Science.gov

Sample records for glioblastoma brain cancer

  1. Deciphering the Finger Prints of Brain Cancer Glioblastoma Multiforme from Four Different Patients by Using Near Infrared Raman Spectroscopy

    PubMed Central

    Banerjee, Hirendra Nath; Banerji, Arnold; Banerjee, Arunendra Nath; Riddick, Eilena; Petis, Jenae; Evans, Shavonda; Patel, Megha; Parson, Carl; Smith, Valerie; Gwebu, E.; Voisin, Sarah

    2015-01-01

    To explore the effectiveness of Raman spectra to diagnose brain cancer glioblastoma multiforme (GBM), we investigated the Raman spectra of single cell from four different GBM cell lines developed from four different patients and analyzed the spectra. The Raman spectra of brain cancer (GBM) cells were similar in all these cell lines. The results indicate that Raman spectra can offer the experimental basis for the cancer diagnosis and treatment. PMID:25937869

  2. Cancer stem cells in glioblastoma

    PubMed Central

    Lathia, Justin D.; Mack, Stephen C.; Mulkearns-Hubert, Erin E.; Valentim, Claudia L.L.; Rich, Jeremy N.

    2015-01-01

    Tissues with defined cellular hierarchies in development and homeostasis give rise to tumors with cellular hierarchies, suggesting that tumors recapitulate specific tissues and mimic their origins. Glioblastoma (GBM) is the most prevalent and malignant primary brain tumor and contains self-renewing, tumorigenic cancer stem cells (CSCs) that contribute to tumor initiation and therapeutic resistance. As normal stem and progenitor cells participate in tissue development and repair, these developmental programs re-emerge in CSCs to support the development and progressive growth of tumors. Elucidation of the molecular mechanisms that govern CSCs has informed the development of novel targeted therapeutics for GBM and other brain cancers. CSCs are not self-autonomous units; rather, they function within an ecological system, both actively remodeling the microenvironment and receiving critical maintenance cues from their niches. To fulfill the future goal of developing novel therapies to collapse CSC dynamics, drawing parallels to other normal and pathological states that are highly interactive with their microenvironments and that use developmental signaling pathways will be beneficial. PMID:26109046

  3. Effective treatment of glioblastoma requires crossing the blood-brain barrier and targeting tumors including cancer stem cells: The promise of nanomedicine.

    PubMed

    Kim, Sang-Soo; Harford, Joe B; Pirollo, Kathleen F; Chang, Esther H

    2015-12-18

    Glioblastoma multiforme (GBM) is the most aggressive and lethal type of brain tumor. Both therapeutic resistance and restricted permeation of drugs across the blood-brain barrier (BBB) play a major role in the poor prognosis of GBM patients. Accumulated evidence suggests that in many human cancers, including GBM, therapeutic resistance can be attributed to a small fraction of cancer cells known as cancer stem cells (CSCs). CSCs have been shown to have stem cell-like properties that enable them to evade traditional cytotoxic therapies, and so new CSC-directed anti-cancer therapies are needed. Nanoparticles have been designed to selectively deliver payloads to relevant target cells in the body, and there is considerable interest in the use of nanoparticles for CSC-directed anti-cancer therapies. Recent advances in the field of nanomedicine offer new possibilities for overcoming CSC-mediated therapeutic resistance and thus significantly improving management of GBM. In this review, we will examine the current nanomedicine approaches for targeting CSCs and their therapeutic implications. The inhibitory effect of various nanoparticle-based drug delivery system towards CSCs in GBM tumors is the primary focus of this review.

  4. Glioblastoma.

    PubMed

    Wirsching, Hans-Georg; Galanis, Evanthia; Weller, Michael

    2016-01-01

    Glioblastoma is the most common and aggressive primary brain tumor in adults. Defining histopathologic features are necrosis and endothelial proliferation, resulting in the assignment of grade IV, the highest grade in the World Health Organization (WHO) classification of brain tumors. The classic clinical term "secondary glioblastoma" refers to a minority of glioblastomas that evolve from previously diagnosed WHO grade II or grade III gliomas. Specific point mutations of the genes encoding isocitrate dehydrogenase (IDH) 1 or 2 appear to define molecularly these tumors that are associated with younger age and more favorable outcome; the vast majority of glioblastomas are IDH wild-type. Typical molecular changes in glioblastoma include mutations in genes regulating receptor tyrosine kinase (RTK)/rat sarcoma (RAS)/phosphoinositide 3-kinase (PI3K), p53, and retinoblastoma protein (RB) signaling. Standard treatment of glioblastoma includes surgery, radiotherapy, and alkylating chemotherapy. Promoter methylation of the gene encoding the DNA repair protein, O(6)-methylguanyl DNA methyltransferase (MGMT), predicts benefit from alkylating chemotherapy with temozolomide and guides choice of first-line treatment in elderly patients. Current developments focus on targeting the molecular characteristics that drive the malignant phenotype, including altered signal transduction and angiogenesis, and more recently, various approaches of immunotherapy. PMID:26948367

  5. Cancer Stem Cell Hierarchy in Glioblastoma Multiforme

    PubMed Central

    Bradshaw, Amy; Wickremsekera, Agadha; Tan, Swee T.; Peng, Lifeng; Davis, Paul F.; Itinteang, Tinte

    2016-01-01

    Glioblastoma multiforme (GBM), an aggressive tumor that typically exhibits treatment failure with high mortality rates, is associated with the presence of cancer stem cells (CSCs) within the tumor. CSCs possess the ability for perpetual self-renewal and proliferation, producing downstream progenitor cells that drive tumor growth. Studies of many cancer types have identified CSCs using specific markers, but it is still unclear as to where in the stem cell hierarchy these markers fall. This is compounded further by the presence of multiple GBM and glioblastoma cancer stem cell subtypes, making investigation and establishment of a universal treatment difficult. This review examines the current knowledge on the CSC markers SALL4, OCT-4, SOX2, STAT3, NANOG, c-Myc, KLF4, CD133, CD44, nestin, and glial fibrillary acidic protein, specifically focusing on their use and validity in GBM research and how they may be utilized for investigations into GBM’s cancer biology. PMID:27148537

  6. Glioblastoma cancer stem cells: Biomarker and therapeutic advances.

    PubMed

    Pointer, Kelli B; Clark, Paul A; Zorniak, Michael; Alrfaei, Bahauddeen M; Kuo, John S

    2014-05-01

    Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in humans. It accounts for fifty-two percent of primary brain malignancies in the United States and twenty percent of all primary intracranial tumors. Despite the current standard therapies of maximal safe surgical resection followed by temozolomide and radiotherapy, the median patient survival is still less than 2 years due to inevitable tumor recurrence. Glioblastoma cancer stem cells (GSCs) are a subgroup of tumor cells that are radiation and chemotherapy resistant and likely contribute to rapid tumor recurrence. In order to gain a better understanding of the many GBM-associated mutations, analysis of the GBM cancer genome is on-going; however, innovative strategies to target GSCs and overcome tumor resistance are needed to improve patient survival. Cancer stem cell biology studies reveal basic understandings of GSC resistance patterns and therapeutic responses. Membrane proteomics using phage and yeast display libraries provides a method to identify novel antibodies and surface antigens to better recognize, isolate, and target GSCs. Altogether, basic GBM and GSC genetics and proteomics studies combined with strategies to discover GSC-targeting agents could lead to novel treatments that significantly improve patient survival and quality of life.

  7. Anti-miR delivery strategies to bypass the blood-brain barrier in glioblastoma therapy

    PubMed Central

    Kim, Dong Geon; Kim, Kang Ho; Seo, Yun Jee; Yang, Heekyoung; Marcusson, Eric G.; Son, Eunju; Lee, Kyoungmin; Sa, Jason K.; Lee, Hye Won; Nam, Do-Hyun

    2016-01-01

    Small non-coding RNAs called miRNAs are key regulators in various biological processes, including tumor initiation, propagation, and metastasis in glioblastoma as well as other cancers. Recent studies have shown the potential for oncogenic miRNAs as therapeutic targets in glioblastoma. However, the application of antisense oligomers, or anti-miRs, to the brain is limited due to the blood-brain barrier (BBB), when administered in the traditional systemic manner. To induce a therapeutic effect in glioblastoma, anti-miR therapy requires a robust and effective delivery system to overcome this obstacle. To bypass the BBB, different delivery administration methods for anti-miRs were evaluated. Stereotaxic surgery was performed to administer anti-Let-7 through intratumoral (ITu), intrathecal (ITh), and intraventricular (ICV) routes, and each method's efficacy was determined by changes in the expression of anti-Let-7 target genes as well as by immunohistochemical analysis. ITu administration of anti-miRs led to a high rate of anti-miR delivery to tumors in the brain by both bolus and continuous administration. In addition, ICV administration, compared with ITu administration, showed a greater distribution of the miR across entire brain tissues. This study suggests that local administration methods are a promising strategy for anti-miR treatment and may overcome current limitations in the treatment of glioblastoma in preclinical animal models. PMID:27102443

  8. Modeling invasion of brain tissue by glioblastoma cells: ECM alignment and motility

    NASA Astrophysics Data System (ADS)

    Sander, L. M.

    2013-03-01

    A key stage in the development of highly malignant brain tumors (Glioblastoma Multiforme) is invasion of normal brain tissue by motile cells moving through a crowded, complex environment. Evidence from in vitro experiments suggests the cell motion is accompanied by considerable deformation and alignment of the extra-cellular matrix (ECM) of the brain. In the case of breast cancer, alignment effects of this sort have been seen in vivo. We have modeled features of this system including stress confinement in the non-linear elasticity of the ECM and contact guidance of the cell motion.

  9. Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth.

    PubMed

    Orr, Brent A; Bai, Haibo; Odia, Yazmin; Jain, Deepali; Anders, Robert A; Eberhart, Charles G

    2011-07-01

    The hippo pathway and its downstream mediator yes-associated protein 1 (YAP1) regulate mammalian organ size in part through modulating progenitor cell numbers. YAP1 has also been implicated as an oncogene in multiple human cancers. Currently, little is known about the expression of YAP1 either in normal human brain tissue or in central nervous system neoplasms. We used immunohistochemistry to evaluate nuclear YAP1 expression in the fetal and normal adult human brains and in 264 brain tumors. YAP1 was expressed in fetal and adult brain regions known to harbor neural progenitor cells, but there was little YAP1 immunoreactivity in the adult cerebral cortex. YAP1 protein was also readily detected in the nuclei of human brain tumors. In medulloblastoma, the expression varied between histologic subtypes and was most prominent in nodular/desmoplastic tumors. In gliomas, it was frequently expressed in infiltrating astrocytomas and oligodendrogliomas but rarely in pilocytic astrocytomas. Using a loss-of-function approach, we show that YAP1 promoted growth of glioblastoma cell lines in vitro. High levels of YAP1 messenger RNA expression were associated with aggressive molecular subsets of glioblastoma and with a nonsignificant trend toward reduced mean survival in human astrocytoma patients. These findings suggest that YAP1 may play an important role in normal human brain development and that it could represent a new target in human brain tumors.

  10. Multicentric spinal cord and brain glioblastoma without previous craniotomy

    PubMed Central

    de Eulate-Beramendi, Sayoa A.; Piña-Batista, Kelvin M.; Rodrigo, Victor; Torres-Rivas, Hector E.; Rial-Basalo, Juan C.

    2016-01-01

    Background: Glioblastoma multiforme (GBS) is a highly malignant glioma that rarely presents as an infratentorial tumor. Multicentric gliomas lesions are widely separated in site and/or time and its incidence has been reported between 0.15 and 10%. Multicentric gliomas involving supratentorial and infratentorial region are even more rare. In most cases, infratentorial disease is seen after surgical manipulation or radiation therapy and is usually located in the cerebellum or cervical region. Case Report: We present a rare case of symptomatic multicentric glioma in the brain, fourth ventricle, cervical as well as lumbar glioblastoma in an adult without previous therapeutic intervention. We also review the literature of this rare presentation. Conclusions: This report suggests that GBM is a diffuse disease; the more extended the disease, the worse prognosis it has. The management still remains controversial and further studies are required to understand the prognosis factors of dissemination. PMID:27512613

  11. Glioblastoma

    MedlinePlus

    ... most common form of glioblastoma; it is very aggressive. Secondary: These tumors have a longer, somewhat slower growth history, but still are very aggressive. They may begin as lower-grade tumors which ...

  12. Reduced Expression of Brain-Enriched microRNAs in Glioblastomas Permits Targeted Regulation of a Cell Death Gene

    PubMed Central

    Skalsky, Rebecca L.; Cullen, Bryan R.

    2011-01-01

    Glioblastoma is a highly aggressive malignant tumor involving glial cells in the human brain. We used high-throughput sequencing to comprehensively profile the small RNAs expressed in glioblastoma and non-tumor brain tissues. MicroRNAs (miRNAs) made up the large majority of small RNAs, and we identified over 400 different cellular pre-miRNAs. No known viral miRNAs were detected in any of the samples analyzed. Cluster analysis revealed several miRNAs that were significantly down-regulated in glioblastomas, including miR-128, miR-124, miR-7, miR-139, miR-95, and miR-873. Post-transcriptional editing was observed for several miRNAs, including the miR-376 family, miR-411, miR-381, and miR-379. Using the deep sequencing information, we designed a lentiviral vector expressing a cell suicide gene, the herpes simplex virus thymidine kinase (HSV-TK) gene, under the regulation of a miRNA, miR-128, that was found to be enriched in non-tumor brain tissue yet down-regulated in glioblastomas, Glioblastoma cells transduced with this vector were selectively killed when cultured in the presence of ganciclovir. Using an in vitro model to recapitulate expression of brain-enriched miRNAs, we demonstrated that neuronally differentiated SH-SY5Y cells transduced with the miRNA-regulated HSV-TK vector are protected from killing by expression of endogenous miR-128. Together, these results provide an in-depth analysis of miRNA dysregulation in glioblastoma and demonstrate the potential utility of these data in the design of miRNA-regulated therapies for the treatment of brain cancers. PMID:21912681

  13. Reduced expression of brain-enriched microRNAs in glioblastomas permits targeted regulation of a cell death gene.

    PubMed

    Skalsky, Rebecca L; Cullen, Bryan R

    2011-01-01

    Glioblastoma is a highly aggressive malignant tumor involving glial cells in the human brain. We used high-throughput sequencing to comprehensively profile the small RNAs expressed in glioblastoma and non-tumor brain tissues. MicroRNAs (miRNAs) made up the large majority of small RNAs, and we identified over 400 different cellular pre-miRNAs. No known viral miRNAs were detected in any of the samples analyzed. Cluster analysis revealed several miRNAs that were significantly down-regulated in glioblastomas, including miR-128, miR-124, miR-7, miR-139, miR-95, and miR-873. Post-transcriptional editing was observed for several miRNAs, including the miR-376 family, miR-411, miR-381, and miR-379. Using the deep sequencing information, we designed a lentiviral vector expressing a cell suicide gene, the herpes simplex virus thymidine kinase (HSV-TK) gene, under the regulation of a miRNA, miR-128, that was found to be enriched in non-tumor brain tissue yet down-regulated in glioblastomas, Glioblastoma cells transduced with this vector were selectively killed when cultured in the presence of ganciclovir. Using an in vitro model to recapitulate expression of brain-enriched miRNAs, we demonstrated that neuronally differentiated SH-SY5Y cells transduced with the miRNA-regulated HSV-TK vector are protected from killing by expression of endogenous miR-128. Together, these results provide an in-depth analysis of miRNA dysregulation in glioblastoma and demonstrate the potential utility of these data in the design of miRNA-regulated therapies for the treatment of brain cancers.

  14. Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma

    PubMed Central

    Friesen, Claudia; Hormann, Inis; Roscher, Mareike; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf; Debatin, Klaus-Michael; Miltner, Erich

    2014-01-01

    Glioblastoma are the most frequent and malignant human brain tumors, having a very poor prognosis. The enhanced radio- and chemoresistance of glioblastoma and the glioblastoma stem cells might be the main reason why conventional therapies fail. The second messenger cyclic AMP (cAMP) controls cell proliferation, differentiation, and apoptosis. Downregulation of cAMP sensitizes tumor cells for anti-cancer treatment. Opioid receptor agonists triggering opioid receptors can activate inhibitory Gi proteins, which, in turn, block adenylyl cyclase activity reducing cAMP. In this study, we show that downregulation of cAMP by opioid receptor activation improves the effectiveness of anti-cancer drugs in treatment of glioblastoma. The µ-opioid receptor agonist D,L-methadone sensitizes glioblastoma as well as the untreatable glioblastoma stem cells for doxorubicin-induced apoptosis and activation of apoptosis pathways by reversing deficient caspase activation and deficient downregulation of XIAP and Bcl-xL, playing critical roles in glioblastomas’ resistance. Blocking opioid receptors using the opioid receptor antagonist naloxone or increasing intracellular cAMP by 3-isobutyl-1-methylxanthine (IBMX) strongly reduced opioid receptor agonist-induced sensitization for doxorubicin. In addition, the opioid receptor agonist D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux, whereas doxorubicin increased opioid receptor expression in glioblastomas. Furthermore, opioid receptor activation using D,L-methadone inhibited tumor growth significantly in vivo. Our findings suggest that opioid receptor activation triggering downregulation of cAMP is a promising strategy to inhibit tumor growth and to improve the effectiveness of anti-cancer drugs in treatment of glioblastoma and in killing glioblastoma stem cells. PMID:24626197

  15. More Complete Removal of Malignant Brain Tumors by Fluorescence-Guided Surgery

    ClinicalTrials.gov

    2016-05-13

    Benign Neoplasms, Brain; Brain Cancer; Brain Neoplasms, Benign; Brain Neoplasms, Malignant; Brain Tumor, Primary; Brain Tumor, Recurrent; Brain Tumors; Intracranial Neoplasms; Neoplasms, Brain; Neoplasms, Intracranial; Primary Brain Neoplasms; Primary Malignant Brain Neoplasms; Primary Malignant Brain Tumors; Gliomas; Glioblastoma

  16. BK K+ channel blockade inhibits radiation-induced migration/brain infiltration of glioblastoma cells

    PubMed Central

    Klumpp, Lukas; Haehl, Erik; Schilbach, Karin; Lukowski, Robert; Kühnle, Matthias; Bernhardt, Günther; Buschauer, Armin; Zips, Daniel; Ruth, Peter; Huber, Stephan M.

    2016-01-01

    Infiltration of the brain by glioblastoma cells reportedly requires Ca2+ signals and BK K+ channels that program and drive glioblastoma cell migration, respectively. Ionizing radiation (IR) has been shown to induce expression of the chemokine SDF-1, to alter the Ca2+ signaling, and to stimulate cell migration of glioblastoma cells. Here, we quantified fractionated IR-induced migration/brain infiltration of human glioblastoma cells in vitro and in an orthotopic mouse model and analyzed the role of SDF-1/CXCR4 signaling and BK channels. To this end, the radiation-induced migratory phenotypes of human T98G and far-red fluorescent U-87MG-Katushka glioblastoma cells were characterized by mRNA and protein expression, fura-2 Ca2+ imaging, BK patch-clamp recording and transfilter migration assay. In addition, U-87MG-Katushka cells were grown to solid glioblastomas in the right hemispheres of immunocompromised mice, fractionated irradiated (6 MV photons) with 5 × 0 or 5 × 2 Gy, and SDF-1, CXCR4, and BK protein expression by the tumor as well as glioblastoma brain infiltration was analyzed in dependence on BK channel targeting by systemic paxilline application concomitant to IR. As a result, IR stimulated SDF-1 signaling and induced migration of glioblastoma cells in vitro and in vivo. Importantly, paxilline blocked IR-induced migration in vivo. Collectively, our data demonstrate that fractionated IR of glioblastoma stimulates and BK K+ channel targeting mitigates migration and brain infiltration of glioblastoma cells in vivo. This suggests that BK channel targeting might represent a novel approach to overcome radiation-induced spreading of malignant brain tumors during radiotherapy. PMID:26893360

  17. BK K+ channel blockade inhibits radiation-induced migration/brain infiltration of glioblastoma cells.

    PubMed

    Edalat, Lena; Stegen, Benjamin; Klumpp, Lukas; Haehl, Erik; Schilbach, Karin; Lukowski, Robert; Kühnle, Matthias; Bernhardt, Günther; Buschauer, Armin; Zips, Daniel; Ruth, Peter; Huber, Stephan M

    2016-03-22

    Infiltration of the brain by glioblastoma cells reportedly requires Ca2+ signals and BK K+ channels that program and drive glioblastoma cell migration, respectively. Ionizing radiation (IR) has been shown to induce expression of the chemokine SDF-1, to alter the Ca2+ signaling, and to stimulate cell migration of glioblastoma cells. Here, we quantified fractionated IR-induced migration/brain infiltration of human glioblastoma cells in vitro and in an orthotopic mouse model and analyzed the role of SDF-1/CXCR4 signaling and BK channels. To this end, the radiation-induced migratory phenotypes of human T98G and far-red fluorescent U-87MG-Katushka glioblastoma cells were characterized by mRNA and protein expression, fura-2 Ca2+ imaging, BK patch-clamp recording and transfilter migration assay. In addition, U-87MG-Katushka cells were grown to solid glioblastomas in the right hemispheres of immunocompromised mice, fractionated irradiated (6 MV photons) with 5 × 0 or 5 × 2 Gy, and SDF-1, CXCR4, and BK protein expression by the tumor as well as glioblastoma brain infiltration was analyzed in dependence on BK channel targeting by systemic paxilline application concomitant to IR. As a result, IR stimulated SDF-1 signaling and induced migration of glioblastoma cells in vitro and in vivo. Importantly, paxilline blocked IR-induced migration in vivo. Collectively, our data demonstrate that fractionated IR of glioblastoma stimulates and BK K+ channel targeting mitigates migration and brain infiltration of glioblastoma cells in vivo. This suggests that BK channel targeting might represent a novel approach to overcome radiation-induced spreading of malignant brain tumors during radiotherapy. PMID:26893360

  18. BK K+ channel blockade inhibits radiation-induced migration/brain infiltration of glioblastoma cells.

    PubMed

    Edalat, Lena; Stegen, Benjamin; Klumpp, Lukas; Haehl, Erik; Schilbach, Karin; Lukowski, Robert; Kühnle, Matthias; Bernhardt, Günther; Buschauer, Armin; Zips, Daniel; Ruth, Peter; Huber, Stephan M

    2016-03-22

    Infiltration of the brain by glioblastoma cells reportedly requires Ca2+ signals and BK K+ channels that program and drive glioblastoma cell migration, respectively. Ionizing radiation (IR) has been shown to induce expression of the chemokine SDF-1, to alter the Ca2+ signaling, and to stimulate cell migration of glioblastoma cells. Here, we quantified fractionated IR-induced migration/brain infiltration of human glioblastoma cells in vitro and in an orthotopic mouse model and analyzed the role of SDF-1/CXCR4 signaling and BK channels. To this end, the radiation-induced migratory phenotypes of human T98G and far-red fluorescent U-87MG-Katushka glioblastoma cells were characterized by mRNA and protein expression, fura-2 Ca2+ imaging, BK patch-clamp recording and transfilter migration assay. In addition, U-87MG-Katushka cells were grown to solid glioblastomas in the right hemispheres of immunocompromised mice, fractionated irradiated (6 MV photons) with 5 × 0 or 5 × 2 Gy, and SDF-1, CXCR4, and BK protein expression by the tumor as well as glioblastoma brain infiltration was analyzed in dependence on BK channel targeting by systemic paxilline application concomitant to IR. As a result, IR stimulated SDF-1 signaling and induced migration of glioblastoma cells in vitro and in vivo. Importantly, paxilline blocked IR-induced migration in vivo. Collectively, our data demonstrate that fractionated IR of glioblastoma stimulates and BK K+ channel targeting mitigates migration and brain infiltration of glioblastoma cells in vivo. This suggests that BK channel targeting might represent a novel approach to overcome radiation-induced spreading of malignant brain tumors during radiotherapy.

  19. Cancer stem cells and microglia in the processes of glioblastoma multiforme invasive growth

    PubMed Central

    Bryukhovetskiy, Igor; Manzhulo, Igor; Mischenko, Polina; Milkina, Elena; Dyuizen, Inessa; Bryukhovetskiy, Andrey; Khotimchenko, Yuri

    2016-01-01

    The development of antitumor medication based on autologous stem cells is one of the most advanced methods in glioblastoma multiforme (GBM) treatment. However, there are no objective criteria for evaluating the effectiveness of this medication on cancer stem cells (CSCs). One possible criterion could be a change in the number of microglial cells and their specific location in the tumor. The present study aimed to understand the interaction between microglial cells and CSCs in an experimental glioblastoma model. C6 glioma cells were used to create a glioblastoma model, as they have the immunophenotypic characteristics of CSCs. The glioma cells (0.2×106) were stereotactically implanted into the brains of 60 rats. On the 10th, 20th and 30th days after implantation, the animals were 15 of the animals were sacrificed, and the obtained materials were analyzed by morphological and immunohistochemical analysis. Implantation of glioma cells into the rat brains caused rapid development of tumors characterized by invasive growth, angiogenesis and a high rate of proliferation. The maximum concentration of microglia was observed in the tumor nodule between days 10 and 20; a high proliferation rate of cancer cells was also observed in this area. By day 30, necrosis advancement was observed and the maximum number of microglial cells was concentrated in the invasive area; the invasive area also exhibited positive staining for CSC marker antibodies. Microglial cells have a key role in the invasive growth processes of glioblastoma, as demonstrated by the location of CSCs in the areas of microglia maximum concentration. Therefore, the present study indicates that changes in microglia position and corresponding suppression of tumor growth may be objective criteria for evaluating the effectiveness of biomedical treatment against CSCs.

  20. Cancer stem cells and microglia in the processes of glioblastoma multiforme invasive growth

    PubMed Central

    Bryukhovetskiy, Igor; Manzhulo, Igor; Mischenko, Polina; Milkina, Elena; Dyuizen, Inessa; Bryukhovetskiy, Andrey; Khotimchenko, Yuri

    2016-01-01

    The development of antitumor medication based on autologous stem cells is one of the most advanced methods in glioblastoma multiforme (GBM) treatment. However, there are no objective criteria for evaluating the effectiveness of this medication on cancer stem cells (CSCs). One possible criterion could be a change in the number of microglial cells and their specific location in the tumor. The present study aimed to understand the interaction between microglial cells and CSCs in an experimental glioblastoma model. C6 glioma cells were used to create a glioblastoma model, as they have the immunophenotypic characteristics of CSCs. The glioma cells (0.2×106) were stereotactically implanted into the brains of 60 rats. On the 10th, 20th and 30th days after implantation, the animals were 15 of the animals were sacrificed, and the obtained materials were analyzed by morphological and immunohistochemical analysis. Implantation of glioma cells into the rat brains caused rapid development of tumors characterized by invasive growth, angiogenesis and a high rate of proliferation. The maximum concentration of microglia was observed in the tumor nodule between days 10 and 20; a high proliferation rate of cancer cells was also observed in this area. By day 30, necrosis advancement was observed and the maximum number of microglial cells was concentrated in the invasive area; the invasive area also exhibited positive staining for CSC marker antibodies. Microglial cells have a key role in the invasive growth processes of glioblastoma, as demonstrated by the location of CSCs in the areas of microglia maximum concentration. Therefore, the present study indicates that changes in microglia position and corresponding suppression of tumor growth may be objective criteria for evaluating the effectiveness of biomedical treatment against CSCs. PMID:27602106

  1. Transfer of ultrasmall iron oxide nanoparticles from human brain-derived endothelial cells to human glioblastoma cells.

    PubMed

    Halamoda Kenzaoui, Blanka; Angeloni, Silvia; Overstolz, Thomas; Niedermann, Philippe; Chapuis Bernasconi, Catherine; Liley, Martha; Juillerat-Jeanneret, Lucienne

    2013-05-01

    Nanoparticles (NPs) are being used or explored for the development of biomedical applications in diagnosis and therapy, including imaging and drug delivery. Therefore, reliable tools are needed to study the behavior of NPs in biological environment, in particular the transport of NPs across biological barriers, including the blood-brain tumor barrier (BBTB), a challenging question. Previous studies have addressed the translocation of NPs of various compositions across cell layers, mostly using only one type of cells. Using a coculture model of the human BBTB, consisting in human cerebral endothelial cells preloaded with ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) and unloaded human glioblastoma cells grown on each side of newly developed ultrathin permeable silicon nitride supports as a model of the human BBTB, we demonstrate for the first time the transfer of USPIO NPs from human brain-derived endothelial cells to glioblastoma cells. The reduced thickness of the permeable mechanical support compares better than commercially available polymeric supports to the thickness of the basement membrane of the cerebral vascular system. These results are the first report supporting the possibility that USPIO NPs could be directly transferred from endothelial cells to glioblastoma cells across a BBTB. Thus, the use of such ultrathin porous supports provides a new in vitro approach to study the delivery of nanotherapeutics to brain cancers. Our results also suggest a novel possibility for nanoparticles to deliver therapeutics to the brain using endothelial to neural cells transfer.

  2. Inhibition of Nucleotide Synthesis Targets Brain Tumor Stem Cells in a Subset of Glioblastoma.

    PubMed

    Laks, Dan R; Ta, Lisa; Crisman, Thomas J; Gao, Fuying; Coppola, Giovanni; Radu, Caius G; Nathanson, David A; Kornblum, Harley I

    2016-06-01

    Inhibition of both the de novo (DNP) and salvage (NSP) pathways of nucleoside synthesis has been demonstrated to impair leukemia cells. We endeavored to determine whether this approach would be efficacious in glioblastoma. To diminish nucleoside biosynthesis, we utilized compound DI-39, which selectively targets NSP, in combination with thymidine (dT), which selectively targets DNP. We employed in vitro and ex vivo models to determine the effects of pretreatment with dT + DI-39 on brain tumor stem cells (BTSC). Here, we demonstrate that this combinatorial therapy elicits a differential response across a spectrum of human patient-derived glioblastoma cultures. As determined by apoptotic markers, most cultures were relatively resistant to treatment, although a subset was highly sensitive. Sensitivity was unrelated to S-phase delay and to DNA damage induced by treatment. Bioinformatics analysis indicated that response across cultures was associated with the transcription factor PAX3 (associated with resistance) and with canonical pathways, including the nucleotide excision repair pathway, PTEN (associated with resistance), PI3K/AKT (associated with sensitivity), and ErbB2-ErbB3. Our in vitro assays demonstrated that, in sensitive cultures, clonal sphere formation was reduced upon removal from pretreatment. In contrast, in a resistant culture, clonal sphere formation was slightly increased upon removal from pretreatment. Moreover, in an intracranial xenograft model, pretreatment of a sensitive culture caused significantly smaller and fewer tumors. In a resistant culture, tumors were equivalent irrespective of pretreatment. These results indicate that, in the subset of sensitive glioblastoma, BTSCs are targeted by inhibition of pyrimidine synthesis. Mol Cancer Ther; 15(6); 1271-8. ©2016 AACR. PMID:27196770

  3. Cancer stem cells from a rare form of glioblastoma multiforme involving the neurogenic ventricular wall

    PubMed Central

    2012-01-01

    Background The cancer stem cell (CSC) hypothesis posits that deregulated neural stem cells (NSCs) form the basis of brain tumors such as glioblastoma multiforme (GBM). GBM, however, usually forms in the cerebral white matter while normal NSCs reside in subventricular and hippocampal regions. We attempted to characterize CSCs from a rare form of glioblastoma multiforme involving the neurogenic ventricular wall. Methods We described isolating CSCs from a GBM involving the lateral ventricles and characterized these cells with in vitro molecular biomarker profiling, cellular behavior, ex vivo and in vivo techniques. Results The patient’s MRI revealed a heterogeneous mass with associated edema, involving the left subventricular zone. Histological examination of the tumor established it as being a high-grade glial neoplasm, characterized by polygonal and fusiform cells with marked nuclear atypia, amphophilic cytoplasm, prominent nucleoli, frequent mitotic figures, irregular zones of necrosis and vascular hyperplasia. Recurrence of the tumor occurred shortly after the surgical resection. CD133-positive cells, isolated from the tumor, expressed stem cell markers including nestin, CD133, Ki67, Sox2, EFNB1, EFNB2, EFNB3, Cav-1, Musashi, Nucleostemin, Notch 2, Notch 4, and Pax6. Biomarkers expressed in differentiated cells included Cathepsin L, Cathepsin B, Mucin18, Mucin24, c-Myc, NSE, and TIMP1. Expression of unique cancer-related transcripts in these CD133-positive cells, such as caveolin-1 and −2, do not appear to have been previously reported in the literature. Ex vivo organotypic brain slice co-culture showed that the CD133+ cells behaved like tumor cells. The CD133-positive cells also induced tumor formation when they were stereotactically transplanted into the brains of the immune-deficient NOD/SCID mice. Conclusions This brain tumor involving the neurogenic lateral ventricular wall was comprised of tumor-forming, CD133-positive cancer stem cells, which are likely

  4. Molecular crosstalk between tumour and brain parenchyma instructs histopathological features in glioblastoma.

    PubMed

    Bougnaud, Sébastien; Golebiewska, Anna; Oudin, Anaïs; Keunen, Olivier; Harter, Patrick N; Mäder, Lisa; Azuaje, Francisco; Fritah, Sabrina; Stieber, Daniel; Kaoma, Tony; Vallar, Laurent; Brons, Nicolaas H C; Daubon, Thomas; Miletic, Hrvoje; Sundstrøm, Terje; Herold-Mende, Christel; Mittelbronn, Michel; Bjerkvig, Rolf; Niclou, Simone P

    2016-05-31

    The histopathological and molecular heterogeneity of glioblastomas represents a major obstacle for effective therapies. Glioblastomas do not develop autonomously, but evolve in a unique environment that adapts to the growing tumour mass and contributes to the malignancy of these neoplasms. Here, we show that patient-derived glioblastoma xenografts generated in the mouse brain from organotypic spheroids reproducibly give rise to three different histological phenotypes: (i) a highly invasive phenotype with an apparent normal brain vasculature, (ii) a highly angiogenic phenotype displaying microvascular proliferation and necrosis and (iii) an intermediate phenotype combining features of invasion and vessel abnormalities. These phenotypic differences were visible during early phases of tumour development suggesting an early instructive role of tumour cells on the brain parenchyma. Conversely, we found that tumour-instructed stromal cells differentially influenced tumour cell proliferation and migration in vitro, indicating a reciprocal crosstalk between neoplastic and non-neoplastic cells. We did not detect any transdifferentiation of tumour cells into endothelial cells. Cell type-specific transcriptomic analysis of tumour and endothelial cells revealed a strong phenotype-specific molecular conversion between the two cell types, suggesting co-evolution of tumour and endothelial cells. Integrative bioinformatic analysis confirmed the reciprocal crosstalk between tumour and microenvironment and suggested a key role for TGFβ1 and extracellular matrix proteins as major interaction modules that shape glioblastoma progression. These data provide novel insight into tumour-host interactions and identify novel stroma-specific targets that may play a role in combinatorial treatment strategies against glioblastoma.

  5. Minimizing the Non-specific Binding of Nanoparticles to the Brain Enables Active Targeting of Fn14-positive Glioblastoma Cells

    PubMed Central

    Schneider, Craig S.; Perez, Jimena G.; Cheng, Emily; Zhang, Clark; Mastorakos, Panagiotis; Hanes, Justin; Winkles, Jeffrey A.; Woodworth, Graeme F.; Kim, Anthony J.

    2014-01-01

    A major limitation in the treatment of glioblastoma (GBM), the most common and deadly primary brain cancer, is delivery of therapeutics to invading tumor cells outside of the area that is safe for surgical removal. A promising way to target invading GBM cells is via drug-loaded nanoparticles that bind to fibroblast growth factor-inducible 14 (Fn14), thereby potentially improving efficacy and reducing toxicity. However, achieving broad particle distribution and nanoparticle targeting within the brain remains a significant challenge due to the adhesive extracellular matrix (ECM) and clearance mechanisms in the brain. In this work, we developed Fn14 monoclonal antibody-decorated nanoparticles that can efficiently penetrate brain tissue. We show these Fn14-targeted brain tissue penetrating nanoparticles are able to (i) selectively bind to recombinant Fn14 but not brain ECM proteins, (ii) associate with and be internalized by Fn14-positive GBM cells, and (iii) diffuse within brain tissue in a manner similar to non-targeted brain penetrating nanoparticles. In addition, when administered intracranially, Fn14-targeted nanoparticles showed improved tumor cell co-localization in mice bearing human GBM xenografts compared to non-targeted nanoparticles. Minimizing non-specific binding of targeted nanoparticles in the brain may greatly improve the access of particulate delivery systems to remote brain tumor cells and other brain targets. PMID:25542792

  6. Predicting the electric field distribution in the brain for the treatment of glioblastoma.

    PubMed

    Miranda, Pedro C; Mekonnen, Abeye; Salvador, Ricardo; Basser, Peter J

    2014-08-01

    The use of alternating electric fields has been recently proposed for the treatment of recurrent glioblastoma. In order to predict the electric field distribution in the brain during the application of such tumor treating fields (TTF), we constructed a realistic head model from MRI data and placed transducer arrays on the scalp to mimic an FDA-approved medical device. Values for the tissue dielectric properties were taken from the literature; values for the device parameters were obtained from the manufacturer. The finite element method was used to calculate the electric field distribution in the brain. We also included a 'virtual lesion' in the model to simulate the presence of an idealized tumor. The calculated electric field in the brain varied mostly between 0.5 and 2.0 V cm( - 1) and exceeded 1.0 V cm( - 1) in 60% of the total brain volume. Regions of local field enhancement occurred near interfaces between tissues with different conductivities wherever the electric field was perpendicular to those interfaces. These increases were strongest near the ventricles but were also present outside the tumor's necrotic core and in some parts of the gray matter-white matter interface. The electric field values predicted in this model brain are in reasonably good agreement with those that have been shown to reduce cancer cell proliferation in vitro. The electric field distribution is highly non-uniform and depends on tissue geometry and dielectric properties. This could explain some of the variability in treatment outcomes. The proposed modeling framework could be used to better understand the physical basis of TTF efficacy through retrospective analysis and to improve TTF treatment planning.

  7. Predicting the electric field distribution in the brain for the treatment of glioblastoma

    NASA Astrophysics Data System (ADS)

    Miranda, Pedro C.; Mekonnen, Abeye; Salvador, Ricardo; Basser, Peter J.

    2014-08-01

    The use of alternating electric fields has been recently proposed for the treatment of recurrent glioblastoma. In order to predict the electric field distribution in the brain during the application of such tumor treating fields (TTF), we constructed a realistic head model from MRI data and placed transducer arrays on the scalp to mimic an FDA-approved medical device. Values for the tissue dielectric properties were taken from the literature; values for the device parameters were obtained from the manufacturer. The finite element method was used to calculate the electric field distribution in the brain. We also included a ‘virtual lesion’ in the model to simulate the presence of an idealized tumor. The calculated electric field in the brain varied mostly between 0.5 and 2.0 V cm - 1 and exceeded 1.0 V cm - 1 in 60% of the total brain volume. Regions of local field enhancement occurred near interfaces between tissues with different conductivities wherever the electric field was perpendicular to those interfaces. These increases were strongest near the ventricles but were also present outside the tumor’s necrotic core and in some parts of the gray matter-white matter interface. The electric field values predicted in this model brain are in reasonably good agreement with those that have been shown to reduce cancer cell proliferation in vitro. The electric field distribution is highly non-uniform and depends on tissue geometry and dielectric properties. This could explain some of the variability in treatment outcomes. The proposed modeling framework could be used to better understand the physical basis of TTF efficacy through retrospective analysis and to improve TTF treatment planning.

  8. Differential localization of glioblastoma subtype: implications on glioblastoma pathogenesis

    PubMed Central

    Steed, Tyler C.; Treiber, Jeffrey M.; Patel, Kunal; Ramakrishnan, Valya; Merk, Alexander; Smith, Amanda R.; Carter, Bob S.; Dale, Anders M.; Chow, Lionel M. L.; Chen, Clark C.

    2016-01-01

    Introduction The subventricular zone (SVZ) has been implicated in the pathogenesis of glioblastoma. Whether molecular subtypes of glioblastoma arise from unique niches of the brain relative to the SVZ remains largely unknown. Here, we tested whether these subtypes of glioblastoma occupy distinct regions of the cerebrum and examined glioblastoma localization in relation to the SVZ. Methods Pre-operative MR images from 217 glioblastoma patients from The Cancer Imaging Archive were segmented automatically into contrast enhancing (CE) tumor volumes using Iterative Probabilistic Voxel Labeling (IPVL). Probabilistic maps of tumor location were generated for each subtype and distances were calculated from the centroid of CE tumor volumes to the SVZ. Glioblastomas that arose in a Genetically Modified Murine Model (GEMM) model were also analyzed with regard to SVZ distance and molecular subtype. Results Classical and mesenchymal glioblastomas were more diffusely distributed and located farther from the SVZ. In contrast, proneural and neural glioblastomas were more likely to be located in closer proximity to the SVZ. Moreover, in a GFAP-CreER; PtenloxP/loxP; Trp53loxP/loxP; Rb1loxP/loxP; Rbl1−/− GEMM model of glioblastoma where tumor can spontaneously arise in different regions of the cerebrum, tumors that arose near the SVZ were more likely to be of proneural subtype (p < 0.0001). Conclusions Glioblastoma subtypes occupy different regions of the brain and vary in proximity to the SVZ. These findings harbor implications pertaining to the pathogenesis of glioblastoma subtypes. PMID:27056901

  9. Neurosurgical Techniques for Disruption of the Blood–Brain Barrier for Glioblastoma Treatment

    PubMed Central

    Rodriguez, Analiz; Tatter, Stephen B.; Debinski, Waldemar

    2015-01-01

    The blood–brain barrier remains a main hurdle to drug delivery to the brain. The prognosis of glioblastoma remains grim despite current multimodal medical management. We review neurosurgical technologies that disrupt the blood–brain barrier (BBB). We will review superselective intra-arterial mannitol infusion, focused ultrasound, laser interstitial thermotherapy, and non-thermal irreversible electroporation (NTIRE). These technologies can lead to transient BBB and blood–brain tumor barrier disruption and allow for the potential of more effective local drug delivery. Animal studies and preliminary clinical trials show promise for achieving this goal. PMID:26247958

  10. Stopping cancer in its tracks: using small molecular inhibitors to target glioblastoma migrating cells.

    PubMed

    Mattox, Austin K; Li, Jing; Adamson, David C

    2012-12-01

    Glioblastoma multiforme (GBM) represents one of the most common aggressive types of primary brain tumors. Despite advances in surgical resection, novel neuroimaging procedures, and the most recent adjuvant radiotherapy and chemotherapy, the median survival after diagnosis is about 12-14 months. Targeting migrating GBM cells is a key research strategy in the fight against this devastating cancer. Though the vast majority of the primary tumor focus can be surgically resected, these migrating cells are responsible for its universal recurrence. Numerous strategies and technologies are being explored to target migrating glioma cells, with small molecular inhibitors as one of the most commonly studied. Small molecule inhibitors, such as protein kinase inhibitors, phosphorylation site inhibitors, protease inhibitors, and antisense oligonucleotides show promise in slowing the progression of this disease. A better understanding of these small molecule inhibitors and how they target various extra- and intracellular signaling pathways may eventually lead to a cure for GBM.

  11. Cancer association study of aminoacyl-tRNA synthetase signaling network in glioblastoma.

    PubMed

    Kim, Yong-Wan; Kwon, Changhyuk; Liu, Juinn-Lin; Kim, Se Hoon; Kim, Sunghoon

    2012-01-01

    Aminoacyl-tRNA synthetases (ARSs) and ARS-interacting multifunctional proteins (AIMPs) exhibit remarkable functional versatility beyond their catalytic activities in protein synthesis. Their non-canonical functions have been pathologically linked to cancers. Here we described our integrative genome-wide analysis of ARSs to show cancer-associated activities in glioblastoma multiforme (GBM), the most aggressive malignant primary brain tumor. We first selected 23 ARS/AIMPs (together referred to as ARSN), 124 cancer-associated druggable target genes (DTGs) and 404 protein-protein interactors (PPIs) of ARSs using NCI's cancer gene index. 254 GBM affymetrix microarray data in The Cancer Genome Atlas (TCGA) were used to identify the probe sets whose expression were most strongly correlated with survival (Kaplan-Meier plots versus survival times, log-rank t-test <0.05). The analysis identified 122 probe sets as survival signatures, including 5 of ARSN (VARS, QARS, CARS, NARS, FARS), and 115 of DTGs and PPIs (PARD3, RXRB, ATP5C1, HSP90AA1, CD44, THRA, TRAF2, KRT10, MED12, etc). Of note, 61 survival-related probes were differentially expressed in three different prognosis subgroups in GBM patients and showed correlation with established prognosis markers such as age and phenotypic molecular signatures. CARS and FARS also showed significantly higher association with different molecular networks in GBM patients. Taken together, our findings demonstrate evidence for an ARSN biology-dominant contribution in the biology of GBM.

  12. Proteoglycans and their roles in brain cancer

    PubMed Central

    Wade, Anna; Robinson, Aaron E.; Engler, Jane R.; Petritsch, Claudia; James, C. David; Phillips, Joanna J.

    2013-01-01

    Glioblastoma (GBM), a malignant brain cancer, is characterized by abnormal activation of receptor tyrosine kinase (RTK) signaling pathways and poor prognosis. Extracellular proteoglycans, including heparan sulfate and chondroitin sulfate, play critical roles in the regulation of cell signaling and migration via interactions with extracellular ligands, growth factor receptors, extracellular matrix components, and intracellular enzymes and structural proteins. In cancer, proteoglycans help drive multiple oncogenic pathways in tumor cells and promote critical tumor-microenvironment interactions. In this review, we summarize the evidence for proteoglycan function in gliomagenesis and we examine the expression of proteoglycans and their modifying enzymes in human GBM using data from The Cancer Genome Atlas (TCGA). Furthermore, we demonstrate an association between specific proteoglycan alterations and changes in RTKs. Based on these data we propose a model in which proteoglycans and their modifying enzymes promote RTK signaling and progression in GBM, and we suggest cancer associated proteoglycans are promising biomarkers for disease and therapeutic targets. PMID:23281850

  13. Therapy targets in glioblastoma and cancer stem cells: lessons from haematopoietic neoplasms

    PubMed Central

    Cruceru, Maria Linda; Neagu, Monica; Demoulin, Jean-Baptiste; Constantinescu, Stefan N

    2013-01-01

    Despite intense efforts to identify cancer-initiating cells in malignant brain tumours, markers linked to the function of these cells have only very recently begun to be uncovered. The notion of cancer stem cell gained prominence, several molecules and signalling pathways becoming relevant for diagnosis and treatment. Whether a substantial fraction or only a tiny minority of cells in a tumor can initiate and perpetuate cancer, is still debated. The paradigm of cancer-initiating stem cells has initially been developed with respect to blood cancers where chronic conditions such as myeloproliferative neoplasms are due to mutations acquired in a haematopoietic stem cell (HSC), which maintains the normal hierarchy to neoplastic haematopoiesis. In contrast, acute leukaemia transformation of such blood neoplasms appears to derive not only from HSCs but also from committed progenitors that cannot differentiate. This review will focus on putative novel therapy targets represented by markers described to define cancer stem/initiating cells in malignant gliomas, which have been called ‘leukaemia of the brain’, given their rapid migration and evolution. Parallels are drawn with other cancers, especially haematopoietic, given the similar rampant proliferation and treatment resistance of glioblastoma multiforme and secondary acute leukaemias. Genes associated with the malignant conditions and especially expressed in glioma cancer stem cells are intensively searched. Although many such molecules might only coincidentally be expressed in cancer-initiating cells, some may function in the oncogenic process, and those would be the prime candidates for diagnostic and targeted therapy. For the latter, combination therapies are likely to be envisaged, given the robust and plastic signalling networks supporting malignant proliferation. PMID:23998913

  14. Label-Free Delineation of Brain Tumors by Coherent Anti-Stokes Raman Scattering Microscopy in an Orthotopic Mouse Model and Human Glioblastoma

    PubMed Central

    Tamosaityte, Sandra; Leipnitz, Elke; Geiger, Kathrin D.; Schackert, Gabriele; Koch, Edmund; Steiner, Gerald; Kirsch, Matthias

    2014-01-01

    Background Coherent anti-Stokes Raman scattering (CARS) microscopy provides fine resolution imaging and displays morphochemical properties of unstained tissue. Here, we evaluated this technique to delineate and identify brain tumors. Methods Different human tumors (glioblastoma, brain metastases of melanoma and breast cancer) were induced in an orthotopic mouse model. Cryosections were investigated by CARS imaging tuned to probe C-H molecular vibrations, thereby addressing the lipid content of the sample. Raman microspectroscopy was used as reference. Histopathology provided information about the tumor's localization, cell proliferation and vascularization. Results The morphochemical contrast of CARS images enabled identifying brain tumors irrespective of the tumor type and properties: All tumors were characterized by a lower CARS signal intensity than the normal parenchyma. On this basis, tumor borders and infiltrations could be identified with cellular resolution. Quantitative analysis revealed that the tumor-related reduction of CARS signal intensity was more pronounced in glioblastoma than in metastases. Raman spectroscopy enabled relating the CARS intensity variation to the decline of total lipid content in the tumors. The analysis of the immunohistochemical stainings revealed no correlation between tumor-induced cytological changes and the extent of CARS signal intensity reductions. The results were confirmed on samples of human glioblastoma. Conclusions CARS imaging enables label-free, rapid and objective identification of primary and secondary brain tumors. Therefore, it is a potential tool for diagnostic neuropathology as well as for intraoperative tumor delineation. PMID:25198698

  15. Exploring miRNA-Associated Signatures with Diagnostic Relevance in Glioblastoma Multiforme and Breast Cancer Patients

    PubMed Central

    LeBlanc, Véronique C.; Morin, Pier Jr

    2015-01-01

    The growing attention that non-coding RNAs have attracted in the field of cancer research in recent years is undeniable. Whether investigated as prospective therapeutic targets or prognostic indicators or diagnostic biomarkers, the clinical relevance of these molecules is starting to emerge. In addition, identification of non-coding RNAs in a plethora of body fluids has further positioned these molecules as attractive non-invasive biomarkers. This review will first provide an overview of the synthetic cascade that leads to the production of the small non-coding RNAs microRNAs (miRNAs) and presents their strengths as biomarkers of disease. Our interest will next be directed at exploring the diagnostic utility of miRNAs in two types of cancer: the brain tumor glioblastoma multiforme (GBM) and breast cancer. Finally, we will discuss additional clinical implications associated with miRNA detection as well as introduce other non-coding RNAs that have generated recent interest in the cancer research community. PMID:26287251

  16. Evaluation of blood-brain barrier-stealth nanocomposites for in situ glioblastoma theranostics applications

    NASA Astrophysics Data System (ADS)

    Su, Chia-Hao; Tsai, Ching-Yi; Tomanek, Boguslaw; Chen, Wei-Yu; Cheng, Fong-Yu

    2016-04-01

    The blood-brain barrier (BBB) is a physiological structure of the blood vessels in the brain. The BBB efficiently traps most therapeutic drugs in the blood vessels and stops them from entering the brain tissue, resulting in a decreased therapeutic efficiency. In this study, we developed BBB-stealth nanocomposites composed of iron oxide (Fe3O4) nanoparticles (NPs) as a safe nanocarrier for glioblastoma therapy. We showed the antitumor activity of Dox/alg-Fe3O4 NPs using in vitro and in vivo tests. We demonstrated that G23-alg-Fe3O4 NPs crossed the BBB and entered the brain. In situ glioblastoma tumor-bearing mice were used to successfully evaluate the antitumor activity of G23-Dox/alg-Fe3O4 NPs. Magnetic resonance imaging (MRI) and bioluminescence imaging (BLI) confirmed the BBB crossing. The BBB-stealth nanocomposites show great potential for a proof-of-concept clinical trial as a theranostics platform for human brain tumor therapy.The blood-brain barrier (BBB) is a physiological structure of the blood vessels in the brain. The BBB efficiently traps most therapeutic drugs in the blood vessels and stops them from entering the brain tissue, resulting in a decreased therapeutic efficiency. In this study, we developed BBB-stealth nanocomposites composed of iron oxide (Fe3O4) nanoparticles (NPs) as a safe nanocarrier for glioblastoma therapy. We showed the antitumor activity of Dox/alg-Fe3O4 NPs using in vitro and in vivo tests. We demonstrated that G23-alg-Fe3O4 NPs crossed the BBB and entered the brain. In situ glioblastoma tumor-bearing mice were used to successfully evaluate the antitumor activity of G23-Dox/alg-Fe3O4 NPs. Magnetic resonance imaging (MRI) and bioluminescence imaging (BLI) confirmed the BBB crossing. The BBB-stealth nanocomposites show great potential for a proof-of-concept clinical trial as a theranostics platform for human brain tumor therapy. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c6nr00280c

  17. An Off-Target Nucleostemin RNAi Inhibits Growth in Human Glioblastoma-Derived Cancer Stem Cells

    PubMed Central

    Gil-Ranedo, Jon; Mendiburu-Eliçabe, Marina; García-Villanueva, Mercedes; Medina, Diego; del Álamo, Marta; Izquierdo, Marta

    2011-01-01

    Glioblastomas (GBM) may contain a variable proportion of active cancer stem cells (CSCs) capable of self-renewal, of aggregating into CD133+ neurospheres, and to develop intracranial tumors that phenocopy the original ones. We hypothesized that nucleostemin may contribute to cancer stem cell biology as these cells share characteristics with normal stem cells. Here we report that nucleostemin is expressed in GBM-CSCs isolated from patient samples, and that its expression, conversely to what it has been described for ordinary stem cells, does not disappear when cells are differentiated. The significance of nucleostemin expression in CSCs was addressed by targeting the corresponding mRNA using lentivirally transduced short hairpin RNA (shRNA). In doing so, we found an off-target nucleostemin RNAi (shRNA22) that abolishes proliferation and induces apoptosis in GBM-CSCs. Furthermore, in the presence of shRNA22, GBM-CSCs failed to form neurospheres in vitro or grow on soft agar. When these cells are xenotransplanted into the brains of nude rats, tumor development is significantly delayed. Attempts were made to identify the primary target/s of shRNA22, suggesting a transcription factor involved in one of the MAP-kinases signaling-pathways or multiple targets. The use of this shRNA may contribute to develop new therapeutic approaches for this incurable type of brain tumor. PMID:22174890

  18. MiR-21 up-regulation mediates glioblastoma cancer stem cells apoptosis and proliferation by targeting FASLG.

    PubMed

    Shang, Chao; Guo, Yan; Hong, Yang; Liu, Yun-hui; Xue, Yi-xue

    2015-03-01

    To investigate whether miR-21 can affect the apoptosis and proliferation of glioblastoma cancer stem cells (GSCs) from down-regulating FASLG. The expression of miRNA-21 was detected by quantitative real-time PCR in normal brain tissue and glioblastoma samples, and the changes of miRNA-21 expression between GSCs and non-GSCs were also detected. The apoptosis and proliferation ability of miR-21 in GSCs were analyzed by MTT and flow cytometry assay after anti-miR-21 transfection. For the regulation mechanism analysis of miR-21, TargetScan, PicTar and microRNA were selected to predict some potential target genes of miR-21. The predicted gene was identified to be the direct and specific target gene of miR-21 by luciferase activities assay and western blot. RNA interference technology was used to confirm the apoptosis and proliferation effects of miR-21 were directly induced by FASLG. The expression of miR-21 increased significantly in glioblastoma contrast to normal brain tissue, and miR-21 up-regulated in GSCs remarkably. The proliferation of GSCs cell could be inhibited with high-expression of miR-21 and this effect could be restored by miR-21 knocked down. Mechanism analysis revealed that FASLG was a specific and direct target gene of miR-21. The advanced effects of anti-miR-21 on GSCs apoptosis and proliferation were mediated by expression of silenced FASLG. In summary, aberrantly expressed miR-21 regulates GSCs apoptosis and proliferation partly through directly down-regulating FASLG protein expression in GSCs and this might offer a new potential therapeutic stratagem for glioblastoma. PMID:25394756

  19. miR-340 predicts glioblastoma survival and modulates key cancer hallmarks through down-regulation of NRAS

    PubMed Central

    Fiore, Danilo; Donnarumma, Elvira; Roscigno, Giuseppina; Iaboni, Margherita; Russo, Valentina; Affinito, Alessandra; Adamo, Assunta; De Martino, Fabio; Quintavalle, Cristina; Romano, Giulia; Greco, Adelaide; Soini, Ylermi; Brunetti, Arturo; Croce, Carlo M.; Condorelli, Gerolama

    2016-01-01

    Glioblastoma is the most common primary brain tumor in adults; with a survival rate of 12 months from diagnosis. However, a small subgroup of patients, termed long-term survivors (LTS), has a survival rate longer then 12–14 months. There is thus increasing interest in the identification of molecular signatures predicting glioblastoma prognosis and in how to improve the therapeutic approach. Here, we report miR-340 as prognostic tumor-suppressor microRNA for glioblastoma. We analyzed microRNA expression in > 500 glioblastoma patients and found that although miR-340 is strongly down-regulated in glioblastoma overall, it is up-regulated in LTS patients compared to short-term survivors (STS). Indeed, miR-340 expression predicted better prognosis in glioblastoma patients. Coherently, overexpression of miR-340 in glioblastoma cells was found to produce a tumor-suppressive activity. We identified NRAS mRNA as a critical, direct target of miR-340: in fact, miR-340 negatively influenced multiple aspects of glioblastoma tumorigenesis by down-regulating NRAS and downstream AKT and ERK pathways. Thus, we demonstrate that expression of miR-340 in glioblastoma is responsible for a strong tumor-suppressive effect in LTS patients by down-regulating NRAS. miR-340 may thus represent a novel marker for glioblastoma diagnosis and prognosis, and may be developed into a tool to improve treatment of glioblastoma. PMID:26799668

  20. Nanotechnology Applications for Glioblastoma

    PubMed Central

    Nduom, Edjah; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G.

    2012-01-01

    Synopsis Glioblastoma remains one of the most difficult cancers to treat and represents the most common primary malignancy of the brain. While conventional treatments have found modest success in reducing the initial tumor burden, infiltrating cancer cells beyond the main mass are responsible for tumor recurrence and ultimate patient demise. Targeting the residual infiltrating cancer cells requires the development of new treatment strategies. The emerging field of cancer nanotechnology holds much promise in the use of multifunctional nanoparticles for the imaging and targeted therapy of GBM.. Nanoparticles have emerged as potential “theranostic” agents that can permit the diagnosis and therapeutic treatment of GBM tumors. A recent human clinical trial with magnetic nanoparticles has provided feasibility and efficacy data for potential treatment of GBM patients with thermotherapy. Here we examine the current state of nanotechnology in the treatment of glioblastoma and interesting directions of further study. PMID:22748656

  1. Glioblastoma multiforme of the brain stem in a patient with acquired immunodeficiency syndrome.

    PubMed

    Wolff, R; Zimmermann, M; Marquardt, Gerhard; Lanfermann, H; Nafe, R; Seifert, V

    2002-09-01

    Glioblastoma of the brain stem is rare and there is no description of such a lesion in patients suffering from acquired immunodeficiency syndrome. The majority of intracerebral mass lesions are due either to toxoplasmosis or primary central nervous system lymphomas so that it is usually not included in the differential diagnosis of enhancing lesions of the central nervous system in these patients. A 31-year-old human immunodeficiency virus (HIV) infected man presented with a four months history of slowly progressive deterioration of brainstem associated symptoms despite antitoxoplasmic therapy. Magnetic resonance imaging revealed a large ring enhancing lesion in the brainstem. Clinical and neuroradiological data could not establish a proper diagnosis and a stereotactic serial biopsy was undertaken. Histological examination of the specimen showed a glioblastoma multiforme (GBM) as the first reported case of GBM located in the brainstem in an acquired immunodeficiency syndrome (AIDS) patient. Patient management and effectiveness of stereotactic serial biopsy are discussed.

  2. Evaluation of blood-brain barrier-stealth nanocomposites for in situ glioblastoma theranostics applications.

    PubMed

    Su, Chia-Hao; Tsai, Ching-Yi; Tomanek, Boguslaw; Chen, Wei-Yu; Cheng, Fong-Yu

    2016-04-21

    The blood-brain barrier (BBB) is a physiological structure of the blood vessels in the brain. The BBB efficiently traps most therapeutic drugs in the blood vessels and stops them from entering the brain tissue, resulting in a decreased therapeutic efficiency. In this study, we developed BBB-stealth nanocomposites composed of iron oxide (Fe3O4) nanoparticles (NPs) as a safe nanocarrier for glioblastoma therapy. We showed the antitumor activity of Dox/alg-Fe3O4 NPs using in vitro and in vivo tests. We demonstrated that G23-alg-Fe3O4 NPs crossed the BBB and entered the brain. In situ glioblastoma tumor-bearing mice were used to successfully evaluate the antitumor activity of G23-Dox/alg-Fe3O4 NPs. Magnetic resonance imaging (MRI) and bioluminescence imaging (BLI) confirmed the BBB crossing. The BBB-stealth nanocomposites show great potential for a proof-of-concept clinical trial as a theranostics platform for human brain tumor therapy.

  3. Identification of Global DNA Methylation Signatures in Glioblastoma-Derived Cancer Stem Cells

    PubMed Central

    Lee, Eun-Joon; Rath, Prakash; Liu, Jimei; Ryu, Dungsheng; Pei, Lirong; Noonepalle, Satish K.; Shull, Austin Y.; Feng, Qi; Litofsky, N. Scott; Miller, Douglas C.; Anthony, Douglas C.; Kirk, Mark D.; Laterra, John; Deng, Libin; Xin, Hong-Bo; Wang, Xinguo; Choi, Jeong-Hyeon; Shi, Huidong

    2015-01-01

    Glioblastoma (GBM) is the most common and most aggressive primary brain tumor in adults. The existence of a small population of stem-like tumor cells that efficiently propagate tumors and resist cytotoxic therapy is one proposed mechanism leading to the resilient behavior of tumor cells and poor prognosis. In this study, we performed an in-depth analysis of the DNA methylation landscape in GBM-derived cancer stem cells (GSCs). Parallel comparisons of primary tumors and GSC lines derived from these tumors with normal controls (a neural stem cell (NSC) line and normal brain tissue) identified groups of hyper- and hypomethylated genes that display a trend of either increasing or decreasing methylation levels in the order of controls, primary GBMs, and their counterpart GSC lines, respectively. Interestingly, concurrent promoter hypermethylation and gene body hypomethylation were observed in a subset of genes including MGMT, AJAP1 and PTPRN2. These unique DNA methylation signatures were also found in primary GBM-derived xenograft tumors indicating that they are not tissue culture-related epigenetic changes. Integration of GSC-specific epigenetic signatures with gene expression analysis further identified candidate tumor suppressor genes that are frequently down regulated in GBMs such as SPINT2, NEFM and PENK. Forced re-expression of SPINT2 reduced glioma cell proliferative capacity, anchorage independent growth, cell motility, and tumor sphere formation in vitro. The results from this study demonstrate that GSCs possess unique epigenetic signatures that may play important roles in the pathogenesis of GBM. PMID:26233891

  4. Traumatic brain injury and subsequent glioblastoma development: Review of the literature and case reports

    PubMed Central

    Tyagi, Vineet; Theobald, Jason; Barger, James; Bustoros, Mark; Bayin, N. Sumru; Modrek, Aram S.; Kader, Michael; Anderer, Erich G.; Donahue, Bernadine; Fatterpekar, Girish; Placantonakis, Dimitris G

    2016-01-01

    Background: Previous reports have proposed an association between traumatic brain injury (TBI) and subsequent glioblastoma (GBM) formation. Methods: We used literature searches and radiographic evidence from two patients to assess the possibility of a link between TBI and GBM. Results: Epidemiological studies are equivocal on a possible link between brain trauma and increased risk of malignant glioma formation. We present two case reports of patients with GBM arising at the site of prior brain injury. Conclusion: The hypothesis that TBI may predispose to gliomagenesis is disputed by several large-scale epidemiological studies, but supported by some. Radiographic evidence from two cases presented here suggest that GBM formed at the site of brain injury. We propose a putative pathogenesis model that connects post-traumatic inflammation, stem and progenitor cell transformation, and gliomagenesis. PMID:27625888

  5. Traumatic brain injury and subsequent glioblastoma development: Review of the literature and case reports

    PubMed Central

    Tyagi, Vineet; Theobald, Jason; Barger, James; Bustoros, Mark; Bayin, N. Sumru; Modrek, Aram S.; Kader, Michael; Anderer, Erich G.; Donahue, Bernadine; Fatterpekar, Girish; Placantonakis, Dimitris G

    2016-01-01

    Background: Previous reports have proposed an association between traumatic brain injury (TBI) and subsequent glioblastoma (GBM) formation. Methods: We used literature searches and radiographic evidence from two patients to assess the possibility of a link between TBI and GBM. Results: Epidemiological studies are equivocal on a possible link between brain trauma and increased risk of malignant glioma formation. We present two case reports of patients with GBM arising at the site of prior brain injury. Conclusion: The hypothesis that TBI may predispose to gliomagenesis is disputed by several large-scale epidemiological studies, but supported by some. Radiographic evidence from two cases presented here suggest that GBM formed at the site of brain injury. We propose a putative pathogenesis model that connects post-traumatic inflammation, stem and progenitor cell transformation, and gliomagenesis.

  6. Lung Cancer Brain Metastases.

    PubMed

    Goldberg, Sarah B; Contessa, Joseph N; Omay, Sacit B; Chiang, Veronica

    2015-01-01

    Brain metastases are common among patients with lung cancer and have been associated with significant morbidity and limited survival. However, the treatment of brain metastases has evolved as the field has advanced in terms of central nervous system imaging, surgical technique, and radiotherapy technology. This has allowed patients to receive improved treatment with less toxicity and more durable benefit. In addition, there have been significant advances in systemic therapy for lung cancer in recent years, and several treatments including chemotherapy, targeted therapy, and immunotherapy exhibit activity in the central nervous system. Utilizing systemic therapy for treating brain metastases can avoid or delay local therapy and often allows patients to receive effective treatment for both intracranial and extracranial disease. Determining the appropriate treatment for patients with lung cancer brain metastases therefore requires a clear understanding of intracranial disease burden, tumor histology, molecular characteristics, and overall cancer prognosis. This review provides updates on the current state of surgery and radiotherapy for the treatment of brain metastases, as well as an overview of systemic therapy options that may be effective in select patients with intracranial metastases from lung cancer.

  7. Nucleolin antagonist triggers autophagic cell death in human glioblastoma primary cells and decreased in vivo tumor growth in orthotopic brain tumor model.

    PubMed

    Benedetti, Elisabetta; Antonosante, Andrea; d'Angelo, Michele; Cristiano, Loredana; Galzio, Renato; Destouches, Damien; Florio, Tiziana Marilena; Dhez, Anne Chloé; Astarita, Carlo; Cinque, Benedetta; Fidoamore, Alessia; Rosati, Floriana; Cifone, Maria Grazia; Ippoliti, Rodolfo; Giordano, Antonio; Courty, José; Cimini, Annamaria

    2015-12-01

    Nucleolin (NCL) is highly expressed in several types of cancer and represents an interesting therapeutic target. It is expressed at the plasma membrane of tumor cells, a property which is being used as a marker for several human cancer including glioblastoma. In this study we investigated targeting NCL as a new therapeutic strategy for the treatment of this pathology. To explore this possibility, we studied the effect of an antagonist of NCL, the multivalent pseudopeptide N6L using primary culture of human glioblastoma cells. In this system, N6L inhibits cell growth with different sensitivity depending to NCL localization. Cell cycle analysis indicated that N6L-induced growth reduction was due to a block of the G1/S transition with down-regulation of the expression of cyclin D1 and B2. By monitoring autophagy markers such as p62 and LC3II, we demonstrate that autophagy is enhanced after N6L treatment. In addition, N6L-treatment of mice bearing tumor decreased in vivo tumor growth in orthotopic brain tumor model and increase mice survival. The results obtained indicated an anti-proliferative and pro-autophagic effect of N6L and point towards its possible use as adjuvant agent to the standard therapeutic protocols presently utilized for glioblastoma.

  8. Imaging of human glioblastoma cells and their interactions with mesenchymal stem cells in the zebrafish (Danio rerio) embryonic brain

    PubMed Central

    Breznik, Barbara; Gredar, Tajda; Hrovat, Katja; Bizjak Mali, Lilijana; Lah, Tamara T

    2016-01-01

    Abstract Background An attractive approach in the study of human cancers is the use of transparent zebrafish (Danio rerio) embryos, which enable the visualization of cancer progression in a living animal. Materials and methods We implanted mixtures of fluorescently labeled glioblastoma (GBM) cells and bonemarrow-derived mesenchymal stem cells (MSCs) into zebrafish embryos to study the cellular pathways of their invasion and the interactions between these cells in vivo. Results By developing and applying a carbocyanine-dye-compatible clearing protocol for observation of cells in deep tissues, we showed that U87 and U373 GBM cells rapidly aggregated into tumor masses in the ventricles and midbrain hemispheres of the zebrafish embryo brain, and invaded the central nervous system, often using the ventricular system and the central canal of the spinal cord. However, the GBM cells did not leave the central nervous system. With co-injection of differentially labeled cultured GBM cells and MSCs, the implanted cells formed mixed tumor masses in the brain. We observed tight associations between GBM cells and MSCs, and possible cell-fusion events. GBM cells and MSCs used similar invasion routes in the central nervous system. Conclusions This simple model can be used to study the molecular pathways of cellular processes in GBM cell invasion, and their interactions with various types of stromal cells in double or triple cell co-cultures, to design anti-GBM cell therapies that use MSCs as vectors. PMID:27247548

  9. Lectins Identify Glycan Biomarkers on Glioblastoma-Derived Cancer Stem Cells

    PubMed Central

    Tucker-Burden, Carol; Chappa, Prasanthi; Krishnamoorthy, Malini; Gerwe, Brian A.; Scharer, Christopher D.; Heimburg-Molinaro, Jamie; Harris, Wayne; Usta, Sümeyra Naz; Eilertson, Carmen D.; Hadjipanayis, Constantinos G.; Stice, Steven L.; Brat, Daniel J.

    2012-01-01

    Glioblastoma (GBM) is a highly aggressive primary brain tumor with a poor prognosis. Despite aggressive therapy with surgery, radiotherapy, and chemotherapy, nearly all patients succumb to disease within 2 years. Several studies have supported the presence of stem-like cells in brain tumor cultures that are CD133-positive, are capable of self-renewal, and give rise to all cell types found within the tumor, potentially perpetuating growth. CD133 is a widely accepted marker for glioma-derived cancer stem cells; however, its reliability has been questioned, creating a need for other identifiers of this biologically important subpopulation. We used a panel of 20 lectins to identify differences in glycan expression found in the glycocalyx of undifferentiated glioma-derived stem cells and differentiated cells that arise from them. Fluorescently labeled lectins that specifically recognize α-N-acetylgalactosamine (GalNAc) and α-N-acetylglucosamine (GlcNAc) differentially bound to the cell surface based on the state of cellular differentiation. GalNAc and GlcNAc were highly expressed on the surface of undifferentiated cells and showed markedly reduced expression over a 12-day duration of differentiation. Additionally, the GalNAc-recognizing lectin Dolichos biflorus agglutinin was capable of specifically selecting and sorting glioma-derived stem cell populations from an unsorted tumor stock and this subpopulation had proliferative properties similar to CD133+ cells in vitro and also had tumor-forming capability in vivo. Our preliminary results on a single cerebellar GBM suggest that GalNAc and GlcNAc are novel biomarkers for identifying glioma-derived stem cells and can be used to isolate cancer stem cells from unsorted cell populations, thereby creating new cell lines for research or clinical testing. PMID:22435486

  10. Gadolinium uptake by brain cancer cells: Quantitative analysis with X-PEEM spectromicroscopy for cancer therapy

    NASA Astrophysics Data System (ADS)

    De Stasio, Gelsomina; Gilbert, B.; Perfetti, P.; Margaritondo, G.; Mercanti, D.; Ciotti, M. T.; Casalbore, P.; Larocca, L. M.; Rinelli, A.; Pallini, R.

    2000-05-01

    We present the first X-PEEM spectromicroscopy semi-quantitative data, acquired on Gd in glioblastoma cell cultures from human brain cancer. The cells were treated with a Gd compound for the optimization of GdNCT (Gadolinium Neutron Capture Therapy). We analyzed the kinetics of Gd uptake as a function of exposure time, and verified that a quantitative analytical technique gives the same results as our MEPHISTO X-PEEM, demonstrating the feasibility of semi-quantitative spectromicroscopy.

  11. Acetate is a Bioenergetic Substrate for Human Glioblastoma and Brain Metastases

    PubMed Central

    Mashimo, Tomoyuki; Pichumani, Kumar; Vemireddy, Vamsidhara; Hatanpaa, Kimmo J.; Singh, Dinesh Kumar; Sirasanagandla, Shyam; Nannepaga, Suraj; Piccirillo, Sara G.; Kovacs, Zoltan; Foong, Chan; Huang, Zhiguang; Barnett, Samuel; Mickey, Bruce E.; DeBerardinis, Ralph J.; Tu, Benjamin P.; Maher, Elizabeth A.; Bachoo, Robert M.

    2015-01-01

    Glioblastomas and brain metastases are highly proliferative brain tumors with short survival times. Previously, using 13C-NMR analysis of brain tumors resected from patients during infusion of 13C-glucose, we demonstrated that there is robust oxidation of glucose in the citric acid cycle, yet glucose contributes less than 50% of the carbons to the acetyl-CoA pool. Here we show that primary and metastatic mouse orthotopic brain tumors have the capacity to oxidize [1,2-13C]acetate and can do so simultaneously with [1,6-13C]glucose oxidation. The tumors do not oxidize [U-13C]glutamine. In vivo oxidation of [1,2-13C]acetate was validated in brain tumor patients and was correlated with expression of acetyl-CoA synthetase enzyme 2, ACSS2. Together the data demonstrate a strikingly common metabolic phenotype in diverse brain tumors that includes the ability to oxidize acetate in the citric acid cycle. This adaptation may be important for meeting the high biosynthetic and bioenergetic demands of malignant growth. PMID:25525878

  12. Interactive properties of human glioblastoma cells with brain neurons in culture and neuronal modulation of glial laminin organization.

    PubMed

    Faria, Jane; Romão, Luciana; Martins, Sheila; Alves, Tércia; Mendes, Fabio A; de Faria, Giselle Pinto; Hollanda, Rosenilde; Takiya, Christina; Chimelli, Leila; Morandi, Veronica; de Souza, Jorge Marcondes; Abreu, Jose Garcia; Moura Neto, Vivaldo

    2006-12-01

    The harmonious development of the central nervous system depends on the interactions of the neuronal and glial cells. Extracellular matrix elements play important roles in these interactions, especially laminin produced by astrocytes, which has been shown to be a good substrate for neuron growth and axonal guidance. Glioblastomas are the most common subtypes of primary brain tumors and may be astrocytes in origin. As normal laminin-producing glial cells are the preferential substrate for neurons, and glial tumors have been shown to produce laminin, we questioned whether glioblastoma retained the same normal glial-neuron interactive properties with respect to neuronal growth and differentiation. Then, rat neurons were co-cultured onto rat normal astrocytes or onto three human glioblastoma cell lines obtained from neurosurgery. The co-culture confirmed that human glioblastoma cells as well as astrocytes maintained the ability to support neuritogenesis, but non-neural normal or tumoral cells failed to do so. However, glioblastoma cells did not distinguish embryonic from post-natal neurons in relation to neurite pattern in the co-cultures, as normal astrocytes did. Further, the laminin organization on both normal and tumoral glial cells was altered from a filamentous arrangement to a mixed punctuate/filamentous pattern when in co-culture with neurons. Together, these results suggest that glioblastoma cells could identify neuronal cells as partners, to support their growth and induce complex neurites, but they lost the normal glia property to distinguish neuronal age. In addition, our results show for the first time that neurons modulate the organization of astrocytes and glioblastoma laminin on the extracellular matrix.

  13. Immunotherapy of Brain Cancer.

    PubMed

    Roth, Patrick; Preusser, Matthias; Weller, Michael

    2016-01-01

    The brain has long been considered an immune-privileged site precluding potent immune responses. Nevertheless, because of the failure of conventional anti-cancer treatments to achieve sustained control of intracranial neoplasms, immunotherapy has been considered as a promising strategy for decades. However, several efforts aimed at exploiting the immune system as a therapeutic weapon were largely unsuccessful. The situation only changed with the introduction of the checkpoint inhibitors, which target immune cell receptors that interfere with the activation of immune effector cells. Following the observation of striking effects of drugs that target CTLA-4 or PD-1 against melanoma and other tumor entities, it was recognized that these drugs may also be active against metastatic tumor lesions in the brain. Their therapeutic activity against primary brain tumors is currently being investigated within clinical trials. In parallel, other immunotherapeutics such as peptide vaccines are at an advanced stage of clinical development. Further immunotherapeutic strategies currently under investigation comprise adoptive immune cell transfer as well as inhibitors of metabolic pathways involved in the local immunosuppression frequently found in brain tumors. Thus, the ongoing implementation of immunotherapeutic concepts into clinical routine may represent a powerful addition to the therapeutic arsenal against various brain tumors. PMID:27260656

  14. Endoscopy-verified occult subependymal dissemination of glioblastoma and brain metastasis undetected by MRI: prognostic significance

    PubMed Central

    Iacoangeli, Maurizio; Di Rienzo, Alessandro; Colasanti, Roberto; Zizzi, Antonio; Gladi, Maurizio; Alvaro, Lorenzo; Nocchi, Niccolò; Di Somma, Lucia Giovanna Maria; Scarpelli, Marina; Scerrati, Massimo

    2012-01-01

    Although various prognostic indices exist for patients with malignant brain tumors, the prognostic significance of the subependymal spread of intracranial tumors is still a matter of debate. In this paper, we report the cases of two intraventricular lesions, a recurrent glioblastoma multiforme (GBM) and a brain metastasis, each successfully treated with a neuroendoscopic approach. Thanks to this minimally invasive approach, we achieved good therapeutic results: we obtained a histological diagnosis; we controlled intracranial hypertension by treating the associated hydrocephalus and, above all, compared with a microsurgical approach, we reduced the risks related to dissection and brain retraction. Moreover, in both cases, neuroendoscopy enabled us to identify an initial, precocious subependymal tumor spreading below the threshold of magnetic resonance imaging (MRI) detection. This finding, undetected in pre-operative MRI scans, was then evident during follow-up neuroimaging studies. In light of these data, a neuroendoscopic approach might play a leading role in better defining the prognosis and optimally tailored management protocols for GBM and brain metastasis. PMID:23271915

  15. The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers.

    PubMed

    Veeriah, Selvaraju; Brennan, Cameron; Meng, Shasha; Singh, Bhuvanesh; Fagin, James A; Solit, David B; Paty, Philip B; Rohle, Dan; Vivanco, Igor; Chmielecki, Juliann; Pao, William; Ladanyi, Marc; Gerald, William L; Liau, Linda; Cloughesy, Timothy C; Mischel, Paul S; Sander, Chris; Taylor, Barry; Schultz, Nikolaus; Major, John; Heguy, Adriana; Fang, Fang; Mellinghoff, Ingo K; Chan, Timothy A

    2009-06-01

    Tyrosine phosphorylation plays a critical role in regulating cellular function and is a central feature in signaling cascades involved in oncogenesis. The regulation of tyrosine phosphorylation is coordinately controlled by kinases and phosphatases (PTPs). Whereas activation of tyrosine kinases has been shown to play vital roles in tumor development, the role of PTPs is much less well defined. Here, we show that the receptor protein tyrosine phosphatase delta (PTPRD) is frequently inactivated in glioblastoma multiforme (GBM), a deadly primary neoplasm of the brain. PTPRD is a target of deletion in GBM, often via focal intragenic loss. In GBM tumors that do not possess deletions in PTPRD, the gene is frequently subject to cancer-specific epigenetic silencing via promoter CpG island hypermethylation (37%). Sequencing of the PTPRD gene in GBM and other primary human tumors revealed that the gene is mutated in 6% of GBMs, 13% of head and neck squamous cell carcinomas, and in 9% of lung cancers. These mutations were deleterious. In total, PTPRD inactivation occurs in >50% of GBM tumors, and loss of expression predicts for poor prognosis in glioma patients. Wild-type PTPRD inhibits the growth of GBM and other tumor cells, an effect not observed with PTPRD alleles harboring cancer-specific mutations. Human astrocytes lacking PTPRD exhibited increased growth. PTPRD was found to dephosphorylate the oncoprotein STAT3. These results implicate PTPRD as a tumor suppressor on chromosome 9p that is involved in the development of GBMs and multiple human cancers.

