechanisms controlling synaptic plasticity that are disrupted to trigger depressive conditions have not been elucidated. Since glial cells (astrocytes and microglia) tightly and dynamically interact with synapses, engaging a bi-directional communication critical for the processing of synaptic information, we now revisit the role of glial cells in the etiology of depression focusing on a dysfunction of the "quad-partite" synapse. This interest is supported by the observations that depressive-like conditions are associated with a decreased density and hypofunction of astrocytes and with an increased microglia "activation" in frontolimbic regions, which is expected to contribute for the synaptic dysfunction present in depression. Furthermore, the traditional culprits of depression (glucocorticoids, biogenic amines, brain-derived neurotrophic factor, BDNF) affect glia functioning, whereas antidepressant treatments (serotonin-selective reuptake inhibitors, SSRIs, electroshocks, deep brain stimulation) recover glia functioning. In this context of a quad-partite synapse, systems modulating glia-synapse bidirectional communication-such as the purinergic neuromodulation system operated by adenosine 5'-triphosphate (ATP) and adenosine-emerge as promising candidates to "re-normalize" synaptic function by combining direct synaptic effects with an ability to also control astrocyte and microglia function. This proposed triple action of purines to control aberrant synaptic function illustrates the rationale to consider the interference with glia dysfunction as a mechanism of action driving the design of future pharmacological tools to

  15. Depression as a Glial-Based Synaptic Dysfunction

    PubMed Central

    Rial, Daniel; Lemos, Cristina; Pinheiro, Helena; Duarte, Joana M.; Gonçalves, Francisco Q.; Real, Joana I.; Prediger, Rui D.; Gonçalves, Nélio; Gomes, Catarina A.; Canas, Paula M.; Agostinho, Paula; Cunha, Rodrigo A.

    2016-01-01

    Recent studies combining pharmacological, behavioral, electrophysiological and molecular approaches indicate that depression results from maladaptive neuroplastic processes occurring in defined frontolimbic circuits responsible for emotional processing such as the prefrontal cortex, hippocampus, amygdala and ventral striatum. However, the exact mechanisms controlling synaptic plasticity that are disrupted to trigger depressive conditions have not been elucidated. Since glial cells (astrocytes and microglia) tightly and dynamically interact with synapses, engaging a bi-directional communication critical for the processing of synaptic information, we now revisit the role of glial cells in the etiology of depression focusing on a dysfunction of the “quad-partite” synapse. This interest is supported by the observations that depressive-like conditions are associated with a decreased density and hypofunction of astrocytes and with an increased microglia “activation” in frontolimbic regions, which is expected to contribute for the synaptic dysfunction present in depression. Furthermore, the traditional culprits of depression (glucocorticoids, biogenic amines, brain-derived neurotrophic factor, BDNF) affect glia functioning, whereas antidepressant treatments (serotonin-selective reuptake inhibitors, SSRIs, electroshocks, deep brain stimulation) recover glia functioning. In this context of a quad-partite synapse, systems modulating glia-synapse bidirectional communication—such as the purinergic neuromodulation system operated by adenosine 5′-triphosphate (ATP) and adenosine—emerge as promising candidates to “re-normalize” synaptic function by combining direct synaptic effects with an ability to also control astrocyte and microglia function. This proposed triple action of purines to control aberrant synaptic function illustrates the rationale to consider the interference with glia dysfunction as a mechanism of action driving the design of future

  16. Evidence for brain glial activation in chronic pain patients.

    PubMed

    Loggia, Marco L; Chonde, Daniel B; Akeju, Oluwaseun; Arabasz, Grae; Catana, Ciprian; Edwards, Robert R; Hill, Elena; Hsu, Shirley; Izquierdo-Garcia, David; Ji, Ru-Rong; Riley, Misha; Wasan, Ajay D; Zürcher, Nicole R; Albrecht, Daniel S; Vangel, Mark G; Rosen, Bruce R; Napadow, Vitaly; Hooker, Jacob M

    2015-03-01

    Although substantial evidence has established that microglia and astrocytes play a key role in the establishment and maintenance of persistent pain in animal models, the role of glial cells in human pain disorders remains unknown. Here, using the novel technology of integrated positron emission tomography-magnetic resonance imaging and the recently developed radioligand (11)C-PBR28, we show increased brain levels of the translocator protein (TSPO), a marker of glial activation, in patients with chronic low back pain. As the Ala147Thr polymorphism in the TSPO gene affects binding affinity for (11)C-PBR28, nine patient-control pairs were identified from a larger sample of subjects screened and genotyped, and compared in a matched-pairs design, in which each patient was matched to a TSPO polymorphism-, age- and sex-matched control subject (seven Ala/Ala and two Ala/Thr, five males and four females in each group; median age difference: 1 year; age range: 29-63 for patients and 28-65 for controls). Standardized uptake values normalized to whole brain were significantly higher in patients than controls in multiple brain regions, including thalamus and the putative somatosensory representations of the lumbar spine and leg. The thalamic levels of TSPO were negatively correlated with clinical pain and circulating levels of the proinflammatory citokine interleukin-6, suggesting that TSPO expression exerts pain-protective/anti-inflammatory effects in humans, as predicted by animal studies. Given the putative role of activated glia in the establishment and or maintenance of persistent pain, the present findings offer clinical implications that may serve to guide future studies of the pathophysiology and management of a variety of persistent pain conditions.

  17. Glial fibrillary acidic protein expression during HSV-1 infection in mouse cornea.

    PubMed

    Zhao, Ge; Chen, Hao; Song, Zicheng; Yin, Hongmei; Xu, Yuanyuan; Chen, Min

    2014-02-01

    This study aimed to investigate the dynamic expression of glial fibrillary acidic protein (GFAP), a common neural factor, in cornea and stromal cells during herpes simplex virus-1 (HSV-1) infection. For each anesthetized BALB/c mouse, the cornea in one eye was inoculated with 1 × 10(5) plaque forming unit (PFU) of HSV-1, while the contralateral cornea was mock-infected as the control. At different timepoints post-infection, corneal lesion examination by slit-lamp biomicroscopy, corneal histology and HSV-1 DNA detection by real-time PCR were performed to estimate the different stage of HSV-1 infection. The expression of GFAP was examined using real-time PCR, western blotting and immunofluorescence staining. After infected with HSV-1 for 15 days, the mouse corneas began to become clear, the corneal pathology recovered to normal, and HSV-1 DNA almost could not be detected, indicating that HSV-1 was entering a relative quiescent state from the acute infection. The expression of GFAP in HSV-1-infected corneas was comparatively low on day 3, increased slightly on day 7, and further increased thereafter, higher than that in mock-infected corneas on day 15. GFAP detection on the cellular level also indicated that the expression was downregulated in acute HSV-1 infection. GFAP was found to be downregulated in HSV-1 acute infection in cornea and upregulated in late stage, suggesting that GFAP might play some role during HSV-1 infection in cornea.

  18. Glial regulation of extrasynaptic NMDA receptor-mediated excitation of supraoptic nucleus neurones during dehydration.

    PubMed

    Joe, N; Scott, V; Brown, C H

    2014-01-01

    Magnocellular neurosecretory cells (MNCs) of the supraoptic nucleus (SON) project to the posterior pituitary gland where they release the hormones, vasopressin and oxytocin into the circulation to maintain plasma osmolality. Hormone release is proportionate to SON MNC action potential (spike) firing rate. When activated by ambient extracellular glutamate, extrasynaptic NMDA receptors (eNMDARs) mediate a tonic (persistent) depolarisation to increase the probability of action potential firing. In the present study, in vivo single-unit electrophysiological recordings were made from urethane-anaesthetised female Sprague-Dawley rats to investigate the impact of tonic eNMDAR activation on MNC activity. Water deprivation (for up to 48 h) caused an increase in the firing rate of SON MNCs that was associated with a general increase in post-spike excitability. To determine whether eNMDAR activation contributes to the increased MNC excitability during water deprivation, memantine, which preferentially blocks eNMDARs, was administered locally into the SON by microdialysis. Memantine significantly decreased the firing rate of MNCs recorded from 48-h water-deprived rats but had no effect on MNCs recorded from euhydrated rats. In the presence of the glial glutamate transporter-1 (GLT-1) blocker, dihydrokainate, memantine also reduced the MNC firing rate in euhydrated rats. Taken together, these observations suggest that GLT-1 clears extracellular glutamate to prevent the activation of eNDMARs under basal conditions and that, during dehydration, eNMDAR activation contributes to the increased firing rate of MNCs.

  19. Endogenous purinergic signaling is required for osmotic volume regulation of retinal glial cells.

    PubMed

    Wurm, Antje; Lipp, Stephan; Pannicke, Thomas; Linnertz, Regina; Krügel, Ute; Schulz, Angela; Färber, Katrin; Zahn, Dirk; Grosse, Johannes; Wiedemann, Peter; Chen, Ju; Schöneberg, Torsten; Illes, Peter; Reichenbach, Andreas; Bringmann, Andreas

    2010-03-01

    Intense neuronal activity in the sensory retina is associated with a volume increase of neuronal cells (Uckermann et al., J. Neurosci. 2004, 24:10149) and a decrease in the osmolarity of the extracellular space fluid (Dmitriev et al., Vis. Neurosci. 1999, 16:1157). Here, we show the existence of an endogenous purinergic mechanism that prevents hypoosmotic swelling of retinal glial (Müller) cells in mice. In contrast to the cells from wild-type mice, hypoosmotic stress induced rapid swelling of glial cell somata in retinal slices from mice deficient in P2Y(1), adenosine A(1) receptors, or ecto-5'-nucleotidase (CD73). Consistently, glial cell bodies in retinal slices from wild-type mice displayed osmotic swelling when P2Y(1) or A(1) receptors, or CD73, were pharmacologically blocked. Exogenous ATP, UTP, and UDP inhibited glial swelling in retinal slices, while the swelling of isolated glial cells was prevented by ATP but not by UTP or UDP, suggesting that uracil nucleotides indirectly regulate the glial cell volume via activation of neuronal P2Y(4/6) and neuron-to-glia signaling. It is suggested that autocrine/paracrine activation of purinergic receptors and enzymes is crucially involved in the regulation of the glial cell volume. PMID:20002522

  20. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.

    2010-10-01

    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  1. Glutamate-mediated protection of crayfish glial cells from PDT-induced apoptosis

    NASA Astrophysics Data System (ADS)

    Rudkovskii, M. V.; Romanenko, N. P.; Berezhnaya, E. V.; Kovaleva, V. D.; Uzdensky, A. B.

    2011-03-01

    Photodynamic treatment that causes intense oxidative stress and kills cells is currently used in neurooncology. However, along with tumor it damages surrounding healthy neurons and glial cells. In order to study the possible role of glutamate-related signaling pathways in photodynamic injury of neurons and glia, we investigated photodynamic effect of alumophthalocyanine Photosens on isolated crayfish stretch receptor that consists of a single neuron surrounded by glial cells. The laser diode (670 nm, 0.4 W/cm2) was used for dye photoexcitation. Application of glutamate increased photodynamically induced necrosis of neurons and glial cells but significantly decreased glial apoptosis. The natural neuroglial mediator N-acetylaspartylglutamate, which releases glutamate after cleavage in the extracellular space by glutamate carboxypeptidase II, also inhibited photoinduced apoptosis. Inhibition of glutamate carboxypeptidase II, oppositely, enhanced apoptosis of glial cells. These data confirm the anti-apoptotic activity of glutamate. Application of NMDA or inhibition of NMDA receptors by MK801 did not influence photodynamic death of neurons and glial cells that indicated nonparticipation of NMDA receptors in these processes. Inhibition of metabotropic glutamate receptors by AP-3 decreased PDT-induced apoptosis. One can suggest that crayfish neurons naturally secrete NAAG, which being cleaved by GCOP produces glutamate. Glutamate prevents photoinduced apoptosis of glial cells possibly through metabotropic but not ionotropic glutamate receptors.

  2. The role of Ca 2+-related signaling in photodynamic injury of nerve and glial cells

    NASA Astrophysics Data System (ADS)

    Lobanov, A. V.; Petin, Y. O.; Uzdensky, A. B.

    2007-05-01

    Photodynamic therapy (PDT) inhibited and irreversibly abolished firing, caused necrosis of neurons, necrosis, apoptosis and proliferation of glial cells in the isolated crayfish stretch receptor. The role in these processes of the central components of Ca 2+-mediated signaling pathway: phospholipase C, calmodulin, calmodulin-dependent kinase II, and protein kinase C was studied using their inhibitors: ET-18, fluphenazine, KN-93, or staurosporine, respectively. ET-18 reduced functional inactivation of neurons, necrosis and apoptosis of glial cells. Fluphenazine and KN-93 reduced PDT-induced necrosis of neurons and glial cells. Staurosporine enhanced PDT-induced glial apoptosis. PDTinduced gliosis was prevented by KN-93 and staurosporine. Therefore, phospholipase C participated in neuron inactivation and glial necrosis and apoptosis. Calmodulin and calmodulin-dependent kinase II were involved in PDT-induced necrosis of neurons and glial cells but not in glial apoptosis. Protein kinase C protected glia from apoptosis and participated in PDT-induced gliosis and loss of neuronal activity. These data may be used for modulation of PDT of brain tumors.

  3. The Drosophila blood-brain barrier: development and function of a glial endothelium

    PubMed Central

    Limmer, Stefanie; Weiler, Astrid; Volkenhoff, Anne; Babatz, Felix; Klämbt, Christian

    2014-01-01

    The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells. PMID:25452710

  4. The Drosophila blood-brain barrier: development and function of a glial endothelium.

    PubMed

    Limmer, Stefanie; Weiler, Astrid; Volkenhoff, Anne; Babatz, Felix; Klämbt, Christian

    2014-01-01

    The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells. PMID:25452710

  5. Plasmin Activation of Glial Cells through Protease-Activated Receptor 1.

    PubMed

    Greenidge, André R; Hall, Kiana R; Hambleton, Ian R; Thomas, Richelle; Monroe, Dougald M; Landis, R Clive

    2013-01-01

    The objective of this study was to determine whether plasmin could induce morphological changes in human glial cells via PAR1. Human glioblastoma A172 cells were cultured in the presence of plasmin or the PAR1 specific activating hexapeptide, SFLLRN. Cells were monitored by flow cytometry to detect proteolytic activation of PAR1 receptor. Morphological changes were recorded by photomicroscopy and apoptosis was measured by annexinV staining. Plasmin cleaved the PAR1 receptor on glial cells at 5 minutes (P = 0.02). After 30 minutes, cellular processes had begun to retract from the basal substratum and by 4 hours glial cells had become detached. Similar results were obtained by generating plasmin de novo from plasminogen. Morphological transformation was blocked by plasmin inhibitors aprotinin or epsilon-aminocaproic acid (P = 0.03). Cell viability was unimpaired during early morphological changes, but by 24 hours following plasmin treatment 22% of glial cells were apoptotic. PAR1 activating peptide SFLLRN (but not inactive isomer FSLLRN) promoted analogous glial cell detachment (P = 0.03), proving the role for PAR1 in this process. This study has identified a plasmin/PAR1 axis of glial cell activation, linked to changes in glial cell morophology. This adds to our understanding of pathophysiological disease mechanisms of plasmin and the plasminogen system in neuroinjury. PMID:23431500

  6. Radial glial cells play a key role in echinoderm neural regeneration

    PubMed Central

    2013-01-01

    Background Unlike the mammalian central nervous system (CNS), the CNS of echinoderms is capable of fast and efficient regeneration following injury and constitutes one of the most promising model systems that can provide important insights into evolution of the cellular and molecular events involved in neural repair in deuterostomes. So far, the cellular mechanisms of neural regeneration in echinoderm remained obscure. In this study we show that radial glial cells are the main source of new cells in the regenerating radial nerve cord in these animals. Results We demonstrate that radial glial cells of the sea cucumber Holothuria glaberrima react to injury by dedifferentiation. Both glia and neurons undergo programmed cell death in the lesioned CNS, but it is the dedifferentiated glial subpopulation in the vicinity of the injury that accounts for the vast majority of cell divisions. Glial outgrowth leads to formation of a tubular scaffold at the growing tip, which is later populated by neural elements. Most importantly, radial glial cells themselves give rise to new neurons. At least some of the newly produced neurons survive for more than 4 months and express neuronal markers typical of the mature echinoderm CNS. Conclusions A hypothesis is formulated that CNS regeneration via activation of radial glial cells may represent a common capacity of the Deuterostomia, which is not invoked spontaneously in higher vertebrates, whose adult CNS does not retain radial glial cells. Potential implications for biomedical research aimed at finding the cure for human CNS injuries are discussed. PMID:23597108

  7. Long-term maintenance of Na+ channels at nodes of Ranvier depends on glial contact mediated by gliomedin and NrCAM.

    PubMed

    Amor, Veronique; Feinberg, Konstantin; Eshed-Eisenbach, Yael; Vainshtein, Anya; Frechter, Shahar; Grumet, Martin; Rosenbluth, Jack; Peles, Elior

    2014-04-01

    Clustering of Na(+) channels at the nodes of Ranvier is coordinated by myelinating glia. In the peripheral nervous system, axoglial contact at the nodes is mediated by the binding of gliomedin and glial NrCAM to axonal neurofascin 186 (NF186). This interaction is crucial for the initial clustering of Na(+) channels at heminodes. As a result, it is not clear whether continued axon-glial contact at nodes of Ranvier is required to maintain these channels at the nodal axolemma. Here, we report that, in contrast to mice that lack either gliomedin or NrCAM, absence of both molecules (and hence the glial clustering signal) resulted in a gradual loss of Na(+) channels and other axonal components from the nodes, the formation of binary nodes, and dysregulation of nodal gap length. Therefore, these mice exhibit neurological abnormalities and slower nerve conduction. Disintegration of the nodes occurred in an orderly manner, starting with the disappearance of neurofascin 186, followed by the loss of Na(+) channels and ankyrin G, and then βIV spectrin, a sequence that reflects the assembly of nodes during development. Finally, the absence of gliomedin and NrCAM led to the invasion of the outermost layer of the Schwann cell membrane beyond the nodal area and the formation of paranodal-like junctions at the nodal gap. Our results reveal that axon-glial contact mediated by gliomedin, NrCAM, and NF186 not only plays a role in Na(+) channel clustering during development, but also contributes to the long-term maintenance of Na(+) channels at nodes of Ranvier.

  8. An Adenosine-Mediated Glial-Neuronal Circuit for Homeostatic Sleep

    PubMed Central

    Bjorness, Theresa E.; Dale, Nicholas; Mettlach, Gabriel; Sonneborn, Alex; Sahin, Bogachan; Fienberg, Allen A.; Yanagisawa, Masashi; Bibb, James A.

    2016-01-01

    Sleep homeostasis reflects a centrally mediated drive for sleep, which increases during waking and resolves during subsequent sleep. Here we demonstrate that mice deficient for glial adenosine kinase (AdK), the primary metabolizing enzyme for adenosine (Ado), exhibit enhanced expression of this homeostatic drive by three independent measures: (1) increased rebound of slow-wave activity; (2) increased consolidation of slow-wave sleep; and (3) increased time constant of slow-wave activity decay during an average slow-wave sleep episode, proposed and validated here as a new index for homeostatic sleep drive. Conversely, mice deficient for the neuronal adenosine A1 receptor exhibit significantly decreased sleep drive as judged by these same indices. Neuronal knock-out of AdK did not influence homeostatic sleep need. Together, these findings implicate a glial-neuronal circuit mediated by intercellular Ado, controlling expression of homeostatic sleep drive. Because AdK is tightly regulated by glial metabolic state, our findings suggest a functional link between cellular metabolism and sleep homeostasis. SIGNIFICANCE STATEMENT The work presented here provides evidence for an adenosine-mediated regulation of sleep in response to waking (i.e., homeostatic sleep need), requiring activation of neuronal adenosine A1 receptors and controlled by glial adenosine kinase. Adenosine kinase acts as a highly sensitive and important metabolic sensor of the glial ATP/ADP and AMP ratio directly controlling intracellular adenosine concentration. Glial equilibrative adenosine transporters reflect the intracellular concentration to the extracellular milieu to activate neuronal adenosine receptors. Thus, adenosine mediates a glial-neuronal circuit linking glial metabolic state to neural-expressed sleep homeostasis. This indicates a metabolically related function(s) for this glial-neuronal circuit in the buildup and resolution of our need to sleep and suggests potential therapeutic targets

  9. Matrix metalloproteinase-9 expression in the nuclear compartment of neurons and glial cells in aging and stroke.

    PubMed

    Pirici, Daniel; Pirici, Ionica; Mogoanta, Laurentiu; Margaritescu, Otilia; Tudorica, Valerica; Margaritescu, Claudiu; Ion, Daniela A; Simionescu, Cristiana; Coconu, Marieta

    2012-10-01

    Matrix metalloproteinases (MMPs) are well-recognized denominators for extracellular matrix remodeling in the pathology of both ischemic and hemorrhagic strokes. Recent data on non-nervous system tissue showed intracellular and even intranuclear localizations for different MMPs, and together with this, a plethora of new functions have been proposed for these intracellular active enzymes, but are mostly related to apoptosis induction and malign transformation. In neurons and glial cells, on human tissue, animal models and cell cultures, different active MMPs have been also proven to be located in the intra-cytoplasmic or intra-nuclear compartments, with no clear-cut function. In the present study we show for the first time on human tissue the nuclear expression of MMP-9, mainly in neurons and to a lesser extent in astrocytes. We have studied ischemic and hemorrhagic stroke patients, as well as aged control patients. Age and ischemic suffering seemed to be the best predictors for an elevated MMP-9 nuclear expression, and there was no evidence of a clear-cut extracellular proteolytic activity for this compartment, as revealed by intact vascular basement membranes and assessment of vascular densities. More, the majority of the cells expressing MMP-9 in the nuclear compartment also co-expressed activated-caspase 3, indicating a possible link between nuclear MMP-9 localization and apoptosis in neuronal and glial cells following an ischemic or hemorrhagic event. These results, besides showing for the first time the nuclear localization of MMP-9 on a large series of human stroke and aged brain tissues, raise new questions regarding the unknown spectrum of the functions MMPs in human CNS pathology.

  10. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  11. Keep Your Kidneys Clear: Kicking Kidney Stones

    MedlinePlus

    ... PDF—450 kb) Hey, Parents: It’s a Noisy Planet Keep Your Kidneys Clear Keep Your Kidneys Clear ... Pike Bethesda, Maryland 20892 Department of Health and Human Services Office of Communications and Public Liaison

  12. Glutathione-Induced Calcium Shifts in Chick Retinal Glial Cells.

    PubMed

    Freitas, Hercules R; Ferraz, Gabriel; Ferreira, Gustavo C; Ribeiro-Resende, Victor T; Chiarini, Luciana B; do Nascimento, José Luiz M; Matos Oliveira, Karen Renata H; Pereira, Tiago de Lima; Ferreira, Leonardo G B; Kubrusly, Regina C; Faria, Robson X; Herculano, Anderson Manoel; Reis, Ricardo A de Melo

    2016-01-01

    Neuroglia interactions are essential for the nervous system and in the retina Müller cells interact with most of the neurons in a symbiotic manner. Glutathione (GSH) is a low-molecular weight compound that undertakes major antioxidant roles in neurons and glia, however, whether this compound could act as a signaling molecule in neurons and/or glia is currently unknown. Here we used embryonic avian retina to obtain mixed retinal cells or purified Müller glia cells in culture to evaluate calcium shifts induced by GSH. A dose response curve (0.1-10 mM) showed that 5-10 mM GSH, induced calcium shifts exclusively in glial cells (later labeled and identified as 2M6 positive cells), while neurons responded to 50 mM KCl (labeled as βIII tubulin positive cells). BBG 100 nM, a P2X7 blocker, inhibited the effects of GSH on Müller glia. However, addition of DNQX 70 μM and MK-801 20 μM, non-NMDA and NMDA blockers, had no effect on GSH calcium induced shift. Oxidized glutathione (GSSG) at 5 mM failed to induce calcium mobilization in glia cells, indicating that the antioxidant and/or structural features of GSH are essential to promote elevations in cytoplasmic calcium levels. Indeed, a short GSH pulse (60s) protects Müller glia from oxidative damage after 30 min of incubation with 0.1% H2O2. Finally, GSH induced GABA release from chick embryonic retina, mixed neuron-glia or from Müller cell cultures, which were inhibited by BBG or in the absence of sodium. GSH also induced propidium iodide uptake in Müller cells in culture in a P2X7 receptor dependent manner. Our data suggest that GSH, in addition to antioxidant effects, could act signaling calcium shifts at the millimolar range particularly in Müller glia, and could regulate the release of GABA, with additional protective effects on retinal neuron-glial circuit. PMID:27078878

  13. Glutathione-Induced Calcium Shifts in Chick Retinal Glial Cells

    PubMed Central

    Freitas, Hercules R.; Ferraz, Gabriel; Ferreira, Gustavo C.; Ribeiro-Resende, Victor T.; Chiarini, Luciana B.; do Nascimento, José Luiz M.; Matos Oliveira, Karen Renata H.; Pereira, Tiago de Lima; Ferreira, Leonardo G. B.; Kubrusly, Regina C.; Faria, Robson X.

    2016-01-01

    Neuroglia interactions are essential for the nervous system and in the retina Müller cells interact with most of the neurons in a symbiotic manner. Glutathione (GSH) is a low-molecular weight compound that undertakes major antioxidant roles in neurons and glia, however, whether this compound could act as a signaling molecule in neurons and/or glia is currently unknown. Here we used embryonic avian retina to obtain mixed retinal cells or purified Müller glia cells in culture to evaluate calcium shifts induced by GSH. A dose response curve (0.1–10mM) showed that 5–10mM GSH, induced calcium shifts exclusively in glial cells (later labeled and identified as 2M6 positive cells), while neurons responded to 50mM KCl (labeled as βIII tubulin positive cells). BBG 100nM, a P2X7 blocker, inhibited the effects of GSH on Müller glia. However, addition of DNQX 70μM and MK-801 20μM, non-NMDA and NMDA blockers, had no effect on GSH calcium induced shift. Oxidized glutathione (GSSG) at 5mM failed to induce calcium mobilization in glia cells, indicating that the antioxidant and/or structural features of GSH are essential to promote elevations in cytoplasmic calcium levels. Indeed, a short GSH pulse (60s) protects Müller glia from oxidative damage after 30 min of incubation with 0.1% H2O2. Finally, GSH induced GABA release from chick embryonic retina, mixed neuron-glia or from Müller cell cultures, which were inhibited by BBG or in the absence of sodium. GSH also induced propidium iodide uptake in Müller cells in culture in a P2X7 receptor dependent manner. Our data suggest that GSH, in addition to antioxidant effects, could act signaling calcium shifts at the millimolar range particularly in Müller glia, and could regulate the release of GABA, with additional protective effects on retinal neuron-glial circuit. PMID:27078878

  14. 27 CFR 9.99 - Clear Lake.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.99 Clear Lake. (a) Name. The name of the viticultural area described in this section is “Clear Lake.” (b) Approved Maps. The appropriate maps for determining the boundaries of the Clear Lake viticultural area are four...

  15. 27 CFR 9.99 - Clear Lake.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.99 Clear Lake. (a) Name. The name of the viticultural area described in this section is “Clear Lake.” (b) Approved Maps. The appropriate maps for determining the boundaries of the Clear Lake viticultural area are four...

  16. 27 CFR 9.99 - Clear Lake.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.99 Clear Lake. (a) Name. The name of the viticultural area described in this section is “Clear Lake.” (b) Approved Maps. The appropriate maps for determining the boundaries of the Clear Lake viticultural area are four...

  17. 7 CFR 1773.42 - Clearing accounts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 12 2012-01-01 2012-01-01 false Clearing accounts. 1773.42 Section 1773.42... § 1773.42 Clearing accounts. The CPA's workpapers must contain an analysis of all clearing accounts... allocation between expense and capital accounts....

  18. 7 CFR 1773.42 - Clearing accounts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 12 2013-01-01 2013-01-01 false Clearing accounts. 1773.42 Section 1773.42... § 1773.42 Clearing accounts. The CPA's workpapers must contain an analysis of all clearing accounts... allocation between expense and capital accounts....

  19. 7 CFR 1773.42 - Clearing accounts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 12 2014-01-01 2013-01-01 true Clearing accounts. 1773.42 Section 1773.42 Agriculture... Clearing accounts. The CPA's workpapers must contain an analysis of all clearing accounts. Based upon the... expense and capital accounts....

  20. 7 CFR 1773.42 - Clearing accounts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 12 2011-01-01 2011-01-01 false Clearing accounts. 1773.42 Section 1773.42... § 1773.42 Clearing accounts. The CPA's workpapers must contain an analysis of all clearing accounts... allocation between expense and capital accounts....

  1. 77 FR 66219 - Clearing Agency Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-02

    ... to clear credit default swaps. See Exchange Act Release Nos. 60372 (July 23, 2009), 74 FR 37748 (July 29, 2009), 61973 (Apr. 23, 2010), 75 FR 22656 (Apr. 29, 2010) and 63389 (Nov. 29, 2010), 75 FR 75520 (Dec. 3, 2010) (CDS clearing by ICE Clear Europe Limited); 60373 (July 23, 2009), 74 FR 37740 (July...

  2. 76 FR 45724 - Clearing Member Risk Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ... COMMISSION 17 CFR Parts 1 and 23 RIN 3038-AD51 Clearing Member Risk Management AGENCY: Commodity Futures... management for cleared trades by futures commission merchants, swap dealers, and major swap participants that... extensive regulations addressing open access and risk management at the derivatives clearing...

  3. Simultaneous Occurrence of Glial Heterotopia and Meningocele in the Orbit with Clinical Anophthalmia and Neurological Anomalies.

    PubMed

    Pushker, Neelam; Bajaj, Mandeep S; Mehta, Mridula; Kashyap, Seema; Yadav, Prashant; Meel, Rachna; Sudhan, Madhu

    2009-11-01

    The authors describe a 5-year-old boy who had three congenital anomalies (clinical anophthalmos, meningocele, and glial heterotopia) in the orbit. These were associated with multiple neurological anomalies.

  4. Microbiota Controls the Homeostasis of Glial Cells in the Gut Lamina Propria

    PubMed Central

    Kabouridis, Panagiotis S.; Lasrado, Reena; McCallum, Sarah; Chng, Song Hui; Snippert, Hugo J.; Clevers, Hans; Pettersson, Sven; Pachnis, Vassilis

    2015-01-01

    Summary The intrinsic neural networks of the gastrointestinal tract are derived from dedicated neural crest progenitors that colonize the gut during embryogenesis and give rise to enteric neurons and glia. Here, we study how an essential subpopulation of enteric glial cells (EGCs) residing within the intestinal mucosa is integrated into the dynamic microenvironment of the alimentary tract. We find that under normal conditions colonization of the lamina propria by glial cells commences during early postnatal stages but reaches steady-state levels after weaning. By employing genetic lineage tracing, we provide evidence that in adult mice the network of mucosal EGCs is continuously renewed by incoming glial cells originating in the plexi of the gut wall. Finally, we demonstrate that both the initial colonization and homeostasis of glial cells in the intestinal mucosa are regulated by the indigenous gut microbiota. PMID:25578362

  5. A New Outlook on Mental Illnesses: Glial Involvement Beyond the Glue

    PubMed Central

    Elsayed, Maha; Magistretti, Pierre J.

    2015-01-01

    Mental illnesses have long been perceived as the exclusive consequence of abnormalities in neuronal functioning. Until recently, the role of glial cells in the pathophysiology of mental diseases has largely been overlooked. However recently, multiple lines of evidence suggest more diverse and significant functions of glia with behavior-altering effects. The newly ascribed roles of astrocytes, oligodendrocytes and microglia have led to their examination in brain pathology and mental illnesses. Indeed, abnormalities in glial function, structure and density have been observed in postmortem brain studies of subjects diagnosed with mental illnesses. In this review, we discuss the newly identified functions of glia and highlight the findings of glial abnormalities in psychiatric disorders. We discuss these preclinical and clinical findings implicating the involvement of glial cells in mental illnesses with the perspective that these cells may represent a new target for treatment. PMID:26733803

  6. Inflammation after Ischemic Stroke: The Role of Leukocytes and Glial Cells

    PubMed Central

    Kim, Jong Youl; Park, Joohyun; Chang, Ji Young; Kim, Sa-Hyun

    2016-01-01

    The immune response after stroke is known to play a major role in ischemic brain pathobiology. The inflammatory signals released by immune mediators activated by brain injury sets off a complex series of biochemical and molecular events which have been increasingly recognized as a key contributor to neuronal cell death. The primary immune mediators involved are glial cells and infiltrating leukocytes, including neutrophils, monocytes and lymphocyte. After ischemic stroke, activation of glial cells and subsequent release of pro- and anti-inflammatory signals are important for modulating both neuronal cell damage and wound healing. Infiltrated leukocytes release inflammatory mediators into the site of the lesion, thereby exacerbating brain injury. This review describes how the roles of glial cells and circulating leukocytes are a double-edged sword for neuroinflammation by focusing on their detrimental and protective effects in ischemic stroke. Here, we will focus on underlying characterize of glial cells and leukocytes under inflammation after ischemic stroke. PMID:27790058

  7. Glial polyp of the cervix and endometrium. Report of a case and review of the literature.

    PubMed

    Roca, A N; Guajardo, M; Estrada, W J

    1980-05-01

    This paper describes the case of an 18-year-old woman who had recurrent inflammatory cervical endometrial polyps due to glial implantation after a spontaneous abortion treated with curettage. The lesion is considered benign.

  8. Stem cell therapy for central nerve system injuries: glial cells hold the key

    PubMed Central

    Xiao, Li; Saiki, Chikako; Ide, Ryoji

    2014-01-01

    Mammalian adult central nerve system (CNS) injuries are devastating because of the intrinsic difficulties for effective neuronal regeneration. The greatest problem to be overcome for CNS recovery is the poor regeneration of neurons and myelin-forming cells, oligodendrocytes. Endogenous neural progenitors and transplanted exogenous neuronal stem cells can be the source for neuronal regeneration. However, because of the harsh local microenvironment, they usually have very low efficacy for functional neural regeneration which cannot compensate for the loss of neurons and oligodendrocytes. Glial cells (including astrocytes, microglia, oligodendrocytes and NG2 glia) are the majority of cells in CNS that provide support and protection for neurons. Inside the local microenvironment, glial cells largely influence local and transplanted neural stem cells survival and fates. This review critically analyzes current finding of the roles of glial cells in CNS regeneration, and highlights strategies for regulating glial cells’ behavior to create a permissive microenvironment for neuronal stem cells. PMID:25221575

  9. [Glial cells are involved in iron accumulation and degeneration of dopamine neurons in Parkinson's disease].

    PubMed

    Xu, Hua-Min; Wang, Jun; Song, Ning; Jiang, Hong; Xie, Jun-Xia

    2016-08-25

    A growing body of evidence suggests that glial cells play an important role in neural development, neural survival, nerve repair and regeneration, synaptic transmission and immune inflammation. As the highest number of cells in the central nervous system, the role of glial cells in Parkinson's disease (PD) has attracted more and more attention. It has been confirmed that nigral iron accumulation contributes to the death of dopamine (DA) neurons in PD. Until now, most researches on nigral iron deposition in PD are focusing on DA neurons, but in fact glial cells in the central nervous system also play an important role in the regulation of iron homeostasis. Therefore, this review describes the role of iron metabolism of glial cells in death of DA neurons in PD, which could provide evidence to reveal the mechanisms underlying nigral iron accumulation of DA neurons in PD and provide the basis for discovering new potential therapeutic targets for PD. PMID:27546505

  10. Brain but not retinal glial cells have carbonic anhydrase activity in the honeybee drone.

    PubMed

    Walz, B

    1988-02-15

    Carbonic anhydrase (CA) activity was localized histochemically in the retina and brain of the honeybee drone. A positive reaction that could be inhibited with 10(-5) M acetazolamide was found only in brain glial cells such as those in the lamina and medulla of the optic lobes. In the retina, neither the photoreceptors nor the pigmented glial cells showed CA activity. Hence, there is a marked difference between retinal and brain glial cells with respect to those functions thought to be performed by CA. This study extends the range of tissues in which CA has been shown to be localized in glial cells, but the absence of CA from the retina will impose constraints on a general explanation of the role of CA in nervous tissue.

  11. Glial potassium channels activated by neuronal firing or intracellular cyclic AMP in Helix.

    PubMed Central

    Gommerat, I; Gola, M

    1996-01-01

    1. Cell-attached and whole cell patch clamp experiments were performed on satellite glial cells adhering to the cell body of neurones in situ within the nervous system of the snail Helix pomatia. The underlying neurone was under current or voltage-clamp control. 2. Neuronal firing induced a delayed (20-30 s) persistent (3-4 min) increase in the opening probability of glial K+ channels. The channels were also activated by perfusing the ganglion with a depolarizing high-K+ saline, except when the underlying neurone was prevented from depolarizing under voltage-clamp conditions. 3. Two K(+)-selective channels were detected in the glial membrane. The channel responding to neuronal firing was present in 95% of the patches (n = 393). It had a unitary conductance of 56 pS, a Na+ :K+ permeability ratio < 0.02 and displayed slight inward rectification in symmetrical [K+] conditions. It was sensitive to TEA, Ba2+ and Cs+. The following results refer to this channel as studied in the cell-attached configuration. 4. The glial K+ channel was activated by bath application of the membrane-permeant cyclic AMP derivatives 8-bromo-cAMP and dibutyryl-cAMP, the adenylyl cyclase activator forskolin and the diesterase inhibitors IBMX, theophylline and caffeine. It was insensitive to cyclic GMP activators and to conditions that might alter the intracellular [Ca2+] (ionomycin, low-Ca2+ saline and Ca2+ channel blockers). 5. The forskolin-induced changes in channel behaviour (open and closed time distributions, burst duration, short and long gaps within bursts) could be accounted for by a four-state model (3 closed states, 1 open state) by simply changing one of the six rate parameters. 6. The present results suggest that the signal sent by an active neurone to satellite glial cells is confined to the glial cells round that neurone. The effect of this signal on the class of glial K+ channels studied can be mimicked by an increase in glial cAMP concentration. The subsequent delayed opening

  12. In vivo quantification of neuro-glial metabolism and glial glutamate concentration using 1H-[13C] MRS at 14.1T.

    PubMed

    Lanz, Bernard; Xin, Lijing; Millet, Philippe; Gruetter, Rolf

    2014-01-01

    Astrocytes have recently become a major center of interest in neurochemistry with the discoveries on their major role in brain energy metabolism. An interesting way to probe this glial contribution is given by in vivo (13) C NMR spectroscopy coupled with the infusion labeled glial-specific substrate, such as acetate. In this study, we infused alpha-chloralose anesthetized rats with [2-(13) C]acetate and followed the dynamics of the fractional enrichment (FE) in the positions C4 and C3 of glutamate and glutamine with high sensitivity, using (1) H-[(13) C] magnetic resonance spectroscopy (MRS) at 14.1T. Applying a two-compartment mathematical model to the measured time courses yielded a glial tricarboxylic acid (TCA) cycle rate (Vg ) of 0.27 ± 0.02 μmol/g/min and a glutamatergic neurotransmission rate (VNT ) of 0.15 ± 0.01 μmol/g/min. Glial oxidative ATP metabolism thus accounts for 38% of total oxidative metabolism measured by NMR. Pyruvate carboxylase (VPC ) was 0.09 ± 0.01 μmol/g/min, corresponding to 37% of the glial glutamine synthesis rate. The glial and neuronal transmitochondrial fluxes (Vx (g) and Vx (n) ) were of the same order of magnitude as the respective TCA cycle fluxes. In addition, we estimated a glial glutamate pool size of 0.6 ± 0.1 μmol/g. The effect of spectral data quality on the fluxes estimates was analyzed by Monte Carlo simulations. In this (13) C-acetate labeling study, we propose a refined two-compartment analysis of brain energy metabolism based on (13) C turnover curves of acetate, glutamate and glutamine measured with state of the art in vivo dynamic MRS at high magnetic field in rats, enabling a deeper understanding of the specific role of glial cells in brain oxidative metabolism. In addition, the robustness of the metabolic fluxes determination relative to MRS data quality was carefully studied. PMID:24117599

  13. Comparison of the radiosensitivities of neurons and glial cells derived from the same rat brain

    PubMed Central

    KUDO, SHIGEHIRO; SUZUKI, YOSHIYUKI; NODA, SHIN-EI; MIZUI, TOSHIYUKI; SHIRAI, KATSUYUKI; OKAMOTO, MASAHIKO; KAMINUMA, TAKUYA; YOSHIDA, YUKARI; SHIRAO, TOMOAKI; NAKANO, TAKASHI

    2014-01-01

    Non-proliferating cells, such as mature neurons, are generally believed to be more resistant to X-rays than proliferating cells, such as glial and vascular endothelial cells. Therefore, the late adverse effects of radiotherapy on the brain have been attributed to the radiation-induced damage of glial and vascular endothelial cells. However, little is known about the radiosensitivities of neurons and glial cells due to difficulties in culturing these cells, particularly neurons, independently. In the present study, primary dissociated neurons and glial cultures were prepared separately from the hippocampi and cerebrum, respectively, which had been obtained from the same fetal rat on embryonic day 18. X-irradiations of 50 Gy were performed on the cultured neurons and glial cells at 7 and 21 days in vitro (DIV). The cells were fixed at 24 h after irradiation. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling was then performed to measure the apoptotic indices (AIs). The AIs of non-irradiated and irradiated neurons at 7 DIV were 23.7±6.7 and 64.9±4.8%, and those at 21 DIV were 52.1±17.4 and 44.6±12.5%, respectively. The AIs of non-irradiated and irradiated glial cells at 7 DIV were 5.8±1.5 and 78.4±3.3% and those at 21 DIV were 9.6±2.6 and 86.3±4.9%, respectively. Glial cells and neurons were radiosensitive at 7 DIV. However, while glial cells were radiosensitive at 21 DIV, neurons were not. PMID:25120594

  14. Modelling and Characterization of Glial Fibrillary Acidic Protein

    PubMed Central

    Deka, Hemchandra; Sarmah, Rajeev; Sharma, Ankita; Biswas, Sagarika

    2015-01-01

    Glial Fibrillary Acidic Protein (GFAP) is an intermediate-filament (IF) protein that maintains the astrocytes of the Central Nervous System in Human. This is differentially expressed during serological studies in inflamed condition such as Rheumatoid Arthritis (RA). Therefore, it is of interest to glean molecular insight using a model of GFAP (49.88 kDa) due to its crystallographic nonavailability. The present study has been taken into consideration to construct computational protein model using Modeller 9.11. The structural relevance of the protein was verified using Gromacs 4.5 followed by validation through PROCHECK, Verify 3D, WHAT-IF, ERRAT and PROVE for reliability. The constructed three dimensional (3D) model of GFAP protein had been scrutinized to reveal the associated functions by identifying ligand binding sites and active sites. Molecular level interaction study revealed five possible surface cavities as active sites. The model finds application in further computational analysis towards drug discovery in order to minimize the effect of inflammation. PMID:26420920

  15. Implications of glial nitric oxide in neurodegenerative diseases

    PubMed Central

    Yuste, Jose Enrique; Tarragon, Ernesto; Campuzano, Carmen María; Ros-Bernal, Francisco

    2015-01-01

    Nitric oxide (NO) is a pleiotropic janus-faced molecule synthesized by nitric oxide synthases (NOS) which plays a critical role in a number of physiological and pathological processes in humans. The physiological roles of NO depend on its local concentrations, as well as its availability and the nature of downstream target molecules. Its double-edged sword action has been linked to neurodegenerative disorders. Excessive NO production, as the evoked by inflammatory signals, has been identified as one of the major causative reasons for the pathogenesis of several neurodegenerative diseases. Moreover, excessive NO synthesis under neuroinflammation leads to the formation of reactive nitrogen species and neuronal cell death. There is an intimate relation between microglial activation, NO and neuroinflammation in the human brain. The role of NO in neuroinflammation has been defined in animal models where this neurotransmitter can modulate the inflammatory process acting on key regulatory pathways, such as those associated with excitotoxicity processes induced by glutamate accumulation and microglial activation. Activated glia express inducible NOS and produce NO that triggers calcium mobilization from the endoplasmic reticulum, activating the release of vesicular glutamate from astroglial cells resulting in neuronal death. This change in microglia potentially contributes to the increased age-associated susceptibility and neurodegeneration. In the current review, information is provided about the role of NO, glial activation and age-related processes in the central nervous system (CNS) that may be helpful in the isolation of new therapeutic targets for aging and neurodegenerative diseases. PMID:26347610

  16. Implications of glial nitric oxide in neurodegenerative diseases.

    PubMed

    Yuste, Jose Enrique; Tarragon, Ernesto; Campuzano, Carmen María; Ros-Bernal, Francisco

    2015-01-01

    Nitric oxide (NO) is a pleiotropic janus-faced molecule synthesized by nitric oxide synthases (NOS) which plays a critical role in a number of physiological and pathological processes in humans. The physiological roles of NO depend on its local concentrations, as well as its availability and the nature of downstream target molecules. Its double-edged sword action has been linked to neurodegenerative disorders. Excessive NO production, as the evoked by inflammatory signals, has been identified as one of the major causative reasons for the pathogenesis of several neurodegenerative diseases. Moreover, excessive NO synthesis under neuroinflammation leads to the formation of reactive nitrogen species and neuronal cell death. There is an intimate relation between microglial activation, NO and neuroinflammation in the human brain. The role of NO in neuroinflammation has been defined in animal models where this neurotransmitter can modulate the inflammatory process acting on key regulatory pathways, such as those associated with excitotoxicity processes induced by glutamate accumulation and microglial activation. Activated glia express inducible NOS and produce NO that triggers calcium mobilization from the endoplasmic reticulum, activating the release of vesicular glutamate from astroglial cells resulting in neuronal death. This change in microglia potentially contributes to the increased age-associated susceptibility and neurodegeneration. In the current review, information is provided about the role of NO, glial activation and age-related processes in the central nervous system (CNS) that may be helpful in the isolation of new therapeutic targets for aging and neurodegenerative diseases. PMID:26347610

  17. A Digital Realization of Astrocyte and Neural Glial Interactions.

    PubMed

    Hayati, Mohsen; Nouri, Moslem; Haghiri, Saeed; Abbott, Derek

    2016-04-01

    The implementation of biological neural networks is a key objective of the neuromorphic research field. Astrocytes are the largest cell population in the brain. With the discovery of calcium wave propagation through astrocyte networks, now it is more evident that neuronal networks alone may not explain functionality of the strongest natural computer, the brain. Models of cortical function must now account for astrocyte activities as well as their relationships with neurons in encoding and manipulation of sensory information. From an engineering viewpoint, astrocytes provide feedback to both presynaptic and postsynaptic neurons to regulate their signaling behaviors. This paper presents a modified neural glial interaction model that allows a convenient digital implementation. This model can reproduce relevant biological astrocyte behaviors, which provide appropriate feedback control in regulating neuronal activities in the central nervous system (CNS). Accordingly, we investigate the feasibility of a digital implementation for a single astrocyte constructed by connecting a two coupled FitzHugh Nagumo (FHN) neuron model to an implementation of the proposed astrocyte model using neuron-astrocyte interactions. Hardware synthesis, physical implementation on FPGA, and theoretical analysis confirm that the proposed neuron astrocyte model, with significantly low hardware cost, can mimic biological behavior such as the regulation of postsynaptic neuron activity and the synaptic transmission mechanisms. PMID:26390499

  18. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications.

    PubMed

    Grzesiak, Jakub; Marycz, Krzysztof; Szarek, Dariusz; Bednarz, Paulina; Laska, Jadwiga

    2015-01-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane-polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane-polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. PMID:25953554

  19. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications.

    PubMed

    Grzesiak, Jakub; Marycz, Krzysztof; Szarek, Dariusz; Bednarz, Paulina; Laska, Jadwiga

    2015-01-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane-polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane-polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells.

  20. Recent progress in tissue optical clearing

    PubMed Central

    Zhu, Dan; Larin, Kirill V; Luo, Qingming; Tuchin, Valery V

    2013-01-01

    Tissue optical clearing technique provides a prospective solution for the application of advanced optical methods in life sciences. This paper gives a review of recent developments in tissue optical clearing techniques. The physical, molecular and physiological mechanisms of tissue optical clearing are overviewed and discussed. Various methods for enhancing penetration of optical-clearing agents into tissue, such as physical methods, chemical-penetration enhancers and combination of physical and chemical methods are introduced. Combining the tissue optical clearing technique with advanced microscopy image or labeling technique, applications for 3D microstructure of whole tissues such as brain and central nervous system with unprecedented resolution are demonstrated. Moreover, the difference in diffusion and/or clearing ability of selected agents in healthy versus pathological tissues can provide a highly sensitive indicator of the tissue health/pathology condition. Finally, recent advances in optical clearing of soft or hard tissue for in vivo imaging and phototherapy are introduced. PMID:24348874

  1. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain.

