Science.gov

Sample records for global change effects

  1. Ecological effects of global change

    NASA Astrophysics Data System (ADS)

    Menzel, A.

    2010-03-01

    Mankind actually puts manifolds loads on our earth including stratospheric ozone depletion, rising freshwater use, changes of land cover and land use. For several of these threats, critical loads and thresholds may be already exceeded, e.g. nitrogen input, climate change and biodiversity loss (Röckström et al. 2009). The working group on Impacts, Adaptation and Vulnerability of the last IPCC report (AR4, 2007) concluded that anthropogenic warming over the last three decades has had a discernible influence on many physical and biological systems, thus global fingerprint of anthropogenic climate change was detectable on all continents and almost all ocean areas (Rosenzweig et al. 2007, 2008). 90% of the significant temperature related changes in 29000 records analysed were consistent with climate warming, e.g. in warming climates earlier spring events, distributional shifts pole wards and to higher altitudes, or community changes with reduced cold adapted species were observed. These impacts, already visible and only related to less than 1°C global warming, allow a limited glance at future changes and pressures on our ecosystems, as the rate of warming may accelerate and will be linked to stronger and more frequent extreme events. Vegetation is an important component of the climate system, part of biogeochemical cycles and the lower boundary of GCMs characterised by certain albedo and roughness. Thus, climate change impacts on vegetation exert feedbacks. The most striking and challenging problems in analysing climate change impacts on ecosystems are related to cases where one would expect major changes due to warming however there is reduced, limited or no reaction in the observed systems. This feature is known as divergence problem in tree ring research, called resilience in ecosystem dynamics or might be simply a time-lag or environmental monitoring problem. However, there are various other pressures by global change, e.g. land use change or pollution, leading

  2. Climate Effects of Global Land Cover Change

    SciTech Connect

    Gibbard, S G; Caldeira, K; Bala, G; Phillips, T; Wickett, M

    2005-08-24

    There are two competing effects of global land cover change on climate: an albedo effect which leads to heating when changing from grass/croplands to forest, and an evapotranspiration effect which tends to produce cooling. It is not clear which effect would dominate in a global land cover change scenario. We have performed coupled land/ocean/atmosphere simulations of global land cover change using the NCAR CAM3 atmospheric general circulation model. We find that replacement of current vegetation by trees on a global basis would lead to a global annual mean warming of 1.6 C, nearly 75% of the warming produced under a doubled CO{sub 2} concentration, while global replacement by grasslands would result in a cooling of 0.4 C. These results suggest that more research is necessary before forest carbon storage should be deployed as a mitigation strategy for global warming. In particular, high latitude forests probably have a net warming effect on the Earth's climate.

  3. Potential effects of global climate change

    SciTech Connect

    Gucinski, H.; Vance, E.; Reiners, W.A.

    1995-07-01

    The difficulties of detecting climatic changes do not diminish the need to examine the consequences of a changing global radiative energy balance. In part, detecting global changes is difficult (even though many, though by no means all, theoretical climatic processes are well understood) because the potential effects of changes on the unmanaged ecosystems of the globe, especially forests, which may have great human significance, involve tightly woven ecosystems, inextricably linked to global habitat. Coniferous forests are of particular interest because they dominate high-latitude forest systems, and potential effects of global climate change are likely to be greatest at high latitudes. The degree of projected climate change is a function of many likely scenarios of fossil fuel consumption, and the ratios of manmade effects to natural sources and sinks of CO{sub 2}. Because CO{sub 2}, like water vapor, CH{sub 4}, CFCs, and other gases, absorbs infrared energy, it will alter the radiation balance of the global atmosphere. The consequences of this alteration to the radiation balance cannot simply be translated into changing climate because (1) the existence of large energy reservoirs (the oceans) can introduce a lag in responses, (2) feedback loops between atmosphere, oceans, and biosphere can change the net rate of buildup of greenhouse gases in the atmosphere, (3) complex interactions in the atmospheric water balance can change the rate of cloud formation with their persistence, in turn, changing the global albedo and the energy balance, and (4) there is intrusion of other global effects, such as periodic volcanic gas injections to the stratosphere.

  4. GLOBAL CHANGE EFFECTS ON CORAL REEF CONDITION

    EPA Science Inventory

    Fisher, W., W. Davis, J. Campbell, L. Courtney, P. Harris, B. Hemmer, M. Parsons, B. Quarles and D. Santavy. In press. Global Change Effects on Coral Reef Condition (Abstract). To be presented at the EPA Science Forum: Healthy Communities and Ecosystems, 1-3 June 2004, Washington...

  5. GLOBAL CHANGE EFFECTS ON CORAL REEF CONDITION

    EPA Science Inventory

    Fisher, W., W. Davis, J. Campbell, L. Courtney, P. Harris, B. Hemmer, M. Parsons, B. Quarles and D. Santavy. In press. Global Change Effects on Coral Reef Condition (Abstract). To be presented at the EPA Science Forum: Healthy Communities and Ecosystems, 1-3 June 2004, Washington...

  6. The Effects of Global Change upon United States Air Quality

    EPA Science Inventory

    To understand more fully the effects of global changes on ambient concentrations of ozone and particulate matter with aerodynamic diameter smaller than 2.5 μm (PM2.5) in the US, we conducted a comprehensive modeling effort to evaluate explicitly the effects of change...

  7. The Effects of Global Change upon United States Air Quality

    EPA Science Inventory

    To understand more fully the effects of global changes on ambient concentrations of ozone and particulate matter with aerodynamic diameter smaller than 2.5 μm (PM2.5) in the US, we conducted a comprehensive modeling effort to evaluate explicitly the effects of change...

  8. Global Change

    USGS Publications Warehouse

    ,

    1993-01-01

    Global change is a relatively new area of scientific study using research from many disciplines to determine how Earth systems change, and to assess the influence of human activity on these changes. This teaching packet consists of a poster and three activity sheets. In teaching these activities four themes are important: time, change, cycles, and Earth as home.

  9. Effects of three global change drivers on terrestrial C:N:P stoichiometry: a global synthesis.

    PubMed

    Yue, Kai; Fornara, Dario A; Yang, Wanqin; Peng, Yan; Li, Zhijie; Wu, Fuzhong; Peng, Changhui

    2017-06-01

    Over the last few decades, there has been an increasing number of controlled-manipulative experiments to investigate how plants and soils might respond to global change. These experiments typically examined the effects of each of three global change drivers [i.e., nitrogen (N) deposition, warming, and elevated CO2 ] on primary productivity and on the biogeochemistry of carbon (C), N, and phosphorus (P) across different terrestrial ecosystems. Here, we capitalize on this large amount of information by performing a comprehensive meta-analysis (>2000 case studies worldwide) to address how C:N:P stoichiometry of plants, soils, and soil microbial biomass might respond to individual vs. combined effects of the three global change drivers. Our results show that (i) individual effects of N addition and elevated CO2 on C:N:P stoichiometry are stronger than warming, (ii) combined effects of pairs of global change drivers (e.g., N addition + elevated CO2 , warming + elevated CO2 ) on C:N:P stoichiometry were generally weaker than the individual effects of each of these drivers, (iii) additive interactions (i.e., when combined effects are equal to or not significantly different from the sum of individual effects) were more common than synergistic or antagonistic interactions, (iv) C:N:P stoichiometry of soil and soil microbial biomass shows high homeostasis under global change manipulations, and (v) C:N:P responses to global change are strongly affected by ecosystem type, local climate, and experimental conditions. Our study is one of the first to compare individual vs. combined effects of the three global change drivers on terrestrial C:N:P ratios using a large set of data. To further improve our understanding of how ecosystems might respond to future global change, long-term ecosystem-scale studies testing multifactor effects on plants and soils are urgently required across different world regions. © 2017 John Wiley & Sons Ltd.

  10. Hormonally mediated maternal effects, individual strategy and global change

    PubMed Central

    Meylan, Sandrine; Miles, Donald B.; Clobert, Jean

    2012-01-01

    A challenge to ecologists and evolutionary biologists is predicting organismal responses to the anticipated changes to global ecosystems through climate change. Most evidence suggests that short-term global change may involve increasing occurrences of extreme events, therefore the immediate response of individuals will be determined by physiological capacities and life-history adaptations to cope with extreme environmental conditions. Here, we consider the role of hormones and maternal effects in determining the persistence of species in altered environments. Hormones, specifically steroids, are critical for patterning the behaviour and morphology of parents and their offspring. Hence, steroids have a pervasive influence on multiple aspects of the offspring phenotype over its lifespan. Stress hormones, e.g. glucocorticoids, modulate and perturb phenotypes both early in development and later into adulthood. Females exposed to abiotic stressors during reproduction may alter the phenotypes by manipulation of hormones to the embryos. Thus, hormone-mediated maternal effects, which generate phenotypic plasticity, may be one avenue for coping with global change. Variation in exposure to hormones during development influences both the propensity to disperse, which alters metapopulation dynamics, and population dynamics, by affecting either recruitment to the population or subsequent life-history characteristics of the offspring. We suggest that hormones may be an informative index to the potential for populations to adapt to changing environments. PMID:22566673

  11. Global change effects on plant chemical defenses against insect herbivores.

    PubMed

    Bidart-Bouzat, M Gabriela; Imeh-Nathaniel, Adebobola

    2008-11-01

    This review focuses on individual effects of major global change factors, such as elevated CO2, O3, UV light and temperature, on plant secondary chemistry. These secondary metabolites are well-known for their role in plant defense against insect herbivory. Global change effects on secondary chemicals appear to be plant species-specific and dependent on the chemical type. Even though plant chemical responses induced by these factors are highly variable, there seems to be some specificity in the response to different environmental stressors. For example, even though the production of phenolic compounds is enhanced by both elevated CO2 and UV light levels, the latter appears to primarily increase the concentrations of flavonoids. Likewise, specific phenolic metabolites seem to be induced by O3 but not by other factors, and an increase in volatile organic compounds has been particularly detected under elevated temperature. More information is needed regarding how global change factors influence inducibility of plant chemical defenses as well as how their indirect and direct effects impact insect performance and behavior, herbivory rates and pathogen attack. This knowledge is crucial to better understand how plants and their associated natural enemies will be affected in future changing environments.

  12. The effects of global change upon United States air quality

    NASA Astrophysics Data System (ADS)

    Gonzalez-Abraham, R.; Chung, S. H.; Avise, J.; Lamb, B.; Salathé, E. P., Jr.; Nolte, C. G.; Loughlin, D.; Guenther, A.; Wiedinmyer, C.; Duhl, T.; Zhang, Y.; Streets, D. G.

    2015-11-01

    To understand more fully the effects of global changes on ambient concentrations of ozone and particulate matter with aerodynamic diameter smaller than 2.5 μm (PM2.5) in the United States (US), we conducted a comprehensive modeling effort to evaluate explicitly the effects of changes in climate, biogenic emissions, land use and global/regional anthropogenic emissions on ozone and PM2.5 concentrations and composition. Results from the ECHAM5 global climate model driven with the A1B emission scenario from the Intergovernmental Panel on Climate Change (IPCC) were downscaled using the Weather Research and Forecasting (WRF) model to provide regional meteorological fields. We developed air quality simulations using the Community Multiscale Air Quality Model (CMAQ) chemical transport model for two nested domains with 220 and 36 km horizontal grid cell resolution for a semi-hemispheric domain and a continental United States (US) domain, respectively. The semi-hemispheric domain was used to evaluate the impact of projected global emissions changes on US air quality. WRF meteorological fields were used to calculate current (2000s) and future (2050s) biogenic emissions using the Model of Emissions of Gases and Aerosols from Nature (MEGAN). For the semi-hemispheric domain CMAQ simulations, present-day global emissions inventories were used and projected to the 2050s based on the IPCC A1B scenario. Regional anthropogenic emissions were obtained from the US Environmental Protection Agency National Emission Inventory 2002 (EPA NEI2002) and projected to the future using the MARKet ALlocation (MARKAL) energy system model assuming a business as usual scenario that extends current decade emission regulations through 2050. Our results suggest that daily maximum 8 h average ozone (DM8O) concentrations will increase in a range between 2 to 12 parts per billion (ppb) across most of the continental US. The highest increase occurs in the South, Central and Midwest regions of the US due to

  13. Global climate change

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    Present processes of global climate change are reviewed. The processes determining global temperature are briefly described and the concept of effective temperature is elucidated. The greenhouse effect is examined, including the sources and sinks of greenhouse gases.

  14. Global climate change

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    Present processes of global climate change are reviewed. The processes determining global temperature are briefly described and the concept of effective temperature is elucidated. The greenhouse effect is examined, including the sources and sinks of greenhouse gases.

  15. [Effects of global change on soil fauna diversity: A review].

    PubMed

    Wu, Ting-Juan

    2013-02-01

    Terrestrial ecosystem consists of aboveground and belowground components, whose interaction affects the ecosystem processes and functions. Soil fauna plays an important role in biogeochemical cycles. With the recognizing of the significance of soil fauna in ecosystem processes, increasing evidences demonstrated that global change has profound effects on soil faunima diversity. The alternation of land use type, the increasing temperature, and the changes in precipitation pattern can directly affect soil fauna diversity, while the increase of atmospheric CO2 concentration and nitrogen deposition can indirectly affect the soil fauna diversity by altering plant community composition, diversity, and nutrient contents. The interactions of different environmental factors can co-affect the soil fauna diversity. To understand the effects of different driving factors on soil fauna diversity under the background of climate change would facilitate us better predicting how the soil fauna diversity and related ecological processes changed in the future.

  16. The effects of global change upon United States air quality

    NASA Astrophysics Data System (ADS)

    Gonzalez-Abraham, R.; Avise, J.; Chung, S. H.; Lamb, B.; Salathé, E. P., Jr.; Nolte, C. G.; Loughlin, D.; Guenther, A.; Wiedinmyer, C.; Duhl, T.; Zhang, Y.; Streets, D. G.

    2014-12-01

    To understand more fully the effects of global changes on ambient concentrations of ozone and particulate matter with aerodynamic diameter smaller than 2.5 μm (PM2.5) in the US, we conducted a comprehensive modeling effort to evaluate explicitly the effects of changes in climate, biogenic emissions, land use, and global/regional anthropogenic emissions on ozone and PM2.5 concentrations and composition. Results from the ECHAM5 global climate model driven with the A1B emission scenario from the Intergovernmental Panel on Climate Change (IPCC) were downscaled using the Weather Research and Forecasting (WRF) model to provide regional meteorological fields. We developed air quality simulations using the Community Multiscale Air Quality Model (CMAQ) chemical transport model for two nested domains with 220 and 36 km horizontal grid cell resolution for a semi-hemispheric domain and a continental United States (US) domain, respectively. The semi-hemispheric domain was used to evaluate the impact of projected Asian emissions changes on US air quality. WRF meteorological fields were used to calculate current (2000s) and future (2050s) biogenic emissions using the Model of Emissions of Gases and Aerosols from Nature (MEGAN). For the semi-hemispheric domain CMAQ simulations, present-day global emissions inventories were used and projected to the 2050s based on the IPCC A1B scenario. Regional anthropogenic emissions were obtained from the US Environmental Protection Agency National Emission Inventory 2002 (EPA NEI2002) and projected to the future using the MARKet ALlocation (MARKAL) energy system model assuming a business as usual scenario that extends current decade emission regulations through 2050. Our results suggest that daily maximum 8 h average ozone (DM8O) concentrations will increase in a range between 2 to 12 ppb across most of the continental US, with the highest increase in the South, Central, and Midwest regions of the US, due to increases in temperature, enhanced

  17. Countermeasures for mitigating the effects of global environment changes

    NASA Technical Reports Server (NTRS)

    Jenkins, Lyle M.

    1991-01-01

    Environmental countermeasures for preventing the negative effects of global climate change and ozone depletion are discussed with special emphasis on the possibilities of space-based actions. Among the programs addressed are the Mission to Planet Earth, the Solar Power Satellite (and linkage to the Space Exploration Initiative), and proposed projects such as a lunar-based power generator that utilizes He-3 as a fusion fuel when combined with deuterium. The concept of regional working groups is proposed for initiating the programs for effective countermeasures.

  18. Critical Issues for Understanding Global Change Effects on Terrestrial Ecosystems.

    PubMed

    Ojima, D S; Kittel, T G F; Rosswall, T; Walker, B H

    1991-08-01

    Marked alterations in the Earth's environment have already been observed, and these presage even greater changes as the impact of human (i.e., land use and industrial) activities increases. Direct and indirect feedbacks link terrestrial ecosystems with global change, and include interactions affecting fluxes of water, energy, nutrients, and "greenhouse" gases and affecting ecosystem structure and composition. Community development can affect ecosystem dynamics by altering resource partitioning among biotic components and through changes in structural characteristics, thereby affecting feedbacks to global change. The response of terrestrial ecosystems to the climate-weather system is dependent on the spatial scale of the interactions between these systems and the temporal scale that links the various components. The International Geosphere-Biosphere Programme (IGBP), which was initiated by the International Council of Scientific Unions (ICSU) in 1986, has undertaken to develop a research plan to address a predictive understanding of how terrestrial ecosystem will be impacted by global changes in the environment and the potential feedbacks. The IGBP science plan, which incorporates established Core Projects and activities related to research on terrestrial ecosystem linkages to global change, includes the International Global Atmospheric Chemistry Project (IGAC); the Biospheric Aspects of the Hydrological Cycle (BAHC); the Global Change and Terrestrial Ecosystems (GCTE); Global Analysis, Integration, and Modelling (GAIM); IGBP Data and Information System (DIS); and IGBP Regional Research Centers (RRC). The coupling of research and policy communities for the purpose of developing mechanisms to adapt to these impending changes urgently needs to be established. © 1991 by the Ecological Society of America.

  19. Global versus local change effects on a large European river.

    PubMed

    Floury, M; Delattre, C; Ormerod, S J; Souchon, Y

    2012-12-15

    Water temperature and discharge are fundamental to lotic ecosystem function, and both are strongly affected by climate. In large river catchments, however, climatic effects might be difficult to discern from background variability and other cumulative sources of anthropogenic change arising from local land and water management. Here, we use trend analysis and generalised linear modelling on the Loire, the longest river in France to test the hypotheses that i) long-term trends in discharge and river temperature have arisen from climate change and ii) climatic effects on water quality have not been overridden by local effects. Over 32 years (1977-2008), discharge in the Middle Loire fell by about 100 m³/s while water temperature increased by 1.2 °C with greatest effects during the warm period (May-August). Although increasing air temperature explained 80% of variations in water temperature, basin-wide precipitation showed no long-term trend and accounted for only 18% of inter-annual fluctuations in flow. We suggest that trends in abstraction coupled with a potential increase in evapo-transpiration at the catchment scale could be responsible for the majority of the long-term discharge trend. Discharge and water temperature explained only 20% of long-term variations in major water quality variables (conductivity, dissolved oxygen, pH, suspended matter, biochemical oxygen demand, nitrate, phosphate and chlorophyll-a), with phosphate and chlorophyll declining contrary to expectations from global change probably as a consequence of improved wastewater treatment. These data partially support our first hypothesis in revealing how warming in the Loire has been consistent with recent atmospheric warming. However, local management has had larger effects on discharge and water quality in ways that could respectively exacerbate (abstraction) or ameliorate (reduced point-source pollution) warming effects. As one of the first case-studies of its kind, this multi-parametric study

  20. EFFECTS OF GLOBAL CHANGE ON CORAL REEF ECOSYSTEMS

    EPA Science Inventory

    Corals and coral reefs of the Caribbean and through the world are deteriorating at an accelerated rate. Several stressors are believed to contrbute to this decline, including global changes in atmospheric gases and land use patterns. In particular, warmer water temperatures and...

  1. EFFECTS OF GLOBAL CHANGE ON CORAL REEF ECOSYSTEMS

    EPA Science Inventory

    Corals and coral reefs of the Caribbean and through the world are deteriorating at an accelerated rate. Several stressors are believed to contrbute to this decline, including global changes in atmospheric gases and land use patterns. In particular, warmer water temperatures and...

  2. USGS global change research

    USGS Publications Warehouse

    ,

    1995-01-01

    The Earth's global environment--its interrelated climate, land, oceans, fresh water, atmospheric and ecological systems-has changed continually throughout Earth history. Human activities are having ever-increasing effects on these systems. Sustaining our environment as population and demands for resources increase requires a sound understanding of the causes and cycles of natural change and the effects of human activities on the Earth's environmental systems. The U.S. Global Change Research Program was authorized by Congress in 1989 to provide the scientific understanding necessary to develop national and international policies concerning global environmental issues, particularly global climate change. The program addresses questions such as: what factors determine global climate; have humans already begun to change the global climate; will the climate of the future be very different; what will be the effects of climate change; and how much confidence do we have in our predictions? Through understanding, we can improve our capability to predict change, reduce the adverse effects of human activities, and plan strategies for adapting to natural and human-induced environmental change.

  3. Are conservation organizations configured for effective adaptation to global change?

    USGS Publications Warehouse

    Armsworth, Paul R.; Larson, Eric R.; Jackson, Stephen T.; Sax, Dov F.; Simonin, Paul W.; Blossey, Bernd; Green, Nancy; Lester, Liza; Klein, Mary L.; Ricketts, Taylor H.; Runge, Michael C.; Shaw, M. Rebecca

    2015-01-01

    Conservation organizations must adapt to respond to the ecological impacts of global change. Numerous changes to conservation actions (eg facilitated ecological transitions, managed relocations, or increased corridor development) have been recommended, but some institutional restructuring within organizations may also be needed. Here we discuss the capacity of conservation organizations to adapt to changing environmental conditions, focusing primarily on public agencies and nonprofits active in land protection and management in the US. After first reviewing how these organizations anticipate and detect impacts affecting target species and ecosystems, we then discuss whether they are sufficiently flexible to prepare and respond by reallocating funding, staff, or other resources. We raise new hypotheses about how the configuration of different organizations enables them to protect particular conservation targets and manage for particular biophysical changes that require coordinated management actions over different spatial and temporal scales. Finally, we provide a discussion resource to help conservation organizations assess their capacity to adapt.

  4. Global Climate Change: Federal Research on Possible Human Health Effects

    DTIC Science & Technology

    2006-02-10

    unrelated to climate change per se. This report does not address the underlying question of climate change itself. Rather, it identifies the array of...climate-relevant human health research and discusses the interconnections. Approximately $57 million each year since FY2005 supports climate change research...infectious diseases. Three conclusions are common to several studies on possible health effects of climate change : the infirm, the elderly, and the poor

  5. Effectiveness of forest management strategies to mitigate effects of global change in Siberia

    Treesearch

    Eric Gustafson; Anatoly Shvidenko; Robert Scheller; Brian. Sturtevant

    2011-01-01

    Siberian forest ecosystems are experiencing multiple global changes. Climate change produces direct (temperature and precipitation) and indirect (altered fire regimes and increase in cold-limited insect outbreaks) effects. Although much of Siberia has not yet been subject to timber harvest, the frontier of timber cutting is advancing steadily across the region. We...

  6. EFFECTS OF CLIMATE CHANGE ON GLOBAL SEAWEED COMMUNITIES.

    PubMed

    Harley, Christopher D G; Anderson, Kathryn M; Demes, Kyle W; Jorve, Jennifer P; Kordas, Rebecca L; Coyle, Theraesa A; Graham, Michael H

    2012-10-01

    Seaweeds are ecologically important primary producers, competitors, and ecosystem engineers that play a central role in coastal habitats ranging from kelp forests to coral reefs. Although seaweeds are known to be vulnerable to physical and chemical changes in the marine environment, the impacts of ongoing and future anthropogenic climate change in seaweed-dominated ecosystems remain poorly understood. In this review, we describe the ways in which changes in the environment directly affect seaweeds in terms of their physiology, growth, reproduction, and survival. We consider the extent to which seaweed species may be able to respond to these changes via adaptation or migration. We also examine the extensive reshuffling of communities that is occurring as the ecological balance between competing species changes, and as top-down control by herbivores becomes stronger or weaker. Finally, we delve into some of the ecosystem-level responses to these changes, including changes in primary productivity, diversity, and resilience. Although there are several key areas in which ecological insight is lacking, we suggest that reasonable climate-related hypotheses can be developed and tested based on current information. By strategically prioritizing research in the areas of complex environmental variation, multiple stressor effects, evolutionary adaptation, and population, community, and ecosystem-level responses, we can rapidly build upon our current understanding of seaweed biology and climate change ecology to more effectively conserve and manage coastal ecosystems. © 2012 Phycological Society of America.

  7. If You Change Yourself, the World Changes: The Effect of Exhibition on Preservice Science Teachers' Views about Global Climate Change

    ERIC Educational Resources Information Center

    Aksüt, Pelin; Dogan, Nihal; Bahar, Mehmet

    2016-01-01

    Although learning can occur in many environments e.g. science museum or zoo, some studies reported that teachers are prone to avoid outdoor activities since they lack of field trip training. For that reason; this study aims to explore the effect of the exhibition on preservice science teachers' views about global climate change (GCC) as well as…

  8. If You Change Yourself, the World Changes: The Effect of Exhibition on Preservice Science Teachers' Views about Global Climate Change

    ERIC Educational Resources Information Center

    Aksüt, Pelin; Dogan, Nihal; Bahar, Mehmet

    2016-01-01

    Although learning can occur in many environments e.g. science museum or zoo, some studies reported that teachers are prone to avoid outdoor activities since they lack of field trip training. For that reason; this study aims to explore the effect of the exhibition on preservice science teachers' views about global climate change (GCC) as well as…

  9. Global Surface Temperature Change

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Ruedy, R.; Sato, M.; Lo, K.

    2010-12-01

    We update the Goddard Institute for Space Studies (GISS) analysis of global surface temperature change, compare alternative analyses, and address questions about perception and reality of global warming. Satellite-observed night lights are used to identify measurement stations located in extreme darkness and adjust temperature trends of urban and periurban stations for nonclimatic factors, verifying that urban effects on analyzed global change are small. Because the GISS analysis combines available sea surface temperature records with meteorological station measurements, we test alternative choices for the ocean data, showing that global temperature change is sensitive to estimated temperature change in polar regions where observations are limited. We use simple 12 month (and n × 12) running means to improve the information content in our temperature graphs. Contrary to a popular misconception, the rate of warming has not declined. Global temperature is rising as fast in the past decade as in the prior 2 decades, despite year-to-year fluctuations associated with the El Niño-La Niña cycle of tropical ocean temperature. Record high global 12 month running mean temperature for the period with instrumental data was reached in 2010.

  10. Amazonia and Global Change

    NASA Astrophysics Data System (ADS)

    Keller, Michael; Bustamante, Mercedes; Gash, John; Silva Dias, Pedro

    Amazonia and Global Change synthesizes results of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) for scientists and students of Earth system science and global environmental change. LBA, led by Brazil, asks how Amazonia currently functions in the global climate and biogeochemical systems and how the functioning of Amazonia will respond to the combined pressures of climate and land use change, such as • Wet season and dry season aerosol concentrations and their effects on diffuse radiation and photosynthesis • Increasing greenhouse gas concentration, deforestation, widespread biomass burning and changes in the Amazonian water cycle • Drought effects and simulated drought through rainfall exclusion experiments • The net flux of carbon between Amazonia and the atmosphere • Floodplains as an important regulator of the basin carbon balance including serving as a major source of methane to the troposphere • The impact of the likely increased profitability of cattle ranching. The book will serve a broad community of scientists and policy makers interested in global change and environmental issues with high-quality scientific syntheses accessible to nonspecialists in a wide community of social scientists, ecologists, atmospheric chemists, climatologists, and hydrologists.

  11. Will Global Change Effect Primary Productivity in Coastal Ecosystems?

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Algae are the base of coastal food webs because they provide the source of organic carbon for the remaining members of the community. Thus, the rate that they produce organic carbon to a large extent controls the productivity of the entire ecosystem. Factors that control algal productivity range from the physical (e.g., temperature, light), chemical (e.g., nutrient levels) to the biological (e.g., grazing). Currently, levels of atmospheric carbon dioxide surficial fluxes of ultraviolet radiation are rising. Both of these environmental variables can have a profound effect on algal productivity. Atmospheric carbon dioxide may increase surficial levels of dissolved inorganic carbon. Our laboratory and field studies of algal mats and phytoplankton cultures under ambient and elevated levels of pCO2 show that elevated levels of inorganic carbon can cause an increase in photosynthetic rates. In some cases, this increase will cause an increase in phytoplankton numbers. There may be an increase in the excretion of fixed carbon, which in turn may enhance bacterial productivity. Alternatively, in analogy with studies on the effect of elevated pCO2 on plants, the phytoplankton could change their carbon to nitrogen ratios, which will effect the feeding of the planktonic grazers. The seasonal depletion of stratospheric ozone has resulted in elevated fluxes of UVB radiation superimposed on the normal seasonal variation. Present surface UV fluxes have a significant impact on phytoplankton physiology, including the inhibition of the light and dark reactions of photosynthesis, inhibition of nitrogenase activity, inhibition of heterocyst formation, reduction in motility, increased synthesis of the UV-screening pigment scytonemin, and mutation. After reviewing these issues, recent work in our lab on measuring the effect of UV radiation on phytoplankton in the San Francisco Bay Estuary will be presented.

  12. Will Global Change Effect Primary Productivity in Coastal Ecosystems?

    NASA Technical Reports Server (NTRS)

    Rothschild, Lynn J.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Algae are the base of coastal food webs because they provide the source of organic carbon for the remaining members of the community. Thus, the rate that they produce organic carbon to a large extent controls the productivity of the entire ecosystem. Factors that control algal productivity range from the physical (e.g., temperature, light), chemical (e.g., nutrient levels) to the biological (e.g., grazing). Currently, levels of atmospheric carbon dioxide surficial fluxes of ultraviolet radiation are rising. Both of these environmental variables can have a profound effect on algal productivity. Atmospheric carbon dioxide may increase surficial levels of dissolved inorganic carbon. Our laboratory and field studies of algal mats and phytoplankton cultures under ambient and elevated levels of pCO2 show that elevated levels of inorganic carbon can cause an increase in photosynthetic rates. In some cases, this increase will cause an increase in phytoplankton numbers. There may be an increase in the excretion of fixed carbon, which in turn may enhance bacterial productivity. Alternatively, in analogy with studies on the effect of elevated pCO2 on plants, the phytoplankton could change their carbon to nitrogen ratios, which will effect the feeding of the planktonic grazers. The seasonal depletion of stratospheric ozone has resulted in elevated fluxes of UVB radiation superimposed on the normal seasonal variation. Present surface UV fluxes have a significant impact on phytoplankton physiology, including the inhibition of the light and dark reactions of photosynthesis, inhibition of nitrogenase activity, inhibition of heterocyst formation, reduction in motility, increased synthesis of the UV-screening pigment scytonemin, and mutation. After reviewing these issues, recent work in our lab on measuring the effect of UV radiation on phytoplankton in the San Francisco Bay Estuary will be presented.

  13. The potential effects of global climate change on the United States

    SciTech Connect

    Smith, J.B.; Tirpak, D.A. )

    1990-01-01

    This book addresses the effects of climate change in vital areas such as water resources, agriculture, sea levels, and forests. It also focuses on wetlands, human health, rivers, and lakes. It analyzes policy options for mitigating the effects of global warming-including energy efficiency, alternative technologies, reforestation options, CFC reductions and other options for limiting greenhouse gases. It includes: Global Climate Change, Methodology, California, Great Lakes, Agriculture, Forests, Biological Diversity, Urban Infrastructure, Electricity Demand, and Research Needs.

  14. Potential global climate change

    SciTech Connect

    1994-09-01

    Global economic integration and growth contribute much to the construction of energy plants, vehicles and other industrial products that produces carbon emission and in effect cause the destruction of the environment. A coordinated policy and response worldwide to curb emissions and to effect global climate change must be introduced. Improvement in scientific understanding is required to monitor how much emission reduction is necessary. In the near term, especially in the next seven years, sustained research and development for low carbon or carbon-free energy is necessary. Other measures must also be introduced, such as limiting the use of vehicles, closing down inefficient power plants, etc. In the long term, the use of the electric car, use solar energy, etc. is required. Reforestation must also be considered to absorb large amounts of carbon in the atmosphere.

  15. GLOBAL CHANGE RESEARCH NEWS #7: ENVIRONMENTAL EFFECTS OF OZONE DEPLETION

    EPA Science Inventory

    This edition focuses on a recent UNEP report entitled, "Environmental Effects of Ozone Depletion: 1998 Assessment." Dr. Richard Zepp (ORD/NERL) is one of the Lead Authors of this report. The 1998 assessment focuses on new information produced since 1994. It also includes earlie...

  16. GLOBAL CHANGE RESEARCH NEWS #7: ENVIRONMENTAL EFFECTS OF OZONE DEPLETION

    EPA Science Inventory

    This edition focuses on a recent UNEP report entitled, "Environmental Effects of Ozone Depletion: 1998 Assessment." Dr. Richard Zepp (ORD/NERL) is one of the Lead Authors of this report. The 1998 assessment focuses on new information produced since 1994. It also includes earlie...

  17. The 'island effect' in terrestrial global change experiments: a problem with no solution?

    PubMed

    Leuzinger, Sebastian; Fatichi, Simone; Cusens, Jarrod; Körner, Christian; Niklaus, Pascal A

    2015-07-27

    Most of the currently experienced global environmental changes (rising atmospheric CO2 concentrations, warming, altered amount and pattern of precipitation, and increased nutrient load) directly or indirectly affect ecosystem surface energy balance and plant transpiration. As a consequence, the relative humidity of the air surrounding the vegetation changes, thus creating a feedback loop whose net effect on transpiration and finally productivity is not trivial to quantify. Forcedly, in any global change experiment with the above drivers, we can only treat small plots, or 'islands', of vegetation. This means that the treated plots will likely experience the ambient humidity conditions influenced by the surrounding, non-treated vegetation. Experimental assessments of global change effects will thus systematically lack modifications originating from these potentially important feedback mechanisms, introducing a bias of unknown magnitude in all measurements of processes directly or indirectly depending on plant transpiration. We call this potential bias the 'island effect'. Here, we discuss its implications in various global change experiments with plants. We also suggest ways to complement experiments using modelling approaches and observational studies. Ultimately, there is no obvious solution to deal with the island effect in field experiments and only models can provide an estimate of modification of responses by these feedbacks. However, we suggest that increasing the awareness of the island effect among both experimental researchers and modellers will greatly improve the interpretation of vegetation responses to global change.

  18. Global temperature change.

    PubMed

    Hansen, James; Sato, Makiko; Ruedy, Reto; Lo, Ken; Lea, David W; Medina-Elizade, Martin

    2006-09-26

    Global surface temperature has increased approximately 0.2 degrees C per decade in the past 30 years, similar to the warming rate predicted in the 1980s in initial global climate model simulations with transient greenhouse gas changes. Warming is larger in the Western Equatorial Pacific than in the Eastern Equatorial Pacific over the past century, and we suggest that the increased West-East temperature gradient may have increased the likelihood of strong El Niños, such as those of 1983 and 1998. Comparison of measured sea surface temperatures in the Western Pacific with paleoclimate data suggests that this critical ocean region, and probably the planet as a whole, is approximately as warm now as at the Holocene maximum and within approximately 1 degrees C of the maximum temperature of the past million years. We conclude that global warming of more than approximately 1 degrees C, relative to 2000, will constitute "dangerous" climate change as judged from likely effects on sea level and extermination of species.

  19. Global temperature change

    PubMed Central

    Hansen, James; Sato, Makiko; Ruedy, Reto; Lo, Ken; Lea, David W.; Medina-Elizade, Martin

    2006-01-01

    Global surface temperature has increased ≈0.2°C per decade in the past 30 years, similar to the warming rate predicted in the 1980s in initial global climate model simulations with transient greenhouse gas changes. Warming is larger in the Western Equatorial Pacific than in the Eastern Equatorial Pacific over the past century, and we suggest that the increased West–East temperature gradient may have increased the likelihood of strong El Niños, such as those of 1983 and 1998. Comparison of measured sea surface temperatures in the Western Pacific with paleoclimate data suggests that this critical ocean region, and probably the planet as a whole, is approximately as warm now as at the Holocene maximum and within ≈1°C of the maximum temperature of the past million years. We conclude that global warming of more than ≈1°C, relative to 2000, will constitute “dangerous” climate change as judged from likely effects on sea level and extermination of species. PMID:17001018

  20. The Effect of Land Use (Deforestation) on Global Changing and its consequences in Turkey

    NASA Astrophysics Data System (ADS)

    Onursal Denli, G.; Denli, H. H.

    2015-12-01

    Land use has generally been considered as a local environmental issue, but it is becoming a force of global importance. Global changes to forests, farmlands, waterways, and air are being driven by the need to provide food, water and shelter to more than six billion people. Global croplands, pastures, plantations and urban areas have expanded in recent decades, accompanied by large increases in energy, water and fertilizer consumption, along with considerable losses of biodiversity. Especially the forests influence climate through physical, chemical and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. Such changes in land use have enabled humans to appropriate an increasing share of the planet's resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality. Global Warming and Climate Change are the two main fundamental problems facing Turkey as well as the World. The expedition and size of this change is becoming noticeably conspicuous now. According to the International Union for Conservation of Nature (IUCN), the global temperature has been increased of about 0.74 degree Celsius since the Industrial Revolution. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change. The general scientific opinions on the climate change states that in the past 50 years, global warming has effected the human life resulting with very obvious influences. High rates of deforestation within a country are most commonly linked to population growth and poverty. In Turkey, the forests are destroyed for various reasons resulting to a change in the climate. This study examines the causes of

  1. Global change and mercury

    USGS Publications Warehouse

    Krabbenhoft, David P.; Sunderland, Elsie M.

    2013-01-01

    More than 140 nations recently agreed to a legally binding treaty on reductions in human uses and releases of mercury that will be signed in October of this year. This follows the 2011 rule in the United States that for the first time regulates mercury emissions from electricity-generating utilities. Several decades of scientific research preceded these important regulations. However, the impacts of global change on environmental mercury concentrations and human exposures remain a major uncertainty affecting the potential effectiveness of regulatory activities.

  2. Space sensors for global change

    SciTech Connect

    Canavan, G.H.

    1994-02-15

    Satellite measurements should contribute to a fuller understanding of the physical processes behind the radiation budget, exchange processes, and global change. Climate engineering requires global observation for early indications of predicted effects, which puts a premium on affordable, distributed constellations of satellites with effective, affordable sensors. Defense has a requirement for continuous global surveillance for warning of aggression, which could evolve from advanced sensors and satellites in development. Many climate engineering needs match those of defense technologies.

  3. Managing global change information

    SciTech Connect

    Stoss, F.W.

    1995-12-31

    Which human activities add to atmospheric concentrations of carbon dioxide (CO{sub 2}), the greenhouse gas that may promote warming of the earth`s climate? How could CO{sub 2} emission restrictions change the use of fossil fuels? How would increases in atmospheric CO{sub 2} likely effect climate? Can one see any evidence that the world is getting warmer? What coastal-zone areas are more sensitive to potential sea-level rise from an accelerated melting of glaciers? What is El Nino and how does it affect the earth`s climate? These are among the thousands of questions to which ORNL data analysts respond every year. Recently, the topic of global environmental change, including climate change, has grown in importance. At ORNL researchers have improved their understanding of the science underlying this major environmental issue. At the same time the Laboratory is playing a pivotal role in directing the data and information management activities for what some researchers consider the most information-intensive science project ever undertaken. Long one of the world`s leading energy R&D facilities, ORNL has more recently emerged as one of the preeminent environmental research centers in the world. Within ORNL`s Environmental Sciences Division, the Environmental Information Analysis Program was established to serve as a focal point for the assimilation of data related to global environmental change. The three major components of the program are the Atmospheric Radiation Measurement Archive, the National Aeronautics and Space Administration`s Earth Observing System Data and Information System Distributed Active Archive Center, and the Carbon Dioxide Information Analysis Center (CDIAC). The World Data Center-A for Atmospheric Trace Gases is located in CDIAC.

  4. Technology and Global Change

    NASA Astrophysics Data System (ADS)

    Grübler, Arnulf

    2003-10-01

    Technology and Global Change describes how technology has shaped society and the environment over the last 200 years. Technology has led us from the farm to the factory to the internet, and its impacts are now global. Technology has eliminated many problems, but has added many others (ranging from urban smog to the ozone hole to global warming). This book is the first to give a comprehensive description of the causes and impacts of technological change and how they relate to global environmental change. Written for specialists and nonspecialists alike, it will be useful for researchers and professors, as a textbook for graduate students, for people engaged in long-term policy planning in industry (strategic planning departments) and government (R & D and technology ministries, environment ministries), for environmental activists (NGOs), and for the wider public interested in history, technology, or environmental issues.

  5. The science of global change

    SciTech Connect

    Dunnette, D.A.; O'Brien, R.J. )

    1992-01-01

    This book covers the following topics: global environmental chemistry, global change and the atmosphere, acid deposition, air, water, and land pollution, UV radiation, global change and the carbon cycle, and global environmental education.

  6. Global climate change and effects on Pacific Northwest salmonids: An exploratory case study

    SciTech Connect

    Shankle, S.A.

    1990-09-01

    Recently, a number of papers have addressed global warming and freshwater fisheries. The recent report to Congress by the US Environmental Protection Agency included an analysis of potential effects of global warming on fisheries of the Great Lakes, California, and the Southeast. In California, the report stated that salinity increases in the San Francisco Bay could enhance the abundance of marine fish species, while anadromous species could be adversely affected. This paper discusses global climate changes and the effects on Pacific Northwest Salmonids. The impacts of climate change or Spring Chinook production in the Yakima Sub-basin was simulated using a computer modeling system developed for the Northwest Power planning council. 35 refs., 1 fig., 1 tab.

  7. Meta-analyses of the effects of major global change drivers on soil respiration across China

    NASA Astrophysics Data System (ADS)

    Feng, Jiguang; Wang, Jingsheng; Ding, Lubin; Yao, Pingping; Qiao, Mengping; Yao, Shuaichen

    2017-02-01

    Soil respiration (Rs) is affected largely by major global change drivers, global meta-analysis studies have synthesized the available information to determine how Rs responds to these drivers. However, little is known about the effects of these drivers on Rs across China. Here, we conducted a meta-analysis to synthesize 80 studies published in the literature with 301 paired comparisons to quantify the responses of Rs to simulated warming, nitrogen addition, precipitation increase and acid rain across Chinese terrestrial ecosystem. Results showed that global change drivers significantly changed Rs across Chinese ecosystems. Warming, nitrogen addition, and precipitation increase significantly increased Rs by 9.08%, 5.21%, 31.68%, respectively, while simulated acid rain decreased Rs by 7.06%. The responses of Rs to warming, nitrogen addition, and precipitation increase are similar in both direction and magnitude to those reported in global syntheses, except for higher response ratio under precipitation increase in China. In addition, the responses of Rs were different among ecosystem types, and among experimental treatments. Warming significantly increased Rs in croplands but did not change in forests and grasslands. The effect magnitude of N addition on Rs in grasslands and croplands was much higher than those in other ecosystems. In general, precipitation increase stimulated Rs in different ecosystems, and its effect magnitudes increased with changed precipitation levels. However, acid rain inhibited Rs in different biomes and intensities of acid rain. Our findings contribute to better understanding of how Rs will change under global change, and provide important parameters for carbon cycle model at the regional scale.

  8. Time-lag effects of global vegetation responses to climate change.

    PubMed

    Wu, Donghai; Zhao, Xiang; Liang, Shunlin; Zhou, Tao; Huang, Kaicheng; Tang, Bijian; Zhao, Wenqian

    2015-09-01

    Climate conditions significantly affect vegetation growth in terrestrial ecosystems. Due to the spatial heterogeneity of ecosystems, the vegetation responses to climate vary considerably with the diverse spatial patterns and the time-lag effects, which are the most important mechanism of climate-vegetation interactive effects. Extensive studies focused on large-scale vegetation-climate interactions use the simultaneous meteorological and vegetation indicators to develop models; however, the time-lag effects are less considered, which tends to increase uncertainty. In this study, we aim to quantitatively determine the time-lag effects of global vegetation responses to different climatic factors using the GIMMS3g NDVI time series and the CRU temperature, precipitation, and solar radiation datasets. First, this study analyzed the time-lag effects of global vegetation responses to different climatic factors. Then, a multiple linear regression model and partial correlation model were established to statistically analyze the roles of different climatic factors on vegetation responses, from which the primary climate-driving factors for different vegetation types were determined. The results showed that (i) both the time-lag effects of the vegetation responses and the major climate-driving factors that significantly affect vegetation growth varied significantly at the global scale, which was related to the diverse vegetation and climate characteristics; (ii) regarding the time-lag effects, the climatic factors explained 64% variation of the global vegetation growth, which was 11% relatively higher than the model ignoring the time-lag effects; (iii) for the area with a significant change trend (for the period 1982-2008) in the global GIMMS3g NDVI (P < 0.05), the primary driving factor was temperature; and (iv) at the regional scale, the variation in vegetation growth was also related to human activities and natural disturbances. Considering the time-lag effects is quite

  9. Potential effects of global environmental changes on cryptosporidiosis and giardiasis transmission.

    PubMed

    Lal, Aparna; Baker, Michael G; Hales, Simon; French, Nigel P

    2013-02-01

    Global climate change will affect the viability and spread of zoonotic parasites, while agricultural land use changes will influence infection sources and reservoirs. The health impact of these environmental changes will depend on the social, economic and physical resilience of the population. This review describes the influence of climatic variability, land-use changes, and social factors on cryptosporidiosis and giardiasis in humans. Global to public health to individual-level interventions to reduce future disease burden are highlighted. Because future environmental change is expected to have the greatest health impacts in countries with limited resources, increasing research and adaptation capabilities in these regions is emphasized. Understanding how environmental and social processes interact to influence disease transmission is essential for the development of effective strategies for disease prevention.

  10. Shifts in winter distribution in birds: effects of global warming and local habitat change.

    PubMed

    Valiela, Ivan; Bowen, Jennifer L

    2003-11-01

    As global warming intensified toward the end of the 20th century, there was a northward shift in winter ranges of bird species in Cape Cod, Massachusetts, USA. These poleward shifts were correlated to local increases in minimum winter temperatures and global temperature anomalies. This evidence, plus other recent results, suggests that during the last two decades global warming has led to massive and widespread biogeographic shifts with potentially major ecological and human consequences. Local habitat changes associated with urban sprawl affected mainly forest birds with more northern winter distributions. In Cape Cod, the effects of warming on bird distributions are more substantial at the start of the 21st century, than those of habitat alteration, but as urban sprawl continues its importance may rival that of global warming.

  11. Introduction to the Special Issue: Across the horizon: scale effects in global change research.

    PubMed

    Gornish, Elise S; Leuzinger, Sebastian

    2015-01-01

    As a result of the increasing speed and magnitude in which habitats worldwide are experiencing environmental change, making accurate predictions of the effects of global change on ecosystems and the organisms that inhabit them have become an important goal for ecologists. Experimental and modelling approaches aimed at understanding the linkages between factors of global change and biotic responses have become numerous and increasingly complex in order to adequately capture the multifarious dynamics associated with these relationships. However, constrained by resources, experiments are often conducted at small spatiotemporal scales (e.g. looking at a plot of a few square metres over a few years) and at low organizational levels (looking at organisms rather than ecosystems) in spite of both theoretical and experimental work that suggests ecological dynamics across scales can be dissimilar. This phenomenon has been hypothesized to occur because the mechanisms that drive dynamics across scales differ. A good example is the effect of elevated CO2 on transpiration. While at the leaf level, transpiration can be reduced, at the stand level, transpiration can increase because leaf area per unit ground area increases. The reported net effect is then highly dependent on the spatiotemporal scale. This special issue considers the biological relevancy inherent in the patterns associated with the magnitude and type of response to changing environmental conditions, across scales. This collection of papers attempts to provide a comprehensive treatment of this phenomenon in order to help develop an understanding of the extent of, and mechanisms involved with, ecological response to global change.

  12. Solar influences on global change

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Monitoring of the Sun and the Earth has yielded new knowledge essential to this debate. There is now no doubt that the total radiative energy from the Sun that heats the Earth's surface changes over decadal time scales as a consequence of solar activity. Observations indicate as well that changes in ultraviolet radiation and energetic particles from the Sun, also connected with the solar activity, modulate the layer of ozone that protects the biosphere from the solar ultraviolet radiation. This report reassesses solar influences on global change in the light of this new knowledge of solar and atmospheric variability. Moreover, the report considers climate change to be encompassed within the broader concept of global change; thus the biosphere is recognized to be part of a larger, coupled Earth system. Implementing a program to continuously monitor solar irradiance over the next several decades will provide the opportunity to estimate solar influences on global change, assuming continued maintenance of observations of climate and other potential forcing mechanisms. In the lower atmosphere, an increase in solar radiation is expected to cause global warming. In the stratosphere, however, the two effects produce temperature changes of opposite sign. A monitoring program that would augment long term observations of tropospheric parameters with similar observations of stratospheric parameters could separate these diverse climate perturbations and perhaps isolate a greenhouse footprint of climate change. Monitoring global change in the troposphere is a key element of all facets of the United States Global Change Research Program (USGCRP), not just of the study of solar influences on global change. The need for monitoring the stratosphere is also important for global change research in its own right because of the stratospheric ozone layer.

  13. Global atmospheric changes.

    PubMed Central

    Piver, W T

    1991-01-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the processes that are responsible for the greenhouse effect, air pollution, acid deposition, and increased exposure to UV radiation. PMID:1820255

  14. Global Change Could Amplify Fire Effects on Soil Greenhouse Gas Emissions

    PubMed Central

    Niboyet, Audrey; Brown, Jamie R.; Dijkstra, Paul; Blankinship, Joseph C.; Leadley, Paul W.; Le Roux, Xavier; Barthes, Laure; Barnard, Romain L.; Field, Christopher B.; Hungate, Bruce A.