  16. Modeling the Treatment of Glioblastoma Multiforme and Cancer Stem Cells with Ordinary Differential Equations

    PubMed Central

    Abernathy, Kristen; Burke, Jeremy

    2016-01-01

    Despite improvements in cancer therapy and treatments, tumor recurrence is a common event in cancer patients. One explanation of recurrence is that cancer therapy focuses on treatment of tumor cells and does not eradicate cancer stem cells (CSCs). CSCs are postulated to behave similar to normal stem cells in that their role is to maintain homeostasis. That is, when the population of tumor cells is reduced or depleted by treatment, CSCs will repopulate the tumor, causing recurrence. In this paper, we study the application of the CSC Hypothesis to the treatment of glioblastoma multiforme by immunotherapy. We extend the work of Kogan et al. (2008) to incorporate the dynamics of CSCs, prove the existence of a recurrence state, and provide an analysis of possible cancerous states and their dependence on treatment levels. PMID:27022405

  17. Hyperthermic Laser Ablation of Recurrent Glioblastoma Leads to Temporary Disruption of the Peritumoral Blood Brain Barrier

    PubMed Central

    Kim, Michael J.; Campian, Jian L.; Kim, Albert H.; Miller-Thomas, Michelle M.; Shimony, Joshua S.; Tran, David D.

    2016-01-01

    Background Poor central nervous system penetration of cytotoxic drugs due to the blood brain barrier (BBB) is a major limiting factor in the treatment of brain tumors. Most recurrent glioblastomas (GBM) occur within the peritumoral region. In this study, we describe a hyperthemic method to induce temporary disruption of the peritumoral BBB that can potentially be used to enhance drug delivery. Methods Twenty patients with probable recurrent GBM were enrolled in this study. Fourteen patients were evaluable. MRI-guided laser interstitial thermal therapy was applied to achieve both tumor cytoreduction and disruption of the peritumoral BBB. To determine the degree and timing of peritumoral BBB disruption, dynamic contrast-enhancement brain MRI was used to calculate the vascular transfer constant (Ktrans) in the peritumoral region as direct measures of BBB permeability before and after laser ablation. Serum levels of brain-specific enolase, also known as neuron-specific enolase, were also measured and used as an independent quantification of BBB disruption. Results In all 14 evaluable patients, Ktrans levels peaked immediately post laser ablation, followed by a gradual decline over the following 4 weeks. Serum BSE concentrations increased shortly after laser ablation and peaked in 1–3 weeks before decreasing to baseline by 6 weeks. Conclusions The data from our pilot research support that disruption of the peritumoral BBB was induced by hyperthemia with the peak of high permeability occurring within 1–2 weeks after laser ablation and resolving by 4–6 weeks. This provides a therapeutic window of opportunity during which delivery of BBB-impermeant therapeutic agents may be enhanced. Trial Registration ClinicalTrials.gov NCT01851733 PMID:26910903

  18. Antiglioma activity of curcumin-loaded lipid nanoparticles and its enhanced bioavailability in brain tissue for effective glioblastoma therapy.

    PubMed

    Kundu, Paromita; Mohanty, Chandana; Sahoo, Sanjeeb K

    2012-07-01

    Glioblastoma, the most aggressive form of brain and central nervous system tumours, is characterized by high rates proliferation, migration and invasion. The major road block in the delivery of drugs to the brain is the blood-brain barrier, along with the expression of various multi-drug resistance (MDR) proteins that cause the efflux of a wide range of chemotherapeutic drugs. Curcumin, a herbal drug, is known to inhibit cellular proliferation, migration and invasion and induce apoptosis of glioma cells. It also has the potential to modulate MDR in glioma cells. However, the greatest challenge in the administration of curcumin stems from its low bioavailability and high rate of metabolism. To circumvent the above pitfalls of curcumin we have developed curcumin-loaded glyceryl monooleate (GMO) nanoparticles (NP) coated with the surfactant Pluronic F-68 and vitamin E D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) for brain delivery. We demonstrated that our curcumin-loaded NPs inhibit cellular proliferation, migration and invasion along with a higher percentage of cell cycle arrest and telomerase inhibition, thus leading to a greater percentage apoptotic cell death in glioma cells compared with native curcumin. An in vivo study demonstrated enhanced bioavailability of curcumin in blood serum and brain tissue when delivered by curcumin-loaded GMO NPs compared with native curcumin in a rat model. Thus, curcumin-loaded GMO NPs can be used as an effective delivery system to overcome the challenges of drug delivery to the brain, providing a new approach to glioblastoma therapy.

  19. In-vitro suppression of metabolic activity in malignant human glioblastomas due to pulsed - low frequency electric potential exposures

    NASA Astrophysics Data System (ADS)

    Schlichting, Abby; Waynant, Ronald W.; Tata, Darrell B.

    2010-02-01

    The role of pulsed - low repetition frequency electric potential was investigated in suppressing the metabolic activities of aggressive human brain cancer cells. Twenty four hours post exposure the glioblastomas were found to be significantly inhibited in their metabolic activity. The findings herein reveal a near complete inhibition of glioblastoma's metabolic activity through selective applications of low frequency pulsed electric potentials.

  20. Identification of variants in primary and recurrent glioblastoma using a cancer-specific gene panel and whole exome sequencing.

    PubMed

    Virk, Selene M; Gibson, Richard M; Quinones-Mateu, Miguel E; Barnholtz-Sloan, Jill S

    2015-01-01

    Glioblastoma (GBM) is an aggressive, malignant brain tumor typically resulting in death of the patient within one year following diagnosis; and those who survive beyond this point usually present with tumor recurrence within two years (5-year survival is 5%). The genetic heterogeneity of GBM has made the molecular characterization of these tumors an area of great interest and has led to identification of molecular subtypes in GBM. The availability of sequencing platforms that are both fast and economical can further the adoption of tumor sequencing in the clinical environment, potentially leading to identification of clinically actionable genetic targets. In this pilot study, comprised of triplet samples of normal blood, primary tumor, and recurrent tumor samples from three patients; we compared the ability of Illumina whole exome sequencing (ExomeSeq) and the Ion AmpliSeq Comprehensive Cancer Panel (CCP) to identify somatic variants in patient-paired primary and recurrent tumor samples. Thirteen genes were found to harbor variants, the majority of which were exclusive to the ExomeSeq data. Surprisingly, only two variants were identified by both platforms and they were located within the PTCH1 and NF1 genes. Although preliminary in nature, this work highlights major differences in variant identification in data generated from the two platforms. Additional studies with larger samples sizes are needed to further explore the differences between these technologies and to enhance our understanding of the clinical utility of panel based platforms in genomic profiling of brain tumors. PMID:25950952

  1. CAR T Cells Targeting Podoplanin Reduce Orthotopic Glioblastomas in Mouse Brains.

    PubMed

    Shiina, Satoshi; Ohno, Masasuke; Ohka, Fumiharu; Kuramitsu, Shunichiro; Yamamichi, Akane; Kato, Akira; Motomura, Kazuya; Tanahashi, Kuniaki; Yamamoto, Takashi; Watanabe, Reiko; Ito, Ichiro; Senga, Takeshi; Hamaguchi, Michinari; Wakabayashi, Toshihiko; Kaneko, Mika K; Kato, Yukinari; Chandramohan, Vidyalakshmi; Bigner, Darell D; Natsume, Atsushi

    2016-03-01

    Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor in adults with a 5-year overall survival rate of less than 10%. Podoplanin (PDPN) is a type I transmembrane mucin-like glycoprotein, expressed in the lymphatic endothelium. Several solid tumors overexpress PDPN, including the mesenchymal type of GBM, which has been reported to present the worst prognosis among GBM subtypes. Chimeric antigen receptor (CAR)-transduced T cells can recognize predefined tumor surface antigens independent of MHC restriction, which is often downregulated in gliomas. We constructed a lentiviral vector expressing a third-generation CAR comprising a PDPN-specific antibody (NZ-1-based single-chain variable fragment) with CD28, 4-1BB, and CD3ζ intracellular domains. CAR-transduced peripheral blood monocytes were immunologically evaluated by calcein-mediated cytotoxic assay, ELISA, tumor size, and overall survival. The generated CAR T cells were specific and effective against PDPN-positive GBM cells in vitro. Systemic injection of the CAR T cells into an immunodeficient mouse model inhibited the growth of intracranial glioma xenografts in vivo. CAR T-cell therapy that targets PDPN would be a promising adoptive immunotherapy to treat mesenchymal GBM.

  2. Glucose transport: meeting the metabolic demands of cancer, and applications in glioblastoma treatment

    PubMed Central

    Labak, Collin M; Wang, Paul Y; Arora, Rishab; Guda, Maheedhara R; Asuthkar, Swapna; Tsung, Andrew J; Velpula, Kiran K

    2016-01-01

    GLUT1, and to a lesser extent, GLUT3, appear to be interesting targets in the treatment of glioblastoma multiforme. The current review aims to give a brief history of the scientific community’s understanding of these glucose transporters and to relate their importance to the metabolic changes that occur as a result of cancer. One of the primary changes that occurs in cancer, the Warburg Effect, is characterized by an extreme shift toward glycolysis from the usual reliance on oxidative phosphorylation and is currently being investigated to target the upstream and downstream factors responsible for Warburg-induced changes. Further, it aims to explain the differential expression of GLUT1 and GLUT3 in glioblastoma tissue, and how these modulations in expression can serve as targets to restore a more normal metabolism. Additionally, hypoxia-induced factor-1α’s (HIF1α) role in a number of transcriptional changes typical to GBM will be discussed, including its role in GLUT upregulation. Finally, the four known subtypes of GBM [proneural, neural, mesenchymal, and classical] will be characterized in order to discuss how metabolic changes differ in each subtype. These changes have the potential to be selectively targeted in order to provide specificity to the clinical treatment options in GBM. PMID:27648352

  3. Glucose transport: meeting the metabolic demands of cancer, and applications in glioblastoma treatment

    PubMed Central

    Labak, Collin M; Wang, Paul Y; Arora, Rishab; Guda, Maheedhara R; Asuthkar, Swapna; Tsung, Andrew J; Velpula, Kiran K

    2016-01-01

    GLUT1, and to a lesser extent, GLUT3, appear to be interesting targets in the treatment of glioblastoma multiforme. The current review aims to give a brief history of the scientific community’s understanding of these glucose transporters and to relate their importance to the metabolic changes that occur as a result of cancer. One of the primary changes that occurs in cancer, the Warburg Effect, is characterized by an extreme shift toward glycolysis from the usual reliance on oxidative phosphorylation and is currently being investigated to target the upstream and downstream factors responsible for Warburg-induced changes. Further, it aims to explain the differential expression of GLUT1 and GLUT3 in glioblastoma tissue, and how these modulations in expression can serve as targets to restore a more normal metabolism. Additionally, hypoxia-induced factor-1α’s (HIF1α) role in a number of transcriptional changes typical to GBM will be discussed, including its role in GLUT upregulation. Finally, the four known subtypes of GBM [proneural, neural, mesenchymal, and classical] will be characterized in order to discuss how metabolic changes differ in each subtype. These changes have the potential to be selectively targeted in order to provide specificity to the clinical treatment options in GBM.

  4. Glucose transport: meeting the metabolic demands of cancer, and applications in glioblastoma treatment.

    PubMed

    Labak, Collin M; Wang, Paul Y; Arora, Rishab; Guda, Maheedhara R; Asuthkar, Swapna; Tsung, Andrew J; Velpula, Kiran K

    2016-01-01

    GLUT1, and to a lesser extent, GLUT3, appear to be interesting targets in the treatment of glioblastoma multiforme. The current review aims to give a brief history of the scientific community's understanding of these glucose transporters and to relate their importance to the metabolic changes that occur as a result of cancer. One of the primary changes that occurs in cancer, the Warburg Effect, is characterized by an extreme shift toward glycolysis from the usual reliance on oxidative phosphorylation and is currently being investigated to target the upstream and downstream factors responsible for Warburg-induced changes. Further, it aims to explain the differential expression of GLUT1 and GLUT3 in glioblastoma tissue, and how these modulations in expression can serve as targets to restore a more normal metabolism. Additionally, hypoxia-induced factor-1α's (HIF1α) role in a number of transcriptional changes typical to GBM will be discussed, including its role in GLUT upregulation. Finally, the four known subtypes of GBM [proneural, neural, mesenchymal, and classical] will be characterized in order to discuss how metabolic changes differ in each subtype. These changes have the potential to be selectively targeted in order to provide specificity to the clinical treatment options in GBM. PMID:27648352

  5. Inhibition of Pediatric Glioblastoma Tumor Growth by the Anti-Cancer Agent OKN-007 in Orthotopic Mouse Xenografts

    PubMed Central

    Coutinho de Souza, Patricia; Mallory, Samantha; Smith, Nataliya; Saunders, Debra; Li, Xiao-Nan; McNall-Knapp, Rene Y.; Fung, Kar-Ming; Towner, Rheal A.

    2015-01-01

    Pediatric glioblastomas (pGBM), although rare, are one of the leading causes of cancer-related deaths in children, with tumors essentially refractory to existing treatments. Here, we describe the use of conventional and advanced in vivo magnetic resonance imaging (MRI) techniques to assess a novel orthotopic xenograft pGBM mouse (IC-3752GBM patient-derived culture) model, and to monitor the effects of the anti-cancer agent OKN-007 as an inhibitor of pGBM tumor growth. Immunohistochemistry support data is also presented for cell proliferation and tumor growth signaling. OKN-007 was found to significantly decrease tumor volumes (p<0.05) and increase animal survival (p<0.05) in all OKN-007-treated mice compared to untreated animals. In a responsive cohort of treated animals, OKN-007 was able to significantly decrease tumor volumes (p<0.0001), increase survival (p<0.001), and increase diffusion (p<0.01) and perfusion rates (p<0.05). OKN-007 also significantly reduced lipid tumor metabolism in responsive animals [(Lip1.3 and Lip0.9)-to-creatine ratio (p<0.05)], as well as significantly decrease tumor cell proliferation (p<0.05) and microvessel density (p<0.05). Furthermore, in relationship to the PDGFRα pathway, OKN-007 was able to significantly decrease SULF2 (p<0.05) and PDGFR-α (platelet-derived growth factor receptor-α) (p<0.05) immunoexpression, and significantly increase decorin expression (p<0.05) in responsive mice. This study indicates that OKN-007 may be an effective anti-cancer agent for some patients with pGBMs by inhibiting cell proliferation and angiogenesis, possibly via the PDGFRα pathway, and could be considered as an additional therapy for pediatric brain tumor patients. PMID:26248280

  6. Corticosteroids compromise survival in glioblastoma.

    PubMed

    Pitter, Kenneth L; Tamagno, Ilaria; Alikhanyan, Kristina; Hosni-Ahmed, Amira; Pattwell, Siobhan S; Donnola, Shannon; Dai, Charles; Ozawa, Tatsuya; Chang, Maria; Chan, Timothy A; Beal, Kathryn; Bishop, Andrew J; Barker, Christopher A; Jones, Terreia S; Hentschel, Bettina; Gorlia, Thierry; Schlegel, Uwe; Stupp, Roger; Weller, Michael; Holland, Eric C; Hambardzumyan, Dolores

    2016-05-01

    Glioblastoma is the most common and most aggressive primary brain tumour. Standard of care consists of surgical resection followed by radiotherapy and concomitant and maintenance temozolomide (temozolomide/radiotherapy→temozolomide). Corticosteroids are commonly used perioperatively to control cerebral oedema and are frequently continued throughout subsequent treatment, notably radiotherapy, for amelioration of side effects. The effects of corticosteroids such as dexamethasone on cell growth in glioma models and on patient survival have remained controversial. We performed a retrospective analysis of glioblastoma patient cohorts to determine the prognostic role of steroid administration. A disease-relevant mouse model of glioblastoma was used to characterize the effects of dexamethasone on tumour cell proliferation and death, and to identify gene signatures associated with these effects. A murine anti-VEGFA antibody was used in parallel as an alternative for oedema control. We applied the dexamethasone-induced gene signature to The Cancer Genome Atlas glioblastoma dataset to explore the association of dexamethasone exposure with outcome. Mouse experiments were used to validate the effects of dexamethasone on survival in vivo Retrospective clinical analyses identified corticosteroid use during radiotherapy as an independent indicator of shorter survival in three independent patient cohorts. A dexamethasone-associated gene expression signature correlated with shorter survival in The Cancer Genome Atlas patient dataset. In glioma-bearing mice, dexamethasone pretreatment decreased tumour cell proliferation without affecting tumour cell viability, but reduced survival when combined with radiotherapy. Conversely, anti-VEGFA antibody decreased proliferation and increased tumour cell death, but did not affect survival when combined with radiotherapy. Clinical and mouse experimental data suggest that corticosteroids may decrease the effectiveness of treatment and shorten

  7. Brain metastases of breast cancer.

    PubMed

    Palmieri, Diane; Smith, Quentin R; Lockman, Paul R; Bronder, Julie; Gril, Brunilde; Chambers, Ann F; Weil, Robert J; Steeg, Patricia S

    Central nervous system or brain metastases traditionally occur in 10-16% of metastatic breast cancer patients and are associated with a dismal prognosis. The development of brain metastases has been associated with young age, and tumors that are estrogen receptor negative, Her-2+ or of the basal phenotype. Treatment typically includes whole brain irradiation, or either stereotactic radiosurgery or surgery with whole brain radiation, resulting in an approximately 20% one year survival. The blood-brain barrier is a formidable obstacle to the delivery of chemotherapeutics to the brain. Mouse experimental metastasis model systems have been developed for brain metastasis using selected sublines of human MDA-MB-231 breast carcinoma cells. Using micron sized iron particles and MRI imaging, the fate of MDA-MB-231BR cells has been mapped: Approximately 2% of injected cells form larger macroscopic metastases, while 5% of cells remain as dormant cells in the brain. New therapies with permeability for the blood-brain barrier are needed to counteract both types of tumor cells. PMID:17473372

  8. The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance

    PubMed Central

    Siebzehnrubl, Florian A; Silver, Daniel J; Tugertimur, Bugra; Deleyrolle, Loic P; Siebzehnrubl, Dorit; Sarkisian, Matthew R; Devers, Kelly G; Yachnis, Antony T; Kupper, Marius D; Neal, Daniel; Nabilsi, Nancy H; Kladde, Michael P; Suslov, Oleg; Brabletz, Simone; Brabletz, Thomas; Reynolds, Brent A; Steindler, Dennis A

    2013-01-01

    Glioblastoma remains one of the most lethal types of cancer, and is the most common brain tumour in adults. In particular, tumour recurrence after surgical resection and radiation invariably occurs regardless of aggressive chemotherapy. Here, we provide evidence that the transcription factor ZEB1 (zinc finger E-box binding homeobox 1) exerts simultaneous influence over invasion, chemoresistance and tumourigenesis in glioblastoma. ZEB1 is preferentially expressed in invasive glioblastoma cells, where the ZEB1-miR-200 feedback loop interconnects these processes through the downstream effectors ROBO1, c-MYB and MGMT. Moreover, ZEB1 expression in glioblastoma patients is predictive of shorter survival and poor Temozolomide response. Our findings indicate that this regulator of epithelial-mesenchymal transition orchestrates key features of cancer stem cells in malignant glioma and identify ROBO1, OLIG2, CD133 and MGMT as novel targets of the ZEB1 pathway. Thus, ZEB1 is an important candidate molecule for glioblastoma recurrence, a marker of invasive tumour cells and a potential therapeutic target, along with its downstream effectors. Glioblastoma have a poor prognosis, mainly due to infiltrating and therapy resistant cells leading to cancer recurrence. Here, tumor formation, invasion and resistance are not independent but intertwined processes regulated by the EMT activator ZEB1. PMID:23818228

  9. Synergistic effect of gold nanoparticles and cold plasma on glioblastoma cancer therapy

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoqian; Murphy, William; Recek, Nina; Yan, Dayun; Cvelbar, Uros; Vesel, Alenka; Mozetič, Miran; Canady, Jerome; Keidar, Michael; Sherman, Jonathan H.

    2014-08-01

    Gold nanoparticles (AuNPs) have been investigated as a promising reagent for cancer therapy in various fields. In the meantime, cold atmospheric plasma has shown exquisite selectivity towards cancer cells. In this paper, we demonstrate that there is a synergy between gold nanoparticles and cold atmospheric plasma in cancer therapy. Specifically, the concentration of AuNPs plays an important role on plasma therapy. At an optimal concentration, gold nanoparticles can significantly induce glioblastoma (U87) cell death up to a 30% overall increase compared to the control group with the same plasma dosage but no AuNPs applied. The reactive oxygen species (ROS) intensity of the corresponding conditions has a reversed trend compared to cell viability. This matches with the theory that intracellular ROS accumulation results in oxidative stress, which further changes the intracellular pathways, causing damage to the proteins, lipids and DNA. Our results show that this synergy has great potential in improving the efficiency of cancer therapy and reducing harm to normal cells.

  10. Metabolic therapy: a new paradigm for managing malignant brain cancer.

    PubMed

    Seyfried, Thomas N; Flores, Roberto; Poff, Angela M; D'Agostino, Dominic P; Mukherjee, Purna

    2015-01-28

    Little progress has been made in the long-term management of glioblastoma multiforme (GBM), considered among the most lethal of brain cancers. Cytotoxic chemotherapy, steroids, and high-dose radiation are generally used as the standard of care for GBM. These procedures can create a tumor microenvironment rich in glucose and glutamine. Glucose and glutamine are suggested to facilitate tumor progression. Recent evidence suggests that many GBMs are infected with cytomegalovirus, which could further enhance glucose and glutamine metabolism in the tumor cells. Emerging evidence also suggests that neoplastic macrophages/microglia, arising through possible fusion hybridization, can comprise an invasive cell subpopulation within GBM. Glucose and glutamine are major fuels for myeloid cells, as well as for the more rapidly proliferating cancer stem cells. Therapies that increase inflammation and energy metabolites in the GBM microenvironment can enhance tumor progression. In contrast to current GBM therapies, metabolic therapy is designed to target the metabolic malady common to all tumor cells (aerobic fermentation), while enhancing the health and vitality of normal brain cells and the entire body. The calorie restricted ketogenic diet (KD-R) is an anti-angiogenic, anti-inflammatory and pro-apoptotic metabolic therapy that also reduces fermentable fuels in the tumor microenvironment. Metabolic therapy, as an alternative to the standard of care, has the potential to improve outcome for patients with GBM and other malignant brain cancers. PMID:25069036

  11. Signaling the Unfolded Protein Response in primary brain cancers.

    PubMed

    Le Reste, Pierre-Jean; Avril, Tony; Quillien, Véronique; Morandi, Xavier; Chevet, Eric

    2016-07-01

    The Unfolded Protein Response (UPR) is an adaptive cellular program used by eukaryotic cells to cope with protein misfolding stress in the Endoplasmic Reticulum (ER). During tumor development, cancer cells are facing intrinsic (oncogene activation) and extrinsic (limiting nutrient or oxygen supply; exposure to chemotherapies) challenges, with which they must cope to survive. Primary brain tumors are relatively rare but deadly and present a significant challenge in the determination of risk factors in the population. These tumors are inherently difficult to cure because of their protected location in the brain. As such surgery, radiation and chemotherapy options carry potentially lasting patient morbidity and incomplete tumor cure. Some of these tumors, such as glioblastoma, were reported to present features of ER stress and to depend on UPR activation to sustain growth, but to date there is no clear general representation of the ER stress status in primary brain tumors. In this review, we describe the key molecular mechanisms controlling the UPR and their implication in cancers. Then we extensively review the literature reporting the status of ER stress in various primary brain tumors and discuss the potential impact of such observation on patient stratification and on the possibility of developing appropriate targeted therapies using the UPR as therapeutic target. PMID:27016056

  12. PI3K/Akt and Stat3 signaling regulated by PTEN control of the cancer stem cell population, proliferation and senescence in a glioblastoma cell line.

    PubMed

    Moon, Seok-Ho; Kim, Dae-Kwan; Cha, Young; Jeon, Iksoo; Song, Jihwan; Park, Kyung-Soon

    2013-03-01

    Malignant gliomas are the most common primary brain tumor in adults. A number of genes have been implicated in glioblastoma including mutation and deletion of PTEN. PTEN is a regulator of PI3K-mediated Akt signaling pathways and has been recognized as a therapeutic target in glioblastoma. To achieve potent therapeutic inhibition of the PI3K-Akt pathway in glioblastoma, it is essential to understand the interplay between the regulators of its activation. Here, ectopic expression of PTEN in the U-87MG human glioblastoma-astrocytoma cell line is shown to result in the depletion of glioblastoma stem cells (GSCs) and to cause growth retardation and senescence. These effects are likely to be associated with PTEN-mediated cooperative perturbation of Akt and Stat3 signals. Using an in vivo rat model of glioblastoma, we showed that PTEN-overexpressing U-87MG cells failed to induce tumor formation, while untreated U-87MG cells did so. Furthermore, cells expressing the phosphorylated form of Stat3 were completely absent from the brain of rats implanted with PTEN-overexpressing U-87MG cells. Based on these results, PTEN appears to function as a crucial inhibitor of GSCs and as an inducer of senescence, suggesting that functional enhancement of the PTEN pathway will be useful to provide a therapeutic strategy for targeting glioblastoma. PMID:23314408

  13. Nano-structures mediated co-delivery of therapeutic agents for glioblastoma treatment: A review.

    PubMed

    Mujokoro, Basil; Adabi, Mohsen; Sadroddiny, Esmaeil; Adabi, Mahdi; Khosravani, Masood

    2016-12-01

    Glioblastoma is a malignant brain tumor and leads to death in most patients. Chemotherapy is a common method for brain cancer in clinics. However, the recent advancements in the chemotherapy of brain tumors have not been efficient enough. With the advancement of nanotechnology, the used drugs can enhance chemotherapy efficiency and increase the access to brain cancers. Combination of therapeutic agents has been recently attracted great attention for glioblastoma chemotherapy. One of the early benefits of combination therapies is the high potential to provide synergistic effects and decrease adverse side effects associated with high doses of single anticancer drugs. Therefore, brain tumor treatments with combination drugs can be considered as a crucial approach for avoiding tumor growth. This review investigates current progress in nano-mediated co-delivery of therapeutic agents with focus on glioblastoma chemotherapy prognosis. PMID:27612807

  14. Cytomegalovirus and glioblastoma; controversies and opportunities.

    PubMed

    Lawler, Sean E

    2015-07-01

    One of the more polarized ongoing debates in the brain tumor field over recent years has centered on the association of cytomegalovirus (CMV) with glioblastoma. Several laboratories have reported the presence of CMV antigens in glioblastoma patient specimens, whereas others have failed to detect them. CMV genomic DNA and mRNAs have been detected by PCR, but not in next-generation sequencing studies. CMV promotes high grade glioma progression in a mouse genetic model, and many CMV proteins promote cancer hallmarks in vitro, but actively replicating virus has not been isolated from tumor samples. A consensus is gradually emerging in which the presence of CMV antigens in glioblastoma is increasingly accepted. However, it remains challenging to understand this mechanistically due to the low levels of CMV nucleic acids and the absence of viral replication observed in tumors thus far. Nonetheless, these observations have inspired the development of novel therapeutic approaches based on anti-viral drugs and immunotherapy. The potential benefit of valganciclovir in glioblastoma has generated great interest, but efficacy remains to be established in a randomized trial. Also, early stage immunotherapy trials targeting CMV have shown promise. In the near future we will know more answers to these questions, and although areas of controversy may remain, and the mechanisms and roles of CMV in tumor growth are yet to be clearly defined, this widespread virus may have created important new therapeutic concepts and opportunities for the treatment of glioblastoma. PMID:25682092

  15. Genetics and Epigenetics of Glioblastoma: Applications and Overall Incidence of IDH1 Mutation

    PubMed Central

    Liu, Aizhen; Hou, Chunfeng; Chen, Hongfang; Zong, Xuan; Zong, Peijun

    2016-01-01

    Glioblastoma is the most fatal brain cancer found in humans. Patients suffering from glioblastoma have a dismal prognosis, with a median survival of 15 months. The tumor may develop rapidly de novo in older patients or through progression from anaplastic astrocytomas in younger patients if glioblastoma is primary or secondary, respectively. During the past decade, significant advances have been made in the understanding of processes leading to glioblastoma, and several important genetic defects that appear to be important for the development and progression of this tumor have been identified. Particularly, the discovery of recurrent mutations in the isocitrate dehydrogenase 1 (IDH1) gene has shed new light on the molecular landscape in glioblastoma. Indeed, emerging research on the consequences of mutant IDH1 protein expression suggests that its neomorphic enzymatic activity catalyzing the production of the oncometabolite 2-hydroxyglutarate influences a range of cellular programs that affect the epigenome and contribute to glioblastoma development. One of the exciting observations is the presence of IDH1 mutation in the vast majority of secondary glioblastoma, while it is almost absent in primary glioblastoma. Growing data indicate that this particular mutation has clinical and prognostic importance and will become a critical early distinction in diagnosis of glioblastoma. PMID:26858939

  16. A High Performance Nano-Bio Photocatalyst for Targeted Brain Cancer Therapy

    PubMed Central

    Rozhkova, Elena A.; Ulasov, Ilya; Lai, Barry; Dimitrijevic, Nada M.; Lesniak, Maciej; Rajh, Tijana

    2014-01-01

    We report pronounced and specific anti-glioblastoma cell phototoxicity of 5 nm TiO2 particles covalently tethered to an antibody via dihydroxybenzene bivalent linker. The linker application enables absorption of a visible part of solar spectrum by the nanobio hybrid. The phototoxicity is mediated by reactive oxygen species (ROS) that initiate cancer cell programmed cell death. Synchrotron X-Ray Fluorescence Microscopy (XFM) was applied for direct visualization of the nanobioconjugate distribution through a single brain cancer cell at the sub-micrometer scale. PMID:19640002

  17. Therapeutic nanomedicine for brain cancer

    PubMed Central

    Tzeng, Stephany Y; Green, Jordan J

    2013-01-01

    Malignant brain cancer treatment is limited by a number of barriers, including the blood–brain barrier, transport within the brain interstitium, difficulties in delivering therapeutics specifically to tumor cells, the highly invasive quality of gliomas and drug resistance. As a result, the prognosis for patients with high-grade gliomas is poor and has improved little in recent years. Nanomedicine approaches have been developed in the laboratory, with some technologies being translated to the clinic, in order to address these needs. This review discusses the obstacles to effective treatment that are currently faced in the field, as well as various nanomedicine techniques that have been used or are being explored to overcome them, with a focus on liposomal and polymeric nanoparticles. PMID:23738667

  18. Metformin and Ara-a Effectively Suppress Brain Cancer by Targeting Cancer Stem/Progenitor Cells

    PubMed Central

    Mouhieddine, Tarek H.; Nokkari, Amaly; Itani, Muhieddine M.; Chamaa, Farah; Bahmad, Hisham; Monzer, Alissar; El-Merahbi, Rabih; Daoud, Georges; Eid, Assaad; Kobeissy, Firas H.; Abou-Kheir, Wassim

    2015-01-01

    Background: Gliomas and neuroblastomas pose a great health burden worldwide with a poor and moderate prognosis, respectively. Many studies have tried to find effective treatments for these primary malignant brain tumors. Of interest, the AMP-activated protein kinase (AMPK) pathway was found to be associated with tumorigenesis and tumor survival, leading to many studies on AMPK drugs, especially Metformin, and their potential role as anti-cancer treatments. Cancer stem cells (CSCs) are a small population of slowly-dividing, treatment-resistant, undifferentiated cancer cells that are being discovered in a multitude of cancers. They are thought to be responsible for replenishing the tumor with highly proliferative cells and increasing the risk of recurrence. Methods: Metformin and 9-β-d-Arabinofuranosyl Adenine (Ara-a) were used to study the role of the AMPK pathway in vitro on U251 (glioblastoma) and SH-SY5Y (neuroblastoma) cell lines. Results: We found that both drugs are able to decrease the survival of U251 and SH-SY5Y cell lines in a 2D as well as a 3D culture model. Metformin and Ara-a significantly decreased the invasive ability of these cancer cell lines. Treatment with these drugs decreased the sphere-forming units (SFU) of U251 cells, with Ara-a being more efficient, signifying the extinction of the CSC population. However, if treatment is withdrawn before all SFUs are extinguished, the CSCs regain some of their sphere-forming capabilities in the case of Metformin but not Ara-a treatment. Conclusion: Metformin and Ara-a have proved to be effective in the treatment of glioblastomas and neuroblastomas, in vitro, by targeting their cancer stem/progenitor cell population, which prevents recurrence. PMID:26635517

  19. Engineering a Brain Cancer Chip for High-throughput Drug Screening.

    PubMed

    Fan, Yantao; Nguyen, Duong Thanh; Akay, Yasemin; Xu, Feng; Akay, Metin

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and malignant of all human primary brain cancers, in which drug treatment is still one of the most effective treatments. However, existing drug discovery and development methods rely on the use of conventional two-dimensional (2D) cell cultures, which have been proven to be poor representatives of native physiology. Here, we developed a novel three-dimensional (3D) brain cancer chip composed of photo-polymerizable poly(ethylene) glycol diacrylate (PEGDA) hydrogel for drug screening. This chip can be produced after a few seconds of photolithography and requires no silicon wafer, replica molding, and plasma bonding like microfluidic devices made of poly(dimethylsiloxane) (PDMS). We then cultured glioblastoma cells (U87), which formed 3D brain cancer tissues on the chip, and used the GBM chip to perform combinatorial treatment of Pitavastatin and Irinotecan. The results indicate that this chip is capable of high-throughput GBM cancer spheroids formation, multiple-simultaneous drug administration, and a massive parallel testing of drug response. Our approach is easily reproducible, and this chip has the potential to be a powerful platform in cases such as high-throughput drug screening and prolonged drug release. The chip is also commercially promising for other clinical applications, including 3D cell culture and micro-scale tissue engineering. PMID:27151082

  20. Engineering a Brain Cancer Chip for High-throughput Drug Screening.

    PubMed

    Fan, Yantao; Nguyen, Duong Thanh; Akay, Yasemin; Xu, Feng; Akay, Metin

    2016-05-06

    Glioblastoma multiforme (GBM) is the most common and malignant of all human primary brain cancers, in which drug treatment is still one of the most effective treatments. However, existing drug discovery and development methods rely on the use of conventional two-dimensional (2D) cell cultures, which have been proven to be poor representatives of native physiology. Here, we developed a novel three-dimensional (3D) brain cancer chip composed of photo-polymerizable poly(ethylene) glycol diacrylate (PEGDA) hydrogel for drug screening. This chip can be produced after a few seconds of photolithography and requires no silicon wafer, replica molding, and plasma bonding like microfluidic devices made of poly(dimethylsiloxane) (PDMS). We then cultured glioblastoma cells (U87), which formed 3D brain cancer tissues on the chip, and used the GBM chip to perform combinatorial treatment of Pitavastatin and Irinotecan. The results indicate that this chip is capable of high-throughput GBM cancer spheroids formation, multiple-simultaneous drug administration, and a massive parallel testing of drug response. Our approach is easily reproducible, and this chip has the potential to be a powerful platform in cases such as high-throughput drug screening and prolonged drug release. The chip is also commercially promising for other clinical applications, including 3D cell culture and micro-scale tissue engineering.

  1. Engineering a Brain Cancer Chip for High-throughput Drug Screening

    PubMed Central

    Fan, Yantao; Nguyen, Duong Thanh; Akay, Yasemin; Xu, Feng; Akay, Metin

    2016-01-01

    Glioblastoma multiforme (GBM) is the most common and malignant of all human primary brain cancers, in which drug treatment is still one of the most effective treatments. However, existing drug discovery and development methods rely on the use of conventional two-dimensional (2D) cell cultures, which have been proven to be poor representatives of native physiology. Here, we developed a novel three-dimensional (3D) brain cancer chip composed of photo-polymerizable poly(ethylene) glycol diacrylate (PEGDA) hydrogel for drug screening. This chip can be produced after a few seconds of photolithography and requires no silicon wafer, replica molding, and plasma bonding like microfluidic devices made of poly(dimethylsiloxane) (PDMS). We then cultured glioblastoma cells (U87), which formed 3D brain cancer tissues on the chip, and used the GBM chip to perform combinatorial treatment of Pitavastatin and Irinotecan. The results indicate that this chip is capable of high-throughput GBM cancer spheroids formation, multiple-simultaneous drug administration, and a massive parallel testing of drug response. Our approach is easily reproducible, and this chip has the potential to be a powerful platform in cases such as high-throughput drug screening and prolonged drug release. The chip is also commercially promising for other clinical applications, including 3D cell culture and micro-scale tissue engineering. PMID:27151082

  2. Advances in treating glioblastoma

    PubMed Central

    Weathers, Shiao-Pei

    2014-01-01

    Glioblastoma is the most common and most aggressive primary brain tumor in adults. Optimized standard treatment only confers a modest improvement in progression and overall survival, underscoring the pressing need for the development of novel therapies. Our understanding of glioblastoma (a molecularly heterogeneous disorder) has been accelerated in the setting of large scale genomic analyses, lending insight into potential actionable targets. Antiangiogenic therapies have been used in the treatment of glioblastoma, and our understanding of the means to optimize the role of these agents is continuing to evolve. Recently, immunotherapy has garnered increasing attention as a therapeutic approach in the treatment of gliomas. Promising novel approaches are under active development in the treatment of glioblastoma. PMID:24991423

  3. Efficacy of clinically relevant temozolomide dosing schemes in glioblastoma cancer stem cell lines.

    PubMed

    Beier, Dagmar; Schriefer, Beate; Brawanski, Konstantin; Hau, Peter; Weis, Joachim; Schulz, Jörg B; Beier, Christoph P

    2012-08-01

    The effectiveness of temozolomide (TMZ) dosing schemes and the "rechallenge" of recurrent glioblastoma (GBM) with TMZ are controversial. We therefore compared the efficacy of different TMZ dosing schemes against GBM cancer stem cell (CSC) lines in vitro. In O(6)-methyl-guanidine-methyl-transferase (MGMT)-negative CSC lines, all schedules (1 day on/27 days off, 5 days on/23 days off, 7 days on/7 days off, 21 days on/7 days off, continuous low-dose TMZ) depleted clonogenic cells. In TMZ-resistant CSC lines, the 7 days on/7 days off scheme showed higher toxicity as compared with the other schemes. However, clinically feasible concentrations remained ineffective in highly resistant CSC lines. In addition, none of the schedules induced long-term depletion of clonogenic cells even at the highest concentrations (up to 250 μM). After sublethal TMZ treatment for 5 days, TMZ rechallenge of recovering CSC lines remained effective. Our data advocate CSC lines as in vitro model to address clinical questions. Using this model, our data suggest the effectiveness of TMZ in MGMT-negative CSC lines and support the concept of TMZ rechallenge. The 7 days on/7 days off scheme consistently showed the best activity of all schedules in TMZ-resistant CSC lines.

  4. Cancer stem cell-specific scavenger receptor CD36 drives glioblastoma progression

    PubMed Central

    Hale, James S.; Otvos, Balint; Sinyuk, Maksim; Alvarado, Alvaro G.; Hitomi, Masahiro; Stoltz, Kevin; Wu, Qiulian; Flavahan, William; Levison, Bruce; Johansen, Mette L.; Schmitt, David; Neltner, Janna M.; Huang, Ping; Ren, Bin; Sloan, Andrew E.; Silverstein, Roy L.; Gladson, Candece L.; DiDonato, Joseph A.; Brown, J. Mark; McIntyre, Thomas; Hazen, Stanley L.; Horbinski, Craig; Rich, Jeremy N.; Lathia, Justin D.

    2014-01-01

    Glioblastoma (GBM) contains a self-renewing, tumorigenic cancer stem cell (CSC) population which contributes to tumor propagation and therapeutic resistance. While the tumor microenvironment is essential to CSC self-renewal, the mechanisms by which CSCs sense and respond to microenvironmental conditions are poorly understood. Scavenger receptors are a broad class of membrane receptors that are well characterized on immune cells and instrumental in sensing apoptotic cellular debris and modified lipids. Here we provide evidence that CSCs selectively utilize the scavenger receptor CD36 to promote their maintenance using patient-derived CSCs and in vivo xenograft models. We detected CD36 expression in GBM cells in addition to previously described cell types including endothelial cells, macrophages and microglia. CD36 was enriched in CSCs and was able to functionally distinguish self-renewing cells. CD36 was co-expressed with integrin alpha 6 and CD133, previously described CSC markers, and CD36 reduction resulted in concomitant loss of integrin alpha 6 expression, self-renewal and tumor initiation capacity. We confirmed that oxidized phospholipids, ligands of CD36, were present in GBM and found that the proliferation of CSCs, but not non-CSCs, increased with exposure to oxidized low-density lipoprotein. CD36 was an informative biomarker of malignancy and negatively correlated to patient prognosis. These results provide a paradigm for CSCs to thrive by the selective enhanced expression of scavenger receptors, providing survival and metabolic advantages. PMID:24737733

  5. Outside the box--novel therapeutic strategies for glioblastoma.

    PubMed

    Mrugala, Maciej M; Adair, Jennifer E; Kiem, Hans-Peter

    2012-01-01

    Standard approaches to therapy for malignant glioma provide modest improvement of progression-free survival and overall survival. Almost all patients experiencing glioblastoma eventually progress, and no cure is currently available. During the last decade, we have witnessed a 30% improvement in 2-year overall survival rates, yet glioblastoma continues to cause approximately 13,000 cancer-related deaths in the United States annually. Thus, novel therapies need to be investigated alongside continued development of currently available radiotherapy and chemotherapy options. Because glioblastoma does not typically metastasize outside the brain, development of unique local therapies that are not available for other cancers is feasible. Experimental agents, like scorpion venom-derived chlorotoxin, have been successfully applied in local therapy for glioblastoma. In addition, multiple new gene therapy approaches are emerging for both local and systemic glioblastoma therapy. Lastly, alternating electric fields are being introduced to cancer therapy. This review will discuss these "nonstandard"--outside the box--modalities for therapy for malignant glioma.

  6. Human alpha-lactalbumin made lethal to tumor cells (HAMLET) kills human glioblastoma cells in brain xenografts by an apoptosis-like mechanism and prolongs survival.

    PubMed

    Fischer, Walter; Gustafsson, Lotta; Mossberg, Ann-Kristin; Gronli, Janne; Mork, Sverre; Bjerkvig, Rolf; Svanborg, Catharina

    2004-03-15

    Malignant brain tumors present a major therapeutic challenge because no selective or efficient treatment is available. Here, we demonstrate that intratumoral administration of human alpha-lactalbumin made lethal to tumor cells (HAMLET) prolongs survival in a human glioblastoma (GBM) xenograft model, by selective induction of tumor cell apoptosis. HAMLET is a protein-lipid complex that is formed from alpha-lactalbumin when the protein changes its tertiary conformation and binds oleic acid as a cofactor. HAMLET induces apoptosis in a wide range of tumor cells in vitro, but the therapeutic effect in vivo has not been examined. In this study, invasively growing human GBM tumors were established in nude rats (Han:rnu/rnu Rowett, n = 20) by transplantation of human GBM biopsy spheroids. After 7 days, HAMLET was administered by intracerebral convection-enhanced delivery for 24 h into the tumor area; and alpha-lactalbumin, the native, folded variant of the same protein, was used as a control. HAMLET reduced the intracranial tumor volume and delayed the onset of pressure symptoms in the tumor-bearing rats. After 8 weeks, all alpha-lactalbumin-treated rats had developed pressure symptoms, but the HAMLET-treated rats remained asymptomatic. Magnetic resonance imaging scans revealed large differences in tumor volume (456 versus 63 mm(3)). HAMLET caused apoptosis in vivo in the tumor but not in adjacent intact brain tissue or in nontransformed human astrocytes, and no toxic side effects were observed. The results identify HAMLET as a new candidate in cancer therapy and suggest that HAMLET should be additionally explored as a novel approach to controlling GBM progression.

  7. Immune Evasion Strategies of Glioblastoma

    PubMed Central

    Razavi, Seyed-Mostafa; Lee, Karen E.; Jin, Benjamin E.; Aujla, Parvir S.; Gholamin, Sharareh; Li, Gordon

    2016-01-01

    Glioblastoma (GBM) is the most devastating brain tumor, with associated poor prognosis. Despite advances in surgery and chemoradiation, the survival of afflicted patients has not improved significantly in the past three decades. Immunotherapy has been heralded as a promising approach in treatment of various cancers; however, the immune privileged environment of the brain usually curbs the optimal expected response in central nervous system malignancies. In addition, GBM cells create an immunosuppressive microenvironment and employ various methods to escape immune surveillance. The purpose of this review is to highlight the strategies by which GBM cells evade the host immune system. Further understanding of these strategies and the biology of this tumor will pave the way for developing novel immunotherapeutic approaches for treatment of GBM. PMID:26973839

  8. Initial contact of glioblastoma cells with existing normal brain endothelial cells strengthen the barrier function via fibroblast growth factor 2 secretion: a new in vitro blood-brain barrier model.

    PubMed

    Toyoda, Keisuke; Tanaka, Kunihiko; Nakagawa, Shinsuke; Thuy, Dinh Ha Duy; Ujifuku, Kenta; Kamada, Kensaku; Hayashi, Kentaro; Matsuo, Takayuki; Nagata, Izumi; Niwa, Masami

    2013-05-01

    Glioblastoma multiforme (GBM) cells invade along the existing normal capillaries in brain. Normal capillary endothelial cells function as the blood-brain barrier (BBB) that limits permeability of chemicals into the brain. To investigate whether GBM cells modulate the BBB function of normal endothelial cells, we developed a new in vitro BBB model with primary cultures of rat brain endothelial cells (RBECs), pericytes, and astrocytes. Cells were plated on a membrane with 8 μm pores, either as a monolayer or as a BBB model with triple layer culture. The BBB model consisted of RBEC on the luminal side as a bottom, and pericytes and astrocytes on the abluminal side as a top of the chamber. Human GBM cell line, LN-18 cells, or lung cancer cell line, NCI-H1299 cells, placed on either the RBEC monolayer or the BBB model increased the transendothelial electrical resistance (TEER) values against the model, which peaked within 72 h after the tumor cell application. The TEER value gradually returned to baseline with LN-18 cells, whereas the value quickly dropped to the baseline in 24 h with NCI-H1299 cells. NCI-H1299 cells invaded into the RBEC layer through the membrane, but LN-18 cells did not. Fibroblast growth factor 2 (FGF-2) strengthens the endothelial cell BBB function by increased occludin and ZO-1 expression. In our model, LN-18 and NCI-H1299 cells secreted FGF-2, and a neutralization antibody to FGF-2 inhibited LN-18 cells enhanced BBB function. These results suggest that FGF-2 would be a novel therapeutic target for GBM in the perivascular invasive front.

  9. Role of Receptor Tyrosine Kinases and Their Ligands in Glioblastoma

    PubMed Central

    Carrasco-García, Estefanía; Saceda, Miguel; Martínez-Lacaci, Isabel

    2014-01-01

    Glioblastoma multiforme is the most frequent, aggressive and fatal type of brain tumor. Glioblastomas are characterized by their infiltrating nature, high proliferation rate and resistance to chemotherapy and radiation. Recently, oncologic therapy experienced a rapid evolution towards “targeted therapy,” which is the employment of drugs directed against particular targets that play essential roles in proliferation, survival and invasiveness of cancer cells. A number of molecules involved in signal transduction pathways are used as molecular targets for the treatment of various tumors. In fact, inhibitors of these molecules have already entered the clinic or are undergoing clinical trials. Cellular receptors are clear examples of such targets and in the case of glioblastoma multiforme, some of these receptors and their ligands have become relevant. In this review, the importance of glioblastoma multiforme in signaling pathways initiated by extracellular tyrosine kinase receptors such as EGFR, PDGFR and IGF-1R will be discussed. We will describe their ligands, family members, structure, activation mechanism, downstream molecules, as well as the interaction among these pathways. Lastly, we will provide an up-to-date review of the current targeted therapies in cancer, in particular glioblastoma that employ inhibitors of these pathways and their benefits. PMID:24709958

  10. Human brain cancer studied by resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-Hui; Sun, Yi; Pu, Yang; Boydston-White, Susie; Liu, Yulong; Alfano, Robert R.

    2012-11-01

    The resonance Raman (RR) spectra of six types of human brain tissues are examined using a confocal micro-Raman system with 532-nm excitation in vitro. Forty-three RR spectra from seven subjects are investigated. The spectral peaks from malignant meningioma, stage III (cancer), benign meningioma (benign), normal meningeal tissues (normal), glioblastoma multiforme grade IV (cancer), acoustic neuroma (benign), and pituitary adenoma (benign) are analyzed. Using a 532-nm excitation, the resonance-enhanced peak at 1548 cm-1 (amide II) is observed in all of the tissue specimens, but is not observed in the spectra collected using the nonresonance Raman system. An increase in the intensity ratio of 1587 to 1605 cm-1 is observed in the RR spectra collected from meningeal cancer tissue as compared with the spectra collected from the benign and normal meningeal tissue. The peak around 1732 cm-1 attributed to fatty acids (lipids) are diminished in the spectra collected from the meningeal cancer tumors as compared with the spectra from normal and benign tissues. The characteristic band of spectral peaks observed between 2800 and 3100 cm-1 are attributed to the vibrations of methyl (-CH3) and methylene (-CH2-) groups. The ratio of the intensities of the spectral peaks of 2935 to 2880 cm-1 from the meningeal cancer tissues is found to be lower in comparison with that of the spectral peaks from normal, and benign tissues, which may be used as a distinct marker for distinguishing cancerous tissues from normal meningeal tissues. The statistical methods of principal component analysis and the support vector machine are used to analyze the RR spectral data collected from meningeal tissues, yielding a diagnostic sensitivity of 90.9% and specificity of 100% when two principal components are used.

  11. Proliferation and enrichment of CD133+ glioblastoma cancer stem cells on 3D chitosan-alginate scaffolds

    PubMed Central

    Kievit, Forrest M.; Florczyk, Stephen J.; Leung, Matthew C.; Wang, Kui; Wu, Jennifer D.; Silber, John R.; Ellenbogen, Richard G.; Lee, Jerry S.H.; Zhang, Miqin

    2014-01-01

    Emerging evidence implicates cancer stem cells (CSCs) as primary determinants of the clinical behavior of human cancers, representing an ideal target for next-generation anticancer therapies. However CSCs are difficult to propagate in vitro, severely limiting the study of CSC biology and drug development. Here we report that growing cells from glioblastoma (GBM) cell lines on three dimensional (3D) porous chitosan-alginate (CA) scaffolds dramatically promotes the proliferation and enrichment of cells possessing the hallmarks of CSCs. CA scaffold-grown cells were found more tumorigenic in nude mouse xenografts than cells grown from monolayers. Growing in CA scaffolds rapidly promoted expression of genes involved in the epithelial-to-mesenchymal transition that has been implicated in the genesis of CSCs. Our results indicate that CA scaffolds have utility as a simple and inexpensive means to cultivate CSCs in vitro in support of studies to understand CSC biology and develop more effective anti-cancer therapies. PMID:25109438

  12. (C-11)-thymidine PET imaging as a measure of DNA synthesis rate: A preliminary quantitative study of human brain glioblastoma

    SciTech Connect

    Wong, C.Y.O.; Yung, B.C.Y.; Conti, P.

    1994-05-01

    (C-11)-Thymidine (TdR) PET imaging can potentially be used to measure the tumor proliferation in-vivo and monitor treatment. Twenty-four stereotactic brain biopsies (SBB) following in-vivo bromodeoxyuridine (BUDR) under MRI guidance were obtained to correlate with TdR PET imaging of primary glioblastoma in human brain. Following data acquisition, standard 4 by 4 pixel (2mm/pixel) regions of interest (ROIs) were placed over the tumor site based on SBB and the corresponding homologous region of contralateral normal cortices. After correcting input function for major metabolites and subtracting TdR activity in the normal side from the tumor side of the brain, 2- and 3- compartmental analysis was performed for all the ROIs. Akaike :(AIC) and Bayes (BIC) information criteria was calculated to compare these 2 kinetic models for differentiating pure blood pool effects from TdR incorporation into DNA. Of 24 SBB regions, 20 non-overlapping and corresponding ROIs in PET were identified and quantified. Eight ROIs were selected based on the AIC, BIC and root-mean-square errors (RMSE < 0.1) (4 couldn`t be modelled and 8 most likely represented blood flow effects). The percentage (%) of BUDR per high power field area %BUDR labelling. The k3, the forward phosphorylation rate (hence an index of DNA synthesis), was categorized into 2 groups according to a threshold value of %BUDR/hpfa - 5%. The tumor regions with low proliferative index (%BUDR/hpfa<5%) have significantly lower k3 than those with high proliferative index (p<0.005). We also find that k4 is at least an order less than k3, suggesting minimal effects of dephosphorylation and efflux of metabolites. We conclude that 3-compartmental, 4-parameter modeling is adequate for TdR PET studies and k3 correlates with DNA synthesis rate.

  13. STAT3 Regulation of Glioblastoma Pathogenesis

    PubMed Central

    de la Iglesia, Núria; Puram, Sidharth V.; Bonni, Azad

    2009-01-01

    Malignant gliomas are the most common primary brain tumors. Despite efforts to find effective treatments, these tumors remain incurable. The failure of malignant gliomas to respond to conventional cancer therapies may reflect the unique biology of these tumors, underscoring the need for new approaches in their investigation. Recently, progress has been made in characterization of the molecular pathogenesis of glioblastoma using a developmental neurobiological perspective, by exploring the role of signaling pathways that control the differentiation of neural stem cells along the glial lineage. The transcription factor STAT3, which has an established function in neural stem cell and astrocyte development, has been found to play dual tumor suppressive and oncogenic roles in glial malignancy depending on the mutational profile of the tumor. These findings establish a novel developmental paradigm in the study of glioblastoma pathogenesis and provide the rationale for patient-tailored therapy in the treatment of this devastating disease. PMID:19601808

  14. Pleiotrophin signaling through anaplastic lymphoma kinase is rate-limiting for glioblastoma growth.

    PubMed

    Powers, Ciaran; Aigner, Achim; Stoica, Gerald E; McDonnell, Kevin; Wellstein, Anton

    2002-04-19

    Glioblastoma multiforme is the most common highly aggressive human brain cancer, and receptor tyrosine kinases have been implicated in the progression of this malignancy. We have recently identified anaplastic lymphoma kinase (ALK) as a tyrosine kinase receptor for pleiotrophin, a secreted growth factor that is highly expressed during embryonic brain development and in tumors of the central nervous system. Here we report on the contribution of pleiotrophin-ALK signaling to glioblastoma growth. We found ALK overexpressed in human glioblastoma relative to normal brain and detected ALK mRNA in glioblastoma cell lines. We reduced the endogenous ALK in glioblastoma cells by ribozyme targeting and demonstrated that this prevents pleiotrophin-stimulated phosphorylation of the anti-apoptotic protein Akt. Furthermore, this depletion of ALK reduced tumor growth of xenografts in athymic nude mice and prolonged survival of the animals because of increased apoptosis in the tumors. These findings directly implicate ALK signaling as a rate-limiting factor in the growth of glioblastoma multiforme and suggest potential utility of therapeutic targeting of ALK.

  15. Genomic understanding of glioblastoma expanded

    Cancer.gov

    Glioblastoma multiforme (GBM) was the first cancer type to be systematically studied by TCGA in 2008. In a new, complementary report, TCGA experts examined more than 590 GBM samples--the largest to date utilizing genomic characterization techniques and ne

  16. Nanoparticles for imaging and treating brain cancer

    PubMed Central

    Meyers, Joseph D; Doane, Tennyson; Burda, Clemens; Basilion, James P

    2013-01-01

    Brain cancer tumors cause disruption of the selective properties of vascular endothelia, even causing disruptions in the very selective blood–brain barrier, which are collectively referred to as the blood–brain–tumor barrier. Nanoparticles (NPs) have previously shown great promise in taking advantage of this increased vascular permeability in other cancers, which results in increased accumulation in these cancers over time due to the accompanying loss of an effective lymph system. NPs have therefore attracted increased attention for treating brain cancer. While this research is just beginning, there have been many successes demonstrated thus far in both the laboratory and clinical setting. This review serves to present the reader with an overview of NPs for treating brain cancer and to provide an outlook on what may come in the future. For NPs, just like the blood–brain–tumor barrier, the future is wide open. PMID:23256496

  17. Highly efficient radiosensitization of human glioblastoma and lung cancer cells by a G-quadruplex DNA binding compound.

    PubMed

    Merle, Patrick; Gueugneau, Marine; Teulade-Fichou, Marie-Paule; Müller-Barthélémy, Mélanie; Amiard, Simon; Chautard, Emmanuel; Guetta, Corinne; Dedieu, Véronique; Communal, Yves; Mergny, Jean-Louis; Gallego, Maria; White, Charles; Verrelle, Pierre; Tchirkov, Andreï

    2015-11-06

    Telomeres are nucleoprotein structures at the end of chromosomes which stabilize and protect them from nucleotidic degradation and end-to-end fusions. The G-rich telomeric single-stranded DNA overhang can adopt a four-stranded G-quadruplex DNA structure (G4). Stabilization of the G4 structure by binding of small molecule ligands enhances radiosensitivity of tumor cells, and this combined treatment represents a novel anticancer approach. We studied the effect of the platinum-derived G4-ligand, Pt-ctpy, in association with radiation on human glioblastoma (SF763 and SF767) and non-small cell lung cancer (A549 and H1299) cells in vitro and in vivo. Treatments with submicromolar concentrations of Pt-ctpy inhibited tumor proliferation in vitro with cell cycle alterations and induction of apoptosis. Non-toxic concentrations of the ligand were then combined with ionizing radiation. Pt-ctpy radiosensitized all cell lines with dose-enhancement factors between 1.32 and 1.77. The combined treatment led to increased DNA breaks. Furthermore, a significant radiosensitizing effect of Pt-ctpy in mice xenografted with glioblastoma SF763 cells was shown by delayed tumor growth and improved survival. Pt-ctpy can act in synergy with radiation for efficient killing of cancer cells at concentrations at which it has no obvious toxicity per se, opening perspectives for future therapeutic applications.

  18. Highly efficient radiosensitization of human glioblastoma and lung cancer cells by a G-quadruplex DNA binding compound

    PubMed Central

    Merle, Patrick; Gueugneau, Marine; Teulade-Fichou, Marie-Paule; Müller-Barthélémy, Mélanie; Amiard, Simon; Chautard, Emmanuel; Guetta, Corinne; Dedieu, Véronique; Communal, Yves; Mergny, Jean-Louis; Gallego, Maria; White, Charles; Verrelle, Pierre; Tchirkov, Andreï

    2015-01-01

    Telomeres are nucleoprotein structures at the end of chromosomes which stabilize and protect them from nucleotidic degradation and end-to-end fusions. The G-rich telomeric single-stranded DNA overhang can adopt a four-stranded G-quadruplex DNA structure (G4). Stabilization of the G4 structure by binding of small molecule ligands enhances radiosensitivity of tumor cells, and this combined treatment represents a novel anticancer approach. We studied the effect of the platinum-derived G4-ligand, Pt-ctpy, in association with radiation on human glioblastoma (SF763 and SF767) and non-small cell lung cancer (A549 and H1299) cells in vitro and in vivo. Treatments with submicromolar concentrations of Pt-ctpy inhibited tumor proliferation in vitro with cell cycle alterations and induction of apoptosis. Non-toxic concentrations of the ligand were then combined with ionizing radiation. Pt-ctpy radiosensitized all cell lines with dose-enhancement factors between 1.32 and 1.77. The combined treatment led to increased DNA breaks. Furthermore, a significant radiosensitizing effect of Pt-ctpy in mice xenografted with glioblastoma SF763 cells was shown by delayed tumor growth and improved survival. Pt-ctpy can act in synergy with radiation for efficient killing of cancer cells at concentrations at which it has no obvious toxicity per se, opening perspectives for future therapeutic applications. PMID:26542881

  19. Brain Stem and Entire Spinal Leptomeningeal Dissemination of Supratentorial Glioblastoma Multiforme in a Patient during Postoperative Radiochemotherapy

    PubMed Central

    Kong, Xiangyi; Wang, Yu; Liu, Shuai; Chen, Keyin; Zhou, Qiangyi; Yan, Chengrui; He, Huayu; Gao, Jun; Guan, Jian; Yang, Yi; Li, Yongning; Xing, Bing; Wang, Renzhi; Ma, Wenbin

    2015-01-01

    Abstract Glioblastoma multiforme (GBM) is the most common primary malignancy of the central nervous system in adults. Macroscopically evident and symptomatic spinal metastases occur rarely. Autopsy series suggest that approximately 25% of patients with intracranial GBM have evidence of spinal subarachnoid seeding, although the exact incidence is not known as postmortem examination of the spine is not routinely performed.1–3 Herein, we present a rare case of symptomatic brain stem and entire spinal dissemination of GBM in a 36-year-old patient during postoperative adjuvant radiochemotherapy with temozolomide and cisplatin. Visual deterioration, intractable stomachache, and limb paralysis were the main clinical features. The results of cytological and immunohistochemical tests on the cerebrospinal fluid cells were highly suggestive of spinal leptomeningeal dissemination. After 1 month, the patient's overall condition deteriorated and succumbed to his disease. To the best of our knowledge, this is the first reported case of GBM dissemination presenting in this manner. Because GBM extracranial dissemination is rare, we also reviewed pertinent literature regarding this uncommon entity. Although metastases to spinal cord from GBM are uncommon, it is always important to have in mind when patients with a history of GBM present with symptoms that do not correlate with the primary disease pattern.

  20. Molecular Heterogeneity in a Patient-Derived Glioblastoma Xenoline Is Regulated by Different Cancer Stem Cell Populations

    PubMed Central

    Garner, Jo Meagan; Ellison, David W.; Finkelstein, David; Ganguly, Debolina; Du, Ziyun; Sims, Michelle; Yang, Chuan He; Interiano, Rodrigo B.; Davidoff, Andrew M.; Pfeffer, Lawrence M.

    2015-01-01

    Malignant glioblastoma (GBM) is a highly aggressive brain tumor with a dismal prognosis and limited therapeutic options. Genomic profiling of GBM samples has identified four molecular subtypes (Proneural, Neural, Classical and Mesenchymal), which may arise from different glioblastoma stem-like cell (GSC) populations. We previously showed that adherent cultures of GSCs grown on laminin-coated plates (Ad-GSCs) and spheroid cultures of GSCs (Sp-GSCs) had high expression of stem cell markers (CD133, Sox2 and Nestin), but low expression of differentiation markers (βIII-tubulin and glial fibrillary acid protein). In the present study, we characterized GBM tumors produced by subcutaneous and intracranial injection of Ad-GSCs and Sp-GSCs isolated from a patient-derived xenoline. Although they formed tumors with identical histological features, gene expression analysis revealed that xenografts of Sp-GSCs had a Classical molecular subtype similar to that of bulk tumor cells. In contrast xenografts of Ad-GSCs expressed a Mesenchymal gene signature. Adherent GSC-derived xenografts had high STAT3 and ANGPTL4 expression, and enrichment for stem cell markers, transcriptional networks and pro-angiogenic markers characteristic of the Mesenchymal subtype. Examination of clinical samples from GBM patients showed that STAT3 expression was directly correlated with ANGPTL4 expression, and that increased expression of these genes correlated with poor patient survival and performance. A pharmacological STAT3 inhibitor abrogated STAT3 binding to the ANGPTL4 promoter and exhibited anticancer activity in vivo. Therefore, Ad-GSCs and Sp-GSCs produced histologically identical tumors with different gene expression patterns, and a STAT3/ANGPTL4 pathway is identified in glioblastoma that may serve as a target for therapeutic intervention. PMID:25955030

  1. Lipid-Core Nanocapsules Act as a Drug Shuttle Through the Blood Brain Barrier and Reduce Glioblastoma After Intravenous or Oral Administration.

    PubMed

    Rodrigues, Stephen F; Fiel, Luana A; Shimada, Ana L; Pereira, Natalia R; Guterres, Silvia S; Pohlmann, Adriana R; Farsky, Sandra H

    2016-05-01

    Lipid-core nanocapsules (LNC) are formed by an organogel surrounded by poly(epsilon-caprolactone) and stabilized by polysorbate 80. LNCs increase the concentration of drugs in the brain after oral or intravenous administration. We proposed to determine whether the drug is released from the LNC to cross the blood brain barrier (BBB) or the drug-loaded LNCs can cross the BBB to release the drug. We synthesized a Rhodamine B-polymer conjugate to prepare a fluorescent-labeled LNC formulation, and intravital microscopy was used to determine the ability of the LNCs to cross the brain barrier using different administration routes in C57BI/6 mice. A glioblastoma model was used to determine the impact of the LNC as a shuttle for treatment. After pial vessel exposure, intense fluorescence was detected inside the vessels 10 min after intravenous or 20 min after intraperitoneal injections of fluorescent-labeled LNC. The fluorescence was observed in the perivascular tissue after 30 and 60 min, respectively. Increased tissue fluorescence was detected 240 min after oral administration. The integrity of the barrier was determined during the experiments. Normal leukocyte and platelet adhesion to the vessel wall indicated that Rhodamine B-labeled LNC did not cause pial vessel alterations. After intravenous or oral administration, Rhodamine B-labeled LNC-containing co-encapsulated indomethacin and indomethacin ethyl ester exhibited similar behavior in pial vessels, being more efficient in the treatment of mice with glioblastoma than indomethacin in solution. Therefore, we demonstrated that LNCs act as drug shuttles through the BBB, delivering drugs in brain tissue with high efficiency and reducing glioblastoma after intravenous or oral administration.

  2. Lipid-Core Nanocapsules Act as a Drug Shuttle Through the Blood Brain Barrier and Reduce Glioblastoma After Intravenous or Oral Administration.

    PubMed

    Rodrigues, Stephen F; Fiel, Luana A; Shimada, Ana L; Pereira, Natalia R; Guterres, Silvia S; Pohlmann, Adriana R; Farsky, Sandra H

    2016-05-01

    Lipid-core nanocapsules (LNC) are formed by an organogel surrounded by poly(epsilon-caprolactone) and stabilized by polysorbate 80. LNCs increase the concentration of drugs in the brain after oral or intravenous administration. We proposed to determine whether the drug is released from the LNC to cross the blood brain barrier (BBB) or the drug-loaded LNCs can cross the BBB to release the drug. We synthesized a Rhodamine B-polymer conjugate to prepare a fluorescent-labeled LNC formulation, and intravital microscopy was used to determine the ability of the LNCs to cross the brain barrier using different administration routes in C57BI/6 mice. A glioblastoma model was used to determine the impact of the LNC as a shuttle for treatment. After pial vessel exposure, intense fluorescence was detected inside the vessels 10 min after intravenous or 20 min after intraperitoneal injections of fluorescent-labeled LNC. The fluorescence was observed in the perivascular tissue after 30 and 60 min, respectively. Increased tissue fluorescence was detected 240 min after oral administration. The integrity of the barrier was determined during the experiments. Normal leukocyte and platelet adhesion to the vessel wall indicated that Rhodamine B-labeled LNC did not cause pial vessel alterations. After intravenous or oral administration, Rhodamine B-labeled LNC-containing co-encapsulated indomethacin and indomethacin ethyl ester exhibited similar behavior in pial vessels, being more efficient in the treatment of mice with glioblastoma than indomethacin in solution. Therefore, we demonstrated that LNCs act as drug shuttles through the BBB, delivering drugs in brain tissue with high efficiency and reducing glioblastoma after intravenous or oral administration. PMID:27305820

  3. Classification of glioblastoma and metastasis for neuropathology intraoperative diagnosis: a multi-resolution textural approach to model the background

    NASA Astrophysics Data System (ADS)

    Ahmad Fauzi, Mohammad Faizal; Gokozan, Hamza Numan; Elder, Brad; Puduvalli, Vinay K.; Otero, Jose J.; Gurcan, Metin N.

    2014-03-01

    Brain cancer surgery requires intraoperative consultation by neuropathology to guide surgical decisions regarding the extent to which the tumor undergoes gross total resection. In this context, the differential diagnosis between glioblastoma and metastatic cancer is challenging as the decision must be made during surgery in a short time-frame (typically 30 minutes). We propose a method to classify glioblastoma versus metastatic cancer based on extracting textural features from the non-nuclei region of cytologic preparations. For glioblastoma, these regions of interest are filled with glial processes between the nuclei, which appear as anisotropic thin linear structures. For metastasis, these regions correspond to a more homogeneous appearance, thus suitable texture features can be extracted from these regions to distinguish between the two tissue types. In our work, we use the Discrete Wavelet Frames to characterize the underlying texture due to its multi-resolution capability in modeling underlying texture. The textural characterization is carried out in primarily the non-nuclei regions after nuclei regions are segmented by adapting our visually meaningful decomposition segmentation algorithm to this problem. k-nearest neighbor method was then used to classify the features into glioblastoma or metastasis cancer class. Experiment on 53 images (29 glioblastomas and 24 metastases) resulted in average accuracy as high as 89.7% for glioblastoma, 87.5% for metastasis and 88.7% overall. Further studies are underway to incorporate nuclei region features into classification on an expanded dataset, as well as expanding the classification to more types of cancers.

  4. Suppression of 14-3-3γ-mediated surface expression of ANO1 inhibits cancer progression of glioblastoma cells

    PubMed Central

    Lee, Young-Sun; Lee, Jae Kwang; Bae, Yeonju; Lee, Bok-Soon; Kim, Eunju; Cho, Chang-Hoon; Ryoo, Kanghyun; Yoo, Jiyun; Kim, Chul-Ho; Yi, Gwan-Su; Lee, Seok-Geun; Lee, C. Justin; Kang, Sang Soo; Hwang, Eun Mi; Park, Jae-Yong

    2016-01-01

    Anoctamin-1 (ANO1) acts as a Ca2+-activated Cl− channel in various normal tissues, and its expression is increased in several different types of cancer. Therefore, understanding the regulation of ANO1 surface expression is important for determining its physiological and pathophysiological functions. However, the trafficking mechanism of ANO1 remains elusive. Here, we report that segment a (N-terminal 116 amino acids) of ANO1 is crucial for its surface expression, and we identified 14-3-3γ as a binding partner for anterograde trafficking using yeast two-hybrid screening. The surface expression of ANO1 was enhanced by 14-3-3γ, and the Thr9 residue of ANO1 was critical for its interaction with 14-3-3γ. Gene silencing of 14-3-3γ and/or ANO1 demonstrated that suppression of ANO1 surface expression inhibited migration and invasion of glioblastoma cells. These findings provide novel therapeutic implications for glioblastomas, which are associated with poor prognosis. PMID:27212225

  5. Simulation Predicts IGFBP2-HIF1α Interaction Drives Glioblastoma Growth

    PubMed Central

    Lin, Ka Wai; Liao, Angela; Qutub, Amina A.

    2015-01-01

    Tremendous strides have been made in improving patients’ survival from cancer with one glaring exception: brain cancer. Glioblastoma is the most common, aggressive and highly malignant type of primary brain tumor. The average overall survival remains less than 1 year. Notably, cancer patients with obesity and diabetes have worse outcomes and accelerated progression of glioblastoma. The root cause of this accelerated progression has been hypothesized to involve the insulin signaling pathway. However, while the process of invasive glioblastoma progression has been extensively studied macroscopically, it has not yet been well characterized with regards to intracellular insulin signaling. In this study we connect for the first time microscale insulin signaling activity with macroscale glioblastoma growth through the use of computational modeling. Results of the model suggest a novel observation: feedback from IGFBP2 to HIF1α is integral to the sustained growth of glioblastoma. Our study suggests that downstream signaling from IGFI to HIF1α, which has been the target of many insulin signaling drugs in clinical trials, plays a smaller role in overall tumor growth. These predictions strongly suggest redirecting the focus of glioma drug candidates on controlling the feedback between IGFBP2 and HIF1α. PMID:25884993

  6. Molecular advances to treat cancer of the brain.

    PubMed

    Fathallah-Shaykh, H M; Zhao, L J; Mickey, B; Kafrouni, A I

    2000-06-01

    Malignant primary and metastatic brain tumours continue to be associated with poor prognosis. Nevertheless, recent advances in molecular medicine, specifically in the strategies of gene therapy, targeting tumour cells, anti-angiogenesis and immunotherapy, have created novel tools that may be of therapeutic value. To date, gene therapy trials have not yet demonstrated clinical efficacy because of inherent defects in vector design. Despite this, advances in adenoviral technology, namely the helper-dependent adenoviral constructs (gutless) and the uncovering of brain parenchymal cells as effective and necessary targets for antitumour benefits of adenoviral-mediated gene transfer, suggest that developments in vector design may be approaching the point of clinical utility. Targeting tumour cells refers to strategies that destroy malignant but spare normal cells. A new assortment of oncolytic viruses have emerged, capable of specific lysis of cancer tissue while sparing normal cells and propagating until they reach the tumour borders. Furthermore, peptides have been transformed into bullets that specifically seek and destroy cancer cells. The concept of tumour angiogenesis has been challenged by new but still very controversial findings that tumour cells themselves may form blood channels. These results may lead to the redirecting of the molecular targets toward anti-angiogenesis in some tumours including glioblastoma multiform. Unfortunately, our knowledge regarding the immunological ignorance of the tumour is still limited. Even so, newly discovered molecules have shed light on novel pathways leading to the escape of the tumour from the immune system. Finally, significant limitations in our current experimental tumour models may soon be overcome by firstly, the development of models of reproducible organ-specific tumours in non-inbred animals and secondly applying genomics to individualize therapy for a particular tumour in a specific patient.

  7. Exercise Improves Physical Function and Mental Health of Brain Cancer Survivors: Two Exploratory Case Studies.

    PubMed

    Levin, Gregory T; Greenwood, Kenneth M; Singh, Favil; Tsoi, Daphne; Newton, Robert U

    2016-06-01

    Background Malignant brain tumors are unpredictable and incurable, with 5-year survival rates less than 30%. The poor prognosis combined with intensive treatment necessitates the inclusion of complementary and supportive therapies that optimize quality of life and reduce treatment-related declines in health. Exercise therapy has been shown to be beneficial in other cancer populations, but no evidence is available for brain cancer survivors. Therefore, we report results from 2 preliminary cases. Methods Two female patients diagnosed with glioblastoma multiforme and oligodendroglioma participated in a structured and supervised 12-week exercise program. The program consisted of two 1-hour resistance and aerobic exercise sessions per week and additional self-managed aerobic sessions. Outcome measures of strength, cardiovascular fitness, and several psychological indicators (depression, anxiety, and quality of life) were recorded at baseline, after 6 weeks and at the conclusion of the intervention. Results Exercise was well tolerated; both participants completed all 24 sessions and the home-based component with no adverse effects. Objective outcome measures displayed positive responses relating to reduced morbidity. Similar positive responses were found for psychological outcomes. Scores on the Hospital Anxiety and Depression Scale showed clinically meaningful improvements in depression and total distress. Conclusion These findings provide initial evidence that, despite the difficulties associated with brain cancer treatment and survivorship, exercise may be safe and beneficial and should be considered in the overall management of patients with brain cancer.

  8. Lactate levels with glioblastoma multiforme

    PubMed Central

    Kahlon, Arunpreet Singh; Alexander, Mariam; Kahlon, Arundeep

    2016-01-01

    A 37-year-old woman with known glioblastoma multiforme was admitted for treatment of new deep vein thrombosis. Anion gap and plasma lactate levels were found to be elevated. Magnetic resonance imaging of the brain showed a stable, advanced glioblastoma multiforme. All causes of lactic acidosis, including infections and medications, were ruled out. Aggressive tumors have been shown to produce lactate levels in minute quantities in their microenvironment, which helps them metastasize and evade immune response and even radiation. PMID:27365883

  9. Environmental effects on molecular biomarkers expression in pancreatic and brain cancer

    NASA Astrophysics Data System (ADS)

    Mensah, Lawrence; Mallidi, Srivalleesha; Massodi, Iqbal; Anbil, Sriram; Mai, Zhiming; Hasan, Tayyaba

    2013-03-01

    A complete understanding of the biological mechanisms regulating devastating disease such as cancer remains elusive. Pancreatic and brain cancers are primary among the cancer types with poor prognosis. Molecular biomarkers have emerged as group of proteins that are preferentially overexpressed in cancers and with a key role in driving disease progression and resistance to chemotherapy. The epidermal growth factor receptor (EGFR), a cell proliferative biomarker is particularly highly expressed in most cancers including brain and pancreatic cancers. The ability of EGFR to sustain prolong cell proliferation is augmented by biomarkers such as Bax, Bcl-XL and Bcl-2, proteins regulating the apoptotic process. To better understand the role and effect of the microenvironment on these biomarkers in pancreatic cancer (PaCa); we analysed two pancreatic tumor lines (AsPc-1 and MiaPaCa-2) in 2D, 3D in-vitro cultures and in orthotopic tumors at different growth stages. We also investigated in patient derived glioblastoma (GBM) tumor cultures, the ability to utilize the EGFR expression to specifically deliver photosensitizer to the cells for photodynamic therapy. Overall, our results suggest that (1) microenvironment changes affect biomarker expression; thereby it is critical to understand these effects prior to designing combination therapies and (2) EGFR expression in tumor cells indeed could serve as a reliable and a robust biomarker that could be used to design targeted and image-guided photodynamic therapy.

  10. The activity of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in the sera of patients with brain cancer.

    PubMed

    Jelski, Wojciech; Laniewska-Dunaj, Magdalena; Orywal, Karolina; Kochanowicz, Jan; Rutkowski, Robert; Szmitkowski, Maciej

    2014-12-01

    Human brain tissue contains various alcohol dehydrogenase (ADH) isoenzymes and possess also aldehyde dehydrogenase (ALDH) activity. In our last experiments we have shown that ADH and ALDH are present also in the brain tumour cells. Moreover the activities of total ADH and class I isoenzymes were significantly higher in cancer tissue than healthy cells. It can suggests that these changes may be reflected by enzyme activity in the serum of patients with brain cancer. Serum samples were taken for routine biochemical investigation from 62 patients suffering from brain cancer (36 glioblastoma, 26 meningioma). For the measurement of the activity of class I and II ADH isoenzymes and ALDH activity, the fluorometric methods were used. The total ADH activity and activity of class III and IV isoenzymes were measured by the photometric method. A statistically significant increase of class I alcohol dehydrogenase isoenzymes was found in the sera of patients with brain cancer. The median activity of this class isoenzyme in the patients group increased about 24 % in the comparison to the control level. The total alcohol dehydrogenase activity was also significantly higher (26 %) among patients with brain tumour than healthy ones. The activities of other tested ADH isoenzymes and total ALDH were unchanged. The increase of the activity of total ADH and class I alcohol dehydrogenase isoenzyme in the sera of patients with brain cancer seems to be caused by the release of this isoenzyme from tumour's cells.

  11. Pharmacological inhibition of lipid droplet formation enhances the effectiveness of curcumin in glioblastoma.

    PubMed

    Zhang, Issan; Cui, Yiming; Amiri, Abdolali; Ding, Yidan; Campbell, Robert E; Maysinger, Dusica

    2016-03-01

    Increased lipid droplet number and fatty acid synthesis allow glioblastoma multiforme, the most common and aggressive type of brain cancer, to withstand accelerated metabolic rates and resist therapeutic treatments. Lipid droplets are postulated to sequester hydrophobic therapeutic agents, thereby reducing drug effectiveness. We hypothesized that the inhibition of lipid droplet accumulation in glioblastoma cells using pyrrolidine-2, a cytoplasmic phospholipase A2 alpha inhibitor, can sensitize cancer cells to the killing effect of curcumin, a promising anticancer agent isolated from the turmeric spice. We observed that curcumin localized in the lipid droplets of human U251N glioblastoma cells. Reduction of lipid droplet number using pyrrolidine-2 drastically enhanced the therapeutic effect of curcumin in both 2D and 3D glioblastoma cell models. The mode of cell death involved was found to be mediated by caspase-3. Comparatively, the current clinical chemotherapeutic standard, temozolomide, was significantly less effective in inducing glioblastoma cell death. Together, our results suggest that the inhibition of lipid droplet accumulation is an effective way to enhance the chemotherapeutic effect of curcumin against glioblastoma multiforme.

  12. Cerebral Blood Flow Changes in Glioblastoma Patients Undergoing Bevacizumab Treatment Are Seen in Both Tumor and Normal Brain

    PubMed Central

    Nagpal, Seema; Hippe, Daniel S; Ravanpay, Ali C; Schmiedeskamp, Heiko; Bammer, Roland; Palagallo, Gerald J; Recht, Lawrence; Zaharchuk, Greg

    2015-01-01

    Bevacizumab (BEV) is increasingly used to treat recurrent glioblastoma (GBM) with some reported improvement in neurocognitive function despite potential neurotoxicities. We examined the effects of BEV on cerebral blood flow (CBF) within recurrent GBM tumor and in the contralateral middle cerebral artery (MCA) territory. Post-chemoradiation patients with histologically confirmed GBM were treated with BEV and underwent routine, serial tumor imaging with additional pseudocontinuous arterial spin labeling (pcASL) following informed consent. Circular regions-of-interest were placed on pcASL images directly over the recurrent tumor and in the contralateral MCA territory. CBF changes before and during BEV treatment were evaluated in tumor and normal tissue. Linear mixed models were used to assess statistical significance. Fifty-three pcASL studies in 18 patients were acquired. Evaluation yielded lower mean tumoral CBF during BEV treatment compared with pre-treatment (45 ± 27 vs. 65 ± 27 ml/100 g/min, p = 0.002), and in the contralateral MCA territory during, compared with pre-BEV treatment (35 ± 8.4 vs. 41 ± 8.4 ml/100 g/min, p = 0.03). The decrease in mean CBF tended to be greater in the tumoral region than in the contralateral MCA, though the difference did not reach statistical significance (31% vs. 13%; p = 0.082). Conclusions BEV administration results in statistically significant global CBF decrease with a potentially preferential decrease in tumor perfusion compared with normal brain tissue. PMID:25923677

  13. Stereotactic Radiosurgery for Glioblastoma.

    PubMed

    Redmond, Kristin J; Mehta, Minesh

    2015-01-01

    Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and one of the most aggressive of all human cancers. GBM tumors are highly infiltrative and relatively resistant to conventional therapies. Aggressive management of GBM using a combination of surgical resection, followed by fractionated radiotherapy and chemotherapy has been shown to improve overall survival; however, GBM tumors recur in the majority of patients and the disease is most often fatal. There is a need to develop new treatment regimens and technological innovations to improve the overall survival of GBM patients. The role of stereotactic radiosurgery (SRS) for the treatment of GBM has been explored and is controversial. SRS utilizes highly precise radiation techniques to allow dose escalation and delivery of ablative radiation doses to the tumor while minimizing dose to the adjacent normal structures. In some studies, SRS with concurrent chemotherapy has shown improved local control with acceptable toxicities in select GBM patients. However, because GBM is a highly infiltrative disease, skeptics argue that local therapies, such as SRS, do not improve overall survival. The purpose of this article is to review the literature regarding SRS in both newly diagnosed and recurrent GBM, to describe SRS techniques, potential eligible SRS candidates, and treatment-related toxicities. In addition, this article will propose promising areas for future research for SRS in the treatment of GBM. PMID:26848407

  14. [Improving the management of rare brain cancers with the POLA network].