    PubMed

    Saito, Mariko; Chakraborty, Goutam; Hui, Maria; Masiello, Kurt; Saito, Mitsuo

    2016-01-01

    Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD). While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy). Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7) mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain. PMID:27537918

  2. Photodynamic injury of isolated crayfish neuron and surrounding glial cells: the role of p53

    NASA Astrophysics Data System (ADS)

    Sharifulina, S. A.; Uzdensky, A. B.

    2015-03-01

    The pro-apoptotic transcription factor p53 is involved in cell responses to injurious impacts. Using its inhibitor pifithrin- α and activators tenovin-1, RITA and WR-1065, we studied its potential participation in inactivation and death of isolated crayfish mechanoreceptor neuron and satellite glial cells induced by photodynamic treatment, a strong inducer of oxidative stress. In dark, p53 activation by tenovin-1 or WR-1065 shortened activity of isolated neurons. Tenovin-1 and WR-1065 induced apoptosis of glial cells, whereas pifithrin-α was anti-apoptotic. Therefore, p53 mediated glial apoptosis and suppression of neuronal activity after axotomy. Tenovin-1 but not other p53 modulators induced necrosis of axotomized neurons and surrounding glia, possibly, through p53-independent pathway. Under photodynamic treatment, p53 activators tenovin-1 and RITA enhanced glial apoptosis indicating the pro-apoptotic activity of p53. Photoinduced necrosis of neurons and glia was suppressed by tenovin-1 and, paradoxically, by pifithrin-α. Modulation of photoinduced changes in the neuronal activity and necrosis of neurons and glia was possibly p53-independent. The different effects of p53 modulators on neuronal and glial responses to axotomy and photodynamic impact were apparently associated with different signaling pathways in neurons and glial cells.

  3. Soluble guanylyl cyclase is involved in PDT-induced injury of crayfish glial cells

    NASA Astrophysics Data System (ADS)

    Kovaleva, V. D.; Uzdensky, A. B.

    2016-04-01

    Photodynamic therapy (PDT) is a potential tool for selective destruction of malignant brain tumors. However, not only malignant but also healthy neurons and glial cells may be damaged during PDT. Nitric oxide is an important modulator of cell viability and intercellular neuroglial communications. NO have been already shown to participate in PDT-induced injury of neurons and glial cells. As soluble guanylyl cyclase is the only known receptor for NO, we have studied the possible role of soluble guanylyl cyclase in the regulation of survival and death of neurons and surrounding glial cells under photo-oxidative stress induced by photodynamic treatment (PDT). The crayfish stretch receptor consisting of a single identified sensory neuron enveloped by glial cells is a simple but informative model object. It was photosensitized with alumophthalocyanine photosens (10 nM) and irradiated with a laser diode (670 nm, 0.4 W/cm2). Using inhibitory analysis we have shown that during PDT soluble guanylyl cyclase, probably, has proapoptotic and antinecrotic effect on the glial cells of the isolated crayfish stretch receptor. Proapoptotic effect of soluble guanylyl cyclase could be mediated by protein kinase G (PKG). Thus, the involvement of NO/sGC/cGMP/PKG signaling pathway in PDT-induced apoptosis of glial cells was indirectly demonstrated.

  4. Long-term glial reactivity in rat retinas ipsilateral and contralateral to experimental glaucoma.

    PubMed

    Kanamori, Akiyasu; Nakamura, Makoto; Nakanishi, Yoriko; Yamada, Yuko; Negi, Akira

    2005-07-01

    Although glaucoma is known to alter glial reactivity, the long-term effect of elevated intraocular pressure (IOP) on glial change has not been fully elucidated. This study aimed to examine how chronically elevated IOP induced by episcleral vein cauterization (EVC) in unilateral eyes affect reactivities of astrocytes and Müller cells of rats in the treated as well as contralateral eyes over time. EVC in unilateral eyes of Sprague-Dawley rats were performed to produce chronically elevated IOP. Flat mounted retina preparations were made at several points until 6 months, which were subjected to immunostaining for glial fibrillary acidic protein (GFAP). Retinal homogenates were one- or two-dimensionally electrophoresed, followed by GFAP immunoblotting. EVC significantly increased IOPs up to 27.8 from 13.1 mmHg, which gradually decreased over time. In flat mounted retinas, astrocytes lost but Müller cells gained GFAP immunoreactivity at 3 days after cauterization. The glial changes were partially reversed over time but last even after IOP normalization. In the contralateral eyes, similar glial changes gradually appeared at 1 month after EVC and thereafter. Immunoblotting demonstrated not only molecular size shifts but also alteration of isoelectric focusing of GFAP both in treated and contralateral retina as compared with age-matched control retina. EVC led to opposite reactions in astrocytes and Müller cells in terms of GFAP immunoreactivity. Late-onset glial reactivity also occurred in the contralateral retina.

  5. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain

    PubMed Central

    Saito, Mariko; Chakraborty, Goutam; Hui, Maria; Masiello, Kurt; Saito, Mitsuo

    2016-01-01

    Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD). While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy). Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7) mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain. PMID:27537918

  6. Glial cell regulation of neuronal activity and blood flow in the retina by release of gliotransmitters

    PubMed Central

    Newman, Eric A.

    2015-01-01

    Astrocytes in the brain release transmitters that actively modulate neuronal excitability and synaptic efficacy. Astrocytes also release vasoactive agents that contribute to neurovascular coupling. As reviewed in this article, Müller cells, the principal retinal glial cells, modulate neuronal activity and blood flow in the retina. Stimulated Müller cells release ATP which, following its conversion to adenosine by ectoenzymes, hyperpolarizes retinal ganglion cells by activation of A1 adenosine receptors. This results in the opening of G protein-coupled inwardly rectifying potassium (GIRK) channels and small conductance Ca2+-activated K+ (SK) channels. Tonic release of ATP also contributes to the generation of tone in the retinal vasculature by activation of P2X receptors on vascular smooth muscle cells. Vascular tone is lost when glial cells are poisoned with the gliotoxin fluorocitrate. The glial release of vasoactive metabolites of arachidonic acid, including prostaglandin E2 (PGE2) and epoxyeicosatrienoic acids (EETs), contributes to neurovascular coupling in the retina. Neurovascular coupling is reduced when neuronal stimulation of glial cells is interrupted and when the synthesis of arachidonic acid metabolites is blocked. Neurovascular coupling is compromised in diabetic retinopathy owing to the loss of glial-mediated vasodilation. This loss can be reversed by inhibiting inducible nitric oxide synthase. It is likely that future research will reveal additional important functions of the release of transmitters from glial cells. PMID:26009774

  7. Loss of Glial Neurofascin155 Delays Developmental Synapse Elimination at the Neuromuscular Junction

    PubMed Central

    Roche, Sarah L.; Sherman, Diane L.; Dissanayake, Kosala; Soucy, Geneviève; Desmazieres, Anne; Lamont, Douglas J.; Peles, Elior; Julien, Jean-Pierre; Wishart, Thomas M.; Ribchester, Richard R.; Brophy, Peter J.

    2014-01-01

    Postnatal synapse elimination plays a critical role in sculpting and refining neural connectivity throughout the central and peripheral nervous systems, including the removal of supernumerary axonal inputs from neuromuscular junctions (NMJs). Here, we reveal a novel and important role for myelinating glia in regulating synapse elimination at the mouse NMJ, where loss of a single glial cell protein, the glial isoform of neurofascin (Nfasc155), was sufficient to disrupt postnatal remodeling of synaptic circuitry. Neuromuscular synapses were formed normally in mice lacking Nfasc155, including the establishment of robust neuromuscular synaptic transmission. However, loss of Nfasc155 was sufficient to cause a robust delay in postnatal synapse elimination at the NMJ across all muscle groups examined. Nfasc155 regulated neuronal remodeling independently of its canonical role in forming paranodal axo–glial junctions, as synapse elimination occurred normally in mice lacking the axonal paranodal protein Caspr. Rather, high-resolution proteomic screens revealed that loss of Nfasc155 from glial cells was sufficient to disrupt neuronal cytoskeletal organization and trafficking pathways, resulting in reduced levels of neurofilament light (NF-L) protein in distal axons and motor nerve terminals. Mice lacking NF-L recapitulated the delayed synapse elimination phenotype observed in mice lacking Nfasc155, suggesting that glial cells regulate synapse elimination, at least in part, through modulation of the axonal cytoskeleton. Together, our study reveals a glial cell-dependent pathway regulating the sculpting of neuronal connectivity and synaptic circuitry in the peripheral nervous system. PMID:25232125

  8. Loss of glial neurofascin155 delays developmental synapse elimination at the neuromuscular junction.

    PubMed

    Roche, Sarah L; Sherman, Diane L; Dissanayake, Kosala; Soucy, Geneviève; Desmazieres, Anne; Lamont, Douglas J; Peles, Elior; Julien, Jean-Pierre; Wishart, Thomas M; Ribchester, Richard R; Brophy, Peter J; Gillingwater, Thomas H

    2014-09-17

    Postnatal synapse elimination plays a critical role in sculpting and refining neural connectivity throughout the central and peripheral nervous systems, including the removal of supernumerary axonal inputs from neuromuscular junctions (NMJs). Here, we reveal a novel and important role for myelinating glia in regulating synapse elimination at the mouse NMJ, where loss of a single glial cell protein, the glial isoform of neurofascin (Nfasc155), was sufficient to disrupt postnatal remodeling of synaptic circuitry. Neuromuscular synapses were formed normally in mice lacking Nfasc155, including the establishment of robust neuromuscular synaptic transmission. However, loss of Nfasc155 was sufficient to cause a robust delay in postnatal synapse elimination at the NMJ across all muscle groups examined. Nfasc155 regulated neuronal remodeling independently of its canonical role in forming paranodal axo-glial junctions, as synapse elimination occurred normally in mice lacking the axonal paranodal protein Caspr. Rather, high-resolution proteomic screens revealed that loss of Nfasc155 from glial cells was sufficient to disrupt neuronal cytoskeletal organization and trafficking pathways, resulting in reduced levels of neurofilament light (NF-L) protein in distal axons and motor nerve terminals. Mice lacking NF-L recapitulated the delayed synapse elimination phenotype observed in mice lacking Nfasc155, suggesting that glial cells regulate synapse elimination, at least in part, through modulation of the axonal cytoskeleton. Together, our study reveals a glial cell-dependent pathway regulating the sculpting of neuronal connectivity and synaptic circuitry in the peripheral nervous system. PMID:25232125

  9. Spatial mapping of juxtacrine axo-glial interactions identifies novel molecules in peripheral myelination

    PubMed Central

    Poitelon, Y.; Bogni, S.; Matafora, V.; Della-Flora Nunes, G.; Hurley, E.; Ghidinelli, M.; Katzenellenbogen, B. S.; Taveggia, C.; Silvestri, N.; Bachi, A.; Sannino, A.; Wrabetz, L.; Feltri, M. L.

    2015-01-01

    Cell–cell interactions promote juxtacrine signals in specific subcellular domains, which are difficult to capture in the complexity of the nervous system. For example, contact between axons and Schwann cells triggers signals required for radial sorting and myelination. Failure in this interaction causes dysmyelination and axonal degeneration. Despite its importance, few molecules at the axo-glial surface are known. To identify novel molecules in axo-glial interactions, we modified the ‘pseudopodia' sub-fractionation system and isolated the projections that glia extend when they receive juxtacrine signals from axons. By proteomics we identified the signalling networks present at the glial-leading edge, and novel proteins, including members of the Prohibitin family. Glial-specific deletion of Prohibitin-2 in mice impairs axo-glial interactions and myelination. We thus validate a novel method to model morphogenesis and juxtacrine signalling, provide insights into the molecular organization of the axo-glial contact, and identify a novel class of molecules in myelination. PMID:26383514

  10. The involvement of NF-κB in PDT-induced death of crayfish glial and nerve cells

    NASA Astrophysics Data System (ADS)

    Berezhnaya, E. V.; Neginskaya, M. A.; Kovaleva, V. D.; Rudkovskii, M. V.; Uzdensky, A. B.

    2015-03-01

    Photodynamic therapy (PDT) is used for selective destruction of cells, in particular, for treatment of brain tumors. However, photodynamic treatment damages not only tumor cells, but also healthy neurons and glial cells. To study the possible role of NF-κB in photodynamic injury of neurons and glial cells, we investigated the combined effect of photodynamic treatment and NF-κB modulators: activator betulinic acid, or inhibitors parthenolide and CAPE on an isolated crayfish stretch receptor consisting of a single neuron surrounded by glial cells. A laser diode (670 nm, 0.4 W/cm2) was used as a light source. The inhibition of NF-κB during PDT increased the duration of neuron firing and glial necrosis and decreased neuron necrosis and glial apoptosis. The activation of NF-κB during PDT increased neuron necrosis and glial apoptosis and decreased glial necrosis. The difference between the effects of NF-κB modulators on photosensitized neurons and glial cells indicates the difference in NF-κB-mediated signaling pathways in these cell types. Thus, NF-κB is involved in PDT-induced shortening of neuron firing, neuronal and glial necrosis, and apoptosis of glial cells.

  11. Brillouin precursors in Debye media

    NASA Astrophysics Data System (ADS)

    Macke, Bruno; Ségard, Bernard

    2015-05-01

    We theoretically study the formation of Brillouin precursors in Debye media. We point out that the precursors are visible only at propagation distances such that the impulse response of the medium is essentially determined by the frequency dependence of its absorption and is practically Gaussian. By simple convolution, we then obtain explicit analytical expressions of the transmitted waves generated by reference incident waves, distinguishing precursor and main signal by a simple examination of the long-time behavior of the overall signal. These expressions are in good agreement with the signals obtained in numerical or real experiments performed on water in the radio-frequency domain and explain in particular some observed shapes of the precursor. Results are obtained for other remarkable incident waves. In addition, we show quite generally that the shape of the Brillouin precursor appearing alone at sufficiently large propagation distance and the law giving its amplitude as a function of this distance do not depend on the precise form of the incident wave but only on its integral properties. The incidence of a static conductivity of the medium is also examined and explicit analytical results are again given in the limit of weak and strong conductivities.

  12. Production and perception of clear speech

    NASA Astrophysics Data System (ADS)

    Bradlow, Ann R.

    2003-04-01

    When a talker believes that the listener is likely to have speech perception difficulties due to a hearing loss, background noise, or a different native language, she or he will typically adopt a clear speaking style. Previous research has established that, with a simple set of instructions to the talker, ``clear speech'' can be produced by most talkers under laboratory recording conditions. Furthermore, there is reliable evidence that adult listeners with either impaired or normal hearing typically find clear speech more intelligible than conversational speech. Since clear speech production involves listener-oriented articulatory adjustments, a careful examination of the acoustic-phonetic and perceptual consequences of the conversational-to-clear speech transformation can serve as an effective window into talker- and listener-related forces in speech communication. Furthermore, clear speech research has considerable potential for the development of speech enhancement techniques. After reviewing previous and current work on the acoustic properties of clear versus conversational speech, this talk will present recent data from a cross-linguistic study of vowel production in clear speech and a cross-population study of clear speech perception. Findings from these studies contribute to an evolving view of clear speech production and perception as reflecting both universal, auditory and language-specific, phonological contrast enhancement features.

  13. Characterization of oligodendrocyte lineage precursor cells in the mouse cerebral cortex: a confocal microscopy approach to demyelinating diseases.

    PubMed

    Girolamo, Francesco; Strippoli, Maurizio; Errede, Mariella; Benagiano, Vincenzo; Roncali, Luisa; Ambrosi, Glauco; Virgintino, Daniela

    2010-01-01

    The identification of stem cells resident in the adult central nervous system has redirected the focus of research into demyelinating diseases, such as multiple sclerosis, mainly affecting the brain white matter. This immunocytochemical and morphometrical study was carried out by confocal microscopy in the adult mouse cerebral cortex, with the aim of analysing, in the brain grey matter, the characteristics of the oligodendrocyte lineage cells, whose capability to remyelinate is still controversial. The observations demonstrated the presence in all the cortex layers of glial restricted progenitors, reactive to A2B5 marker, oligodendrocyte precursor cells, expressing the NG2 proteoglycan, and pre-oligodendrocytes and pre-myelinating oligodendrocytes, reactive to the specific marker O4. NG2 expressing cells constitute the major immature population of the cortex, since not only oligodendrocyte precursor cells and pre-oligodendrocytes but also a part of the glial restrict progenitors express the NG2 proteoglycan. Together with the population of these immature cells, a larger population of mature oligodendrocytes was revealed by the classical oligodendrocyte and myelin markers, 2',3'-cyclic nucleotide 3'-phosphodiesterase, myelin basic protein and myelin oligodendrocyte glycoprotein. The results indicate that oligodendrocyte precursors committed to differentiate into myelin forming oligodendrocytes are present through all layers of the adult cortex and that their phenotypic features exactly recall those of the oligodendroglial lineage cells during development.

  14. Neuronal precursor-specific activity of a human doublecortin regulatory sequence.

    PubMed

    Karl, Claudia; Couillard-Despres, Sebastien; Prang, Peter; Munding, Matthias; Kilb, Werner; Brigadski, Tanja; Plötz, Sonja; Mages, Wolfgang; Luhmann, Heiko; Winkler, Jürgen; Bogdahn, Ulrich; Aigner, Ludwig

    2005-01-01

    The doublecortin (DCX) gene encodes a 40-kDa microtubule-associated protein specifically expressed in neuronal precursors of the developing and adult CNS. Due to its specific expression pattern, attention was drawn to DCX as a marker for neuronal precursors and neurogenesis, thereby underscoring the importance of its promoter identification and promoter analysis. Here, we analysed the human DCX regulatory sequence and confined it to a 3.5-kb fragment upstream of the ATG start codon. We demonstrate by transient transfection experiments that this fragment is sufficient and specific to drive expression of reporter genes in embryonic and adult neuronal precursors. The activity of this regulatory fragment overlapped with the expression of endogenous DCX and with the young neuronal markers class III beta-tubulin isotype and microtubule-associated protein Map2ab but not with glial or oligodendroglial markers. Electrophysiological data further confirmed the immature neuronal nature of these cells. Deletions within the 3.5-kb region demonstrated the relevance of specific regions containing transcription factor-binding sites. Moreover, application of neurogenesis-related growth factors in the neuronal precursor cultures suggested the lack of direct signalling of these factors on the DCX promoter construct. PMID:15663475

  15. Non-Viral Generation of Neural Precursor-like Cells from Adult Human Fibroblasts

    PubMed Central

    Maucksch, C; Firmin, E; Butler-Munro, C; Montgomery, JM; Dottori, M; Connor, B

    2012-01-01

    Recent studies have reported direct reprogramming of human fibroblasts to mature neurons by the introduction of defined neural genes. This technology has potential use in the areas of neurological disease modeling and drug development. However, use of induced neurons for large-scale drug screening and cell-based replacement strategies is limited due to their inability to expand once reprogrammed. We propose it would be more desirable to induce expandable neural precursor cells directly from human fibroblasts. To date several pluripotent and neural transcription factors have been shown to be capable of converting mouse fibroblasts to neural stem/precursor-like cells when delivered by viral vectors. Here we extend these findings and demonstrate that transient ectopic insertion of the transcription factors SOX2 and PAX6 to adult human fibroblasts through use of non-viral plasmid transfection or protein transduction allows the generation of induced neural precursor (iNP) colonies expressing a range of neural stem and pro-neural genes. Upon differentiation, iNP cells give rise to neurons exhibiting typical neuronal morphologies and expressing multiple neuronal markers including tyrosine hydroxylase and GAD65/67. Importantly, iNP-derived neurons demonstrate electrophysiological properties of functionally mature neurons with the capacity to generate action potentials. In addition, iNP cells are capable of differentiating into glial fibrillary acidic protein (GFAP)-expressing astrocytes. This study represents a novel virusfree approach for direct reprogramming of human fibroblasts to a neural precursor fate. PMID:24693194

  16. Blockade of microglial KATP -channel abrogates suppression of inflammatory-mediated inhibition of neural precursor cells.

    PubMed

    Ortega, Francisco J; Vukovic, Jana; Rodríguez, Manuel J; Bartlett, Perry F

    2014-02-01

    Microglia positively affect neural progenitor cell physiology through the release of inflammatory mediators or trophic factors. We demonstrated previously that reactive microglia foster K(ATP) -channel expression and that blocking this channel using glibenclamide administration enhances striatal neurogenesis after stroke. In this study, we investigated whether the microglial K(ATP) -channel directly influences the activation of neural precursor cells (NPCs) from the subventricular zone using transgenic Csf1r-GFP mice. In vitro exposure of NPCs to lipopolysaccharide and interferon-gamma resulted in a significant decrease in precursor cell number. The complete removal of microglia from the culture or exposure to enriched microglia culture also decreased the precursor cell number. The addition of glibenclamide rescued the negative effects of enriched microglia on neurosphere formation and promoted a ∼20% improvement in precursor cell number. Similar results were found using microglial-conditioned media from isolated microglia. Using primary mixed glial and pure microglial cultures, glibenclamide specifically targeted reactive microglia to restore neurogenesis and increased the microglial production of the chemokine monocyte chemoattractant protein-1 (MCP-1). These findings provide the first direct evidence that the microglial K(ATP) -channel is a regulator of the proliferation of NPCs under inflammatory conditions.

  17. Clear cell carcinoma of the lung.

    PubMed Central

    Edwards, C; Carlile, A

    1985-01-01

    Six tumours of the lung initially classified as clear cell carcinoma, were studied. Examination of further material by light and electron microscopy showed adenocarcinomatous differentiation in three cases and squamous differentiation in two. One case showed the features of a large cell anaplastic carcinoma. The clear appearance of the cytoplasm in paraffin sections was due to accumulations of glycogen that were partially removed during processing. It is concluded that clear cell carcinoma is not a single and separate entity. Images PMID:4031101

  18. Major Land Clearing Fires, Kalimantan, Borneo, Indonesia

    NASA Technical Reports Server (NTRS)

    1991-01-01

    These many and intense land clearing fires in the Kalimantan region of the island of Borneo, Indonesia (3.5S, 113.5E) are indicative of the many deforestation activities on a worldwide scale. In order to feed and house ever increasing populations, more cleared land is required for agriculture to feed ever increasing populations. More pasture lands are needed for livestock. And, more cleared lands are needed for housing.

  19. Differential transformation capacity of neuro-glial progenitors during development

    PubMed Central

    Muñoz, Diana Marcela; Singh, Sanjay; Tung, Takyee; Agnihotri, Sameer; Nagy, Andras; Guha, Abhijit; Zadeh, Gelareh; Hawkins, Cynthia

    2013-01-01

    Gliomas represent the most common type of brain tumor, but show considerable variability in histologic appearance and clinical outcome. The phenotypic differences between types and grades of gliomas have not been explained solely on the grounds of differing oncogenic stimuli. Several studies have demonstrated that some phenotypic differences may be attributed to regional differences in the neural stem cells from which tumors arise. We hypothesized that temporal differences may also play a role, with tumor phenotypic variability reflecting intrinsic differences in neural stem cells at distinct developmental stages. To determine how the tumorigenic potential of lineally related stem cells changes over time, we used a conditional transgenic system that integrates Cre-Lox–mediated and Tet-regulated expression to drive K-rasG12D expression in neuro-glial progenitor populations at different developmental time points. Using this model, we demonstrate that K-rasG12D–induced transformation is dependent on the developmental stage at which it is introduced. Diffuse malignant brain tumors develop during early embryogenesis but not when K-rasG12D expression is induced during late embryogenesis or early postnatal life. We show that differential expression of cell-cycle regulators during development may be responsible for this differing susceptibility to malignant transformation and that loss of p53 can overcome the transformation resistance seen at later developmental stages. These results highlight the interplay between genetic alterations and the molecular changes that accompany specific developmental stages; early progenitors may lack the regulatory mechanisms present at later, more lineage-restrictive, developmental time points, making them more susceptible to transformation. PMID:23942126

  20. Mathematical modeling of chemotaxis and glial scarring around implanted electrodes

    NASA Astrophysics Data System (ADS)

    Silchenko, Alexander N.; Tass, Peter A.

    2015-02-01

    It is well known that the implantation of electrodes for deep brain stimulation or microelectrode probes for the recording of neuronal activity is always accompanied by the response of the brain’s immune system leading to the formation of a glial scar around the implantation sites. The implantation of electrodes causes massive release of adenosine-5‧-triphosphate (ATP) and different cytokines into the extracellular space and activates the microglia. The released ATP and the products of its hydrolysis, such as ADP and adenosine, become the main elements mediating chemotactic sensitivity and motility of microglial cells via subsequent activation of P2Y2,12 as well as A3A/A2A adenosine receptors. The size and density of an insulating sheath around the electrode, formed by microglial cells, are important criteria for the optimization of the signal-to-noise ratio during microelectrode recordings or parameters of electrical current delivered to the brain tissue. Here, we study a purinergic signaling pathway underlying the chemotactic motion of microglia towards implanted electrodes as well as the possible impact of an anti-inflammatory coating consisting of the interleukin-1 receptor antagonist. We present a model describing the formation of a stable aggregate around the electrode due to the joint chemo-attractive action of ATP and ADP and the mixed influence of extracellular adenosine. The bioactive coating is modeled as a source of chemo-repellent located near the electrode surface. The obtained analytical and numerical results allowed us to reveal the dependences of size and spatial location of the insulating sheath on the amount of released ATP and estimate the impact of immune suppressive coating on the scarring process.

  1. [The effect of glial cells in the function and development of the nervous system in Caenorhabditis elegans].

    PubMed

    Yulan, X U; Yadan, Xue; Lijun, Kang

    2016-05-25

    There are three types of glial cells in Caenorhabditis elegans (C. elegans for short): sheath glia, socket glia and glutamate receptor glia. They are mainly located in four sensory organs including the amphid, the cephalic organ, the outer labial sensilla and the inner labial sensilla. C. elegans glial cells play key roles in dendrite extension, neurite guidance and extension, and are essential for synaptogenesis and maintain the normal morphology and the function of sensory nerve endings as well. A recent study shown that some nematode neurons are derived from the glial cells. Moreover, nematodes glial cells can directly modulate the function of sensory neurons. Some glial cells can also respond to certain external stimuli, such as mechanical stimulation, and adjust the accompanying neuronal activities.The article summarizes the progress on effects of nematodes glial cells on the nervous system development and function. PMID:27651199

  2. Glial fibrillary acidic protein as a biomarker for brain injury in neonatal CHD.

    PubMed

    McKenney, Stephanie L; Mansouri, Fahad F; Everett, Allen D; Graham, Ernest M; Burd, Irina; Sekar, Priya

    2016-10-01

    Neonates with critical CHD have evidence, by imaging, of preoperative brain injury, although the timing is unknown. We used circulating postnatal serum glial fibrillary acidic protein as a measure of acute perinatal brain injury in neonates with CHD. Glial fibrillary acidic protein was measured on admission and daily for the first 4 days of life in case and control groups; we included two control groups in this study - non-brain-injured newborns and brain-injured newborns. Comparisons were performed using the Kruskal-Wallis test with Dunn's multiple comparisons, Student's t-test, and χ2 test of independence where appropriate. In aggregate, there were no significant differences in overall glial fibrillary acidic protein levels between CHD patients (n=56) and negative controls (n=23) at any time point. By day 4 of life, 7/56 (12.5%) CHD versus 0/23 (0%) normal controls had detectable glial fibrillary acidic protein levels. Although not statistically significant, the 5/10 (50%) left heart obstruction group versus 1/17 (6%) conoventricular, 0/13 (0%) right heart, and 1/6 (17%) septal defect patients trended towards elevated levels of glial fibrillary acidic protein at day 4 of life. Overall, glial fibrillary acidic protein reflected no evidence for significant peripartum brain injury in neonates with CHD, but there was a trend for elevation by postnatal day 4 in neonates with left heart obstruction. This pilot study suggests that methods such as monitoring glial fibrillary acidic protein levels may provide new tools to optimise preoperative care and neuroprotection in high-risk neonates with specific types of CHD.

  3. Case of clear cell ependymoma of medulla oblongata: clinicopathological and immunohistochemical study with literature review.

    PubMed

    Amatya, Vishwa Jeet; Takeshima, Yukio; Kaneko, Mayumi; Nakano, Tomohiro; Yamaguchi, Satoshi; Sugiyama, Kazuhiko; Kurisu, Kaoru; Nakazato, Yoichi; Inai, Kouki

    2003-05-01

    Clear cell ependymoma has been included in the WHO classification of the central nervous system in 1993, after the first report by Kawano et al. Since then, only a few cases have been reported. Most clear cell ependymoma cases reported in the literature so far were located in the supra-tentorial compartment and/or cerebellum, and one case was in the cervical spinal cord. We report a case of clear cell ependymoma whose histological features were sufficient for the diagnosis and was unusually located in the fourth ventricle originating from the medulla oblongata. The tumor showed uniform tumor cells with perinuclear halo, nuclei being centrally located. Most of the tumor cells were arranged as perivascular pseudorosettes, and no ependymal canals or rosettes were evident. Mitotic figures were not frequent. Immunohistochemically, the tumor cells were strongly reactive for glial fibrillary acidic protein and vimentin, and weak and dot-like positive for epithelial membrane antigen. Clear cell change of the tumor cells appeared to be fixation artifact because this feature was not evident in the frozen section. PMID:12713564

  4. Chemical Literature Exercises and Resources (CLEAR).

    ERIC Educational Resources Information Center

    Hostettler, John D.; And Others

    These materials were developed to make the structure and use of the chemical literature clear to chemistry students and to help them become independent and intelligent users of the library. The design of Chemical Literature Exercises and Resources (CLEAR) includes a users' note and five main parts: introduction to chemical literature, chemical…

  5. 17 CFR 256.184 - Clearing accounts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Clearing accounts. 256.184... SYSTEM OF ACCOUNTS FOR MUTUAL SERVICE COMPANIES AND SUBSIDIARY SERVICE COMPANIES, PUBLIC UTILITY HOLDING COMPANY ACT OF 1935 4. Deferred Debits § 256.184 Clearing accounts. This account shall...

  6. 17 CFR 256.184 - Clearing accounts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Clearing accounts. 256.184... SYSTEM OF ACCOUNTS FOR MUTUAL SERVICE COMPANIES AND SUBSIDIARY SERVICE COMPANIES, PUBLIC UTILITY HOLDING COMPANY ACT OF 1935 4. Deferred Debits § 256.184 Clearing accounts. This account shall...

  7. Acoustics of Clear Speech: Effect of Instruction

    ERIC Educational Resources Information Center

    Lam, Jennifer; Tjaden, Kris; Wilding, Greg

    2012-01-01

    Purpose: This study investigated how different instructions for eliciting clear speech affected selected acoustic measures of speech. Method: Twelve speakers were audio-recorded reading 18 different sentences from the Assessment of Intelligibility of Dysarthric Speech (Yorkston & Beukelman, 1984). Sentences were produced in habitual, clear,…

  8. Clearance of extracellular potassium: evidence for spatial buffering by glial cells in the retina of the drone.

    PubMed

    Gardner-Medwin, A R; Coles, J A; Tsacopoulos, M

    1981-03-30

    Work with ion-selective microelectrodes on the retina of the honeybee drone has shown that potassium is released from photoreceptors during activity and enters glial cells. Measurements of the extracellular voltage gradients indicate that, in this preparation, currents flowing through the glial cells in the 'spatial buffer' pattern account for a large fraction of the glial K+ entry in the active region of the tissue.

  9. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, R.

    1998-08-04

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products. 7 figs.

  10. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath; Blaugher, Richard D.

    1995-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals, such as nitrate salts of thallium, barium, calcium, and copper, which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of thallium in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  11. Plasticity of Neuron-Glial Transmission: Equipping Glia for Long-Term Integration of Network Activity

    PubMed Central

    Croft, Wayne; Dobson, Katharine L.; Bellamy, Tomas C.

    2015-01-01

    The capacity of synaptic networks to express activity-dependent changes in strength and connectivity is essential for learning and memory processes. In recent years, glial cells (most notably astrocytes) have been recognized as active participants in the modulation of synaptic transmission and synaptic plasticity, implicating these electrically nonexcitable cells in information processing in the brain. While the concept of bidirectional communication between neurons and glia and the mechanisms by which gliotransmission can modulate neuronal function are well established, less attention has been focussed on the computational potential of neuron-glial transmission itself. In particular, whether neuron-glial transmission is itself subject to activity-dependent plasticity and what the computational properties of such plasticity might be has not been explored in detail. In this review, we summarize current examples of plasticity in neuron-glial transmission, in many brain regions and neurotransmitter pathways. We argue that induction of glial plasticity typically requires repetitive neuronal firing over long time periods (minutes-hours) rather than the short-lived, stereotyped trigger typical of canonical long-term potentiation. We speculate that this equips glia with a mechanism for monitoring average firing rates in the synaptic network, which is suited to the longer term roles proposed for astrocytes in neurophysiology. PMID:26339509

  12. Tuberal hypothalamic expression of the glial intermediate filaments, glial fibrillary acidic protein and vimentin across the turkey hen (Meleagris gallopavo) reproductive cycle: Further evidence for a role of glial structural plasticity in seasonal reproduction.

    PubMed

    Steinman, Michael Q; Valenzuela, Anthony E; Siopes, Thomas D; Millam, James R

    2013-11-01

    Glia regulate the hypothalamic-pituitary-gonadal (HPG) axis in birds and mammals. This is accomplished mechanically by ensheathing gonadotrophin-releasing hormone I (GnRH) nerve terminals thereby blocking access to the pituitary blood supply, or chemically in a paracrine manner. Such regulation requires appropriate spatial associations between glia and nerve terminals. Female turkeys (Meleagris gallopavo) use day length as a primary breeding cue. Long days activate the HPG-axis until the hen enters a photorefractory state when previously stimulatory day lengths no longer support HPG-axis activity. Hens must then be exposed to short days before reactivation of the reproductive axis occurs. As adult hens have discrete inactive reproductive states in addition to a fertile state, they are useful for examining the glial contribution to reproductive function. We immunostained tuberal hypothalami from short and long-day photosensitive hens, plus long-day photorefractory hens to examine expression of two intermediate filaments that affect glial morphology: glial fibrillary acidic protein (GFAP) and vimentin. GFAP expression was drastically reduced in the central median eminence of long day photosensitive hens, especially within the internal zone. Vimentin expression was similar among groups. However, vimentin-immunoreactive fibers abutting the portal vasculature were significantly negatively correlated with GFAP expression in the median eminence, which is consistent with our hypothesis for a reciprocal relationship between GFAP and vimentin expression. It appears that up-regulation of GFAP expression in the central median eminence of turkey hens is associated with periods of reproductive quiescence and that photofractoriness is associated with the lack of a glial cytoskeletal response to long days.

  13. Performance of Cleared Blood Glucose Monitors

    PubMed Central

    Klonoff, David C.; Prahalad, Priya

    2015-01-01

    Cleared blood glucose monitor (BGM) systems do not always perform as accurately for users as they did to become cleared. We performed a literature review of recent publications between 2010 and 2014 that present data about the frequency of inaccurate performance using ISO 15197 2003 and ISO 15197 2013 as target standards. We performed an additional literature review of publications that present data about the clinical and economic risks of inaccurate BGMs for making treatment decisions or calibrating continuous glucose monitors (CGMs). We found 11 publications describing performance of 98 unique BGM systems. 53 of these 98 (54%) systems met ISO 15197 2003 and 31 of the 98 (32%) tested systems met ISO 15197 2013 analytical accuracy standards in all studies in which they were evaluated. Of the tested systems, 33 were identified by us as FDA-cleared. Among these FDA-cleared BGM systems, 24 out of 32 (75%) met ISO 15197 2003 and 15 out of 31 (48.3%) met ISO 15197 2013 in all studies in which they were evaluated. Among the non-FDA-cleared BGM systems, 29 of 65 (45%) met ISO 15197 2003 and 15 out of 65 (23%) met ISO 15197 2013 in all studies in which they were evaluated. It is more likely that an FDA-cleared BGM system, compared to a non-FDA-cleared BGM system, will perform according to ISO 15197 2003 (χ2 = 6.2, df = 3, P = 0.04) and ISO 15197 2013 (χ2 = 11.4, df = 3, P = 0.003). We identified 7 articles about clinical risks and 3 articles about economic risks of inaccurate BGMs. We conclude that a significant proportion of cleared BGMs do not perform at the level for which they were cleared or according to international standards of accuracy. Such poor performance leads to adverse clinical and economic consequences. PMID:25990294

  14. Clear cell chondrosarcomas arising from rare sites.

    PubMed

    Ogose, A; Motoyama, T; Hotta, T; Emura, I; Inoue, Y; Morita, T; Watanabe, H

    1995-09-01

    Three cases are reported of clear cell chondrosarcoma arising from unusual sites: talus, rib and vertebra. Radiographically, two tumors showed osteolytic features and the vertebral tumor showed osteoplastic change. Histologically, all tumors consisted of clear cells that had a centrally placed nucleus surrounded by clear cytoplasm, osteoclast-like giant cells, areas of conventional chondrosarcoma, and various amounts of reactive bone. The tumor in the talus was initially diagnosed as benign chondroblastoma, but it recurred. The rib tumor showed marked cystic formation stimulating aneurysmal bone cyst. The osteoplastic radiographic feature in vertebral tumor was considered to be due to the abundant bone formation. PMID:8548042

  15. CLEARING OF ELECTRON CLOUD IN SNS.

    SciTech Connect

    WANG,L.LEE,Y.Y.RAPRIA,D.ET AL.

    2004-07-05

    In this paper we describe a mechanism using the clearing electrodes to remove the electron cloud in the Spallation Neutron Source (SNS) accumulator ring, where strong multipacting could happen at median clearing fields. A similar phenomenon was reported in an experimental study at Los Alamos laboratory's Proton Synchrotron Ring (PSR). We also investigated the effectiveness of the solenoid's clearing mechanism in the SNS, which differs from the short bunch case, such as in B-factories. The titanium nitride (TiN) coating of the chamber walls was applied to reduce the secondary electron yield (SEY).

  16. Clear Corneal Incision in Cataract Surgery

    PubMed Central

    Al Mahmood, Ammar M.; Al-Swailem, Samar A.; Behrens, Ashley

    2014-01-01

    Since the introduction of sutureless clear corneal cataract incisions, the procedure has gained increasing popularity worldwide because it offers several advantages over the traditional sutured scleral tunnels and limbal incisions. Some of these benefits include lack of conjunctival trauma, less discomfort and bleeding, absence of suture-induced astigmatism, and faster visual rehabilitation. However, an increasing incidence of postoperative endophthalmitis after clear corneal cataract surgery has been reported. Different authors have shown a significant increase up to 15-fold in the incidence of endophthalmitis following clear corneal incision compared to scleral tunnels. The aim of this report is to review the advantages and disadvantages of clear corneal incisions in cataract surgery, emphasizing on wound construction recommendations based on published literature. PMID:24669142

  17. 17 CFR 20.3 - Clearing organizations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...; (13) Gross long non-delta-adjusted swaption positions; and (14) Gross short non-delta-adjusted... organizations shall report end of reporting day settlement prices for each cleared product and deltas for...

  18. 17 CFR 20.3 - Clearing organizations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...; (13) Gross long non-delta-adjusted swaption positions; and (14) Gross short non-delta-adjusted... organizations shall report end of reporting day settlement prices for each cleared product and deltas for...

  19. 17 CFR 20.3 - Clearing organizations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...; (13) Gross long non-delta-adjusted swaption positions; and (14) Gross short non-delta-adjusted... organizations shall report end of reporting day settlement prices for each cleared product and deltas for...

  20. "Clear cell" oncocytoma of salivary gland.

    PubMed

    Ellis, G L

    1988-07-01

    For the most part, clear cell neoplasms of the salivary glands are adenocarcinomas of at least low-grade malignant potential. However, a rare benign clear cell tumor of major salivary glands can be distinguished as a histologic variant of oncocytoma and oncocytosis. Ten such cases have been identified in the files of the Armed Forces Institute of Pathology (Washington, DC). Eight patients were women, and nine of the lesions involved the parotid gland. All of the patients were middle-aged or older adults. The light-microscopic morphology and the phosphotungstic acid-hematoxylin (PTAH), PAS, and mucicarmine staining patterns were consistent with oncocytoma and oncocytosis. Transitions from typical eosinophilic oncocytes to clear cells were evident. Electron microscopy and histochemistry demonstrated that the clear cytoplasm seen by light microscopy was primarily due to artifact and intracytoplasmic glycogen. Mitochondria were the preponderant cytoplasmic organelles. Two patients were known to have experienced recurrent lesions.

  1. Genetic profile of clear cell odontogenic carcinoma.

    PubMed

    Carinci, Francesco; Volinia, Stefano; Rubini, Corrado; Fioroni, Massimiliano; Francioso, Francesca; Arcelli, Diego; Pezzetti, Furio; Piattelli, Adriano

    2003-05-01

    In the head and neck region, clear cell tumors are usually derived from salivary glands, odontogenic tissues, and metastasis. The World Health Organization has classified clear cell odontogenic tumor among benign tumors, but it is now recognized as a more sinister lesion, and current opinion is that it should be designated as a carcinoma. It is characterized by aggressive growth, recurrences, and metastasis. By using complementary DNA microarrays, several genes in clear cell odontogenic tumor were identified that are differentially regulated when compared with non-tumor tissue. In conclusion, the first genetic profiling of clear odontogenic carcinoma is reported. DNA microarrays can potentially help in identifying some genes whose products could be disease-specific targets for cancer therapy as well as a tool for better classifying odontogenic tumor.

  2. The Effect of Pro-Neurogenic Gene Expression on Adult Subventricular Zone Precursor Cell Recruitment and Fate Determination After Excitotoxic Brain Injury

    PubMed Central

    Jones, Kathryn S; Connor, Bronwen J

    2016-01-01

    Despite the presence of on-going neurogenesis in the adult mammalian brain, neurons are generally not replaced after injury. Using a rodent model of excitotoxic cell loss and retroviral (RV) lineage tracing, we previously demonstrated transient recruitment of precursor cells from the subventricular zone (SVZ) into the lesioned striatum. In the current study we determined that these cells included migratory neuroblasts and oligodendrocyte precursor cells (OPC), with the predominant response from glial cells. We attempted to override this glial response by ectopic expression of the pro-neurogenic genes Pax6 or Dlx2 in the adult rat SVZ following quinolinic acid lesioning. RV-Dlx2 over-expression stimulated repair at a previously non-neurogenic time point by enhancing neuroblast recruitment and the percentage of cells that retained a neuronal fate within the lesioned area, compared to RV-GFP controls. RV-Pax6 expression was unsuccessful at inhibiting glial fate and intriguingly, increased OPC cell numbers with no change in neuronal recruitment. These findings suggest that gene choice is important when attempting to augment endogenous repair as the lesioned environment can overcome pro-neurogenic gene expression. Dlx2 over-expression however was able to partially overcome an anti-neuronal environment and therefore is a promising candidate for further study of striatal regeneration. PMID:27397999

  3. Skin optical clearing potential of disaccharides.

    PubMed

    Feng, Wei; Shi, Rui; Ma, Ning; Tuchina, Daria K; Tuchin, Valery V; Zhu, Dan

    2016-08-01

    Skin optical clearing can significantly enhance the ability of biomedical optical imaging. Some alcohols and sugars have been selected to be optical clearing agents (OCAs). In this work, we paid attention to the optical clearing potential of disaccharides. Sucrose and maltose were chosen as typical disaccharides to compare with fructose, an excellent monosaccharide-OCA, by using molecular dynamics simulation and an ex vivo experiment. The experimental results indicated that the optical clearing efficacy of skin increases linearly with the concentration for each OCA. Both the theoretical predication and experimental results revealed that the two disaccharides exerted a better optical clearing potential than fructose at the same concentration, and sucrose is optimal. Since maltose has an extremely low saturation concentration, the other two OCAs with saturation concentrations were treated topically on rat skin in vivo, and optical coherence tomography imaging was applied to monitor the optical clearing process. The results demonstrated that sucrose could cause a more significant increase in imaging depth and signal intensity than fructose. PMID:27108771

  4. Neurexin IV and Wrapper interactions mediate Drosophila midline glial migration and axonal ensheathment.

    PubMed

    Wheeler, Scott R; Banerjee, Swati; Blauth, Kevin; Rogers, Stephen L; Bhat, Manzoor A; Crews, Stephen T

    2009-04-01

    Glia play crucial roles in ensheathing axons, a process that requires an intricate series of glia-neuron interactions. The membrane-anchored protein Wrapper is present in Drosophila midline glia and is required for ensheathment of commissural axons. By contrast, Neurexin IV is present on the membranes of neurons and commissural axons, and is highly concentrated at their interfaces with midline glia. Analysis of Neurexin IV and wrapper mutant embryos revealed identical defects in glial migration, ensheathment and glial subdivision of the commissures. Mutant and misexpression experiments indicated that Neurexin IV membrane localization is dependent on interactions with Wrapper. Cell culture aggregation assays and biochemical experiments demonstrated the ability of Neurexin IV to promote cell adhesion by binding to Wrapper. These results show that neuronal-expressed Neurexin IV and midline glial-expressed Wrapper act as heterophilic adhesion molecules that mediate multiple cellular events involved in glia-neuron interactions.

  5. Functional study of endothelin B receptors in satellite glial cells in trigeminal ganglia.

    PubMed

    Feldman-Goriachnik, Rachel; Hanani, Menachem

    2011-07-13

    There is immunohistochemical evidence for endothelin (ET) receptors in satellite glial cells in sensory ganglia, but there is no information on the function of these receptors. We used calcium imaging to study this question in isolated mouse trigeminal ganglia and found that satellite glial cells are highly sensitive to ET-1, with threshold at 0.05 nM. Responses displayed strong desensitization at ET-1 concentrations of more than 1 nM. A large component of the response persisted when Ca was deleted from the external medium, consistent with Ca release from internal stores. The use of receptor selective agents showed that the responses were mediated by ETB receptors. We conclude that satellite glial cells display endothelin receptors, which may participate in neuron-glia communications in the trigeminal ganglia.

  6. Opioid-dependent growth of glial cultures: Suppression of astrocyte DNA synthesis by met-enkephalin

    SciTech Connect

    Stiene-Martin, A.; Hauser, K.F. )

    1990-01-01

    The action of met-enkephalin on the growth of astrocytes in mixed-glial cultures was examined. Primary, mixed-glial cultures were isolated from 1 day-old mouse cerebral hemispheres and continuously treated with either basal growth media, 1 {mu}M met-enkephalin, 1 {mu}M met-enkephalin plus the opioid antagonist naloxone, or naloxone alone. Absolute numbers of neural cells were counted in unstained preparations, while combined ({sup 3}H)-thymidine autoradiography and glial fibrillary acid protein (GFAP) immunocytochemistry was performed to identify specific changes in astrocytes. When compared to control and naloxone treated cultures, met-enkephalin caused a significant decrease in both total cell numbers, and in ({sup 3}H)-thymidine incorporation by GFAP-positive cells with flat morphology. These results indicate that met-enkephalin suppresses astrocyte growth in culture.

  7. Advancements in the Underlying Pathogenesis of Schizophrenia: Implications of DNA Methylation in Glial Cells

    PubMed Central

    Chen, Xing-Shu; Huang, Nanxin; Michael, Namaka; Xiao, Lan

    2015-01-01

    Schizophrenia (SZ) is a chronic and severe mental illness for which currently there is no cure. At present, the exact molecular mechanism involved in the underlying pathogenesis of SZ is unknown. The disease is thought to be caused by a combination of genetic, biological, psychological, and environmental factors. Recent studies have shown that epigenetic regulation is involved in SZ pathology. Specifically, DNA methylation, one of the earliest found epigenetic modifications, has been extensively linked to modulation of neuronal function, leading to psychiatric disorders such as SZ. However, increasing evidence indicates that glial cells, especially dysfunctional oligodendrocytes undergo DNA methylation changes that contribute to the pathogenesis of SZ. This review primarily focuses on DNA methylation involved in glial dysfunctions in SZ. Clarifying this mechanism may lead to the development of new therapeutic interventional strategies for the treatment of SZ and other illnesses by correcting abnormal methylation in glial cells. PMID:26696822

  8. Radial glial cell transformation to astrocytes is bidirectional: regulation by a diffusible factor in embryonic forebrain.