    2011-01-01

    Background Little is known about the combined impacts of global environmental changes and ecological disturbances on ecosystem functioning, even though such combined impacts might play critical roles in shaping ecosystem processes that can in turn feed back to climate change, such as soil emissions of greenhouse gases. Methodology/Principal Findings We took advantage of an accidental, low-severity wildfire that burned part of a long-term global change experiment to investigate the interactive effects of a fire disturbance and increases in CO2 concentration, precipitation and nitrogen supply on soil nitrous oxide (N2O) emissions in a grassland ecosystem. We examined the responses of soil N2O emissions, as well as the responses of the two main microbial processes contributing to soil N2O production – nitrification and denitrification – and of their main drivers. We show that the fire disturbance greatly increased soil N2O emissions over a three-year period, and that elevated CO2 and enhanced nitrogen supply amplified fire effects on soil N2O emissions: emissions increased by a factor of two with fire alone and by a factor of six under the combined influence of fire, elevated CO2 and nitrogen. We also provide evidence that this response was caused by increased microbial denitrification, resulting from increased soil moisture and soil carbon and nitrogen availability in the burned and fertilized plots. Conclusions/Significance Our results indicate that the combined effects of fire and global environmental changes can exceed their effects in isolation, thereby creating unexpected feedbacks to soil greenhouse gas emissions. These findings highlight the need to further explore the impacts of ecological disturbances on ecosystem functioning in the context of global change if we wish to be able to model future soil greenhouse gas emissions with greater confidence. PMID:21687708

  15. Global change could amplify fire effects on soil greenhouse gas emissions.

    PubMed

    Niboyet, Audrey; Brown, Jamie R; Dijkstra, Paul; Blankinship, Joseph C; Leadley, Paul W; Le Roux, Xavier; Barthes, Laure; Barnard, Romain L; Field, Christopher B; Hungate, Bruce A

    2011-01-01

    Little is known about the combined impacts of global environmental changes and ecological disturbances on ecosystem functioning, even though such combined impacts might play critical roles in shaping ecosystem processes that can in turn feed back to climate change, such as soil emissions of greenhouse gases. We took advantage of an accidental, low-severity wildfire that burned part of a long-term global change experiment to investigate the interactive effects of a fire disturbance and increases in CO(2) concentration, precipitation and nitrogen supply on soil nitrous oxide (N(2)O) emissions in a grassland ecosystem. We examined the responses of soil N(2)O emissions, as well as the responses of the two main microbial processes contributing to soil N(2)O production--nitrification and denitrification--and of their main drivers. We show that the fire disturbance greatly increased soil N(2)O emissions over a three-year period, and that elevated CO(2) and enhanced nitrogen supply amplified fire effects on soil N(2)O emissions: emissions increased by a factor of two with fire alone and by a factor of six under the combined influence of fire, elevated CO(2) and nitrogen. We also provide evidence that this response was caused by increased microbial denitrification, resulting from increased soil moisture and soil carbon and nitrogen availability in the burned and fertilized plots. Our results indicate that the combined effects of fire and global environmental changes can exceed their effects in isolation, thereby creating unexpected feedbacks to soil greenhouse gas emissions. These findings highlight the need to further explore the impacts of ecological disturbances on ecosystem functioning in the context of global change if we wish to be able to model future soil greenhouse gas emissions with greater confidence.

  16. Sensitive landscape features for detecting biotic effects of global change. Final report

    SciTech Connect

    Ferson, S.; Kurtz, C.; Slice, D.

    1995-10-01

    Although several global climate models have forecast dramatic changes in future climatological conditions, very little can be predicted with any confidence about the effects on the earth`s vegetation from such environmental changes. Therefore some means is needed by which to monitor the biotic effects of global change, especially at its early stages. Ecotones, the transitional zones between larger, more compositionally well-defined biological communities, may be useful structures for monitoring the effects of climatic and other environmental impacts due to global as well as local perturbations. However, theoretical consideration of the ecological processes that determine the location and form of these structures suggests that ecotones that are sharp and therefore obvious to observers may be relatively insensitive to the types of environmental changes they might be asked to detect. It is necessary, therefore, to develop methods to identify ecotones according to the processes that generate them so that their usefulness in a particular environmental monitoring program can be assessed. This report summarizes the development of analytical methods for the detection, localization and characterization of these potentially important landscape features.

  17. Climate change, global warming and coral reefs: modelling the effects of temperature.

    PubMed

    Crabbe, M James C

    2008-10-01

    Climate change and global warming have severe consequences for the survival of scleractinian (reef-building) corals and their associated ecosystems. This review summarizes recent literature on the influence of temperature on coral growth, coral bleaching, and modelling the effects of high temperature on corals. Satellite-based sea surface temperature (SST) and coral bleaching information available on the internet is an important tool in monitoring and modelling coral responses to temperature. Within the narrow temperature range for coral growth, corals can respond to rate of temperature change as well as to temperature per se. We need to continue to develop models of how non-steady-state processes such as global warming and climate change will affect coral reefs.

  18. Climate change in cities due to global warming and urban effects

    NASA Astrophysics Data System (ADS)

    McCarthy, Mark P.; Best, Martin J.; Betts, Richard A.

    2010-05-01

    Urbanisation is estimated to result in 6 billion urban dwellers by 2050. Cities will be exposed to climate change from greenhouse gas induced radiative forcing, and localised effects from urbanisation such as the urban heat island. An urban land-surface model has been included in the HadAM3 Global Climate Model. It shows that regions of high population growth coincide with regions of high urban heat island potential, most notably in the Middle East, the Indian sub-continent, and East Africa. Climate change has the capacity to modify the climatic potential for urban heat islands, with increases of 30% in some locations, but a global average reduction of 6%. Warming and extreme heat events due to urbanisation and increased energy consumption are simulated to be as large as the impact of doubled CO2 in some regions, and climate change increases the disparity in extreme hot nights between rural and urban areas.

  19. Combined effects of global change pressures on animal-mediated pollination.

    PubMed

    González-Varo, Juan P; Biesmeijer, Jacobus C; Bommarco, Riccardo; Potts, Simon G; Schweiger, Oliver; Smith, Henrik G; Steffan-Dewenter, Ingolf; Szentgyörgyi, Hajnalka; Woyciechowski, Michał; Vilà, Montserrat

    2013-09-01

    Pollination is an essential process in the sexual reproduction of seed plants and a key ecosystem service to human welfare. Animal pollinators decline as a consequence of five major global change pressures: climate change, landscape alteration, agricultural intensification, non-native species, and spread of pathogens. These pressures, which differ in their biotic or abiotic nature and their spatiotemporal scales, can interact in nonadditive ways (synergistically or antagonistically), but are rarely considered together in studies of pollinator and/or pollination decline. Management actions aimed at buffering the impacts of a particular pressure could thereby prove ineffective if another pressure is present. Here, we focus on empirical evidence of the combined effects of global change pressures on pollination, highlighting gaps in current knowledge and future research needs.

  20. Predicting global change effects on forest biomass and composition in south-central Siberia.

    PubMed

    Gustafson, Eric J; Shvidenko, Anatoly Z; Sturtevant, Brian R; Scheller, Robert M

    2010-04-01

    Multiple global changes such as timber harvesting in areas not previously disturbed by cutting and climate change will undoubtedly affect the composition and spatial distribution of boreal forests, which will, in turn, affect the ability of these forests to retain carbon and maintain biodiversity. To predict future states of the boreal forest reliably, it is necessary to understand the complex interactions among forest regenerative processes (succession), natural disturbances (e.g., fire, wind, and insects), and anthropogenic disturbances (e.g., timber harvest). We used a landscape succession and disturbance model (LANDIS-II) to study the relative effects of climate change, timber harvesting, and insect outbreaks on forest composition, biomass (carbon), and landscape pattern in south-central Siberia. We found that most response variables were more strongly influenced by timber harvest and insect outbreaks than by the direct effects of climate change. Direct climate effects generally increased tree productivity and modified probability of establishment, but indirect effects on the fire regime generally counteracted the direct effects of climate on forest composition. Harvest and insects significantly changed forest composition, reduced living aboveground biomass, and increased forest fragmentation. We concluded that: (1) Global change is likely to significantly change forest composition of south-central Siberian landscapes, with some changes taking ecosystems outside the historic range of variability. (2) The direct effects of climate change in the study area are not as significant as the exploitation of virgin forest by timber harvest and the potential increased outbreaks of the Siberian silk moth. (3) Novel disturbance by timber harvest and insect outbreaks may greatly reduce the aboveground living biomass of Siberian forests and may significantly alter ecosystem dynamics and wildlife populations by increasing forest fragmentation.

  1. Effects of global change during the 21st century onthe nitrogen cycle

    NASA Astrophysics Data System (ADS)

    Fowler, D.; Steadman, C. E.; Stevenson, D.; Coyle, M.; Rees, R. M.; Skiba, U. M.; Sutton, M. A.; Cape, J. N.; Dore, A. J.; Vieno, M.; Simpson, D.; Zaehle, S.; Stocker, B. D.; Rinaldi, M.; Facchini, M. C.; Flechard, C. R.; Nemitz, E.; Twigg, M.; Erisman, J. W.; Butterbach-Bahl, K.; Galloway, J. N.

    2015-12-01

    The global nitrogen (N) cycle at the beginning of the 21st century has been shown to be strongly influenced by the inputs of reactive nitrogen (Nr) from human activities, including combustion-related NOx, industrial and agricultural N fixation, estimated to be 220 Tg N yr-1 in 2010, which is approximately equal to the sum of biological N fixation in unmanaged terrestrial and marine ecosystems. According to current projections, changes in climate and land use during the 21st century will increase both biological and anthropogenic fixation, bringing the total to approximately 600 Tg N yr-1 by around 2100. The fraction contributed directly by human activities is unlikely to increase substantially if increases in nitrogen use efficiency in agriculture are achieved and control measures on combustion-related emissions implemented. Some N-cycling processes emerge as particularly sensitive to climate change. One of the largest responses to climate in the processing of Nr is the emission to the atmosphere of NH3, which is estimated to increase from 65 Tg N yr-1 in 2008 to 93 Tg N yr-1 in 2100 assuming a change in global surface temperature of 5 °C in the absence of increased anthropogenic activity. With changes in emissions in response to increased demand for animal products the combined effect would be to increase NH3 emissions to 135 Tg N yr-1. Another major change is the effect of climate changes on aerosol composition and specifically the increased sublimation of NH4NO3 close to the ground to form HNO3 and NH3 in a warmer climate, which deposit more rapidly to terrestrial surfaces than aerosols. Inorganic aerosols over the polluted regions especially in Europe and North America were dominated by (NH4)2SO4 in the 1970s to 1980s, and large reductions in emissions of SO2 have removed most of the SO42- from the atmosphere in these regions. Inorganic aerosols from anthropogenic emissions are now dominated by NH4NO3, a volatile aerosol which contributes substantially to PM10

  2. Interactive effects of global change factors on soil respiration and its components: a meta-analysis.

    PubMed

    Zhou, Lingyan; Zhou, Xuhui; Shao, Junjiong; Nie, Yuanyuan; He, Yanghui; Jiang, Liling; Wu, Zhuoting; Hosseini Bai, Shahla

    2016-09-01

    As the second largest carbon (C) flux between the atmosphere and terrestrial ecosystems, soil respiration (Rs) plays vital roles in regulating atmospheric CO2 concentration ([CO2 ]) and climatic dynamics in the earth system. Although numerous manipulative studies and a few meta-analyses have been conducted to determine the responses of Rs and its two components [i.e., autotrophic (Ra) and heterotrophic (Rh) respiration] to single global change factors, the interactive effects of the multiple factors are still unclear. In this study, we performed a meta-analysis of 150 multiple-factor (≥2) studies to examine the main and interactive effects of global change factors on Rs and its two components. Our results showed that elevated [CO2 ] (E), nitrogen addition (N), irrigation (I), and warming (W) induced significant increases in Rs by 28.6%, 8.8%, 9.7%, and 7.1%, respectively. The combined effects of the multiple factors, EN, EW, DE, IE, IN, IW, IEW, and DEW, were also significantly positive on Rs to a greater extent than those of the single-factor ones. For all the individual studies, the additive interactions were predominant on Rs (90.6%) and its components (≈70.0%) relative to synergistic and antagonistic ones. However, the different combinations of global change factors (e.g., EN, NW, EW, IW) indicated that the three types of interactions were all important, with two combinations for synergistic effects, two for antagonistic, and five for additive when at least eight independent experiments were considered. In addition, the interactions of elevated [CO2 ] and warming had opposite effects on Ra and Rh, suggesting that different processes may influence their responses to the multifactor interactions. Our study highlights the crucial importance of the interactive effects among the multiple factors on Rs and its components, which could inform regional and global models to assess the climate-biosphere feedbacks and improve predictions of the future states of the

  3. The coming health crisis: indirect health effects of global climate change.

    PubMed

    Myers, Samuel S; Bernstein, Aaron

    2011-02-01

    Global climate change threatens the health of hundreds of millions of people. While much has been written about the direct impacts of climate change on health as a result of more severe storms, more intense heat stress, changes in the distribution of infectious disease, and reduced air quality, we are concerned that the indirect impacts of a disrupted climate system may be orders of magnitude more important in terms of the human suffering they cause. Because these indirect effects will result from changes in biophysical systems, which are inherently complex, there is significant uncertainty about their magnitude, timing, and location. However, the uncertainty that shrouds this issue should not be cause for complacency; rather it should serve as an organizing principle for adaptation to its ill effects.

  4. Braking effect of climate and topography on global change-induced upslope forest expansion

    NASA Astrophysics Data System (ADS)

    Alatalo, Juha M.; Ferrarini, Alessandro

    2017-03-01

    Forests are expected to expand into alpine areas due to global climate change. It has recently been shown that temperature alone cannot realistically explain this process and that upslope tree advance in a warmer scenario may depend on the availability of sites with adequate geomorphic/topographic characteristics. Here, we show that, besides topography (slope and aspect), climate itself can produce a braking effect on the upslope advance of subalpine forests and that tree limit is influenced by non-linear and non-monotonic contributions of the climate variables which act upon treeline upslope advance with varying relative strengths. Our results suggest that global climate change impact on the upslope advance of subalpine forests should be interpreted in a more complex way where climate can both speed up and slow down the process depending on complex patterns of contribution from each climate and non-climate variable.

  5. Braking effect of climate and topography on global change-induced upslope forest expansion.

    PubMed

    Alatalo, Juha M; Ferrarini, Alessandro

    2017-03-01

    Forests are expected to expand into alpine areas due to global climate change. It has recently been shown that temperature alone cannot realistically explain this process and that upslope tree advance in a warmer scenario may depend on the availability of sites with adequate geomorphic/topographic characteristics. Here, we show that, besides topography (slope and aspect), climate itself can produce a braking effect on the upslope advance of subalpine forests and that tree limit is influenced by non-linear and non-monotonic contributions of the climate variables which act upon treeline upslope advance with varying relative strengths. Our results suggest that global climate change impact on the upslope advance of subalpine forests should be interpreted in a more complex way where climate can both speed up and slow down the process depending on complex patterns of contribution from each climate and non-climate variable.

  6. Braking effect of climate and topography on global change-induced upslope forest expansion

    NASA Astrophysics Data System (ADS)

    Alatalo, Juha M.; Ferrarini, Alessandro

    2016-08-01

    Forests are expected to expand into alpine areas due to global climate change. It has recently been shown that temperature alone cannot realistically explain this process and that upslope tree advance in a warmer scenario may depend on the availability of sites with adequate geomorphic/topographic characteristics. Here, we show that, besides topography (slope and aspect), climate itself can produce a braking effect on the upslope advance of subalpine forests and that tree limit is influenced by non-linear and non-monotonic contributions of the climate variables which act upon treeline upslope advance with varying relative strengths. Our results suggest that global climate change impact on the upslope advance of subalpine forests should be interpreted in a more complex way where climate can both speed up and slow down the process depending on complex patterns of contribution from each climate and non-climate variable.

  7. Future Global Change and Cognition.

    PubMed

    Lewandowsky, Stephan

    2016-01-01

    The 11 articles in this issue explore how people respond to climate change and other global challenges. The articles pursue three broad strands of enquiry that relate (1) to the effects and causes of "skepticism" about climate change, (2) the purely cognitive challenges that are posed by a complex scientific issue, and (3) the ways in which climate change can be communicated to a wider audience. Cognitive science can contribute to understanding people's responses to global challenges in many ways, and it may also contribute to implementing solutions to those problems. Copyright © 2016 Cognitive Science Society, Inc.

  8. Climate change may have limited effect on global risk of potato late blight.

    PubMed

    Sparks, Adam H; Forbes, Gregory A; Hijmans, Robert J; Garrett, Karen A

    2014-12-01

    Weather affects the severity of many plant diseases, and climate change is likely to alter the patterns of crop disease severity. Evaluating possible future patterns can help focus crop breeding and disease management research. We examined the global effect of climate change on potato late blight, the disease that caused the Irish potato famine and still is a common potato disease around the world. We used a metamodel and considered three global climate models for the A2 greenhouse gas emission scenario for three 20-year time-slices: 2000-2019, 2040-2059 and 2080-2099. In addition to global analyses, five regions were evaluated where potato is an important crop: the Andean Highlands, Indo-Gangetic Plain and Himalayan Highlands, Southeast Asian Highlands, Ethiopian Highlands, and Lake Kivu Highlands in Sub-Saharan Africa. We found that the average global risk of potato late blight increases initially, when compared with historic climate data, and then declines as planting dates shift to cooler seasons. Risk in the agro-ecosystems analyzed, varied from a large increase in risk in the Lake Kivu Highlands in Rwanda to decreases in the Southeast Asian Highlands of Indonesia. © 2014 John Wiley & Sons Ltd.

  9. Possible effects of global environmental changes on Antarctic benthos: a synthesis across five major taxa

    PubMed Central

    Ingels, Jeroen; Vanreusel, Ann; Brandt, Angelika; Catarino, Ana I; David, Bruno; De Ridder, Chantal; Dubois, Philippe; Gooday, Andrew J; Martin, Patrick; Pasotti, Francesca; Robert, Henri

    2012-01-01

    Because of the unique conditions that exist around the Antarctic continent, Southern Ocean (SO) ecosystems are very susceptible to the growing impact of global climate change and other anthropogenic influences. Consequently, there is an urgent need to understand how SO marine life will cope with expected future changes in the environment. Studies of Antarctic organisms have shown that individual species and higher taxa display different degrees of sensitivity to environmental shifts, making it difficult to predict overall community or ecosystem responses. This emphasizes the need for an improved understanding of the Antarctic benthic ecosystem response to global climate change using a multitaxon approach with consideration of different levels of biological organization. Here, we provide a synthesis of the ability of five important Antarctic benthic taxa (Foraminifera, Nematoda, Amphipoda, Isopoda, and Echinoidea) to cope with changes in the environment (temperature, pH, ice cover, ice scouring, food quantity, and quality) that are linked to climatic changes. Responses from individual to the taxon-specific community level to these drivers will vary with taxon but will include local species extinctions, invasions of warmer-water species, shifts in diversity, dominance, and trophic group composition, all with likely consequences for ecosystem functioning. Limitations in our current knowledge and understanding of climate change effects on the different levels are discussed. PMID:22423336

  10. Possible effects of global environmental changes on Antarctic benthos: a synthesis across five major taxa.

    PubMed

    Ingels, Jeroen; Vanreusel, Ann; Brandt, Angelika; Catarino, Ana I; David, Bruno; De Ridder, Chantal; Dubois, Philippe; Gooday, Andrew J; Martin, Patrick; Pasotti, Francesca; Robert, Henri

    2012-02-01

    Because of the unique conditions that exist around the Antarctic continent, Southern Ocean (SO) ecosystems are very susceptible to the growing impact of global climate change and other anthropogenic influences. Consequently, there is an urgent need to understand how SO marine life will cope with expected future changes in the environment. Studies of Antarctic organisms have shown that individual species and higher taxa display different degrees of sensitivity to environmental shifts, making it difficult to predict overall community or ecosystem responses. This emphasizes the need for an improved understanding of the Antarctic benthic ecosystem response to global climate change using a multitaxon approach with consideration of different levels of biological organization. Here, we provide a synthesis of the ability of five important Antarctic benthic taxa (Foraminifera, Nematoda, Amphipoda, Isopoda, and Echinoidea) to cope with changes in the environment (temperature, pH, ice cover, ice scouring, food quantity, and quality) that are linked to climatic changes. Responses from individual to the taxon-specific community level to these drivers will vary with taxon but will include local species extinctions, invasions of warmer-water species, shifts in diversity, dominance, and trophic group composition, all with likely consequences for ecosystem functioning. Limitations in our current knowledge and understanding of climate change effects on the different levels are discussed.

  11. Plant-mediated and nonadditive effects of two global change drivers on an insect herbivore community.

    PubMed

    de Sassi, Claudio; Lewis, Owen T; Tylianakis, Jason M

    2012-08-01

    Warmer temperatures can alter the phenology and distribution of individual species. However, differences across species may blur community-level phenological responses to climate or cause biotic homogenization by consistently favoring certain taxa. Additionally, the response of insect communities to climate will be subject to plant-mediated effects, which may or may not overshadow the direct effect of rising temperatures on insects. Finally, recent evidence for the importance of interaction effects between global change drivers suggests that phenological responses of communities to climate may be altered by other drivers. We used a natural temperature gradient (generated by elevation and topology), combined with experimental nitrogen fertilization, to investigate the effects of elevated temperature and globally increasing anthropogenic nitrogen deposition on the structure and phenology of a seminatural grassland herbivore assemblage (lepidopteran insects). We found that both drivers, alone and in combination, severely altered how the relative abundance and composition of species changed through time. Importantly, warmer temperatures were associated with biotic homogenization, such that herbivore assemblages in the warmest plots had more similar species composition than those in intermediate or cool plots. Changes in herbivore composition and abundance were largely mediated by changes in the plant community, with increased nonnative grass cover under high treatment levels being the strongest determinant of herbivore abundance. In addition to compositional changes, total herbivore biomass more than doubled under elevated nitrogen and increased more than fourfold with temperature, bearing important functional implications for herbivores as consumers and as a prey resource. The crucial role of nonnative plant dominance in mediating responses of herbivores to change, combined with the frequent nonadditive (positive and negative) effects of the two drivers, and the

  12. Effects of global change during the 21st century on the nitrogen cycle

    NASA Astrophysics Data System (ADS)

    Fowler, D.; Steadman, C. E.; Stevenson, D.; Coyle, M.; Rees, R. M.; Skiba, U. M.; Sutton, M. A.; Cape, J. N.; Dore, A. J.; Vieno, M.; Simpson, D.; Zaehle, S.; Stocker, B. D.; Rinaldi, M.; Facchini, M. C.; Flechard, C. R.; Nemitz, E.; Twigg, M.; Erisman, J. W.; Galloway, J. N.

    2015-01-01

    The global nitrogen (N) cycle at the beginning of the 21st century has been shown to be strongly influenced by the inputs of reactive nitrogen (Nr) from human activities, estimated to be 193 Tg N yr-1 in 2010 which is approximately equal to the sum of biological N fixation in terrestrial and marine ecosystems. According to current trajectories, changes in climate and land use during the 21st century will increase both biological and anthropogenic fixation, bringing the total to approximately 600 Tg N yr-1 by around 2100. The fraction contributed directly by human activities is unlikely to increase substantially if increases in nitrogen use efficiency in agriculture are achieved and control measures on combustion related emissions implemented. Some N cycling processes emerge as particularly sensitive to climate change. One of the largest responses to climate in the processing of Nr is the emission to the atmosphere of NH3, which is estimated to increase from 65 Tg N yr-1 in 2008 to 93 Tg N yr-1 in 2100 assuming a change in surface temperature of 5 °C even in the absence of increased anthropogenic activity. With changes in emissions in response to increased demand for animal products the combined effect would be to increase NH3 emissions to 132 Tg N yr-1. Another major change is the effect of changes in aerosol composition combined with changes in temperature. Inorganic aerosols over the polluted regions especially in Europe and North America were dominated by (NH4)2SO4 in the 1970s to 1980s, and large reductions in emissions of SO2 have removed most of the SO42- from the atmosphere in these regions. Inorganic aerosols from anthropogenic emissions are now dominated by NH4NO3, a volatile aerosol which contributes substantially to PM10 and human health effects globally as well as eutrophication and climate effects. The volatility of NH4NO3 and rapid dry deposition of the vapour phase dissociation products, HNO3 and NH3, is estimated to be reducing the transport

  13. Understanding the effects of global change on ecosystems of the Sonoran Desert

    SciTech Connect

    Halvorson, W.L. )

    1993-06-01

    The Global Change program for the Sonoran Desert just began in March 1992. Currently, two projects are being directly funded by the National Park Service and we are coordinating with research of other agencies. One thrust of the program is to understand the effect of climate on species growth, abundances and distribution. This will be done using a number of methods. One is growth ring analysis of conifers on mountain ranges in and bordering the Sonoran Desert. Another study will relate the USGS Desert Laboratory data base on plant species distributions to a mesoscale climate model. Other programs that we are coordinating with include a USGS Desert Laboratory project to study long term changes in plant communities of the southwest using a comparison of photos from the early 1930s, early 1960s and early 1990s. Other agencies have active global climate research at The University of Arizona and we are working to coordinate the NPS program with these at the investigator level through participation in a university-wide Global Change Committee.

  14. Estimating the tolerance of species to the effects of global environmental change.

    PubMed

    Saavedra, Serguei; Rohr, Rudolf P; Dakos, Vasilis; Bascompte, Jordi

    2013-01-01

    Global environmental change is affecting species distribution and their interactions with other species. In particular, the main drivers of environmental change strongly affect the strength of interspecific interactions with considerable consequences for biodiversity. However, extrapolating the effects observed on pair-wise interactions to entire ecological networks is challenging. Here we propose a framework to estimate the tolerance to changes in the strength of mutualistic interaction that species in mutualistic networks can sustain before becoming extinct. We identify the scenarios where generalist species can be the least tolerant. We show that the least tolerant species across different scenarios do not appear to have uniquely common characteristics. Species' tolerance is extremely sensitive to the direction of change in the strength of mutualistic interaction, as well as to the observed mutualistic trade-offs between the number of partners and the strength of the interactions.

  15. Potential effects of global climate change on ecosystems of the Pacific Northwest

    SciTech Connect

    Peterson, D.L.; Woodward, A.; Ettl, G.J. )

    1993-06-01

    The global climate change research program at the University of Washington Cooperative Park Studies Unit is examining the response of ecosystems in parks of the Pacific Northwest. Research is based on the concept that ecotones may be most sensitive to climate. We have focused particularly on ecotones defining alpine and subalpine vegetation, and montane and lowland forests. Results obtained from the subalpine ecotone where changes in plant distribution are easily identified, indicate that tree growth and establishment will increase in response to predicted climate change. Other ecotones and hydrologic/vegetation relationships of Crater Lake are the subject of ongoing palynological and dendrochronological studies of forest distribution, response of tree growth to climate, and physiological studies of plant tolerance. This information will be the basis for modelling efforts to predict the effect of climate change on these systems.

  16. Effects of Global Change on U.S. Urban Areas: Vulnerabilities, Impacts, and Adaptation

    NASA Astrophysics Data System (ADS)

    Quattrochi, D. A.; Wilbanks, T. J.; Kirshen, P. H.; Romero-Lankao, P.; Rosenzweig, C. E.; Ruth, M.; Solecki, W.; Tarr, J. A.

    2007-05-01

    Human settlements, both large and small, are where the vast majority of people on the Earth live. Expansion of cities both in population and areal extent, is a relentless process that will accelerate in the 21st century. As a consequence of urban growth both in the United States and around the globe, it is important to develop an understanding of how urbanization will affect the local and regional environment. Of equal importance, however, is the assessment of how cities will be impacted by the looming prospects of global climate change and climate variability. The potential impacts of climate change and variability has recently been enunciated by the IPCC's "Climate Change 2007" report. Moreover, the U.S. Climate Change Science Program (CCSP) is preparing a series of "Synthesis and Assessment Products" (SAP) reports to support informed discussion and decision making regarding climate change and variability by policy makers, resource managers, stakeholders, the media, and the general public. We are working on a chapter of SAP 4.6 ("Analysis of the Effects of Global Chance on Human Health and Welfare and Human Systems") wherein we wish to describe the effects of global climate change on human settlements. This paper will present the thoughts and ideas that are being formulated for our SAP report that relate to what vulnerabilities and impacts will occur, what adaptation responses may take place, and what possible effects on settlement patterns and characteristics will potentially arise, on human settlements in the U.S. as a result of climate change and climate variability. We wish to present these ideas and concepts as a "work in progress" that are subject to several rounds of review, and we invite comments from listeners at this session on the rationale and veracity of our thoughts. Additionally, we wish to explore how technology such as remote sensing data coupled with modeling, can be employed as synthesis tools for deriving insight across a spectrum of impacts

  17. Global Environmental Change Symposium

    NASA Astrophysics Data System (ADS)

    Bush, Susan M.

    The global environmental warming issue has been catapulted to the forefront of media attention as a result of the drought of 1988 and extremely warm temperatures. NASA scientist James Hansen testified last year that the warming trend has begun and that part of the temperature rise is due to gases such as carbon dioxide, methane, and chlorofluro-carbons (CFCs) being released into the atmosphere by human activity.In response to recent scientific speculation on the issue, the National Academy of Sciences, Washington, D.C., hosted the symposium Global Environmental Change April 24 as part of their annual meeting. Speakers included Bert Bolin, University of Stockholm; Robert White, National Academy of Engineering; Stephen Schneider, National Center for Atmospheric Research; and Peter Raven, Missouri Botanical Garden. Moderator was Russell Train, World Wildlife Fund.

  18. Global change research highlights

    SciTech Connect

    Krause, C.

    1995-12-31

    Wood - the fuel source of the past - is expected to be a fuel source of the future. Fast growing trees are being cloned and nurtured for conversion to biofuels to replace or supplement gasoline for transportation. The future may also bring higher temperatures and drought if global climate changes as predicted. So, it seems practical to raise fastgrowing trees that not only provide fuel by capturing carbon from the atmosphere (helping to deter climate change) but also flourish under dry conditions. A recent ORNL finding has bearing on this goal. Hybrid willow trees have been cloned because they grow fast and serve as good fuel sources. However, there are important gender differences. Male willow clones are generally more tolerant of drought than female willows. Also, male willows cause no weed problems because they do not disperse seeds. In addition research work has looked at the impact of enhanced carbon dioxide environments on the growth of trees and the potential sequestering of carbon dioxide into the trees or soils. Scientists have found that ground-level ozone in the environment can reduce the growth of the loblolly pine, a forest tree species of great economic importance in the Southeast. It is predicted that global warming could lead to changes in regional precipitation, even periods of drought. How would climate change affect the growth of forest trees? This is a question ORNL has been attempting to answer. Geologic records have been studied by means of isotope ratio techniques to study reasons for vegetation changes in the past. The question is what was the reason for these changes.

  19. Effects of global change in the Czech Part of the River Elbe Basin and adaptation options

    NASA Astrophysics Data System (ADS)

    Koch, Hagen; Kaltofen, Michael; Kaden, Stefan; Grünewald, Uwe

    2010-05-01

    In Integrated Water Resources Management planning the effects of changing natural conditions (natural water availability) and socio-economic development (water demand) must be taken into consideration. Climate change will influence the water availability. In some sectors, e.g. agricultural irrigation, also the water demand is influenced by climatic conditions. Both, the development of natural water availability and water demand, are connected with certain levels of uncertainty. Therefore, scenarios of socio-economic development and climate change are required for Integrated Water Resources Management planning. The river Elbe basin (catchment area approximately 150,000 km²) is located in central Europe. The river Elbe basin is a trans boundary river basin. One third is located in the Czech Republic upstream of Germany, where two thirds of the basin is located. Therefore, inflows from the Czech part are important for instance for navigation in the German part. For navigation an inflow to Germany of 100 m3/s is required. Due to climate change the inflows are expected to decline. In the project GLOWA-Elbe a water management model for the whole river Elbe basin was developed. The model for the Czech part includes among others 52 reservoirs, 20 thermoelectric power plants, 70 hydroelectric power plants, 30 industrial users, 15 agricultural irrigation users, 40 public water utilities, and 160 waste water treatment plants. Two global socio-economic trends are renationalized and used in the simulations. Renationalized climate data are used to simulate the effects of climate change on natural discharges. Using the water management model the effects of global change on inflows from the Czech Republic to Germany are simulated. Using this model is it analyzed, if reservoir management in the Czech part can sustain a required inflow of 100 m3/s to Germany.

  20. Global Climate Change Interaction Web.

    ERIC Educational Resources Information Center

    Fortner, Rosanne W.

    1998-01-01

    Students investigate the effects of global climate change on life in the Great Lakes region in this activity. Teams working together construct as many links as possible for such factors as rainfall, lake water, evaporation, skiing, zebra mussels, wetlands, shipping, walleye, toxic chemicals, coastal homes, and population. (PVD)

  1. Global Climate Change Interaction Web.

    ERIC Educational Resources Information Center

    Fortner, Rosanne W.

    1998-01-01

    Students investigate the effects of global climate change on life in the Great Lakes region in this activity. Teams working together construct as many links as possible for such factors as rainfall, lake water, evaporation, skiing, zebra mussels, wetlands, shipping, walleye, toxic chemicals, coastal homes, and population. (PVD)

  2. Effects of interactive global changes on methane uptake in an annual grassland

    NASA Astrophysics Data System (ADS)

    Blankinship, Joseph C.; Brown, Jamie R.; Dijkstra, Paul; Hungate, Bruce A.

    2010-06-01

    The future size of the terrestrial methane (CH4) sink of upland soils remains uncertain, along with potential feedbacks to global warming. Much of the uncertainty lies in our lack of knowledge about potential interactive effects of multiple simultaneous global environmental changes. Field CH4 fluxes and laboratory soil CH4 consumption were measured five times during 3 consecutive years in a California annual grassland exposed to 8 years of the full factorial combination of ambient and elevated levels of precipitation, temperature, atmospheric CO2 concentration, and N deposition. Across all sampling dates and treatments, increased precipitation caused a 61% reduction in field CH4 uptake. However, this reduction depended quantitatively on other global change factors. Higher precipitation reduced CH4 uptake when temperature or N deposition (but not both) increased, and under elevated CO2 but only late in the growing season. Warming alone also decreased CH4 uptake early in the growing season, which was partly explained by a decrease in laboratory soil CH4 consumption. Atmospheric CH4 models likely need to incorporate nonadditive interactions, seasonal interactions, and interactions between methanotrophy and methanogenesis. Despite the complexity of interactions we observed in this multifactor experiment, the outcome agrees with results from single-factor experiments: an increased terrestrial CH4 sink appears less likely than a reduced one.

  3. Effects of Global Change on U.S. Urban Areas: Vulnerabilities, Impacts, and Adaptation

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Wilbanks, Thomas J.; Kirshen, Paul; Romero-Lnkao, Patricia; Rosenzweig, Cynthia; Ruth, Matthias; Solecki, William; Tarr, Joel

    2007-01-01

    Human settlements, both large and small, are where the vast majority of people on the Earth live. Expansion of cities both in population and areal extent, is a relentless process that will accelerate in the 21st century. As a consequence of urban growth both in the United States and around the globe, it is important to develop an understanding of how urbanization will affect the local and regional environment. Of equal importance, however, is the assessment of how cities will be impacted by the looming prospects of global climate change and climate variability. The potential impacts of climate change and variability has recently been annunciated by the IPCC's "Climate Change 2007" report. Moreover, the U.S. Climate Change Science Program (CCSP) is preparing a series of "Synthesis and Assessment Products" (SAPs) reports to support informed discussion and decision making regarding climate change and variability by policy matters, resource managers, stakeholders, the media, and the general public. We are authors on a SAP describing the effects of global climate change on human settlements. This paper will present the elements of our SAP report that relate to what vulnerabilities and impacts will occur, what adaptation responses may take place, and what possible effects on settlement patterns and characteristics will potentially arise, on human settlements in the U.S. as a result of climate change and climate variability. We will also present some recommendations about what should be done to further research on how climate change and variability will impact human settlements in the U.S., as well as how to engage government officials, policy and decision makers, and the general public in understanding the implications of climate change and variability on the local and regional levels. Additionally, we wish to explore how technology such as remote sensing data coupled with modeling, can be employed as synthesis tools for deriving insight across a spectrum of impacts (e

  4. Effects of Global Change on U.S. Urban Areas: Vulnerabilities, Impacts, and Adaptation

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Wilbanks, Thomas J.; Kirshen, Paul; Romero-Lnkao, Patricia; Rosenzweig, Cynthia; Ruth, Matthias; Solecki, William; Tarr, Joel

    2007-01-01

    Human settlements, both large and small, are where the vast majority of people on the Earth live. Expansion of cities both in population and areal extent, is a relentless process that will accelerate in the 21st century. As a consequence of urban growth both in the United States and around the globe, it is important to develop an understanding of how urbanization will affect the local and regional environment. Of equal importance, however, is the assessment of how cities will be impacted by the looming prospects of global climate change and climate variability. The potential impacts of climate change and variability has recently been annunciated by the IPCC's "Climate Change 2007" report. Moreover, the U.S. Climate Change Science Program (CCSP) is preparing a series of "Synthesis and Assessment Products" (SAPs) reports to support informed discussion and decision making regarding climate change and variability by policy matters, resource managers, stakeholders, the media, and the general public. We are authors on a SAP describing the effects of global climate change on human settlements. This paper will present the elements of our SAP report that relate to what vulnerabilities and impacts will occur, what adaptation responses may take place, and what possible effects on settlement patterns and characteristics will potentially arise, on human settlements in the U.S. as a result of climate change and climate variability. We will also present some recommendations about what should be done to further research on how climate change and variability will impact human settlements in the U.S., as well as how to engage government officials, policy and decision makers, and the general public in understanding the implications of climate change and variability on the local and regional levels. Additionally, we wish to explore how technology such as remote sensing data coupled with modeling, can be employed as synthesis tools for deriving insight across a spectrum of impacts (e

  5. Global environmental change

    SciTech Connect

    Corell, R.W.; Anderson, P.A.

    1990-01-01

    Fifty years ago the buzz words in science were [open quotes]atomic energy,[close quotes] and the general mood of the public, in those more naive days, was that the earth is so large that it could take any kind of human abuse. The advance of science and technology since then has proved that this is not the case. It is now common sense, even to the layperson, that the earth's environment is delicate and needs careful protection if future generations are to enjoy it. The buzz words now are [open quotes]global change.[close quotes] This book is the outcome of the Workshop on the Science of Global Environmental Change sponsored by the North Atlantic Treaty Organization (NATO) and is one of the NATO's Advanced Science Institute Series books. It is essentially a collection of the lectures given in the workshop. The workshop was apparently not intended for in-depth scientific discussions but to review the overall current research situation and to identify future research needs. Accordingly, the papers collected in this volume are basically of this nature.

  6. Designing Global Climate Change

    NASA Astrophysics Data System (ADS)

    Griffith, P. C.; ORyan, C.

    2012-12-01

    In a time when sensationalism rules the online world, it is best to keep things short. The people of the online world are not passing back and forth lengthy articles, but rather brief glimpses of complex information. This is the target audience we attempt to educate. Our challenge is then to attack not only ignorance, but also apathy toward global climate change, while conforming to popular modes of learning. When communicating our scientific material, it was difficult to determine what level of information was appropriate for our audience, especially with complex subject matter. Our unconventional approach for communicating the carbon crisis as it applies to global climate change caters to these 'recreational learners'. Using story-telling devices acquired from Carolyne's biomedical art background coupled with Peter's extensive knowledge of carbon cycle and ecosystems science, we developed a dynamic series of illustrations that capture the attention of a callous audience. Adapting complex carbon cycle and climate science into comic-book-style animations creates a channel between artist, scientist, and the general public. Brief scenes of information accompanied by text provide a perfect platform for visual learners, as well as fresh portrayals of stale material for the jaded. In this way art transcends the barriers of the cerebral and the abstract, paving the road to understanding.;

  7. The macroecological contribution to global change solutions.

    PubMed

    Kerr, Jeremy T; Kharouba, Heather M; Currie, David J

    2007-06-15

    Anthropogenic global changes threaten species and the ecosystem services upon which society depends. Effective solutions to this multifaceted crisis need scientific responses spanning disciplines and spatial scales. Macroecology develops broad-scale predictions of species' distributions and abundances, complementing the frequently local focus of global change biology. Macroecological discoveries rely particularly on correlative methods but have still proven effective in predicting global change impacts on species. However, global changes create pseudo-experimental opportunities to build stronger, mechanistic theories in macroecology that successfully predict multiple phenomena across spatial scales. Such macroecological perspectives will help address the biotic consequences of global change.

  8. Local food web management increases resilience and buffers against global change effects on freshwaters.

    PubMed

    Urrutia-Cordero, Pablo; Ekvall, Mattias K; Hansson, Lars-Anders

    2016-07-08

    A major challenge for ecological research is to identify ways to improve resilience to climate-induced changes in order to secure the ecosystem functions of natural systems, as well as ecosystem services for human welfare. With respect to aquatic ecosystems, interactions between climate warming and the elevated runoff of humic substances (brownification) may strongly affect ecosystem functions and services. However, we hitherto lack the adaptive management tools needed to counteract such global-scale effects on freshwater ecosystems. Here we show, both experimentally and using monitoring data, that predicted climatic warming and brownification will reduce freshwater quality by exacerbating cyanobacterial growth and toxin levels. Furthermore, in a model based on long-term data from a natural system, we demonstrate that food web management has the potential to increase the resilience of freshwater systems against the growth of harmful cyanobacteria, and thereby that local efforts offer an opportunity to secure our water resources against some of the negative impacts of climate warming and brownification. This allows for novel policy action at a local scale to counteract effects of global-scale environmental change, thereby providing a buffer period and a safer operating space until climate mitigation strategies are effectively established.

  9. Local food web management increases resilience and buffers against global change effects on freshwaters

    NASA Astrophysics Data System (ADS)

    Urrutia-Cordero, Pablo; Ekvall, Mattias K.; Hansson, Lars-Anders

    2016-07-01

    A major challenge for ecological research is to identify ways to improve resilience to climate-induced changes in order to secure the ecosystem functions of natural systems, as well as ecosystem services for human welfare. With respect to aquatic ecosystems, interactions between climate warming and the elevated runoff of humic substances (brownification) may strongly affect ecosystem functions and services. However, we hitherto lack the adaptive management tools needed to counteract such global-scale effects on freshwater ecosystems. Here we show, both experimentally and using monitoring data, that predicted climatic warming and brownification will reduce freshwater quality by exacerbating cyanobacterial growth and toxin levels. Furthermore, in a model based on long-term data from a natural system, we demonstrate that food web management has the potential to increase the resilience of freshwater systems against the growth of harmful cyanobacteria, and thereby that local efforts offer an opportunity to secure our water resources against some of the negative impacts of climate warming and brownification. This allows for novel policy action at a local scale to counteract effects of global-scale environmental change, thereby providing a buffer period and a safer operating space until climate mitigation strategies are effectively established.

  10. Local food web management increases resilience and buffers against global change effects on freshwaters

    PubMed Central

    Urrutia-Cordero, Pablo; Ekvall, Mattias K.; Hansson, Lars-Anders

    2016-01-01

    A major challenge for ecological research is to identify ways to improve resilience to climate-induced changes in order to secure the ecosystem functions of natural systems, as well as ecosystem services for human welfare. With respect to aquatic ecosystems, interactions between climate warming and the elevated runoff of humic substances (brownification) may strongly affect ecosystem functions and services. However, we hitherto lack the adaptive management tools needed to counteract such global-scale effects on freshwater ecosystems. Here we show, both experimentally and using monitoring data, that predicted climatic warming and brownification will reduce freshwater quality by exacerbating cyanobacterial growth and toxin levels. Furthermore, in a model based on long-term data from a natural system, we demonstrate that food web management has the potential to increase the resilience of freshwater systems against the growth of harmful cyanobacteria, and thereby that local efforts offer an opportunity to secure our water resources against some of the negative impacts of climate warming and brownification. This allows for novel policy action at a local scale to counteract effects of global-scale environmental change, thereby providing a buffer period and a safer operating space until climate mitigation strategies are effectively established. PMID:27386957

  11. Compensatory water effects link yearly global land CO2 sink changes to temperature

    NASA Astrophysics Data System (ADS)

    Jung, Martin; Reichstein, Markus; Schwalm, Christopher R.; Huntingford, Chris; Sitch, Stephen; Ahlström, Anders; Arneth, Almut; Camps-Valls, Gustau; Ciais, Philippe; Friedlingstein, Pierre; Gans, Fabian; Ichii, Kazuhito; Jain, Atul K.; Kato, Etsushi; Papale, Dario; Poulter, Ben; Raduly, Botond; Rödenbeck, Christian; Tramontana, Gianluca; Viovy, Nicolas; Wang, Ying-Ping; Weber, Ulrich; Zaehle, Sönke; Zeng, Ning

    2017-01-01

    Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales. Here we use empirical models based on eddy covariance data and process-based models to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of the local interannual variability in GPP and TER. To a lesser extent this is true also for NEE at the local scale, but when integrated globally, temporal NEE variability is mostly driven by temperature fluctuations. We suggest that this apparent paradox can be explained by two compensatory water effects. Temporal water-driven GPP and TER variations compensate locally, dampening water-driven NEE variability. Spatial water availability anomalies also compensate, leaving a dominant temperature signal in the year-to-year fluctuations of the land carbon sink. These findings help to reconcile seemingly contradictory reports regarding the importance of temperature and water in controlling the interannual variability of the terrestrial carbon balance. Our study indicates that spatial climate covariation drives the global carbon cycle response.

  12. Compensatory water effects link yearly global land CO2 sink changes to temperature.

    PubMed

    Jung, Martin; Reichstein, Markus; Schwalm, Christopher R; Huntingford, Chris; Sitch, Stephen; Ahlström, Anders; Arneth, Almut; Camps-Valls, Gustau; Ciais, Philippe; Friedlingstein, Pierre; Gans, Fabian; Ichii, Kazuhito; Jain, Atul K; Kato, Etsushi; Papale, Dario; Poulter, Ben; Raduly, Botond; Rödenbeck, Christian; Tramontana, Gianluca; Viovy, Nicolas; Wang, Ying-Ping; Weber, Ulrich; Zaehle, Sönke; Zeng, Ning

    2017-01-26

    Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales. Here we use empirical models based on eddy covariance data and process-based models to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of the local interannual variability in GPP and TER. To a lesser extent this is true also for NEE at the local scale, but when integrated globally, temporal NEE variability is mostly driven by temperature fluctuations. We suggest that this apparent paradox can be explained by two compensatory water effects. Temporal water-driven GPP and TER variations compensate locally, dampening water-driven NEE variability. Spatial water availability anomalies also compensate, leaving a dominant temperature signal in the year-to-year fluctuations of the land carbon sink. These findings help to reconcile seemingly contradictory reports regarding the importance of temperature and water in controlling the interannual variability of the terrestrial carbon balance. Our study indicates that spatial climate covariation drives the global carbon cycle response.

  13. Compensatory Water Effects Link Yearly Global Land CO2 Sink Changes to Temperature

    NASA Technical Reports Server (NTRS)

    Jung, Martin; Reichstein, Markus; Tramontana, Gianluca; Viovy, Nicolas; Schwalm, Christopher R.; Wang, Ying-Ping; Weber, Ulrich; Weber, Ulrich; Zaehle, Soenke; Zeng, Ning; hide

    2017-01-01

    Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems13. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales314. Here we use empirical models based on eddy covariance data15 and process-based models16,17 to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of the local interannual variability in GPP and TER. To a lesser extent this is true also for NEE at the local scale, but when integrated globally, temporal NEE variability is mostly driven by temperature fluctuations. We suggest that this apparent paradox can be explained by two compensatory water effects. Temporal water-driven GPP and TER variations compensate locally, dampening water-driven NEE variability. Spatial water availability anomalies also compensate, leaving a dominant temperature signal in the year-to-year fluctuations of the land carbon sink. These findings help to reconcile seemingly contradictory reports regarding the importance of temperature and water in controlling the interannual variability of the terrestrial carbon balance36,9,11,12,14. Our study indicates that spatial climate covariation drives the global carbon cycle response.

  14. Separating direct and indirect effects of global change: a population dynamic modeling approach using readily available field data.

    PubMed

    Farrer, Emily C; Ashton, Isabel W; Knape, Jonas; Suding, Katharine N

    2014-04-01

    Two sources of complexity make predicting plant community response to global change particularly challenging. First, realistic global change scenarios involve multiple drivers of environmental change that can interact with one another to produce non-additive effects. Second, in addition to these direct effects, global change drivers can indirectly affect plants by modifying species interactions. In order to tackle both of these challenges, we propose a novel population modeling approach, requiring only measurements of abundance and climate over time. To demonstrate the applicability of this approach, we model population dynamics of eight abundant plant species in a multifactorial global change experiment in alpine tundra where we manipulated nitrogen, precipitation, and temperature over 7 years. We test whether indirect and interactive effects are important to population dynamics and whether explicitly incorporating species interactions can change predictions when models are forecast under future climate change scenarios. For three of the eight species, population dynamics were best explained by direct effect models, for one species neither direct nor indirect effects were important, and for the other four species indirect effects mattered. Overall, global change had negative effects on species population growth, although species responded to different global change drivers, and single-factor effects were slightly more common than interactive direct effects. When the fitted population dynamic models were extrapolated under changing climatic conditions to the end of the century, forecasts of community dynamics and diversity loss were largely similar using direct effect models that do not explicitly incorporate species interactions or best-fit models; however, inclusion of species interactions was important in refining the predictions for two of the species. The modeling approach proposed here is a powerful way of analyzing readily available datasets which should be

  15. Effects of mass consciousness: changes in random data during global events.

    PubMed

    Nelson, Roger; Bancel, Peter

    2011-01-01

    A long-term, continuing experiment is designed to assess the possibility that correlations may occur in synchronized random data streams generated during major world events. The project is motivated by numerous experiments that suggest that the behavior of random systems can be altered by directed mental intention, and related experiments showing subtle changes associated with group coherence. Since 1998, the Global Consciousness Project (GCP) has maintained a global network of random number generators (RNGs), recording parallel sequences of random data at 65 sites around the world. A rigorous experiment tests the hypothesis that data from the RNG network will deviate from expectation during times of "global events," defined as transitory episodes of widespread mental and emotional reaction to major world events. An ongoing replication experiment measures correlations across the network during the designated events, and the result from over 345 formal hypothesis tests departs substantially from expectation. A composite statistic for the replication series rejects the null hypothesis by more than six standard deviations. Secondary analyses reveal evidence of a second, independent correlation, as well as temporal and spatial structure in the data associated with the events. Controls exclude conventional physical explanations or experimental error as the source of the measured deviations. The experimental design constrains interpretation of the results: they suggest that some aspect of human consciousness is involved as a source of the effects. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Global change effects on plant-insect interactions: The role of phytochemistry

    Treesearch

    Mary A. Jamieson; Laura A. Burkle; Jessamyn S. Manson; Justin B. Runyon; Amy M. Trowbridge; Joseph Zientek

    2017-01-01

    Natural and managed ecosystems are undergoing rapid environmental change due to a growing human population and associated increases in industrial and agricultural activity. Global environmental change directly and indirectly impacts insect herbivores and pollinators. In this review, we highlight recent research examining how environmental change factors affect plant...

  17. The effects of global changes upon regional ozone pollution in the United States

    NASA Astrophysics Data System (ADS)

    Chen, J.; Avise, J.; Lamb, B.; Salathé, E.; Mass, C.; Guenther, A.; Wiedinmyer, C.; Lamarque, J.-F.; O'Neill, S.; McKenzie, D.; Larkin, N.