    PubMed

    Terziev, Robert; Ravin, Mylène; Carpentier, Catherine; Dehais, Caroline

    2014-04-01

    The national POLA network is dedicated to the management of certain rare brain tumours, mainly anaplastic oligodendrogliomas, anaplastic oligoastrocytomas and glioblastomas with oligodendroglioma component. The nursing team and the patient are at the heart of the organisation.

  15. Some Attenuated Variants of Vesicular Stomatitis Virus Show Enhanced Oncolytic Activity against Human Glioblastoma Cells relative to Normal Brain Cells▿

    PubMed Central

    Wollmann, Guido; Rogulin, Vitaliy; Simon, Ian; Rose, John K.; van den Pol, Anthony N.

    2010-01-01

    Vesicular stomatitis virus (VSV) has been shown in laboratory studies to be effective against a variety of tumors, including malignant brain tumors. However, attenuation of VSV may be necessary to balance the potential toxicity toward normal cells, particularly when targeting brain tumors. Here we compared 10 recombinant VSV variants resulting from different attenuation strategies. Attenuations included gene shifting (VSV-p1-GFP/RFP), M protein mutation (VSV-M51), G protein cytoplasmic tail truncations (VSV-CT1/CT9), G protein deletions (VSV-dG-GFP/RFP), and combinations thereof (VSV-CT9-M51). Using in vitro viability and replication assays, the VSV variants were grouped into three categories, based on their antitumor activity and non-tumor-cell attenuation. In the first group, wild-type-based VSV-G/GFP, tumor-adapted VSV-rp30, and VSV-CT9 showed a strong antitumor profile but also retained some toxicity toward noncancer control cells. The second group, VSV-CT1, VSV-dG-GFP, and VSV-dG-RFP, had significantly diminished toxicity toward normal cells but showed little oncolytic action. The third group displayed a desired combination of diminished general toxicity and effective antitumor action; this group included VSV-M51, VSV-CT9-M51, VSV-p1-GFP, and VSV-p1-RFP. A member of the last group, VSV-p1-GFP, was then compared in vivo against wild-type-based VSV-G/GFP. Intranasal inoculation of young, postnatal day 16 mice with VSV-p1-GFP showed no adverse neurological effects, whereas VSV-G/GFP was associated with high lethality (80%). Using an intracranial tumor xenograft model, we further demonstrated that attenuated VSV-p1-GFP targets and kills human U87 glioblastoma cells after systemic application. We concluded that some, but not all, attenuated VSV mutants display a favorable oncolytic profile and merit further investigation. PMID:19906910

  16. Proliferation and enrichment of CD133(+) glioblastoma cancer stem cells on 3D chitosan-alginate scaffolds.

    PubMed

    Kievit, Forrest M; Florczyk, Stephen J; Leung, Matthew C; Wang, Kui; Wu, Jennifer D; Silber, John R; Ellenbogen, Richard G; Lee, Jerry S H; Zhang, Miqin

    2014-11-01

    Emerging evidence implicates cancer stem cells (CSCs) as primary determinants of the clinical behavior of human cancers, representing an ideal target for next-generation anti-cancer therapies. However CSCs are difficult to propagate in vitro, severely limiting the study of CSC biology and drug development. Here we report that growing cells from glioblastoma (GBM) cell lines on three dimensional (3D) porous chitosan-alginate (CA) scaffolds dramatically promotes the proliferation and enrichment of cells possessing the hallmarks of CSCs. CA scaffold-grown cells were found more tumorigenic in nude mouse xenografts than cells grown from monolayers. Growing in CA scaffolds rapidly promoted expression of genes involved in the epithelial-to-mesenchymal transition that has been implicated in the genesis of CSCs. Our results indicate that CA scaffolds have utility as a simple and inexpensive means to cultivate CSCs in vitro in support of studies to understand CSC biology and develop more effective anti-cancer therapies.

  17. A paired comparison between glioblastoma "stem cells" and differentiated cells.

    PubMed

    Schneider, Matthias; Ströbele, Stephanie; Nonnenmacher, Lisa; Siegelin, Markus D; Tepper, Melanie; Stroh, Sebastien; Hasslacher, Sebastian; Enzenmüller, Stefanie; Strauss, Gudrun; Baumann, Bernd; Karpel-Massler, Georg; Westhoff, Mike-Andrew; Debatin, Klaus-Michael; Halatsch, Marc-Eric

    2016-04-01

    Cancer stem cells (CSC) have been postulated to be responsible for the key features of a malignancy and its maintenances, as well as therapy resistance, while differentiated cells are believed to make up the rapidly growing tumour bulk. It is therefore important to understand the characteristics of those two distinct cell populations in order to devise treatment strategies which effectively target both cohorts, in particular with respect to cancers, such as glioblastoma. Glioblastoma is the most common primary brain tumour in adults, with a mean patient survival of 12-15 months. Importantly, therapeutic improvements have not been forthcoming in the last decade. In this study we compare key features of three pairs of glioblastoma cell populations, each pair consisting of stem cell-like and differentiated cells derived from an individual patient. Our data suggest that while growth rates and expression of key survival- and apoptosis-mediating proteins are more similar according to differentiation status than genetic similarity, we found no intrinsic differences in response to standard therapeutic interventions, namely exposure to radiation or the alkylating agent temozolomide. Interestingly, we could demonstrate that both stem cell-like and differentiated cells possess the ability to form stem cell-containing tumours in immunocompromised mice and that differentiated cells could potentially be dedifferentiated to potential stem cells. Taken together our data suggest that the differences between tumour stem cell and differentiated cell are particular fluent in glioblastoma. PMID:26519239

  18. Targeting ROR1 inhibits the self-renewal and invasive ability of glioblastoma stem cells.

    PubMed

    Jung, Eun-Hwa; Lee, Han-Na; Han, Gi-Yeon; Kim, Min-Jung; Kim, Chan-Wha

    2016-04-01

    Glioblastoma is the most malignant of brain tumours and is difficult to cure because of interruption of drug delivery by the blood-brain barrier system, its high metastatic capacity and the existence of cancer stem cells (CSCs). Although CSCs are present as a small population in malignant tumours, CSCs have been studied as they are responsible for causing recurrence, metastasis and resistance to chemotherapy and radiotherapy for cancer. CSCs have self-renewal characteristics like normal stem cells. The aim of this study was to investigate whether receptor tyrosine kinase-like orphan receptor 1 (ROR1) is involved in stem cell maintenance and malignant properties in human glioblastoma. Knockdown of ROR1 caused reduction of stemness and sphere formation capacity. Moreover, down-regulation of ROR1 suppressed the expression of epithelial-mesenchymal transition-related genes and the tumour migratory and invasive abilities. The results of this study indicate that targeting ROR1 can induce differentiation of CSCs and inhibit metastasis in glioblastoma. In addition, ROR1 may be used as a potential marker for glioblastoma stem cells as well as a potential target for glioblastoma stem cell therapy. PMID:26923195

  19. CDK4/6 Inhibitor PD0332991 in Glioblastoma Treatment: Does It Have a Future?

    PubMed Central

    Schröder, Lisette B. W.; McDonald, Kerrie L.

    2015-01-01

    Glioblastoma is aggressive, highly infiltrating, and the most frequent malignant form of brain cancer. With a median survival time of only 14.6 months, when treated with the standard of care, it is essential to find new therapeutic options. A specific CDK4/6 inhibitor, PD0332991, obtained accelerated approval from the Food and Drug Administration for the treatment of patients with advanced estrogen receptor-positive and HER2-negative breast cancer. Common alterations in the cyclin D1-cyclin-dependent kinase 4/6-retinoblastoma 1 pathway in glioblastoma make PD0332991 also an interesting drug for the treatment of glioblastoma. Promising results in in vitro studies, where patient derived glioblastoma cell lines showed sensitivity to PD0332991, gave motive to start in vivo studies. Outcomes of these studies have been contrasting in terms of PD0332991 efficacy within the brain: more research is necessary to conclude whether CDK4/6 inhibitor can be beneficial in the treatment of glioblastoma. PMID:26649278

  20. Systemic approaches identify a garlic-derived chemical, Z-ajoene, as a glioblastoma multiforme cancer stem cell-specific targeting agent.

    PubMed

    Jung, Yuchae; Park, Heejoo; Zhao, Hui-Yuan; Jeon, Raok; Ryu, Jae-Ha; Kim, Woo-Young

    2014-07-01

    Glioblastoma multiforme (GBM) is one of the most common brain malignancies and has a very poor prognosis. Recent evidence suggests that the presence of cancer stem cells (CSC) in GBM and the rare CSC subpopulation that is resistant to chemotherapy may be responsible for the treatment failure and unfavorable prognosis of GBM. A garlic-derived compound, Z-ajoene, has shown a range of biological activities, including anti-proliferative effects on several cancers. Here, we demonstrated for the first time that Z-ajoene specifically inhibits the growth of the GBM CSC population. CSC sphere-forming inhibition was achieved at a concentration that did not exhibit a cytotoxic effect in regular cell culture conditions. The specificity of this inhibitory effect on the CSC population was confirmed by detecting CSC cell surface marker CD133 expression and biochemical marker ALDH activity. In addition, stem cell-related mRNA profiling and real-time PCR revealed the differential expression of CSC-specific genes, including Notch, Wnt, and Hedgehog, upon treatment with Z-ajoene. A proteomic approach, i.e., reverse-phase protein array (RPPA) and Western blot analysis, showed decreased SMAD4, p-AKT, 14.3.3 and FOXO3A expression. The protein interaction map (http://string-db.org/) of the identified molecules suggested that the AKT, ERK/p38 and TGFβ signaling pathways are key mediators of Z-ajoene's action, which affects the transcriptional network that includes FOXO3A. These biological and bioinformatic analyses collectively demonstrate that Z-ajoene is a potential candidate for the treatment of GBM by specifically targeting GBM CSCs. We also show how this systemic approach strengthens the identification of new therapeutic agents that target CSCs.

  1. Systemic Approaches Identify a Garlic-Derived Chemical, Z-ajoene, as a Glioblastoma Multiforme Cancer Stem Cell-Specific Targeting Agent

    PubMed Central

    Jung, Yuchae; Park, Heejoo; Zhao, Hui-Yuan; Jeon, Raok; Ryu, Jae-Ha; Kim, Woo-Young

    2014-01-01

    Glioblastoma multiforme (GBM) is one of the most common brain malignancies and has a very poor prognosis. Recent evidence suggests that the presence of cancer stem cells (CSC) in GBM and the rare CSC subpopulation that is resistant to chemotherapy may be responsible for the treatment failure and unfavorable prognosis of GBM. A garlic-derived compound, Z-ajoene, has shown a range of biological activities, including anti-proliferative effects on several cancers. Here, we demonstrated for the first time that Z-ajoene specifically inhibits the growth of the GBM CSC population. CSC sphere-forming inhibition was achieved at a concentration that did not exhibit a cytotoxic effect in regular cell culture conditions. The specificity of this inhibitory effect on the CSC population was confirmed by detecting CSC cell surface marker CD133 expression and biochemical marker ALDH activity. In addition, stem cell-related mRNA profiling and real-time PCR revealed the differential expression of CSC-specific genes, including Notch, Wnt, and Hedgehog, upon treatment with Z-ajoene. A proteomic approach, i.e., reverse-phase protein array (RPPA) and Western blot analysis, showed decreased SMAD4, p-AKT, 14.3.3 and FOXO3A expression. The protein interaction map (http://string-db.org/) of the identified molecules suggested that the AKT, ERK/p38 and TGFβ signaling pathways are key mediators of Z–ajoene’s action, which affects the transcriptional network that includes FOXO3A. These biological and bioinformatic analyses collectively demonstrate that Z-ajoene is a potential candidate for the treatment of GBM by specifically targeting GBM CSCs. We also show how this systemic approach strengthens the identification of new therapeutic agents that target CSCs. PMID:25078449

  2. Ketoprofen-loaded polymeric nanocapsules selectively inhibit cancer cell growth in vitro and in preclinical model of glioblastoma multiforme.

    PubMed

    da Silveira, Elita F; Chassot, Janaine M; Teixeira, Fernanda C; Azambuja, Juliana H; Debom, Gabriela; Beira, Fátima T; Del Pino, Francisco A B; Lourenço, Adriana; Horn, Ana P; Cruz, Letícia; Spanevello, Roselia M; Braganhol, Elizandra

    2013-12-01

    Glioblastoma multiforme (GBM) is the worst and most common brain tumor, characterized by high proliferation and invasion rates. Nanoparticles of biodegradable polymers for anticancer drug delivery have attracted interest in recent years since they provide targeted delivery and may overcame the obstacle imposed by blood-brain barrier. Here we investigated the antitumoral effect of ketoprofen-loaded nanocapsules (Keto-NC) treatment on in vitro and in vivo glioma progression. We observed that Keto-NC treatment decreased selectively the cell viability of a panel of glioma cell lines, while did not exhibited toxicity to astrocytes. We further demonstrate that the treatment with sub-therapeutic dose of Keto-NC reduced the in vivo glioma growth as well as reduced the malignity characteristics of implanted tumors. Keto-NC treatment improved the weight, the locomotion/exploration behavior of glioma-bearing rats. Importantly, Keto-NC treatment neither induced mortality or peripheral damage. Finally, Ketoprofen also altered the extracellular nucleotide metabolism of peripheral lymphocytes, suggesting that antiinflammatory effects of ketoprofen could also be associated with the modulation of the adenine nucleotide metabolism in lymphocytes. Data indicate at first time the potential of Keto-NC as a promising therapeutic alterative to GBM treatment.

  3. Targeting Oncogenic ALK and MET: A Promising Therapeutic Strategy for Glioblastoma

    PubMed Central

    Wallace, Gerald C; Dixon-Mah, Yaenette N; Vandergrift, W Alex; Ray, Swapan K; Haar, Catherine P; Mittendorf, Amber M; Patel, Sunil J; Banik, Naren L; Giglio, Pierre; Das, Arabinda

    2015-01-01

    Glioblastoma is the most common aggressive, highly glycolytic, and lethal brain tumor. In fact, it is among the most commonly diagnosed lethal malignancies, with thousands of new cases reported in the United States each year. Glioblastoma's lethality is derived from a number of factors including highly active pro-mitotic and pro-metastatic pathways. Two factors increasingly associated with the intracellular signaling and transcriptional machinery required for such changes are anaplastic lymphoma kinase (ALK) and the hepatocyte growth factor receptor (HGFR or, more commonly MET). Both receptors are members of the receptor tyrosine kinase (RTK) family, which has itself gained much attention for its role in modulating mitosis, migration, and survival in cancer cells. ALK was first described as a vital oncogene in lymphoma studies, but it has since been connected to many carcinomas, including non-small cell lung cancer and glioblastoma. As the receptor for HGF, MET has also been highly characterized and regulates numerous developmental and wound healing events which, when upregulated in cancer, can promote tumor progression. The wealth of information gathered over the last 30 years regarding these RTKs suggests three downstream cascades that depend upon activation of STAT3, Ras, and AKT. This review outlines the significance of ALK and MET as they relate to glioblastoma, explores the significance of STAT3, Ras, and AKT downstream of ALK/MET, and touches on the potential for new chemotherapeutics targeting ALK and MET to improve glioblastoma patient prognosis. PMID:23543207

  4. Phase II Etirinotecan Pegol in Refractory Brain Metastases & Advanced Lung Cancer / Metastatic Breast Cancer

    ClinicalTrials.gov

    2016-04-18

    Extensive Stage Small Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Tumors Metastatic to Brain; Metastatic Breast Cancer

  5. Microarray Analysis in Glioblastomas

    PubMed Central

    Bhawe, Kaumudi M.; Aghi, Manish K.

    2016-01-01

    Microarray analysis in glioblastomas is done using either cell lines or patient samples as starting material. A survey of the current literature points to transcript-based microarrays and immunohistochemistry (IHC)-based tissue microarrays as being the preferred methods of choice in cancers of neurological origin. Microarray analysis may be carried out for various purposes including the following: To correlate gene expression signatures of glioblastoma cell lines or tumors with response to chemotherapy (DeLay et al., Clin Cancer Res 18(10):2930–2942, 2012)To correlate gene expression patterns with biological features like proliferation or invasiveness of the glioblastoma cells (Jiang et al., PLoS One 8(6):e66008, 2013)To discover new tumor classificatory systems based on gene expression signature, and to correlate therapeutic response and prognosis with these signatures (Huse et al., Annu Rev Med 64(1):59–70, 2013; Verhaak et al., Cancer Cell 17(1):98–110, 2010) While investigators can sometimes use archived tumor gene expression data available from repositories such as the NCBI Gene Expression Omnibus to answer their questions, new arrays must often be run to adequately answer specific questions. Here, we provide a detailed description of microarray methodologies, how to select the appropriate methodology for a given question, and analytical strategies that can be used. Experimental methodology for protein microarrays is outside the scope of this chapter, but basic sample preparation techniques for transcript-based microarrays are included here. PMID:26113463

  6. Microarray Analysis in Glioblastomas.

    PubMed

    Bhawe, Kaumudi M; Aghi, Manish K

    2016-01-01

    Microarray analysis in glioblastomas is done using either cell lines or patient samples as starting material. A survey of the current literature points to transcript-based microarrays and immunohistochemistry (IHC)-based tissue microarrays as being the preferred methods of choice in cancers of neurological origin. Microarray analysis may be carried out for various purposes including the following: i. To correlate gene expression signatures of glioblastoma cell lines or tumors with response to chemotherapy (DeLay et al., Clin Cancer Res 18(10):2930-2942, 2012). ii. To correlate gene expression patterns with biological features like proliferation or invasiveness of the glioblastoma cells (Jiang et al., PLoS One 8(6):e66008, 2013). iii. To discover new tumor classificatory systems based on gene expression signature, and to correlate therapeutic response and prognosis with these signatures (Huse et al., Annu Rev Med 64(1):59-70, 2013; Verhaak et al., Cancer Cell 17(1):98-110, 2010). While investigators can sometimes use archived tumor gene expression data available from repositories such as the NCBI Gene Expression Omnibus to answer their questions, new arrays must often be run to adequately answer specific questions. Here, we provide a detailed description of microarray methodologies, how to select the appropriate methodology for a given question, and analytical strategies that can be used. Experimental methodology for protein microarrays is outside the scope of this chapter, but basic sample preparation techniques for transcript-based microarrays are included here. PMID:26113463

  7. Decoding brain cancer dynamics: a quantitative histogram-based approach using temporal MRI

    NASA Astrophysics Data System (ADS)

    Zhou, Mu; Hall, Lawrence O.; Goldgof, Dmitry B.; Russo, Robin; Gillies, Robert J.; Gatenby, Robert A.

    2015-03-01

    Brain tumor heterogeneity remains a challenge for probing brain cancer evolutionary dynamics. In light of evolution, it is a priority to inspect the cancer system from a time-domain perspective since it explicitly tracks the dynamics of cancer variations. In this paper, we study the problem of exploring brain tumor heterogeneity from temporal clinical magnetic resonance imaging (MRI) data. Our goal is to discover evidence-based knowledge from such temporal imaging data, where multiple clinical MRI scans from Glioblastoma multiforme (GBM) patients are generated during therapy. In particular, we propose a quantitative histogram-based approach that builds a prediction model to measure the difference in histograms obtained from pre- and post-treatment. The study could significantly assist radiologists by providing a metric to identify distinctive patterns within each tumor, which is crucial for the goal of providing patient-specific treatments. We examine the proposed approach for a practical application - clinical survival group prediction. Experimental results show that our approach achieved 90.91% accuracy.

  8. Elucidating the cancer-specific genetic alteration spectrum of glioblastoma derived cell lines from whole exome and RNA sequencing.

    PubMed

    Patil, Vikas; Pal, Jagriti; Somasundaram, Kumaravel

    2015-12-22

    Cell lines derived from tumor tissues have been used as a valuable system to study gene regulation and cancer development. Comprehensive characterization of the genetic background of cell lines could provide clues on novel genes responsible for carcinogenesis and help in choosing cell lines for particular studies. Here, we have carried out whole exome and RNA sequencing of commonly used glioblastoma (GBM) cell lines (U87, T98G, LN229, U343, U373 and LN18) to unearth single nucleotide variations (SNVs), indels, differential gene expression, gene fusions and RNA editing events. We obtained an average of 41,071 SNVs out of which 1,594 (3.88%) were potentially cancer-specific. The cell lines showed frequent SNVs and indels in some of the genes that are known to be altered in GBM- EGFR, TP53, PTEN, SPTA1 and NF1. Chromatin modifying genes- ATRX, MLL3, MLL4, SETD2 and SRCAP also showed alterations. While no cell line carried IDH1 mutations, five cell lines showed hTERT promoter activating mutations with a concomitant increase in hTERT transcript levels. Five significant gene fusions were found of which NUP93-CYB5B was validated. An average of 18,949 RNA editing events was also obtained. Thus we have generated a comprehensive catalogue of genetic alterations for six GBM cell lines. PMID:26496030

  9. Evaluation of the cytotoxic activity of Hypericum spp. on human glioblastoma A1235 and breast cancer MDA MB-231 cells.

    PubMed

    Madunić, Josip; Matulić, Maja; Friščić, Maja; Pilepić, Kroata Hazler

    2016-11-01

    Cytotoxic activity of 16 Hypericum ethanolic extracts was evaluated by MTT assay on two human cancer cell lines: glioblastoma A1235 and breast cancer MDA MB-231. Morphology and the type of induced cell death were determined using light and fluorescence microscopy. The majority of Hypericum extracts had no significant cytotoxic effect on MDA MB-231 cells. Eight extracts exhibited mild cytotoxic effect on A1235 cells after 24 h incubation, ranging from 8.0% (H. patulum) to 21.7% (H. oblongifolium). After 72 h of treatment, the strongest inhibition of A1235 viability was observed for extracts of H. androsaemum (26.4-43.9%), H. balearicum (25.8-36.3%), H. delphicum (14.8-27.4%) and H. densiflorum (11.2-24.1%). Micro-scopic examination of cells showed apoptosis as the dominant type of cell death. Due to observed high viability of treated cells, we propose that cytotoxic effects of Hypericum extracts could be related to alternations/interruptions in the cell cycle.

  10. Phase I/II study of sorafenib in combination with temsirolimus for recurrent glioblastoma or gliosarcoma: North American Brain Tumor Consortium study 05-02

    PubMed Central

    Lee, Eudocia Q.; Kuhn, John; Lamborn, Kathleen R.; Abrey, Lauren; DeAngelis, Lisa M.; Lieberman, Frank; Robins, H. Ian; Chang, Susan M.; Yung, W. K. Alfred; Drappatz, Jan; Mehta, Minesh P.; Levin, Victor A.; Aldape, Kenneth; Dancey, Janet E.; Wright, John J.; Prados, Michael D.; Cloughesy, Timothy F.; Gilbert, Mark R.; Wen, Patrick Y.

    2012-01-01

    The activity of single-agent targeted molecular therapies in glioblastoma has been limited to date. The North American Brain Tumor Consortium examined the safety, pharmacokinetics, and efficacy of combination therapy with sorafenib, a small molecule inhibitor of Raf, vascular endothelial growth factor receptor 2, and platelet-derived growth factor receptor–β, and temsirolimus (CCI-779), an inhibitor of mammalian target of rapamycin. This was a phase I/II study. The phase I component used a standard 3 × 3 dose escalation scheme to determine the safety and tolerability of this combination therapy. The phase II component used a 2-stage design; the primary endpoint was 6-month progression-free survival (PFS6) rate. Thirteen patients enrolled in the phase I component. The maximum tolerated dosage (MTD) for combination therapy was sorafenib 800 mg daily and temsirolimus 25 mg once weekly. At the MTD, grade 3 thrombocytopenia was the dose-limiting toxicity. Eighteen patients were treated in the phase II component. At interim analysis, the study was terminated and did not proceed to the second stage. No patients remained progression free at 6 months. Median PFS was 8 weeks. The toxicity of this combination therapy resulted in a maximum tolerated dose of temsirolimus that was only one-tenth of the single-agent dose. Minimal activity in recurrent glioblastoma multiforme was seen at the MTD of the 2 combined agents. PMID:23099651

  11. Phase I/II study of sorafenib in combination with temsirolimus for recurrent glioblastoma or gliosarcoma: North American Brain Tumor Consortium study 05-02.

    PubMed

    Lee, Eudocia Q; Kuhn, John; Lamborn, Kathleen R; Abrey, Lauren; DeAngelis, Lisa M; Lieberman, Frank; Robins, H Ian; Chang, Susan M; Yung, W K Alfred; Drappatz, Jan; Mehta, Minesh P; Levin, Victor A; Aldape, Kenneth; Dancey, Janet E; Wright, John J; Prados, Michael D; Cloughesy, Timothy F; Gilbert, Mark R; Wen, Patrick Y

    2012-12-01

    The activity of single-agent targeted molecular therapies in glioblastoma has been limited to date. The North American Brain Tumor Consortium examined the safety, pharmacokinetics, and efficacy of combination therapy with sorafenib, a small molecule inhibitor of Raf, vascular endothelial growth factor receptor 2, and platelet-derived growth factor receptor-β, and temsirolimus (CCI-779), an inhibitor of mammalian target of rapamycin. This was a phase I/II study. The phase I component used a standard 3 × 3 dose escalation scheme to determine the safety and tolerability of this combination therapy. The phase II component used a 2-stage design; the primary endpoint was 6-month progression-free survival (PFS6) rate. Thirteen patients enrolled in the phase I component. The maximum tolerated dosage (MTD) for combination therapy was sorafenib 800 mg daily and temsirolimus 25 mg once weekly. At the MTD, grade 3 thrombocytopenia was the dose-limiting toxicity. Eighteen patients were treated in the phase II component. At interim analysis, the study was terminated and did not proceed to the second stage. No patients remained progression free at 6 months. Median PFS was 8 weeks. The toxicity of this combination therapy resulted in a maximum tolerated dose of temsirolimus that was only one-tenth of the single-agent dose. Minimal activity in recurrent glioblastoma multiforme was seen at the MTD of the 2 combined agents.

  12. Relaxation-compensated CEST-MRI of the human brain at 7T: Unbiased insight into NOE and amide signal changes in human glioblastoma.

    PubMed

    Zaiss, Moritz; Windschuh, Johannes; Paech, Daniel; Meissner, Jan-Eric; Burth, Sina; Schmitt, Benjamin; Kickingereder, Philip; Wiestler, Benedikt; Wick, Wolfgang; Bendszus, Martin; Schlemmer, Heinz-Peter; Ladd, Mark E; Bachert, Peter; Radbruch, Alexander

    2015-05-15

    Endogenous chemical exchange saturation transfer (CEST) effects of protons resonating near to water protons are always diluted by competing effects such as direct water saturation and semi-solid magnetization transfer (MT). This leads to unwanted T2 and MT signal contributions that contaminate the observed CEST signal. Furthermore, all CEST effects appear to be scaled by the T1 relaxation time of the mediating water pool. As MT, T1 and T2 are also altered in tumor regions, a recently published correction algorithm yielding the apparent exchange-dependent relaxation AREX, is used to evaluate in vivo CEST effects. This study focuses on CEST effects of amides (3.5ppm) and Nuclear-Overhauser-mediated saturation transfer (NOE, -3.5ppm) that can be properly isolated at 7T. These were obtained in 10 glioblastoma patients, and this is the first comprehensive study where AREX is applied in human brain as well as in human glioblastoma. The correction of CEST effects alters the contrast significantly: after correction, the CEST effect of amides does not show significant contrast between contrast enhancing tumor regions and normal tissue, whereas NOE drops significantly in the tumor area. In addition, new features in the AREX contrasts are visible. This suggests that previous CEST approaches might not have shown pure CEST effects, but rather water relaxation shine-through effects. Our insights help to improve understanding of the CEST effect changes in tumors and correlations on a cellular and molecular level. PMID:25727379

  13. Effects of Flavonoids from Food and Dietary Supplements on Glial and Glioblastoma Multiforme Cells.

    PubMed

    Vidak, Marko; Rozman, Damjana; Komel, Radovan

    2015-10-23

    Quercetin, catechins and proanthocyanidins are flavonoids that are prominently featured in foodstuffs and dietary supplements, and may possess anti-carcinogenic activity. Glioblastoma multiforme is the most dangerous form of glioma, a malignancy of the brain connective tissue. This review assesses molecular structures of these flavonoids, their importance as components of diet and dietary supplements, their bioavailability and ability to cross the blood-brain barrier, their reported beneficial health effects, and their effects on non-malignant glial as well as glioblastoma tumor cells. The reviewed flavonoids appear to protect glial cells via reduction of oxidative stress, while some also attenuate glutamate-induced excitotoxicity and reduce neuroinflammation. Most of the reviewed flavonoids inhibit proliferation of glioblastoma cells and induce their death. Moreover, some of them inhibit pro-oncogene signaling pathways and intensify the effect of conventional anti-cancer therapies. However, most of these anti-glioblastoma effects have only been observed in vitro or in animal models. Due to limited ability of the reviewed flavonoids to access the brain, their normal dietary intake is likely insufficient to produce significant anti-cancer effects in this organ, and supplementation is needed.

  14. Targeting cancer stem cells in glioblastoma multiforme using mTOR inhibitors and the differentiating agent all-trans retinoic acid.

    PubMed

    Friedman, Marissa D; Jeevan, Dhruve S; Tobias, Michael; Murali, Raj; Jhanwar-Uniyal, Meena

    2013-10-01

    Glioblastoma multiforme (GBM), the most aggressive primary brain tumor, portends a poor prognosis despite current treatment modalities. Recurrence of tumor growth is attributed to the presence of treatment-resistant cancer stem cells (CSCs). The targeting of these CSCs is therefore essential in the treatment of this disease. Mechanistic target of rapamycin (mTOR) forms two multiprotein complexes, mTORC1 and mTORC2, which regulate proliferation and migration, respectively. Aberrant function of mTOR has been shown to be present in GBM CSCs. All-trans retinoic acid (ATRA), a derivative of retinol, causes differentiation of CSCs as well as normal neural progenitor cells. The purpose of this investigation was to delineate the role of mTOR in CSC maintenance, and to establish the mechanism of targeting GBM CSCs using differentiating agents along with inhibitors of the mTOR pathways. The results demonstrated that ATRA caused differentiation of CSCs, as demonstrated by the loss of the stem cell marker Nestin. These observations were confirmed by western blotting, which demonstrated a time-dependent decrease in Nestin expression following ATRA treatment. This effect occurred despite combination with mTOR (rapamycin), PI3K (LY294002) and MEK1/2 (U0126) inhibitors. Expression of activated extracellular signal-regulated kinase 1/2 (pERK1/2) was enhanced following treatment with ATRA, independent of mTOR pathway inhibitors. Proliferation of CSCs, determined by neurosphere diameter, was decreased following treatment with ATRA alone and in combination with rapamycin. The motility of GBM cells was mitigated by treatment with ATRA, rapamycin and LY29002 alone. However, combination treatment augmented the inhibitory effect on migration suggesting synergism. These findings indicate that ATRA-induced differentiation is mediated via the ERK1/2 pathway, and underscores the significance of including differentiating agents along with inhibitors of mTOR pathways in the treatment of GBM.

  15. PINK1 Is a Negative Regulator of Growth and the Warburg Effect in Glioblastoma.

    PubMed

    Agnihotri, Sameer; Golbourn, Brian; Huang, Xi; Remke, Marc; Younger, Susan; Cairns, Rob A; Chalil, Alan; Smith, Christian A; Krumholtz, Stacey-Lynn; Mackenzie, Danielle; Rakopoulos, Patricia; Ramaswamy, Vijay; Taccone, Michael S; Mischel, Paul S; Fuller, Gregory N; Hawkins, Cynthia; Stanford, William L; Taylor, Michael D; Zadeh, Gelareh; Rutka, James T

    2016-08-15

    Proliferating cancer cells are characterized by high rates of glycolysis, lactate production, and altered mitochondrial metabolism. This metabolic reprogramming provides important metabolites for proliferation of tumor cells, including glioblastoma. These biological processes, however, generate oxidative stress that must be balanced through detoxification of reactive oxygen species (ROS). Using an unbiased retroviral loss-of-function screen in nontransformed human astrocytes, we demonstrate that mitochondrial PTEN-induced kinase 1 (PINK1) is a regulator of the Warburg effect and negative regulator of glioblastoma growth. We report that loss of PINK1 contributes to the Warburg effect through ROS-dependent stabilization of hypoxia-inducible factor-1A and reduced pyruvate kinase muscle isozyme 2 activity, both key regulators of aerobic glycolysis. Mechanistically, PINK1 suppresses ROS and tumor growth through FOXO3a, a master regulator of oxidative stress and superoxide dismutase 2. These findings highlight the importance of PINK1 and ROS balance in normal and tumor cells. PINK1 loss was observed in a significant number of human brain tumors including glioblastoma (n > 900) and correlated with poor patient survival. PINK1 overexpression attenuates in vivo glioblastoma growth in orthotopic mouse xenograft models and a transgenic glioblastoma model in Drosophila Cancer Res; 76(16); 4708-19. ©2016 AACR. PMID:27325644

  16. Proscillaridin A is cytotoxic for glioblastoma cell lines and controls tumor xenograft growth in vivo

    PubMed Central

    Tchoghandjian, Aurélie; Carré, Manon; Colin, Carole; Jiglaire, Carine Jiguet; Mercurio, Sandy; Beclin, Christophe; Figarella-Branger, Dominique

    2014-01-01

    Glioblastoma is the most frequent primary brain tumor in adults. Because of molecular and cellular heterogeneity, high proliferation rate and significant invasive ability, prognosis of patients is poor. Recent therapeutic advances increased median overall survival but tumor recurrence remains inevitable. In this context, we used a high throughput screening approach to bring out novel compounds with anti-proliferative and anti-migratory properties for glioblastoma treatment. Screening of the Prestwick chemical library® of 1120 molecules identified proscillaridin A, a cardiac glycoside inhibitor of the Na+/K+ ATPase pump, with most significant effects on glioblastoma cell lines. In vitro effects of proscillaridin A were evaluated on GBM6 and GBM9 stem-like cell lines and on U87-MG and U251-MG cell lines. We showed that proscillaridin A displayed cytotoxic properties, triggered cell death, induced G2/M phase blockade in all the glioblastoma cell lines and impaired GBM stem self-renewal capacity even at low concentrations. Heterotopic and orthotopic xenotransplantations were used to confirm in vivo anticancer effects of proscillaridin A that both controls xenograft growth and improves mice survival. Altogether, results suggest that proscillaridin A is a promising candidate as cancer therapies in glioblastoma. This sustains previous reports showing that cardiac glycosides act as anticancer drugs in other cancers. PMID:25400117

  17. Proscillaridin A is cytotoxic for glioblastoma cell lines and controls tumor xenograft growth in vivo.

    PubMed

    Denicolaï, Emilie; Baeza-Kallee, Nathalie; Tchoghandjian, Aurélie; Carré, Manon; Colin, Carole; Jiglaire, Carine Jiguet; Mercurio, Sandy; Beclin, Christophe; Figarella-Branger, Dominique

    2014-11-15

    Glioblastoma is the most frequent primary brain tumor in adults. Because of molecular and cellular heterogeneity, high proliferation rate and significant invasive ability, prognosis of patients is poor. Recent therapeutic advances increased median overall survival but tumor recurrence remains inevitable. In this context, we used a high throughput screening approach to bring out novel compounds with anti-proliferative and anti-migratory properties for glioblastoma treatment. Screening of the Prestwick chemical library® of 1120 molecules identified proscillaridin A, a cardiac glycoside inhibitor of the Na(+)/K(+) ATPase pump, with most significant effects on glioblastoma cell lines. In vitro effects of proscillaridin A were evaluated on GBM6 and GBM9 stem-like cell lines and on U87-MG and U251-MG cell lines. We showed that proscillaridin A displayed cytotoxic properties, triggered cell death, induced G2/M phase blockade in all the glioblastoma cell lines and impaired GBM stem self-renewal capacity even at low concentrations. Heterotopic and orthotopic xenotransplantations were used to confirm in vivo anticancer effects of proscillaridin A that both controls xenograft growth and improves mice survival. Altogether, results suggest that proscillaridin A is a promising candidate as cancer therapies in glioblastoma. This sustains previous reports showing that cardiac glycosides act as anticancer drugs in other cancers. PMID:25400117

  18. Integrative genome analysis reveals an oncomir/oncogene cluster regulating glioblastoma survivorship.

    PubMed

    Kim, Hyunsoo; Huang, Wei; Jiang, Xiuli; Pennicooke, Brenton; Park, Peter J; Johnson, Mark D

    2010-02-01

    Using a multidimensional genomic data set on glioblastoma from The Cancer Genome Atlas, we identified hsa-miR-26a as a cooperating component of a frequently occurring amplicon that also contains CDK4 and CENTG1, two oncogenes that regulate the RB1 and PI3 kinase/AKT pathways, respectively. By integrating DNA copy number, mRNA, microRNA, and DNA methylation data, we identified functionally relevant targets of miR-26a in glioblastoma, including PTEN, RB1, and MAP3K2/MEKK2. We demonstrate that miR-26a alone can transform cells and it promotes glioblastoma cell growth in vitro and in the mouse brain by decreasing PTEN, RB1, and MAP3K2/MEKK2 protein expression, thereby increasing AKT activation, promoting proliferation, and decreasing c-JUN N-terminal kinase-dependent apoptosis. Overexpression of miR-26a in PTEN-competent and PTEN-deficient glioblastoma cells promoted tumor growth in vivo, and it further increased growth in cells overexpressing CDK4 or CENTG1. Importantly, glioblastoma patients harboring this amplification displayed markedly decreased survival. Thus, hsa-miR-26a, CDK4, and CENTG1 comprise a functionally integrated oncomir/oncogene DNA cluster that promotes aggressiveness in human cancers by cooperatively targeting the RB1, PI3K/AKT, and JNK pathways. PMID:20080666

  19. Narciclasine as well as other Amaryllidaceae isocarbostyrils are promising GTP-ase targeting agents against brain cancers.

    PubMed

    Van Goietsenoven, Gwendoline; Mathieu, Véronique; Lefranc, Florence; Kornienko, Alexander; Evidente, Antonio; Kiss, Robert

    2013-03-01

    The anticancer activity of Amaryllidaceae isocarbostyrils is well documented. At pharmacological concentrations, that is, approximately 1 μM in vitro and approximately 10 mg/kg in vivo, narciclasine displays marked proapoptotic and cytotoxic activity, as does pancratistatin, and significant in vivo anticancer effects in various experimental models, but it is also associated with severe toxic side effects. At physiological doses, that is, approximately 50 nM in vitro and approximately 1 mg/kg in vivo, narciclasine is not cytotoxic but cytostatic and displays marked anticancer activity in vivo in experimental models of brain cancer (including gliomas and brain metastases), but it is not associated with toxic side effects. The cytostatic activity of narciclasine involves the impairment of actin cytoskeleton organization by targeting GTPases, including RhoA and the elongation factor eEF1A. We have demonstrated that chronic treatments of narciclasine (1 mg/kg) significantly increased the survival of immunodeficient mice orthotopically xenografted with highly invasive human glioblastomas and apoptosis-resistant brain metastases, including melanoma- and non-small-cell-lung cancer- (NSCLC) related brain metastases. Thus, narciclasine is a potentially promising agent for the treatment of primary brain cancers and various brain metastases. To date, efforts to develop synthetic analogs with anticancer properties superior to those of narciclasine have failed; thus, research efforts are now focused on narciclasine prodrugs.

  20. Brain metastases from breast cancer during pregnancy

    PubMed Central

    Sharma, Ashish; Nguyen, Ha Son; Lozen, Andrew; Sharma, Abhishiek; Mueller, Wade

    2016-01-01

    Background: Brain metastasis during pregnancy is a rare occurrence. In particular, there have only been three prior cases regarding breast cancer metastasis. We report a patient with breast cancer metastasis to the brain during pregnancy and review the literature. Case Description: The patient was a 35-year-old female with a history of breast cancer (estrogen receptor/progesterone receptor negative, human epidermal growth factor receptor 2/neu positive, status post-neoadjuvant docetaxel/carboplatin/trastuzumab/pertuzumab therapy, status post-bilateral mastectomies), and prior right frontal brain metastases (status post-resection, capecitabine/lapatinib/temozolomide therapy, and cyberknife treatment). Patient was found to be pregnant at 9 weeks’ gestation while on chemotherapy; the patient elected to continue with the pregnancy and chemotherapy was discontinued. At 14 weeks’ gestation, she returned with recurrent right frontal disease. She was taken for a craniotomy at 16 weeks’ gestation, which confirmed metastases. Six weeks later, patient returned with worsening headaches and fatigue, with more recurrent right frontal disease. She was started on decadron and chemotherapy (5-fluorouracil, adriamycin, and cyclophosphamide). Serial magnetic resonance imaging (MRI) demonstrated enlarging right frontal lesions. She underwent a craniotomy at 27 weeks’ gestation, and chemotherapy was discontinued promptly. Starting at 30 weeks’ gestation, she received whole brain radiation for 2 weeks. Subsequently, she delivered a baby girl via cesarean section at 32 weeks’ gestation. At 6 weeks follow-up, an MRI brain demonstrated no new intracranial disease, with stable postoperative findings. Conclusion: There is a lack of guidelines and clinical consensus on medical and surgical treatment for breast cancer metastases in pregnant patients. Treatment usually varies based upon underlying tumor burden, location, gestational age of the fetus, and patient's preference and

  1. Inhibition of Na(+)-K(+)-2Cl(-) cotransporter isoform 1 accelerates temozolomide-mediated apoptosis in glioblastoma cancer cells.

    PubMed

    Algharabil, Jehad; Kintner, Douglas B; Wang, Qiwei; Begum, Gulnaz; Clark, Paul A; Yang, Sung-Sen; Lin, Shih-Hua; Kahle, Kristopher T; Kuo, John S; Sun, Dandan

    2012-01-01

    The hallmark of apoptosis is a significant reduction in cell volume (AVD) resulting from loss of K(+)(i) and Cl(-)(i). Loss of cell volume and lowering of ionic strength of intracellular K(+) and Cl(-) occur before any other detectable characteristics of apoptosis. In the present study, temozolomide (TMZ) triggered loss of K(+)(i) and Cl(-)(i) and AVD in primary glioblastoma multiforme (GBM) cancer cells (GC) and GC cancer stem cells (GSC). We hypothesize that Na(+)-K(+)-2Cl(-) cotransporter isoform 1 (NKCC1) counteracts AVD during apoptosis in GBM cancer cells by regulating cell volume and Cl(-) homeostasis. NKCC1 protein was expressed in both GC and GSC and played an essential role in regulatory volume increase (RVI) in response to hypertonic cell shrinkage and isotonic cell shrinkage. Blocking NKCC1 activity with its potent inhibitor bumetanide abolished RVI. These cells maintained a basal [Cl(-)](i) (~ 68 mM) above the electrochemical equilibrium for Cl(-)(i). NKCC1 also functioned to replenish Cl(-)(i) levels following the loss of Cl(-)(i). TMZ-treated cells exhibited increased phosphorylation of NKCC1 and its up-stream novel Cl(-)/volume-sensitive regulatory kinase WNK1. Inhibition of NKCC1 activity with bumetanide accelerated AVD, early apoptosis, as well as activation of caspase-3 and caspase-8. Taken together, this study strongly suggests that NKCC1 is an essential mechanism in GBM cells to maintain K(+), Cl(-), and volume homeostasis to counteract TMZ-induced loss of K(+), Cl(-) and AVD. Therefore, blocking NKCC1 function augments TMZ-induced apoptosis in glioma cells.

  2. Intraoperative brain cancer detection with Raman spectroscopy in humans.

    PubMed

    Jermyn, Michael; Mok, Kelvin; Mercier, Jeanne; Desroches, Joannie; Pichette, Julien; Saint-Arnaud, Karl; Bernstein, Liane; Guiot, Marie-Christine; Petrecca, Kevin; Leblond, Frederic

    2015-02-11

    Cancers are often impossible to visually distinguish from normal tissue. This is critical for brain cancer where residual invasive cancer cells frequently remain after surgery, leading to disease recurrence and a negative impact on overall survival. No preoperative or intraoperative technology exists to identify all cancer cells that have invaded normal brain. To address this problem, we developed a handheld contact Raman spectroscopy probe technique for live, local detection of cancer cells in the human brain. Using this probe intraoperatively, we were able to accurately differentiate normal brain from dense cancer and normal brain invaded by cancer cells, with a sensitivity of 93% and a specificity of 91%. This Raman-based probe enabled detection of the previously undetectable diffusely invasive brain cancer cells at cellular resolution in patients with grade 2 to 4 gliomas. This intraoperative technology may therefore be able to classify cell populations in real time, making it an ideal guide for surgical resection and decision-making.

  3. Computational systems biology in cancer brain metastasis.

    PubMed

    Peng, Huiming; Tan, Hua; Zhao, Weiling; Jin, Guangxu; Sharma, Sambad; Xing, Fei; Watabe, Kounosuke; Zhou, Xiaobo

    2016-01-01

    Brain metastases occur in 20-40% of patients with advanced malignancies. A better understanding of the mechanism of this disease will help us to identify novel therapeutic strategies. In this review, we will discuss the systems biology approaches used in this area, including bioinformatics and mathematical modeling. Bioinformatics has been used for identifying the molecular mechanisms driving brain metastasis and mathematical modeling methods for analyzing dynamics of a system and predicting optimal therapeutic strategies. We will illustrate the strategies, procedures, and computational techniques used for studying systems biology in cancer brain metastases. We will give examples on how to use a systems biology approach to analyze a complex disease. Some of the approaches used to identify relevant networks, pathways, and possibly biomarkers in metastasis will be reviewed into details. Finally, certain challenges and possible future directions in this area will also be discussed.

  4. Incorporating Cancer Stem Cells in Radiation Therapy Treatment Response Modeling and the Implication in Glioblastoma Multiforme Treatment Resistance

    SciTech Connect

    Yu, Victoria Y.; Nguyen, Dan; Pajonk, Frank; Kupelian, Patrick; Kaprealian, Tania; Selch, Michael; Low, Daniel A.; Sheng, Ke

    2015-03-15

    Purpose: To perform a preliminary exploration with a simplistic mathematical cancer stem cell (CSC) interaction model to determine whether the tumor-intrinsic heterogeneity and dynamic equilibrium between CSCs and differentiated cancer cells (DCCs) can better explain radiation therapy treatment response with a dual-compartment linear-quadratic (DLQ) model. Methods and Materials: The radiosensitivity parameters of CSCs and DCCs for cancer cell lines including glioblastoma multiforme (GBM), non–small cell lung cancer, melanoma, osteosarcoma, and prostate, cervical, and breast cancer were determined by performing robust least-square fitting using the DLQ model on published clonogenic survival data. Fitting performance was compared with the single-compartment LQ (SLQ) and universal survival curve models. The fitting results were then used in an ordinary differential equation describing the kinetics of DCCs and CSCs in response to 2- to 14.3-Gy fractionated treatments. The total dose to achieve tumor control and the fraction size that achieved the least normal biological equivalent dose were calculated. Results: Smaller cell survival fitting errors were observed using DLQ, with the exception of melanoma, which had a low α/β = 0.16 in SLQ. Ordinary differential equation simulation indicated lower normal tissue biological equivalent dose to achieve the same tumor control with a hypofractionated approach for 4 cell lines for the DLQ model, in contrast to SLQ, which favored 2 Gy per fraction for all cells except melanoma. The DLQ model indicated greater tumor radioresistance than SLQ, but the radioresistance was overcome by hypofractionation, other than the GBM cells, which responded poorly to all fractionations. Conclusion: The distinct radiosensitivity and dynamics between CSCs and DCCs in radiation therapy response could perhaps be one possible explanation for the heterogeneous intertumor response to hypofractionation and in some cases superior outcome from

  5. Microenvironmental Modulation of Decorin and Lumican in Temozolomide-Resistant Glioblastoma and Neuroblastoma Cancer Stem-Like Cells.

    PubMed

    Farace, Cristiano; Oliver, Jaime Antonio; Melguizo, Consolacion; Alvarez, Pablo; Bandiera, Pasquale; Rama, Ana Rosa; Malaguarnera, Giulia; Ortiz, Raul; Madeddu, Roberto; Prados, Jose

    2015-01-01

    The presence of cancer stem cells (CSCs) or tumor-initiating cells can lead to cancer recurrence in a permissive cell-microenvironment interplay, promoting invasion in glioblastoma (GBM) and neuroblastoma (NB). Extracellular matrix (ECM) small leucine-rich proteoglycans (SLRPs) play multiple roles in tissue homeostasis by remodeling the extracellular matrix (ECM) components and modulating intracellular signaling pathways. Due to their pan-inhibitory properties against receptor tyrosine kinases (RTKs), SLRPs are reported to exert anticancer effects in vitro and in vivo. However, their roles seem to be tissue-specific and they are also involved in cancer cell migration and drug resistance, paving the way to complex different scenarios. The aim of this study was to determine whether the SLRPs decorin (DCN) and lumican (LUM) are recruited in cell plasticity and microenvironmental adaptation of differentiated cancer cells induced towards stem-like phenotype. Floating neurospheres were generated by applying CSC enrichment medium (neural stem cell serum-free medium, NSC SFM) to the established SF-268 and SK-N-SH cancer cell lines, cellular models of GBM and NB, respectively. In both models, the time-dependent synergistic activation of DCN and LUM was observed. The highest DCN and LUM mRNA/protein expression was detected after cell exposure to NSC SFM for 8/12 days, considering these cells as SLRP-expressing (SLRP+) CSC-like. Ultrastructural imaging showed the cellular heterogeneity of both the GBM and NB neurospheres and identified the inner living cells. Parental cell lines of both GBM and NB grew only in soft agar + NSC SFM, whereas the secondary neurospheres (originated from SLRP+ t8 CSC-like) showed lower proliferation rates than primary neurospheres. Interestingly, the SLRP+ CSC-like from the GBM and NB neurospheres were resistant to temozolomide (TMZ) at concentrations >750 μM. Our results suggest that GBM and NB CSC-like promote the activation of huge quantities

  6. Microenvironmental Modulation of Decorin and Lumican in Temozolomide-Resistant Glioblastoma and Neuroblastoma Cancer Stem-Like Cells

    PubMed Central

    Melguizo, Consolacion; Alvarez, Pablo; Bandiera, Pasquale; Rama, Ana Rosa; Malaguarnera, Giulia; Ortiz, Raul; Madeddu, Roberto; Prados, Jose

    2015-01-01

    The presence of cancer stem cells (CSCs) or tumor-initiating cells can lead to cancer recurrence in a permissive cell–microenvironment interplay, promoting invasion in glioblastoma (GBM) and neuroblastoma (NB). Extracellular matrix (ECM) small leucine-rich proteoglycans (SLRPs) play multiple roles in tissue homeostasis by remodeling the extracellular matrix (ECM) components and modulating intracellular signaling pathways. Due to their pan-inhibitory properties against receptor tyrosine kinases (RTKs), SLRPs are reported to exert anticancer effects in vitro and in vivo. However, their roles seem to be tissue-specific and they are also involved in cancer cell migration and drug resistance, paving the way to complex different scenarios. The aim of this study was to determine whether the SLRPs decorin (DCN) and lumican (LUM) are recruited in cell plasticity and microenvironmental adaptation of differentiated cancer cells induced towards stem-like phenotype. Floating neurospheres were generated by applying CSC enrichment medium (neural stem cell serum-free medium, NSC SFM) to the established SF-268 and SK-N-SH cancer cell lines, cellular models of GBM and NB, respectively. In both models, the time-dependent synergistic activation of DCN and LUM was observed. The highest DCN and LUM mRNA/protein expression was detected after cell exposure to NSC SFM for 8/12 days, considering these cells as SLRP-expressing (SLRP+) CSC-like. Ultrastructural imaging showed the cellular heterogeneity of both the GBM and NB neurospheres and identified the inner living cells. Parental cell lines of both GBM and NB grew only in soft agar + NSC SFM, whereas the secondary neurospheres (originated from SLRP+ t8 CSC-like) showed lower proliferation rates than primary neurospheres. Interestingly, the SLRP+ CSC-like from the GBM and NB neurospheres were resistant to temozolomide (TMZ) at concentrations >750 μM. Our results suggest that GBM and NB CSC-like promote the activation of huge quantities

  7. [Glioblastoma multiforme... with multifocal presentation].

    PubMed

    Sousa, Gabriela; Rocha, Armando; Alfaiate, Teresa; Carvalho, Teresa; Veiga e Moura, António; Ferreira, Mário Rui

    2002-01-01

    Glioblastoma multiforme is the most common malignant primary brain tumor in adults (+/- 40% of the Central Nervous System primary tumors). Representing only 2% of all oncologic processes, they are associated with a great deterioration of cerebral functions and a poor prognosis, facts that contribute to their great individual and social impact. The authors report a case of glioblastoma multiforme, with multifocal lesions "ab initio" and show the difficulty to make a correct diagnosis, even with the most modern imagiologic techniques. They also make a brief review of the literature. PMID:12525027

  8. A leak pathway for luminal protons in endosomes drives oncogenic signalling in glioblastoma.

    PubMed

    Kondapalli, Kalyan C; Llongueras, Jose P; Capilla-González, Vivian; Prasad, Hari; Hack, Anniesha; Smith, Christopher; Guerrero-Cázares, Hugo; Quiñones-Hinojosa, Alfredo; Rao, Rajini

    2015-01-01

    Epidermal growth factor receptor (EGFR) signalling is a potent driver of glioblastoma, a malignant and lethal form of brain cancer. Disappointingly, inhibitors targeting receptor tyrosine kinase activity are not clinically effective and EGFR persists on the plasma membrane to maintain tumour growth and invasiveness. Here we show that endolysosomal pH is critical for receptor sorting and turnover. By functioning as a leak pathway for protons, the Na(+)/H(+) exchanger NHE9 limits luminal acidification to circumvent EGFR turnover and prolong downstream signalling pathways that drive tumour growth and migration. In glioblastoma, NHE9 expression is associated with stem/progenitor characteristics, radiochemoresistance, poor prognosis and invasive growth in vitro and in vivo. Silencing or inhibition of NHE9 in brain tumour-initiating cells attenuates tumoursphere formation and improves efficacy of EGFR inhibitor. Thus, NHE9 mediates inside-out control of oncogenic signalling and is a highly druggable target for pan-specific receptor clearance in cancer therapy.

  9. A Leak Pathway for Luminal Protons in Endosomes Drives Oncogenic Signaling in Glioblastoma

    PubMed Central

    Kondapalli, Kalyan C.; Llongueras, Jose P.; Capilla-González, Vivian; Prasad, Hari; Hack, Anniesha; Smith, Christopher; Guerrero-Cázares, Hugo; Quiñones-Hinojosa, Alfredo; Rao, Rajini

    2015-01-01

    Epidermal growth factor receptor (EGFR) signaling is a potent driver of glioblastoma, a malignant and lethal form of brain cancer. Disappointingly, inhibitors targeting receptor tyrosine kinase activity are not clinically effective, and EGFR persists on the plasma membrane to maintain tumor growth and invasiveness. Here we show that endolysosomal pH is critical for receptor sorting and turnover. By functioning as a leak pathway for protons, the Na+/H+ exchanger NHE9 limits luminal acidification to circumvent EGFR turnover and prolong downstream signaling pathways that drive tumor growth and migration. In glioblastoma, NHE9 expression is associated with stem/progenitor characteristics, radiochemoresistance, poor prognosis and invasive growth in vitro and in vivo. Silencing or inhibition of NHE9 in brain tumor initiating cells attenuates tumorsphere formation and improves efficacy of EGFR inhibitor. Thus, NHE9 mediates inside-out control of oncogenic signaling and is a highly druggable target for pan-specific receptor clearance in cancer therapy. PMID:25662504

  10. The curry spice curcumin selectively inhibits cancer cells growth in vitro and in preclinical model of glioblastoma.

    PubMed

    Zanotto-Filho, Alfeu; Braganhol, Elizandra; Edelweiss, Maria Isabel; Behr, Guilherme A; Zanin, Rafael; Schröder, Rafael; Simões-Pires, André; Battastini, Ana Maria Oliveira; Moreira, José Cláudio Fonseca

    2012-06-01

    Previous studies suggested that curcumin is a potential agent against glioblastomas (GBMs). However, the in vivo efficacy of curcumin in gliomas remains not established. In this work, we examined the mechanisms underlying apoptosis, selectivity, efficacy and safety of curcumin from in vitro (U138MG, U87, U373 and C6 cell lines) and in vivo (C6 implants) models of GBM. In vitro, curcumin markedly inhibited proliferation and migration and induced cell death in liquid and soft agar models of GBM growth. Curcumin effects occurred irrespective of the p53 and PTEN mutational status of the cells. Interestingly, curcumin did not affect viability of primary astrocytes, suggesting that curcumin selectivity targeted transformed cells. In U138MG and C6 cells, curcumin decreased the constitutive activation of PI3K/Akt and NFkappaB survival pathways, down-regulated the antiapoptotic NFkappaB-regulated protein bcl-xl and induced mitochondrial dysfunction as a prelude to apoptosis. Cells developed an early G2/M cell cycle arrest followed by sub-G1 apoptosis and apoptotic bodies formation. Caspase-3 activation occurred in the p53-normal cell type C6, but not in the p53-mutant U138MG. Besides its apoptotic effect, curcumin also synergized with the chemotherapeutics cisplatin and doxorubicin to enhance GBM cells death. In C6-implanted rats, intraperitoneal curcumin (50 mg kg(-1) d(-1)) decreased brain tumors in 9/11 (81.8%) animals against 0/11 (0%) in the vehicle-treated group. Importantly, no evidence of tissue (transaminases, creatinine and alkaline phosphatase), metabolic (cholesterol and glucose), oxidative or hematological toxicity was observed. In summary, data presented here suggest curcumin as a potential agent for therapy of GBMs.

  11. Extensive Surgery Best for an Aggressive Brain Cancer

    MedlinePlus

    ... fullstory_159415.html Extensive Surgery Best for an Aggressive Brain Cancer: Study Although larger procedure carries more ... News) -- When it comes to battling a particularly aggressive form of brain tumor, more extensive surgeries may ...

  12. A transcriptomic signature mediated by HOXA9 promotes human glioblastoma initiation, aggressiveness and resistance to temozolomide

    PubMed Central

    Pojo, Marta; Gonçalves, Céline S.; Xavier-Magalhães, Ana; Oliveira, Ana Isabel; Gonçalves, Tiago; Correia, Sara; Rodrigues, Ana J.; Costa, Sandra; Pinto, Luísa; Pinto, Afonso A.; Lopes, José M.; Reis, Rui M.; Rocha, Miguel; Sousa, Nuno; Costa, Bruno M.

    2015-01-01

    Glioblastoma is the most malignant brain tumor, exhibiting remarkable resistance to treatment. Here we investigated the oncogenic potential of HOXA9 in gliomagenesis, the molecular and cellular mechanisms by which HOXA9 renders glioblastoma more aggressive, and how HOXA9 affects response to chemotherapy and survival. The prognostic value of HOXA9 in glioblastoma patients was validated in two large datasets from TCGA and Rembrandt, where high HOXA9 levels were associated with shorter survival. Transcriptomic analyses identified novel HOXA9-target genes with key roles in cancer-related processes, including cell proliferation, DNA repair, and stem cell maintenance. Functional studies with HOXA9-overexpressing and HOXA9-silenced glioblastoma cell models revealed that HOXA9 promotes cell viability, stemness and invasion, and inhibits apoptosis. Additionally, HOXA9 promoted the malignant transformation of human immortalized astrocytes in an orthotopic in vivo model, and caused tumor-associated death. HOXA9 also mediated resistance to temozolomide treatment in vitro and in vivo via upregulation of BCL2. Importantly, the pharmacological inhibition of BCL2 with the BH3 mimetic ABT-737 reverted temozolomide resistance in HOXA9-positive cells. These data establish HOXA9 as a driver of glioma initiation, aggressiveness and resistance to therapy. In the future, the combination of BH3 mimetics with temozolomide should be further explored as an alternative treatment for glioblastoma. PMID:25762636

  13. SREBP maintains lipid biosynthesis and viability of cancer cells under lipid- and oxygen-deprived conditions and defines a gene signature associated with poor survival in glioblastoma multiforme.

    PubMed

    Lewis, C A; Brault, C; Peck, B; Bensaad, K; Griffiths, B; Mitter, R; Chakravarty, P; East, P; Dankworth, B; Alibhai, D; Harris, A L; Schulze, A

    2015-10-01

    Oxygen and nutrient limitation are common features of the tumor microenvironment and are associated with cancer progression and induction of metastasis. The inefficient vascularization of tumor tissue also limits the penetration of other serum-derived factors, such as lipids and lipoproteins, which can be rate limiting for cell proliferation and survival. Here we have investigated the effect of hypoxia and serum deprivation on sterol regulatory element-binding protein (SREBP) activity and the expression of lipid metabolism genes in human glioblastoma multiforme (GBM) cancer cells. We found that SREBP transcriptional activity was induced by serum depletion both in normoxic and hypoxic cells and that activation of SREBP was required to maintain the expression of fatty acid and cholesterol metabolism genes under hypoxic conditions. Moreover, expression of stearoyl-CoA desaturase, the enzyme required for the generation of mono-unsaturated fatty acids, and fatty acid-binding protein 7, a regulator of glioma stem cell function, was strongly dependent on SREBP function. Inhibition of SREBP function blocked lipid biosynthesis in hypoxic cancer cells and impaired cell survival under hypoxia and in a three-dimensional spheroid model. Finally, gene expression analysis revealed that SREBP defines a gene signature that is associated with poor survival in glioblastoma. PMID:25619842

  14. An update on the epigenetics of glioblastomas.

    PubMed

    Ferreira, Wallax Augusto Silva; Pinheiro, Danilo do Rosário; Costa Junior, Carlos Antonio da; Rodrigues-Antunes, Symara; Araújo, Mariana Diniz; Leão Barros, Mariceli Baia; Teixeira, Adriana Corrêa de Souza; Faro, Thamirys Aline Silva; Burbano, Rommel Rodriguez; Oliveira, Edivaldo Herculano Correa de; Harada, Maria Lúcia; Borges, Bárbara do Nascimento

    2016-09-01

    Glioblastomas, also known as glioblastoma multiforme (GBM), are the most aggressive and malignant type of primary brain tumor in adults, exhibiting notable variability at the histopathological, genetic and epigenetic levels. Recently, epigenetic alterations have emerged as a common hallmark of many tumors, including GBM. Considering that a deeper understanding of the epigenetic modifications that occur in GBM may increase the knowledge regarding the tumorigenesis, progression and recurrence of this disease, in this review we discuss the recent major advances in GBM epigenetics research involving histone modification, glioblastoma stem cells, DNA methylation, noncoding RNAs expression, including their main alterations and the use of epigenetic therapy as a valid option for GBM treatment. PMID:27585647

  15. Pentavalent technetium-99m-dimercaptosuccinic acid [Tc-99m (V) DMSA] brain SPECT: does it have a place in predicting survival in patients with glioblastoma multiforme?

    PubMed

    Amin, Amr; Mustafa, M; Abd El-Hadi, E; Monier, A; Badwey, A; Saad, E

    2015-01-01

    Pentavalent technetium-99m dimercaptosuccinic acid (Tc-99m (V) DMSA) is reported as a useful tool for detection of residual or recurrent gliomas. We aimed to investigate the prognostic value of Tc-99m (V) DMSA brain SPECT in patients with glioblastoma multiforme (GBM). 40 patients [21 males and 19 females; mean age 48.6 ± 12.2 years] with GBM were included. Tc-99m (V) DMSA brain SPECT was done after surgery and before onset of radiation therapy or chemotherapy (Baseline study), at 4-6 weeks and at 6 months as a follow-up after therapy. The end point of the study was clinical follow-up for 2 years and/or death. 4-6 weeks after therapy, 40 and 60 % had negative and positive Tc-99m (V) DMSA for viable tumor tissues respectively (P = 0.09). At 6 months follow-up, 62.5 % of (V) DMSA negative patients and 12.5 % of the positive subjects were responders (P = 0.001). The median over-all survival (OS) of all patients was 12.3 month [range 5-24 month]. Patients with positive (V) DMSA had worse survival (8.87 month) compared to the negative ones (16.67 month) (P = 0.0001). Multivariate Cox regression analysis showed that Tc-99m (V) DMSA brain SPECT studies at 4-6 weeks and 6-months follow-up were independent prognostic factors for survival [OR 1.069; 95 % CI 1.417-2.174; P = 0.03 and OR 1.055; 95 % CI 0.821-1.186; P = 0.01 respectively]. Stratification of tumors into risk groups based on prognostic parameters may improve outcome by altering or intensifying treatment methods. Technetium-99m dimercaptosuccinic acid brain SPECT may have an additional prognostic role in patients with GBM which needs further evaluation in larger future series.

  16. Agomelatine or ramelteon as treatment adjuncts in glioblastoma and other M1- or M2-expressing cancers.

    PubMed

    Kast, Richard E

    2015-01-01

    The impressive but sad list of over forty clinical studies using various cytotoxic chemotherapies published in the last few years has failed to increase median survival of glioblastoma beyond two years after diagnosis. In view of this apparent brick wall, adjunctive non-cytotoxic growth factor blocking drugs are being tried, as in the CUSP9* protocol. A related theme is searching for agonists at growth inhibiting receptors. One such dataset is that of melatonin agonism at M1 or M2 receptors found on glioblastoma cells, being a negative regulator of these cells' growth. Melatonin itself is an endogenous hormone, but when used as an exogenously administered drug it has many disadvantages. Agomelatine, marketed as an antidepressant, and ramelteon, marketed as a treatment for insomnia, are currently-available melatonin receptor agonists. These melatonin receptor agonists have significant advantages over the natural ligand: longer half-life, better oral absorption, and higher affinity to melatonin receptors. They have an eminently benign side effect profile. As full agonists they should function to inhibit glioblastoma growth, as demonstrated for melatonin. A potentially helpful ancillary attribute of melatonergic agonists in glioblastoma treatment is an increase in interleukin-2 synthesis, expected, at least partially, to reverse some of the immunosuppression associated with glioblastoma. PMID:26034396

  17. Agomelatine or ramelteon as treatment adjuncts in glioblastoma and other M1- or M2-expressing cancers

    PubMed Central

    2015-01-01

    The impressive but sad list of over forty clinical studies using various cytotoxic chemotherapies published in the last few years has failed to increase median survival of glioblastoma beyond two years after diagnosis. In view of this apparent brick wall, adjunctive non-cytotoxic growth factor blocking drugs are being tried, as in the CUSP9* protocol. A related theme is searching for agonists at growth inhibiting receptors. One such dataset is that of melatonin agonism at M1 or M2 receptors found on glioblastoma cells, being a negative regulator of these cells’ growth. Melatonin itself is an endogenous hormone, but when used as an exogenously administered drug it has many disadvantages. Agomelatine, marketed as an antidepressant, and ramelteon, marketed as a treatment for insomnia, are currently-available melatonin receptor agonists. These melatonin receptor agonists have significant advantages over the natural ligand: longer half-life, better oral absorption, and higher affinity to melatonin receptors. They have an eminently benign side effect profile. As full agonists they should function to inhibit glioblastoma growth, as demonstrated for melatonin. A potentially helpful ancillary attribute of melatonergic agonists in glioblastoma treatment is an increase in interleukin-2 synthesis, expected, at least partially, to reverse some of the immunosuppression associated with glioblastoma. PMID:26034396

  18. Role of the neural niche in brain metastatic cancer.

    PubMed

    Termini, John; Neman, Josh; Jandial, Rahul

    2014-08-01

    Metastasis is the relentless pursuit of cancer to escape its primary site and colonize distant organs. This malignant evolutionary process is biologically heterogeneous, yet one unifying element is the critical role of the microenvironment for arriving metastatic cells. Historically, brain metastases were rarely investigated because patients with advanced cancer were considered terminal. Fortunately, advances in molecular therapies have led to patients living longer with metastatic cancer. However, one site remains recalcitrant to our treatment efforts, the brain. The central nervous system is the most complex biologic system, which poses unique obstacles but also harbors opportunities for discovery. Much of what we know about the brain microenvironment comes from neuroscience. We suggest that the interrelated cellular responses in traumatic brain injury may guide us toward new perspectives in understanding brain metastases. In this view, brain metastases may be conceptualized as progressive oncologic injury to the nervous system. This review discusses our evolving understanding of bidirectional interactions between the brain milieu and metastatic cancer.

  19. The activity of class I, II, III and IV of alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) in brain cancer.

    PubMed

    Laniewska-Dunaj, Magdalena; Jelski, Wojciech; Orywal, Karolina; Kochanowicz, Jan; Rutkowski, Robert; Szmitkowski, Maciej

    2013-07-01

    The brain being highly sensitive to the action of alcohol is potentially susceptible to its carcinogenic effects. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are the main enzymes involved in ethanol metabolism, which leads to the generation of carcinogenic acetaldehyde. Human brain tissue contains various ADH isoenzymes and possess also ALDH activity. The purpose of this study was to compare the capacity for ethanol metabolism measured by ADH isoenzymes and ALDH activity in cancer tissues and healthy brain cells. The samples were taken from 62 brain cancer patients (36 glioblastoma, 26 meningioma). For the measurement of the activity of class I and II ADH isoenzymes and ALDH activity, the fluorometric methods were used. The total ADH activity and activity of class III and IV isoenzymes were measured by the photometric method. The total activity of ADH, and activity of class I ADH were significantly higher in cancer cells than in healthy tissues. The other tested classes of ADH and ALDH did not show statistically significant differences of activity in cancer and in normal cells. Analysis of the enzymes activity did not show significant differences depending on the location of the tumor. The differences in the activity of total alcohol dehydrogenase, and class I isoenzyme between cancer tissues and healthy brain cells might be a factor for metabolic changes and disturbances in low mature cancer cells and additionally might be a reason for higher level of acetaldehyde which can intensify the carcinogenesis.

  20. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.

    PubMed

    Wang, Christine; Tong, Xinming; Yang, Fan

    2014-07-01

    Glioblastoma (GBM) is the most common and aggressive form of primary brain tumor with a median survival of 12-15 months, and the mechanisms underlying GBM tumor progression remain largely elusive. Given the importance of tumor niche signaling in driving GBM progression, there is a strong need to develop in vitro models to facilitate analysis of brain tumor cell-niche interactions in a physiologically relevant and controllable manner. Here we report the development of a bioengineered 3D brain tumor model to help elucidate the effects of matrix stiffness on GBM cell fate using poly(ethylene-glycol) (PEG)-based hydrogels with brain-mimicking biochemical and mechanical properties. We have chosen PEG given its bioinert nature and tunable physical property, and the resulting hydrogels allow tunable matrix stiffness without changing the biochemical contents. To facilitate cell proliferation and migration, CRGDS and a MMP-cleavable peptide were chemically incorporated. Hyaluronic acid (HA) was also incorporated to mimic the concentration in the brain extracellular matrix. Using U87 cells as a model GBM cell line, we demonstrate that such biomimetic hydrogels support U87 cell growth, spreading, and migration in 3D over the course of 3 weeks in culture. Gene expression analyses showed U87 cells actively deposited extracellular matrix and continued to upregulate matrix remodeling genes. To examine the effects of matrix stiffness on GBM cell fate in 3D, we encapsulated U87 cells in soft (1 kPa) or stiff (26 kPa) hydrogels, which respectively mimics the matrix stiffness of normal brain or GBM tumor tissues. Our results suggest that changes in matrix stiffness induce differential GBM cell proliferation, morphology, and migration modes in 3D. Increasing matrix stiffness led to delayed U87 cell proliferation inside hydrogels, but cells formed denser spheroids with extended cell protrusions. Cells cultured in stiff hydrogels also showed upregulation of HA synthase 1 and matrix

  1. Major vault protein supports glioblastoma survival and migration by upregulating the EGFR/PI3K signalling axis

    PubMed Central

    Lötsch, Daniela; Steiner, Elisabeth; Holzmann, Klaus; Spiegl-Kreinecker, Sabine; Pirker, Christine; Hlavaty, Juraj; Petznek, Helga; Hegedus, Balazs; Garay, Tamas; Mohr, Thomas; Sommergruber, Wolfgang; Grusch, Michael; Berger, Walter

    2013-01-01

    Despite their ubiquitous expression and high conservation during evolution, precise cellular functions of vault ribonucleoparticles, mainly built of multiple major vault protein (MVP) copies, are still enigmatic. With regard to cancer, vaults were shown to be upregulated during drug resistance development as well as malignant transformation and progression. Such in a previous study we demonstrated that human astrocytic brain tumours including glioblastoma are generally high in vault levels while MVP expression in normal brain is comparably low. However a direct contribution to the malignant phenotype in general and that of glioblastoma in particular has not been established so far. Thus we address the questions whether MVP itself has a pro-tumorigenic function in glioblastoma. Based on a large tissue collection, we re-confirm strong MVP expression in gliomas as compared to healthy brain. Further, the impact of MVP on human glioblastoma aggressiveness was analysed by using gene transfection, siRNA knock-down and dominant-negative genetic approaches. Our results demonstrate that MVP/vaults significantly support migratory and invasive competence as well as starvation resistance of glioma cells in vitro and in vivo. The enhanced aggressiveness was based on MVP-mediated stabilization of the epidermal growth factor receptor (EGFR)/phosphatidyl-inositol-3-kinase (PI3K) signalling axis. Consequently, MVP overexpression resulted in enhanced growth and brain invasion in human glioblastoma xenograft models. Our study demonstrates, for the first time, that vaults have a tumour-promoting potential by stabilizing EGFR/PI3K-mediated migration and survival pathways in human glioblastoma. PMID:24243798

  2. Toward intracellular targeted delivery of cancer therapeutics: progress and clinical outlook for brain tumor therapy.

    PubMed

    Pandya, Hetal; Debinski, Waldemar

    2012-08-01

    A number of anti-cancer drugs have their targets localized to particular intracellular compartments. These drugs reach the targets mainly through diffusion, dependent on biophysical and biochemical forces that allow cell penetration. This means that both cancer cells and normal cells will be subjected to such diffusion; hence many of these drugs, like chemotherapeutics, are potentially toxic and the concentration achieved at the site of their action is often suboptimal. The same relates to radiation that indiscriminately affects normal and diseased cells. However, nature-designed systems enable compounds present in the extracellular environment to end up inside the cell and even travel to more specific intracellular compartments. For example, viruses and bacterial toxins can more or less specifically recognize eukaryotic cells, enter these cells, and direct some protein portions to designated intracellular areas. These phenomena have led to creative thinking, such as employing viruses or bacterial toxins for cargo delivery to cells and, more specifically, to cancer cells. Proteins can be genetically engineered in order to not only mimic what viruses and bacterial toxins can do, but also to add new functions, extending or changing the intracellular routes. It is possible to make conjugates or, more preferably, single-chain proteins that recognize cancer cells and deliver cargo inside the cells, even to the desired subcellular compartment. These findings offer new opportunities to deliver drugs/labels only to cancer cells and only to their site of action within the cells. The development of such dual-specificity vectors for targeting cancer cells is an attractive and potentially safer and more efficacious way of delivering drugs. We provide examples of this approach for delivering brain cancer therapeutics, using a specific biomarker on glioblastoma tumor cells.

  3. Angiopep2-functionalized polymersomes for targeted doxorubicin delivery to glioblastoma cells.

    PubMed

    Figueiredo, Patrícia; Balasubramanian, Vimalkumar; Shahbazi, Mohammad-Ali; Correia, Alexandra; Wu, Dalin; Palivan, Cornelia G; Hirvonen, Jouni T; Santos, Hélder A

    2016-09-25

    A targeted drug delivery nanosystem for glioblastoma multiforme (GBM) based on polymersomes (Ps) made of poly(dimethylsiloxane)-poly(2-methyloxazoline) (PDMS-PMOXA) diblock copolymers was developed to evaluate their potential to actively target brain cancer cells and deliver anticancer drugs. Angiopep2 was conjugated to the surface of preformed Ps to target the low density lipoprotein receptor-related protein 1 that are overexpressed in blood brain barrier (BBB) and glioma cells. The conjugation efficiency yield for angiopep2 was estimated to be 24%. The angiopep2-functionalized Ps showed no cellular toxicity after 24h and enhanced the cellular uptake around 5 times more in U87MG glioblastoma cells compared to the non-targeted Ps. The encapsulation efficiency of doxorubicin (DOX) in Ps was 13% by co-solvent method, compared to a film rehydration method (4%). The release profiles of the DOX from Ps showed a release of 42% at pH 5.5 and 40% at pH 7.4 after 24h, indicating that Ps can efficiently retain the DOX with a slow release rate. Furthermore, the in vitro antiproliferative activity of DOX-loaded Ps-Angiopep2 showed enhanced toxicity to U87MG glioblastoma cells, compared to non-targeted Ps. Overall, our in vitro results suggested that angiopep2-conjugated Ps can be used as nanocarriers for efficient targeted DOX delivery to glioblastoma cells.