    PubMed Central

    Hunter, K E; Hatten, M E

    1995-01-01

    During development of mammalian cerebral cortex, two classes of glial cells are thought to underlie the establishment of cell patterning. In the embryonic period, migration of young neurons is supported by a system of radial glial cells spanning the thickness of the cortical wall. In the neonatal period, neuronal function is assisted by the physiological support of a second class of astroglial cell, the astrocyte. Here, we show that expression of embryonic radial glial identity requires extrinsic soluble signals present in embryonic forebrain. Moreover, astrocytes reexpress features of radial glia in vitro in the presence of the embryonic cortical signals and in vivo after transplantation into embryonic neocortex. These findings suggest that the transformation of radial glia cells into astrocytes is regulated by availability of inducing signals rather than by changes in cell potential. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:7892225

  9. Neural stem/progenitor cell properties of glial cells in the adult mouse auditory nerve

    PubMed Central

    Lang, Hainan; Xing, Yazhi; Brown, LaShardai N.; Samuvel, Devadoss J.; Panganiban, Clarisse H.; Havens, Luke T.; Balasubramanian, Sundaravadivel; Wegner, Michael; Krug, Edward L.; Barth, Jeremy L.

    2015-01-01

    The auditory nerve is the primary conveyor of hearing information from sensory hair cells to the brain. It has been believed that loss of the auditory nerve is irreversible in the adult mammalian ear, resulting in sensorineural hearing loss. We examined the regenerative potential of the auditory nerve in a mouse model of auditory neuropathy. Following neuronal degeneration, quiescent glial cells converted to an activated state showing a decrease in nuclear chromatin condensation, altered histone deacetylase expression and up-regulation of numerous genes associated with neurogenesis or development. Neurosphere formation assays showed that adult auditory nerves contain neural stem/progenitor cells (NSPs) that were within a Sox2-positive glial population. Production of neurospheres from auditory nerve cells was stimulated by acute neuronal injury and hypoxic conditioning. These results demonstrate that a subset of glial cells in the adult auditory nerve exhibit several characteristics of NSPs and are therefore potential targets for promoting auditory nerve regeneration. PMID:26307538

  10. The "Big-Bang" for modern glial biology: Translation and comments on Pío del Río-Hortega 1919 series of papers on microglia.

    PubMed

    Sierra, Amanda; de Castro, Fernando; Del Río-Hortega, Juan; Rafael Iglesias-Rozas, José; Garrosa, Manuel; Kettenmann, Helmut

    2016-11-01

    The word "glia" was coined in the mid-19th century and defined as "the nerve glue". For decades, it was assumed to be a uniform matrix, until cell theorists raised the "neuron doctrine" which stipulated that nervous tissue was composed of individual cells. The term "astrocytes" was introduced in the late 19th century as a synonym for glial cells, but it was Santiago Ramón y Cajal who defined a "third element" distinct from glial cells (astrocytes) and neurons. It was not until 1919 when Pío del Río-Hortega, an alumnus of the Cajal School, introduced the modern terms we use today, and thoroughly described both "oligodendrocytes" and "microglia" to clearly distinguish them from astrocytes. In a series of four papers published that year in Spanish, Río-Hortega described the distribution and morphological phenotype of microglia. He also noted that these cells were the origin of the rod cells described earlier in pathologic tissue, and recognized that resting microglia transformed into an ameboid phenotype in different types of brain diseases and pathologies. He also noted the mesodermal origin of these cells and recognized their phagocytic capacity. We here provide the first English translation of these landmark series of papers, which paved the way for modern glial research. To heighten the value and accessibility of these classic papers and their original figures, an introduction to this critical period of neuroscience is provided, along with unpublished photographs. By adding comments to the translated text, we provide sufficient context so that contemporary scientists may fully appreciate it. GLIA 2016;64:1801-1840. PMID:27634048

  11. Recovery capacity of glial progenitors after in vivo fission-neutron or X irradiation: age dependence, fractionation and low-dose-rate irradiations.

    PubMed

    Philippo, H; Winter, E A M; van der Kogel, A J; Huiskamp, R

    2005-06-01

    Previous experiments on the radiosensitivity of O-2A glial progenitors determined for single-dose fission-neutron and X irradiation showed log-linear survival curves, suggesting a lack of accumulation of recovery of sublethal damage. In the present study, we addressed this question and further characterized the radiobiological properties of these glial stem cells by investigating the recovery capacity of glial stem cells using either fractionated or protracted whole-body irradiation. Irradiations were performed on newborn, 2-week-old or 12-week-old rats. Fractionated irradiations (four fractions) were performed with 24-h intervals, followed by cell isolations 16- 24 h after the last irradiation. Single-dose irradiations were followed by cell isolation 16-24 h after irradiation or delayed cell isolation (4 days after irradiation) of the O-2A progenitor cells from either spinal cord (newborns) or optic nerve (2- and 12-week-old rats). Results for neonatal progenitor cell survival show effect ratios for both fractionated fission-neutron and X irradiation of the order of 1.8 when compared with single-dose irradiation. A similar ratio was found after single-dose irradiation combined with delayed plating. Comparable results were observed for juvenile and adult optic nerve progenitors, with effect ratios of the order of 1.2. The present investigation clearly shows that fractionated irradiation regimens using X rays or fission neutrons and CNS tissue from rats of various ages results in an increase in O-2A progenitor cell survival while repair is virtually absent. This recovery of the progenitor pool after irradiation can be observed at all ages but is greatest in the neonatal spinal cord and can probably be attributed to repopulation. PMID:15913395

  12. The "Big-Bang" for modern glial biology: Translation and comments on Pío del Río-Hortega 1919 series of papers on microglia.

    PubMed

    Sierra, Amanda; de Castro, Fernando; Del Río-Hortega, Juan; Rafael Iglesias-Rozas, José; Garrosa, Manuel; Kettenmann, Helmut

    2016-11-01

    The word "glia" was coined in the mid-19th century and defined as "the nerve glue". For decades, it was assumed to be a uniform matrix, until cell theorists raised the "neuron doctrine" which stipulated that nervous tissue was composed of individual cells. The term "astrocytes" was introduced in the late 19th century as a synonym for glial cells, but it was Santiago Ramón y Cajal who defined a "third element" distinct from glial cells (astrocytes) and neurons. It was not until 1919 when Pío del Río-Hortega, an alumnus of the Cajal School, introduced the modern terms we use today, and thoroughly described both "oligodendrocytes" and "microglia" to clearly distinguish them from astrocytes. In a series of four papers published that year in Spanish, Río-Hortega described the distribution and morphological phenotype of microglia. He also noted that these cells were the origin of the rod cells described earlier in pathologic tissue, and recognized that resting microglia transformed into an ameboid phenotype in different types of brain diseases and pathologies. He also noted the mesodermal origin of these cells and recognized their phagocytic capacity. We here provide the first English translation of these landmark series of papers, which paved the way for modern glial research. To heighten the value and accessibility of these classic papers and their original figures, an introduction to this critical period of neuroscience is provided, along with unpublished photographs. By adding comments to the translated text, we provide sufficient context so that contemporary scientists may fully appreciate it. GLIA 2016;64:1801-1840.

  13. Precursor polymer compositions comprising polybenzimidazole

    SciTech Connect

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  14. The Innate Lymphoid Cell Precursor.

    PubMed

    Ishizuka, Isabel E; Constantinides, Michael G; Gudjonson, Herman; Bendelac, Albert

    2016-05-20

    The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages.

  15. Neurotransmitter precursors and brain function.

    PubMed

    Conlay, L A; Zeisel, S H

    1982-04-01

    Brain function can be affected by the availability of dietary precursors of neurotransmitters. This occurs because the rate-limiting synthetic enzymes are not "saturated" with substrate under normal circumstances. Tyrosine affects catecholaminergic neurons that fire rapidly, whether in the brain stem to decrease blood pressure in hypertension or in the adrenal gland to increase blood pressure in hypotension, and has been used in the treatment of Parkinson's disease and depression. Choline forms acetylcholine and has been used successfully in the treatment of tardive dyskinesia and memory disorders. Tryptophan, which forms serotonin, has been used for chronic pain therapy, sleep disorders, depression, and appetite control. Although these substances may lack the potency of traditionally used agonists, they offer an increase in specificity because the enzymes necessary to convert them to neurotransmitters are found only in neurons. Precursors are also "physiological"; they are consumed as foods and, therefore, should be relatively safe therapeutic agents. PMID:6124895

  16. Diamond films grown from fullerene precursors

    SciTech Connect

    Gruen, D.M.; Zuiker, C.D.; Krauss, A.R.

    1995-07-01

    Fullerene precursors have been shown to result in the growth of diamond films from argon microwave plasmas. In contradistinction to most diamond films grown using conventional methane-hydrogen mixtures, the fullerene-generated films are nanocrystalline and smooth on the nanometer scale. They have recently been shown to have friction coefficients approaching the values of natural diamond. It is clearly important to understand the development of surface morphology during film growth from fullerene precursors and to elucidate the factors leading to surface roughness when hydrogen is present in the chemical vapor deposition (CVD) gas mixtures. To achieve these goals, we are measuring surface reflectivity of diamond films growing on silicon substrates over a wide range of plasma processing conditions. A model for the interpretation of the laser interferometric data has been developed, which allows one to determine film growth rate, rms surface roughness, and bulk losses due to scattering and absorption. The rms roughness values determined by reflectivity are in good agreement with atomic force microscope (AFM) measurements. A number of techniques, including high-resolution transmission electron microscopy (HRTEM) and near-edge x-ray absorption find structure (NEXAFS) measurements, have been used to characterize the films. A mechanism for diamond-film growth involving the C{sub 2} molecule as a growth species will be presented. The mechanism is based on (1) the observation that the optical emission spectra of the fullerene- containing plasmas are dominated by the Swan bands of C{sub 2} and (2) the ability of C{sub 2} to insert directly into C-H and C-C bonds with low activation barriers, as shown by recent theoretical calculations of reactions of C{sub 2} with carbon clusters.

  17. Metabolic signaling between photoreceptors and glial cells in the retina of the drone (Apis mellifera).

    PubMed

    Brazitikos, P D; Tsacopoulos, M

    1991-12-13

    Experimental evidence showing metabolic interaction and signaling between photoreceptors-neurons and glial cells of the honeybee drone retina is presented. In this tissue [3H]2-deoxyglucose ([3H]2DG) in the dark and during repetitive light stimulation is phosphorylated to [3H]2-deoxyglucose-6P ([3H]2DG-6P) almost exclusively in the glial cells. Hence, stimulus-induced changes in the rate of formation of [3H]2DG-6P occurs predominantly in the glial cells. Repetitive stimulation of the photoreceptors with light flashes induced about a 47% rise in the rate of formation of [3H]2DG-6P in the glial cells and this effect is probably due to the activation of hexokinase. The potent inhibitor of glycolysis iodoacetic acid (IAA), inhibited this phosphorylation by about 75%. Probably this was largely due to an about 70% decrease of adenosine triphosphate (ATP). Exposure of the retina to IAA suppressed the transient rise in oxygen consumption (delta QO2) in the photoreceptors and subsequently the light-induced receptor potential. This indicates that the supply of a glycolytic substrate by glial cells to the photoreceptors is greatly reduced by IAA. Anoxia, by rapidly suppressing QO2, abolished the receptor potential of the photoreceptors and caused a rapid drop of about 50% in the ATP content of the retina. At the same time the formation of [3H]2DG-6P was inhibited by about 30%. This indicates that respiring photoreceptors send a metabolic signal to glial cells which is suppressed by anoxia. PMID:1815828

  18. Spatial Organization of NG2 Glial Cells and Astrocytes in Rat Hippocampal CA1 Region

    PubMed Central

    Xu, Guangjin; Wang, Wei; Zhou, Min

    2014-01-01

    Similar to astrocytes, NG2 glial cells are uniformly distributed in the central nervous system (CNS). However, little is known about the interspatial relationship, nor the functional interactions between these two star-shaped glial subtypes. Confocal morphometric analysis showed that NG2 immunostained cells are spatially organized as domains in rat hippocampal CA1 region and that each NG2 glial domain occupies a spatial volume of ~ 178, 364 μm3. The processes of NG2 glia and astrocytes overlap extensively; each NG2 glial domain interlaces with the processes deriving from 5.8 ± 0.4 neighboring astrocytes, while each astrocytic domain accommodates processes stemming from 4.5 ± 0.3 abutting NG2 glia. In CA1 stratum radiatum, the cell bodies of morphologically identified glial cells often appear to make direct somatic-somata contact, termed as doublets. We used dual patch recording and post-recording NG2/GFAP double staining to determine the glial identities of these doublets. We show that among 44 doublets, 50% were NG2 glia-astrocyte pairs, while another 38.6% and 11.4% were astrocyte-astrocyte and NG2 glia-NG2 glia pairs, respectively. In dual patch recording, neither electrical coupling nor intercellular biocytin transfer was detected in astrocyte-NG2 glia or NG2 glia-NG2 glia doublets. Altogether, although NG2 glia and astrocytes are not gap junction coupled, their cell bodies and processes are interwoven extensively. The anatomical and physiological relationships revealed in this study should facilitate future studies to understand the metabolic coupling and functional communication between NG2 glia and astrocytes. PMID:24339242

  19. Matrix metalloproteinase-9 facilitates glial scar formation in the injured spinal cord

    PubMed Central

    Hsu, Jung-Yu C.; Bourguignon, Lilly Y. W.; Adams, Christen M.; Peyrollier, Karine; Zhang, Haoqian; Fandel, Thomas; Cun, Christine L.; Werb, Zena; Noble-Haeusslein, Linda J.

    2008-01-01

    In the injured spinal cord, a glial scar forms and becomes a major obstacle to axonal regeneration. Formation of the glial scar involves migration of astrocytes toward the lesion. Matrix metalloproteinases (MMPs), including MMP-9 and MMP-2, govern cell migration through their ability to degrade constituents of the extracellular matrix. Although MMP-9 is expressed in reactive astrocytes, its involvement in astrocyte migration and formation of a glial scar is unknown. Here we found that spinal cord injured, wild-type mice expressing MMPs developed a more severe glial scar and enhanced expression of chondroitin sulfate proteoglycans, indicative of a more inhibitory environment for axonal regeneration/plasticity, than MMP-9 null mice. To determine if MMP-9 mediates astrocyte migration, we conducted a scratch wound assay using astrocytes cultured from MMP-9 null, MMP-2 null, and wild-type mice. Gelatin zymography confirmed the expression of MMP-9 and MMP-2 in wild-type cultures. MMP-9 null astrocytes and wild-type astrocytes, treated with an MMP-9 inhibitor, exhibited impaired migration relative to untreated wild-type controls. MMP-9 null astrocytes showed abnormalities in the actin cytoskeletal organization and function but no detectable untoward effects on proliferation, cellular viability, or adhesion. Interestingly, MMP-2 null astrocytes showed increased migration, which could be attenuated in the presence of an MMP-9 inhibitor. Collectively, our studies provide explicit evidence that MMP-9 is integral to the formation of an inhibitory glial scar and cytoskeleton-mediated astrocyte migration. MMP-9 may thus be a promising therapeutic target to reduce glial scarring during wound healing after spinal cord injury. PMID:19074020

  20. Metabolic signaling between photoreceptors and glial cells in the retina of the drone (Apis mellifera).

    PubMed

    Brazitikos, P D; Tsacopoulos, M

    1991-12-13

    Experimental evidence showing metabolic interaction and signaling between photoreceptors-neurons and glial cells of the honeybee drone retina is presented. In this tissue [3H]2-deoxyglucose ([3H]2DG) in the dark and during repetitive light stimulation is phosphorylated to [3H]2-deoxyglucose-6P ([3H]2DG-6P) almost exclusively in the glial cells. Hence, stimulus-induced changes in the rate of formation of [3H]2DG-6P occurs predominantly in the glial cells. Repetitive stimulation of the photoreceptors with light flashes induced about a 47% rise in the rate of formation of [3H]2DG-6P in the glial cells and this effect is probably due to the activation of hexokinase. The potent inhibitor of glycolysis iodoacetic acid (IAA), inhibited this phosphorylation by about 75%. Probably this was largely due to an about 70% decrease of adenosine triphosphate (ATP). Exposure of the retina to IAA suppressed the transient rise in oxygen consumption (delta QO2) in the photoreceptors and subsequently the light-induced receptor potential. This indicates that the supply of a glycolytic substrate by glial cells to the photoreceptors is greatly reduced by IAA. Anoxia, by rapidly suppressing QO2, abolished the receptor potential of the photoreceptors and caused a rapid drop of about 50% in the ATP content of the retina. At the same time the formation of [3H]2DG-6P was inhibited by about 30%. This indicates that respiring photoreceptors send a metabolic signal to glial cells which is suppressed by anoxia.

  1. Her4-positive population in the tectum opticum is proliferating neural precursors in the adult zebrafish brain.

    PubMed

    Jung, Seung-Hyun; Kim, Hyung-Seok; Ryu, Jae-Ho; Gwak, Jung-Woo; Bae, Young-Ki; Kim, Cheol-Hee; Yeo, Sang-Yeob

    2012-06-01

    Previous studies have shown that Notch signaling not only regulates the number of early differentiating neurons, but also maintains proliferating neural precursors in the neural tube. Although it is well known that Notch signaling is closely related to the differentiation of adult neural stem cells, none of transgenic zebrafish provides a tool to figure out the relationship between Notch signaling and the differentiation of neural precursors. The goal of this study was to characterize Her4-positive cells by comparing the expression of a fluorescent Her4 reporter in Tg[her4-dRFP] animals with a GFAP reporter in Tg[gfap-GFP] adult zebrafish. BrdU incorporation indicated that dRFP-positive cells were proliferating and a double labeling assay revealed that a significant fraction of the Her4-dRFP positive population was also GFAP-GFP positive. Our observations suggest that a reporter line with Notch-dependent gene expression can provide a tool to examine proliferating neural precursors and/or neuronal/glial precursors in the development of the adult nervous system to examine the model in which Notch signaling maintains proliferating neural precursors in the neural tube.

  2. Neuronal localization of amyloid beta protein precursor mRNA in normal human brain and in Alzheimer's disease.

    PubMed Central

    Goedert, M

    1987-01-01

    Clones for the amyloid beta protein precursor gene were isolated from a cDNA library prepared from the frontal cortex of a patient who had died with a histologically confirmed diagnosis of Alzheimer's disease; they were used to investigate the tissue and cellular distribution of amyloid beta protein precursor mRNA in brain tissues from control patients and from Alzheimer's disease patients. Amyloid beta protein precursor mRNA was expressed in similar amounts in all control human brain regions examined, but a reduction of the mRNA level was observed in the frontal cortex from patients with Alzheimer's disease. By in situ hybridization amyloid beta protein precursor mRNA was present in granule and pyramidal cell bodies in the hippocampal formation and in pyramidal cell bodies in the cerebral cortex. No specific labelling of glial cells or endothelial cells was found. The same qualitative distribution was observed in tissues from control patients and from patients with Alzheimer's disease. Senile plaque amyloid thus probably derives from neurones. The tissue distribution of amyloid beta protein precursor mRNA and its cellular localization demonstrate that its expression is not confined to the brain regions and cells that exhibit the selective neuronal death characteristic of Alzheimer's disease. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:3322812

  3. PREDICTING SIGNIFICANCE OF UNKNOWN VARIANTS IN GLIAL TUMORS THROUGH SUB-CLASS ENRICHMENT.

    PubMed

    Fichtenholtz, Alex M; Camarda, Nicholas D; Neumann, Eric K

    2016-01-01

    Glial tumors have been heavily studied and sequenced, leading to scores of findings about altered genes. This explosion in knowledge has not been matched with clinical success, but efforts to understand the synergies between drivers of glial tumors may alleviate the situation. We present a novel molecular classification system that captures the combinatorial nature of relationships between alterations in these diseases. We use this classification to mine for enrichment of variants of unknown significance, and demonstrate a method for segregating unknown variants with functional importance from passengers and SNPs. PMID:26776195

  4. Glial Modulation by N-acylethanolamides in Brain Injury and Neurodegeneration.

    PubMed

    Herrera, María I; Kölliker-Frers, Rodolfo; Barreto, George; Blanco, Eduardo; Capani, Francisco

    2016-01-01

    Neuroinflammation involves the activation of glial cells and represents a key element in normal aging and pathophysiology of brain damage. N-acylethanolamides (NAEs), naturally occurring amides, are known for their pro-homeostatic effects. An increase in NAEs has been reported in vivo and in vitro in the aging brain and in brain injury. Treatment with NAEs may promote neuroprotection and exert anti-inflammatory actions via PPARα activation and/or by counteracting gliosis. This review aims to provide an overview of endogenous and exogenous properties of NAEs in neuroinflammation and to discuss their interaction with glial cells. PMID:27199733

  5. Glial Modulation by N-acylethanolamides in Brain Injury and Neurodegeneration.

    PubMed

    Herrera, María I; Kölliker-Frers, Rodolfo; Barreto, George; Blanco, Eduardo; Capani, Francisco

    2016-01-01

    Neuroinflammation involves the activation of glial cells and represents a key element in normal aging and pathophysiology of brain damage. N-acylethanolamides (NAEs), naturally occurring amides, are known for their pro-homeostatic effects. An increase in NAEs has been reported in vivo and in vitro in the aging brain and in brain injury. Treatment with NAEs may promote neuroprotection and exert anti-inflammatory actions via PPARα activation and/or by counteracting gliosis. This review aims to provide an overview of endogenous and exogenous properties of NAEs in neuroinflammation and to discuss their interaction with glial cells.

  6. Glial Modulation by N-acylethanolamides in Brain Injury and Neurodegeneration

    PubMed Central

    Herrera, María I.; Kölliker-Frers, Rodolfo; Barreto, George; Blanco, Eduardo; Capani, Francisco

    2016-01-01

    Neuroinflammation involves the activation of glial cells and represents a key element in normal aging and pathophysiology of brain damage. N-acylethanolamides (NAEs), naturally occurring amides, are known for their pro-homeostatic effects. An increase in NAEs has been reported in vivo and in vitro in the aging brain and in brain injury. Treatment with NAEs may promote neuroprotection and exert anti-inflammatory actions via PPARα activation and/or by counteracting gliosis. This review aims to provide an overview of endogenous and exogenous properties of NAEs in neuroinflammation and to discuss their interaction with glial cells. PMID:27199733

  7. Glial regulation of the blood-brain barrier in health and disease.

    PubMed

    Broux, Bieke; Gowing, Elizabeth; Prat, Alexandre

    2015-11-01

    The brain is the organ with the highest metabolic demand in the body. Therefore, it needs specialized vasculature to provide it with the necessary oxygen and nutrients, while protecting it against pathogens and toxins. The blood-brain barrier (BBB) is very tightly regulated by specialized endothelial cells, two basement membranes, and astrocytic endfeet. The proximity of astrocytes to the vessel makes them perfect candidates to influence the function of the BBB. Moreover, other glial cells are also known to contribute to either BBB quiescence or breakdown. In this review, we summarize the knowledge on glial regulation of the BBB during development, in homeostatic conditions in the adult, and during neuroinflammatory responses.

  8. Effect of Microstructural Anisotropy of PM Precursors on the Characteristic Expansion of Aluminum Foams

    NASA Astrophysics Data System (ADS)

    Lázaro, Jaime; Laguna-Gutiérrez, Ester; Solórzano, Eusebio; Rodríguez-Pérez, Miguel Angel

    2013-08-01

    This work investigates the causes of the anisotropic early expansion (below the melting point) of powder metallurgical (PM) aluminum foam precursors by evaluating the crystallographic anisotropy induced during the production of the precursor materials. A varied group of precursors prepared using different parameters and techniques (direct powder extrusion and hot uniaxial compression) has been investigated. Multidirectional foaming expansion has been registered in situ by means of the optical expandometry technique, while X-ray diffraction has been used to characterize the preferred crystallographic orientation (texture) of the pressed powders. The results point to a clear correlation between the expansion anisotropy and the microstructural crystallographic anisotropy of the precursors. Although this correlation is not a direct cause-effect phenomenon, it is a good indicator of intrinsic precursor characteristics, such as densification and powder interparticle bonding, which govern the expansion behavior during the early stages when the material is still in a solid or semisolid state.

  9. 76 FR 47529 - Customer Clearing Documentation and Timing of Acceptance for Clearing; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... Street, NW., Washington, DC 20581. SUPPLEMENTARY INFORMATION: In FR Doc. 2011-19365 appearing on page... COMMISSION 17 CFR Parts 1, 23, and 39 RIN 3038-AD51 Customer Clearing Documentation and Timing of Acceptance... August 1, 2011, regarding Customer Clearing Documentation and Timing of Acceptance for Clearing....

  10. Rapid radiative clearing of protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Haworth, Thomas J.; Clarke, Cathie J.; Owen, James E.

    2016-04-01

    The lack of observed transition discs with inner gas holes of radii greater than ˜50 au implies that protoplanetary discs dispersed from the inside out must remove gas from the outer regions rapidly. We investigate the role of photoevaporation in the final clearing of gas from low mass discs with inner holes. In particular, we study the so-called `thermal sweeping' mechanism which results in rapid clearing of the disc. Thermal sweeping was originally thought to arise when the radial and vertical pressure scalelengths at the X-ray heated inner edge of the disc match. We demonstrate that this criterion is not fundamental. Rather, thermal sweeping occurs when the pressure maximum at the inner edge of the dust heated disc falls below the maximum possible pressure of X-ray heated gas (which depends on the local X-ray flux). We derive new critical peak volume and surface density estimates for rapid radiative clearing which, in general, result in rapid dispersal happening less readily than in previous estimates. This less efficient clearing of discs by X-ray driven thermal sweeping leaves open the issue of what mechanism (e.g. far-ultraviolet heating) can clear gas from the outer disc sufficiently quickly to explain the non-detection of cold gas around weak line T Tauri stars.

  11. Origin and development of neuropil glia of the Drosophila larval and adult brain: two distinct glial populations derived from separate progenitors

    PubMed Central

    Omoto, Jaison Jiro; Yogi, Puja; Hartenstein, Volker

    2015-01-01

    Glia comprise a conspicuous population of non-neuronal cells in vertebrate and invertebrate nervous systems. Drosophila serves as a favorable model to elucidate basic principles of glial biology in vivo. The Drosophila neuropil glia (NPG), subdivided into astrocyte-like (ALG) and ensheathing glia (EG), extend reticular processes which associate with synapses and sheath-like processes which surround neuropil compartments, respectively. In this paper we characterize the development of NPG throughout fly brain development. We find that differentiated neuropil glia of the larval brain originate as a cluster of precursors derived from embryonic progenitors located in the basal brain. These precursors undergo a characteristic migration to spread over the neuropil surface while specifying/differentiating into primary ALG and EG. Embryonically-derived primary NPG are large cells which are few in number, and occupy relatively stereotyped positions around the larval neuropil surface. During metamorphosis, primary NPG undergo cell death. Neuropil glia of the adult (secondary NPG) are derived from type II lineages during the postembryonic phase of neurogliogenesis. These secondary NPG are much smaller in size but greater in number than primary NPG. Lineage tracing reveals that both NPG subtypes derive from intermediate neural progenitors of multipotent type II lineages. Taken together, this study reveals previously uncharacterized dynamics of NPG development and provides a framework for future studies utilizing Drosophila glia as a model. PMID:25779704

  12. The involvement of MAP kinases JNK and p38 in photodynamic injury of crayfish neurons and glial cells

    NASA Astrophysics Data System (ADS)

    Petin, Y. O.; Bibov, M. Y.; Uzdensky, A. B.

    2007-05-01

    The role of JNK and p38 MAP kinases in functional inactivation and necrosis of mechanoreceptor neurons as well as necrosis, apoptosis and proliferation of satellite glial cells induced by photodynamic treatment (10 -7 M Photosens, 30 min incubation, 670 nm laser irradiation at 0.4 W/cm2) in the isolated crayfish stretch receptor was studied using specific inhibitors SP600125 and SB202190, respectively. SP600125 enhanced PDT-induced apoptosis of photosensitized glial cells but did not influence PDT-induced changes in neuronal activity, density of glial nuclei around neuron body, and necrosis of receptor neurons and glial cells. SB202190 did not influence neuron activity and survival as well but reduced PDT-induced necrosis but not apoptosis of glial cells. Therefore, both MAP kinases influenced glial cells but not neurons. JNK protected glial cells from PDT-induced apoptosis but did not influence necrosis and proliferation of these cells. In contrast, p38 did not influence apoptosis but contributed into PDT-induced necrosis of glial cells and PDT-induced gliosis. These MAP kinase inhibitors may be used for modulation of photodynamic therapy of brain tumors.

  13. GlialCAM, a CLC-2 Cl- Channel Subunit, Activates the Slow Gate of CLC Chloride Channels

    PubMed Central

    Jeworutzki, Elena; Lagostena, Laura; Elorza-Vidal, Xabier; López-Hernández, Tania; Estévez, Raúl; Pusch, Michael

    2014-01-01

    GlialCAM, a glial cell adhesion molecule mutated in megalencephalic leukoencephalopathy with subcortical cysts, targets the CLC-2 Cl- channel to cell contacts in glia and activates CLC-2 currents in vitro and in vivo. We found that GlialCAM clusters all CLC channels at cell contacts in vitro and thus studied GlialCAM interaction with CLC channels to investigate the mechanism of functional activation. GlialCAM slowed deactivation kinetics of CLC-Ka/barttin channels and increased CLC-0 currents opening the common gate and slowing its deactivation. No functional effect was seen for common gate deficient CLC-0 mutants. Similarly, GlialCAM targets the common gate deficient CLC-2 mutant E211V/H816A to cell contacts, without altering its function. Thus, GlialCAM is able to interact with all CLC channels tested, targeting them to cell junctions and activating them by stabilizing the open configuration of the common gate. These results are important to better understand the physiological role of GlialCAM/CLC-2 interaction. PMID:25185546

  14. Interaction of the Lyme Disease Spirochete Borrelia burgdorferi with Brain Parenchyma Elicits Inflammatory Mediators from Glial Cells as Well as Glial and Neuronal Apoptosis

    PubMed Central

    Ramesh, Geeta; Borda, Juan T.; Dufour, Jason; Kaushal, Deepak; Ramamoorthy, Ramesh; Lackner, Andrew A.; Philipp, Mario T.

    2008-01-01

    Lyme neuroborreliosis, caused by the spirochete Borrelia burgdorferi, often manifests by causing neurocognitive deficits. As a possible mechanism for Lyme neuroborreliosis, we hypothesized that B. burgdorferi induces the production of inflammatory mediators in the central nervous system with concomitant neuronal and/or glial apoptosis. To test our hypothesis, we constructed an ex vivo model that consisted of freshly collected slices from brain cortex of a rhesus macaque and allowed live B. burgdorferi to penetrate the tissue. Numerous transcripts of genes that regulate inflammation as well as oligodendrocyte and neuronal apoptosis were significantly altered as assessed by DNA microarray analysis. Transcription level increases of 7.43-fold (P = 0.005) for the cytokine tumor necrosis factor-α and 2.31-fold (P = 0.016) for the chemokine interleukin (IL)-8 were also detected by real-time-polymerase chain reaction array analysis. The immune mediators IL-6, IL-8, IL-1β, COX-2, and CXCL13 were visualized in glial cells in situ by immunofluorescence staining and confocal microscopy. Concomitantly, significant proportions of both oligodendrocytes and neurons undergoing apoptosis were present in spirochete-stimulated tissues. IL-6 production by astrocytes in addition to oligodendrocyte apoptosis were also detected, albeit at lower levels, in rhesus macaques that had received in vivo intraparenchymal stereotaxic inoculations of live B. burgdorferi. These results provide proof of concept for our hypothesis that B. burgdorferi produces inflammatory mediators in the central nervous system, accompanied by glial and neuronal apoptosis. PMID:18832582

  15. Interaction of the Lyme disease spirochete Borrelia burgdorferi with brain parenchyma elicits inflammatory mediators from glial cells as well as glial and neuronal apoptosis.

    PubMed

    Ramesh, Geeta; Borda, Juan T; Dufour, Jason; Kaushal, Deepak; Ramamoorthy, Ramesh; Lackner, Andrew A; Philipp, Mario T

    2008-11-01

    Lyme neuroborreliosis, caused by the spirochete Borrelia burgdorferi, often manifests by causing neurocognitive deficits. As a possible mechanism for Lyme neuroborreliosis, we hypothesized that B. burgdorferi induces the production of inflammatory mediators in the central nervous system with concomitant neuronal and/or glial apoptosis. To test our hypothesis, we constructed an ex vivo model that consisted of freshly collected slices from brain cortex of a rhesus macaque and allowed live B. burgdorferi to penetrate the tissue. Numerous transcripts of genes that regulate inflammation as well as oligodendrocyte and neuronal apoptosis were significantly altered as assessed by DNA microarray analysis. Transcription level increases of 7.43-fold (P = 0.005) for the cytokine tumor necrosis factor-alpha and 2.31-fold (P = 0.016) for the chemokine interleukin (IL)-8 were also detected by real-time-polymerase chain reaction array analysis. The immune mediators IL-6, IL-8, IL-1beta, COX-2, and CXCL13 were visualized in glial cells in situ by immunofluorescence staining and confocal microscopy. Concomitantly, significant proportions of both oligodendrocytes and neurons undergoing apoptosis were present in spirochete-stimulated tissues. IL-6 production by astrocytes in addition to oligodendrocyte apoptosis were also detected, albeit at lower levels, in rhesus macaques that had received in vivo intraparenchymal stereotaxic inoculations of live B. burgdorferi. These results provide proof of concept for our hypothesis that B. burgdorferi produces inflammatory mediators in the central nervous system, accompanied by glial and neuronal apoptosis. PMID:18832582

  16. Neurogenesis and precursor cell differences in the dorsal and ventral adult canine hippocampus.

    PubMed

    Lowe, Aileen; Dalton, Marshall; Sidhu, Kuldip; Sachdev, Perminder; Reynolds, Brent; Valenzuela, Michael

    2015-04-23

    During evolution a unique anterior-posterior flexure posited the canine dentate gyrus in two distinct dorsal and ventral positions. We therefore sought to explore neurogenesis and neurogenic cell-related difference along the canine hippocampal dorsal-ventral axis. Post mortem histological analysis revealed 49.1% greater doublecortin (DCX)-positive cells and a 158.5% greater percentage of double labeled DCX-positive/neuronal nuclei (NeuN) positive cells in the dorsal subgranular zone compared to the ventral. We then show neural precursor cells isolated from fresh hippocampal tissue are capable of proliferating long term, and after differentiation, express neuronal and glial markers. Dorsal hippocampal isolates produced a 120.0% higher frequency of sphere-forming neural precursor cells compared to ventral hippocampal tissue. Histological DCX and neurosphere assay results were highly correlated. Overall, we provide the first evidence that the dorsal canine hippocampus has a markedly higher rate of adult neurogenesis than the ventral hippocampus, possibly related to a greater frequency of contributory neural precursor cells.

  17. Clear plastic cups: a childhood choking hazard.

    PubMed

    Weiss, R L; Goldstein, M N; Dharia, A; Zahtz, G; Abramson, A L; Patel, M

    1996-11-01

    The disposable plastic beverage cup is not usually regarded as hazardous to young children. Certain varieties of these products however, are manufactured from a brittle, clear plastic that easily cracks and fragments. While most conscientious parents keep their children safe from peanuts, balloons, and other known choking hazards, a child can surreptitiously bite a cup edge and aspirate the fragment. We report two cases of foreign body aspiration involving clear plastic cups that went undetected one of which remained 21 months following a negative rigid bronchoscopy. Diagnostic difficulties are related to the transparency and radiolucency of these objects. When suspicious of foreign body aspiration in children, otolaryngologists should inquire about the availability of clear plastic cups in the household and be mindful of the diagnostic pitfalls. Further investigations including CT scanning and repeat bronchoscopy may be helpful in cases of suspected missed foreign bodies. An educational campaign aimed at prevention and placement of product package warning labels should be established.

  18. Technical Note: Methionine, a precursor of methane in living plants

    NASA Astrophysics Data System (ADS)

    Lenhart, K.; Althoff, F.; Greule, M.; Keppler, F.

    2015-03-01

    When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued not only about their contribution to the global methane budget but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds to be identified. We made use of stable isotope techniques to verify the in vivo formation of methane, and, in order to identify the carbon precursor, 13C positionally labeled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labeled methionine clearly identified the sulfur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia). Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.

  19. Technical note: Methionine, a precursor of methane in living plants

    NASA Astrophysics Data System (ADS)

    Lenhart, K.; Althoff, F.; Greule, M.; Keppler, F.

    2014-11-01

    When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued, not only about their contribution to the global methane budget, but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds identified. We made use of stable isotope techniques to verify in vivo formation of methane and, in order to identify the carbon precursor, 13C-positionally labelled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labelled methionine clearly identified the sulphur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia). Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.

  20. Graft-copolymer-based approach to clear, durable, and anti-smudge polyurethane coatings.

    PubMed

    Rabnawaz, Muhammad; Liu, Guojun

    2015-05-26

    Clear anti-smudge coatings with a thickness of up to tens of micrometers have been prepared through a graft-copolymer-based approach from commercial precursors. The coatings repel water, diiodomethane, hexadecane, ink, and an artificial fingerprint liquid. In addition, they can be readily applied onto different substrates using different coating methods. These coatings could find applications in protecting hand-held electronic devices from fingerprints, windows from stains, and buildings from graffiti.

  1. Temporal control of glial cell migration in the Drosophila eye requires gilgamesh, hedgehog, and eye specification genes.

    PubMed

    Hummel, Thomas; Attix, Suzanne; Gunning, Dorian; Zipursky, S Lawrence

    2002-01-17

    In the Drosophila visual system, photoreceptor neurons (R cells) extend axons towards glial cells located at the posterior edge of the eye disc. In gilgamesh (gish) mutants, glial cells invade anterior regions of the eye disc prior to R cell differentiation and R cell axons extend anteriorly along these cells. gish encodes casein kinase Igamma. gish, sine oculis, eyeless, and hedgehog (hh) act in the posterior region of the eye disc to prevent precocious glial cell migration. Targeted expression of Hh in this region rescues the gish phenotype, though the glial cells do not require the canonical Hh signaling pathway to respond. We propose that the spatiotemporal control of glial cell migration plays a critical role in determining the directionality of R cell axon outgrowth. PMID:11804568

  2. Clear cell carcinoma of the female genital tract (not everything is as clear as it seems).

    PubMed

    Offman, Saul L; Longacre, Teri A

    2012-09-01

    Clear cell carcinoma has a storied history in the female genital tract. From the initial designation of ovarian clear cell adenocarcinoma as "mesonephroma" to the linkage between vaginal clear cell carcinoma and diethylstilbestrol exposure in utero, gynecologic tract clear cell tumors have puzzled investigators, posed therapeutic dilemmas for oncologists, and otherwise presented major differential diagnostic challenges for pathologists. One of the most common errors in gynecologic pathology is misdiagnosis of clear cell carcinoma, on both frozen section and permanent section. Given the poor response to platinum-based chemotherapy for advanced-stage disease and increased risk of thromboembolism, accurate diagnosis of clear cell carcinoma is important in the female genital tract. This review (1) presents the clinical and pathologic features of female genital tract clear cell carcinomas; (2) highlights recent molecular developments; (3) identifies areas of potential diagnostic confusion; and (4) presents solutions for these diagnostic problems where they exist.

  3. Glycosphingolipid synthesis inhibitor represses cytokine-induced activation of the Ras-MAPK pathway in embryonic neural precursor cells.

    PubMed

    Yanagisawa, Makoto; Nakamura, Kazuo; Taga, Tetsuya

    2005-09-01

    Neuronal and glial cells in the central nervous system are generated from common neural precursor cells during development. To evaluate the functions of glycosphingolipids (GSLs) in neural precursor cells, neuroepithelial cells (NECs) were prepared from mouse embryos (E14.5), and the effects of an inhibitor of glucosylceramide synthesis, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), on NECs was investigated. In PDMP-treated NECs, the expression of GD3, a major ganglioside of NECs, disappeared. We found that basic fibroblast growth factor (bFGF)-induced proliferation and extracellular signal-regulated kinase (ERK) activation were repressed in PDMP-treated NECs. Leukemia inhibitory factor (LIF)-induced ERK activation was also abolished in PDMP-treated NECs, suggesting that PDMP specifically represses the Ras-MAPK pathway. bFGF-induced activation of the Ras-MAPK pathway in NECs is dependent on GSL-enriched microdomains, lipid rafts. The organization of lipid rafts and the distribution of Ras and Grb2-SOS in the microdomains were not affected. However, Ras activation was repressed in PDMP-treated NECs. In PDMP-treated NECs, some neuronal genes were up-regulated and glial genes were down-regulated. These results suggest that GSLs might be involved in the proliferation, survival, signal transduction and differentiation of NECs.

  4. Characteristics of Glial Reaction in the Perinatal Rat Cortex: Effect of Lesion Size in the ‘Critical Period’

    PubMed Central

    Kálmán, Mihály; Ajtai, Béla M.; Sommernes, Jon Håvard

    2000-01-01

    In this study we investigate the capability of lesions, performed between embryonic day E18 and postnatal day P6, to provoke glial reaction. Two different lesion types were applied: ‘severe’ lesion (tissue defect) and ’light’ lesion (stab wound). The glial reaction was detected with immunostain[ng against glial fibrillary acidic protein. When performed as early as P0, severe lesions could result in reactive gliosis, which persisted even after a month. The glial reaction was detected at P6/P7 and became strong by P8, regardless of the age when the animals were lesioned between P0 and P5. Namely, a strict limit could be estimated for the age when reactive glia were already found rather than for the age when glial reaction-provoking lesions could occur. After prenatal lesions, no glial reaction developed, but the usual glia limitans covered the deformed brain, surface. Light lesions provoked glial reactions when performed at P6. In conclusion, three scenarios were found, depending on the age of the animal at injury: (i) healing without glial reaction, regardless of the remaining deformation; (ii) depending on the size of the lesion, either healing without residuum or with remaining tissue defect plus reactive gliosis; and (iii) healing always with reactive gliosis. The age limits between them were at P0 and P5. The glial reactivity seemingly appears after the end of the neuronal migration and just precedes the massive transformation of the radial glia into astrocytes. Estimating the position of the appearance of glial reactivity among the events of cortical maturation can help to adapt the experimental results to humans. PMID:11147458

  5. Precursors of Short Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Troja, E.; Rosswog, S.; Gehrels, N.

    2010-01-01

    We carried out a systematic search of precursors on the sample of short GRBs observed by Swift. We found that approx. 8-10% of short GRBs display such early episode of emission. One burst (GRB 090510) shows two precursor events, the former approx.13 s and the latter approx. 0.5 s before the GRB. We did not find any substantial difference between the precursor and the main GRB emission, and between short GRBs with and without precursors. We discuss possible mechanisms to reproduce the observed precursor emission within the scenario of compact object mergers. The implications of our results on quantum gravity constraints are also discussed.

  6. Precursor Lesions of Pancreatic Cancer

    PubMed Central

    Higashi, Michiyo; Yamada, Norishige; Goto, Masamichi

    2008-01-01

    This review article describes morphological aspects, gene abnormalities, and mucin expression profiles in precursor lesions such as pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm (MCN) of the pancreas, as well as their relation to pancreatic ductal adenocarcinoma (PDAC). The gene abnormalities in precursors of PDAC are summarized as follows: (1) KRAS mutation and p16/CDKN2A inactivation are early events whose frequencies increase with the dysplasia grade in both PanIN and IPMN; (2) TP53 mutation and SMAD4/DPC4 inactivation are late events observed in PanIN3 or carcinomatous change of IPMN in both PanIN and IPMN, although the frequency of the TP53 mutation is lower in IPMN than in PDAC; and (3) also in MCN, KRAS mutation is an early event whose frequency increases with the dysplasia grade, whereas TP53 mutation and SMAD4/DPC4 inactivation are evident only in the carcinoma. The mucin expression profiles in precursors of PDAC are summarized as follows: (1) MUC1 expression increases with the PanIN grade, and is high in PDAC; (2) the expression pattern of MUC2 differs markedly between the major subtypes of IPMN with different malignancy potentials (i.e., IPMN-intestinal type with MUC2+ expression and IPMN-gastric type with MUC2- expression); (3) MUC2 is not expressed in any grade of PanINs, which is useful for differentiating PanIN from intestinal-type IPMN; (4) de novo expression of MUC4, which appears to increase with the dysplasia grade; and (5) high de novo expression of MUC5AC in all grades of PanINs, all types of IPMN, MCN, and PDAC. PMID:20485640

  7. Clear Communication in the Digital Age

    ERIC Educational Resources Information Center

    Manchester, Bette

    2009-01-01

    One of the essential factors of successful integration of technology in classrooms is the role and relationship of the technology coordinator in supporting integration efforts. The vision for the use of technology in each school and district and the leadership role of the tech coordinator must be clear and understood by all. This article presents…

  8. 29 CFR 1926.604 - Site clearing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Motor Vehicles, Mechanized Equipment, and Marine... be protected from hazards of irritant and toxic plants and suitably instructed in the first aid treatment available. (2) All equipment used in site clearing operations shall be equipped with...

  9. Suprasellar Clear Cell Meningioma in an Infant.

    PubMed

    Anunobi, Charles C; Bankole, Olufemi; Ikeri, Nzechukwu Z; Adeleke, Nurudeen A

    2016-08-01

    Clear cell meningiomas are an uncommon subtype of meningioma rarely seen in infancy. We report a case of clear cell meningioma in an 8-month-old male infant. He presented at the Lagos University Teaching Hospital, Lagos, Nigeria, in 2015 with persistent vomiting, poor feeding and failure to thrive over a four month period. Generalised hypertonia and hyperreflexia were noted on examination. Computed tomography of the brain revealed a huge largely isodense suprasellar mass with a hypodense core. The tumour, which measured 6 × 5 × 4 cm, enhanced non-uniformly with contrast injection and extended to occlude the third ventricle. The patient underwent a bifrontal craniotomy with subtotal tumour excision. Six hours postoperatively, he went into cardiac arrest and could not be resuscitated. A histological diagnosis of clear cell meningioma was made as the tumour cells were immunoreactive to epithelial membrane antigen, S100 protein and vimentin. This case of clear cell meningioma was unusual due to its early occurrence and supratentorial location. PMID:27606120

  10. Plant Histology: Clearing and the Optical Section.

    ERIC Educational Resources Information Center

    Freeman, H. E.

    1985-01-01

    Clearing is a simple and rapid technique in which 75 percent lactic acid is used to remove pigments and cytoplasmic contents of fresh leaves, enabling microscopic view of various internal leaf layers. Procedures for using the technique (which helps students gain a more thorough understanding of plant anatomy) are given. (DH)

  11. Lake Mead--clear and vital

    USGS Publications Warehouse

    Wessells, Stephen M.; Rosen, Michael

    2013-01-01

    “Lake Mead – Clear and Vital” is a 13 minute documentary relating the crucial role of science in maintaining high water quality in Lake Mead. The program was produced coincident with release of the Lakes Mead and Mohave Circular a USGS publication covering past and on-going research in the lakes and tributaries of the Lake Mead National Recreation Area.

  12. Team Planning to CLEAR Up Problems

    ERIC Educational Resources Information Center

    Koehler, Nancy

    2006-01-01

    Professionals and parents need effective systems of teamwork for planning restorative outcomes with troubled children and youth. This article taps the resilient problem-solving process C*L*E*A*R, which is drawn from the Response Ability Pathways (RAP) curriculum. Participants examine the timeline of Challenges, Logic, Emotions, Actions, and…

  13. Suprasellar Clear Cell Meningioma in an Infant

    PubMed Central

    Anunobi, Charles C.; Bankole, Olufemi; Ikeri, Nzechukwu Z.; Adeleke, Nurudeen A.

    2016-01-01

    Clear cell meningiomas are an uncommon subtype of meningioma rarely seen in infancy. We report a case of clear cell meningioma in an 8-month-old male infant. He presented at the Lagos University Teaching Hospital, Lagos, Nigeria, in 2015 with persistent vomiting, poor feeding and failure to thrive over a four month period. Generalised hypertonia and hyperreflexia were noted on examination. Computed tomography of the brain revealed a huge largely isodense suprasellar mass with a hypodense core. The tumour, which measured 6 × 5 × 4 cm, enhanced non-uniformly with contrast injection and extended to occlude the third ventricle. The patient underwent a bifrontal craniotomy with subtotal tumour excision. Six hours postoperatively, he went into cardiac arrest and could not be resuscitated. A histological diagnosis of clear cell meningioma was made as the tumour cells were immunoreactive to epithelial membrane antigen, S100 protein and vimentin. This case of clear cell meningioma was unusual due to its early occurrence and supratentorial location. PMID:27606120

  14. Still No Clear Answer on Graduation Prayer.

    ERIC Educational Resources Information Center

    Sendor, Benjamin

    1996-01-01

    Describes the Supreme Court graduation-prayer decision in "Lee v. Weisman" (1992) and implications of the "Jones v. Clear Creek Independent School District" case, which the Court decided not to review in 1993. Discusses the New Jersey graduation-prayer experiment and ruling of third District Circuit Court Judge Theodore A. McKee, whose rationale…

  15. Suprasellar Clear Cell Meningioma in an Infant

    PubMed Central

    Anunobi, Charles C.; Bankole, Olufemi; Ikeri, Nzechukwu Z.; Adeleke, Nurudeen A.