    2008-08-01

    A comprehensive numerical modeling framework was developed to estimate the effects of collective global changes upon ozone pollution in the US in 2050. The framework consists of the global climate and chemistry models, PCM (Parallel Climate Model) and MOZART-2 (Model for Ozone and Related Chemical Tracers v.2), coupled with regional meteorology and chemistry models, MM5 (Mesoscale Meteorological model) and CMAQ (Community Multi-scale Air Quality model). The modeling system was applied for two 10-year simulations: 1990 1999 as a present-day base case and 2045 2054 as a future case. The regional simulations employed 36-km grid cells covering the continental US with boundary conditions taken from the global models. For the current decade, the distributions of summer daily maxima 8-h (DM8H) ozone showed good agreement with observed distributions throughout the US. The future case simulation followed the Intergovernmental Panel on Climate Change (IPCC) A2 scenario together with business-as-usual US emission projections and projected alterations in land use, land cover (LULC) due to urban expansion and changes in vegetation. For these projections, US anthropogenic NOx (NO + NO2) and VOC (volatile organic carbon) emissions increased by approximately 8% and 50%, respectively, while biogenic VOC emissions decreased, in spite of warmer temperatures, due to decreases in forested lands and expansion of croplands, grasslands and urban areas. A stochastic model for wildfire emissions was applied that projected 25% higher VOC emissions in the future. For the global and US emission projection used here, regional ozone pollution becomes worse in the 2045-2054 period for all months. Annually, the mean DM8H ozone was projected to increase by 9.6 ppbv (22%). The changes were higher in the spring and winter (25%) and smaller in the summer (17%). The area affected by elevated ozone within the US continent was projected to increase; areas with levels exceeding the 75 ppbv ozone standard

  18. Global and regional health effects of future food production under climate change: a modelling study.

    PubMed

    Springmann, Marco; Mason-D'Croz, Daniel; Robinson, Sherman; Garnett, Tara; Godfray, H Charles J; Gollin, Douglas; Rayner, Mike; Ballon, Paola; Scarborough, Peter

    2016-05-07

    One of the most important consequences of climate change could be its effects on agriculture. Although much research has focused on questions of food security, less has been devoted to assessing the wider health impacts of future changes in agricultural production. In this modelling study, we estimate excess mortality attributable to agriculturally mediated changes in dietary and weight-related risk factors by cause of death for 155 world regions in the year 2050. For this modelling study, we linked a detailed agricultural modelling framework, the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT), to a comparative risk assessment of changes in fruit and vegetable consumption, red meat consumption, and bodyweight for deaths from coronary heart disease, stroke, cancer, and an aggregate of other causes. We calculated the change in the number of deaths attributable to climate-related changes in weight and diets for the combination of four emissions pathways (a high emissions pathway, two medium emissions pathways, and a low emissions pathway) and three socioeconomic pathways (sustainable development, middle of the road, and more fragmented development), which each included six scenarios with variable climatic inputs. The model projects that by 2050, climate change will lead to per-person reductions of 3·2% (SD 0·4%) in global food availability, 4·0% (0·7%) in fruit and vegetable consumption, and 0·7% (0·1%) in red meat consumption. These changes will be associated with 529,000 climate-related deaths worldwide (95% CI 314,000-736,000), representing a 28% (95% CI 26-33) reduction in the number of deaths that would be avoided because of changes in dietary and weight-related risk factors between 2010 and 2050. Twice as many climate-related deaths were associated with reductions in fruit and vegetable consumption than with climate-related increases in the prevalence of underweight, and most climate-related deaths were projected to

  19. Effects of Global Change on U.S. Urban Areas: Vulnerabilities, Impacts, and Adaptation

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Wilbanks, Thomas J.; Kirshen, Paul; Romero-Lankao, Patricia; Rosenzweig, Cynthia; Ruth, Mattias; Solecki, William; Tarr, Joel

    2008-01-01

    This slide presentation reviews some of the effects that global change has on urban areas in the United States and how the growth of urban areas will affect the environment. It presents the elements of our Synthesis and Assessment Report (SAP) report that relate to what vulnerabilities and impacts will occur, what adaptation responses may take place, and what possible effects on settlement patterns and characteristics will potentially arise, on human settlements in the U.S. as a result of climate change and climate variability. We will also present some recommendations about what should be done to further research on how climate change and variability will impact human settlements in the U.S., as well as how to engage government officials, policy and decision makers, and the general public in understanding the implications of climate change and variability on the local and regional levels. Additionally, we wish to explore how technology such as remote sensing data coupled with modeling, can be employed as synthesis tools for deriving insight across a spectrum of impacts (e.g. public health, urban planning for mitigation strategies) on how cities can cope and adapt to climate change and variability. This latter point parallels the concepts and ideas presented in the U.S. National Academy of Sciences, Decadal Survey report on "Earth Science Applications from Space: National Imperatives for the Next Decade and Beyond" wherein the analysis of the impacts of climate change and variability, human health, and land use change are listed as key areas for development of future Earth observing remote sensing systems.

  20. Global change effects on humid tropical forests: Evidence for biogeochemical and biodiversity shifts at an ecosystem scale

    NASA Astrophysics Data System (ADS)

    Cusack, Daniela F.; Karpman, Jason; Ashdown, Daniel; Cao, Qian; Ciochina, Mark; Halterman, Sarah; Lydon, Scott; Neupane, Avishesh

    2016-09-01

    Government and international agencies have highlighted the need to focus global change research efforts on tropical ecosystems. However, no recent comprehensive review exists synthesizing humid tropical forest responses across global change factors, including warming, decreased precipitation, carbon dioxide fertilization, nitrogen deposition, and land use/land cover changes. This paper assesses research across spatial and temporal scales for the tropics, including modeling, field, and controlled laboratory studies. The review aims to (1) provide a broad understanding of how a suite of global change factors are altering humid tropical forest ecosystem properties and biogeochemical processes; (2) assess spatial variability in responses to global change factors among humid tropical regions; (3) synthesize results from across humid tropical regions to identify emergent trends in ecosystem responses; (4) identify research and management priorities for the humid tropics in the context of global change. Ecosystem responses covered here include plant growth, carbon storage, nutrient cycling, biodiversity, and disturbance regime shifts. The review demonstrates overall negative effects of global change on all ecosystem properties, with the greatest uncertainty and variability in nutrient cycling responses. Generally, all global change factors reviewed, except for carbon dioxide fertilization, demonstrate great potential to trigger positive feedbacks to global warming via greenhouse gas emissions and biogeophysical changes that cause regional warming. This assessment demonstrates that effects of decreased rainfall and deforestation on tropical forests are relatively well understood, whereas the potential effects of warming, carbon dioxide fertilization, nitrogen deposition, and plant species invasions require more cross-site, mechanistic research to predict tropical forest responses at regional and global scales.

  1. Global Governance, Educational Change

    ERIC Educational Resources Information Center

    Mundy, Karen

    2007-01-01

    In the last half decade, a rising literature has focused on the idea that processes of economic, political and social globalization require analysis in terms of governance at the global level. It is argued in this article that emerging forms of global governance have produced significant challenges to conventional conceptions of international…

  2. Modeling the effects of climate change and acidification on global coral reefs

    NASA Astrophysics Data System (ADS)

    Logan, C. A.; Donner, S. D.; Eakin, C.; Dunne, J. P.

    2010-12-01

    Climate warming threatens to increase the frequency of mass coral bleaching events. Meanwhile, ocean acidification may increase susceptibility to these events and slow the recovery of corals following bleaching. Using future sea surface warming scenarios from global coupled climate models, previous studies have estimated that corals will experience biannual bleaching events by mid-century unless they are able to acclimatize or adapt at a rate of ~0.2-1.0°C per decade. Empirical studies also show that certain coral ecotypes may be more resistant to bleaching than others (e.g. massive vs. branching). Likewise, more variable thermal history may play a significant role in increasing resistance to bleaching. Better quantifying the impacts of climate change and ocean acidification on coral reefs under different future scenarios is critical to making proactive decisions about both mitigation of greenhouse gas emissions and adaptation to climate change. Proposed here is a model that uses two of the ESM2 GFDL models and combines several previous attempts at modeling climate change effects. This model incorporates thermal history and adaptability into a modified Degree Heating Week bleaching threshold. The model is designed to examine the effects of rising SSTs alone as well as in combination with ocean acidification and other factors to predict future global coral reef bleaching frequency and response by coral ecotype. The ESM2 GFDL models are validated for use in coral reef areas by comparing model results against historical SST satellite data for the years 1985-2006 at 4km and 50km spatial resolutions to assess the models’ reproducibility of mean annual temperature, range, and variability. The modified bleaching threshold is tested against observational bleaching records in well-documented areas (e.g., Great Barrier Reef).

  3. Processionary Moths and Associated Urtication Risk: Global Change-Driven Effects.

    PubMed

    Battisti, Andrea; Larsson, Stig; Roques, Alain

    2017-01-31

    Processionary moths carry urticating setae, which cause health problems in humans and other warm-blooded animals. The pine processionary moth Thaumetopoea pityocampa has responded to global change (climate warming and increased global trade) by extending its distribution range. The subfamily Thaumetopoeinae consists of approximately 100 species. An important question is whether other processionary moth species will similarly respond to these specific dimensions of global change and thus introduce health hazards into new areas. We describe, for the first time, how setae are distributed on different life stages (adult, larva) of major groups within the subfamily. Using the available data, we conclude that there is little evidence that processionary moths as a group will behave like T. pityocampa and expand their distributional range. The health problems caused by setae strongly relate to population density, which may, or may not, be connected to global change.

  4. Biogeochemical effects of global change on U.S. National Parks

    USGS Publications Warehouse

    Herrmann, R.; Stottlemyer, R.; Zak, J.C.; Edmonds, R.L.; Van Miegroet, H.

    2000-01-01

    Federal parks and other public lands have unique mandates and rules regulating their use and conservation. Because of variation in their response to local, regional, and global-scale disturbance, development of mitigation strategies requires substantial research in the context of long-term inventory and monitoring. In 1982, the National Park Service began long-term, watershed-level studies in a series of national parks. The objective was to provide a more comprehensive database against which the effects of global change and other issues could be quantified. A subset of five sites in North Carolina, Texas, Washington, Michigan, and Alaska, is examined here. During the last 50 years, temperatures have declined at the southern sites and increased at the northern sites with the greatest increase in Alaska. Only the most southern site has shown an increase in precipitation amount. The net effect of these trends, especially for the most northern and southern sites, would likely be an increase in the growing season and especially the time soil processes could continue without moisture or temperature limitations. During the last 18 years, there were few trends in atmospheric ion inputs. The most evident was the decline in SO42- deposition. There were no significant relationships between ion input and stream water output. This finding suggests other factors as modification of precipitation or canopy throughfall by soil processes, hydrologic flow path, and snowmelt rates are major processes regulating stream water chemical outputs.

  5. Interactive effects of global climate change and pollution on marine microbes: the way ahead.

    PubMed

    Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Angela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M

    2013-06-01

    Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future.

  6. Interactive effects of global climate change and pollution on marine microbes: the way ahead

    PubMed Central

    Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Ângela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M

    2013-01-01

    Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future. PMID:23789087

  7. Global climatic change

    SciTech Connect

    Houghton, R.A.; Woodwell, G.M.

    1989-04-01

    This paper reviews the climatic effects of trace gases such as carbon dioxide and methane. It discusses the expected changes from the increases in trace gases and the extent to which the expected changes can be found in the climate record and in the retreat of glaciers. The use of ice cores in correlating atmospheric composition and climate is discussed. The response of terrestrial ecosystems as a biotic feedback is discussed. Possible responses are discussed, including reduction in fossil-fuel use, controls on deforestation, and reforestation. International aspects, such as the implications for developing nations, are addressed.

  8. Global change effects on a Mediterranean river flow in NE Spain

    NASA Astrophysics Data System (ADS)

    Pla, Eduard; Pascual, Diana; López-Bustins, Joan Albert; Savé, Robert; Biel, Carmen; Serra, Joan; Milego, Roger; Tamoh, Karim

    2010-05-01

    Climate change is generally accepted as a factor influencing hydrological cycles worldwide. However, these cycles are also affected by other phenomena, both (i) of natural (geomorphological and ecosystem changes, natural climate variations, etc) and (ii) human-related (changes of agro-forest uses, developments and settlements, changes on social dynamics, etc) origin. In this context we have studied flow changes in the headwater of the Fluvià River, la Vall d'en Bas (NE Spain), along the recent 25 years (1984-2008). We have registered a 60%-reduction of river flow during this period. We have not detected a significant decrease on rainfall values (which remained relatively stable). However, we have measured an increase of 10% in mean annual temperature (+1.2 °C) which resulted on a significant 9%-increment in ETP. This ETP increase could partially explain the reduction of surface water flow in the headwater of the Fluvià River. However, we conclude that there might be other reasons behind this flow decrease, such as modifications on forest and agricultural practices during the recent decades. We have detected significant land use changes for the period studied: rural abandonment and consequent natural colonization by forest species, reduction of forest management practices, increase of water demand (i.e., increase of irrigated crops, industry development and diffuse housing spreading). In further research we will analyze the contribution of each factor in water dynamics in order to define adaptive strategies. This work is part of the ACCUA project (www.creaf.uab.cat/accua) that aims at evaluating the territorial vulnerability of the Mediterranean littoral to the main effects of global change in relation to water availability.

  9. Contemplating Catastrophe: conveying the causes, effects, risks of and responses to global change

    NASA Astrophysics Data System (ADS)

    McCaffrey, M.; Berbeco, M.; Lahsen, M.

    2013-12-01

    Humans are changing nature and undermining the life supporting systems of the planet to an unprecedented extent, eroding more soil than all natural processes combined, fixing more nitrogen than all the bacteria on the planet, and substantially altering the land cover and chemistry of the atmosphere and waters. Yet, especially in the United States but also elsewhere, environmental awareness and policy action has been lackluster and hesitant due to a range of factors, including manufactured doubt and denial, psychological, cultural and economic investments in maintenance of status quo, and - when concern does exist - lack of knowledge about how to foster effective change. This paper will examine how recent research findings on human impacts on the planet are being conveyed to non-technical audiences and discuss challenges and opportunities to provide the public with the relevant knowledge and knowhow to address the risks of, and responses to global change. It will argue that a second-wave scientific literacy consisting in deeper understanding of the scientific process must be nurtured as part of a process to capacitate populations, especially youths, to navigate conflicting evidence and claims that surround many environmental threats. Such literacy must be fostered through 'learning conversations,' community and capacity-building, and integrated education, communication and outreach infusing science and solutions to foster a more effective approach to confronting potential catastrophe. 25 February 2013 at 16:30 Pacific Time

  10. Bibliography of global change, 1992

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography lists 585 reports, articles, and other documents introduced in the NASA Scientific and Technical Information Database in 1992. The areas covered include global change, decision making, earth observation (from space), forecasting, global warming, policies, and trends.

  11. The effects of global changes upon regional ozone pollution in the United States

    NASA Astrophysics Data System (ADS)

    Chen, J.; Avise, J.; Lamb, B.; Salathé, E.; Mass, C.; Guenther, A.; Wiedinmyer, C.; Lamarque, J.-F.; O'Neill, S.; McKenzie, D.; Larkin, N.

    2009-02-01

    A comprehensive numerical modeling framework was developed to estimate the effects of collective global changes upon ozone pollution in the US in 2050. The framework consists of the global climate and chemistry models, PCM (Parallel Climate Model) and MOZART-2 (Model for Ozone and Related Chemical Tracers v.2), coupled with regional meteorology and chemistry models, MM5 (Mesoscale Meteorological model) and CMAQ (Community Multi-scale Air Quality model). The modeling system was applied for two 10-year simulations: 1990-1999 as a present-day base case and 2045-2054 as a future case. For the current decade, the daily maximum 8-h moving average (DM8H) ozone mixing ratio distributions for spring, summer and fall showed good agreement with observations. The future case simulation followed the Intergovernmental Panel on Climate Change (IPCC) A2 scenario together with business-as-usual US emission projections and projected alterations in land use, land cover (LULC) due to urban expansion and changes in vegetation. For these projections, US anthropogenic NOx (NO+NO2) and VOC (volatile organic carbon) emissions increased by approximately 6% and 50%, respectively, while biogenic VOC emissions decreased, in spite of warmer temperatures, due to decreases in forested lands and expansion of croplands, grasslands and urban areas. A stochastic model for wildfire emissions was applied that projected 25% higher VOC emissions in the future. For the global and US emission projection used here, regional ozone pollution becomes worse in the 2045-2054 period for all months. Annually, the mean DM8H ozone was projected to increase by 9.6 ppbv (22%). The changes were higher in the spring and winter (25%) and smaller in the summer (17%). The area affected by elevated ozone within the US continent was projected to increase; areas with levels exceeding the 75 ppbv ozone standard at least once a year increased by 38%. In addition, the length of the ozone season was projected to increase with

  12. Predicting global change effects on forest biomass and composition in south-central Siberia

    Treesearch

    Eric Gustafson; Anatoly D. Shvidenko; Brian R. Sturtevant; Robert M. Scheller

    2010-01-01

    Multiple global changes such as timber harvesting in areas not previously disturbed by cutting and climate change will undoubtedly affect the composition and spatial distribution of boreal forests, which will, in turn, affect the ability of these forests to retain carbon and maintain biodiversity. To predict future states of the boreal forest reliably, it is necessary...

  13. Combined global change effects on ecosystem processesin nine U.S. topographically complex areas

    USGS Publications Warehouse

    D. Hartman, Melannie; Baron, Jill S.; Ewing, Holly A.; Weathers, Kathleen

    2014-01-01

    Concurrent changes in climate, atmospheric nitrogen (N) deposition, and increasing levels of atmospheric carbon dioxide (CO2) affect ecosystems in complex ways. The DayCent-Chem model was used to investigate the combined effects of these human-caused drivers of change over the period 1980–2075 at seven forested montane and two alpine watersheds in the United States. Net ecosystem production (NEP) increased linearly with increasing N deposition for six out of seven forested watersheds; warming directly increased NEP at only two of these sites. Warming reduced soil organic carbon storage at all sites by increasing heterotrophic respiration. At most sites, warming together with high N deposition increased nitrous oxide (N2O) emissions enough to negate the greenhouse benefit of soil carbon sequestration alone, though there was a net greenhouse gas sink across nearly all sites mainly due to the effect of CO2 fertilization and associated sequestration by plants. Over the simulation period, an increase in atmospheric CO2 from 350 to 600 ppm was the main driver of change in net ecosystem greenhouse gas sequestration at all forested sites and one of two alpine sites, but an additional increase in CO2 from 600 to 760 ppm produced smaller effects. Warming either increased or decreased net greenhouse gas sequestration, depending on the site. The N contribution to net ecosystem greenhouse gas sequestration averaged across forest sites was only 5–7 % and was negligible for the alpine. Stream nitrate (NO3−) fluxes increased sharply with N-loading, primarily at three watersheds where initial N deposition values were high relative to terrestrial N uptake capacity. The simulated results displayed fewer synergistic responses to warming, N-loading, and CO2 fertilization than expected. Overall, simulations with DayCent-Chem suggest individual site characteristics and historical patterns of N deposition are important determinants of forest or alpine ecosystem responses to

  14. Global Change in the Holocene

    NASA Astrophysics Data System (ADS)

    Alverson, Keith

    2004-05-01

    Many people, even perhaps the occasional Eos reader, associate the term ``global change'' with warming caused by mankind's recent addiction to fossil fuels. Some may also be well aware of enormous global changes in the distant past uninfluenced by humans; for example, Pleistocene ice ages. But was there any ``global change'' between the end of the last ice age and the onset of industrialization? The answer to this question is addressed early-in the title, even-in the new book Global Change in the Holocene. I don't suggest anyone stop reading after the title, though; the rest of the book is both highly informative and a real pleasure to read. The opening chapter tells us that the Holocene is certainly not, as sometimes charged, a ``bland, pastoral coda to the contrasted movements of a stirring Pleistocene symphony.'' Rather, it is a ``period of continuous change.'' Melodious language aside, the combination of sustained and high-amplitude climatic variability and a wealth of well-preserved, precisely datable paleoclimate archives make the Holocene unique. Only by studying the Holocene can we hope to unravel the low-frequency workings of the Earth system and the degree to which humans have changed our world. This book sets out to teach the reader how to obtain the relevant data and how to use it to do much more than showing static analogues of possible future climate states. It challenges researchers to discern in their data the effects of the dynamic processes underlying coupled variability in the Earth's climate and ecosystems. These processes continue to act today, and it is through providing an understanding of these system dynamics in the Holocene that paleo-environmental studies can make the greatest contribution to future-oriented concerns.

  15. Historical ecology: using unconventional data sources to test for effects of global environmental change.

    PubMed

    Vellend, Mark; Brown, Carissa D; Kharouba, Heather M; McCune, Jenny L; Myers-Smith, Isla H

    2013-07-01

    Predicting the future ecological impact of global change drivers requires understanding how these same drivers have acted in the past to produce the plant populations and communities we see today. Historical ecological data sources have made contributions of central importance to global change biology, but remain outside the toolkit of most ecologists. Here we review the strengths and weaknesses of four unconventional sources of historical ecological data: land survey records, "legacy" vegetation data, historical maps and photographs, and herbarium specimens. We discuss recent contributions made using these data sources to understanding the impacts of habitat disturbance and climate change on plant populations and communities, and the duration of extinction-colonization time lags in response to landscape change. Historical data frequently support inferences made using conventional ecological studies (e.g., increases in warm-adapted species as temperature rises), but there are cases when the addition of different data sources leads to different conclusions (e.g., temporal vegetation change not as predicted by chronosequence studies). The explicit combination of historical and contemporary data sources is an especially powerful approach for unraveling long-term consequences of multiple drivers of global change. Despite the limitations of historical data, which include spotty and potentially biased spatial and temporal coverage, they often represent the only means of characterizing ecological phenomena in the past and have proven indispensable for characterizing the nature, magnitude, and generality of global change impacts on plant populations and communities.

  16. Monitoring conservation effectiveness in a global biodiversity hotspot: the contribution of land cover change assessment.

    PubMed

    Joseph, Shijo; Blackburn, George Alan; Gharai, Biswadip; Sudhakar, S; Thomas, A P; Murthy, M S R

    2009-11-01

    Tropical forests, which play critical roles in global biogeochemical cycles, radiation budgets and biodiversity, have undergone rapid changes in land cover in the last few decades. This study examines the complex process of land cover change in the biodiversity hotspot of Western Ghats, India, specifically investigating the effects of conservation measures within the Indira Gandhi Wildlife Sanctuary. Current vegetation patterns were mapped using an IRS P6 LISS III image and this was used together with Landsat MSS data from 1973 to map land cover transitions. Two major and divergent trends were observed. A dominant degradational trend can be attributed to agricultural expansion and infrastructure development while a successional trend, resulting from protection of the area, showed the resilience of the system after prolonged disturbances. The sanctuary appears susceptible to continuing disturbances under the current management regime but at lower rates than in surrounding unprotected areas. The study demonstrates that remotely sensed land cover assessments can have important contributions to monitoring land management strategies, understanding processes underpinning land use changes and helping to inform future conservation strategies.

  17. Effects of global change on hydro-geomorphological hazards in Mediterranean rivers

    NASA Astrophysics Data System (ADS)

    Andres Lopez-Tarazon, Jose

    2015-04-01

    Mediterranean river basins are characterized by high (often extreme) temporal variability in precipitation, and hence discharge. Mediterranean countries are considered sensitive to so-called global change, considered as the combination of climate and land use changes. All panels on climate evolution predict future scenarios of increasing frequency and magnitude of floods and extended droughts in the Mediterranean region; both floods and droughts are likely to lead to huge geomorphic adjustments of river channels so, major metamorphosis of fluvial systems is expected as a result of global change. Water resources in the Mediterranean region is subjected to rising pressures, becoming a key issue for all governments (i.e. clear imbalance between the available water resources and the increasing water demand related to increasing human population). Such pressures are likely to give rise to major ecological and economic changes and challenges that governments need to address as a matter of priority. Changes in river flow regimes associated with global change are therefore ushering in a new era, where there is a critical need to evaluate hydro-geomorphological hazard from headwaters to lowland areas (flooding can be not just a problem related to being under the water). A key question is how our understanding of these hazards associated with global change can be improved; improvement has to come from integrated research which includes all physical conditions that influence the conveyance of water and sediments, and the river's capacity (i.e. amount of sediment) and competence (i.e. channel deformation) that, in turn, will influence physical conditions of a given point in the river network. This is the framework of the present work; it is directed to develop an integrated approach which both improves our understanding of how rivers are likely to evolve as a result of global change, and addresses the associated hazards of fluvial environmental change.

  18. Combined and interactive effects of global climate change and toxicants on populations and communities.

    PubMed

    Moe, S Jannicke; De Schamphelaere, Karel; Clements, William H; Sorensen, Mary T; Van den Brink, Paul J; Liess, Matthias

    2013-01-01

    Increased temperature and other environmental effects of global climate change (GCC) have documented impacts on many species (e.g., polar bears, amphibians, coral reefs) as well as on ecosystem processes and species interactions (e.g., the timing of predator-prey interactions). A challenge for ecotoxicologists is to predict how joint effects of climatic stress and toxicants measured at the individual level (e.g., reduced survival and reproduction) will be manifested at the population level (e.g., population growth rate, extinction risk) and community level (e.g., species richness, food-web structure). The authors discuss how population- and community-level responses to toxicants under GCC are likely to be influenced by various ecological mechanisms. Stress due to GCC may reduce the potential for resistance to and recovery from toxicant exposure. Long-term toxicant exposure can result in acquired tolerance to this stressor at the population or community level, but an associated cost of tolerance may be the reduced potential for tolerance to subsequent climatic stress (or vice versa). Moreover, GCC can induce large-scale shifts in community composition, which may affect the vulnerability of communities to other stressors. Ecological modeling based on species traits (representing life-history traits, population vulnerability, sensitivity to toxicants, and sensitivity to climate change) can be a promising approach for predicting combined impacts of GCC and toxicants on populations and communities.

  19. COMBINED AND INTERACTIVE EFFECTS OF GLOBAL CLIMATE CHANGE AND TOXICANTS ON POPULATIONS AND COMMUNITIES

    PubMed Central

    Moe, S Jannicke; De Schamphelaere, Karel; Clements, William H; Sorensen, Mary T; Van den Brink, Paul J; Liess, Matthias

    2013-01-01

    Increased temperature and other environmental effects of global climate change (GCC) have documented impacts on many species (e.g., polar bears, amphibians, coral reefs) as well as on ecosystem processes and species interactions (e.g., the timing of predator–prey interactions). A challenge for ecotoxicologists is to predict how joint effects of climatic stress and toxicants measured at the individual level (e.g., reduced survival and reproduction) will be manifested at the population level (e.g., population growth rate, extinction risk) and community level (e.g., species richness, food-web structure). The authors discuss how population- and community-level responses to toxicants under GCC are likely to be influenced by various ecological mechanisms. Stress due to GCC may reduce the potential for resistance to and recovery from toxicant exposure. Long-term toxicant exposure can result in acquired tolerance to this stressor at the population or community level, but an associated cost of tolerance may be the reduced potential for tolerance to subsequent climatic stress (or vice versa). Moreover, GCC can induce large-scale shifts in community composition, which may affect the vulnerability of communities to other stressors. Ecological modeling based on species traits (representing life-history traits, population vulnerability, sensitivity to toxicants, and sensitivity to climate change) can be a promising approach for predicting combined impacts of GCC and toxicants on populations and communities. Environ. Toxicol. Chem. 2013;32:49–61. © 2012 SETAC PMID:23147390

  20. Global Change and Response of Coastal Dune Plants to the Combined Effects of Increased Sand Accretion (Burial) and Nutrient Availability

    PubMed Central

    Frosini, Silvia; Lardicci, Claudio; Balestri, Elena

    2012-01-01

    Coastal dune plants are subjected to natural multiple stresses and vulnerable to global change. Some changes associated with global change could interact in their effects on vegetation. As vegetation plays a fundamental role in building and stabilizing dune systems, effective coastal habitat management requires a better understanding of the combined effects of such changes on plant populations. A manipulative experiment was conducted along a Mediterranean dune system to examine the individual and combined effects of increased sediment accretion (burial) and nitrogen enrichment associated with predicted global change on the performance of young clones of Sporobolus virginicus, a widespread dune stabilizing species. Increased burial severity resulted in the production of taller but thinner shoots, while nutrient enrichment stimulated rhizome production. Nutrient enrichment increased total plant biomass up to moderate burial levels (50% of plant height), but it had not effect at the highest burial level (100% of plant height). The effects of such factors on total biomass, shoot biomass and branching were influenced by spatial variation in natural factors at the scale of hundreds of metres. These results indicate that the effects of burial and nutrient enrichment on plant performance were not independent. Their combined effects may not be predicted by knowing the individual effects, at least under the study conditions. Under global change scenarios, increased nutrient input could alleviate nutrient stress in S. virginicus, enhancing clonal expansion and productivity, but this benefit could be offset by increased sand accretion levels equal or exceeding 100% of plant height. Depletion of stored reserves for emerging from sand could increase plant vulnerability to other stresses in the long-term. The results emphasize the need to incorporate statistical designs for detecting non-independent effects of multiple changes and adequate spatial replication in future works to

  1. Global change and response of coastal dune plants to the combined effects of increased sand accretion (burial) and nutrient availability.

    PubMed

    Frosini, Silvia; Lardicci, Claudio; Balestri, Elena

    2012-01-01

    Coastal dune plants are subjected to natural multiple stresses and vulnerable to global change. Some changes associated with global change could interact in their effects on vegetation. As vegetation plays a fundamental role in building and stabilizing dune systems, effective coastal habitat management requires a better understanding of the combined effects of such changes on plant populations. A manipulative experiment was conducted along a Mediterranean dune system to examine the individual and combined effects of increased sediment accretion (burial) and nitrogen enrichment associated with predicted global change on the performance of young clones of Sporobolus virginicus, a widespread dune stabilizing species. Increased burial severity resulted in the production of taller but thinner shoots, while nutrient enrichment stimulated rhizome production. Nutrient enrichment increased total plant biomass up to moderate burial levels (50% of plant height), but it had not effect at the highest burial level (100% of plant height). The effects of such factors on total biomass, shoot biomass and branching were influenced by spatial variation in natural factors at the scale of hundreds of metres. These results indicate that the effects of burial and nutrient enrichment on plant performance were not independent. Their combined effects may not be predicted by knowing the individual effects, at least under the study conditions. Under global change scenarios, increased nutrient input could alleviate nutrient stress in S. virginicus, enhancing clonal expansion and productivity, but this benefit could be offset by increased sand accretion levels equal or exceeding 100% of plant height. Depletion of stored reserves for emerging from sand could increase plant vulnerability to other stresses in the long-term. The results emphasize the need to incorporate statistical designs for detecting non-independent effects of multiple changes and adequate spatial replication in future works to

  2. Global Climate Change and Agriculture

    SciTech Connect

    Izaurralde, Roberto C.

    2009-01-01

    The Fourth Assessment Report of the Intergovernmental Panel on Climate Change released in 2007 significantly increased our confidence about the role that humans play in forcing climate change. There is now a high degree of confidence that the (a) current atmospheric concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) far exceed those of the pre-industrial era, (b) global increases in CO2 arise mainly from fossil fuel use and land use change while those of CH4 and N2O originate primarily from agricultural activities, and (c) the net effect of human activities since 1750 has led to a warming of the lower layers of the atmosphere, with an increased radiative forcing of 1.6 W m-2. Depending on the scenario of human population growth and global development, mean global temperatures could rise between 1.8 and 4.0 °C by the end of the 21st century.

  3. Global change effects on Bromus tectorum L. (Poaceae) at its high-elevation range margin

    USGS Publications Warehouse

    Concilio, Amy L.; Loik, Michael E.; Belnap, Jayne

    2013-01-01

    Global change is likely to affect invasive species distribution, especially at range margins. In the eastern Sierra Nevada, California, USA, the invasive annual grass, Bromus tectorum, is patchily distributed and its impacts have been minimal compared with other areas of the Intermountain West. We used a series of in situ field manipulations to determine how B. tectorum might respond to changing climatic conditions and increased nitrogen deposition at the high-elevation edge of its invaded range. Over 3 years, we used snow fences to simulate changes in snowpack, irrigation to simulate increased frequency and magnitude of springtime precipitation, and added nitrogen (N) at three levels (0, 5, and 10 g m-2) to natural patches of B. tectorum growing under the two dominant shrubs, Artemisia tridentata and Purshia tridentata, and in intershrub spaces (INTR). We found that B. tectorum seedling density in April was lower following deeper snowpack possibly due to delayed emergence, yet there was no change in spikelet production or biomass accumulation at the time of harvest. Additional spring rain events increased B. tectorum biomass and spikelet production in INTR plots only. Plants were primarily limited by water in 2009, but colimited by N and water in 2011, possibly due to differences in antecedent moisture conditions at the time of treatments. The threshold at which N had an effect varied with magnitude of water additions. Frequency of rain events was more influential than magnitude in driving B. tectorum growth and fecundity responses. Our results suggest that predicted shifts from snow to rain could facilitate expansion of B. tectorum at high elevation depending on timing of rain events and level of N deposition. We found evidence for P-limitation at this site and an increase in P-availability with N additions, suggesting that stoichiometric relationships may also influence B. tectorum spread.

  4. Global change effects on Bromus tectorum L. (Poaceae) at its high-elevation range margin.

    PubMed

    Concilio, Amy L; Loik, Michael E; Belnap, Jayne

    2013-01-01

    Global change is likely to affect invasive species distribution, especially at range margins. In the eastern Sierra Nevada, California, USA, the invasive annual grass, Bromus tectorum, is patchily distributed and its impacts have been minimal compared with other areas of the Intermountain West. We used a series of in situ field manipulations to determine how B. tectorum might respond to changing climatic conditions and increased nitrogen deposition at the high-elevation edge of its invaded range. Over 3 years, we used snow fences to simulate changes in snowpack, irrigation to simulate increased frequency and magnitude of springtime precipitation, and added nitrogen (N) at three levels (0, 5, and 10 g m(-2) ) to natural patches of B. tectorum growing under the two dominant shrubs, Artemisia tridentata and Purshia tridentata, and in intershrub spaces (INTR). We found that B. tectorum seedling density in April was lower following deeper snowpack possibly due to delayed emergence, yet there was no change in spikelet production or biomass accumulation at the time of harvest. Additional spring rain events increased B. tectorum biomass and spikelet production in INTR plots only. Plants were primarily limited by water in 2009, but colimited by N and water in 2011, possibly due to differences in antecedent moisture conditions at the time of treatments. The threshold at which N had an effect varied with magnitude of water additions. Frequency of rain events was more influential than magnitude in driving B. tectorum growth and fecundity responses. Our results suggest that predicted shifts from snow to rain could facilitate expansion of B. tectorum at high elevation depending on timing of rain events and level of N deposition. We found evidence for P-limitation at this site and an increase in P-availability with N additions, suggesting that stoichiometric relationships may also influence B. tectorum spread.

  5. Global Climate Change.

    ERIC Educational Resources Information Center

    Hall, Dorothy K.

    1989-01-01

    Discusses recent changes in the Earth's climate. Summarizes reports on changes related to carbon dioxide, temperature, rain, sea level, and glaciers in polar areas. Describes the present effort to measure the changes. Lists 16 references. (YP)

  6. Global Climate Change.

    ERIC Educational Resources Information Center

    Hall, Dorothy K.

    1989-01-01

    Discusses recent changes in the Earth's climate. Summarizes reports on changes related to carbon dioxide, temperature, rain, sea level, and glaciers in polar areas. Describes the present effort to measure the changes. Lists 16 references. (YP)

  7. The Prairie States Forestry Project as a Model for an Effective Global Climate Change Mitigation Project

    USDA-ARS?s Scientific Manuscript database

    There is an increasing sense of urgency surrounding global climate change and a growing consensus that significant measures are warranted and should be implemented in a timely manner. Reforestation, afforestation, and soil carbon sequestration are three land management strategies among the suite of ...

  8. Perspectives on global change theory

    USDA-ARS?s Scientific Manuscript database

    Global changes in ecological drivers, such as CO2 concentrations, climate, and nitrogen deposition, are increasingly recognized as key to understanding contemporary ecosystem dynamics, but a coherent theory of global change has not yet been developed. We outline the characteristics of a theory of gl...

  9. Forest health in a changing world: Effects of globalization and climate change on forest insect and pathogen impacts

    Treesearch

    T. D. Ramsfield; Barbara Bentz; M. Faccoli; H. Jactel; E. G. Brockerhoff

    2016-01-01

    Forests and trees throughout the world are increasingly affected by factors related to global change. Expanding international trade has facilitated invasions of numerous insects and pathogens into new regions. Many of these invasions have caused substantial forest damage, economic impacts and losses of ecosystem goods and services provided by trees. Climate...

  10. Chemical evidences of the effects of global change in high elevation lakes in Central Himalaya, Nepal

    NASA Astrophysics Data System (ADS)

    Tartari, Gianni; Lami, Andrea; Rogora, Michela; Salerno, Franco

    2016-04-01

    It is well known that the lakes integrate the pressure of their surrounding terrestrial environment and the climatic variability. Both the water column and sediments are capable to accumulate signals of global change, such as warming of the deep layers or mutation of diverse biological records (e.g., fossil diatoms) and the nutrient loads variability affecting the trophic state. Typically, the biological responses to climate change have been studied in several types of lakes, while documented changes in water chemistry are much rare. A long term study of 20 high altitude lakes located in central southern Himalaya (Mt Everest) conducted since the 90s has highlighted a general change in the chemical composition of the lake water: a substantial rise in the ionic content was observed, particularly pronounced in the case of sulphate. In a couple of these lakes, monitored on an annual basis, the sulphate concentrations increased over 4-fold. A change in the composition of atmospheric wet deposition, as well as a possible influence of decrease in seasonal snow cover duration, which could have exposed larger basin surfaces to alteration processes, were excluded. The chemical changes proved to be mainly related to the sulphide oxidation processes occurring in the bedrocks or the hydrographic basins. In particular, the oxidation processes, considered as the main factor causing the sulphate increase, occurred in subglacial environments characterized by higher glacier velocities causing higher glacier shrinkage. Associated to this mechanism, the exposure of fresh mineral surfaces to the atmosphere may have contributed also to increases in the alkalinity of lakes. Weakened monsoon of the past two decades may have partially contributed to the solute enrichment of the lakes through runoff waters. The almost synchronous response of the lakes studied, which differs in terms of the presence of glaciers in their basins, highlights the fact that the increasing ionic content of lake

  11. Soil management system for water conservation and mitigation of global change effect

    NASA Astrophysics Data System (ADS)

    Ospina, A.; Florentino, A.; Lorenzo, V.

    2012-04-01

    One of the main constraints in rained agriculture is the water availability for plant growth which depends largely on the ability of the soil to allow water flow, infiltration and its storage. In Venezuela, the interaction between aggressive climatic conditions, highly susceptible soils and inadequate management systems have caused soil degradation which together with global change threatened the food production sustainability. To address this problem, we need to implement conservationist management strategies that improve infiltration rate, permeability and water holding capacity in soil and reduce water loss by protecting the soil surface. In order to study the impact of different management systems on soil water balance in a Fluventic Haplustept, the effects of 11 years of tillage and crops rotation management were evaluated in a long term field experiment located in Turén (Portuguesa state). The evaluated tillage systems were no tillage (NT) and conventional tillage (CT) and crop rotation treatments were maize (Zea mays)-cotton (Gossypium hirsutum) and maize-bean (Vigna unguiculata). Treatments were established in plots arranged in a randomized block design with three replicates. The gravimetric moisture content was determined in the upper 20 cm of soil, at eight different sampling dates. Results showed increased in time of the water availability with the use of tillage and corn-cotton rotation and, better protection of the soil against raindrop impact with crop residues. Water retention capacity also increased and improved structural condition on soil surface such as infiltration, storage and water flow distribution in the rooting zone. We conclude that these strategies of land use and management would contribute to mitigate the climate change effects on food production in this region of Venezuela. Key words: Soil quality; rained agriculture; plant water availability

  12. Global climatic change effects on irrigation requirements for the Central Great Plains

    USDA-ARS?s Scientific Manuscript database

    Rising carbon dioxide and other green house gasses (water vapor, nitrous oxide, methane, etc.) are predicted to have an effect on future climates. These gasses impact crops and global and local weather. The carbon dioxide increase is generally considered to be favorable to agriculture as it increas...

  13. Global change and terrestrial plant community dynamics

    DOE PAGES

    Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; ...

    2016-02-29

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this article, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on amore » literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Lastly, monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.« less

  14. Global change and terrestrial plant community dynamics.

    PubMed

    Franklin, Janet; Serra-Diaz, Josep M; Syphard, Alexandra D; Regan, Helen M

    2016-04-05

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this paper, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on a literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.

  15. Global change and terrestrial plant community dynamics

    PubMed Central

    Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; Regan, Helen M.

    2016-01-01

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this paper, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on a literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change. PMID:26929338

  16. Global Climatic Change.

    ERIC Educational Resources Information Center

    Houghton, Richard A.; Woodwell, George M.

    1989-01-01

    Cites some of the evidence which suggests that the production of carbon dioxide and methane from human activities has begun to change the climate. Describes some measures which should be taken to stop or slow this progression. (RT)

  17. Global Climatic Change.

    ERIC Educational Resources Information Center

    Houghton, Richard A.; Woodwell, George M.

    1989-01-01

    Cites some of the evidence which suggests that the production of carbon dioxide and methane from human activities has begun to change the climate. Describes some measures which should be taken to stop or slow this progression. (RT)

  18. Global climate change and children's health.

    PubMed

    Shea, Katherine M

    2007-11-01

    There is a broad scientific consensus that the global climate is warming, the process is accelerating, and that human activities are very likely (>90% probability) the main cause. This warming will have effects on ecosystems and human health, many of them adverse. Children will experience both the direct and indirect effects of climate change. Actions taken by individuals, communities, businesses, and governments will affect the magnitude and rate of global climate change and resultant health impacts. This technical report reviews the nature of the global problem and anticipated health effects on children and supports the recommendations in the accompanying policy statement on climate change and children's health.

  19. The Effect of Global Change on Surface Ozone and Reactive Nitrogen Concentrations: Implications for the Biosphere

    NASA Astrophysics Data System (ADS)

    Hess, P. G.; Murazaki, K.; Emmons, L.; Lamarque, J.

    2005-12-01

    We simulated two ten year periods using the global chemical transport model MOZART-2 (Model of Ozone and Related chemical Tracers version 2): 1990-2000 and 2090-2100. In each case MOZART-2 is driven by meteorology from the National Center for Atmospheric Research (NCAR) coupled Climate Systems Model (CSM) 1.0 forced with the (SRES) A1 scenario. Profound future changes in the summertime climate over the U.S. are found including changes in temperature, water vapor and clouds and the frequency of synoptic venting of the boundary layer. Even allowing for no changes in emissions in the future, the changes in climate alone drive a significant increase in the ozone concentration over the eastern U.S. (up to 5 ppbv on average) and an increase in the persistence of pollution events. Implications of these changes on the biosphere are assessed with and without allowing for the impact of climate on biogenic emissions. Furthermore the changes in climate alone cause large changes in the partitioning of NOy, decreasing PAN by over 20% over the U.S. Coupled with changes in precipitation; this induces significant changes in the deposition of nitrogen species to the biosphere in a future climate.

  20. GLOBAL CHANGE AND WATER RESOURCES

    USDA-ARS?s Scientific Manuscript database

    The influence of global change on future water resources is difficult to predict because various components are likely to be affected in opposing ways. Global warming would tend to increase evapotranspiration (ET) rates and irrigation water requirements, while increasing precipitation would both dec...

  1. [The effects of global climatic changes on bloodsucking ectoparasites and pathogens they transmit].

    PubMed

    Alekseev, A N

    2006-01-01

    The present global climatic changes, regardless of their causes and duration, are of paramount importance from the ecological perspective. The influence of these changes on Russian population health attracts the attention of experts. The most important changes have already taken place in the high and middle latitudes, occupied by Russia. The article covers a probable impact of global changes on the distribution of bloodsucking arthropods as the vectors of inoculable disease agents, their abundance and vector capacity, and the role of migratory birds in their spreading. For Russia, the most important is to forecast the condition of the population of gnats, malaria vectors in particular, as well as ticks, the latter group being the vectors of tickborne infections ranging from the Baltic Sea to the Pacific Ocean. Analysis of the changes in mean annual temperatures during the past century by the example of Minsk, an East European city, demonstrates its nearly 1.5-fold increase. Minsk in Belarus, as well as many big cities in Russia, such as St. Petersburg, Yekaterinburg etc., present the so called "warm islands". Global increase in temperatures, winter ones first of all, especially in megapolises, leads to outbreaks of inoculable diseases transmitted by bloodsucking vectors in urbanized territories, with a noticeable north shift of their natural ranges. Recent epidemics of West Nile fever in New York City, USA, as well as in Krasnodar and Volgograd, Russia, can serve as examples. Increased mean summer temperatures, as well as prolonged warm and humid periods, facilitate malaria transmissions. The periods of possible successful transmission of tick-borne infections is prolonged likewise, with a north-west shift of their ranges. Thus, Japanese encephalitis outbreaks are expected in Russian Primorye and in the south of Sakhalin Island. Among known and still revealed tick-borne diseases, an increased role is going to be played by mixed viral as well as bacterial infections.

  2. The effects of potential changes in United States beef production on global grazing systems and greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Dumortier, Jerome; Hayes, Dermot J.; Carriquiry, Miguel; Dong, Fengxia; Du, Xiaodong; Elobeid, Amani; Fabiosa, Jacinto F.; Martin, Pamela A.; Mulik, Kranti

    2012-06-01

    We couple a global agricultural production and trade model with a greenhouse gas model to assess leakage associated with modified beef production in the United States. The effects on emissions from agricultural production (i.e., methane and nitrous oxide emissions from livestock and crop management) as well as from land-use change, especially grazing system, are assessed. We find that a reduction of US beef production induces net carbon emissions from global land-use change ranging from 37 to 85 kg CO2-equivalent per kg of beef annualized over 20 years. The increase in emissions is caused by an inelastic domestic demand as well as more land-intensive cattle production systems internationally. Changes in livestock production systems such as increasing stocking rate could partially offset emission increases from pasture expansion. In addition, net emissions from enteric fermentation increase because methane emissions per kilogram of beef tend to be higher globally.

  3. [Effects of global climate change on the ecological characteristics and biogeochemical significance of marine viruses--A review].

    PubMed

    Yang, Yunlan; Cai, Lanlan; Zhang, Rui

    2015-09-04

    As the most abundance biological agents in the oceans, viruses can influence the physiological and ecological characteristics of host cells through viral infections and lysis, and affect the nutrient and energy cycles of the marine food chain. Thus, they are the major players in the ocean biogeochemical processes. The problems caused by global climate changes, such as sea-surface warming, acidification, nutrients availability, and deoxygenation, have the potential effects on marine viruses and subsequently their ecological and biogeochemical function in the ocean. Here, we reviewed the potential impacts of global climate change on the ecological characteristics (e. g. abundance, distribution, life cycle and the host-virus interactions) and biogeochemical significance (e. g. carbon cycling) of marine viruses. We proposed that marine viruses should not be ignored in the global climate change study.

  4. Lawrence Livermore National Laboratory interests and capabilities for research on the ecological effects of global climatic and atmospheric change

    SciTech Connect

    Amthor, J.S.; Houpis, J.L.; Kercher, J.R.; Ledebuhr, A.; Miller, N.L.; Penner, J.E.; Robison, W.L.; Taylor, K.E.

    1994-09-01

    The Lawrence Livermore National Laboratory (LLNL) has interests and capabilities in all three types of research that must be conducted in order to understand and predict effects of global atmospheric and climatic (i.e., environmental) changes on ecological systems and their functions (ecosystem function is perhaps most conveniently defined as mass and energy exchange and storage). These three types of research are: (1) manipulative experiments with plants and ecosystems; (2) monitoring of present ecosystem, landscape, and global exchanges and pools of energy, elements, and compounds that play important roles in ecosystem function or the physical climate system, and (3) mechanistic (i.e., hierarchic and explanatory) modeling of plant and ecosystem responses to global environmental change. Specific experimental programs, monitoring plans, and modeling activities related to evaluation of ecological effects of global environmental change that are of interest to, and that can be carried out by LLNL scientists are outlined. Several projects have the distinction of integrating modeling with empirical studies resulting in an Integrated Product (a model or set of models) that DOE or any federal policy maker could use to assess ecological effects. The authors note that any scheme for evaluating ecological effects of atmospheric and climatic change should take into account exceptional or sensitive species, in particular, rare, threatened, or endangered species.

  5. Update on global climate change.

    PubMed

    Weber, Carol J

    2010-01-01

    Global climate change brings new challenges to the control of infectious diseases. Since many waterborne and vector-borne pathogens are highly sensitive to temperature and rainfall, health risks resulting from a warming and more variable climate are potentially huge. Global climate change involves the entire world, but the poorest countries will suffer the most. Nations are coming together to address what can be done to reduce greenhouse gas emissions and cope with inevitable temperature increases. A key component of any comprehensive mitigation and adaptation plan is a strong public health infrastructure across the world. Nothing less than global public health security is at stake.

  6. Global Environmental Change: Modelling and Monitoring

    NASA Astrophysics Data System (ADS)

    Kelley, John J.

    The second half of the 20th century was a period of unprecedented and rapid change in the global population, the biosphere, the world economy and society. Recent inquiry related to the environmental effects has focused on the complexities of how the Earth behaves as a system, with connectivity linking its oceans, land, atmosphere, living, and non-living components. The search for delineation of natural and human causes and effects of global change has ushered in new mathematical approaches to the pursuit of a global environmental system science. Judging from the reports of several international conferences—for example, The Amsterdam Declaration on Global Change, 2000—a consistent theme has emerged, calling for the development of an effective ethical framework of global stewardship and strategies (modeling and monitoring) for Earth system management.

  7. National Security and Global Climate Change

    DTIC Science & Technology

    2008-01-01

    The uncertainty, confusion, and speculation about the causes, effects, and implications of global climate change (GCC) often paralyze serious...against scientific indications of global climate change , but to consider how it would pose challenges to national security, explore options for facing...generals and admirals, released a report concluding that projected climate change poses a serious threat to America’s national security. This article

  8. State - Level Regulation's Effectiveness in Addressing Global Climate Change and Promoting Solar Energy Deployment

    NASA Astrophysics Data System (ADS)

    Peterman, Carla Joy

    Paper 1, Local Solutions to Global Problems: Climate Change Policies and Regulatory Jurisdiction, considers the efficacy of various types of environmental regulations when they are applied locally to pollutants whose damages extend beyond the jurisdiction of the local regulators. Local regulations of a global pollutant may be ineffective if producers and consumers can avoid them by transacting outside the reach of the local regulator. In many cases, this may involve the physical relocation of the economic activity, a problem often referred to as "leakage." This paper highlights another way in which local policies can be circumvented: through the shuffling of who buys from whom. The paper maintains that the problems of reshuffling are exacerbated when the options for compliance with the regulations are more flexible. Numerical analyses is presented demonstrating that several proposed policies to limit greenhouse gas emissions from the California electricity sector may have very little effect on carbon emissions if they are applied only within that state. Paper 1 concludes that although local subsidies for energy efficiency, renewable electricity, and transportation biofuels constitute attempts to pick technology winners, they may be the only mechanisms that local jurisdictions, acting alone, have at their disposal to address climate change. Paper 2, Pass-Through of Solar PV Incentives to Consumers: The Early Years of California's Solar PV Incentives, examines the pass through of incentives to California solar PV system owners. The full post-subsidy price consumers pay for solar power is a key metric of the success of solar PV incentive programs and of overall PV market performance. This study examines the early years of California's most recent wave of distributed solar PV incentives (2000-2008) to determine the pass-through of incentives. Examination of this period is both intellectually and pragmatically important due to the high level of incentives provided and

  9. Climatic change and wildland recreation: Examining the changing patterns of wilderness recreation in response to the effects of global climate change and the El Nino phenomenon

    Treesearch

    Vinod Sasidharan

    2000-01-01

    Impacts of global climate change on the biophysical components of wilderness areas have the potential to alter their recreational utility of wilderness areas. Concomitantly, the frequency and patterns of both land-based and water-based wilderness recreation activities will be affected. Despite the difficulty of responding to the unclear dimensions of global climate...