  4. Angiopep2-functionalized polymersomes for targeted doxorubicin delivery to glioblastoma cells.

    PubMed

    Figueiredo, Patrícia; Balasubramanian, Vimalkumar; Shahbazi, Mohammad-Ali; Correia, Alexandra; Wu, Dalin; Palivan, Cornelia G; Hirvonen, Jouni T; Santos, Hélder A

    2016-09-25

    A targeted drug delivery nanosystem for glioblastoma multiforme (GBM) based on polymersomes (Ps) made of poly(dimethylsiloxane)-poly(2-methyloxazoline) (PDMS-PMOXA) diblock copolymers was developed to evaluate their potential to actively target brain cancer cells and deliver anticancer drugs. Angiopep2 was conjugated to the surface of preformed Ps to target the low density lipoprotein receptor-related protein 1 that are overexpressed in blood brain barrier (BBB) and glioma cells. The conjugation efficiency yield for angiopep2 was estimated to be 24%. The angiopep2-functionalized Ps showed no cellular toxicity after 24h and enhanced the cellular uptake around 5 times more in U87MG glioblastoma cells compared to the non-targeted Ps. The encapsulation efficiency of doxorubicin (DOX) in Ps was 13% by co-solvent method, compared to a film rehydration method (4%). The release profiles of the DOX from Ps showed a release of 42% at pH 5.5 and 40% at pH 7.4 after 24h, indicating that Ps can efficiently retain the DOX with a slow release rate. Furthermore, the in vitro antiproliferative activity of DOX-loaded Ps-Angiopep2 showed enhanced toxicity to U87MG glioblastoma cells, compared to non-targeted Ps. Overall, our in vitro results suggested that angiopep2-conjugated Ps can be used as nanocarriers for efficient targeted DOX delivery to glioblastoma cells. PMID:27484836

  5. Salinomycin induced ROS results in abortive autophagy and leads to regulated necrosis in glioblastoma.

    PubMed

    Xipell, Enric; Gonzalez-Huarriz, Marisol; Martinez de Irujo, Juan Jose; García-Garzón, Antonia; Lang, Fred F; Jiang, Hong; Fueyo, Juan; Gomez-Manzano, Candelaria; Alonso, Marta M

    2016-05-24

    Glioblastoma is the most frequent malignant brain tumor. Even with aggressive treatment, prognosis for patients is poor. One characteristic of glioblastoma cells is its intrinsic resistance to apoptosis. Therefore, drugs that induce alternative cell deaths could be interesting to evaluate as alternative therapeutic candidates for glioblastoma. Salinomycin (SLM) was identified through a chemical screening as a promising anticancer drug, but its mechanism of cell death remains unclear. In the present work we set out to elucidate how SLM causes cell death in glioblastoma cell lines (both established cell lines and brain tumor stem cell lines), aiming to find a potential antitumor candidate. In addition, we sought to determine the mechanism of action of SLM so that this mechanism can be can be exploited in the fight against cancer. Our data showed that SLM induces a potent endoplasmic reticulum (ER) stress followed by the trigger of the unfolded protein response (UPR) and an aberrant autophagic flux that culminated in necrosis due to mitochondria and lysosomal alterations. Of importance, the aberrant autophagic flux was orchestrated by the production of Reactive Oxygen Species (ROS). Alleviation of ROS production restored the autophagic flux. Altogether our data suggest that in our system the oxidative stress blocks the autophagic flux through lipid oxidation. Importantly, oxidative stress could be instructing the type of cell death in SLM-treated cells, suggesting that cell death modality is a dynamic concept which depends on the cellular stresses and the cellular mechanism activated. PMID:27121320

  6. Therapeutic effects of dihydroartemisinin and transferrin against glioblastoma

    PubMed Central

    Kim, Suk Hee; Kang, Seong Hee

    2016-01-01

    BACKGROUND/OBJECTIVES Artemisinin, a natural product isolated from Gaeddongssuk (artemisia annua L.) and its main active derivative, dihydroartemisinin (DHA), have long been used as antimalarial drugs. Recent studies reported that artemisinin is efficacious for curing diseases, including cancers, and for improving the immune system. Many researchers have shown the therapeutic effects of artemisinin on tumors such as breast cancer, liver cancer and kidney cancer, but there is still insufficient data regarding glioblastoma (GBM). Glioblastoma accounts for 12-15% of brain cancer, and the median survival is less than a year, despite medical treatments such as surgery, radiation therapy, and chemotherapy. In this study, we investigated the anti-cancer effects of DHA and transferrin against glioblastoma (glioblastoma multiforme, GBM). MATERIALS/METHODS This study was performed through in vitro experiments using C6 cells. The toxicity dependence of DHA and transferrin (TF) on time and concentration was analyzed by MTT assay and cell cycle assay. Observations of cellular morphology were recorded with an optical microscope and color digital camera. The anti-cancer mechanism of DHA and TF against GBM were studied by flow cytometry with Annexin V and caspase 3/7. RESULTS MTT assay revealed that TF enhanced the cytotoxicity of DHA against C6 cells. An Annexin V immune-precipitation assay showed that the percentages of apoptosis of cells treated with TF, DHA alone, DHA in combination with TF, and the control group were 7.15 ± 4.15%, 34.3 ± 5.15%, 66.42 ± 5.98%, and 1.2 ± 0.15%, respectively. The results of the Annexin V assay were consistent with those of the MTT assay. DHA induced apoptosis in C6 cells through DNA damage, and TF enhanced the effects of DHA. CONCLUSION The results of this study demonstrated that DHA, the derivative of the active ingredient in Gaeddongssuk, is effective against GBM, apparently via inhibition of cancer cell proliferation by a pharmacological

  7. Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy

    PubMed Central

    Auffinger, B; Tobias, A L; Han, Y; Lee, G; Guo, D; Dey, M; Lesniak, M S; Ahmed, A U

    2014-01-01

    Glioblastoma multiforme patients have a poor prognosis due to therapeutic resistance and tumor relapse. It has been suggested that gliomas are driven by a rare subset of tumor cells known as glioma stem cells (GSCs). This hypothesis states that only a few GSCs are able to divide, differentiate, and initiate a new tumor. It has also been shown that this subpopulation is more resistant to conventional therapies than its differentiated counterpart. In order to understand glioma recurrence post therapy, we investigated the behavior of GSCs after primary chemotherapy. We first show that exposure of patient-derived as well as established glioma cell lines to therapeutic doses of temozolomide (TMZ), the most commonly used antiglioma chemotherapy, consistently increases the GSC pool over time both in vitro and in vivo. Secondly, lineage-tracing analysis of the expanded GSC pool suggests that such amplification is a result of a phenotypic shift in the non-GSC population to a GSC-like state in the presence of TMZ. The newly converted GSC population expresses markers associated with pluripotency and stemness, such as CD133, SOX2, Oct4, and Nestin. Furthermore, we show that intracranial implantation of the newly converted GSCs in nude mice results in a more efficient grafting and invasive phenotype. Taken together, these findings provide the first evidence that glioma cells exposed to chemotherapeutic agents are able to interconvert between non-GSCs and GSCs, thereby replenishing the original tumor population, leading to a more infiltrative phenotype and enhanced chemoresistance. This may represent a potential mechanism for therapeutic relapse. PMID:24608791

  8. Novel Nanotechnologies for Brain Cancer Therapeutics and Imaging.

    PubMed

    Ferroni, Letizia; Gardin, Chiara; Della Puppa, Alessandro; Sivolella, Stefano; Brunello, Giulia; Scienza, Renato; Bressan, Eriberto; D'Avella, Domenico; Zavan, Barbara

    2015-11-01

    Despite progress in surgery, radiotherapy, and in chemotherapy, an effective curative treatment of brain cancer, specifically malignant gliomas, does not yet exist. The efficacy of current anti-cancer strategies in brain tumors is limited by the lack of specific therapies against malignant cells. Besides, the delivery of the drugs to brain tumors is limited by the presence of the blood-brain barrier. Nanotechnology today offers a unique opportunity to develop more effective brain cancer imaging and therapeutics. In particular, the development of nanocarriers that can be conjugated with several functional molecules including tumor-specific ligands, anticancer drugs, and imaging probes, can provide new devices which are able to overcome the difficulties of the classical strategies. Nanotechnology-based approaches hold great promise for revolutionizing brain cancer medical treatments, imaging, and diagnosis.

  9. Therapeutically engineered induced neural stem cells are tumour-homing and inhibit progression of glioblastoma

    PubMed Central

    Bagó, Juli R.; Alfonso-Pecchio, Adolfo; Okolie, Onyi; Dumitru, Raluca; Rinkenbaugh, Amanda; Baldwin, Albert S.; Miller, C. Ryan; Magness, Scott T.; Hingtgen, Shawn D.

    2016-01-01

    Transdifferentiation (TD) is a recent advancement in somatic cell reprogramming. The direct conversion of TD eliminates the pluripotent intermediate state to create cells that are ideal for personalized cell therapy. Here we provide evidence that TD-derived induced neural stem cells (iNSCs) are an efficacious therapeutic strategy for brain cancer. We find that iNSCs genetically engineered with optical reporters and tumouricidal gene products retain the capacity to differentiate and induced apoptosis in co-cultured human glioblastoma cells. Time-lapse imaging shows that iNSCs are tumouritropic, homing rapidly to co-cultured glioblastoma cells and migrating extensively to distant tumour foci in the murine brain. Multimodality imaging reveals that iNSC delivery of the anticancer molecule TRAIL decreases the growth of established solid and diffuse patient-derived orthotopic glioblastoma xenografts 230- and 20-fold, respectively, while significantly prolonging the median mouse survival. These findings establish a strategy for creating autologous cell-based therapies to treat patients with aggressive forms of brain cancer. PMID:26830441

  10. New therapeutic strategies regarding endovascular treatment of glioblastoma, the role of the blood-brain barrier and new ways to bypass it.

    PubMed

    Peschillo, S; Caporlingua, A; Diana, F; Caporlingua, F; Delfini, R

    2016-10-01

    The treatment protocols for glioblastoma multiforme (GBM) involve a combination of surgery, radiotherapy and adjuvant chemotherapy. Despite this multimodal approach, the prognosis of patients with GBM remains poor and there is an urgent need to develop novel strategies to improve quality of life and survival in this population. In an effort to improve outcomes, intra-arterial drug delivery has been used in many recent clinical trials; however, their results have been conflicting. The blood-brain barrier (BBB) is the major obstacle preventing adequate concentrations of chemotherapy agents being reached in tumor tissue, regardless of the method of delivering the drugs. Therapeutic failures have often been attributed to an inability of drugs to cross the BBB. However, during the last decade, a better understanding of BBB physiology along with the development of new technologies has led to innovative methods to circumvent this barrier. This paper focuses on strategies and techniques used to bypass the BBB already tested in clinical trials in humans and also those in their preclinical stage. We also discuss future therapeutic scenarios, including endovascular treatment combined with BBB disruption techniques, for patients with GBM.

  11. Use of in Vivo Two-dimensional MR Spectroscopy to Compare the Biochemistry of the Human Brain to That of Glioblastoma

    PubMed Central

    Ramadan, Saadallah; Andronesi, Ovidiu C.; Stanwell, Peter; Lin, Alexander P.; Sorensen, A. Gregory

    2011-01-01

    Purpose: To develop an in vivo two-dimensional localized correlation spectroscopy technique with which to monitor the biochemistry of the human brain and the pathologic characteristics of diseases in a clinically applicable time, including ascertainment of appropriate postprocessing parameters with which to allow diagnostic and prognostic molecules to be measured, and to investigate how much of the chemical information, known to be available from malignant cultured cells, could be recorded in vivo from human brain. Materials and Methods: The study was approved by the institutional review board and was compliant with HIPAA. With use of a 3.0-T clinical magnetic resonance (MR) unit and a 32-channel head coil, localized correlation spectroscopy was performed in six healthy control subjects and six patients with glioblastoma multiforme (GBM) with an acquisition time of 11 minutes. Two-dimensional spectra were processed and analyzed and peak volume ratios were tabulated. The data used were proved to be normally distributed by passing the Shapiro-Wilk normality test. The first row of the spectra was extracted to examine diagnostic features. The pathologic characteristics and grade of each GBM were determined after biopsy or surgery. Statistically significant differences were assessed by using a t test. Results: The localized correlation spectroscopy method assigned biochemical species from the healthy human brain. The correlation spectra of GBM were of sufficiently high quality that many of the cross peaks, recorded previously from malignant cell models in vitro, were observed, demonstrating a statistically significant difference (P < .05) between the cross peak volumes measured for healthy subjects and those with GBM (which include lipid, alanine, N-acetylaspartate, γ-aminobutyric acid, glutamine and glutamate, glutathione, aspartate, lysine, threonine, total choline, glycerophosphorylcholine, myo-inositol, imidazole, uridine diphosphate glucose, isocitrate, lactate

  12. Cediranib Maleate and Whole Brain Radiation Therapy in Patients With Brain Metastases From Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-03-07

    Male Breast Cancer; Stage IV Breast Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer; Stage IV Renal Cell Cancer; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVB Colon Cancer; Stage IVB Rectal Cancer; Tumors Metastatic to Brain

  13. Evo-Devo and the evolution of cancer: a hypothesis for metamorphic therapies for the cancers of prolactin-influenced tumourigenesis: with special reference to glioblastoma multiforme (GBM).

    PubMed

    Pearson, Roy Douglas

    2009-06-01

    Recalling the remarkable developmental similarities between cancer cells and embryonic tissues, this paper argues that, by the process of retrodifferentiation and heterochronization, stem cells that have become neoplastic could be said to have undergone "cellular heterochrony." It theorizes, therefore, that hormones are the major factor in the non-random regulation of cellular heterochrony in tumourigenesis. Two recent articles confirm that there is low thyroxine and high prolactin in glioblastomas. Thyroxine metamorphoses vertebrates' tissues so as to mature the tissues, e.g., in amphibian metamorphosis. In 1896, thyroxine (horse thyroid extract) was the first successful hormonal product to be used against a fulminating breast cancer. Recent work confirms the important role of prolactin in the induction and progression of mammary, prostate and colorectal tumours. Although the pituitary is the main source of prolactin in vertebrates, there is also placental production of prolactin, and paracrine production of prolactin by tumours themselves. Since tumours produce their own prolactin, shutting down the pituitary source has not proven wholly successful. Research to find prolactin receptor antagonists is ongoing. Therefore, prolactin inhibitors (dopamine agonists), prolactin receptor antagonists, plus thyroxine comprise a plausible metamorphic therapy for shrinking solid tumour mass. By contrast with "differentiation" therapies currently sought by stem cell oncologists, this paper advocates "metamorphic" therapies, to introduce hormonal oncological knowledge of how to modulate signalling pathways that are aberrant in the stem cells that give rise to tumours. Despite subtle differences in these signalling translation pathways and cascades, strategies exist that will allow these evolved populations, going back to their stem precursors, to "metamorphose" or perhaps apoptotically cease proliferation.

  14. Glioblastoma Invoking "Killer" Rabbits of the Middle Ages.

    PubMed

    Massoud, Tarik F; Kalnins, Aleksandrs

    2016-08-01

    We present the unusual appearance on brain magnetic resonance imaging of a glioblastoma with an uncanny shape of a rabbit. By invoking fearsome "killer" rabbits depicted in the art and literature of the Middle Ages, this image is an eerie reminder of the current lethality of this disease. There is a pressing need for more effective treatments for glioblastoma. PMID:27157288

  15. Glioblastoma with signet ring cell morphology: A diagnostic challenge

    PubMed Central

    Krishnamoorthy, Naveen; Veldore, Vidya; Sridhar, P. S.; Govindrajan, M. J.; Prabhudesai, Shilpa; Hazarika, Digantha; Ajaikumar, B. S.

    2016-01-01

    Glioblastoma (WHO Grade IV), the most frequent malignant brain tumor, can have varied morphologic variations like epithelial/glandular structures, granular cells, and lipidized cells. Glioblastoma with signet ring cell morphology is very unusual and can mimic a metastatic carcinoma. These rare tumors may be just a morphological variant or may signify a different carcinogenic pathway. PMID:27366281

  16. Aquaporins and Brain Tumors

    PubMed Central

    Maugeri, Rosario; Schiera, Gabriella; Di Liegro, Carlo Maria; Fricano, Anna; Iacopino, Domenico Gerardo; Di Liegro, Italia

    2016-01-01

    Brain primary tumors are among the most diverse and complex human cancers, and they are normally classified on the basis of the cell-type and/or the grade of malignancy (the most malignant being glioblastoma multiforme (GBM), grade IV). Glioma cells are able to migrate throughout the brain and to stimulate angiogenesis, by inducing brain capillary endothelial cell proliferation. This in turn causes loss of tight junctions and fragility of the blood–brain barrier, which becomes leaky. As a consequence, the most serious clinical complication of glioblastoma is the vasogenic brain edema. Both glioma cell migration and edema have been correlated with modification of the expression/localization of different isoforms of aquaporins (AQPs), a family of water channels, some of which are also involved in the transport of other small molecules, such as glycerol and urea. In this review, we discuss relationships among expression/localization of AQPs and brain tumors/edema, also focusing on the possible role of these molecules as both diagnostic biomarkers of cancer progression, and therapeutic targets. Finally, we will discuss the possibility that AQPs, together with other cancer promoting factors, can be exchanged among brain cells via extracellular vesicles (EVs). PMID:27367682

  17. Cancer of the Brain and Other Nervous System

    MedlinePlus

    ... at a Glance Show More At a Glance Estimated New Cases in 2016 23,770 % of All New Cancer Cases 1.4% Estimated Deaths in 2016 16,050 % of All Cancer ... of This Cancer : In 2013, there were an estimated 152,751 people living with brain and other ...

  18. Glioblastoma care in the elderly.

    PubMed

    Jordan, Justin T; Gerstner, Elizabeth R; Batchelor, Tracy T; Cahill, Daniel P; Plotkin, Scott R

    2016-01-15

    Glioblastoma is common among elderly patients, a group in which comorbidities and a poor prognosis raise important considerations when designing neuro-oncologic care. Although the standard of care for nonelderly patients with glioblastoma includes maximal safe surgical resection followed by radiotherapy with concurrent and adjuvant temozolomide, the safety and efficacy of these modalities in elderly patients are less certain given the population's underrepresentation in many clinical trials. The authors reviewed the clinical trial literature for reports on the treatment of elderly patients with glioblastoma to provide evidence-based guidance for practitioners. In elderly patients with glioblastoma, there is a survival advantage for those who undergo maximal safe resection, which likely includes an incremental benefit with increasing completeness of resection. Radiotherapy extends survival in selected patients, and hypofractionation appears to be more tolerable than standard fractionation. In addition, temozolomide chemotherapy is safe and extends the survival of patients with tumors that harbor O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation. The combination of standard radiation with concurrent and adjuvant temozolomide has not been studied in this population. Although many questions remain unanswered regarding the treatment of glioblastoma in elderly patients, the available evidence provides a framework on which providers may base individual treatment decisions. The importance of tumor biomarkers is increasingly apparent in elderly patients, for whom the therapeutic efficacy of any treatment must be weighed against its potential toxicity. MGMT promoter methylation status has specifically demonstrated utility in predicting the efficacy of temozolomide and should be considered in treatment decisions when possible. Cancer 2016;122:189-197. © 2015 American Cancer Society. PMID:26618888

  19. Brain cancer mortality at a manufacturer of aerospace electromechanical systems.

    PubMed

    Park, R M; Silverstein, M A; Green, M A; Mirer, F E

    1990-01-01

    Standardized proportional mortality ratios and mortality odds ratios were calculated for 583 deaths between 1950 and 1986 among employees who had worked for at least 10 years at a facility manufacturing missile and aircraft guidance systems. There was a statistically significant excess of brain cancer proportional mortality (PMR = 16/3.8 = 4.2, p = .0001). Among hourly employees, 12 brain cancer deaths occurred for 2.7 expected (PMR = 4.4, p = .00005). The PMR for brain cancer increased from 1.8 (p = .45) among hourly workers with less than 20 years to 8.7 (p = .000003) in those with more than 20 years employment. Work in "clean rooms," where gyroscopes were assembled, was associated with the brain cancer excess but did not fully account for it. Among 105 deceased hourly women, all three brain cancer deaths occurred among gyro assemblers working in clean rooms, and the risk increased with duration in clean rooms. Although the proportion of brain cancer deaths among hourly men with clean-room experience was similar to that for women, only three of the seven male brain cancer deaths occurred in this group. The suspect agents include gyro fluids and chlorofluorocarbon solvents.

  20. Suppression of the Eag1 potassium channel sensitizes glioblastoma cells to injury caused by temozolomide

    PubMed Central

    Sales, Thais Torquato; Resende, Fernando Francisco Borges; Chaves, Natália Lemos; Titze-De-Almeida, Simoneide Souza; Báo, Sônia Nair; Brettas, Marcella Lemos; Titze-De-Almeida, Ricardo

    2016-01-01

    Glioblastoma multiforme (GBM) is the most aggressive type of human primary brain tumor. The standard treatment protocol includes radiotherapy in combination with temozolomide (TMZ). Despite advances in GBM treatment, the survival time of patients diagnosed with glioma is 14.5 months. Regarding tumor biology, various types of cancer cell overexpress the ether à go-go 1 (Eag1) potassium channel. Therefore, the present study examined the role of Eag1 in the cell damage caused by TMZ on the U87MG glioblastoma cell line. Eag1 was inhibited using a channel blocker (astemizole) or silenced by a short-hairpin RNA expression vector (pKv10.1-3). pKv10.1-3 (0.2 µg) improved the Eag1 silencing caused by 250 µM TMZ, as determined by reverse transcription-quantitative polymerase chain reaction and immunocytochemistry. Additionally, inhibiting Eag1 with the vector or astemizole (5 µM) reduced glioblastoma cell viability and sensitized cells to TMZ. Cell viability decreased by 63% for pKv10.1-3 + TMZ compared with 34% for TMZ alone, and by 77% for astemizole + TMZ compared with 46% for TMZ alone, as determined by MTT assay. In addition, both the vector and astemizole increased the apoptosis rate of glioblastoma cells triggered by TMZ, as determined by an Annexin V apoptosis assay. Collectively, the current data reveal that Eag1 has a role in the damage caused to glioblastoma by TMZ. Furthermore, suppression of this channel can improve the action of TMZ on U87MG glioblastoma cells. Thus, silencing Eag1 is a promising strategy to improve GBM treatment and merits additional studies in animal models of glioma. PMID:27698831

  1. Suppression of the Eag1 potassium channel sensitizes glioblastoma cells to injury caused by temozolomide

    PubMed Central

    Sales, Thais Torquato; Resende, Fernando Francisco Borges; Chaves, Natália Lemos; Titze-De-Almeida, Simoneide Souza; Báo, Sônia Nair; Brettas, Marcella Lemos; Titze-De-Almeida, Ricardo

    2016-01-01

    Glioblastoma multiforme (GBM) is the most aggressive type of human primary brain tumor. The standard treatment protocol includes radiotherapy in combination with temozolomide (TMZ). Despite advances in GBM treatment, the survival time of patients diagnosed with glioma is 14.5 months. Regarding tumor biology, various types of cancer cell overexpress the ether à go-go 1 (Eag1) potassium channel. Therefore, the present study examined the role of Eag1 in the cell damage caused by TMZ on the U87MG glioblastoma cell line. Eag1 was inhibited using a channel blocker (astemizole) or silenced by a short-hairpin RNA expression vector (pKv10.1-3). pKv10.1-3 (0.2 µg) improved the Eag1 silencing caused by 250 µM TMZ, as determined by reverse transcription-quantitative polymerase chain reaction and immunocytochemistry. Additionally, inhibiting Eag1 with the vector or astemizole (5 µM) reduced glioblastoma cell viability and sensitized cells to TMZ. Cell viability decreased by 63% for pKv10.1-3 + TMZ compared with 34% for TMZ alone, and by 77% for astemizole + TMZ compared with 46% for TMZ alone, as determined by MTT assay. In addition, both the vector and astemizole increased the apoptosis rate of glioblastoma cells triggered by TMZ, as determined by an Annexin V apoptosis assay. Collectively, the current data reveal that Eag1 has a role in the damage caused to glioblastoma by TMZ. Furthermore, suppression of this channel can improve the action of TMZ on U87MG glioblastoma cells. Thus, silencing Eag1 is a promising strategy to improve GBM treatment and merits additional studies in animal models of glioma.

  2. Non-coding RNAs in cancer brain metastasis.

    PubMed

    Wu, Kerui; Sharma, Sambad; Venkat, Suresh; Liu, Keqin; Zhou, Xiaobo; Watabe, Kounosuke

    2016-01-01

    More than 90% of cancer death is attributed to metastatic disease, and the brain is one of the major metastatic sites of melanoma, colon, renal, lung and breast cancers. Despite the recent advancement of targeted therapy for cancer, the incidence of brain metastasis is increasing. One reason is that most therapeutic drugs can't penetrate blood-brain-barrier and tumor cells find the brain as sanctuary site. In this review, we describe the pathophysiology of brain metastases to introduce the latest understandings of metastatic brain malignancies. This review also particularly focuses on non-coding RNAs and their roles in cancer brain metastasis. Furthermore, we discuss the roles of the extracellular vesicles as they are known to transport information between cells to initiate cancer cell-microenvironment communication. The potential clinical translation of non-coding RNAs as a tool for diagnosis and for treatment is also discussed in this review. At the end, the computational aspects of non-coding RNA detection, the sequence and structure calculation and epigenetic regulation of non-coding RNA in brain metastasis are discussed.

  3. RO4929097 and Whole-Brain Radiation Therapy or Stereotactic Radiosurgery in Treating Patients With Brain Metastases From Breast Cancer

    ClinicalTrials.gov

    2015-01-22

    Estrogen Receptor-negative Breast Cancer; Extensive Stage Small Cell Lung Cancer; HER2-negative Breast Cancer; HER2-positive Breast Cancer; Male Breast Cancer; Recurrent Breast Cancer; Recurrent Melanoma; Recurrent Non-small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IV Breast Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer; Tumors Metastatic to Brain; Unspecified Adult Solid Tumor, Protocol Specific

  4. Gamma Knife Radiosurgery for Brain Metastases From Primary Breast Cancer

    SciTech Connect

    Kased, Norbert; Binder, Devin K.; McDermott, Michael W.; Nakamura, Jean L.; Huang, Kim; Berger, Mitchel S.; Wara, William M.; Sneed, Penny K.

    2009-11-15

    Purpose: The relative roles of stereotactic radiosurgery (SRS) vs. whole brain radiotherapy (WBRT) in the treatment of patients with brain metastases from breast cancer remain undefined. In this study, we reviewed our experience with these patients. Materials and Methods: We retrospectively reviewed all patients treated between 1991 and 2005 with Gamma Knife SRS for brain metastases from breast cancer. The actuarial survival and freedom from progression endpoints were calculated using the Kaplan-Meier method. Results: Between 1991 and 2005, 176 patients underwent SRS for brain metastases from breast cancer. The median survival time was 16.0 months for 95 newly diagnosed patients and 11.7 months for 81 patients with recurrent brain metastases. In the newly diagnosed patients, omission of upfront WBRT did not significantly affect the MST (p = .20), brain freedom from progression (p = .75), or freedom from new brain metastases (p = .83). Longer survival was associated with age <50 years, Karnofsky performance score >=70, primary tumor control, estrogen receptor positivity, and Her2/neu overexpression. No association was found between the number of treated brain metastases and the survival time. Conclusion: We have described prognostic factors for breast cancer patients treated with SRS for newly diagnosed or recurrent brain metastases. Most patient subsets had a median survival time of >=11 months. Unexpectedly, upfront WBRT did not appear to improve brain freedom from progression, and a larger number of brain metastases was not associated with a shorter survival time. Breast cancer might be distinct from other primary sites in terms of prognostic factors and the roles of WBRT and SRS for brain metastases.

  5. Synthesis of tetrahydrohonokiol derivates and their evaluation for cytotoxic activity against CCRF-CEM leukemia, U251 glioblastoma and HCT-116 colon cancer cells.

    PubMed

    Bernaskova, Marketa; Kretschmer, Nadine; Schuehly, Wolfgang; Huefner, Antje; Weis, Robert; Bauer, Rudolf

    2014-01-01

    Biphenyl neolignans such as honokiol and magnolol, which are the major active constituents of the Asian medicinal plant Magnolia officinalis, are known to exert a multitude of pharmacological and biological activities. Among these, cytotoxic and tumor growth inhibitory activity against various tumour cell lines are well-documented. To further elucidate the cytotoxic effects of honokiol derivatives, derivatizations were performed using tetrahydrohonokiol as a scaffold. The derivatizations comprised the introduction of functional groups, e.g., nitro and amino groups, as well as alkylation. This way, 18 derivatives, of which 13 were previously undescribed compounds, were evaluated against CCRF-CEM leukemia cells, U251 glioblastoma and HCT-116 colon cancer cells. The results revealed no significant cytotoxic effects in any of the three tested cell lines at a test concentration of 10 µM. PMID:24448063

  6. Synthesis of tetrahydrohonokiol derivates and their evaluation for cytotoxic activity against CCRF-CEM leukemia, U251 glioblastoma and HCT-116 colon cancer cells.

    PubMed

    Bernaskova, Marketa; Kretschmer, Nadine; Schuehly, Wolfgang; Huefner, Antje; Weis, Robert; Bauer, Rudolf

    2014-01-01

    Biphenyl neolignans such as honokiol and magnolol, which are the major active constituents of the Asian medicinal plant Magnolia officinalis, are known to exert a multitude of pharmacological and biological activities. Among these, cytotoxic and tumor growth inhibitory activity against various tumour cell lines are well-documented. To further elucidate the cytotoxic effects of honokiol derivatives, derivatizations were performed using tetrahydrohonokiol as a scaffold. The derivatizations comprised the introduction of functional groups, e.g., nitro and amino groups, as well as alkylation. This way, 18 derivatives, of which 13 were previously undescribed compounds, were evaluated against CCRF-CEM leukemia cells, U251 glioblastoma and HCT-116 colon cancer cells. The results revealed no significant cytotoxic effects in any of the three tested cell lines at a test concentration of 10 µM.

  7. Neurobehavioral radiation mitigation to standard brain cancer therapy regimens by Mn(III) n-butoxyethylpyridylporphyrin-based redox modifier.

    PubMed

    Weitzel, Douglas H; Tovmasyan, Artak; Ashcraft, Kathleen A; Boico, Alina; Birer, Samuel R; Roy Choudhury, Kingshuk; Herndon, James; Rodriguiz, Ramona M; Wetsel, William C; Peters, Katherine B; Spasojevic, Ivan; Batinic-Haberle, Ines; Dewhirst, Mark W

    2016-06-01

    Combinations of radiotherapy (RT) and chemotherapy have shown efficacy toward brain tumors. However, therapy-induced oxidative stress can damage normal brain tissue, resulting in both progressive neurocognitive loss and diminished quality of life. We have recently shown that MnTnBuOE-2-PyP(5+) (Mn(III)meso-tetrakis(N-n-butoxyethylpyridinium -2-yl)porphyrin) rescued RT-induced white matter damage in cranially-irradiated mice. Radiotherapy is not used in isolation for treatment of brain tumors; temozolomide is the standard-of-care for adult glioblastoma, whereas cisplatin is often used for treatment of pediatric brain tumors. Therefore, we evaluated the brain radiation mitigation ability of MnTnBuOE-2-PyP(5+) after either temozolomide or cisplatin was used singly or in combination with 10 Gy RT. MnTnBuOE-2-PyP(5+) accumulated in brains at low nanomolar levels. Histological and neurobehavioral testing showed a drastic decrease (1) of axon density in the corpus callosum and (2) rotorod and running wheel performance in the RT only treatment group, respectively. MnTnBuOE-2-PyP(5+) completely rescued this phenotype in irradiated animals. In the temozolomide groups, temozolomide/ RT treatment resulted in further decreased rotorod responses over RT alone. Again, MnTnBuOE-2-PyP(5+) treatment rescued the negative effects of both temozolomide ± RT on rotorod performance. While the cisplatin-treated groups did not give similar results as the temozolomide groups, inclusion of MnTnBuOE-2-PyP(5+) did not negatively affect rotorod performance. Additionally, MnTnBuOE-2-PyP(5+) sensitized glioblastomas to either RT ± temozolomide in flank tumor models. Mice treated with both MnTnBuOE-2-PyP(5+) and radio-/chemo-therapy herein demonstrated brain radiation mitigation. MnTnBuOE-2-PyP(5+) may well serve as a normal tissue radio-/chemo-mitigator adjuvant therapy to standard brain cancer treatment regimens. Environ. Mol. Mutagen. 57:372-381, 2016. © 2016 Wiley Periodicals, Inc.

  8. Phase II trial of pazopanib (GW786034), an oral multi-targeted angiogenesis inhibitor, for adults with recurrent glioblastoma (North American Brain Tumor Consortium Study 06-02)

    PubMed Central

    Iwamoto, Fabio M.; Lamborn, Kathleen R.; Robins, H. Ian; Mehta, Minesh P.; Chang, Susan M.; Butowski, Nicholas A.; DeAngelis, Lisa M.; Abrey, Lauren E.; Zhang, Wei-Ting; Prados, Michael D.; Fine, Howard A.

    2010-01-01

    The objective of this phase II single-arm study was to evaluate the efficacy and safety of pazopanib, a multi-targeted tyrosine kinase inhibitor, against vascular endothelial growth factor receptor (VEGFR)-1, -2, and -3, platelet-derived growth factor receptor-α and -β, and c-Kit, in recurrent glioblastoma. Patients with ≤2 relapses and no prior anti-VEGF/VEGFR therapy were treated with pazopanib 800 mg daily on 4-week cycles without planned interruptions. Brain magnetic resonance imaging and clinical reassessment were made every 8 weeks. The primary endpoint was efficacy as measured by 6-month progression-free survival (PFS6). Thirty-five GBM patients with a median age of 53 years and median Karnofsky performance scale of 90 were accrued. Grade 3/4 toxicities included leukopenia (n = 1), lymphopenia (n = 2), thrombocytopenia (n = 1), ALT elevation (n = 3), AST elevation (n = 1), CNS hemorrhage (n = 1), fatigue (n = 1), and thrombotic/embolic events (n = 3); 8 patients required dose reduction. Two patients had a partial radiographic response by standard bidimensional measurements, whereas 9 patients (6 at the 8-week point and 3 only within the first month of treatment) had decreased contrast enhancement, vasogenic edema, and mass effect but <50% reduction in tumor. The median PFS was 12 weeks (95% confidence interval [CI]: 8–14 weeks) and only 1 patient had a PFS time ≥6 months (PFS6 = 3%). Thirty patients (86%) had died and median survival was 35 weeks (95% CI: 24–47 weeks). Pazopanib was reasonably well tolerated with a spectrum of toxicities similar to other anti-VEGF/VEGFR agents. Single-agent pazopanib did not prolong PFS in this patient population but showed in situ biological activity as demonstrated by radiographic responses. ClinicalTrials.gov identifier: NCT00459381. PMID:20200024

  9. Intra-Arterial Delivery of Bevacizumab after Blood-Brain Barrier Disruption for the Treatment of Recurrent Glioblastoma: Progression-Free Survival and Overall Survival

    PubMed Central

    Burkhardt, Jan-Karl; Riina, Howard; Shin, Benjamin J.; Christos, Paul; Kesavabhotla, Kartik; Hofstetter, Christoph P.; Tsiouris, Apostolos John; Boockvar, John A.

    2013-01-01

    BACKGROUND This prospective, single-center study assesses progression-free survival (PFS) and overall survival (OS) in patients with recurrent glioblastoma multiforme (GBM) treated with a single dose of superselective intra-arterial cerebral infusion (SIACI) of bevacizumab (BV) after blood-brain barrier disruption (BBBD). Patients were initially enrolled in our phase I study, for which the primary end point was to determine the safety and maximum tolerated dose of SIACI BV. METHODS Fourteen patients with recurrent GBM were recruited between August 2009 and November 2010 after failing the standard treatment with radiation therapy and temozolomide. None of these patients were previously treated with BV. After receiving a single dose of IA BV (2 to 15 mg/kg), standard IV BV chemotherapy was continued in 12 of 14 patients (86%). The recently updated Response Assessment in Neuro-Oncology Working Group (RANO) criteria were used to evaluate PFS, and the Kaplan-Meier estimator was used to evaluate PFS and OS. RESULTS Using RANO criteria, the median PFS in these patients was 10 months. The median OS estimation for this cohort was 8.8 months. The OS was less than the PFS because 4 patients died without progressing. Toxicity attributed to the IA BV treatment was present in 2 patients (wound dehiscence and rash). Another patient suffered from seizures 1 week after the SIACI procedure; however, this patient had epilepsy before and seizure type/frequency were similar before and after therapy. CONCLUSIONS Our study shows that for patients naïve to BV, a single dose of SIACI BV after BBBD followed by IV BV offers an encouraging outcome in terms of PFS when compared with previous trials using IV BV with and without concomitant irinotecan (CPT-11). Larger phase II trials are warranted to determine whether repeated IA BV alone is superior to IV BV for recurrent GBM. PMID:22405392

  10. Nanocarriers for the treatment of glioblastoma multiforme: Current state-of-the-art.

    PubMed

    Karim, Reatul; Palazzo, Claudio; Evrard, Brigitte; Piel, Geraldine

    2016-04-10

    Glioblastoma multiforme, a grade IV glioma, is the most frequently occurring and invasive primary tumor of the central nervous system, which causes about 4% of cancer-associated-deaths, making it one of the most fatal cancers. With present treatments, using state-of-the-art technologies, the median survival is about 14 months and 2 year survival rate is merely 3-5%. Hence, novel therapeutic approaches are urgently necessary. However, most drug molecules are not able to cross the blood-brain barrier, which is one of the major difficulties in glioblastoma treatment. This review describes the features of blood-brain barrier, and its anatomical changes with different stages of tumor growth. Moreover, various strategies to improve brain drug delivery i.e. tight junction opening, chemical modification of the drug, efflux transporter inhibition, convection-enhanced delivery, craniotomy-based drug delivery and drug delivery nanosystems are discussed. Nanocarriers are one of the highly potential drug transport systems that have gained huge research focus over the last few decades for site specific drug delivery, including drug delivery to the brain. Properly designed nanocolloids are capable to cross the blood-brain barrier and specifically deliver the drug in the brain tumor tissue. They can carry both hydrophilic and hydrophobic drugs, protect them from degradation, release the drug for sustained period, significantly improve the plasma circulation half-life and reduce toxic effects. Among various nanocarriers, liposomes, polymeric nanoparticles and lipid nanocapsules are the most widely studied, and are discussed in this review. For each type of nanocarrier, a general discussion describing their composition, characteristics, types and various uses is followed by their specific application to glioblastoma treatment. Moreover, some of the main challenges regarding toxicity and standardized evaluation techniques are narrated in brief.

  11. Hypothesis: are neoplastic macrophages/microglia present in glioblastoma multiforme?

    PubMed Central

    Huysentruyt, Leanne C; Akgoc, Zeynep; Seyfried, Thomas N

    2011-01-01

    Most malignant brain tumours contain various numbers of cells with characteristics of activated or dysmorphic macrophages/microglia. These cells are generally considered part of the tumour stroma and are often described as TAM (tumour-associated macrophages). These types of cells are thought to either enhance or inhibit brain tumour progression. Recent evidence indicates that neoplastic cells with macrophage characteristics are found in numerous metastatic cancers of non-CNS (central nervous system) origin. Evidence is presented here suggesting that subpopulations of cells within human gliomas, specifically GBM (glioblastoma multiforme), are neoplastic macrophages/microglia. These cells are thought to arise following mitochondrial damage in fusion hybrids between neoplastic stem cells and macrophages/microglia. PMID:21834792

  12. PCDH10 is required for the tumorigenicity of glioblastoma cells

    SciTech Connect

    Echizen, Kanae; Nakada, Mitsutoshi; Hayashi, Tomoatsu; Sabit, Hemragul; Furuta, Takuya; Nakai, Miyuki; Koyama-Nasu, Ryo; Nishimura, Yukiko; Taniue, Kenzui; Morishita, Yasuyuki; Hirano, Shinji; Terai, Kenta; Todo, Tomoki; Ino, Yasushi; Mukasa, Akitake; Takayanagi, Shunsaku; Ohtani, Ryohei; Saito, Nobuhito; Akiyama, Tetsu

    2014-01-31

    Highlights: • PCDH10 is required for the proliferation, survival and self-renewal of glioblastoma cells. • PCDH10 is required for glioblastoma cell migration and invasion. • PCDH10 is required for the tumorigenicity of glioblastoma cells. • PCDH10 may be a promising target for the therapy of glioblastoma. - Abstract: Protocadherin10 (PCDH10)/OL-protocadherin is a cadherin-related transmembrane protein that has multiple roles in the brain, including facilitating specific cell–cell connections, cell migration and axon guidance. It has recently been reported that PCDH10 functions as a tumor suppressor and that its overexpression inhibits proliferation or invasion of multiple tumor cells. However, the function of PCDH10 in glioblastoma cells has not been elucidated. In contrast to previous reports on other tumors, we show here that suppression of the expression of PCDH10 by RNA interference (RNAi) induces the growth arrest and apoptosis of glioblastoma cells in vitro. Furthermore, we demonstrate that knockdown of PCDH10 inhibits the growth of glioblastoma cells xenografted into immunocompromised mice. These results suggest that PCDH10 is required for the proliferation and tumorigenicity of glioblastoma cells. We speculate that PCDH10 may be a promising target for the therapy of glioblastoma.

  13. Venous thromboembolism (VTE) and glioblastoma.

    PubMed

    Yust-Katz, Shlomit; Mandel, Jacob J; Wu, Jimin; Yuan, Ying; Webre, Courtney; Pawar, Tushar A; Lhadha, Harshad S; Gilbert, Mark R; Armstrong, Terri S

    2015-08-01

    The risk of venous thromboembolism (VTE) is high for patients with brain tumors (11-20 %). Glioblastoma (GBM) patients, in particular, have the highest risk of VTE (24-30 %). The Khorana scale is the most commonly used clinical scale to evaluate the risk of VTE in cancer patients but its efficacy in patients with GBM remains unclear. The aim of this study is to estimate the frequency of VTE in GBM patients and identify potential risk factors for the development of VTE during adjuvant chemotherapy. Furthermore, we intend to examine whether the Khorana scale accurately predicts the risk of VTE in GBM patients. We retrospectively reviewed the medical records of GBM patients treated at MD Anderson during the years 2005-2011. The study cohort included 440 patients of which 64 (14.5 %) developed VTE after the start of adjuvant treatment. The median time to develop VTE was 6.5 months from the start of adjuvant treatment. On multivariate analysis male sex, BMI ≥ 35, KPS ≤ 80, history of VTE and steroid therapy were significantly associated with the development of VTE. The Khorana scale was found to be an invalid VTE predictive model in GBM patients due to poor specificity. Of the 64 patients who developed a VTE, 36 were treated with anticoagulation, 2 with an IVC filter, and 21 with both. Complications (intracranial hemorrhage, bleeding in other organs and thrombocytopenia) secondary to anticoagulation were reported in 16 % (n = 10). VTE is common in patients with GBM. Our results did not validate the Khorana scale in GBM patients. Additional studies identifying which GBM patients are at highest risk for VTE are needed to enable further evaluation of VTE preventive measures in this selected group.

  14. Brain metastasis from ovarian cancer: a systematic review.

    PubMed

    Pakneshan, Shabnam; Safarpour, Damoun; Tavassoli, Fattaneh; Jabbari, Bahman

    2014-08-01

    To review the existing literature on brain metastasis (BM) from ovarian cancer and to assess the frequency, anatomical, clinical and paraclinical information and factors associated with prognosis. Ovarian cancer is a rare cause of brain metastasis with a recently reported increasing prevalence. Progressive neurologic disability and poor prognosis is common. A comprehensive review on this subject has not been published previously. This systematic literature search used the Pubmed and Yale library. A total of 66 publications were found, 57 of which were used representing 591 patients with BM from ovarian cancer. The median age of the patients was 54.3 years (range 20-81). A majority of patients (57.3 %) had multiple brain lesions. The location of the lesion was cerebellar (30 %), frontal (20 %), parietal (18 %) and occipital (11 %). Extracranial metastasis was present in 49.8 % of cases involving liver (20.7 %), lung (20.4 %), lymph nodes (12.6 %), bones (6.6 %) and pelvic organs (4.3 %). The most common symptoms were weakness (16 %), seizures (11 %), altered mentality (11 %) visual disturbances (9 %) and dizziness (8 %). The interval from diagnosis of breast cancer to BM ranged from 0 to 133 months (median 24 months) and median survival was 8.2 months. Local radiation, surgical resection, stereotactic radiosurgery and medical therapy were used. Factors that significantly increased the survival were younger age at the time of ovarian cancer diagnosis and brain metastasis diagnosis, lower grade of the primary tumor, higher KPS score and multimodality treatment for the brain metastases. Ovarian cancer is a rare cause of brain metastasis. Development of brain metastasis among older patients and lower KPS score correlate with less favorable prognosis. The more prolonged survival after using multimodality treatment for brain metastasis is important due to potential impact on management of brain metastasis in future.

  15. Recurrent Glioblastoma: Where we stand

    PubMed Central

    Roy, Sanjoy; Lahiri, Debarshi; Maji, Tapas; Biswas, Jaydip

    2015-01-01

    Current first-line treatment regimens combine surgical resection and chemoradiation for Glioblastoma that provides a slight increase in overall survival. Age on its own should not be used as an exclusion criterion of glioblastoma multiforme (GBM) treatment, but performance should be factored heavily into the decision-making process for treatment planning. Despite aggressive initial treatment, most patients develop recurrent diseases which can be treated with re-resection, systemic treatment with targeted agents or cytotoxic chemotherapy, reirradiation, or radiosurgery. Research into novel therapies is investigating alternative temozolomide regimens, convection-enhanced delivery, immunotherapy, gene therapy, antiangiogenic agents, poly ADP ribose polymerase inhibitors, or cancer stem cell signaling pathways. Given the aggressive and resilient nature of GBM, continued efforts to better understand GBM pathophysiology are required to discover novel targets for future therapy. PMID:26981507

  16. Glioblastoma after radiotherapy for craniopharyngioma: case report

    SciTech Connect

    Ushio, Y.; Arita, N.; Yoshimine, T.; Nagatani, M.; Mogami, H.

    1987-07-01

    A 6-year-old girl developed a glioblastoma in the basal ganglia and brain stem 5 years after surgical excision and local irradiation (5460 cGy) for craniopharyngioma. Clinical and histological details are presented, and the literature on radiation-induced gliomas is reviewed.

  17. MiR-224 expression increases radiation sensitivity of glioblastoma cells

    SciTech Connect

    Upraity, Shailendra; Kazi, Sadaf; Padul, Vijay; Shirsat, Neelam Vishwanath

    2014-05-30

    Highlights: • MiR-224 expression in established glioblastoma cell lines and sporadic tumor tissues is low. • Exogenous miR-224 expression was found to increase radiation sensitivity of glioblastoma cells. • MiR-224 expression brought about 55–60% reduction in API5 expression levels. • Transfection with API5 siRNA increased radiation sensitivity of glioblastoma cells. • Low miR-224 and high API5 expression correlated with worse survival of GBM patients. - Abstract: Glioblastoma (GBM) is the most common and highly aggressive primary malignant brain tumor. The intrinsic resistance of this brain tumor limits the efficacy of administered treatment like radiation therapy. In the present study, effect of miR-224 expression on growth characteristics of established GBM cell lines was analyzed. MiR-224 expression in the cell lines as well as in primary GBM tumor tissues was found to be low. Exogenous transient expression of miR-224 using either synthetic mimics or stable inducible expression using doxycycline inducible lentiviral vector carrying miR-224 gene, was found to bring about 30–55% reduction in clonogenic potential of U87 MG cells. MiR-224 expression reduced clonogenic potential of U87 MG cells by 85–90% on irradiation at a dose of 6 Gy, a dose that brought about 50% reduction in clonogenic potential in the absence of miR-224 expression. MiR-224 expression in glioblastoma cells resulted in 55–65% reduction in the expression levels of API5 gene, a known target of miR-224. Further, siRNA mediated down-regulation of API5 was also found to have radiation sensitizing effect on glioblastoma cell lines. Analysis of the Cancer Genome Atlas data showed lower miR-224 expression levels in male GBM patients to correlate with poorer survival. Higher expression levels of miR-224 target API5 also showed significant correlation with poorer survival of GBM patients. Up-regulation of miR-224 or down-regulation of its target API5 in combination with radiation therapy

  18. Time-Frequency Analysis of Peptide Microarray Data: Application to Brain Cancer Immunosignatures

    PubMed Central

    O’Donnell, Brian; Maurer, Alexander; Papandreou-Suppappola, Antonia; Stafford, Phillip

    2015-01-01

    One of the gravest dangers facing cancer patients is an extended symptom-free lull between tumor initiation and the first diagnosis. Detection of tumors is critical for effective intervention. Using the body’s immune system to detect and amplify tumor-specific signals may enable detection of cancer using an inexpensive immunoassay. Immunosignatures are one such assay: they provide a map of antibody interactions with random-sequence peptides. They enable detection of disease-specific patterns using classic train/test methods. However, to date, very little effort has gone into extracting information from the sequence of peptides that interact with disease-specific antibodies. Because it is difficult to represent all possible antigen peptides in a microarray format, we chose to synthesize only 330,000 peptides on a single immunosignature microarray. The 330,000 random-sequence peptides on the microarray represent 83% of all tetramers and 27% of all pentamers, creating an unbiased but substantial gap in the coverage of total sequence space. We therefore chose to examine many relatively short motifs from these random-sequence peptides. Time-variant analysis of recurrent subsequences provided a means to dissect amino acid sequences from the peptides while simultaneously retaining the antibody–peptide binding intensities. We first used a simple experiment in which monoclonal antibodies with known linear epitopes were exposed to these random-sequence peptides, and their binding intensities were used to create our algorithm. We then demonstrated the performance of the proposed algorithm by examining immunosignatures from patients with Glioblastoma multiformae (GBM), an aggressive form of brain cancer. Eight different frameshift targets were identified from the random-sequence peptides using this technique. If immune-reactive antigens can be identified using a relatively simple immune assay, it might enable a diagnostic test with sufficient sensitivity to detect tumors

  19. Breast cancer brain metastases: new directions in systemic therapy

    PubMed Central

    Lin, Nancy U

    2013-01-01

    The management of patients with brain metastases from breast cancer continues to be a major clinical challenge. The standard initial therapeutic approach depends upon the size, location, and number of metastatic lesions and includes consideration of surgical resection, whole-brain radiotherapy, and stereotactic radiosurgery. As systemic therapies for control of extracranial disease improve, patients are surviving long enough to experience subsequent progression events in the brain. Therefore, there is an increasing need to identify both more effective initial treatments as well as to develop multiple lines of salvage treatments for patients with breast cancer brain metastases. This review summarises the clinical experience to date with respect to cytotoxic and targeted systemic therapies for the treatment of brain metastases, highlights ongoing and planned trials of novel approaches and identifies potential targets for future investigation. PMID:23662165

  20. Improving Goals of Care Discussion in Advanced Cancer Patients

    ClinicalTrials.gov

    2016-06-30

    Primary Stage IV Hepatobiliary; Esophageal; Colorectal Cancer; Glioblastoma; Cancer of Stomach; Cancer of Pancreas; Melanoma; Head or Neck Cancer; Stage III; Stage IV; Lung Cancers; Pancreatic Cancers

  1. Brain metastases free survival differs between breast cancer subtypes

    PubMed Central

    Berghoff, A; Bago-Horvath, Z; De Vries, C; Dubsky, P; Pluschnig, U; Rudas, M; Rottenfusser, A; Knauer, M; Eiter, H; Fitzal, F; Dieckmann, K; Mader, R M; Gnant, M; Zielinski, C C; Steger, G G; Preusser, M; Bartsch, R

    2012-01-01

    Background: Brain metastases (BM) are frequently diagnosed in patients with HER-2-positive metastatic breast cancer; in addition, an increasing incidence was reported for triple-negative tumours. We aimed to compare brain metastases free survival (BMFS) of breast cancer subtypes in patients treated between 1996 until 2010. Methods: Brain metastases free survival was measured as the interval from diagnosis of extracranial breast cancer metastases until diagnosis of BM. HER-2 status was analysed by immunohistochemistry and reanalysed by fluorescent in situ hybridisation if a score of 2+ was gained. Oestrogen-receptor (ER) and progesterone-receptor (PgR) status was analysed by immunohistochemistry. Brain metastases free survival curves were estimated with the Kaplan–Meier method and compared with the log-rank test. Results: Data of 213 patients (46 luminal/124 HER-2/43 triple-negative subtype) with BM from breast cancer were available for the analysis. Brain metastases free survival differed significantly between breast cancer subtypes. Median BMFS in triple-negative tumours was 14 months (95% CI: 11.34–16.66) compared with 18 months (95% CI: 14.46–21.54) in HER-2-positive tumours (P=0.001) and 34 months (95% CI: 23.71–44.29) in luminal tumours (P=0.001), respectively. In HER-2-positive patients, co-positivity for ER and HER-2 prolonged BMFS (26 vs 15 m; P=0.033); in luminal tumours, co-expression of ER and PgR was not significantly associated with BMFS. Brain metastases free survival in patients with lung metastases was significantly shorter (17 vs 21 months; P=0.014). Conclusion: Brain metastases free survival in triple-negative breast cancer, as well as in HER-2-positive/ER-negative, is significantly shorter compared with HER-2/ER co-positive or luminal tumours, mirroring the aggressiveness of these breast cancer subtypes. PMID:22233926

  2. High-mobility group AT-hook protein 2 expression and its prognostic significance in MGMT methylated and unmethylated glioblastoma.

    PubMed

    Schwarm, Frank P; Uhle, Florian; Schänzer, Anne; Acker, Till; Stein, Marco; Reinges, Marcus H T; Weischer, Cornelia; Weigand, Marcus A; Uhl, Eberhard; Kolodziej, Malgorzata A

    2016-04-01

    High-mobility group AT-hook protein 2 (HMGA 2) is a transcription factor associated with malignancy and poor prognosis in a variety of human cancers. We correlated HMGA 2 expression with clinical parameters, survival, and O-6-methylguanine-DNA methyltransferase methylation status (MGMT) in glioblastoma patients. HMGA 2 expression was determined by performing quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry (IHC) in 44 glioblastoma patients and 5 non-tumorous brain specimens as controls. Gene expression levels of MGMT methylated vs. unmethylated patients, and gene expression levels between patient groups, both for qPCR and IHC data were compared using the Mann-Whitney U test. The relationship between HMGA 2 expression, progression-free survival and overall survival was analyzed using the Kaplan-Meier method and the log-rank test. P-values of <0.05 were considered statistically significant throughout the analyses. The mean age of patients at diagnosis was 57.4 ± 15.7 years, and the median survival was 16 months (SE 2.8; 95% CI, 10.6-21.4). HMGA 2 gene expression was significantly higher in glioblastoma compared to normal brain tissue on qPCR (mean, 0.35; SD, 0.27 vs. 0.03, SD, 0.05) and IHC levels (IRS mean, 17.21; SD, 7.43 vs. 3.20; SD, 1.68) (p=0.001). Survival analysis revealed that HMGA 2 overexpression was associated with a shorter progression-free and overall survival time in patients with methylation (n=24). The present study shows a tendency that HMGA 2 overexpression correlates with a poor prognosis of glioblastoma patients independent of MGMT methylation status. The results suggest that HMGA 2 could play an important role in the treatment of glioblastoma and could have a function in prognosis of this type of cancer. PMID:26892260

  3. TCGA Workshop: Genomics and Biology of Glioblastoma Multiforme (GBM) - TCGA

    Cancer.gov

    The National Cancer Institute (NCI) and National Human Genome Research Institute (NHGRI) held a workshop entitled, “Genomics and Biology of Glioblastoma Multiforme (GBM),” to review the initial GBM data from the TCGA pilot project.

  4. Current data and strategy in glioblastoma multiforme

    PubMed Central

    Dinca, EB

    2009-01-01

    Glioblastoma multiforme (GBM) or astrocytoma grade Ⅳ on WHO classification is the most aggressive and the most frequent of all primary brain tumors. Glioblastoma is multiforme , resistant to therapeutic interventions illustrating the heterogeneity exhibited by this tumor in its every aspect, including clinical presentation, pathology, genetic signature. Current data and treatment strategy in GBM are presented focusing on basic science data and key clinical aspects like surgery, including personal experience; adjuvant modalities: radiotherapy, chemotherapy, but also for experimental approaches. Therapeutic attitude in recurrent GBM is also widely discussed. PMID:20108752

  5. Current data and strategy in glioblastoma multiforme.

    PubMed

    Iacob, Gabriel; Dinca, Eduard B

    2009-01-01

    Glioblastoma multiforme (GBM) or astrocytoma grade IV on WHO classification is the most aggressive and the most frequent of all primary brain tumors. Glioblastoma is multiforme, resistant to therapeutic interventions illustrating the heterogeneity exhibited by this tumor in its every aspect, including clinical presentation, pathology, genetic signature. Current data and treatment strategy in GBM are presented focusing on basic science data and key clinical aspects like surgery, including personal experience; adjuvant modalities: radiotherapy, chemotherapy, but also for experimental approaches. Therapeutic attitude in recurrent GBM is also widely discussed.

  6. Targeted Therapies for Brain Metastases from Breast Cancer.

    PubMed

    Venur, Vyshak Alva; Leone, José Pablo

    2016-01-01

    The discovery of various driver pathways and targeted small molecule agents/antibodies have revolutionized the management of metastatic breast cancer. Currently, the major targets of clinical utility in breast cancer include the human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF) receptor, mechanistic target of rapamycin (mTOR) pathway, and the cyclin-dependent kinase 4/6 (CDK-4/6) pathway. Brain metastasis, however, remains a thorn in the flesh, leading to morbidity, neuro-cognitive decline, and interruptions in the management of systemic disease. Approximately 20%-30% of patients with metastatic breast cancer develop brain metastases. Surgery, whole brain radiation therapy, and stereotactic radiosurgery are the traditional treatment options for patients with brain metastases. The therapeutic paradigm is changing due to better understanding of the blood brain barrier and the advent of tyrosine kinase inhibitors and monoclonal antibodies. Several of these agents are in clinical practice and several others are in early stage clinical trials. In this article, we will review the common targetable pathways in the management of breast cancer patients with brain metastases, and the current state of the clinical development of drugs against these pathways.

  7. Targeted Therapies for Brain Metastases from Breast Cancer

    PubMed Central

    Venur, Vyshak Alva; Leone, José Pablo

    2016-01-01

    The discovery of various driver pathways and targeted small molecule agents/antibodies have revolutionized the management of metastatic breast cancer. Currently, the major targets of clinical utility in breast cancer include the human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF) receptor, mechanistic target of rapamycin (mTOR) pathway, and the cyclin-dependent kinase 4/6 (CDK-4/6) pathway. Brain metastasis, however, remains a thorn in the flesh, leading to morbidity, neuro-cognitive decline, and interruptions in the management of systemic disease. Approximately 20%–30% of patients with metastatic breast cancer develop brain metastases. Surgery, whole brain radiation therapy, and stereotactic radiosurgery are the traditional treatment options for patients with brain metastases. The therapeutic paradigm is changing due to better understanding of the blood brain barrier and the advent of tyrosine kinase inhibitors and monoclonal antibodies. Several of these agents are in clinical practice and several others are in early stage clinical trials. In this article, we will review the common targetable pathways in the management of breast cancer patients with brain metastases, and the current state of the clinical development of drugs against these pathways. PMID:27649142

  8. Targeted Therapies for Brain Metastases from Breast Cancer.

    PubMed

    Venur, Vyshak Alva; Leone, José Pablo

    2016-01-01

    The discovery of various driver pathways and targeted small molecule agents/antibodies have revolutionized the management of metastatic breast cancer. Currently, the major targets of clinical utility in breast cancer include the human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF) receptor, mechanistic target of rapamycin (mTOR) pathway, and the cyclin-dependent kinase 4/6 (CDK-4/6) pathway. Brain metastasis, however, remains a thorn in the flesh, leading to morbidity, neuro-cognitive decline, and interruptions in the management of systemic disease. Approximately 20%-30% of patients with metastatic breast cancer develop brain metastases. Surgery, whole brain radiation therapy, and stereotactic radiosurgery are the traditional treatment options for patients with brain metastases. The therapeutic paradigm is changing due to better understanding of the blood brain barrier and the advent of tyrosine kinase inhibitors and monoclonal antibodies. Several of these agents are in clinical practice and several others are in early stage clinical trials. In this article, we will review the common targetable pathways in the management of breast cancer patients with brain metastases, and the current state of the clinical development of drugs against these pathways. PMID:27649142

  9. Irradiation of the potential cancer stem cell niches in the adult brain improves progression-free survival of patients with malignant glioma

    PubMed Central

    2010-01-01

    Background Glioblastoma is the most common brain tumor in adults. The mechanisms leading to glioblastoma are not well understood but animal studies support that inactivation of tumor suppressor genes in neural stem cells (NSC) is required and sufficient to induce glial cancers. This suggests that the NSC niches in the brain may harbor cancer stem cells (CSCs), Thus providing novel therapy targets. We hypothesize that higher radiation doses to these NSC niches improve patient survival by eradicating CSCs. Methods 55 adult patients with Grade 3 or Grade 4 glial cancer treated with radiotherapy at UCLA between February of 2003 and May of 2009 were included in this retrospective study. Using radiation planning software and patient radiological records, the SVZ and SGL were reconstructed for each of these patients and dosimetry data for these structures was calculated. Results Using Kaplan-Meier analysis we show that patients whose bilateral subventricular zone (SVZ) received greater than the median SVZ dose (= 43 Gy) had a significant improvement in progression-free survival if compared to patients who received less than the median dose (15.0 vs 7.2 months PFS; P = 0.028). Furthermore, a mean dose >43 Gy to the bilateral SVZ yielded a hazard ratio of 0.73 (P = 0.019). Importantly, similarly analyzing total prescription dose failed to illustrate a statistically significant impact. Conclusions Our study leads us to hypothesize that in glioma targeted radiotherapy of the stem cell niches in the adult brain could yield significant benefits over radiotherapy of the primary tumor mass alone and that damage caused by smaller fractions of radiation maybe less efficiently detected by the DNA repair mechanisms in CSCs. PMID:20663133

  10. The NSL Chromatin-Modifying Complex Subunit KANSL2 Regulates Cancer Stem-like Properties in Glioblastoma That Contribute to Tumorigenesis.

    PubMed

    Ferreyra Solari, Nazarena E; Belforte, Fiorella S; Canedo, Lucía; Videla-Richardson, Guillermo A; Espinosa, Joaquín M; Rossi, Mario; Serna, Eva; Riudavets, Miguel A; Martinetto, Horacio; Sevlever, Gustavo; Perez-Castro, Carolina

    2016-09-15

    KANSL2 is an integral subunit of the nonspecific lethal (NSL) chromatin-modifying complex that contributes to epigenetic programs in embryonic stem cells. In this study, we report a role for KANSL2 in regulation of stemness in glioblastoma (GBM), which is characterized by heterogeneous tumor stem-like cells associated with therapy resistance and disease relapse. KANSL2 expression is upregulated in cancer cells, mainly at perivascular regions of tumors. RNAi-mediated silencing of KANSL2 in GBM cells impairs their tumorigenic capacity in mouse xenograft models. In clinical specimens, we found that expression levels of KANSL2 correlate with stemness markers in GBM stem-like cell populations. Mechanistic investigations showed that KANSL2 regulates cell self-renewal, which correlates with effects on expression of the stemness transcription factor POU5F1. RNAi-mediated silencing of POU5F1 reduced KANSL2 levels, linking these two genes to stemness control in GBM cells. Together, our findings indicate that KANSL2 acts to regulate the stem cell population in GBM, defining it as a candidate GBM biomarker for clinical use. Cancer Res; 76(18); 5383-94. ©2016 AACR.

  11. Secondary Data Analytics of Aquaporin Expression Levels in Glioblastoma Stem-Like Cells

    PubMed Central

    Isokpehi, Raphael D; Wollenberg Valero, Katharina C; Graham, Barbara E; Pacurari, Maricica; Sims, Jennifer N; Udensi, Udensi K; Ndebele, Kenneth

    2015-01-01

    Glioblastoma is the most common brain tumor in adults in which recurrence has been attributed to the presence of cancer stem cells in a hypoxic microenvironment. On the basis of tumor formation in vivo and growth type in vitro, two published microarray gene expression profiling studies grouped nine glioblastoma stem-like (GS) cell lines into one of two groups: full (GSf) or restricted (GSr) stem-like phenotypes. Aquaporin-1 (AQP1) and aquaporin-4 (AQP4) are water transport proteins that are highly expressed in primary glial-derived tumors. However, the expression levels of AQP1 and AQP4 have not been previously described in a panel of 92 glioma samples. Therefore, we designed secondary data analytics methods to determine the expression levels of AQP1 and AQP4 in GS cell lines and glioblastoma neurospheres. Our investigation also included a total of 2,566 expression levels from 28 Affymetrix microarray probe sets encoding 13 human aquaporins (AQP0–AQP12); CXCR4 (the receptor for stromal cell derived factor-1 [SDF-1], a potential glioma stem cell therapeutic target]); and PROM1 (gene encoding CD133, the widely used glioma stem cell marker). Interactive visual representation designs for integrating phenotypic features and expression levels revealed that inverse expression levels of AQP1 and AQP4 correlate with distinct phenotypes in a set of cell lines grouped into full and restricted stem-like phenotypes. Discriminant function analysis further revealed that AQP1 and AQP4 expression are better predictors for tumor formation and growth types in glioblastoma stem-like cells than are CXCR4 and PROM1. Future investigations are needed to characterize the molecular mechanisms for inverse expression levels of AQP1 and AQP4 in the glioblastoma stem-like neurospheres. PMID:26279619

  12. Secondary Data Analytics of Aquaporin Expression Levels in Glioblastoma Stem-Like Cells.

    PubMed

    Isokpehi, Raphael D; Wollenberg Valero, Katharina C; Graham, Barbara E; Pacurari, Maricica; Sims, Jennifer N; Udensi, Udensi K; Ndebele, Kenneth

    2015-01-01

    Glioblastoma is the most common brain tumor in adults in which recurrence has been attributed to the presence of cancer stem cells in a hypoxic microenvironment. On the basis of tumor formation in vivo and growth type in vitro, two published microarray gene expression profiling studies grouped nine glioblastoma stem-like (GS) cell lines into one of two groups: full (GSf) or restricted (GSr) stem-like phenotypes. Aquaporin-1 (AQP1) and aquaporin-4 (AQP4) are water transport proteins that are highly expressed in primary glial-derived tumors. However, the expression levels of AQP1 and AQP4 have not been previously described in a panel of 92 glioma samples. Therefore, we designed secondary data analytics methods to determine the expression levels of AQP1 and AQP4 in GS cell lines and glioblastoma neurospheres. Our investigation also included a total of 2,566 expression levels from 28 Affymetrix microarray probe sets encoding 13 human aquaporins (AQP0-AQP12); CXCR4 (the receptor for stromal cell derived factor-1 [SDF-1], a potential glioma stem cell therapeutic target]); and PROM1 (gene encoding CD133, the widely used glioma stem cell marker). Interactive visual representation designs for integrating phenotypic features and expression levels revealed that inverse expression levels of AQP1 and AQP4 correlate with distinct phenotypes in a set of cell lines grouped into full and restricted stem-like phenotypes. Discriminant function analysis further revealed that AQP1 and AQP4 expression are better predictors for tumor formation and growth types in glioblastoma stem-like cells than are CXCR4 and PROM1. Future investigations are needed to characterize the molecular mechanisms for inverse expression levels of AQP1 and AQP4 in the glioblastoma stem-like neurospheres.

  13. ROCK Inhibition Facilitates In Vitro Expansion of Glioblastoma Stem-Like Cells

    PubMed Central

    Tilson, Samantha G.; Haley, Elizabeth M.; Triantafillu, Ursula L.; Dozier, David A.; Langford, Catherine P.; Gillespie, G. Yancey; Kim, Yonghyun

    2015-01-01

    Due to their stem-like characteristics and their resistance to existing chemo- and radiation therapies, there is a growing appreciation that cancer stem cells (CSCs) are the root cause behind cancer metastasis and recurrence. However, these cells represent a small subpopulation of cancer cells and are difficult to propagate in vitro. Glioblastoma is an extremely deadly form of brain cancer that is hypothesized to have a subpopulation of CSCs called glioblastoma stem cells (GSCs; also called brain tumor initiating cells, BTICs). We propose the use of selective Rho-kinase (ROCK) inhibitors, Y-27632 and fasudil, to promote GSC/BTIC-like cell survival and propagation in vitro. ROCK inhibitors have been implicated in suppressing apoptosis, and it was hypothesized that they would increase the number of GSC/BTIC-like cells grown in vitro and improve cloning efficiencies. Indeed, our data demonstrate that transient and continuous supplementation of non-toxic concentrations of Y-27632 and fasudil inhibited apoptosis, enhanced the cells’ ability to form spheres, and increased stem cell marker expressing GSC/BTIC-like cell subpopulation. Our data indicated that pharmacological and genetic (siRNA) inhibitions of the ROCK pathway facilitates in vitro expansion of GSC/BTIC-like cells. Thus, ROCK pathway inhibition shows promise for future optimization of CSC culture media. PMID:26167936

  14. Resveratrol sensitizes glioblastoma-initiating cells to temozolomide by inducing cell apoptosis and promoting differentiation.

    PubMed

    Li, Hao; Liu, Yaodong; Jiao, Yumin; Guo, Anchen; Xu, Xiaoxue; Qu, Xianjun; Wang, Shuo; Zhao, Jizong; Li, Ye; Cao, Yong

    2016-01-01

    Glioblastoma-initiating cells play crucial roles in the origin, growth, and recurrence of glioblastoma multiforme. The elimination of glioblastoma-initiating cells is believed to be a key strategy for achieving long-term survival of glioblastoma patients due to the highly resistant property of glioblastoma-initiating cells to temozolomide. Resveratrol, a naturally occurring polyphenol, has been widely studied as a promising candidate for cancer prevention and treatment. Whether resveratrol could enhance the sensitivity of glioblastoma-initiating cells to temozolomide therapy has not yet been reported. Here, using patient-derived glioblastoma-initiating cell lines, we found that resveratrol sensitized glioblastoma-initiating cells to temozolomide both in vitro and in vivo. Furthermore, we showed that resveratrol enhanced glioblastoma-initiating cells to temozolomide-induced apoptosis through DNA double-stranded breaks/pATM/pATR/p53 pathway activation, and promoted glioblastoma-initiating cell differentiation involving p-STAT3 inactivation. Our results propose that temozolomide and resveratrol combination strategy may be effective in the management of glioblastoma patients, particularly for those patients who have been present with a high abundance of glioblastoma-initiating cells in their tumors and show slight responsiveness to temozolomide.

  15. New perspectives in glioblastoma antiangiogenic therapy

    PubMed Central

    Popescu, Alisa Madalina; Purcaru, Stefana Oana; Alexandru, Oana

    2015-01-01

    Glioblastoma (GB) is highly vascularised tumour, known to exhibit enhanced infiltrative potential. One of the characteristics of glioblastoma is microvascular proliferation surrounding necrotic areas, as a response to a hypoxic environment, which in turn increases the expression of angiogenic factors and their signalling pathways (RAS/RAF/ERK/MAPK pathway, PI3K/Akt signalling pathway and WTN signalling cascade). Currently, a small number of anti-angiogenic drugs, extending glioblastoma patients survival, are available for clinical use. Most medications are ineffective in clinical therapy of glioblastoma due to acquired malignant cells or intrinsic resistance, angiogenic receptors cross-activation and redundant intracellular signalling, or the inability of the drug to cross the blood-brain barrier and to reach its target in vivo. Researchers have also observed that GB tumours are different in many aspects, even when they derive from the same tissue, which is the reason for personalised therapy. An understanding of the molecular mechanisms regulating glioblastoma angiogenesis and invasion may be important in the future development of curative therapeutic approaches for the treatment of this devastating disease. PMID:27358588

  16. Integrated Genomic and Epigenomic Analysis of Breast Cancer Brain Metastasis

    PubMed Central

    Salhia, Bodour; Kiefer, Jeff; Ross, Julianna T. D.; Metapally, Raghu; Martinez, Rae Anne; Johnson, Kyle N.; DiPerna, Danielle M.; Paquette, Kimberly M.; Jung, Sungwon; Nasser, Sara; Wallstrom, Garrick; Tembe, Waibhav; Baker, Angela; Carpten, John; Resau, Jim; Ryken, Timothy; Sibenaller, Zita; Petricoin, Emanuel F.; Liotta, Lance A.; Ramanathan, Ramesh K.; Berens, Michael E.; Tran, Nhan L.

    2014-01-01

    The brain is a common site of metastatic disease in patients with breast cancer, which has few therapeutic options and dismal outcomes. The purpose of our study was to identify common and rare events that underlie breast cancer brain metastasis. We performed deep genomic profiling, which integrated gene copy number, gene expression and DNA methylation datasets on a collection of breast brain metastases. We identified frequent large chromosomal gains in 1q, 5p, 8q, 11q, and 20q and frequent broad-level deletions involving 8p, 17p, 21p and Xq. Frequently amplified and overexpressed genes included ATAD2, BRAF, DERL1, DNMTRB and NEK2A. The ATM, CRYAB and HSPB2 genes were commonly deleted and underexpressed. Knowledge mining revealed enrichment in cell cycle and G2/M transition pathways, which contained AURKA, AURKB and FOXM1. Using the PAM50 breast cancer intrinsic classifier, Luminal B, Her2+/ER negative, and basal-like tumors were identified as the most commonly represented breast cancer subtypes in our brain metastasis cohort. While overall methylation levels were increased in breast cancer brain metastasis, basal-like brain metastases were associated with significantly lower levels of methylation. Integrating DNA methylation data with gene expression revealed defects in cell migration and adhesion due to hypermethylation and downregulation of PENK, EDN3, and ITGAM. Hypomethylation and upregulation of KRT8 likely affects adhesion and permeability. Genomic and epigenomic profiling of breast brain metastasis has provided insight into the somatic events underlying this disease, which have potential in forming the basis of future therapeutic strategies. PMID:24489661

  17. BC3EE2,9B, a synthetic carbazole derivative, upregulates autophagy and synergistically sensitizes human GBM8901 glioblastoma cells to temozolomide.

    PubMed

    Chen, Chien-Min; Syu, Jhih-Pu; Way, Tzong-Der; Huang, Li-Jiau; Kuo, Sheng-Chu; Lin, Chung-Tien; Lin, Chih-Li

    2015-11-01

    Glioblastoma multiforme (GBM) is the most fatal form of human brain cancer. Although temozolomide (TMZ), an oral alkylating chemotherapeutic agent, improves the survival rate, the prognosis of patients with GBM remains poor. Naturally occurring carbazole alkaloids isolated from curry leaves (Murraya koenigii Spreng.) have been shown to possess a wide range of anticancer properties. However, the effects of carbazole derivatives on glioblastoma cells remain poorly understood. In the present study, anti‑glioblastoma profiles of a series of synthetic carbazole derivatives were evaluated in vitro. The most promising derivative in this series was BC3EE2,9B, which showed significant anti‑proliferative effects in GBM8401 and GBM8901 cells. BC3EE2,9B also triggered cell‑cycle arrest, most prominently at the G1 stage, and suppressed glioblastoma cell invasion and migration. Furthermore, BC3EE2,9B induced autophagy‑mediated cell death and synergistically sensitized GBM cells to TMZ cytotoxicity. The possible mechanism underlying BC3EE2,9B‑induced autophagy may involve activation of adenosine monophosphate-activated protein kinase and the attenuation of the Akt and mammalian target of the rapamycin downstream signaling pathway. Taken together, the present results provide molecular evidence for the mode of action governing the ability of BC3EE2,9B to sensitize drug‑resistant glioblastoma cells to the chemotherapeutic agent TMZ.

  18. BC3EE2,9B, a synthetic carbazole derivative, upregulates autophagy and synergistically sensitizes human GBM8901 glioblastoma cells to temozolomide

    PubMed Central

    CHEN, CHIEN-MIN; SYU, JHIH-PU; WAY, TZONG-DER; HUANG, LI-JIAU; KUO, SHENG-CHU; LIN, CHUNG-TIEN; LIN, CHIH-LI

    2015-01-01

    Glioblastoma multiforme (GBM) is the most fatal form of human brain cancer. Although temozolomide (TMZ), an oral alkylating chemotherapeutic agent, improves the survival rate, the prognosis of patients with GBM remains poor. Naturally occurring carbazole alkaloids isolated from curry leaves (Murraya koenigii Spreng.) have been shown to possess a wide range of anticancer properties. However, the effects of carbazole derivatives on glioblastoma cells remain poorly understood. In the present study, anti-glioblastoma profiles of a series of synthetic carbazole derivatives were evaluated in vitro. The most promising derivative in this series was BC3EE2,9B, which showed significant anti-proliferative effects in GBM8401 and GBM8901 cells. BC3EE2,9B also triggered cell-cycle arrest, most prominently at the G1 stage, and suppressed glioblastoma cell invasion and migration. Furthermore, BC3EE2,9B induced autophagy-mediated cell death and synergistically sensitized GBM cells to TMZ cytotoxicity. The possible mechanism underlying BC3EE2,9B-induced autophagy may involve activation of adenosine monophosphate-activated protein kinase and the attenuation of the Akt and mammalian target of the rapamycin downstream signaling pathway. Taken together, the present results provide molecular evidence for the mode of action governing the ability of BC3EE2,9B to sensitize drug-resistant glioblastoma cells to the chemotherapeutic agent TMZ. PMID:26329365

  19. Cancer Stem Cell-Secreted Macrophage Migration Inhibitory Factor Stimulates Myeloid Derived Suppressor Cell Function and Facilitates Glioblastoma Immune Evasion.

    PubMed

    Otvos, Balint; Silver, Daniel J; Mulkearns-Hubert, Erin E; Alvarado, Alvaro G; Turaga, Soumya M; Sorensen, Mia D; Rayman, Patricia; Flavahan, William A; Hale, James S; Stoltz, Kevin; Sinyuk, Maksim; Wu, Qiulian; Jarrar, Awad; Kim, Sung-Hak; Fox, Paul L; Nakano, Ichiro; Rich, Jeremy N; Ransohoff, Richard M; Finke, James; Kristensen, Bjarne W; Vogelbaum, Michael A; Lathia, Justin D

    2016-08-01

    Shifting the balance away from tumor-mediated immune suppression toward tumor immune rejection is the conceptual foundation for a variety of immunotherapy efforts currently being tested. These efforts largely focus on activating antitumor immune responses but are confounded by multiple immune cell populations, including myeloid-derived suppressor cells (MDSCs), which serve to suppress immune system function. We have identified immune-suppressive MDSCs in the brains of GBM patients and found that they were in close proximity to self-renewing cancer stem cells (CSCs). MDSCs were selectively depleted using 5-flurouracil (5-FU) in a low-dose administration paradigm, which resulted in prolonged survival in a syngeneic mouse model of glioma. In coculture studies, patient-derived CSCs but not nonstem tumor cells selectively drove MDSC-mediated immune suppression. A cytokine screen revealed that CSCs secreted multiple factors that promoted this activity, including macrophage migration inhibitory factor (MIF), which was produced at high levels by CSCs. Addition of MIF increased production of the immune-suppressive enzyme arginase-1 in MDSCs in a CXCR2-dependent manner, whereas blocking MIF reduced arginase-1 production. Similarly to 5-FU, targeting tumor-derived MIF conferred a survival advantage to tumor-bearing animals and increased the cytotoxic T cell response within the tumor. Importantly, tumor cell proliferation, survival, and self-renewal were not impacted by MIF reduction, demonstrating that MIF is primarily an indirect promoter of GBM progression, working to suppress immune rejection by activating and protecting immune suppressive MDSCs within the GBM tumor microenvironment. Stem Cells 2016;34:2026-2039. PMID:27145382

  20. Cancer Stem Cell-Secreted Macrophage Migration Inhibitory Factor Stimulates Myeloid Derived Suppressor Cell Function and Facilitates Glioblastoma Immune Evasion.

    PubMed

    Otvos, Balint; Silver, Daniel J; Mulkearns-Hubert, Erin E; Alvarado, Alvaro G; Turaga, Soumya M; Sorensen, Mia D; Rayman, Patricia; Flavahan, William A; Hale, James S; Stoltz, Kevin; Sinyuk, Maksim; Wu, Qiulian; Jarrar, Awad; Kim, Sung-Hak; Fox, Paul L; Nakano, Ichiro; Rich, Jeremy N; Ransohoff, Richard M; Finke, James; Kristensen, Bjarne W; Vogelbaum, Michael A; Lathia, Justin D

    2016-08-01

    Shifting the balance away from tumor-mediated immune suppression toward tumor immune rejection is the conceptual foundation for a variety of immunotherapy efforts currently being tested. These efforts largely focus on activating antitumor immune responses but are confounded by multiple immune cell populations, including myeloid-derived suppressor cells (MDSCs), which serve to suppress immune system function. We have identified immune-suppressive MDSCs in the brains of GBM patients and found that they were in close proximity to self-renewing cancer stem cells (CSCs). MDSCs were selectively depleted using 5-flurouracil (5-FU) in a low-dose administration paradigm, which resulted in prolonged survival in a syngeneic mouse model of glioma. In coculture studies, patient-derived CSCs but not nonstem tumor cells selectively drove MDSC-mediated immune suppression. A cytokine screen revealed that CSCs secreted multiple factors that promoted this activity, including macrophage migration inhibitory factor (MIF), which was produced at high levels by CSCs. Addition of MIF increased production of the immune-suppressive enzyme arginase-1 in MDSCs in a CXCR2-dependent manner, whereas blocking MIF reduced arginase-1 production. Similarly to 5-FU, targeting tumor-derived MIF conferred a survival advantage to tumor-bearing animals and increased the cytotoxic T cell response within the tumor. Importantly, tumor cell proliferation, survival, and self-renewal were not impacted by MIF reduction, demonstrating that MIF is primarily an indirect promoter of GBM progression, working to suppress immune rejection by activating and protecting immune suppressive MDSCs within the GBM tumor microenvironment. Stem Cells 2016;34:2026-2039.

  1. A bispecific antibody (ScBsAbAgn-2/TSPO) target for Ang-2 and TSPO resulted in therapeutic effects against glioblastomas.

    PubMed

    Li, Jia; Zhang, Zhiming; Lv, Lianjie; Qiao, Haibo; Chen, Xiuju; Zou, Changlin

    2016-04-01

    Antibody-based targeted therapy of cancers requires the antibody targeting of specific molecules inducing tumor cells apoptosis or death. Angiopoietin-2 (Agn-2) and translocator protein (TSPO) are identified as potential target molecules for glioblastoma therapy. The single chain anti-Agn-2 antibody (Anag-2) and anti-TSPO antibody (ATSPO) were obtained by monoclonal antibody screening. In the present study, for specific targeting and killing, we generated a recombinant bispecific antibody comprising a single-chain Fragment variable (ScFv) of anti-human Agn-2 and anti-human TSPO (ScBsAbAgn-2/TSPO), which is the mediator for mitochondrial apoptosis and tumor angiogenesis. In vitro, ScBsAbAgn-2/TSPO simultaneously bounded to both targets with a high antigen-binding affinity to Anag-2 and TSPO compared to the individual antibody. The higher expression of Ang-2 and TSPO was observed in bevacizumab-treated glioblastoma compared to normal rat brain endothelium. We also observed apoptosis-mediated cytotoxicity was improved, which resulted in the elimination of up to 90% of the target cells within 72 h. ScBsAbAgn-2/TSPO inhibited tumor growth, decreased vascular permeability, led to extended survival, improved pericyte coverage, depletion of tumor-associated macrophages, and increased numbers of intratumoral T lymphocytes infiltration in a murine bevacizumab-treated glioblastoma model. These findings were also confirmed ex vivo using glioblastoma cells from bevacizumab-treated rats with glioblastoma. We conclude that ScBsAbAgn-2/TSPO targeting of glioblastoma cell lines can be achieved in vitro and in vivo that the efficient elimination of glioblastoma cells supports the potential of ScBsAbAgn-2/TSPO as a potent, novel immunotherapeutic agent. PMID:26898800

  2. The Wnt inhibitory factor 1 (WIF1) is targeted in glioblastoma and has a tumor suppressing function potentially by induction of senescence

    PubMed Central

    Lambiv, Wanyu L.; Vassallo, Irene; Delorenzi, Mauro; Shay, Tal; Diserens, Annie-Claire; Misra, Anjan; Feuerstein, Burt; Murat, Anastasia; Migliavacca, Eugenia; Hamou, Marie-France; Sciuscio, Davide; Burger, Raphael; Domany, Eytan; Stupp, Roger; Hegi, Monika E.