    2016-01-01

    Clear cell meningiomas are an uncommon subtype of meningioma rarely seen in infancy. We report a case of clear cell meningioma in an 8-month-old male infant. He presented at the Lagos University Teaching Hospital, Lagos, Nigeria, in 2015 with persistent vomiting, poor feeding and failure to thrive over a four month period. Generalised hypertonia and hyperreflexia were noted on examination. Computed tomography of the brain revealed a huge largely isodense suprasellar mass with a hypodense core. The tumour, which measured 6 × 5 × 4 cm, enhanced non-uniformly with contrast injection and extended to occlude the third ventricle. The patient underwent a bifrontal craniotomy with subtotal tumour excision. Six hours postoperatively, he went into cardiac arrest and could not be resuscitated. A histological diagnosis of clear cell meningioma was made as the tumour cells were immunoreactive to epithelial membrane antigen, S100 protein and vimentin. This case of clear cell meningioma was unusual due to its early occurrence and supratentorial location.

  16. Deletion of aquaporin-4 renders retinal glial cells more susceptible to osmotic stress.

    PubMed

    Pannicke, Thomas; Wurm, Antje; Iandiev, Ianors; Hollborn, Margrit; Linnertz, Regina; Binder, Devin K; Kohen, Leon; Wiedemann, Peter; Steinhäuser, Christian; Reichenbach, Andreas; Bringmann, Andreas

    2010-10-01

    The glial water channel aquaporin-4 (AQP4) is implicated in the control of ion and osmohomeostasis in the sensory retina. Using retinal slices from AQP4-deficient and wild-type mice, we investigated whether AQP4 is involved in the regulation of glial cell volume under altered osmotic conditions. Superfusion of retinal slices with a hypoosmolar solution induced a rapid swelling of glial somata in tissues from AQP4 null mice but not from wild-type mice. The swelling was mediated by oxidative stress, inflammatory lipid mediators, and sodium influx into the cells and was prevented by activation of glutamatergic and purinergic receptors. Distinct inflammatory proteins, including interleukin-1 beta, interleukin-6, and inducible nitric oxide synthase, were up-regulated in the retina of AQP4 null mice compared with control, whereas cyclooxygenase-2 was down-regulated. The data suggest that water flux through AQP4 is involved in the rapid volume regulation of retinal glial (Müller) cells in response to osmotic stress and that deletion of AQP4 results in an inflammatory response of the retinal tissue. Possible implications of the data for understanding the pathophysiology of neuromyelitis optica, a human disease that has been suggested to involve serum antibodies to AQP4, are discussed. PMID:20544823

  17. Myricetin and quercetin attenuate ischemic injury in glial cultures by different mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have demonstrated that polyphenols from cinnamon and green tea reduce cell swelling and mitochondrial dysfunction in C6 glial cultures following ischemic injury. We tested the protective effects of the flavonoid polyphenols, myricetin and quercetin, on key features of ischemic injury. C6 cultures...

  18. Postnatal development of the myenteric glial network and its modulation by butyrate.

    PubMed

    Cossais, François; Durand, Tony; Chevalier, Julien; Boudaud, Marie; Kermarrec, Laetitia; Aubert, Philippe; Neveu, Isabelle; Naveilhan, Philippe; Neunlist, Michel

    2016-06-01

    The postnatal period is crucial for the development of gastrointestinal (GI) functions. The enteric nervous system is a key regulator of GI functions, and increasing evidences indicate that 1) postnatal maturation of enteric neurons affect the development of GI functions, and 2) microbiota-derived short-chain fatty acids can be involved in this maturation. Although enteric glial cells (EGC) are central regulators of GI functions, the postnatal evolution of their phenotype remains poorly defined. We thus characterized the postnatal evolution of EGC phenotype in the colon of rat pups and studied the effect of short-chain fatty acids on their maturation. We showed an increased expression of the glial markers GFAP and S100β during the first postnatal week. As demonstrated by immunohistochemistry, a structured myenteric glial network was observed at 36 days in the rat colons. Butyrate inhibited EGC proliferation in vivo and in vitro but had no effect on glial marker expression. These results indicate that the EGC myenteric network continues to develop after birth, and luminal factors such as butyrate endogenously produced in the colon may affect this development. PMID:27056724

  19. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence.

    PubMed

    Ibiza, Sales; García-Cassani, Bethania; Ribeiro, Hélder; Carvalho, Tânia; Almeida, Luís; Marques, Rute; Misic, Ana M; Bartow-McKenney, Casey; Larson, Denise M; Pavan, William J; Eberl, Gérard; Grice, Elizabeth A; Veiga-Fernandes, Henrique

    2016-07-21

    Group 3 innate lymphoid cells (ILC3) are major regulators of inflammation and infection at mucosal barriers. ILC3 development is thought to be programmed, but how ILC3 perceive, integrate and respond to local environmental signals remains unclear. Here we show that ILC3 in mice sense their environment and control gut defence as part of a glial–ILC3–epithelial cell unit orchestrated by neurotrophic factors. We found that enteric ILC3 express the neuroregulatory receptor RET. ILC3-autonomous Ret ablation led to decreased innate interleukin-22 (IL-22), impaired epithelial reactivity, dysbiosis and increased susceptibility to bowel inflammation and infection. Neurotrophic factors directly controlled innate Il22 downstream of the p38 MAPK/ERK-AKT cascade and STAT3 activation. Notably, ILC3 were adjacent to neurotrophic-factor-expressing glial cells that exhibited stellate-shaped projections into ILC3 aggregates. Glial cells sensed microenvironmental cues in a MYD88-dependent manner to control neurotrophic factors and innate IL-22. Accordingly, glial-intrinsic Myd88 deletion led to impaired production of ILC3-derived IL-22 and a pronounced propensity towards gut inflammation and infection. Our work sheds light on a novel multi-tissue defence unit, revealing that glial cells are central hubs of neuron and innate immune regulation by neurotrophic factor signals. PMID:27409807

  20. Coupling of glutamate and glucose uptake in cultured Bergmann glial cells.

    PubMed

    Mendez-Flores, Orquidia G; Hernández-Kelly, Luisa C; Suárez-Pozos, Edna; Najimi, Mustapha; Ortega, Arturo

    2016-09-01

    Glutamate, the main excitatory neurotransmitter in the vertebrate brain, exerts its actions through specific membrane receptors present in neurons and glial cells. Over-stimulation of glutamate receptors results in neuronal death, phenomena known as excitotoxicity. A family of sodium-dependent, glutamate uptake transporters mainly expressed in glial cells, removes the amino acid from the synaptic cleft preventing neuronal death. The sustained sodium influx associated to glutamate removal in glial cells, activates the sodium/potassium ATPase restoring the ionic balance, additionally, glutamate entrance activates glutamine synthetase, both events are energy demanding, therefore glia cells increase their ATP expenditure favouring glucose uptake, and triggering several signal transduction pathways linked to proper neuronal glutamate availability, via the glutamate/glutamine shuttle. To further characterize these complex transporters interactions, we used the well-established model system of cultured chick cerebellum Bergmann glia cells. A time and dose-dependent increase in the activity, plasma membrane localization and protein levels of glucose transporters was detected upon d-aspartate exposure. Interestingly, this increase is the result of a protein kinase C-dependent signaling cascade. Furthermore, a glutamate-dependent glucose and glutamate transporters co-immunoprecipitation was detected. These results favour the notion that glial cells are involved in glutamatergic neuronal physiology. PMID:27184733

  1. Flavonoids Modulate the Proliferation of Neospora caninum in Glial Cell Primary Cultures

    PubMed Central

    Barbosa de Matos, Rosan; Braga-de-Souza, Suzana; Pena Seara Pitanga, Bruno; Amaral da Silva, Victor Diógenes; Viana de Jesus, Erica Etelvina; Morales Pinheiro, Alexandre; Dias Costa, Maria de Fátima; dos Santos El-Bacha, Ramon; de Oliveira Ribeiro, Cátia Suse

    2014-01-01

    Neospora caninum (Apicomplexa; Sarcocystidae) is a protozoan that causes abortion in cattle, horses, sheep, and dogs as well as neurological and dermatological diseases in dogs. In the central nervous system of dogs infected with N. caninum, cysts were detected that exhibited gliosis and meningitis. Flavonoids are polyphenolic compounds that exhibit antibacterial, antiparasitic, antifungal, and antiviral properties. In this study, we investigated the effects of flavonoids in a well-established in vitro model of N. caninum infection in glial cell cultures. Glial cells were treated individually with 10 different flavonoids, and a subset of cultures was also infected with the NC-1 strain of N. caninum. All of the flavonoids tested induced an increase in the metabolism of glial cells and many of them increased nitrite levels in cultures infected with NC-1 compared to controls and uninfected cultures. Among the flavonoids tested, 3',4'-dihydroxyflavone, 3',4',5,7-tetrahydroxyflavone (luteolin), and 3,3',4',5,6-pentahydroxyflavone (quercetin), also inhibited parasitophorous vacuole formation. Taken together, our findings show that flavonoids modulate glial cell responses, increase NO secretion, and interfere with N. caninum infection and proliferation. PMID:25548412

  2. Regulation of glial cell number and differentiation by ecdysone and Fos signaling.

    PubMed

    Giesen, Kay; Lammel, Uwe; Langehans, Dirk; Krukkert, Karin; Bunse, Ingrid; Klämbt, Christian

    2003-04-01

    In the midline glia of the embryonic ventral nerve cord of Drosophila, differentiation as well as the subsequent regulation of cell number is under the control of EGF-receptor signaling. During pupal stages apoptosis of all midline glial cells is initiated by ecdysone signaling. In a genetic screen we have identified mutations in disembodied, rippchen, spook, shade, shadow, shroud and tramtrack that all share a number of phenotypic traits, including defects in cuticle differentiation and nervous system development. Some of these genes were previously placed in the so-called 'Halloween-group' and were shown to affect ecdysone synthesis during embryogenesis. Here we demonstrate that the Halloween mutations not only affect glial differentiation but also lead to an increase in the number of midline glial cells, suggesting that during embryogenesis ecdysone signaling is required to adjust glial cell number similar to pupal stages. Finally we isolated a P-element-induced mutation of shroud, which controls the expression of ecdysone inducible genes. The P-element insertion occurs in one of the promoters of the Drosophila fos gene for which we present a yet undescribed complex genomic organization. The recently described kayak alleles affect only one of the six different Fos isoforms. This work for the first time links ecydsone signaling to Fos function and shows that during embryonic and pupal stages similar developmental mechanisms control midline glia survival. PMID:12676319

  3. Insulin-dependent regulation of GLAST/EAAT1 in Bergmann glial cells.

    PubMed

    Poblete-Naredo, Irais; Angulo, Carla; Hernández-Kelly, Luisa; López-Bayghen, Esther; Aguilera, José; Ortega, Arturo

    2009-02-20

    Glutamate is the major excitatory neurotransmitter in the central nervous system. Ionotropic and metabotropic glutamate receptors are present in neurons and glial cells and are involved in gene expression regulation. A family of sodium-dependent glutamate transporters carries out the removal of the neurotransmitter from the synaptic cleft. In the cerebellum, the bulk of glutamate transport is mediated through the excitatory amino acids transporter 1 (EAAT1/GLAST) expressed in Bergmann glial cells. Proper transporter function is critical for glutamate cycling and glucose turnover, as well as prevention of excitotoxic insult to Purkinje cells. In order to gain insight into the regulatory signals that modify this uptake activity, we investigated the effects of insulin exposure. Using the well-defined chick cerebellar Bergmann glial cell culture model, we observed a time and dose-dependent decrease in [(3)H]-d-aspartate uptake. As expected, this effect is mimicked by the tyrosine phosphatase inhibitor sodium orthovanadate, suggesting a receptor-mediated effect. Equilibrium [(3)H]-d-aspartate binding experiments as well as a reverse transcriptase/polymerase chain reaction strategy demonstrated that the decrease in the uptake activity is related to reduced numbers of transporter molecules in the plasma membrane. Accordingly, the transcriptional activity of the chick glast promoter diminished upon insulin treatment. The present findings suggest the involvement of insulin in neuronal/glial coupling in the cerebellum.

  4. Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system.

    PubMed

    Boesmans, Werend; Lasrado, Reena; Vanden Berghe, Pieter; Pachnis, Vassilis

    2015-02-01

    Enteric glial cells are vital for the autonomic control of gastrointestinal homeostasis by the enteric nervous system. Several different functions have been assigned to enteric glial cells but whether these are performed by specialized subtypes with a distinctive phenotype and function remains elusive. We used Mosaic Analysis with Double Markers and inducible lineage tracing to characterize the morphology and dynamic molecular marker expression of enteric GLIA in the myenteric plexus. Functional analysis in individually identified enteric glia was performed by Ca(2+) imaging. Our experiments have identified four morphologically distinct subpopulations of enteric glia in the gastrointestinal tract of adult mice. Marker expression analysis showed that the majority of glia in the myenteric plexus co-express glial fibrillary acidic protein (GFAP), S100β, and Sox10. However, a considerable fraction (up to 80%) of glia outside the myenteric ganglia, did not label for these markers. Lineage tracing experiments suggest that these alternative combinations of markers reflect dynamic gene regulation rather than lineage restrictions. At the functional level, the three myenteric glia subtypes can be distinguished by their differential response to adenosine triphosphate. Together, our studies reveal extensive heterogeneity and phenotypic plasticity of enteric glial cells and set a framework for further investigations aimed at deciphering their role in digestive function and disease.

  5. Glial fibrillary acidic protein (GFAP) shows circadian oscillations in crayfish Procambarus clarkii putative pacemakers.

    PubMed

    Rodríguez-Muñoz, María de la Paz; Escamilla-Chimal, Elsa G

    2015-01-01

    Although several studies of glia have examined glial fibrillary acid protein (GFAP) and its relationship to the circadian rhythms of different organisms, they have not explored the daily GFAP oscillations in the putative pacemakers of the crayfish Procambarus clarkii or in other crustaceans. In this study we investigated the daily variations in GFAP concentrations in the eyestalk and brain, which are considered to be putative pacemakers in adult P. clarkii. In both structures, the glial GFAP was quantified using the indirect enzyme-linked immunosorbent assay (ELISA), and double labeling immunofluorescence was used to detect it and its co-localization with protein Period (PER), an important component of the circadian clock, in various regions of both structures. The ELISA results were analyzed using Cosinor and one-way ANOVA with Bonferroni and Scheffé's post hoc tests. The results of this analysis showed that the GFAP levels present circadian oscillations in both structures. Moreover, GFAP was localized in different structures of the eyestalk and brain; however, co-localization with PER occurred only in the lamina ganglionaris, specifically in the cartridges of the eyestalk and in some of the cluster 9 brain cells. These results suggest that as in other invertebrates and vertebrates, glial cells could be involved in the circadian system of P. clarkii; however, thus far we cannot know whether the glial cells are only effectors, participate in afferent pathways, or are part of the circadian clock.

  6. The role of NO synthase isoforms in PDT-induced injury of neurons and glial cells

    NASA Astrophysics Data System (ADS)

    Kovaleva, V. D.; Berezhnaya, E. V.; Uzdensky, A. B.

    2015-03-01

    Nitric oxide (NO) is an important second messenger, involved in the implementation of various cell functions. It regulates various physiological and pathological processes such as neurotransmission, cell responses to stress, and neurodegeneration. NO synthase is a family of enzymes that synthesize NO from L-arginine. The activity of different NOS isoforms depends both on endogenous and exogenous factors. In particular, it is modulated by oxidative stress, induced by photodynamic therapy (PDT). We have studied the possible role of NOS in the regulation of survival and death of neurons and surrounding glial cells under photo-oxidative stress induced by photodynamic treatment (PDT). The crayfish stretch receptor consisting of a single identified sensory neuron enveloped by glial cells is a simple but informative model object. It was photosensitized with alumophthalocyanine photosens (10 nM) and irradiated with a laser diode (670 nm, 0.4 W/cm2). Antinecrotic and proapoptotic effects of NO on the glial cells were found using inhibitory analysis. We have shown the role of inducible NO synthase in photoinduced apoptosis and involvement of neuronal NO synthase in photoinduced necrosis of glial cells in the isolated crayfish stretch receptor. The activation of NO synthase was evaluated using NADPH-diaphorase histochemistry, a marker of neurons expressing the enzyme. The activation of NO synthase in the isolated crayfish stretch receptor was evaluated as a function of time after PDT. Photodynamic treatment induced transient increase in NO synthase activity and then slowly inhibited this enzyme.

  7. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence.

    PubMed

    Ibiza, Sales; García-Cassani, Bethania; Ribeiro, Hélder; Carvalho, Tânia; Almeida, Luís; Marques, Rute; Misic, Ana M; Bartow-McKenney, Casey; Larson, Denise M; Pavan, William J; Eberl, Gérard; Grice, Elizabeth A; Veiga-Fernandes, Henrique

    2016-07-21

    Group 3 innate lymphoid cells (ILC3) are major regulators of inflammation and infection at mucosal barriers. ILC3 development is thought to be programmed, but how ILC3 perceive, integrate and respond to local environmental signals remains unclear. Here we show that ILC3 in mice sense their environment and control gut defence as part of a glial–ILC3–epithelial cell unit orchestrated by neurotrophic factors. We found that enteric ILC3 express the neuroregulatory receptor RET. ILC3-autonomous Ret ablation led to decreased innate interleukin-22 (IL-22), impaired epithelial reactivity, dysbiosis and increased susceptibility to bowel inflammation and infection. Neurotrophic factors directly controlled innate Il22 downstream of the p38 MAPK/ERK-AKT cascade and STAT3 activation. Notably, ILC3 were adjacent to neurotrophic-factor-expressing glial cells that exhibited stellate-shaped projections into ILC3 aggregates. Glial cells sensed microenvironmental cues in a MYD88-dependent manner to control neurotrophic factors and innate IL-22. Accordingly, glial-intrinsic Myd88 deletion led to impaired production of ILC3-derived IL-22 and a pronounced propensity towards gut inflammation and infection. Our work sheds light on a novel multi-tissue defence unit, revealing that glial cells are central hubs of neuron and innate immune regulation by neurotrophic factor signals.

  8. Comparative assessment of iridium oxide and platinum alloy wires using an in vitro glial scar assay.

    PubMed

    Ereifej, Evon S; Khan, Saida; Newaz, Golam; Zhang, Jinsheng; Auner, Gregory W; VandeVord, Pamela J

    2013-12-01

    The long-term effect of chronically implanted electrodes is the formation of a glial scar. Therefore, it is imperative to assess the biocompatibility of materials before employing them in neural electrode fabrication. Platinum alloy and iridium oxide have been identified as good candidates as neural electrode biomaterials due to their mechanical and electrical properties, however, effect of glial scar formation for these two materials is lacking. In this study, we applied a glial scarring assay to observe the cellular reactivity to platinum alloy and iridium oxide wires in order to assess the biocompatibility based on previously defined characteristics. Through real-time PCR, immunostaining and imaging techniques, we will advance the understanding of the biocompatibility of these materials. Results of this study demonstrate iridium oxide wires exhibited a more significant reactive response as compared to platinum alloy wires. Cells cultured with platinum alloy wires had less GFAP gene expression, lower average GFAP intensity, and smaller glial scar thickness. Collectively, these results indicated that platinum alloy wires were more biocompatible than the iridium oxide wires.

  9. Potential primary roles of glial cells in the mechanisms of psychiatric disorders.

    PubMed

    Yamamuro, Kazuhiko; Kimoto, Sohei; Rosen, Kenneth M; Kishimoto, Toshifumi; Makinodan, Manabu

    2015-01-01

    While neurons have long been considered the major player in multiple brain functions such as perception, emotion, and memory, glial cells have been relegated to a far lesser position, acting as merely a "glue" to support neurons. Multiple lines of recent evidence, however, have revealed that glial cells such as oligodendrocytes, astrocytes, and microglia, substantially impact on neuronal function and activities and are significantly involved in the underlying pathobiology of psychiatric disorders. Indeed, a growing body of evidence indicates that glial cells interact extensively with neurons both chemically (e.g., through neurotransmitters, neurotrophic factors, and cytokines) and physically (e.g., through gap junctions), supporting a role for these cells as likely significant modifiers not only of neural function in brain development but also disease pathobiology. Since questions have lingered as to whether glial dysfunction plays a primary role in the biology of neuropsychiatric disorders or a role related solely to their support of neuronal physiology in these diseases, informative and predictive animal models have been developed over the last decade. In this article, we review recent findings uncovered using glia-specific genetically modified mice with which we can evaluate both the causation of glia dysfunction and its potential role in neuropsychiatric disorders such as autism and schizophrenia. PMID:26029044

  10. Mcidas and GemC1/Lynkeas specify embryonic radial glial cells.

    PubMed

    Kyrousi, Christina; Lalioti, Maria-Eleni; Skavatsou, Eleni; Lygerou, Zoi; Taraviras, Stavros

    2016-01-01

    Ependymal cells are multiciliated cells located in the wall of the lateral ventricles of the adult mammalian brain and are key components of the subependymal zone niche, where adult neural stem cells reside. Through the movement of their motile cilia, ependymal cells control the cerebrospinal fluid flow within the ventricular system from which they receive secreted molecules and morphogens controlling self-renewal and differentiation decisions of adult neural stem cells. Multiciliated ependymal cells become fully differentiated at postnatal stages however they are specified during mid to late embryogenesis from a population of radial glial cells. Here we discuss recent findings suggesting that 2 novel molecules, Mcidas and GemC1/Lynkeas are key players on radial glial specification to ependymal cells. Both proteins were initially described as cell cycle regulators revealing sequence similarity to Geminin. They are expressed in radial glial cells committed to the ependymal cell lineage during embryogenesis, while overexpression and knock down experiments showed that are sufficient and necessary for ependymal cell generation. We propose that Mcidas and GemC1/Lynkeas are key components of the molecular cascade that promotes radial glial cells fate commitment toward multiciliated ependymal cell lineage operating upstream of c-Myb and FoxJ1. PMID:27606337

  11. Regulation of glial cell number and differentiation by ecdysone and Fos signaling.

    PubMed

    Giesen, Kay; Lammel, Uwe; Langehans, Dirk; Krukkert, Karin; Bunse, Ingrid; Klämbt, Christian

    2003-04-01

    In the midline glia of the embryonic ventral nerve cord of Drosophila, differentiation as well as the subsequent regulation of cell number is under the control of EGF-receptor signaling. During pupal stages apoptosis of all midline glial cells is initiated by ecdysone signaling. In a genetic screen we have identified mutations in disembodied, rippchen, spook, shade, shadow, shroud and tramtrack that all share a number of phenotypic traits, including defects in cuticle differentiation and nervous system development. Some of these genes were previously placed in the so-called 'Halloween-group' and were shown to affect ecdysone synthesis during embryogenesis. Here we demonstrate that the Halloween mutations not only affect glial differentiation but also lead to an increase in the number of midline glial cells, suggesting that during embryogenesis ecdysone signaling is required to adjust glial cell number similar to pupal stages. Finally we isolated a P-element-induced mutation of shroud, which controls the expression of ecdysone inducible genes. The P-element insertion occurs in one of the promoters of the Drosophila fos gene for which we present a yet undescribed complex genomic organization. The recently described kayak alleles affect only one of the six different Fos isoforms. This work for the first time links ecydsone signaling to Fos function and shows that during embryonic and pupal stages similar developmental mechanisms control midline glia survival.

  12. Cinnamon Polyphenols Attenuate Neuronal Death and Glial Swelling in Ischemic Injury

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brain edema is a major complication associated with ischemic stroke and is characterized by a volumetric enlargement of the brain. Astrocyte swelling is a major component of brain edema. We investigated the protective effects of polyphenols isolated from green tea and cinnamon in C6 glial cultures s...

  13. Regulation of serotonin transporter gene expression in human glial cells by growth factors.

    PubMed

    Kubota, N; Kiuchi, Y; Nemoto, M; Oyamada, H; Ohno, M; Funahashi, H; Shioda, S; Oguchi, K

    2001-04-01

    The aims of this study were to identify monoamine transporters expressed in human glial cells, and to examine the regulation of their expression by stress-related growth factors. The expression of serotonin transporter mRNA was detected by reverse transcriptase-polymerase chain reaction in normal human astrocytes, whereas the dopamine transporter (DAT) and the norepinephrine transporter (NET) were not detected. The cDNA sequence of the "glial" serotonin transporter in astrocytes was consistent with that reported for the "neuronal" serotonin transporter (SERT). Moreover, we also demonstrated SERT expression in glial fibrillary acidic protein-positive cells by immunocytochemical staining in normal human astrocytes. Serotonin transporter gene expression was also detected in glioma-derived cell lines (A172, KG-1-C and KGK). Addition of basic fibroblast growth factor (bFGF) or epidermal growth factor (EGF) for 2 days increased serotonin transporter gene expression in astrocytes and JAR (human choriocarcinoma cell line). Basic fibroblast growth factor, but not epidermal growth factor, increased specific [3H]serotonin uptake in astrocytes in a time (1-4 days)- and concentration (20-100 ng/ml)-dependent manner. The expression of genes for basic fibroblast growth factor and epidermal growth factor receptors was detected in astrocytes. These findings suggest that the expression of the serotonin transporter in human glial cells is positively regulated by basic fibroblast growth factor. PMID:11301061

  14. Modification of potassium movement through the retina of the drone (Apis mellifera male) by glial uptake.

    PubMed

    Coles, J A; Orkand, R K

    1983-07-01

    Intracellular recordings were made in photoreceptors and glial cells (outer pigment cells) of the superfused cut head of the honey-bee drone (Apis mellifera male). When the [K+] in the superfusate was abruptly increased from 3.2 mM to 17.9 mM both photoreceptors and glial cells depolarized. The time course of the depolarization of the photoreceptors was slower with increasing depth from the surface. Half time of depolarization was plotted against depth: this graph was compatible with the arrival of K+ being exclusively by diffusion through the extracellular clefts. However, as we then showed, this interpretation is inadequate. The time course of depolarization of the glial cells was almost the same at all depths. This indicates that they are electrically coupled. Consequently, current-mediated K+ flux (spatial buffering) through glial cells will contribute to the transport of K+ through the tissue: K+ ions enter the glial syncytium in the region of high external potassium concentration, [K+]0, and an equivalent quantity of K+ ions leave in regions of low [K+]0. Intracellular K+ activity (aiK) was measured with double-barrelled K+-sensitive micro-electrodes in slices of retina superfused on both faces. When [K+] in the superfusate was increased from 7.5 mM to 17.9 mM an increase in aiK was observed in glial cells at all depths in the slice (initial rate 1.7 mM min-1, S.E. of the mean = 0.2 mM min-1), but there was little increase in the photoreceptors (0.3 +/- 0.2 mM min-1). The increase in aiK in glial cells near the centre of the slice could not have been caused by spatial buffering; it presumably resulted from net uptake. We conclude that when [K+] is increased at the surface of this tissue, the build up of K+ in the extracellular clefts depends on extracellular diffusion, spatial buffering and net uptake. The latter two processes, which have opposing effects, involve about 10 times as much K+ as the first. This is in rough agreement with less direct experiments

  15. Acceleration of acoustical emission precursors preceding failure in sheared granular material

    NASA Astrophysics Data System (ADS)

    Johnson, P. A.; Kaproth, B. M.; Scuderi, M.; Ferdowsi, B.; Griffa, M.; Carmeliet, J.; Guyer, R. A.; Le Bas, P.; Trugman, D.; Ben Naim, E.; Daub, E. G.; Marone, C.

    2013-12-01

    Earthquake precursor observations are becoming progressively more widespread as instrumentation improves, in particular for interplate earthquakes (e.g., Bouchon et al., Nature Geoscience, 2013). One question regarding precursor behavior is whether or not they are due to a triggering cascade where one precursor triggers the next, or if they are independent events resulting from slow slip. We investigate this topic in order to characterize the physics of precursors, by applying laboratory experiments of sheared granular media in a bi-axial configuration. We sheared layers of glass beads under applied normal loads of 2-8 MPa, shearing rates of 5-10 μm/s at room temperature and humidity. We show that above ~ 3 MPa load, precursors are manifest by an exponential increase in time of the acoustic emission (AE), with an additional acceleration of event rate leading to the primary stick-slip failure event. The recorded AE are clearly correlated with small drops in shear stress during slow slip prior to the main stick-slip failure. Event precursors take place where the material is still modestly dilating, yet while the macroscopic frictional strength is no longer increasing. The precursors are of order 100x smaller in recorded strain amplitude than the stick-slip events. We are currently working on statistical methods to determine whether or not the precursors are triggered cascades. [reference: Bouchon et al., (2013) Nature Geoscience 6, 299-302 doi:10.1038/ngeo1770].

  16. Rho kinase inhibition following traumatic brain injury in mice promotes functional improvement and acute neuron survival but has little effect on neurogenesis, glial responses or neuroinflammation.

    PubMed

    Bye, Nicole; Christie, Kimberly J; Turbic, Alisa; Basrai, Harleen S; Turnley, Ann M

    2016-05-01

    Inhibition of the Rho/Rho kinase pathway has been shown to be beneficial in a variety of neural injuries and diseases. In this manuscript we investigate the role of Rho kinase inhibition in recovery from traumatic brain injury using a controlled cortical impact model in mice. Mice subjected to a moderately severe TBI were treated for 1 or 4 weeks with the Rho kinase inhibitor Y27632, and functional outcomes and neuronal and glial cell responses were analysed at 1, 7 and 35 days post-injury. We hypothesised that Y27632-treated mice would show functional improvement, with augmented recruitment of neuroblasts from the SVZ and enhanced survival of newborn neurons in the pericontusional cortex, with protection against neuronal degeneration, neuroinflammation and modulation of astrocyte reactivity and blood-brain-barrier permeability. While Rho kinase inhibition enhanced recovery of motor function after trauma, there were no substantial increases in the recruitment of DCX(+) neuroblasts or the number of BrdU(+) or EdU(+) labelled newborn neurons in the pericontusional cortex of Y27632-treated mice. Inhibition of Rho kinase significantly reduced the number of degenerating cortical neurons at 1day post-injury compared to saline controls but had no longer term effect on neuronal degeneration, with only modest effects on astrocytic reactivity and macrophage/microglial responses. Overall, this study showed that Rho kinase contributes to acute neurodegenerative processes in the injured cortex but does not play a significant role in SVZ neural precursor cell-derived adult neurogenesis, glial responses or blood-brain barrier permeability following a moderately severe brain injury. PMID:26896832

  17. Rho kinase inhibition following traumatic brain injury in mice promotes functional improvement and acute neuron survival but has little effect on neurogenesis, glial responses or neuroinflammation.

    PubMed

    Bye, Nicole; Christie, Kimberly J; Turbic, Alisa; Basrai, Harleen S; Turnley, Ann M

    2016-05-01

    Inhibition of the Rho/Rho kinase pathway has been shown to be beneficial in a variety of neural injuries and diseases. In this manuscript we investigate the role of Rho kinase inhibition in recovery from traumatic brain injury using a controlled cortical impact model in mice. Mice subjected to a moderately severe TBI were treated for 1 or 4 weeks with the Rho kinase inhibitor Y27632, and functional outcomes and neuronal and glial cell responses were analysed at 1, 7 and 35 days post-injury. We hypothesised that Y27632-treated mice would show functional improvement, with augmented recruitment of neuroblasts from the SVZ and enhanced survival of newborn neurons in the pericontusional cortex, with protection against neuronal degeneration, neuroinflammation and modulation of astrocyte reactivity and blood-brain-barrier permeability. While Rho kinase inhibition enhanced recovery of motor function after trauma, there were no substantial increases in the recruitment of DCX(+) neuroblasts or the number of BrdU(+) or EdU(+) labelled newborn neurons in the pericontusional cortex of Y27632-treated mice. Inhibition of Rho kinase significantly reduced the number of degenerating cortical neurons at 1day post-injury compared to saline controls but had no longer term effect on neuronal degeneration, with only modest effects on astrocytic reactivity and macrophage/microglial responses. Overall, this study showed that Rho kinase contributes to acute neurodegenerative processes in the injured cortex but does not play a significant role in SVZ neural precursor cell-derived adult neurogenesis, glial responses or blood-brain barrier permeability following a moderately severe brain injury.

  18. Vascular endothelial growth factors A and C are induced in the SVZ following neonatal hypoxia-ischemia and exert different effects on neonatal glial progenitors

    PubMed Central

    Bain, Jennifer M.; Moore, Lisamarie; Ren, Zhihua; Simonishvili, Sophia; Levison, Steven W.

    2012-01-01

    Episodes of neonatal hypoxia-ischemia (H-I) are strongly associated with cerebral palsy and a wide spectrum of other neurological deficits in children. Two key processes required to repair damaged organs are to amplify the number of precursors capable of regenerating damaged cells and to direct their differentiation towards the cell types that need to be replaced. Since hypoxia induces vascular endothelial growth factor (VEGF) production, it is logical to predict that VEGFs are key mediators of tissue repair after H-I injury. The goal of this study was to test the hypothesis that certain VEGF isoforms increase during recovery from neonatal H-I and that they would differentially affect the proliferation and differentiation of subventricular zone (SVZ) progenitors. During the acute recovery period from H-I both VEGF-A and VEGF-C were transiently induced in the SVZ, which correlated with an increase in SVZ blood vessel diameter. These growth factors were produced by glial progenitors, astrocytes and to a lesser extent, microglia. VEGF-A promoted the production of astrocytes from SVZ glial progenitors while VEGF-C stimulated the proliferation of both early and late oligodendrocyte progenitors, which was abolished by blocking the VEGFR-3. Altogether, these results provide new insights into the signals that coordinate the reactive responses of the progenitors in the SVZ to neonatal H-I. Our studies further suggest that therapeutics that extend VEGF-C production and/or agonists that stimulate the VEGFR-3 will promote oligodendrocyte progenitor cell development to enhance myelination after perinatal brain injury. PMID:23565129

  19. Heterotypic binding between neuronal membrane vesicles and glial cells is mediated by a specific cell adhesion molecule

    PubMed Central

    1984-01-01

    By means of a multistage quantitative assay, we have identified a new kind of cell adhesion molecule (CAM) on neuronal cells of the chick embryo that is involved in their adhesion to glial cells. The assay used to identify the binding component (which we name neuron-glia CAM or Ng-CAM) was designed to distinguish between homotypic binding (e.g., neuron to neuron) and heterotypic binding (e.g., neuron to glia). This distinction was essential because a single neuron might simultaneously carry different CAMs separately mediating each of these interactions. The adhesion of neuronal cells to glial cells in vitro was previously found to be inhibited by Fab' fragments prepared from antisera against neuronal membranes but not by Fab' fragments against N-CAM, the neural cell adhesion molecule. This suggested that neuron-glia adhesion is mediated by specific cell surface molecules different from previously isolated CAMs . To verify that this was the case, neuronal membrane vesicles were labeled internally with 6-carboxyfluorescein and externally with 125I-labeled antibodies to N-CAM to block their homotypic binding. Labeled vesicles bound to glial cells but not to fibroblasts during a 30-min incubation period. The specific binding of the neuronal vesicles to glial cells was measured by fluorescence microscopy and gamma spectroscopy of the 125I label. Binding increased with increasing concentrations of both glial cells and neuronal vesicles. Fab' fragments prepared from anti-neuronal membrane sera that inhibited binding between neurons and glial cells were also found to inhibit neuronal vesicle binding to glial cells. The inhibitory activity of the Fab' fragments was depleted by preincubation with neuronal cells but not with glial cells. Trypsin treatment of neuronal membrane vesicles released material that neutralized Fab' fragment inhibition; after chromatography, neutralizing activity was enriched 50- fold. This fraction was injected into mice to produce monoclonal

  20. Robotic Precursor Missions for Mars Habitats

    NASA Astrophysics Data System (ADS)

    Huntsberger, Terry; Pirjanian, Paolo; Schenker, Paul S.; Trebi-Ollennu, Ashitey; Das, Hari; Joshi, Sajay

    2000-07-01

    Infrastructure support for robotic colonies, manned Mars habitat, and/or robotic exploration of planetary surfaces will need to rely on the field deployment of multiple robust robots. This support includes such tasks as the deployment and servicing of power systems and ISRU generators, construction of beaconed roadways, and the site preparation and deployment of manned habitat modules. The current level of autonomy of planetary rovers such as Sojourner will need to be greatly enhanced for these types of operations. In addition, single robotic platforms will not be capable of complicated construction scenarios. Precursor robotic missions to Mars that involve teams of multiple cooperating robots to accomplish some of these tasks is a cost effective solution to the possible long timeline necessary for the deployment of a manned habitat. Ongoing work at JPL under the Mars Outpost Program in the area of robot colonies is investigating many of the technology developments necessary for such an ambitious undertaking. Some of the issues that are being addressed include behavior-based control systems for multiple cooperating robots (CAMPOUT), development of autonomous robotic systems for the rescue/repair of trapped or disabled robots, and the design and development of robotic platforms for construction tasks such as material transport and surface clearing.

  1. Robotic Precursor Missions for Mars Habitats

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry; Pirjanian, Paolo; Schenker, Paul S.; Trebi-Ollennu, Ashitey; Das, Hari; Joshi, Sajay

    2000-01-01

    Infrastructure support for robotic colonies, manned Mars habitat, and/or robotic exploration of planetary surfaces will need to rely on the field deployment of multiple robust robots. This support includes such tasks as the deployment and servicing of power systems and ISRU generators, construction of beaconed roadways, and the site preparation and deployment of manned habitat modules. The current level of autonomy of planetary rovers such as Sojourner will need to be greatly enhanced for these types of operations. In addition, single robotic platforms will not be capable of complicated construction scenarios. Precursor robotic missions to Mars that involve teams of multiple cooperating robots to accomplish some of these tasks is a cost effective solution to the possible long timeline necessary for the deployment of a manned habitat. Ongoing work at JPL under the Mars Outpost Program in the area of robot colonies is investigating many of the technology developments necessary for such an ambitious undertaking. Some of the issues that are being addressed include behavior-based control systems for multiple cooperating robots (CAMPOUT), development of autonomous robotic systems for the rescue/repair of trapped or disabled robots, and the design and development of robotic platforms for construction tasks such as material transport and surface clearing.

  2. The synergy of earthquake precursors

    NASA Astrophysics Data System (ADS)

    Pulinets, Sergey

    2011-12-01

    The system of geophysical shells (lithosphere, atmosphere, ionosphere) is considered as an open complex nonlinear system with dissipation where earthquake preparation could be regarded as a self-organizing process leading to the critical state of the system. The processes in atmosphere and ionosphere are considered from the point of view of non-equilibrium thermodynamics. The intensive ionization of boundary layer of atmosphere (probably provided by radon in occasion of earthquake preparation) gives start to the synergetic sequence of coupling processes where the ionosphere and even magnetosphere are the last links in the chain of interactions. Every anomaly observed in different geophysical fields (surface temperature, latent heat flux, electromagnetic emissions, variations in ionosphere, particle precipitation, etc.) is not considered as an individual process but the part of the self-organizing process, the final goal of which is the reaching of the point of the maximum entropy. Radon anomaly before the Kobe earthquake is considered as a perfect example to satisfy the formal seismological determination of the earthquake precursor. What is genetically connected with radon through the ionization process can also be regarded as a precursor. The problem of co-seismic variations of the discussed parameters of atmosphere and ionosphere is considered as well.

  3. Annealing of aromatic polyimide precursors

    NASA Technical Reports Server (NTRS)

    Wakelyn, N. T.

    1975-01-01

    A study has been made of the thermal behavior of polyimide precursors: an isomeric pair of crystals of the complex formed by p-phenylenediamine with the separated isomers of the di-isopropyl ester of pyromellitic acid. Specimens of this material were isothermally annealed in the temperature range 120 C to 170 C for periods of time up to 1 week. Although this temperature range is well below that customarily used for imidizations, the working hypothesis was that it would be more likely that a polymer embodying at least part of the precursor structure could be formed if the molecular motion was minimized to that actually required for the formation of the imide linkage. The progress of the annealing was followed by: infrared spectroscopy, differential thermal analysis, powder X-ray diffraction, and thermal gravimetric analysis. Single crystal X-ray analysis of the meta monomer yields a structure of chains of alternating acid and base and suggests that this monomer is amenable to polymerization with a minimum of geometrical disruption.

  4. Stress proteins and glial cell functions during chronic aluminium exposures: protective role of curcumin.

    PubMed

    Sood, Pooja Khanna; Nahar, Uma; Nehru, Bimla

    2012-03-01

    Involved in the ongoing debate is the speculation that aluminium is somehow toxic for neurons. Glial cells cope up to protect neurons from this toxic insult by maintaining the glutathione homeostasis. Of late newer and newer roles of glial cells have been depicted. The present work looks into the other regulatory mechanisms that show the glial cells response to pro-oxidant effects of aluminium exposure. In the present investigation we have evaluated the inflammatory responses of the glial cells as well as HSP70-induction during aluminium exposure. Further, the protective role of curcumin is also evaluated. Aluminium was administered by oral gavage at a dose level of 100 mg/kg b.wt/day for a period of 8 weeks. Curcumin was administered i.p. at a dose of 50 mg/kg b.wt./day on alternate days. Enhanced gene and protein expression of HSP70 in the glial fractions of the aluminium exposed animals as compared to the corresponding neuronal population. Aluminium exposure resulted in a significant increase in the NF-κB and TNF-α expression suggesting inflammatory responses. In the conjunctive treatment group of aluminium and curcumin exposure marked reduction in the gene and protein expression of NF-κB and TNF-α was observed. This was further reflected in histopathological studies showing no evidence of inflammation in conjunctive group as compared to aluminium treatment. From the present study, it can be concluded that curcumin has a potential anti-inflammatory action and can be exploited in other toxicological conditions also.

  5. Spontaneous glial calcium waves in the retina develop over early adulthood.

    PubMed

    Kurth-Nelson, Zeb L; Mishra, Anusha; Newman, Eric A

    2009-09-01

    Intercellular glial Ca(2+) waves constitute a signaling pathway between glial cells. Artificial stimuli have previously been used to evoke these waves, and their physiological significance has been questioned. We report here that Ca(2+) waves occur spontaneously in rat retinal glial cells, both in the isolated retina and in vivo. These spontaneous waves are propagated by ATP release. In the isolated retina, suramin (P2 receptor antagonist) reduces the frequency of spontaneous wave generation by 53%, and apyrase (ATP-hydrolyzing enzyme) reduces frequency by 95-100%. Luciferin-luciferase chemiluminescence reveals waves of ATP matching the spontaneous Ca(2+) waves, indicating that ATP release occurs as spontaneous Ca(2+) waves are generated. Wave generation also depends on age. Spontaneous wave frequency rises from 0.27 to 1.0 per minute per mm(2), as rats age from 20 to 120 d. The sensitivity of glia to ATP does not increase with age, but the ATP released by evoked waves is 31% greater in 120-d-old than in 20-d-old rats, suggesting that increased ATP release in older animals could account for the higher frequency of wave generation. Simultaneous imaging of glial Ca(2+) and arterioles in the isolated retina demonstrates that spontaneous waves alter vessel diameter, implying that spontaneous waves may have a significant impact on retinal physiology. Spontaneous intercellular glial Ca(2+) waves also occur in the retina in vivo, with frequency, speed, and diameter similar to the isolated retina. Increased spontaneous wave occurrence with age suggests that wave generation may be related to retinal pathology.

  6. Viscoelastic properties of individual glial cells and neurons in the CNS

    PubMed Central

    Lu, Yun-Bi; Franze, Kristian; Seifert, Gerald; Steinhäuser, Christian; Kirchhoff, Frank; Wolburg, Hartwig; Guck, Jochen; Janmey, Paul; Wei, Er-Qing; Käs, Josef; Reichenbach, Andreas

    2006-01-01

    One hundred fifty years ago glial cells were discovered as a second, non-neuronal, cell type in the central nervous system. To ascribe a function to these new, enigmatic cells, it was suggested that they either glue the neurons together (the Greek word “γλια” means “glue”) or provide a robust scaffold for them (“support cells”). Although both speculations are still widely accepted, they would actually require quite different mechanical cell properties, and neither one has ever been confirmed experimentally. We investigated the biomechanics of CNS tissue and acutely isolated individual neurons and glial cells from mammalian brain (hippocampus) and retina. Scanning force microscopy, bulk rheology, and optically induced deformation were used to determine their viscoelastic characteristics. We found that (i) in all CNS cells the elastic behavior dominates over the viscous behavior, (ii) in distinct cell compartments, such as soma and cell processes, the mechanical properties differ, most likely because of the unequal local distribution of cell organelles, (iii) in comparison to most other eukaryotic cells, both neurons and glial cells are very soft (“rubber elastic”), and (iv) intriguingly, glial cells are even softer than their neighboring neurons. Our results indicate that glial cells can neither serve as structural support cells (as they are too soft) nor as glue (because restoring forces are dominant) for neurons. Nevertheless, from a structural perspective they might act as soft, compliant embedding for neurons, protecting them in case of mechanical trauma, and also as a soft substrate required for neurite growth and facilitating neuronal plasticity. PMID:17093050

  7. Glial cell-expressed mechanosensitive channel TRPV4 mediates infrasound-induced neuronal impairment.

    PubMed

    Shi, Ming; Du, Fang; Liu, Yang; Li, Li; Cai, Jing; Zhang, Guo-Feng; Xu, Xiao-Fei; Lin, Tian; Cheng, Hao-Ran; Liu, Xue-Dong; Xiong, Li-Ze; Zhao, Gang

    2013-11-01

    Vibroacoustic disease, a progressive and systemic disease, mainly involving the central nervous system, is caused by excessive exposure to low-frequency but high-intensity noise generated by various heavy transportations and machineries. Infrasound is a type of low-frequency noise. Our previous studies demonstrated that infrasound at a certain intensity caused neuronal injury in rats but the underlying mechanism(s) is still largely unknown. Here, we showed that glial cell-expressed TRPV4, a Ca(2+)-permeable mechanosensitive channel, mediated infrasound-induced neuronal injury. Among different frequencies and intensities, infrasound at 16 Hz and 130 dB impaired rat learning and memory abilities most severely after 7-14 days exposure, a time during which a prominent loss of hippocampal CA1 neurons was evident. Infrasound also induced significant astrocytic and microglial activation in hippocampal regions following 1- to 7-day exposure, prior to neuronal apoptosis. Moreover, pharmacological inhibition of glial activation in vivo protected against neuronal apoptosis. In vitro, activated glial cell-released proinflammatory cytokines IL-1β and TNF-α were found to be key factors for this neuronal apoptosis. Importantly, infrasound induced an increase in the expression level of TRPV4 both in vivo and in vitro. Knockdown of TRPV4 expression by siRNA or pharmacological inhibition of TRPV4 in cultured glial cells decreased the levels of IL-1β and TNF-α, attenuated neuronal apoptosis, and reduced TRPV4-mediated Ca(2+) influx and NF-κB nuclear translocation. Finally, using various antagonists we revealed that calmodulin and protein kinase C signaling pathways were involved in TRPV4-triggered NF-κB activation. Thus, our results provide the first evidence that glial cell-expressed TRPV4 is a potential key factor responsible for infrasound-induced neuronal impairment. PMID:24002225

  8. Two forms of cerebellar glial cells interact differently with neurons in vitro

    PubMed Central

    1984-01-01

    Specific interactions between neurons and glia dissociated from early postnatal mouse cerebellar tissue were studied in vitro by indirect immunocytochemical staining with antisera raised against purified glial filament protein, galactocerebroside, and the NILE glycoprotein. Two forms of cells were stained with antisera raised against purified glial filament protein. The first, characterized by a cell body 9 microns diam and processes 130-150 microns long, usually had two to three neurons associated with them and resembled Bergmann glia. The second had a slightly larger cell body with markedly shorter arms among which were nestled several dozen neuronal cells, and resembled astrocytes of the granular layer. Staining with monoclonal antisera raised against purified galactocerebroside revealed the presence of immature oligodendroglia in the cultures. These glial cells constituted approximately 2% of the total cell population in the cultures and, in contrast to astroglia, did not form specific contacts with neurons. Staining with two neuronal markers, antisera raised against purified NILE glycoprotein and tetanus toxin, revealed that most cells associated with presumed astroglia were small neurons (5-8 microns). After 1-2 d in culture, some stained neurons had very fine, short processes. Nearly all of the processes greater than 10-20 micron long were glial in origin. Electron microscopy also demonstrated the presence of two forms of astroglia in the cultures, each with a different organizing influence on cerebellar neurons. Most neurons associated with astroglia were granule neurons, although a few larger neurons sometimes associated with them. Time-lapse video microscopy revealed extensive cell migration (approximately 10 microns/h) along the arms of Bergmann-like astroglia. In contrast, cells did not migrate along the arms of astrocyte-like astroglia, but remained stationary at or near branch points. Growth cone activity, pulsating movements of cell perikarya, and

  9. Substance P spinal signaling induces glial activation and nociceptive sensitization after fracture.

    PubMed

    Li, W-W; Guo, T-Z; Shi, X; Sun, Y; Wei, T; Clark, D J; Kingery, W S

    2015-12-01

    Tibia fracture in rodents induces substance P (SP)-dependent keratinocyte activation and inflammatory changes in the hindlimb, similar to those seen in complex regional pain syndrome (CRPS). In animal pain models spinal glial cell activation results in nociceptive sensitization. This study tested the hypothesis that limb fracture triggers afferent C-fiber SP release in the dorsal horn, resulting in chronic glial activation and central sensitization. At 4 weeks after tibia fracture and casting in rats, the cast was removed and hind paw allodynia, unweighting, warmth, and edema were measured, then the antinociceptive effects of microglia (minocycline) or astrocyte (L-2-aminoadipic acid (LAA)) inhibitors or an SP receptor antagonist (LY303870) were tested. Immunohistochemistry and PCR were used to evaluate microglial and astrocyte activation in the dorsal horn. Similar experiments were performed in intact rats after brief sciatic nerve electric stimulation at C-fiber intensity. Microglia and astrocytes were chronically activated at 4 weeks after fracture and contributed to the maintenance of hind paw allodynia and unweighting. Furthermore, LY303870 treatment initiated at 4 weeks after fracture partially reversed both spinal glial activation and nociceptive sensitization. Similarly, persistent spinal microglial activation and hind paw nociceptive sensitization were observed at 48 h after sciatic nerve C-fiber stimulation and this effect was inhibited by treatment with minocycline, LAA, or LY303870. These data support the hypothesis that C-fiber afferent SP signaling chronically supports spinal neuroglial activation after limb fracture and that glial activation contributes to the maintenance of central nociceptive sensitization in CRPS. Treatments inhibiting glial activation and spinal inflammation may be therapeutic for CRPS. PMID:26386297

  10. Multiphoton microscopy of cleared mouse organs

    NASA Astrophysics Data System (ADS)

    Parra, Sonia G.; Chia, Thomas H.; Zinter, Joseph P.; Levene, Michael J.