  10. Global climate change and tree nutrition: effects of elevated CO2 and temperature.

    PubMed

    Lukac, Martin; Calfapietra, Carlo; Lagomarsino, Alessandra; Loreto, Francesco

    2010-09-01

    Although tree nutrition has not been the primary focus of large climate change experiments on trees, we are beginning to understand its links to elevated atmospheric CO₂ and temperature changes. This review focuses on the major nutrients, namely N and P, and deals with the effects of climate change on the processes that alter their cycling and availability. Current knowledge regarding biotic and abiotic agents of weathering, mobilization and immobilization of these elements will be discussed. To date, controlled environment studies have identified possible effects of climate change on tree nutrition. Only some of these findings, however, were verified in ecosystem scale experiments. Moreover, to be able to predict future effects of climate change on tree nutrition at this scale, we need to progress from studying effects of single factors to analysing interactions between factors such as elevated CO₂, temperature or water availability.

  11. Global environmental change effects on ecosystems: the importance of land-use legacies.

    PubMed

    Perring, Michael P; De Frenne, Pieter; Baeten, Lander; Maes, Sybryn L; Depauw, Leen; Blondeel, Haben; Carón, María M; Verheyen, Kris

    2016-04-01

    One of the major challenges in ecology is to predict how multiple global environmental changes will affect future ecosystem patterns (e.g. plant community composition) and processes (e.g. nutrient cycling). Here, we highlight arguments for the necessary inclusion of land-use legacies in this endeavour. Alterations in resources and conditions engendered by previous land use, together with influences on plant community processes such as dispersal, selection, drift and speciation, have steered communities and ecosystem functions onto trajectories of change. These trajectories may be modulated by contemporary environmental changes such as climate warming and nitrogen deposition. We performed a literature review which suggests that these potential interactions have rarely been investigated. This crucial oversight is potentially due to an assumption that knowledge of the contemporary state allows accurate projection into the future. Lessons from other complex dynamic systems, and the recent recognition of the importance of previous conditions in explaining contemporary and future ecosystem properties, demand the testing of this assumption. Vegetation resurvey databases across gradients of land use and environmental change, complemented by rigorous experiments, offer a means to test for interactions between land-use legacies and multiple environmental changes. Implementing these tests in the context of a trait-based framework will allow biologists to synthesize compositional and functional ecosystem responses. This will further our understanding of the importance of land-use legacies in determining future ecosystem properties, and soundly inform conservation and restoration management actions. © 2015 John Wiley & Sons Ltd.

  12. Global change and wilderness science

    Treesearch

    Peter M. Vitousek; John D. Aber; Christine L. Goodale; Gregory H. Aplet

    2000-01-01

    The breadth and scope of human-caused environmental change is well-established; the distribution and abundance of species, the vegetation cover of the land, and the chemistry of the atmosphere have been altered substantially and globally. How can science in wilderness areas contribute to the analysis of human-caused change? We use nitrate losses from forests to...

  13. Global Change Assessment Model (GCAM)

    EPA Science Inventory

    The Global Change Assessment Model (GCAM) is an integrated assessment model that links the world's energy, agriculture and land use systems with a climate model. The model is designed to assess various climate change policies and technology strategies for the globe over long tim...

  14. Global Change Assessment Model (GCAM)

    EPA Science Inventory

    The Global Change Assessment Model (GCAM) is an integrated assessment model that links the world's energy, agriculture and land use systems with a climate model. The model is designed to assess various climate change policies and technology strategies for the globe over long tim...

  15. Teaching about Global Climate Change

    ERIC Educational Resources Information Center

    Heffron, Susan Gallagher; Valmond, Kharra

    2011-01-01

    Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media…

  16. Teaching about Global Climate Change

    ERIC Educational Resources Information Center

    Heffron, Susan Gallagher; Valmond, Kharra

    2011-01-01

    Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media…

  17. Perspectives on global change theory

    USDA-ARS?s Scientific Manuscript database

    Human-caused global changes in ecological drivers, such as carbon dioxide concentrations, climate, and nitrogen deposition, as well as direct human impacts (land use change, species movements and extinctions, etc.) are increasingly recognized as key to understanding contemporary ecosystem dynamics, ...

  18. Combined global change effects on ecosystem processes in nine U.S

    Treesearch

    Melannie D. Hartman; Jill S. Baron; Holly A. Ewing; Kathleen C. Weathers; Chelcy Miniat

    2014-01-01

    Concurrent changes in climate, atmospheric nitrogen (N) deposition, and increasing levels of atmospheric carbon dioxide (CO2) affect ecosystems in complex ways. The DayCent-Chem model was used to investigate the combined effects of these human-caused drivers of change over the period 1980–2075 at seven forested montane and two alpine watersheds...

  19. Greenland and Antarctica Ice Sheet Mass Changes and Effects on Global Sea Level

    NASA Astrophysics Data System (ADS)

    Forsberg, Rene; Sørensen, Louise; Simonsen, Sebastian

    2017-01-01

    Thirteen years of GRACE data provide an excellent picture of the current mass changes of Greenland and Antarctica, with mass loss in the GRACE period 2002-2015 amounting to 265 ± 25 GT/year for Greenland (including peripheral ice caps), and 95 ± 50 GT/year for Antarctica, corresponding to 0.72 and 0.26 mm/year average global sea level change. A significant acceleration in mass loss rate is found, especially for Antarctica, while Greenland mass loss, after a corresponding acceleration period, and a record mass loss in the summer of 2012, has seen a slight decrease in short-term mass loss trend. The yearly mass balance estimates, based on point mass inversion methods, have relatively large errors, both due to uncertainties in the glacial isostatic adjustment processes, especially for Antarctica, leakage from unmodelled ocean mass changes, and (for Greenland) difficulties in separating mass signals from the Greenland ice sheet and the adjacent Canadian ice caps. The limited resolution of GRACE affects the uncertainty of total mass loss to a smaller degree; we illustrate the "real" sources of mass changes by including satellite altimetry elevation change results in a joint inversion with GRACE, showing that mass change occurs primarily associated with major outlet glaciers, as well as a narrow coastal band. For Antarctica, the primary changes are associated with the major outlet glaciers in West Antarctica (Pine Island and Thwaites Glacier systems), as well as on the Antarctic Peninsula, where major glacier accelerations have been observed after the 2002 collapse of the Larsen B Ice Shelf.

  20. Global Economic Exposure to Future Temperature Changes

    NASA Astrophysics Data System (ADS)

    Hsiang, S. M.

    2011-12-01

    In global-scale analyses of future climate change, "global average temperature change" is a commonly used summary statistic. Unfortunately, this statistic may not be useful for many types of economic analyses because it is an average over the planet's entire surface and is therefore dominated by changes over oceans and other uninhabited regions. Here, we attempt to summarize projected temperature changes in a manner that is more useful for economic analyses: we construct the distributions of future temperature exposure for a randomly selected person, a random hectare of cropland, and a random dollar of value-added. Our results streamline global cost analyses, enabling future studies to estimate global losses by combining their locally derived loss-functions with our estimates of global exposure. We demonstrate this application by estimating that low and middle income populations may suffer income losses of 9% annually due only to the effects of thermal stress on workers, a mechanism previously omitted from global cost estimates. In ancillary findings, we also document that (1) when exposure distributions are substituted for global average temperature change in standard models of economic costs, projected annual losses increase by trillions of dollars; (2) low and middle income populations will be twice as exposed to harmful temperatures as high income populations, based only on their locations; and (3) it is unlikely the direct effects of warming can have a positive net impact on the global economy.

  1. Understanding Global Change: A New Conceptual Framework To Guide Teaching About Planetary Systems And Both The Causes And Effects Of Changes In Those Systems

    NASA Astrophysics Data System (ADS)

    Levine, J.; Bean, J. R.

    2016-12-01

    Goals of the Next Generation Science Standards include understanding climate change and learning about ways to moderate the causes and mitigate the consequences of planetary-scale anthropogenic activities that interact synergistically to affect ecosystems and societies. The sheer number and scale of both causes and effects of global change can be daunting for teachers, and the lack of a clear conceptual framework for presenting this material usually leads educators (and textbooks) to present these phenomenon as a disjointed "laundry list." But an alternative approach is in the works. The Understanding Global Change web resource, currently under development at the UC Berkeley Museum of Paleontology, will provide educators with a conceptual framework, graphic models, lessons, and assessment templates for teaching NGSS-aligned, interdisciplinary, global change curricula. The core of this resource is an original informational graphic that presents and relates Earth's global systems, human and non-human factors that produce changes in those systems, and the effects of those changes that scientists can measure.

  2. Global change and the ecology of cities.

    PubMed

    Grimm, Nancy B; Faeth, Stanley H; Golubiewski, Nancy E; Redman, Charles L; Wu, Jianguo; Bai, Xuemei; Briggs, John M

    2008-02-08

    Urban areas are hot spots that drive environmental change at multiple scales. Material demands of production and human consumption alter land use and cover, biodiversity, and hydrosystems locally to regionally, and urban waste discharge affects local to global biogeochemical cycles and climate. For urbanites, however, global environmental changes are swamped by dramatic changes in the local environment. Urban ecology integrates natural and social sciences to study these radically altered local environments and their regional and global effects. Cities themselves present both the problems and solutions to sustainability challenges of an increasingly urbanized world.

  3. Numerical study of sea level and kuroshio volume transport change contributed by steric effect due to global warming

    NASA Astrophysics Data System (ADS)

    Lim, C.; Kim, D. H.; Woo, S. B.

    2016-02-01

    For direct consideration of seawater volume change by steric effect due to global warming, this study uses a MOM (Modular Ocean Model) version4 oceanic general circulation model, which does not use Boussinesq approximation. The model was improved to regional scale by increasing the grid resolution. Global simulation model results of CM2.1, HADCM3, MIROC3.2 provided by the IPCC AR4 (Intergovernmental Panel on Climate Change) were used as initial and boundary conditions, and SRES (Special Report on Emissions Scenarios) A1B was selected as a global warming scenario. The Northwestern Pacific region, which includes the Korean Peninsula, was selected as the study area, and the Yellow Sea which has a complex coastline, was expressed in detail by increasing grid resolution. By averaging the results of the three numerical experiments, we found that temperature & mean sea level(MSL) are increased by approximately 3℃/35cm from 2000 to 2100, respectively. Interestingly, The East Sea (Japan sea) appeared to show the largest change of MSL due to steric effect compared with Yellow and East China Sea. Numerical results showed that larger influence on East/Japan Sea is caused by the temperature and volume transport change in Tsushima Warm Current, which passes through the Korea Strait. A direct simulation of steric effect results in higher sea level rise compared with in-direct simulation of steric effect. Also, the Kuroshio Current, which is one of the major currents in the Northwestern Pacific, showed a decrease in transport as global warming progressed. Although there were differences between models, approximately 4 5SV of transport was reduced in 2100. However, there was no huge change in the transport of the Tsushima Warm Current.

  4. Glomed-Land: a research project to study the effect of global change in contrasted mediterranean landscapes and future scenarios

    NASA Astrophysics Data System (ADS)

    Ruiz-Sinoga, José D.; Hueso-González, Paloma; León-Gross, Teodoro; Molina, Julián; Remond, Ricardo; Martínez-Murillo, Juan F.

    2017-04-01

    abiotic, biotic, and human elements of the landscape (soil, plant cover, crops, water resources, etc.). Simulation and modelling is now an essential tool in the study of landscape and of the effects of Climate Change, not only towards the future through scenarios and simulation modelling, also to the past, to better understand what causes have led to effects, and to what extent. In this work we aim to create a set of software tools for analysis, modelling and simulation of the effects of Global change on two Mediterranean catchments: the middle and upper basin of the Grande River and the high Benamargosa River, both of them in the Province of Málaga (South of Spain). This will allow a full analysis, monitor, and predict those effects at local scale. Finally, we analyse the role that the impact of Global Change issues has had from the media point of view and what tendency can follow. References Dearing, J. et al. (2006): «Human-environment interactions: towards synthesis and simulation». Regional Environmental Change, n° 6, 115-123. García-Ruiz et al. (2015): «Los efectos geoecológicos del cambio global en el Pirineo central español: una revisión a distintas escalas espaciales y temporales». Pirineos, 170. Steffen, W. et al. (2004): Global Change and the Earth System: a planet under pressure. Executive summary. The IGBP Global Change Series. Springer-Verlag, Berlin, Heidelburg, 44 pp., New York. Vitousek, P.M. et al. (1997): «Human domination of earth's ecosystems». Science, n° 277, 494-499.

  5. Global change: Acronyms and abbreviations

    SciTech Connect

    Woodard, C.T.; Stoss, F.W.

    1995-05-01

    This list of acronyms and abbreviations is compiled to provide the user with a ready reference to dicipher the linguistic initialisms and abridgements for the study of global change. The terms included in this first edition were selected from a wide variety of sources: technical reports, policy documents, global change program announcements, newsletters, and other periodicals. The disciplinary interests covered by this document include agriculture, atmospheric science, ecology, environmental science, oceanography, policy science, and other fields. In addition to its availability in hard copy, the list of acronyms and abbreviations is available in DOS-formatted diskettes and through CDIAC`s anonymous File Transfer Protocol (FTP) area on the Internet.

  6. Asia's changing role in global climate change.

    PubMed

    Siddiqi, Toufiq A

    2008-10-01

    Asia's role in global climate change has evolved significantly from the time when the Kyoto Protocol was being negotiated. Emissions of carbon dioxide, the principal greenhouse gas, from energy use in Asian countries now exceed those from the European Union or North America. Three of the top five emitters-China, India, and Japan, are Asian countries. Any meaningful global effort to address global climate change requires the active cooperation of these and other large Asian countries, if it is to succeed. Issues of equity between countries, within countries, and between generations, need to be tackled. Some quantitative current and historic data to illustrate the difficulties involved are provided, and one approach to making progress is suggested.

  7. Health effects associated with global climate change: A role for environmental mutagens?

    SciTech Connect

    Rosenkranz, H.S.

    1996-12-31

    This commentary discusses the role the scientists who study environmental mutagens have in evaluating the health effects of climate change. The author feels that the possibility that mutagens secondary to climatic changes could affect human health directly (somatic mutation/cancer) as well as indirectly (mutagenesis of pathogens and their vectors) is intriguing, and that scientists in the area are well equipped to play a pivital role.

  8. Global Climate Change Effects on Venezuela's Vulnerability to Chagas Disease is Linked to the Geographic Distribution of Five Triatomine Species.

    PubMed

    Ceccarelli, Soledad; Rabinovich, Jorge E

    2015-11-01

    We analyzed the possible effects of global climate change on the potential geographic distribution in Venezuela of five species of triatomines (Eratyrus mucronatus (Stal, 1859), Panstrongylus geniculatus (Latreille, 1811), Rhodnius prolixus (Stål, 1859), Rhodnius robustus (Larrousse, 1927), and Triatoma maculata (Erichson, 1848)), vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. To obtain the future potential geographic distributions, expressed as climatic niche suitability, we modeled the presences of these species using two IPCC (Intergovernmental Panel on Climate Change) future emission scenarios of global climate change (A1B and B1), the Global Climate model CSIRO Mark 3.0, and three periods of future projections (years 2020, 2060, and 2080). After estimating with the MaxEnt software the future climatic niche suitability for each species, scenario, and period of future projections, we estimated a series of indexes of Venezuela's vulnerability at the county, state, and country level, measured as the number of people exposed due to the changes in the geographical distribution of the five triatomine species analyzed. Despite that this is not a measure of the risk of Chagas disease transmission, we conclude that possible future effects of global climate change on the Venezuelan population vulnerability show a slightly decreasing trend, even taking into account future population growth; we can expect fewer locations in Venezuela where an average Venezuelan citizen would be exposed to triatomines in the next 50-70 yr. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Global Change Education Resource Guide.

    ERIC Educational Resources Information Center

    Mortensen, Lynn L., Ed.

    This guide is intended as an aid to educators who conduct programs and activities on climate and global change issues for a variety of audiences. The selected set of currently available materials are appropriate for both formal and informal programs in environmental education and can help frame and clarify some of the key issues associated with…

  10. Combined effects of global climate change and regional ecosystem drivers on an exploited marine food web.

    PubMed

    Niiranen, Susa; Yletyinen, Johanna; Tomczak, Maciej T; Blenckner, Thorsten; Hjerne, Olle; Mackenzie, Brian R; Müller-Karulis, Bärbel; Neumann, Thomas; Meier, H E Markus

    2013-11-01

    Changes in climate, in combination with intensive exploitation of marine resources, have caused large-scale reorganizations in many of the world's marine ecosystems during the past decades. The Baltic Sea in Northern Europe is one of the systems most affected. In addition to being exposed to persistent eutrophication, intensive fishing, and one of the world's fastest rates of warming in the last two decades of the 20th century, accelerated climate change including atmospheric warming and changes in precipitation is projected for this region during the 21st century. Here, we used a new multimodel approach to project how the interaction of climate, nutrient loads, and cod fishing may affect the future of the open Central Baltic Sea food web. Regionally downscaled global climate scenarios were, in combination with three nutrient load scenarios, used to drive an ensemble of three regional biogeochemical models (BGMs). An Ecopath with Ecosim food web model was then forced with the BGM results from different nutrient-climate scenarios in combination with two different cod fishing scenarios. The results showed that regional management is likely to play a major role in determining the future of the Baltic Sea ecosystem. By the end of the 21st century, for example, the combination of intensive cod fishing and high nutrient loads projected a strongly eutrophicated and sprat-dominated ecosystem, whereas low cod fishing in combination with low nutrient loads resulted in a cod-dominated ecosystem with eutrophication levels close to present. Also, nonlinearities were observed in the sensitivity of different trophic groups to nutrient loads or fishing depending on the combination of the two. Finally, many climate variables and species biomasses were projected to levels unseen in the past. Hence, the risk for ecological surprises needs to be addressed, particularly when the results are discussed in the ecosystem-based management context.

  11. Global Climate Change: Threat Multiplier for AFRICOM?

    DTIC Science & Technology

    2007-11-06

    climate change , stability for Africa hinges upon mitigating the effects of global climate change to prevent future conflicts such as Darfur, and the...instability that fosters terrorism. The National Security Act of 2010 will formally address climate change and the planning requirement for the threat...of Responsibility (AOR). He will need to integrate multinational and multiagency cooperation to address climate change forecasts. The author

  12. Global-mean temperature change from shipping toward 2050: improved representation of the indirect aerosol effect in simple climate models.

    PubMed

    Lund, Marianne Tronstad; Eyring, Veronika; Fuglestvedt, Jan; Hendricks, Johannes; Lauer, Axel; Lee, David; Righi, Mattia

    2012-08-21

    We utilize a range of emission scenarios for shipping to determine the induced global-mean radiative forcing and temperature change. Ship emission scenarios consistent with the new regulations on nitrogen oxides (NO(x)) and sulfur dioxide (SO(2)) from the International Maritime Organization and two of the Representative Concentration Pathways are used as input to a simple climate model (SCM). Based on a complex aerosol-climate model we develop and test new parametrizations of the indirect aerosol effect (IAE) in the SCM that account for nonlinearities in radiative forcing of ship-induced IAE. We find that shipping causes a net global cooling impact throughout the period 1900-2050 across all parametrizations and scenarios. However, calculated total net global-mean temperature change in 2050 ranges from -0.03[-0.07,-0.002]°C to -0.3[-0.6,-0.2]°C in the A1B scenario. This wide range across parametrizations emphasizes the importance of properly representing the IAE in SCMs and to reflect the uncertainties from complex global models. Furthermore, our calculations show that the future ship-induced temperature response is likely a continued cooling if SO(2) and NO(x) emissions continue to increase due to a strong increase in activity, despite current emission regulations. However, such cooling does not negate the need for continued efforts to reduce CO(2) emissions, since residual warming from CO(2) is long-lived.

  13. Historical change in fish species distribution: shifting reference conditions and global warming effects.

    PubMed

    Pont, Didier; Logez, M; Carrel, G; Rogers, C; Haidvogl, G

    Species distributions models (SDM) that rely on estimated relationships between present environmental conditions and species presence-absence are widely used to forecast changes of species distributions caused by global warming but far less to reconstruct historical assemblages. By compiling historical fish data from the turn to the middle of the twentieth century in a similar way for several European catchments (Rhône, Danube), and using already published SDMs based on current observations, we: (1) tested the predictive accuracy of such models for past climatic conditions, (2) compared observed and expected cumulated historical species occurrences at sub-catchment level, and (3) compared the annual variability in the predictions within one sub-catchment (Salzach) under a future climate scenario to the long-term variability of occurrences reconstructed during an extended historical period (1800-2000). We finally discuss the potential of these SDMs to define a "reference condition", the possibility of a shift in baseline condition in relation with anthropogenic pressures, and past and future climate variability. The results of this study clearly highlight the potential of SDM to reconstruct the past composition of European fish assemblages and to analyze the historical ecological status of European rivers. Assessing the uncertainty associated with species distribution projections is of primary importance before evaluating and comparing the past and future distribution of species within a given catchment.

  14. Scientific linkages in global change

    SciTech Connect

    Jutro, P.R.; Worrest, R.C.; Janetos, A.C.

    1989-06-16

    In the atmosphere, certain trace gases both promote global warming and deplete the ozone layer. The primary radiatively active trace gases that affect global warming are carbon dioxide, nitrous oxide, chlorofluorocarbons, methane, and tropospheric ozone. In the troposphere, the atmosphere up to 10 miles above the earth's surface, these compounds function as greenhouse gases. Many of these gases also influence the concentration of ozone in the stratosphere, the atmospheric layer located between 10-30 miles above the earth's surface. The diffuse layer of ozone in the stratosphere protects life on earth from harmful solar radiation. A reduction of the layer could have very important impacts on the earth's systems. Interactions exist in various ecological processes as well. Physical, chemical, and biological activities of plants and animals are affected directly by global climate change and by increased ultraviolet radiation resulting from depletion of stratospheric ozone.

  15. Hydrologic Effects of Global Climate Change on a Large Drained Pine Forest

    Treesearch

    Devendra M. Amatya; Ge Sun; R. W. Skaggs; G. M Chescheir; J. E. Nettles

    2006-01-01

    A simulation study using a watershed scale forest hydrology model (DRAINWAT) was conducted to evaluate potential effects of climate change on the hydrology of a 3,000 ha managed pine forest in coastal North Carolina. The model was first validated with a five-year (1996-2000) data set fro111 the study site and then run with 50-years (1951-00) of historic weather data...

  16. Effects of interactive global changes on soil N-fluxes in managed grassland

    NASA Astrophysics Data System (ADS)

    Deltedesco, Evi; Gerding, Merle; Naynar, Maria; Zechmeister-Boltenstern, Sophie; Gorfer, Markus; Bahn, Michael; Pötsch, Erich M.; Herndl, Markus; Keiblinger, Katharina M.

    2017-04-01

    Climate projections for the next decades expect a significant increase in air temperature, atmospheric CO2 concentrations and the frequency and intensity of extreme weather events. The impact of individual environmental factors (warming and elevated CO2) on biogeochemical cycles of ecosystems is moderately well studied. However, the quantification of the impact of these combined environmental changes on N-cycling functions of ecosystems and their biogeochemical feedbacks to the climate system is still fraught with uncertainty, both in terms of magnitude and the interactions. The aim of the present study is the evaluation of the response of warming, elevated CO2 concentrations and their combined effect on N-gas emissions, microbial community structure and function in a managed grassland site. This project is implemented in a complex field experiment in a mountain region (Raumberg-Gumpenstein) and consists of a factorial approach. Individual and combined effects of air temperature (ambient, warming of 1.5 and 3˚ C) and atmospheric CO2-concentrations (ambient, +150 and +300 ppm) on N-pools and N-gas emissions is examined and related to soil microbial processes. In order to achieve our objectives, soil was sampled in autumn 2016. Intact soil cores were incubated at constant temperature to analyze N2O, NOx and NH3 emissions in a lab incubation experiment. Simultaneously, soil samples were taken to examine different N pools (DON, Nmic, NH4+ and NO3-). In addition the abundance of ammonia oxidizing bacteria and archaea (amoA) together with expression levels of involved N-cycling target genes (nirK, nirS, norB and nosZ) was evaluated. Variation in N-fluxes was observed and will be discussed. This research provides new insights on microbial processes in response to factorial climate change effects, and will enable us to evaluate changes through non-linear and non-additive effects of multiple factors of climate change.

  17. The Effect of Hurricanes on Annual Precipitation in Maryland and the Connection to Global Climate Change

    NASA Technical Reports Server (NTRS)

    Liu, Jackie; Liu, Zhong

    2015-01-01

    Precipitation is a vital aspect of our lives droughts, floods and other related disasters that involve precipitation can cause costly damage in the economic system and general society. Purpose of this project is to determine what, if any effect do hurricanes have on annual precipitation in Maryland Research will be conducted on Marylands terrain, climatology, annual precipitation, and precipitation contributed from hurricanes Possible connections to climate change

  18. Future battlegrounds for conservation under global change.

    PubMed

    Lee, Tien Ming; Jetz, Walter

    2008-06-07

    Global biodiversity is under significant threat from the combined effects of human-induced climate and land-use change. Covering 12% of the Earth's terrestrial surface, protected areas are crucial for conserving biodiversity and supporting ecological processes beneficial to human well-being, but their selection and design are usually uninformed about future global change. Here, we quantify the exposure of the global reserve network to projected climate and land-use change according to the Millennium Ecosystem Assessment and set these threats in relation to the conservation value and capacity of biogeographic and geopolitical regions. We find that geographical patterns of past human impact on the land cover only poorly predict those of forecasted change, thus revealing the inadequacy of existing global conservation prioritization templates. Projected conservation risk, measured as regional levels of land-cover change in relation to area protected, is the greatest at high latitudes (due to climate change) and tropics/subtropics (due to land-use change). Only some high-latitude nations prone to high conservation risk are also of high conservation value, but their high relative wealth may facilitate additional conservation efforts. In contrast, most low-latitude nations tend to be of high conservation value, but they often have limited capacity for conservation which may exacerbate the global biodiversity extinction crisis. While our approach will clearly benefit from improved land-cover projections and a thorough understanding of how species range will shift under climate change, our results provide a first global quantitative demonstration of the urgent need to consider future environmental change in reserve-based conservation planning. They further highlight the pressing need for new reserves in target regions and support a much extended 'north-south' transfer of conservation resources that maximizes biodiversity conservation while mitigating global climate change.

  19. Future battlegrounds for conservation under global change

    PubMed Central

    Lee, Tien Ming; Jetz, Walter

    2008-01-01

    Global biodiversity is under significant threat from the combined effects of human-induced climate and land-use change. Covering 12% of the Earth's terrestrial surface, protected areas are crucial for conserving biodiversity and supporting ecological processes beneficial to human well-being, but their selection and design are usually uninformed about future global change. Here, we quantify the exposure of the global reserve network to projected climate and land-use change according to the Millennium Ecosystem Assessment and set these threats in relation to the conservation value and capacity of biogeographic and geopolitical regions. We find that geographical patterns of past human impact on the land cover only poorly predict those of forecasted change, thus revealing the inadequacy of existing global conservation prioritization templates. Projected conservation risk, measured as regional levels of land-cover change in relation to area protected, is the greatest at high latitudes (due to climate change) and tropics/subtropics (due to land-use change). Only some high-latitude nations prone to high conservation risk are also of high conservation value, but their high relative wealth may facilitate additional conservation efforts. In contrast, most low-latitude nations tend to be of high conservation value, but they often have limited capacity for conservation which may exacerbate the global biodiversity extinction crisis. While our approach will clearly benefit from improved land-cover projections and a thorough understanding of how species range will shift under climate change, our results provide a first global quantitative demonstration of the urgent need to consider future environmental change in reserve-based conservation planning. They further highlight the pressing need for new reserves in target regions and support a much extended ‘north–south’ transfer of conservation resources that maximizes biodiversity conservation while mitigating global climate

  20. Effects of UV-B and global climate change on rice production: The EPA/IRRI Cooperative Research Plan

    SciTech Connect

    Olszyk, D.M.; Ingram, K.T.

    1990-01-01

    The US Environmental Protection Agency and International Rice Research Institute are initiating a cooperative program on the effects of UV-B and global climate change (increased CO{sub 2} and temperature) on rice. Rice is the world's most important food crop and responds both to UV-B and climate change. The project will determine: (1) the effects of these stresses on the rice ecosystem, (2) the extent and intensity of those effects for Asia, (3) the importance of the rice ecosystem as a source of biogenic emissions such as methane and the impacts of environmental stress on those emissions, and (4) mitigation/adaptation options available to reduce any effects on rice yields and biogenic emissions.

  1. GeoChange Global Change Data

    USGS Publications Warehouse

    ,

    1997-01-01

    GeoChange is an online data system providing access to research results and data generated by the U.S. Geological Survey's Global Change Research Program. Researchers in this program study climate history and the causes of climatic variations, as well as providing baseline data sets on contemporary atmospheric chemistry, high-resolution meteorology, and dust deposition. Research results are packaged as data sets, groups of digital files containing scientific observations, documentation, and interpretation. The data sets are arranged in a consistent manner using standard file formats so that users of a variety of computer systems can access and use them.

  2. Global and regional effects of land-use change on climate in 21st century simulations with interactive carbon cycle

    NASA Astrophysics Data System (ADS)

    Boysen, L. R.; Brovkin, V.; Arora, V. K.; Cadule, P.; de Noblet-Ducoudré, N.; Kato, E.; Pongratz, J.; Gayler, V.

    2014-04-01

    Biogeophysical (BGP) and biogeochemical (BGC) effects of land-use and land cover change (LULCC) are separated at the global and regional scales in new interactive CO2 simulations for the 21st century. Results from four Earth System models (ESMs) are analyzed for the future RCP8.5 scenario from simulations with and without land-use and land cover change (LULCC) contributing to the Land-Use and Climate, IDentification of robust impacts (LUCID) project. Over the period, 2006-2100, LULCC causes the atmospheric CO2 concentration to increase by 12, 22, and 66 ppm in CanESM2, MIROC-ESM, and MPI-ESM-LR, respectively. Statistically significant changes in global near-surface temperature are found in three models with a BGC-induced global mean annual warming between 0.07 and 0.23 K. BGP-induced responses are simulated by three models in areas of intense LULCC of varying sign and magnitude (between -0.47 and 0.10 K). Global land carbon losses due to LULCC are simulated by all models: 218, 57, 35 and 34 Gt C by MPI-ESM-LR, MIROC-ESM, IPSL-CM5A-LR and CanESM2, respectively. On the contrary, the CO2-fertilization effect caused by elevated atmospheric CO2 concentrations due to LULCC leads to a land carbon gain of 39 Gt C in MPI-ESM-LR and is almost negligible in the other models. A substantial part of the spread in models' responses to LULCC is attributed to the differences in implementation of LULCC (e.g. whether pastures or crops are simulated explicitly) and the simulation of specific processes. Simple idealized experiments with clear protocols for implementing LULCC in ESMs are needed to increase the understanding of model responses and the statistical significance of results, especially, when analyzing the regional-scale impacts of LULCC.

  3. Local effects of global climate change on the urban drainage system of Hamburg.

    PubMed

    Krieger, Klaus; Kuchenbecker, Andreas; Hüffmeyer, Nina; Verworn, Hans-Reinhard

    2013-01-01

    The Hamburg Water Group owns and operates a sewer network with a total length of more than 5,700 km. There has been increasing attention paid to the possible impacts of predicted changes in precipitation patterns on the sewer network infrastructure. The primary objective of the work presented in this paper is an estimation of the hydraulic impacts of climate change on the Hamburg drainage system. As a first step, simulated rainfalls based on the regional climate model REMO were compared and validated with long-term precipitation measurements. In the second step, the hydraulic effects on the sewer network of Hamburg have been analyzed based on simulated long-term rainfall series for the period of 2000-2100. Simulation results show a significant increase in combined sewer overflows by 50% as well as an increase in surcharges of storm sewer manholes. However, there is still a substantial amount of uncertainty resulting from model uncertainty and unknown development of future greenhouse gas emissions. So far, there seems to be no sound basis for the implementation of an overall climate factor for sewer dimensioning for the Hamburg region. Nevertheless, possible effects of climate change should be taken into account within the planning process for major sewer extensions or modifications.

  4. The southern global change program

    Treesearch

    Southeastern Forest Experiment Station

    1992-01-01

    For mote than a decade, scientists around the world have expressed concern over observed changes in the Earth's environment that suggest fum global environmental problems. They have documented increased levels of air pollutants such as ozone nd acid I as well as in- in carbon dioxide and other greenhouse gases. Scientists also have noted a 0.5°F to l.0°F rise...

  5. Global change and terrestrial hydrology - A review

    NASA Technical Reports Server (NTRS)

    Dickinson, Robert E.

    1991-01-01

    This paper reviews the role of terrestrial hydrology in determining the coupling between the surface and atmosphere. Present experience with interactive numerical simulation is discussed and approaches to the inclusion of land hydrology in global climate models ae considered. At present, a wide range of answers as to expected changes in surface hydrology is given by nominally similar models. Studies of the effects of tropical deforestation and global warming illustrate this point.

  6. Global climate change and pedogenic carbonates

    SciTech Connect

    Lal, R.; Kimble, J.M.; Stewart, B.A.; Eswaran, H.

    1999-11-01

    Global Climate Change summarizes what is known about soil inorganic carbon and develops strategies that could lead to the retention of more carbon in the soil. It covers basic concepts, analytical methods, secondary carbonates, and research and development priorities. With this book one will get a better understanding of the global carbon cycle, organic and inorganic carbon, and their roles, or what is known of them, in the greenhouse effect.

  7. Global change and terrestrial hydrology - A review

    NASA Technical Reports Server (NTRS)

    Dickinson, Robert E.

    1991-01-01

    This paper reviews the role of terrestrial hydrology in determining the coupling between the surface and atmosphere. Present experience with interactive numerical simulation is discussed and approaches to the inclusion of land hydrology in global climate models ae considered. At present, a wide range of answers as to expected changes in surface hydrology is given by nominally similar models. Studies of the effects of tropical deforestation and global warming illustrate this point.

  8. Global climate change and international security

    SciTech Connect

    Rice, M.

    1991-01-01

    On May 8--10, 1991, the Midwest Consortium of International Security Studies (MCISS) and Argonne National Laboratory cosponsored a conference on Global Climate Change and International Security. The aim was to bring together natural and social scientists to examine the economic, sociopolitical, and security implications of the climate changes predicted by the general circulation models developed by natural scientists. Five themes emerged from the papers and discussions: (1) general circulation models and predicted climate change; (2) the effects of climate change on agriculture, especially in the Third World; (3) economic implications of policies to reduce greenhouse gas emissions; (4) the sociopolitical consequences of climate change; and (5) the effect of climate change on global security.

  9. Cellular effects of fluorodeoxyglucose: Global changes in the lipidome and alteration in intracellular transport

    PubMed Central

    Kavaliauskiene, Simona; Torgersen, Maria Lyngaas; Lingelem, Anne Berit Dyve; Klokk, Tove Irene; Lintonen, Tuulia; Simolin, Helena; Ekroos, Kim; Skotland, Tore; Sandvig, Kirsten

    2016-01-01

    2-fluoro-2-deoxy-D-glucose (FDG), labeled with 18F radioisotope, is the most common imaging agent used for positron emission tomography (PET) in oncology. However, little is known about the cellular effects of FDG. Another glucose analogue, 2-deoxy-D-glucose (2DG), has been shown to affect many cellular functions, including intracellular transport and lipid metabolism, and has been found to improve the efficacy of cancer chemotherapeutic agents in vivo. Thus, in the present study, we have investigated cellular effects of FDG with the focus on changes in cellular lipids and intracellular transport. By quantifying more than 200 lipids from 17 different lipid classes in HEp-2 cells and by analyzing glycosphingolipids from MCF-7, HT-29 and HBMEC cells, we have discovered that FDG treatment inhibits glucosylceramide synthesis and thus reduces cellular levels of glycosphingolipids. In addition, in HEp-2 cells the levels and/or species composition of other lipid classes, namely diacylglycerols, phosphatidic acids and phosphatidylinositols, were found to change upon treatment with FDG. Furthermore, we show here that FDG inhibits retrograde Shiga toxin transport and is much more efficient in protecting cells against the toxin than 2DG. In summary, our data reveal novel effects of FDG on cellular transport and glycosphingolipid metabolism, which suggest a potential clinical application of FDG as an adjuvant for cancer chemotherapy. PMID:27829218

  10. A modeling study of irrigation effects on global surface water and groundwater resources under a changing climate

    DOE PAGES

    Leng, Guoyong; Huang, Maoyi; Tang, Qiuhong; ...

    2015-08-25

    In this paper, the effects of irrigation on global surface water (SW) and groundwater (GW) resources are investigated by performing simulations using Community Land Model 4.0 (CLM4) at 0.5-degree resolution driven by downscaled/bias-corrected historical simulations and future projections from five General Circulation Models (GCMs) for 1950-2099. For each climate scenario, three sets of numerical experiments were configured: (1) a control experiment (CTRL) in which all crops are assumed to be rainfed; (2) an irrigation experiment (IRRIG) in which the irrigation module using only SW for irrigation is activated; and (3) a groundwater pumping experiment (PUMP) in which a groundwater pumpingmore » scheme coupled with the irrigation module is activated for conjunctive use of SW and GW for irrigation. The parameters associated with irrigation and groundwater pumping are calibrated based on a global inventory of census-based SW and GW use compiled by the Food and Agricultural Organization (FAO). Our results suggest that irrigation could lead to two major opposing effects: SW depletion/GW accumulation in regions with irrigation primarily fed by SW, and SW accumulation/GW depletion in regions with irrigation fed primarily by GW. Furthermore, irrigation depending primarily on SW tends to have larger impacts on low-flow than high-flow conditions, suggesting the potential to increase vulnerability to drought. By the end of the 21st century (2070-2099), climate change significantly increases (relative to 1971-2000) irrigation water demand across the world. Combined with the increased temporal-spatial variability of water supply, this may lead to severe issues of local water scarcity for irrigation. Regionally, irrigation has the potential to aggravate/alleviate climate-induced changes of SW/GW although such effects are negligible when averaged globally. Our results emphasize the importance of accounting for irrigation effects and irrigation sources in regional climate change

  11. Deep solar minimum and global climate changes.

    PubMed

    Hady, Ahmed A

    2013-05-01

    This paper examines the deep minimum of solar cycle 23 and its potential impact on climate change. In addition, a source region of the solar winds at solar activity minimum, especially in the solar cycle 23, the deepest during the last 500 years, has been studied. Solar activities have had notable effect on palaeoclimatic changes. Contemporary solar activity are so weak and hence expected to cause global cooling. Prevalent global warming, caused by building-up of green-house gases in the troposphere, seems to exceed this solar effect. This paper discusses this issue.

  12. Deep solar minimum and global climate changes

    PubMed Central

    Hady, Ahmed A.

    2013-01-01

    This paper examines the deep minimum of solar cycle 23 and its potential impact on climate change. In addition, a source region of the solar winds at solar activity minimum, especially in the solar cycle 23, the deepest during the last 500 years, has been studied. Solar activities have had notable effect on palaeoclimatic changes. Contemporary solar activity are so weak and hence expected to cause global cooling. Prevalent global warming, caused by building-up of green-house gases in the troposphere, seems to exceed this solar effect. This paper discusses this issue. PMID:25685420

  13. Climate change and the global malaria recession.

    PubMed

    Gething, Peter W; Smith, David L; Patil, Anand P; Tatem, Andrew J; Snow, Robert W; Hay, Simon I

    2010-05-20

    The current and potential future impact of climate change on malaria is of major public health interest. The proposed effects of rising global temperatures on the future spread and intensification of the disease, and on existing malaria morbidity and mortality rates, substantively influence global health policy. The contemporary spatial limits of Plasmodium falciparum malaria and its endemicity within this range, when compared with comparable historical maps, offer unique insights into the changing global epidemiology of malaria over the last century. It has long been known that the range of malaria has contracted through a century of economic development and disease control. Here, for the first time, we quantify this contraction and the global decreases in malaria endemicity since approximately 1900. We compare the magnitude of these changes to the size of effects on malaria endemicity proposed under future climate scenarios and associated with widely used public health interventions. Our findings have two key and often ignored implications with respect to climate change and malaria. First, widespread claims that rising mean temperatures have already led to increases in worldwide malaria morbidity and mortality are largely at odds with observed decreasing global trends in both its endemicity and geographic extent. Second, the proposed future effects of rising temperatures on endemicity are at least one order of magnitude smaller than changes observed since about 1900 and up to two orders of magnitude smaller than those that can be achieved by the effective scale-up of key control measures. Predictions of an intensification of malaria in a warmer world, based on extrapolated empirical relationships or biological mechanisms, must be set against a context of a century of warming that has seen marked global declines in the disease and a substantial weakening of the global correlation between malaria endemicity and climate.

  14. Effects of wildland fire on regional and global carbon stocks in a changing environment

    Treesearch

    Susan G. Conard; Allen M. Solomon

    2009-01-01

    Every year tens of millions of hectares of forests, woodlands, and grasslands burn globally. Some are burned intentionally for land conversion, pasture renewal or hazard reduction, or wildlife habitat improvement, but most are burned by uncontrolled wildfire. Estimates of...

  15. Water resources sensitivity to the isolated effects of land use, water demand and climate change under 2 degree global warming

    NASA Astrophysics Data System (ADS)

    Bisselink, Berny; Bernhard, Jeroen; de Roo, Ad

    2017-04-01

    One of the key impacts of global change are the future water resources. These water resources are influenced by changes in land use (LU), water demand (WD) and climate change. Recent developments in scenario modelling opened new opportunities for an integrated assessment. However, for identifying water resource management strategies it is helpful to focus on the isolated effects of possible changes in LU, WD and climate that may occur in the near future. In this work, we quantify the isolated contribution of LU, WD and climate to the integrated total water resources assuming a linear model behavior. An ensemble of five EURO-CORDEX RCP8.5 climate projections for the 31-year periods centered on the year of exceeding the global-mean temperature of 2 degree is used to drive the fully distributed hydrological model LISFLOOD for multiple river catchments in Europe. The JRC's Land Use Modelling Platform LUISA was used to obtain a detailed pan-European reference land use scenario until 2050. Water demand is estimated based on socio-economic (GDP, population estimates etc.), land use and climate projections as well. For each climate projection, four model runs have been performed including an integrated (LU, WD and climate) simulation and other three simulations to isolate the effect of LU, WD and climate. Changes relative to the baseline in terms of water resources indicators of the ensemble means of the 2 degree warming period and their associated uncertainties will reveal the integrated and isolated effect of LU, WD and climate change on water resources.

  16. Energy and global climate change: Why ORNL?

    SciTech Connect

    Farrell, M.P.

    1995-12-31

    Subtle signs of global warming have been detected in studies of the climate record of the past century after figuring in the cooling effects of sulfur emissions from volcanoes and human sources. According to the December 1995 report of the Intergovernment Panel on Climate Change (IPCC), the earth`s surface temperature has increased by about 0.2{degrees}C per decade since 1975. the panel projects about a 2{degrees} increase in global temperature by 2100. The IPCC report states that pollutants-greenhouse gases such as carbon dioxide and fluorocarbons that warm the globe and sulfur emission that cool it-are responsible for recent patterns of climate change. {open_quotes}The balance of evidence,{close_quotes} states the report, {open_quotes}suggests that there is a discrenible human influence on global climate.{close_quotes} This human influence stems largely from fossil fuel combustion, cement production, and the burning of forests, and could intensify as populations grow and developing countries increase energy production and industrial development. The two facts have caught the attention of the news media and public. First, 1995 was declared the hottest year in the 140-year-long record of reliable global measurements. Second, recent years have been marked by an unusually high number of extreme weather events, such as hurricanes, blizzards, and floods. In the 1990`s the world has become more aware of the prospect and possible impacts of global climate change. In the late 1950`s, global climate change was an unknown threat to the world`s environment and social systems. Except for a few ORNL researchers who had just completed their first briefing to the U.S. Atomic Energy Commission on the need to understand the global carbon cycle, the connection between rising carbon dioxide concentrations and potential changes in global climate was not common knowledge, nor were the consequences of climate change understood.

  17. Interactive effects of global and regional change on a coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Reise, Karsten; van Beusekom, Justus E. E.

    2008-03-01

    Shallow waters and lowland meet at the same level in the Wadden Sea, but are separated by walls of coastal defense. What are the prospects of this coastal ecosystem in a warmer world? We focus on tidal waters and inshore sedimentary bottoms, expect nutrient supply from land to decline and species introductions, temperature and sea level to rise. The effects are interrelated and will have an increasing likelihood of abrupt and irreversible developments. The biotic interactions are hardly predictable but we anticipate the following changes to be more likely than others: blooms of phytoplankton will be weak mainly because of increasing pelagic and benthic grazing pressure, both facilitated by warming. Possibly birds feeding on mollusks will encounter decreasing resource availability while fish-eaters benefit. Extensive reefs of Pacific oysters could facilitate aquatic macrophytes. Sea level rise and concomitant hydrodynamics above tidal flats favor well-anchored suspension feeders as well as burrowing fauna adapted to dynamic permeable sand. With high shares of immigrants from overseas and the south, species richness will increase; yet the ecosystem stability may become lower. We suggest that for the next decades invasions of introduced species followed by warming and declining nutrient supply will be the most pressing factor on the changes in the Wadden Sea ecosystem, and the effects of sea level rise to be the key issue on the scale of the whole century and beyond.

  18. Information technology and global change science

    SciTech Connect

    Baxter, F.P.

    1990-01-01

    The goal of this paper is to identify and briefly describe major existing and near term information technologies that cold have a positive impact on the topics being discussed at this conference by helping to manage the data of global change science and helping global change scientists conduct their research. Desktop computer systems have changed dramatically during the past seven years. Faster data processing can be expected in the future through full development of traditional serial computer architectures. Some other proven information technologies may be currently underutilized by global change scientists. Relational database management systems and good organization of data through the use of thoughtful database design would enable the scientific community to better share and maintain quality research data. Custodians of the data should use rigorous data administration to ensure integrity and long term value of the data resource. Still other emerging information technologies that involve the use of artificial intelligence, parallel computer architectures, and new sensors for data collection will be in relatively common use in the near term and should become part of the global science community's technical toolkit. Consideration should also be given to the establishment of Information Analysis Centers to facilitate effective organization and management of interdisciplinary data and the prototype testing and use of advanced information technology to facilitate rapid and cost-effective integration of these tools into global change science. 8 refs.

  19. A modeling study of irrigation effects on global surface water and groundwater resources under a changing climate

    NASA Astrophysics Data System (ADS)

    Leng, Guoyong; Huang, Maoyi; Tang, Qiuhong; Leung, L. Ruby

    2015-09-01

    This study investigates the effects of irrigation on global water resources by performing and analyzing Community Land Model 4.0 (CLM4) simulations driven by downscaled/bias-corrected historical simulations and future projections from five General Circulation Models (GCMs). For each climate scenario, three sets of numerical experiments were performed: (1) a CTRL experiment in which all crops are assumed to be rainfed; (2) an IRRIG experiment in which the irrigation module is activated using surface water (SW) to feed irrigation; and (3) a PUMP experiment in which a groundwater pumping scheme coupled with the irrigation module is activated for conjunctive use of surface water and groundwater (GW) for irrigation. The parameters associated with irrigation and groundwater pumping are calibrated based on a global inventory of census-based water use compiled by the Food and Agricultural Organization (FAO). Our results suggest that irrigation could lead to two major effects: SW (GW) depletion in regions with irrigation primarily fed by SW (GW), respectively. Furthermore, irrigation depending primarily on SW tends to have larger impacts on low-flow than high-flow conditions, suggesting increased vulnerability to drought. By the end of the 21st century, combined effect of increased irrigation water demand and amplified temporal-spatial variability of water supply may lead to severe local water scarcity for irrigation. Regionally, irrigation has the potential to aggravate/alleviate climate-induced changes of SW/GW although such effects are negligible when averaged globally. Our study highlights the need to account for irrigation effects and sources in assessing regional climate change impacts.

  20. Interpreting the rich-get-richer effect in precipitation change under global warming: issues at monsoon scales

    NASA Astrophysics Data System (ADS)

    Neelin, J.; Langenbrunner, B.; Meyerson, J. E.

    2012-12-01

    Precipitation changes under global warming are often discussed in terms of wet areas receiving more precipitation and dry areas receiving less, sometimes termed the "rich-get-richer" effect. Since the first use of this term, it has been known that contributions can be broken diagnostically into a relatively straightforward tendency associated with moisture increases acted on by the climatological circulation and dynamical feedbacks associated with changes in circulation. A number of studies indicate the latter to be prone to yield scatter in model projections of precipitation change. At the spatial scales of the major monsoon regions, substantial contributions from dynamical feedbacks tend to occur. Factors affecting this dependence will be reviewed with an eye to asking how the community can make succinct statements without oversimplifying the challenges at the regional scale.

  1. Global change monitoring with lichens

    SciTech Connect

    Insarov, G.

    1997-12-31

    Environmental monitoring involves observations and assessment of changes in ecosystems and their components caused by anthropogenetic influence. An ideal monitoring system enables quantification of the contemporary state of the environment and detect changes in it. An important function of monitoring is to assess environment quality of areas that are not affected by local anthropogenic impacts, i.e. background areas. In background areas terrestrial ecosystems are mainly affected by such anthropogenic factors as lowered air pollution and global climate change. Assessment of biotic responses to altered climatic and atmospheric conditions provides an important basis for ecosystem management and environmental decision making. Without the ability to make such assessment, sustainability of ecosystems as a support system for humans remains uncertain.

  2. Stormy Weather: 101 Solutions to Global Climate Change.

    ERIC Educational Resources Information Center

    Dauncey, Guy

    This document presents 101 solutions to global climate change. These solutions are actions that are well suited to every level of society. This book creates awareness about global climate change. The history of Earth and the greenhouse effect are discussed, and explanations and solutions to global climate change are provided including traveling…

  3. Stormy Weather: 101 Solutions to Global Climate Change.

    ERIC Educational Resources Information Center

    Dauncey, Guy

    This document presents 101 solutions to global climate change. These solutions are actions that are well suited to every level of society. This book creates awareness about global climate change. The history of Earth and the greenhouse effect are discussed, and explanations and solutions to global climate change are provided including traveling…

  4. Evaluating Global Land-use Change Scenario: Carbon Emission in RCP Scenarios and its Effects on Climate Response

    NASA Astrophysics Data System (ADS)

    Kato, E.; Kawamiya, M.