    2011-01-01

    Gene expression—based prediction of genomic copy number aberrations in the chromosomal region 12q13 to 12q15 that is flanked by MDM2 and CDK4 identified Wnt inhibitory factor 1 (WIF1) as a candidate tumor suppressor gene in glioblastoma. WIF1 encodes a secreted Wnt antagonist and was strongly downregulated in most glioblastomas as compared with normal brain, implying deregulation of Wnt signaling, which is associated with cancer. WIF1 silencing was mediated by deletion (7/69, 10%) or epigenetic silencing by promoter hypermethylation (29/110, 26%). Co-amplification of MDM2 and CDK4 that is present in 10% of glioblastomas was associated in most cases with deletion of the whole genomic region enclosed, including the WIF1 locus. This interesting pathogenetic constellation targets the RB and p53 tumor suppressor pathways in tandem, while simultaneously activating oncogenic Wnt signaling. Ectopic expression of WIF1 in glioblastoma cell lines revealed a dose-dependent decrease of Wnt pathway activity. Furthermore, WIF1 expression inhibited cell proliferation in vitro, reduced anchorage-independent growth in soft agar, and completely abolished tumorigenicity in vivo. Interestingly, WIF1 overexpression in glioblastoma cells induced a senescence-like phenotype that was dose dependent. These results provide evidence that WIF1 has tumor suppressing properties. Downregulation of WIF1 in 75% of glioblastomas indicates frequent involvement of aberrant Wnt signaling and, hence, may render glioblastomas sensitive to inhibitors of Wnt signaling, potentially by diverting the tumor cells into a senescence-like state. PMID:21642372

  3. A bispecific antibody (ScBsAbAgn-2/TSPO) target for Ang-2 and TSPO resulted in therapeutic effects against glioblastomas.

    PubMed

    Li, Jia; Zhang, Zhiming; Lv, Lianjie; Qiao, Haibo; Chen, Xiuju; Zou, Changlin

    2016-04-01

    Antibody-based targeted therapy of cancers requires the antibody targeting of specific molecules inducing tumor cells apoptosis or death. Angiopoietin-2 (Agn-2) and translocator protein (TSPO) are identified as potential target molecules for glioblastoma therapy. The single chain anti-Agn-2 antibody (Anag-2) and anti-TSPO antibody (ATSPO) were obtained by monoclonal antibody screening. In the present study, for specific targeting and killing, we generated a recombinant bispecific antibody comprising a single-chain Fragment variable (ScFv) of anti-human Agn-2 and anti-human TSPO (ScBsAbAgn-2/TSPO), which is the mediator for mitochondrial apoptosis and tumor angiogenesis. In vitro, ScBsAbAgn-2/TSPO simultaneously bounded to both targets with a high antigen-binding affinity to Anag-2 and TSPO compared to the individual antibody. The higher expression of Ang-2 and TSPO was observed in bevacizumab-treated glioblastoma compared to normal rat brain endothelium. We also observed apoptosis-mediated cytotoxicity was improved, which resulted in the elimination of up to 90% of the target cells within 72 h. ScBsAbAgn-2/TSPO inhibited tumor growth, decreased vascular permeability, led to extended survival, improved pericyte coverage, depletion of tumor-associated macrophages, and increased numbers of intratumoral T lymphocytes infiltration in a murine bevacizumab-treated glioblastoma model. These findings were also confirmed ex vivo using glioblastoma cells from bevacizumab-treated rats with glioblastoma. We conclude that ScBsAbAgn-2/TSPO targeting of glioblastoma cell lines can be achieved in vitro and in vivo that the efficient elimination of glioblastoma cells supports the potential of ScBsAbAgn-2/TSPO as a potent, novel immunotherapeutic agent.

  4. Breast cancer brain metastases: biology and new clinical perspectives.

    PubMed

    Witzel, Isabell; Oliveira-Ferrer, Leticia; Pantel, Klaus; Müller, Volkmar; Wikman, Harriet

    2016-01-19

    Because of improvements in the treatment of patients with metastatic breast cancer, the development of brain metastases (BM) has become a major limitation of life expectancy and quality of life for many breast cancer patients. The improvement of management strategies for BM is thus an important clinical challenge, especially among high-risk patients such as human epidermal growth factor receptor 2-positive and triple-negative patients. However, the formation of BM as a multistep process is thus far poorly understood. To grow in the brain, single tumor cells must pass through the tight blood-brain barrier (BBB). The BBB represents an obstacle for circulating tumor cells entering the brain, but it also plays a protective role against immune cell and toxic agents once metastatic cells have colonized the cerebral compartment. Furthermore, animal studies have shown that, after passing the BBB, the tumor cells not only require close contact with endothelial cells but also interact closely with many different brain residential cells. Thus, in addition to a genetic predisposition of the tumor cells, cellular adaptation processes within the new microenvironment may also determine the ability of a tumor cell to metastasize. In this review, we summarize the biology of breast cancer that has spread into the brain and discuss the implications for current and potential future treatment strategies.

  5. Exosome Delivered Anticancer Drugs Across the Blood-Brain Barrier for Brain Cancer Therapy in Danio Rerio

    PubMed Central

    Yang, Tianzhi; Martin, Paige; Fogarty, Brittany; Brown, Alison; Schurman, Kayla; Phipps, Roger; Yin, Viravuth P.; Lockman, Paul

    2015-01-01

    Purpose The blood–brain barrier (BBB) essentially restricts therapeutic drugs from entering into the brain. This study tests the hypothesis that brain endothelial cell derived exosomes can deliver anticancer drug across the BBB for the treatment of brain cancer in a zebrafish (Danio rerio) model. Materials and Methods Four types of exosomes were isolated from brain cell culture media and characterized by particle size, morphology, total protein, and transmembrane protein markers. Transport mechanism, cell uptake, and cytotoxicity of optimized exosome delivery system were tested. Brain distribution of exosome delivered anticancer drugs was evaluated using transgenic zebrafish TG (fli1: GFP) embryos and efficacies of optimized formations were examined in a xenotransplanted zebrafish model of brain cancer model. Results Four exosomes in 30–100 diameters showed different morphologies and exosomes derived from brain endothelial cells expressed more CD63 tetraspanins transmembrane proteins. Optimized exosomes increased the uptake of fluorescent marker via receptor mediated endocytosis and cytotoxicity of anticancer drugs in cancer cells. Images of the zebrafish showed exosome delivered anticancer drugs crossed the BBB and entered into the brain. In the brain cancer model, exosome delivered anticancer drugs significantly decreased fluorescent intensity of xenotransplanted cancer cells and tumor growth marker. Conclusions Brain endothelial cell derived exosomes could be potentially used as a carrier for brain delivery of anticancer drug for the treatment of brain cancer. PMID:25609010

  6. Extracranial oral cavity metastasis from glioblastoma multiforme: A case report

    PubMed Central

    Kup, Philipp Günther; Nieder, Carsten; Winnekendonk, Guido; Adamietz, Irenäus Anton; Fakhrian, Khashayar

    2016-01-01

    Glioblastoma multiforme is the most common primary malignant brain tumor. The clinical outcome following diagnosis remains extremely poor. The treatment of choice is wide surgical resection of the visible tumor, frequently followed by adjuvant combined radiochemotherapy (RCTx) with temozolomide as the chemotherapeutic agent. Extracranial metastases are extremely rare, with <200 cases of extracranial metastases from glioblastoma multiforme reported in the literature to date. We herein present a case of a patient suffering from a fast-growing metastasis to the oral cavity, completely filling the buccal cavity within 2 weeks, as the only manifestation of recurrent glioblastoma multiforme following initial surgical resection and adjuvant RCTx.

  7. Molecular therapy for glioblastoma.

    PubMed

    Karpati, G; Li, H; Nalbantoglu, J

    1999-10-01

    Glioblastoma (GB), the relatively frequent and most malignant form of primary brain tumor, is fatal within 1 to 2 years of onset of symptoms, despite conventional therapy. Molecular therapy promises to be an effective and possibly curative treatment. Several molecular strategies have been tested, either in animal models or clinical trials. These include: prodrug activating systems, introduction of tumor suppressor or cell-cycle-related genes, inhibition of growth factors and/or their receptors, inhibition of neovascularization, immunomodulatory maneuvers, oncolytic viruses and inhibition of matrix metalloproteinases. Of special interest for the development of optimal molecular therapy of GB, is the choice of the most efficient and least toxic gene vectors (adenovirus, retrovirus, herpes simplex virus), the route of administration of the therapeutic agent (intratumoral with or without debulking and intracarotid), avoidance of collateral damage to the perineoplastic neuropil and adequate preclinical studies. The ultimate molecular therapy will probably involve the application of multiple simultaneous (combinatorial) therapeutic modalities. The safety and efficiency of these in humans can only be judged by properly controlled therapeutic trials. PMID:11249660

  8. EGFR and HER2 signaling in breast cancer brain metastasis.

    PubMed

    Sirkisoon, Sherona R; Carpenter, Richard L; Rimkus, Tadas; Miller, Lance; Metheny-Barlow, Linda; Lo, Hui-Wen

    2016-01-01

    Breast cancer occurs in approximately 1 in 8 women and 1 in 37 women with breast cancer succumbed to the disease. Over the past decades, new diagnostic tools and treatments have substantially improved the prognosis of women with local diseases. However, women with metastatic disease still have a dismal prognosis without effective treatments. Among different molecular subtypes of breast cancer, the HER2-enriched and basal-like subtypes typically have higher rates of metastasis to the brain. Basal-like metastatic breast tumors frequently express EGFR. Consequently, HER2- and EGFR-targeted therapies are being used in the clinic and/or evaluated in clinical trials for treating breast cancer patients with brain metastases. In this review, we will first provide an overview of the HER2 and EGFR signaling pathways. The roles that EGFR and HER2 play in breast cancer metastasis to the brain will then be discussed. Finally, we will summarize the preclinical and clinical effects of EGFR- and HER2-targeted therapies on breast cancer metastasis.

  9. Concurrent therapy to enhance radiotherapeutic outcomes in glioblastoma

    PubMed Central

    2016-01-01

    Glioblastoma is one of the most fatal and incurable human cancers characterized by nuclear atypia, mitotic activity, intense microvascular proliferation and necrosis. The current standard of care includes maximal safe surgical resection followed by radiation therapy (RT) with concurrent and adjuvant temozolomide (TMZ). The prognosis remains poor with median survival of 14.6 months with RT plus TMZ. Majority will have a recurrence within 2 years from diagnosis despite adequate treatment. Radiosensitizers, radiotherapy dose escalation and altered fractionation have failed to improve outcome. The molecular biology of glioblastoma is complex and poses treatment challenges. High rate of mutation, genotypic and phenotypic heterogeneity, rapid development of resistance, existence of blood-brain barrier (BBB), multiple intracellular and intercellular signalling pathways, over-expression of growth factor receptors, angiogenesis and antigenic diversity renders the tumor cells differentially susceptible to various treatment modalities. Thus, the treatment strategies require personalised or individualized approach based on the characteristics of tumor. Several targeted agents have been evaluated in clinical trials but the results have been modest despite these advancements. This review summarizes the current standard of care, results of concurrent chemoradiation trials, evolving innovative treatments that use targeted therapy with standard chemoradiation or RT alone, outcome of various recent trials and future outlook. PMID:26904576

  10. Travelling wave analysis of a mathematical model of glioblastoma growth.

    PubMed

    Gerlee, Philip; Nelander, Sven

    2016-06-01

    In this paper we analyse a previously proposed cell-based model of glioblastoma (brain tumour) growth, which is based on the assumption that the cancer cells switch phenotypes between a proliferative and motile state (Gerlee and Nelander, 2012). The dynamics of this model can be described by a system of partial differential equations, which exhibits travelling wave solutions whose wave speed depends crucially on the rates of phenotypic switching. We show that under certain conditions on the model parameters, a closed form expression of the wave speed can be obtained, and using singular perturbation methods we also derive an approximate expression of the wave front shape. These new analytical results agree with simulations of the cell-based model, and importantly show that the inverse relationship between wave front steepness and speed observed for the Fisher equation no longer holds when phenotypic switching is considered.

  11. Travelling wave analysis of a mathematical model of glioblastoma growth.

    PubMed

    Gerlee, Philip; Nelander, Sven

    2016-06-01

    In this paper we analyse a previously proposed cell-based model of glioblastoma (brain tumour) growth, which is based on the assumption that the cancer cells switch phenotypes between a proliferative and motile state (Gerlee and Nelander, 2012). The dynamics of this model can be described by a system of partial differential equations, which exhibits travelling wave solutions whose wave speed depends crucially on the rates of phenotypic switching. We show that under certain conditions on the model parameters, a closed form expression of the wave speed can be obtained, and using singular perturbation methods we also derive an approximate expression of the wave front shape. These new analytical results agree with simulations of the cell-based model, and importantly show that the inverse relationship between wave front steepness and speed observed for the Fisher equation no longer holds when phenotypic switching is considered. PMID:27021919

  12. Suppression of SRC Signaling Is Effective in Reducing Synergy between Glioblastoma and Stromal Cells.

    PubMed

    Calgani, Alessia; Vignaroli, Giulia; Zamperini, Claudio; Coniglio, Federica; Festuccia, Claudio; Di Cesare, Ernesto; Gravina, Giovanni Luca; Mattei, Claudia; Vitale, Flora; Schenone, Silvia; Botta, Maurizio; Angelucci, Adriano

    2016-07-01

    Glioblastoma cells efficiently interact with and infiltrate the surrounding normal tissue, rendering surgical resection and adjuvant chemo/radiotherapy ineffective. New therapeutic targets, able to interfere with glioblastoma's capacity to synergize with normal brain tissue, are currently under investigation. The compound Si306, a pyrazolo[3,4-d]pyrimidine derivative, selected for its favorable activity against SRC, was tested in vitro and in vivo on glioblastoma cell lines. In vivo, combination treatment with Si306 and radiotherapy was strongly active in reducing U-87 xenograft growth with respect to control and single treatments. The histology revealed a significant difference in the stromal compartment of tumoral tissue derived from control or radiotherapy-treated samples with respect to Si306-treated samples, showing in the latter a reduced presence of collagen and α-SMA-positive cells. This effect was paralleled in vitro by the capacity of Si306 to interfere with myofibroblastic differentiation of normal fibroblasts induced by U-87 cells. In the presence of Si306, TGF-β released by U-87 cells, mainly in hypoxia, was ineffective in upregulating α-SMA and β-PDGFR in fibroblasts. Si306 efficiently reached the brain and significantly prolonged the survival of mice orthotopically injected with U-87 cells. Drugs that target SRC could represent an effective therapeutic strategy in glioblastoma, able to block positive paracrine loop with stromal cells based on the β-PDGFR axis and the formation of a tumor-promoting microenvironment. This approach could be important in combination with conventional treatments in the effort to reduce tumor resistance to therapy. Mol Cancer Ther; 15(7); 1535-44. ©2016 AACR. PMID:27196762

  13. Degradable Organically-Derivatized Polyoxometalate with Enhanced Activity against Glioblastoma Cell Line

    NASA Astrophysics Data System (ADS)

    She, Shan; Bian, Shengtai; Huo, Ruichao; Chen, Kun; Huang, Zehuan; Zhang, Jiangwei; Hao, Jian; Wei, Yongge

    2016-09-01

    High efficacy and low toxicity are critical for cancer treatment. Polyoxometalates (POMs) have been reported as potential candidates for cancer therapy. On accounts of the slow clearance of POMs, leading to long-term toxicity, the clinical application of POMs in cancer treatment is restricted. To address this problem, a degradable organoimido derivative of hexamolybdate is developed by modifying it with a cleavable organic group, leading to its degradation. Of note, this derivative exhibits favourable pharmacodynamics towards human malignant glioma cell (U251), the ability to penetrate across blood brain barrier and low toxicity towards rat pheochromocytoma cell (PC12). This line of research develops an effective POM-based agent for glioblastoma inhibition and will pave a new way to construct degradable anticancer agents for clinical cancer therapy.

  14. Degradable Organically-Derivatized Polyoxometalate with Enhanced Activity against Glioblastoma Cell Line

    PubMed Central

    She, Shan; Bian, Shengtai; Huo, Ruichao; Chen, Kun; Huang, Zehuan; Zhang, Jiangwei; Hao, Jian; Wei, Yongge

    2016-01-01

    High efficacy and low toxicity are critical for cancer treatment. Polyoxometalates (POMs) have been reported as potential candidates for cancer therapy. On accounts of the slow clearance of POMs, leading to long-term toxicity, the clinical application of POMs in cancer treatment is restricted. To address this problem, a degradable organoimido derivative of hexamolybdate is developed by modifying it with a cleavable organic group, leading to its degradation. Of note, this derivative exhibits favourable pharmacodynamics towards human malignant glioma cell (U251), the ability to penetrate across blood brain barrier and low toxicity towards rat pheochromocytoma cell (PC12). This line of research develops an effective POM-based agent for glioblastoma inhibition and will pave a new way to construct degradable anticancer agents for clinical cancer therapy. PMID:27658479

  15. Mathematical Modelling of a Brain Tumour Initiation and Early Development: A Coupled Model of Glioblastoma Growth, Pre-Existing Vessel Co-Option, Angiogenesis and Blood Perfusion.

    PubMed

    Cai, Yan; Wu, Jie; Li, Zhiyong; Long, Quan

    2016-01-01

    We propose a coupled mathematical modelling system to investigate glioblastoma growth in response to dynamic changes in chemical and haemodynamic microenvironments caused by pre-existing vessel co-option, remodelling, collapse and angiogenesis. A typical tree-like architecture network with different orders for vessel diameter is designed to model pre-existing vasculature in host tissue. The chemical substances including oxygen, vascular endothelial growth factor, extra-cellular matrix and matrix degradation enzymes are calculated based on the haemodynamic environment which is obtained by coupled modelling of intravascular blood flow with interstitial fluid flow. The haemodynamic changes, including vessel diameter and permeability, are introduced to reflect a series of pathological characteristics of abnormal tumour vessels including vessel dilation, leakage, angiogenesis, regression and collapse. Migrating cells are included as a new phenotype to describe the migration behaviour of malignant tumour cells. The simulation focuses on the avascular phase of tumour development and stops at an early phase of angiogenesis. The model is able to demonstrate the main features of glioblastoma growth in this phase such as the formation of pseudopalisades, cell migration along the host vessels, the pre-existing vasculature co-option, angiogenesis and remodelling. The model also enables us to examine the influence of initial conditions and local environment on the early phase of glioblastoma growth.

  16. Mathematical Modelling of a Brain Tumour Initiation and Early Development: A Coupled Model of Glioblastoma Growth, Pre-Existing Vessel Co-Option, Angiogenesis and Blood Perfusion

    PubMed Central

    Cai, Yan; Wu, Jie; Li, Zhiyong; Long, Quan

    2016-01-01

    We propose a coupled mathematical modelling system to investigate glioblastoma growth in response to dynamic changes in chemical and haemodynamic microenvironments caused by pre-existing vessel co-option, remodelling, collapse and angiogenesis. A typical tree-like architecture network with different orders for vessel diameter is designed to model pre-existing vasculature in host tissue. The chemical substances including oxygen, vascular endothelial growth factor, extra-cellular matrix and matrix degradation enzymes are calculated based on the haemodynamic environment which is obtained by coupled modelling of intravascular blood flow with interstitial fluid flow. The haemodynamic changes, including vessel diameter and permeability, are introduced to reflect a series of pathological characteristics of abnormal tumour vessels including vessel dilation, leakage, angiogenesis, regression and collapse. Migrating cells are included as a new phenotype to describe the migration behaviour of malignant tumour cells. The simulation focuses on the avascular phase of tumour development and stops at an early phase of angiogenesis. The model is able to demonstrate the main features of glioblastoma growth in this phase such as the formation of pseudopalisades, cell migration along the host vessels, the pre-existing vasculature co-option, angiogenesis and remodelling. The model also enables us to examine the influence of initial conditions and local environment on the early phase of glioblastoma growth. PMID:26934465

  17. Mathematical Modelling of a Brain Tumour Initiation and Early Development: A Coupled Model of Glioblastoma Growth, Pre-Existing Vessel Co-Option, Angiogenesis and Blood Perfusion.

    PubMed

    Cai, Yan; Wu, Jie; Li, Zhiyong; Long, Quan

    2016-01-01

    We propose a coupled mathematical modelling system to investigate glioblastoma growth in response to dynamic changes in chemical and haemodynamic microenvironments caused by pre-existing vessel co-option, remodelling, collapse and angiogenesis. A typical tree-like architecture network with different orders for vessel diameter is designed to model pre-existing vasculature in host tissue. The chemical substances including oxygen, vascular endothelial growth factor, extra-cellular matrix and matrix degradation enzymes are calculated based on the haemodynamic environment which is obtained by coupled modelling of intravascular blood flow with interstitial fluid flow. The haemodynamic changes, including vessel diameter and permeability, are introduced to reflect a series of pathological characteristics of abnormal tumour vessels including vessel dilation, leakage, angiogenesis, regression and collapse. Migrating cells are included as a new phenotype to describe the migration behaviour of malignant tumour cells. The simulation focuses on the avascular phase of tumour development and stops at an early phase of angiogenesis. The model is able to demonstrate the main features of glioblastoma growth in this phase such as the formation of pseudopalisades, cell migration along the host vessels, the pre-existing vasculature co-option, angiogenesis and remodelling. The model also enables us to examine the influence of initial conditions and local environment on the early phase of glioblastoma growth. PMID:26934465

  18. Brain cancer probed by native fluorescence and stokes shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Liu, Cheng-hui; He, Yong; Pu, Yang; Li, Qingbo; Wang, Wei; Alfano, Robert R.

    2012-12-01

    Optical biopsy spectroscopy was applied to diagnosis human brain cancer in vitro. The spectra of native fluorescence, Stokes shift and excitation spectra were obtained from malignant meningioma, benign, normal meningeal tissues and acoustic neuroma benign tissues. The wide excitation wavelength ranges were used to establish the criterion for distinguishing brain diseases. The alteration of fluorescence spectra between normal and abnormal brain tissues were identified by the characteristic fluorophores under the excitation with UV to visible wavelength range. It was found that the ratios of the peak intensities and peak position in both spectra of fluorescence and Stokes shift may be used to diagnose human brain meninges diseases. The preliminary analysis of fluorescence spectral data from cancer and normal meningeal tissues by basic biochemical component analysis model (BBCA) and Bayes classification model based on statistical methods revealed the changes of components, and classified the difference between cancer and normal human brain meningeal tissues in a predictions accuracy rate is 0.93 in comparison with histopathology and immunohistochemistry reports (gold standard).

  19. Statins are Associated With a Reduced Risk of Brain Cancer

    PubMed Central

    Chen, Brian K.; Chiu, Hui-Fen; Yang, Chun-Yuh

    2016-01-01

    Abstract The aim of this study was to investigate whether statin utilization is associated with brain cancer risk. A population-based case–control study was conducted using nationally representative claims data from the National Health Insurance Bureau in Taiwan. Cases included all patients 50 years and older who received an index diagnosis of brain cancer between 2004 and 2011. Our controls were matched by age, sex, and index date. We estimated adjusted odds ratios (ORs) and 95% confidence intervals (CIs) using multiple logistic regression. We examined 213 brain cancer cases and 852 controls. The unadjusted ORs for any statin prescription was 0.77 (95% CI = 0.50–1.18) and the adjusted OR was 0.59 (95% CI = 0.37–0.96). Compared with no use of statins, the adjusted ORs were 0.68 (95% CI = 0.38–1.24) for the group having been prescribed with statins with cumulative defined daily dose (DDD) below 144.67 DDDs and 0.50 (95% CI = 0.28–0.97) for the group with the cumulative statin use of 144.67 DDDs or more. The results of this study suggest that statins may reduce the risk of brain cancer. PMID:27124024

  20. CD151-α3β1 integrin complexes are prognostic markers of glioblastoma and cooperate with EGFR to drive tumor cell motility and invasion.

    PubMed

    Zhou, Pengcheng; Erfani, Sonia; Liu, Zeyi; Jia, Changhe; Chen, Yecang; Xu, Bingwei; Deng, Xinyu; Alfáro, Jose E; Chen, Li; Napier, Dana; Lu, Michael; Huang, Jian-An; Liu, Chunming; Thibault, Olivier; Segal, Rosalind; Zhou, Binhua P; Kyprianou, Natasha; Horbinski, Craig; Yang, Xiuwei H

    2015-10-01

    Glioblastoma, one of the most aggressive forms of brain cancer, is featured by high tumor cell motility and invasiveness, which not only fuel tumor infiltration, but also enable escape from surgical or other clinical interventions. Thus, better understanding of how these malignant traits are controlled will be key to the discovery of novel biomarkers and therapies against this deadly disease. Tetraspanin CD151 and its associated α3β1 integrin have been implicated in facilitating tumor progression across multiple cancer types. How these adhesion molecules are involved in the progression of glioblastoma, however, remains largely unclear. Here, we examined an in-house tissue microarray-based cohort of 96 patient biopsies and TCGA dataset to evaluate the clinical significance of CD151 and α3β1 integrin. Functional and signaling analyses were also conducted to understand how these molecules promote the aggressiveness of glioblastoma at molecular and cellular levels. Results from our analyses showed that CD151 and α3 integrin were significantly elevated in glioblastomas at both protein and mRNA levels, and exhibited strong inverse correlation with patient survival (p < 0.006). These adhesion molecules also formed tight protein complexes and synergized with EGF/EGFR to accelerate tumor cell motility and invasion. Furthermore, disruption of such complexes enhanced the survival of tumor-bearing mice in a xenograft model, and impaired activation of FAK and small GTPases. Also, knockdown- or pharmacological agent-based attenuation of EGFR, FAK or Graf (ARHGAP26)/small GTPase-mediated pathways markedly mitigated the aggressiveness of glioblastoma cells. Collectively, our findings provide clinical, molecular and cellular evidence of CD151-α3β1 integrin complexes as promising prognostic biomarkers and therapeutic targets for glioblastoma. PMID:26377974

  1. CD151-α3β1 integrin complexes are prognostic markers of glioblastoma and cooperate with EGFR to drive tumor cell motility and invasion

    PubMed Central

    Xu, Bingwei; Deng, Xinyu; Alfáro, Jose E.; Chen, Li; Napier, Dana; Lu, Michael; Huang, Jian-An; Liu, Chunming; Thibault, Olivier; Segal, Rosalind; Zhou, Binhua P.; Kyprianou, Natasha; Horbinski, Craig; Yang, Xiuwei H.

    2015-01-01

    Glioblastoma, one of the most aggressive forms of brain cancer, is featured by high tumor cell motility and invasiveness, which not only fuel tumor infiltration, but also enable escape from surgical or other clinical interventions. Thus, better understanding of how these malignant traits are controlled will be key to the discovery of novel biomarkers and therapies against this deadly disease. Tetraspanin CD151 and its associated α3β1 integrin have been implicated in facilitating tumor progression across multiple cancer types. How these adhesion molecules are involved in the progression of glioblastoma, however, remains largely unclear. Here, we examined an in-house tissue microarray-based cohort of 96 patient biopsies and TCGA dataset to evaluate the clinical significance of CD151 and α3β1 integrin. Functional and signaling analyses were also conducted to understand how these molecules promote the aggressiveness of glioblastoma at molecular and cellular levels. Results from our analyses showed that CD151 and α3 integrin were significantly elevated in glioblastomas at both protein and mRNA levels, and exhibited strong inverse correlation with patient survival (p < 0.006). These adhesion molecules also formed tight protein complexes and synergized with EGF/EGFR to accelerate tumor cell motility and invasion. Furthermore, disruption of such complexes enhanced the survival of tumor-bearing mice in a xenograft model, and impaired activation of FAK and small GTPases. Also, knockdown- or pharmacological agent-based attenuation of EGFR, FAK or Graf (ARHGAP26)/small GTPase-mediated pathways markedly mitigated the aggressiveness of glioblastoma cells. Collectively, our findings provide clinical, molecular and cellular evidence of CD151-α3β1 integrin complexes as promising prognostic biomarkers and therapeutic targets for glioblastoma. PMID:26377974

  2. Down-regulation of vinculin upon MK886-induced apoptosis in LN18 glioblastoma cells

    PubMed Central

    Magro, A. D.; Cunningham, C.; Miller, M. R.

    2014-01-01

    Glioblastomas are a type of malignant brain tumor and are among the most difficult cancers to treat. One strategy to treat aggressive cancers is the use of drugs that target multiple signaling pathways. MK886 is a drug known to inhibit both 5-lipoxygenase-activating-protein (FLAP) and peroxisome proliferator activated receptor-α (PPAR-α). The objectives of this study were to investigate the ability of MK886 to induce apoptotic cell death in LN18 glioblastoma cells and to characterize the cell death mechanisms. MK886 induced massive apoptotic LN18 cell death that was manifested by the release of nucleosomes, annexinV binding to phosphatidylserine in the absence of nuclear staining, and changes in the fluorescent intensity of Mito Tracker Deep Red 633 indicating changes in mitochondrial oxidative function and mass. The alteration of the mitochondrial function implied that MK886 induced apoptosis in LN18 cells via a mitochondrial pathway. The broad caspases inhibitor ZVAD-FMK inhibited MK886-induced nucleosome release, but not annexinV binding or MK886-altered mitochondrial function. Real time RT-PCR demonstrated that LN18 cells expressed significant levels of FLAP and PPAR-α mRNAs. A low level of arachidonate 5-lipoxygenase (ALOX-5) mRNA was detected, but little, if any, arachidonate 12-lipoxygenase (ALOX-12) mRNA was present. In addition, MK886-induced apoptosis in LN18 cells was accompanied by a decrease in the protein and mRNA levels of vinculin, but not other focal adhesion proteins. In summary, the data presented here indicate that disruption of the actin-vinculin-cell-cytoskeleton matrix of the LN18 glioblastoma is a component of the MK886 induced apoptosis. In addition, MK886 treated LN18 cells could provide one model in which to investigate drugs that target lipoxygenase and PPAR-α pathways in the chemotherapeutic treatment of glioblastomas. PMID:17949236

  3. Serpins promote cancer cell survival and vascular co-option in brain metastasis.

    PubMed

    Valiente, Manuel; Obenauf, Anna C; Jin, Xin; Chen, Qing; Zhang, Xiang H-F; Lee, Derek J; Chaft, Jamie E; Kris, Mark G; Huse, Jason T; Brogi, Edi; Massagué, Joan

    2014-02-27

    Brain metastasis is an ominous complication of cancer, yet most cancer cells that infiltrate the brain die of unknown causes. Here, we identify plasmin from the reactive brain stroma as a defense against metastatic invasion, and plasminogen activator (PA) inhibitory serpins in cancer cells as a shield against this defense. Plasmin suppresses brain metastasis in two ways: by converting membrane-bound astrocytic FasL into a paracrine death signal for cancer cells, and by inactivating the axon pathfinding molecule L1CAM, which metastatic cells express for spreading along brain capillaries and for metastatic outgrowth. Brain metastatic cells from lung cancer and breast cancer express high levels of anti-PA serpins, including neuroserpin and serpin B2, to prevent plasmin generation and its metastasis-suppressive effects. By protecting cancer cells from death signals and fostering vascular co-option, anti-PA serpins provide a unifying mechanism for the initiation of brain metastasis in lung and breast cancers.

  4. Dye-Enhanced Multimodal Confocal Imaging of Brain Cancers

    NASA Astrophysics Data System (ADS)

    Wirth, Dennis; Snuderl, Matija; Sheth, Sameer; Curry, William; Yaroslavsky, Anna

    2011-04-01

    Background and Significance: Accurate high resolution intraoperative detection of brain tumors may result in improved patient survival and better quality of life. The goal of this study was to evaluate dye enhanced multimodal confocal imaging for discriminating normal and cancerous brain tissue. Materials and Methods: Fresh thick brain specimens were obtained from the surgeries. Normal and cancer tissues were investigated. Samples were stained in methylene blue and imaged. Reflectance and fluorescence signals were excited at 658nm. Fluorescence emission and polarization were registered from 670 nm to 710 nm. The system provided lateral resolution of 0.6 μm and axial resolution of 7 μm. Normal and cancer specimens exhibited distinctively different characteristics. H&E histopathology was processed from each imaged sample. Results and Conclusions: The analysis of normal and cancerous tissues indicated clear differences in appearance in both the reflectance and fluorescence responses. These results confirm the feasibility of multimodal confocal imaging for intraoperative detection of small cancer nests and cells.

  5. Emerging targets for glioblastoma stem cell therapy

    PubMed Central

    Safa, Ahmad R.; Saadatzadeh, Mohammad Reza; Cohen-Gadol, Aaron A.; Pollok, Karen E.; Bijangi-Vishehsaraei, Khadijeh

    2016-01-01

    Abstract Glioblastoma multiforme (GBM), designated as World Health Organization (WHO) grade IV astrocytoma, is a lethal and therapy-resistant brain cancer comprised of several tumor cell subpopulations, including GBM stem cells (GSCs) which are believed to contribute to tumor recurrence following initial response to therapies. Emerging evidence demonstrates that GBM tumors are initiated from GSCs. The development and use of novel therapies including small molecule inhibitors of specific proteins in signaling pathways that regulate stemness, proliferation and migration of GSCs, immunotherapy, and non-coding microRNAs may provide better means of treating GBM. Identification and characterization of GSC-specific signaling pathways would be necessary to identify specific therapeutic targets which may lead to the development of more efficient therapies selectively targeting GSCs. Several signaling pathways including mTOR, AKT, maternal embryonic leucine zipper kinase (MELK), NOTCH1 and Wnt/β-catenin as well as expression of cancer stem cell markers CD133, CD44, Oct4, Sox2, Nanog, and ALDH1A1 maintain GSC properties. Moreover, the data published in the Cancer Genome Atlas (TCGA) specifically demonstrated the activated PI3K/AKT/mTOR pathway in GBM tumorigenesis. Studying such pathways may help to understand GSC biology and lead to the development of potential therapeutic interventions to render them more sensitive to chemotherapy and radiation therapy. Furthemore, recent demonstration of dedifferentiation of GBM cell lines into CSC-like cells prove that any successful therapeutic agent or combination of drugs for GBM therapy must eliminate not only GSCs, but the differentiated GBM cells and the entire bulk of tumor cells. PMID:26616589

  6. Short-Term Differentiation of Glioblastoma Stem Cells Induces Hypoxia Tolerance.

    PubMed

    Skjellegrind, Håvard K; Fayzullin, Artem; Johnsen, Erik O; Eide, Lars; Langmoen, Iver A; Moe, Morten C; Vik-Mo, Einar O

    2016-07-01

    Glioblastoma is the most common and malignant brain cancer. In spite of surgical removal, radiation and chemotherapy, this cancer recurs within short time and median survival after diagnosis is less than a year. Glioblastoma stem cells (GSCs) left in the brain after surgery is thought to explain the inevitable recurrence of the tumor. Although hypoxia is a prime factor contributing to treatment resistance in many cancers, its effect on GSC has been little studied. Especially how differentiation influences the tolerance to acute hypoxia in GSCs is not well explored. We cultured GSCs from three patient biopsies and exposed these and their differentiated (1- and 4-weeks) progeny to acute hypoxia while monitoring intracellular calcium and mitochondrial membrane potential (ΔΨm). Undifferentiated GSCs were not hypoxia tolerant, showing both calcium overload and mitochondrial depolarization. One week differentiated cells were the most tolerant to hypoxia, preserving intracellular calcium stability and ΔΨm during 15 min of acute hypoxia. After 4 weeks of differentiation, mitochondrial mass was significantly reduced. In these cells calcium homeostasis was maintained during hypoxia, although the mitochondria were depolarized, suggesting a reduced mitochondrial dependency. Basal metabolic rate increased by differentiation, however, low oxygen consumption and high ΔΨm in undifferentiated GSCs did not provide hypoxia tolerance. The results suggest that undifferentiated GSCs are oxygen dependent, and that limited differentiation induces relative hypoxia tolerance. Hypoxia tolerance may be a factor involved in high-grade malignancy. This warrants a careful approach to differentiation as a glioblastoma treatment strategy. PMID:26915110

  7. A Study Evaluating INIPARIB in Combination With Chemotherapy to Treat Triple Negative Breast Cancer Brain Metastasis

    ClinicalTrials.gov

    2016-02-17

    Estrogen Receptor Negative (ER-Negative) Breast Cancer; Progesterone Receptor Negative (PR-Negative) Breast Cancer; Human Epidermal Growth Factor Receptor 2 Negative (HER2-Negative) Breast Cancer; Brain Metastases

  8. No increase in brain cancer rates during period of expanding cell phone use

    Cancer.gov

    In a new examination of United States cancer incidence data, investigators at the National Cancer Institute (NCI) reported that incidence trends have remained roughly constant for glioma, the main type of brain cancer hypothesized to be related to cell ph

  9. Effect of the STAT3 inhibitor STX-0119 on the proliferation of cancer stem-like cells derived from recurrent glioblastoma.

    PubMed

    Ashizawa, Tadashi; Miyata, Haruo; Iizuka, Akira; Komiyama, Masaru; Oshita, Chie; Kume, Akiko; Nogami, Masahiro; Yagoto, Mika; Ito, Ichiro; Oishi, Takuma; Watanabe, Reiko; Mitsuya, Koichi; Matsuno, Kenji; Furuya, Toshio; Okawara, Tadashi; Otsuka, Masami; Ogo, Naohisa; Asai, Akira; Nakasu, Yoko; Yamaguchi, Ken; Akiyama, Yasuto

    2013-07-01

    Signal transducer and activator of transcription (STAT) 3, a member of a family of DNA-binding molecules, is a potential target in the treatment of cancer. The highly phosphorylated STAT3 in cancer cells contributes to numerous physiological and oncogenic signaling pathways. Furthermore, a significant association between STAT3 signaling and glioblastoma multiforme stem-like cell (GBM-SC) development and maintenance has been demonstrated in recent studies. Previously, we reported a novel small molecule inhibitor of STAT3 dimerization, STX-0119, as a cancer therapeutic. In the present study, we focused on cancer stem-like cells derived from recurrent GBM patients and investigated the efficacy of STX-0119. Three GBM stem cell lines showed many stem cell markers such as CD133, EGFR, Nanog, Olig2, nestin and Yamanaka factors (c-myc, KLF4, Oct3/4 and SOX2) compared with parental cell lines. These cell lines also formed tumors in vivo and had similar histological to surgically resected tumors. STAT3 phosphorylation was activated more in the GBM-SC lines than serum-derived GB cell lines. The growth inhibitory effect of STX-0119 on GBM-SCs was moderate (IC50 15-44 µM) and stronger compared to that of WP1066 in two cell lines. On the other hand, the effect of temozolomide was weak in all the cell lines (IC50 53-226 µM). Notably, STX-0119 demonstrated strong inhibition of the expression of STAT3 target genes (c-myc, survivin, cyclin D1, HIF-1α and VEGF) and stem cell-associated genes (CD44, Nanog, nestin and CD133) as well as the induction of apoptosis in one stem-like cell line. Interestingly, VEGFR2 mRNA was also remarkably inhibited by STX-0119. In a model using transplantable stem-like cell lines in vivo GB-SCC010 and 026, STX-0119 inhibited the growth of GBM-SCs at 80 mg/kg. STX-0119, an inhibitor of STAT3, may serve as a novel therapeutic compound against GBM-SCs even in temozolomide-resistant GBM patients and has the potential for GBM-SC-specific therapeutics in

  10. Analysis of the cytotoxicity of carbon-based nanoparticles, diamond and graphite, in human glioblastoma and hepatoma cell lines.

    PubMed

    Zakrzewska, Karolina Ewa; Samluk, Anna; Wierzbicki, Mateusz; Jaworski, Sławomir; Kutwin, Marta; Sawosz, Ewa; Chwalibog, André; Pijanowska, Dorota Genowefa; Pluta, Krzysztof Dariusz

    2015-01-01

    Nanoparticles have attracted a great deal of attention as carriers for drug delivery to cancer cells. However, reports on their potential cytotoxicity raise questions of their safety and this matter needs attentive consideration. In this paper, for the first time, the cytotoxic effects of two carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells are suitable for drug cytotoxicity tests.

  11. Analysis of the cytotoxicity of carbon-based nanoparticles, diamond and graphite, in human glioblastoma and hepatoma cell lines.

    PubMed

    Zakrzewska, Karolina Ewa; Samluk, Anna; Wierzbicki, Mateusz; Jaworski, Sławomir; Kutwin, Marta; Sawosz, Ewa; Chwalibog, André; Pijanowska, Dorota Genowefa; Pluta, Krzysztof Dariusz

    2015-01-01

    Nanoparticles have attracted a great deal of attention as carriers for drug delivery to cancer cells. However, reports on their potential cytotoxicity raise questions of their safety and this matter needs attentive consideration. In this paper, for the first time, the cytotoxic effects of two carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells are suitable for drug cytotoxicity tests. PMID:25816103

  12. Bevacizumab for glioblastoma

    PubMed Central

    Narita, Yoshitaka

    2015-01-01

    Individuals with glioblastoma are often characterized by older age, advanced neurologic manifestations at the primary stage, and unresectable tumors, and these factors are associated with poor treatment outcomes. Administration of bevacizumab (BV, Avastin®) promotes tumor regression and improves cerebral edema, and is expected to improve neurologic findings in many patients with malignant gliomas, including glioblastoma. Although the addition of BV to the conventional standard therapy (chemoradiotherapy with temozolomide) for newly diagnosed glioblastoma prolonged the progression-free survival time and the performance status of patients, it failed to extend overall survival time. However, more than 50% of glioblastoma patients show Karnofsky performance status ≤70 at initial presentation; therefore, BV should be used to improve or maintain their performance status as an initial treatment. Most of the adverse events of BV, except hypertension and proteinuria, occur as complications of glioblastoma, and explanation of the advantages and disadvantages of BV administration to patients is important. Herein, the efficacy, safety, and challenges of using BV for treating glioblastoma were reviewed. PMID:26664126

  13. Chemical Library Screening and Structure-Function Relationship Studies Identify Bisacodyl as a Potent and Selective Cytotoxic Agent Towards Quiescent Human Glioblastoma Tumor Stem-Like Cells.

    PubMed

    Zeniou, Maria; Fève, Marie; Mameri, Samir; Dong, Jihu; Salomé, Christophe; Chen, Wanyin; El-Habr, Elias A; Bousson, Fanny; Sy, Mohamadou; Obszynski, Julie; Boh, Alexandre; Villa, Pascal; Assad Kahn, Suzana; Didier, Bruno; Bagnard, Dominique; Junier, Marie-Pierre; Chneiweiss, Hervé; Haiech, Jacques; Hibert, Marcel; Kilhoffer, Marie-Claude

    2015-01-01

    Cancer stem-like cells reside in hypoxic and slightly acidic tumor niches. Such microenvironments favor more aggressive undifferentiated phenotypes and a slow growing "quiescent state" which preserves them from chemotherapeutic agents that essentially target proliferating cells. Our objective was to identify compounds active on glioblastoma stem-like cells, including under conditions that mimick those found in vivo within this most severe and incurable form of brain malignancy. We screened the Prestwick Library to identify cytotoxic compounds towards glioblastoma stem-like cells, either in a proliferating state or in more slow-growing "quiescent" phenotype resulting from non-renewal of the culture medium in vitro. Compound effects were assessed by ATP-level determination using a cell-based assay. Twenty active molecules belonging to different pharmacological classes have thus been identified. Among those, the stimulant laxative drug bisacodyl was the sole to inhibit in a potent and specific manner the survival of quiescent glioblastoma stem-like cells. Subsequent structure-function relationship studies led to identification of 4,4'-dihydroxydiphenyl-2-pyridyl-methane (DDPM), the deacetylated form of bisacodyl, as the pharmacophore. To our knowledge, bisacodyl is currently the only known compound targeting glioblastoma cancer stem-like cells in their quiescent, more resistant state. Due to its known non-toxicity in humans, bisacodyl appears as a new potential anti-tumor agent that may, in association with classical chemotherapeutic compounds, participate in tumor eradication.

  14. Chemical Library Screening and Structure-Function Relationship Studies Identify Bisacodyl as a Potent and Selective Cytotoxic Agent Towards Quiescent Human Glioblastoma Tumor Stem-Like Cells.

    PubMed

    Zeniou, Maria; Fève, Marie; Mameri, Samir; Dong, Jihu; Salomé, Christophe; Chen, Wanyin; El-Habr, Elias A; Bousson, Fanny; Sy, Mohamadou; Obszynski, Julie; Boh, Alexandre; Villa, Pascal; Assad Kahn, Suzana; Didier, Bruno; Bagnard, Dominique; Junier, Marie-Pierre; Chneiweiss, Hervé; Haiech, Jacques; Hibert, Marcel; Kilhoffer, Marie-Claude

    2015-01-01

    Cancer stem-like cells reside in hypoxic and slightly acidic tumor niches. Such microenvironments favor more aggressive undifferentiated phenotypes and a slow growing "quiescent state" which preserves them from chemotherapeutic agents that essentially target proliferating cells. Our objective was to identify compounds active on glioblastoma stem-like cells, including under conditions that mimick those found in vivo within this most severe and incurable form of brain malignancy. We screened the Prestwick Library to identify cytotoxic compounds towards glioblastoma stem-like cells, either in a proliferating state or in more slow-growing "quiescent" phenotype resulting from non-renewal of the culture medium in vitro. Compound effects were assessed by ATP-level determination using a cell-based assay. Twenty active molecules belonging to different pharmacological classes have thus been identified. Among those, the stimulant laxative drug bisacodyl was the sole to inhibit in a potent and specific manner the survival of quiescent glioblastoma stem-like cells. Subsequent structure-function relationship studies led to identification of 4,4'-dihydroxydiphenyl-2-pyridyl-methane (DDPM), the deacetylated form of bisacodyl, as the pharmacophore. To our knowledge, bisacodyl is currently the only known compound targeting glioblastoma cancer stem-like cells in their quiescent, more resistant state. Due to its known non-toxicity in humans, bisacodyl appears as a new potential anti-tumor agent that may, in association with classical chemotherapeutic compounds, participate in tumor eradication. PMID:26270679

  15. Chemical Library Screening and Structure-Function Relationship Studies Identify Bisacodyl as a Potent and Selective Cytotoxic Agent Towards Quiescent Human Glioblastoma Tumor Stem-Like Cells

    PubMed Central

    Mameri, Samir; Dong, Jihu; Salomé, Christophe; Chen, Wanyin; El-Habr, Elias A.; Bousson, Fanny; Sy, Mohamadou; Obszynski, Julie; Boh, Alexandre; Villa, Pascal; Assad Kahn, Suzana; Didier, Bruno; Bagnard, Dominique; Junier, Marie-Pierre; Chneiweiss, Hervé; Haiech, Jacques; Hibert, Marcel; Kilhoffer, Marie-Claude

    2015-01-01

    Cancer stem-like cells reside in hypoxic and slightly acidic tumor niches. Such microenvironments favor more aggressive undifferentiated phenotypes and a slow growing "quiescent state" which preserves them from chemotherapeutic agents that essentially target proliferating cells. Our objective was to identify compounds active on glioblastoma stem-like cells, including under conditions that mimick those found in vivo within this most severe and incurable form of brain malignancy. We screened the Prestwick Library to identify cytotoxic compounds towards glioblastoma stem-like cells, either in a proliferating state or in more slow-growing "quiescent" phenotype resulting from non-renewal of the culture medium in vitro. Compound effects were assessed by ATP-level determination using a cell-based assay. Twenty active molecules belonging to different pharmacological classes have thus been identified. Among those, the stimulant laxative drug bisacodyl was the sole to inhibit in a potent and specific manner the survival of quiescent glioblastoma stem-like cells. Subsequent structure-function relationship studies led to identification of 4,4'-dihydroxydiphenyl-2-pyridyl-methane (DDPM), the deacetylated form of bisacodyl, as the pharmacophore. To our knowledge, bisacodyl is currently the only known compound targeting glioblastoma cancer stem-like cells in their quiescent, more resistant state. Due to its known non-toxicity in humans, bisacodyl appears as a new potential anti-tumor agent that may, in association with classical chemotherapeutic compounds, participate in tumor eradication. PMID:26270679

  16. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients.

    PubMed

    Mitchell, Duane A; Batich, Kristen A; Gunn, Michael D; Huang, Min-Nung; Sanchez-Perez, Luis; Nair, Smita K; Congdon, Kendra L; Reap, Elizabeth A; Archer, Gary E; Desjardins, Annick; Friedman, Allan H; Friedman, Henry S; Herndon, James E; Coan, April; McLendon, Roger E; Reardon, David A; Vredenburgh, James J; Bigner, Darell D; Sampson, John H

    2015-03-19

    After stimulation, dendritic cells (DCs) mature and migrate to draining lymph nodes to induce immune responses. As such, autologous DCs generated ex vivo have been pulsed with tumour antigens and injected back into patients as immunotherapy. While DC vaccines have shown limited promise in the treatment of patients with advanced cancers including glioblastoma, the factors dictating DC vaccine efficacy remain poorly understood. Here we show that pre-conditioning the vaccine site with a potent recall antigen such as tetanus/diphtheria (Td) toxoid can significantly improve the lymph node homing and efficacy of tumour-antigen-specific DCs. To assess the effect of vaccine site pre-conditioning in humans, we randomized patients with glioblastoma to pre-conditioning with either mature DCs or Td unilaterally before bilateral vaccination with DCs pulsed with Cytomegalovirus phosphoprotein 65 (pp65) RNA. We and other laboratories have shown that pp65 is expressed in more than 90% of glioblastoma specimens but not in surrounding normal brain, providing an unparalleled opportunity to subvert this viral protein as a tumour-specific target. Patients given Td had enhanced DC migration bilaterally and significantly improved survival. In mice, Td pre-conditioning also enhanced bilateral DC migration and suppressed tumour growth in a manner dependent on the chemokine CCL3. Our clinical studies and corroborating investigations in mice suggest that pre-conditioning with a potent recall antigen may represent a viable strategy to improve anti-tumour immunotherapy.

  17. Suppression of Glioblastoma Angiogenicity and Tumorigenicity by Inhibition of Endogenous Expression of Vascular Endothelial Growth Factor

    NASA Astrophysics Data System (ADS)

    Cheng, Shi-Yuan; Huang, H.-J. Su; Nagane, Motoo; Ji, Xiang-Dong; Wang, Degui; Shih, Charles C.-Y.; Arap, Wadih; Huang, Chun-Ming; Cavenee, Webster K.

    1996-08-01

    The development of new capillary networks from the normal microvasculature of the host appears to be required for growth of solid tumors. Tumor cells influence this process by producing both inhibitors and positive effectors of angiogenesis. Among the latter, the vascular endothelial growth factor (VEGF) has assumed prime candidacy as a major positive physiological effector. Here, we have directly tested this hypothesis in the brain tumor, glioblastoma multiforme, one of the most highly vascularized human cancers. We introduced an antisense VEGF expression construct into glioblastoma cells and found that (i) VEGF mRNA and protein levels were markedly reduced, (ii) the modified cells did not secrete sufficient factors so as to be chemoattractive for primary human microvascular endothelial cells, (iii) the modified cells were not able to sustain tumor growth in immunodeficient animals, and (iv) the density of in vivo blood vessel formation was reduced in direct relation to the reduction of VEGF secretion and tumor formation. Moreover, revertant cells that recovered the ability to secrete VEGF regained each of these tumorigenic properties. These results suggest that VEGF plays a major angiogenic role in glioblastoma.

  18. Experiencing brain cancer: what physicians should know about patients

    PubMed Central

    Lucchiari, Claudio; Botturi, Andrea; Manzini, Laura; Masiero, Marianna; Pravettoni, Gabriella

    2015-01-01

    During the last 20 years, numerous studies have highlighted the need to consider Quality of Life (QoL) issues in the treatment of brain cancer. However, gaps in scientific knowledge are still present as we have poor data surrounding the whole experience in patients and regarding their needs. The present study was aimed at evaluating QoL in brain cancer patients and correlated aspects. In particular, we aimed to assess QoL, mood state, and emotional issues in order to describe the patients’ experience to find out the critical aspects involved. Methods We obtained data from 85 patients during chemotherapy treatment at the National Neurological Institute ‘C. Besta’ of Milan, Italy. We used standardised questionnaires to assess different aspects of patients’ QoL. In particular, the functional assessment of cancer therapy-brain (FACT-Br) and the Hamilton scale were used. We also performed a semi-structured ad hoc interview in order to collect ­narrative data about patients’ experience. Results Our data depict a difficult adjustment process to the illness, even though positive elements emerged. Indeed, patients reported a satisfying self-perceived QoL, although specific concerns are still present. Further, even if many patients report depressive symptoms, only a minority have a severe condition. Conclusion Brain cancer may heavily affect patients’ QoL and well being. However, some element of the context may improve the ­adjustment to the disease. In particular, we found that most patients found psychosocial resources to cope with cancer and that spiritual well being also seems to play a key role. These issues deserve further studies in order to obtain significant clinical recommendations. PMID:26635895

  19. Glioblastoma: A Pathogenic Crosstalk between Tumor Cells and Pericytes

    PubMed Central

    Redondo-Garcia, Carolina; Martinez, Salvador

    2014-01-01

    Cancers likely originate in progenitor zones containing stem cells and perivascular stromal cells. Much evidence suggests stromal cells play a central role in tumor initiation and progression. Brain perivascular cells (pericytes) are contractile and function normally to regulate vessel tone and morphology, have stem cell properties, are interconvertible with macrophages and are involved in new vessel formation during angiogenesis. Nevertheless, how pericytes contribute to brain tumor infiltration is not known. In this study we have investigated the underlying mechanism by which the most lethal brain cancer, Glioblastoma Multiforme (GBM) interacts with pre-existing blood vessels (co-option) to promote tumor initiation and progression. Here, using mouse xenografts and laminin-coated silicone substrates, we show that GBM malignancy proceeds via specific and previously unknown interactions of tumor cells with brain pericytes. Two-photon and confocal live imaging revealed that GBM cells employ novel, Cdc42-dependent and actin-based cytoplasmic extensions, that we call flectopodia, to modify the normal contractile activity of pericytes. This results in the co-option of modified pre-existing blood vessels that support the expansion of the tumor margin. Furthermore, our data provide evidence for GBM cell/pericyte fusion-hybrids, some of which are located on abnormally constricted vessels ahead of the tumor and linked to tumor-promoting hypoxia. Remarkably, inhibiting Cdc42 function impairs vessel co-option and converts pericytes to a phagocytic/macrophage-like phenotype, thus favoring an innate immune response against the tumor. Our work, therefore, identifies for the first time a key GBM contact-dependent interaction that switches pericyte function from tumor-suppressor to tumor-promoter, indicating that GBM may harbor the seeds of its own destruction. These data support the development of therapeutic strategies directed against co-option (preventing incorporation and

  20. An aqueous normal-phase chromatography coupled with tandem mass spectrometry method for determining unbound brain-to-plasma concentration ratio of AZD1775, a Wee1 kinase inhibitor, in patients with glioblastoma.

    PubMed

    Wu, Jianmei; Sanai, Nader; Bao, Xun; LoRusso, Patricia; Li, Jing

    2016-08-15

    A rapid, sensitive, and robust aqueous normal-phase chromatography method coupled with tandem mass spectrometry was developed and validated for the quantitation of AZD1775, a Wee-1 inhibitor, in human plasma and brain tumor tissue. Sample preparation involved simple protein precipitation with acetonitrile. Chromatographic separation was achieved on ethylene bridged hybrid stationary phases (i.e., Waters XBridge Amide column) under an isocratic elution with the mobile phase consisting of acetonitrile/ammonium formate in water (10mM, pH 3.0) (85:15,v/v) at a flow rate of 0.8mL/min for 5min. The lower limit of quantitation (LLOQ) was 0.2ng/mL of AZD1775 in plasma and tissue homogenate. The calibration curve was linear over AZD1775 concentration range of 0.2-1000ng/mL in plasma and tissue homogenate. The intra- and inter-day precision and accuracy were within the generally accepted criteria for bioanalytical method (<15%). The method was successfully applied to assess the penetration of AZD1775 across the blood-brain tumor barrier, as assessed by the unbound brain-to-plasma ratio, in patients with glioblastoma. PMID:27318641

  1. Regulatory effect of nerve growth factor in α9β1 integrin–dependent progression of glioblastoma

    PubMed Central

    Brown, Meghan C.; Staniszewska, Izabela; Lazarovici, Philip; Tuszynski, George P.; Del Valle, Luis; Marcinkiewicz, Cezary

    2008-01-01

    In the present study we described the role of α9β1 integrin in glioblastoma progression following its interaction with nerve growth factor (NGF). The level of expression of α9β1 on astrocytomas is correlated with increased grade of this brain tumor and is highest on glioblastoma, whereas normal astrocytes do not express this integrin. Two glioblastoma cell lines, LN229 and LN18, that are α9β1 integrin positive and negative, respectively, were used for α9β1 integrin–dependent NGF-induced tumor progression. NGF was a significant promoter of promigratory and pro-proliferative activities of glioblastoma cells through direct interaction with α9β1 integrin and activation of MAPK Erk1/2 pathway. The level of NGF increases approximately threefold in the most malignant glioma tissue when compared with normal brain. This increase is related to secretion of NGF by tumor cells. Specific inhibitors of α9β1 integrin or gene silencing inhibited NGF-induced proliferation of LN229 cell line to the level shown by LN18 cells. VLO5 promoted α9β1-dependent programmed cell death by induction of intrinsic apoptosis pathway in cancer cells. LN229 cells were rescued from proapoptotic effect of VLO5 by the presence of NGF. This disintegrin significantly inhibited tumor growth induced by implantation of LN229 cells to the chorioallantoic membrane (CAM) of quail embryonic model, and this inhibitory effect was significantly abolished by the presence of NGF. α9β1 integrin appears to be an interesting target for blocking the progression of malignant gliomas, especially in light of the stimulatory effect of NGF on the development of these tumors and its ability to transfer proapoptotic signals in cancer cells. PMID:19074980

  2. Self-Styled ZnO Nanostructures Promotes the Cancer Cell Damage and Supresses the Epithelial Phenotype of Glioblastoma.

    PubMed

    Wahab, Rizwan; Kaushik, Neha; Khan, Farheen; Kaushik, Nagendra Kumar; Choi, Eun Ha; Musarrat, Javed; Al-Khedhairy, Abdulaziz A

    2016-01-01

    Extensive researches have been done on the applications of zinc oxide nanoparticles (ZnO-NPs) for the biological purposes. However, the role and toxicity mechanisms of ZnO nanostructures (ZnO-NSts) such as nanoplates (NPls), nanorods (NRs), nanosheets (NSs), nanoflowers (NFs) on cancer cells are not largely known. Present study was focused to investigate the possible mechanisms of apoptosis induced by self-designed ZnO-NSts, prepared at fix pH via solution process and exposed against human T98G gliomas including various cancers and non-malignant embryonic kidney HEK293, MRC5 fibroblast cells. NSts were used for the induction of cell death in malignant human T98G gliomas including various cancers and compared with the non-malignant cells. Notably, NRs were found to induce higher cytotoxicity, inhibitory effects on cancer and normal cells in a dose dependent manner. We also showed that NRs induced cancer cell death through oxidative stress and caspase-dependent pathways. Furthermore, quantitative and qualitative analysis of ZnO-NSts have also been confirmed by statistical analytical parameters such as precision, accuracy, linearity, limits of detection and limit of quantitation. These self-styled NSts could provide new perception in the research of targeted cancer nanotechnology and have potentiality to improve new therapeutic outcomes with poor diagnosis. PMID:26818603

  3. Self-Styled ZnO Nanostructures Promotes the Cancer Cell Damage and Supresses the Epithelial Phenotype of Glioblastoma

    PubMed Central

    Wahab, Rizwan; Kaushik, Neha; Khan, Farheen; Kaushik, Nagendra Kumar; Choi, Eun Ha; Musarrat, Javed; Al-Khedhairy, Abdulaziz A.

    2016-01-01

    Extensive researches have been done on the applications of zinc oxide nanoparticles (ZnO-NPs) for the biological purposes. However, the role and toxicity mechanisms of ZnO nanostructures (ZnO-NSts) such as nanoplates (NPls), nanorods (NRs), nanosheets (NSs), nanoflowers (NFs) on cancer cells are not largely known. Present study was focused to investigate the possible mechanisms of apoptosis induced by self-designed ZnO-NSts, prepared at fix pH via solution process and exposed against human T98G gliomas including various cancers and non-malignant embryonic kidney HEK293, MRC5 fibroblast cells. NSts were used for the induction of cell death in malignant human T98G gliomas including various cancers and compared with the non-malignant cells. Notably, NRs were found to induce higher cytotoxicity, inhibitory effects on cancer and normal cells in a dose dependent manner. We also showed that NRs induced cancer cell death through oxidative stress and caspase-dependent pathways. Furthermore, quantitative and qualitative analysis of ZnO-NSts have also been confirmed by statistical analytical parameters such as precision, accuracy, linearity, limits of detection and limit of quantitation. These self-styled NSts could provide new perception in the research of targeted cancer nanotechnology and have potentiality to improve new therapeutic outcomes with poor diagnosis. PMID:26818603

  4. Self-Styled ZnO Nanostructures Promotes the Cancer Cell Damage and Supresses the Epithelial Phenotype of Glioblastoma

    NASA Astrophysics Data System (ADS)

    Wahab, Rizwan; Kaushik, Neha; Khan, Farheen; Kaushik, Nagendra Kumar; Choi, Eun Ha; Musarrat, Javed; Al-Khedhairy, Abdulaziz A.

    2016-01-01

    Extensive researches have been done on the applications of zinc oxide nanoparticles (ZnO-NPs) for the biological purposes. However, the role and toxicity mechanisms of ZnO nanostructures (ZnO-NSts) such as nanoplates (NPls), nanorods (NRs), nanosheets (NSs), nanoflowers (NFs) on cancer cells are not largely known. Present study was focused to investigate the possible mechanisms of apoptosis induced by self-designed ZnO-NSts, prepared at fix pH via solution process and exposed against human T98G gliomas including various cancers and non-malignant embryonic kidney HEK293, MRC5 fibroblast cells. NSts were used for the induction of cell death in malignant human T98G gliomas including various cancers and compared with the non-malignant cells. Notably, NRs were found to induce higher cytotoxicity, inhibitory effects on cancer and normal cells in a dose dependent manner. We also showed that NRs induced cancer cell death through oxidative stress and caspase-dependent pathways. Furthermore, quantitative and qualitative analysis of ZnO-NSts have also been confirmed by statistical analytical parameters such as precision, accuracy, linearity, limits of detection and limit of quantitation. These self-styled NSts could provide new perception in the research of targeted cancer nanotechnology and have potentiality to improve new therapeutic outcomes with poor diagnosis.

  5. Brain-targeted delivery of docetaxel by glutathione-coated nanoparticles for brain cancer.

    PubMed

    Grover, Aditya; Hirani, Anjali; Pathak, Yashwant; Sutariya, Vijaykumar

    2014-12-01

    Gliomas are some of the most aggressive types of cancers but the blood-brain barrier acts as an obstacle to therapeutic intervention in brain-related diseases. The blood-brain barrier blocks the permeation of potentially toxic compounds into neural tissue through the interactions of brain endothelial cells with glial cells (astrocytes and pericytes) which induce the formation of tight junctions in endothelial cells lining the blood capillaries. In the present study, we characterize a glutathione-coated docetaxel-loaded PEG-PLGA nanoparticle, show its in vitro drug release data along with cytotoxicity data in C6 and RG2 cells, and investigate its trans-blood-brain barrier permeation through the establishment of a Transwell cellular co-culture. We show that the docetaxel-loaded nanoparticle's size enables its trans-blood-brain barrier permeation; the nanoparticle exhibits a steady, sustained release of docetaxel; the drug is able to induce cell death in glioma models; and the glutathione-coated nanoparticle is able to permeate through the Transwell in vitro blood-brain barrier model.

  6. High performance nanobio photocatalyst for targeted brain cancer therapy.

    SciTech Connect

    Rozhkova, E.; Ulasov, I.; Dimitrijevic, N. M.; Lesniak, M.; Rajh, T.; Lai, B.; Center for Nanoscale Materials

    2009-09-01

    We report pronounced and specific antiglioblastoma cell phototoxicity of 5 nm TiO{sub 2} particles covalently tethered to an antibody via a dihydroxybenzene bivalent linker. The linker application enables absorption of a visible part of the solar spectrum by the nanobio hybrid. The phototoxicity is mediated by reactive oxygen species (ROS) that initiate programmed death of the cancer cell. Synchrotron X-ray fluorescence microscopy (XFM) was applied for direct visualization of the nanobioconjugate distribution through a single brain cancer cell at the submicrometer scale.

  7. Prospective of curcumin, a pleiotropic signalling molecule from Curcuma longa in the treatment of Glioblastoma.

    PubMed

    Luthra, Pratibha Mehta; Lal, Neetika

    2016-02-15

    GBM (Glioblastoma) is the most malignant human brain tumor with median survival of one year. The treatment involves surgery, radiotherapy and adjuvant chemotherapy mostly with the alkylation agents such as temozolomide (TMZ). Dietary polyphenol curcumin, isolated from the rhizome of the Curcuma longa (turmeric), has emerged as remarkable anti-cancer agent in the treatment of various peripheral cancers such as blood, lymphomas, multiple myeloma, melanoma as well as skin, lung, prostate, breast, ovarian, bladder, liver, gastrointestinal tract, pancreatic and colorectal epithelial cancers with a pleiotropic mode of action and also showed promise in alleviation of GBM. In this review, the mechanism of anticancer effect of curcumin in GBM has been discussed extensively. The clinical safety and pharmacokinetics of curcumin has been scrutinized to combat the challenges for the treatment of GBM.

  8. Prospective of curcumin, a pleiotropic signalling molecule from Curcuma longa in the treatment of Glioblastoma.

    PubMed

    Luthra, Pratibha Mehta; Lal, Neetika

    2016-02-15

    GBM (Glioblastoma) is the most malignant human brain tumor with median survival of one year. The treatment involves surgery, radiotherapy and adjuvant chemotherapy mostly with the alkylation agents such as temozolomide (TMZ). Dietary polyphenol curcumin, isolated from the rhizome of the Curcuma longa (turmeric), has emerged as remarkable anti-cancer agent in the treatment of various peripheral cancers such as blood, lymphomas, multiple myeloma, melanoma as well as skin, lung, prostate, breast, ovarian, bladder, liver, gastrointestinal tract, pancreatic and colorectal epithelial cancers with a pleiotropic mode of action and also showed promise in alleviation of GBM. In this review, the mechanism of anticancer effect of curcumin in GBM has been discussed extensively. The clinical safety and pharmacokinetics of curcumin has been scrutinized to combat the challenges for the treatment of GBM. PMID:26748069

  9. SP-05VENOUS THROMBOEMBOLISM AND GLIOBLASTOMA

    PubMed Central

    Yust-Katz, Shlomit; Mandel, Jacob; Ying, Yuan; Wu, Jimin; Courtney, C.; Ladha, Harshad; Pawar, Tushar; Gilbert, Mark; Armstrong, Terri

    2014-01-01

    The risk of venous thromboembolism (VTE) is very high for patients with brain tumors; Glioblastoma (GB) specifically is one of the most at risk cancers. The aim of this study is to estimate the frequency and identify potential risk factors of GB patients developing VTE during adjuvant chemotherapy and to test if the Khorana scale accurately predicts the risk of VTE among this patient population. We retrospectively reviewed patients with GB treated at MD Anderson during the years 2005-2011. The target population of our study was patients who developed VTE after starting adjuvant chemotherapy. Patients were excluded if they did not start treatment with the established standard of care, had less than 6 months follow up or if they developed VTE before starting adjuvant treatment. The study sample included 440 patients. 64 (14.5%) of them developed VTE. The median time to develop VTE was 6.5 months. On multivariate analysis male sex, BMI≥ 35, KPS ≤80, history of VTE and steroid therapy were significantly associated with the development of VTE. We also found that in this patient sample, the Khorana scale was not a valid predictive model in GB patients due to very poor specificity. Of the 64 patients who developed a VTE, 36 were treated with anticoagulation, 2 with an IVC filter, and 21 with both. Complications secondary to anticoagulation were reported in 16% (n = 10) of patients. The complications included intracranial hemorrhage, bleeding to other organs and thrombocytopenia. VTE is very common in patients with GB. Currently, we are lacking a scale that accurately predicts the risk of VTE among GB patients. Predictive scales used for other cancers do not seem valid for GB due to the unique nature of the disease. Future studies are needed to create an accurate predictive model for VTE in GB patients.

  10. Nearly Complete Response of Brain Metastases from HER2 Overexpressing Breast Cancer with Lapatinib and Capecitabine after Whole Brain Irradiation

    PubMed Central

    Oktay, Esin; Yersal, Özlem; Meydan, Nezih; Sağıroğlu, Mehmet; Uyanık, Ömer; Barutca, Sabri

    2013-01-01

    Trastuzumab treatment does not prevent intracranial seeding and is largely ineffective for established central nervous system metastasis in HER2 overexpressing breast cancer patients. Combination therapy of lapatinib and capecitabine may be an effective treatment option for brain metastasis of HER2-positive breast cancer. We report a patient with breast cancer overexpressing HER-2 where brain metastases were successfully treated with radiation and a combination of lapatinib and capecitabine. PMID:24191208

  11. Bafetinib in Treating Patients With Recurrent High-Grade Glioma or Brain Metastases

    ClinicalTrials.gov

    2013-03-18

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Mixed Glioma; Recurrent Adult Brain Tumor; Tumors Metastatic to Brain; Adult Anaplastic Oligoastrocytoma

  12. Angiopoietin-2 mediates blood-brain barrier impairment and colonization of triple-negative breast cancer cells in brain.

    PubMed

    Avraham, Hava Karsenty; Jiang, Shuxian; Fu, Yigong; Nakshatri, Harikrishna; Ovadia, Haim; Avraham, Shalom

    2014-02-01

    Although the incidence of breast cancer metastasis (BCM) in brain has increased significantly in triple-negative breast cancer (TNBC), the mechanisms remain elusive. Using in vivo mouse models for BCM in brain, we observed that TNBC cells crossed the blood-brain barrier (BBB), lodged in the brain microvasculature and remained adjacent to brain microvascular endothelial cells (BMECs). Breaching of the BBB in vivo by TNBCs resulted in increased BBB permeability and changes in ZO-1 and claudin-5 tight junction (TJ) protein structures. Angiopoietin-2 expression was elevated in BMECs and was correlated with BBB disruption. Secreted Ang-2 impaired TJ structures and increased BBB permeability. Treatment of mice with the neutralizing Ang-2 peptibody trebananib prevented changes in the BBB integrity and BMEC destabilization, resulting in inhibition of TNBC colonization in brain. Thus, Ang-2 is involved in initial steps of brain metastasis cascade, and inhibitors for Ang-2 may serve as potential therapeutics for brain metastasis.

  13. [Advances in Bevacizumab Therapy for Non-small Cell Lung Cancer 
with Brain Metastases].

    PubMed

    Qu, Liyan; Geng, Rui; Song, Xia

    2016-08-20

    Brain metastases are frequently encountered in patients with non-small cell lung cancer (NSCLC) and are a significant cause of morbidity and mortality. Antiangiogenesis therapy plays a major role in the management of brain metastases in lung cancer. Bevacizumab have become the novel method for the treatment of lung cancer with brain metastases beyond the whole brain radiation therapy, stereotactic radiosurgery and chemotherapy. Recently, more and more studies and trials laid emphasis on the bevacizumab for NSCLC with brain metastases treatment. The key point is the efficacy and safety. In this review, bevacizumab therapy of NSCLC with brain metastases were summarized. PMID:27561800

  14. Corticosteroids in brain cancer patients: benefits and pitfalls

    PubMed Central

    Dietrich, Jörg; Rao, Krithika; Pastorino, Sandra; Kesari, Santosh

    2011-01-01

    Glucocorticoids have been used for decades in the treatment of brain tumor patients and belong to the most powerful class of agents in reducing tumor-associated edema and minimizing side effects and the risk of encephalopathy in patients undergoing radiation therapy. Unfortunately, corticosteroids are associated with numerous and well-characterized adverse effects, constituting a major challenge in patients requiring long-term application of corticosteroids. Novel anti-angiogenic agents, such as bevacizumab (Avastin®), which have been increasingly used in cancer patients, are associated with significant steroid-sparing effects, allowing neuro-oncologists to reduce the overall use of corticosteroids in patients with progressive malignant brain tumors. Recent experimental studies have revealed novel insights into the mechanisms and effects of corticosteroids in cancer patients, including modulation of tumor biology, angiogenesis and steroid-associated neurotoxicity. This article summarizes current concepts of using corticosteroids in brain cancer patients and highlights potential pitfalls in their effects on both tumor and neural progenitor cells. PMID:21666852

  15. Gene Expression Profiling of Breast Cancer Brain Metastasis

    PubMed Central

    Lee, Ji Yun; Park, Kyunghee; Lee, Eunjin; Ahn, TaeJin; Jung, Hae Hyun; Lim, Sung Hee; Hong, Mineui; Do, In-Gu; Cho, Eun Yoon; Kim, Duk-Hwan; Kim, Ji-Yeon; Ahn, Jin Seok; Im, Young-Hyuck; Park, Yeon Hee

    2016-01-01

    The biology of breast cancer brain metastasis (BCBM) is poorly understood. We aimed to explore genes that are implicated in the process of brain metastasis of primary breast cancer (BC). NanoString nCounter Analysis covering 252 target genes was used for comparison of gene expression levels between 20 primary BCs that relapsed to brain and 41 BCBM samples. PAM50-based intrinsic subtypes such as HER2-enriched and basal-like were clearly over-represented in BCBM. A panel of 22 genes was found to be significantly differentially expressed between primary BC and BCBM. Five of these genes, CXCL12, MMP2, MMP11, VCAM1, and MME, which have previously been associated with tumor progression, angiogenesis, and metastasis, clearly discriminated between primary BC and BCBM. Notably, the five genes were significantly upregulated in primary BC compared to BCBM. Conversely, SOX2 and OLIG2 genes were upregulated in BCBM. These genes may participate in metastatic colonization but not in primary tumor development. Among patient-matched paired samples (n = 17), a PAM50 molecular subtype conversion was observed in eight cases (47.1%), with a trend toward unfavorable subtypes in patients with the distinct gene expression. Our findings, although not conclusive, reveal differentially expressed genes that might mediate the brain metastasis process. PMID:27340107

  16. Systemically administered AAV9-sTRAIL combats invasive glioblastoma in a patient-derived orthotopic xenograft model

    PubMed Central

    Crommentuijn, Matheus HW; Kantar, Rami; Noske, David P; Vandertop, W Peter; Badr, Christian E; Würdinger, Thomas; Maguire, Casey A; Tannous, Bakhos A

    2016-01-01

    Adeno-associated virus (AAV) vectors expressing tumoricidal genes injected directly into brain tumors have shown some promise, however, invasive tumor cells are relatively unaffected. Systemic injection of AAV9 vectors provides widespread delivery to the brain and potentially the tumor/microenvironment. Here we assessed AAV9 for potential glioblastoma therapy using two different promoters driving the expression of the secreted anti-cancer agent sTRAIL as a transgene model; the ubiquitously active chicken β-actin (CBA) promoter and the neuron-specific enolase (NSE) promoter to restrict expression in brain. Intravenous injection of AAV9 vectors encoding a bioluminescent reporter showed similar distribution patterns, although the NSE promoter yielded 100-fold lower expression in the abdomen (liver), with the brain-to-liver expression ratio remaining the same. The main cell types targeted by the CBA promoter were astrocytes, neurons and endothelial cells, while expression by NSE promoter mostly occurred in neurons. Intravenous administration of either AAV9-CBA-sTRAIL or AAV9-NSE-sTRAIL vectors to mice bearing intracranial patient-derived glioblastoma xenografts led to a slower tumor growth and significantly increased survival, with the CBA promoter having higher efficacy. To our knowledge, this is the first report showing the potential of systemic injection of AAV9 vector encoding a therapeutic gene for the treatment of brain tumors. PMID:27382645

  17. 18F FPPRGD2 PET/CT or PET/MRI in Predicting Early Response in Patients With Cancer Receiving Anti-Angiogenesis Therapy

    ClinicalTrials.gov

    2015-11-16

    Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Male Breast Cancer; Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell Carcinoma; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adult Brain Tumor; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Breast Cancer; Recurrent Colon Cancer; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Hypopharyngeal Cancer; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Laryngeal Cancer; Recurrent Lip and Oral Cavity Cancer; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Nasopharyngeal Cancer; Recurrent Non-small Cell Lung Cancer; Recurrent Oropharyngeal Cancer; Recurrent Pancreatic Cancer; Recurrent Paranasal Sinus and Nasal Cavity Cancer; Recurrent Rectal Cancer; Recurrent Renal Cell Cancer; Recurrent Salivary Gland Cancer; Stage IIIA Breast Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Breast Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Pancreatic Cancer; Stage IV Renal Cell Cancer; Stage IVA Colon Cancer; Stage IVA Rectal Cancer; Stage IVA Salivary Gland Cancer; Stage IVB Colon Cancer; Stage IVB Salivary Gland Cancer; Stage IVC Salivary Gland Cancer; Tongue Cancer; Unspecified Adult Solid Tumor, Protocol Specific

  18. Protein Kinase CK2 Content in GL261 Mouse Glioblastoma.

    PubMed

    Ferrer-Font, Laura; Alcaraz, Estefania; Plana, Maria; Candiota, Ana Paula; Itarte, Emilio; Arús, Carles

    2016-07-01

    Glioblastoma (GBM) is the most prevalent and aggressive human glial tumour with a median survival of 14-15 months. Temozolomide (TMZ) is the standard chemotherapeutic choice for GBM treatment. Unfortunately, chemoresistence always ensues with concomitant tumour regrowth. Protein kinase CK2 (CK2) contributes to tumour development, proliferation, and suppression of apoptosis in cancer and it is overexpressed in human GBM. Targeting CK2 in GBM treatment may benefit patients. With this translational perspective in mind, we have studied the CK2 expression level by Western blot analysis in a preclinical model of GBM: GL261 cells growing orthotopically in C57BL/6 mice. The expression level of the CK2 catalytic subunit (CK2α) was higher in tumour (about 4-fold) and in contralateral brain parenchyma (more than 2-fold) than in normal brain parenchyma (p < 0.05). In contrast, no significant changes were found in CK2 regulatory subunit (CK2β) expression, suggesting an increased unbalance of CK2α/CK2β in GL261 tumours with respect to normal brain parenchyma, in agreement with a differential role of these two subunits in tumours.

  19. Primary brain tumors, neural stem cell, and brain tumor cancer cells: where is the link?

    PubMed Central

    Germano, Isabelle; Swiss, Victoria; Casaccia, Patrizia

    2010-01-01

    The discovery of brain tumor-derived cells (BTSC) with the properties of stem cells has led to the formulation of the hypothesis that neural stem cells could be the cell of origin of primary brain tumors (PBT). In this review we present the most common molecular changes in PBT, define the criteria of identification of BTSC and discuss the similarities between the characteristics of these cells and those of the endogenous population of neural stem cells (NPCs) residing in germinal areas of the adult brain. Finally, we propose possible mechanisms of cancer initiation and progression and suggest a model of tumor initiation that includes intrinsic changes of resident NSC and potential changes in the microenvironment defining the niche where the NSC reside. PMID:20045420

  20. Association between SET expression and glioblastoma cell apoptosis and proliferation

    PubMed Central

    He, Kunyan; Shi, Lihong; Jiang, Tingting; Li, Qiang; Chen, Yao; Meng, Chuan

    2016-01-01

    Glioblastoma multiforme (GBM) was one of the first cancer types systematically studied at a genomic and transcriptomic level due to its high incidence and aggressivity; however, the detailed mechanism remains unclear, even though it is known that numerous cytokines are involved in the occurrence and development of GBM. The present study aimed to determine whether the SET gene has a role in human glioblastoma carcinogenesis. A total of 32 samples, including 18 cases of glioma, 2 cases of meningioma and 12 normal brain tissue samples, were detected using the streptavidin-peroxidase method through immunohistochemistry. To reduce SET gene expression in U251 and U87MG cell lines, the RNA interference technique was used and transfection with small interfering (si)RNA of the SET gene was performed. Cell apoptosis was detected by flow cytometry, cell migration was examined by Transwell migration assay and cell proliferation was determined by Cell Counting Kit-8. SET, Bcl-2, Bax and caspase-3 mRNA and protein expression levels were detected by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Positive protein expression of SET was observed in the cell nucleus, with the expression level of SET significantly higher in glioma tissues compared with normal brain tissue (P=0.001). Elevated expression of SET was significantly associated with gender (P=0.002), tumors classified as World Health Organization grade II (P=0.031), III (P=0.003) or IV (P=0.001), and moderately (P=0.031) or poorly differentiated (P=0.001) tumors. Compared with the negative and non-treatment (blank) control cells, SET gene expression was significantly inhibited (P=0.006 and P<0.001), cell apoptosis was significantly increased (P=0.001 and P<0.001), cell proliferation was significantly inhibited (P=0.002 and P=0.015), and cell migration was significantly decreased (P=0.001 and P=0.001) in siRNA-transfected U87MG−SET and U251−SET cells, respectively. In

  1. Brain perfusion and permeability in patients with advanced, refractory glioblastoma treated with lomustine and the transforming growth factor-β receptor I kinase inhibitor LY2157299 monohydrate

    PubMed Central

    SEPULVEDA-SANCHEZ, JUAN; RAMOS, ANA; HILARIO, AMAYA; DE VELASCO, GUILLERMO; CASTELLANO, DANIEL; GARCIA DE LA TORRE, MARTA; RODON, JORDI; LAHN, MICHAEL F.