    2010-05-01

    Typical imaging depths with multiphoton microscopy (MPM) are limited to less than 300 μm in many tissues due to light scattering. Optical clearing significantly reduces light scattering by replacing water in the organ tissue with a fluid having a similar index of refraction to that of proteins. We demonstrate MPM of intact, fixed, cleared mouse organs with penetration depths and fields of view in excess of 2 mm. MPM enables the creation of large 3-D data sets with flexibility in pixel format and ready access to intrinsic fluorescence and second-harmonic generation. We present high-resolution images and 3-D image stacks of the brain, small intestine, large intestine, kidney, lung, and testicle with image sizes as large as 4096×4096 pixels.

  11. Clearing the smoke around medical marijuana.

    PubMed

    Ware, M A

    2011-12-01

    The hazy world of "medical marijuana" continues to cry out for clear data on which to base medical decision making and rational policy design. In this issue of Clinical Pharmacology & Therapeutics, Abrams and colleagues report that vaporized cannabis does not meaningfully affect opioid plasma levels and may even augment the efficacy of oxycodone and morphine in patients with chronic non-cancer pain. This Commentary considers the implications of this work for clinical practice and further research initiatives. PMID:22089341

  12. Clearings in Ly-alpha forests

    NASA Astrophysics Data System (ADS)

    Kovner, Israel; Rees, Martin J.

    1989-10-01

    At sufficient resolution, QSO spectra can be examined for patches of reduced H I column density in Ly-alpha clouds. Statistics of these clearings can constrain the fraction of the ionizing background contributed by compact sources and (possibly) their lifetimes and beaming. This is demonstrated first in a simple Euclidean setup and then in a model which takes into account the expansion of the universe and the cosmological evolution of the factors involved. The expected number of clearings in a Ly-alpha forest extending back to the formation epoch of compact sources of ionizing radiation (CSIRs) is about 1/4, if the CSIRs are important ionizing agents, and if the transience of CSIRs is unimportant. The particular properties of the CSIR population, e.g., their luminosity function, have little importance. However, expected number of clearings can be much larger if the CSIR lifetimes are short compared to the light crossing times of the domains of dominance, or if the CSIRs turned on sharply at a time when the ionization rate due to competing processes was low.

  13. Radiation-induced reduction of the glial population during development disrupts the formation of olfactory glomeruli in an insect

    SciTech Connect

    Oland, L.A.; Tolbert, L.P.; Mossman, K.L.

    1988-01-01

    Interactions between neurons and between neurons and glial cells have been shown by a number of investigators to be critical for normal development of the nervous system. In the olfactory system of Manduca sexta, sensory axons have been shown to induce the formation of synaptic glomeruli in the antennal lobe of the brain. Oland and Tolbert (1987) found that the growth of sensory axons into the developing antennal lobe causes changes in glial shape and disposition that presage the establishment of glomeruli, each surrounded by a glial envelope. Several lines of evidence lead us to hypothesize that the glial cells of the lobe may be acting as intermediaries in developmental interactions between sensory axons and neurons of the antennal lobe. In the present study, we have tested this hypothesis by using gamma-radiation to reduce the number of glial cells at a time when neurons of the antennal system are postmitotic but glomeruli have not yet developed. When glial numbers are severely reduced, the neuropil of the resulting lobe lacks glomeruli. Despite the presence of afferent axons, the irradiated lobe has many of the features of a lobe that developed in the absence of afferent axons. Our findings indicate that the glial cells must play a necessary role in the inductive influence of the afferent axons.

  14. Analysis of Amyloid Precursor Protein Function in Drosophila melanogaster

    PubMed Central

    Cassar, Marlène; Kretzschmar, Doris

    2016-01-01

    The Amyloid precursor protein (APP) has mainly been investigated in connection with its role in Alzheimer’s Disease (AD) due to its cleavage resulting in the production of the Aβ peptides that accumulate in the plaques characteristic for this disease. However, APP is an evolutionary conserved protein that is not only found in humans but also in many other species, including Drosophila, suggesting an important physiological function. Besides Aβ, several other fragments are produced by the cleavage of APP; large secreted fragments derived from the N-terminus and a small intracellular C-terminal fragment. Although these fragments have received much less attention than Aβ, a picture about their function is finally emerging. In contrast to mammals, which express three APP family members, Drosophila expresses only one APP protein called APP-like or APPL. Therefore APPL functions can be studied in flies without the complication that other APP family members may have redundant functions. Flies lacking APPL are viable but show defects in neuronal outgrowth in the central and peripheral nervous system (PNS) in addition to synaptic changes. Furthermore, APPL has been connected with axonal transport functions. In the adult nervous system, APPL, and more specifically its secreted fragments, can protect neurons from degeneration. APPL cleavage also prevents glial death. Lastly, APPL was found to be involved in behavioral deficits and in regulating sleep/activity patterns. This review, will describe the role of APPL in neuronal development and maintenance and briefly touch on its emerging function in circadian rhythms while an accompanying review will focus on its role in learning and memory formation. PMID:27507933

  15. Analysis of Amyloid Precursor Protein Function in Drosophila melanogaster.

    PubMed

    Cassar, Marlène; Kretzschmar, Doris

    2016-01-01

    The Amyloid precursor protein (APP) has mainly been investigated in connection with its role in Alzheimer's Disease (AD) due to its cleavage resulting in the production of the Aβ peptides that accumulate in the plaques characteristic for this disease. However, APP is an evolutionary conserved protein that is not only found in humans but also in many other species, including Drosophila, suggesting an important physiological function. Besides Aβ, several other fragments are produced by the cleavage of APP; large secreted fragments derived from the N-terminus and a small intracellular C-terminal fragment. Although these fragments have received much less attention than Aβ, a picture about their function is finally emerging. In contrast to mammals, which express three APP family members, Drosophila expresses only one APP protein called APP-like or APPL. Therefore APPL functions can be studied in flies without the complication that other APP family members may have redundant functions. Flies lacking APPL are viable but show defects in neuronal outgrowth in the central and peripheral nervous system (PNS) in addition to synaptic changes. Furthermore, APPL has been connected with axonal transport functions. In the adult nervous system, APPL, and more specifically its secreted fragments, can protect neurons from degeneration. APPL cleavage also prevents glial death. Lastly, APPL was found to be involved in behavioral deficits and in regulating sleep/activity patterns. This review, will describe the role of APPL in neuronal development and maintenance and briefly touch on its emerging function in circadian rhythms while an accompanying review will focus on its role in learning and memory formation. PMID:27507933

  16. Chemical cleaning clears San Miguel's boiler tubes

    SciTech Connect

    Buecker, B.; Wofford, J. ); Magel, R. )

    1994-06-01

    This article describes chemical cleaning of the San Miguel Electric Cooperative (SMEC) boiler, an opposed-fired, natural circulation, reheat unit. At maximum continuous rating, steam flow is 3,054,000 lb/hr at a pressure of 2,925 psig. The superheater and reheater design temperatures are both 1,005 F. Boiler volume is 69,000 gallons. The Unit 1 boiler had not been cleaned since 1980, its original start-up date. Tube sample analyses indicated deposit densities ranging from 12 to 26 grams/ft[sup 2]. Utility boiler tubes will, over time, accumulate an internal layer of iron oxides and other deposits that inhibit flow and heat transfer, even with well-controlled water chemistry. Tube deposits can speed up corrosion, cause tube overheating, and be a precursor to tube failure. Deposits can influence such phenomena as phosphate hideout, and reduce boiler efficiency. For many utility boilers, a periodic cleaning is necessary to remove internal deposits before they can cause serious problems. Regardless of the benefits, chemical cleanings often make plant managers, engineers, and operators anxious because the process has been known to cause equipment damage or extend the length of an outage.

  17. Ependymal tumors with oligodendroglioma like clear cells: Experience from a tertiary care hospital in Pakistan

    PubMed Central

    Hashmi, Fauzan Alam; Khan, Muhammad Faheem; Khan, Saad Akhtar; Waqas, Muhammad; Bari, Muhammad Ehsan; Ahmed, Arsalan

    2015-01-01

    Background: Ependymal tumors with oligodendroglioma like clear cells have never been reported from Pakistan. We aimed to see the features and outcomes of this rare entity. Methods: It was retrospective cohort conducted at the Department of Neurosurgery, Aga Khan University from 2003 to 2013. The medical records and radiology of patients with proven histopathology were reviewed. Analysis was done on SPSS 20. Results: Eleven cases of ependymal tumors with clear cells were found, which equated to 1.5% of the total tumor burden in 11 years. The median age was 49 years. Most common presenting symptom was headache 54.5%. Out of 11 patients, 9 patients had a supratentorial tumor. Magnetic resonance imaging showed hypointense signals on T1 and hyperintense signals on T2-weighted images in all cases. Contrast enhancement was found in 9 patients (77.8%), necrosis and hemorrhage was found in 4 (36%) and 3 (27%) patients, respectively. Immunohistochemistry showed glial fibrillary acidic protein and epithelial membrane antigen positivity in all cases. Ki-67 showed high proliferative index in 6 patients. According to the World Health Organization grading of ependymal tumors, 2 patients had Grade II tumors, and 9 patients had Grade III tumors with clear cells. Gross total resection was achieved in 6 (54.5%) and subtotal resection in 5 patients (45.4%). Recurrence was observed in 9 patients. Six patients died of the disease. Median progression-free survival and overall survival was 8 months and 10 months, respectively. Conclusion: Ependymal tumors with clear cells presented more commonly in Grade III lesions and were more aggressive in behavior with poorer outcome compared to similar studies. PMID:26664928

  18. Regression analysis of reported earthquake precursors. I. Presentation of data

    NASA Astrophysics Data System (ADS)

    Niazi, Mansour

    1984-11-01

    Around 700 reported precursors of about 350 earthquakes, including the negative observations, have been compiled in 11 categories with 31 subdivisions. The data base is subjected to an initial sorting and screening by imposing three restrictions on the ranges of main shock magnitude ( M≥4.0), precursory time ( t≤20 years), and the epicentral distance of observation points ( X m≤4.100.3 M ). Of the 31 subcategories of precursory phenomena, 18 with 9 data points or more are independently studied by regressing their precursory times against magnitude. The preliminary results tend to classify the precursors into three groups: 1. The precursors which show weak or no correlation between time and the magnitude of the eventual main shock. Examples of this group are foreshocks and precursory tilt. 2. The precursors which show clear scaling with magnitude. These include seismic velocity ratio ( V p/Vs), travel time delay, duration of seismic quiescence, and, to some degree, the variation of b-value, and anomalous seismicity. 3. The precursors which display clustering of precursory times around a mean value, which differs for different precursors from a few hours to a few years. Examples include the conductivity rate, geoelectric current and potential, strain, water well level, geochemical anomalies, change of focal mechanism, and the enhancement of seismicity reported only for larger earthquakes. Some of the precursors in this category, such as leveling changes and the occurrence of microseismicity, show bimodal patterns of precursory times and may partially be coseismic. In addition, each category with a sufficient number of reported estimates of distance and signal amplitude is subjected to multiple linear regression. The usefulness of these regressions at this stage appears to be limited to specifying which of the parameters shows a more significant correlation. Standard deviations of residuals of precursory time against magnitude are generally reduced when

  19. Precursors for Carbon Nitride Synthesis

    SciTech Connect

    Prashantha, M.; Gopal, E. S. R.; Ramesh, K.

    2011-07-15

    Nano structured carbon nitride films were prepared by pyrolysis assisted chemical vapour deposition. Pyrrole (C{sub 4}H{sub 5}N), Pyrrolidine (C{sub 4}H{sub 9}N), Azabenzimidazole (C{sub 6}H{sub 5}N{sub 3}) and Triazine (C{sub 6}H{sub 15}N{sub 3}) were used as precursors. The vibrational modes observed for C-N and C = N from FTIR spectra confirms the bonding of nitrogen with carbon. XPS core level spectra of C 1s and N 1s also show the formation of bonding between carbon and nitrogen atoms. The nitrogen content in the prepared samples was found to be around 25 atomic %.

  20. Antidepressants increase glial cell line-derived neurotrophic factor production through monoamine-independent activation of protein tyrosine kinase and extracellular signal-regulated kinase in glial cells.

    PubMed

    Hisaoka, Kazue; Takebayashi, Minoru; Tsuchioka, Mami; Maeda, Natsuko; Nakata, Yoshihiro; Yamawaki, Shigeto

    2007-04-01

    Recent studies show that neuronal and glial plasticity are important for therapeutic action of antidepressants. We previously reported that antidepressants increase glial cell line-derived neurotrophic factor (GDNF) production in rat C6 glioma cells (C6 cells). Here, we found that amitriptyline, a tricyclic antidepressant, increased both GDNF mRNA expression and release, which were selectively and completely inhibited by mitogen-activated protein kinase kinase inhibitors. Indeed, treatment of amitriptyline rapidly increased extracellular signal-regulated kinase (ERK) activity, as well as p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase activities. Furthermore, different classes of antidepressants also rapidly increased ERK activity. The extent of acute ERK activation and GDNF release were significantly correlated to each other in individual antidepressants, suggesting an important role of acute ERK activation in GDNF production. Furthermore, antidepressants increased the acute ERK activation and GDNF mRNA expression in normal human astrocytes as well as C6 cells. Although 5-hydroxytryptamine (serotonin) (5-HT), but not noradrenaline or dopamine, increased ERK activation and GDNF release via 5-HT2A receptors, ketanserin, a 5-HT2A receptor antagonist, did not have any effect on the amitriptyline-induced ERK activation. Thus, GDNF production by amitriptyline was independent of monoamine. Both of the amitriptyline-induced ERK activation and GDNF mRNA expression were blocked by genistein, a general protein tyrosine kinase (PTK) inhibitor. Actually, we found that amitriptyline acutely increased phosphorylation levels of several phosphotyrosine-containing proteins. Taken together, these findings indicate that ERK activation through PTK regulates antidepressant-induced GDNF production and that the GDNF production in glial cells may be a novel action of the antidepressant, which is independent of monoamine. PMID:17210798

  1. GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3

    SciTech Connect

    Boku, Shuken; Nakagawa, Shin; Takamura, Naoki; Kato, Akiko; Takebayashi, Minoru; Hisaoka-Nakashima, Kazue; Omiya, Yuki; Inoue, Takeshi; Kusumi, Ichiro

    2013-05-17

    Highlights: •GDNF has no effect on ADP proliferation and apoptosis. •GDNF increases ADP differentiation into astrocyte. •A specific inhibitor of STAT3 decreases the astrogliogenic effect of GDNF. •STAT3 knockdown by lentiviral shRNA vector also decreases the astrogliogenic effect of GDNF. •GDNF increases the phosphorylation of STAT3. -- Abstract: While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression and secretion of glial cell line-derived neurotrophic factor (GDNF) in C6 glioma cells derived from rat astrocytes and GDNF increases neurogenesis in adult DG in vivo, we investigated the effects of GDNF on the proliferation, differentiation and apoptosis of cultured neural precursor cells derived from the adult DG. Data showed that GDNF facilitated the differentiation of neural precursor cells into astrocytes but had no effect on their proliferation or apoptosis. Moreover, GDNF increased the phosphorylation of STAT3, and both a specific inhibitor of STAT3 and lentiviral shRNA for STAT3 decreased their differentiation into astrocytes. Taken together, our findings suggest that GDNF facilitates astrogliogenesis from neural precursor cells in adult DG through activating STAT3 and that this action might indirectly affect neurogenesis.

  2. All brains are made of this: a fundamental building block of brain matter with matching neuronal and glial masses

    PubMed Central

    Mota, Bruno; Herculano-Houzel, Suzana

    2014-01-01

    How does the size of the glial and neuronal cells that compose brain tissue vary across brain structures and species? Our previous studies indicate that average neuronal size is highly variable, while average glial cell size is more constant. Measuring whole cell sizes in vivo, however, is a daunting task. Here we use chi-square minimization of the relationship between measured neuronal and glial cell densities in the cerebral cortex, cerebellum, and rest of brain in 27 mammalian species to model neuronal and glial cell mass, as well as the neuronal mass fraction of the tissue (the fraction of tissue mass composed by neurons). Our model shows that while average neuronal cell mass varies by over 500-fold across brain structures and species, average glial cell mass varies only 1.4-fold. Neuronal mass fraction varies typically between 0.6 and 0.8 in all structures. Remarkably, we show that two fundamental, universal relationships apply across all brain structures and species: (1) the glia/neuron ratio varies with the total neuronal mass in the tissue (which in turn depends on variations in average neuronal cell mass), and (2) the neuronal mass per glial cell, and with it the neuronal mass fraction and neuron/glia mass ratio, varies with average glial cell mass in the tissue. We propose that there is a fundamental building block of brain tissue: the glial mass that accompanies a unit of neuronal mass. We argue that the scaling of this glial mass is a consequence of a universal mechanism whereby numbers of glial cells are added to the neuronal parenchyma during development, irrespective of whether the neurons composing it are large or small, but depending on the average mass of the glial cells being added. We also show how evolutionary variations in neuronal cell mass, glial cell mass and number of neurons suffice to determine the most basic characteristics of brain structures, such as mass, glia/neuron ratio, neuron/glia mass ratio, and cell densities. PMID:25429260

  3. Regulation of Specific Functions of Glial Cells in Somatic Hybrids, II. Control of Inducibility of Glycerol-3-Phosphate Dehydrogenase

    PubMed Central

    Davidson, Richard L.; Benda, Philippe

    1970-01-01

    Glycerol-3-phosphate dehydrogenase (EC 1.1.1.8) is induced when glial cells are exposed to hydrocortisone in vitro. In contrast, the enzyme activity in fibroblasts is not affected by the steroid. In an attempt to elucidate the mechanisms controlling inducibility, hybrids between glial cells and fibroblasts were studied. It was found that the activity of the enzyme does not increase when the hybrids are exposed to hydrocortisone. It was also shown that inducibility and the noninduced activity of enzyme are controlled independently. Comparisons of S-100 and glycerol phosphate dehydrogenase activity in the hybrids suggest that all the specialized functions characteristics of glial cells are not coordinately controlled. PMID:4321349

  4. Nitrous oxide flux following tropical land clearing

    NASA Technical Reports Server (NTRS)

    Luizao, Flavio; Luizao, Regina; Matson, Pamela; Livingston, Gerald; Vitousek, Peter

    1989-01-01

    The importance of seasonal cycles of N2O flux from tropical ecosystems and the possibility that tropical deforestation could contribute to the ongoing global increase in N2O concentrations were assessed by measuring N2O flux from forest, cleared land, and pasture over an annual cycle in the central Amazon. A pasture that had been converted from tropical forest had threefold greater annual N2O flux than a paired forest site; similar results were obtained in spot measurements in other pastures. If these results are general, such tropical pastures represent a globally significant source of increased N2O.

  5. PLANETARY CHAOTIC ZONE CLEARING: DESTINATIONS AND TIMESCALES

    SciTech Connect

    Morrison, Sarah; Malhotra, Renu

    2015-01-20

    We investigate the orbital evolution of particles in a planet's chaotic zone to determine their final destinations and their timescales of clearing. There are four possible final states of chaotic particles: collision with the planet, collision with the star, escape, or bounded but non-collision orbits. In our investigations, within the framework of the planar circular restricted three body problem for planet-star mass ratio μ in the range 10{sup –9} to 10{sup –1.5}, we find no particles hitting the star. The relative frequencies of escape and collision with the planet are not scale-free, as they depend upon the size of the planet. For planet radius R{sub p} ≥ 0.001 R{sub H} where R{sub H} is the planet's Hill radius, we find that most chaotic zone particles collide with the planet for μ ≲ 10{sup –5}; particle scattering to large distances is significant only for higher mass planets. For fixed ratio R{sub p} /R{sub H} , the particle clearing timescale, T {sub cl}, has a broken power-law dependence on μ. A shallower power law, T {sub cl} ∼ μ{sup –1/3}, prevails at small μ where particles are cleared primarily by collisions with the planet; a steeper power law, T {sub cl} ∼ μ{sup –3/2}, prevails at larger μ where scattering dominates the particle loss. In the limit of vanishing planet radius, we find T {sub cl} ≈ 0.024 μ{sup –3/2}. The interior and exterior boundaries of the annular zone in which chaotic particles are cleared are increasingly asymmetric about the planet's orbit for larger planet masses; the inner boundary coincides well with the classical first order resonance overlap zone, Δa {sub cl,} {sub int} ≅ 1.2 μ{sup 0.28} a{sub p} ; the outer boundary is better described by Δa {sub cl,} {sub ext} ≅ 1.7 μ{sup 0.31} a{sub p} , where a{sub p} is the planet-star separation.

  6. WEST CLEAR CREEK ROADLESS AREA, ARIZONA.

    USGS Publications Warehouse

    Ulrich, George E.; Bielski, Alan M.

    1984-01-01

    Results of geologic, geochemical, and aeromagnetic studies and review of mineral records and prospect examination for the West Clear Creek Roadless Area, Arizona, indicate that there is little likelihood of the occurrence of mineral or energy resources. No concentrations of minerals were identified within the boundary of the area. A small manganese deposit occurs 1-3 mi east of the area but does not extend into the area. Slightly anomalous values for certain trace metals were found in samples taken within the area, but do not indicate the presence of metallic resources. Gypsum, basaltic cinders, and sandstone occur in the area.

  7. Ecotropic Murine Leukemia Virus Infection of Glial Progenitors Interferes with Oligodendrocyte Differentiation: Implications for Neurovirulence

    PubMed Central

    Li, Ying; Dunphy, Jaclyn M.; Pedraza, Carlos E.; Lynch, Connor R.; Cardona, Sandra M.; Macklin, Wendy B.

    2016-01-01

    ABSTRACT Certain murine leukemia viruses (MLVs) are capable of inducing fatal progressive spongiform motor neuron disease in mice that is largely mediated by viral Env glycoprotein expression within central nervous system (CNS) glia. While the etiologic mechanisms and the glial subtypes involved remain unresolved, infection of NG2 glia was recently observed to correlate spatially and temporally with altered neuronal physiology and spongiogenesis. Since one role of NG2 cells is to serve as oligodendrocyte (OL) progenitor cells (OPCs), we examined here whether their infection by neurovirulent (FrCasE) or nonneurovirulent (Fr57E) ecotropic MLVs influenced their viability and/or differentiation. Here, we demonstrate that OPCs, but not OLs, are major CNS targets of both FrCasE and Fr57E. We also show that MLV infection of neural progenitor cells (NPCs) in culture did not affect survival, proliferation, or OPC progenitor marker expression but suppressed certain glial differentiation markers. Assessment of glial differentiation in vivo using transplanted transgenic NPCs showed that, while MLVs did not affect cellular engraftment or survival, they did inhibit OL differentiation, irrespective of MLV neurovirulence. In addition, in chimeric brains, where FrCasE-infected NPC transplants caused neurodegeneration, the transplanted NPCs proliferated. These results suggest that MLV infection is not directly cytotoxic to OPCs but rather acts to interfere with OL differentiation. Since both FrCasE and Fr57E viruses restrict OL differentiation but only FrCasE induces overt neurodegeneration, restriction of OL maturation alone cannot account for neuropathogenesis. Instead neurodegeneration may involve a two-hit scenario where interference with OPC differentiation combined with glial Env-induced neuronal hyperexcitability precipitates disease. IMPORTANCE A variety of human and animal retroviruses are capable of causing central nervous system (CNS) neurodegeneration manifested as motor

  8. Functional analyses and treatment of precursor behavior.

    PubMed

    Najdowski, Adel C; Wallace, Michele D; Ellsworth, Carrie L; MacAleese, Alicia N; Cleveland, Jackie M

    2008-01-01

    Functional analysis has been demonstrated to be an effective method to identify environmental variables that maintain problem behavior. However, there are cases when conducting functional analyses of severe problem behavior may be contraindicated. The current study applied functional analysis procedures to a class of behavior that preceded severe problem behavior (precursor behavior) and evaluated treatments based on the outcomes of the functional analyses of precursor behavior. Responding for all participants was differentiated during the functional analyses, and individualized treatments eliminated precursor behavior. These results suggest that functional analysis of precursor behavior may offer an alternative, indirect method to assess the operant function of severe problem behavior. PMID:18468282

  9. Functional Analyses and Treatment of Precursor Behavior

    PubMed Central

    Najdowski, Adel C; Wallace, Michele D; Ellsworth, Carrie L; MacAleese, Alicia N; Cleveland, Jackie M

    2008-01-01

    Functional analysis has been demonstrated to be an effective method to identify environmental variables that maintain problem behavior. However, there are cases when conducting functional analyses of severe problem behavior may be contraindicated. The current study applied functional analysis procedures to a class of behavior that preceded severe problem behavior (precursor behavior) and evaluated treatments based on the outcomes of the functional analyses of precursor behavior. Responding for all participants was differentiated during the functional analyses, and individualized treatments eliminated precursor behavior. These results suggest that functional analysis of precursor behavior may offer an alternative, indirect method to assess the operant function of severe problem behavior. PMID:18468282

  10. Orthodontic Tooth Movement with Clear Aligners

    PubMed Central

    Drake, Carl T.; McGorray, Susan P.; Dolce, Calogero; Nair, Madhu; Wheeler, Timothy T.

    2012-01-01

    Clear aligners provide a convenient model to measure orthodontic tooth movement (OTM). We examined the role of in vivo aligner material fatigue and subject-specific factors in tooth movement. Fifteen subjects seeking orthodontic treatment at the University of Florida were enrolled. Results were compared with data previously collected from 37 subjects enrolled in a similar protocol. Subjects were followed prospectively for eight weeks. An upper central incisor was programmed to move 0.5 mm. every two weeks using clear aligners. A duplicate aligner was provided for the second week of each cycle. Weekly polyvinyl siloxane (PVS) impressions were taken, and digital models were fabricated to measure OTM. Initial and final cone beam computed tomography (CBCT) images were obtained to characterize OTM. Results were compared to data from a similar protocol, where subjects received a new aligner biweekly. No significant difference was found in the amount of OTM between the two groups, with mean total OTM of 1.11 mm. (standard deviation (SD) 0.30) and 1.07 mm. (SD 0.33) for the weekly aligner and biweekly control groups, respectively (P = 0.72). Over eight weeks, in two-week intervals, material fatigue does not play a significant role in the rate or amount of tooth movement. PMID:22928114

  11. 75 FR 27338 - NASDAQ OMX Commodities Clearing-Contract Merchant LLC; NASDAQ OMX Commodities Clearing-Delivery...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... Commodities Clearing--Delivery LLC; NASDAQ OMX Commodities Clearing--Finance LLC; Notice of Filing May 6, 2010... Commodities Clearing--Delivery LLC, and NASDAQ OMX Commodities Clearing--Finance LLC filed a supplement to...

  12. Leading time domain seismic precursors

    NASA Astrophysics Data System (ADS)

    Boucouvalas, A. C.; Gkasios, M.; Keskebes, A.; Tselikas, N. T.

    2014-08-01

    The problem of predicting the occurrence of earthquakes is threefold. On one hand it is necessary to predict the date and magnitude of an earthquake, and on the other hand the location of the epicenter. In this work after a brief review of the state of earthquake prediction research, we report on a new leading time precursor for determining time onset of earthquake occurrence. We report the linking between earthquakes of the past with those which happen in the future via Fibonacci, Dual and Lucas numbers (FDL) numbers. We demonstrate it here with two example seed earthquakes at least 100 years old. Using this leading indicator method we can predict significant earthquake events >6.5R, with good accuracy approximately +- 1 day somewhere in the world. From a single seed we produce at least 100 trials simultaneously of which 50% are correct to +- 1day. The indicator is based on Fibonacci, Dual and Lucas numbers (FDL). This result hints that the log periodic FDL numbers are at the root of the understanding of the earthquake mechanism. The theory is based on the assumption that each occurred earthquake discontinuity can be thought of as a generating source of FDL time series. (The mechanism could well be linked to planetary orbits). When future dates are derived from clustering and convergence from previous strong earthquake dates at an FDL time distance, then we have a high probability for an earthquake to occur on that date. We set up a real time system which generates FDL time series from each previous significant earthquake (>7R) and we produce a year to year calendar of high probability earthquake dates. We have tested this over a number of years with considerable success. We have applied this technique for strong (>7R) earthquakes across the globe as well as on a restricted region such as the Greek geographic region where the magnitude is small (>4R-6.5R). In both cases the success of the method is impressive. It is our belief that supplementing this method with

  13. An autopsy case of sudden unexpected death due to a glial cyst of the pineal gland.

    PubMed

    Na, Joo-Young; Lee, Kyung-Hwa; Kim, Hyung-Seok; Park, Jong-Tae

    2014-09-01

    Pineal cysts are usually asymptomatic; however, they may rarely cause symptoms such as chronic headache, paroxysmal headache with gaze paresis, postural syncope, loss of consciousness, and sudden death. A 30-year-old woman with no specific medical history except chronic headache was found collapsed in a public toilet per se. Postmortem examination revealed no external injuries or internal diseases except a cystic lesion of the pineal gland. Histologic examination showed an internal cyst surrounded by glial tissues and pineal parenchyma that was diagnosed as a glial cyst of the pineal gland. Although the pineal cyst cannot be confirmed as the cause of death, it was considered, as no other cause was evident. Herein, we report a pineal cyst considered as an assumed cause of death.

  14. Ultrastructural localization of glial fibrillary acidic protein in mouse cerebellum by immunoperoxidase labeling.

    PubMed

    Schachner, M; Hedley-Whyte, E T; Hsu, D W; Schoonmaker, G; Bignami, A

    1977-10-01

    Glial fibrillary acidic protein was localized at the electron microscope level in the cerebellum of adult mice by indirect immunoperoxidase histology. In confirmation of previous studies at the light microscope level, the antigen was detectable in astrocytes and their processes, but not in neurons or their processes, or in oligodendroglia. Astrocytic processes were stained in white matter, in the granular layet surrounding synaptic glomerular complexes, and in the molecular layer in the form of radially oriented fibers and of sheaths surrounding Purkinje cell dendrites. Astrocytic endfeet impinging on meninges and perivascular membranes were also antigen positive. In astrocytic perikarya and processes, the immunohistochemical reaction product appears both as a diffuse cytoplasmic label and as elongated strands, which by their distribution and frequency could be considered glial filaments.

  15. Glial Fibrillary acidic protein: From intermediate filament assembly and gliosis to neurobiomarker

    PubMed Central

    Yang, Zhihui; Wang, Kevin K.W.

    2015-01-01

    Glial fibrillary acidic protein (GFAP) is an intermediate filament-III protein uniquely found in astrocytes in the CNS, non-myelinating Schwann cells in the PNS and enteric glial cells. GFAP mRNA expressions are regulated by several nuclear-receptor hormones, growth factors and lipopolysaccharides. GFAP is also subjected to a number of post-translational modifications while GFAP mutations result in protein deposits known as Rosenthal fibers in Alexander disease. GFAP gene activation and protein induction appear to play a critical role in astroglia cell activation (astrogliosis) following CNS injuries and neurodegeneration. Emerging evidence also suggests that, following traumatic brain and spinal cord injuries and stroke, GFAP protein and its breakdown products are rapidly released into biofluids, making them strong candidate biomarkers for such neurological disorders. PMID:25975510

  16. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker.

    PubMed

    Yang, Zhihui; Wang, Kevin K W

    2015-06-01

    Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) III protein uniquely found in astrocytes in the central nervous system (CNS), non-myelinating Schwann cells in the peripheral nervous system (PNS), and enteric glial cells. GFAP mRNA expression is regulated by several nuclear-receptor hormones, growth factors, and lipopolysaccharides (LPSs). GFAP is also subject to numerous post-translational modifications (PTMs), while GFAP mutations result in protein deposits known as Rosenthal fibers in Alexander disease. GFAP gene activation and protein induction appear to play a critical role in astroglial cell activation (astrogliosis) following CNS injuries and neurodegeneration. Emerging evidence also suggests that, following traumatic brain and spinal cord injuries and stroke, GFAP and its breakdown products are rapidly released into biofluids, making them strong candidate biomarkers for such neurological disorders.

  17. Role of telomerase reverse transcriptase in glial scar formation after spinal cord injury in rats.

    PubMed

    Tao, Xu; Ming-Kun, Yang; Wei-Bin, Sheng; Hai-Long, Guo; Rui, Kan; Lai-Yong, Tu

    2013-09-01

    The study aims to determine the expression of telomerase reverse transcriptase (TERT) in the glial scar following spinal cord injury in the rat, and to explore its relationship with glial scar formation. A total of 120 Sprague-Dawley rats were randomly divided into three groups: SCI only group (without TERT interference), TERT siRNA group (with TERT interference), and sham group. The TERT siRNA and SCI only groups received spinal cord injury induced by the modified Allen's weight drop method. In the sham group, the vertebral plate was opened to expose the spinal cord, but no injury was modeled. Five rats from each group were sacrificed under anesthesia at days 1, 3, 5, 7, 14, 28, 42, and 56 after spinal cord injury. Specimens were removed for observation of glial scar formation using hematoxylin-eosin staining and immunofluorescence detection. mRNA and protein expressions of TERT and glial fibrillary acidic protein (GFAP) were detected by reverse-transcription (RT)-PCR and western blotting, respectively. Hematoxylin-eosin staining showed evidence of gliosis and glial scarring in the spinal cord injury zone of the TERT siRNA and SCI only groups, but not in the sham group. Immunofluorescence detection showed a significant increase in GFAP expression at all time points after spinal cord injury in the SCI only group (81 %) compared with the TERT siRNA group (67 %) and sham group (2 %). In contrast, the expression of neurofilament protein 200 (NF-200) was gradually reduced and remained at a stable level until 28 days in the SCI only group. There were no NF-200-labeled cells in the spinal cord glial scar and cavity at day 56 after spinal cord injury. NF-200 expression at each time point was significantly lower in the SCI only group than the TERT siRNA group, while there was no change in the sham group. Western blotting showed that TERT and GFAP protein expressions changed dynamically and showed a linear relationship in the SCI only group (r = 0.765, P < 0

  18. Emerging role of glial cells in the control of body weight

    PubMed Central

    García-Cáceres, Cristina; Fuente-Martín, Esther; Argente, Jesús; Chowen, Julie A.

    2012-01-01

    Glia are the most abundant cell type in the brain and are indispensible for the normal execution of neuronal actions. They protect neurons from noxious insults and modulate synaptic transmission through affectation of synaptic inputs, release of glial transmitters and uptake of neurotransmitters from the synaptic cleft. They also transport nutrients and other circulating factors into the brain thus controlling the energy sources and signals reaching neurons. Moreover, glia express receptors for metabolic hormones, such as leptin and insulin, and can be activated in response to increased weight gain and dietary challenges. However, chronic glial activation can be detrimental to neurons, with hypothalamic astrocyte activation or gliosis suggested to be involved in the perpetuation of obesity and the onset of secondary complications. It is now accepted that glia may be a very important participant in metabolic control and a possible therapeutical target. Here we briefly review this rapidly advancing field. PMID:24024117

  19. Glial cells and blood-brain barrier in the human cerebral cortex.

    PubMed

    Ambrosi, G; Virgintino, D; Benagiano, V; Maiorano, E; Bertossi, M; Roncali, L

    1995-01-01

    The spatial relationship established between glial cells and microvasculature in the human cerebral cortex was analysed on peritumoral tissue of the parietal lobe removed during surgery. Observations performed by light microscope immunocytochemistry demonstrated that processes of astrocytes, strongly immunoreactive to both glial fibrillary acidic protein and S-100 protein, form sheaths to the capillaries, and that isolated cells positive to the oligodendrocyte marker 2',3'-cyclic nucleotide 3'-phosphodiesterase are detectable in perivascular areas. Morphometrical analysis by transmission electron microscopy showed that 80% of the vascular endothelium-pericyte layer is invested by small endfeet of astrocyte processes. This study demonstrates that either astrocyte bodies or oligodendrocytes as well as microgliocytes may substitute the astrocytic endfeet adhering to the capillary basement lamina.

  20. ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging

    PubMed Central

    Kurihara, Daisuke; Mizuta, Yoko; Sato, Yoshikatsu; Higashiyama, Tetsuya

    2015-01-01

    Imaging techniques for visualizing and analyzing precise morphology and gene expression patterns are essential for understanding biological processes during development in all organisms. With the aid of chemical screening, we developed a clearing method using chemical solutions, termed ClearSee, for deep imaging of morphology and gene expression in plant tissues. ClearSee rapidly diminishes chlorophyll autofluorescence while maintaining fluorescent protein stability. By adjusting the refractive index mismatch, whole-organ and whole-plant imaging can be performed by both confocal and two-photon excitation microscopy in ClearSee-treated samples. Moreover, ClearSee is applicable to multicolor imaging of fluorescent proteins to allow structural analysis of multiple gene expression. Given that ClearSee is compatible with staining by chemical dyes, the technique is useful for deep imaging in conjunction with genetic markers and for plant species not amenable to transgenic approaches. This method is useful for whole imaging for intact morphology and will help to accelerate the discovery of new phenomena in plant biological research. PMID:26493404

  1. ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging.

    PubMed

    Kurihara, Daisuke; Mizuta, Yoko; Sato, Yoshikatsu; Higashiyama, Tetsuya

    2015-12-01

    Imaging techniques for visualizing and analyzing precise morphology and gene expression patterns are essential for understanding biological processes during development in all organisms. With the aid of chemical screening, we developed a clearing method using chemical solutions, termed ClearSee, for deep imaging of morphology and gene expression in plant tissues. ClearSee rapidly diminishes chlorophyll autofluorescence while maintaining fluorescent protein stability. By adjusting the refractive index mismatch, whole-organ and whole-plant imaging can be performed by both confocal and two-photon excitation microscopy in ClearSee-treated samples. Moreover, ClearSee is applicable to multicolor imaging of fluorescent proteins to allow structural analysis of multiple gene expression. Given that ClearSee is compatible with staining by chemical dyes, the technique is useful for deep imaging in conjunction with genetic markers and for plant species not amenable to transgenic approaches. This method is useful for whole imaging for intact morphology and will help to accelerate the discovery of new phenomena in plant biological research. PMID:26493404

  2. Optical clearing in photoacoustic flow cytometry

    PubMed Central

    Menyaev, Yulian A.; Nedosekin, Dmitry A.; Sarimollaoglu, Mustafa; Juratli, Mazen A.; Galanzha, Ekaterina I.; Tuchin, Valery V.; Zharov, Vladimir P.

    2013-01-01

    Clinical applications of photoacoustic (PA) flow cytometry (PAFC) for detection of circulating tumor cells in deep blood vessels are hindered by laser beam scattering, that result in loss of PAFC sensitivity and resolution. We demonstrate biocompatible and rapid optical clearing (OC) of skin to minimize light scattering and thus, increase optical resolution and sensitivity of PAFC. OC effect was achieved in 20 min by sequent skin cleaning, microdermabrasion, and glycerol application enhanced by massage and sonophoresis. Using 0.8 mm mouse skin layer over a blood vessel in vitro phantom we demonstrated 1.6-fold decrease in laser spot blurring accompanied by 1.6-fold increase in PA signal amplitude from blood background. As a result, peak rate for B16F10 melanoma cells in blood flow increased 1.7-fold. By using OC we also demonstrated the feasibility of PA contrast improvement for human hand veins. PMID:24409398

  3. Making clear messages. What works best?

    PubMed

    1998-01-01

    The March-May 1998 issue of "AIDS Action" provides suggestions on how to develop educational materials for HIV/AIDS prevention campaigns. The key is to match materials to the overall plan. This entails careful consideration of campaign goals, the target population, and desired outcomes (e.g., improvements in knowledge, development of problem-solving or practical skills, attitudinal or behavioral change). The materials should use culturally appropriate language and illustrations, attractive colors and designs, and a nonjudgmental tone. Messages based on fear (e.g., "AIDS kills") should be avoided, as should images that promote discrimination against people with AIDS or groups such as sex workers. The best materials present information in a clear, respectful way and empower people to make their own decisions.

  4. Glial Fibrillary Acidic Protein-Expressing Glia in the Mouse Lung.

    PubMed

    Suarez-Mier, Gabriela B; Buckwalter, Marion S

    2015-01-01

    Autonomic nerves regulate important functions in visceral organs, including the lung. The postganglionic portion of these nerves is ensheathed by glial cells known as non-myelinating Schwann cells. In the brain, glia play important functional roles in neurotransmission, neuroinflammation, and maintenance of the blood brain barrier. Similarly, enteric glia are now known to have analogous roles in gastrointestinal neurotransmission, inflammatory response, and barrier formation. In contrast to this, very little is known about the function of glia in other visceral organs. Like the gut, the lung forms a barrier between airborne pathogens and the bloodstream, and autonomic lung innervation is known to affect pulmonary inflammation and lung function. Lung glia are described as non-myelinating Schwann cells but their function is not known, and indeed no transgenic tools have been validated to study them in vivo. The primary goal of this research was, therefore, to investigate the relationship between non-myelinating Schwann cells and pulmonary nerves in the airways and vasculature and to validate existing transgenic mouse tools that would be useful for studying their function. We focused on the glial fibrillary acidic protein promoter, which is a cognate marker of astrocytes that is expressed by enteric glia and non-myelinating Schwann cells. We describe the morphology of non-myelinating Schwann cells in the lung and verify that they express glial fibrillary acidic protein and S100, a classic glial marker. Furthermore, we characterize the relationship of non-myelinating Schwann cells to pulmonary nerves. Finally, we report tools for studying their function, including a commercially available transgenic mouse line.

  5. [Glial fibrillary acidic protein: the component of intermediate filaments in the vertebrate brain astrocytes].

    PubMed

    Sukhorukova, E G; Kruzhevskiĭ, D É; Alekseeva, O S

    2015-01-01

    Glial fibrillary acidic protein (GFAP) refers to the type III intermediate filament proteins and is the essential component of the cytoskeleton in astrocytes of all vertebrates. This review presents current data on the molecular organization of GFAP in a comparative aspect. The results of most relevant studies using immunocytochemical labeling of the protein are summarized. The data on the changes in expression of GFAP in Alexander disease caused by the primary pathology of astrocytes are presented.

  6. Several synthetic progestins disrupt the glial cell specific-brain aromatase expression in developing zebra fish.

    PubMed

    Cano-Nicolau, Joel; Garoche, Clémentine; Hinfray, Nathalie; Pellegrini, Elisabeth; Boujrad, Noureddine; Pakdel, Farzad; Kah, Olivier; Brion, François

    2016-08-15

    The effects of some progestins on fish reproduction have been recently reported revealing the hazard of this class of steroidal pharmaceuticals. However, their effects at the central nervous system level have been poorly studied until now. Notwithstanding, progesterone, although still widely considered primarily a sex hormone, is an important agent affecting many central nervous system functions. Herein, we investigated the effects of a large set of synthetic ligands of the nuclear progesterone receptor on the glial-specific expression of the zebrafish brain aromatase (cyp19a1b) using zebrafish mechanism-based assays. Progesterone and 24 progestins were first screened on transgenic cyp19a1b-GFP zebrafish embryos. We showed that progesterone, dydrogesterone, drospirenone and all the progesterone-derived progestins had no effect on GFP expression. Conversely, all progestins derived from 19-nortesterone induced GFP in a concentration-dependent manner with EC50 ranging from the low nM range to hundreds nM. The 19-nortestosterone derived progestins levonorgestrel (LNG) and norethindrone (NET) were further tested in a radial glial cell context using U251-MG cells co-transfected with zebrafish ER subtypes (zfERα, zfERβ1 or zfERβ2) and cyp19a1b promoter linked to luciferase. Progesterone had no effect on luciferase activity while NET and LNG induced luciferase activity that was blocked by ICI 182,780. Zebrafish-ERs competition assays showed that NET and LNG were unable to bind to ERs, suggesting that the effects of these compounds on cyp19a1b require metabolic activation prior to elicit estrogenic activity. Overall, we demonstrate that 19-nortestosterone derived progestins elicit estrogenic activity by inducing cyp19a1b expression in radial glial cells. Given the crucial role of radial glial cells and neuro-estrogens in early development of brain, the consequences of exposure of fish to these compounds require further investigation.

  7. Several synthetic progestins disrupt the glial cell specific-brain aromatase expression in developing zebra fish.

    PubMed

    Cano-Nicolau, Joel; Garoche, Clémentine; Hinfray, Nathalie; Pellegrini, Elisabeth; Boujrad, Noureddine; Pakdel, Farzad; Kah, Olivier; Brion, François

    2016-08-15

    The effects of some progestins on fish reproduction have been recently reported revealing the hazard of this class of steroidal pharmaceuticals. However, their effects at the central nervous system level have been poorly studied until now. Notwithstanding, progesterone, although still widely considered primarily a sex hormone, is an important agent affecting many central nervous system functions. Herein, we investigated the effects of a large set of synthetic ligands of the nuclear progesterone receptor on the glial-specific expression of the zebrafish brain aromatase (cyp19a1b) using zebrafish mechanism-based assays. Progesterone and 24 progestins were first screened on transgenic cyp19a1b-GFP zebrafish embryos. We showed that progesterone, dydrogesterone, drospirenone and all the progesterone-derived progestins had no effect on GFP expression. Conversely, all progestins derived from 19-nortesterone induced GFP in a concentration-dependent manner with EC50 ranging from the low nM range to hundreds nM. The 19-nortestosterone derived progestins levonorgestrel (LNG) and norethindrone (NET) were further tested in a radial glial cell context using U251-MG cells co-transfected with zebrafish ER subtypes (zfERα, zfERβ1 or zfERβ2) and cyp19a1b promoter linked to luciferase. Progesterone had no effect on luciferase activity while NET and LNG induced luciferase activity that was blocked by ICI 182,780. Zebrafish-ERs competition assays showed that NET and LNG were unable to bind to ERs, suggesting that the effects of these compounds on cyp19a1b require metabolic activation prior to elicit estrogenic activity. Overall, we demonstrate that 19-nortestosterone derived progestins elicit estrogenic activity by inducing cyp19a1b expression in radial glial cells. Given the crucial role of radial glial cells and neuro-estrogens in early development of brain, the consequences of exposure of fish to these compounds require further investigation. PMID:27245768

  8. Glial Fibrillary Acidic Protein-Expressing Glia in the Mouse Lung

    PubMed Central

    Suarez-Mier, Gabriela B.