    2011-12-01

    In CMIP5 experiments, new emissions scenarios for GCMs and Earth System Models (ESMs) have been constructed as Representative Concentration Pathways (RCPs) by a community effort of Integrated Assessment Modeling (IAM) groups. In RCP scenarios, regional land-use scenarios have been depicted based on the socio-economic assumption of IAMs, and also downscaled spatially explicit land-use maps from the regional scenarios are prepared. In the land-use harmonization project, integrated gridded land-use transition data for the past and future time period has been developed from the reconstruction based on HYDE 3 agricultural data and FAO wood harvest data, and the future land-use scenarios from IAMs. These gridded land-use dataset are used as a forcing of some ESMs participating to the CMIP5 experiments, to assess the biogeochemical and biogeophysical effects of land-use and land cover change in the climate change simulation. In this study, global net CO2 emissions from land-use change for RCP scenarios are evaluated with an offline terrestrial biogeochemical model, VISIT (Vegetation Integrative SImulation Tool). Also the emissions are evaluated with coupled ESM, MIROC-ESM following the LUCID-CMIP5 protocol to see the effect of land-use and land cover change on climate response. Using the model output, consistency of the land-use change CO2 emission scenarios provided by RCPs are evaluated in terms of effect of CO2 fertilization, climate change, and land-use transition itself including the effect of biomass crops production with CCS. We find that a land-use scenario with decreased agricultural land-use intensity such as RCP 6.0 shows possibility of further absorption of CO2 through the climate-carbon feedback, and cooling effect through both biogeochemical and biogeophysical effects.

  5. Global Realities and Educational Change.

    ERIC Educational Resources Information Center

    Smith, Andrew F.

    1995-01-01

    Discusses the importance of precollegiate global education for students who will have to compete in a larger global economy. Reviews aspects and practices related to three dimensions global education: global issues and topics (environmental, economic, and political); cultural studies; and global interconnections pertaining to American foreign…

  6. Global Climate Change and Children's Health.

    PubMed

    Ahdoot, Samantha; Pacheco, Susan E

    2015-11-01

    Rising global temperature is causing major physical, chemical, and ecological changes across the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as climate change, are the result of contemporary human activity. Climate change poses threats to human health, safety, and security. Children are uniquely vulnerable to these threats. The effects of climate change on child health include physical and psychological sequelae of weather disasters, increased heat stress, decreased air quality, altered disease patterns of some climate-sensitive infections, and food, water, and nutrient insecurity in vulnerable regions. Prompt implementation of mitigation and adaptation strategies will protect children against worsening of the problem and its associated health effects. This technical report reviews the nature of climate change and its associated child health effects and supports the recommendations in the accompanying policy statement on climate change and children's health. Copyright © 2015 by the American Academy of Pediatrics.

  7. Effects of land use and land cover change on global ozone air quality in the mid-21st century

    NASA Astrophysics Data System (ADS)

    Wong, A. Y. H.; Tai, A. P. K.; Geddes, J.

    2016-12-01

    Over the coming century, processes such as cropland expansion are projected to substantially alter global land use patterns, while the simultaneous changes in CO2 concentration are also expected to influence vegetation growth. The resulting changes in global land cover and land use (LCLU) have the potential to greatly influence atmospheric composition, but the magnitudes and even the signs of impacts are still highly uncertain due to the complex interactions between climate, CO2, air pollutants and vegetation, with substantial ramifications for the accuracy of future air quality projections. In this study, we use a one-way coupled land-atmosphere modeling framework to investigate how future LCLU changes will affect ozone air quality under two future scenarios of anthropogenic land use changes (RCP4.5 and RCP8.5). We first use the fractional coverage of different plant functional types (PFTs) and PFT-specific leaf area index (LAI) to characterize a land cover for the present day and for a future that considers anthropogenic land use change only. We then use CLM (Community Land Model) to simulate the evolution of the land cover from 2000 to 2050 under the simultaneous influence of CO2 on vegetation variables (e.g., LAI, stomatal conductance, biogenic emissions). The results are then fed into the GEOS-Chem chemical transport model with a novel land cover harmonization scheme to investigate their individual and combined effects on atmospheric chemistry.We show that different projected scenarios for cropland expansion and reforestation can lead to drastically different responses of surface ozone to land use change alone under RCP4.5 and RCP8.5 by year 2050. Surface ozone is projected to increase by up to 4 ppbv under RCP4.5 but decrease by up to 3 ppbv under RCP8.5 over North America, South America and Africa. In China, both land use scenarios produce large decreases in surface ozone (by up to 8 ppbv for RCP4.5 and 6 ppbv for RCP8.5). While the changes in isoprene

  8. Global climate change and US agriculture

    NASA Technical Reports Server (NTRS)

    Adams, Richard M.; Rosenzweig, Cynthia; Peart, Robert M.; Ritchie, Joe T.; Mccarl, Bruce A.

    1990-01-01

    Agricultural productivity is expected to be sensitive to global climate change. Models from atmospheric science, plant science, and agricultural economics are linked to explore this sensitivity. Although the results depend on the severity of climate change and the compensating effects of carbon dioxide on crop yields, the simulation suggests that irrigated acreage will expand and regional patterns of U.S. agriculture will shift. The impact of the U.S. economy strongly depends on which climate model is used.

  9. Global climate change and US agriculture

    NASA Technical Reports Server (NTRS)

    Adams, Richard M.; Rosenzweig, Cynthia; Peart, Robert M.; Ritchie, Joe T.; Mccarl, Bruce A.

    1990-01-01

    Agricultural productivity is expected to be sensitive to global climate change. Models from atmospheric science, plant science, and agricultural economics are linked to explore this sensitivity. Although the results depend on the severity of climate change and the compensating effects of carbon dioxide on crop yields, the simulation suggests that irrigated acreage will expand and regional patterns of U.S. agriculture will shift. The impact of the U.S. economy strongly depends on which climate model is used.

  10. Global climate change and infectious diseases

    SciTech Connect

    Shope, R. )

    1991-12-01

    The effects of global climate change on infectious diseases are hypothetical until more is known about the degree of change in temperature and humidity that will occur. Diseases most likely to increase in their distribution and severity have three-factor (agent, vector, and human being) and four-factor (plus vertebrate reservoir host) ecology. Aedes aegypti and Aedes albopictus mosquitoes may move northward and have more rapid metamorphosis with global warming. These mosquitoes transmit dengue virus, and Aedes aegypti transmits yellow fever virus. The faster metamorphosis and a shorter extrinsic incubation of dengue and yellow fever viruses could lead to epidemics in North America. Vibrio cholera is harbored persistently in the estuaries of the U.S. Gulf Coast. Over the past 200 years, cholera has become pandemic seven times with spread from Asia to Europe, Africa, and North America. Global warming may lead to changes in water ecology that could enhance similar spread of cholera in North America. Some other infectious diseases such as LaCrosse encephalitis and Lyme disease are caused by agents closely dependent on the integrity of their environment. These diseases may become less prominent with global warming because of anticipated modification of their habitats. Ecological studies will help as to understand more fully the possible consequences of global warming. New and more effective methods for control of vectors will be needed. 12 refs., 1 tab.

  11. Global climate change and infectious diseases.

    PubMed Central

    Shope, R

    1991-01-01

    The effects of global climate change on infectious diseases are hypothetical until more is known about the degree of change in temperature and humidity that will occur. Diseases most likely to increase in their distribution and severity have three-factor (agent, vector, and human being) and four-factor (plus vertebrate reservoir host) ecology. Aedes aegypti and Aedes albopictus mosquitoes may move northward and have more rapid metamorphosis with global warming. These mosquitoes transmit dengue virus, and Aedes aegypti transmits yellow fever virus. The faster metamorphosis and a shorter extrinsic incubation of dengue and yellow fever viruses could lead to epidemics in North America. Vibrio cholerae is harbored persistently in the estuaries of the U.S. Gulf Coast. Over the past 200 years, cholera has become pandemic seven times with spread from Asia to Europe, Africa, and North America. Global warming may lead to changes in water ecology that could enhance similar spread of cholera in North America. Some other infectious diseases such as LaCrosse encephalitis and Lyme disease are caused by agents closely dependent on the integrity of their environment. These diseases may become less prominent with global warming because of anticipated modification of their habitats. Ecological studies will help us to understand more fully the possible consequences of global warming. New and more effective methods for control of vectors will be needed. PMID:1820262

  12. Effects of global climate change on the US forest sector: response functions derived from a dynamic resource and market simulator.

    Treesearch

    Bruce A. McCarl; Darius M. Adams; Ralph J. Alig; Diana Burton; Chi-Chung. Chen

    2000-01-01

    A multiperiod, regional, mathematical programming economic model is used to evaluate the potential economic impacts of global climatic change on the US forest sector. A wide range of scenarios for the biological response of forests to climate change are developed, ranging from small to large changes in forest growth rates. These scenarios are simulated in the economic...

  13. Global and regional effects of land-use change on climate in 21st century simulations with interactive carbon cycle

    NASA Astrophysics Data System (ADS)

    Boysen, L. R.; Brovkin, V.; Arora, V. K.; Cadule, P.; de Noblet-Ducoudré, N.; Kato, E.; Pongratz, J.; Gayler, V.

    2014-09-01

    Biogeophysical (BGP) and biogeochemical (BGC) effects of land-use and land cover change (LULCC) are separated at the global and regional scales in new interactive CO2 simulations for the 21st century. Results from four earth system models (ESMs) are analyzed for the future RCP8.5 scenario from simulations with and without land-use and land cover change (LULCC), contributing to the Land-Use and Climate, IDentification of robust impacts (LUCID) project. Over the period 2006-2100, LULCC causes the atmospheric CO2 concentration to increase by 12, 22, and 66 ppm in CanESM2, MIROC-ESM, and MPI-ESM-LR, respectively. Statistically significant changes in global near-surface temperature are found in three models with a BGC-induced global mean annual warming between 0.07 and 0.23 K. BGP-induced responses are simulated by three models in areas of intense LULCC of varying sign and magnitude (between -0.47 and 0.10 K). Modifications of the land carbon pool by LULCC are disentangled in accordance with processes that can lead to increases and decreases in this carbon pool. Global land carbon losses due to LULCC are simulated by all models: 218, 57, 35 and 34 Gt C by MPI-ESM-LR, MIROC-ESM, IPSL-CM5A-LR and CanESM2, respectively. On the contrary, the CO2-fertilization effect caused by elevated atmospheric CO2 concentrations due to LULCC leads to a land carbon gain of 39 Gt C in MPI-ESM-LR and is almost negligible in the other models. A substantial part of the spread in models' responses to LULCC is attributed to the differences in implementation of LULCC (e.g., whether pastures or crops are simulated explicitly) and the simulation of specific processes. Simple idealized experiments with clear protocols for implementing LULCC in ESMs are needed to increase the understanding of model responses and the statistical significance of results, especially when analyzing the regional-scale impacts of LULCC.

  14. Global climate change and potential effects on pacific salmonids in freshwater ecosystems of southeast Alaska

    Treesearch

    M.D. Bryant

    2009-01-01

    General circulation models predict increases in air temperatures from 1◦C to 5◦C as atmospheric CO2 continues to rise during the next 100 years. Thermal regimes in freshwater ecosystems will change as air temperatures increase regionally. As air temperatures increase, the distribution and intensity of precipitation will change which will in turn...

  15. Global climate change and potential effects on Pacific salmonids in freshwater ecosystems of southeast Alaska

    Treesearch

    M. D. Bryant

    2009-01-01

    General circulation models predict increases in air temperatures from 1ºC to 5ºC as atmospheric CO2 continues to rise during the next 100 years. Thermal regimes in freshwater ecosystems will change as air temperatures increase regionally. As air temperatures increase, the distribution and intensity of precipitation will change...

  16. Forest processes and global environmental change: predicting the effects of individual and multiple stressors

    Treesearch

    John Aber; Ronald P. Neilson; Steve McNulty; James M. Lenihan; Dominque Bachelet; Raymond J. Drapek

    2001-01-01

    The purpose of this article is to review the state of prediction of forest ecosystem response to envisioned changes in the physical and chemical climate. These results are offered as one part of the forest sector analysis of the National Assessment of the Potential Consequences of Climate Variability and Change. This article has three sections. The first offers a very...

  17. Global change integrating factors: Tropical tropopause trends

    SciTech Connect

    Reck, R.A.

    1994-10-01

    This research proposes new criteria, shifts in the height and temperature of the tropical tropopause, as measures of global climate change. The search for signs of global warming in the temperature signal near the earth`s surface is extremely difficult, largely because numerous factors contribute to surface temperature forcing with only a small signal-to-noise ratio relative to long-term effects. In the long term, no part of the atmosphere can be considered individually because the evolution will be a function of all states of all portions. A large surface greenhouse signal might ultimately be expected, but the analysis of surface temperature may not be particularly useful for early detection. What is suggested here is not an analysis of trends in the surface temperature field or any of its spatial averages, but rather an integrating factor or integrator, a single measure of global change that could be considered a test of significant change for the entire global system. Preferably, this global change integrator would vary slowly and would take into account many of the causes of climate change, with a relatively large signal-to-noise ratio. Such an integrator could be monitored, and abrupt or accelerated changes could serve as an early warning signal for policy makers and the public. Earlier work has suggested that temperature has much less short-term and small-scale noise in the lower stratosphere, and thus the global warming signal at that level might be more easily deconvoluted, because the cooling rate near the 200-mb level is almost constant with latitude. A study of the temperature signal at this pressure level might show a clearer trend due to increased levels of greenhouse gases, but it would yield information about the troposphere only by inference.

  18. Global Warming and Climate Change Science

    NASA Astrophysics Data System (ADS)

    Jain, Atul

    2008-03-01

    Global climate change has emerged as a major scientific and political issue within a few short decades. Scientific evidence clearly indicates that this change is a result of a complex interplay between a number of human-related and natural earth systems. While the complexity of the earth-ocean-atmosphere system makes the understanding and prediction of global climate change very difficult, improved scientific knowledge and research capabilities are advancing our understanding of global climate change resulting from rising atmospheric levels of radiatively important (mostly heat-trapping) gases and particles. The effects of climate change can be assessed with climate models, which account for complex physical, chemical and biological processes, and interactions of these processes with human activities, especially the burning of fossil fuels along with land use changes. This presentation begins with a discussion of the current understanding of the concerns about climate change, and then discusses the role climate models in scientific projections of climate change as well as their current strengths and weaknesses.

  19. The northern global change research program

    Treesearch

    Richard A. Birdsey; John L. Hom; Marla Emery

    1996-01-01

    The Forest Service goal for global change research is to establish a sound scientific basis for making regional, national, and international resource management and policy decisions in the context of global change issues. The objectives of the Northern Global Change Program (NGCP) are to understand: (1) what processes in forest ecosystems are sensitive to physical and...

  20. Main and interactive effects of multiple global-change factors on soil respiration and its components: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Xuhui

    2014-05-01

    Global change usually involves simultaneous changes in multiple environmental factors, which may considerably affect ecosystem structure and functioning and alter ecosystem services to human society. With increased awareness of their potential interactions, some multi-factorial studies have been conducted to investigate their main and interactive effects on carbon (C) cycling in terrestrial ecosystem. However, how multiple global-change factors affected soil respiration (Rs) and its components (i.e., autotrophic (Ra) and heterotrophic respiration (Rh)) remains controversial among individual studies. In this study, we conducted a meta-analysis to examine the main and possible 2- or 3-factor interactive effects with warming (W), elevated CO2 (E), nitrogen addition (N), increased precipitation (I) and drought (D) on Rs and its components from 150 published papers. Our results show that E, W, I and N significantly stimulated Rs by 29.23%, 7.19%, 22.95%, and 16.90% (p<0.05), respectively, while I depressed it by 16.90% (p<0.01). E consistently induced a significant positive effect on both Ra and Rh, while I affected them with an opposite trend. Among nine two-way interactive effects on Rs, synergistic interaction (i.e., the effect of combined treatment > the additive effects of single two main factors) occurred in E×N, E×W, I×N, and D×W, while neutral interaction (i.e., the effect of combined treatment ≡ the additive one) and antagonistic interaction (i.e., the effect of combined treatment < the additive one)was rare, only in I×W for neutral one and in N×W and I×E for the latter. In addition, E×W and E×N displayed synergistic interactions on Rh. The more dominance of synergistic interactions in two-way interactive effects on Rs and Rh may determine a central positive tendency of Rs in future, and affect the feedback of terrestrial C cycle to the climate system correspondingly.

  1. Global Climate Change and Children's Health.

    PubMed

    2015-11-01

    Rising global temperatures are causing major physical, chemical, and ecological changes in the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as "climate change," are the result of contemporary human activity. Climate change poses threats to human health, safety, and security, and children are uniquely vulnerable to these threats. The effects of climate change on child health include: physical and psychological sequelae of weather disasters; increased heat stress; decreased air quality; altered disease patterns of some climate-sensitive infections; and food, water, and nutrient insecurity in vulnerable regions. The social foundations of children's mental and physical health are threatened by the specter of far-reaching effects of unchecked climate change, including community and global instability, mass migrations, and increased conflict. Given this knowledge, failure to take prompt, substantive action would be an act of injustice to all children. A paradigm shift in production and consumption of energy is both a necessity and an opportunity for major innovation, job creation, and significant, immediate associated health benefits. Pediatricians have a uniquely valuable role to play in the societal response to this global challenge. Copyright © 2015 by the American Academy of Pediatrics.

  2. Forest health and global change.

    PubMed

    Trumbore, S; Brando, P; Hartmann, H

    2015-08-21

    Humans rely on healthy forests to supply energy, building materials, and food and to provide services such as storing carbon, hosting biodiversity, and regulating climate. Defining forest health integrates utilitarian and ecosystem measures of forest condition and function, implemented across a range of spatial scales. Although native forests are adapted to some level of disturbance, all forests now face novel stresses in the form of climate change, air pollution, and invasive pests. Detecting how intensification of these stresses will affect the trajectory of forests is a major scientific challenge that requires developing systems to assess the health of global forests. It is particularly critical to identify thresholds for rapid forest decline, because it can take many decades for forests to restore the services that they provide. Copyright © 2015, American Association for the Advancement of Science.

  3. Global Climate Change Pilot Course Project

    NASA Astrophysics Data System (ADS)

    Schuenemann, K. C.; Wagner, R.

    2011-12-01

    In fall 2011 a pilot course on "Global Climate Change" is being offered, which has been proposed to educate urban, diverse, undergraduate students about climate change at the introductory level. The course has been approved to fulfill two general college requirements, a natural sciences requirement that focuses on the scientific method, as well as a global diversity requirement. This course presents the science behind global climate change from an Earth systems and atmospheric science perspective. These concepts then provide the basis to explore the effect of global warming on regions throughout the world. Climate change has been taught as a sub-topic in other courses in the past solely using scientific concepts, with little success in altering the climate change misconceptions of the students. This pilot course will see if new, innovative projects described below can make more of an impact on the students' views of climate change. Results of the successes or failures of these projects will be reported, as well as results of a pre- and post-course questionnaire on climate change given to students taking the course. Students in the class will pair off and choose a global region or country that they will research, write papers on, and then represent in four class discussions spaced throughout the semester. The first report will include details on the current climate of their region and how the climate shapes that region's society and culture. The second report will discuss how that region is contributing to climate change and/or sequestering greenhouse gases. Thirdly, students will discuss observed and predicted changes in that region's climate and what impact it has had, and could have, on their society. Lastly, students will report on what role their region has played in mitigating climate change, any policies their region may have implemented, and how their region can or cannot adapt to future climate changes. They will also try to get a feel for the region

  4. Mixed Effectiveness of Africa's Tropical Protected Areas for Maintaining Forest Cover: Insights from a Global Forest Change Dataset

    NASA Astrophysics Data System (ADS)

    De Vos, A.; Bowker, J.; Ament, J.; Cumming, G.

    2016-12-01

    The effectiveness of parks for forest conservation is widely debated in Africa, where increasing human pressure, insufficient funding, and lack of management capacity frequently place significant demands on forest habitats. Tropical forests house a significant portion of the world's remaining biodiversity and are being heavily impacted by anthropogenic activity. We used Hansen et al.'s (2013) global forest change dataset to analyse park effectiveness at the individual (224 parks) and national (23 countries) level across Africa by comparing the extent of forest loss (as a proxy for deforestation) inside parks to matched unprotected control samples. We found that, although significant geographical variation exists between parks, the majority of African parks experienced significantly lower deforestation within their boundaries. Accessibility was a significant driver of deforestation, with less accessible areas having a higher probability of forest loss in ineffective parks and more accessible areas having a higher probability of forest loss in effective parks. Smaller parks were less effective at preventing forest loss inside park boundaries than larger parks, and older parks were less effective than younger parks. Our analysis, which is the first individual and national assessment of park effectiveness across Africa, demonstrates the complexity of factors influencing the ability of a park to curb deforestation within its boundaries and highlights the potential of web-based remote sensing technology in monitoring protected area effectiveness.

  5. Priming effect and microbial diversity in ecosystem functioning and response to global change: a modeling approach using the SYMPHONY model.

    PubMed

    Perveen, Nazia; Barot, Sébastien; Alvarez, Gaël; Klumpp, Katja; Martin, Raphael; Rapaport, Alain; Herfurth, Damien; Louault, Frédérique; Fontaine, Sébastien

    2014-04-01

    Integration of the priming effect (PE) in ecosystem models is crucial to better predict the consequences of global change on ecosystem carbon (C) dynamics and its feedbacks on climate. Over the last decade, many attempts have been made to model PE in soil. However, PE has not yet been incorporated into any ecosystem models. Here, we build plant/soil models to explore how PE and microbial diversity influence soil/plant interactions and ecosystem C and nitrogen (N) dynamics in response to global change (elevated CO2 and atmospheric N depositions). Our results show that plant persistence, soil organic matter (SOM) accumulation, and low N leaching in undisturbed ecosystems relies on a fine adjustment of microbial N mineralization to plant N uptake. This adjustment can be modeled in the SYMPHONY model by considering the destruction of SOM through PE, and the interactions between two microbial functional groups: SOM decomposers and SOM builders. After estimation of parameters, SYMPHONY provided realistic predictions on forage production, soil C storage and N leaching for a permanent grassland. Consistent with recent observations, SYMPHONY predicted a CO2 -induced modification of soil microbial communities leading to an intensification of SOM mineralization and a decrease in the soil C stock. SYMPHONY also indicated that atmospheric N deposition may promote SOM accumulation via changes in the structure and metabolic activities of microbial communities. Collectively, these results suggest that the PE and functional role of microbial diversity may be incorporated in ecosystem models with a few additional parameters, improving accuracy of predictions. © 2013 John Wiley & Sons Ltd.

  6. Engineering change in global climate

    SciTech Connect

    Schneider, S.H.

    1996-12-31

    {open_quotes}With increased public focus on global warming and in the wake of the intense heat waves, drought, fires, and super-hurricanes that occurred in 1988 and 1989, interest in geoengineering has surged,{close_quotes} says Stephen H. Schneider, professor of biological science at Stanford University in Stanford, California. One scheme set forth in a National Research Council report proposes using 16-inch naval guns to fire aerosol shells into the stratosphere in hopes of offsetting {open_quotes}the radiative effects of increasing carbon dioxide,{close_quotes} Schneider says. Schneider, however, would prefer that we {open_quotes}seek measures that can cure our global {open_quote}addiction{close_quote} to polluting practices.{close_quotes} Rather than playing God, he says we should {open_quotes}stick to being human and pursue problem - solving methods currently within our grasp.{close_quotes} Such strategies include efforts to promote energy efficiency and reduce our reliance on automobiles.

  7. The global land rush and climate change

    NASA Astrophysics Data System (ADS)

    Davis, Kyle Frankel; Rulli, Maria Cristina; D'Odorico, Paolo

    2015-08-01

    Climate change poses a serious global challenge in the face of rapidly increasing human demand for energy and food. A recent phenomenon in which climate change may play an important role is the acquisition of large tracts of land in the developing world by governments and corporations. In the target countries, where land is relatively inexpensive, the potential to increase crop yields is generally high and property rights are often poorly defined. By acquiring land, investors can realize large profits and countries can substantially alter the land and water resources under their control, thereby changing their outlook for meeting future demand. While the drivers, actors, and impacts involved with land deals have received substantial attention in the literature, we propose that climate change plays an important yet underappreciated role, both through its direct effects on agricultural production and through its influence on mitigative or adaptive policy decisions. Drawing from various literature sources as well as a new global database on reported land deals, we trace the evolution of the global land rush and highlight prominent examples in which the role of climate change is evident. We find that climate change—both historical and anticipated—interacts substantially with drivers of land acquisitions, having important implications for the resilience of communities in targeted areas. As a result of this synthesis, we ultimately contend that considerations of climate change should be integrated into future policy decisions relating to the large-scale land acquisitions.

  8. Effectively Communicating Information about Dynamically Changing Arctic Sea Ice to the Public through the Global Fiducials Program

    NASA Astrophysics Data System (ADS)

    Molnia, B. F.; Friesen, B.; Wilson, E.; Noble, S.

    2015-12-01

    On July 15, 2009, the National Academy of Sciences (NAS) released a report, Scientific Value of Arctic Sea Ice Imagery Derived Products, advocating public release of Arctic images derived from classified data. In the NAS press release that announced the release, report lead Stephanie Pfirman states "To prepare for a possibly ice-free Arctic and its subsequent effects on the environment, economy, and national security, it is critical to have accurate projections of changes over the next several decades." In the same release NAS President Ralph Cicerone states "We hope that these images are the first of many that could help scientists learn how the changing climate could impact the environment and our society." The same day, Secretary of the Interior Ken Salazar announced that the requested images had been released and were available to the public on a US Geological Survey Global Fiducials Program (GFP) Library website (http://gfl.usgs.gov). The website was developed by the USGS to provide public access to the images and to support environmental analysis of global climate-related science. In the statement describing the release titled, Information Derived from Classified Materials Will Aid Understanding of Changing Climate, Secretary Salazar states "We need the best data from all places if we are to meet the challenges that rising carbon emissions are creating. This information will be invaluable to scientists, researchers, and the public as we tackle climate change." Initially about 700 Arctic sea ice images were released. Six years later, the number exceeds 1,500. The GFP continues to facilitate the acquisition of new Arctic sea ice imagery from US National Imagery Systems. This example demonstrates how information about dynamically changing Arctic sea ice continues to be effectively communicated to the public by the GFP. In addition to Arctic sea ice imagery, the GFP has publicly released imagery time series of more than 125 other environmentally important

  9. The importance of biotic factors in predicting global change effects on decomposition of temperate forest leaf litter.

    PubMed

    Rouifed, Soraya; Handa, I Tanya; David, Jean-François; Hättenschwiler, Stephan

    2010-05-01

    Increasing atmospheric CO(2) and temperature are predicted to alter litter decomposition via changes in litter chemistry and environmental conditions. The extent to which these predictions are influenced by biotic factors such as litter species composition or decomposer activity, and in particular how these different factors interact, is not well understood. In a 5-week laboratory experiment we compared the decomposition of leaf litter from four temperate tree species (Fagus sylvatica, Quercus petraea, Carpinus betulus and Tilia platyphyllos) in response to four interacting factors: elevated CO(2)-induced changes in litter quality, a 3 degrees C warmer environment during decomposition, changes in litter species composition, and presence/absence of a litter-feeding millipede (Glomeris marginata). Elevated CO(2) and temperature had much weaker effects on decomposition than litter species composition and the presence of Glomeris. Mass loss of elevated CO(2)-grown leaf litter was reduced in Fagus and increased in Fagus/Tilia mixtures, but was not affected in any other leaf litter treatment. Warming increased litter mass loss in Carpinus and Tilia, but not in the other two litter species and in none of the mixtures. The CO(2)- and temperature-related differences in decomposition disappeared completely when Glomeris was present. Overall, fauna activity stimulated litter mass loss, but to different degrees depending on litter species composition, with a particularly strong effect on Fagus/Tilia mixtures (+58%). Higher fauna-driven mass loss was not followed by higher C mineralization over the relatively short experimental period. Apart from a strong interaction between litter species composition and fauna, the tested factors had little or no interactive effects on decomposition. We conclude that if global change were to result in substantial shifts in plant community composition and macrofauna abundance in forest ecosystems, these interacting biotic factors could have

  10. Global climate change in large European rivers: long-term effects on macroinvertebrate communities and potential local confounding factors.

    PubMed

    Floury, Mathieu; Usseglio-Polatera, Philippe; Ferreol, Martial; Delattre, Cecile; Souchon, Yves

    2013-04-01

    Aquatic species living in running waters are widely acknowledged to be vulnerable to climate-induced, thermal and hydrological fluctuations. Climate changes can interact with other environmental changes to determine structural and functional attributes of communities. Although such complex interactions are most likely to occur in a multiple-stressor context as frequently encountered in large rivers, they have received little attention in such ecosystems. In this study, we aimed at specifically addressing the issue of relative long-term effects of global and local changes on benthic macroinvertebrate communities in multistressed large rivers. We assessed effects of hydroclimatic vs. water quality factors on invertebrate community structure and composition over 30 years (1979-2008) in the Middle Loire River, France. As observed in other large European rivers, water warming over the three decades (+0.9 °C between 1979-1988 and 1999-2008) and to a lesser extent discharge reduction (-80 m(3) s(-1) ) were significantly involved in the disappearance or decrease in taxa typical from fast running, cold waters (e.g. Chloroperlidae and Potamanthidae). They explained also a major part of the appearance and increase of taxa typical from slow flowing or standing waters and warmer temperatures, including invasive species (e.g. Corbicula sp. and Atyaephyra desmarestii). However, this shift towards a generalist and pollution tolerant assemblage was partially confounded by local improvement in water quality (i.e. phosphate input reduction by about two thirds and eutrophication limitation by almost one half), explaining a significant part of the settlement of new pollution-sensitive taxa (e.g. the caddisfly Brachycentridae and Philopotamidae families) during the last years of the study period. The regain in such taxa allowed maintaining a certain level of specialization in the invertebrate community despite climate change effects.

  11. Public health impact of global heating due to climate change: potential effects on chronic non-communicable diseases.

    PubMed

    Kjellstrom, Tord; Butler, Ainslie J; Lucas, Robyn M; Bonita, Ruth

    2010-04-01

    Several categories of ill health important at the global level are likely to be affected by climate change. To date the focus of this association has been on communicable diseases and injuries. This paper briefly analyzes potential impacts of global climate change on chronic non-communicable diseases (NCDs). We reviewed the limited available evidence of the relationships between climate exposure and chronic and NCDs. We further reviewed likely mechanisms and pathways for climatic influences on chronic disease occurrence and impacts on pre-existing chronic diseases. There are negative impacts of climatic factors and climate change on some physiological functions and on cardio-vascular and kidney diseases. Chronic disease risks are likely to increase with climate change and related increase in air pollution, malnutrition, and extreme weather events. There are substantial research gaps in this arena. The health sector has a major role in facilitating further research and monitoring the health impacts of global climate change. Such work will also contribute to global efforts for the prevention and control of chronic NCDs in our ageing and urbanizing global population.

  12. Urban Land Use Change Effects on Below and Aboveground Carbon Stocks—a Global Perspective and Future Research Needs

    NASA Astrophysics Data System (ADS)

    Pouyat, R. V.; Chen, Y.; Yesilonis, I.; Day, S.

    2014-12-01

    Land use change (LUC) has a significant impact on both above- and below-ground carbon (C) stocks; however, little is known about the net effects of urban LUC on the C cycle and climate system. Moreover, as climate change becomes an increasingly pressing concern, there is growing evidence that urban policy and management decisions can have significant regional impacts on C dynamics. Soil organic carbon (SOC) varies significantly across ecoregions at global and continental scales due to differential sensitivity of primary production, substrate quality, and organic matter decay to changes in temperature and soil moisture. These factors are highly modified by urban LUC due to vegetation removal, soil relocation and disruption, pollution, urban heat island effects, and increased atmospheric CO2 concentrations. As a result, on a global scale urban LUC differentially affects the C cycle from ecoregion to ecoregion. For urban ecosystems, the data collected thus far suggests urbanization can lead to both an increase and decrease in soil C pools and fluxes, depending on the native ecosystem being impacted by urban development. For example, in drier climates, urban landscapes accumulate higher C densities than the native ecosystems they replaced. Results suggest also that soil C storage in urban ecosystems is highly variable with very high (> 20.0) and low (< 2.0) C densities (kg m-2 to a 1 m depth) present in the landscape at any one time. Moreover, similar to non-urban soils, total SOC densities are consistently 2-fold greater than aboveground stocks. For those soils with low SOC densities, there is potential to increase C sequestration through management, but specific urban related management practices need to be evaluated. In addition, urban LUC is a human-driven process and thus can be modified or adjusted to reduce its impacts on the C cycle. For example, policies that influence development patterns, population density, management practices, and other human factors can

  13. Terrestrial ecosystem feedbacks to global climate change

    SciTech Connect

    Lashof, D.A.; DeAngelo, B.J.; Saleska, S.R.; Harte, J.

    1997-12-31

    Anthropogenic greenhouse gases are expected to induce changes in global climate that can alter ecosystems in ways that, in turn, may further affect climate. Such climate-ecosystem interactions can generate either positive or negative feedbacks to the climate system, thereby either enhancing or diminishing the magnitude of global climate change. Important terrestrial feedback mechanisms include CO{sub 2} fertilization (negative feedbacks), carbon storage in vegetation and soils (positive and negative feedbacks), vegetation albedo (positive feedbacks), and peatland methane emissions (positive and negative feedbacks). While the processes involved are complex, not readily quantifiable, and demonstrate both positive and negative feedback potential, the authors conclude that the combined effect of the feedback mechanisms reviewed here will likely amplify climate change relative to current projections that have not yet adequately incorporated these mechanisms. 162 refs., 7 figs., 3 tabs.

  14. Clouds and Climate Change. Understanding Global Change: Earth Science and Human Impacts. Global Change Instruction Program.

    ERIC Educational Resources Information Center

    Shaw, Glenn E.

    The Global Change Instruction Program was designed by college professors to fill a need for interdisciplinary materials on the emerging science of global change. This instructional module introduces the basic features and classifications of clouds and cloud cover, and explains how clouds form, what they are made of, what roles they play in…

  15. Clouds and Climate Change. Understanding Global Change: Earth Science and Human Impacts. Global Change Instruction Program.

    ERIC Educational Resources Information Center

    Shaw, Glenn E.

    The Global Change Instruction Program was designed by college professors to fill a need for interdisciplinary materials on the emerging science of global change. This instructional module introduces the basic features and classifications of clouds and cloud cover, and explains how clouds form, what they are made of, what roles they play in…

  16. Technologies for global change earth observations

    NASA Technical Reports Server (NTRS)

    Johnston, Gordon I.; Hudson, Wayne R.

    1990-01-01

    Advances in the areas of space-based observations, data/information analysis, and spacecraft/operations for the studying of global changes are discussed. Research involving systems analysis, observation technologies, information technologies, and spacecraft technologies is examined. Consideration is given to cryogenic coolers, IR arrays, laser and submillimeter sensing, large array CCD, information visualization, design knowledge capture, optical communications, multiinstrument pointing, propulsion, space environmental effects, and platform thermal systems.

  17. Technologies for global change earth observations

    NASA Technical Reports Server (NTRS)

    Johnston, Gordon I.; Hudson, Wayne R.

    1990-01-01

    Advances in the areas of space-based observations, data/information analysis, and spacecraft/operations for the studying of global changes are discussed. Research involving systems analysis, observation technologies, information technologies, and spacecraft technologies is examined. Consideration is given to cryogenic coolers, IR arrays, laser and submillimeter sensing, large array CCD, information visualization, design knowledge capture, optical communications, multiinstrument pointing, propulsion, space environmental effects, and platform thermal systems.

  18. Biomass burning a driver for global change

    SciTech Connect

    Levine, J.S.; Cofer, W.R. III; Cahoon, D.R. Jr.; Winstead, E.L.

    1995-03-01

    Recent research has identified another biospheric process that has instantaneous and longer term effects on the production of atmospheric gases: biomass burning. Biomass burning includes the burning of the world`s vegetation-forests, savannas. and agricultural lands, to clear the land and change its use. Only in the past decade have researchers realized the important contributions of biomass burning to the global budgets of many radiatively and chemically active gases - carbon dioxide, methane, nitric oxide, tropospheric ozone, methyl chloride - and elemental carbon particulates. International field experiments and satellite data are yielding a clearer understanding of this important global source of atmospheric gases and particulates. It is seen that in addition to being a significant instantaneous global source of atmospheric gases and particulates, burning enhances the biogenic emissions of nitric oxide and nitrous oxide from the world`s soils. Biomass burning affects the reflectivity and emissivity of the Earth`s surface as well as the hydrological cycle by changing rates of land evaporation and water runoff. For these reasons, it appears that biomass burning is a significant driver of global change. 20 refs., 4 figs., 2 tabs.

  19. Adaptation Strategies for Global Environmental Change

    NASA Astrophysics Data System (ADS)

    Ojima, D. S.; Corell, R.

    2007-12-01

    The global environmental challenges society faces today are unheralded due to the pace at which human activities are affecting the earth system. The rates of energy consumption, nitrogen use and production, and water use increases each year leading to greater global environmental changes affecting warming of the earth system and loss of ecosystem services. The challenge we face today as a society is the manner and speed at which we can adapt to these changes affecting the ecosystem services we depend upon. Innovative strategies are needed to develop the adaptive management tools to integrate the sectors and science necessary to deal with the complexity of effects. Developing strategies to better guide decision making related to climate change trends into changing weather patterns at meaningful temporal and spatial scales are needed, observations and prognostic analyses of climate related triggers of threshold events in ecosystem dynamics, and transfer of knowledge between science, technology, and decision makers. These strategies need to better integrate science (physical, biological, and social knowledge), engineering, policy, and economics interests to create a framework to develop strategies for adaptation and mitigation to global change and to create bridges with institutions and organizations that deal with these issues as a governmental agency or private sector enterprise.

  20. Black carbon emission reduction strategies in healthcare industry for effective global climate change management.

    PubMed

    Raila, Emilia Mmbando; Anderson, David O

    2017-04-01

    Climate change remains one of the biggest threats to life on earth to date with black carbon (BC) emissions or smoke being the strongest cause after carbon dioxide (CO2). Surprisingly, scientific evidence about black carbon emissions reduction in healthcare settings is sparse. This paper presents new research findings on the reduction of black carbon emissions from an observational study conducted at the UN Peacekeeping Operations (MINUSTAH) in Haiti in 2014. Researchers observed 20 incineration cycles, 30 minutes for each cycle of plastic and cardboard sharps healthcare waste (HCW) containers ranged from 3 to 14.6 kg. The primary aim was to determine if black carbon emissions from healthcare waste incineration can be lowered by mainstreaming the use of cardboard sharps healthcare waste containers instead of plastic sharps healthcare waste containers. Similarly, the study looks into whether burning temperature was associated with the smoke levels for each case or not. Independent samples t-tests demonstrated significantly lower black carbon emissions during the incineration of cardboard sharps containers (6.81 ± 4.79% smoke) than in plastic containers (17.77 ± 8.38% smoke); a statistically significant increase of 10.96% smoke (95% Confidence Interval ( CI) [4.4 to 17.5% smoke], p = 0.003). Correspondingly, lower bottom burner temperatures occurred during the incineration of cardboard sharps containers than in plastic (95% Cl [16 to 126°C], p = 0.014). Finally, we expect the application of the new quantitative evidence to form the basis for policy formulation, mainstream the use of cardboard sharps containers and opt for non-incineration disposal technologies as urgent steps for going green in healthcare waste management.

  1. Seagrass meadows in a globally changing environment.

    PubMed

    Unsworth, Richard K F; van Keulen, Mike; Coles, Rob G

    2014-06-30

    Seagrass meadows are valuable ecosystem service providers that are now being lost globally at an unprecedented rate, with water quality and other localised stressors putting their future viability in doubt. It is therefore critical that we learn more about the interactions between seagrass meadows and future environmental change in the anthropocene. This needs to be with particular reference to the consequences of poor water quality on ecosystem resilience and the effects of change on trophic interactions within the food web. Understanding and predicting the response of seagrass meadows to future environmental change requires an understanding of the natural long-term drivers of change and how these are currently influenced by anthropogenic stress. Conservation management of coastal and marine ecosystems now and in the future requires increased knowledge of how seagrass meadows respond to environmental change, and how they can be managed to be resilient to these changes. Finding solutions to such issues also requires recognising people as part of the social-ecological system. This special issue aims to further enhance this knowledge by bringing together global expertise across this field. The special issues considers issues such as ecosystem service delivery of seagrass meadows, the drivers of long-term seagrass change and the socio-economic consequences of environmental change to seagrass.

  2. GLOBAL CHANGE RESEARCH NEWS #18: SYMPOSIUM SESSION ON "GLOBAL ATMOSPHERIC CHANGE"

    EPA Science Inventory

    A session on "Understanding and Managing Effects of Global Atmospheric Change" will be held at the Fifth Symposium of the U.S. EPA National Health and Environmental Effects Research Laboratory. The Symposium topic is "Indicators in Health and Ecological Risk Assessment." The s...

  3. GLOBAL CHANGE RESEARCH NEWS #18: SYMPOSIUM SESSION ON "GLOBAL ATMOSPHERIC CHANGE"

    EPA Science Inventory

    A session on "Understanding and Managing Effects of Global Atmospheric Change" will be held at the Fifth Symposium of the U.S. EPA National Health and Environmental Effects Research Laboratory. The Symposium topic is "Indicators in Health and Ecological Risk Assessment." The s...

  4. Global atmospheric change: potential health effects of acid aerosol and oxidant gas mixtures.

    PubMed Central

    Last, J A

    1991-01-01

    Inhalation toxicology experiments in whole animals have demonstrated a remarkable lack of toxicity of sulfuric acid in the form of respirable aerosols, especially in rats and nonhuman primates. Thus, much of the current experimental emphasis has shifted to the evaluation of the potential health effects of acid aerosols as components of mixtures. Rats have been concurrently exposed to mixtures of ozone or nitrogen dioxide with respirable-sized aerosols of sulfuric acid, ammonium sulfate, or sodium chloride, or to each pollutant individually. Their responses to such exposures have been evaluated by various quantitative biochemical analysis of lung tissue or wash fluids ("lavage fluid") or by quantitative morphological methods ("morphometry"). Such studies have mainly been performed in the acute time frame due to the inherent limitations of the most sensitive assays available and have generally involved exposures for 1 to 9 days, depending on the assays used. Good correlations were found between the most sensitive biochemical indicators of lung damage (protein content of lung lavage fluid or whole lung tissue and lung collagen synthesis rate) and the exposure concentration of oxidant gas present alone or in mixtures with acidic aerosols showing interactive effects. Synergistic interaction between ozone and sulfuric acid aerosol was demonstrated to occur at environmentally relevant concentrations of both pollutants by several of the analytical methods used in this study. Such interactions were demonstrated at concentrations of ozone as low as 0.12 ppm and of sulfuric acid aerosol at concentrations as low as 5 to 20 micrograms/m3.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1820258

  5. U.S. Global Change Research Program

    MedlinePlus

    ... global change . Read the Report Browse All Reports Climate Change a Growing Threat to Human Health New USGCRP ... Announcing... Read more The Deepening Story of How Climate Change Threatens Human Health Read more Celebrating the 25th ...

  6. U.S. Global Change Research Program National Climate Assessment Global Change Information System

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2012-01-01

    The program: a) Coordinates Federal research to better understand and prepare the nation for global change. b) Priori4zes and supports cutting edge scientific work in global change. c) Assesses the state of scientific knowledge and the Nation s readiness to respond to global change. d) Communicates research findings to inform, educate, and engage the global community.

  7. Engineering paradigms and anthropogenic global change

    NASA Astrophysics Data System (ADS)

    Bohle, Martin

    2016-04-01

    , the paradigm of 'ecomodernism' implies to accentuate some of the current development paths of societies with the goal to 'decouple' anthropogenic and natural fluxes of matter and energy. Applying the paradigm 'geoengineering', engineering works shall 'modulate' natural fluxes of matter to counter the effect of anthropogenic fluxes of matter instead to alter the development paths of societies. Thus, anthropogenic global change is a composite process in which engineering intercedes the 'noosphere' and in the 'bio-geosphere'. Paradigms 'how to engineering earth systems' reflect different concepts ('shared subjective insights') how to combine knowledge with use, function and purpose. Currently, four paradigms are distinguishable how to engineer anthropogenic global change. They convene recipes human activity and bio-geosphere should intersect.

  8. Climate change impacts on global food security.

    PubMed

    Wheeler, Tim; von Braun, Joachim

    2013-08-02

    Climate change could potentially interrupt progress toward a world without hunger. A robust and coherent global pattern is discernible of the impacts of climate change on crop productivity that could have consequences for food availability. The stability of whole food systems may be at risk under climate change because of short-term variability in supply. However, the potential impact is less clear at regional scales, but it is likely that climate variability and change will exacerbate food insecurity in areas currently vulnerable to hunger and undernutrition. Likewise, it can be anticipated that food access and utilization will be affected indirectly via collateral effects on household and individual incomes, and food utilization could be impaired by loss of access to drinking water and damage to health. The evidence supports the need for considerable investment in adaptation and mitigation actions toward a "climate-smart food system" that is more resilient to climate change influences on food security.

  9. Projecting Global Land-Use Change and Its Effect on Ecosystem Service Provision and Biodiversity with Simple Models

    PubMed Central

    Nelson, Erik; Sander, Heather; Hawthorne, Peter; Conte, Marc; Ennaanay, Driss; Wolny, Stacie; Manson, Steven; Polasky, Stephen

    2010-01-01

    Background As the global human population grows and its consumption patterns change, additional land will be needed for living space and agricultural production. A critical question facing global society is how to meet growing human demands for living space, food, fuel, and other materials while sustaining ecosystem services and biodiversity [1]. Methodology/Principal Findings We spatially allocate two scenarios of 2000 to 2015 global areal change in urban land and cropland at the grid cell-level and measure the impact of this change on the provision of ecosystem services and biodiversity. The models and techniques used to spatially allocate land-use/land-cover (LULC) change and evaluate its impact on ecosystems are relatively simple and transparent [2]. The difference in the magnitude and pattern of cropland expansion across the two scenarios engenders different tradeoffs among crop production, provision of species habitat, and other important ecosystem services such as biomass carbon storage. For example, in one scenario, 5.2 grams of carbon stored in biomass is released for every additional calorie of crop produced across the globe; under the other scenario this tradeoff rate is 13.7. By comparing scenarios and their impacts we can begin to identify the global pattern of cropland and irrigation development that is significant enough to meet future food needs but has less of an impact on ecosystem service and habitat provision. Conclusions/Significance Urban area and croplands will expand in the future to meet human needs for living space, livelihoods, and food. In order to jointly provide desired levels of urban land, food production, and ecosystem service and species habitat provision the global society will have to become much more strategic in its allocation of intensively managed land uses. Here we illustrate a method for quickly and transparently evaluating the performance of potential global futures. PMID:21179509

  10. Projecting global land-use change and its effect on ecosystem service provision and biodiversity with simple models.

    PubMed

    Nelson, Erik; Sander, Heather; Hawthorne, Peter; Conte, Marc; Ennaanay, Driss; Wolny, Stacie; Manson, Steven; Polasky, Stephen

    2010-12-15

    As the global human population grows and its consumption patterns change, additional land will be needed for living space and agricultural production. A critical question facing global society is how to meet growing human demands for living space, food, fuel, and other materials while sustaining ecosystem services and biodiversity [1]. We spatially allocate two scenarios of 2000 to 2015 global areal change in urban land and cropland at the grid cell-level and measure the impact of this change on the provision of ecosystem services and biodiversity. The models and techniques used to spatially allocate land-use/land-cover (LULC) change and evaluate its impact on ecosystems are relatively simple and transparent [2]. The difference in the magnitude and pattern of cropland expansion across the two scenarios engenders different tradeoffs among crop production, provision of species habitat, and other important ecosystem services such as biomass carbon storage. For example, in one scenario, 5.2 grams of carbon stored in biomass is released for every additional calorie of crop produced across the globe; under the other scenario this tradeoff rate is 13.7. By comparing scenarios and their impacts we can begin to identify the global pattern of cropland and irrigation development that is significant enough to meet future food needs but has less of an impact on ecosystem service and habitat provision. Urban area and croplands will expand in the future to meet human needs for living space, livelihoods, and food. In order to jointly provide desired levels of urban land, food production, and ecosystem service and species habitat provision the global society will have to become much more strategic in its allocation of intensively managed land uses. Here we illustrate a method for quickly and transparently evaluating the performance of potential global futures.

  11. Global atmospheric change and human health

    SciTech Connect

    Piver, W.T.

    1991-12-01

    On November 6-7, 1989, the National Institute of Environmental Health Sciences (NIEHS) held a Conference on Global Atmospheric Change and Human Health. Since this conference, presented papers have been transformed and revised as articles that address several potential impacts on human health of global warming. Coming when it did, this was a very important conference. At the present time, there is still much uncertainty about whether or not global warming is occurring and, if it is, what effect it will have no human health. All the participants in this conference recognized this uncertainty and addressed potential impacts on human health if surface temperatures continue to rise and greater amounts of shorter wavelength ultraviolet (UV) radiation continue to reach the earth's surface as a result of depletion of the ozone layer. Because global warming and ozone depletion will occur over many decades, adverse impacts on human health and the environment may not be reversible. In short, we are in the midst of a huge geophysical experiment with global climate, and we will not know what the outcome will be for many years.

  12. Global climate change and children's health.

    PubMed

    Shea, Katherine M

    2007-11-01

    There is broad scientific consensus that Earth's climate is warming rapidly and at an accelerating rate. Human activities, primarily the burning of fossil fuels, are very likely (>90% probability) to be the main cause of this warming. Climate-sensitive changes in ecosystems are already being observed, and fundamental, potentially irreversible, ecological changes may occur in the coming decades. Conservative environmental estimates of the impact of climate changes that are already in process indicate that they will result in numerous health effects to children. The nature and extent of these changes will be greatly affected by actions taken or not taken now at the global level. Physicians have written on the projected effects of climate change on public health, but little has been written specifically on anticipated effects of climate change on children's health. Children represent a particularly vulnerable group that is likely to suffer disproportionately from both direct and indirect adverse health effects of climate change. Pediatric health care professionals should understand these threats, anticipate their effects on children's health, and participate as children's advocates for strong mitigation and adaptation strategies now. Any solutions that address climate change must be developed within the context of overall sustainability (the use of resources by the current generation to meet current needs while ensuring that future generations will be able to meet their needs). Pediatric health care professionals can be leaders in a move away from a traditional focus on disease prevention to a broad, integrated focus on sustainability as synonymous with health. This policy statement is supported by a technical report that examines in some depth the nature of the problem of climate change, likely effects on children's health as a result of climate change, and the critical importance of responding promptly and aggressively to reduce activities that are contributing to

  13. Global change research: Science and policy

    SciTech Connect

    Rayner, S.

    1993-05-01

    This report characterizes certain aspects of the Global Change Research Program of the US Government, and its relevance to the short and medium term needs of policy makers in the public and private sectors. It addresses some of the difficulties inherent in the science and policy interface on the issues of global change. Finally, this report offers some proposals for improving the science for policy process in the context of global environmental change.