    2015-01-01

    Transforming growth factor-β (TGF-β) signaling is associated with tumor progression and vascularization in malignant glioma. In the present study, magnetic resonance imaging was used to evaluate changes in the size and vascularity of glioblastomas in 12 patients who were treated with lomustine and the novel inhibitor of TGF-β signaling, LY2157299 monohydrate. A response in tumor size was observed in 2 of the 12 patients; in 1 of these 2 patients, a reduction in vascular permeability and perfusion was also detected. The effect was observed following 4 cycles of treatment (~3 months). Changes in vascularity have not previously been attributed to treatment with lomustine; therefore, the effect may be associated with LY2157299 treatment. LY2157299 does not appear to have an anti-angiogenic effect when combined with lomustine, and hence may have a different mechanism of action profile compared with anti-angiogenic drugs. PMID:26137087

  2. Nanoparticles: Novel vehicles in treatment of Glioblastoma.

    PubMed

    Pourgholi, Fatemeh; Hajivalili, Mahsa; Farhad, Jadidi-Niaragh; Kafil, Hossein Samadi; Yousefi, Mehdi

    2016-02-01

    Glioblastoma multiform (GBM) is the most common brain tumor. The current GBM treatments comprise of radiation therapy, chemotherapy and surgery. One of the most important problems regarding the treatment of GBM is the presence of blood brain barrier (BBB) which inhibits the efficient drug delivery into central nervous system (CNS). Nanothechnology can help to deliver therapeutic drugs into CNS through crossing the BBB. There are different types of nanoparticles (Nps) which can be manipulated for clinical applications as a treatment for CNS-related disorders. In this review, we will discuss the role of Nps in the treatment of GBM.

  3. Label-retaining assay enriches tumor-initiating cells in glioblastoma spheres cultivated in serum-free medium

    PubMed Central

    Zeng, Lingcheng; Zhao, Yiqing; Ouyang, Taohui; Zhao, Tianyuan; Zhang, Suojun; Chen, Jian; Yu, Jiasheng; Lei, Ting

    2016-01-01

    Label-retaining cells, which are characterized by dormancy or slow cycling, may be identified in a number of human normal and cancer tissues, and these cells demonstrate stem cell potential. In glioblastoma, label-retaining assays to enrich glioma stem cells remain to be fully investigated. In the present study, glioblastoma sphere cells cultured in serum-free medium were initially stained with the cell membrane fluorescent marker DiI. The fluorescence intensity during cell proliferation and sphere reformation was observed. At 2 weeks, the DiI-retaining cells were screened by fluorescence-activated cell sorting and compared phenotypically with the DiI-negative cells in terms of in vitro proliferation, clonogenicity and multipotency and for in vivo tumorigenicity, as well as sensitivity to irradiation and temozolomide treatment. It was observed that DiI-retaining cells accounted for a small proportion, <10%, within the glioblastoma spheres and that DiI-retaining cells proliferated significantly more slowly compared with DiI-negative cells (P=0.011, P=0.035 and P=0.023 in the of NCH421k, NCH441 and NCH644 glioblastoma sphere cell lines). Significantly increased clonogenicity (P=0.002, P=0.034 and P=0.016 in the NCH441, NCH644 and NCH421k glioblastoma sphere cell lines) and three-lineage multipotency were observed in DiI-retaining cells in vitro compared with DiI-negative cells. As few as 100 DiI-retaining cells were able to effectively generate tumors in the immunocompromised mouse brain, whereas the same number of DiI-negative cells possessed no such ability, indicating the increased tumorigenicity of DiI-retaining cells compared with DiI-negative cells. Furthermore, DiI-retaining cells demonstrated significant resistance following irradiation (P=0.012, P=0.024 and P=0.036) and temozolomide (P=0.003, P=0.005 and P=0.029) compared with DiI-negative cells in the NCH421k, NCH441 and NCH644 glioblastoma sphere cell lines, respectively. It was concluded that label

  4. Gain of glucose-independent growth upon metastasis of breast cancer cells to the brain.

    PubMed

    Chen, Jinyu; Lee, Ho-Jeong; Wu, Xuefeng; Huo, Lei; Kim, Sun-Jin; Xu, Lei; Wang, Yan; He, Junqing; Bollu, Lakshmi R; Gao, Guang; Su, Fei; Briggs, James; Liu, Xiaojing; Melman, Tamar; Asara, John M; Fidler, Isaiah J; Cantley, Lewis C; Locasale, Jason W; Weihua, Zhang

    2015-02-01

    Breast cancer brain metastasis is resistant to therapy and a particularly poor prognostic feature in patient survival. Altered metabolism is a common feature of cancer cells, but little is known as to what metabolic changes benefit breast cancer brain metastases. We found that brain metastatic breast cancer cells evolved the ability to survive and proliferate independent of glucose due to enhanced gluconeogenesis and oxidations of glutamine and branched chain amino acids, which together sustain the nonoxidative pentose pathway for purine synthesis. Silencing expression of fructose-1,6-bisphosphatases (FBP) in brain metastatic cells reduced their viability and improved the survival of metastasis-bearing immunocompetent hosts. Clinically, we showed that brain metastases from human breast cancer patients expressed higher levels of FBP and glycogen than the corresponding primary tumors. Together, our findings identify a critical metabolic condition required to sustain brain metastasis and suggest that targeting gluconeogenesis may help eradicate this deadly feature in advanced breast cancer patients.

  5. Whole brain radiotherapy 'has no effect' in patients whose lung cancer has spread.

    PubMed

    2016-09-28

    Whole brain radiotherapy makes little or no difference to survival rates or quality of life in patients with non-small cell lung cancer (NSCLC) that has spread to the brain, say researchers. PMID:27682542

  6. Stable and Efficient Paclitaxel Nanoparticles for Targeted Glioblastoma Therapy

    PubMed Central

    Mu, Qingxin; Jeon, Mike; Hsiao, Meng-Hsuan; Patton, Victoria K.; Wang, Kui; Press, Oliver W.

    2015-01-01

    Development of efficient nanoparticles (NPs) for cancer therapy remains a challenge. NPs are required to have high stability, uniform size, sufficient drug loading, targeting capability, and ability to overcome drug resistance. In this study, we report the development of a nanoparticle formulation that can meet all these challenging requirements for targeted glioblastoma multiform (GBM) therapy. This multifunctional nanoparticle is composed of a polyethylene glycol (PEG) coated magnetic iron oxide NP conjugated with cyclodextrin (CD) and chlorotoxin (CTX) and loaded with fluorescein and paclitaxel (PTX) (IONP-PTX-CTX-FL). The physicochemical properties of the IONP-PTX-CTX-FL were characterized by TEM, dynamic light scattering (DLS), and HPLC. The cellular uptake of NPs was studied using flow cytometry and confocal microscopy. Cell viability and apoptosis were assessed with the Alamar Blue viability assay and flow cytometry, respectively. The IONP-PTX-CTX-FL had a uniform size of ~44 nm and high stability in cell culture medium. Importantly, the presence of CTX on NPs enhanced the uptake of the NPs by GBM cells and improved the efficacy of PTX in killing both GBM and GBM drug-resistant cells. The IONP-PTX-CTX-FL has demonstrated its great potential for brain cancer therapy and may also be used to deliver PTX to treat other cancers. PMID:25761648

  7. Stable and efficient Paclitaxel nanoparticles for targeted glioblastoma therapy.

    PubMed

    Mu, Qingxin; Jeon, Mike; Hsiao, Meng-Hsuan; Patton, Victoria K; Wang, Kui; Press, Oliver W; Zhang, Miqin

    2015-06-01

    Development of efficient nanoparticles (NPs) for cancer therapy remains a challenge. NPs are required to have high stability, uniform size, sufficient drug loading, targeting capability, and ability to overcome drug resistance. In this study, the development of a NP formulation that can meet all these challenging requirements for targeted glioblastoma multiform (GBM) therapy is reported. This multifunctional NP is composed of a polyethylene glycol-coated magnetic iron oxide NP conjugated with cyclodextrin and chlorotoxin (CTX) and loaded with fluorescein and paclitaxel (PTX) (IONP-PTX-CTX-FL). The physicochemical properties of the IONP-PTX-CTX-FL are characterized by transmission electron microscope, dynamic light scattering, and high-performance liquid chromatography. The cellular uptake of NPs is studied using flow cytometry and confocal microscopy. Cell viability and apoptosis are assessed with the Alamar Blue viability assay and flow cytometry, respectively. The IONP-PTX-CTX-FL had a uniform size of ≈44 nm and high stability in cell culture medium. Importantly, the presence of CTX on NPs enhanced the uptake of the NPs by GBM cells and improved the efficacy of PTX in killing both GBM and GBM drug-resistant cells. The IONP-PTX-CTX-FL demonstrated its great potential for brain cancer therapy and may also be used to deliver PTX to treat other cancers.

  8. Brain microvascular endothelium induced-annexin A1 secretion contributes to small cell lung cancer brain metastasis.

    PubMed

    Liu, Yi; Liu, Yong-Shuo; Wu, Peng-Fei; Li, Qiang; Dai, Wu-Min; Yuan, Shuai; Xu, Zhi-Hua; Liu, Ting-Ting; Miao, Zi-Wei; Fang, Wen-Gang; Chen, Yu-Hua; Li, Bo

    2015-09-01

    Small cell lung cancer is the most aggressive histologic subtype of lung cancer, with a strong predilection for metastasizing to brain early. However, the cellular and molecular basis is poorly known. Here, we provided evidence to reveal the role of annexin A1 in small cell lung cancer metastasis to brain. Firstly, the elevated annexin A1 serum levels in small cell lung cancer patients were associated with brain metastasis. The levels of annexin A1 were also upregulated in NCI-H446 cells, a small cell lung cancer cell line, upon migration into the mice brain. More interestingly, annexin A1 was secreted by NCI-H446 cells in a time-dependent manner when co-culturing with human brain microvascular endothelial cells, which was identified with the detections of annexin A1 in the co-cultured cellular supernatants by ELISA and western blot. Further results showed that blockage of annexin A1 in the co-cultured cellular supernatants using a neutralized antibody significantly inhibited NCI-H446 cells adhesion to brain endothelium and its transendothelial migration. Conversely, the addition of Ac2-26, an annexin A1 mimic peptide, enhanced these effects. Furthermore, knockdown of annexin A1 in NCI-H446 cells prevented its transendothelial migration in vitro and metastasis to mice brain in vivo. Our data showed that small cell lung cancer cell in brain microvasculature microenvironment could express much more annexin A1 and release it outside, which facilitated small cell lung cancer cell to gain malignant properties of entry into brain. These findings provided a potential target for the management of SCLC brain metastasis. PMID:26135980

  9. Brain microvascular endothelium induced-annexin A1 secretion contributes to small cell lung cancer brain metastasis.

    PubMed

    Liu, Yi; Liu, Yong-Shuo; Wu, Peng-Fei; Li, Qiang; Dai, Wu-Min; Yuan, Shuai; Xu, Zhi-Hua; Liu, Ting-Ting; Miao, Zi-Wei; Fang, Wen-Gang; Chen, Yu-Hua; Li, Bo

    2015-09-01

    Small cell lung cancer is the most aggressive histologic subtype of lung cancer, with a strong predilection for metastasizing to brain early. However, the cellular and molecular basis is poorly known. Here, we provided evidence to reveal the role of annexin A1 in small cell lung cancer metastasis to brain. Firstly, the elevated annexin A1 serum levels in small cell lung cancer patients were associated with brain metastasis. The levels of annexin A1 were also upregulated in NCI-H446 cells, a small cell lung cancer cell line, upon migration into the mice brain. More interestingly, annexin A1 was secreted by NCI-H446 cells in a time-dependent manner when co-culturing with human brain microvascular endothelial cells, which was identified with the detections of annexin A1 in the co-cultured cellular supernatants by ELISA and western blot. Further results showed that blockage of annexin A1 in the co-cultured cellular supernatants using a neutralized antibody significantly inhibited NCI-H446 cells adhesion to brain endothelium and its transendothelial migration. Conversely, the addition of Ac2-26, an annexin A1 mimic peptide, enhanced these effects. Furthermore, knockdown of annexin A1 in NCI-H446 cells prevented its transendothelial migration in vitro and metastasis to mice brain in vivo. Our data showed that small cell lung cancer cell in brain microvasculature microenvironment could express much more annexin A1 and release it outside, which facilitated small cell lung cancer cell to gain malignant properties of entry into brain. These findings provided a potential target for the management of SCLC brain metastasis.

  10. A Positive Feed-forward Loop Associating EGR1 and PDGFA Promotes Proliferation and Self-renewal in Glioblastoma Stem Cells.

    PubMed

    Sakakini, Nathalie; Turchi, Laurent; Bergon, Aurélie; Holota, Hélène; Rekima, Samah; Lopez, Fabrice; Paquis, Philipe; Almairac, Fabien; Fontaine, Denys; Baeza-Kallee, Nathalie; Van Obberghen-Schilling, Ellen; Junier, Marie-Pierre; Chneiweiss, Hervé; Figarella-Branger, Dominique; Burel-Vandenbos, Fanny; Imbert, Jean; Virolle, Thierry

    2016-05-13

    Glioblastomas are the most common primary brain tumors, highly vascularized, infiltrating, and resistant to current therapies. This cancer leads to a fatal outcome in less than 18 months. The aggressive behavior of glioblastomas, including resistance to current treatments and tumor recurrence, has been attributed to glioma stemlike/progenitor cells. The transcription factor EGR1 (early growth response 1), a member of a zinc finger transcription factor family, has been described as tumor suppressor in gliomas when ectopically overexpressed. Although EGR1 expression in human glioblastomas has been associated with patient survival, its precise location in tumor territories as well as its contribution to glioblastoma progression remain elusive. In the present study, we show that EGR1-expressing cells are more frequent in high grade gliomas where the nuclear expression of EGR1 is restricted to proliferating/progenitor cells. We show in primary cultures of glioma stemlike cells that EGR1 contributes to stemness marker expression and proliferation by orchestrating a PDGFA-dependent growth-stimulatory loop. In addition, we demonstrate that EGR1 acts as a positive regulator of several important genes, including SHH, GLI1, GLI2, and PDGFA, previously linked to the maintenance and proliferation of glioma stemlike cells.

  11. Banking Brain Tumor Specimens Using a University Core Facility.

    PubMed

    Bregy, Amade; Papadimitriou, Kyriakos; Faber, David A; Shah, Ashish H; Gomez, Carmen R; Komotar, Ricardo J; Egea, Sophie C

    2015-08-01

    Within the past three decades, the significance of banking human cancer tissue for the advancement of cancer research has grown exponentially. The purpose of this article is to detail our experience in collecting brain tumor specimens in collaboration with the University of Miami/Sylvester Tissue Bank Core Facility (UM-TBCF), to ensure the availability of high-quality samples of central nervous system tumor tissue for research. Successful tissue collection begins with obtaining informed consent from patients following institutional IRB and federal HIPAA guidelines, and it needs a well-trained professional staff and continued maintenance of high ethical standards and record keeping. Since starting in 2011, we have successfully banked 225 brain tumor specimens for research. Thus far, the most common tumor histology identified among those specimens has been glioblastoma (22.1%), followed by meningioma (18.1%). The majority of patients were White, non-Hispanics accounting for 45.1% of the patient population; Hispanic/Latinos accounted for 23%, and Black/African Americans accounted for 14%, which represent the particular population of the State of Florida according to the 2010 census data. The most common tumors found in each subgroup were as follows: Black/African American, glioblastoma and meningioma; Hispanic, metastasis and glioblastoma; White, glioblastoma and meningioma. The UM-TBCF is a valuable repository, offering high-quality tumor samples from a unique patient population. PMID:26280502

  12. Banking Brain Tumor Specimens Using a University Core Facility.

    PubMed

    Bregy, Amade; Papadimitriou, Kyriakos; Faber, David A; Shah, Ashish H; Gomez, Carmen R; Komotar, Ricardo J; Egea, Sophie C

    2015-08-01

    Within the past three decades, the significance of banking human cancer tissue for the advancement of cancer research has grown exponentially. The purpose of this article is to detail our experience in collecting brain tumor specimens in collaboration with the University of Miami/Sylvester Tissue Bank Core Facility (UM-TBCF), to ensure the availability of high-quality samples of central nervous system tumor tissue for research. Successful tissue collection begins with obtaining informed consent from patients following institutional IRB and federal HIPAA guidelines, and it needs a well-trained professional staff and continued maintenance of high ethical standards and record keeping. Since starting in 2011, we have successfully banked 225 brain tumor specimens for research. Thus far, the most common tumor histology identified among those specimens has been glioblastoma (22.1%), followed by meningioma (18.1%). The majority of patients were White, non-Hispanics accounting for 45.1% of the patient population; Hispanic/Latinos accounted for 23%, and Black/African Americans accounted for 14%, which represent the particular population of the State of Florida according to the 2010 census data. The most common tumors found in each subgroup were as follows: Black/African American, glioblastoma and meningioma; Hispanic, metastasis and glioblastoma; White, glioblastoma and meningioma. The UM-TBCF is a valuable repository, offering high-quality tumor samples from a unique patient population.

  13. Metformin selectively affects human glioblastoma tumor-initiating cell viability

    PubMed Central

    Würth, Roberto; Pattarozzi, Alessandra; Gatti, Monica; Bajetto, Adirana; Corsaro, Alessandro; Parodi, Alessia; Sirito, Rodolfo; Massollo, Michela; Marini, Cecilia; Zona, Gianluigi; Fenoglio, Daniela; Sambuceti, Gianmario; Filaci, Gilberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio

    2013-01-01

    Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect. PMID:23255107

  14. Radiation-induced glioblastoma multiforme in a remitted acute lymphocytic leukemia patient.

    PubMed

    Joh, Daewon; Park, Bong Jin; Lim, Young Jin

    2011-09-01

    Radiation therapy has been widely applied for cancer treatment. Childhood acute lymphocytic leukemia (ALL), characterized by frequent central nervous system involvement, is a well documented disease for the effect of prophylactic cranio-spinal irradiation. Irradiation, however, acts as an oncogenic factor as a delayed effect and it is rare that glioblastoma multiforme develops during the remission period of ALL. We experienced a pediatric radiation-induced GBM patient which developed during the remission period of ALL, who were primarily treated with chemotherapeutic agents and brain radiation therapy for the prevention of central nervous system (CNS) relapse. Additionally, we reviewed the related literature regarding on the effects of brain irradiation in childhood and on the prognosis of radiation induced GBM.

  15. SIMS ion microscopy imaging of boronophenylalanine (BPA) and 13C15N-labeled phenylalanine in human glioblastoma cells: Relevance of subcellular scale observations to BPA-mediated boron neutron capture therapy of cancer

    NASA Astrophysics Data System (ADS)

    Chandra, Subhash; Lorey, Daniel R., II

    2007-02-01

    p-Boronophenylalanine (BPA) is a clinically approved boron neutron capture therapy (BNCT) agent currently being used in clinical trials of glioblastoma multiforme, melanoma and liver metastases. Secondary ion mass spectrometry (SIMS) observations from the Cornell SIMS Laboratory provided support for using a 6 h infusion of BPA, instead of a 2 h infusion, for achieving higher levels of boron in brain tumor cells. These observations were clinically implemented in Phase II experimental trials of glioblastoma multiforme in Sweden. However, the mechanisms for higher BPA accumulation with longer infusions have remained unknown. In this work, by using 13C15N-labeled phenylalanine and T98G human glioblastoma cells, comparisons between the 10B-delivery of BPA and the accumulation of labeled phenylalanine after 2 and 6 h treatments were made with a Cameca IMS-3f SIMS ion microscope at 500 nm spatial resolution in fast frozen, freeze-fractured, freeze-dried cells. Due to the presence of the Na-K-ATPase in the plasma membrane of most mammalian cells, the cells maintain an approximately 10/1 ratio of K/Na in the intracellular milieu. Therefore, the quantitative imaging of these highly diffusible species in the identical cell in which the boron or labeled amino acid was imaged provides a rule-of-thumb criterion for validation of SIMS observations and the reliability of the cryogenic sampling. The labeled phenylalanine was detected at mass 28, as the 28(13C15N)- molecular ion. Correlative analysis with optical and confocal laser scanning microscopy revealed that fractured freeze-dried glioblastoma cells contained well-preserved ultrastructural details with three discernible subcellular regions: a nucleus or multiple nuclei, a mitochondria-rich perinuclear cytoplasmic region and the remaining cytoplasm. SIMS analysis revealed that the overall cellular signals of both 10B from BPA and 28CN- from labeled phenylalanine increased approximately 1.6-fold between the 2 and 6 h exposures

  16. Parental Exposure to Pesticides and Childhood Brain Cancer: U.S. Atlantic Coast Childhood Brain Cancer Study

    PubMed Central

    Shim, Youn K.; Mlynarek, Steven P.; van Wijngaarden, Edwin

    2009-01-01

    Background The etiology of childhood brain cancer remains largely unknown. However, previous studies have yielded suggestive associations with parental pesticide use. Objectives We aimed to evaluate parental exposure to pesticides at home and on the job in relation to the occurrence of brain cancer in children. Methods We included 526 one-to-one–matched case–control pairs. Brain cancer cases were diagnosed at < 10 years of age, and were identified from statewide cancer registries of four U.S. Atlantic Coast states. We selected controls by random digit dialing. We conducted computer-assisted telephone interviews with mothers. Using information on residential pesticide use and jobs held by fathers during the 2-year period before the child’s birth, we assessed potential exposure to insecticides, herbicides, and fungicides. For each job, two raters independently classified the probability and intensity of exposure; 421 pairs were available for final analysis. We calculated odds ratios (ORs) and 95% confidence intervals (CIs) using conditional logistic regression, after adjustment for maternal education. Results A significant risk of astrocytoma was associated with exposures to herbicides from residential use (OR = 1.9; 95% CI, 1.2–3.0). Combining parental exposures to herbicides from both residential and occupational sources, the elevated risk remained significant (OR = 1.8; 95% CI, 1.1–3.1). We observed little association with primitive neuroectodermal tumors (PNET) for any of the pesticide classes or exposure sources considered. Conclusions Our observation is consistent with a previous literature reporting suggestive associations between parental exposure to pesticides and risk of astrocytoma in offspring but not PNET. However, these findings should be viewed in light of limitations in exposure assessment and effective sample size. PMID:19590697

  17. Bone marrow-derived stem cell therapy for metastatic brain cancers.

    PubMed

    Kaneko, Yuji; Tajiri, Naoki; Staples, Meaghan; Reyes, Stephanny; Lozano, Diego; Sanberg, Paul R; Freeman, Thomas B; van Loveren, Harry; Kim, Seung U; Borlongan, Cesar V

    2015-01-01

    We propose that stem cell therapy may be a potent treatment for metastatic melanoma in the brain. Here we discuss the key role of a leaky blood-brain barrier (BBB) that accompanies the development of brain metastases. We review the need to characterize the immunological and inflammatory responses associated with tumor-derived BBB damage in order to reveal the contribution of this brain pathological alteration to the formation and growth of brain metastatic cancers. Next, we discuss the potential repair of the BBB and attenuation of brain metastasis through transplantation of bone marrow-derived mesenchymal stem cells with the endothelial progenitor cell phenotype. In particular, we review the need for evaluation of the efficacy of stem cell therapy in repairing a disrupted BBB in an effort to reduce neuroinflammation, eventually attenuating brain metastatic cancers. The demonstration of BBB repair through augmented angiogenesis and vasculogenesis will be critical to establishing the potential of stem cell therapy for the treatment/prevention of metastatic brain tumors. The overarching hypothesis we advanced here is that BBB breakdown is closely associated with brain metastatic cancers of melanoma, exacerbating the inflammatory response of the brain during metastasis, and ultimately worsening the outcome of metastatic brain cancers. Abrogating this leaky BBB-mediated inflammation via stem cell therapy represents a paradigm-shifting approach to treating brain cancer. This review article discusses the pros and cons of cell therapy for melanoma brain metastases.

  18. Ultra-small gadolinium oxide nanoparticles to image brain cancer cells in vivo with MRI.

    PubMed

    Faucher, Luc; Guay-Bégin, Andrée-Anne; Lagueux, Jean; Côté, Marie-France; Petitclerc, Eric; Fortin, Marc-André

    2011-01-01

    The majority of contrast agents used in magnetic resonance imaging (MRI) is based on the rare-earth element gadolinium. Gadolinium-based nanoparticles could find promising applications in pre-clinical diagnostic procedures of certain types of cancer, such as glioblastoma multiforme. This is one of the most malignant, lethal and poorly accessible forms of cancer. Recent advances in colloidal nanocrystal synthesis have led to the development of ultra-small crystals of gadolinium oxide (US-Gd(2)O(3), 2-3 nm diameter). As of today, this is the smallest and the densest of all Gd-containing nanoparticles. Cancer cells labeled with a sufficient quantity of this compound appear bright in T(1)-weighted MRI images. Here we demonstrate that US-Gd(2)O(3) can be used to label GL-261 glioblastoma multiforme cells, followed by localization and visualization in vivo using MRI. Very high amounts of Gd are efficiently internalized and retained in cells, as confirmed with TEM and ICP-MS. Labeled cells were visualized in vivo at 1.5 T using the chicken embryo model. This is one more step toward the development of "positively contrasted" cell tracking procedures with MRI.

  19. A Phase 1 trial of intravenous boronophenylalanine-fructose complex in patients with glioblastoma multiforme

    SciTech Connect

    Bergland, R.; Elowitz, E.; Chadha, M.; Coderre, J.A.; Joel, D.

    1996-10-01

    Boron neutron capture therapy (BNCT) of glioblastoma multiforme was initially performed at the Brookhaven National Laboratory in the early 1950`s While this treatment for malignant brain tumors has continued in Japan, new worldwide interest has been stimulated by the development of new and more selective boron compounds. Boronophenylalanine (BPA) is a blood-brain barrier penetrating compound that has been used in BNCT of malignant melanomas. SPA has been employed experimentally in BNCT of rat gliosarcoma and has potential use in the treatment of human glioblastoma. As a preface to clinical BNCT trials, we studied the biodistribution of SPA in patients with glioblastoma.

  20. The potential of polymeric micelles in the context of glioblastoma therapy

    PubMed Central

    Morshed, Ramin A.; Cheng, Yu; Auffinger, Brenda; Wegscheid, Michelle L.; Lesniak, Maciej S.

    2013-01-01

    Glioblastoma multiforme (GBM), a type of malignant glioma, is the most common form of brain cancer found in adults. The current standard of care for GBM involves adjuvant temozolomide-based chemotherapy in conjunction with radiotherapy, yet patients still suffer from poor outcomes with a median survival of 14.6 months. Many novel therapeutic agents that are toxic to GBM cells in vitro cannot sufficiently accumulate at the site of an intracranial tumor after systemic administration. Thus, new delivery strategies must be developed to allow for adequate intratumoral accumulation of such therapeutic agents. Polymeric micelles offer the potential to improve delivery to brain tumors as they have demonstrated the capacity to be effective carriers of chemotherapy drugs, genes, and proteins in various preclinical GBM studies. In addition to this, targeting moieties and trigger-dependent release mechanisms incorporated into the design of these particles can promote more specific delivery of a therapeutic agent to a tumor site. However, despite these advantages, there are currently no micelle formulations targeting brain cancer in clinical trials. Here, we highlight key aspects of the design of polymeric micelles as therapeutic delivery systems with a review of their clinical applications in several non-brain tumor cancer types. We also discuss their potential to serve as nanocarriers targeting GBM, the major barriers preventing their clinical implementation in this disease context, as well as current approaches to overcome these limitations. PMID:24416018

  1. Association of brain cancer with dental x-rays and occupation in Missouri

    SciTech Connect

    Neuberger, J.S.; Brownson, R.C.; Morantz, R.A.; Chin, T.D. )

    1991-01-01

    This investigation of a brain cancer cluster in Missouri used two approaches to investigate associations with potential risk factors. In a case-control study in a rural town, we interviewed surrogates of cases and controls about potential risk factors. We found a statistically significant positive association of brain cancer with reported exposure to dental x-rays. Occupation was not associated with the cluster in the rural town. In a standardized proportional mortality study for the state of Missouri, we calculated the observed and expected proportion of brain cancers by occupation and industry in Missouri decedents. We found that motor vehicle manufacturers, beauty shop workers, managers and administrators, elementary school teachers, and hairdressers and cosmetologists had significantly elevated proportions of brain cancer. Brain tumors are inconsistently associated with occupation in the literature. Further study of brain cancer etiology with respect to dental x-ray exposures seems warranted.

  2. βIII-Tubulin Regulates Breast Cancer Metastases to the Brain

    PubMed Central

    Kanojia, Deepak; Morshed, Ramin A.; Zhang, Lingjiao; Miska, Jason M.; Qiao, Jian; Kim, Julius W.; Pytel, Peter; Balyasnikova, Irina V.; Lesniak, Maciej S.; Ahmed, Atique U.

    2015-01-01

    Brain metastases occur in about 10–30% of breast cancer patients, which culminates in a poor prognosis. It is therefore critical to understand the molecular mechanisms underlying brain metastatic processes to identify relevant targets. We hypothesized that breast cancer cells must express brain-associated markers that would enable their invasion and survival in the brain microenvironment. We assessed a panel of brain-predominant markers and found an elevation of several neuronal markers (βIII tubulin, Nestin and AchE) in brain metastatic breast cancer cells. Among these neuronal predominant markers, in silico analysis revealed overexpression of βIII tubulin (TUBB3) in breast cancer brain metastases (BCBM) and its expression was significantly associated with distant metastases. TUBB3 knockdown studies were conducted in breast cancer models (MDA-Br, GLIM2 and MDA-MB-468) which revealed significant reduction in their invasive capabilities. MDA-Br cells with suppressed TUBB3 also demonstrated loss of key signaling molecules such as β3 integrin, pFAK, and pSrc in vitro. Furthermore, TUBB3 knockdown in a brain metastatic breast cancer cell line compromised its metastatic ability in vivo, and significantly improved survival in a brain metastasis model. These results implicate a critical role of TUBB3 in conferring brain metastatic potential to breast cancer cells. PMID:25724666

  3. βIII-Tubulin Regulates Breast Cancer Metastases to the Brain.

    PubMed

    Kanojia, Deepak; Morshed, Ramin A; Zhang, Lingjiao; Miska, Jason M; Qiao, Jian; Kim, Julius W; Pytel, Peter; Balyasnikova, Irina V; Lesniak, Maciej S; Ahmed, Atique U

    2015-05-01

    Brain metastases occur in about 10% to 30% of breast cancer patients, which culminates in a poor prognosis. It is, therefore, critical to understand the molecular mechanisms underlying brain metastatic processes to identify relevant targets. We hypothesized that breast cancer cells must express brain-associated markers that would enable their invasion and survival in the brain microenvironment. We assessed a panel of brain-predominant markers and found an elevation of several neuronal markers (βIII-tubulin, Nestin, and AchE) in brain metastatic breast cancer cells. Among these neuronal predominant markers, in silico analysis revealed overexpression of βIII-tubulin (TUBB3) in breast cancer brain metastases (BCBM) and its expression was significantly associated with distant metastases. TUBB3 knockdown studies were conducted in breast cancer models (MDA-Br, GLIM2, and MDA-MB-468), which revealed significant reduction in their invasive capabilities. MDA-Br cells with suppressed TUBB3 also demonstrated loss of key signaling molecules such as β3 integrin, pFAK, and pSrc in vitro. Furthermore, TUBB3 knockdown in a brain metastatic breast cancer cell line compromised its metastatic ability in vivo, and significantly improved survival in a brain metastasis model. These results implicate a critical role of TUBB3 in conferring brain metastatic potential to breast cancer cells.

  4. Optical and nuclear imaging of glioblastoma with phosphatidylserine-targeted nanovesicles

    PubMed Central

    Blanco, Víctor M.; Chu, Zhengtao; LaSance, Kathleen; Gray, Brian D.; Pak, Koon Yan; Rider, Therese; Greis, Kenneth D.; Qi, Xiaoyang

    2016-01-01

    Multimodal tumor imaging with targeted nanoparticles potentially offers both enhanced specificity and sensitivity, leading to more precise cancer diagnosis and monitoring. We describe the synthesis and characterization of phenol-substituted, lipophilic orange and far-red fluorescent dyes and a simple radioiodination procedure to generate a dual (optical and nuclear) imaging probe. MALDI-ToF analyses revealed high iodination efficiency of the lipophilic reporters, achieved by electrophilic aromatic substitution using the chloramide 1,3,4,6-tetrachloro-3α,6α-diphenyl glycoluril (Iodogen) as the oxidizing agent in an organic/aqueous co-solvent mixture. Upon conjugation of iodine-127 or iodine-124-labeled reporters to tumor-targeting SapC-DOPS nanovesicles, optical (fluorescent) and PET imaging was performed in mice bearing intracranial glioblastomas. In addition, tumor vs non-tumor (normal brain) uptake was compared using iodine-125. These data provide proof-of-principle for the potential value of SapC-DOPS for multimodal imaging of glioblastoma, the most aggressive primary brain tumor. PMID:27096954

  5. Brain network alterations and vulnerability to simulated neurodegeneration in breast cancer.

    PubMed

    Kesler, Shelli R; Watson, Christa L; Blayney, Douglas W

    2015-08-01

    Breast cancer and its treatments are associated with mild cognitive impairment and brain changes that could indicate an altered or accelerated brain aging process. We applied diffusion tensor imaging and graph theory to measure white matter organization and connectivity in 34 breast cancer survivors compared with 36 matched healthy female controls. We also investigated how brain networks (connectomes) in each group responded to simulated neurodegeneration based on network attack analysis. Compared with controls, the breast cancer group demonstrated significantly lower fractional anisotropy, altered small-world connectome properties, lower brain network tolerance to systematic region (node), and connection (edge) attacks and significant cognitive impairment. Lower tolerance to network attack was associated with cognitive impairment in the breast cancer group. These findings provide further evidence of diffuse white matter pathology after breast cancer and extend the literature in this area with unique data demonstrating increased vulnerability of the post-breast cancer brain network to future neurodegenerative processes.

  6. Conditional Probability of Survival in Patients With Newly Diagnosed Glioblastoma

    PubMed Central

    Polley, Mei-Yin C.; Lamborn, Kathleen R.; Chang, Susan M.; Butowski, Nicholas; Clarke, Jennifer L.; Prados, Michael

    2011-01-01

    Purpose The disease outcome for patients with cancer is typically described in terms of estimated survival from diagnosis. Conditional probability offers more relevant information regarding survival for patients once they have survived for some time. We report conditional survival probabilities on the basis of 498 patients with glioblastoma multiforme receiving radiation and chemotherapy. For 1-year survivors, we evaluated variables that may inform subsequent survival. Motivated by the trend in data, we also evaluated the assumption of constant hazard. Patients and Methods Patients enrolled onto seven phase II protocols between 1975 and 2007 were included. Conditional survival probabilities and 95% CIs were calculated. The Cox proportional hazards model was used to evaluate prognostic values of age, Karnofsky performance score (KPS), and prior progression 1-year post diagnosis. To assess the constant hazard assumption, we used a likelihood-ratio test to compare the Weibull and exponential distributions. Results The probabilities of surviving an additional year given survival to 1, 2, 3, and 4 years were 35%, 49%, 69%, and 93%, respectively. For patients who survived for 1 year, lower KPS and progression were significantly predictive of shorter survival (both P < .001), but age was not (hazard ratio, 1.22 for a 10-year increase; P = .25). The Weibull distribution fits the data significantly better than exponential (P = .02), suggesting nonconstant hazard. Conclusion Conditional probabilities provide encouraging information regarding life expectancy to survivors of glioblastoma multiforme. Our data also showed that the constant hazard assumption may be violated in modern brain tumor trials. For single-arm trials, we advise using individual patient data from historical data sets for efficacy comparisons. PMID:21969507

  7. Heterogeneous glioblastoma cell cross-talk promotes phenotype alterations and enhanced drug resistance.

    PubMed

    Motaln, Helena; Koren, Ana; Gruden, Kristina; Ramšak, Živa; Schichor, Christian; Lah, Tamara T

    2015-12-01

    Glioblastoma multiforme is the most lethal of brain cancer, and it comprises a heterogeneous mixture of functionally distinct cancer cells that affect tumor progression. We examined the U87, U251, and U373 malignant cell lines as in vitro models to determine the impact of cellular cross-talk on their phenotypic alterations in co-cultures. These cells were also studied at the transcriptome level, to define the mechanisms of their observed mutually affected genomic stability, proliferation, invasion and resistance to temozolomide. This is the first direct demonstration of the neural and mesenchymal molecular fingerprints of U87 and U373 cells, respectively. U87-cell conditioned medium lowered the genomic stability of U373 (U251) cells, without affecting cell proliferation. In contrast, upon exposure of U87 cells to U373 (U251) conditioned medium, U87 cells showed increased genomic stability, decreased proliferation rates and increased invasion, due to a plethora of produced cytokines identified in the co-culture media. This cross talk altered the expression 264 genes in U87 cells that are associated with proliferation, inflammation, migration, and adhesion, and 221 genes in U373 cells that are associated with apoptosis, the cell cycle, cell differentiation and migration. Indirect and direct co-culturing of U87 and U373 cells showed mutually opposite effects on temozolomide resistance. In conclusion, definition of transcriptional alterations of distinct glioblastoma cells upon co-culturing provides better understanding of the mechanisms of glioblastoma heterogeneity, which will provide the basis for more informed glioma treatment in the future. PMID:26517510

  8. Heterogeneous glioblastoma cell cross-talk promotes phenotype alterations and enhanced drug resistance

    PubMed Central

    Motaln, Helena; Koren, Ana; Gruden, Kristina; Ramšak, Živa; Schichor, Christian; Lah, Tamara T.

    2015-01-01

    Glioblastoma multiforme is the most lethal of brain cancer, and it comprises a heterogeneous mixture of functionally distinct cancer cells that affect tumor progression. We examined the U87, U251, and U373 malignant cell lines as in vitro models to determine the impact of cellular cross-talk on their phenotypic alterations in co-cultures. These cells were also studied at the transcriptome level, to define the mechanisms of their observed mutually affected genomic stability, proliferation, invasion and resistance to temozolomide. This is the first direct demonstration of the neural and mesenchymal molecular fingerprints of U87 and U373 cells, respectively. U87-cell conditioned medium lowered the genomic stability of U373 (U251) cells, without affecting cell proliferation. In contrast, upon exposure of U87 cells to U373 (U251) conditioned medium, U87 cells showed increased genomic stability, decreased proliferation rates and increased invasion, due to a plethora of produced cytokines identified in the co-culture media. This cross talk altered the expression 264 genes in U87 cells that are associated with proliferation, inflammation, migration, and adhesion, and 221 genes in U373 cells that are associated with apoptosis, the cell cycle, cell differentiation and migration. Indirect and direct co-culturing of U87 and U373 cells showed mutually opposite effects on temozolomide resistance. In conclusion, definition of transcriptional alterations of distinct glioblastoma cells upon co-culturing provides better understanding of the mechanisms of glioblastoma heterogeneity, which will provide the basis for more informed glioma treatment in the future. PMID:26517510

  9. Emerging insights into the molecular and cellular basis of glioblastoma

    PubMed Central

    Dunn, Gavin P.; Rinne, Mikael L.; Wykosky, Jill; Genovese, Giannicola; Quayle, Steven N.; Dunn, Ian F.; Agarwalla, Pankaj K.; Chheda, Milan G.; Campos, Benito; Wang, Alan; Brennan, Cameron; Ligon, Keith L.; Furnari, Frank; Cavenee, Webster K.; Depinho, Ronald A.; Chin, Lynda; Hahn, William C.

    2012-01-01

    Glioblastoma is both the most common and lethal primary malignant brain tumor. Extensive multiplatform genomic characterization has provided a higher-resolution picture of the molecular alterations underlying this disease. These studies provide the emerging view that “glioblastoma” represents several histologically similar yet molecularly heterogeneous diseases, which influences taxonomic classification systems, prognosis, and therapeutic decisions. PMID:22508724

  10. Toward precision medicine in glioblastoma: the promise and the challenges

    PubMed Central

    Prados, Michael D.; Byron, Sara A.; Tran, Nhan L.; Phillips, Joanna J.; Molinaro, Annette M.; Ligon, Keith L.; Wen, Patrick Y.; Kuhn, John G.; Mellinghoff, Ingo K.; de Groot, John F.; Colman, Howard; Cloughesy, Timothy F.; Chang, Susan M.; Ryken, Timothy C.; Tembe, Waibhav D.; Kiefer, Jeffrey A.; Berens, Michael E.; Craig, David W.; Carpten, John D.; Trent, Jeffrey M.

    2015-01-01

    Integrated sequencing strategies have provided a broader understanding of the genomic landscape and molecular classifications of multiple cancer types and have identified various therapeutic opportunities across cancer subsets. Despite pivotal advances in the characterization of genomic alterations in glioblastoma, targeted agents have shown minimal efficacy in clinical trials to date, and patient survival remains poor. In this review, we highlight potential reasons why targeting single alterations has yielded limited clinical efficacy in glioblastoma, focusing on issues of tumor heterogeneity and pharmacokinetic failure. We outline strategies to address these challenges in applying precision medicine to glioblastoma and the rationale for applying targeted combination therapy approaches that match genomic alterations with compounds accessible to the central nervous system. PMID:25934816

  11. The role of octamer binding transcription factors in glioblastoma multiforme.

    PubMed

    Rooj, A K; Bronisz, A; Godlewski, J

    2016-06-01

    A group of transcription factors (TF) that are master developmental regulators of the establishment and maintenance of pluripotency during embryogenesis play additional roles to control tissue homeostasis and regeneration in adults. Among these TFs, members of the octamer-binding transcription factor (OCT) gene family are well documented as major regulators controlling the self-renewal and pluripotency of stem cells isolated from different adult organs including the brain. In the last few years a large number of studies show the aberrant expression and dysfunction of OCT in different types of cancers including glioblastoma multiforme (GBM). GBM is the most common malignant primary brain tumor, and contains a subpopulation of undifferentiated stem cells (GSCs), with self-renewal and tumorigenic potential that contribute to tumor initiation, invasion, recurrence, and therapeutic resistance. In this review, we have summarized the current knowledge about OCT family in GBM and their crucial role in the initiation, maintenance and drug resistance properties of GSCs. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin. PMID:26968235

  12. Altered resting brain connectivity in persistent cancer related fatigue

    PubMed Central

    Hampson, Johnson P.; Zick, Suzanna M.; Khabir, Tohfa; Wright, Benjamin D.; Harris, Richard E.

    2015-01-01

    There is an estimated 3 million women in the US living as breast cancer survivors and persistent cancer related fatigue (PCRF) disrupts the lives of an estimated 30% of these women. PCRF is associated with decreased quality of life, decreased sleep quality, impaired cognition and depression. The mechanisms of cancer related fatigue are not well understood; however, preliminary findings indicate dysfunctional activity in the brain as a potential factor. Here we investigate the relationship between PCRF on intrinsic resting state connectivity in this population. Twenty-three age matched breast cancer survivors (15 fatigued and 8 non-fatigued) who completed all cancer-related treatments at least 12 weeks prior to the study, were recruited to undergo functional connectivity magnetic resonance imaging (fcMRI). Intrinsic resting state networks were examined with both seed based and independent component analysis methods. Comparisons of brain connectivity patterns between groups as well as correlations with self-reported fatigue symptoms were performed. Fatigued patients displayed greater left inferior parietal lobule to superior frontal gyrus connectivity as compared to non-fatigued patients (P < 0.05 FDR corrected). This enhanced connectivity was associated with increased physical fatigue (P = 0.04, r = 0.52) and poor sleep quality (P = 0.04, r = 0.52) in the fatigued group. In contrast greater connectivity in the non-fatigued group was found between the right precuneus to the periaqueductal gray as well as the left IPL to subgenual cortex (P < 0.05 FDR corrected). Mental fatigue scores were associated with greater default mode network (DMN) connectivity to the superior frontal gyrus (P = 0.05 FDR corrected) among fatigued subjects (r = 0.82) and less connectivity in the non-fatigued group (r = −0.88). These findings indicate that there is enhanced intrinsic DMN connectivity to the frontal gyrus in breast cancer survivors with persistent fatigue. As

  13. Altered resting brain connectivity in persistent cancer related fatigue.

    PubMed

    Hampson, Johnson P; Zick, Suzanna M; Khabir, Tohfa; Wright, Benjamin D; Harris, Richard E

    2015-01-01

    There is an estimated 3 million women in the US living as breast cancer survivors and persistent cancer related fatigue (PCRF) disrupts the lives of an estimated 30% of these women. PCRF is associated with decreased quality of life, decreased sleep quality, impaired cognition and depression. The mechanisms of cancer related fatigue are not well understood; however, preliminary findings indicate dysfunctional activity in the brain as a potential factor. Here we investigate the relationship between PCRF on intrinsic resting state connectivity in this population. Twenty-three age matched breast cancer survivors (15 fatigued and 8 non-fatigued) who completed all cancer-related treatments at least 12 weeks prior to the study, were recruited to undergo functional connectivity magnetic resonance imaging (fcMRI). Intrinsic resting state networks were examined with both seed based and independent component analysis methods. Comparisons of brain connectivity patterns between groups as well as correlations with self-reported fatigue symptoms were performed. Fatigued patients displayed greater left inferior parietal lobule to superior frontal gyrus connectivity as compared to non-fatigued patients (P < 0.05 FDR corrected). This enhanced connectivity was associated with increased physical fatigue (P = 0.04, r = 0.52) and poor sleep quality (P = 0.04, r = 0.52) in the fatigued group. In contrast greater connectivity in the non-fatigued group was found between the right precuneus to the periaqueductal gray as well as the left IPL to subgenual cortex (P < 0.05 FDR corrected). Mental fatigue scores were associated with greater default mode network (DMN) connectivity to the superior frontal gyrus (P = 0.05 FDR corrected) among fatigued subjects (r = 0.82) and less connectivity in the non-fatigued group (r = -0.88). These findings indicate that there is enhanced intrinsic DMN connectivity to the frontal gyrus in breast cancer survivors with persistent fatigue. As

  14. Identifying radiotherapy target volumes in brain cancer by image analysis

    PubMed Central

    Cheng, Kun; Montgomery, Dean; Feng, Yang; Steel, Robin; Liao, Hanqing; McLaren, Duncan B.; Erridge, Sara C.; McLaughlin, Stephen

    2015-01-01

    To establish the optimal radiotherapy fields for treating brain cancer patients, the tumour volume is often outlined on magnetic resonance (MR) images, where the tumour is clearly visible, and mapped onto computerised tomography images used for radiotherapy planning. This process requires considerable clinical experience and is time consuming, which will continue to increase as more complex image sequences are used in this process. Here, the potential of image analysis techniques for automatically identifying the radiation target volume on MR images, and thereby assisting clinicians with this difficult task, was investigated. A gradient-based level set approach was applied on the MR images of five patients with grades II, III and IV malignant cerebral glioma. The relationship between the target volumes produced by image analysis and those produced by a radiation oncologist was also investigated. The contours produced by image analysis were compared with the contours produced by an oncologist and used for treatment. In 93% of cases, the Dice similarity coefficient was found to be between 60 and 80%. This feasibility study demonstrates that image analysis has the potential for automatic outlining in the management of brain cancer patients, however, more testing and validation on a much larger patient cohort is required. PMID:26609418

  15. Radiosurgery for Brain Metastases From Unknown Primary Cancers

    SciTech Connect

    Niranjan, Ajay; Kano, Hideyuki; Khan, Aftab; Kim, In-Young; Kondziolka, Douglas; Flickinger, John C.; Lunsford, L. Dade

    2010-08-01

    Purpose: We evaluated the role of Gamma Knife stereotactic radiosurgery in the multidisciplinary management of brain metastases from an undiagnosed primary cancer. Methods and Materials: Twenty-nine patients who had solitary or multiple brain metastases without a detectable primary site underwent stereotactic radiosurgery between January 1990 and March 2007 at the University of Pittsburgh. The median patient age was 61.7 years (range, 37.9-78.7 years). The median target volume was 1.0 cc (range, 0.02-23.6 cc), and the median margin radiosurgical dose was 16 Gy (range, 20-70 Gy). Results: After radiosurgery, the local tumor control rate was 88.5%. Twenty four patients died and 5 patients were living at the time of this analysis. The overall median survival was 12 months. Actuarial survival rates from stereotactic radiosurgery at 1 and 2 years were 57.2% and 36.8%, respectively. Factors associated with poor progression-free survival included large tumor volume (3 cc or more) and brainstem tumor location. Conclusions: Radiosurgery is an effective and safe minimally invasive option for patients with brain metastases from an unknown primary site.

  16. 1'-Acetoxychavicol acetate promotes caspase 3-activated glioblastoma cell death by overcoming enhanced cytokine expression.

    PubMed

    Williams, Musa; Tietzel, Illya; Quick, Quincy A

    2013-06-01

    The brain consumes ∼20% of the oxygen utilized in the human body, meaning that brain tumors are vulnerable to paradoxical physiological effects from free radical generation. In the present study, 1'-acetoxychavicol acetate (ACA), a naturally derived antioxidant that inhibits xanthine oxidase, was evaluated for its role as an anti-tumorigenic agent in glioblastomas. The study revealed that ACA inhibited glioblastoma cell proliferation as a consequence of promoting apoptotic cell death by enhancing caspase 3 activity. It was also shown that ACA impaired the migratory ability of glioblastoma cells by decreasing their adhesive properties. Additionally, ACA increased the protein expression levels of the pro-survival signaling cytokines, IL-6 and IL-1α, established cell protectors and survival molecules in brain tumors. Together, these results demonstrate that, despite enhanced expression of compensatory signaling molecules that contribute to tumor cell survival, ACA is an effective pro-apoptotic inducing agent in glioblastomas.

  17. How I treat glioblastoma in older patients.

    PubMed

    Mohile, Nimish A

    2016-01-01

    Glioblastoma, a WHO grade IV astrocytoma, is the most common primary malignant brain tumor in adults. It is characterized by molecular heterogeneity and aggressive behavior. Glioblastoma is almost always incurable and most older patients survive less than 6 months. Supportive care with steroids and anti-epileptic drugs is critical to improving and maintain quality of life. Young age, good performance status and methylation of the methyl guanyl methyl transferase promoter are important positive prognostic factors. Several recent clinical trials suggest that there is a subset of the elderly with prolonged survival that is comparable to younger patients. Treatment of glioblastoma in older patients includes maximal safe resection followed by either radiation, chemotherapy or combined modality therapy. Recent advances suggest that some patients can avoid radiation entirely and be treated with chemotherapy alone. Decisions about therapy are individual and based on a patient's performance status, family support and molecular features. Future work needs to better determine the role for comprehensive geriatric assessments in this patient population to better identify patients who may most benefit from aggressive therapies. PMID:26725536

  18. Hyperdiploid tumor cells increase phenotypic heterogeneity within Glioblastoma tumors.

    PubMed

    Donovan, Prudence; Cato, Kathleen; Legaie, Roxane; Jayalath, Rumal; Olsson, Gemma; Hall, Bruce; Olson, Sarah; Boros, Samuel; Reynolds, Brent A; Harding, Angus

    2014-04-01

    Here we report the identification of a proliferative, viable, and hyperdiploid tumor cell subpopulation present within Glioblastoma (GB) patient tumors. Using xenograft tumor models, we demonstrate that hyperdiploid cell populations are maintained in xenograft tumors and that clonally expanded hyperdiploid cells support tumor formation and progression in vivo. In some patient tumorsphere lines, hyperdiploidy is maintained during long-term culture and in vivo within xenograft tumor models, suggesting that hyperdiploidy can be a stable cell state. In other patient lines hyperdiploid cells display genetic drift in vitro and in vivo, suggesting that in these patients hyperdiploidy is a transient cell state that generates novel phenotypes, potentially facilitating rapid tumor evolution. We show that the hyperdiploid cells are resistant to conventional therapy, in part due to infrequent cell division due to a delay in the G₀/G₁ phase of the cell cycle. Hyperdiploid tumor cells are significantly larger and more metabolically active than euploid cancer cells, and this correlates to an increased sensitivity to the effects of glycolysis inhibition. Together these data identify GB hyperdiploid tumor cells as a potentially important subpopulation of cells that are well positioned to contribute to tumor evolution and disease recurrence in adult brain cancer patients, and suggest tumor metabolism as a promising point of therapeutic intervention against this subpopulation. PMID:24448662

  19. Identification of ATP citrate lyase as a positive regulator of glycolytic function in glioblastomas.

    PubMed

    Beckner, Marie E; Fellows-Mayle, Wendy; Zhang, Zhe; Agostino, Naomi R; Kant, Jeffrey A; Day, Billy W; Pollack, Ian F

    2010-05-15

    Glioblastomas, the most malignant type of glioma, are more glycolytic than normal brain tissue. Robust migration of glioblastoma cells has been previously demonstrated under glycolytic conditions and their pseudopodia contain increased glycolytic and decreased mitochondrial enzymes. Glycolysis is suppressed by metabolic acids, including citric acid which is excluded from mitochondria during hypoxia. We postulated that glioma cells maintain glycolysis by regulating metabolic acids, especially in their pseudopodia. The enzyme that breaks down cytosolic citric acid is ATP citrate lyase (ACLY). Our identification of increased ACLY in pseudopodia of U87 glioblastoma cells on 1D gels and immunoblots prompted investigation of ACLY gene expression in gliomas for survival data and correlation with expression of ENO1, that encodes enolase 1. Queries of the NIH's REMBRANDT brain tumor database based on Affymetrix data indicated that decreased survival correlated with increased gene expression of ACLY in gliomas. Queries of gliomas and glioblastomas found an association of upregulated ACLY and ENO1 expression by chi square for all probe sets (reporters) combined and correlation for numbers of probe sets indicating shared upregulation of these genes. Real-time quantitative PCR confirmed correlation between ACLY and ENO1 in 21 glioblastomas (p < 0.001). Inhibition of ACLY with hydroxycitrate suppressed (p < 0.05) in vitro glioblastoma cell migration, clonogenicity and brain invasion under glycolytic conditions and enhanced the suppressive effects of a Met inhibitor on cell migration. In summary, gene expression data, proteomics and functional assays support ACLY as a positive regulator of glycolysis in glioblastomas. PMID:19795461

  20. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma.

    PubMed

    Johansson, Erik; Zhai, Qiwei; Zeng, Zhao-Jun; Yoshida, Takeshi; Funa, Keiko

    2016-05-01

    TLX (also called NR2E1) is an orphan nuclear receptor that maintains stemness of neuronal stem cells. TLX is highly expressed in the most malignant form of glioma, glioblastoma multiforme (GBM), and is important for the proliferation and maintenance of the stem/progenitor cells of the tumor. Transforming Growth Factor-β (TGF-β) is a cytokine regulating many different cellular processes such as differentiation, migration, adhesion, cell death and proliferation. TGF-β has an important function in cancer where it can work as either a tumor suppressor or oncogene, depending on the cancer type and stage of tumor development. Since glioblastoma often have dysfunctional TGF-β signaling we wanted to find out if there is any interaction between TLX and TGF-β in glioblastoma cells. We demonstrate that knockdown of TLX enhances the canonical TGF-β signaling response in glioblastoma cell lines. TLX physically interacts with and stabilizes Smurf1, which can ubiquitinate and target TGF-β receptor II for degradation, whereas knockdown of TLX leads to stabilization of TGF-β receptor II, increased nuclear translocation of Smad2/3 and enhanced expression of TGF-β target genes. The interaction between TLX and TGF-β may play an important role in the regulation of proliferation and tumor-initiating properties of glioblastoma cells.

  1. Immunological Evasion in Glioblastoma

    PubMed Central

    Magaña-Maldonado, Roxana; Chávez-Cortez, Elda Georgina; Olascoaga-Arellano, Nora Karen; López-Mejía, Mariana; Maldonado-Leal, Fernando Manuel; Sotelo, Julio

    2016-01-01

    Glioblastoma is the most aggressive tumor in Central Nervous System in adults. Among its features, modulation of immune system stands out. Although immune system is capable of detecting and eliminating tumor cells mainly by cytotoxic T and NK cells, tumor microenvironment suppresses an effective response through recruitment of modulator cells such as regulatory T cells, monocyte-derived suppressor cells, M2 macrophages, and microglia as well as secretion of immunomodulators including IL-6, IL-10, CSF-1, TGF-β, and CCL2. Other mechanisms that induce immunosuppression include enzymes as indolamine 2,3-dioxygenase. For this reason it is important to develop new therapies that avoid this immune evasion to promote an effective response against glioblastoma. PMID:27294132

  2. Brain damage following prophylactic cranial irradiation in lung cancer survivors.

    PubMed

    Simó, Marta; Vaquero, Lucía; Ripollés, Pablo; Jové, Josep; Fuentes, Rafael; Cardenal, Felipe; Rodríguez-Fornells, Antoni; Bruna, Jordi

    2016-03-01

    Long-term toxic effects of prophylactic cranial irradiation (PCI) on cognition in small cell lung cancer (SCLC) patients have not yet been well-established. The aim of our study was to examine the cognitive toxic effects together with brain structural changes in a group of long-term SCLC survivors treated with PCI. Eleven SCLC patients, who underwent PCI ≥ 2 years before, were compared with an age and education matched healthy control group. Both groups were evaluated using a neuropsychological battery and multimodal structural magnetic resonance imaging. Voxel-based morphometry and Tract-based Spatial Statistics were used to study gray matter density (GMD) and white matter (WM) microstructural changes. Cognitive deterioration was correlated with GMD and Fractional Anisotropy (FA). Finally, we carried out a single-subject analysis in order to evaluate individual structural brain changes. Nearly half of the SCLC met criteria for cognitive impairment, all exhibiting a global worsening of cognitive functioning. Patients showed significant decreases of GMD in basal ganglia bilaterally (putamen and caudate), bilateral thalamus and right insula, together with WM microstructural changes of the entire corpus callosum. Cognitive deterioration scores correlated positively with mean FA values in the corpus callosum. Single-subject analysis revealed that GMD and WM changes were consistently observed in nearly all patients. This study showed neuropsychological deficits together with brain-specific structural differences in long-term SCLC survivors. Our results suggest that PCI therapy, possibly together with platinum-based chemotherapy, was associated to permanent long-term cognitive and structural brain effects in a SCLC population.

  3. Ruta 6 selectively induces cell death in brain cancer cells but proliferation in normal peripheral blood lymphocytes: A novel treatment for human brain cancer.

    PubMed

    Pathak, Sen; Multani, Asha S; Banerji, Pratip; Banerji, Prasanta

    2003-10-01

    Although conventional chemotherapies are used to treat patients with malignancies, damage to normal cells is problematic. Blood-forming bone marrow cells are the most adversely affected. It is therefore necessary to find alternative agents that can kill cancer cells but have minimal effects on normal cells. We investigated the brain cancer cell-killing activity of a homeopathic medicine, Ruta, isolated from a plant, Ruta graveolens. We treated human brain cancer and HL-60 leukemia cells, normal B-lymphoid cells, and murine melanoma cells in vitro with different concentrations of Ruta in combination with Ca3(PO4)2. Fifteen patients diagnosed with intracranial tumors were treated with Ruta 6 and Ca3(PO4)2. Of these 15 patients, 6 of the 7 glioma patients showed complete regression of tumors. Normal human blood lymphocytes, B-lymphoid cells, and brain cancer cells treated with Ruta in vitro were examined for telomere dynamics, mitotic catastrophe, and apoptosis to understand the possible mechanism of cell-killing, using conventional and molecular cytogenetic techniques. Both in vivo and in vitro results showed induction of survival-signaling pathways in normal lymphocytes and induction of death-signaling pathways in brain cancer cells. Cancer cell death was initiated by telomere erosion and completed through mitotic catastrophe events. We propose that Ruta in combination with Ca3(PO4)2 could be used for effective treatment of brain cancers, particularly glioma.

  4. Extraneural Metastases of Glioblastoma without Simultaneous Central Nervous System Recurrence

    PubMed Central

    Kim, Wonki; Yoo, Heon; Shin, Sang Hoon; Gwak, Ho Shin

    2014-01-01

    Glioblastoma multiforme (GBM) is well known as the most common malignant primary brain tumor. It could easily spread into the adjacent or distant brain tissue by infiltration, direct extension and cerebro-spinal fluid dissemination. The extranueural metastatic spread of GBM is relatively rare but it could have more progressive disease course. We report a 39-year-old man who had multiple bone metastases and malignant pleural effusion of the GBM without primary site recurrence. PMID:25408938

  5. Brain Metastases in Gastrointestinal Cancers: Is there a Role for Surgery?

    PubMed Central

    Lemke, Johannes; Scheele, Jan; Kapapa, Thomas; von Karstedt, Silvia; Wirtz, Christian Rainer; Henne-Bruns, Doris; Kornmann, Marko

    2014-01-01

    About 10% of all cancer patients will develop brain metastases during advanced disease progression. Interestingly, the vast majority of brain metastases occur in only three types of cancer: Melanoma, lung and breast cancer. In this review, we focus on summarizing the prognosis and impact of surgical resection of brain metastases originating from gastrointestinal cancers such as esophageal, gastric, pancreatic and colorectal cancer. The incidence of brain metastases is <1% in pancreatic and gastric cancer and <4% in esophageal and colorectal cancer. Overall, prognosis of these patients is very poor with a median survival in the range of only months. Interestingly, a substantial number of patients who had received surgical resection of brain metastases showed prolonged survival. However, it should be taken into account that all these studies were not randomized and it is likely that patients selected for surgical treatment presented with other important prognostic factors such as solitary brain metastases and exclusion of extra-cranial disease. Nevertheless, other reports have demonstrated long-term survival of patients upon resection of brain metastases originating from gastrointestinal cancers. Thus, it appears to be justified to consider aggressive surgical approaches for these patients. PMID:25247579

  6. Serpins promote cancer cell survival and vascular co-option in brain metastasis.

    PubMed

    Valiente, Manuel; Obenauf, Anna C; Jin, Xin; Chen, Qing; Zhang, Xiang H-F; Lee, Derek J; Chaft, Jamie E; Kris, Mark G; Huse, Jason T; Brogi, Edi; Massagué, Joan

    2014-02-27

    Brain metastasis is an ominous complication of cancer, yet most cancer cells that infiltrate the brain die of unknown causes. Here, we identify plasmin from the reactive brain stroma as a defense against metastatic invasion, and plasminogen activator (PA) inhibitory serpins in cancer cells as a shield against this defense. Plasmin suppresses brain metastasis in two ways: by converting membrane-bound astrocytic FasL into a paracrine death signal for cancer cells, and by inactivating the axon pathfinding molecule L1CAM, which metastatic cells express for spreading along brain capillaries and for metastatic outgrowth. Brain metastatic cells from lung cancer and breast cancer express high levels of anti-PA serpins, including neuroserpin and serpin B2, to prevent plasmin generation and its metastasis-suppressive effects. By protecting cancer cells from death signals and fostering vascular co-option, anti-PA serpins provide a unifying mechanism for the initiation of brain metastasis in lung and breast cancers. PMID:24581498

  7. Tyrphostin AG 1296 induces glioblastoma cell apoptosis in vitro and in vivo

    PubMed Central

    LI, HONGWEI; ZHENG, JUNNING; GUAN, RUIYUN; ZHU, ZIFENG; YUAN, XIANHOU

    2015-01-01

    Glioblastoma is the most common type of malignant human brain tumor. Currently available chemotherapies for glioblastoma focus on targeting tyrosine kinases. However, the existing inhibitors of tyrosine kinases have not produced the therapeutic outcomes that were anticipated. In order to investigate the viability alternative chemotherapeutic agents in this disease, the present study examined the anticancer effects of tyrphostin AG 1296, focusing on its involvement in apoptosis in glioblastoma cells. The study aimed to identify whether tyrphostin AG 1296 affects glioblastoma cell growth by inducing cell apoptosis. To achieve this, cell viability, propidium iodide analysis and cell invasion assay were used to measure cell growth, cell apoptosis and cell migration of human glioblastoma cells. The results showed that tyrphostin AG 1296 treatment reduced cell viability and suppressed migration of human glioblastoma cells. It was also demonstrated that tyrphostin AG 1296 induced cell apoptosis in vitro. Finally, tyrphostin AG 1296 was also shown to significantly inhibit the growth of glioblastoma cells and to increase tumor cell apoptosis in vivo. These findings suggest that tyrphostin AG 1296 induces apoptosis, thereby reducing cell viability and capacity for migration of glioblastoma cells. PMID:26788146

  8. Theranostic Application of Mixed Gold and Superparamagnetic Iron Oxide Nanoparticle Micelles in Glioblastoma Multiforme.

    PubMed

    Sun, Lova; Joh, Daniel Y; Al-Zaki, Ajlan; Stangl, Melissa; Murty, Surya; Davis, James J; Baumann, Brian C; Alonso-Basanta, Michelle; Kaol, Gary D; Tsourkas, Andrew; Dorsey, Jay F

    2016-02-01

    The treatment of glioblastoma multiforme, the most prevalent and lethal form of brain cancer in humans, has been limited in part by poor delivery of drugs through the blood-brain barrier and by unclear delineation of the extent of infiltrating tumor margins. Nanoparticles, which selectively accumulate in tumor tissue due to their leaky vasculature and the enhanced permeability and retention effect, have shown promise as both therapeutic and diagnostic agents for brain tumors. In particular, superparamagnetic iron oxide nanoparticles (SPIONs) have been leveraged as T2-weighted MRI contrast agents for tumor detection and imaging; and gold nanoparticles (AuNP) have been demonstrated as radiosensitizers capable of propagating electron and free radical-induced radiation damage to tumor cells. In this study, we investigated the potential applications of novel gold and SPION-loaded micelles (GSMs) coated by polyethylene glycol-polycaprolactone (PEG-PCL) polymer. By quantifying gh2ax DNA damage foci in glioblastoma cell lines, we tested the radiosensitizing efficacy of these GSMs, and found that GSM administration in conjunction with radiation therapy (RT) led to ~2-fold increase in density of double-stranded DNA breaks. For imaging, we used GSMs as a contrast agent for both computed tomography (CT) and magnetic resonance imaging (MRI) studies of stereotactically implanted GBM tumors in a mouse model, and found that MRI but not CT was sufficiently sensitive to detect and delineate tumor borders after administration and accumulation of GSMs. These results suggest that with further development and testing, GSMs may potentially be integrated into both imaging and treatment of brain tumors, serving a theranostic purpose as both an MRI-based contrast agent and a radiosensitizer. PMID:27305768

  9. Theranostic Application of Mixed Gold and Superparamagnetic Iron Oxide Nanoparticle Micelles in Glioblastoma Multiforme

    PubMed Central

    Sun, Lova; Joh, Daniel Y.; Al-Zaki, Ajlan; Stangl, Melissa; Murty, Surya; Davis, James J.; Baumann, Brian C.; Alonso-Basanta, Michelle; Kao, Gary D.; Tsourkas, Andrew; Dorsey, Jay F.

    2016-01-01

    The treatment of glioblastoma multiforme, the most prevalent and lethal form of brain cancer in humans, has been limited in part by poor delivery of drugs through the blood-brain barrier and by unclear delineation of the extent of infiltrating tumor margins. Nanoparticles, which selectively accumulate in tumor tissue due to their leaky vasculature and the enhanced permeability and retention effect, have shown promise as both therapeutic and diagnostic agents for brain tumors. In particular, superparamagnetic iron oxide nanoparticles (SPIONs) have been leveraged as T2-weighted MRI contrast agents for tumor detection and imaging; and gold nanoparticles (AuNP) have been demonstrated as radiosensitizers capable of propagating electron and free radical-induced radiation damage to tumor cells. In this study, we investigated the potential applications of novel gold and SPION-loaded micelles (GSMs) coated by polyethylene glycol-polycaprolactone (PEG-PCL) polymer. By quantifying gh2ax DNA damage foci in glioblastoma cell lines, we tested the radiosensitizing efficacy of these GSMs, and found that GSM administration in conjunction with radiation therapy (RT) led to ~2-fold increase in density of double-stranded DNA breaks. For imaging, we used GSMs as a contrast agent for both computed tomography (CT) and magnetic resonance imaging (MRI) studies of stereotactically implanted GBM tumors in a mouse model, and found that MRI but not CT was sufficiently sensitive to detect and delineate tumor borders after administration and accumulation of GSMs. These results suggest that with further development and testing, GSMs may potentially be integrated into both imaging and treatment of brain tumors, serving a theranostic purpose as both an MRI-based contrast agent and a radiosensitizer. PMID:27305768

  10. ROS1 rearranged non-small cell lung cancer brain metastases respond to low dose radiotherapy.

    PubMed

    Lukas, Rimas V; Hasan, Yasmin; Nicholas, Martin K; Salgia, Ravi

    2015-12-01

    We present a young woman with ROS1 gene rearranged non-small cell lung cancer (NSCLC) with brain metastases. ROS is a proto-oncogene tyrosine protein kinase. The patient received a partial course of whole brain radiation therapy and experienced a sustained partial response in the brain. We hypothesize that ROS1 rearranged NSCLC brain metastases may be particularly sensitive to radiation therapy.

  11. Progress in neutron capture therapy for cancer

    SciTech Connect

    Allen, B.J.; Harrington, B.V. ); Moore, D.E. )

    1992-01-01

    Prognosis for some cancers is good, but for others, few patients will survive 12 months. This latter group of cancers is characterised by a proclivity to disseminate malignant cells in the host organ. In some cases systemic metastases occur, but in other cases, failure to achieve local control results in death. First among these cancers are the high grade brain tumours, astrocytoma 3,4 and glioblastoma multiforme. Local control of these tumors should lead to cure. Other cancers melanoma metastatic to the brain, for which a useful palliative therapy is not yet available, and pancreatic cancer for which localised control at an early stage could bring about improved prognosis. Patients with these cancers have little grounds for hope. Our primary objective is to reverse this situation with Neutron Capture Therapy (NCT). The purpose of this fourth symposium is to hasten the day whereby patients with these cancers can reasonably hope for substantial remissions.

  12. Progress in neutron capture therapy for cancer

    SciTech Connect

    Allen, B.J.; Harrington, B.V.; Moore, D.E.

    1992-09-01

    Prognosis for some cancers is good, but for others, few patients will survive 12 months. This latter group of cancers is characterised by a proclivity to disseminate malignant cells in the host organ. In some cases systemic metastases occur, but in other cases, failure to achieve local control results in death. First among these cancers are the high grade brain tumours, astrocytoma 3,4 and glioblastoma multiforme. Local control of these tumors should lead to cure. Other cancers melanoma metastatic to the brain, for which a useful palliative therapy is not yet available, and pancreatic cancer for which localised control at an early stage could bring about improved prognosis. Patients with these cancers have little grounds for hope. Our primary objective is to reverse this situation with Neutron Capture Therapy (NCT). The purpose of this fourth symposium is to hasten the day whereby patients with these cancers can reasonably hope for substantial remissions.

  13. Neural networks improve brain cancer detection with Raman spectroscopy in the presence of light artifacts

    NASA Astrophysics Data System (ADS)

    Jermyn, Michael; Desroches, Joannie; Mercier, Jeanne; St-Arnaud, Karl; Guiot, Marie-Christine; Petrecca, Kevin; Leblond, Frederic

    2016-03-01

    It is often difficult to identify cancer tissue during brain cancer (glioma) surgery. Gliomas invade into areas of normal brain, and this cancer invasion is frequently not detected using standard preoperative magnetic resonance imaging (MRI). This results in enduring invasive cancer following surgery and leads to recurrence. A hand-held Raman spectroscopy is able to rapidly detect cancer invasion in patients with grade 2-4 gliomas. However, ambient light sources can produce spectral artifacts which inhibit the ability to distinguish between cancer and normal tissue using the spectral information available. To address this issue, we have demonstrated that artificial neural networks (ANN) can accurately classify invasive cancer versus normal brain tissue, even when including measurements with significant spectral artifacts from external light sources. The non-parametric and adaptive model used by ANN makes it suitable for detecting complex non-linear spectral characteristics associated with different tissues and the confounding presence of light artifacts. The use of ANN for brain cancer detection with Raman spectroscopy, in the presence of light artifacts, improves the robustness and clinical translation potential for intraoperative use. Integration with the neurosurgical workflow is facilitated by accounting for the effect of light artifacts which may occur, due to operating room lights, neuronavigation systems, windows, or other light sources. The ability to rapidly detect invasive brain cancer under these conditions may reduce residual cancer remaining after surgery, and thereby improve patient survival.

  14. Brain cancer mortality rates increase with Toxoplasma gondii seroprevalence in France

    USGS Publications Warehouse

    Vittecoq, Marion; Elguero, Eric; Lafferty, Kevin D.; Roche, Benjamin; Brodeur, Jacques; Gauthier-Clerc, Michel; Missé, Dorothée; Thomas, Frédéric

    2012-01-01

    The incidence of adult brain cancer was previously shown to be higher in countries where the parasite Toxoplasma gondii is common, suggesting that this brain protozoan could potentially increase the risk of tumor formation. Using countries as replicates has, however, several potential confounding factors, particularly because detection rates vary with country wealth. Using an independent dataset entirely within France, we further establish the significance of the association between T. gondii and brain cancer and find additional demographic resolution. In adult age classes 55 years and older, regional mortality rates due to brain cancer correlated positively with the local seroprevalence of T. gondii. This effect was particularly strong for men. While this novel evidence of a significant statistical association between T. gondii infection and brain cancer does not demonstrate causation, these results suggest that investigations at the scale of the individual are merited.

  15. Inhibition of deubiquitinases primes glioblastoma cells to apoptosis in vitro and in vivo.

    PubMed

    Karpel-Massler, Georg; Banu, Matei A; Shu, Chang; Halatsch, Marc-Eric; Westhoff, Mike-Andrew; Bruce, Jeffrey N; Canoll, Peter; Siegelin, Markus D

    2016-03-15

    It remains a challenge in oncology to identify novel drug regimens to efficiently tackle glioblastoma, the most common primary brain tumor in adults. Here, we target deubiquitinases for glioblastoma therapy by utilizing the small-molecule inhibitor WP1130 which has been characterized as a deubiquitinase inhibitor that interferes with the function of Usp9X. Expression analysis data confirm that Usp9X expression is increased in glioblastoma compared to normal brain tissue indicating its potential as a therapeutic. Consistently, increasing concentrations of WP1130 decrease the cellular viability of established, patient-derived xenograft (PDX) and stem cell-like glioblastoma cells. Specific down-regulation of Usp9X reduces viability in glioblastoma cells mimicking the effects of WP1130. Mechanistically, WP1130 elicits apoptosis and increases activation of caspases. Moreover, WP1130 and siRNAs targeting Usp9X reduce the expression of anti-apoptotic Bcl-2 family members and Inhibitor of Apoptosis Proteins, XIAP and Survivin. Pharmacological and genetic interference with Usp9X efficiently sensitized glioblastoma cells to intrinsic and extrinsic apoptotic stimuli. In addition, single treatment with WP1130 elicited anti-glioma activity in an orthotopic proneural murine model of glioblastoma. Finally, the combination treatment of WP1130 and ABT263 inhibited tumor growth more efficiently than each reagent by its own in vivo without detectable side effects or organ toxicity. Taken together, these results suggest that targeting deubiquitinases for glioma therapy is feasible and effective. PMID:26872380

  16. Inhibition of deubiquitinases primes glioblastoma cells to apoptosis in vitro and in vivo

    PubMed Central

    Karpel-Massler, Georg; Banu, Matei A.; Shu, Chang; Halatsch, Marc-Eric; Westhoff, Mike-Andrew; Bruce, Jeffrey N.; Canoll, Peter; Siegelin, Markus D.

    2016-01-01

    It remains a challenge in oncology to identify novel drug regimens to efficiently tackle glioblastoma, the most common primary brain tumor in adults. Here, we target deubiquitinases for glioblastoma therapy by utilizing the small-molecule inhibitor WP1130 which has been characterized as a deubiquitinase inhibitor that interferes with the function of Usp9X. Expression analysis data confirm that Usp9X expression is increased in glioblastoma compared to normal brain tissue indicating its potential as a therapeutic. Consistently, increasing concentrations of WP1130 decrease the cellular viability of established, patient-derived xenograft (PDX) and stem cell-like glioblastoma cells. Specific down-regulation of Usp9X reduces viability in glioblastoma cells mimicking the effects of WP1130. Mechanistically, WP1130 elicits apoptosis and increases activation of caspases. Moreover, WP1130 and siRNAs targeting Usp9X reduce the expression of anti-apoptotic Bcl-2 family members and Inhibitor of Apoptosis Proteins, XIAP and Survivin. Pharmacological and genetic interference with Usp9X efficiently sensitized glioblastoma cells to intrinsic and extrinsic apoptotic stimuli. In addition, single treatment with WP1130 elicited anti-glioma activity in an orthotopic proneural murine model of glioblastoma. Finally, the combination treatment of WP1130 and ABT263 inhibited tumor growth more efficiently than each reagent by its own in vivo without detectable side effects or organ toxicity. Taken together, these results suggest that targeting deubiquitinases for glioma therapy is feasible and effective. PMID:26872380

  17. Pertuzumab, trastuzumab and docetaxel reduced the recurrence of brain metastasis from breast cancer: a case report.

    PubMed

    Senda, Noriko; Yamaguchi, Ayane; Nishimura, Hideaki; Shiozaki, Toshiki; Tsuyuki, Shigeru

    2016-03-01

    The CLEOPATRA trial reported the survival benefit of pertuzumab with trastuzumab plus docetaxel in HER2-positive metastatic breast cancer patients. However, there are a few case reports concerning the effects of a pertuzumab-containing regimen on brain metastases. A 55-year-old woman, who underwent curative surgery for breast cancer after neoadjuvant chemotherapy 5 years previously, developed repeated solitary brain metastasis in her right occipital lobe. Whole brain radiation therapy, stereotactic radiosurgery and 3 times of surgical resection were performed. Lapatinib and capecitabine plus tamoxifen were administered. The metastasis recurred in the stump of the previous surgery. Pertuzumab with trastuzumab plus docetaxel was initiated as second-line chemotherapy. A complete response of the brain metastasis was achieved, which persisted for 5 months. Pertuzumab with trastuzumab plus docetaxel was effective in reducing the brain metastases from breast cancer. Further studies are warranted to confirm the effect of this regimen on brain metastases.

  18. Synergistic anti-tumor actions of luteolin and silibinin prevented cell migration and invasion and induced apoptosis in glioblastoma SNB19 cells and glioblastoma stem cells.

    PubMed

    Chakrabarti, Mrinmay; Ray, Swapan K

    2015-12-10

    Glioblastoma is the most lethal brain tumor. Failure of conventional chemotherapies prompted the search for natural compounds for treatment of glioblastoma. Plant-derived flavonoids could be alternative medicine for inhibiting not only glioblastoma cells but also glioblastoma stem cells (GSC). Two plant-derived flavonoids are luteolin (LUT) and silibinin (SIL). We investigated anti-tumor mechanisms of LUT and SIL in different human glioblastoma cells and GSC and found significant synergistic inhibition of human glioblastoma LN18 and SNB19 cells and GSC following treatment with combination of 20µM LUT and 50µM SIL. Combination of 20µM LUT and 50µM SIL was more effective than a conventional chemotherapeutic agent (BCNU or TMZ). We continued our studies with SNB19 cells and GSC and found dramatic inhibition of cell migration from spheroids and also cell invasion through matrigel following treatment with combination of LUT and SIL. This combination was highly effective to block angiogenesis and survival pathways leading to induction of apoptosis. Inhibition of PKCα, XIAP, and iNOS ultimately caused induction of extrinsic and intrinsic pathways of apoptosis. Collectively, synergistic efficacy of LUT and SIL could be a promising therapy to inhibit cell migration and invasion and induce apoptosis in different glioblastoma cells including GSC.

  19. Differential distribution of erbB receptors in human glioblastoma multiforme: expression of erbB3 in CD133-positive putative cancer stem cells

    PubMed Central

    Duhem-Tonnelle, Véronique; Bièche, Ivan; Vacher, Sophie; Loyens, Anne; Maurage, Claude-Alain; Collier, Francis; Baroncini, Marc; Blond, Serge; Prevot, Vincent; Sharif, Ariane

    2010-01-01

    Glioblastomas are the most common CNS tumors in adults, and they remain resistant to current treatments. ErbB1 signaling is frequently altered in these tumors, which indicates that the erbB receptor family is a promising target for molecular therapy. However, data on erbB signaling in glioblastomas are still sparse. Therefore, we undertook a comprehensive analysis of erbB receptor and ligand expression profiles in a panel of nine glioblastomas that were compared to non-neoplastic cerebral tissue containing neocortex and corresponding portions of subcortical convolutional white matter and we determined the distribution patterns of erbB receptors among the main neural cell types that are present in these tumors, particularly the putative tumoral stem cell population. Using quantitative RT-PCR and western blot analysis, we showed that erbB1 signaling and erbB2 receptors exhibited highly variable deregulation profiles among tumors, ranging from under- to overexpression, while erbB3 and erbB4 were down-regulated. Immunohistochemistry revealed an important inter- and intra-tumoral heterogeneity in all four erbB expression profiles. However, each receptor exhibited a distinct repartition pattern among the GFAP-, Olig2-, NeuN- and CD133-positive populations. Interestingly, while erbB1 immunoreactivity was only detected in small subsets of CD133-positive putative tumoral stem cells, erbB3 immunoreactivity was prominent in this cell population thus suggesting that erbB3 may represent a new potential target for molecular therapy. PMID:20467331

  20. Modulatory Effects of Curcumin and Tyrphostins (AG494 and AG1478) on Growth Regulation and Viability of LN229 Human Brain Cancer Cells.