    2015-01-01

    Autonomic nerves regulate important functions in visceral organs, including the lung. The postganglionic portion of these nerves is ensheathed by glial cells known as non-myelinating Schwann cells. In the brain, glia play important functional roles in neurotransmission, neuroinflammation, and maintenance of the blood brain barrier. Similarly, enteric glia are now known to have analogous roles in gastrointestinal neurotransmission, inflammatory response, and barrier formation. In contrast to this, very little is known about the function of glia in other visceral organs. Like the gut, the lung forms a barrier between airborne pathogens and the bloodstream, and autonomic lung innervation is known to affect pulmonary inflammation and lung function. Lung glia are described as non-myelinating Schwann cells but their function is not known, and indeed no transgenic tools have been validated to study them in vivo. The primary goal of this research was, therefore, to investigate the relationship between non-myelinating Schwann cells and pulmonary nerves in the airways and vasculature and to validate existing transgenic mouse tools that would be useful for studying their function. We focused on the glial fibrillary acidic protein promoter, which is a cognate marker of astrocytes that is expressed by enteric glia and non-myelinating Schwann cells. We describe the morphology of non-myelinating Schwann cells in the lung and verify that they express glial fibrillary acidic protein and S100, a classic glial marker. Furthermore, we characterize the relationship of non-myelinating Schwann cells to pulmonary nerves. Finally, we report tools for studying their function, including a commercially available transgenic mouse line. PMID:26442852

  9. Spectral imaging microscopy demonstrates cytoplasmic pH oscillations in glial cells.

    PubMed

    Sánchez-Armáss, Sergio; Sennoune, Souad R; Maiti, Debasish; Ortega, Filiberta; Martínez-Zaguilán, Raul

    2006-02-01

    Glial cells exhibit distinct cellular domains, somata, and filopodia. Thus the cytoplasmic pH (pH(cyt)) and/or the behavior of the fluorescent ion indicator might be different in these cellular domains because of distinct microenvironments. To address these issues, we loaded C6 glial cells with carboxyseminaphthorhodafluor (SNARF)-1 and evaluated pH(cyt) using spectral imaging microscopy. This approach allowed us to study pH(cyt) in discrete cellular domains with high temporal, spatial, and spectral resolution. Because there are differences in the cell microenvironment that may affect the behavior of SNARF-1, we performed in situ titrations in discrete cellular regions of single cells encompassing the somata and filopodia. The in situ titration parameters apparent acid-base dissociation constant (pK'(a)), maximum ratio (R(max)), and minimum ratio (R(min)) had a mean coefficient of variation approximately six times greater than those measured in vitro. Therefore, the individual in situ titration parameters obtained from specific cellular domains were used to estimate the pH(cyt) of each region. These studies indicated that glial cells exhibit pH(cyt) heterogeneities and pH(cyt) oscillations in both the absence and presence of physiological HCO(3)(-). The amplitude and frequency of the pH(cyt) oscillations were affected by alkalosis, by acidosis, and by inhibitors of the ubiquitous Na(+)/H(+) exchanger- and HCO(3)(-)-based H(+)-transporting mechanisms. Optical imaging approaches used in conjunction with BCECF as a pH probe corroborated the existence of pH(cyt) oscillations in glial cells. PMID:16135543

  10. The central nervous system of sea cucumbers (Echinodermata: Holothuroidea) shows positive immunostaining for a chordate glial secretion

    PubMed Central

    Mashanov, Vladimir S; Zueva, Olga R; Heinzeller, Thomas; Aschauer, Beate; Naumann, Wilfried W; Grondona, Jesus M; Cifuentes, Manuel; Garcia-Arraras, Jose E

    2009-01-01

    Background Echinoderms and chordates belong to the same monophyletic taxon, the Deuterostomia. In spite of significant differences in body plan organization, the two phyla may share more common traits than was thought previously. Of particular interest are the common features in the organization of the central nervous system. The present study employs two polyclonal antisera raised against bovine Reissner's substance (RS), a secretory product produced by glial cells of the subcomissural organ, to study RS-like immunoreactivity in the central nervous system of sea cucumbers. Results In the ectoneural division of the nervous system, both antisera recognize the content of secretory vacuoles in the apical cytoplasm of the radial glia-like cells of the neuroepithelium and in the flattened glial cells of the non-neural epineural roof epithelium. The secreted immunopositive material seems to form a thin layer covering the cell apices. There is no accumulation of the immunoreactive material on the apical surface of the hyponeural neuroepithelium or the hyponeural roof epithelium. Besides labelling the supporting cells and flattened glial cells of the epineural roof epithelium, both anti-RS antisera reveal a previously unknown putative glial cell type within the neural parenchyma of the holothurian nervous system. Conclusion Our results show that: a) the glial cells of the holothurian tubular nervous system produce a material similar to Reissner's substance known to be synthesized by secretory glial cells in all chordates studied so far; b) the nervous system of sea cucumbers shows a previously unrealized complexity of glial organization. Our findings also provide significant clues for interpretation of the evolution of the nervous system in the Deuterostomia. It is suggested that echinoderms and chordates might have inherited the RS-producing radial glial cell type from the central nervous system of their common ancestor, i.e., the last common ancestor of all the

  11. Immunocytochemical localization of glial fibrillary acidic protein (GFAP) in the area postrema of the cat - Light and electron microscopic study

    NASA Technical Reports Server (NTRS)

    Damelio, F. E.; Gibbs, M. A.; Mehler, W. R.; Eng, L. F.

    1985-01-01

    Glial fibrillary acidic protein (GFAP) was demonstrated in the cytoplasm and processes of ependymal cells and astroglial components of the area postrema of the cat. These observations differ from the findings in the ependyma of the ventricular cavities which are consistently negative for the protein. Since some studies have suggested sensory functions of the glial cells in this emetic chemoreceptor trigger zone, a careful consideration of morphological and biochemical attributes of these cells seems appropriate.

  12. Effect of detergents on streptolysin S precursor.

    PubMed

    Calandra, G B

    1980-08-01

    Group A streptococci which produce streptolysin S contain a cellular precursor to streptolysin S in the membranes and cytoplasm which is activatable by blending in a Vortex mixer with glass beads and ribonucleic acid (RNA)-core (RNA preparation from yeast). Although no activation of precursor occurred when it was mixed with detergents, it was activated when blended with glass beads and detergents such as Tergitol NP-40 and Brij 35. Maximum activation of precursor was achieved in 1 to 2% detergent, in pH 6.5 buffer, and after 8 min of blending. Detergents Tween 20, 40, 60, and 80, Brij 56, and Lubrol WX also activated precursor, but, of all the hemolysin preparations, those with Tween 40 or 60 or Lubrol WX were the most stable. The addition of RNA-core during or after blending of precursor with detergents enhanced the titer and stability of the hemolysin. This was due in part to the association of the hemolytic moiety with RNA-core. Activation of precursor in the membrane was better with a detergent, whereas that in the cytoplasm was better with RNA-core. Therefore, precursor from two different cellular locations can be differentiated by the effects of RNA-core and detergents on precursor titer.

  13. Precursors in gas-liquid mixtures

    NASA Astrophysics Data System (ADS)

    Gasenko, V. G.; Gorelik, R. S.; Nakoryakov, V. E.; Timkin, L. S.

    2013-10-01

    Two types of precursors propagating at the speed of sound in a pure liquid have been revealed in the experiments on the evolution of pressure pulses in a gas-liquid mixture; at the same time, the main pressure pulse propagates at a low equilibrium speed of sound and its evolution is described by the Burgers-Korteweg-de Vries equation. The first high-frequency precursor is a complete analog of a classical Sommerfeld precursor, because the resonance dispersion equation for a bubble mixture coincides with that for insulators in the Lorentz model, and oscillates at a frequency close to the "plasma frequency." The second low-frequency precursor has been revealed in this work. The frequency of the low-frequency precursor is close to the resonance frequency of pulsations of bubbles, which is almost an order of magnitude lower than the frequency of the high-frequency precursor. The low-frequency precursor has a much larger amplitude of pulsations and smaller damping and is not described within the homogeneous model of the gas-liquid mixture. The observed phenomenon of low-frequency precursors has been explained within a simple heterogeneous model of a bubble liquid.

  14. The Interrelationships of Mathematical Precursors in Kindergarten

    ERIC Educational Resources Information Center

    Cirino, Paul T.

    2011-01-01

    This study evaluated the interrelations among cognitive precursors across quantitative, linguistic, and spatial attention domains that have been implicated for math achievement in young children. The dimensionality of the quantity precursors was evaluated in 286 kindergarteners via latent variable techniques, and the contribution of precursors…

  15. A Distinct Perisynaptic Glial Cell Type Forms Tripartite Neuromuscular Synapses in the Drosophila Adult

    PubMed Central

    Strauss, Alexandra L.; Kawasaki, Fumiko; Ordway, Richard W.

    2015-01-01

    Previous studies of Drosophila flight muscle neuromuscular synapses have revealed their tripartite architecture and established an attractive experimental model for genetic analysis of glial function in synaptic transmission. Here we extend these findings by defining a new Drosophila glial cell type, designated peripheral perisynaptic glia (PPG), which resides in the periphery and interacts specifically with fine motor axon branches forming neuromuscular synapses. Identification and specific labeling of PPG was achieved through cell type-specific RNAi-mediated knockdown (KD) of a glial marker, Glutamine Synthetase 2 (GS2). In addition, comparison among different Drosophila neuromuscular synapse models from adult and larval developmental stages indicated the presence of tripartite synapses on several different muscle types in the adult. In contrast, PPG appear to be absent from larval body wall neuromuscular synapses, which do not exhibit a tripartite architecture but rather are imbedded in the muscle plasma membrane. Evolutionary conservation of tripartite synapse architecture and peripheral perisynaptic glia in vertebrates and Drosophila suggests ancient and conserved roles for glia-synapse interactions in synaptic transmission. PMID:26053860

  16. Neuro-glial interactions at the nodes of Ranvier: implication in health and diseases

    PubMed Central

    Faivre-Sarrailh, Catherine; Devaux, Jérôme J.

    2013-01-01

    Specific cell adhesion molecules (CAMs) are dedicated to the formation of axo-glial contacts at the nodes of Ranvier of myelinated axons. They play a central role in the organization and maintenance of the axonal domains: the node, paranode, and juxtaparanode. In particular, CAMs are essential for the accumulation of voltage-gated sodium channels at the nodal gap that ensures the rapid and saltatory propagation of the action potentials (APs). The mechanisms regulating node formation are distinct in the central and peripheral nervous systems, and recent studies have highlighted the relative contribution of paranodal junctions and nodal extracellular matrix. In addition, CAMs at the juxtaparanodal domains mediate the clustering of voltage-gated potassium channels which regulate the axonal excitability. In several human pathologies, the axo-glial contacts are altered leading to disruption of the nodes of Ranvier or mis-localization of the ion channels along the axons. Node alterations and the failure of APs to propagate correctly from nodes to nodes along the axons both contribute to the disabilities in demyelinating diseases. This article reviews the mechanisms regulating the association of the axo-glial complexes and the role of CAMs in inherited and acquired neurological diseases. PMID:24194699

  17. Activity of JC virus archetype and PML-type regulatory regions in glial cells.

    PubMed

    Ault, G S

    1997-01-01

    Sequence variations are seen in the JC virus promoter/enhancer in virus taken from progressive multifocal leukoencephalopathy (PML) brains and it has been hypothesized that the variations arise in the host at some point in the development of PML. These rearrangements may be adaptations for enhanced growth in glial cells; if so, transcription or replication levels should differ between archetypal and rearranged PML-type promoters. The archetype and four PML-type promoters were analysed in human glial cells for early and late transcriptional activity in the absence or presence of virus T antigen, and for DNA replication. CAT reporter expression differed within a fivefold range and the archetype was intermediate in strength to the PML-type regulatory regions. The archetype differed from rearranged promoters in that the late promoter was less responsive to T antigen and the shift from early to late activity with T antigen was less pronounced. All five regulatory regions demonstrated similar levels of DNA replicating activity. Rearrangement of the archetype was not required for activity in glial cells, but the potential for differences in the regulation of the late capsid genes was found.

  18. Ultrastructural immunogold labeling of glial filaments in osmicated and unosmicated epoxy-embedded tissue.

    PubMed

    Bettica, A; Johnson, A B

    1990-01-01

    On-grid (post-embedding) immunolabeling methods with epoxy resins have been difficult to apply to thin structures such as intermediate filaments, which may remain inaccessible within the plastic. In this study, glial fibrillary acidic protein (GFAP), the major protein of astrocyte intermediate filaments, was localized with a post-embedding immunogold method, using both unosmicated and osmicated material embedded in epoxy resin. The tissue studied was from a diagnostic brain biopsy on a child with Alexander's disease. This disorder is characterized by proliferation of astrocyte intermediate filaments and formation of Rosenthal fibers. With unosmicated tissue, as in a previous study, extensive labeling of the glial filaments was achieved only when ultra-thin sections were pre-treated with dilute sodium ethoxide, an agent that dissolves plastic. Fifteen-nm gold could be used. With osmicated tissue, localization to glial filaments required pre-treatment with sodium ethoxide and with the oxidizing agent sodium metaperiodate, followed by the use of small (5 nm) colloidal gold. That 5-nm gold was required for labeling filaments in osmicated material suggested that osmication increases problems of penetrability and antigen accessibility within ultra-thin sections. The large Rosenthal fibers were labeled by 15-nm gold in both unosmicated and osmicated material. The methods employed may be useful for electron immunolocalizations to other thin structures in material embedded in epoxy resin.

  19. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells

    NASA Astrophysics Data System (ADS)

    Brew, Helen; Attwell, David

    1987-06-01

    Glutamate is taken up avidly by glial cells in the central nervous system1. Glutamate uptake may terminate the transmitter action of glutamate released from neurons1, and keep extracellular glutamate at concentrations below those which are neurotoxic. We report here that glutamate evokes a large inward current in retinal glial cells which have their membrane potential and intracellular ion concentrations controlled by the whole-cell patch-clamp technique2. This current seems to be due to an electrogenic glutamate uptake carrier, which transports at least two sodium ions with every glutamate anion carried into the cell. Glutamate uptake is strongly voltage-dependent, decreasing at depolarized potentials: when fully activated, it contributes almost half of the conductance in the part of the glial cell membrane facing the retinal neurons. The spatial localization, glutamate affinity and magnitude of the uptake are appropriate for terminating the synaptic action of glutamate released from photoreceptors and bipolar cells. These data challenge present explanations of how the b-wave of the electroretinogram is generated, and suggest a mechanism for non-vesicular voltage-dependent release of glutamate from neurons.

  20. Glial fibrillary acidic protein-immunoreactive enteroglial cells in the jejunum of cattle.

    PubMed

    Costagliola, Anna

    2015-07-01

    Enteroglial cells (EGCs) play critical roles in human health and disease, however, EGC-dependent neuropathies also affect commercially important animal species. Due to the lack of data on the distribution and phenotypic characterization of the EGCs throughout the bovine gastrointestinal tract, in this study the topographic localization of EGCs in the jejunum of healthy cattle was investigated by immunofluorescence using the glial specific marker glial fibrillary acidic protein (GFAP) and the panneuronal marker PGP 9.5. This analysis was conducted on both cryosections and whole mount preparations including the myenteric and the submucous plexuses of the bovine jejunum. The results obtained showed the presence of a large subpopulation of GFAP-expressing EGCs in the main plexuses and within the muscle layers, whereas only few GFAP-positive glial processes were found within the deeper layer of the mucosa, and they never reached the mucosal epithelium. Three different EGC subtypes, namely I, III and IV types were recognized in the examined tract of the bovine intestine. Overall, our results provide the basis for future investigations aimed at elucidating the functional role of the GFAP-containing EGCs which is crucial for a better understanding of the physio-pathology of the bovine intestine.

  1. APOE genotype alters glial activation and loss of synaptic markers in mice.

    PubMed

    Zhu, Yuangui; Nwabuisi-Heath, Evelyn; Dumanis, Sonya B; Tai, Leon M; Yu, Chunjiang; Rebeck, G William; LaDu, Mary Jo

    2012-04-01

    The ε4 allele of the Apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset Alzheimer's disease (AD), and affects clinical outcomes of chronic and acute brain damages. The mechanisms by which apoE affect diverse diseases and disorders may involve modulation of the glial response to various types of brain damage. We examined glial activation in a mouse model where each of the human APOE alleles are expressed under the endogenous mouse APOE promoter, as well as in APOE knock-out mice. APOE4 mice displayed increased glial activation in response to intracerebroventricular lipopolysaccharide (LPS) compared to APOE2 and APOE3 mice by several measures. There were higher levels of microglia/macrophage, astrocytes, and invading T-cells after LPS injection in APOE4 mice. APOE4 mice also displayed greater and more prolonged increases of cytokines (IL-1β, IL-6, TNF-α) than APOE2 and APOE3 mice. We found that APOE4 mice had greater synaptic protein loss after LPS injection, as measured by three markers: PSD-95, drebin, and synaptophysin. In all assays, APOE knock-out mice responded similar to APOE4 mice, suggesting that the apoE4 protein may lack anti-inflammatory characteristics of apoE2 and apoE3. Together, these findings demonstrate that APOE4 predisposes to inflammation, which could contribute to its association with Alzheimer's disease and other disorders.

  2. A Chemical Screen Identifies Novel Compounds That Overcome Glial-Mediated Inhibition Of Neuronal Regeneration

    PubMed Central

    Usher, Lynn C.; Johnstone, Andrea; Ertürk, Ali; Hu, Ying; Strikis, Dinara; Wanner, Ina B.; Moorman, Sanne; Lee, Jae-Wook; Min, Jaeki; Ha, Hyung-Ho; Duan, Yuanli; Hoffman, Stanley; Goldberg, Jeffrey L.; Bradke, Frank; Chang, Young-Tae; Lemmon, Vance P.; Bixby, John L.

    2010-01-01

    A major barrier to regeneration of central nervous system (CNS) axons is the presence of growth-inhibitory proteins associated with myelin and the glial scar. To identify chemical compounds with the ability to overcome the inhibition of regeneration, we screened a novel triazine library, based on the ability of compounds to increase neurite outgrowth from cerebellar neurons on inhibitory myelin substrates. The screen produced 4 “hit compounds”, which act with nM potency on several different neuronal types, and on several distinct substrates relevant to glial inhibition. Moreover, the compounds selectively overcome inhibition rather than promote growth in general. The compounds do not affect neuronal cAMP levels, PKC activity, or EGFR activation. Interestingly, one of the compounds alters microtubule dynamics and increases microtubule density in both fibroblasts and neurons. This same compound promotes regeneration of dorsal column axons after acute lesions, and potentiates regeneration of optic nerve axons after nerve crush in vivo. These compounds should provide insight into the mechanisms through which glial-derived inhibitors of regeneration act, and could lead to the development of novel therapies for CNS injury. PMID:20357120

  3. Chromatin remodeling during the in vivo glial differentiation in early Drosophila embryos

    PubMed Central

    Ye, Youqiong; Gu, Liang; Chen, Xiaolong; Shi, Jiejun; Zhang, Xiaobai; Jiang, Cizhong

    2016-01-01

    Chromatin remodeling plays a critical role in gene regulation and impacts many biological processes. However, little is known about the relationship between chromatin remodeling dynamics and in vivo cell lineage commitment. Here, we reveal the patterns of histone modification change and nucleosome positioning dynamics and their epigenetic regulatory roles during the in vivo glial differentiation in early Drosophila embryos. The genome-wide average H3K9ac signals in promoter regions are decreased in the glial cells compared to the neural progenitor cells. However, H3K9ac signals are increased in a group of genes that are up-regulated in glial cells and involved in gliogenesis. There occurs extensive nucleosome remodeling including shift, loss, and gain. Nucleosome depletion regions (NDRs) form in both promoters and enhancers. As a result, the associated genes are up-regulated. Intriguingly, NDRs form in two fashions: nucleosome shift and eviction. Moreover, the mode of NDR formation is independent of the original chromatin state of enhancers in the neural progenitor cells. PMID:27634414

  4. Myelinating satellite oligodendrocytes are integrated in a glial syncytium constraining neuronal high-frequency activity

    PubMed Central

    Battefeld, Arne; Klooster, Jan; Kole, Maarten H. P.

    2016-01-01

    Satellite oligodendrocytes (s-OLs) are closely apposed to the soma of neocortical layer 5 pyramidal neurons but their properties and functional roles remain unresolved. Here we show that s-OLs form compact myelin and action potentials of the host neuron evoke precisely timed Ba2+-sensitive K+ inward rectifying (Kir) currents in the s-OL. Unexpectedly, the glial K+ inward current does not require oligodendrocytic Kir4.1. Action potential-evoked Kir currents are in part mediated by gap–junction coupling with neighbouring OLs and astrocytes that form a syncytium around the pyramidal cell body. Computational modelling predicts that glial Kir constrains the perisomatic [K+]o increase most importantly during high-frequency action potentials. Consistent with these predictions neurons with s-OLs showed a reduced probability for action potential burst firing during [K+]o elevations. These data suggest that s-OLs are integrated into a glial syncytium for the millisecond rapid K+ uptake limiting activity-dependent [K+]o increase in the perisomatic neuron domain. PMID:27161034

  5. Neuroprotection of lipoic acid treatment promotes angiogenesis and reduces the glial scar formation after brain injury.

    PubMed

    Rocamonde, B; Paradells, S; Barcia, J M; Barcia, C; García Verdugo, J M; Miranda, M; Romero Gómez, F J; Soria, J M

    2012-11-01

    After trauma brain injury, a large number of cells die, releasing neurotoxic chemicals into the extracellular medium, decreasing cellular glutathione levels and increasing reactive oxygen species that affect cell survival and provoke an enlargement of the initial lesion. Alpha-lipoic acid is a potent antioxidant commonly used as a treatment of many degenerative diseases such as multiple sclerosis or diabetic neuropathy. Herein, the antioxidant effects of lipoic acid treatment after brain cryo-injury in rat have been studied, as well as cell survival, proliferation in the injured area, gliogenesis and angiogenesis. Thus, it is shown that newborn cells, mostly corresponded with blood vessels and glial cells, colonized the damaged area 15 days after the lesion. However, lipoic acid was able to stimulate the synthesis of glutathione, decrease cell death, promote angiogenesis and decrease the glial scar formation. All those facts allow the formation of new neural tissue. In view of the results herein, lipoic acid might be a plausible pharmacological treatment after brain injury, acting as a neuroprotective agent of the neural tissue, promoting angiogenesis and reducing the glial scar formation. These findings open new possibilities for restorative strategies after brain injury, stroke or related disorders.

  6. The Comparative Utility of Viromer RED and Lipofectamine for Transient Gene Introduction into Glial Cells

    PubMed Central

    Rao, Sudheendra; Morales, Alejo A.; Pearse, Damien D.

    2015-01-01

    The introduction of genes into glial cells for mechanistic studies of cell function and as a therapeutic for gene delivery is an expanding field. Though viral vector based systems do exhibit good delivery efficiency and long-term production of the transgene, the need for transient gene expression, broad and rapid gene setup methodologies, and safety concerns regarding in vivo application still incentivize research into the use of nonviral gene delivery methods. In the current study, aviral gene delivery vectors based upon cationic lipid (Lipofectamine 3000) lipoplex or polyethylenimine (Viromer RED) polyplex technologies were examined in cell lines and primary glial cells for their transfection efficiencies, gene expression levels, and toxicity. The transfection efficiencies of polyplex and lipoplex agents were found to be comparable in a limited, yet similar, transfection setting, with or without serum across a number of cell types. However, differential effects on cell-specific transgene expression and reduced viability with cargo loaded polyplex were observed. Overall, our data suggests that polyplex technology could perform comparably to the market dominant lipoplex technology in transfecting various cells lines including glial cells but also stress a need for further refinement of polyplex reagents to minimize their effects on cell viability. PMID:26539498

  7. Glial cell and fibroblast cytotoxicity study on 4026-cyclotene photosensitive benzocyclobutene (BCB) polymer films.

    PubMed

    Ehteshami, Gholamreza; Singh, Amarjit; Coryell, Gene; Massia, Stephen; He, Jiping; Raupp, Gregory

    2003-01-01

    Photosensitive benzocyclobutene (photo-BCB) is a class of polymers with the trade name Cyclotene. The photoimagable property of Cyclotene makes it suitable for the manufacture of microelectronic devices. The motivation behind this study is that we see an exciting application of photo-BCB as substrates in implantable microelectronic biomedical devices due to several desirable properties distinctive from other polymer materials. To our knowledge, however, photo-BCB has never been tested for biomedical implant applications, as evidenced by the lack reported data on its biocompatibility. This study takes the first step towards assessing photo-BCB biocompatibility by evaluating the cytotoxicity and cell adhesion behavior of Cyclotene 4026 coatings exposed to monolayers of glial and fibroblast cells in vitro. It can be concluded from these studies that photo-BCB films deposited on silicon wafers using microfabrication processes did not adversely affect 3T3 fibroblast and T98-G glial cell function in vitro. We also successfully rendered photo-BCB films non-adhesive (no significant fibroblast or glial cell adhesion) with surface immobilized dextran using methods developed for other biomaterials and applications. Future work will further develop prototype photo-BCB microelectrode devices for chronic neural implant applications. PMID:14661882

  8. Glial cell morphological and density changes through the lifespan of rhesus macaques.

    PubMed

    Robillard, Katelyn N; Lee, Kim M; Chiu, Kevin B; MacLean, Andrew G

    2016-07-01

    How aging impacts the central nervous system (CNS) is an area of intense interest. Glial morphology is known to affect neuronal and immune function as well as metabolic and homeostatic balance. Activation of glia, both astrocytes and microglia, occurs at several stages during development and aging. The present study analyzed changes in glial morphology and density through the entire lifespan of rhesus macaques, which are physiologically and anatomically similar to humans. We observed apparent increases in gray matter astrocytic process length and process complexity as rhesus macaques matured from juveniles through adulthood. These changes were not attributed to cell enlargement because they were not accompanied by proportional changes in soma or process volume. There was a decrease in white matter microglial process length as rhesus macaques aged. Aging was shown to have a significant effect on gray matter microglial density, with a significant increase in aged macaques compared with adults. Overall, we observed significant changes in glial morphology as macaques age indicative of astrocytic activation with subsequent increase in microglial density in aged macaques. PMID:26851132

  9. Chromatin remodeling during the in vivo glial differentiation in early Drosophila embryos.

    PubMed

    Ye, Youqiong; Gu, Liang; Chen, Xiaolong; Shi, Jiejun; Zhang, Xiaobai; Jiang, Cizhong

    2016-01-01

    Chromatin remodeling plays a critical role in gene regulation and impacts many biological processes. However, little is known about the relationship between chromatin remodeling dynamics and in vivo cell lineage commitment. Here, we reveal the patterns of histone modification change and nucleosome positioning dynamics and their epigenetic regulatory roles during the in vivo glial differentiation in early Drosophila embryos. The genome-wide average H3K9ac signals in promoter regions are decreased in the glial cells compared to the neural progenitor cells. However, H3K9ac signals are increased in a group of genes that are up-regulated in glial cells and involved in gliogenesis. There occurs extensive nucleosome remodeling including shift, loss, and gain. Nucleosome depletion regions (NDRs) form in both promoters and enhancers. As a result, the associated genes are up-regulated. Intriguingly, NDRs form in two fashions: nucleosome shift and eviction. Moreover, the mode of NDR formation is independent of the original chromatin state of enhancers in the neural progenitor cells. PMID:27634414

  10. Satellite glial cells in dorsal root ganglia are activated in streptozotocin-treated rodents

    PubMed Central

    Hanani, Menachem; Blum, Erez; Liu, Shuangmei; Peng, Lichao; Liang, Shangdong

    2014-01-01

    Neuropathic pain is a very common complication in diabetes mellitus (DM), and treatment for it is limited. As DM is becoming a global epidemic it is important to understand and treat this problem. The mechanisms of diabetic neuropathic pain are largely obscure. Recent studies have shown that glial cells are important for a variety of neuropathic pain types, and we investigated what are the changes that satellite glial cells (SGCs) in dorsal root ganglia undergo in a DM type 1 model, induced by streptozotocin (STZ) in mice and rats. We carried out immunohistochemical studies to learn about changes in the activation marker glial fibrillary acidic protein (GFAP) in SGCs. We found that after STZ-treatment the number of neurons surrounded with GFAP-positive SGCs in dorsal root ganglia increased 4-fold in mice and 5-fold in rats. Western blotting for GFAP, which was done only on rats because of the larger size of the ganglia, showed an increase of about 2-fold in STZ-treated rats, supporting the immunohistochemical results. These results indicate for the first time that SGCs are activated in rodent models of DM1. As SGC activation appears to contribute to chronic pain, these results suggest that SGCs may participate in the generation and maintenance of diabetic neuropathic pain, and can serve as a potential therapeutic target. PMID:25312986

  11. Glial abnormalities in substance use disorders and depression: Does shared glutamatergic dysfunction contribute to comorbidity?

    PubMed Central

    Niciu, Mark J.; Henter, Ioline D.; Sanacora, Gerard; Zarate, Carlos A.

    2014-01-01

    Objectives Preclinical and clinical research in neuropsychiatric disorders, particularly mood and substance use disorders, have historically focused on neurons; however, glial cells – astrocytes, microglia, and oligodendrocytes – also play key roles in these disorders. Methods Peer-reviewed PubMed/Medline articles published through December 2012 were identified using the following keyword combinations: glia, astrocytes, oligodendrocytes/glia, microglia, substance use, substance abuse, substance dependence, alcohol, opiate, opioid, cocaine, psychostimulants, stimulants, and glutamate. Results Depressive and substance use disorders are highly comorbid, suggesting a common or overlapping aetiology and pathophysiology. Reduced astrocyte cell number occurs in both disorders. Altered glutamate neurotransmission and metabolism – specifically changes in the levels/activity of transporters, receptors, and synaptic proteins potentially related to synaptic physiology – appear to be salient features of both disorders. Glial cell pathology may also underlie the pathophysiology of both disorders via impaired astrocytic production of neurotrophic factors. Microglial/neuroinflammatory pathology is also evident in both depressive and substance use disorders. Finally, oligodendrocyte impairment decreases myelination and impairs expression of myelin-related genes in both substance use and depressive disorders. Conclusions Glial-mediated glutamatergic dysfunction is a common neuropathological pathway in both substance use and depression. Therefore, glutamatergic neuromodulation is a rational drug target in this comorbidity. PMID:24024876

  12. Differential expression and functions of neuronal and glial neurofascin isoforms and splice variants during PNS development.

    PubMed

    Basak, Sayantani; Raju, Karthik; Babiarz, Joanne; Kane-Goldsmith, Noriko; Koticha, Darshan; Grumet, Martin

    2007-11-15

    The cell adhesion molecule neurofascin (NF) has a major neuronal isoform (NF186) containing a mucin-like domain followed by a fifth fibronectin type III repeat while these domains are absent from glial NF155. Neuronal NF isoforms lacking one or both of these domains are expressed transiently in embryonic dorsal root ganglia (DRG). These two domains are co-expressed in mature NF186, which peaks in expression prior to birth and then persists almost exclusively at nodes of Ranvier on myelinated axons. In contrast, glial NF155 is only detected postnatally with the onset of myelination. All these forms of NF bound homophilically and to Schwann cells but only the mature NF186 isoform inhibits cell adhesion, and this activity may be important in formation of the node of Ranvier. Schwann cells deficient in NF155 myelinated DRG axons in a delayed manner and they showed significantly decreased clustering of both NF and Caspr in regions where paranodes normally form. The combined results suggest that NF186 is expressed prenatally on DRG neurons and it may modulate their adhesive interactions with Schwann cells, which express NF155 postnatally and require it for development of axon-glial paranodal junctions. PMID:17936266

  13. Enteric glial cells protect neurons from oxidative stress in part via reduced glutathione.

    PubMed

    Abdo, Hind; Derkinderen, Pascal; Gomes, Priya; Chevalier, Julien; Aubert, Philippe; Masson, Damien; Galmiche, Jean-Paul; Vanden Berghe, Pieter; Neunlist, Michel; Lardeux, Bernard

    2010-04-01

    Enteric glial cells (EGCs) are essential in the control of gastrointestinal functions. Although lesions of EGCs are associated with neuronal degeneration in animal models, their direct neuroprotective role remains unknown. Therefore, the aims of this study were to demonstrate the direct neuroprotective effects of EGCs and to identify putative glial mediators involved. First, viral targeted ablation of EGCs in primary cultures of enteric nervous system increased neuronal death both under basal conditions and in the presence of oxidative stress (dopamine, hydrogen peroxide). Second, direct or indirect coculture experiments of EGC lines with primary cultures of enteric nervous system or neuroblastoma cell lines (SH-SY5Y) prevented neurotoxic effects induced by oxidative stress (increased membrane permeability, release of neuronal specific enolase, caspase-3 immunoreactivity, changes in [Ca(2+)](i) response). Finally, combining pharmacological inhibition and mRNA silencing methods, we demonstrated that neuroprotective effects of EGCs were mediated in part by reduced glutathione but not by oxidized glutathione or by S-nitrosoglutathione. Our study identified the neuroprotective effects of EGCs via their release of reduced glutathione, extending their critical role in physiological contexts and in enteric neuropathies.-Abdo, H., Derkinderen, P., Gomes, P., Chevalier, J., Aubert, P., Masson, D., Galmiche, J.-P., Vanden Berghe, P., Neunlist, M., Lardeux, B. Enteric glial cells protect neurons from oxidative stress in part via reduced glutathione.

  14. Glial cells, but not neurons, exhibit a controllable response to a localized inflammatory microenvironment in vitro.

    PubMed

    Sommakia, Salah; Rickus, Jenna L; Otto, Kevin J

    2014-01-01

    The ability to design long-lasting intracortical implants hinges on understanding the factors leading to the loss of neuronal density and the formation of the glial scar. In this study, we modify a common in vitro mixed cortical culture model using lipopolysaccharide (LPS) to examine the responses of microglia, astrocytes, and neurons to microwire segments. We also use dip-coated polyethylene glycol (PEG), which we have previously shown can modulate impedance changes to neural microelectrodes, to control the cellular responses. We find that microglia, as expected, exhibit an elevated response to LPS-coated microwire for distances of up to 150 μm, and that this elevated response can be mitigated by co-depositing PEG with LPS. Astrocytes exhibit a more complex, distance-dependent response, whereas neurons do not appear to be affected by the type or magnitude of glial response within this in vitro model. The discrepancy between our in vitro responses and typically observed in vivo responses suggest the importance of using a systems approach to understand the responses of the various brain cell types in a chronic in vivo setting, as well as the necessity of studying the roles of cell types not native to the brain. Our results further indicate that the loss of neuronal density observed in vivo is not a necessary consequence of elevated glial activation. PMID:25452724

  15. Stage-specific requirement for cyclin D1 in glial progenitor cells of the cerebral cortex.

    PubMed

    Nobs, Lionel; Baranek, Constanze; Nestel, Sigrun; Kulik, Akos; Kapfhammer, Josef; Nitsch, Cordula; Atanasoski, Suzana

    2014-05-01

    Despite the vast abundance of glial progenitor cells in the mouse brain parenchyma, little is known about the molecular mechanisms driving their proliferation in the adult. Here we unravel a critical role of the G1 cell cycle regulator cyclin D1 in controlling cell division of glial cells in the cortical grey matter. We detect cyclin D1 expression in Olig2-immunopositive (Olig2+) oligodendrocyte progenitor cells, as well as in Iba1+ microglia and S100β+ astrocytes in cortices of 3-month-old mice. Analysis of cyclin D1-deficient mice reveals a cell and stage-specific molecular control of cell cycle progression in the various glial lineages. While proliferation of fast dividing Olig2+ cells at early postnatal stages becomes gradually dependent on cyclin D1, this particular G1 regulator is strictly required for the slow divisions of Olig2+/NG2+ oligodendrocyte progenitors in the adult cerebral cortex. Further, we find that the population of mature oligodendrocytes is markedly reduced in the absence of cyclin D1, leading to a significant decrease in the number of myelinated axons in both the prefrontal cortex and the corpus callosum of 8-month-old mutant mice. In contrast, the pool of Iba1+ cells is diminished already at postnatal day 3 in the absence of cyclin D1, while the number of S100β+ astrocytes remains unchanged in the mutant.

  16. Enteric Glial Cells: A New Frontier in Neurogastroenterology and Clinical Target for Inflammatory Bowel Diseases

    PubMed Central

    Ochoa-Cortes, Fernando; Turco, Fabio; Linan-Rico, Andromeda; Soghomonyan, Suren; Whitaker, Emmett; Wehner, Sven; Cuomo, Rosario

    2015-01-01

    Abstract: The word “glia” is derived from the Greek word “γλοια,” glue of the enteric nervous system, and for many years, enteric glial cells (EGCs) were believed to provide mainly structural support. However, EGCs as astrocytes in the central nervous system may serve a much more vital and active role in the enteric nervous system, and in homeostatic regulation of gastrointestinal functions. The emphasis of this review will be on emerging concepts supported by basic, translational, and/or clinical studies, implicating EGCs in neuron-to-glial (neuroglial) communication, motility, interactions with other cells in the gut microenvironment, infection, and inflammatory bowel diseases. The concept of the “reactive glial phenotype” is explored as it relates to inflammatory bowel diseases, bacterial and viral infections, postoperative ileus, functional gastrointestinal disorders, and motility disorders. The main theme of this review is that EGCs are emerging as a new frontier in neurogastroenterology and a potential therapeutic target. New technological innovations in neuroimaging techniques are facilitating progress in the field, and an update is provided on exciting new translational studies. Gaps in our knowledge are discussed for further research. Restoring normal EGC function may prove to be an efficient strategy to dampen inflammation. Probiotics, palmitoylethanolamide (peroxisome proliferator-activated receptor–α), interleukin-1 antagonists (anakinra), and interventions acting on nitric oxide, receptor for advanced glycation end products, S100B, or purinergic signaling pathways are relevant clinical targets on EGCs with therapeutic potential. PMID:26689598

  17. Stereological Analysis of Neuron, Glial and Endothelial Cell Numbers in the Human Amygdaloid Complex

    PubMed Central

    García-Amado, María; Prensa, Lucía

    2012-01-01

    Cell number alterations in the amygdaloid complex (AC) might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL), corticomedial and central groups), 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm3 and mean cell numbers (x106) were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals’ age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions. PMID:22719923

  18. Method of texturing a superconductive oxide precursor

    DOEpatents

    DeMoranville, Kenneth L.; Li, Qi; Antaya, Peter D.; Christopherson, Craig J.; Riley, Jr., Gilbert N.; Seuntjens, Jeffrey M.

    1999-01-01

    A method of forming a textured superconductor wire includes constraining an elongated superconductor precursor between two constraining elongated members placed in contact therewith on opposite sides of the superconductor precursor, and passing the superconductor precursor with the two constraining members through flat rolls to form the textured superconductor wire. The method includes selecting desired cross-sectional shape and size constraining members to control the width of the formed superconductor wire. A textured superconductor wire formed by the method of the invention has regular-shaped, curved sides and is free of flashing. A rolling assembly for single-pass rolling of the elongated precursor superconductor includes two rolls, two constraining members, and a fixture for feeding the precursor superconductor and the constraining members between the rolls. In alternate embodiments of the invention, the rolls can have machined regions which will contact only the elongated constraining members and affect the lateral deformation and movement of those members during the rolling process.

  19. The “Toll” of Opioid-Induced Glial Activation: Improving the Clinical Efficacy of Opioids by Targeting Glia

    PubMed Central

    Watkins, Linda R.; Hutchinson, Mark R.; Rice, Kenner C.; Maier, Steven F.

    2009-01-01

    Glial activation participates in the mediation of pain including neuropathic pain, due to release of neuroexcitatory, proinflammatory products. Glial activation is now known to occur in response to opioids as well. Opioid-induced glial activation opposes opioid analgesia and enhances opioid tolerance, dependence, reward and respiratory depression. Such effects can occur, not via classical opioid receptors, but rather via non-stereoselective activation of toll-like receptor 4 (TLR4), a recently recognized key glial receptor participating in neuropathic pain as well. This discovery identifies a means for separating the beneficial actions of opioids (opioid receptor mediated) from the unwanted side-effects (TLR4/glial mediated) by pharmacologically targeting TLR4. Such a drug should be a stand-alone therapeutic for treating neuropathic pain as well. Excitingly, with newly-established clinical trials of two glial modulators for treating neuropathic pain and improving the utility of opioids, translation from rats-to-humans now begins with the promise of improved clinical pain control. PMID:19762094

  20. Wen-Luo-Tong Prevents Glial Activation and Nociceptive Sensitization in a Rat Model of Oxaliplatin-Induced Neuropathic Pain

    PubMed Central

    Pan, Lin

    2016-01-01

    One of the main dose-limiting complications of the chemotherapeutic agent oxaliplatin (OXL) is painful neuropathy. Glial activation and nociceptive sensitization may be responsible for the mechanism of neuropathic pain. The Traditional Chinese Medicine (TCM) Wen-luo-tong (WLT) has been widely used in China to treat chemotherapy induced neuropathic pain. However, there is no study on the effects of WLT on spinal glial activation induced by OXL. In this study, a rat model of OXL-induced chronic neuropathic pain was established and WLT was administrated. Pain behavioral tests and morphometric examination of dorsal root ganglia (DRG) were conducted. Glial fibrillary acidic protein (GFAP) immunostaining was performed, glial activation was evaluated, and the excitatory neurotransmitter substance P (SP) and glial-derived proinflammatory cytokine tumor necrosis factor-α (TNF-α) were analyzed. WLT treatment alleviated OXL-induced mechanical allodynia and mechanical hyperalgesia. Changes in the somatic, nuclear, and nucleolar areas of neurons in DRG were prevented. In the spinal dorsal horn, hypertrophy and activation of GFAP-positive astrocytes were averted, and the level of GFAP mRNA decreased significantly. Additionally, TNF-α mRNA and protein levels decreased. Collectively, these results indicate that WLT reversed both glial activation in the spinal dorsal horn and nociceptive sensitization during OXL-induced chronic neuropathic pain in rats.

  1. Wen-Luo-Tong Prevents Glial Activation and Nociceptive Sensitization in a Rat Model of Oxaliplatin-Induced Neuropathic Pain

    PubMed Central

    Pan, Lin

    2016-01-01

    One of the main dose-limiting complications of the chemotherapeutic agent oxaliplatin (OXL) is painful neuropathy. Glial activation and nociceptive sensitization may be responsible for the mechanism of neuropathic pain. The Traditional Chinese Medicine (TCM) Wen-luo-tong (WLT) has been widely used in China to treat chemotherapy induced neuropathic pain. However, there is no study on the effects of WLT on spinal glial activation induced by OXL. In this study, a rat model of OXL-induced chronic neuropathic pain was established and WLT was administrated. Pain behavioral tests and morphometric examination of dorsal root ganglia (DRG) were conducted. Glial fibrillary acidic protein (GFAP) immunostaining was performed, glial activation was evaluated, and the excitatory neurotransmitter substance P (SP) and glial-derived proinflammatory cytokine tumor necrosis factor-α (TNF-α) were analyzed. WLT treatment alleviated OXL-induced mechanical allodynia and mechanical hyperalgesia. Changes in the somatic, nuclear, and nucleolar areas of neurons in DRG were prevented. In the spinal dorsal horn, hypertrophy and activation of GFAP-positive astrocytes were averted, and the level of GFAP mRNA decreased significantly. Additionally, TNF-α mRNA and protein levels decreased. Collectively, these results indicate that WLT reversed both glial activation in the spinal dorsal horn and nociceptive sensitization during OXL-induced chronic neuropathic pain in rats. PMID:27642352

  2. Wen-Luo-Tong Prevents Glial Activation and Nociceptive Sensitization in a Rat Model of Oxaliplatin-Induced Neuropathic Pain.

    PubMed

    Deng, Bo; Jia, Liqun; Pan, Lin; Song, Aiping; Wang, Yuanyuan; Tan, Huangying; Xiang, Qing; Yu, Lili; Ke, Dandan

    2016-01-01

    One of the main dose-limiting complications of the chemotherapeutic agent oxaliplatin (OXL) is painful neuropathy. Glial activation and nociceptive sensitization may be responsible for the mechanism of neuropathic pain. The Traditional Chinese Medicine (TCM) Wen-luo-tong (WLT) has been widely used in China to treat chemotherapy induced neuropathic pain. However, there is no study on the effects of WLT on spinal glial activation induced by OXL. In this study, a rat model of OXL-induced chronic neuropathic pain was established and WLT was administrated. Pain behavioral tests and morphometric examination of dorsal root ganglia (DRG) were conducted. Glial fibrillary acidic protein (GFAP) immunostaining was performed, glial activation was evaluated, and the excitatory neurotransmitter substance P (SP) and glial-derived proinflammatory cytokine tumor necrosis factor-α (TNF-α) were analyzed. WLT treatment alleviated OXL-induced mechanical allodynia and mechanical hyperalgesia. Changes in the somatic, nuclear, and nucleolar areas of neurons in DRG were prevented. In the spinal dorsal horn, hypertrophy and activation of GFAP-positive astrocytes were averted, and the level of GFAP mRNA decreased significantly. Additionally, TNF-α mRNA and protein levels decreased. Collectively, these results indicate that WLT reversed both glial activation in the spinal dorsal horn and nociceptive sensitization during OXL-induced chronic neuropathic pain in rats. PMID:27642352

  3. Molecular Profiling of Clear Cell Ovarian Cancers

    PubMed Central

    Friedlander, Michael L.; Russell, Kenneth; Millis, Sherri; Gatalica, Zoran; Bender, Ryan; Voss, Andreas

    2016-01-01

    Background Advanced stage/recurrent clear cell ovarian cancers (CCOCs) are characterized by a low response to chemotherapy and a poor prognosis. There is growing interest in investigating novel/molecular targeted therapies in patients with CCOC in histotype-specific trials. However, CCOCs are not a uniform entity and comprise a number of molecular subtypes and it is unlikely that a single approach to treatment will be appropriate for all patients. The aim of this study was to analyze the results of a multiplatform profiling panel in CCOCs to identify potential therapeutic targets. Patients and Methods Tumor profiling was performed on 521 CCOCs. They were grouped into pure (n = 422) and mixed (n = 99) CCOC for analysis. Testing included a combination of DNA sequencing (including next-generation sequencing) using a 46-gene panel, immunohistochemistry, fluorescent or chromogenic in situ hybridization, and RNA fragment analysis. Results The most common findings were in the PIK3CA/Akt/mTOR pathway, with 61% of all CCOCs showing a molecular alteration in one of these pathway components. Next-generation sequencing revealed PIK3CA mutations in 50% of pure CCOCs. Significant differences were observed between pure and mixed CCOCs with respect to hormone receptor expression (9% vs 34.7% for ER, 13.45 vs 26.4% for PR), cMET (24.1% vs 11.6%), PD-1 tumor infiltrating lymphocytes (48.1% vs 100%), expression of PD-L1 (7.4% vs 25%), and TOPO1 (41% vs 27.1%) on immunohistochemistry, whereas next-generation sequencing revealed significant differences in mutation frequency in PIK3CA (50% vs 18.5%), TP53 (18.1% vs 57.7%), KRAS (12.4% vs 3.7%), and cMET (1.9% vs 11.1%). Conclusions This large study confirms that the PIK3CA/Akt/mTOR pathway is commonly altered in CCOCs, and highlights the significant differences between pure and mixed CCOCs. Clear cell ovarian cancers are molecularly heterogeneous and there are a number of potential therapeutic targets which could be tested in clinical

  4. Molecular effective coverage surface area of optical clearing agents for predicting optical clearing potential

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Ma, Ning; Zhu, Dan

    2015-03-01

    The improvement of methods for optical clearing agent prediction exerts an important impact on tissue optical clearing technique. The molecular dynamic simulation is one of the most convincing and simplest approaches to predict the optical clearing potential of agents by analyzing the hydrogen bonds, hydrogen bridges and hydrogen bridges type forming between agents and collagen. However, the above analysis methods still suffer from some problem such as analysis of cyclic molecule by reason of molecular conformation. In this study, a molecular effective coverage surface area based on the molecular dynamic simulation was proposed to predict the potential of optical clearing agents. Several typical cyclic molecules, fructose, glucose and chain molecules, sorbitol, xylitol were analyzed by calculating their molecular effective coverage surface area, hydrogen bonds, hydrogen bridges and hydrogen bridges type, respectively. In order to verify this analysis methods, in vitro skin samples optical clearing efficacy were measured after 25 min immersing in the solutions, fructose, glucose, sorbitol and xylitol at concentration of 3.5 M using 1951 USAF resolution test target. The experimental results show accordance with prediction of molecular effective coverage surface area. Further to compare molecular effective coverage surface area with other parameters, it can show that molecular effective coverage surface area has a better performance in predicting OCP of agents.