  14. Thinking about Global Warming: Effect of Policy-Related Documents and Prompts on Learning about Causes of Climate Change

    ERIC Educational Resources Information Center

    Blaum, Dylan; Griffin, Thomas D.; Wiley, Jennifer; Britt, M. Anne

    2017-01-01

    We examined students' understanding of the causes of a scientific phenomenon from a multiple-document-inquiry unit. Students read several documents that each described causal factors that could be integrated to address the given writing task of explaining the causes of change in average global temperature. We manipulated whether the document set…

  15. Global Change: A Biogeochemical Perspective

    NASA Technical Reports Server (NTRS)

    Mcelroy, M.

    1983-01-01

    A research program that is designed to enhance our understanding of the Earth as the support system for life is described. The program change, both natural and anthropogenic, that might affect the habitability of the planet on a time scale roughly equal to that of a human life is studied. On this time scale the atmosphere, biosphere, and upper ocean are treated as a single coupled system. The need for understanding the processes affecting the distribution of essential nutrients--carbon, nitrogen, phosphorous, sulfur, and water--within this coupled system is examined. The importance of subtle interactions among chemical, biological, and physical effects is emphasized. The specific objectives are to define the present state of the planetary life-support system; to ellucidate the underlying physical, chemical, and biological controls; and to provide the body of knowledge required to assess changes that might impact the future habitability of the Earth.

  16. Changing ideas of global limits.

    PubMed

    Goddy, D

    1984-03-02

    In this discussion of changing ideas of global limits, attention is directed to world trade, moral restraint, and the "green revolution." A fresh look at the work of those who first considered population problems, e.gg., Malthur, can help make some sense of the population problems the world faces today. Malthus, writing in the late 1700s, concluded that population multiplies with each generation. He saw that food production was limited by the amount of available cropland and that the more people there are, the less food they will have to eat -- assuming that all available cropland is planted. This grim view of the future led Malthus to oppose government aid to the poor maintaining that such assistance would only encourage poor people to have large families. His solution was "moral restratin," seeing it as the duty of each individual to refrain from marriage until he was able to support his children. At the time this advice seemed cruel and Malthus was bitterly attacked by writers everywhere in Europe. Karl Marx and other ctitics of Malthus believed that poverty was caused by unjust governments and the selfishness of the rich. Marx clamied that the problem was too few jobs rather than too many people. The dire predictions of Malthus were soon forgotten as manufacturing industries began to transform the economies of Western Europe in the 1800s. Along with soaring economic growth came a host of developments that improved people's lives, e.g., better transportation, better sanitiation and nutrition, and better medicine. New inventions helped farmers fo produce more food. Next came the "demographic transition." Population grew quickly in Europe and North America as people became healthier and lived longer. Gradually, people in the industrial nations began deciding to have smaller families to enable them to afford an even higher living standard. By the late 1920s birthrates in Europe and the US had dropped so low that mention of the "population problem" usually referred

  17. Projected change in global fisheries revenues under climate change

    PubMed Central

    Lam, Vicky W. Y.; Cheung, William W. L.; Reygondeau, Gabriel; Sumaila, U. Rashid

    2016-01-01

    Previous studies highlight the winners and losers in fisheries under climate change based on shifts in biomass, species composition and potential catches. Understanding how climate change is likely to alter the fisheries revenues of maritime countries is a crucial next step towards the development of effective socio-economic policy and food sustainability strategies to mitigate and adapt to climate change. Particularly, fish prices and cross-oceans connections through distant water fishing operations may largely modify the projected climate change impacts on fisheries revenues. However, these factors have not formally been considered in global studies. Here, using climate-living marine resources simulation models, we show that global fisheries revenues could drop by 35% more than the projected decrease in catches by the 2050 s under high CO2 emission scenarios. Regionally, the projected increases in fish catch in high latitudes may not translate into increases in revenues because of the increasing dominance of low value fish, and the decrease in catches by these countries’ vessels operating in more severely impacted distant waters. Also, we find that developing countries with high fisheries dependency are negatively impacted. Our results suggest the need to conduct full-fledged economic analyses of the potential economic effects of climate change on global marine fisheries. PMID:27600330

  18. Projected change in global fisheries revenues under climate change

    NASA Astrophysics Data System (ADS)

    Lam, Vicky W. Y.; Cheung, William W. L.; Reygondeau, Gabriel; Sumaila, U. Rashid

    2016-09-01

    Previous studies highlight the winners and losers in fisheries under climate change based on shifts in biomass, species composition and potential catches. Understanding how climate change is likely to alter the fisheries revenues of maritime countries is a crucial next step towards the development of effective socio-economic policy and food sustainability strategies to mitigate and adapt to climate change. Particularly, fish prices and cross-oceans connections through distant water fishing operations may largely modify the projected climate change impacts on fisheries revenues. However, these factors have not formally been considered in global studies. Here, using climate-living marine resources simulation models, we show that global fisheries revenues could drop by 35% more than the projected decrease in catches by the 2050 s under high CO2 emission scenarios. Regionally, the projected increases in fish catch in high latitudes may not translate into increases in revenues because of the increasing dominance of low value fish, and the decrease in catches by these countries’ vessels operating in more severely impacted distant waters. Also, we find that developing countries with high fisheries dependency are negatively impacted. Our results suggest the need to conduct full-fledged economic analyses of the potential economic effects of climate change on global marine fisheries.

  19. Projected change in global fisheries revenues under climate change.

    PubMed

    Lam, Vicky W Y; Cheung, William W L; Reygondeau, Gabriel; Sumaila, U Rashid

    2016-09-07

    Previous studies highlight the winners and losers in fisheries under climate change based on shifts in biomass, species composition and potential catches. Understanding how climate change is likely to alter the fisheries revenues of maritime countries is a crucial next step towards the development of effective socio-economic policy and food sustainability strategies to mitigate and adapt to climate change. Particularly, fish prices and cross-oceans connections through distant water fishing operations may largely modify the projected climate change impacts on fisheries revenues. However, these factors have not formally been considered in global studies. Here, using climate-living marine resources simulation models, we show that global fisheries revenues could drop by 35% more than the projected decrease in catches by the 2050 s under high CO2 emission scenarios. Regionally, the projected increases in fish catch in high latitudes may not translate into increases in revenues because of the increasing dominance of low value fish, and the decrease in catches by these countries' vessels operating in more severely impacted distant waters. Also, we find that developing countries with high fisheries dependency are negatively impacted. Our results suggest the need to conduct full-fledged economic analyses of the potential economic effects of climate change on global marine fisheries.

  20. Biocrusts in the context of global change

    USGS Publications Warehouse

    Reed, Sasha C.; Maestre, Fernando T.; Ochoa-Hueso, Raul; Kuske, Cheryl; Darrouzet-Nardi, Anthony N.; Darby, Brian; Sinsabaugh, Bob; Oliver, Mel; Sancho, Leo; Belnap, Jayne

    2016-01-01

    A wide range of studies show global environmental change will profoundly affect the structure, function, and dynamics of terrestrial ecosystems. The research synthesized here underscores that biocrust communities are also likely to respond significantly to global change drivers, with a large potential for modification to their abundance, composition, and function. We examine how elevated atmospheric CO2 concentrations, climate change (increased temperature and altered precipitation), and nitrogen deposition affect biocrusts and the ecosystems they inhabit. We integrate experimental and observational data, as well as physiological, community ecology, and biogeochemical perspectives. Taken together, these data highlight the potential for biocrust organisms to respond dramatically to environmental change and show how changes to biocrust community composition translate into effects on ecosystem function (e.g., carbon and nutrient cycling, soil stability, energy balance). Due to the importance of biocrusts in regulating dryland ecosystem processes and the potential for large modifications to biocrust communities, an improved understanding and predictive capacity regarding biocrust responses to environmental change are of scientific and societal relevance.

  1. Change in global temperature: A statistical analysis

    SciTech Connect

    Richards, G.R. )

    1993-03-01

    This paper investigates several issues relating to global climatic change using statistical techniques that impose minimal restrictions on the data. The main findings are as follows: (1) The global temperature increase since the last century is a systematic development. (2) Short-term variations in temperature do not have long-lasting effects on the final realizations of the series over time, stochastic perturbations dissipate and temperature reverts to trend. (3) Multivariate tests for causality demonstrate that atmospheric CO[sub 2] is a significant forcing factor. The implied change in temperature with respect to a doubling of atmospheric CO[sub 2] lies in a range of 2.17[degrees] to 2.57[degrees]C, with a mean value of 2.34[degrees]C. The contributions of solar irradiance and volcanic loading are much smaller. (4) In a multivariate system, shocks to forcing factors generate stochastic cycles in temperature comparable to the results from unforced simulations of climatological models. (5) Extrapolation of regression equations predict changes in global temperature that are marginally lower than the results from climatological simulation models.

  2. Ecosystem oceanography for global change in fisheries.

    PubMed

    Cury, Philippe Maurice; Shin, Yunne-Jai; Planque, Benjamin; Durant, Joël Marcel; Fromentin, Jean-Marc; Kramer-Schadt, Stephanie; Stenseth, Nils Christian; Travers, Morgane; Grimm, Volker

    2008-06-01

    Overexploitation and climate change are increasingly causing unanticipated changes in marine ecosystems, such as higher variability in fish recruitment and shifts in species dominance. An ecosystem-based approach to fisheries attempts to address these effects by integrating populations, food webs and fish habitats at different scales. Ecosystem models represent indispensable tools to achieve this objective. However, a balanced research strategy is needed to avoid overly complex models. Ecosystem oceanography represents such a balanced strategy that relates ecosystem components and their interactions to climate change and exploitation. It aims at developing realistic and robust models at different levels of organisation and addressing specific questions in a global change context while systematically exploring the ever-increasing amount of biological and environmental data.

  3. Global fish production and climate change

    SciTech Connect

    Brander, K.M.

    2007-12-11

    Current global fisheries production of {approx}160 million tons is rising as a result of increases in aquaculture production. A number of climate-related threats to both capture fisheries and aquaculture are identified, but there is low confidence in predictions of future fisheries production because of uncertainty over future global aquatic net primary production and the transfer of this production through the food chain to human consumption. Recent changes in the distribution and productivity of a number of fish species can be ascribed with high confidence to regional climate variability, such as the El Nino-Southern Oscillation. Future production may increase in some high-latitude regions because of warming and decreased ice cover, but the dynamics in low-latitude regions are giverned by different processes, and production may decline as a result of reduced vertical mixing of the water column and, hence, reduced recycling of nutrients. There are strong interactions between the effects of fishing and the effects of climate because fishing reduces the age, size, and geographic diversity of populations and the biodiversity of marine ecosystems, making both more sensitive to additional stresses such as climate change. Inland fisheries are additionally threatened by changes in precipiation and water management. The frequency and intensity of extreme climate events is likely to have a major impact on future fisheries production in both inland and marine systems. Reducing fishing mortality in the majority of fisheries, which are currently fully exploited or overexploited, is the pricipal feasible means of reducing the impacts of climate change.

  4. Medical responsibility and global environmental change.

    PubMed

    McCally, M; Cassel, C K

    1990-09-15

    Global environmental change threatens the habitability of the planet and the health of its inhabitants. Toxic pollution of air and water, acid rain, destruction of stratospheric ozone, waste, species extinction and, potentially, global warming are produced by the growing numbers and activities of human beings. Progression of these environmental changes could lead to unprecedented human suffering. Physicians can treat persons experiencing the consequences of environmental change but cannot individually prevent the cause of their suffering. Physicians have information and expertise about environmental change that can contribute to its slowing or prevention. Work to prevent global environmental change is consistent with the social responsibility of physicians and other health professionals.

  5. Global Climate Change and the Mitigation Challenge

    EPA Science Inventory

    Book edited by Frank Princiotta titled Global Climate Change--The Technology Challenge Transparent modeling tools and the most recent literature are used, to quantify the challenge posed by climate change and potential technological remedies. The chapter examines forces driving ...

  6. Global Climate Change and the Mitigation Challenge

    EPA Science Inventory

    Book edited by Frank Princiotta titled Global Climate Change--The Technology Challenge Transparent modeling tools and the most recent literature are used, to quantify the challenge posed by climate change and potential technological remedies. The chapter examines forces driving ...

  7. Global warming: trends and effects.

    PubMed

    Tickell, C

    1993-01-01

    As animals we have been a remarkably successful species; but also as animals we are vulnerable to environmental, in particular climate change. Such change is accelerating as a result of human activity, and global warming may already be taking place. Although we can foresee the trends, we cannot yet be specific about the results. Change usually proceeds by steps rather than gradients. But warming would probably include new risks to human health and contribute to an increase in human displacement. Of course climate change is only one among other complex problems facing human society, but it is closely related to them all, including population increase, environmental degradation and loss of biodiversity. We cannot prevent global warming but we can anticipate and mitigate some of its worst effects. Peoples and governments still need persuading of the need for action and of the magnitude of the issue at stake.

  8. Global Change in the Great Lakes: Scenarios.

    ERIC Educational Resources Information Center

    Garrison, Barbara K., Ed.; Rosser, Arrye R., Ed.

    The Ohio Sea Grant Education Program has produced this series of publications designed to help people understand how global change may affect the Great Lakes region. The possible implications of global change for this region of the world are explained in the hope that policymakers and individuals will be more inclined to make responsible decisions…

  9. Global climate change: The USAID response. A report to congress

    SciTech Connect

    1994-06-01

    USAID`s new Global Climate Change Strategy (GCCS) is designed to support the fundamental objectives of the FCCC as stated above. The goal of the GCCS is: To contribute to global efforts to stabilize greenhouse gas concentrations and to assist countries to adapt to the adverse effects of climate change, while maintaining economic growth in developing and post-communist countries. The report will concentrate on USAID`s global greenhouse gas assessment and mitigation program. Mitigation methods, particularly in the energy sector, are generally applicable throughout the world, and therefore it is possible to address this dimension of the climate change problem on a global climate change basis.

  10. Fungal symbionts alter plant responses to global change.

    PubMed

    Kivlin, Stephanie N; Emery, Sarah M; Rudgers, Jennifer A

    2013-07-01

    While direct plant responses to global change have been well characterized, indirect plant responses to global change, via altered species interactions, have received less attention. Here, we examined how plants associated with four classes of fungal symbionts (class I leaf endophytes [EF], arbuscular mycorrhizal fungi [AMF], ectomycorrhizal fungi [ECM], and dark septate endophytes [DSE]) responded to four global change factors (enriched CO2, drought, N deposition, and warming). We performed a meta-analysis of 434 studies spanning 174 publications to search for generalizable trends in responses of plant-fungal symbioses to future environments. Specifically, we addressed the following questions: (1) Can fungal symbionts ameliorate responses of plants to global change? (2) Do fungal symbiont groups differ in the degree to which they modify plant response to global change? (3) Do particular global change factors affect plant-fungal symbioses more than others? In all global change scenarios, except elevated CO2, fungal symbionts significantly altered plant responses to global change. In most cases, fungal symbionts increased plant biomass in response to global change. However, increased N deposition reduced the benefits of symbiosis. Of the global change factors we considered, drought and N deposition resulted in the strongest fungal mediation of plant responses. Our analysis highlighted gaps in current knowledge for responses of particular fungal groups and revealed the importance of considering not only the nonadditive effects of multiple global change factors, but also the interactive effects of multiple fungal symbioses. Our results show that considering plant-fungal symbioses is critical to predicting ecosystem response to global change.

  11. Global Monsoon Dynamics and Climate Change

    NASA Astrophysics Data System (ADS)

    Zhisheng, An; Guoxiong, Wu; Jianping, Li; Youbin, Sun; Yimin, Liu; Weijian, Zhou; Yanjun, Cai; Anmin, Duan; Li, Li; Jiangyu, Mao; Hai, Cheng; Zhengguo, Shi; Liangcheng, Tan; Hong, Yan; Hong, Ao; Hong, Chang; Juan, Feng

    2015-05-01

    This article provides a comprehensive review of the global monsoon that encompasses findings from studies of both modern monsoons and paleomonsoons. We introduce a definition for the global monsoon that incorporates its three-dimensional distribution and ultimate causes, emphasizing the direct drive of seasonal pressure system changes on monsoon circulation and depicting the intensity in terms of both circulation and precipitation. We explore the global monsoon climate changes across a wide range of timescales from tectonic to intraseasonal. Common features of the global monsoon are global homogeneity, regional diversity, seasonality, quasi-periodicity, irregularity, instability, and asynchroneity. We emphasize the importance of solar insolation, Earth orbital parameters, underlying surface properties, and land-air-sea interactions for global monsoon dynamics. We discuss the primary driving force of monsoon variability on each timescale and the relationships among dynamics on multiple timescales. Natural processes and anthropogenic impacts are of great significance to the understanding of future global monsoon behavior.

  12. Global change and human susceptibility to disease

    SciTech Connect

    Daily, G.C.; Ehrlich, P.R.

    1996-12-31

    Although the loss of good health is inherently unpredictable, human behavior at the individual and societal levels profoundly influences the incidence and evolution of disease. In this review, the authors define the human epidemiological environment and describe key biophysical, economic, sociocultural, and political factors that shape it. The potential impact upon the epidemiological environment of biophysical aspects of global change--changes in the size; mobility, and geographic distribution of the human population; land conversion; agricultural intensification; and climate change--is then examined. Human vulnerability to disease is strongly and deleteriously influenced by many of these ongoing, intensifying alterations. The authors then examine threats to human defenses against disease, including immune suppression, loss of biodiversity and indigenous knowledge, and the evolution of antibiotic resistance. Effective responses will require greatly enhanced attention by and collaboration among experts in diverse academic disciplines, in the private sector, and in government worldwide. 157 refs.

  13. Global Responses to Potential Climate Change: A Simulation.

    ERIC Educational Resources Information Center

    Williams, Mary Louise; Mowry, George

    This interdisciplinary five-day unit provides students with an understanding of the issues in the debate on global climate change. Introductory lessons enhance understanding of the "greenhouse gases" and their sources with possible global effects of climate change. Students then roleplay negotiators from 10 nations in a simulation of the…

  14. Global Responses to Potential Climate Change: A Simulation.

    ERIC Educational Resources Information Center

    Williams, Mary Louise; Mowry, George

    This interdisciplinary five-day unit provides students with an understanding of the issues in the debate on global climate change. Introductory lessons enhance understanding of the "greenhouse gases" and their sources with possible global effects of climate change. Students then roleplay negotiators from 10 nations in a simulation of the…

  15. Population Growth. Understanding Global Change: Earth Science and Human Impacts. Global Change Instruction Program.

    ERIC Educational Resources Information Center

    Jacobsen, Judith E.

    The Global Change Instruction Program was designed by college professors to fill a need for interdisciplinary materials on the emerging science of global change. This instructional module concentrates on interactions between population growth and human activities that produce global change. The materials are designed for undergraduate students…

  16. Population Growth. Understanding Global Change: Earth Science and Human Impacts. Global Change Instruction Program.

    ERIC Educational Resources Information Center

    Jacobsen, Judith E.

    The Global Change Instruction Program was designed by college professors to fill a need for interdisciplinary materials on the emerging science of global change. This instructional module concentrates on interactions between population growth and human activities that produce global change. The materials are designed for undergraduate students…

  17. Eighth symposium on global change studies

    SciTech Connect

    1997-11-01

    The conference proceedings contain papers from 16 of 20 sessions. The topics of the sessions from which papers were selected were: (1) implications of the IPCC projections of the 21st century climate, (2) natural and forced climate variability, (3) atmospheric circulation; (4) climate trends and abrupt changes; (5) clouds, water vapor, and precipitation; (6) climate impacts; (7) correcting observational biases; (8) the World Ocean Circulation Experiment; (9) land surface and land surface/atmosphere coupling; (10) detection of anthropogenic climate change; (11) climate and global change and the insurance industry; (12) the paleoclimate record; (13) proxy indicators of climate reconstruction; (14) climate predictions; (15) monitoring global change; and (16) historical, current, and project climate trends. Conference sessions from which papers were not selected were: (1) The United States Global Change Research Program perspectives; (2) CLIVAR; (3) the temperature record; and (4) global change educational initiatives. A total of 63 papers were selected for the database.

  18. The Effects of Anthropogenic Land Cover Change on Global and Regional Climate in the Preindustrial Holocene: A Review

    NASA Astrophysics Data System (ADS)

    Kaplan, J. O.

    2014-12-01

    The recent development of anthropogenic land cover change (ALCC) scenarios that cover all or part of the preindustrial Holocene (11,700 BP to ~AD 1850) has led to a number of modelling studies on the impacts of land cover change on climate, using both GCMs and regional climate models. Because most ALCC scenarios arrive at similar estimates of anthropogenic deforestation by the late preindustrial, most models agree that the net biogeophysical effect of ALCC by AD 1850 is regional cooling at mid- to high-latitudes and warming and drying over the tropics and subtropics. In particular, tropical deforestation appears to lead to local amplification of externally forced drought cycles, e.g., from ENSO. The spatial extent of these climate changes varies between models because the choice of ALCC scenario leads to large differences in the initial forcing. Those model studies that considered biogeochemical feedbacks show that the importance of preindustrial CO2 emissions ranges from being insignificant to larger than the global biogeophysical feedback, depending on assumptions made about potential natural atmospheric CO2 at the beginning of the Industrial Revolution. While the net magnitude of deforestation is similar among ALCC scenarios at AD 1850, the timing of deforestation varies widely, which, in addition to affecting the inferred importance of biogeochemical feedbacks, leads to large differences in the estimated importance of ALCC on climate earlier in the Holocene. For example, modelling experiments performed on Europe and the Mediterranean representing conditions at the peak of the Roman Empire or in Mesoamerica for the Classic Maya period show large differences in the estimated importance of the biogeophysical feedback to regional climate depending on the ALCC scenario used. The wide variety of results gained so far from ALCC and climate modelling experiments shows that the question of "how much did humans influence the state of the Earth System before the

  19. Global Distributions of Vulnerability to Climate Change

    SciTech Connect

    Yohe, Gary; Malone, Elizabeth L.; Brenkert, Antoinette L.; Schlesinger, Michael; Meij, Henk; Xiaoshi, Xing

    2006-12-01

    Signatories of the United Nations Framework Convention on Climate Change (UNFCCC) have committed themselves to addressing the “specific needs and special circumstances of developing country parties, especially those that are particularly vulnerable to the adverse effects of climate change”.1 The Intergovernmental Panel on Climate Change (IPCC) has since concluded with high confidence that “developing countries will be more vulnerable to climate change than developed countries”.2 In their most recent report, however, the IPCC notes that “current knowledge of adaptation and adaptive capacity is insufficient for reliable prediction of adaptations” 3 because “the capacity to adapt varies considerably among regions, countries and socioeconomic groups and will vary over time”.4 Here, we respond to the apparent contradiction in these two statements by exploring how variation in adaptive capacity and climate impacts combine to influence the global distribution of vulnerability. We find that all countries will be vulnerable to climate change, even if their adaptive capacities are enhanced. Developing nations are most vulnerable to modest climate change. Reducing greenhouse-gas emissions would diminish their vulnerabilities significantly. Developed countries would benefit most from mitigation for moderate climate change. Extreme climate change overwhelms the abilities of all countries to adapt. These findings should inform both ongoing negotiations for the next commitment period of the Kyoto Protocol and emerging plans for implementing UNFCCC-sponsored adaptation funds.

  20. Global atmospheric methane: budget, changes and dangers.

    PubMed

    Dlugokencky, Edward J; Nisbet, Euan G; Fisher, Rebecca; Lowry, David

    2011-05-28

    A factor of 2.5 increase in the global abundance of atmospheric methane (CH(4)) since 1750 contributes 0.5 Wm(-2) to total direct radiative forcing by long-lived greenhouse gases (2.77 Wm(-2) in 2009), while its role in atmospheric chemistry adds another approximately 0.2 Wm(-2) of indirect forcing. Since CH(4) has a relatively short lifetime and it is very close to a steady state, reductions in its emissions would quickly benefit climate. Sensible emission mitigation strategies require quantitative understanding of CH(4)'s budget of emissions and sinks. Atmospheric observations of CH(4) abundance and its rate of increase, combined with an estimate of the CH(4) lifetime, constrain total global CH(4) emissions to between 500 and 600 Tg CH(4) yr(-1). While total global emissions are constrained reasonably well, estimates of emissions by source sector vary by up to a factor of 2. Current observation networks are suitable to constrain emissions at large scales (e.g. global) but not at the regional to national scales necessary to verify emission reductions under emissions trading schemes. Improved constraints on the global CH(4) budget and its break down of emissions by source sector and country will come from an enhanced observation network for CH(4) abundance and its isotopic composition (δ(13)C, δD(D=(2)H) and δ(14)C). Isotopic measurements are a valuable tool in distinguishing among various sources that contribute emissions to an air parcel, once fractionation by loss processes is accounted for. Isotopic measurements are especially useful at regional scales where signals are larger. Reducing emissions from many anthropogenic source sectors is cost-effective, but these gains may be cancelled, in part, by increasing emissions related to economic development in many parts of the world. An observation network that can quantitatively assess these changing emissions, both positive and negative, is required, especially in the context of emissions trading schemes.

  1. Climate change and global agriculture: Recent findings and issues

    SciTech Connect

    Reilly, J.

    1995-08-01

    This paper (a) reviews existing findings on the global impacts of climate change on agriculture, (b) identifies limitations of these findings, and (c) discusses three issues of interest on the Intergovernmental Panel on Climate Change (IPCC). The three issues are as follows: regional effects versus global efficiency: the issue of hunger; climate change, agriculture and economic development; cost and disruption of adaptation to climate change. 45 refs., 3 tabs.

  2. Review of Global Change Research Program plan

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-01-01

    The draft 10-year strategic plan for the U.S. Global Change Research Program (USGCRP), which proposes broadening the scope of the program from climate change only to climate change and climaterelated global changes, “is an important step in the right direction,” according to a 5 January review of the plan by a committee of the U.S. National Research Council (NRC) of the National Academies. However, the committee also said that the program's legislative mandate is even broader in allowing USGCRP to address many aspects of global change including climate change, the global hydrological cycle, and widespread land use changes. “The Program's legislative mandate is to address all of global change, whether or not related to climate. The Committee concurs that this broader scope is appropriate, but realizes that such an expansion may be constrained by budget realities and by the practical challenge of maintaining clear boundaries for an expanded program,” the report states. “We encourage sustained efforts to expand the Program over time, along with efforts to better define and prioritize what specific topics are included within the bounds of global change research.”

  3. Evaluating Global Climate Change Education Initiative

    NASA Astrophysics Data System (ADS)

    Weston, T. J.

    2011-12-01

    The Global Climate Change Education initiative (GCCE) is a multi-site effort funded by the National Science Foundation to develop web resources. The objective of curricular modules is to improve content knowledge and change attitudes about climate change among undergraduate science students. The two-year evaluation of the project was conducted by Tim Weston from the University of Colorado. The small-scale evaluation first developed measures for attitude and content about climate change, and then administered the measures online. Analysis of results is ongoing. The evaluator wanted to know the attitudes and content knowledge of students after completing the modules, and if attitudes and content knowledge shifted from pre to post. An additional component of the evaluation focused on student understanding of specific global warming topics after completing the modules. Developing the test and survey involved reviewing existing measures, soliciting content from stakeholders in the grant, and then establishing a content framework that covered the important topics in climate change linked to project curricula. The pilot attitude measure contained fourteen agree/disagree items (I believe people should change their lifestyles to help minimize climate change), five self-assessment questions (How informed are you about the different causes of climate change? ), and wo previous experience questions about previous science courses taken, and actions related to climate change. The content measure contained 10 multiple-choice items asking about changes in global average temperature, the scientific methods of climate change, and the primary countries and human activities responsible for climate change. Questions were designed to reflect a mixture of general science literacy about climate change and more specific content related knowledge taught in the curricula. Both content and attitude measures were piloted with students, who answered questions using a think-aloud" interview

  4. Global lightning activity and climate change

    SciTech Connect

    Price, C.G.

    1993-12-31

    The relationship between global lightning frequencies and global climate change is examined in this thesis. In order to study global impacts of climate change, global climate models or General Circulations Models (GCMs) need to be utilized. Since these models have coarse resolutions many atmospheric phenomena that occur at subgrid scales, such as lightning, need to be parameterized whenever possible. We begin with a simple parameterization used to Simulate total (intracloud and cloud-to-ground) lightning frequencies. The parameterization uses convective cloud top height to approximate lightning frequencies. Then we consider a parameterization for simulating cloud-to-ground (CG) lightning around the globe. This parameterization uses the thickness of the cold cloud sector in thunderstorms (0{degrees}C to cloud top) to calculate the proportion of CG flashes in a particular thunderstorm. We model lightning in the Goddard Institute for Space Studies (GISS) GCM. We present two climate change scenarios. One for a climate where the solar constant is reduced by 2% (5.9{degrees}C global cooling), and one for a climate with twice the present concentration of CO{sub 2} in the atmosphere (4.2{degrees}C global warming). The results imply a 24%/30% decrease/increase in global lightning frequencies for the cooler/warmer climate. The possibility of using the above findings to monitor future global warming is discussed. The earth`s ionospheric potential, which is regulated by global thunderstorm activity, could supply valuable information regarding global surface temperature fluctuations. Finally, we look at the implications of changes in both lightning frequencies and the hydrological cycle, as a result of global warming, on natural forest fires. In the U.S. the annual mean number of lightning fires could increase by 40% while the area burned may increase by 65% in a 2{times}CO{sub 2} climate. On a global scale the largest increase in lightning fires can be expected in the tropics.

  5. The psychological impacts of global climate change.

    PubMed

    Doherty, Thomas J; Clayton, Susan

    2011-01-01

    An appreciation of the psychological impacts of global climate change entails recognizing the complexity and multiple meanings associated with climate change; situating impacts within other social, technological, and ecological transitions; and recognizing mediators and moderators of impacts. This article describes three classes of psychological impacts: direct (e.g., acute or traumatic effects of extreme weather events and a changed environment); indirect (e.g., threats to emotional well-being based on observation of impacts and concern or uncertainty about future risks); and psychosocial (e.g., chronic social and community effects of heat, drought, migrations, and climate-related conflicts, and postdisaster adjustment). Responses include providing psychological interventions in the wake of acute impacts and reducing the vulnerabilities contributing to their severity; promoting emotional resiliency and empowerment in the context of indirect impacts; and acting at systems and policy levels to address broad psychosocial impacts. The challenge of climate change calls for increased ecological literacy, a widened ethical responsibility, investigations into a range of psychological and social adaptations, and an allocation of resources and training to improve psychologists' competency in addressing climate change-related impacts.

  6. Earth orbiting technologies for understanding global change

    NASA Astrophysics Data System (ADS)

    Harris, Leonard A.; Johnston, Gordon I.; Hudson, Wayne R.; Couch, Lana M.

    We are all becoming more aware of concerns such as the ozone hole and ozone layer depletion, the build-up of greenhouse gasses and the potential for global climate change, the damage to our lakes and forests from acid rain, and the loss of species and genetic diversity. These are not only of scientific interest, but are of growing public media, federal governmental, and international concern, with the potential for major impacts on the international economy, potential for future development, and global standard of living. Yet our current understanding of how our global environment behaves is embryonic, and does not allow us to predict with confidence the consequences or long term significance of these phenomena. NASA has a significant national responsibility in Global Change research, which will require a major agency investment over the next few decades in obtaining the science data associated with understanding the Earth as a total system. Technology research and development is a natural complement to this national scientific program. In her report to the NASA Administrator, Dr. Sally K. Ride states that Mission to Planet Earth "requires advances in technology to enhance observations, to handle and deliver the enormous quantities of data, and to ensure a long operating life." These three themes (1) space-based observation technologies, (2) data/information technologies, and (3) spacecraft/operations technologies form the basis for NASA's efforts to identify the technologies needed to support the Mission to Planet Earth. In the observation area, developments in spacecraft and space-based instrument technologies are required to enable the accurate measurement of key parameters crucial to the understanding of global change. In the data/information area, developments in technologies are required to enable the long-term documentation of these parameters and the timely understanding of the data. And in the spacecraft/operations area, developments in spacecraft

  7. Ozone, Climate, and Global Atmospheric Change

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1992-01-01

    The delicate balance of the gases that make up our atmosphere allows life to exist on Earth. Ozone depletion and global warming are related to changes in the concentrations of these gases. To solve global atmospheric problems, we need to understand the composition and chemistry of the Earth's atmosphere and the impact of human activities on them.

  8. Combined effects of the Pacific Decadal Oscillation and El Niño-Southern Oscillation on Global Land Dry–Wet Changes

    PubMed Central

    Wang, Shanshan; Huang, Jianping; He, Yongli; Guan, Yuping

    2014-01-01

    The effects of natural variability, especially El Niño-Southern Oscillation (ENSO) effects, have been the focus of several recent studies on the change of drought patterns with climate change. The interannual relationship between ENSO and the global climate is not stationary and can be modulated by the Pacific Decadal Oscillation (PDO). However, the global land distribution of the dry–wet changes associated with the combination of ENSO and the PDO remains unclear. In the present study, this is investigated using a revised Palmer Drought Severity Index dataset (sc_PDSI_pm). We find that the effect of ENSO on dry–wet changes varies with the PDO phase. When in phase with the PDO, ENSO-induced dry–wet changes are magnified with respect to the canonical pattern. When out of phase, these dry–wet variations weaken or even disappear. This remarkable contrast in ENSO's influence between the two phases of the PDO highlights exciting new avenues for obtaining improved global climate predictions. In recent decades, the PDO has turned negative with more La Niña events, implying more rain and flooding over land. La Niña-induced wet areas become wetter and the dry areas become drier and smaller due to the effects of the cold PDO phase. PMID:25323549

  9. Combined effects of the Pacific Decadal Oscillation and El Niño-Southern Oscillation on global land dry-wet changes.

    PubMed

    Wang, Shanshan; Huang, Jianping; He, Yongli; Guan, Yuping

    2014-10-17

    The effects of natural variability, especially El Niño-Southern Oscillation (ENSO) effects, have been the focus of several recent studies on the change of drought patterns with climate change. The interannual relationship between ENSO and the global climate is not stationary and can be modulated by the Pacific Decadal Oscillation (PDO). However, the global land distribution of the dry-wet changes associated with the combination of ENSO and the PDO remains unclear. In the present study, this is investigated using a revised Palmer Drought Severity Index dataset (sc_PDSI_pm). We find that the effect of ENSO on dry-wet changes varies with the PDO phase. When in phase with the PDO, ENSO-induced dry-wet changes are magnified with respect to the canonical pattern. When out of phase, these dry-wet variations weaken or even disappear. This remarkable contrast in ENSO's influence between the two phases of the PDO highlights exciting new avenues for obtaining improved global climate predictions. In recent decades, the PDO has turned negative with more La Niña events, implying more rain and flooding over land. La Niña-induced wet areas become wetter and the dry areas become drier and smaller due to the effects of the cold PDO phase.

  10. Review of inorganic nitrogen transformations and effect of global climate change on inorganic nitrogen cycling in ocean ecosystems

    NASA Astrophysics Data System (ADS)

    Kim, Haryun

    2016-03-01

    Inorganic N transformations (nitrification, anaerobic ammonium oxidation, denitrification, and dissimilatory nitrate reduction to ammonium) are regulated by various biogeochemical factors linked either by the supply of electron acceptors and donors or by competition for electron acceptors. This review considers both the microbial community related to each process and the technical methods used to measure each process rate. With this background knowledge, this article summarizes how global climate change through increased pCO2, ocean acidification, deoxygenation and anthropogenic N deposition will alter oceanic N cycling, and finally emphasizes the need for comprehensive research on inorganic N transformation in marine ecosystems.

  11. Global change in wilderness areas: disentangling natural and anthropogenic changes

    Treesearch

    Lisa J. Graumlich

    2000-01-01

    Human impacts on the Earth’s ecosystems are globally pervasive. Wilderness areas, although largely protected from direct human impact at local scales, nevertheless are subject to global changes in atmospheric composition, climate and biodiversity. Research in wilderness areas plays a critical role in disentangling natural and anthropogenic changes in ecosystems by...

  12. Global fish production and climate change.

    PubMed

    Brander, K M

    2007-12-11

    Current global fisheries production of approximately 160 million tons is rising as a result of increases in aquaculture production. A number of climate-related threats to both capture fisheries and aquaculture are identified, but we have low confidence in predictions of future fisheries production because of uncertainty over future global aquatic net primary production and the transfer of this production through the food chain to human consumption. Recent changes in the distribution and productivity of a number of fish species can be ascribed with high confidence to regional climate variability, such as the El Niño-Southern Oscillation. Future production may increase in some high-latitude regions because of warming and decreased ice cover, but the dynamics in low-latitude regions are governed by different processes, and production may decline as a result of reduced vertical mixing of the water column and, hence, reduced recycling of nutrients. There are strong interactions between the effects of fishing and the effects of climate because fishing reduces the age, size, and geographic diversity of populations and the biodiversity of marine ecosystems, making both more sensitive to additional stresses such as climate change. Inland fisheries are additionally threatened by changes in precipitation and water management. The frequency and intensity of extreme climate events is likely to have a major impact on future fisheries production in both inland and marine systems. Reducing fishing mortality in the majority of fisheries, which are currently fully exploited or overexploited, is the principal feasible means of reducing the impacts of climate change.

  13. Global climate change--a feasibility perspective of its effect on human health at a local scale.

    PubMed

    Bernardi, Michele

    2008-05-01

    There are two responses to global climate change. First, mitigation, which actions to reduce greenhouse gas emissions and sequester or store carbon in the short-term, and make development choices that will lead to low emissions in the long-term. Second, adaptation, which involves adjustments in natural or human systems and behaviours that reduce the risks posed by climate change to people's lives and livelihoods. While the two are conceptually distinct, in practice they are very much interdependent, and both are equally urgent from a healthy population perspective. To define the policies to mitigate and to adapt to global climate change, data and information at all scales are the basic requirement for both developed and developing countries. However, as compared to mitigation, adaptation is an immediate concern for low-income countries and for small islands states, where the reduction of the emissions from greenhouse gases is not among their priorities. Adaptation is also highly location specific and the required ground data to assess the impacts of climate change on human health are not available. Climate data at high spatial resolution can be derived by various downscaling methods using historical and real-time meteorological observations but, particularly in low-income countries, the outputs are limited by the lack of ground data at the local level. In many of these countries, a negative trend in the number of meteorological stations as compared as to before 2000 is evident, while remotely-sensed imagery becomes more and more available at high spatial and temporal resolution. The final consequence is that climate change policy options in the developing world are greatly jeopardized.

  14. Global environmental change: Its nature and impact

    SciTech Connect

    Hidore, J.J.

    1996-12-31

    This book is intended as an entry-level textbook on environmental science for nonscience majors. Twenty chapters address topics from historical geology and climatic change to population dynamics, land-use, water pollution, ozone depletion and biodiversity, global warming.

  15. Global vegetation changes from satellite data

    SciTech Connect

    Nemani, R.; Running, S.

    1995-09-01

    Long-term climate, soils data along with satellite observations are sued to quantify global land cover changes between pre-agricultural and present conditions. Changes in global land cover expressed as summer, mid-afternoon, radiometric surface temperatures, T{sub r}, ranged from -8 to +16 {degrees}C. Deforestation resulted in an increase in T{sub r}, while irrigated agriculture reduced the T{sub r}. The spatial heterogeneity in land surface fluxes created by the estimated land cover changes, currently not accounted for in Global Circulation Models, could have significant impact on climate. Potential and actual land cover datasets are available for climate modelers at 0.5x0.5{degrees} resolution to study the possible impacts of land cover changes on global temperatures and circulation patterns.

  16. The Mathematics of Global Change

    ERIC Educational Resources Information Center

    Kreith, Kurt

    2011-01-01

    This paper is a descriptive and preliminary report on recent efforts to address two questions: 1) Can school mathematics be used to enhance our students' ability to understand their changing world? and 2) What role might computer technology play in this regard? After recounting some of the mathematical tools that led to a better understanding of…

  17. The Mathematics of Global Change

    ERIC Educational Resources Information Center

    Kreith, Kurt

    2011-01-01

    This paper is a descriptive and preliminary report on recent efforts to address two questions: 1) Can school mathematics be used to enhance our students' ability to understand their changing world? and 2) What role might computer technology play in this regard? After recounting some of the mathematical tools that led to a better understanding of…

  18. Ozone, Climate, and Global Atmospheric Change.

    ERIC Educational Resources Information Center

    Levine, Joel S.

    1992-01-01

    Presents an overview of global atmospheric problems relating to ozone depletion and global warming. Provides background information on the composition of the earth's atmosphere and origin of atmospheric ozone. Describes causes, effects, and evidence of ozone depletion and the greenhouse effect. A vignette provides a summary of a 1991 assessment of…

  19. Ozone, Climate, and Global Atmospheric Change.

    ERIC Educational Resources Information Center

    Levine, Joel S.

    1992-01-01

    Presents an overview of global atmospheric problems relating to ozone depletion and global warming. Provides background information on the composition of the earth's atmosphere and origin of atmospheric ozone. Describes causes, effects, and evidence of ozone depletion and the greenhouse effect. A vignette provides a summary of a 1991 assessment of…

  20. The effects of global climate change on Southeast Asia: A survey of likely impacts and problems of adaptation

    NASA Technical Reports Server (NTRS)

    Njoto, Sukrisno; Howe, Charles W.

    1991-01-01

    Study results indicate the likelihood of significant net damages from climate change, in particular damages from sea-level rise and higher temperatures that seem unlikely to be offset by favorable shifts in precipitation and carbon dioxide. Also indicated was the importance of better climate models, in particular models that can calculate climate change on a regional scale appropriate to policy-making. In spite of this potential for damage, there seems to be a low level of awareness and concern, probably caused by the higher priority given to economic growth and reinforced by the great uncertainty in the forecasts. The common property nature of global environment systems also leads to a feeling of helplessness on the part of country governments.

  1. Global change effects on biogeochemical processes of Argentinian estuaries: an overview of vulnerabilities and ecohydrological adaptive outlooks.

    PubMed

    Kopprio, Germán A; Biancalana, Florencia; Fricke, Anna; Garzón Cardona, John E; Martínez, Ana; Lara, Rubén J

    2015-02-28

    The aims of this work are to provide an overview of the current stresses of estuaries in Argentina and to propose adaptation strategies from an ecohydrological approach. Several Argentinian estuaries are impacted by pollutants, derived mainly from sewage discharge and agricultural or industrial activities. Anthropogenic impacts are expected to rise with increasing human population. Climate-driven warmer temperature and hydrological changes will alter stratification, residence time, oxygen content, salinity, pollutant distribution, organism physiology and ecology, and nutrient dynamics. Good water quality is essential in enhancing estuarine ecological resilience to disturbances brought on by global change. The preservation, restoration, and creation of wetlands will help to protect the coast from erosion, increase sediment accretion rates, and improve water quality by removing excess nutrients and pollutants. The capacity of hydrologic basin ecosystems to absorb human and natural impacts can be improved through holistic management, which should consider social vulnerability in complex human-natural systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Changing carbon cycle: a global analysis

    SciTech Connect

    Trabalka, J.R.; Reichle, D.E.

    1986-01-01

    An attempt is made to examine current knowledge about the fluxes, sources, and sinks in the global carbon cycle, as well as our ability to predict changes in atmospheric CO/sub 2/ concentration resulting from anthropogenic influences. The reader will find authoritative discussions of: past and expected releases of CO/sub 2/ from fossil fuels; the historical record and implications of atmospheric CO/sub 2/ increases; isotopic and geological records of past carbon cycle processes; the role of the oceans in the global carbon cycle; the influence of the world biosphere on changes in atmospheric CO/sub 2/ levels; and, evidence linking the components of the global carbon cycle.

  3. A review of the combination among global change factors in forests, shrublands and pastures of the Mediterranean Region: Beyond drought effects

    NASA Astrophysics Data System (ADS)

    Doblas-Miranda, E.; Alonso, R.; Arnan, X.; Bermejo, V.; Brotons, L.; de las Heras, J.; Estiarte, M.; Hódar, J. A.; Llorens, P.; Lloret, F.; López-Serrano, F. R.; Martínez-Vilalta, J.; Moya, D.; Peñuelas, J.; Pino, J.; Rodrigo, A.; Roura-Pascual, N.; Valladares, F.; Vilà, M.; Zamora, R.; Retana, J.

    2017-01-01

    Climate change, alteration of atmospheric composition, land abandonment in some areas and land use intensification in others, wildfires and biological invasions threaten forests, shrublands and pastures all over the world. However, the impacts of the combinations between global change factors are not well understood despite its pressing importance. Here we posit that reviewing global change factors combination in an exemplary region can highlight the necessary aspects in order to better understand the challenges we face, warning about the consequences, and showing the challenges ahead of us. The forests, shrublands and pastures of the Mediterranean Basin are an ideal scenario for the study of these combinations due to its spatial and temporal heterogeneity, increasing and diverse human population and the historical legacy of land use transformations. The combination of multiple global change factors in the Basin shows different ecological effects. Some interactions alter the effects of a single factor, as drought enhances or decreases the effects of atmospheric components on plant ecophysiology. Several interactions generate new impacts: drought and land use changes, among others, alter water resources and lead to land degradation, vegetation regeneration decline, and expansion of forest diseases. Finally, different factors can occur alone or simultaneously leading to further increases in the risk of fires and biological invasions. The transitional nature of the Basin between temperate and arid climates involves a risk of irreversible ecosystem change towards more arid states. However, combinations between factors lead to unpredictable ecosystem alteration that goes beyond the particular consequences of drought. Complex global change scenarios should be studied in the Mediterranean and other regions of the world, including interregional studies. Here we show the inherent uncertainty of this complexity, which should be included in any management strategy.

  4. The Sea Level Fingerprints of Global Change

    NASA Astrophysics Data System (ADS)

    Mitrovica, J. X.; Hay, C.; Kopp, R. E., III; Morrow, E.

    2014-12-01

    It may be difficult to persuade those living in northern Europe that the sea level changes that their coastal communities face depends less on the total melting of polar ice sheets and glaciers than on the individual contributions to this total. In particular, melting of a specific ice sheet or mountain glacier drives deformational, gravitational and rotational perturbations to the Earth system that are manifest in a unique geometry, or fingerprint, of global sea level change. For example, melting from the Greenland Ice Sheet equivalent to 1 mm/yr of global mean sea level (GMSL) rise will lead to sea level rise of ~0 mm/yr in Dublin, ~0.2 mm/yr in Amsterdam, ~0.4 mm/yr in Boston and ~1.2 mm/yr in Cape Town. In contrast, if the same volume of ice melted from the West Antarctic Ice Sheet, all of the above sites would experience a sea level rise in the range 1.1-1.2 mm/yr. These fingerprints of modern ice melting, together with ocean thermal expansion and dynamic effects, and the ongoing signal from glacial isostatic adjustment in response to the last ice age, combine to produce a sea level field with significant geographic variability. In this talk I will highlight an analysis of global tide gauge records that takes full advantage of this variability to estimate both GMSL and the sources of meltwater over the last century, and to project GMSL to the end of the current century.

  5. Global climate change and vector-borne diseases

    USGS Publications Warehouse

    Ginsberg, H.S.

    2002-01-01

    Global warming will have different effects on different diseases because of the complex and idiosynchratic interactions between vectors, hosts, and pathogens that influence transmission dynamics of each pathogen. Human activities, including urbanization, rapid global travel, and vector management, have profound effects on disease transmission that can operate on more rapid time scales than does global climate change. The general concern about global warming encouraging the spread of tropical diseases is legitimate, but the effects vary among diseases, and the ecological implications are difficult to predict.

  6. Global change and marine communities: alien species and climate change.

    PubMed

    Occhipinti-Ambrogi, Anna

    2007-01-01

    Anthropogenic influences on the biosphere since the advent of the industrial age are increasingly causing global changes. Climatic change and the rising concentration of greenhouse gases in the atmosphere are ranking high in scientific and public agendas, and other components of global change are also frequently addressed, among which are the introductions of non indigenous species (NIS) in biogeographic regions well separated from the donor region, often followed by spectacular invasions. In the marine environment, both climatic change and spread of alien species have been studied extensively; this review is aimed at examining the main responses of ecosystems to climatic change, taking into account the increasing importance of biological invasions. Some general principles on NIS introductions in the marine environment are recalled, such as the importance of propagule pressure and of development stages during the time course of an invasion. Climatic change is known to affect many ecological properties; it interacts also with NIS in many possible ways. Direct (proximate) effects on individuals and populations of altered physical-chemical conditions are distinguished from indirect effects on emergent properties (species distribution, diversity, and production). Climatically driven changes may affect both local dispersal mechanisms, due to the alteration of current patterns, and competitive interactions between NIS and native species, due to the onset of new thermal optima and/or different carbonate chemistry. As well as latitudinal range expansions of species correlated with changing temperature conditions, and effects on species richness and the correlated extinction of native species, some invasions may provoke multiple effects which involve overall ecosystem functioning (material flow between trophic groups, primary production, relative extent of organic material decomposition, extent of benthic-pelagic coupling). Some examples are given, including a special

  7. Uncertainty and global climate change research

    SciTech Connect

    Tonn, B.E.; Weiher, R.

    1994-06-01

    The Workshop on Uncertainty and Global Climate Change Research March 22--23, 1994, in Knoxville, Tennessee. This report summarizes the results and recommendations of the workshop. The purpose of the workshop was to examine in-depth the concept of uncertainty. From an analytical point of view, uncertainty is a central feature of global climate science, economics and decision making. The magnitude and complexity of uncertainty surrounding global climate change has made it quite difficult to answer even the most simple and important of questions-whether potentially costly action is required now to ameliorate adverse consequences of global climate change or whether delay is warranted to gain better information to reduce uncertainties. A major conclusion of the workshop is that multidisciplinary integrated assessments using decision analytic techniques as a foundation is key to addressing global change policy concerns. First, uncertainty must be dealt with explicitly and rigorously since it is and will continue to be a key feature of analysis and recommendations on policy questions for years to come. Second, key policy questions and variables need to be explicitly identified, prioritized, and their uncertainty characterized to guide the entire scientific, modeling, and policy analysis process. Multidisciplinary integrated assessment techniques and value of information methodologies are best suited for this task. In terms of timeliness and relevance of developing and applying decision analytic techniques, the global change research and policy communities are moving rapidly toward integrated approaches to research design and policy analysis.

  8. EPA's Global Climate Change Program: Global landfill methane

    SciTech Connect

    Thorneloe, S.A.; Peer, R.L.

    1991-06-01

    The paper discusses AEERL's research efforts on global landfill methane (CH4). CH4 is of particular concern because its radiative forcing potential is thought to be much greater than that of carbon dioxide. Although the major sources of CH4 are known qualitatively, considerable uncertainty exists about the quantitative emissions from each source. One goal of AEERL's global climate research program is to develop a more accurate inventory of CH4 emissions from landfills. For major sources of greenhouse gases, AEERL has a program to develop and demonstrate mitigation/control opportunities for sources that are amenable to cost-effective control. The paper describes how global landfill CH4 is being estimated and what work has been initiated relating to the mitigation of global landfill CH4.