    PubMed

    Bojko, Agnieszka; Cierniak, Agnieszka; Adamczyk, Anna; Ligeza, Janusz

    2015-01-01

    In this study we employed curcumin as a potent adjuvant agent in the treatment of human brain cancer involving selective EGFR kinase inhibitors: tyrphostins AG494 and AG1478. Aim of this work was to evaluate the effect of tested compounds on autocrine growth, cell cycle, and viability of LN229 cells, as well as to assess their proapoptotic and genotoxic properties. Our results showed that all tested compounds significantly inhibited autocrine growth of the investigated cell line in a dose dependent manner. However they are characterized by different kinetics of cell growth inhibition. Suppression of growth by the tyrphostins was completely or partially reversible in contrast to curcumin. Curcumin increased the cytostatic and/or cytotoxic potential of AG494 and AG1478. Tyrphostins did not have genotoxic properties regardless of concentration used, whereas curcumin cytotoxic and genotoxic properties were directly proportional to the concentration. Curcumin significantly increased tyrphostins cytotoxicity. The most promising of the obtained results may be the use of curcumin and tyrphostin AG494 in the treatment of cancer cells. Anticancer effect of the mixture was confirmed by increase of cytotoxic effect, decrease of viability, stimulation of apoptotic procesess, irreversible DNA damage, and decrease of the ROS in the culture of glioblastoma cells.

  1. NI-78LABEL-FREE MULTIPHOTON MICROSCOPY: A NOVEL TOOL FOR THE IMAGING OF BRAIN TUMORS

    PubMed Central

    Uckermann, Ortrud; Galli, Roberta; Geiger, Kathrin; Koch, Edmund; Schackert, Gabriele; Steiner, Gerald; Kirsch, Matthias

    2014-01-01

    Changes in tissue composition caused by brain tumor growth involve a series of complex biochemical alterations which can be imaged on unstained native tissue using multiphoton microscopy: We used coherent anti-Stokes Raman scattering (CARS) imaging that resonantly excites the symmetric stretching vibration of CH2 groups at 2850 cm−1 and visualizes lipid content in combination with imaging of endogenous two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) to discern different types of tumors from normal tissue in unstained, native brain samples. Experimental brain tumors were induced in nude mice NMRI nu/nu (n = 25) by stereotactic implantation of glioblastoma (U87), melanoma (A375) and breast cancer (MCF-7) cell lines. Label-free multiphoton microscopy of brain cryosections provided exhaustive information of the tumor morphochemistry. The tumor border was defined with cellular resolution by a strong reduction of CARS signal intensity to 61% (glioblastoma), 71% (melanoma) and 68% (breast cancer). This reduction of lipid content within the tumor was confirmed by Raman spectroscopy. Micrometastases infiltrating normal tissue (size 50 - 200 µm) were identified in glioblastoma and melanoma. Additionally, multiphoton microscopy proved a reduction of CARS signal intensity in all human glioblastoma samples analyzed (to 72%, n = 6). Additionally, relevant SHG and TPEF signals were detected in human primary and secondary brain tumor samples and enabled to image variations in tumor associated vasculature, fibrosis, necrosis and nuclear size and density. All primary or secondary brain tumors investigated were characterized by a lower intensity of the CARS signal, therefore offering a simple tool for objective tumor detection and delineation. The combination of techniques allows retrieving a quantity of information on native unstained tissue which is comparable to H&E staining. Therefore, label-free multiphoton microscopy has the potential to become a

  2. Hyaluronic acid-conjugated liposome nanoparticles for targeted delivery to CD44 overexpressing glioblastoma cells

    PubMed Central

    Hayward, Stephen L.; Wilson, Christina L.; Kidambi, Srivatsan

    2016-01-01

    Glioblastoma Multiforme (GBM) is a highly prevalent and deadly brain malignancy characterized by poor prognosis and restricted disease management potential. Despite the success of nanocarrier systems to improve drug/gene therapy for cancer, active targeting specificity remains a major hurdle for GBM. Additionally, since the brain is a multi-cell type organ, there is a critical need to develop an approach to distinguish between GBM cells and healthy brain cells for safe and successful treatment. In this report, we have incorporated hyaluronic acid (HA) as an active targeting ligand for GBM. To do so, we employed HA conjugated liposomes (HALNPs) to study the uptake pathway in key cells in the brain including primary astrocytes, microglia, and human GBM cells. We observed that the HALNPs specifically target GBM cells over other brain cells due to higher expression of CD44 in tumor cells. Furthermore, CD44 driven HALNP uptake into GBM cells resulted in lysosomal evasion and increased efficacy of Doxorubicin, a model anti-neoplastic agent, while the astrocytes and microglia cells exhibited extensive HALNP-lysosome co-localization and decreased antineoplastic potency. In summary, novel CD44 targeted lipid based nanocarriers appear to be proficient in mediating site-specific delivery of drugs via CD44 receptors in GBM cells, with an improved therapeutic margin and safety. PMID:27120809

  3. HDAC6 promotes cell proliferation and confers resistance to temozolomide in glioblastoma.

    PubMed

    Wang, Zhihao; Hu, Pengchao; Tang, Fang; Lian, Haiwei; Chen, Xiong; Zhang, Yingying; He, Xiaohua; Liu, Wanhong; Xie, Conghua

    2016-08-28

    Histone deacetylases are considered to be among the most promising targets in drug development for cancer therapy. Histone deacetylase 6 (HDAC6) is a unique cytoplasmic enzyme that regulates many biological processes involved in tumorigenesis through its deacetylase and ubiquitin-binding activities. Here, we report that HDAC6 is overexpressed in glioblastoma tissues and cell lines. Overexpression of HDAC6 promotes the proliferation and spheroid formation of glioblastoma cells. HDAC6 overexpression confers resistance to temozolomide (TMZ) mediated cell proliferation inhibition and apoptosis induction. Conversely, knockdown of HDAC6 inhibits cell proliferation, impairs spheroid formation and sensitizes glioblastoma cells to TMZ. The inhibition of HDAC6 deacetylase activity by selective inhibitors inhibits the proliferation of glioblastoma cells and induces apoptosis. HDAC6 selective inhibitors can sensitize glioblastoma cells to TMZ. Moreover, we showed that HDAC6 mediated EGFR stabilization might partly account for its oncogenic role in glioblastoma. TMZ resistant glioblastoma cells showed higher expression of HDAC6 and more activation of EGFR. HDAC6 inhibitors decrease EGFR protein levels and impair the activation of the EGFR pathway. Taken together, our results suggest that the inhibition of HDAC6 may be a promising strategy for the treatment of glioblastoma.

  4. [The Relevance of MicroRNAs in Glioblastoma Stem Cells].

    PubMed

    Kleinová, R; Slabý, O; Šána, J

    2015-01-01

    Glioblastoma multiforme is the most common intracranial malignity of astrocyte origin in adults. Despite complex therapy consisting of maximal surgical resection, adjuvant concomitant chemoradiotherapy with temozolomide followed by temozolomide in monotherapy, the median of survival ranges between 12 and 15 months from dia-gnosis. This infaust prognosis is very often caused by both impossibility of achieving of sufficient radical surgical resection and tumor resistance to adjuvant therapy, which relates to the presence of glioblastoma stem cells. Similarly to normal stem cells, glioblastoma stem cells are capable of self -renewal, differentiation, and unlimited slow proliferation. Their resistance to conventional therapy is also due to higher expressions of DNA repair enzymes, antiapoptotic factors and multidrug transporters. Therefore, targeting these unique properties could be a novel promising therapeutic approach leading to more effective therapy and better prognosis of glioblastoma multiforme patients. One of the approaches how to successfully regulate above -mentioned properties is targeted regulation of microRNAs (miRNAs). These small noncoding RNA molecules posttranscriptionally regulate expression of more than 2/ 3 of all human genes that are also involved in stem cell associated signaling pathways. Moreover, deregulated expression of some miRNAs has been observed in many cancers, including glioblastoma multiforme. PMID:26480861

  5. Highlights of Children with Cancer UK’s Workshop on Drug Delivery in Paediatric Brain Tumours

    PubMed Central

    Nailor, Audrey; Walker, David A; Jacques, Thomas S; Warren, Kathy E; Brem, Henry; Kearns, Pamela R; Greenwood, John; Penny, Jeffrey I; Pilkington, Geoffrey J; Carcaboso, Angel M; Fleischhack, Gudrun; Macarthur, Donald; Slavc, Irene; Meijer, Lisethe; Gill, Steven; Lowis, Stephen; van Vuurden, Dannis G; Pearl, Monica S; Clifford, Steven C; Morrissy, Sorana; Ivanov, Delyan P; Beccaria, Kévin; Gilbertson, Richard J; Straathof, Karin; Green, Jordan J; Smith, Stuart; Rahman, Ruman; Kilday, John-Paul

    2016-01-01

    The first Workshop on Drug Delivery in Paediatric Brain Tumours was hosted in London by the charity Children with Cancer UK. The goals of the workshop were to break down the barriers to treating central nervous system (CNS) tumours in children, leading to new collaborations and further innovations in this under-represented and emotive field. These barriers include the physical delivery challenges presented by the blood–brain barrier, the underpinning reasons for the intractability of CNS cancers, and the practical difficulties of delivering cancer treatment to the brains of children. Novel techniques for overcoming these problems were discussed, new models brought forth, and experiences compared. PMID:27110286

  6. NPM1 histone chaperone is upregulated in glioblastoma to promote cell survival and maintain nucleolar shape.

    PubMed

    Holmberg Olausson, Karl; Elsir, Tamador; Moazemi Goudarzi, Kaveh; Nistér, Monica; Lindström, Mikael S

    2015-11-12

    Glioblastoma (grade IV glioma) is the most common and aggressive adult brain tumor. A better understanding of the biology of glioblastoma cells is crucial to identify molecular targets stimulating cell death. NPM1 (nucleophosmin) is a multifunctional chaperone that plays an important role in cancer development. Herein, NPM1 was analyzed by immunohistochemistry in human astrocytic gliomas. NPM1 was detected in all tumors but with a significantly higher staining intensity in grade IV than in low grade tumors. Depletion of NPM1 had only modest effects on the viability of U251MG, U1242MG, and U343MGa Cl2:6 glioma cells, despite alterations in nucleolar morphology. Glioma cell cultures depleted of NPM1 exposed to micromolar levels of actinomycin D were more prone to cell death (apoptosis) compared to cultures retaining NPM1. We had previously found that NPM1 binds to linker histone H1.5. Here we could show that silencing of H1.5 triggered glioma cell apoptosis as evidenced by a marked increase in both the numbers of cleaved caspase-3(+) cells and in the amounts of cleaved PARP. Enforced expression of NPM1 suppressed apoptosis in H1.5 depleted glioma cells. Although our studies would suggest little effectiveness of targeting NPM1 alone there could be potential using it as a combination treatment.

  7. NPM1 histone chaperone is upregulated in glioblastoma to promote cell survival and maintain nucleolar shape

    PubMed Central

    Holmberg Olausson, Karl; Elsir, Tamador; Moazemi Goudarzi, Kaveh; Nistér, Monica; Lindström, Mikael S.

    2015-01-01

    Glioblastoma (grade IV glioma) is the most common and aggressive adult brain tumor. A better understanding of the biology of glioblastoma cells is crucial to identify molecular targets stimulating cell death. NPM1 (nucleophosmin) is a multifunctional chaperone that plays an important role in cancer development. Herein, NPM1 was analyzed by immunohistochemistry in human astrocytic gliomas. NPM1 was detected in all tumors but with a significantly higher staining intensity in grade IV than in low grade tumors. Depletion of NPM1 had only modest effects on the viability of U251MG, U1242MG, and U343MGa Cl2:6 glioma cells, despite alterations in nucleolar morphology. Glioma cell cultures depleted of NPM1 exposed to micromolar levels of actinomycin D were more prone to cell death (apoptosis) compared to cultures retaining NPM1. We had previously found that NPM1 binds to linker histone H1.5. Here we could show that silencing of H1.5 triggered glioma cell apoptosis as evidenced by a marked increase in both the numbers of cleaved caspase-3+ cells and in the amounts of cleaved PARP. Enforced expression of NPM1 suppressed apoptosis in H1.5 depleted glioma cells. Although our studies would suggest little effectiveness of targeting NPM1 alone there could be potential using it as a combination treatment. PMID:26559910

  8. Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma.

    PubMed

    Setua, Sonali; Ouberai, Myriam; Piccirillo, Sara G; Watts, Colin; Welland, Mark

    2014-09-21

    Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies.

  9. Boron Neutron Capture Therapy (BNCT) Dose Calculation using Geometrical Factors Spherical Interface for Glioblastoma Multiforme

    SciTech Connect

    Zasneda, Sabriani; Widita, Rena

    2010-06-22

    Boron Neutron Capture Therapy (BNCT) is a cancer therapy by utilizing thermal neutron to produce alpha particles and lithium nuclei. The superiority of BNCT is that the radiation effects could be limited only for the tumor cells. BNCT radiation dose depends on the distribution of boron in the tumor. Absorbed dose to the cells from the reaction 10B (n, {alpha}) 7Li was calculated near interface medium containing boron and boron-free region. The method considers the contribution of the alpha particle and recoiled lithium particle to the absorbed dose and the variation of Linear Energy Transfer (LET) charged particles energy. Geometrical factor data of boron distribution for the spherical surface is used to calculate the energy absorbed in the tumor cells, brain and scalp for case Glioblastoma Multiforme. The result shows that the optimal dose in tumor is obtained for boron concentrations of 22.1 mg {sup 10}B/g blood.

  10. Roles of the cyclooxygenase 2 matrix metalloproteinase 1 pathway in brain metastasis of breast cancer.

    PubMed

    Wu, Kerui; Fukuda, Koji; Xing, Fei; Zhang, Yingyu; Sharma, Sambad; Liu, Yin; Chan, Michael D; Zhou, Xiaobo; Qasem, Shadi A; Pochampally, Radhika; Mo, Yin-Yuan; Watabe, Kounosuke

    2015-04-10

    Brain is one of the major sites of metastasis in breast cancer; however, the pathological mechanism of brain metastasis is poorly understood. One of the critical rate-limiting steps of brain metastasis is the breaching of blood-brain barrier, which acts as a selective interface between the circulation and the central nervous system, and this process is considered to involve tumor-secreted proteinases. We analyzed clinical significance of 21 matrix metalloproteinases on brain metastasis-free survival of breast cancer followed by verification in brain metastatic cell lines and found that only matrix metalloproteinase 1 (MMP1) is significantly correlated with brain metastasis. We have shown that MMP1 is highly expressed in brain metastatic cells and is capable of degrading Claudin and Occludin but not Zo-1, which are key components of blood-brain barrier. Knockdown of MMP1 in brain metastatic cells significantly suppressed their ability of brain metastasis in vivo, whereas ectopic expression of MMP1 significantly increased the brain metastatic ability of the cells that are not brain metastatic. We also found that COX2 was highly up-regulated in brain metastatic cells and that COX2-induced prostaglandins were directly able to promote the expression of MMP1 followed by augmenting brain metastasis. Furthermore, we found that COX2 and prostaglandin were able to activate astrocytes to release chemokine (C-C motif) ligand 7 (CCL7), which in turn promoted self-renewal of tumor-initiating cells in the brain and that knockdown of COX2 significantly reduced the brain metastatic ability of tumor cells. Our results suggest the COX2-MMP1/CCL7 axis as a novel therapeutic target for brain metastasis.

  11. The TWEAK Receptor Fn14 is a Potential Cell Surface Portal for Targeted Delivery of Glioblastoma Therapeutics

    PubMed Central

    Perez, Jimena G.; Tran, Nhan L.; Rosenblum, Michael G.; Schneider, Craig S.; Connolly, Nina P.; Kim, Anthony J.; Woodworth, Graeme F.; Winkles, Jeffrey A.

    2016-01-01

    Fibroblast growth factor-inducible 14 (Fn14; TNFRSF12A) is the cell surface receptor for the tumor necrosis factor (TNF) family member TNF-like weak inducer of apoptosis (TWEAK). The Fn14 gene is normally expressed at low levels in healthy tissues but expression is significantly increased after tissue injury and in many solid tumor types, including glioblastoma (GB; formerly referred to as ‘glioblastoma multiforme’ or GBM). GB is the most common and aggressive primary malignant brain tumor, and the current standard-of-care therapeutic regimen has a relatively small impact on patient survival, primarily because glioma cells have an inherent propensity to invade into normal brain parenchyma, which invariably leads to tumor recurrence and patient death. Despite major, concerted efforts to find new treatments, a new GB therapeutic that improves survival has not been introduced since 2005. In this review article, we summarize studies indicating that (i) Fn14 gene expression is low in normal brain tissue but up-regulated in advanced brain cancers and, in particular, in GB tumors exhibiting the mesenchymal molecular subtype, (ii) Fn14 expression can be detected in glioma cells residing in both the tumor core and invasive rim regions, with the maximal levels found in the invading glioma cells located within normal brain tissue, and (iii) TWEAK:Fn14 engagement as well as Fn14 overexpression can stimulate glioma cell migration, invasion, and resistance to chemotherapeutic agents in vitro. We also discuss two new therapeutic platforms that are currently in development that leverage Fn14 overexpression in GB tumors as a way to deliver cytotoxic agents to the glioma cells remaining after surgical resection while sparing normal healthy brain cells. PMID:26300004

  12. Tumor-targeting Salmonella typhimurium A1-R arrests growth of breast-cancer brain metastasis.

    PubMed

    Zhang, Yong; Miwa, Shinji; Zhang, Nan; Hoffman, Robert M; Zhao, Ming

    2015-02-20

    Brain metastasis is a morbid, treatment-resistant, end-stage frequent occurrence in breast cancer patients. The aim of this study was to evaluate the efficacy of tumor-targeting Salmonella typhimurium A1-R on breast cancer brain metastases. High brain-metastatic variants of murine 4T1 breast cancer cells expressing red fluorescent protein (RFP) were injected orthotopically in the mammary fat pad in non-transgenic nude mice or in the left ventricle of non-transgenic nude mice and transgenic nude mice expressing nestin-driven green fluorescent protein (ND-GFP). ND-GFP mice express GFP in nascent blood vessels. In the orthotopically-injected mice, the primary tumor was surgically-resected in order to allow brain metastasis to develop. At various time points, the tumors and vasculature in the brain were imaged by confocal and stereo fluorescence microscopy. Some of the breast cancer cells that reached the brain extravasated and grew perivascularly and some of the cells proliferated within the vasculature. S. typhimurium A1-R significantly inhibited brain metastasis in both metastatic models and increased survival of the orthotopically-transplanted, primary-tumor-resected mice (p<0.05). The results of the present study suggest the clinical potential of bacterial therapy of breast cancer brain metastasis.

  13. Effectiveness of Radiotherapy for Elderly Patients With Glioblastoma

    SciTech Connect

    Scott, Jacob; Tsai, Ya-Yu; Chinnaiyan, Prakash; Yu, Hsiang-Hsuan Michael

    2011-09-01

    Purpose: Radiotherapy plays a central role in the definitive treatment of glioblastoma. However, the optimal management of elderly patients with glioblastoma remains controversial, as the relative benefit in this patient population is unclear. To better understand the role that radiation plays in the treatment of glioblastoma in the elderly, we analyzed factors influencing patient survival using a large population-based registry. Methods and Materials: A total of 2,836 patients more than 70 years of age diagnosed with glioblastoma between 1993 and 2005 were identified from the Surveillance, Epidemiology, and End Results (SEER) registry. Demographic and clinical variables used in the analysis included gender, ethnicity, tumor size, age at diagnosis, surgery, and radiotherapy. Cancer-specific survival and overall survival were evaluated using the Kaplan-Meier method. Univariate and multivariate analysis were performed using Cox regression. Results: Radiotherapy was administered in 64% of these patients, and surgery was performed in 68%. Among 2,836 patients, 46% received surgery and radiotherapy, 22% underwent surgery only, 18% underwent radiotherapy only, and 14% did not undergo either treatment. The median survival for patients who underwent surgery and radiotherapy was 8 months. The median survival for patients who underwent radiotherapy only was 4 months, and for patients who underwent surgery only was 3 months. Those who received neither surgery nor radiotherapy had a median survival of 2 months (p < 0.001). Multivariate analysis showed that radiotherapy significantly improved cancer-specific survival (hazard ratio [HR], 0.43, 95% confidence interval [CI] 0.38-0.49) after adjusting for surgery, tumor size, gender, ethnicity, and age at diagnosis. Other factors associated with Cancer-specific survival included surgery, tumor size, age at diagnosis, and ethnicity. Analysis using overall survival as the endpoint yielded very similar results. Conclusions: Elderly

  14. SOX9-mediated upregulation of LGR5 is important for glioblastoma tumorigenicity

    SciTech Connect

    Hiraoka, Koji; Hayashi, Tomoatsu; Kaneko, Ryusuke; Nasu-Nishimura, Yukiko; Koyama-Nasu, Ryo; Kawasaki, Yoshihiro; Akiyama, Tetsu

    2015-05-01

    LGR5 plays an important role in the self-renewal of stem cells and is used as a marker identifying self-renewing stem cells in small intestine and hair follicles. Moreover, LGR5 has been reported to be overexpressed in several cancers. SOX9 is a transcription factor that plays a key role in development, differentiation and lineage commitment in various tissues. It has also been reported that SOX9 is overexpressed in a variety of cancers and contributes to their malignant phenotype. Here we show that LGR5 is required for the tumorigenicity of glioblastoma cells. We further show that SOX9 is upregulated in glioblastoma cells and directly enhances the expression of LGR5. We also demonstrate that knockdown of SOX9 suppresses the proliferation and tumorigenicity of glioblastoma cells. These results suggest that SOX9-mediated transcriptional regulation of LGR5 is critical for the tumorigenicity of glioblastoma cells. We speculate that the SOX9-LGR5 pathway could be a potentially promising target for the therapy of glioblastoma. - Highlights: • LGR5 is required for the tumorigenicity of glioblastoma cells. • SOX9 directly enhances the expression of LGR5. • SOX9 is required for the tumorigenicity of glioblastoma cells.

  15. Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma

    NASA Astrophysics Data System (ADS)

    Setua, Sonali; Ouberai, Myriam; Piccirillo, Sara G.; Watts, Colin; Welland, Mark

    2014-08-01

    Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies.Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies. Electronic supplementary information (ESI) available: Additional figures. See DOI: 10.1039/c

  16. Voltage-Gated Proton Channel in Human Glioblastoma Multiforme Cells.

    PubMed

    Ribeiro-Silva, Luisa; Queiroz, Fernanda Oliveira; da Silva, Annielle Mendes Brito; Hirata, Aparecida Emiko; Arcisio-Miranda, Manoel

    2016-07-20

    Solid tumors tend to have a more glycolytic metabolism leading to an accumulation of acidic metabolites in their cytosol, and consequently, their intracellular pH (pHi) turns critically lower if the cells do not handle the acid excess. Recently, it was proposed that the voltage gated proton channels (HV1) can regulate the pHi in several cancers. Here we report the functional expression of voltage gated proton channels in a human glioblastoma multiforme (GBM) cell line, the most common and lethal brain tumor. T98G cells presented an outward, slow activating voltage-dependent proton current, which was also ΔpH-dependent and inhibited by ZnCl2, characterizing it as being conducted by HV1 channels. Furthermore, blocking HV1 channels with ZnCl2 significantly reduced the pHi, cell survival, and migration, indicating an important role for HV1 for tumor proliferation and progression in GBM. Overall, our results suggest that HV1 channels can be a new therapeutic target for GBM. PMID:27225904

  17. Socio-economic characteristics of patients with glioblastoma multiforme.

    PubMed

    Muquit, Samiul; Parks, Ruth; Basu, Surajit

    2015-11-01

    The incidence of glioblastoma multiforme (GBM) varies across the world and also within subpopulations within each nation. Many cancers show correlation with socioeconomic status and we hypothesised that incidence of GBM also does the same. We performed a retrospective analysis of all patients treated with brain tumours at a single hospital over a 6-year period. For these patients we examined markers of socioeconomic status and reviewed their histopathological diagnosis. A total of 2859 patients had surgery between April 2006 and April 2012. Of these 880 had histological diagnosis of GBM. Records for all patients were reviewed. Based on postcodes, socioeconomic data was obtained at ward level from government sources. Markers were: average weekly household income, percentage unemployed, population density, indices of deprivation and percentage of households with no car. Data was analysed for trends between incidence per ward and socio-economic markers. Increasing incidence of GBM was associated with increasing wage (p = 0.044), less unemployment (p = 0.0002), Indices of Multiple Deprivation (p = 0.05), lower population density (p = 0.0015) and greater ownership of cars (p = 0.0005). There are unique socioeconomic characteristics for patients with GBM. Although a link to aetiology cannot be established from this limited epidemiological study, these results identify issues that these patients are more likely to face. These should be taken into account when planning support services and patient care following surgery. PMID:26334316

  18. Cytogenomic profiling of breast cancer brain metastases reveals potential for repurposing targeted therapeutics.

    PubMed

    Bollig-Fischer, Aliccia; Michelhaugh, Sharon K; Wijesinghe, Priyanga; Dyson, Greg; Kruger, Adele; Palanisamy, Nallasivam; Choi, Lydia; Alosh, Baraa; Ali-Fehmi, Rouba; Mittal, Sandeep

    2015-06-10

    Breast cancer brain metastases remain a significant clinical problem. Chemotherapy is ineffective and a lack of treatment options result in poor patient outcomes. Targeted therapeutics have proven to be highly effective in primary breast cancer, but lack of molecular genomic characterization of metastatic brain tumors is hindering the development of new treatment regimens. Here we contribute to fill this void by reporting on gene copy number variation (CNV) in 10 breast cancer metastatic brain tumors, assayed by array comparative genomic hybridization (aCGH). Results were compared to a list of cancer genes verified by others to influence cancer. Cancer gene aberrations were identified in all specimens and pathway-level analysis was applied to aggregate data, which identified stem cell pluripotency pathway enrichment and highlighted recurring, significant amplification of SOX2, PIK3CA, NTRK1, GNAS, CTNNB1, and FGFR1. For a subset of the metastatic brain tumor samples (n = 4) we compared patient-matched primary breast cancer specimens. The results of our CGH analysis and validation by alternative methods indicate that oncogenic signals driving growth of metastatic tumors exist in the original cancer. This report contributes support for more rapid development of new treatments of metastatic brain tumors, the use of genomic-based diagnostic tools and repurposed drug treatments.

  19. Clinical study and numerical simulation of brain cancer dynamics under radiotherapy

    NASA Astrophysics Data System (ADS)

    Nawrocki, S.; Zubik-Kowal, B.

    2015-05-01

    We perform a clinical and numerical study of the progression of brain cancer tumor growth dynamics coupled with the effects of radiotherapy. We obtained clinical data from a sample of brain cancer patients undergoing radiotherapy and compare it to our numerical simulations to a mathematical model of brain tumor cell population growth influenced by radiation treatment. We model how the body biologically receives a physically delivered dose of radiation to the affected tumorous area in the form of a generalized LQ model, modified to account for the conversion process of sublethal lesions into lethal lesions at high radiation doses. We obtain good agreement between our clinical data and our numerical simulations of brain cancer progression given by the mathematical model, which couples tumor growth dynamics and the effect of irradiation. The correlation, spanning a wide dataset, demonstrates the potential of the mathematical model to describe the dynamics of brain tumor growth influenced by radiotherapy.

  20. In vivo brain macromolecule signals in healthy and glioblastoma mouse models: 1H magnetic resonance spectroscopy, post-processing and metabolite quantification at 14.1 T.

    PubMed

    Craveiro, Mélanie; Clément-Schatlo, Virginie; Marino, Denis; Gruetter, Rolf; Cudalbu, Cristina

    2014-06-01

    In (1)H magnetic resonance spectroscopy, macromolecule signals underlay metabolite signals, and knowing their contribution is necessary for reliable metabolite quantification. When macromolecule signals are measured using an inversion-recovery pulse sequence, special care needs to be taken to correctly remove residual metabolite signals to obtain a pure macromolecule spectrum. Furthermore, since a single spectrum is commonly used for quantification in multiple experiments, the impact of potential macromolecule signal variability, because of regional differences or pathologies, on metabolite quantification has to be assessed. In this study, we introduced a novel method to post-process measured macromolecule signals that offers a flexible and robust way of removing residual metabolite signals. This method was applied to investigate regional differences in the mouse brain macromolecule signals that may affect metabolite quantification when not taken into account. However, since no significant differences in metabolite quantification were detected, it was concluded that a single macromolecule spectrum can be generally used for the quantification of healthy mouse brain spectra. Alternatively, the study of a mouse model of human glioma showed several alterations of the macromolecule spectrum, including, but not limited to, increased mobile lipid signals, which had to be taken into account to avoid significant metabolite quantification errors.

  1. Clinical applications of modern imaging technology: stereo image formation and location of brain cancer

    NASA Astrophysics Data System (ADS)

    Wang, Dezong; Wang, Jinxiang

    1994-05-01

    It is very important to locate the tumor for a patient, who has cancer in his brain. If he only gets X-CT or MRI pictures, the doctor does not know the size, shape location of the tumor and the relation between the tumor and other organs. This paper presents the formation of stereo images of cancer. On the basis of color code and color 3D reconstruction. The stereo images of tumor, brain and encephalic truncus are formed. The stereo image of cancer can be round on X, Y, Z-coordinates to show the shape from different directions. In order to show the location of tumor, stereo image of tumor and encephalic truncus are provided on different angles. The cross section pictures are also offered to indicate the relation of brain, tumor and encephalic truncus on cross sections. In this paper the calculating of areas, volume and the space between cancer and the side of the brain are also described.

  2. Remodelling the vascular microenvironment of glioblastoma with alpha-particles

    PubMed Central

    Behling, Katja; Maguire, William F.; Di Gialleonardo, Valentina; Heeb, Lukas E.M.; Hassan, Iman F.; Veach, Darren R.; Keshari, Kayvan R.; Gutin, Philip H.; Scheinberg, David A.; McDevitt, Michael R.

    2016-01-01

    Rationale Tumors escape anti-angiogenic therapy by activation of pro-angiogenic signaling pathways. Bevacizumab is approved for the treatment of recurrent glioblastoma, but patients inevitably develop resistance to this angiogenic inhibitor. We investigated targeted α-particle therapy with 225Ac-E4G10 as an anti-vascular approach and previously showed increased survival and tumor control in a high-grade transgenic orthotopic glioblastoma model. Here we investigate changes in tumor-vascular morphology and functionality caused by 225Ac-E4G10. Methods We investigated remodeling of tumor microenvironment in transgenic Ntva glioblastoma mice using a therapeutic 7.4 kBq dose of 225Ac-E4G10. Immunofluorescence and immunohistochemical analyses imaged morphological changes in the tumor blood brain barrier microenvironment. Multi-color flow cytometry quantified the endothelial progenitor cell population in the bone marrow. Diffusion-weighted magnetic resonance imaged functional changes of the tumor vascular network. Results The mechanism of drug action is a combination of glioblastoma vascular microenvironment remodeling, edema relief, and depletion of regulatory T and endothelial progenitor cells. The primary remodeling event is the reduction of both endothelial and perivascular cell populations. Tumor-associated edema and necrosis was lessened and resulted in increased perfusion and reduced diffusion. Pharmacological uptake of dasatinib into tumor was enhanced following α-particle therapy. Conclusion Targeted anti-vascular α-particle radiation remodels the glioblastoma vascular microenvironment via a multimodal mechanism of action and provides insight into the vascular architecture of Platelet-derived growth factor driven glioblastoma. PMID:27261519

  3. Vascular targeted radioimmunotherapy for the treatment of glioblastoma

    PubMed Central

    Behling, Katja; Maguire, William F.; López Puebla, José Carlos; Sprinkle, Shanna R.; Ruggiero, Alessandro; O'Donoghue, Joseph; Gutin, Philip H.; Scheinberg, David A.; McDevitt, Michael R.

    2016-01-01

    Rationale Glioblastoma is characterized by an aggressive and aberrant vascular network that promotes tumor progression and hinders effective treatment; the median survival is 16 months despite standard-of-care therapies. There is a need to improve therapeutic options for this disease. We hypothesized that antibody targeting of the vascular endothelium (VE) of glioblastoma with cytotoxic short-range, high-energy alpha particles would be an effective therapeutic approach. Methods E4G10, an antibody directed at an epitope of monomeric VE cadherin, is expressed in tumor neovasculature and on endothelial progenitor cells in the bone marrow. E4G10 was labeled with alpha particle emitting 225Actinium (225Ac). Pharmacokinetic studies investigated the tissue distribution and blood clearance of the 225Ac-E4G10 radioimmunoconstruct in a transgenic Ntva-mouse model of high-grade glioblastoma. Histological analysis was used to demonstrate local therapeutic effects in treated brain tumor sections. Radioimmunotherapy with 225Ac-E4G10 was performed in Ntva-mice to assess overall survival alone and in combination with temozolomide, the standard-of-care chemotherapeutic agent. Results 225Ac-E4G10 was found to accumulate in tissues expressing the target antigen. Antivascular alpha-particle therapy of glioblastoma in the transgenic Ntva-model resulted in significantly improved survival compared to controls and potent control of tumor growth. Adding the chemotherapeutic temozolomide to the treatment increased survival to 30 days (versus 9 days for vehicle treated animals). Histological analyses showed a remodeled glioblastoma vascular microenvironment. Conclusion Targeted alpha-particle anti-vascular therapy is shown for the first time to be effective in increasing overall survival in a solid tumor in a clinically relevant transgenic glioblastoma mouse model. PMID:27127217

  4. Separation of microRNA 21 as a cancer marker from glioblastoma cell line using molecularly imprinted polymer coated on silica nanoparticles.

    PubMed

    Hashemi-Moghaddam, Hamid; Mowla, Seyed Javad; Nouraee, Nazila

    2016-09-01

    In this study for the first time, microRNA was separated on the basis of affinity for a phase made using molecular imprinting technology. We describe the synthesis and preliminary testing of molecularly imprinted polymers for separation of the microRNA 21 from the lysate obtained from brain cancer cell line. A new molecularly imprinted polymer was synthesized using microRNA 21 and dopamine as the template and functional monomer, respectively. Dopamine was polymerized on the surface of silica nanoparticles. A control polymer, or nonimprinted polymer, was prepared under the same conditions without the use of the template molecule. The synthesized polymer was characterized by FTIR spectroscopy and its morphology was investigated by scanning electron microscopy. To compare the performance of this polymer, the results were compared with trizol extraction as a routine method of RNA extraction. The proposed method was applied for separation of microRNA 21 from cell lysate and its specificity was validated with quantitative reverse transcription polymerase chain reaction technique. PMID:27422098

  5. Glioblastoma with oligodendroglial components: glioblastoma or anaplastic oligodendroglial tumors.

    PubMed

    Takeuchi, Hiroaki; Hosoda, Tetsuya; Kitai, Ryuhei; Kodera, Toshiaki; Arishima, Hidetaka; Tsunetoshi, Kenzo; Neishi, Hiroyuki; Yamauchi, Takahiro; Sato, Kazufumi; Imamura, Yoshiyuki; Itoh, Hiroshi; Kubota, Toshihiko; Kikuta, Ken-ichiro

    2012-07-01

    There have been some recent reports about glioblastoma with oligodendroglial (OG) components and malignant glioma with primitive neuroectodermal tumor (PNET)-like components. We investigated whether the presence and extent of OG components and PNET-like components influenced the prognosis in patients with glioblastoma. Eighty-six patients with glioblastoma were divided into an OG group (28 %), which revealed areas with a honeycomb appearance, and a non-OG group (72 %) without a honeycomb appearance. Patients with glioblastoma were also divided into a PNET group (27 %), which revealed areas with PNET-like features defined as neoplastic cells with high N/C ratios and hyperchromatic oval-carrot-shaped nuclei, and lacked the typical honeycomb appearance, and a non-PNET group (73 %) without PNET features. There were no significant differences in overall survival among the OG, the non-OG, the PNET, and the non-PNET groups. Two patients who survived longer than 36 months had both OG and PNET components with 1p or 19q loss of heterozygosity. Perinuclear halo, which is a characteristic feature of oligodendrogliomas, is an artifact of tissue fixation. Therefore, we should not readily use the term glioblastoma with OG components. PNET-like components, which are considered rare in malignant gliomas, may be frequently identified in glioblastomas. PMID:22527749

  6. Pathogenesis of Breast Cancer Metastasis to Brain: a Comprehensive Approach to the Signaling Network.

    PubMed

    Tayyeb, Bahrami; Parvin, Mehdipour

    2016-01-01

    There is a general consensus that breast cancer is a rising trend disease in the world. It is one of the most common cancer types and is the leading cause of death among women's cancers. There are several reasons for this high rate of mortality including metastasis which is responsible for about 90 % of cancer-related mortality. Therefore, recognition and understanding of metastatic process is important, and by considering the key role of pathophysiological route in metastasis as a multistep cascade of "invasion-metastasis," it might modify and improve our insight toward this complex phenomenon. Moreover, it can provide novel approaches for designing advanced targeted therapies. The present work aimed to review the published papers regarding molecular basis of metastatic process of breast cancer to brain metastasis, especially related genes and signaling network. Furthermore, the use of molecular aspects of metastatic breast cancer to brain was discussed in horizon of future treatment of breast cancer.

  7. Differential response of patient-derived primary glioblastoma cells to environmental stiffness

    PubMed Central

    Grundy, Thomas James; De Leon, Ellen; Griffin, Kaitlyn Rose; Stringer, Brett William; Day, Bryan William; Fabry, Ben; Cooper-White, Justin; O’Neill, Geraldine Margaret

    2016-01-01

    The ability of cancer cells to sense external mechanical forces has emerged as a significant factor in the promotion of cancer invasion. Currently there are conflicting reports in the literature with regard to whether glioblastoma (GBM) brain cancer cell migration and invasion is rigidity-sensitive. In order to address this question we have compared the rigidity-response of primary patient-derived GBM lines. Cells were plated on polyacrylamide gels of defined rigidity that reflect the diversity of the brain tissue mechanical environment, and cell morphology and migration were analysed by time-lapse microscopy. Invasiveness was assessed in multicellular spheroids embedded in 3D matrigel cultures. Our data reveal a range of rigidity-dependent responses between the patient-derived cell lines, from reduced migration on the most compliant tissue stiffness to those that are insensitive to substrate rigidity and are equally migratory irrespective of the underlying substrate stiffness. Notably, the rigidity-insensitive GBM cells show the greatest invasive capacity in soft 3D matrigel cultures. Collectively our data confirm both rigidity-dependent and independent behaviour in primary GBM patient-derived cells. PMID:26996336

  8. Prognostic value of health-related quality of life for death risk stratification in patients with unresectable glioblastoma.

    PubMed

    Paquette, Brice; Vernerey, Dewi; Chauffert, Bruno; Dabakuyo, Sandrine; Feuvret, Loic; Taillandier, Luc; Frappaz, Didier; Taillia, Hervé; Schott, Roland; Ducray, François; Fabbro, Michel; Tennevet, Isabelle; Ghiringhelli, François; Guillamo, Jean-Sébastien; Durando, Xavier; Castera, Daniel; Frenay, Marc; Campello, Chantal; Dalban, Cécile; Skrzypski, Jérome; Chinot, Olivier; Anota, Amélie; Bonnetain, Franck

    2016-08-01

    Glioblastoma is the most common malignant brain tumor in adults. Baseline health-related quality of life (HRQoL) is a major subject of concern for these patients. We aimed to assess the independent prognostic value of HRQoL in unresectable glioblastoma (UGB) patients for death risk stratification. One hundred and thirty-four patients with UGB were enrolled from the TEMAVIR trial. HRQoL was evaluated at baseline using the EORTC QLQ-C30 and BN20 brain cancer module. Clinical and HRQoL parameters were evaluated in univariable and multivariable Cox analysis as prognostic factors for overall survival (OS). Performance assessment and internal validation of the final model were evaluated with Harrel's C-index, calibration plot, and bootstrap sample procedure. Two OS independent predictors were identified: future uncertainty and sensitivity deficit. The final model exhibited good calibration and acceptable discrimination (C statistic = 0.63). The internal validity of the model was verified with robust uncertainties around the hazard ratio. The prognostic score identified three groups of patients with distinctly different risk profiles with median OS estimated at 16.2, 9.2, and 4.5 months. We demonstrated the additional prognostic value of HRQoL in UGB for death risk stratification and provided a score that may help to guide clinical management and stratification in future clinical trials.

  9. High expression of N-myc (and STAT) interactor predicts poor prognosis and promotes tumor growth in human glioblastoma

    PubMed Central

    Yun, Dapeng; Zhao, Yingjie; Wang, Jingkun; Xu, Tao; Li, Xiaoying; Wang, Yuqi; Yuan, Li; Sun, Ruochuan; Song, Xiao; Huai, Cong; Hu, Lingna; Yang, Song; Min, Taishan; Chen, Juxiang; Chen, Hongyan; Lu, Daru

    2015-01-01

    Glioma is the most malignant brain tumor and glioblastoma (GBM) is the most aggressive type. The involvement of N-myc (and STAT) interactor (NMI) in tumorigenesis was sporadically reported but far from elucidation. This study aims to investigate roles of NMI in human glioma. Three independent cohorts, the Chinese tissue microarray (TMA) cohort (N = 209), the Repository for Molecular Brain Neoplasia Data (Rembrandt) cohort (N = 371) and The Cancer Genome Atlas (TCGA) cohort (N = 528 or 396) were employed. Transcriptional or protein levels of NMI expression were significantly increased according to tumor grade in all three cohorts. High expression of NMI predicted significantly unfavorable clinical outcome for GBM patients, which was further determined as an independent prognostic factor. Additionally, expression and prognostic value of NMI were associated with molecular features of GBM including PTEN deletion and EGFR amplification in TCGA cohort. Furthermore, overexpression or depletion of NMI revealed its regulation on G1/S progression and cell proliferation (both in vitro and in vivo), and this effect was partially dependent on STAT1, which interacted with and was regulated by NMI. These data demonstrate that NMI may serve as a novel prognostic biomarker and a potential therapeutic target for glioblastoma. PMID:25669971

  10. A pilot case-cohort study of brain cancer in poultry and control workers.

    PubMed

    Gandhi, S; Felini, M J; Ndetan, H; Cardarelli, K; Jadhav, S; Faramawi, M; Johnson, E S

    2014-01-01

    We conducted an exploratory study to investigate which exposures (including poultry oncogenic viruses) are associated with brain cancer in poultry workers. A total of 46,819 workers in poultry and nonpoultry plants from the same union were initially followed for mortality. Brain cancer was observed to be in excess among poultry workers. Here we report on a pilot case-cohort study with cases consisting of 26 (55%) of the 47 brain cancer deaths recorded in the cohort, and controls consisting of a random sample of the cohort (n = 124). Exposure information was obtained from telephone interviews, and brain cancer mortality risk estimated by odds ratios. Increased risk of brain cancer was associated with killing chickens, odds ratio (OR) = 5.8 (95% confidence interval, 1.2-28.3); working in a shell-fish farm, OR = 13.0 (95% CI, 1.9-84.2); and eating uncooked fish, OR = 8.2 (95% CI, 1.8-37.0). Decreased risks were observed for chicken pox illness, OR = 0.2 (95% CI, 0.1-0.6), and measles vaccination, OR = 0.2 (95% CI, 0.1-0.6). Killing chickens, an activity associated with the highest occupational exposure to poultry oncogenic viruses, was associated with brain cancer mortality, as were occupational and dietary shellfish exposures. These findings are novel.

  11. Gain of glucose-independent growth upon metastasis of breast cancer cells to the brain

    PubMed Central

    Chen, Jinyu; Lee, Ho-Jeong; Wu, Xuefeng; Huo, Lei; Kim, Sun-Jin; Xu, Lei; Wang, Yan; He, Junqing; Bollu, Lakshmi Reddy; Gao, Guang; Su, Fei; Briggs, James; Liu, Xiaojing; Melman, Tamar; Asara, John M.; Fidler, Isaiah J.; Cantley, Lewis C.; Locasale, Jason W.; Weihua, Zhang

    2014-01-01

    Breast cancer brain metastasis is resistant to therapy and a particularly poor prognostic feature in patient survival. Altered metabolism is a common feature of cancer cells but little is known as to what metabolic changes benefit breast cancer brain metastases. We found that brain-metastatic breast cancer cells evolved the ability to survive and proliferate independent of glucose due to enhanced gluconeogenesis and oxidations of glutamine and branched chain amino acids, which together sustain the non-oxidative pentose pathway for purine synthesis. Silencing expression of fructose-1,6-bisphosphatases (FBPs) in brain metastatic cells reduced their viability and improved the survival of metastasis-bearing immunocompetent hosts. Clinically, we showed that brain metastases from human breast cancer patients expressed higher levels of FBP and glycogen than the corresponding primary tumors. Together, our findings identify a critical metabolic condition required to sustain brain metastasis, and suggest that targeting gluconeogenesis may help eradicate this deadly feature in advanced breast cancer patients. PMID:25511375

  12. Electrical conductivity changes during irreversible electroporation treatment of brain cancer.

    PubMed

    Garcia, Paulo A; Rossmeisl, John H; Davalos, Rafael V

    2011-01-01

    Irreversible electroporation (IRE) is a new minimally invasive technique to kill tumors and other undesirable tissue in a non-thermal manner. During an IRE treatment, a series of short and intense electric pulses are delivered to the region of interest to destabilize the cell membranes in the tissue and achieve spontaneous cell death. The alteration of the cellular membrane results in a dramatic increase in electrical conductivity during IRE as in other electroporation-based-therapies. In this study, we performed the planning and execution of an IRE brain cancer treatment using MRI reconstructions of the tumor and a multichannel array that served as a stereotactic fiducial and electrode guide. Using the tumor reconstructions within our numerical simulations, we developed equations relating the increase in tumor conductivity to calculated currents and volumes of tumor treated with IRE. We also correlated the experimental current measured during the procedure to an increase in tumor conductivity ranging between 3.42-3.67 times the baseline conductivity, confirming the physical phenomenon that has been detected in other tissues undergoing similar electroporation-based treatments. PMID:22254416

  13. Lassa-Vesicular Stomatitis Chimeric Virus Safely Destroys Brain Tumors

    PubMed Central

    Wollmann, Guido; Drokhlyansky, Eugene; Davis, John N.; Cepko, Connie

    2015-01-01

    ABSTRACT High-grade tumors in the brain are among the deadliest of cancers. Here, we took a promising oncolytic virus, vesicular stomatitis virus (VSV), and tested the hypothesis that the neurotoxicity associated with the virus could be eliminated without blocking its oncolytic potential in the brain by replacing the neurotropic VSV glycoprotein with the glycoprotein from one of five different viruses, including Ebola virus, Marburg virus, lymphocytic choriomeningitis virus (LCMV), rabies virus, and Lassa virus. Based on in vitro infections of normal and tumor cells, we selected two viruses to test in vivo. Wild-type VSV was lethal when injected directly into the brain. In contrast, a novel chimeric virus (VSV-LASV-GPC) containing genes from both the Lassa virus glycoprotein precursor (GPC) and VSV showed no adverse actions within or outside the brain and targeted and completely destroyed brain cancer, including high-grade glioblastoma and melanoma, even in metastatic cancer models. When mice had two brain tumors, intratumoral VSV-LASV-GPC injection in one tumor (glioma or melanoma) led to complete tumor destruction; importantly, the virus moved contralaterally within the brain to selectively infect the second noninjected tumor. A chimeric virus combining VSV genes with the gene coding for the Ebola virus glycoprotein was safe in the brain and also selectively targeted brain tumors but was substantially less effective in destroying brain tumors and prolonging survival of tumor-bearing mice. A tropism for multiple cancer types combined with an exquisite tumor specificity opens a new door to widespread application of VSV-LASV-GPC as a safe and efficacious oncolytic chimeric virus within the brain. IMPORTANCE Many viruses have been tested for their ability to target and kill cancer cells. Vesicular stomatitis virus (VSV) has shown substantial promise, but a key problem is that if it enters the brain, it can generate adverse neurologic consequences, including death. We

  14. Results of the Phase I Dose-Escalating Study of Motexafin Gadolinium With Standard Radiotherapy in Patients With Glioblastoma Multiforme

    SciTech Connect

    Ford, Judith M. Seiferheld, Wendy; Alger, Jeffrey R.; Wu, Genevieve; Endicott, Thyra J.; Mehta, Minesh; Curran, Walter; Phan, See-Chun

    2007-11-01

    Purpose: Motexafin gadolinium (MGd) is a putative radiation enhancer initially evaluated in patients with brain metastases. This Phase I trial studied the safety and tolerability of a 2-6-week course (10-22 doses) of MGd with radiotherapy for glioblastoma multiforme. Methods and Materials: A total of 33 glioblastoma multiforme patients received one of seven MGd regimens starting at 10 doses of 4 mg/kg/d MGd and escalating to 22 doses of 5.3 mg/kg/d MGd (5 or 10 daily doses then three times per week). The National Cancer Institute Cancer Therapy Evaluation Program toxicity and stopping rules were applied. Results: The maximal tolerated dose was 5.0 mg/kg/d MGd (5 d/wk for 2 weeks, then three times per week) for 22 doses. The dose-limiting toxicity was reversible transaminase elevation. Adverse reactions included rash/pruritus (45%), chills/fever (30%), and self-limiting vesiculobullous rash of the thumb and fingers (42%). The median survival of 17.6 months prompted a case-matched analysis. In the case-matched analysis, the MGd patients had a median survival of 16.1 months (n = 31) compared with the matched Radiation Therapy Oncology Group database patients with a median survival of 11.8 months (hazard ratio, 0.43; 95% confidence interval, 0.20-0.94). Conclusion: The maximal tolerated dose of MGd with radiotherapy for glioblastoma multiforme in this study was 5 mg/kg/d for 22 doses (daily for 2 weeks, then three times weekly). The baseline survival calculations suggest progression to Phase II trials is appropriate, with the addition of MGd to radiotherapy with concurrent and adjuvant temozolomide.

  15. Cyclophilin B supports Myc and mutant p53-dependent survival of glioblastoma multiforme cells.

    PubMed

    Choi, Jae Won; Schroeder, Mark A; Sarkaria, Jann N; Bram, Richard J

    2014-01-15

    Glioblastoma multiforme is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here, we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in glioblastoma multiforme cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human glioblastoma multiforme cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of glioblastoma multiforme cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-mitogen-activated protein kinase pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1, and Janus-activated kinase/STAT3 signaling. Elevated reactive oxygen species, ER expansion, and abnormal unfolded protein responses in CypB-depleted glioblastoma multiforme cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of glioblastoma multiforme tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for glioblastoma multiforme therapy. PMID:24272483

  16. Epigenetic suppression of EGFR signaling in G-CIMP+ glioblastomas

    PubMed Central

    Goyal, Amit; Gonda, David; Akers, Johnny; Adhikari, Bandita; Patel, Kunal; Vandenberg, Scott; Yan, Wei; Bao, Zhaoshi; Carter, Bob S.; Wang, Renzhi; Mao, Ying; Jiang, Tao; Chen, Clark C.

    2014-01-01

    The intrinsic signaling cascades and cell states associated with the Glioma CpG Island Methylator Phenotype (G-CIMP) remain poorly understood. Using published mRNA signatures associated with EGFR activation, we demonstrate that G-CIMP+ tumors harbor decreased EGFR signaling using three independent datasets, including the Chinese Glioma Genome Atlas(CGGA; n=155), the REMBRANDT dataset (n=288), and The Cancer Genome Atlas (TCGA; n=406). Additionally, an independent collection of 25 fresh-frozen glioblastomas confirmed lowered pERK levels in G-CIMP+ specimens (p<0.001), indicating suppressed EGFR signaling. Analysis of TCGA glioblastomas revealed that G-CIMP+ glioblastomas harbored lowered mRNA levels for EGFR and H-Ras. Induction of G-CIMP+ state by exogenous expression of a mutated isocitrate dehydrogenase 1, IDH1-R132H, suppressed EGFR and H-Ras protein expression as well as pERK accumulation in independent glioblastoma models. These suppressions were associated with increased deposition of the repressive histone markers, H3K9me3 and H3K27me3, in the EGFR and H-Ras promoter regions. The IDH1-R132H expression-induced pERK suppression can be reversed by exogenous expression of H-RasG12V. Finally, the G-CIMP+ Ink4a-Arf−/− EGFRvIII glioblastoma line was more resistant to the EGFR inhibitor, Gefitinib, relative to its isogenic G-CIMP- counterpart. These results suggest that G-CIMP epigenetically regulates EGFR signaling and serves as a predictive biomarker for EGFR inhibitors in glioblastoma patients. PMID:25277177

  17. Ex vivo cultures of glioblastoma in three-dimensional hydrogel maintain the original tumor growth behavior and are suitable for preclinical drug and radiation sensitivity screening

    SciTech Connect

    Jiguet Jiglaire, Carine; Baeza-Kallee, Nathalie; Denicolaï, Emilie; Barets, Doriane; Metellus, Philippe; and others

    2014-02-15

    Identification of new drugs and predicting drug response are major challenges in oncology, especially for brain tumors, because total surgical resection is difficult and radiation therapy or chemotherapy is often ineffective. With the aim of developing a culture system close to in vivo conditions for testing new drugs, we characterized an ex vivo three-dimensional culture system based on a hyaluronic acid-rich hydrogel and compared it with classical two-dimensional culture conditions. U87-MG glioblastoma cells and seven primary cell cultures of human glioblastomas were subjected to radiation therapy and chemotherapy drugs. It appears that 3D hydrogel preserves the original cancer growth behavior and enables assessment of the sensitivity of malignant gliomas to radiation and drugs with regard to inter-tumoral heterogeneity of therapeutic response. It could be used for preclinical assessment of new therapies. - Highlights: • We have compared primary glioblastoma cell culture in a 2D versus 3D-matrix system. • In 3D morphology, organization and markers better recapitulate the original tumor. • 3D-matrix culture might represent a relevant system for more accurate drug screening.

  18. Pesticides and brain cancer linked in orchard farmers of Kashmir

    PubMed Central

    Bhat, Abdul Rashid; Wani, Muhammed Afzal; Kirmani, A. R.; Raina, T. H.

    2010-01-01

    were unrelated to pesticides. Out of 389 patients, 71.7% (279 out of 389) were males and 28.3% (110 out of 389) including 7 members of three families, 6 were females and 1 male. Conclusion: All orchard-related 389 patients had high grade tumors as compared to the non-pesticide tumors. Mortality in pesticide exposed tumors was 12%. Higher levels of SCE were found in 31.9% (124 out of 389) patients and decreased levels in only 45.3% (176 out of 389) orchard-related patients. The significantcase/control odds ratio (OR) of 0.28, hospital control SCE OR of 1.1 and family control SCE OR of 1.5, points the finger of suspicion toward the link between pesticides and brain cancer. PMID:21584215

  19. [Palliative care for glioblastoma].

    PubMed

    Dieudonné, Nathalie; De Micheli, Rita; Hottinger, Andreas

    2016-04-27

    Patients with glioblastoma have a limited life expectancy and an impaired quality of life and they should be offered palliative care soon after the diagnosis is established. Still, only a quarter of patients aged over 65 return home or medical institution after completing treatments. Home care must be promoted by coordinating assistance and care, combining disciplines such as physiotherapy and ergotherapy, medical and nursing care and psychosocial support. Patients are at risk of mood, personality and behavioural disorders. Limited awareness of these troubles and their physical limitations alter their capacity of rehabilitation and social relationships. Isolation of relatives, exhaustion and misunderstandings should be prevented. The therapeutic goals should be discussed and determined upstream to anticipate difficulties and questions concerning end of life. PMID:27281945

  20. Targeting glioblastoma via intranasal administration of Ff bacteriophages

    PubMed Central

    Dor-On, Eyal; Solomon, Beka

    2015-01-01

    Bacteriophages (phages) are ubiquitous viruses that control the growth and diversity of bacteria. Although they have no tropism to mammalian cells, accumulated evidence suggests that phages are not neutral to the mammalian macro-host and can promote immunomodulatory and anti-tumorigenic activities. Here we demonstrate that Ff phages that do not display any proteins or peptides could inhibit the growth of subcutaneous glioblastoma tumors in mice and that this activity is mediated in part by lipopolysaccharide molecules attached to their virion. Using the intranasal route, a non-invasive approach to deliver therapeutics directly to the CNS, we further show that phages rapidly accumulate in the brains of mice and could attenuate progression of orthotopic glioblastoma. Taken together, this study provides new insight into phages non-bacterial activities and demonstrates the feasibility of delivering Ff phages intranasally to treat brain malignancies. PMID:26074908

  1. Targeting glioblastoma via intranasal administration of Ff bacteriophages.

    PubMed

    Dor-On, Eyal; Solomon, Beka

    2015-01-01

    Bacteriophages (phages) are ubiquitous viruses that control the growth and diversity of bacteria. Although they have no tropism to mammalian cells, accumulated evidence suggests that phages are not neutral to the mammalian macro-host and can promote immunomodulatory and anti-tumorigenic activities. Here we demonstrate that Ff phages that do not display any proteins or peptides could inhibit the growth of subcutaneous glioblastoma tumors in mice and that this activity is mediated in part by lipopolysaccharide molecules attached to their virion. Using the intranasal route, a non-invasive approach to deliver therapeutics directly to the CNS, we further show that phages rapidly accumulate in the brains of mice and could attenuate progression of orthotopic glioblastoma. Taken together, this study provides new insight into phages non-bacterial activities and demonstrates the feasibility of delivering Ff phages intranasally to treat brain malignancies.

  2. 1′-Acetoxychavicol acetate promotes caspase 3-activated glioblastoma cell death by overcoming enhanced cytokine expression

    PubMed Central

    WILLIAMS, MUSA; TIETZEL, ILLYA; QUICK, QUINCY A.

    2013-01-01

    The brain consumes ∼20% of the oxygen utilized in the human body, meaning that brain tumors are vulnerable to paradoxical physiological effects from free radical generation. In the present study, 1′-acetoxychavicol acetate (ACA), a naturally derived antioxidant that inhibits xanthine oxidase, was evaluated for its role as an anti-tumorigenic agent in glioblastomas. The study revealed that ACA inhibited glioblastoma cell proliferation as a consequence of promoting apoptotic cell death by enhancing caspase 3 activity. It was also shown that ACA impaired the migratory ability of glioblastoma cells by decreasing their adhesive properties. Additionally, ACA increased the protein expression levels of the pro-survival signaling cytokines, IL-6 and IL-1α, established cell protectors and survival molecules in brain tumors. Together, these results demonstrate that, despite enhanced expression of compensatory signaling molecules that contribute to tumor cell survival, ACA is an effective pro-apoptotic inducing agent in glioblastomas. PMID:23833677

  3. Radiological Patterns of Brain Metastases in Breast Cancer Patients: A Subproject of the German Brain Metastases in Breast Cancer (BMBC) Registry.

    PubMed

    Laakmann, Elena; Witzel, Isabell; Scriba, Verena; Grzyska, Ulrich; Zu Eulenburg, Christine; Burchardi, Nicole; Hesse, Tobias; Würschmidt, Florian; Fehm, Tanja; Möbus, Volker; von Minckwitz, Gunter; Loibl, Sibylle; Park-Simon, Tjoung-Won; Mueller, Volkmar

    2016-01-01

    Evidence about distribution patterns of brain metastases with regard to breast cancer subtypes and its influence on the prognosis of patients is insufficient. Clinical data, cranial computed tomography (CT) and magnetic resonance imaging (MRI) scans of 300 breast cancer patients with brain metastases (BMs) were collected retrospectively in four centers participating in the Brain Metastases in Breast Cancer Registry (BMBC) in Germany. Patients with positive estrogen (ER), progesterone (PR), or human epidermal growth factor receptor 2 (HER2) statuses, had a significantly lower number of BMs at diagnosis. Concerning the treatment mode, HER2-positive patients treated with trastuzumab before the diagnosis of BMs showed a lower number of intracranial metastases (p < 0.001). Patients with a HER2-positive tumor-subtype developed cerebellar metastases more often compared with HER2-negative patients (59.8% vs. 44.5%, p = 0.021), whereas patients with triple-negative primary tumors had leptomeningeal disease more often (31.4% vs. 18.3%, p = 0.038). The localization of Brain metastases (BMs) was associated with prognosis: patients with leptomeningeal disease had shorter survival compared with patients without signs of leptomeningeal disease (median survival 3 vs. 5 months, p = 0.025). A shorter survival could also be observed in the patients with metastases in the occipital lobe (median survival 3 vs. 5 months, p = 0.012). Our findings suggest a different tumor cell homing to different brain regions depending on subtype and treatment. PMID:27669228

  4. Radiological Patterns of Brain Metastases in Breast Cancer Patients: A Subproject of the German Brain Metastases in Breast Cancer (BMBC) Registry.

    PubMed

    Laakmann, Elena; Witzel, Isabell; Scriba, Verena; Grzyska, Ulrich; Zu Eulenburg, Christine; Burchardi, Nicole; Hesse, Tobias; Würschmidt, Florian; Fehm, Tanja; Möbus, Volker; von Minckwitz, Gunter; Loibl, Sibylle; Park-Simon, Tjoung-Won; Mueller, Volkmar

    2016-01-01

    Evidence about distribution patterns of brain metastases with regard to breast cancer subtypes and its influence on the prognosis of patients is insufficient. Clinical data, cranial computed tomography (CT) and magnetic resonance imaging (MRI) scans of 300 breast cancer patients with brain metastases (BMs) were collected retrospectively in four centers participating in the Brain Metastases in Breast Cancer Registry (BMBC) in Germany. Patients with positive estrogen (ER), progesterone (PR), or human epidermal growth factor receptor 2 (HER2) statuses, had a significantly lower number of BMs at diagnosis. Concerning the treatment mode, HER2-positive patients treated with trastuzumab before the diagnosis of BMs showed a lower number of intracranial metastases (p < 0.001). Patients with a HER2-positive tumor-subtype developed cerebellar metastases more often compared with HER2-negative patients (59.8% vs. 44.5%, p = 0.021), whereas patients with triple-negative primary tumors had leptomeningeal disease more often (31.4% vs. 18.3%, p = 0.038). The localization of Brain metastases (BMs) was associated with prognosis: patients with leptomeningeal disease had shorter survival compared with patients without signs of leptomeningeal disease (median survival 3 vs. 5 months, p = 0.025). A shorter survival could also be observed in the patients with metastases in the occipital lobe (median survival 3 vs. 5 months, p = 0.012). Our findings suggest a different tumor cell homing to different brain regions depending on subtype and treatment.

  5. Radiological Patterns of Brain Metastases in Breast Cancer Patients: A Subproject of the German Brain Metastases in Breast Cancer (BMBC) Registry

    PubMed Central

    Laakmann, Elena; Witzel, Isabell; Scriba, Verena; Grzyska, Ulrich; zu Eulenburg, Christine; Burchardi, Nicole; Hesse, Tobias; Würschmidt, Florian; Fehm, Tanja; Möbus, Volker; von Minckwitz, Gunter; Loibl, Sibylle; Park-Simon, Tjoung-Won; Mueller, Volkmar

    2016-01-01

    Evidence about distribution patterns of brain metastases with regard to breast cancer subtypes and its influence on the prognosis of patients is insufficient. Clinical data, cranial computed tomography (CT) and magnetic resonance imaging (MRI) scans of 300 breast cancer patients with brain metastases (BMs) were collected retrospectively in four centers participating in the Brain Metastases in Breast Cancer Registry (BMBC) in Germany. Patients with positive estrogen (ER), progesterone (PR), or human epidermal growth factor receptor 2 (HER2) statuses, had a significantly lower number of BMs at diagnosis. Concerning the treatment mode, HER2-positive patients treated with trastuzumab before the diagnosis of BMs showed a lower number of intracranial metastases (p < 0.001). Patients with a HER2-positive tumor-subtype developed cerebellar metastases more often compared with HER2-negative patients (59.8% vs. 44.5%, p = 0.021), whereas patients with triple-negative primary tumors had leptomeningeal disease more often (31.4% vs. 18.3%, p = 0.038). The localization of Brain metastases (BMs) was associated with prognosis: patients with leptomeningeal disease had shorter survival compared with patients without signs of leptomeningeal disease (median survival 3 vs. 5 months, p = 0.025). A shorter survival could also be observed in the patients with metastases in the occipital lobe (median survival 3 vs. 5 months, p = 0.012). Our findings suggest a different tumor cell homing to different brain regions depending on subtype and treatment. PMID:27669228

  6. Pharmacology of novel small-molecule tubulin inhibitors in glioblastoma cells with enhanced EGFR signalling.

    PubMed

    Phoa, Athena F; Browne, Stephen; Gurgis, Fadi M S; Åkerfeldt, Mia C; Döbber, Alexander; Renn, Christian; Peifer, Christian; Stringer, Brett W; Day, Bryan W; Wong, Chin; Chircop, Megan; Johns, Terrance G; Kassiou, Michael; Munoz, Lenka

    2015-12-15

    We recently reported that CMPD1, originally developed as an inhibitor of MK2 activation, primarily inhibits tubulin polymerisation and induces apoptosis in glioblastoma cells. In the present study we provide detailed pharmacological investigation of CMPD1 analogues with improved molecular properties. We determined their anti-cancer efficacy in glioblastoma cells with enhanced EGFR signalling, as deregulated EGFR often leads to chemoresistance. Eight analogues of CMPD1 with varying lipophilicity and basicity were synthesised and tested for efficacy in the cell viability assay using established glioblastoma cell lines and patient-derived primary glioblastoma cells. The mechanism of action for the most potent analogue 15 was determined using MK2 activation and tubulin polymerisation assays, together with the immunofluorescence analysis of the mitotic spindle formation. Apoptosis was analysed by Annexin V staining, immunoblotting analysis of bcl-2 proteins and PARP cleavage. The apoptotic activity of CMPD1 and analogue 15 was comparable across glioblastoma cell lines regardless of the EGFR status. Primary glioblastoma cells of the classical subtype that are characterized by enhanced EGFR activity were most sensitive to the treatment with CMPD1 and 15. In summary, we present mechanism of action for a novel small molecule tubulin inhibitor, compound 15 that inhibits tubulin polymerisation and mitotic spindle formation, induces degradation of anti-apoptotic bcl-2 proteins and leads to apoptosis of glioblastoma cells. We also demonstrate that the enhanced EGFR activity does not decrease the efficacy of tubulin inhibitors developed in this study.

  7. Targeting JNK for therapeutic depletion of stem-like glioblastoma cells

    PubMed Central

    Matsuda, Ken-ichiro; Sato, Atsushi; Okada, Masashi; Shibuya, Keita; Seino, Shizuka; Suzuki, Kaori; Watanabe, Eriko; Narita, Yoshitaka; Shibui, Soichiro; Kayama, Takamasa; Kitanaka, Chifumi

    2012-01-01

    Control of the stem-like tumour cell population is considered key to realizing the long-term survival of patients with glioblastoma, one of the most devastating human malignancies. To date, possible therapeutic targets and targeting methods have been described, but none has yet proven to target stem-like glioblastoma cells in the brain to the extent necessary to provide a survival benefit. Here we show that targeting JNK in vivo, the activity of which is required for the maintenance of stem-like glioblastoma cells, via transient, systemic administration of a small-molecule JNK inhibitor depletes the self-renewing and tumour-initiating populations within established tumours, inhibits tumour formation by stem-like glioblastoma cells in the brain, and provide substantial survival benefit without evidence of adverse events. Our findings not only implicate JNK in the maintenance of stem-like glioblastoma cells but also demonstrate that JNK is a viable, clinically relevant therapeutic target in the control of stem-like glioblastoma cells. PMID:22816039

  8. Computational Trials: Unraveling Motility Phenotypes, Progression Patterns, and Treatment Options for Glioblastoma Multiforme

    PubMed Central

    Raman, Fabio; Scribner, Elizabeth; Saut, Olivier; Wenger, Cornelia; Colin, Thierry; Fathallah-Shaykh, Hassan M.

    2016-01-01

    Glioblastoma multiforme is a malignant brain tumor with poor prognosis and high morbidity due to its invasiveness. Hypoxia-driven motility and concentration-driven motility are two mechanisms of glioblastoma multiforme invasion in the brain. The use of anti-angiogenic drugs has uncovered new progression patterns of glioblastoma multiforme associated with significant differences in overall survival. Here, we apply a mathematical model of glioblastoma multiforme growth and invasion in humans and design computational trials using agents that target angiogenesis, tumor replication rates, or motility. The findings link highly-dispersive, moderately-dispersive, and hypoxia-driven tumors to the patterns observed in glioblastoma multiforme treated by anti-angiogenesis, consisting of progression by Expanding FLAIR, Expanding FLAIR + Necrosis, and Expanding Necrosis, respectively. Furthermore, replication rate-reducing strategies (e.g. Tumor Treating Fields) appear to be effective in highly-dispersive and moderately-dispersive tumors but not in hypoxia-driven tumors. The latter may respond to motility-reducing agents. In a population computational trial, with all three phenotypes, a correlation was observed between the efficacy of the rate-reducing agent and the prolongation of overall survival times. This research highlights the potential applications of computational trials and supports new hypotheses on glioblastoma multiforme phenotypes and treatment options. PMID:26756205

  9. Differentiation of cancerous and normal brain tissue using label free fluorescence and Stokes shift spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Wang, Leana; Liu, Cheng-hui; He, Yong; Yu, Xinguang; Cheng, Gangge; Wang, Peng; Shu, Cheng; Alfano, Robert R.

    2016-03-01

    In this report, optical biopsy was applied to diagnose human brain cancer in vitro for the identification of brain cancer from normal tissues by native fluorescence and Stokes shift spectra (SSS). 77 brain specimens including three types of human brain tissues (normal, glioma and brain metastasis of lung cancers) were studied. In order to observe spectral changes of fluorophores via fluorescence, the selected excitation wavelength of UV at 300 and 340 nm for emission spectra and a different Stokes Shift spectra with intervals Δλ = 40 nm were measured. The fluorescence spectra and SSS from multiple key native molecular markers, such as tryptophan, collagen, NADH, alanine, ceroid and lipofuscin were observed in normal and diseased brain tissues. Two diagnostic criteria were established based on the ratios of the peak intensities and peak position in both fluorescence and SSS spectra. It was observed that the ratio of the spectral peak intensity of tryptophan (340 nm) to NADH (440 nm) increased in glioma, meningioma (benign), malignant meninges tumor, and brain metastasis of lung cancer tissues in comparison with normal tissues. The ratio of the SS spectral peak (Δλ = 40 nm) intensities from 292 nm to 366 nm had risen similarly in all grades of tumors.

  10. [Targeted Therapy and Immunotherapy for Non-small Cell Lung Cancer 
with Brain Metastasis].

    PubMed

    Song, Qi; Jiao, Shunchang; Li, Fang

    2016-08-20

    Brain metastasis, a common complication of non-small cell lung cancer (NSCLC) with an incidence rate of 30%-50%, significantly affects the patients' quality of life. The prognosis of patients of NSCLC with brain metastasis is extremely poor, the average median survival is only 1 m-2 m without treatment. The targeted therapy based on lung cancer driven gene is a new treatment. Besides, the immunotherapy which can enhance the effect of anti-cancer by simulating the immune system is a new approach. The combination of targeted therapy and immunotherapy can greatly benefit patients in clinical work. PMID:27561803

  11. [Epidermic growth factor receptor (EGFR) in glioblastomas: the mechanism of tumorigenesis and its role as a therapeutic target].

    PubMed

    Zahonero, Cristina; Sepúlveda, Juan M; Sánchez-Gómez, Pilar

    2015-07-16

    A glioblastoma is a primary brain tumour that is very aggressive and resistant to conventional treatment with chemo- or radiotherapy. Given that epidermic growth factor receptor (EGFR) is altered in 50% of glioblastomas, it is currently one of the most promising therapeutic targets in this kind of tumour. Yet, inhibitors of the kinase activity of EGFR have yielded poor results in clinical trials with patients with glioblastomas. In this review we analyse the function of EGFR in glioblastomas and outline the therapeutic approaches aimed against this receptor in this kind of tumour. This sort of analysis could be a starting point for improving the design of future therapies for glioblastomas, based on inhibiting the EGFR function.

  12. Oncogenic Role of Merlin/NF2 in Glioblastoma

    PubMed Central

    Guerrero, Paola A.; Yin, Wei; Camacho, Laura; Marchetti, Dario

    2014-01-01

    Glioblastoma is the most common and aggressive primary brain tumor in adults, with a poor prognosis because of its resistance to radiotherapy and chemotherapy. Merlin/NF2 (neurofibromatosis type 2) is a tumor suppressor found to be mutated in most nervous system tumors; however, it is not mutated in glioblastomas. Merlin associates with several transmembrane receptors and intracellular proteins serving as an anchoring molecule. Additionally, it acts as a key component of cell motility. By selecting subpopulations of U251 glioblastoma cells, we observed that high expression of phosphorylated Merlin at serine 518 (S518-Merlin), Notch1 and epidermal growth factor receptor (EGFR) correlated with increased cell proliferation and tumorigenesis. These cells were defective in cell-contact inhibition with changes in Merlin phosphorylation directly affecting Notch1, EGFR expression as well as downstream targets Hes1 and Ccnd. Of note, we identified a function for S518-Merlin which is distinct from what has been reported when the expression of Merlin is diminished in relation to EGFR and Notch expression, providing first-time evidence that demonstrates that the phosphorylation of Merlin at S518 in glioblastoma promotes oncogenic properties that are not only the result of inactivation of the tumor suppressor role of Merlin, but also, an independent process implicating a Merlin-driven regulation of Notch1 and EGFR. PMID:25043298

  13. Genetics of glioblastoma: a window into its imaging and histopathologic variability.

    PubMed

    Belden, Clifford J; Valdes, Pablo A; Ran, Cong; Pastel, David A; Harris, Brent T; Fadul, Camilo E; Israel, Mark A; Paulsen, Keith; Roberts, David W

    2011-10-01

    Glioblastoma is a highly malignant brain tumor that relentlessly defies therapy. Efforts over the past decade have begun to tease out the biochemical details that lead to its aggressive behavior and poor prognosis. There is hope that this new understanding will lead to improved treatment strategies for patients with glioblastoma, in the form of targeted, molecularly based therapies that are individualized to specific changes in individual tumors. However, these new therapies have the potential to fundamentally alter the biologic behavior of glioblastoma and, as a result, its imaging appearance. Knowledge about common genetic alterations and the resultant cellular and tissue changes (ie, induced angiogenesis and abnormal cell survival, proliferation, and invasion) in glioblastomas is important as a basis for understanding imaging findings before treatment. It is equally critical that radiologists understand which genetic pathway is targeted by each specific therapeutic agent or class of agents in order to accurately interpret changes in the imaging appearances of treated tumors.

  14. Preliminary Results of Whole Brain Radiotherapy With Concurrent Trastuzumab for Treatment of Brain Metastases in Breast Cancer Patients

    SciTech Connect

    Chargari, Cyrus; Idrissi, Hind Riahi; Pierga, Jean-Yves; Bollet, Marc A.; Dieras, Veronique; Campana, Francois; Cottu, Paul; Fourquet, Alain; Kirova, Youlia M.

    2011-11-01

    Purpose: To assess the use of trastuzumab concurrently with whole brain radiotherapy (WBRT) for patients with brain metastases from human epidermal growth factor receptor-2-positive breast cancer. Methods and Materials: Between April 2001 and April 2007, 31 patients with brain metastases from human epidermal growth factor receptor-2-positive breast cancer were referred for WBRT with concurrent trastuzumab. At brain progression, the median age was 55 years (range, 38-73), and all patients had a performance status of 0-2. The patients received trastuzumab 2 mg/kg weekly (n = 17) or 6 mg/kg repeated every 21 days (n = 14). In 26 patients, concurrent WBRT delivered 30 Gy in 10 daily fractions. In 6 patients, other fractionations were chosen because of either poor performance status or patient convenience. Results: After WBRT, radiologic responses were observed in 23 patients (74.2%), including 6 (19.4%) with a complete radiologic response and 17 (54.8%) with a partial radiologic response. Clinical responses were observed in 27 patients (87.1%). The median survival time from the start of WBRT was 18 months (range, 2-65). The median interval to brain progression was 10.5 months (range, 2-27). No Grade 2 or greater acute toxicity was observed. Conclusion: The low toxicity of trastuzumab concurrently with WBRT should probably not justify delays. Although promising, these preliminary data warrant additional validation of trastuzumab as a potential radiosensitizer for WBRT in brain metastases from breast cancer in the setting of a clinical trial.

  15. DNA Double-Strand Break Repair Genes and Oxidative Damage in Brain Metastasis of Breast Cancer

    PubMed Central

    Evans, Lynda; Duchnowska, Renata; Reed, L. Tiffany; Palmieri, Diane; Qian, Yongzhen; Badve, Sunil; Sledge, George; Gril, Brunilde; Aladjem, Mirit I.; Fu, Haiqing; Flores, Natasha M.; Gökmen-Polar, Yesim; Biernat, Wojciech; Szutowicz-Zielińska, Ewa; Mandat, Tomasz; Trojanowski, Tomasz; Och, Waldemar; Czartoryska-Arlukowicz, Bogumiła; Jassem, Jacek; Mitchell, James B.

    2014-01-01

    Background Breast cancer frequently metastasizes to the brain, colonizing a neuro-inflammatory microenvironment. The molecular pathways facilitating this colonization remain poorly understood. Methods Expression profiling of 23 matched sets of human resected brain metastases and primary breast tumors by two-sided paired t test was performed to identify brain metastasis–specific genes. The implicated DNA repair genes BARD1 and RAD51 were modulated in human (MDA-MB-231-BR) and murine (4T1-BR) brain-tropic breast cancer cell lines by lentiviral transduction of cDNA or short hairpin RNA (shRNA) coding sequences. Their functional contribution to brain metastasis development was evaluated in mouse xenograft models (n = 10 mice per group). Results Human brain metastases overexpressed BARD1 and RAD51 compared with either matched primary tumors (1.74-fold, P < .001; 1.46-fold, P < .001, respectively) or unlinked systemic metastases (1.49-fold, P = .01; 1.44-fold, P = .008, respectively). Overexpression of either gene in MDA-MB-231-BR cells increased brain metastases by threefold to fourfold after intracardiac injections, but not lung metastases upon tail-vein injections. In 4T1-BR cells, shRNA-mediated RAD51 knockdown reduced brain metastases by 2.5-fold without affecting lung metastasis development. In vitro, BARD1- and RAD51-overexpressing cells showed reduced genomic instability but only exhibited growth and colonization phenotypes upon DNA damage induction. Reactive oxygen species were present in tumor cells and elevated in the metastatic neuro-inflammatory microenvironment and could provide an endogenous source of genotoxic stress. Tempol, a brain-permeable oxygen radical scavenger suppressed brain metastasis promotion induced by BARD1 and RAD51 overexpression. Conclusions BARD1 and RAD51 are frequently overexpressed in brain metastases from breast cancer and may constitute a mechanism to overcome reactive oxygen species–mediated genotoxic stress in the metastatic

  16. Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain.

    PubMed

    Palmieri, Diane; Bronder, Julie L; Herring, Jeanne M; Yoneda, Toshiyuki; Weil, Robert J; Stark, Andreas M; Kurek, Raffael; Vega-Valle, Eleazar; Feigenbaum, Lionel; Halverson, Douglas; Vortmeyer, Alexander O; Steinberg, Seth M; Aldape, Kenneth; Steeg, Patricia S

    2007-05-01

    Retrospective studies of breast cancer patients suggest that primary tumor Her-2 overexpression or trastuzumab therapy is associated with a devastating complication: the development of central nervous system (brain) metastases. Herein, we present Her-2 expression trends from resected human brain metastases and data from an experimental brain metastasis assay, both indicative of a functional contribution of Her-2 to brain metastatic colonization. Of 124 archival resected brain metastases from breast cancer patients, 36.2% overexpressed Her-2, indicating an enrichment in the frequency of tumor Her-2 overexpression at this metastatic site. Using quantitative real-time PCR of laser capture microdissected epithelial cells, Her-2 and epidermal growth factor receptor (EGFR) mRNA levels in a cohort of 12 frozen brain metastases were increased up to 5- and 9-fold, respectively, over those of Her-2-amplified primary tumors. Co-overexpression of Her-2 and EGFR was also observed in a subset of brain metastases. We then tested the hypothesis that overexpression of Her-2 increases the colonization of breast cancer cells in the brain in vivo. A subclone of MDA-MB-231 human breast carcinoma cells that selectively metastasizes to brain (231-BR) overexpressed EGFR; 231-BR cells were transfected with low (4- to 8-fold) or high (22- to 28-fold) levels of Her-2. In vivo, in a model of brain metastasis, low or high Her-2-overexpressing 231-BR clones produced comparable numbers of micrometastases in the brain as control transfectants; however, the Her-2 transfectants yielded 3-fold greater large metastases (>50 microm(2); P < 0.001). Our data indicate that Her-2 overexpression increases the outgrowth of metastatic tumor cells in the brain in this model system. PMID:17483330

  17. A clinical analysis of brain metastasis in gynecologic cancer: a retrospective multi-institute analysis.

    PubMed

    Kim, Young Zoon; Kwon, Jae Hyun; Lim, Soyi

    2015-01-01

    This study analyzes the clinical characteristics of the brain metastasis (BM) of gynecologic cancer based on the type of cancer. In addition, the study examines the factors influencing the survival. Total 61 BM patients of gynecologic cancer were analyzed retrospectively from January 2000 to December 2012 in terms of clinical and radiological characteristics by using medical and radiological records from three university hospitals. There were 19 (31.1%) uterine cancers, 32 (52.5%) ovarian cancers, and 10 (16.4%) cervical cancers. The mean interval to BM was 25.4 months (21.6 months in ovarian cancer, 27.8 months in uterine cancer, and 33.1 months in cervical cancer). The mean survival from BM was 16.7 months (14.1 months in ovarian cancer, 23.3 months in uterine cancer, and 8.8 months in cervical cancer). According to a multivariate analysis of factors influencing survival, type of primary cancer, Karnofsky performance score, status of primary cancer, recursive partitioning analysis class, and treatment modality, particularly combined therapies, were significantly related to the overall survival. These results suggest that, in addition to traditional prognostic factors in BM, multiple treatment methods such as neurosurgery and combined chemoradiotherapy may play an important role in prolonging the survival for BM patients of gynecologic cancer.