  5. Vesical clear cell adenocarcinoma arising from endometriosis: A mullerian tumor, indistinguishable from ovarian clear cell adenocarcinoma.

    PubMed

    Miller, Eirwen M; Sun, Ying; Richardson, Ingride; Frimer, Marina

    2016-11-01

    Endometriosis is associated with increased rates of ovarian, particularly clear cell, adenocarcinomas. Malignant transformation of ovarian endometriosis is most common but rare cases have been reported in the bladder, abdominal wall, diaphragm, and rectum. We present the case of a 44-year-old female with vesical clear cell adenocarcinoma arising in a background of endometriosis in the absence of other pelvic endometriosis. The malignancy was diagnosed on transurethral resection of bladder tumor and managed with radical surgery. Histology and immunohistochemical findings were consistent mullerian origin and indistinguishable from similar tumors arising in the female genital tract. Extrapolating from the gynecologic literature, the recommendation was made for adjuvant chemotherapy. Further studies are needed to clarify the optimal treatment paradigm for ovarian and bladder clear cell adenocarcinomas. PMID:27660815

  6. Tricyclic antidepressant amitriptyline activates fibroblast growth factor receptor signaling in glial cells: involvement in glial cell line-derived neurotrophic factor production.

    PubMed

    Hisaoka, Kazue; Tsuchioka, Mami; Yano, Ryoya; Maeda, Natsuko; Kajitani, Naoto; Morioka, Norimitsu; Nakata, Yoshihiro; Takebayashi, Minoru

    2011-06-17

    Recently, both clinical and animal studies demonstrated neuronal and glial plasticity to be important for the therapeutic action of antidepressants. Antidepressants increase glial cell line-derived neurotrophic factor (GDNF) production through monoamine-independent protein-tyrosine kinase, extracellular signal-regulated kinase (ERK), and cAMP responsive element-binding protein (CREB) activation in glial cells (Hisaoka, K., Takebayashi, M., Tsuchioka, M., Maeda, N., Nakata, Y., and Yamawaki, S. (2007) J. Pharmacol. Exp. Ther. 321, 148-157; Hisaoka, K., Maeda, N., Tsuchioka, M., and Takebayashi, M. (2008) Brain Res. 1196, 53-58). This study clarifies the type of tyrosine kinase and mechanism of antidepressant-induced GDNF production in C6 glioma cells and normal human astrocytes. The amitriptyline (a tricyclic antidepressant)-induced ERK activation was specifically and completely inhibited by fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitors and siRNA for FGFR1 and -2. Treatment with amitriptyline or several different classes of antidepressants, but not non-antidepressants, acutely increased the phosphorylation of FGFRs and FGFR substrate 2α (FRS2α). Amitriptyline-induced CREB phosphorylation and GDNF production were blocked by FGFR-tyrosine kinase inhibitors. Therefore, antidepressants activate the FGFR/FRS2α/ERK/CREB signaling cascade, thus resulting in GDNF production. Furthermore, we attempted to elucidate how antidepressants activate FGFR signaling. The effect of amitriptyline was inhibited by heparin, non-permeant FGF-2 neutralizing antibodies, and matrix metalloproteinase (MMP) inhibitors. Serotonin (5-HT) also increased GDNF production through FGFR2 (Tsuchioka, M., Takebayashi, M., Hisaoka, K., Maeda, N., and Nakata, Y. (2008) J. Neurochem. 106, 244-257); however, the effect of 5-HT was not inhibited by heparin and MMP inhibitors. These results suggest that amitriptyline-induced FGFR activation might occur through an extracellular pathway

  7. MI Gap Clearing Kicker Magnet Design Review

    SciTech Connect

    Jensen, Chris; /Fermilab

    2008-10-01

    The kicker system requirements were originally conceived for the NOvA project. NOvA is a neutrino experiment located in Minnesota. To achieve the desired neutrino flux several upgrades are required to the accelerator complex. The Recycler will be used as a proton pre-injector for the Main Injector (MI). As the Recycler is the same size as the MI, it is possible to do a single turn fill ({approx}11 {micro}sec), minimizing the proton injection time in the MI cycle and maximizing the protons on target. The Recycler can then be filled with beam while the MI is ramping to extract beam to the target. To do this requires two new transfer lines. The existing Recycler injection line was designed for 10{pi} pbar beams, not the 20{pi} proton beams we anticipate from the Booster. The existing Recycler extraction line allows for proton injection through the MI, while we want direct injection from the Booster. These two lines will be decommissioned. The new injection line from the MI8 line into the Recycler will start at 848 and end with injection kickers at RR104. The new extraction line in the RR30 straight section will start with a new extraction kicker at RR232 and end with new MI injection kickers at MI308. Finally, to reduce beam loss activation in the enclosure, a new gap clearing kicker will be used to extract uncaptured beam created during the slip stack injection process down the existing dump line. It was suggested that the MI could benefit from this type of system immediately. This led to the early installation of the gap clearing system in the MI, followed by moving the system to Recycler during NOvA. The specifications also changed during this process. Initially the rise and fall time requirements were 38 ns and the field stability was {+-}1%. The 38 ns is based on having a gap of 2 RF buckets between injections. (There are 84 RF buckets that can be filled from the Booster for each injection, but 82 would be filled with beam. MI and Recycler contain 588 RF buckets

  8. Yeast secretory expression of insulin precursors.

    PubMed

    Kjeldsen, T

    2000-09-01

    Since the 1980s, recombinant human insulin for the treatment of diabetes mellitus has been produced using either the yeast Saccharomyces cerevisiae or the prokaryote Escherichia coli. Here, development of the insulin secretory expression system in S. cerevisiae and its subsequent optimisation is described. Expression of proinsulin in S. cerevisiae does not result in efficient secretion of proinsulin or insulin. However, expression of a cDNA encoding a proinsulin-like molecule with deletion of threonine(B30) as a fusion protein with the S. cerevisiae alpha-factor prepro-peptide (leader), followed either by replacement of the human proinsulin C-peptide with a small C-peptide (e.g. AAK), or by direct fusion of lysine(B29) to glycine(A1), results in the efficient secretion of folded single-chain proinsulin-like molecules to the culture supernatant. The secreted single-chain insulin precursor can then be purified and subsequently converted to human insulin by tryptic transpeptidation in organic aqueous medium in the presence of a threonine ester. The leader confers secretory competence to the insulin precursor, and constructed (synthetic) leaders have been developed for efficient secretory expression of the insulin precursor in the yeasts S. cerevisiae and Pichia pastories. The Kex2 endoprotease, specific for dibasic sites, cleaves the leader-insulin precursor fusion protein in the late secretory pathway and the folded insulin precursor is secreted to the culture supernatant. However, the Kex2 endoprotease processing of the pro-peptide-insulin precursor fusion protein is incomplete and a significant part of the pro-peptide-insulin precursor fusion protein is secreted to the culture supernatant in a hyperglycosylated form. A spacer peptide localised between the leader and the insulin precursor has been developed to optimise Kex2 endoprotease processing and insulin precursor fermentation yield. PMID:11030562

  9. Atomic Layer Deposition from Dissolved Precursors.

    PubMed

    Wu, Yanlin; Döhler, Dirk; Barr, Maïssa; Oks, Elina; Wolf, Marc; Santinacci, Lionel; Bachmann, Julien

    2015-10-14

    We establish a novel thin film deposition technique by transferring the principles of atomic layer deposition (ALD) known with gaseous precursors toward precursors dissolved in a liquid. An established ALD reaction behaves similarly when performed from solutions. "Solution ALD" (sALD) can coat deep pores in a conformal manner. sALD offers novel opportunities by overcoming the need for volatile and thermally robust precursors. We establish a MgO sALD procedure based on the hydrolysis of a Grignard reagent.

  10. Synthesis and structures of metal chalcogenide precursors

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Duraj, Stan A.; Eckles, William E.; Andras, Maria T.

    1990-01-01

    The reactivity of early transition metal sandwich complexes with sulfur-rich molecules such as dithiocarboxylic acids was studied. Researchers recently initiated work on precursors to CuInSe2 and related chalcopyrite semiconductors. Th every high radiation tolerance and the high absorption coefficient of CuInSe2 makes this material extremely attractive for lightweight space solar cells. Their general approach in early transition metal chemistry, the reaction of low-valent metal complexes or metal powders with sulfur and selenium rich compounds, was extended to the synthesis of chalcopyrite precursors. Here, the researchers describe synthesis, structures, and and routes to single molecule precursors to metal chalcogenides.

  11. Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates

    NASA Astrophysics Data System (ADS)

    Malaga, Karlo A.; Schroeder, Karen E.; Patel, Paras R.; Irwin, Zachary T.; Thompson, David E.; Bentley, J. Nicole; Lempka, Scott F.; Chestek, Cynthia A.; Patil, Parag G.

    2016-02-01

    Objective. We characterized electrode stability over twelve weeks of impedance and neural recording data from four chronically-implanted Utah arrays in two rhesus macaques, and investigated the effects of glial scarring and interface interactions at the electrode recording site on signal quality using a computational model. Approach. A finite-element model of a Utah array microelectrode in neural tissue was coupled with a multi-compartmental model of a neuron to quantify the effects of encapsulation thickness, encapsulation resistivity, and interface resistivity on electrode impedance and waveform amplitude. The coupled model was then reconciled with the in vivo data. Histology was obtained seventeen weeks post-implantation to measure gliosis. Main results. From week 1-3, mean impedance and amplitude increased at rates of 115.8 kΩ/week and 23.1 μV/week, respectively. This initial ramp up in impedance and amplitude was observed across all arrays, and is consistent with biofouling (increasing interface resistivity) and edema clearing (increasing tissue resistivity), respectively, in the model. Beyond week 3, the trends leveled out. Histology showed that thin scars formed around the electrodes. In the model, scarring could not match the in vivo data. However, a thin interface layer at the electrode tip could. Despite having a large effect on impedance, interface resistivity did not have a noticeable effect on amplitude. Significance. This study suggests that scarring does not cause an electrical problem with regard to signal quality since it does not appear to be the main contributor to increasing impedance or significantly affect amplitude unless it displaces neurons. This, in turn, suggests that neural signals can be obtained reliably despite scarring as long as the recording site has sufficiently low impedance after accumulating a thin layer of biofouling. Therefore, advancements in microelectrode technology may be expedited by focusing on improvements to the

  12. Probing Distinct Fullerene Formation Processes from Carbon Precursors of Different Sizes and Structures.

    PubMed

    Han, Jong Yoon; Choi, Tae Su; Kim, Soyoung; Lee, Jong Wha; Ha, Yoonhoo; Jeong, Kwang Seob; Kim, Hyungjun; Choi, Hee Cheul; Kim, Hugh I

    2016-08-16

    Fullerenes, cage-structured carbon allotropes, have been the subject of extensive research as new materials for diverse purposes. Yet, their formation process is still not clearly understood at the molecular level. In this study, we performed laser desorption ionization-ion mobility-mass spectrometry (LDI-IM-MS) of carbon substrates possessing different molecular sizes and structures to understand the formation process of fullerene. Our observations show that the formation process is strongly dependent on the size of the precursor used, with small precursors yielding small fullerenes and large graphitic precursors generally yielding larger fullerenes. These results clearly demonstrate that fullerene formation can proceed via both bottom-up and top-down processes, with the latter being favored for large precursors and more efficient at forming fullerenes. Furthermore, we observed that specific structures of carbon precursors could additionally affect the relative abundance of C60 fullerene. Overall, this study provides an advanced understanding of the mechanistic details underlying the formation processes of fullerene.

  13. Probing Distinct Fullerene Formation Processes from Carbon Precursors of Different Sizes and Structures.

    PubMed

    Han, Jong Yoon; Choi, Tae Su; Kim, Soyoung; Lee, Jong Wha; Ha, Yoonhoo; Jeong, Kwang Seob; Kim, Hyungjun; Choi, Hee Cheul; Kim, Hugh I

    2016-08-16

    Fullerenes, cage-structured carbon allotropes, have been the subject of extensive research as new materials for diverse purposes. Yet, their formation process is still not clearly understood at the molecular level. In this study, we performed laser desorption ionization-ion mobility-mass spectrometry (LDI-IM-MS) of carbon substrates possessing different molecular sizes and structures to understand the formation process of fullerene. Our observations show that the formation process is strongly dependent on the size of the precursor used, with small precursors yielding small fullerenes and large graphitic precursors generally yielding larger fullerenes. These results clearly demonstrate that fullerene formation can proceed via both bottom-up and top-down processes, with the latter being favored for large precursors and more efficient at forming fullerenes. Furthermore, we observed that specific structures of carbon precursors could additionally affect the relative abundance of C60 fullerene. Overall, this study provides an advanced understanding of the mechanistic details underlying the formation processes of fullerene. PMID:27434606

  14. 76 FR 45730 - Customer Clearing Documentation and Timing of Acceptance for Clearing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ... following methods: Agency Web site, via its Comments Online process: http://comments.cftc.gov . Follow the..., DC 20581. Courier: Same as mail above. Please submit your comments using only one method. RIN number... derivatives clearing organization (DCO) level.\\4\\ \\4\\ See, e.g., 76 FR 3698 (Jan. 20, 2011) (Risk...

  15. MODIS Collection 6 Clear Sky Restoral (CSR): Filtering Cloud Mast 'Not Clear' Pixels

    NASA Technical Reports Server (NTRS)

    Meyer, Kerry G.; Platnick, Steven Edward; Wind, Galina; Riedi, Jerome

    2014-01-01

    Correctly identifying cloudy pixels appropriate for the MOD06 cloud optical and microphysical property retrievals is accomplished in large part using results from the MOD35 1km cloud mask tests (note there are also two 250m subpixel cloud mask tests that can convert the 1km cloudy designations to clear sky). However, because MOD35 is by design clear sky conservative (i.e., it identifies "not clear" pixels), certain situations exist in which pixels identified by MOD35 as "cloudy" are nevertheless likely to be poor retrieval candidates. For instance, near the edge of clouds or within broken cloud fields, a given 1km MODIS field of view (FOV) may in fact only be partially cloudy. This can be problematic for the MOD06 retrievals because in these cases the assumptions of a completely overcast homogenous cloudy FOV and 1-dimensional plane-parallel radiative transfer no longer hold, and subsequent retrievals will be of low confidence. Furthermore, some pixels may be identified by MOD35 as "cloudy" for reasons other than the presence of clouds, such as scenes with thick smoke or lofted dust, and should therefore not be retrieved as clouds. With such situations in mind, a Clear Sky Restoral (CSR) algorithm was introduced in C5 that attempts to identify pixels expected to be poor retrieval candidates. Table 1 provides SDS locations for CSR and partly cloudy (PCL) pixels.

  16. Evidence that an RGD-dependent receptor mediates the binding of oligodendrocytes to a novel ligand in a glial-derived matrix

    PubMed Central

    1988-01-01

    A simple adhesion assay was used to measure the interaction between rat oligodendrocytes and various substrata, including a matrix secreted by glial cells. Oligodendrocytes bound to surfaces coated with fibronectin, vitronectin and a protein component of the glial matrix. The binding of cells to all of these substrates was inhibited by a synthetic peptide (GRGDSP) modeled after the cell-binding domain of fibronectin. The component of the glial matrix responsible for the oligodendrocyte interaction is a protein which is either secreted by the glial cells or removed from serum by products of these cultures; serum alone does not promote adhesion to the same extent as the glial- derived matrix. The interaction of cells with this glial-derived matrix requires divalent cations and is not mediated by several known RGD- containing extracellular proteins, including fibronectin, vitronectin, thrombospondin, type I and type IV collagen, and tenascin. PMID:2459131

  17. 17 CFR 22.16 - Disclosures to Cleared Swaps Customers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) of this section, relating to use of Cleared Swaps Customer Collateral, transfer, neutralization of... use of Cleared Swaps Customer Collateral, transfer, neutralization of the risks, or liquidation...

  18. 17 CFR 22.16 - Disclosures to Cleared Swaps Customers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) of this section, relating to use of Cleared Swaps Customer Collateral, transfer, neutralization of... use of Cleared Swaps Customer Collateral, transfer, neutralization of the risks, or liquidation...

  19. Explorations Precursor Robotic Missions (xPRM)

    NASA Video Gallery

    Jay Jenkins delivers a presentation from the Exploration Precursor Robotic Missions (xPRM) study team on May 25, 2010, at the NASA Exploration Enterprise Workshop held in Galveston, TX. The purpose...

  20. Photoacoustic infrared analysis of nickel catalysts precursors

    NASA Astrophysics Data System (ADS)

    Pasieczna, S.; Ryczkowski, J.

    2006-11-01

    Photoacoustic spectroscopy (FT-IR/PAS) has been used for identification of different forms of nickel precursors formed during CIM (classical impregnation method) and DIM (double impregnation method) process and different pH of the solution containing nickel ions.

  1. Biochemical Removal of HAP Precursors From Coal

    SciTech Connect

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE`s interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals.

  2. Progress in molecular precursors for electronic materials

    SciTech Connect

    Buhro, W.E.

    1996-09-01

    Molecular-precursor chemistry provides an essential underpinning to all electronic-materials technologies, including photovoltaics and related areas of direct interest to the DOE. Materials synthesis and processing is a rapidly developing field in which advances in molecular precursors are playing a major role. This article surveys selected recent research examples that define the exciting current directions in molecular-precursor science. These directions include growth of increasingly complex structures and stoichiometries, surface-selective growth, kinetic growth of metastable materials, growth of size-controlled quantum dots and quantum-dot arrays, and growth at progressively lower temperatures. Continued progress in molecular-precursor chemistry will afford precise control over the crystal structures, nanostructures, and microstructures of electronic materials.

  3. Systemic circulation and bone recruitment of osteoclast precursors tracked by using fluorescent imaging techniques.

    PubMed

    Kotani, Manato; Kikuta, Junichi; Klauschen, Frederick; Chino, Takenao; Kobayashi, Yasuhiro; Yasuda, Hisataka; Tamai, Katsuto; Miyawaki, Atsushi; Kanagawa, Osami; Tomura, Michio; Ishii, Masaru

    2013-01-15

    Osteoclasts are bone-resorbing polykaryons differentiated from monocyte/macrophage-lineage hematopoietic precursors. It remains unclear whether osteoclasts originate from circulating blood monocytes or from bone tissue-resident precursors. To address this question, we combined two different experimental procedures: 1) shared blood circulation "parabiosis" with fluorescently labeled osteoclast precursors, and 2) photoconversion-based cell tracking with a Kikume Green-Red protein (KikGR). In parabiosis, CX(3)CR1-EGFP knock-in mice in which osteoclast precursors were labeled with EGFP were surgically connected with wild-type mice to establish a shared circulation. Mature EGFP(+) osteoclasts were found in the bones of the wild-type mice, indicating the mobilization of EGFP(+) osteoclast precursors into bones from systemic circulation. Receptor activator for NF-κB ligand stimulation increased the number of EGFP(+) osteoclasts in wild-type mice, suggesting that this mobilization depends on the bone resorption state. Additionally, KikGR(+) monocytes (including osteoclast precursors) in the spleen were exposed to violet light, and 2 d later we detected photoconverted "red" KikGR(+) osteoclasts along the bone surfaces. These results indicate that circulating monocytes from the spleen entered the bone spaces and differentiated into mature osteoclasts during a certain period. The current study used fluorescence-based methods clearly to demonstrate that osteoclasts can be generated from circulating monocytes once they home to bone tissues.

  4. Skin-derived neural precursors competitively generate functional myelin in adult demyelinated mice.

    PubMed

    Mozafari, Sabah; Laterza, Cecilia; Roussel, Delphine; Bachelin, Corinne; Marteyn, Antoine; Deboux, Cyrille; Martino, Gianvito; Baron-Van Evercooren, Anne

    2015-09-01

    Induced pluripotent stem cell-derived (iPS-derived) neural precursor cells may represent the ideal autologous cell source for cell-based therapy to promote remyelination and neuroprotection in myelin diseases. So far, the therapeutic potential of reprogrammed cells has been evaluated in neonatal demyelinating models. However, the repair efficacy and safety of these cells has not been well addressed in the demyelinated adult CNS, which has decreased cell plasticity and scarring. Moreover, it is not clear if these induced pluripotent-derived cells have the same reparative capacity as physiologically committed CNS-derived precursors. Here, we performed a side-by-side comparison of CNS-derived and skin-derived neural precursors in culture and following engraftment in murine models of adult spinal cord demyelination. Grafted induced neural precursors exhibited a high capacity for survival, safe integration, migration, and timely differentiation into mature bona fide oligodendrocytes. Moreover, grafted skin-derived neural precursors generated compact myelin around host axons and restored nodes of Ranvier and conduction velocity as efficiently as CNS-derived precursors while outcompeting endogenous cells. Together, these results provide important insights into the biology of reprogrammed cells in adult demyelinating conditions and support use of these cells for regenerative biomedicine of myelin diseases that affect the adult CNS.

  5. Hydridosiloxanes as precursors to ceramic products

    DOEpatents

    Blum, Yigal D.; Johnson, Sylvia M.; Gusman, Michael I.

    1997-01-01

    A method is provided for preparing ceramic precursors from hydridosiloxane starting materials and then pyrolyzing these precursors to give rise to silicious ceramic materials. Si--H bonds present in the hydridosiloxane starting materials are catalytically activated, and the activated hydrogen atoms may then be replaced with nonhydrogen substituents. These preceramic materials are pyrolyzed in a selected atmosphere to give the desired ceramic product. Ceramic products which may be prepared by this technique include silica, silicon oxynitride, silicon carbide, metal silicates, and mullite.

  6. Hydridosiloxanes as precursors to ceramic products

    DOEpatents

    Blum, Y.D.; Johnson, S.M.; Gusman, M.I.

    1997-06-03

    A method is provided for preparing ceramic precursors from hydridosiloxane starting materials and then pyrolyzing these precursors to give rise to silicious ceramic materials. Si-H bonds present in the hydridosiloxane starting materials are catalytically activated, and the activated hydrogen atoms may then be replaced with nonhydrogen substituents. These preceramic materials are pyrolyzed in a selected atmosphere to give the desired ceramic product. Ceramic products which may be prepared by this technique include silica, silicon oxynitride, silicon carbide, metal silicates, and mullite.

  7. Clear New View of a Classic Spiral

    NASA Astrophysics Data System (ADS)

    2010-05-01

    ESO is releasing a beautiful image of the nearby galaxy Messier 83 taken by the HAWK-I instrument on ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The picture shows the galaxy in infrared light and demonstrates the impressive power of the camera to create one of the sharpest and most detailed pictures of Messier 83 ever taken from the ground. The galaxy Messier 83 (eso0825) is located about 15 million light-years away in the constellation of Hydra (the Sea Serpent). It spans over 40 000 light-years, only 40 percent the size of the Milky Way, but in many ways is quite similar to our home galaxy, both in its spiral shape and the presence of a bar of stars across its centre. Messier 83 is famous among astronomers for its many supernovae: vast explosions that end the lives of some stars. Over the last century, six supernovae have been observed in Messier 83 - a record number that is matched by only one other galaxy. Even without supernovae, Messier 83 is one of the brightest nearby galaxies, visible using just binoculars. Messier 83 has been observed in the infrared part of the spectrum using HAWK-I [1], a powerful camera on ESO's Very Large Telescope (VLT). When viewed in infrared light most of the obscuring dust that hides much of Messier 83 becomes transparent. The brightly lit gas around hot young stars in the spiral arms is also less prominent in infrared pictures. As a result much more of the structure of the galaxy and the vast hordes of its constituent stars can be seen. This clear view is important for astronomers looking for clusters of young stars, especially those hidden in dusty regions of the galaxy. Studying such star clusters was one of the main scientific goals of these observations [2]. When compared to earlier images, the acute vision of HAWK-I reveals far more stars within the galaxy. The combination of the huge mirror of the VLT, the large field of view and great sensitivity of the camera, and the superb observing conditions

  8. Localization of a GABA transporter to glial cells in the developing and adult olfactory pathway of the moth Manduca sexta1

    PubMed Central

    Oland, Lynne A; Gibson, Nicholas J; Tolbert, Leslie P

    2010-01-01

    Glial cells have several critical roles in the developing and adult olfactory (antennal) lobe of the moth Manduca sexta. Early in development, glial cells occupy discrete regions of the developing olfactory pathway and processes of GABAergic neurons extend into some of these regions. Because GABA is known to have developmental effects in a variety of systems, we explored the possibility that the glial cells express a GABA transporter that could regulate GABA levels to which olfactory neurons and glial cells are exposed. Using an antibody raised against a characterized high-affinity M. sexta GABA transporter with high sequence homology to known mammalian GABA transporters (Mbungu et al., 1995; Umesh and Gill, 2002), we found that the GABA transporter is localized to subsets of centrally derived glial cells during metamorphic adult development. The transporter persists into adulthood in a subset of the neuropil-associated glial cells, but its distribution pattern as determined by light- and electron-microscopic-level immunocytochemistry indicates that it could not serve to regulate GABA concentration in the synaptic cleft. Rather its role is more likely to regulate extracellular GABA levels within the glomerular neuropil. Expression in the sorting zone glial cells disappears after the period of olfactory receptor axon ingrowth, but may be important during ingrowth if GABA regulates axon growth. Glial cells take up GABA, and that uptake can be blocked by DABA. This is the first molecular evidence that the central glial cell population in this pathway is heterogeneous. PMID:20058309

  9. Electrogenic sodium-dependent bicarbonate secretion by glial cells of the leech central nervous system

    PubMed Central

    1991-01-01

    The ability to move acid/base equivalents across the membrane of identified glial cells was investigated in isolated segmental ganglia of the leech Hirudo medicinalis. The intracellular pH (pHi) of the glial cells was measured with double-barreled, neutral-ligand, ion- sensitive microelectrodes during step changes of the external pH (pHo 7.4-7.0). The rate of intracellular acidification after the decrease in extracellular pH (pHo) was taken as a measure of the rate of acid/base transport across the glial membrane. Taking into account the total intracellular buffering power, the maximum rate of acid/base flux was 0.4 mM/min in CO2/HCO3-free saline, and 3.92 mM/min in the presence of 5% CO2/10 mM HCO-3, suggesting that the acid/base flux was dependent upon HCO3-. The rate of acid influx/base efflux increased both with the external HCO3- concentration and with increasing pHi (and hence HCO3- i). This suggested that the decrease in pHi was due to HCO3- efflux. The rapid decrease of pHi was accompanied by a HCO3--dependent depolarization of the glial membrane from -74 +/- 5 mV (n = 20) to -54 +/- 7 mV (n = 13). Both this depolarization and the rate of intracellular acidification were greatly reduced by the anion exchange inhibitor 4,4-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS; 0.3- 0.5 mM), but were not affected by the removal of external Cl-. Reduction of the external Na+ concentration to one-tenth normal affected the rate of intracellular acidification only in the presence of CO2/HCO3-: the rate increased within the first 3-5 min after lowering external Na+; after longer exposures in low external Na+ the rate decreased, presumably due to depletion of intracellular Na+. Amiloride (1 mM), which inhibits the Na+-H+ exchange in these cells, had no effect on the rate of intracellular acidification. The intracellular Na activity (aNai) of the glial cells was measured to be 5.2 +/- 1.0 mM (n = 8) in CO2/HCO3-free saline; aNai increased to 7.3 +/- 2.2 mM (n = 8

  10. Characterisation of neuronal and glial populations of the visual system during zebrafish lifespan.

    PubMed

    Arenzana, F J; Santos-Ledo, A; Porteros, A; Aijón, J; Velasco, A; Lara, J M; Arévalo, R

    2011-06-01

    During visual system morphogenesis, several cell populations arise at different time points correlating with the expression of specific molecular markers We have analysed the distribution pattern of three molecular markers (zn-1, calretinin and glial fibrillary acidic protein) which are involved in the development of zebrafish retina and optic tectum. zn-1 is a neural antigen expressed in the developing zebrafish central nervous system. Calretinin is the first calcium-binding protein expressed in the central nervous system of vertebrates and it is widely distributed in different neuronal populations of vertebrate retina, being a valuable marker for its early and late development. Glial fibrillary acidic protein (GFAP), which is an astroglial marker, is a useful tool for characterising the glial environment in which the optic axons develop. We describe the expression profile changes in these three markers throughout the zebrafish lifespan with special attention to ganglion cells and their projections. zn-1 is expressed in the first postmitotic ganglion cells of the retina. Calretinin is observed in the ganglion and amacrine cells of the retina in neurons of different tectal bands and in axons of retinofugal projections. GFAP is localised in the endfeet of Müller cells and in radial processes of the optic tectum after hatching. A transient expression of GFAP in the optic nerve, coinciding with the arrival of the first calretinin-immunoreactive optic axons, is observed. As axonal growth occurs in these regions of the zebrafish visual pathway (retina and optic tectum) throughout the lifespan, a relationship between GFAP expression and the correct arrangement of the first optic axons may exist. In conclusion we provide valuable neuroanatomical data about the best characterised sensorial pathway to be used in further studies such as teratology and toxicology.

  11. Glutamate regulates eEF1A phosphorylation and ribosomal transit time in Bergmann glial cells.

    PubMed

    Barrera, Iliana; Flores-Méndez, Marco; Hernández-Kelly, Luisa C; Cid, Luis; Huerta, Miriam; Zinker, Samuel; López-Bayghen, Esther; Aguilera, José; Ortega, Arturo

    2010-12-01

    Glutamate, the major excitatory transmitter in the vertebrate brain, is involved in neuronal development and synaptic plasticity. Glutamatergic stimulation leads to differential gene expression patterns in neuronal and glial cells. A glutamate-dependent transcriptional control has been established for several genes. However, much less is known about the molecular events that modify the translational machinery upon exposure to this neurotransmitter. In a glial model of cerebellar cultured Bergmann cells, glutamate induces a biphasic effect on [(35)S]-methionine incorporation into proteins that suggests that the elongation phase of protein biosynthesis is the target for regulation. Indeed, after a 15 min exposure to glutamate a transient increase in elongation factor 2 phosphorylation has been reported, an effect mediated through the activation of the elongation factor 2 kinase. In this contribution, we sought to characterize the phosphorylation status of the eukaryotic elongation factor 1A (eEF1A) and the ribosomal transit time under glutamate exposure. A dose-dependent increase in eEF1A phosphorylation was found after a 60 min glutamate treatment; this phenomenon is Ca(2+)/CaM dependent, blocked with Src and phosphatidyl-inositol 3-kinase inhibitors and with rapamicyn. Concomitantly, the ribosomal transit time was increased with a 15 min glutamate exposure. After 60 more minutes, the average time used by the ribosomes to complete a polypeptide chain had almost returned to its initial level. These results strongly suggest that glutamate exerts an exquisite time-dependent translational control in glial cells, a process that might be critical for glia-neuron interactions.

  12. Cytoprotective and anti-inflammatory effects of PAL31 overexpression in glial cells

    PubMed Central

    2014-01-01

    Background Acute spinal cord injury (SCI) leads to a series of reactive changes and causes severe neurological deficits. A pronounced inflammation contributes to secondary pathology after SCI. Astroglia respond to SCI by proliferating, migrating, and altering phenotype. The impact of reactive gliosis on the pathogenesis of SCI is not fully understood. Our previous study has identified an inflammatory modulating protein, proliferation related acidic leucine-rich protein (PAL31) which is upregulated in the microglia/macrophage of injured cords. Because PAL31 participates in cell cycle progression and reactive astroglia often appears in the injured cord, we aim to examine whether PAL31 is involved in glial modulation after injury. Results Enhanced PAL31 expression was shown not only in microglia/macrophages but also in spinal astroglia after SCI. Cell culture study reveal that overexpression of PAL31 in mixed glial cells or in C6 astroglia significantly reduced LPS/IFNγ stimulation. Further, enhanced PAL31 expression in C6 astroglia protected cells from H2O2 toxicity; however, this did not affect its proliferative activity. The inhibiting effect of PAL31 on LPS/IFNγ stimulation was observed in glia or C6 after co-culture with neuronal cells. The results demonstrated that the overexpressed PAL31 in glial cells protected neuronal damages through inhibiting NF-kB signaling and iNOS. Conclusions Our data suggest that PAL31upregulation might be beneficial after spinal cord injury. Reactive gliosis might become a good target for future therapeutic interventions. PMID:25034417

  13. Glial reactions to argon laser photocoagulation injury in rabbit and rat retinas

    NASA Astrophysics Data System (ADS)

    Humphrey, Martin F.; Chu, Yi; Sharp, Claudia; Moore, Stephen; Mann, Krishna; Rakoczy, Piroska; Constable, Ian J.

    1996-04-01

    Argon laser photocoagulation is a standard and effective clinical technique for a variety of disease conditions. However there is evidence that coagulation produces more widespread alterations in the retina than the local scarring at the injury site. For example, in diabetic retinopathy multiple photocoagulations in the retinal periphery can control blood vessel growth in the central retina. Therefore we have studied the changes in retinal glial cells following photocoagulation using immunocytochemical techniques with an emphasis on the spread of cellular reactions by using whole, flatmounted retinal preparations. Muller glial cells do not normally express the cytoskeletal protein GFAP (glial fibrillary acidic protein) but do so after a variety of injuries. We found that there is a very widespread expression of GFAP by Muller cells even after very focal coagulations and that this persists for 1 - 1.5 months after coagulation. The microglial cells are primed to react to injury and can release very powerful effector molecules and we therefore also examined the microglial reaction to see whether it correlated with the Muller cell reaction. However, we found that the microglial response, in terms of anatomical changes, was very focally confined to regions of direct cellular injury. We also examined MHC II expression to see whether microglia expressed this activity related protein without anatomical changes but we found no evidence of wide spread changes. In summary we find that inflammatory reactions are very localized after coagulation but the macroglial changes are more widespread and therefore the distant effects of photocoagulation may be more related to macroglial reactions.

  14. Resveratrol attenuates inflammatory hyperalgesia by inhibiting glial activation in mice spinal cords.

    PubMed

    Wang, Lin-Lin; Shi, Dong-Ling; Gu, Hui-Yao; Zheng, Ming-Zhi; Hu, Jue; Song, Xing-Hui; Shen, Yue-Liang; Chen, Ying-Ying

    2016-05-01

    The present study aimed to investigate the effect of resveratrol on inflammatory pain. Mice were injected intraperitoneally with lipopolysaccharide (LPS) for 5 consecutive days to induce subacute systemic inflammation. Acetic acid‑induced writhing tests and tail‑flick tests were performed following the final LPS injection. Glial fibrillary acidic protein (GFAP; an astrocyte‑specific activation marker), ionized calcium binding adapter molecule 1 (Iba‑1; a microglia‑specific activation marker) and sirtuin 1 (SIRT1) protein expression levels were detected using immunohistochemistry analysis or western blotting. Following administration of LPS for 5 days, the number of writhes increased and the tail‑flick latency decreased. Resveratrol (10 or 20 mg/kg) partly inhibited LPS‑induced hyperalgesia and prevented the increase in tumor necrosis factor‑α and interleukin 6 levels induced by LPS. LPS injection reduced the SIRT1 protein expression and increased the number of GFAP‑positive and Iba‑1‑positive cells in the spinal cord. Resveratrol increased the SIRT1 protein expression levels and decreased the number of GFAP‑positive and Iba‑1‑positive cells in LPS‑treated mice. The protective effect of resveratrol was partly blocked by a selective SIRT1 inhibitor, EX‑257. Results from the present study suggest that subacute treatment with LPS induced the activation of glial cells and hyperalgesia. Resveratrol was demonstrated to inhibit the activation of glial cells and attenuate inflammatory hyperalgesia in a SIRT1‑dependent manner.

  15. Sensing the neuronal glycocalyx by glial sialic acid binding immunoglobulin-like lectins.

    PubMed

    Linnartz-Gerlach, B; Mathews, M; Neumann, H

    2014-09-01

    Sialic acid binding immunoglobulin-like lectins (Siglecs) are cell surface receptors of microglia and oligodendrocytes that recognize the sialic acid cap of healthy neurons and neighboring glial cells. Upon ligand binding, Siglecs typically signal through an immunoreceptor tyrosine-based inhibition motif (ITIM) to keep the cell in a homeostatic status and support healthy neighboring cells. Siglecs can be divided into two groups; the first, being conserved among different species. The conserved Siglec-4/myelin-associated glycoprotein is expressed on oligodendrocytes and Schwann cells. Siglec-4 protects neurons from acute toxicity via interaction with sialic acids bound to neuronal gangliosides. The second group of Siglecs, named CD33-related Siglecs, is almost exclusively expressed on immune cells and is highly variable among different species. Microglial expression of Siglec-11 is human lineage-specific and prevents neurotoxicity via interaction with α2.8-linked sialic acid oligomers exposed on the neuronal glycocalyx. Microglial Siglec-E is a mouse CD33-related Siglec member that prevents microglial phagocytosis and the associated oxidative burst. Mouse Siglec-E of microglia binds to α2.8- and α2.3-linked sialic acid residues of the healthy glycocalyx of neuronal and glial cells. Recently, polymorphisms of the human Siglec-3/CD33 were linked to late onset Alzheimer's disease by genome-wide association studies. Human Siglec-3 is expressed on microglia and produces inhibitory signaling that decreases uptake of particular molecules such as amyloid-β aggregates. Thus, glial ITIM-signaling Siglecs recognize the intact glycocalyx of neurons and are involved in the modulation of neuron-glia interaction in healthy and diseased brain.

  16. Rapid disruption of axon-glial integrity in response to mild cerebral hypoperfusion.

    PubMed

    Reimer, Michell M; McQueen, Jamie; Searcy, Luke; Scullion, Gillian; Zonta, Barbara; Desmazieres, Anne; Holland, Philip R; Smith, Jessica; Gliddon, Catherine; Wood, Emma R; Herzyk, Pawel; Brophy, Peter J; McCulloch, James; Horsburgh, Karen

    2011-12-01

    Myelinated axons have a distinct protein architecture essential for action potential propagation, neuronal communication, and maintaining cognitive function. Damage to myelinated axons, associated with cerebral hypoperfusion, contributes to age-related cognitive decline. We sought to determine early alterations in the protein architecture of myelinated axons and potential mechanisms after hypoperfusion. Using a mouse model of hypoperfusion, we assessed changes in proteins critical to the maintenance of paranodes, nodes of Ranvier, axon-glial integrity, axons, and myelin by confocal laser scanning microscopy. As early as 3 d after hypoperfusion, the paranodal septate-like junctions were damaged. This was marked by a progressive reduction of paranodal Neurofascin signal and a loss of septate-like junctions. Concurrent with paranodal disruption, there was a significant increase in nodal length, identified by Nav1.6 staining, with hypoperfusion. Disruption of axon-glial integrity was also determined after hypoperfusion by changes in the spatial distribution of myelin-associated glycoprotein staining. These nodal/paranodal changes were more pronounced after 1 month of hypoperfusion. In contrast, the nodal anchoring proteins AnkyrinG and Neurofascin 186 were unchanged and there were no overt changes in axonal and myelin integrity with hypoperfusion. A microarray analysis of white matter samples indicated that there were significant alterations in 129 genes. Subsequent analysis indicated alterations in biological pathways, including inflammatory responses, cytokine-cytokine receptor interactions, blood vessel development, and cell proliferation processes. Our results demonstrate that hypoperfusion leads to a rapid disruption of key proteins critical to the stability of the axon-glial connection that is mediated by a diversity of molecular events. PMID:22159130

  17. Gq-DREADD Selectively Initiates Glial Glutamate Release and Inhibits Cue-induced Cocaine Seeking

    PubMed Central

    Scofield Michael, D.; Boger Heather, A.; Smith Rachel, J.; Li, Hao; Haydon Philip, G.; Kalivas Peter, W.

    2015-01-01

    Background Glial cells of the central nervous system directly influence neuronal activity by releasing neuroactive small molecules, including glutamate. Long-lasting cocaine-induced reductions in extracellular glutamate in the nucleus accumbens core (NAcore) affect synaptic plasticity responsible for relapse vulnerability. Methods We transduced NAcore astrocytes with an AAV viral vector expressing hM3Dq (Gq) DREADD under control of the glial fibrillary acidic protein (GFAP) promoter in 62 male Sprague Dawley rats, 4 dnSNARE mice and 4 wild type littermates. Using glutamate biosensors we measured NAcore glutamate levels following intracranial or systemic administration of clozapine-N-oxide (CNO), and tested the ability of systemic CNO to inhibit reinstated cocaine or sucrose seeking following self-administration (SA) and extinction training. Results Administration of CNO in GFAP-Gq-DREADD transfected animals increased NAcore extracellular glutamate levels in vivo. The glial origin of released glutamate was validated by an absence of CNO-mediated release in mice expressing a dominant-negative SNARE variant in glia. Also, CNO-mediated release was relatively insensitive to N-type calcium channel blockade. Systemic administration of CNO inhibited cue-induced reinstatement of cocaine seeking in rats extinguished from cocaine, but not sucrose SA. The capacity to inhibit reinstated cocaine-seeking was prevented by systemic administration of the group II metabotropic glutamate receptor (mGluR2/3) antagonist LY341495. Conclusions DREADD-mediated glutamate gliotransmission inhibited cue-induced reinstatement of cocaine seeking by stimulating release-regulating mGluR2/3 autoreceptors to inhibit cue-induced synaptic glutamate spillover. PMID:25861696

  18. Mechanisms of a Glial Modulating Agent, Propentofylline: Potential New Treatment for Glioblastoma Multiforme

    NASA Astrophysics Data System (ADS)

    Jacobs, Valerie

    Glioblastoma multiforme is the most common and aggressive primary brain tumor with a very poor prognosis despite multi-modalities of treatment. As a result, there is a critical need to develop alternative therapies. Propentofylline (PPF) is a methyl xanthine with glial modulating properties. Based on known mechanisms of PPF and the important role of glial cells in glioma growth, we hypothesized that PPF can target glial cells in the tumor microenvironment, decreasing tumor growth. More specifically, PPF can target microglia and astrocytes. In Chapter 3 we demonstrate that PPF decreases microglia migration towards CNS-1 cells, decreases CNS-1 cells invasion when cultured with microglia and decreases MMP-9 expression in microglia. In Chapter 4 we showed that PPF decreases TROY expression in microglia. In Chapter 5 we showed PPF causes astrocytes to increase glutamate uptake through the GLT-1 transporter, leading to less glutamate available for CNS-1 cells, ultimately resulting in increased CNS-1 cell apoptosis. Finally, in Chapter 6 we present supportive data that PPF uniquely targets resident microglia in the CNS due to pharmacological differences between species and cell types. This thesis describes the following major contributions to the field of glioma research: 1) identification of propentofylline as a possible new drug for GBM treatment that targets microglia and astrocytes, decreasing brain tumor growth in vivo, and further supporting a different functional role of microglia and infiltrating macrophages in the tumor microenvironment, 2) identification of TROY as a novel signaling molecule expressed in microglia in response to CNS-1 cells and involved in microglia migration, and 3) identification of differential responses between species and cell types with propentofylline treatment.

  19. Impairment of radial glial scaffold-dependent neuronal migration and formation of double cortex by genetic ablation of afadin.

    PubMed

    Yamamoto, Hideaki; Mandai, Kenji; Konno, Daijiro; Maruo, Tomohiko; Matsuzaki, Fumio; Takai, Yoshimi

    2015-09-16

    Studies of human brain malformations, such as lissencephaly and double cortex, have revealed the importance of neuronal migration during cortical development. Afadin, a membrane scaffolding protein, regulates the formation of adherens junctions (AJs) and cell migration to form and maintain tissue structures. Here, we report that mice with dorsal telencephalon-specific ablation of afadin gene exhibited defects similar to human double cortex, in which the heterotopic cortex was located underneath the normotopic cortex. The normotopic cortex of the mutant mice was arranged in the pattern similar to the cortex of the control mice, while the heterotopic cortex was disorganized. As seen in human patients, double cortex in the mutant mice was formed by impaired neuronal migration during cortical development. Genetic ablation of afadin in the embryonic cerebral cortex disrupted AJs of radial glial cells, likely resulting in the retraction of the apical endfeet from the ventricular surface and the dispersion of radial glial cells from the ventricular zone to the subventricular and intermediate zones. These results indicate that afadin is required for the maintenance of AJs of radial glial cells and that the disruption of AJs might cause an abnormal radial scaffold for neuronal migration. In contrast, the proliferation or differentiation of radial glial cells was not significantly affected. Taken together, these findings indicate that afadin is required for the maintenance of the radial glial scaffold for neuronal migration and that the genetic ablation of afadin leads to the formation of double cortex.

  20. Bioluminescent imaging of Ca2+ activity reveals spatiotemporal dynamics in glial networks of dark-adapted mouse retina

    PubMed Central

    Agulhon, Cendra; Platel, Jean-Claude; Kolomiets, Bogdan; Forster, Valérie; Picaud, Serge; Brocard, Jacques; Faure, Philippe; Brulet, Philippe

    2007-01-01

    Glial Ca2+ excitability plays a key role in reciprocal neuron–glia communication. In the retina, neuron–glia signalling is expected to be maximal in the dark, but the glial Ca2+ signal characteristics under such conditions have not been evaluated. To address this question, we used bioluminescence imaging to monitor spontaneous Ca2+ changes under dark conditions selectively in Müller cells, the principal retinal glial cells. By combining this imaging approach with network analysis, we demonstrate that activity in Müller cells is organized in networks of coactive cells, involving 2–16 cells located distantly and/or in clusters. We also report that spontaneous activity of small networks (2–6 Müller cells) repeat over time, sometimes in the same sequential order, revealing specific temporal dynamics. In addition, we show that networks of coactive glial cells are inhibited by TTX, indicating that ganglion and/or amacrine neuronal cells probably regulate Müller cell network properties. These results represent the first demonstration that spontaneous activity in adult Müller cells is patterned into correlated networks that display repeated sequences of coactivations over time. Furthermore, our bioluminescence technique provides a novel tool to study the dynamic characteristics of glial Ca2+ events in the retina under dark conditions, which should greatly facilitate future investigations of retinal dark-adaptive processes. PMID:17627996

  1. Ionic and possible metabolic interactions between sensory neurones and glial cells in the retina of the honeybee drone.

    PubMed

    Coles, J A; Tsacopoulos, M

    1981-12-01

    This is a review paper that includes original calculations and figures. The drone retina is composed of two essentially uniform populations of cells, the photoreceptors and the glial cells. The photoreceptors contain many mitochondria but no glycogen has been detected; the glial cells contain much glycogen and very few mitochondria. The oxygen consumption of the photoreceptors in the dark is 20 microliters min-1 per g of retinal tissue and in response to a single flash of light there is an extra consumption that reaches a maximum of 40 microliters min-1 per g. In addition, light stimulation of the photoreceptors leads to changes in the glycogen metabolism of the glial cells, and to movements of K+. Measurements with intracellular K+-sensitive micro-electrodes showed that during light stimulation with a series of flashes the K+ activity (alpha K) in the photoreceptors fell by an average of 27% while in the glial cells alpha K rose by an amount that is estimated to correspond to most of the quantity of K+ lost by the photoreceptors. The relative contributions to the clearance of extracellular K+ of extracellular diffusion, spatial buffering and possible net K+ uptake by glial cells are discussed.