  9. Nitrogen turnover in soil and global change.

    PubMed

    Ollivier, Julien; Töwe, Stefanie; Bannert, Andrea; Hai, Brigitte; Kastl, Eva-Maria; Meyer, Annabel; Su, Ming Xia; Kleineidam, Kristina; Schloter, Michael

    2011-10-01

    Nitrogen management in soils has been considered as key to the sustainable use of terrestrial ecosystems and a protection of major ecosystem services. However, the microorganisms driving processes like nitrification, denitrification, N-fixation and mineralization are highly influenced by changing climatic conditions, intensification of agriculture and the application of new chemicals to a so far unknown extent. In this review, the current knowledge concerning the influence of selected scenarios of global change on the abundance, diversity and activity of microorganisms involved in nitrogen turnover, notably in agricultural and grassland soils, is summarized and linked to the corresponding processes. In this context, data are presented on nitrogen-cycling processes and the corresponding microbial key players during ecosystem development and changes in functional diversity patterns during shifts in land use. Furthermore, the impact of increased temperature, carbon dioxide and changes in precipitation regimes on microbial nitrogen turnover is discussed. Finally, some examples of the effects of pesticides and antibiotics after application to soil for selected processes of nitrogen transformation are also shown.

  10. Global genetic change tracks global climate warming in Drosophila subobscura.

    PubMed

    Balanyá, Joan; Oller, Josep M; Huey, Raymond B; Gilchrist, George W; Serra, Luis

    2006-09-22

    Comparisons of recent with historical samples of chromosome inversion frequencies provide opportunities to determine whether genetic change is tracking climate change in natural populations. We determined the magnitude and direction of shifts over time (24 years between samples on average) in chromosome inversion frequencies and in ambient temperature for populations of the fly Drosophila subobscura on three continents. In 22 of 26 populations, climates warmed over the intervals, and genotypes characteristic of low latitudes (warm climates) increased in frequency in 21 of those 22 populations. Thus, genetic change in this fly is tracking climate warming and is doing so globally.

  11. Potential effects on health of global warming

    SciTech Connect

    Haines, A. . Whittington Hospital); Parry, M. . Environmental Change Unit)

    1993-12-01

    Prediction of the impacts of global climate change on health is complicated by a number of factors. These include: the difficulty in predicting regional changes in climate, the capacity for adaptation to climate change, the interactions between the effects of global climate change and a number of other key determinants of health, including population growth and poverty, and the availability of adequate preventive and curative facilities for diseases that may be effected by climate change. Nevertheless, it is of importance to consider the potential health impacts of global climate change for a number of reasons. It is also important to monitor diseases which could be effected by climate change in order to detect changes in incidence as early as possible and study possible interactions with other factors. It seems likely that the possible impacts on health of climate change will be a major determinant of the degree to which policies aimed at reducing global warming are followed, as perceptions of the effect of climate change to human health and well-being are particularly likely to influence public opinion. The potential health impacts of climate change can be divided into direct (primary) and indirect (secondary and tertiary) effects. Primary effects are those related to the effect of temperature on human well-being and disease. Secondary effects include the impacts on health of changes in food production, availability of water and of sea level rise. A tertiary level of impacts can also be hypothesized.

  12. USGCRP's Geocuration of Global Change Information

    NASA Astrophysics Data System (ADS)

    Wolfe, R. E.; Duggan, B.; Aulenbach, S.; Goldstein, J.; Newman, B.; Akamine, B.

    2015-12-01

    The U.S. Global Change Research Program's (USGCRP's) developed the Global Change Information System (GCIS) to provide specialists and the general public with accessible and usable global change information. GCIS focus is on the cross-cutting theme of Global Change Information that is spread across federal government repositories and the broader research community. An open source web-based resource, the GCIS provides human and programmable interfaces, relational and semantic representations of information, and discrete identifiers for various resources. GCIS's capabilities demonstrated with the release of the NCA have been extended to support a set of USGCRP Global Change Indicators and will support future USGCRP scientific reports and assessments such as the Impacts of Climate Change on Human Health: A Scientific Assessment. GCIS provides named sources and contacts for figures, images and data sources, with the provenance continuing to the platforms and instruments or other observations on which the these documents are based. The GCIS team has been working with the U. S. Climate Data and Tools (CDAT) teams to demonstrate that by extending the GCIS ontology links can be provided between assessments, data and tools, as well as, help curate climate sub-themes such as those focused on a specific societal benefit area (e.g. health) or region (e.g. Arctic).

  13. The Psychological Impacts of Global Climate Change

    ERIC Educational Resources Information Center

    Doherty, Thomas J.; Clayton, Susan

    2011-01-01

    An appreciation of the psychological impacts of global climate change entails recognizing the complexity and multiple meanings associated with climate change; situating impacts within other social, technological, and ecological transitions; and recognizing mediators and moderators of impacts. This article describes three classes of psychological…

  14. The Psychological Impacts of Global Climate Change

    ERIC Educational Resources Information Center

    Doherty, Thomas J.; Clayton, Susan

    2011-01-01

    An appreciation of the psychological impacts of global climate change entails recognizing the complexity and multiple meanings associated with climate change; situating impacts within other social, technological, and ecological transitions; and recognizing mediators and moderators of impacts. This article describes three classes of psychological…

  15. Effects of input uncertainty and variability on the modelled environmental fate of organic pollutants under global climate change scenarios.

    PubMed

    Kong, Deguo; MacLeod, Matthew; Li, Zhe; Cousins, Ian T

    2013-11-01

    Global climate change (GCC) is expected to influence the fate, exposure and risks of organic pollutants to wildlife and humans. Multimedia chemical fate models have been previously applied to estimate how GCC affects pollutant concentrations in the environment and biota, but previous studies have not addressed how uncertainty and variability of model inputs affect model predictions. Here, we assess the influence of climate variability and chemical property uncertainty on future projections of environmental fate of six polychlorinated biphenyl congeners under different GCC scenarios using a spreadsheet version of the ChemCAN model and the Crystal Ball® software. Regardless of emission mode, results demonstrate: (i) uncertainty in degradation half-lives dominates the variance of modelled absolute levels of PCB congeners under GCC scenarios; (ii) when the ratios of predictions under GCC to predictions under present day climate are modelled, climate variability dominates the variance of modelled ratios; and (iii) the ratios also indicate a maximum of about a factor of 2 change in the long-term average environmental concentrations due to GCC that is forecasted between present conditions and the period between 2080 and 2099. We conclude that chemical property uncertainty does not preclude assessing relative changes in a GCC scenario compared to a present-day scenario if variance in model outputs due to chemical properties and degradation half-lives can be assumed to cancel out in the two scenarios.

  16. Global climate change and international security.

    SciTech Connect

    Karas, Thomas H.

    2003-11-01

    This report originates in a workshop held at Sandia National Laboratories, bringing together a variety of external experts with Sandia personnel to discuss 'The Implications of Global Climate Change for International Security.' Whatever the future of the current global warming trend, paleoclimatic history shows that climate change happens, sometimes abruptly. These changes can severely impact human water supplies, agriculture, migration patterns, infrastructure, financial flows, disease prevalence, and economic activity. Those impacts, in turn, can lead to national or international security problems stemming from aggravation of internal conflicts, increased poverty and inequality, exacerbation of existing international conflicts, diversion of national and international resources from international security programs (military or non-military), contribution to global economic decline or collapse, or international realignments based on climate change mitigation policies. After reviewing these potential problems, the report concludes with a brief listing of some research, technology, and policy measures that might mitigate them.

  17. Global environmental change research: empowering developing countries.

    PubMed

    Nobre, Carlos A; Lahsen, Myanna; Ometto, Jean P H B

    2008-09-01

    This paper discusses ways to reconcile the United Nations Millennium Development Goals with environmental sustainability at the national and international levels. The authors argue that development and better use of sustainability relevant knowledge is key, and that this requires capacity building globally, and especially in the less developed regions of the world. Also essential is stronger integration of high-quality knowledge creation and technology--and policy--development, including, importantly, the creation of centers of excellence in developing regions which effectively use and produce applications-directed high quality research and bring it to bear on decision making and practices related to environmental change and sustainable management of natural resources. The authors argue that Southern centers of excellence are a necessary first step for bottom-up societal transformation towards sustainability, and that such centers must help design innovative ways to assess and place value on ecosystem services.

  18. Global change - Geoengineering and space exploration

    NASA Technical Reports Server (NTRS)

    Jenkins, Lyle M.

    1992-01-01

    Geoengineering options and alternatives are proposed for mitigating the effects of global climate change and depletion of the ozone layer. Geoengineering options were discussed by the National Academy of Science Panel on the Policy Implications of Greenhouse Warming. Several of the ideas conveyed in their published report are space-based or depend on space systems for implementation. Among the geoengineering options using space that are discussed include the use of space power systems as an alternative to fossil fuels for generating electricity, the use of lunar He-3 to aid in the development of fusion energy, and the establishment of a lunar power system for solar energy conversion and electric power beaming back to earth. Other geoengineering options are discussed. They include the space-based modulation of hurricane forces and two space-based approaches in dealing with ozone layer depletion. The engineering challenges and policy implementation issues are discussed for these geongineering options.

  19. Global change - Geoengineering and space exploration

    NASA Technical Reports Server (NTRS)

    Jenkins, Lyle M.

    1992-01-01

    Geoengineering options and alternatives are proposed for mitigating the effects of global climate change and depletion of the ozone layer. Geoengineering options were discussed by the National Academy of Science Panel on the Policy Implications of Greenhouse Warming. Several of the ideas conveyed in their published report are space-based or depend on space systems for implementation. Among the geoengineering options using space that are discussed include the use of space power systems as an alternative to fossil fuels for generating electricity, the use of lunar He-3 to aid in the development of fusion energy, and the establishment of a lunar power system for solar energy conversion and electric power beaming back to earth. Other geoengineering options are discussed. They include the space-based modulation of hurricane forces and two space-based approaches in dealing with ozone layer depletion. The engineering challenges and policy implementation issues are discussed for these geongineering options.

  20. Using Immersion to teach Global Climate Change

    NASA Astrophysics Data System (ADS)

    Sumners, C. T.; Handron, K.; Reiff, P. H.; Law, C. C.

    2004-12-01

    Students are increasingly jaded to programs that preach, and museums are increasingly finding it difficult to attract students who can retrieve information quickly from the internet or cable TV. A new medium of immersive theater can now engulf the viewer in the subject, bringing a novel view to the exciting new data sets and images now available. By telling a compelling story with characters they can identify with, global climate change can be experienced and its effects brought home in a dramatic and effective way. We have developed several shows highlighting climate change (Powers of Time, Secrets of the Dead Sea), and are developing new shows (Earth's Wild Ride, Earth in the Balance) which can be used to take the visitor into the past or into the future. Clips from the shows and evidence of their effectiveness as an educational tool for Earth science will be shown. If possible, our new portable dome system will be set up in the poster hall for longer live demos of our shows.

  1. Psychological research and global climate change

    NASA Astrophysics Data System (ADS)

    Clayton, Susan; Devine-Wright, Patrick; Stern, Paul C.; Whitmarsh, Lorraine; Carrico, Amanda; Steg, Linda; Swim, Janet; Bonnes, Mirilia

    2015-07-01

    Human behaviour is integral not only to causing global climate change but also to responding and adapting to it. Here, we argue that psychological research should inform efforts to address climate change, to avoid misunderstandings about human behaviour and motivations that can lead to ineffective or misguided policies. We review three key research areas: describing human perceptions of climate change; understanding and changing individual and household behaviour that drives climate change; and examining the human impacts of climate change and adaptation responses. Although much has been learned in these areas, we suggest important directions for further research.

  2. Modeling Global Change in Local Places: Capturing Global Change and Local Impacts in a Global Land System Change Model

    NASA Astrophysics Data System (ADS)

    Verburg, P.; Eitelberg, D.; Ornetsmueller, C.; van Vliet, J.

    2015-12-01

    Global land use models are driven by demands for food and urban space. However, at the same time many transitions in land use and land cover are driven by societal changes and the demand for a wide range of landscape functions or ecosystem services, including the conservation of biodiversity, regulation of climate and floods, and recreation. Some of these demands lead to tele-connected land use change through the transport of good and services, others are place-based and shape the local realities of land system change. Most current land use change models focus on land cover changes alone and ignore the importance of changes in land management and landscape configuration that affect climate, biodiversity and the provisioning of ecosystem services. This talk will present an alternative approach to global land use modelling based on the simulation of changes in land systems in response to a wide set of ecosystem service demands. Simulations at global scale illustrate that accounting for demands for livestock products, carbon sequestration and biological conservation (following the Aichi targets) leads to different outcomes of land change models and allows the identification of synergies between carbon and biodiversity targets. An application in Laos indicates the complex transitions in land systems and landscapes that occur upon the transition from shifting cultivation to permanent agriculture and tree-crop plantations. We discuss the implications of such land system representations for Earth system modelling.

  3. Feedbacks and Acceleration of Global Change

    NASA Astrophysics Data System (ADS)

    Hay, William

    2014-05-01

    The burning of fossil fuels since the beginning of the Industrial revolution has increased the level of atmospheric CO2 by about 45 % over that of earlier times. The increasing greenhouse effect is augmented by a series of feedbacks; most have been positive, but a few are negative. The most important are 1) Slowing of the thermohaline circulation system; 2) Decreasing Atlantic to Pacific vapor transport; 3) Increasing Arctic river runoff; 4) Melting of Arctic sea ice; 5) Periodic replacement of the Arctic atmospheric high by a cyclonic low pressure system; 6) Increased exchange of waters between the Arctic and North Atlantic; 7) Lessening of the Northern Hemisphere ice-albedo feedback effect; 8) Addition of methane from melting permafrost; 9) Overall changes in the rate of ocean mixing; 10) Overall changes in vegetation cover of land; 11) Increase in the area covered by C4 vegetation; 12) Addition of nitrous oxide from agricultural practices; 13) Changes in insect populations and their effect on vegetation; 14) Wildfires; 15) Soot accumulation on snow and ice; 16) Accelerated melting of the Greenland Ice Sheet; 17) Changes in the East Antarctic Ice Sheet; 18) Closing of the ozone hole over Antarctica; 19) Decay of the West Antarctic Ice Sheet; 20) Expansion of Southern Ocean sea ice; 21) Slowing of the rate of organic matter sinking into the deep ocean; 22) Decrease in insolation reaching the surface of the Earth as a result of introduction of aerosols into the atmosphere; 23) Depletion of stratospheric ozone by nitrous oxide. The global and regional effects and relative importance of many of these feedbacks are uncertain, and they may change both in magnitude and sign with time. New and unexpected mechanisms are constantly being discovered. The uncertainties and complexity associated with climate system feedbacks are responsible for the acceleration of climate change beyond the rates predicted by numerical modeling. To add to the difficulties inherent in

  4. Global Connectedness and Global Migration: Insights from the International Changing Academic Profession Survey

    ERIC Educational Resources Information Center

    McGinn, Michelle K.; Ratkovic, Snežana; Wolhunter, Charl C.

    2013-01-01

    The Changing Academic Profession (CAP) international survey was designed in part to consider the effects of globalization on the work context and activities of academics in 19 countries or regions around the world. This paper draws from a subset of these data to explore the extent to which academics are globally connected in their research and…

  5. Decadal Changes in Global Ocean Chlorophyll

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Conkright, Margarita E.; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    The global ocean chlorophyll archive produced by the Coastal Zone Color Scanner (CZCS) was revised using compatible algorithms with the Sea-viewing Wide Field-of-view Sensor (SeaWIFS), and both were blended with in situ data. This methodology permitted a quantitative comparison of decadal changes in global ocean chlorophyll from the CZCS (1979-1986) and SeaWiFS (Sep. 1997-Dec. 2000) records. Global seasonal means of ocean chlorophyll decreased over the two observational segments, by 8% in winter to 16% in autumn. Chlorophyll in the high latitudes was responsible for most of the decadal change. Conversely, chlorophyll concentrations in the low latitudes increased. The differences and similarities of the two data records provide evidence of how the Earth's climate may be changing and how ocean biota respond. Furthermore, the results have implications for the ocean carbon cycle.

  6. Effects of Plant Traits on Ecosystem and Regional Processes: a Conceptual Framework for Predicting the Consequences of Global Change

    PubMed Central

    CHAPIN, F. STUART

    2003-01-01

    Human activities are causing widespread changes in the species composition of natural and managed ecosystems, but the consequences of these changes are poorly understood. This paper presents a conceptual framework for predicting the ecosystem and regional consequences of changes in plant species composition. Changes in species composition have greatest ecological effects when they modify the ecological factors that directly control (and respond to) ecosystem processes. These interactive controls include: functional types of organisms present in the ecosystem; soil resources used by organisms to grow and reproduce; modulators such as microclimate that influence the activity of organisms; disturbance regime; and human activities. Plant traits related to size and growth rate are particularly important because they determine the productive capacity of vegetation and the rates of decomposition and nitrogen mineralization. Because the same plant traits affect most key processes in the cycling of carbon and nutrients, changes in plant traits tend to affect most biogeochemical cycling processes in parallel. Plant traits also have landscape and regional effects through their effects on water and energy exchange and disturbance regime. PMID:12588725

  7. Botanic gardens science for conservation and global change.

    PubMed

    Donaldson, John S

    2009-11-01

    The contributions of botanic gardens to conservation biology and global-change research need to be understood within the context of the traditional strengths of such gardens in herbarium collections, living collections and interactions with the public. Here, I propose that research in conservation planning, modelling species responses to climate change, conservation of threatened species and experimental tests of global change build on the core strengths of botanic gardens. However, there are limits to what can be achieved through traditional gardens-based programs, and some botanic gardens have adapted their research to include studies of threatening processes and to monitor and verify global-change impacts. There is an opportunity for botanic gardens to use their living collections more effectively in global-change research and for them to have a role in linking biodiversity conservation with benefits derived from ecosystem services.

  8. Global Change Research Program releases new strategic plan

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-05-01

    Global Change Research Program releases new strategic plan A new 10-year strategic plan released by the United States Global Change Research Program (USGCRP) on 27 April calls for the federal interagency program to focus on four key goals during 2012-2021 to coordinate federal research efforts related to global change. The goals include advancing scientific knowledge of the integrated natural and human components of the Earth system; providing the scientific basis to inform and enable timely decisions on adaptation and mitigation; building sustained assessment capacity that improves the nation's ability to understand, anticipate, and respond to global change impacts and vulnerabilities; and advancing communications and education to broaden understanding of global change and develop the scientific workforce of the future. The goals and related objectives “recognize that to respond effectively to global change will require a deep understanding of the integrated Earth system—an understanding that incorporates physical, chemical, biological and behavioral information,” the plan states. “It is no longer enough to study the isolated physical, chemical, and biological factors affecting global change,” said USGCRP executive director Tom Armstrong.

  9. Global change technology architecture trade study

    NASA Technical Reports Server (NTRS)

    Garrett, L. Bernard (Editor); Hypes, Warren D. (Editor); Wright, Robert L. (Editor)

    1991-01-01

    Described here is an architecture trade study conducted by the Langley Research Center to develop a representative mix of advanced space science instrumentation, spacecraft, and mission orbits to assist in the technology selection processes. The analyses concentrated on the highest priority classes of global change measurements which are the global climate changes. Issues addressed in the tradeoffs includes assessments of the economics of scale of large platforms with multiple instruments relative to smaller spacecraft; the influences of current and possible future launch vehicles on payload sizes, and on-orbit assembly decisions; and the respective roles of low-Earth versus geostationary Earth orbiting systems.

  10. Open access: changing global science publishing

    PubMed Central

    Gasparyan, Armen Yuri; Ayvazyan, Lilit; Kitas, George D.

    2013-01-01

    The article reflects on open access as a strategy of changing the quality of science communication globally. Successful examples of open-access journals are presented to highlight implications of archiving in open digital repositories for the quality and citability of research output. Advantages and downsides of gold, green, and hybrid models of open access operating in diverse scientific environments are described. It is assumed that open access is a global trend which influences the workflow in scholarly journals, changing their quality, credibility, and indexability. PMID:23986284

  11. Open access: changing global science publishing.

    PubMed

    Gasparyan, Armen Yuri; Ayvazyan, Lilit; Kitas, George D

    2013-08-01

    The article reflects on open access as a strategy of changing the quality of science communication globally. Successful examples of open-access journals are presented to highlight implications of archiving in open digital repositories for the quality and citability of research output. Advantages and downsides of gold, green, and hybrid models of open access operating in diverse scientific environments are described. It is assumed that open access is a global trend which influences the workflow in scholarly journals, changing their quality, credibility, and indexability.

  12. Global environmental changes: setting priorities for Latin American coastal habitats.

    PubMed

    Turra, Alexander; Cróquer, Aldo; Carranza, Alvar; Mansilla, Andrés; Areces, Arsenio J; Werlinger, Camilo; Martínez-Bayón, Carlos; Nassar, Cristina Aparecida Gomes; Plastino, Estela; Schwindt, Evangelina; Scarabino, Fabrizio; Chow, Fungyi; Figueroa, Felix Lopes; Berchez, Flávio; Hall-Spencer, Jason M; Soto, Luis A; Buckeridge, Marcos Silveira; Copertino, Margareth S; de Széchy, Maria Tereza Menezes; Ghilardi-Lopes, Natalia Pirani; Horta, Paulo; Coutinho, Ricardo; Fraschetti, Simonetta; Leão, Zelinda Margarida de Andrade Nery

    2013-07-01

    As the effects of the Global Climate Changes on the costal regions of Central and South Americas advance, there is proportionally little research being made to understand such impacts. This commentary puts forward a series of propositions of strategies to improve performance of Central and South American science and policy making in order to cope with the future impacts of the Global Climate Changes in their coastal habitats. © 2013 Blackwell Publishing Ltd.

  13. Natural resources management in an era of global change

    SciTech Connect

    Sommers, W.T.

    1993-12-31

    The international science community has issued a series of predictions of global atmospheric change that, if they verify, will have heretofore unexperienced impact on our forests. Convincing the public and their natural resource managers to respond to these effects must be high on the agenda of the science community. Mitigative and adapative responses we examine and propose, however, should stem from an understanding of the evolving role of the natural resource manager and how that role might be affected by global change.

  14. The effects of global climate change on the cycling and processes of persistent organic pollutants (POPs) in the North Sea

    NASA Astrophysics Data System (ADS)

    O'Driscoll, K.; Mayer, B.; Su, J.; Mathis, M.

    2014-05-01

    The fate and cycling of two selected legacy persistent organic pollutants (POPs), PCB 153 and γ-HCH, in the North Sea in the 21st century have been modelled with combined hydrodynamic and fate and transport ocean models (HAMSOM and FANTOM, respectively). To investigate the impact of climate variability on POPs in the North Sea in the 21st century, future scenario model runs for three 10-year periods to the year 2100 using plausible levels of both in situ concentrations and atmospheric, river and open boundary inputs are performed. This slice mode under a moderate scenario (A1B) is sufficient to provide a basis for further analysis. For the HAMSOM and atmospheric forcing, results of the IPCC A1B (SRES) 21st century scenario are utilized, where surface forcing is provided by the REMO downscaling of the ECHAM5 global atmospheric model, and open boundary conditions are provided by the MPIOM global ocean model. Dry gas deposition and volatilization of γ-HCH increase in the future relative to the present by up to 20% (in the spring and summer months for deposition and in summer for volatilization). In the water column, total mass of γ-HCH and PCB 153 remain fairly steady in all three runs. In sediment, γ-HCH increases in the future runs, relative to the present, while PCB 153 in sediment decreases exponentially in all three runs, but even faster in the future, due to the increased number of storms, increased duration of gale wind conditions and increased water and air temperatures, all of which are the result of climate change. Annual net sinks exceed sources at the ends of all periods. Overall, the model results indicate that the climate change scenarios considered here generally have a negligible influence on the simulated fate and transport of the two POPs in the North Sea, although the increased number and magnitude of storms in the 21st century will result in POP resuspension and ensuing revolatilization events. Trends in emissions from primary and secondary

  15. Modelling effects of geoengineering options in response to climate change and global warming: implications for coral reefs.

    PubMed

    Crabbe, M J C

    2009-12-01

    Climate change will have serious effects on the planet and on its ecosystems. Currently, mitigation efforts are proving ineffectual in reducing anthropogenic CO2 emissions. Coral reefs are the most sensitive ecosystems on the planet to climate change, and here we review modelling a number of geoengineering options, and their potential influence on coral reefs. There are two categories of geoengineering, shortwave solar radiation management and longwave carbon dioxide removal. The first set of techniques only reduce some, but not all, effects of climate change, while possibly creating other problems. They also do not affect CO2 levels and therefore fail to address the wider effects of rising CO2, including ocean acidification, important for coral reefs. Solar radiation is important to coral growth and survival, and solar radiation management is not in general appropriate for this ecosystem. Longwave carbon dioxide removal techniques address the root cause of climate change, rising CO2 concentrations, they have relatively low uncertainties and risks. They are worthy of further research and potential implementation, particularly carbon capture and storage, biochar, and afforestation methods, alongside increased mitigation of atmospheric CO2 concentrations.

  16. Model evaluation of the radiative and temperature effects of the ozone content changes in the global atmosphere of 1980's

    NASA Technical Reports Server (NTRS)

    Karol, Igor L.; Frolkis, Victor A.

    1994-01-01

    Radiative and temperature effects of the observed ozone and greenhouse gas atmospheric content changes in 1980 - 1990 are evaluated using the two-dimensional energy balance radiative-convective model of the zonally and annually averaged troposphere and stratosphere. Calculated radiative flux changes for standard conditions quantitatively agree with their estimates in WMO/UNEP 1991 review. Model estimates indicate rather small influence of ozone depletion in the lower stratosphere on the greenhouse tropospheric warming rate, being more significant in the non-tropical Southern Hemisphere. The calculated cooling of the lower stratosphere is close to the observed temperature trends there in the last decade.

  17. Global Carbon Cycle and Climate Change

    NASA Astrophysics Data System (ADS)

    Wofsy, Steven C.

    2004-11-01

    Kirill Kondratyev and his colleagues present an unusual look at global change issues, with particular emphasis on quantitative models that can capture diverse aspects of the complete Earth system-vegetation, atmosphere, oceans, and human beings. The focus is on the global carbon cycle as a prime indicator of global environmental stresses. It includes some remarkably sharp, and insightful critical analysis of the Kyoto Protocol and IPCC activity, and provides citations to a large sampling of Russian-language papers mostly unknown elsewhere. The critique of current policy trends is, in many respects, the most interesting part of the book. The authors are skeptical of claims about attribution of recent climate trends to human intervention, but devastating in their demolition of the ``skeptics'' views that nothing is seriously wrong in the global environmental system. They convincingly bring to bear the most telling observations and facts to make these arguments compelling and clarifying.

  18. Gardening and urban landscaping: significant players in global change.

    PubMed

    Niinemets, Ulo; Peñuelas, Josep

    2008-02-01

    Global warming leads to shifts in vegetation types in given temperate environments. The fastest species movement is due to the globalized supply and use of exotic plants in gardening and urban landscaping. These standard practices circumvent dispersal limitations and biological and environmental stresses; they have three major global impacts: (i) the enhancement of biological invasions, (ii) the elevation of volatile organic compound emissions and the resulting increase in photochemical smog formation, and (iii) the enhancement of CO(2) fixation and water use by gardened plants. These global effects, none of which are currently considered in global-change scenarios, are increasingly amplified with further warming and urbanization. We urge for quantitative assessment of the global effects of gardening and urban landscaping.

  19. Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity

    NASA Astrophysics Data System (ADS)

    Defries, R. S.; Field, C. B.; Fung, I.; Collatz, G. J.; Bounoua, L.

    1999-09-01

    This study uses a global terrestrial carbon cycle model (the Carnegie-Ames-Stanford Approach (CASA) model), a satellite-derived map of existing vegetation, and global maps of natural vegetation to estimate the effects of human-induced land cover change on carbon emissions to the atmosphere and net primary production. We derived two maps approximating global land cover that would exist for current climate in the absence of human disturbance of the landscape, using a procedure that minimizes disagreements between maps of existing and natural vegetation that represent artifacts in the data. Similarly, we simulated monthly fields of the Normalized Difference Vegetation Index, required as input to CASA, for the undisturbed land cover case. Model results estimate total carbon losses from human-induced land cover changes of 182 and 199 Pg for the two simulations, compared with an estimate of 124 Pg for total flux between 1850 and 1990 [Houghton, 1999], suggesting that land cover change prior to 1850 accounted for approximately one-third of total carbon emissions from land use change. Estimates of global carbon loss from the two independent methods, the modeling approach used in this paper and the accounting approach of Houghton [1999], are comparable taking into account carbon losses from agricultural expansion prior to 1850 estimated at 48-57 Pg. However, estimates of regional carbon losses vary considerably, notably in temperate midlatitudes where our estimates indicate higher cumulative carbon loss. Overall, land cover changes reduced global annual net primary productivity (NPP) by approximately 5%, with large regional variations. High-input agriculture in North America and Europe display higher annual NPP than the natural vegetation that would exist in the absence of cropland. However, NPP has been depleted in localized areas in South Asia and Africa by up to 90%. These results provide initial crude estimates, limited by the spatial resolution of the data sets used as

  20. Aspen Global Change Institute: 25 Years of Interdisciplinary Global Change Science

    SciTech Connect

    Meehl, Gerald A.; Moss, Richard

    2016-11-01

    Global environmental changes such as climate change result from the interaction of human and natural systems. Research to understand these changes and options for addressing them requires the physical, environmental, and social sciences, as well as engineering and other applied fields. In this essay, we describe how the Aspen Global Change Institute (AGCI) has provided leadership in global change science over the past 25 years—in particular how it has contributed to the integration of the natural and social sciences needed to research the drivers of change, Earth system response, natural and human system impacts, and options for risk management. We illustrate the ways the history of AGCI has been intertwined with the evolution of global change science as it has become an increasingly interdisciplinary endeavor.

  1. Forecasting agriculturally driven global environmental change.

    PubMed

    Tilman, D; Fargione, J; Wolff, B; D'Antonio, C; Dobson, A; Howarth, R; Schindler, D; Schlesinger, W H; Simberloff, D; Swackhamer, D

    2001-04-13

    During the next 50 years, which is likely to be the final period of rapid agricultural expansion, demand for food by a wealthier and 50% larger global population will be a major driver of global environmental change. Should past dependences of the global environmental impacts of agriculture on human population and consumption continue, 10(9) hectares of natural ecosystems would be converted to agriculture by 2050. This would be accompanied by 2.4- to 2.7-fold increases in nitrogen- and phosphorus-driven eutrophication of terrestrial, freshwater, and near-shore marine ecosystems, and comparable increases in pesticide use. This eutrophication and habitat destruction would cause unprecedented ecosystem simplification, loss of ecosystem services, and species extinctions. Significant scientific advances and regulatory, technological, and policy changes are needed to control the environmental impacts of agricultural expansion.

  2. Challenges of Global Change for Lakes

    NASA Astrophysics Data System (ADS)

    Seekell, D.

    2016-12-01

    Lakes comprise a tiny fraction of Earth's surface, but contribute significantly to human life and wellbeing. Many lakes are disappearing due to climate change and water diversions, and there are widespread disruptions to ecosystem processes due to human influences. For example, pollution by nutrients and toxic chemicals causes toxicity to humans, livestock, fish, and wildlife. Lake desiccation reduces economic opportunity and food security, displacing entire communities. Understanding these changes at the global scale, and their implications for human societies, are a key challenges for aquatic scientists. In this talk, I will use results from my research to highlight some of the key uncertainties related to global change and lakes, as well as recent developments by aquatic scientists aimed at predicting, mitigating, and coping with these changes.

  3. Global change: Geographical approaches (A Review)*

    PubMed Central

    Kotlyakov, V. M.; Mather, J. R.; Sdasyuk, G. V.; White, G. F.

    1988-01-01

    The International Geosphere Biosphere Program sponsored by the International Council of Scientific Unions is directing attention to geophysical and biological change as influenced by human modifications in global energy and mass exchanges. Geographers in the Soviet Union and the United States have joined in critical appraisal of their experience in studying environmental change. This initial report is on some promising approaches, such as the reconstruction of earlier landscape processes, modeling of the dynamics of present-day landscapes, analysis of causes and consequences of anthropogenic changes in specified regions, appraisal of social response to change, and enhanced geographic information systems supported by detailed site studies. PMID:16593971

  4. Surfing Global Change: Negotiating Sustainable Solutions

    ERIC Educational Resources Information Center

    Ahamer, Gilbert

    2006-01-01

    SURFING GLOBAL CHANGE (SGC) serves as a procedural shell for attaining sustainable solutions for any interdisciplinary issue and is intended for use in advanced university courses. The participants' activities evolve through five levels from individual argumentation to molding one's own views for the "common good." The paradigm of…

  5. Global change: state of the science.

    PubMed

    Wuebbles, D J; Jain, A; Edmonds, J; Harvey, D; Hayhoe, K

    1999-01-01

    Only recently, within a few decades, have we realized that humanity significantly influences the global environment. In the early 1980s, atmospheric measurements confirmed basic concepts developed a decade earlier. These basic concepts showed that human activities were affecting the ozone layer. Later measurements and theoretical analyses have clearly connected observed changes in ozone to human-related increases of chlorine and bromine in the stratosphere. As a result of prompt international policy agreements, the combined abundances of ozone-depleting compounds peaked in 1994 and ozone is already beginning a slow path to recovery. A much more difficult problem confronting humanity is the impact of increasing levels of carbon dioxide and other greenhouse gases on global climate. The processes that connect greenhouse gas emissions to climate are very complex. This complexity has limited our ability to make a definitive projection of future climate change. Nevertheless, the range of projected climate change shows that global warming has the potential to severely impact human welfare and our planet as a whole. This paper evaluates the state of the scientific understanding of the global change issues, their potential impacts, and the relationships of scientific understanding to policy considerations.

  6. Global Change: A View from Space

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2003-01-01

    In this talk, I will discuss the fundamental science and society problems associated with global change, with an emphasis on the view from space. I will provide an overview of the vision and activities of the World Climate Research Program in the next two decades. Then I will show regional climate changes and environmental problems in the East Asian region, such as biomass burning, urban pollutions, yellow sand, and their possible interaction with the Asian monsoon, particularly over Southern China.

  7. Global Change: A View from Space

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2003-01-01

    In this talk, I will discuss the fundamental science and society problems associated with global change, with an emphasis on the view from space. I will provide an overview of the vision and activities of the World Climate Research Program in the next two decades. Then I will show regional climate changes and environmental problems in the East Asian region, such as biomass burning, urban pollutions, yellow sand, and their possible interaction with the Asian monsoon, particularly over Southern China.

  8. Global change and biological soil crusts: Effects of ultraviolet augmentation under altered precipitation regimes and nitrogen additions

    USGS Publications Warehouse

    Belnap, J.; Phillips, S.L.; Flint, S.; Money, J.; Caldwell, M.

    2008-01-01

    Biological soil crusts (BSCs), a consortium of cyanobacteria, lichens, and mosses, are essential in most dryland ecosystems. As these organisms are relatively immobile and occur on the soil surface, they are exposed to high levels of ultraviolet (UV) radiation and atmospheric nitrogen (N) deposition, rising temperatures, and alterations in precipitation patterns. In this study, we applied treatments to three types of BSCs (early, medium, and late successional) over three time periods (spring, summer, and spring-fall). In the first year, we augmented UV and altered precipitation patterns, and in the second year, we augmented UV and N. In the first year, with average air temperatures, we saw little response to our treatments except quantum yield, which was reduced in dark BSCs during one of three sample times and in Collema BSCs two of three sample times. There was more response to UV augmentation the second year when air temperatures were above average. Declines were seen in 21% of the measured variables, including quantum yield, chlorophyll a, UV-protective pigments, nitrogenase activity, and extracellular polysaccharides. N additions had some negative effects on light and dark BSCs, including the reduction of quantum yield, ??-carotene, nitrogenase activity, scytonemin, and xanthophylls. N addition had no effects on the Collema BSCs. When N was added to samples that had received augmented UV, there were only limited effects relative to samples that received UV without N. These results indicate that the negative effect of UV and altered precipitation on BSCs will be heightened as global temperatures increase, and that as their ability to produce UV-protective pigments is compromised, physiological functioning will be impaired. N deposition will only ameliorate UV impacts in a limited number of cases. Overall, increases in UV will likely lead to lowered productivity and increased mortality in BSCs through time, which, in turn, will reduce their ability to contribute

  9. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: From Earth history to global change

    NASA Astrophysics Data System (ADS)

    PöRtner, Hans O.; Langenbuch, Martina; Michaelidis, Basile

    2005-09-01

    Currently rising CO2 levels in atmosphere and marine surface waters as well as projected scenarios of CO2 disposal in the ocean emphasize that CO2 sensitivities need to be investigated in aquatic organisms, especially in animals which may well be the most sensitive. Moreover, to understand causes and effects, we need to identify the physiological processes that are sensitive to CO2 beyond the current emphasis on calcification. Few animals may be acutely sensitive to moderate CO2 increases, but subtle changes due to long-term exposure may already have started to be felt in a wide range of species. CO2 effects identified in invertebrate fauna from habitats characterized by oscillating CO2 levels include depressed metabolic rates and reduced ion exchange and protein synthesis rates. These result in shifts in metabolic equilibria and slowed growth. Long-term moderate hypercapnia has been observed to produce enhanced mortality with as yet unidentified cause and effect relationships. During future climate change, simultaneous shifts in temperature, CO2, and hypoxia levels will enhance sensitivity to environmental extremes relative to a change in just one of these variables. Some interactions between these variables result from joint effects on the same physiological mechanisms. Such interactions need to be considered in terms of future increases in atmospheric CO2 and its uptake by the ocean as well as in terms of currently proposed mitigation scenarios. These include purposeful injection of CO2 in the deep ocean or Fe fertilization of the surface ocean, which reduces subsurface O2 levels. The resulting ecosystem shifts could develop progressively, rather than beyond specific thresholds, such that effects parallel CO2 oscillations. It is unsure to what extent and how quickly species may adapt to permanently elevated CO2 levels by microevolutionary compensatory processes.

  10. Impacts of climate change on the global forest sector

    USGS Publications Warehouse

    Perez-Garcia, J.; Joyce, L.A.; McGuire, A.D.; Xiao, X.

    2002-01-01

    that strongly influence the effects of climate change on the global forest sector.

  11. Mechanistic Toxicology in the Face of Global Climate Change

    EPA Science Inventory

    To incorporate effects of global climate change (GCC) into regulatory assessments of chemical risk, damage and restoration needs, an understanding is needed of GCC effects on mechanisms of chemical toxicity and the implications of those effects when placed in context with GCC eff...

  12. Mechanistic Toxicology in the Face of Global Climate Change

    EPA Science Inventory

    To incorporate effects of global climate change (GCC) into regulatory assessments of chemical risk, damage and restoration needs, an understanding is needed of GCC effects on mechanisms of chemical toxicity and the implications of those effects when placed in context with GCC eff...

  13. WATERSHED BOUNDARY CONDITIONS FOR GLOBAL CHANGE IMPACT ANALYSIS

    EPA Science Inventory

    The US Global Change Research Program (USGCRP) studies (among other issues) the impact of global change on water quality. This field study evaluates the impact of global changes (land-use change and climate change) on source water quality. Changes in source water quality change...

  14. WATERSHED BOUNDARY CONDITIONS FOR GLOBAL CHANGE IMPACT ANALYSIS

    EPA Science Inventory

    The US Global Change Research Program (USGCRP) studies (among other issues) the impact of global change on water quality. This field study evaluates the impact of global changes (land-use change and climate change) on source water quality. Changes in source water quality change...

  15. Satellite Contributions to Global Change Studies

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2009-01-01

    By providing a global view with a level playing field (no region missed because of unfavorable surface conditions or political boundaries), satellites have made major contributions to improved monitoring and understanding of our constantly changing planet. The global view has allowed surprising realizations like the relative sparsity of lightning strikes over oceans and the large-scale undulations on the massive Antarctic ice sheet. It has allowed the tracking of all sorts of phenomena, including aerosols, both natural and anthropogenic, as they move with the atmospheric circulation and impact weather and human health. But probably nothing that the global view allows is more important in the long term than its provision. of unbiased data sets to address the issue of global change, considered by many to be among the most important issues facing humankind today. With satellites we can monitor atmospheric temperatures at all latitudes and longitudes, and obtain a global average that lessens the likelihood of becoming endlessly mired in the confusions brought about by the certainty of regional differences. With satellites we can monitor greenhouse gases such as CO2 not just above individual research stations but around the globe. With satellites we can monitor the polar sea ice covers, as we have done since the late 1970s, determining and quantifying the significant reduction in Arctic sea ice and the slight growth in Antarctic sea ice over that period, With satellites we can map the full extent and changes in the Antarctic stratospheric ozone depletions that were first identified from using a single ground station; and through satellite data we have witnessed from afar land surface changes brought about by humans both intentionally, as with wide-scale deforestation, and unintentionally, as with the decay of the Aral Sea. The satellite data are far from sufficient for all that we need in order to understand the global system and forecast its changes, as we also need

  16. Atmospheric, radiative, and hydrologic effects of future land use and land cover changes: A global and multimodel climate picture

    NASA Astrophysics Data System (ADS)

    Quesada, Benjamin; Arneth, Almut; de Noblet-Ducoudré, Nathalie

    2017-05-01

    Land use and land cover changes (LULCC) modulate land surface energy, heat, moisture, and momentum fluxes. Using simulations performed with and without LULCC for five earth system models, averaged over the 2071-2100 period, we quantify the biophysical effects in response to a future realistic LULCC scenario (Representative Concentration Pathway RCP8.5) on 15 climate variables (i.e., atmospheric, radiative, wind, hydrologic variables, and heat fluxes). We find that climate models are able to simulate some robust and strong climate perturbations in response to LULCC. In tropical regions with substantial LULCC, significantly higher skin temperatures, less precipitation and soil moisture, less evaporation and clouds, more incoming radiation and stronger winds, more anticyclonic conditions and subsidence, are simulated in response to future LULCC. In midlatitude and high latitude, LULCC result in autumn cooling and higher tropospheric pressures, while East Asia is drier, warmer, with higher sensible heat flux and lower evaporation. The tropical wind strengthening and weakening of the hydrological cycle are comparable in magnitude to their future regional changes induced by greenhouse gases under RCP8.5, which make LULCC an indispensable forcing to take into account in future climatic assessments. Finally, our study reveals significant indirect atmospheric processes triggered by LULCC, implying substantial changes in incoming radiation, which dominate climatic responses over the direct effects, particularly in boreal regions.

  17. Global change and biodiversity loss: Some impediments to response

    NASA Technical Reports Server (NTRS)

    Borza, Karen; Jamieson, Dale

    1991-01-01

    Discussed here are the effects of anthropogenic global climate change on biodiversity. The focus is on human responses to the problem. Greenhouse warming-induced climate change may shift agricultural growing belts, reduce forests of the Northern Hemisphere and drive many species to extinction, among other effects. If these changes occur together with the mass extinctions already occurring, we may suffer a profound loss of biological diversity.

  18. Trends in global wildfire potential in a changing climate

    Treesearch

    Y. Liu; J.A. Stanturf; S.L. Goodrick

    2009-01-01

    The trend in global wildfire potential under the climate change due to the greenhouse effect is investigated. Fire potential is measured by the Keetch-Byram Drought Index (KBDI), which is calculated using the observed maximum temperature and precipitation and projected changes at the end of this century (2070–2100) by general circulation models (GCMs) for present and...

  19. Overview of global climate change and carbon sequestration

    Treesearch

    Kurt Johnsen

    2004-01-01

    The potential influence of global climate change on southern forests is uncertain. Outputs of climate change models differ considerably in their projections for precipitation and other variables that affect forests. Forest responses, particularly effects on competition among species, are difficult to assess. Even the responses of relatively simple ecosystems, such as...

  20. Global change in forests: responses of species, communities, and biomes

    Treesearch

    Andrew J. Hansen; Ronald P. Neilson; Virginia H. Dale; Curtis H. Flather; Louis R. Iverson; David J. Currie; Sarah Shafer; Rosamonde Cook; Partick J. Bartlein

    2001-01-01

    This article serves as a primer on forest biodiversity as a key component of global change. We first synthesize current knowledge of interactions among climate, land use, and biodiversity. We then summarize the results of new analyses on the potential effects of human-induced climate change on forest biodiversity. Our models project how possible future climates may...

  1. Aspen Global Change Institute Summer Science Sessions

    SciTech Connect

    Katzenberger, John; Kaye, Jack A

    2006-10-01

    The Aspen Global Change Institute (AGCI) successfully organized and convened six interdisciplinary meetings over the course of award NNG04GA21G. The topics of the meetings were consistent with a range of issues, goals and objectives as described within the NASA Earth Science Enterprise Strategic Plan and more broadly by the US Global Change Research Program/Our Changing Planet, the more recent Climate Change Program Strategic Plan and the NSF Pathways report. The meetings were chaired by two or more leaders from within the disciplinary focus of each session. 222 scholars for a total of 1097 participants-days were convened under the auspices of this award. The overall goal of each AGCI session is to further the understanding of Earth system science and global environmental change through interdisciplinary dialog. The format and structure of the meetings allows for presentation by each participant, in-depth discussion by the whole group, and smaller working group and synthesis activities. The size of the group is important in terms of the group dynamics and interaction, and the ability for each participant's work to be adequately presented and discussed within the duration of the meeting, while still allowing time for synthesis

  2. Global Change: Logs of Straw; Dendrochronology

    SciTech Connect

    1994-09-01

    The U.S. Geological Survey has produced a teacher`s packet targeted for grades 4 through 6 entitled Global Change. Each Global Change packet contains the following inserts: (1) A color poster depicting the earth as a fragile planet on one side, and examples of visible global change on the reverse. (2) Three activities addressing {open_quotes}Time and Cycles,{close_quotes} {open_quotes}Change and Cycles,{close_quotes} and {open_quotes}Earth as Home{close_quotes} (3) A teacher guide (4) An evaluation questionnaire. Trees are some of nature`s most accurate time-keepers. Their growth layers, appearing as rings in the cross section of the tree trunk, record evidence of floods, droughts, insect attacks, lightning strikes, and even earthquakes. Tree growth depends on local conditions, which include the availability of water. Because the water cycle, or hydrologic cycle, is uneven-that is, the amount of water in the environment varies from year to year-scientist use tree-ring patterns to reconstruct regional patterns of drought and climatic change. This field of study, known as dendrochronology, was begun in the early 1900s by an American astronomer named Andrew Ellicott Douglass.

  3. Thermohaline circulations and global climate change

    SciTech Connect

    Hanson, H.P.

    1992-01-01

    This report discusses research activities conducted during the period 15 January 1992--14 December 1992. Thermohaline Circulations and Global Climate Change is concerned with investigating the hypothesis that changes in surface thermal and hydrological forcing of the North Atlantic, changes that might be expected to accompany C0[sub 2]-induced global warming, could result in ocean-atmosphere interactions' exerting a positive feedback on the climate system. Because the North Atlantic is the source of much of the global ocean's reservoir of deep water, and because this deep water could sequester large amounts of anthropogenically produced C0[sub 2], changes in the rate of deep-water production are important to future climates. Since deep-water Production is controlled, in part, by the annual cycle of the atmospheric forcing of the North Atlantic, and since this forcing depends strongly on both hydrological and thermal processes as well as the windstress, there is the potential for feedback between the relatively short-term response of the atmosphere to changing radiative forcing and the longer-term processes in the oceans. Work over the past 11 months has proceeded according to the continuation discussion of last January and several new results have arisen.

  4. Thermohaline circulations and global climate change

    SciTech Connect

    Hanson, H.P.

    1992-01-01

    Thermohaline Circulations and Global Climate Change'' is concerned with investigating the hypothesis that changes in surface thermal and hydrological forcing of the North Atlantic, changes that might be expected to accompany CO{sub 2}-induced global warming, could result in ocean-atmosphere interactions' exerting a positive feedback on the climate system. Because the North Atlantic is the source of much of the global ocean's reservoir of deep water, and because this deep water could sequester large amounts of anthropogenically produced Co{sub 2}, changes in the rate of deep-water production are important to future climates. Since deep-water production is controlled, in part, by the annual cycle of the atmospheric forcing of the North Atlantic, and since this forcing depends strongly on both hydrological and thermal processes as well as the windstress, there is the potential for feedback between the relatively short-term response of the atmosphere to changing radiative forcing and the longer-term processes in the oceans. Work over the past 12 months has proceeded in several directions.

  5. The changing global context of public health.

    PubMed

    McMichael, A J; Beaglehole, R

    2000-08-05

    Future health prospects depend increasingly on globalisation processes and on the impact of global environmental change. Economic globalisation--entailng deregulated trade and investment--is a mixed blessing for health. Economic growth and the dissemination of technologies have widely enhanced life expectancy. However, aspects of globalisation are jeopardising health by eroding social and environmental conditions, exacerbating the rich-poor gap, and disseminating consumerism. Global environmental changes reflect the growth of populations and the intensity of economic activity. These changes include altered composition of the atmosphere, land degradation, depletion of terrestrial aquifers and ocean fisheries, and loss of biodiversity. This weakening of life-supporting systems poses health risks. Contemporary public health must therefore encompass the interrelated tasks of reducing social and health inequalities and achieving health-sustaining environments.

  6. Avian migration phenology and global climate change.

    PubMed

    Cotton, Peter A

    2003-10-14

    There is mounting evidence that global climate change has extended growing seasons, changed distribution patterns, and altered the phenology of flowering, breeding, and migration. For migratory birds, the timing of arrival on breeding territories and over-wintering grounds is a key determinant of reproductive success, survivorship, and fitness. But we know little of the factors controlling earlier passage in long-distance migrants. Over the past 30 years in Oxfordshire, U.K., the average arrival and departure dates of 20 migrant bird species have both advanced by 8 days; consequently, the overall residence time in Oxfordshire has remained unchanged. The timing of arrival has advanced in relation to increasing winter temperatures in sub-Saharan Africa, whereas the timing of departure has advanced after elevated summer temperatures in Oxfordshire. This finding demonstrates that migratory phenology is quite likely to be affected by global climate change and links events in tropical winter quarters with those in temperate breeding areas.

  7. Effects of global change factors on fatty acids and mycosporine-like amino acid production in Chroothece richteriana (Rhodophyta).

    PubMed

    Gonzalez-Silvera, Daniel; Pérez, Sandra; Korbee, Nathalie; Figueroa, Félix L; Asencio, Antonia D; Aboal, Marina; López-Jiménez, José Ángel

    2017-07-03

    Under natural conditions, Chroothece richteriana synthesizes a fairly high proportion of fatty acids. However, nothing is known about how environmental changes affect their production, or about the production of protective compounds, when colonies develop under full sunshine with high levels of UV radiation. In this study, wild colonies of C. richteriana were subjected to increasing temperature, conductivity, ammonium concentrations and photosynthetically active radiation (PAR), and UV radiations to assess the potential changes in lipid composition and mycosporine-like amino acids (MAAs) concentration. The PERMANOVA analysis detected no differences for the whole fatty acid profile among treatments, but the percentages of α-linolenic acid and total polyunsaturated fatty acids increased at the lowest assayed temperature. The percentages of linoleic and α-linolenic acids increased with lowering temperature. γ-linolenic and arachidonic acids decreased with increasing conductivity, and a high arachidonic acid concentration was related with increased conductivity. The samples exposed to UVB radiation showed higher percentages of eicosapentaenoic acid and total monounsaturated fatty acids, at the expense of saturated fatty acids. MAAs accumulation increased but not significantly at the lowest conductivity, and also with the highest PAR and UVR exposure, while ammonium and temperature had no effect. The observed changes are probably related with adaptations of both membrane fluidity to low temperature, and metabolism to protect cells against UV radiation damage. The results suggest the potential to change lipid composition and MAAs concentration in response to environmental stressful conditions due to climate change, and highlight the interest of the species in future research about the biotechnological production of both compound types. © 2017 Phycological Society of America.