  18. Glioblastoma Stem Cells as a New Therapeutic Target for Glioblastoma

    PubMed Central

    Kalkan, Rasime

    2015-01-01

    Primary and secondary glioblastomas (GBMs) are two distinct diseases. The genetic and epigenetic background of these tumors is highly variable. The treatment procedure for these tumors is often unsuccessful because of the cellular heterogeneity and intrinsic ability of the tumor cells to invade healthy tissues. The fatal outcome of these tumors promotes researchers to find out new markers associated with the prognosis and treatment planning. In this communication, the role of glioblastoma stem cells in tumor progression and the malignant behavior of GBMs are summarized with attention to the signaling pathways and molecular regulators that are involved in maintaining the glioblastoma stem cell phenotype. A better understanding of these stem cell-like cells is necessary for designing new effective treatments and developing novel molecular strategies to target glioblastoma stem cells. We discuss hypoxia as a new therapeutic target for GBM. We focus on the inhibition of signaling pathways, which are associated with the hypoxia-mediated maintenance of glioblastoma stem cells, and the knockdown of hypoxia-inducible factors, which could be identified as attractive molecular target approaches for GBM therapeutics. PMID:26617463

  19. Identification and isolation of slow-dividing cells in human glioblastoma using carboxy fluorescein succinimidyl ester (CFSE).

    PubMed

    Deleyrolle, Loic P; Rohaus, Mark R; Fortin, Jeff M; Reynolds, Brent A; Azari, Hassan

    2012-01-01

    Tumor heterogeneity represents a fundamental feature supporting tumor robustness and presents a central obstacle to the development of therapeutic strategies(1). To overcome the issue of tumor heterogeneity, it is essential to develop assays and tools enabling phenotypic, (epi)genetic and functional identification and characterization of tumor subpopulations that drive specific disease pathologies and represent clinically relevant targets. It is now well established that tumors exhibit distinct sub-fractions of cells with different frequencies of cell division, and that the functional criteria of being slow cycling is positively associated with tumor formation ability in several cancers including those of the brain, breast, skin and pancreas as well as leukemia(2-8). The fluorescent dye carboxyfluorescein succinimidyl ester (CFSE) has been used for tracking the division frequency of cells in vitro and in vivo in blood-borne tumors and solid tumors such as glioblastoma(2,7,8). The cell-permeant non-fluorescent pro-drug of CFSE is converted by intracellular esterases into a fluorescent compound, which is retained within cells by covalently binding to proteins through reaction of its succinimidyl moiety with intracellular amine groups to form stable amide bonds(9). The fluorescent dye is equally distributed between daughter cells upon divisions, leading to the halving of the fluorescence intensity with every cell division. This enables tracking of cell cycle frequency up to eight to ten rounds of division(10). CFSE retention capacity was used with brain tumor cells to identify and isolate a slow cycling subpopulation (top 5% dye-retaining cells) demonstrated to be enriched in cancer stem cell activity(2). This protocol describes the technique of staining cells with CFSE and the isolation of individual populations within a culture of human glioblastoma (GBM)-derived cells possessing differing division rates using flow cytometry(2). The technique has served to identify

  20. Expression of Tax-interacting protein 1 (TIP-1) facilitates angiogenesis and tumor formation of human glioblastoma cells in nude mice

    PubMed Central

    Han, Miaojun; Wang, Hailun; Zhang, Hua-Tang; Han, Zhaozhong

    2012-01-01

    Glioblastoma is the most common and fatal type of primary brain tumors featured with hyperplastic blood vessels. Here, we performed meta-analyses of published data and established a correlation between high TIP-1 expression levels and the poor prognosis of glioblastoma patients. Next, we explored the biological relevance of TIP-1 expression in the pathogenesis of glioblastoma. By using orthotopic and heterotopic mouse models of human glioblastomas, this study has characterized TIP-1 as one contributing factor to the tumor-driven angiogenesis. In vitro and in vivo functional assays, along with biochemical analyses with microarrays and antibody arrays, have demonstrated that TIP-1 utilizes multiple pathways including modulating fibronectin gene expression and uPA protein secretion, to establish or maintain a pro-angiogenic microenvironment within human glioblastoma. In conclusion, this work supports the hypothesis that TIP-1 represents a novel prognostic biomarker and a therapeutic target of human glioblastoma. PMID:23010083

  1. Photo-activated Cancer Therapy: Potential for Treatment of Brain Tumors

    NASA Astrophysics Data System (ADS)

    Hirschberg, Henry

    The diffuse and infiltrative nature of high grade gliomas, such as glioblastoma multiforme (GBM), makes complete surgical resection virtually impossible. The propensity of glioma cells to migrate along white matter tracts suggests that a cure is possible only if these migratory cells can be eradicated. Approximately 80% of GBMs recur within 2 cm of the resection margin, suggesting that a reasonable approach for improving the prognosis of GBM patients would be the development of improved local therapies capable of eradicating glioma cells in the brain-adjacent-to-tumor (BAT). An additional complicating factor for the development of successful therapies is the presence of the blood-brain barrier (BBB) which is highly variable throughout the BAT—it is intact in some regions, while leaky in others. This variance in BBB patency has significant implications for the delivery of therapeutic agents. The results of a number of studies have shown that experimental light-based therapeutic modalities such as photochemical internalization (PCI) and photothermal therapy (PTT) may be useful in the treatment of gliomas. This chapter summarizes recent findings illustrating the potential of: (1) PCI for the delivery of therapeutic macromolecules such as chemotherapeutic agents and tumor suppressor genes, and (2) nanoshell-mediated PTT, including nanoparticle delivery approaches via macrophages.

  2. Mutational profiling of brain metastasis from breast cancer: matched pair analysis of targeted sequencing between brain metastasis and primary breast cancer.

    PubMed

    Lee, Ji Yun; Park, Kyunghee; Lim, Sung Hee; Kim, Hae Su; Yoo, Kwai Han; Jung, Ki Sun; Song, Haa-Na; Hong, Mineui; Do, In-Gu; Ahn, TaeJin; Lee, Se Kyung; Bae, Soo Youn; Kim, Seok Won; Lee, Jeong Eon; Nam, Seok Jin; Kim, Duk-Hwan; Jung, Hae Hyun; Kim, Ji-Yeon; Ahn, Jin Seok; Im, Young-Hyuck; Park, Yeon Hee

    2015-12-22

    Although breast cancer is the second most common cause of brain metastasis with a notable increase of incidence, genes that mediate breast cancer brain metastasis (BCBM) are not fully understood. To study the molecular nature of brain metastasis, we performed gene expression profiling of brain metastasis and matched primary breast cancer (BC). We used the Ion AmpliSeq Cancer Panel v2 covering 2,855 mutations from 50 cancer genes to analyze 18 primary BC and 42 BCBM including 15 matched pairs. The most common BCBM subtypes were triple-negative (42.9%) and basal-like (36.6%). In a total of 42 BCBM samples, 32 (76.2%) harbored at least one mutation (median 1, range 0-7 mutations). Frequently detected somatic mutations included TP53 (59.5%), MLH1 (14.3%), PIK3CA (14.3%), and KIT (7.1%). We compared BCBM with patient-matched primary BC specimens. There were no significant differences in mutation profiles between the two groups. Notably, gene expression in BCBM such as TP53, PIK3CA, KIT, MLH1, and RB1 also seemed to be present in primary breast cancers. The TP53 mutation frequency was higher in BCBM than in primary BC (59.5% vs 38.9%, respectively). In conclusion, we found actionable gene alterations in BCBM that were maintained in primary BC. Further studies with functional testing and a delineation of the role of these genes in specific steps of the metastatic process should lead to a better understanding of the biology of metastasis and its susceptibility to treatment.

  3. Breast cancer brain metastases: evidence for neuronal-like adaptation in a ‘breast-to-brain’ transition?

    PubMed Central

    2014-01-01

    Brain metastases remain a significant challenge in the treatment of breast cancer patients due to the unique environment posed by the central nervous system. A better understanding of the biology of breast cancer cells that have metastasized to the brain is required to develop improved therapies. A recent Proceedings of the National Academy of Sciences article demonstrates that breast cancer cells in the brain microenvironment express γ-aminobutyric acid (GABA)-related genes, enabling them to utilize GABA as an oncometabolite, thus gaining a proliferative advantage. In this viewpoint, we highlight these findings and their potential impact on the treatment of breast cancer brain metastases. PMID:25679873

  4. Salinomycin encapsulated nanoparticles as a targeting vehicle for glioblastoma cells.

    PubMed

    Tığlı Aydın, R Seda; Kaynak, Gökçe; Gümüşderelioğlu, Menemşe

    2016-02-01

    Salinomycin has been introduced as a novel alternative to traditional anti-cancer drugs. The aim of this study was to test a strategy designed to deliver salinomycin to glioblastoma cells in vitro. Salinomycin-encapsulated polysorbate 80-coated poly(lactic-co-glycolic acid) nanoparticles (P80-SAL-PLGA) were prepared and characterized with respect to particle size, morphology, thermal properties, drug encapsulation efficiency and controlled salinomycin-release behaviour. The in vitro cellular uptake of P80-SAL-PLGA (5 and 10 µM) or uncoated nanoparticles was assessed in T98G human glioblastoma cells, and the cell viability was investigated with respect to anti-growth activities. SAL, which was successfully transported to T98G glioblastoma cells via P80 coated nanoparticles (∼14% within 60 min), greatly decreased (p < 0.01) the cellular viability of T98G cells. Substantial morphological changes were observed in the T98G cells with damaged actin cytoskeleton. Thus, P80-SAL-PLGA nanoparticles induced cell death, suggesting a potential therapeutic role for this salinomycin delivery system in the treatment of human glioblastoma. PMID:26476239

  5. The integrated landscape of driver genomic alterations in glioblastoma

    PubMed Central

    Frattini, Veronique; Trifonov, Vladimir; Chan, Joseph Minhow; Castano, Angelica; Lia, Marie; Abate, Francesco; Keir, Stephen T.; Ji, Alan X.; Zoppoli, Pietro; Niola, Francesco; Danussi, Carla; Dolgalev, Igor; Porrati, Paola; Pellegatta, Serena; Heguy, Adriana; Gupta, Gaurav; Pisapia, David J.; Canoll, Peter; Bruce, Jeffrey N.; McLendon, Roger E.; Yan, Hai; Aldape, Ken; Finocchiaro, Gaetano; Mikkelsen, Tom; Privé, Gilbert G.; Bigner, Darell D.; Lasorella, Anna; Rabadan, Raul; Iavarone, Antonio

    2013-01-01

    Glioblastoma remains one of the most challenging forms of cancer to treat. Here, we develop a computational platform that integrates the analysis of copy number variations and somatic mutations and unravels the landscape of in-frame gene fusions in glioblastoma. We find mutations with loss of heterozygosity of LZTR-1, an adaptor of Cul3-containing E3 ligase complexes. Mutations and deletions disrupt LZTR-1 function, which restrains self-renewal and growth of glioma spheres retaining stem cell features. Loss-of-function mutations of CTNND2 target a neural-specific gene and are associated with transformation of glioma cells along the very aggressive mesenchymal phenotype. We also report recurrent translocations that fuse the coding sequence of EGFR to several partners, with EGFR-SEPT14 as the most frequent functional gene fusion in human glioblastoma. EGFR-SEPT14 fusions activate Stat3 signaling and confer mitogen independency and sensitivity to EGFR inhibition. These results provide important insights into the pathogenesis of glioblastoma and highlight new targets for therapeutic intervention. PMID:23917401

  6. ‘From the core to beyond the margin’: a genomic picture of glioblastoma intratumor heterogeneity

    PubMed Central

    Etcheverry, Amandine; Clavreul, Anne; Saikali, Stéphan; Menei, Philippe; Mosser, Jean

    2015-01-01

    Glioblastoma (GB) is a highly invasive primary brain tumor that almost systematically recurs despite aggressive therapies. One of the most challenging problems in therapy of GB is its extremely complex and heterogeneous molecular biology. To explore this heterogeneity, we performed a genome-wide integrative screening of three molecular levels: genome, transcriptome, and methylome. We analyzed tumor biopsies obtained by neuro-navigation in four distinct areas for 10 GB patients (necrotic zone, tumor zone, interface, and peripheral brain zone). We classified samples and deciphered a key genes signature of intratumor heterogeneity by Principal Component Analysis and Weighted Gene Co-expression Network Analysis. At the genome level, we identified common GB copy number alterations and but a strong interindividual molecular heterogeneity. Transcriptome analysis highlighted a pronounced intratumor architecture reflecting the surgical sampling plan of the study and identified gene modules associated with hallmarks of cancer. We provide a signature of key cancer-heterogeneity genes highly associated with the intratumor spatial gradient and show that it is enriched in genes with correlation between methylation and expression levels. Our study confirms that GBs are molecularly highly diverse and that a single tumor can harbor different transcriptional GB subtypes depending on its spatial architecture. PMID:25940437

  7. Brain metastasis in lung cancer: Building a molecular and systems-level understanding to improve outcomes.

    PubMed

    Ebben, Johnathan D; You, Ming

    2016-09-01

    Lung cancer is a clinically difficult disease with rising disease burden around the world. Unfortunately, most lung cancers present at a clinically advanced stage. Of these cancers, many also present with brain metastasis which complicates the clinical picture. This review summarizes current knowledge on the molecular basis of lung cancer brain metastases. We start from the clinical perspective, aiming to provide a clinical context for a significant problem that requires much deeper scientific investigation. We review new research governing the metastatic process, including tumor cell signaling, establishment of a receptive tumor niches in the brain and evaluate potential new therapeutic options that take advantage of these new scientific advances. Lung cancer remains the largest single cause of cancer mortality in the United States (Siegel et al., 2015). This continues to be the clinical picture despite significant advances in therapy, including the advent of targeted molecular therapies and newly adopted immunotherapies for certain subtypes of lung cancer. In the vast majority of cases, lung cancer presents as advanced disease; in many instances, this advanced disease state is intimately associated with micro and macrometastatic disease (Goldberg et al., 2015). For both non-small cell lung cancer and small cell lung cancer patients, the predominant metastatic site is the brain, with up to 68% of patients with mediastinal lymph node metastasis eventually demonstrating brain metastasis (Wang et al., 2009).The frequency (incidence) of brain metastasis is highest in lung cancers, relative to other common epithelial malignancies (Schouten et al., 2002). Other studies have attempted to predict the risk of brain metastasis in the setting of previously non-metastatic disease. One of the largest studies to do this, analyzing historical data from 1973 to 2011 using the SEER database revealed a 9% risk of patients with previously non-metastatic NSCLC developing brain

  8. Radiosensitisation by pharmacological ascorbate in glioblastoma multiforme cells, human glial cells, and HUVECs depends on their antioxidant and DNA repair capabilities and is not cancer specific.

    PubMed

    Castro, M Leticia; McConnell, Melanie J; Herst, Patries M

    2014-09-01

    We previously showed that 5 mM ascorbate radiosensitized early passage radioresistant glioblastoma multiforme (GBM) cells derived from one patient tumor. Here we investigate the sensitivity of a panel of cell lines to 5 mM ascorbate and 6 Gy ionizing radiation, made up of three primary human GBM cells, three GBM cell lines, a human glial cell line, and primary human vascular endothelial cells. The response of different cells lines to ascorbate and/or radiation was determined by measuring viability, colony-forming ability, generation and repair of double-stranded DNA breaks (DSBs), cell cycle progression, antioxidant capacity and generation of reactive oxygen species. Individually, radiation and ascorbate both decreased viability and clonogenicity by inducing DNA damage, but had differential effects on cell cycle progression. Radiation led to G2/M arrest in most cells whereas ascorbate caused accumulation in S phase, which was moderately associated with poor DSB repair. While high dose ascorbate radiosensitized all cell lines in clonogenic assays, the sensitivity to radiation, high dose ascorbate, and combined treatment varied between cell lines. Normal glial cells were similar to GBM cells with respect to free radical scavenging potential and effect of treatment on DNA damage and repair, viability, and clonogenicity. Both GBM cells and normal cells coped equally poorly with oxidative stress caused by radiation and/or high dose ascorbate, dependent primarily on their antioxidant and DSB repair capacity.

  9. Insights into brain metastasis in patients with ALK+ lung cancer: is the brain truly a sanctuary?

    PubMed

    Toyokawa, Gouji; Seto, Takashi; Takenoyama, Mitsuhiro; Ichinose, Yukito

    2015-12-01

    Anaplastic lymphoma kinase (ALK) has been identified to exert a potent transforming activity through its rearrangement in non-small cell lung cancer (NSCLC), and patients (pts) with ALK rearrangement can be treated more successfully with ALK inhibitors, such as crizotinib, alectinib, and ceritinib, than with chemotherapy. Despite the excellent efficacy of ALK inhibitors, resistance to these drugs is inevitably encountered in most ALK-rearranged pts. Cases of resistance are subtyped into three groups, i.e., systemic, oligo, and central nervous system (CNS) types, with the CNS being used to be considered a sanctuary. With regard to the management of CNS lesions in pts with ALK+ NSCLC, a growing body of evidence has gradually demonstrated the intracranial (IC) efficacy of ALK inhibitor (ALKi) in ALK+ NSCLC pts with brain metastases (BMs). Although the efficacy of crizotinib for the CNS lesions remains controversial, a recent retrospective investigation of ALK+ pts with BM enrolled in PROFILE 1005 and PROFILE 1007 demonstrated that crizotinib is associated with a high disease control rate for BM. However, BM comprises the most common site of progressive disease in pts with or without baseline BMs, which is a serious problem for crizotinib. Furthermore, alectinib can be used to achieve strong and long-lasting inhibitory effects on BM. In addition to alectinib, the IC efficacy of other next-generation ALK inhibitors, such as ceritinib, AP26113 and PF-06463922, has been demonstrated. In this article, we review the latest evidence regarding the BM and IC efficacy of ALK inhibitors in pts with ALK+ NSCLC.

  10. Evaluation of the Combined Effect of 2ME2 and 60Co on the Inducement of DNA Damage by IUdR in a Spheroid Model of the U87MG Glioblastoma Cancer Cell Line Using Alkaline Comet Assay

    PubMed Central

    Khoei, Samideh; Delfan, Sara; Neshasteh-Riz, Ali; Mahdavi, Seyed Rabi

    2011-01-01

    Objective: In this study, we investigated the combined effect of 2-Methoxyestradiol (2ME2) and 60Co on the cytogenetic damage of iododeoxyuridine (IUdR) in the spheroid model of U87MG glioblastoma cancer cell lines by alkaline comet assay. Materials and Methods: U87MG cells were cultured as spheroids with diameters of 350 µm. As control, the spheroids of one plate were not treated. Other cultures were pretreated with 2ME2 (250 µM) for one volume doubling time (1 VDT). After this time, the subsequent treatments were performed according to the following groups: Vehicle (this sample was not treated in the 2nd VDT) Treated with 2ME2 (250 µM) for 1 VDT Treated simultaneously with 2ME2 (250 µM) and IUdR (1 µM) for 1 VDT Treated with 2ME2 (250 µM) for 1 VDT then irradiated with 60Co (2 Gy) Treated simultaneously with 2ME2 (250 µM) and IUdR (1 µM) for 1 VDT then irradiated with 60Co (2 Gy) Then the DNA damage was evaluated using the alkaline comet assay method. Results: The results showed that 2ME2 in combination with gamma irradiation of 60Co significantly (p<0.001) increased the DNA damage by IUdR as compared to the control group. Thus the combination of these two agents increased the cytogenetic effects of IUdR in the spheroid culture model of U87MG glioblastoma cell lines. Conclusion: By inhibiting the HIF-1α protein and preventing the G0 phase arrest, 2ME2 causes an increased progression into S phase and increases the IUdR absorption. Then the DNA damage in the spheroid cells increases as the uptake of IUdR is increased. These results suggest that the combined use of 2ME2 and 60Co can increase the radiosensitization effect of IUdR. PMID:23508289

  11. Asparagine Depletion Potentiates the Cytotoxic Effect of Chemotherapy Against Brain Tumors

    PubMed Central

    Panosyan, Eduard H.; Wang, Yuntao; Xia, Peng; Lee, Wai-Nang Paul; Pak, Youngju; Laks, Dan R.; Lin, Henry J.; Moore, Theodore B.; Cloughesy, Timothy F.; Kornblum, Harley I.; Lasky, Joseph L.

    2014-01-01

    Targeting amino acid metabolism has therapeutic implications for aggressive brain tumors. Asparagine is an amino acid that is synthesized by normal cells. However, some cancer cells lack asparagine synthetase (ASNS), the key enzyme for asparagine synthesis. Asparaginase (ASNase) contributes to eradication of acute leukemia by decreasing asparagine levels in serum and cerebrospinal fluid. However, leukemic cells may become ASNase-resistant by up-regulating ASNS. High expression of ASNS has also been associated with biological aggressiveness of other cancers, including gliomas. Here, the impact of enzymatic depletion of asparagine on proliferation of brain tumor cells was determined. ASNase was used as monotherapy or in combination with conventional chemotherapeutic agents. Viability assays for ASNase-treated cells demonstrated significant growth reduction in multiple cell lines. This effect was reversed by glutamine in a dose-dependent manner -- as expected, because glutamine is the main amino group donor for asparagine synthesis. ASNase treatment also reduced sphere formation by medulloblastoma and primary glioblastoma cells. ASNase-resistant glioblastoma cells exhibited elevated levels of ASNS mRNA. ASNase co-treatment significantly enhanced gemcitabine or etoposide cytotoxicity against glioblastoma cells. Xenograft tumors in vivo showed no significant response to ASNase monotherapy and little response to temozolomide (TMZ) alone. However, combinatorial therapy with ASNase and TMZ resulted in significant growth suppression for an extended duration of time. Taken together, these findings indicate that amino acid depletion warrants further investigation as adjunctive therapy for brain tumors. PMID:24505127

  12. Gene expressions of TRP channels in glioblastoma multiforme and relation with survival.

    PubMed

    Alptekin, M; Eroglu, S; Tutar, E; Sencan, S; Geyik, M A; Ulasli, M; Demiryurek, A T; Camci, C

    2015-12-01

    Glioblastoma multiforme (GBM) is one of the most lethal forms of cancer in humans, with a median survival of 10 to 12 months. Glioblastoma is highly malignant since the cells are supported by a great number of blood vessels. Although new treatments have been developed by increasing knowledge of molecular nature of the disease, surgical operation remains the standard of care. The TRP (transient receptor potential) superfamily consists of cation-selective channels that have roles in sensory physiology such as thermo- and osmosensation and in several complex diseases such as cancer, cardiovascular, and neuronal diseases. The aim of this study was to investigate the expression levels of TRP channel genes in patients with glioblastoma multiforme and to evaluate the relationship between TRP gene expressions and survival of the patients. Thirty-three patients diagnosed with glioblastoma were enrolled to the study. The expression levels of 21 TRP genes were quantified by using qRT-PCR with dynamic array 48 × 48 chip (BioMark HD System, Fluidigm, South San Francisco, CA, USA). TRPC1, TRPC6, TRPM2, TRPM3, TRPM7, TRPM8, TRPV1, and TRPV2 were found significantly higher in glioblastoma patients. Moreover, there was a significant relationship between the overexpression of TRP genes and the survival of the patients. These results demonstrate for the first time that TRP channels contribute to the progression and survival of the glioblastoma patients. PMID:26088448

  13. A case report of gastric cancer with brain metastasis: Rare peripheral nervous system symptoms

    PubMed Central

    YANG, GE-LIANG; LUO, TIAN-HANG; ZHANG, HUI-QING; LING, CHANG-QUAN; LI, BAI

    2016-01-01

    Gastric cancer with brain metastasis is rare. The present study reports a case of gastric cancer with isolated brain metastasis 1 year after gastrectomy. To the best of our knowledge, there have been no prior reports of solitary brain metastasis from gastric cancer with peripheral nervous system symptoms. A distal gastrectomy was performed on a 60-year-old male patient with gastric cancer in November 2012. Postoperative pathological analysis revealed a moderately differentiated adenocarcinoma with tumor invasion into the serosa and metastasis to one dissected lymph node. No abnormalities were found at follow-up examination. However, a tumor representing metastasis to the brain was recognized by a cranial enhanced magnetic resonance imaging examination 1 year after gastrectomy, which was performed when the patient exhibited numbness and thigmesthesia. The patient was administered 30 Gy of stereotactic radiotherapy, delivered in 5 fractions. The patient succumbed to disease 10 months subsequent to undergoing radiotherapy. This case report suggests that gastric cancer may re-present as brain metastasis with peripheral nervous system symptoms. PMID:27073571

  14. Problems of Glioblastoma Multiforme Drug Resistance.

    PubMed

    Stavrovskaya, A A; Shushanov, S S; Rybalkina, E Yu

    2016-02-01

    Glioblastoma multiforme (GBL) is the most common and aggressive brain neoplasm. A standard therapeutic approach for GBL involves combination therapy consisting of surgery, radiotherapy, and chemotherapy. The latter is based on temozolomide (TMZ). However, even by applying such a radical treatment strategy, the mean patient survival time is only 14.6 months. Here we review the molecular mechanisms underlying the resistance of GBL cells to TMZ including genetic and epigenetic mechanisms. Present data regarding a role for genes and proteins MGMT, IDH1/2, YB-1, MELK, MVP/LRP, MDR1 (ABCB1), and genes encoding other ABC transporters as well as Akt3 kinase in developing resistance of GBL to TMZ are discussed. Some epigenetic regulators of resistance to TMZ such as microRNA and EZH2 are reviewed. PMID:27260389

  15. Sinking skin flap syndrome in glioblastoma.

    PubMed

    Kamiya-Matsuoka, Carlos; Shroff, Sheetal; Tatsui, Claudio E; Tremont-Lukats, Ivo W; Gilbert, Mark R

    2014-01-01

    Sinking skin flap syndrome (SSFS) is a rare neurological complication in patients with traumatic haemorrhage, stroke or cerebral oedema who undergo decompressive craniectomy to relieve increased intracranial pressure. Hallmark of SSFS is the sinking of the scalp to a plane lower than the edges of the skull defect in the setting of neurological deterioration. Our objective is to report that SSFS can present after small craniotomy without cerebral cortex compression and to share our diagnostic/therapeutic approach. A 62-year-old woman with a glioblastoma developed SSFS after a small craniectomy and tumour resection without cerebral cortex compression but a decrease in the surgical cavity volume. Brain MRI showed decreased size of the surgical cavity. Interestingly, the patient also developed posterior reversible encephalopathy syndrome (PRES). This case highlights an atypical presentation of SSFS and the possible association with PRES. It also illustrates how an early cranioplasty can successfully reverse SSFS. PMID:25398923

  16. Extremely low frequency electromagnetic fields (EMF) and brain cancer in adults and children: review and comment.

    PubMed Central

    Gurney, J. G.; van Wijngaarden, E.

    1999-01-01

    Epidemiologic and experimental research on the potential carcinogenic effects of extremely low frequency electromagnetic fields (EMF) has now been conducted for over two decades. Cancer epidemiology studies in relation to EMF have focused primarily on brain cancer and leukemia, both from residential sources of exposure in children and adults and from occupational exposure in adult men. Because genotoxic effects of EMF have not been shown, most recent laboratory research has attempted to show biological effects that could be related to cancer promotion. In this report, we briefly review residential and occupational EMF studies on brain cancer. We also provide a general review of experimental studies as they relate both to the biological plausibility of an EMF-brain cancer relation and to the insufficiency of such research to help guide exposure assessment in epidemiologic studies. We conclude from our review that no recent research, either epidemiologic or experimental, has emerged to provide reasonable support for a causal role of EMF on brain cancer. PMID:11550314

  17. Factors Predictive of Improved Survival in Patients With Brain Metastases From Gynecologic Cancer

    PubMed Central

    Gressel, Gregory M.; Lundsberg, Lisbet S.; Altwerger, Gary; Katchi, Tasleem; Azodi, Masoud; Schwartz, Peter E.; Ratner, Elena S.

    2015-01-01

    Objective The reported incidence of brain metastasis from epithelial ovarian cancer (EOC), endometrial cancer (EC), and cervical cancer (CC) is exceedingly rare. As the long-term survival for patients with gynecologic cancer increases, there has been a corresponding increase in the number of diagnosed intracranial metastases. We seek to report our experience with managing brain metastatic disease (BMD) in patients with gynecologic cancer. Methods A retrospective review of all patients with EOC, EC, and CC at our institution revealed 47 patients with concurrent BMD between 2000 and 2013. Demographic data, risk factors, treatment modalities, progression-free data, and overall survival data were collected. Results Median survival time in patients with brain metastasis from EOC, EC, and CC was 9.0, 4.5, and 3.0 months, respectively. Two-year overall survival rates were 31.6%, 13.6%, and 0%, respectively. Patients received surgery, radiation therapy alone, palliative care, or radiation plus surgery. Radiation combined with surgical resection resulted in a significant hazards ratio of 0.36 (95% confidence interval, 0.15–0.86), compared with radiation alone. Conclusions Our report provides a large single-institution experience of brain metastases from gynecologic cancer. Patients with BMD have poor prognoses; however, treatment with multimodal therapy including surgical resection and radiation may prolong overall survival. PMID:26332394

  18. Inhibition of checkpoint kinase 1 sensitizes lung cancer brain metastases to radiotherapy

    SciTech Connect

    Yang, Heekyoung; Yoon, Su Jin; Jin, Juyoun; Choi, Seung Ho; Seol, Ho Jun; Lee, Jung-Il; and others

    2011-03-04

    Research highlights: {yields} The most important therapeutic tool in brain metastasis is radiation therapy. {yields} Radiosensitivity of cancer cells was enhanced with treatment of Chk1 inhibitor. {yields} Depletion of Chk1 in cancer cells showed an enhancement of sensitivity to radiation. {yields} Chk1 can be a good target for enhancement of radiosensitivity. -- Abstract: The most important therapeutic tool in brain metastasis is radiation therapy. However, resistance to radiation is a possible cause of recurrence or treatment failure. Recently, signal pathways about DNA damage checkpoints after irradiation have been noticed. We investigated the radiosensitivity can be enhanced with treatment of Chk1 inhibitor, AZD7762 in lung cancer cell lines and xenograft models of lung cancer brain metastasis. Clonogenic survival assays showed enhancement of radiosensitivity with AZD7762 after irradiation of various doses. AZD7762 increased ATR/ATM-mediated Chk1 phosphorylation and stabilized Cdc25A, suppressed cyclin A expression in lung cancer cell lines. In xenograft models of lung cancer (PC14PE6) brain metastasis, AZD7762 significantly prolonged the median survival time in response to radiation. Depletion of Chk1 using shRNA also showed an enhancement of sensitivity to radiation in PC14PE6 cells. The results of this study support that Chk1 can be a good target for enhancement of radiosensitivity.

  19. Molecular Genetics Techniques to Develop New Treatments for Brain Cancers

    SciTech Connect

    Fox, Jacob; Fathallan-Shaykh, Hassan

    2006-09-22

    The objectives of this report are: (1) to devise novel molecular gene therapies for malignant brain tumors, (2) advance our understanding of the immune system in the central nervous system; and (3) apply genomics to find molecular probes to diagnose brain tumors, predict prognosis, biological behavior and their response to treatment.

  20. Identification of ATP Citrate Lyase as a Positive Regulator of Glycolytic Function in Glioblastomas

    PubMed Central

    Beckner, Marie E.; Fellows-Mayle, Wendy; Zhang, Zhe; Agostino, Naomi R.; Kant, Jeffrey A.; Day, Billy W.; Pollack, Ian F.

    2009-01-01

    Glioblastomas, the most malignant type of glioma, are more glycolytic than normal brain tissue. Robust migration of glioblastoma cells has been previously demonstrated under glycolytic conditions and their pseudopodia contain increased glycolytic and decreased mitochondrial enzymes. Glycolysis is suppressed by metabolic acids, including citric acid which is excluded from mitochondria during hypoxia. We postulated that glioma cells maintain glycolysis by regulating metabolic acids, especially in their pseudopodia. The enzyme that breaks down cytosolic citric acid is ATP citrate lyase (ACLY). Our identification of increased ACLY in pseudopodia of U87 glioblastoma cells on 1D gels and immunoblots prompted investigation of ACLY gene expression in gliomas for survival data and correlation with expression of ENO1, that encodes enolase 1. Queries of the NIH’s REMBRANDT brain tumor database based on Affymetrix data indicated that decreased survival correlated with increased gene expression of ACLY in gliomas. Queries of gliomas and glioblastomas found an association of upregulated ACLY and ENO1 expression by chi square for all probe sets (reporters) combined and correlation for numbers of probe sets indicating shared upregulation of these genes. Real-time quantitative PCR confirmed correlation between ACLY and ENO1 in 21 glioblastomas (p < 0.001). Inhibition of ACLY with hydroxycitrate suppressed (p < 0.05) in vitro glioblastoma cell migration, clonogenicity and brain invasion under glycolytic conditions and enhanced the suppressive effects of a Met inhibitor on cell migration. In summary, gene expression data, proteomics and functional assays support ACLY as a positive regulator of glycolysis in glioblastomas. PMID:19795461

  1. Brain

    MedlinePlus

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  2. Extracellular vesicles modulate the glioblastoma microenvironment via a tumor suppression signaling network directed by miR-1.

    PubMed

    Bronisz, Agnieszka; Wang, Yan; Nowicki, Michal O; Peruzzi, Pierpaolo; Ansari, Khairul I; Ogawa, Daisuke; Balaj, Leonora; De Rienzo, Gianluca; Mineo, Marco; Nakano, Ichiro; Ostrowski, Michael C; Hochberg, Fred; Weissleder, Ralph; Lawler, Sean E; Chiocca, E Antonio; Godlewski, Jakub

    2014-02-01

    Extracellular vesicles have emerged as important mediators of intercellular communication in cancer, including by conveying tumor-promoting microRNAs between cells, but their regulation is poorly understood. In this study, we report the findings of a comparative microRNA profiling and functional analysis in human glioblastoma that identifies miR-1 as an orchestrator of extracellular vesicle function and glioblastoma growth and invasion. Ectopic expression of miR-1 in glioblastoma cells blocked in vivo growth, neovascularization, and invasiveness. These effects were associated with a role for miR-1 in intercellular communication in the microenvironment mediated by extracellular vesicles released by cancer stem-like glioblastoma cells. An extracellular vesicle-dependent phenotype defined by glioblastoma invasion, neurosphere growth, and endothelial tube formation was mitigated by loading miR-1 into glioblastoma-derived extracellular vesicles. Protein cargo in extracellular vesicles was characterized to learn how miR-1 directed extracellular vesicle function. The mRNA encoding Annexin A2 (ANXA2), one of the most abundant proteins in glioblastoma-derived extracellular vesicles, was found to be a direct target of miR-1 control. In addition, extracellular vesicle-derived miR-1 along with other ANXA2 extracellular vesicle networking partners targeted multiple pro-oncogenic signals in cells within the glioblastoma microenvironment. Together, our results showed how extracellular vesicle signaling promotes the malignant character of glioblastoma and how ectopic expression of miR-1 can mitigate this character, with possible implications for how to develop a unique miRNA-based therapy for glioblastoma management. PMID:24310399

  3. Biological and clinical implications of cancer stem cells in primary brain tumors

    PubMed Central

    Maugeri-Saccà, Marcello; Di Martino, Simona; De Maria, Ruggero

    2013-01-01

    Despite therapeutic advances, glioblastoma multiforme (GBM) remains a lethal disease. The infiltrative nature of this disease and the presence of a cellular population resistant to current medical treatments account for the poor prognosis of these patients. Growing evidence indicates the existence of a fraction of cancer cells sharing the functional properties of adult stem cells, including self-renewal and a greater ability to escape chemo-radiotherapy-induced death stimuli. Therefore, these cells are commonly defined as cancer stem cells (GBM-SCs). The initial GBM-SC concept has been challenged, and refined according to the emerging molecular taxonomy of GBM. This allowed to postulate the existence of multiple CSC types, each one driving a given molecular entity. Furthermore, it is becoming increasingly clear that GBM-SCs thrive through a dynamic and bidirectional interaction with the surrounding microenvironment. In this article, we discuss recent advances in GBM-SC biology, mechanisms through which these cells adapt to hostile conditions, pharmacological strategies for selectively killing GBM-SCs, and how novel CSC-associated endpoints have been investigated in the clinical setting. PMID:23355974

  4. Molecularly targeted therapies for recurrent glioblastoma: current and future targets

    PubMed Central

    Lau, Darryl; Magill, Stephen T.; Aghi, Manish K.

    2016-01-01

    Object Glioblastoma is the most aggressive and diffusely infiltrative primary brain tumor. Recurrence is expected and is extremely difficult to treat. Over the past decade, the accumulation of knowledge regarding the molecular and genetic profile of glioblastoma has led to numerous molecularly targeted therapies. This article aims to review the literature and highlight the mechanisms and efficacies of molecularly targeted therapies for recurrent glioblastoma. Methods A systematic search was performed with the phrase “(name of particular agent) and glioblastoma” as a search term in PubMed to identify all articles published up until 2014 that included this phrase in the title and/or abstract. The references of systematic reviews were also reviewed for additional sources. The review included clinical studies that comprised at least 20 patients and reported results for the treatment of recurrent glioblastoma with molecular targeted therapies. Results A total of 42 articles were included in this review. In the treatment of recurrent glioblastoma, various targeted therapies have been tested over the past 10–15 years. The targets of interest include epidermal growth factor receptor, vascular endothelial growth factor receptor, platelet-derived growth factor receptor, Ras pathway, protein kinase C, mammalian target of rapamycin, histone acetylation, and integrins. Unfortunately, the clinical responses to most available targeted therapies are modest at best. Radiographic responses generally range in the realm of 5%–20%. Progression-free survival at 6 months and overall survival were also modest with the majority of studies reporting a 10%–20% 6-month progression-free survival and 5- to 8-month overall survival. There have been several clinical trials evaluating the use of combination therapy for molecularly targeted treatments. In general, the outcomes for combination therapy tend to be superior to single-agent therapy, regardless of the specific agent studied

  5. Identification of temozolomide resistance factors in glioblastoma via integrative miRNA/mRNA regulatory network analysis.

    PubMed

    Hiddingh, Lotte; Raktoe, Rajiv S; Jeuken, Judith; Hulleman, Esther; Noske, David P; Kaspers, Gertjan J L; Vandertop, W Peter; Wesseling, Pieter; Wurdinger, Thomas

    2014-01-01

    Drug resistance is a major issue in the treatment of glioblastoma. Almost all glioblastomas are intrinsically resistant to chemotherapeutic temozolomide (TMZ) or develop resistance during treatment. The interaction networks of microRNAs (miRNAs) and mRNAs likely regulate most biological processes and can be employed to better understand complex processes including drug resistance in cancer. In this study, we examined if integrative miRNA/mRNA network analysis using the web-service tool mirConnX could be used to identify drug resistance factors in glioblastoma. We used TMZ-resistant glioblastoma cells and their integrated miRNA/mRNA networks to identify TMZ-sensitizing factors. TMZ resistance was previously induced in glioblastoma cell lines U87, Hs683, and LNZ308. miRNA/mRNA expression profiling of these cells and integration of the profiles using mirConnX resulted in the identification of plant homeodomain (PHD)-like finger 6 (PHF6) as a potential TMZ-sensitizing factor in resistant glioblastoma cells. Analysis of PHF6 expression showed significant upregulation in glioblastoma as compared to normal tissue. Interference with PHF6 expression in three TMZ-resistant subclones significantly enhanced TMZ-induced cell kill in two of these cell lines. Altogether, these results demonstrate that mirConnX is a feasible and useful tool to investigate miRNA/mRNA interactions in TMZ-resistant cells and has potential to identify drug resistance factors in glioblastoma.

  6. Identification of temozolomide resistance factors in glioblastoma via integrative miRNA/mRNA regulatory network analysis

    PubMed Central

    Hiddingh, Lotte; Raktoe, Rajiv S.; Jeuken, Judith; Hulleman, Esther; Noske, David P.; Kaspers, Gertjan J. L.; Vandertop, W. Peter; Wesseling, Pieter; Wurdinger, Thomas

    2014-01-01

    Drug resistance is a major issue in the treatment of glioblastoma. Almost all glioblastomas are intrinsically resistant to chemotherapeutic temozolomide (TMZ) or develop resistance during treatment. The interaction networks of microRNAs (miRNAs) and mRNAs likely regulate most biological processes and can be employed to better understand complex processes including drug resistance in cancer. In this study, we examined if integrative miRNA/mRNA network analysis using the web-service tool mirConnX could be used to identify drug resistance factors in glioblastoma. We used TMZ-resistant glioblastoma cells and their integrated miRNA/mRNA networks to identify TMZ-sensitizing factors. TMZ resistance was previously induced in glioblastoma cell lines U87, Hs683, and LNZ308. miRNA/mRNA expression profiling of these cells and integration of the profiles using mirConnX resulted in the identification of plant homeodomain (PHD)-like finger 6 (PHF6) as a potential TMZ-sensitizing factor in resistant glioblastoma cells. Analysis of PHF6 expression showed significant upregulation in glioblastoma as compared to normal tissue. Interference with PHF6 expression in three TMZ-resistant subclones significantly enhanced TMZ-induced cell kill in two of these cell lines. Altogether, these results demonstrate that mirConnX is a feasible and useful tool to investigate miRNA/mRNA interactions in TMZ-resistant cells and has potential to identify drug resistance factors in glioblastoma. PMID:24919120

  7. Hypoxia-cultured human adipose-derived mesenchymal stem cells are non-oncogenic and have enhanced viability, motility, and tropism to brain cancer.

    PubMed

    Feng, Y; Zhu, M; Dangelmajer, S; Lee, Y M; Wijesekera, O; Castellanos, C X; Denduluri, A; Chaichana, K L; Li, Q; Zhang, H; Levchenko, A; Guerrero-Cazares, H; Quiñones-Hinojosa, A

    2014-12-11

    Adult human adipose-derived mesenchymal stem cells (hAMSCs) are multipotent cells, which are abundant, easily collected, and bypass the ethical concerns that plague embryonic stem cells. Their utility and accessibility have led to the rapid development of clinical investigations to explore their autologous and allogeneic cellular-based regenerative potential, tissue preservation capabilities, anti-inflammatory properties, and anticancer properties, among others. hAMSCs are typically cultured under ambient conditions with 21% oxygen. However, physiologically, hAMSCs exist in an environment of much lower oxygen tension. Furthermore, hAMSCs cultured in standard conditions have shown limited proliferative and migratory capabilities, as well as limited viability. This study investigated the effects hypoxic culture conditions have on primary intraoperatively derived hAMSCs. hAMSCs cultured under hypoxia (hAMSCs-H) remained multipotent, capable of differentiation into osteogenic, chondrogenic, and adipogenic lineages. In addition, hAMSCs-H grew faster and exhibited less cell death. Furthermore, hAMSCs-H had greater motility than normoxia-cultured hAMSCs and exhibited greater homing ability to glioblastoma (GBM) derived from brain tumor-initiating cells from our patients in vitro and in vivo. Importantly, hAMSCs-H did not transform into tumor-associated fibroblasts in vitro and were not tumorigenic in vivo. Rather, hAMSCs-H promoted the differentiation of brain cancer cells in vitro and in vivo. These findings suggest an alternative culturing technique that can enhance the function of hAMSCs, which may be necessary for their use in the treatment of various pathologies including stroke, myocardial infarction, amyotrophic lateral sclerosis, and GBM.

  8. P17.69FOTEMUSTINE TRATMENT: WHAT ABOUT GLIOBLASTOMA PATIENTS' QUALITY OF LIFE?

    PubMed Central

    Petruzzi, A.; Finocchiaro, C.Y.; Simonetti, G.; Gaviani, P.; Casali, C.; Silvani, A.; Lamperti, E.

    2014-01-01

    Glioblastoma Multiforme (GBM) is the most common and aggressive type of adult primary central nervous system tumor. The median survival in GBM patients is about 14 months. The prognosis of GBM is poor and in addition there is a very high probability of recurrence. For most patients with newly diagnosed GBM, the gold standard first-line treatment is represented by postoperative radiotherapy plus temozolomide (TMZ). There is not yet a standard of care for treatment of recurrent GBM. Recent phase II studies have demonstrated the efficacy of fotemustine (FTM) in the treatment of recurrent gliomas. To the best of our knowledge, however, no studies have investigated the quality of life in GBM patients treated with FTM as second-line treatment. We therefore sought to assess the quality of life of recurrent glioblastoma patients treated with FTM standard schedule as proposed by Addeo et al. (a dose of 80 mg/sqm every 2 weeks for five consecutive administrations as the induction phase and every 4 weeks at 80 mg/sqm as the maintenance phase). We approached 54 recurrent glioblastoma patients treated with FTM. Of these 54 eligible patients, we excluded 4 patients because they were not willing to participate in the research study and 10 because they did not meet one of the inclusion criteria, i.e. Mini Mental State Examination ≥ 25. We evaluated overall patients' quality of life through various tools: European Organization for Research and Treatment of Cancer (EORTC) QLQ-C30, EORTC brain cancer module (QLQ-BN20), Beck Depression Inventory (BDI), State-Trait Anxiety Inventory form Y (STAI-Y), Hospital Anxiety and Depression Scale (HADS), Psychological Distress Inventory (PDI). Of the total of 40 patients, 18 patients completed the battery of tests both at the beginning of therapy and 2 months after the start of therapy. We found that patients reported higher levels of distress at two months after the start of therapy (mean value = 22.4) as compared to those experienced at the

  9. Nanomedicine and nanotoxicology: the pros and cons for neurodegeneration and brain cancer.

    PubMed

    Catalan-Figueroa, Johanna; Palma-Florez, Sujey; Alvarez, Gonzalo; Fritz, Hans F; Jara, Miguel O; Morales, Javier O

    2016-01-01

    Current strategies for brain diseases are mostly symptomatic and noncurative. Nanotechnology has the potential to facilitate the transport of drugs across the blood-brain barrier and to enhance their pharmacokinetic profile. However, to reach clinical application, an understanding of nanoneurotoxicity in terms of oxidative stress and inflammation is required. Emerging evidence has also shown that nanoparticles have the ability to alter autophagy, which can induce inflammation and oxidative stress, or vice versa. These effects may increase neurodegenerative processes damage, but on the other hand, they may have benefits for brain cancer therapies. In this review, we emphasize how nanomaterials may induce neurotoxic effects focusing on neurodegeneration, and how these effects could be exploited toward brain cancer treatment.

  10. Salmonella as a biological "Trojan horse" for neoplasia: future possibilities including brain cancer.

    PubMed

    Mlynarczyk, Gregory S A; Berg, Carrie A; Withrock, Isabelle C; Fick, Meghan E; Anderson, Stephen J; Laboissonniere, Lauren A; Jefferson, Matthew A; Brewer, Matthew T; Stock, Matthew L; Lange, Jennifer K; Luna, K C; Acharya, Sreemoyee; Kanuri, Sriharsha; Sharma, Shaunik; Kondru, Naveen C; McCormack, Garrett R; Carlson, Steve A

    2014-09-01

    This manuscript considers available evidence that a specific Salmonella strain could be used as an effective orally-administered option for cancer therapy involving the brain. It has been established that Salmonella preferentially colonizes neoplastic tissue and thrives as a facultative anaerobe in the intra-tumor environment. Although Salmonella accumulates in tumors by passive processes, it is still possible for lipopolysaccharide to cause sepsis and endotoxic shock during the migration of bacteria to the tumor site. An LPS-free version of a recently identified Salmonella isolate may have the capability to circumvent the blood brain barrier and provide a safer method of reaching brain tumors. This isolate merits further research as a "Trojan horse" for future oral biotherapy of brain cancer.

  11. The Microarray Gene Profiling Analysis of Glioblastoma Cancer Cells Reveals Genes Affected by FAK Inhibitor Y15 and Combination of Y15 and Temozolomide

    PubMed Central

    Huang, Grace; Ho, Baotran; Conroy, Jeffrey; Liu, Song; Qiang, Hu; Golubovskaya, Vita

    2013-01-01

    Focal adhesion is known to be highly expressed and activated in glioma cells. Recently, we demonstrated that FAK autophosphorylation inhibitor, Y15 significantly decreased tumor growth of DBTRG and U87 cells, especially in combination with temozolomide. In the present report, we performed gene expression analysis in these cells to reveal genes affected by Y15, temozolomide and combination of Y15 and temozolomide. We tested the effect of Y15 on gene expression by Illumina Human HT12v4 microarray assay and detected 8087 and 6555 genes, which were significantly either up- or down-regulated by Y15-treatment in DBTRG and U87 cells, respectively (p<0.05). Moreover, DBTRG and U87 cells treated with Y15 changed expression of 1332 and 462 genes more than 1.5 fold, p<0.05, respectively and had 237 common genes affected by Y15. The common genes up-regulated by Y15 included GADD45A, HSPA6 (heat-shock 70); DUSP1, DUSP 5 (dual-phosphatase 5); CDKN1A (p21) and common down-regulated genes included kinesins, such as KIF11, 14, 20A, 20B; topoisomerase II, TOP2A; cyclin F; cell cycle protein: BUB1; PARP1, POLA1. In addition, we detected genes affected by temozolomide and by combination of Y15 and temozolomide treatment in U87 cells. Among genes up-regulated by Y15 and temozolomide more significantly than by each agent alone were: COX7B; interferon, gamma-inducible transcript: IFI16; DDIT4; GADD45G and down-regulated: KIF3A, AKT1; ABL; JAK1, GLI3 and ALDH1A3. Thus, microarray gene expression analysis can be effective in establishing genes affected in response to FAK inhibitor alone and in response to combination of Y15 with temozolomide that is important for glioblastoma therapy. PMID:23387973

  12. Phase I trial of erlotinib with radiation therapy in patients with glioblastoma multiforme: Results of North Central Cancer Treatment Group protocol N0177

    SciTech Connect

    Krishnan, Sunil . E-mail: skrishnan@mdanderson.org; Brown, Paul D.; Ballman, Karla V.; Fiveash, John B.; Uhm, Joon H.; Giannini, Caterina; Jaeckle, Kurt A.; Geoffroy, Francois J.; Nabors, L. Burt; Buckner, Jan C.

    2006-07-15

    Purpose: To evaluate the toxicity and maximum tolerated dose (MTD) of erlotinib plus radiation therapy (RT) in patients with glioblastoma multiforme (GBM) in a multicenter phase I trial. Methods and Materials: Patients were stratified on the basis of the use of enzyme-inducing anticonvulsants (EIACs). After resection or biopsy, patients were treated with erlotinib for 1 week before concurrent erlotinib and 6 weeks (60 Gy) of RT and maintained on erlotinib until progression. The erlotinib dose was escalated in cohorts of 3 starting at 100 mg/day. Results: Twenty patients were enrolled and 19 were evaluable for the MTD and efficacy endpoints. Of these patients, 14 were males and 5 were females, with a median age of 54 years. Seven had undergone biopsy only, 5 had subtotal resections, and 7 had gross total resections. The highest dose level was 150 mg/day erlotinib for patients not on EIACs (Group 1) and 200 mg/day for patients on EIACs (Group 2). MTD was not reached in either group. In Group 1 at 100 mg (n = 6) and at 150 mg (n = 4), only 1 dose-limiting toxicity (DLT) occurred (stomatitis at 100 mg). No DLTs have occurred in Group 2 at 100 mg (n = 3), 150 mg (n = 3), and 200 mg (n = 3). With a median follow-up of 52 weeks, progression was documented in 16 patients and 13 deaths occurred. Median time to progression was 26 weeks, and median survival was 55 weeks. Conclusion: Toxicity is acceptable at the current doses of erlotinib plus RT. The study was modified to include concurrent and adjuvant temozolomide, and accrual is in progress.

  13. Brain tumour stem cells: possibilities of new therapeutic strategies.

    PubMed

    Piccirillo, Sara G M; Vescovi, Angelo L

    2007-08-01

    Cancers are composed of heterogeneous cell populations, including highly proliferative immature precursors and differentiated cells, which may belong to different lineages. Recent advances in stem cell research have demonstrated the existence of tumour-initiating, cancer stem cells (CSCs) in non-solid and solid tumours. These cells are defined as CSCs because they show functional properties that resemble those of their normal counterpart to a significant extent. This concept applies to CSCs from brain tumours and, particularly, to glioblastoma stem-like cells, which self-renew under clonal conditions and differentiate into neuron- and glia-like cells, and into aberrant cells, with mixed neuronal/astroglia phenotypes. Notably, across serial transplantation into immunodeficient mice, glioblastoma stem-like cells are able to form secondary tumours which are a phenocopy of the human disease. A significant effort is underway to identify both CSC-specific markers and the molecular mechanism that underpin the tumorigenic potential of these cells, for this will have a critical impact on the understanding of the origin of malignant brain tumour and the discovery of new and more specific therapeutic approaches. Lately, the authors have shown that some of the bone morphogenetic proteins can reduce the tumorigenic ability of CSCs in GBMs. This suggests that mechanisms regulating the physiology of normal brain stem cells may be still in place in their cancerous siblings and that this may lead to the development of cures that selectively target the population CSCs found in the patients' tumour mass.

  14. Three-Dimensional Magnetic Resonance Spectroscopic Imaging of Brain and Prostate Cancer1

    PubMed Central

    Kurhanewicz, John; Vigneron, Daniel B; Nelson, Sarah J

    2000-01-01

    Abstract Clinical applications of magnetic resonance spectroscopic imaging (MRSI) for the study of brain and prostate cancer have expanded significantly over the past 10 years. Proton MRSI studies of the brain and prostate have demonstrated the feasibility of noninvasively assessing human cancers based on metabolite levels before and after therapy in a clinically reasonable amount of time. MRSI provides a unique biochemical “window” to study cellular metabolism noninvasively. MRSI studies have demonstrated dramatic spectral differences between normal brain tissue (low choline and high N-acetyl aspartate, NAA) and prostate (low choline and high citrate) compared to brain (low NAA, high choline) and prostate (low citrate, high choline) tumors. The presence of edema and necrosis in both the prostate and brain was reflected by a reduction of the intensity of all resonances due to reduced cell density. MRSI was able to discriminate necrosis (absence of all metabolites, except lipids and lactate) from viable normal tissue and cancer following therapy. The results of current MRSI studies also provide evidence that the magnitude of metabolic changes in regions of cancer before therapy as well as the magnitude and time course of metabolic changes after therapy can improve our understanding of cancer aggressiveness and mechanisms of therapeutic response. Clinically, combined MRI/MRSI has already demonstrated the potential for improved diagnosis, staging and treatment planning of brain and prostate cancer. Additionally, studies are under way to determine the accuracy of anatomic and metabolic parameters in providing an objective quantitative basis for assessing disease progression and response to therapy. PMID:10933075

  15. MicroRNAs Linked to Trastuzumab Resistance, Brain Metastases | Division of Cancer Prevention

    Cancer.gov

    Researchers have tied increased levels of a microRNA (miRNA) to resistance to the targeted therapy trastuzumab (Herceptin) in women with HER2-positive breast cancer. Another research team has discovered a “signature” of miRNAs in brain metastases in patients with melanoma—a signature that is also present in the primary tumor and could identify melanoma patients at increased risk of brain metastases. |

  16. Reversing HOXA9 Oncogene Activation by PI3K Inhibition: Epigenetic Mechanism and Prognostic Significance in Human Glioblastoma

    PubMed Central

    Costa, Bruno M.; Smith, Justin S.; Chen, Ying; Chen, Justin; Phillips, Heidi S.; Aldape, Kenneth D.; Zardo, Giuseppe; Nigro, Janice; James, C. David; Fridlyand, Jane; Reis, Rui M.; Costello, Joseph F.

    2010-01-01

    HOXA genes encode critical transcriptional regulators of embryonic development that have been implicated in cancer. In this study, we documented functional relevance and mechanism of activation of HOXA9 in glioblastoma (GBM), the most common malignant brain tumor. Expression of HOXA genes was investigated using RT-PCR in primary gliomas and glioblastoma cell lines and was validated in two sets of expression array data. In a subset of GBM, HOXA genes are aberrantly activated within confined chromosomal domains. Transcriptional activation of the HOXA cluster was reversible by a PI3K inhibitor through an epigenetic mechanism involving histone H3K27 trimethylation. Functional studies of HOXA9 showed its capacity to decrease apoptosis and increase cellular proliferation along with TRAIL resistance. Notably, aberrant expression of HOXA9 was independently predictive of shorter overall and progression-free survival in two GBM patient sets, and improved survival prediction by MGMT promoter methylation. Thus, HOXA9 activation is a novel, independent and negative prognostic marker in GBM that is reversible through a PI3K-associated epigenetic mechanism. Our findings suggest a transcriptional pathway through which PI3K activates oncogenic HOXA expression with implications for mTOR or PI3K targeted therapies. PMID:20068170

  17. New insights into the anticancer activity of carnosol: p53 reactivation in the U87MG human glioblastoma cell line.

    PubMed

    Giacomelli, Chiara; Natali, Letizia; Trincavelli, Maria Letizia; Daniele, Simona; Bertoli, Alessandra; Flamini, Guido; Braca, Alessandra; Martini, Claudia

    2016-05-01

    Glioblastoma multiforme (GBM) is an aggressive brain tumour with high resistance to radio- and chemotherapy. As such, increasing attention has focused on developing new therapeutic strategies to improve treatment responses. Recently, attention has been shifted to natural compounds that are able to halt tumour development. Among them, carnosol (CAR), a phenolic diterpene present in rosemary, has become a promising molecule that is able to prevent certain types of solid cancer. However, no data are available on the effects of CAR in GBM. Here, CAR activity decreased the proliferation of different human glioblastoma cell lines, particularly cells that express wild type p53. The p53 pathway is involved in the control of apoptosis and is often impaired in GBM. Notably, CAR, through the dissociation of p53 from its endogenous inhibitor MDM2, was able to increase the intracellular p53 levels in GBM cells. Accordingly, functional reactivation of p53 was demonstrated by the stimulation of p53 target genes' transcription, the induction of apoptosis and cell cycle blockade. Most importantly, CAR produced synergistic effects with temozolomide (TMZ) and reduced the restoration of the tumour cells' proliferation after drug removal. Thus, for the first time, these data highlighted the potential use of the diterpene in the sensitization of GBM cells to chemotherapy through a direct re-activation of p53 pathway. Furthermore, progress has been made in delineating the biochemical mechanisms underlying the pro-apoptotic effects of this molecule. PMID:26939786

  18. Tip60 regulates MT1-MMP transcription and invasion of glioblastoma cells through NF-κB pathway.

    PubMed

    Takino, Takahisa; Nakada, Mitsutoshi; Li, Zichen; Yoshimoto, Taisuke; Domoto, Takahiro; Sato, Hiroshi

    2016-01-01

    A histone acetyltransferase Tat-interacting protein 60 kDa (Tip60) regulates the DNA damage response by acetylating histone and remodeling chromatin. In addition to histone acetyltransferase activity, Tip60 is known to regulate a variety of cellular functions, including gene expression, DNA damage response, cell migration and apoptosis. Lower expression of Tip60 is observed in lymphomas, melanomas, breast, colon, and lung cancer. It is widely accepted that Tip60 functions as a tumor suppressor. However, a role of Tip60 in gliomas still remains unclear. In this study, we investigated the role of Tip60 in the malignant behavior of human gliomas. By quantitative RT-PCR analysis using fresh human brain tumor tissues from 55 patients, we found that lower Tip60 expression and higher membrane-type 1 matrix metalloproteinase (MT1-MMP) expression are associated with advanced tumor grade in glioma tissues. Knockdown of Tip60 in glioblastoma cells promoted cell adhesion, spreading and MT1-MMP transcription and thereby invasion, which was suppressed by inhibition of MT1-MMP and nuclear factor-kappa B (NF-κB) activity. We demonstrate for the first time that tumor suppressor Tip60 down-regulates cell adhesion and MT1-MMP expression and thereby invasion of glioblastoma cells by suppressing NF-κB pathway. PMID:26464124

  19. Whole genome sequence analysis links chromothripsis to EGFR, MDM2, MDM4, and CDK4 amplification in glioblastoma

    PubMed Central

    Furgason, John M.; Koncar, Robert F.; Michelhaugh, Sharon K.; Sarkar, Fazlul H.; Mittal, Sandeep; Sloan, Andrew E.; Barnholtz-Sloan, Jill S.; Bahassi, El Mustapha

    2015-01-01

    Background Findings based on recent advances in next-generation sequence analysis suggest that, in some tumors, a single catastrophic event, termed chromothripsis, results in several simultaneous tumorigenic alterations. Previous studies have suggested that glioblastoma (GBM) may exhibit chromothripsis at a higher rate (39%) than other tumors (9%). Primary glioblastoma is an aggressive form of brain cancer that typically appears suddenly in older adults. With aggressive treatment, the median survival time is only 15 months. Their acute onset and widespread genomic instability indicates that chromothripsis may play a key role in their initiation and progression. GBMs are often characterized by EGFR amplification, CDKN2A and PTEN deletion, although approximately 20% of GBMs harbor additional amplifications in MDM2 or MDM4 with CDK4. Methods We used the chromothripsis prediction tool, Shatterproof, in conjunction with a custom whole genome sequence analysis pipeline in order to generate putative regions of chromothripsis. The data derived from this study was further expanded on using fluorescence in situ hybridization (FISH) analysis and susceptibility studies with colony formation assays. Results We show that primary GBMs are associated with higher chromothripsis scores and establish a link between chromothripsis and gene amplification of receptor tyrosine kinases (RTKs), as well as modulators of the TP53 and RB1 pathways. Conclusions Utilizing a newly introduced bioinformatic tool, we provide evidence that chromothripsis is associated with the formation of amplicons containing several oncogenes involved in key pathways that are likely essential for post-chromothriptic cell survival. PMID:26328271

  20. Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1

    SciTech Connect

    Verhaak, Roel GW; Hoadley, Katherine A; Purdom, Elizabeth; Wang, Victoria; Qi, Yuan; Wilkerson, Matthew D; Miller, C Ryan; Ding, Li; Golub, Todd; Mesirov, Jill P; Alexe, Gabriele; Lawrence, Michael; O'Kelly, Michael; Tamayo, Pablo; Weir, Barbara A; Gabriel, Stacey; Winckler, Wendy; Gupta, Supriya; Jakkula, Lakshmi; Feiler, Heidi S; Hodgson, J Graeme; James, C David; Sarkaria, Jann N; Brennan, Cameron; Kahn, Ari; Spellman, Paul T; Wilson, Richard K; Speed, Terence P; Gray, Joe W; Meyerson, Matthew; Getz, Gad; Perou, Charles M; Hayes, D Neil; Network, The Cancer Genome Atlas Research

    2009-09-03

    The Cancer Genome Atlas Network recently cataloged recurrent genomic abnormalities in glioblastoma multiforme (GBM). We describe a robust gene expression-based molecular classification of GBM into Proneural, Neural, Classical, and Mesenchymal subtypes and integrate multidimensional genomic data to establish patterns of somatic mutations and DNA copy number. Aberrations and gene expression of EGFR, NF1, and PDGFRA/IDH1 each define the Classical, Mesenchymal, and Proneural subtypes, respectively. Gene signatures of normal brain cell types show a strong relationship between subtypes and different neural lineages. Additionally, response to aggressive therapy differs by subtype, with the greatest benefit in the Classical subtype and no benefit in the Proneural subtype. We provide a framework that unifies transcriptomic and genomic dimensions for GBM molecular stratification with important implications for future studies.

  1. The somatic genomic landscape of glioblastoma.

    PubMed

    Brennan, Cameron W; Verhaak, Roel G W; McKenna, Aaron; Campos, Benito; Noushmehr, Houtan; Salama, Sofie R; Zheng, Siyuan; Chakravarty, Debyani; Sanborn, J Zachary; Berman, Samuel H; Beroukhim, Rameen; Bernard, Brady; Wu, Chang-Jiun; Genovese, Giannicola; Shmulevich, Ilya; Barnholtz-Sloan, Jill; Zou, Lihua; Vegesna, Rahulsimham; Shukla, Sachet A; Ciriello, Giovanni; Yung, W K; Zhang, Wei; Sougnez, Carrie; Mikkelsen, Tom; Aldape, Kenneth; Bigner, Darell D; Van Meir, Erwin G; Prados, Michael; Sloan, Andrew; Black, Keith L; Eschbacher, Jennifer; Finocchiaro, Gaetano; Friedman, William; Andrews, David W; Guha, Abhijit; Iacocca, Mary; O'Neill, Brian P; Foltz, Greg; Myers, Jerome; Weisenberger, Daniel J; Penny, Robert; Kucherlapati, Raju; Perou, Charles M; Hayes, D Neil; Gibbs, Richard; Marra, Marco; Mills, Gordon B; Lander, Eric; Spellman, Paul; Wilson, Richard; Sander, Chris; Weinstein, John; Meyerson, Matthew; Gabriel, Stacey; Laird, Peter W; Haussler, David; Getz, Gad; Chin, Lynda

    2013-10-10

    We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.

  2. TSPO as a target for glioblastoma therapeutics.

    PubMed

    Werry, Eryn L; Barron, Melissa L; Kassiou, Michael

    2015-08-01

    The translocator protein (TSPO) is an 18-kDa five-transmembrane protein, which is primarily found in the outer mitochondrial membrane. Levels of this protein are up-regulated in the most aggressive and common glioma, glioblastoma multiforme (GM). Levels of TSPO also correlate with GM clinical outcome, suggesting that TSPO may be a novel GM diagnostic imaging agent. Therapeutically, targeting the TSPO may provide a mechanism to abrogate the apoptotic-resistant, invasive and aggressive nature of GM and may also provide a way of targeting other anti-cancer treatments to GM sites. This review highlights recent progress in research on TSPO-based diagnostic imaging and therapeutics for GM.

  3. The Somatic Genomic Landscape of Glioblastoma

    PubMed Central

    Brennan, Cameron W.; Verhaak, Roel G.W.; McKenna, Aaron; Campos, Benito; Noushmehr, Houtan; Salama, Sofie R.; Zheng, Siyuan; Chakravarty, Debyani; Sanborn, J. Zachary; Berman, Samuel H.; Beroukhim, Rameen; Bernard, Brady; Wu, Chang-Jiun; Genovese, Giannicola; Shmulevich, Ilya; Barnholtz-Sloan, Jill; Zou, Lihua; Vegesna, Rahulsimham; Shukla, Sachet A.; Ciriello, Giovanni; Yung, WK; Zhang, Wei; Sougnez, Carrie; Mikkelsen, Tom; Aldape, Kenneth; Bigner, Darell D.; Van Meir, Erwin G.; Prados, Michael; Sloan, Andrew; Black, Keith L.; Eschbacher, Jennifer; Finocchiaro, Gaetano; Friedman, William; Andrews, David W.; Guha, Abhijit; Iacocca, Mary; O’Neill, Brian P.; Foltz, Greg; Myers, Jerome; Weisenberger, Daniel J.; Penny, Robert; Kucherlapati, Raju; Perou, Charles M.; Hayes, D. Neil; Gibbs, Richard; Marra, Marco; Mills, Gordon B.; Lander, Eric; Spellman, Paul; Wilson, Richard; Sander, Chris; Weinstein, John; Meyerson, Matthew; Gabriel, Stacey; Laird, Peter W.; Haussler, David; Getz, Gad; Chin, Lynda

    2013-01-01

    We describe the landscape of somatic genomic alterations based on multi-dimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer. PMID:24120142

  4. Elderly patients with glioblastoma: the treatment challenge.

    PubMed

    Fiorentino, Alba; De Bonis, Pasquale; Chiesa, Silvia; Balducci, Mario; Fusco, Vincenzo

    2013-10-01

    The treatment for elderly patients affected by glioblastoma represents a challenge in neuro-oncology. The recent randomized trials (the NOA-8 and the NCBTSG trials) showed an advantage of temozolomide for patients with O6-methylguanine methyltransferase methylated tumors. To date, no randomized trials compared the standard treatment (radiochemotherapy) with other therapeutic approaches, due to the idea that elderly patients do not tolerate aggressive therapy. Nonetheless, with the increased lifespan and the better quality of life, the nihilism in the treatment of elderly with cancer is obsolete. Molecular (including O6-methylguanine methyltransferase) and clinical tools (including the geriatric evaluation) are needed for choosing the proper therapy for patients over 70. PMID:24117272

  5. New Breast Cancer Recursive Partitioning Analysis Prognostic Index in Patients With Newly Diagnosed Brain Metastases

    SciTech Connect

    Niwinska, Anna; Murawska, Magdalena

    2012-04-01

    Purpose: The aim of the study was to present a new breast cancer recursive partitioning analysis (RPA) prognostic index for patients with newly diagnosed brain metastases as a guide in clinical decision making. Methods and Materials: A prospectively collected group of 441 consecutive patients with breast cancer and brain metastases treated between the years 2003 and 2009 was assessed. Prognostic factors significant for univariate analysis were included into RPA. Results: Three prognostic classes of a new breast cancer RPA prognostic index were selected. The median survival of patients within prognostic Classes I, II, and III was 29, 9, and 2.4 months, respectively (p < 0.0001). Class I included patients with one or two brain metastases, without extracranial disease or with controlled extracranial disease, and with Karnofsky performance status (KPS) of 100. Class III included patients with multiple brain metastases with KPS of {<=}60. Class II included all other cases. Conclusions: The breast cancer RPA prognostic index is an easy and valuable tool for use in clinical practice. It can select patients who require aggressive treatment and those in whom whole-brain radiotherapy or symptomatic therapy is the most reasonable option. An individual approach is required for patients from prognostic Class II.

  6. Second cancer following cutaneous melanoma and cancers of the brain, thyroid, connective tissue, bone, and eye in Connecticut, 1935-82.

    PubMed

    Tucker, M A; Boice, J D; Hoffman, D A

    1985-12-01

    The risk of second primary cancers developing was evaluated in individuals with 6 rare tumors in Connecticut between 1935 and 1982. Small but significant excesses of all second cancers occurred in patients with cutaneous melanoma (42%), and cancers of the brain (59%), thyroid (49%), connective tissue (23%), bone (66%), and eye (40%). In individuals with cutaneous melanoma, the highest risks were for subsequent cutaneous melanomas [relative risk (RR) = 8.5] that persisted throughout all intervals of observation. The risk for second melanomas was higher in persons under age 40, consistent with a heritable component. Connective tissue tumors and breast cancers also occurred in excess. Among patients with brain cancer, an increase of melanoma was observed that may represent an underlying neural crest abnormality, although no excess of brain cancer was seen after melanoma. Reciprocal increases of bone cancer after connective tissue cancer and connective tissue cancer after bone cancer point to shared risk factors, such as high dose radiotherapy or genetic susceptibility states. An anticipated high risk of osteogenic sarcoma following Ewing's sarcoma was not seen. An excess of breast cancer (RR = 1.9) after thyroid cancer indicates common etiologic factors. Expected excesses of bilateral retinoblastoma and bone cancer after retinoblastoma were seen. Tumors commonly treated with alkylating agents or nitrosoureas (melanoma, brain, connective tissue) showed slightly elevated risks of acute nonlymphocytic leukemia. Prostate cancer was frequently found to be in excess, but this is likely an artifact due to ascertainment bias.

  7. TGFβ Treatment Enhances Glioblastoma Virotherapy by Inhibiting the Innate Immune Response.

    PubMed

    Han, Jianfeng; Chen, Xilin; Chu, Jianhong; Xu, Bo; Meisen, Walter H; Chen, Lichao; Zhang, Lingling; Zhang, Jianying; He, Xiaoming; Wang, Qi-En; Chiocca, E Antonio; Kaur, Balveen; Caligiuri, Michael A; Yu, Jianhua

    2015-12-15

    Oncolytic viruses, including oncolytic herpes simplex virus (oHSV), have produced provocative therapeutic responses in patients with glioblastoma, the most aggressive brain tumor. Paradoxically, innate immune responses mediated by natural killer (NK) cells and macrophages/microglia appear to limit oHSV efficacy. Therefore, we investigated whether pretreatment with an immunosuppressive cytokine, TGFβ, might reverse these effects and thereby potentiate oHSV efficacy. TGFβ treatment of NK cells rendered them less cytolytic against oHSV-infected glioblastoma cells and stem-like cells in vitro. Furthermore, TGFβ treatment of NK cells, macrophages, or microglia increased viral titers of oHSV in cocultures with glioblastoma cells. In a syngeneic mouse model of glioblastoma, administering TGFβ prior to oHSV injection inhibited intracranial infiltration and activation of NK cells and macrophages. Notably, a single administration of TGFβ prior to oHSV therapy was sufficient to phenocopy NK-cell depletion and suppress tumor growth and prolong survival in both xenograft and syngeneic models of glioblastoma. Collectively, our findings show how administering a single dose of TGFβ prior to oncolytic virus treatment of glioblastoma can transiently inhibit innate immune cells that limit efficacy, thereby improving therapeutic responses and survival outcomes. PMID:26631269

  8. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    SciTech Connect

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  9. Descriptive epidemiology and geographic variation of childhood brain cancer in the US

    SciTech Connect

    Bunin, G.R.

    1984-11-01

    The descriptive epidemiology and geographic variation of childhood brain cancer by cell type was studied. For each cell type, the study indicates time trends, sex ratios, geographic variation, racial differences, urban-rural differences, and socioeconomic differences. Since, in animals, one virus or chemical often causes tumors at several sites, the sex, race, age and socio-economic status of childhood brain cancer cases was compared to the epidemiologic profile of childhood leukemias. Similar epidemiological profiles would imply similar etiologies. 116 references, 18 figures, 71 tables.

  10. Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells

    NASA Astrophysics Data System (ADS)

    Kaushik, Nagendra K.; Uhm, Hansup; Ha Choi, Eun

    2012-02-01

    Induction of micronucleus formation (cytogenetic damage) in brain cancer cells upon exposure of dielectric barrier discharge plasma has been investigated. We have investigated the influence of exposure and incubation times on T98G brain cancer cells by using growth kinetic, clonogenic, and micronucleus formation assay. We found that micronucleus formation rate directly depends on the plasma exposure time. It is also shown that colony formation capacity of cells has been inhibited by the treatment of plasma at all doses. Cell death and micronucleus formation are shown to be significantly elevated by 120 and 240 s exposure of dielectric barrier discharge plasma.

  11. Chemotherapy Altered Brain Functional Connectivity in Women with Breast Cancer: A Pilot Study

    PubMed Central

    Dumas, Julie A.; Makarewicz, Jenna; Schaubhut, Geoffrey J.; Devins, Robert; Albert, Kimberly; Dittus, Kim; Newhouse, Paul A.

    2013-01-01

    Adjuvant chemotherapy is associated with improvements in long-term cancer survival. However, reports of cognitive impairment following treatment emphasize the importance of understanding the long-term effects of chemotherapy on brain functioning. Cognitive deficits found in chemotherapy patients suggest a change in brain functioning that affects specific cognitive domains such as attentional processing and executive functioning. This study examined the processes potentially underlying these changes in cognition by examining brain functional connectivity pre- and post-chemotherapy in women with breast cancer. Functional connectivity examines the temporal correlation between spatially remote brain regions in an effort to understand how brain networks support specific cognitive functions. Nine women diagnosed with breast cancer completed a functional magnetic resonance imaging (fMRI) session before chemotherapy, one month after, and one year after the completion of chemotherapy. Seed-based functional connectivity analyses were completed using seeds in the intraparietal sulcus (IPS) to examine connectivity in the dorsal anterior attention network and in the posterior cingulate cortex (PCC) to examine connectivity in the default mode network. Results showed decreased functional connectivity one month after chemotherapy that partially returned to baseline at one year in the dorsal attention network. Decreased connectivity was seen in the default mode network at one month and one year following chemotherapy. In addition, increased subjective memory complaints were noted at one month and one year post-chemotherapy. These findings suggest a detrimental effect of chemotherapy on brain functional connectivity that is potentially related to subjective cognitive assessment. PMID:23852814

  12. Rapamycin inhibits the growth of glioblastoma.

    PubMed

    Arcella, Antonietta; Biagioni, Francesca; Antonietta Oliva, Maria; Bucci, Domenico; Frati, Alessandro; Esposito, Vincenzo; Cantore, Giampaolo; Giangaspero, Felice; Fornai, Francesco

    2013-02-01

    The molecular target of rapamycin (mTOR) is up-regulated in glioblastoma (GBM) and this is associated with the rate of cell growth, stem cell proliferation and disease relapse. Rapamycin is a powerful mTOR inhibitor and strong autophagy inducer. Previous studies analyzed the effects of rapamycin in GBM cell lines. However, to our knowledge, no experiment was carried out to evaluate the effects of rapamycin neither in primary cells derived from GBM patients nor in vivo in brain GBM xenograft. These data are critical to get a deeper insight into the effects of such adjuvant therapy in GBM patients. In the present study, various doses of rapamycin were tested in primary cell cultures from GBM patients. These effects were compared with that obtained by the same doses of rapamycin in GBM cell lines (U87Mg). The effects of rapamycin were also evaluated in vivo, in brain tumors developed from mouse xenografts. Rapamycin, starting at the dose of 10nm inhibited cell growth both in U87Mg cell line and primary cell cultures derived from various GBM patients. When administered in vivo to brain xenografts in nude mice rapamycin almost doubled the survival time of mice and inhibited by more than 95% of tumor volume. PMID:23261661

  13. Systemic treatments for brain metastases from breast cancer, non-small cell lung cancer, melanoma and renal cell carcinoma: an overview of the literature.

    PubMed

    Lombardi, Giuseppe; Di Stefano, Anna Luisa; Farina, Patrizia; Zagonel, Vittorina; Tabouret, Emeline

    2014-09-01

    The frequency of metastatic brain tumors has increased over recent years; the primary tumors most involved are breast cancer, lung cancer, melanoma and renal cell carcinoma. While radiation therapy and surgery remain the mainstay treatment in selected patients, new molecular drugs have been developed for brain metastases. Studies so far report interesting results. This review focuses on systemic cytotoxic drugs and, in particular, on new targeted therapies and their clinically relevant activities in brain metastases from solid tumors in adults.

  14. TORC1/2 Inhibitor MLN0128 and Bevacizumab in Treating Patients With Recurrent Glioblastoma or Advanced Solid Tumors

    ClinicalTrials.gov

    2016-06-17

    Adult Glioblastoma; Endometrial Clear Cell Adenocarcinoma; Endometrial Serous Adenocarcinoma; Ovarian Clear Cell Cystadenocarcinoma; Ovarian Endometrioid Adenocarcinoma; Ovarian Mucinous Cystadenocarcinoma; Ovarian Serous Cystadenocarcinoma; Recurrent Fallopian Tube Carcinoma; Recurrent Ovarian Carcinoma; Recurrent Primary Peritoneal Carcinoma; Recurrent Uterine Corpus Carcinoma; Solid Neoplasm; Stage IIIA Fallopian Tube Cancer; Stage IIIA Ovarian Cancer; Stage IIIA Primary Peritoneal Cancer; Stage IIIB Fallopian Tube Cancer; Stage IIIB Ovarian Cancer; Stage IIIB Primary Peritoneal Cancer; Stage IIIC Fallopian Tube Cancer; Stage IIIC Ovarian Cancer; Stage IIIC Primary Peritoneal Cancer; Stage IV Fallopian Tube Cancer; Stage IV Ovarian Cancer; Stage IV Primary Peritoneal Cancer

  15. Brain Tumors

    MedlinePlus

    A brain tumor is a growth of abnormal cells in the tissues of the brain. Brain tumors can be benign, with no cancer cells, ... cancer cells that grow quickly. Some are primary brain tumors, which start in the brain. Others are ...

  16. Memoirs of an amnesiac--two years with brain cancer, or the outer space of living with brain tumors.

    PubMed

    Dor-Ner, A D

    1991-11-01

    Alexandra Dane Dor-Ner ("Ali" to friends) was a photographer, writer, and a producer of programs on child development. In February 1989, at the age of 41, she was diagnosed with malignant brain cancer. During the following months she underwent brain surgery, radiation, and implant radiation. Throughout her treatment, she continued to work on a novel and write stores and literary criticism. A volunteer in hospitals before her illness, she now became very active in a support group of brain tumor patients and often served as a first resource and contact for others diagnosed with brain cancer. All was very a