  2. Primary Glial and Neuronal Tumors of the Ovary or Peritoneum: A Clinicopathologic Study of 11 Cases.

    PubMed

    Liang, Li; Olar, Adriana; Niu, Na; Jiang, Yi; Cheng, Wenjun; Bian, Xiu-Wu; Yang, Wentao; Zhang, Jing; Yemelyanova, Anna; Malpica, Anais; Zhang, Zhihong; Fuller, Gregory N; Liu, Jinsong

    2016-06-01

    Primary glial and neuronal tumors of the ovary or peritoneum are rare neuroectodermal-type tumors similar to their counterparts in the central nervous system. We retrospectively reviewed 11 cases. These cases included 4 ependymomas, 6 astrocytic tumors, and 1 neurocytoma. Patients' age ranged from 9 to 50 years (mean, 26 y; median, 24 y). All ependymal tumors with detailed clinical history (n=3) were not associated with any other ovarian neoplasm. In contrast, all astrocytic tumors were associated with immature teratoma (n=4), mature cystic teratoma (n=1), or mixed germ cell tumor (n=1). The neurocytoma arose in association with mature teratomatous components in a patient with a history of treated mixed germ cell tumor. Immunohistochemical staining showed that 7 of 7 ependymal and astrocytic tumors (100%) were positive for glial fibrillary acidic protein, and 2 of 2 ependymomas (100%) were positive for both estrogen and progesterone receptors. The neurocytoma was positive for synaptophysin and negative for S100 protein, glial fibrillary acidic protein, and SALL4. No IDH1-R132H mutation was detected in 2 of 2 (0%) astrocytomas by immunohistochemistry. Next-generation sequencing was performed on additional 2 ependymomas and 2 astrocytomas but detected no mutations in a panel of 50 genes that included IDH1, IDH2, TP53, PIK3CA, EGFR, BRAF, and PTEN. Follow-up information was available for 8 patients, with the follow-up period ranging from 4 to 59 months (mean, 15 mo; median, 8.5 mo), of which 3 had no evidence of disease and 5 were alive with disease. In conclusion, primary glial and neuronal tumors of the ovary can arise independently or in association with other ovarian germ cell tumor components. Pathologists should be aware of these rare tumors and differentiate them from other ovarian neoplasms. Even though an IDH1 or IDH2 mutation is found in the majority of WHO grade II and III astrocytomas, and in secondary glioblastomas arising from them, such mutations were

  3. Electroacupuncture activates enteric glial cells and protects the gut barrier in hemorrhaged rats

    PubMed Central

    Hu, Sen; Zhao, Zeng-Kai; Liu, Rui; Wang, Hai-Bin; Gu, Chun-Yu; Luo, Hong-Min; Wang, Huan; Du, Ming-Hua; Lv, Yi; Shi, Xian

    2015-01-01

    AIM: To investigate whether electroacupuncture ST36 activates enteric glial cells, and alleviates gut inflammation and barrier dysfunction following hemorrhagic shock. METHODS: Sprague-Dawley rats were subjected to approximately 45% total blood loss and randomly divided into seven groups: (1) sham: cannulation, but no hemorrhage; (2) subjected to hemorrhagic shock (HS); (3) electroacupuncture (EA) ST36 after hemorrhage; (4) vagotomy (VGX)/EA: VGX before hemorrhage, then EA ST36; (5) VGX: VGX before hemorrhage; (6) α-bungarotoxin (BGT)/EA: intraperitoneal injection of α-BGT before hemorrhage, then EA ST36; and (7) α-BGT group: α-BGT injection before hemorrhage. Morphological changes in enteric glial cells (EGCs) were observed by immunofluorescence, and glial fibrillary acidic protein (GFAP; a protein marker of enteric glial activation) was evaluated using reverse transcriptase polymerase chain reaction and western blot analysis. Intestinal cytokine levels, gut permeability to 4-kDa fluorescein isothiocyanate (FITC)-dextran, and the expression and distribution of tight junction protein zona occludens (ZO)-1 were also determined. RESULTS: EGCs were distorted following hemorrhage and showed morphological abnormalities. EA ST36 attenuated the morphological changes in EGCs at 6 h, as compared with the VGX, α-BGT and HS groups. EA ST36 increased GFAP expression to a greater degree than in the other groups. EA ST36 decreased intestinal permeability to FITC-dextran (760.5 ± 96.43 ng/mL vs 2466.7 ± 131.60 ng/mL, P < 0.05) and preserved ZO-1 protein expression and localization at 6 h after hemorrhage compared with the HS group. However, abdominal VGX and α-BGT treatment weakened or eliminated the effects of EA ST36. EA ST36 reduced tumor necrosis factor-α levels in intestinal homogenates after blood loss, while vagotomy or intraperitoneal injection of α-BGT before EA ST36 abolished its anti-inflammatory effects. CONCLUSION: EA ST36 attenuates hemorrhage

  4. Communication between neuronal somata and satellite glial cells in sensory ganglia.

    PubMed

    Huang, Li-Yen M; Gu, Yanping; Chen, Yong

    2013-10-01

    Studies of the structural organization and functions of the cell body of a neuron (soma) and its surrounding satellite glial cells (SGCs) in sensory ganglia have led to the realization that SGCs actively participate in the information processing of sensory signals from afferent terminals to the spinal cord. SGCs use a variety ways to communicate with each other and with their enwrapped soma. Changes in this communication under injurious conditions often lead to abnormal pain conditions. "What are the mechanisms underlying the neuronal soma and SGC communication in sensory ganglia?" and "how do tissue or nerve injuries affect the communication?" are the main questions addressed in this review.

  5. 17 CFR 39.8 - Fraud in connection with the clearing of transactions on a derivatives clearing organization.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Fraud in connection with the clearing of transactions on a derivatives clearing organization. 39.8 Section 39.8 Commodity and Securities... Applicable to Derivatives Clearing Organizations § 39.8 Fraud in connection with the clearing of...

  6. 17 CFR 39.8 - Fraud in connection with the clearing of transactions on a derivatives clearing organization.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 1 2012-04-01 2012-04-01 false Fraud in connection with the clearing of transactions on a derivatives clearing organization. 39.8 Section 39.8 Commodity and Securities... Applicable to Derivatives Clearing Organizations § 39.8 Fraud in connection with the clearing of...

  7. 17 CFR 39.8 - Fraud in connection with the clearing of transactions on a derivatives clearing organization.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 1 2014-04-01 2014-04-01 false Fraud in connection with the clearing of transactions on a derivatives clearing organization. 39.8 Section 39.8 Commodity and Securities... Applicable to Derivatives Clearing Organizations § 39.8 Fraud in connection with the clearing of...

  8. Quantitative Analysis of Glutamate Receptors in Glial Cells from the Cortex of GFAP/EGFP Mice Following Ischemic Injury: Focus on NMDA Receptors.

    PubMed

    Dzamba, David; Honsa, Pavel; Valny, Martin; Kriska, Jan; Valihrach, Lukas; Novosadova, Vendula; Kubista, Mikael; Anderova, Miroslava

    2015-11-01

    Cortical glial cells contain both ionotropic and metabotropic glutamate receptors. Despite several efforts, a comprehensive analysis of the entire family of glutamate receptors and their subunits present in glial cells is still missing. Here, we provide an overall picture of the gene expression of ionotropic (AMPA, kainate, NMDA) and the main metabotropic glutamate receptors in cortical glial cells isolated from GFAP/EGFP mice before and after focal cerebral ischemia. Employing single-cell RT-qPCR, we detected the expression of genes encoding subunits of glutamate receptors in GFAP/EGFP-positive (GFAP/EGFP(+)) glial cells in the cortex of young adult mice. Most of the analyzed cells expressed mRNA for glutamate receptor subunits, the expression of which, in most cases, even increased after ischemic injury. Data analyses disclosed several classes of GFAP/EGFP(+) glial cells with respect to glutamate receptors and revealed in what manner their expression correlates with the expression of glial markers prior to and after ischemia. Furthermore, we also examined the protein expression and functional significance of NMDA receptors in glial cells. Immunohistochemical analyses of all seven NMDA receptor subunits provided direct evidence that the GluN3A subunit is present in GFAP/EGFP(+) glial cells and that its expression is increased after ischemia. In situ and in vitro Ca(2+) imaging revealed that Ca(2+) elevations evoked by the application of NMDA were diminished in GFAP/EGFP(+) glial cells following ischemia. Our results provide a comprehensive description of glutamate receptors in cortical GFAP/EGFP(+) glial cells and may serve as a basis for further research on glial cell physiology and pathophysiology.

  9. Structural determinants of interaction, trafficking and function in the ClC-2/MLC1 subunit GlialCAM involved in leukodystrophy

    PubMed Central

    Capdevila-Nortes, Xavier; Jeworutzki, Elena; Elorza-Vidal, Xabier; Barrallo-Gimeno, Alejandro; Pusch, Michael; Estévez, Raúl

    2015-01-01

    Abstract Mutations in the genes encoding the astrocytic protein MLC1, the cell adhesion molecule GlialCAM or the Cl− channel ClC-2 underlie human leukodystrophies. GlialCAM binds to itself, to MLC1 and to ClC-2, and directs these proteins to cell–cell contacts. In addition, GlialCAM dramatically activates ClC-2 mediated currents. In the present study, we used mutagenesis studies combined with functional and biochemical analyses to determine which parts of GlialCAM are required to perform these cellular functions. We found that the extracellular domain of GlialCAM is necessary for cell junction targeting and for mediating interactions with itself or with MLC1 and ClC-2. The C-terminus is also necessary for proper targeting to cell–cell junctions but is not required for the biochemical interaction. Finally, we identified the first three amino acids of the transmembrane segment of GlialCAM as being essential for the activation of ClC-2 currents but not for targeting or biochemical interaction. Our results provide new mechanistic insights concerning the regulation of the cell biology and function of MLC1 and ClC-2 by GlialCAM. Key points The extracellular domain of GlialCAM is necessary for its targeting to cell junctions, as well as for interactions with itself and MLC1 and ClC-2. The C-terminus of GlialCAM is not necessary for interaction but is required for targeting to cell junctions. The first three residues of the transmembrane segment of GlialCAM are required for GlialCAM-mediated ClC-2 activation. PMID:26033718

  10. Study of bismuth alkoxides as possible precursors for ALD.

    PubMed

    Hatanpää, Timo; Vehkamäki, Marko; Ritala, Mikko; Leskelä, Markku

    2010-04-01

    While searching for bismuth precursors for thin film preparation by atomic layer deposition (ALD) three bismuth alkoxides Bi(O(t)Bu)(3) (1), Bi(OCMe(2)(i)Pr)(3) (2), Bi(OC(i)Pr(3))(3) (3), bismuth beta-diketonate, Bi(thd)(3) (4), and bismuth carboxylate, Bi(O(2)C(t)Bu)(3) (5), were synthesized and evaluated. The compounds were characterized by CHN, NMR, MS, and TGA/SDTA. Earlier unknown crystal structures of compounds 1 and 3 were solved. Compound 1 forms dimeric and loose polymeric structures in the solid state while 3 is strictly monomeric. For compound 2 crystals suitable for complete structure solution could not be grown. Crystallization trials of 2 from hexane and toluene resulted in oxygen bridged tetramer [Bi(2)O(OCMe(2)(i)Pr)(4)](2) (6). Compound 4 has dimeric structure and compound 5 forms loose tetramers as reported earlier. The structure of toluene solvated crystal [Bi(O(2)C(t)Bu)(3)](4).2MeC(6)H(5) (7) was solved. All compounds studied showed relatively good volatility and thermal stability. They were all tested in ALD deposition experiments, in which compound 2 was found to be the most suitable for ALD growth of Bi(2)O(3). It exhibited a clear improvement over Bi precursors studied earlier.

  11. Possible role of glial cells in the relationship between thyroid dysfunction and mental disorders

    PubMed Central

    Noda, Mami

    2015-01-01

    It is widely accepted that there is a close relationship between the endocrine system and the central nervous system (CNS). Among hormones closely related to the nervous system, thyroid hormones (THs) are critical for the development and function of the CNS; not only for neuronal cells but also for glial development and differentiation. Any impairment of TH supply to the developing CNS causes severe and irreversible changes in the overall architecture and function of the human brain, leading to various neurological dysfunctions. In the adult brain, impairment of THs, such as hypothyroidism and hyperthyroidism, can cause psychiatric disorders such as schizophrenia, bipolar disorder, anxiety and depression. Although impact of hypothyroidism on synaptic transmission and plasticity is known, its effect on glial cells and related cellular mechanisms remain enigmatic. This mini-review article summarizes how THs are transported into the brain, metabolized in astrocytes and affect microglia and oligodendrocytes, demonstrating an example of glioendocrine system. Neuroglial effects may help to understand physiological and/or pathophysiological functions of THs in the CNS and how hypo- and hyper-thyroidism may cause mental disorders. PMID:26089777

  12. The self-composing brain: towards a glial-neuronal brain theory.

    PubMed

    Mitterauer, Bernhard; Kopp, Kristen

    2003-04-01

    A brain model is proposed which describes its structural organization and the related functions as compartments organized in time and space. On a molecular level the negative feedback loops of clock-controlled genes are interpreted as compartments. This spatio-temporal operational principle may also work on the cellular level as glial-neuronal interactions, wherein glia have a spatio-temporal boundary setting function. The synchronization of the multi-compartmental operations of the brain is compared to the harmonization in a symphony and appears as an integrated behavior of the whole organism, defined as modes of behavior. For explanation of the principle of harmonization, an example from Schubert's Symphony No. 8 has been chosen. While harmonization refers to the synchronization of diverse systems, it seems appropriate to select the brain of a composer and the structure of musical composition as a paradigm towards a glial-neuronal brain theory. Finally, some limitations of experimental brain research are discussed and robotics are proposed as a promising alternative.

  13. THE ROLE OF TUMOR PROGRESSION LOCUS 2 (TPL-2) PROTEIN KINASE IN GLIAL INFLAMMATORY RESPONSE

    PubMed Central

    Hirschhorn, Joshua; Mohanty, Sangeeta; Bhat, Narayan R.

    2013-01-01

    Tumor progression locus 2 (Tpl2)/Cot kinase is a newer member of MAP3K family that is now known for its essential role in TNFα expression in macrophages, but its proinflammatory signaling, if any, in glia is unknown. When cultures of murine microglia and astrocytes were exposed to lipopolysaccharide, there was a rapid activation (i.e., phosphorylation) of Tpl2 in parallel to the activation of down-stream effector MAPKs i.e., ERK, p38 MAPK and JNK. Pre-incubation of the cultures with a Tpl2 inhibitor selectively suppressed the activation of the primary down-stream target i.e., ERK relative to p38 MAPK and JNK. That Tpl2 activation was functionally involved in glial inflammatory response was indicated by a reduced release of the cytokines i.e., TNFα and the expression of inducible nitric oxide synthase (iNOS) in the presence of the kinase inhibitor. Further, overexpression of a wild-type Tpl2 construct in C-6 glia resulted in an enhanced transcriptional activation of iNOS while transfection with a dominant negative form of Tpl-2 had the opposite effect. The findings assign an important proinflammatory signaling function for Tpl2 pathway in glial cells. PMID:24188160

  14. Nogo receptor 1 is expressed in both primary cultured glial cells and neurons

    PubMed Central

    Ukai, Junichi; Imagama, Shiro; Ohgomori, Tomohiro; Ito, Zenya; Ando, Kei; Ishiguro, Naoki; Kadomatsu, Kenji

    2016-01-01

    ABSTRACT Nogo receptor (NgR) is common in myelin-derived molecules, i.e., Nogo, MAG, and OMgp, and plays important roles in both axon fasciculation and the inhibition of axonal regeneration. In contrast to NgR’s roles in neurons, its roles in glial cells have been poorly explored. Here, we found a dynamic regulation of NgR1 expression during development and neuronal injury. NgR1 mRNA was consistently expressed in the brain from embryonic day 18 to postnatal day 25. In contrast, its expression significantly decreased in the spinal cord during development. Primary cultured neurons, microglia, and astrocytes expressed NgR1. Interestingly, a contusion injury in the spinal cord led to elevated NgR1 mRNA expression at the injury site, but not in the motor cortex, 14 days after injury. Consistent with this, astrocyte activation by TGFβ1 increased NgR1 expression, while microglia activation rather decreased NgR1 expression. These results collectively suggest that NgR1 expression is enhanced in a milieu of neural injury. Our findings may provide insight into the roles of NgR1 in glial cells. PMID:27578914

  15. Effects of Flavonoids from Food and Dietary Supplements on Glial and Glioblastoma Multiforme Cells.

    PubMed

    Vidak, Marko; Rozman, Damjana; Komel, Radovan

    2015-10-23

    Quercetin, catechins and proanthocyanidins are flavonoids that are prominently featured in foodstuffs and dietary supplements, and may possess anti-carcinogenic activity. Glioblastoma multiforme is the most dangerous form of glioma, a malignancy of the brain connective tissue. This review assesses molecular structures of these flavonoids, their importance as components of diet and dietary supplements, their bioavailability and ability to cross the blood-brain barrier, their reported beneficial health effects, and their effects on non-malignant glial as well as glioblastoma tumor cells. The reviewed flavonoids appear to protect glial cells via reduction of oxidative stress, while some also attenuate glutamate-induced excitotoxicity and reduce neuroinflammation. Most of the reviewed flavonoids inhibit proliferation of glioblastoma cells and induce their death. Moreover, some of them inhibit pro-oncogene signaling pathways and intensify the effect of conventional anti-cancer therapies. However, most of these anti-glioblastoma effects have only been observed in vitro or in animal models. Due to limited ability of the reviewed flavonoids to access the brain, their normal dietary intake is likely insufficient to produce significant anti-cancer effects in this organ, and supplementation is needed.

  16. Effects of dextromethorphan on glial cell function: proliferation, maturation, and protection from cytotoxic molecules.

    PubMed

    Lisak, Robert P; Nedelkoska, Liljana; Benjamins, Joyce A

    2014-05-01

    Dextromethorphan (DM), a sigma receptor agonist and NMDA receptor antagonist, protects neurons from glutamate excitotoxicity, hypoxia and ischemia, and inhibits microglial activation, but its effects on differentiation and protection of cells in the oligodendroglial lineage are unknown. It is important to protect oligodendroglia (OL) to prevent demyelination and preserve axons, and to protect oligodendroglial progenitors (OPC) to optimize myelination during development and remyelination following damage. Enriched glial cultures from newborn rat brain were used 1-2 days or 6-8 days after shakeoff for OPC or mature OL. DM had large effects on glial proliferation in less mature cultures in contrast to small variable effects in mature cultures; 1 μM DM stimulated proliferation of OPC by 4-fold, microglia (MG) by 2.5-fold and astroglia (AS) by 2-fold. In agreement with increased OPC proliferation, treatment of OPC with DM for 3 days increased the % of OPC relative to OL, with a smaller difference by 5 days, suggesting that maturation of OPC to OL was "catching up" by 5 days. DM at 2 and 20 μM protected both OL and OPC from killing by glutamate as well as NMDA, AMPA, quinolinic acid, staurosporine, and reactive oxygen species (ROS). DM did not protect against kynurenic acid, and only modestly against NO. These agents and DM were not toxic to AS or MG at the concentrations used. Thus, DM stimulates proliferation of OPC, and protects both OL and OPC against excitotoxic and inflammatory insults. PMID:24526455

  17. Retinal functional alterations in mice lacking intermediate filament proteins glial fibrillary acidic protein and vimentin.

    PubMed

    Wunderlich, Kirsten A; Tanimoto, Naoyuki; Grosche, Antje; Zrenner, Eberhart; Pekny, Milos; Reichenbach, Andreas; Seeliger, Mathias W; Pannicke, Thomas; Perez, Maria-Thereza

    2015-12-01

    Vimentin (Vim) and glial fibrillary acidic protein (GFAP) are important components of the intermediate filament (IF) (or nanofilament) system of astroglial cells. We conducted full-field electroretinogram (ERG) recordings and found that whereas photoreceptor responses (a-wave) were normal in uninjured GFAP(-/-)Vim(-/-) mice, b-wave amplitudes were increased. Moreover, we found that Kir (inward rectifier K(+)) channel protein expression was reduced in the retinas of GFAP(-/-)Vim(-/-) mice and that Kir-mediated current amplitudes were lower in Müller glial cells isolated from these mice. Studies have shown that the IF system, in addition, is involved in the retinal response to injury and that attenuated Müller cell reactivity and reduced photoreceptor cell loss are observed in IF-deficient mice after experimental retinal detachment. We investigated whether the lack of IF proteins would affect cell survival in a retinal ischemia-reperfusion model. We found that although cell loss was induced in both genotypes, the number of surviving cells in the inner retina was lower in IF-deficient mice. Our findings thus show that the inability to produce GFAP and Vim affects normal retinal physiology and that the effect of IF deficiency on retinal cell survival differs, depending on the underlying pathologic condition.

  18. Identification of autoantibodies to glial fibrillary acidic protein in spinal cord injury patients.

    PubMed

    Hergenroeder, Georgene W; Moore, Anthony N; Schmitt, Karl M; Redell, John B; Dash, Pramod K

    2016-01-20

    Traumatic spinal cord injury (SCI) is a devastating injury causing significant morbidity and mortality. Experimental studies have demonstrated that SCI induced cellular damage and disruption of the blood-spinal cord barrier can initiate an autoimmune response. This response is thought to be pathogenic and contribute to poor outcome. The objective of this research was to investigate whether human SCI mounts an autoimmune response to self-antigens. Plasma samples were collected longitudinally from SCI patients (n=18) at acute (T1, <48 h) and subacute (T2, 2-4 weeks) time points to probe western blots of human brain homogenates in order to screen patients for the presence of putative autoantibodies. To identify the corresponding antigens, two-dimensional gel electrophoresis, western blot and liquid chromatography coupled with mass spectrometry (LC-MS/MS) analyses were performed. We found that four of 18 patients (22%) had novel immunoreactive bands ranging in size from 36 to 42 kDa present in subacute, but not in acute, plasma samples suggesting postinjury production. To identify the cross-reacting antigens, we separated brain proteins by two-dimensional gel electrophoresis and identified nine immunoreactive spots. Amino acid sequence analysis of these spots identified peptides that mapped to glial fibrillary acidic protein. Our results suggest that ∼ 22% of SCI patients generated autoantibodies to glial fibrillary acidic protein. Future studies will be required to determine whether these autoantibodies contribute to the pathogenic sequelae of SCI.

  19. Interferon alpha inhibits spinal cord synaptic and nociceptive transmission via neuronal-glial interactions

    PubMed Central

    Liu, Chien-Cheng; Gao, Yong-Jing; Luo, Hao; Berta, Temugin; Xu, Zhen-Zhong; Ji, Ru-Rong; Tan, Ping-Heng

    2016-01-01

    It is well known that interferons (IFNs), such as type-I IFN (IFN-α) and type-II IFN (IFN-γ) are produced by immune cells to elicit antiviral effects. IFNs are also produced by glial cells in the CNS to regulate brain functions. As a proinflammatory cytokine, IFN-γ drives neuropathic pain by inducing microglial activation in the spinal cord. However, little is known about the role of IFN-α in regulating pain sensitivity and synaptic transmission. Strikingly, we found that IFN-α/β receptor (type-I IFN receptor) was expressed by primary afferent terminals in the superficial dorsal horn that co-expressed the neuropeptide CGRP. In the spinal cord IFN-α was primarily expressed by astrocytes. Perfusion of spinal cord slices with IFN-α suppressed excitatory synaptic transmission by reducing the frequency of spontaneous excitatory postsynaptic current (sEPSCs). IFN-α also inhibited nociceptive transmission by reducing capsaicin-induced internalization of NK-1 and phosphorylation of extracellular signal-regulated kinase (ERK) in superficial dorsal horn neurons. Finally, spinal (intrathecal) administration of IFN-α reduced inflammatory pain and increased pain threshold in naïve rats, whereas removal of endogenous IFN-α by a neutralizing antibody induced hyperalgesia. Our findings suggest a new form of neuronal-glial interaction by which IFN-α, produced by astrocytes, inhibits nociceptive transmission in the spinal cord. PMID:27670299

  20. Cells transplanted onto the surface of the glial scar reveal hidden potential for functional neural regeneration

    PubMed Central

    Sekiya, Tetsuji; Holley, Matthew C.; Hashido, Kento; Ono, Kazuya; Shimomura, Koichiro; Horie, Rie T.; Hamaguchi, Kiyomi; Yoshida, Atsuhiro; Sakamoto, Tatsunori; Ito, Juichi

    2015-01-01

    Cell transplantation therapy has long been investigated as a therapeutic intervention for neurodegenerative disorders, including spinal cord injury, Parkinson’s disease, and amyotrophic lateral sclerosis. Indeed, patients have high hopes for a cell-based therapy. However, there are numerous practical challenges for clinical translation. One major problem is that only very low numbers of donor cells survive and achieve functional integration into the host. Glial scar tissue in chronic neurodegenerative disorders strongly inhibits regeneration, and this inhibition must be overcome to accomplish successful cell transplantation. Intraneural cell transplantation is considered to be the best way to deliver cells to the host. We questioned this view with experiments in vivo on a rat glial scar model of the auditory system. Our results show that intraneural transplantation to the auditory nerve, preceded by chondroitinase ABC (ChABC)-treatment, is ineffective. There is no functional recovery, and almost all transplanted cells die within a few weeks. However, when donor cells are placed on the surface of a ChABC-treated gliotic auditory nerve, they autonomously migrate into it and recapitulate glia- and neuron-guided cell migration modes to repair the auditory pathway and recover auditory function. Surface transplantation may thus pave the way for improved functional integration of donor cells into host tissue, providing a less invasive approach to rescue clinically important neural tracts. PMID:26080415

  1. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments. PMID:27026484

  2. Cystatin B-deficient mice have increased expression of apoptosis and glial activation genes

    SciTech Connect

    Lieuallen, Kimberly; Pennacchio, Len A.; Park, Morgan; Myers, Richard M.; Lennon, Gregory G.

    2001-07-05

    Loss-of-function mutations in the cystatin B (Cstb) gene cause a neurological disorder known as Unverricht Lundborg disease (EPM1) in human patients. Mice that lack Cstb provide a mammalian model for EPM1 by displaying progressive ataxia and myoclonic seizures. We analyzed RNAs from brains of Cstb-deficient mice by using modified differential display, oligonucleotide microarray hybridization and quantitative reverse transcriptase polymerase chain reaction to examine the molecular consequences of the lack of Cstb. We identified seven genes that have consistently increased transcript levels in neurological tissues from the knockout mice. These genes are cathepsin S, C1q B-chain of complement (C1qB), beta-2-microglobulin, glial fibrillary acidic protein (Gfap), apolipoprotein D, fibronectin 1 and metallothionein II, which are expected to be involved in increased proteolysis, apoptosis and glial activation. The molecular changes in Cstb-deficient mice are consistent with the pathology found in the mouse model and may provide clues towards the identification of therapeutic points of intervention for EPM1 patients.

  3. [An Autopsy Case of Globular Glial Tauopathy Presenting with Amyotrophic Lateral Sclerosis with Dementia].

    PubMed

    Sasaki, Ryogen; Mimuro, Maya; Kokubo, Yasumasa; Imai, Hiroshi; Yoshida, Mari; Tomimoto, Hidekazu

    2016-08-01

    We report an autopsy case of globular glial tauopathy (GGT) presenting clinically with amyotrophic lateral sclerosis (ALS) with dementia. A 79-year-old female developed weakness in the right upper limb, which progressed gradually. She developed apathy and speech disorder at 80 years of age. On neurological examination, she showed signs of upper and lower motor neuron disorder and dementia, but no extrapyramidal signs. The clinical diagnosis was ALS with dementia. The autopsy revealed left predominant marked atrophy of the frontal lobe due to severe neuronal loss and Gliosis. Immunohistochemistry using anti-4-repeat tau antibody revealed numerous globular glial inclusions. Severe neurodegeneration in the primary motor cortex and corticospinal tract was observed. There were distinctive tau-positive inclusions in both Betz and anterior horn cells. TDP-43-positive inclusions in motor neurons were not detected. Sequence analysis of the tau gene revealed no mutations in exons 1-5, 7, 9-13, or the adjacent intronic sequences. GGT can cause a clinical phenotype of ALS with dementia. (Received December 28, 2015; Accepted February 23, 2016; Published August 1, 2016). PMID:27503823

  4. Electrogenic glutamate uptake in glial cells is activated by intracellular potassium

    NASA Astrophysics Data System (ADS)

    Barbour, Boris; Brew, Helen; Attwell, David

    1988-09-01

    Uptake of glutamate into glial cells in the CNS maintains the extracellular glutamate concentration below neurotoxic levels and helps terminate its action as a neurotransmitter 1. The co-transport of two sodium ions on the glutamate carrier is thought to provide the energy needed to transport glutamate into cells2,3. We have shown recently that glutamate uptake can be detected electrically because the excess of Na+ ions transported with each glutamate anion results in a net current flow into the cell4. We took advantage of the control of the environment, both inside and outside the cell, provided by whole-cell patch-clamping and now report that glutamate uptake is activated by intracellular potassium and inhibited by extracellular potassium. Our results indicate that one K+ ion is transported out of the cell each time a glutamate anion and three Na+ ions are transported in. A carrier with this stoichiometry can accumulate glutamate against a much greater concentration gradient than a carrier co-transporting one glutamate anion and two Na+ ions. Pathological rises in extracellular potassium concentration will inhibit glutamate uptake by depolarizing glial cells and by preventing the loss of K+ from the glutamate carrier. This will facilitate a rise in the extracellular glutamate concentration to neurotoxic levels and contribute to the neuronal death occurring in brain anoxia and ischaemia.

  5. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    PubMed

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  6. Altered expression of glial and synaptic markers in the anterior hippocampus of behaviorally depressed female monkeys.

    PubMed

    Willard, Stephanie L; Hemby, Scott E; Register, Thomas C; McIntosh, Scot; Shively, Carol A

    2014-03-20

    The anterior hippocampus is associated with emotional functioning and hippocampal volume is reduced in depression. We reported reduced neuropil volume and number of glia in the dentate gyrus (DG) and cornu ammonis (CA)1 of the anterior hippocampus in behaviorally depressed adult female cynomolgus macaques. To determine the biochemical correlates of morphometric and behavioral differences between behaviorally depressed and nondepressed adult female monkeys, glial and synaptic transcripts and protein levels were assessed in the DG, CA3 and CA1 of the anterior hippocampus. Glial fibrillary acidic protein (GFAP) was increased whereas spinophilin and postsynaptic density (PSD)-95 protein were decreased in the CA1 of depressed monkeys. GFAP was reciprocally related to spinophilin and PSD-95 protein in the CA1. Gene expression of GFAP paralleled the protein changes observed in the CA1 and was inversely related to serum estradiol levels in depressed monkeys. These results suggest that behavioral depression in female primates is accompanied by astrocytic and synaptic protein alterations in the CA1. Moreover, these findings indicate a potential role for estrogen in modulating astrocyte-mediated impairments in synaptic plasticity.

  7. Altered Expression of Glial and Synaptic Markers in the Anterior Hippocampus of Behaviorally Depressed Female Monkeys

    PubMed Central

    Willard, Stephanie L.; Hemby, Scott E.; Register, Thomas C.; McIntosh, Scot; Shively, Carol A.

    2014-01-01

    The anterior hippocampus is associated with emotional functioning and hippocampal volume is reduced in depression. We reported reduced neuropil volume and number of glia in the dentate gyrus (DG) and cornu ammonis (CA)1 of the anterior hippocampus in behaviorally depressed adult female cynomolgus macaques. To determine the biochemical correlates of morphometric and behavioral differences between behaviorally depressed and nondepressed adult female monkeys, glial and synaptic transcripts and protein levels were assessed in the DG, CA3 and CA1 of the anterior hippocampus. Glial fibrillary acidic protein (GFAP) was increased whereas spinophilin and postsynaptic density (PSD)-95 protein were decreased in the CA1 of depressed monkeys. GFAP was reciprocally related to spinophilin and PSD-95 protein in the CA1. Gene expression of GFAP paralleled the protein changes observed in the CA1 and was inversely related to serum estradiol levels in depressed monkeys. These results suggest that behavioral depression in female primates is accompanied by astrocytic and synaptic protein alterations in the CA1. Moreover, these findings indicate a potential role for estrogen in modulating astrocyte-mediated impairments in synaptic plasticity. PMID:24440617

  8. C3G regulates cortical neuron migration, preplate splitting and radial glial cell attachment.

    PubMed

    Voss, Anne K; Britto, Joanne M; Dixon, Mathew P; Sheikh, Bilal N; Collin, Caitlin; Tan, Seong-Seng; Thomas, Tim

    2008-06-01

    Neuronal migration is integral to the development of the cerebral cortex and higher brain function. Cortical neuron migration defects lead to mental disorders such as lissencephaly and epilepsy. Interaction of neurons with their extracellular environment regulates cortical neuron migration through cell surface receptors. However, it is unclear how the signals from extracellular matrix proteins are transduced intracellularly. We report here that mouse embryos lacking the Ras family guanine nucleotide exchange factor, C3G (Rapgef1, Grf2), exhibit a cortical neuron migration defect resulting in a failure to split the preplate into marginal zone and subplate and a failure to form a cortical plate. C3G-deficient cortical neurons fail to migrate. Instead, they arrest in a multipolar state and accumulate below the preplate. The basement membrane is disrupted and radial glial processes are disorganised and lack attachment in C3G-deficient brains. C3G is activated in response to reelin in cortical neurons, which, in turn, leads to activation of the small GTPase Rap1. In C3G-deficient cells, Rap1 GTP loading in response to reelin stimulation is reduced. In conclusion, the Ras family regulator C3G is essential for two aspects of cortex development, namely radial glial attachment and neuronal migration.

  9. Glial degeneration with oxidative damage drives neuronal demise in MPSII disease.

    PubMed

    Zalfa, Cristina; Verpelli, Chiara; D'Avanzo, Francesca; Tomanin, Rosella; Vicidomini, Cinzia; Cajola, Laura; Manara, Renzo; Sala, Carlo; Scarpa, Maurizio; Vescovi, Angelo Luigi; De Filippis, Lidia

    2016-01-01

    Mucopolysaccharidosis type II (MPSII) is a lysosomal storage disorder due to the deficit of the iduronate 2-sulfatase (IDS) enzyme, causing progressive neurodegeneration in patients. Neural stem cells (NSCs) derived from the IDS-ko mouse can recapitulate MPSII pathogenesis in vitro. In differentiating IDS-ko NSCs and in the aging IDS-ko mouse brain, glial degeneration precedes neuronal degeneration. Here we show that pure IDS-ko NSC-derived astrocytes are selectively able to drive neuronal degeneration when cocultured with healthy neurons. This phenotype suggests concurrent oxidative damage with metabolic dysfunction. Similar patterns were observed in murine IDS-ko animals and in human MPSII brains. Most importantly, the mutant phenotype of IDS-ko astrocytes was reversed by low oxygen conditions and treatment with vitamin E, which also reversed the toxic effect on cocultured neurons. Moreover, at very early stages of disease we detected in vivo the development of a neuroinflammatory background that precedes astroglial degeneration, thus suggesting a novel model of MPSII pathogenesis, with neuroinflammation preceding glial degeneration, which is finally followed by neuronal death. This hypothesis is also consistent with the progression of white matter abnormalities in MPSII patients. Our study represents a novel breakthrough in the elucidation of MPSII brain pathogenesis and suggests the antioxidant molecules as potential therapeutic tools to delay MPSII onset and progression. PMID:27512952

  10. O-GlcNAc modification of radial glial vimentin filaments in the developing chick brain.

    PubMed

    Farach, Andrew M; Galileo, Deni S

    2008-12-01

    We examined the post-translational modification of intracellular proteins by beta-O-linked N-acetylglucosamine (O-GlcNAc) with regard to neurofilament phosphorylation in the developing chick optic tectum. A regulated developmental pattern of O-GlcNAcylation was discovered in the developing brain. Most notably, discernible staining occurs along radial glial filaments but not along neuronal filaments in vivo. Immunohistochemical analyses in sections of progressive stages of development suggest upregulation of O-GlcNAc in the ependyma, tectofugal neuron bodies, and radial glial processes, but not in axons. In contrast, double-label immunostaining of monolayer cultures made from dissociated embryonic day (E) 7 optic tecta revealed O-GlcNAcylation of most axons. Labeling of brain sections together with Western blot analyses showed O-GlcNAc modification of a few discrete proteins throughout development, and suggested vimentin as the protein in radial glia. Immunoprecipitation of vimentin from E9 whole brain lysates confirmed O-GlcNAcylation of vimentin in development. These results indicate a regulated pattern of O-GlcNAc modification of vimentin filaments, which in turn suggests a role for O-GlcNAc-modified intermediate filaments in radial glia, but not in neurons during brain development. The control mechanisms that regulate this pattern in vivo, however, are disrupted when cells are placed in vitro.

  11. Agenesis of the Corpus Callosum Due to Defective Glial Wedge Formation in Lhx2 Mutant Mice.

    PubMed

    Chinn, Gregory A; Hirokawa, Karla E; Chuang, Tony M; Urbina, Cecilia; Patel, Fenil; Fong, Jeanette; Funatsu, Nobuo; Monuki, Edwin S

    2015-09-01

    Establishment of the corpus callosum involves coordination between callosal projection neurons and multiple midline structures, including the glial wedge (GW) rostrally and hippocampal commissure caudally. GW defects have been associated with agenesis of the corpus callosum (ACC). Here we show that conditional Lhx2 inactivation in cortical radial glia using Emx1-Cre or Nestin-Cre drivers results in ACC. The ACC phenotype was characterized by aberrant ventrally projecting callosal axons rather than Probst bundles, and was 100% penetrant on 2 different mouse strain backgrounds. Lhx2 inactivation in postmitotic cortical neurons using Nex-Cre mice did not result in ACC, suggesting that the mutant phenotype was not autonomous to the callosal projection neurons. Instead, ACC was associated with an absent hippocampal commissure and a markedly reduced to absent GW. Expression studies demonstrated strong Lhx2 expression in the normal GW and in its radial glial progenitors, with absence of Lhx2 resulting in normal Emx1 and Sox2 expression, but premature exit from the cell cycle based on EdU-Ki67 double labeling. These studies define essential roles for Lhx2 in GW, hippocampal commissure, and corpus callosum formation, and suggest that defects in radial GW progenitors can give rise to ACC.

  12. Glial cells as key players in schizophrenia pathology: recent insights and concepts of therapy.

    PubMed

    Bernstein, Hans-Gert; Steiner, Johann; Guest, Paul C; Dobrowolny, Henrik; Bogerts, Bernhard

    2015-01-01

    The past decade has witnessed an explosion of knowledge on the impact of glia for the neurobiological foundation of schizophrenia. A plethora of studies have shown structural and functional abnormalities in all three types of glial cells. There is convincing evidence of reduced numbers of oligodendrocytes, impaired cell maturation and altered gene expression of myelin/oligodendrocyte-related genes that may in part explain white matter abnormalities and disturbed inter- and intra-hemispheric connectivity, which are characteristic signs of schizophrenia. Earlier reports of astrogliosis could not be confirmed by later studies, although the expression of a variety of astrocyte-related genes is abnormal in psychosis. Since astrocytes play a key role in the synaptic metabolism of glutamate, GABA, monoamines and purines, astrocyte dysfunction may contribute to certain aspects of disturbed neurotransmission in schizophrenia. Finally, increased densities of microglial cells and aberrant expression of microglia-related surface markers in schizophrenia suggest that immunological/inflammatory factors are of considerable relevance for the pathophysiology of psychosis. This review describes current evidence for the multifaceted role of glial cells in schizophrenia and discusses efforts to develop glia-directed therapies for the treatment of the disease.

  13. Glia-to-axon communication: enrichment of glial proteins transferred to the squid giant axon.

    PubMed

    Sheller, R A; Tytell, M; Smyers, M; Bittner, G D

    1995-06-15

    The transfer of newly synthesized proteins from the glial sheath into the axon is a well-documented process for the squid giant axon. In this study, we used a novel approach to separate the transferred glial proteins (TGPs) from the endogenous axoplasmic proteins of the squid giant axon. Axoplasm, containing radiolabelled TGPs, was extruded as a cylinder and immersed in an intracellular buffer. After 1-30 min, the TGPs were enriched in the intracellular buffer, because they were eluted from the axoplasm into the intracellular buffer much faster than the endogenous axoplasmic proteins. Most of the TGPs enriched in the intracellular buffer did not pellet when centrifuged at 24,000 g for 20 min and were susceptible to protease digestion without the addition of Triton X-100. Additionally, transmission electron microscopic autoradiography of intact axons, containing radiolabelled TGPs, suggested that most TGPs were not associated with vesicular organelles within the axon. We conclude that most of the TGPs are not contained within vesicles in the axoplasm of the squid giant axon, as would be expected if the mechanism of glia-to-axon transfer were conventional exocytosis-endocytosis or microphagocytosis.

  14. N-cadherin negatively regulates collective Drosophila glial migration through actin cytoskeleton remodeling.

    PubMed

    Kumar, Arun; Gupta, Tripti; Berzsenyi, Sara; Giangrande, Angela

    2015-03-01

    Cell migration is an essential and highly regulated process. During development, glia cells and neurons migrate over long distances - in most cases collectively - to reach their final destination and build the sophisticated architecture of the nervous system, the most complex tissue of the body. Collective migration is highly stereotyped and efficient, defects in the process leading to severe human diseases that include mental retardation. This dynamic process entails extensive cell communication and coordination, hence, the real challenge is to analyze it in the entire organism and at cellular resolution. We here investigate the impact of the N-cadherin adhesion molecule on collective glial migration, by using the Drosophila developing wing and cell-type specific manipulation of gene expression. We show that N-cadherin timely accumulates in glial cells and that its levels affect migration efficiency. N-cadherin works as a molecular brake in a dosage-dependent manner, by negatively controlling actin nucleation and cytoskeleton remodeling through α/β catenins. This is the first in vivo evidence for N-cadherin negatively and cell autonomously controlling collective migration.

  15. Effect of cold plasma on glial cell morphology studied by atomic force microscopy.

    PubMed

    Recek, Nina; Cheng, Xiaoqian; Keidar, Michael; Cvelbar, Uros; Vesel, Alenka; Mozetic, Miran; Sherman, Jonathan

    2015-01-01

    The atomic force microscope (AFM) is broadly used to study the morphology of cells. The morphological characteristics and differences of the cell membrane between normal human astrocytes and glial tumor cells are not well explored. Following treatment with cold atmospheric plasma, evaluation of the selective effect of plasma on cell viability of tumor cells is poorly understood and requires further evaluation. Using AFM we imaged morphology of glial cells before and after cold atmospheric plasma treatment. To look more closely at the effect of plasma on cell membrane, high resolution imaging was used. We report the differences between normal human astrocytes and human glioblastoma cells by considering the membrane surface details. Our data, obtained for the first time on these cells using atomic force microscopy, argue for an architectural feature on the cell membrane, i.e. brush layers, different in normal human astrocytes as compared to glioblastoma cells. The brush layer disappears from the cell membrane surface of normal E6/E7 cells and is maintained in the glioblastoma U87 cells after plasma treatment.

  16. Possible role of glial cells in the relationship between thyroid dysfunction and mental disorders.

    PubMed

    Noda, Mami

    2015-01-01

    It is widely accepted that there is a close relationship between the endocrine system and the central nervous system (CNS). Among hormones closely related to the nervous system, thyroid hormones (THs) are critical for the development and function of the CNS; not only for neuronal cells but also for glial development and differentiation. Any impairment of TH supply to the developing CNS causes severe and irreversible changes in the overall architecture and function of the human brain, leading to various neurological dysfunctions. In the adult brain, impairment of THs, such as hypothyroidism and hyperthyroidism, can cause psychiatric disorders such as schizophrenia, bipolar disorder, anxiety and depression. Although impact of hypothyroidism on synaptic transmission and plasticity is known, its effect on glial cells and related cellular mechanisms remain enigmatic. This mini-review article summarizes how THs are transported into the brain, metabolized in astrocytes and affect microglia and oligodendrocytes, demonstrating an example of glioendocrine system. Neuroglial effects may help to understand physiological and/or pathophysiological functions of THs in the CNS and how hypo- and hyper-thyroidism may cause mental disorders. PMID:26089777

  17. Nogo receptor 1 is expressed in both primary cultured glial cells and neurons.

    PubMed

    Ukai, Junichi; Imagama, Shiro; Ohgomori, Tomohiro; Ito, Zenya; Ando, Kei; Ishiguro, Naoki; Kadomatsu, Kenji

    2016-08-01

    Nogo receptor (NgR) is common in myelin-derived molecules, i.e., Nogo, MAG, and OMgp, and plays important roles in both axon fasciculation and the inhibition of axonal regeneration. In contrast to NgR's roles in neurons, its roles in glial cells have been poorly explored. Here, we found a dynamic regulation of NgR1 expression during development and neuronal injury. NgR1 mRNA was consistently expressed in the brain from embryonic day 18 to postnatal day 25. In contrast, its expression significantly decreased in the spinal cord during development. Primary cultured neurons, microglia, and astrocytes expressed NgR1. Interestingly, a contusion injury in the spinal cord led to elevated NgR1 mRNA expression at the injury site, but not in the motor cortex, 14 days after injury. Consistent with this, astrocyte activation by TGFβ1 increased NgR1 expression, while microglia activation rather decreased NgR1 expression. These results collectively suggest that NgR1 expression is enhanced in a milieu of neural injury. Our findings may provide insight into the roles of NgR1 in glial cells. PMID:27578914

  18. Effect of Cold Plasma on Glial Cell Morphology Studied by Atomic Force Microscopy

    PubMed Central

    Recek, Nina; Cheng, Xiaoqian; Keidar, Michael; Cvelbar, Uros; Vesel, Alenka; Mozetic, Miran; Sherman, Jonathan

    2015-01-01

    The atomic force microscope (AFM) is broadly used to study the morphology of cells. The morphological characteristics and differences of the cell membrane between normal human astrocytes and glial tumor cells are not well explored. Following treatment with cold atmospheric plasma, evaluation of the selective effect of plasma on cell viability of tumor cells is poorly understood and requires further evaluation. Using AFM we imaged morphology of glial cells before and after cold atmospheric plasma treatment. To look more closely at the effect of plasma on cell membrane, high resolution imaging was used. We report the differences between normal human astrocytes and human glioblastoma cells by considering the membrane surface details. Our data, obtained for the first time on these cells using atomic force microscopy, argue for an architectural feature on the cell membrane, i.e. brush layers, different in normal human astrocytes as compared to glioblastoma cells. The brush layer disappears from the cell membrane surface of normal E6/E7 cells and is maintained in the glioblastoma U87 cells after plasma treatment. PMID:25803024

  19. Resonant infrared pulsed laser deposition of a polyimide precursor

    NASA Astrophysics Data System (ADS)

    Dygert, N. L.; Schriver, K. E.; Haglund, R. F., Jr.

    2007-04-01

    Poly(amic acid) (PAA), a precursor to polyimide, was successfully deposited on substrates without reaching curing temperature, by resonant infrared pulsed laser ablation. The PAA was prepared by dissolving pyromellitic dianhydride and 4, 4' oxidianiline in the polar solvent Nmethyl pyrrolidinone (NMP). The PAA was deposited in droplet-like morphologies when ablation occurred in air, and in string-like moieties in the case of ablation in vacuum. In the as-deposited condition, the PAA was easily removed by washing with NMP; however, once cured thermally for thirty minutes, the PAA hardened, indicating the expected thermosetting property. Plume shadowgraphy showed very clear contrasts in the ablation mechanism between ablation of the solvent alone and the ablation of the PAA, even at low concentrations. A Wavelength dependence in plume velocity was also observed.

  20. The role of the PI3K/Akt/mTOR pathway in glial scar formation following spinal cord injury.

    PubMed

    Chen, Chun-Hong; Sung, Chun-Sung; Huang, Shi-Ying; Feng, Chien-Wei; Hung, Han-Chun; Yang, San-Nan; Chen, Nan-Fu; Tai, Ming-Hong; Wen, Zhi-Hong; Chen, Wu-Fu

    2016-04-01

    Several studies suggest that glial scars pose as physical and chemical barriers that limit neurite regeneration after spinal cord injury (SCI). Evidences suggest that the activation of the PI3K/Akt/mTOR signaling pathway is involved in glial scar formation. Therefore, inhibition of the PI3K/Akt/mTOR pathway may beneficially attenuate glial scar formation after SCI. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) negatively regulates the PI3K/Akt/mTOR pathway. Therefore, we hypothesized that the overexpression of PTEN in the spinal cord will have beneficial effects after SCI. In the present study, we intrathecally injected a recombinant adenovirus carrying the pten gene (Ad-PTEN) to cause overexpression of PTEN in rats with contusion injured spinal cords. The results suggest overexpression of PTEN in spinal cord attenuated glial scar formation and led to improved locomotor function after SCI. Overexpression of PTEN following SCI attenuated gliosis, affected chondroitin sulfate proteoglycan expression, and improved axon regeneration into the lesion site. Furthermore, we suggest that the activation of the PI3K/Akt/mTOR pathway in astrocytes at 3 days after SCI may be involved in glial scar formation. Because delayed treatment with Ad-PTEN enhanced motor function recovery more significantly than immediate treatment with Ad-PTEN after SCI, the results suggest that the best strategy to attenuate glial scar formation could be to introduce 3 days after SCI. This study's findings thus have positive implications for patients who are unable to receive immediate medical attention after SCI. PMID:26828688