  8. Towards the global monitoring of biodiversity change.

    PubMed

    Pereira, Henrique M; David Cooper, H

    2006-03-01

    Governments have set the ambitious target of reducing biodiversity loss by the year 2010. The scientific community now faces the challenge of assessing the progress made towards this target and beyond. Here, we review current monitoring efforts and propose a global biodiversity monitoring network to complement and enhance these efforts. The network would develop a global sampling programme for indicator taxa (we suggest birds and vascular plants) and would integrate regional sampling programmes for taxa that are locally relevant to the monitoring of biodiversity change. The network would also promote the development of comparable maps of global land cover at regular time intervals. The extent and condition of specific habitat types, such as wetlands and coral reefs, would be monitored based on regional programmes. The data would then be integrated with other environmental and socioeconomic indicators to design responses to reduce biodiversity loss.

  9. [Response of bryophytes to global change and its bioindicatortation].

    PubMed

    Wu, Yuhuan; Gao, Chien; Cheng, Guodong; Yu, Xinghua; Cao, Tong

    2002-07-01

    Bryophytes are sensitive to atmosphere components concentration and global climate change resulted from relatively simple structures. Bryophyte is an ideal kind of biological indicator of global changes, environmental pollution, nutrient condition, forest integrity and ecosystem health. In order to use bryophytes as indicators to environmental and global changes, further studies on response and adaptation of bryophytes to the global changes are needed.

  10. Sustainable biochar to mitigate global climate change

    SciTech Connect

    Woolf, Dominic; Amonette, James E.; Street-Perrott, F. A.; Lehmann, Johannes C.; Joseph, Stephen

    2010-08-10

    Production of biochar (the carbon-rich solid formed by pyrolysis of biomass), in combination with its storage in soils, has been suggested as a means to abate anthropogenic climate change, while simultaneously increasing crop yields. The climate mitigation potential stems primarily from the highly recalcitrant nature of biochar, which slows the rate at which photosynthetically fixed carbon is returned to the atmosphere. Significant uncertainties exist, however, regarding the impact, capacity, and sustainability of biochar for carbon capture and storage when scaled to the global level. Previous estimates, based on simple assumptions, vary widely. Here we show that, subject to strict environmental and modest economic constraints on biomass procurement and biochar production methods, annual net emissions of CO2, CH4 and N2O could be reduced by 1.1 - 1.9 Pg CO2-C equivalent (CO2-Ce)/yr (7 - 13% of current anthropogenic CO2-Ce emissions; 1Pg = 1 Gt). Over one century, cumulative net emissions of these gases could be reduced by 72-140 Pg CO2-Ce. The lower end of this range uses currently untapped residues and wastes; the upper end requires substantial alteration to global biomass management, but would not endanger food security, habitat or soil conservation. Half the avoided emissions are due to the net C sequestered as biochar, one-quarter to replacement of fossil-fuel energy by pyrolysis energy, and one-quarter to avoided emissions of CH4 and N2O. The total mitigation potential is 18-30% greater than if the same biomass were combusted to produce energy. Despite limited data for the decomposition rate of biochar in soils and the effects of biochar additions on soil greenhouse-gas fluxes, sensitivity within realistic ranges of these parameters is small, resulting in an uncertainty of ±8% (±1 s.d.) in our estimates. Achieving these mitigation results requires, however, that biochar production be performed using only low-emissions technologies and feedstocks obtained

  11. Is This Global Warming? Communicating the Intangibles of Climate Change

    NASA Astrophysics Data System (ADS)

    Warner, L.; Henson, R.

    2004-05-01

    Unlike weather, which is immediate, tangible, and relevant on a daily basis, climate change is long-term, slow to evolve, and often difficult to relate to the public's daily concerns. By explaining global-change research to wide and diverse audiences through a variety of vehicles, including publications, exhibits, Web sites, and television B-roll, UCAR has gained experience and perspective on the challenges involved. This talk will explore some of the lessons learned and some of the key difficulties that face global-change communicators, including: --The lack of definitive findings on regional effects of global change -- The long time frame in which global change plays out, versus the short attention span of media, the public, and policy makers --The use of weather events as news pegs (they pique interest, but they may not be good exemplars of global change and are difficult to relate directly to changes in greenhouse-gas emissions) --The perils of the traditional journalistic technique of point-counterpoint in discussing climate change --The presence of strong personal/political convictions among various interest groups and how these affect the message(s) conveyed

  12. Environmental health implications of global climate change.

    PubMed

    Watson, Robert T; Patz, Jonathan; Gubler, Duane J; Parson, Edward A; Vincent, James H

    2005-09-01

    This paper reviews the background that has led to the now almost-universally held opinion in the scientific community that global climate change is occurring and is inescapably linked with anthropogenic activity. The potential implications to human health are considerable and very diverse. These include, for example, the increased direct impacts of heat and of rises in sea level, exacerbated air and water-borne harmful agents, and--associated with all the preceding--the emergence of environmental refugees. Vector-borne diseases, in particular those associated with blood-sucking arthropods such as mosquitoes, may be significantly impacted, including redistribution of some of those diseases to areas not previously affected. Responses to possible impending environmental and public health crises must involve political and socio-economic considerations, adding even greater complexity to what is already a difficult challenge. In some areas, adjustments to national and international public health practices and policies may be effective, at least in the short and medium terms. But in others, more drastic measures will be required. Environmental monitoring, in its widest sense, will play a significant role in the future management of the problem.

  13. Stellar activity: Astrophysics relevant to global change

    NASA Technical Reports Server (NTRS)

    Haisch, Bernhard M.

    1994-01-01

    FRESIP will obtain a great deal of data on stellar activity and flares on F, G and K dwarfs. Rotation periods, flare distributions and possibly stellar cycles will emerge. This apparently curiosity-driven research actually has implications for our understanding of global climate change. Significant climate change during the seventeenth-century Maunder Minimum is thought to be related to a change in the solar condition. Recently acquired data from the Greenland Ice-core Project suggest that far greater climate changes on decade time scales may have occurred during the previous interglacial. It is possible that a yet more drastic change in state of the Sun was responsible. We have no relevant solar data, but can begin to explore this possibility by observing an ensemble of solar-like stars.

  14. GLOBAL CHANGE RESEARCH NEWS #37: PUBLICATION OF "OUR CHANGING PLANET: THE FY 2002 U.S. GLOBAL CHANGE RESEARCH PROGRAM"

    EPA Science Inventory

    The EPA Global Change Research Program is pleased to inform you of the publication of the new Our Changing Planet: The FY 2002 U.S. Global Change Research Program. This annual report to the Congress was prepared under the auspices of the Committee on Environment and Natural Reso...

  15. GLOBAL CHANGE RESEARCH NEWS #8: OUR CHANGING PLANET: THE FY2000 U.S. GLOBAL CHANGE RESEARCH PROGRAM

    EPA Science Inventory

    This edition of Global Change Research News focuses on the publication of the new OurChanging Planet: The FY2000 U.S. Global Change Research Program. This annual report to the Congress was prepared under the auspices ofthe President's National Science and Technology Council. It...

  16. Changing recruitment capacity in global fish stocks

    PubMed Central

    Britten, Gregory L.; Dowd, Michael; Worm, Boris

    2016-01-01

    Marine fish and invertebrates are shifting their regional and global distributions in response to climate change, but it is unclear whether their productivity is being affected as well. Here we tested for time-varying trends in biological productivity parameters across 262 fish stocks of 127 species in 39 large marine ecosystems and high-seas areas (hereafter LMEs). This global meta-analysis revealed widespread changes in the relationship between spawning stock size and the production of juvenile offspring (recruitment), suggesting fundamental biological change in fish stock productivity at early life stages. Across regions, we estimate that average recruitment capacity has declined at a rate approximately equal to 3% of the historical maximum per decade. However, we observed large variability among stocks and regions; for example, highly negative trends in the North Atlantic contrast with more neutral patterns in the North Pacific. The extent of biological change in each LME was significantly related to observed changes in phytoplankton chlorophyll concentration and the intensity of historical overfishing in that ecosystem. We conclude that both environmental changes and chronic overfishing have already affected the productive capacity of many stocks at the recruitment stage of the life cycle. These results provide a baseline for ecosystem-based fisheries management and may help adjust expectations for future food production from the oceans. PMID:26668368

  17. Changing recruitment capacity in global fish stocks.

    PubMed

    Britten, Gregory L; Dowd, Michael; Worm, Boris

    2016-01-05

    Marine fish and invertebrates are shifting their regional and global distributions in response to climate change, but it is unclear whether their productivity is being affected as well. Here we tested for time-varying trends in biological productivity parameters across 262 fish stocks of 127 species in 39 large marine ecosystems and high-seas areas (hereafter LMEs). This global meta-analysis revealed widespread changes in the relationship between spawning stock size and the production of juvenile offspring (recruitment), suggesting fundamental biological change in fish stock productivity at early life stages. Across regions, we estimate that average recruitment capacity has declined at a rate approximately equal to 3% of the historical maximum per decade. However, we observed large variability among stocks and regions; for example, highly negative trends in the North Atlantic contrast with more neutral patterns in the North Pacific. The extent of biological change in each LME was significantly related to observed changes in phytoplankton chlorophyll concentration and the intensity of historical overfishing in that ecosystem. We conclude that both environmental changes and chronic overfishing have already affected the productive capacity of many stocks at the recruitment stage of the life cycle. These results provide a baseline for ecosystem-based fisheries management and may help adjust expectations for future food production from the oceans.

  18. SAGE III capabilities and global change

    NASA Technical Reports Server (NTRS)

    Mccormick, M. Patrick

    1991-01-01

    The science objectives of the satellite-borne SAGE III are presented as they pertain to detecting global change. SAGE III is the proposed follow on and improved version of SAM II, SAGE I and SAGE II which have measured stratospheric and, in some cases, tropospheric species since late 1978. Specifically, SAGE III will measure profiles of aerosols, ozone, water vapor, nitrogen dioxide and trioxide, neutral density, temperature, clouds, and chlorine dioxide using the solar and lunar occultation techniques. These techniques are inherently self-calibrating, provide high vertical resolution, and use well-behaved data retrievals making them ideal for trend detection and global change studies. The potential capabilities of SAGE III are illustrated by using data and results from SAM II, SAGE I and SAGE II.

  19. Time series analyses of global change data.

    PubMed

    Lane, L J; Nichols, M H; Osborn, H B

    1994-01-01

    The hypothesis that statistical analyses of historical time series data can be used to separate the influences of natural variations from anthropogenic sources on global climate change is tested. Point, regional, national, and global temperature data are analyzed. Trend analyses for the period 1901-1987 suggest mean annual temperatures increased (in degrees C per century) globally at the rate of about 0.5, in the USA at about 0.3, in the south-western USA desert region at about 1.2, and at the Walnut Gulch Experimental Watershed in south-eastern Arizona at about 0.8. However, the rates of temperature change are not constant but vary within the 87-year period. Serial correlation and spectral density analysis of the temperature time series showed weak periodicities at various frequencies. The only common periodicity among the temperature series is an apparent cycle of about 43 years. The temperature time series were correlated with the Wolf sunspot index, atmospheric CO(2) concentrations interpolated from the Siple ice core data, and atmospheric CO(2) concentration data from Mauna Loa measurements. Correlation analysis of temperature data with concurrent data on atmospheric CO(2) concentrations and the Wolf sunspot index support previously reported significant correlation over the 1901-1987 period. Correlation analysis between temperature, atmospheric CO(2) concentration, and the Wolf sunspot index for the shorter period, 1958-1987, when continuous Mauna Loa CO(2) data are available, suggest significant correlation between global warming and atmospheric CO(2) concentrations but no significant correlation between global warming and the Wolf sunspot index. This may be because the Wolf sunspot index apparently increased from 1901 until about 1960 and then decreased thereafter, while global warming apparently continued to increase through 1987. Correlation of sunspot activity with global warming may be spurious but additional analyses are required to test this hypothesis

  20. National Institute for Global Environmental Change

    SciTech Connect

    Werth, G.C.

    1992-04-01

    This document is the Semi-Annual Report of the National Institute for Global Environmental Change for the reporting period July 1 to December 31, 1991. The report is in two parts. Part I presents the mission of the Institute, examples of progress toward that mission, a brief description of the revised management plan, and the financial report. Part II presents the statements of the Regional Center Directors along with progress reports of the projects written by the researchers themselves.

  1. A DBMS architecture for global change research

    NASA Astrophysics Data System (ADS)

    Hachem, Nabil I.; Gennert, Michael A.; Ward, Matthew O.

    1993-08-01

    The goal of this research is the design and development of an integrated system for the management of very large scientific databases, cartographic/geographic information processing, and exploratory scientific data analysis for global change research. The system will represent both spatial and temporal knowledge about natural and man-made entities on the eath's surface, following an object-oriented paradigm. A user will be able to derive, modify, and apply, procedures to perform operations on the data, including comparison, derivation, prediction, validation, and visualization. This work represents an effort to extend the database technology with an intrinsic class of operators, which is extensible and responds to the growing needs of scientific research. Of significance is the integration of many diverse forms of data into the database, including cartography, geography, hydrography, hypsography, images, and urban planning data. Equally important is the maintenance of metadata, that is, data about the data, such as coordinate transformation parameters, map scales, and audit trails of previous processing operations. This project will impact the fields of geographical information systems and global change research as well as the database community. It will provide an integrated database management testbed for scientific research, and a testbed for the development of analysis tools to understand and predict global change.

  2. Global climate change: the quantifiable sustainability challenge.

    PubMed

    Princiotta, Frank T; Loughlin, Daniel H

    2014-09-01

    Population growth and the pressures spawned by increasing demands for energy and resource-intensive goods, foods, and services are driving unsustainable growth in greenhouse gas (GHG) emissions. Recent GHG emission trends are consistent with worst-case scenarios of the previous decade. Dramatic and near-term emission reductions likely will be needed to ameliorate the potential deleterious impacts of climate change. To achieve such reductions, fundamental changes are required in the way that energy is generated and used. New technologies must be developed and deployed at a rapid rate. Advances in carbon capture and storage, renewable, nuclear and transportation technologies are particularly important; however, global research and development efforts related to these technologies currently appear to fall short relative to needs. Even with a proactive and international mitigation effort, humanity will need to adapt to climate change, but the adaptation needs and damages will be far greater if mitigation activities are not pursued in earnest. In this review, research is highlighted that indicates increasing global and regional temperatures and ties climate changes to increasing GHG emissions. GHG mitigation targets necessary for limiting future global temperature increases are discussed, including how factors such as population growth and the growing energy intensity of the developing world will make these reduction targets more challenging. Potential technological pathways for meeting emission reduction targets are examined, barriers are discussed, and global and US. modeling results are presented that suggest that the necessary pathways will require radically transformed electric and mobile sectors. While geoengineering options have been proposed to allow more time for serious emission reductions, these measures are at the conceptual stage with many unanswered cost, environmental, and political issues. Implications: This paper lays out the case that mitigating the

  3. Groundwater and climate change: mitigating the global groundwater crisis and adapting to climate change model

    USDA-ARS?s Scientific Manuscript database

    To better understand the effects of climate change on global groundwater resources, the United Nations Educational, Scientific, and Cultural Organization (UNESCO) International Hydrological Programme (IHP) initiated the GRAPHIC (Groundwater Resources Assessment under the Pressures of Humanity and Cl...

  4. Trait variations of ground flora species disentangle the effects of global change and altered land-use in Swedish forests during 20 years.

    PubMed

    Hedwall, Per-Ola; Brunet, Jörg

    2016-12-01

    Northern forest ecosystems are exposed to a range of anthropogenic processes including global warming, atmospheric deposition, and changing land-use. The vegetation of northern forests is composed of species with several functional traits related to these processes, whose effects may be difficult to disentangle. Here, we combined analyses of spatio-temporal dynamics and functional traits of ground flora species, including morphological characteristics, responses to macro- and microclimate, soil conditions, and disturbance. Based on data from the Swedish National Forest Inventory, we compared changes in occurrence of a large number of ground flora species during a 20-year period (1994-2013) in boreal and temperate Sweden respectively. Our results show that a majority of the common ground flora species have changed their overall frequency. Comparisons of functional traits between increasing and declining species, and of trends in mean trait values of sample plots, indicate that current floristic changes are caused by combined effects of climate warming, nitrogen deposition and changing land-use. Changes and their relations with plant traits were generally larger in temperate southern Sweden. Nutrient-demanding species with mesotrophic morphology were favored by ongoing eutrophication due to nitrogen deposition in the temperate zone, while dwarf shrubs with low demands on nitrogen decreased in frequency. An increase of species with less northern and less eastern distribution limits was also restricted to temperate Sweden, and indicates effects of a moister and milder macroclimate. A trend toward dense plantation forests is mirrored by a decrease of light-demanding species in both vegetation zones, and a decrease of grassland species in the temperate zone. Although denser tree canopies may buffer effects of a warmer climate and of nitrogen deposition to some extent, traits related to these processes were weakly correlated in the group of species with changing frequency

  5. Changing Conceptions of Globalization: Changing Conceptions of Education.

    ERIC Educational Resources Information Center

    Fitzsimons, Patrick

    2000-01-01

    Examines changing conceptions of globalization in education, highlighting new electronic information technologies that, rather than promoting homogeneity, are producing a stimulus for a politics of difference. Cyborgs and cyberspace are emerging as discourses of disunity and difference. The essay recommends a form of critical localism to challenge…

  6. Changing Conceptions of Globalization: Changing Conceptions of Education.

    ERIC Educational Resources Information Center

    Fitzsimons, Patrick

    2000-01-01

    Examines changing conceptions of globalization in education, highlighting new electronic information technologies that, rather than promoting homogeneity, are producing a stimulus for a politics of difference. Cyborgs and cyberspace are emerging as discourses of disunity and difference. The essay recommends a form of critical localism to challenge…

  7. Global change impacts on mangrove ecosystems

    USGS Publications Warehouse

    McKee, Karen L.

    2004-01-01

    Mangroves are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal forests are important coastal ecosystems that are valued for a variety of ecological and societal goods and services. Major local threats to mangrove ecosystems worldwide include clearcutting and trimming of forests for urban, agricultural, or industrial expansion; hydrological alterations; toxic chemical spills; and eutrophication. In many countries with mangroves, much of the human population resides in the coastal zone, and their activities often negatively impact the integrity of mangrove forests. In addition, eutrophication, which is the process whereby nutrients build up to higher than normal levels in a natural system, is possibly one of the most serious threats to mangroves and associated ecosystems such as coral reefs. Scientists with the U.S. Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand global impacts on these significant ecosystems.Changes in climate and other factors may also affect mangroves, but in complex ways. Global warming may promote expansion of mangrove forests to higher latitudes and accelerate sea-level rise through melting of polar ice or steric expansion of oceans. Changes in sea level would alter flooding patterns and the structure and areal extent of mangroves. Climate change may also alter rainfall patterns, which would in turn change local salinity regimes and competitive interactions of mangroves with other wetland species. Increases in frequency or intensity of tropical storms and hurricanes in combination with sea-level rise may alter erosion and sedimentation rates in mangrove forests. Another global change factor that may directly affect mangrove growth is increased atmospheric carbon dioxide (CO2), caused by burning of fossil fuels and other factors. Elevated CO2 concentration may increase mangrove growth by stimulating photosynthesis or improving water use

  8. Anticipated public health consequences of global climate change.

    PubMed

    Longstreth, J

    1991-12-01

    Human activities are placing enormous pressures on the biosphere. The introduction of new chemicals and the increasing ambient levels of existing chemicals have resulted in atmospheric degradation. This paper reviews some of the adverse effects of stratospheric ozone depletion and global warming. Because the atmospheric effects of ozone depletion are fairly well characterized, quantitative risk estimates have been developed. However, because the atmospheric effects of global warming are less understood, public health problems that could be intensified by climate change are assessed qualitatively. The interactive effects of these two phenomena are also discussed.

  9. Sensitivity of global and regional terrestrial carbon storage to the direct CO2 effect and climate change based on the CMIP5 model intercomparison.

    PubMed

    Peng, Jing; Dan, Li; Huang, Mei

    2014-01-01

    Global and regional land carbon storage has been significantly affected by increasing atmospheric CO2 concentration and climate change. Based on fully coupled climate-carbon-cycle simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we investigate sensitivities of land carbon storage to rising atmospheric CO2 concentration and climate change over the world and 21 regions during the 130 years. Overall, the simulations suggest that consistently spatial positive effects of the increasing CO2 concentrations on land carbon storage are expressed with a multi-model averaged value of 1.04 PgC per ppm. The stronger positive values are mainly located in the broad areas of temperate and tropical forest, especially in Amazon basin and western Africa. However, large heterogeneity distributed for sensitivities of land carbon storage to climate change. Climate change causes decrease in land carbon storage in most tropics and the Southern Hemisphere. In these regions, decrease in soil moisture (MRSO) and enhanced drought somewhat contribute to such a decrease accompanied with rising temperature. Conversely, an increase in land carbon storage has been observed in high latitude and altitude regions (e.g., northern Asia and Tibet). The model simulations also suggest that global negative impacts of climate change on land carbon storage are predominantly attributed to decrease in land carbon storage in tropics. Although current warming can lead to an increase in land storage of high latitudes of Northern Hemisphere due to elevated vegetation growth, a risk of exacerbated future climate change may be induced due to release of carbon from tropics.

  10. Sensitivity of Global and Regional Terrestrial Carbon Storage to the Direct CO2 Effect and Climate Change Based on the CMIP5 Model Intercomparison

    PubMed Central

    Peng, Jing; Dan, Li; Huang, Mei

    2014-01-01

    Global and regional land carbon storage has been significantly affected by increasing atmospheric CO2 concentration and climate change. Based on fully coupled climate-carbon-cycle simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we investigate sensitivities of land carbon storage to rising atmospheric CO2 concentration and climate change over the world and 21 regions during the 130 years. Overall, the simulations suggest that consistently spatial positive effects of the increasing CO2 concentrations on land carbon storage are expressed with a multi-model averaged value of 1.04PgC per ppm. The stronger positive values are mainly located in the broad areas of temperate and tropical forest, especially in Amazon basin and western Africa. However, large heterogeneity distributed for sensitivities of land carbon storage to climate change. Climate change causes decrease in land carbon storage in most tropics and the Southern Hemisphere. In these regions, decrease in soil moisture (MRSO) and enhanced drought somewhat contribute to such a decrease accompanied with rising temperature. Conversely, an increase in land carbon storage has been observed in high latitude and altitude regions (e.g., northern Asia and Tibet). The model simulations also suggest that global negative impacts of climate change on land carbon storage are predominantly attributed to decrease in land carbon storage in tropics. Although current warming can lead to an increase in land storage of high latitudes of Northern Hemisphere due to elevated vegetation growth, a risk of exacerbated future climate change may be induced due to release of carbon from tropics. PMID:24748331

  11. Global wildland fire and climate change

    NASA Astrophysics Data System (ADS)

    Flannigan, M.; Krawchuk, M.; de Groot, W.; Wotton, M.; Gowman, L.

    2009-04-01

    Wildland fire is ubiquitous. Global wildland fire is the result of the interaction between climate/weather, fuels and people. Our climate is changing rapidly primarily through the release of greenhouse gases that may have profound and possibly unexpected impacts on global fire activity. We review the current understanding of what the future may bring with respect to wildland fire and discusses future options for research and management. To date, research suggests a general increase in area burned and fire occurrence but there is a lot of spatial variability with some areas of no change or even decreases in area burned and occurrence. Fire seasons are lengthening for temperate and boreal regions and this trend should continue in a warmer world. Future trends of fire severity and intensity are difficult to determine due to the complex and non-linear interactions between weather, vegetation and people. Improved fire data are required along with continued global studies that dynamically include weather, vegetation, people and other disturbances.

  12. Toward an understanding of global change

    NASA Technical Reports Server (NTRS)

    1988-01-01

    In the international scientific community, the International Council of Scientific Unions has organized the International Geosphere Biosphere Program (IGBP) to address the problems of global change. The objective of the IGBP is to describe and understand the interactive physical, chemical, and biological processes that regulate the total earth system, the unique environment that it provides for life, the changes that are occurring in this system, and the manner in which they are influenced by human activities. The IGBP is currently in its preparatory phase, during which the program's goals and research components are slowly evolving and coming into focus. In this report, a limited number of high-priority research initiatives are recommended for early implementation as part of the U.S. contribution to the preparatory phase of the IGBP. The recommendations are based on the committee's analysis of the most critical gaps, not being addressed by existing programs, in the scientific knowledge needed to understand the changes that are occurring in the earth system on time scales of decades to centuries. These initiatives will build upon the capabilities of the U.S. program in global change.

  13. Global Change Geodesy: A Geophysical Perspective

    NASA Astrophysics Data System (ADS)

    Mitrovica, J. X.

    2014-12-01

    It is a truism that as the precision of geodetic measurement techniques improves, the accuracy of the geophysical modeling of processes that contribute to the observations must keep pace. Studies of the Earth's response to human-induced climate change provide many notable, and pressing, illustrations of this axiom. For example, estimates of recent ice volume changes, as inferred from satellite gravity measurements, tide gauge and satellite-altimetry records of sea level changes, or astronomical and space-geodetic constraints on Earth rotation, require improved theoretical and numerical treatments of ongoing glacial isostatic adjustment in response to the last ice age. However, the interplay between geodesy and geophysics is not a one-way street; geophysical modeling has emphasized, for example, that the geographic variability in sea level measurements - once considered a nuisance in efforts to infer long term trends - provides a powerful constraint on both the individual sources of meltwater and their sum. In this talk, I will discuss a series of case studies that demonstrate how interdisciplinary research at the interface between geodesy and geophysics has recently resolved several outstanding problems in global change research, including Walter Munk's enigma of global sea-level rise and the apparent failure to close the budget of twentieth century sea level. Moreover, in the same interdisciplinary context, I will highlight uncertainties that currently limit our understanding of polar ice sheet stability in a progressively warming world.

  14. Global Change and Human Vulnerability to Vector-Borne Diseases

    PubMed Central

    Sutherst, Robert W.

    2004-01-01

    Global change includes climate change and climate variability, land use, water storage and irrigation, human population growth and urbanization, trade and travel, and chemical pollution. Impacts on vector-borne diseases, including malaria, dengue fever, infections by other arboviruses, schistosomiasis, trypanosomiasis, onchocerciasis, and leishmaniasis are reviewed. While climate change is global in nature and poses unknown future risks to humans and natural ecosystems, other local changes are occurring more rapidly on a global scale and are having significant effects on vector-borne diseases. History is invaluable as a pointer to future risks, but direct extrapolation is no longer possible because the climate is changing. Researchers are therefore embracing computer simulation models and global change scenarios to explore the risks. Credible ranking of the extent to which different vector-borne diseases will be affected awaits a rigorous analysis. Adaptation to the changes is threatened by the ongoing loss of drugs and pesticides due to the selection of resistant strains of pathogens and vectors. The vulnerability of communities to the changes in impacts depends on their adaptive capacity, which requires both appropriate technology and responsive public health systems. The availability of resources in turn depends on social stability, economic wealth, and priority allocation of resources to public health. PMID:14726459

  15. A Change in the Solar He II EUV Global Network Structure as an Indicator of the Geo-Effectiveness of Solar Minima

    NASA Technical Reports Server (NTRS)

    Didkovsky, L.; Gurman, J. B.

    2013-01-01

    Solar activity during 2007 - 2009 was very low, causing anomalously low thermospheric density. A comparison of solar extreme ultraviolet (EUV) irradiance in the He II spectral band (26 to 34 nm) from the Solar Extreme ultraviolet Monitor (SEM), one of instruments on the Charge Element and Isotope Analysis System (CELIAS) on board the Solar and Heliospheric Observatory (SOHO) for the two latest solar minima showed a decrease of the absolute irradiance of about 15 +/- 6 % during the solar minimum between Cycles 23 and 24 compared with the Cycle 22/23 minimum when a yearly running-mean filter was used. We found that some local, shorter-term minima including those with the same absolute EUV flux in the SEM spectral band show a higher concentration of spatial power in the global network structure from the 30.4 nm SOHO/Extreme ultraviolet Imaging Telescope (EIT) images for the local minimum of 1996 compared with the minima of 2008 - 2011.We interpret this higher concentration of spatial power in the transition region's global network structure as a larger number of larger-area features on the solar disk. These changes in the global network structure during solar minima may characterize, in part, the geo-effectiveness of the solar He II EUV irradiance in addition to the estimations based on its absolute levels.

  16. Global Changes of the Water Cycle Intensity

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Walker, Gregory K.

    2003-01-01

    In this study, we evaluate numerical simulations of the twentieth century climate, focusing on the changes in the intensity of the global water cycle. A new diagnostic of atmospheric water vapor cycling rate is developed and employed, that relies on constituent tracers predicted at the model time step. This diagnostic is compared to a simplified traditional calculation of cycling rate, based on monthly averages of precipitation and total water content. The mean sensitivity of both diagnostics to variations in climate forcing is comparable. However, the new diagnostic produces systematically larger values and more variability than the traditional average approach. Climate simulations were performed using SSTs of the early (1902-1921) and late (1979- 1998) twentieth century along with the appropriate C02 forcing. In general, the increase of global precipitation with the increases in SST that occurred between the early and late twentieth century is small. However, an increase of atmospheric temperature leads to a systematic increase in total precipitable water. As a result, the residence time of water in the atmosphere increased, indicating a reduction of the global cycling rate. This result was explored further using a number of 50-year climate simulations from different models forced with observed SST. The anomalies and trends in the cycling rate and hydrologic variables of different GCMs are remarkably similar. The global annual anomalies of precipitation show a significant upward trend related to the upward trend of surface temperature, during the latter half of the twentieth century. While this implies an increase in the hydrologic cycle intensity, a concomitant increase of total precipitable water again leads to a decrease in the calculated global cycling rate. An analysis of the land/sea differences shows that the simulated precipitation over land has a decreasing trend while the oceanic precipitation has an upward trend consistent with previous studies and the

  17. Marine ecosystem responses to Cenozoic global change.

    PubMed

    Norris, R D; Turner, S Kirtland; Hull, P M; Ridgwell, A

    2013-08-02

    The future impacts of anthropogenic global change on marine ecosystems are highly uncertain, but insights can be gained from past intervals of high atmospheric carbon dioxide partial pressure. The long-term geological record reveals an early Cenozoic warm climate that supported smaller polar ecosystems, few coral-algal reefs, expanded shallow-water platforms, longer food chains with less energy for top predators, and a less oxygenated ocean than today. The closest analogs for our likely future are climate transients, 10,000 to 200,000 years in duration, that occurred during the long early Cenozoic interval of elevated warmth. Although the future ocean will begin to resemble the past greenhouse world, it will retain elements of the present "icehouse" world long into the future. Changing temperatures and ocean acidification, together with rising sea level and shifts in ocean productivity, will keep marine ecosystems in a state of continuous change for 100,000 years.

  18. Global warming and changes in ocean circulation

    SciTech Connect

    Duffy, P.B.; Caldeira, K.C.

    1998-02-01

    This final report provides an overview of the goals and accomplishments of this project. Modeling and observational work has raised the possibility that global warming may cause changes in the circulation of the ocean. If such changes would occur they could have important climatic consequences. The first technical goal of this project was to investigate some of these possible changes in ocean circulation in a quantitative way, using a state-of -the-art numerical model of the ocean. Another goal was to develop our ocean model, a detailed three-dimensional numerical model of the ocean circulation and ocean carbon cycles. A major non-technical goal was to establish LLNL as a center of excellence in modelling the ocean circulation and carbon cycle.

  19. International earth science information network for global change decision making

    SciTech Connect

    Autrey-Hunley, C.; Kuhn, W.R.; Kasischke, E.; Trichel, M.T.; Coppola, R.

    1991-01-01

    Effective environmental decision making depends upon the ability to predict physical changes in the environment, societal responses to these changes, and how both the physical changes and societal responses will be affected by changes in government regulations, public perceptions and the environment. Technological advances in remote sensing have provided a wealth of earth science data necessary to study global change problems; the Earth Observatory System will provide an unprecedented data source in the late 1990's. The Consortium for an International Earth Science Information Network (CIESIN) will combine earth science data (both satellite and ground-based) with data on the social sciences (e.g., economics, demographics, public health) to support informed policy decisions and to transfer knowledge on global change and its causes to the public.

  20. Comparison of Mediterranean Pteropod Shell Biometrics and Ultrastructure from Historical (1910 and 1921) and Present Day (2012) Samples Provides Baseline for Monitoring Effects of Global Change.

    PubMed

    Howes, Ella L; Eagle, Robert A; Gattuso, Jean-Pierre; Bijma, Jelle

    2017-01-01

    Anthropogenic carbon perturbation has caused decreases in seawater pH and increases in global temperatures since the start of the 20th century. The subsequent lowering of the saturation state of CaCO3 may make the secretion of skeletons more problematic for marine calcifiers. As organisms that precipitate thin aragonite shells, thecosome pteropods have been identified as being particularly vulnerable to climate change effects. Coupled with their global distribution, this makes them ideal for use as sentinel organisms. Recent studies have highlighted shell dissolution as a potential indicator of ocean acidification; however, this metric is not applicable for monitoring pH changes in supersaturated basins. In this study, the novel approach of high resolution computed tomography (CT) scanning was used to produce quantitative 3-dimensional renderings pteropod shells to assess the potential of using this method to monitor small changes in shell biometrics that may be driven by climate change drivers. An ontogenetic analysis of the shells of Cavolinia inflexa and Styliola subula collected from the Mediterranean was used to identify suitable monitoring metrics. Modern samples were then compared to historical samples of the same species, collected during the Mediterranean leg of the Thor (1910) and Dana (1921) cruises to assess whether any empirical differences could be detected. Shell densities were calculated and scanning electron microscopy was used to compare the aragonite crystal morphology. pH for the collection years was hind-cast using temperature and salinity time series with atmospheric CO2 concentrations from ice core data. Historical samples of S. subula were thicker than S. subula shells of the same size from 2012 and C. inflexa shells collected in 1910 were significantly denser than those from 2012. These results provide a baseline for future work to develop monitoring techniques for climate change in the oceans using the novel approach of high-resolution CT

  1. Comparison of Mediterranean Pteropod Shell Biometrics and Ultrastructure from Historical (1910 and 1921) and Present Day (2012) Samples Provides Baseline for Monitoring Effects of Global Change

    PubMed Central

    Gattuso, Jean-Pierre; Bijma, Jelle

    2017-01-01

    Anthropogenic carbon perturbation has caused decreases in seawater pH and increases in global temperatures since the start of the 20th century. The subsequent lowering of the saturation state of CaCO3 may make the secretion of skeletons more problematic for marine calcifiers. As organisms that precipitate thin aragonite shells, thecosome pteropods have been identified as being particularly vulnerable to climate change effects. Coupled with their global distribution, this makes them ideal for use as sentinel organisms. Recent studies have highlighted shell dissolution as a potential indicator of ocean acidification; however, this metric is not applicable for monitoring pH changes in supersaturated basins. In this study, the novel approach of high resolution computed tomography (CT) scanning was used to produce quantitative 3-dimensional renderings pteropod shells to assess the potential of using this method to monitor small changes in shell biometrics that may be driven by climate change drivers. An ontogenetic analysis of the shells of Cavolinia inflexa and Styliola subula collected from the Mediterranean was used to identify suitable monitoring metrics. Modern samples were then compared to historical samples of the same species, collected during the Mediterranean leg of the Thor (1910) and Dana (1921) cruises to assess whether any empirical differences could be detected. Shell densities were calculated and scanning electron microscopy was used to compare the aragonite crystal morphology. pH for the collection years was hind-cast using temperature and salinity time series with atmospheric CO2 concentrations from ice core data. Historical samples of S. subula were thicker than S. subula shells of the same size from 2012 and C. inflexa shells collected in 1910 were significantly denser than those from 2012. These results provide a baseline for future work to develop monitoring techniques for climate change in the oceans using the novel approach of high-resolution CT

  2. Global Cooling: Effect of Urban Albedo on Global Temperature

    SciTech Connect

    Akbari, Hashem; Menon, Surabi; Rosenfeld, Arthur

    2007-05-22

    In many urban areas, pavements and roofs constitute over 60% of urban surfaces (roof 20-25%, pavements about 40%). The roof and the pavement albedo can be increased by about 0.25 and 0.10, respectively, resulting in a net albedo increase for urban areas of about 0.1. Many studies have demonstrated building cooling-energy savings in excess of 20% upon raising roof reflectivity from an existing 10-20% to about 60%. We estimate U.S. potential savings in excess of $1 billion (B) per year in net annual energy bills. Increasing albedo of urban surfaces can reduce the summertime urban temperature and improve the urban air quality. Increasing the urban albedo has the added benefit of reflecting more of the incoming global solar radiation and countering the effect of global warming. We estimate that increasing albedo of urban areas by 0.1 results in an increase of 3 x 10{sup -4} in Earth albedo. Using a simple global model, the change in air temperature in lowest 1.8 km of the atmosphere is estimated at 0.01K. Modelers predict a warming of about 3K in the next 60 years (0.05K/year). Change of 0.1 in urban albedo will result in 0.01K global cooling, a delay of {approx}0.2 years in global warming. This 0.2 years delay in global warming is equivalent to 10 Gt reduction in CO2 emissions.

  3. Microenvironmental change as a mechanism to study global change.

    NASA Astrophysics Data System (ADS)

    Lortie, C. J.

    2016-12-01

    Global change is a set of significant processes that influence all aspects of ecosystem functioning and often-natural services within Santa Barbara County. The sensitivity of coastal and urban systems is certainly very high. However, profound changes are also predicted for arid and semi-arid systems globally, and California is no exception. These dryland systems are less buffered by oceanic processes and typically express high inter-annual variation in precipitation and temperatures in addition to perturbations associated with long-term droughts. However, climate estimates and downscaled values can present challenges in providing evidence at the scale relevant to individual species or individuals, and the importance of biotic interactions must be coupled to these estimates in space and time. Coupled indicators of key micro-environmental measures to both positive and negative interactions between foundation species and other organisms provide a metric of buffering capacity and resilience to global change at fine spatial scales. Consequently, the primary objective of this research project is to provide both the a well-articulated, ecologically relevant micro-environmental big data measure of global change within Santa Barbara County and a coupled estimate of concurrent changes in interactions in key species within the region. Shrubs directly and indirectly buffered local changes in the microenvironment thereby functioning as refuges for other species within arid and semi-arid regions subject to dramatic global change drivers. The following major patterns were identified: (i) shrub micro-environments reduce the level of stress and amplitude of variation associated with temperature and moisture, (ii) many plant and animal species including threatened lizards are relatively more common with shrubs within the region, and (iii) the variation in the interaction patterns between species relates to the extent of amelioration provided by shrub-biodiversity complexes within

  4. Modeling global change impacts on Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Kicklighter, D. W.; Monier, E.; Sokolov, A. P.; Zhuang, Q.; Melillo, J. M.; Reilly, J. M.

    2016-12-01

    Northern Eurasia is a major player in the global carbon budget and includes roughly 70% of the Earth's boreal forest and more than two-thirds of the Earth's permafrost. The region has experienced dramatic climate change (increase in temperature, growing season length, floods and droughts), natural disturbances (wildfires and insect outbreaks), and land-use change (timber harvest, urbanization, expansion and abandonment of agricultural lands) over the past century. These large environmental and socioeconomic impacts have major implications for the carbon cycle in the region. Northern Eurasia is made up of a diverse set of ecosystems that range from deserts to forests, with significant areas of croplands, pastures, and urban areas. As such, it represents a complex system with substantial challenges for the modeling community. We provide an overview of past, ongoing and possible future efforts of the integrated modeling of global change for Northern Eurasia. First, we review the variety of existing modeling approaches to investigate specific components of Earth system dynamics in the region. While there are a limited number of studies that try to integrate various aspects of the Earth system through scale, teleconnections or processes, there are few systematic analyses of the various feedbacks among components within the Earth system. As a result, there is a lack of knowledge of the relative importance of such feedbacks, and it is unclear how relevant current studies, which do not account for these feedbacks, may be for policymaking. Next, we review the role of Earth system models, and their advantages/limitations compared to detailed single component models. We further introduce human activity models (e.g., global trade, economic models, demographic models), and the need for Integrated Assessment Models (IAMs), a suite of models that couple human activity models to Earth System Models. Finally, we examine emerging issues that require a representation of the coupled

  5. Central Africa: Global climate change and development. Synopsis

    SciTech Connect

    Not Available

    1992-01-01

    Central Africa contains the largest remaining contiguous expanse of moist tropical forest on the African continent and the second largest in the world. However, deforestation rates are rising as the result of rapid population growth, inappropriate economic policies, economic downturns, and weak management capacities. If clearing rates continue to rise, a substantial amount of carbon dioxide will be released into the atmosphere, thus contributing to global climate change. The report summarizes a study designed as a first step in understanding the complex dynamics of the causes and effects of global climate change in Central Africa. The current state of the region's forests, greenhouse gas emissions from deforestation and biomass burning, and the potential impacts of global climate change are discussed.

  6. No easy answers for global climate change research

    NASA Astrophysics Data System (ADS)

    Wakefield, J.

    First the word was that not only car emissions but cow burps may play a significant role in global warming. Then, the story turned to rice paddies and cockroaches as likely sources of greenhouse gases. Sound confusing? It should.Now even experts readily admit global warming research is chock-full of uncertainties. And these issues offer only a freeze-frame of the broader climate change motion picture. Everything from whether sea levels will rise to whether hurricanes will be come more frequent to whether solar forcing plays a role in all of this is now in question. This means that making and implementing effective international climate change policies remains a tenuous process—even at a time when the overall funding for global change research is at an all-time high in the United States.

  7. Divergent pheromone-mediated insect behaviour under global atmospheric change

    Treesearch

    Edward B. Mondor; Michelle N. Tremblay; Caroline S. Awmack; Richard L. Lindroth

    2004-01-01

    While the effects of global atmospheric changes on vegetation and resulting insect populations('bottom-up interactions') are being increasingly studied, how these gases modify interactions among insects and their natural enemies ('top-down interactions') is less clear. As natural enemy efficacy is governed largely by behavioural mechanisms, altered...

  8. Defense and avoidance of ozone under global change

    Treesearch

    Michael Tausz; Nancy E. Grulke; Gerhard Wieser

    2007-01-01

    The level II approach of the critical loads concept adopted by the UNECE aims at a flux based evaluation and takes into account environmental factors governing stomatal conductance. These factors will probably be affected by global change. The flux concept predicts that a decrease in stomatal conductance would protect trees from air pollution effects by decreasing...

  9. Knowledge of Global Climate Change: View of Iranian University Students

    ERIC Educational Resources Information Center

    Salehi, Sadegh; Nejad, Zahra Pazuki; Mahmoudi, Hossein; Burkart, Stefan

    2016-01-01

    This article assesses students' understanding of global climate change (GCC) and social factors affecting it. It was hypothesized that students who demonstrate pro-environmental attitudes are more likely to possess higher knowledge of GCC. It was further hypothesized that trust and personal efficiency would have a positive effect on the knowledge…

  10. Knowledge of Global Climate Change: View of Iranian University Students

    ERIC Educational Resources Information Center

    Salehi, Sadegh; Nejad, Zahra Pazuki; Mahmoudi, Hossein; Burkart, Stefan

    2016-01-01

    This article assesses students' understanding of global climate change (GCC) and social factors affecting it. It was hypothesized that students who demonstrate pro-environmental attitudes are more likely to possess higher knowledge of GCC. It was further hypothesized that trust and personal efficiency would have a positive effect on the knowledge…

  11. U.S. Global Climate Change Impacts Report, Global Climate Change

    NASA Astrophysics Data System (ADS)

    Santer, B.

    2009-12-01

    The first Key Finding from the recent USGCRP report “Global Climate Change Impacts in the United States” is: 1. Global warming is unequivocal and primarily human-induced. Global temperature has increased over the past 50 years. This observed increase is due primarily to human-induced emissions of heat-trapping gases. This statement is based on a combination of observational, theoretical and model based analyses and are a consensus opinion of the report’s Lead Author team. The scientific rationale supporting this consensus will be summarized.

  12. Recommendation for funding the 1992 Global Change Summer Institute: Industrial ecology and global change

    SciTech Connect

    Fein, J.S.

    1992-12-31

    A summer institute on Industrial Ecology and Global Change was held at Snow Mass, Colorado, July 20--31, 1992. Topics of discussion included the following: the patterns and prospects of global industrialization; the vulnerability of the global environment to human activity; how industrial activity might be reconfigured in response to a deeper understanding of the major biogeochemical cycles in which this activity is embedded; how industrial activity might be reconfigured in response to a deeper understanding of associated exotic disturbances of the environment; interactions of human activity with basic environmental cycles; human activity in the form of exotic disturbance of the environment; and the dynamics of industrial development and the environmental implications.

  13. Global coccolithophore diversity: Drivers and future change

    NASA Astrophysics Data System (ADS)

    O'Brien, Colleen J.; Vogt, Meike; Gruber, Nicolas

    2016-01-01

    We use the MAREDAT global compilation of coccolithophore species distribution and combine them with observations of climatological environmental conditions to determine the global-scale distribution of coccolithophore species diversity, its underlying drivers, and potential future changes. To this end, we developed a feed-forward neural network, which predicts 78% of the observed variance in coccolithophore diversity from environmental input variables (temperature, PAR, nitrate, silicic acid, mixed layer depth, excess phosphate (P∗) and chlorophyll). Light and temperature are the strongest predictors of coccolithophore diversity. Coccolithophore diversity is highest in the low latitudes, where coccolithophores are a relatively dominant component of the total phytoplankton community. Particularly high diversity is predicted in the western equatorial Pacific and the southern Indian Ocean, with additional peaks at approximately 30°N and 30°S. The global, zonal mean pattern is dominated by the Pacific Ocean, which shows a clear latitudinal gradient with diversity peaking at the equator, whereas in the Atlantic Ocean diversity is highest in the subtropics. We find a unimodal relationship between coccolithophore diversity and biomass, as has previously been observed for total phytoplankton assemblages. In contrast, diversity shows a negative relationship with total chlorophyll. Applying our diversity model to projections from the CMIP5 climate models, we project an increase in the diversity of coccolithophore assemblages by the end of this century.

  14. Recent intense hurricane response to global climate change

    NASA Astrophysics Data System (ADS)

    Holland, Greg; Bruyère, Cindy L.

    2014-02-01

    An Anthropogenic Climate Change Index (ACCI) is developed and used to investigate the potential global warming contribution to current tropical cyclone activity. The ACCI is defined as the difference between the means of ensembles of climate simulations with and without anthropogenic gases and aerosols. This index indicates that the bulk of the current anthropogenic warming has occurred in the past four decades, which enables improved confidence in assessing hurricane changes as it removes many of the data issues from previous eras. We find no anthropogenic signal in annual global tropical cyclone or hurricane frequencies. But a strong signal is found in proportions of both weaker and stronger hurricanes: the proportion of Category 4 and 5 hurricanes has increased at a rate of ~25-30 % per °C of global warming after accounting for analysis and observing system changes. This has been balanced by a similar decrease in Category 1 and 2 hurricane proportions, leading to development of a distinctly bimodal intensity distribution, with the secondary maximum at Category 4 hurricanes. This global signal is reproduced in all ocean basins. The observed increase in Category 4-5 hurricanes may not continue at the same rate with future global warming. The analysis suggests that following an initial climate increase in intense hurricane proportions a saturation level will be reached beyond which any further global warming will have little effect.

  15. Environmental variation and population responses to global change.

    PubMed

    Lawson, Callum R; Vindenes, Yngvild; Bailey, Liam; van de Pol, Martijn

    2015-07-01

    Species' responses to environmental changes such as global warming are affected not only by trends in mean conditions, but also by natural and human-induced environmental fluctuations. Methods are needed to predict how such environmental variation affects ecological and evolutionary processes, in order to design effective strategies to conserve biodiversity under global change. Here, we review recent theoretical and empirical studies to assess: (1) how populations respond to changes in environmental variance, and (2) how environmental variance affects population responses to changes in mean conditions. Contrary to frequent claims, empirical studies show that increases in environmental variance can increase as well as decrease long-term population growth rates. Moreover, environmental variance can alter and even reverse the effects of changes in the mean environment, such that even if environmental variance remains constant, omitting it from population models compromises their ability to predict species' responses to changes in mean conditions. Drawing on theory relating these effects of environmental variance to the curvatures of population growth responses to the environment, we outline how species' traits such as phylogenetic history and body mass could be used to predict their responses to global change under future environmental variability. © 2015 John Wiley & Sons Ltd/CNRS.

  16. Climate change. A global threat to cardiopulmonary health.

    PubMed

    Rice, Mary B; Thurston, George D; Balmes, John R; Pinkerton, Kent E

    2014-03-01

    Recent changes in the global climate system have resulted in excess mortality and morbidity, particularly among susceptible individuals with preexisting cardiopulmonary disease. These weather patterns are projected to continue and intensify as a result of rising CO2 levels, according to the most recent projections by climate scientists. In this Pulmonary Perspective, motivated by the American Thoracic Society Committees on Environmental Health Policy and International Health, we review the global human health consequences of projected changes in climate for which there is a high level of confidence and scientific evidence of health effects, with a focus on cardiopulmonary health. We discuss how many of the climate-related health effects will disproportionally affect people from economically disadvantaged parts of the world, who contribute relatively little to CO2 emissions. Last, we discuss the financial implications of climate change solutions from a public health perspective and argue for a harmonized approach to clean air and climate change policies.

  17. Global Change and the Function and Distribution of Wetlands

    USGS Publications Warehouse

    Middleton, Beth A.

    2012-01-01

    The Global Change Ecology and Wetlands book series will highlight the latest research from the world leaders in the field of climate change in wetlands. Global Change and the Function and Distribution of Wetlands highlights information of importance to wetland ecologists.  The chapters include syntheses of international studies on the effects of drought on function and regeneration in wetlands, sea level rise and the distribution of mangrove swamps, former distributions of swamp species and future lessons from paleoecology, and shifts in atmospheric emissions across geographical regions in wetlands.  Overall, the book will contribute to a better understanding of the potential effects of climate change on world wetland distribution and function.

  18. Climate Change. A Global Threat to Cardiopulmonary Health

    PubMed Central

    Thurston, George D.; Balmes, John R.; Pinkerton, Kent E.

    2014-01-01

    Recent changes in the global climate system have resulted in excess mortality and morbidity, particularly among susceptible individuals with preexisting cardiopulmonary disease. These weather patterns are projected to continue and intensify as a result of rising CO2 levels, according to the most recent projections by climate scientists. In this Pulmonary Perspective, motivated by the American Thoracic Society Committees on Environmental Health Policy and International Health, we review the global human health consequences of projected changes in climate for which there is a high level of confidence and scientific evidence of health effects, with a focus on cardiopulmonary health. We discuss how many of the climate-related health effects will disproportionally affect people from economically disadvantaged parts of the world, who contribute relatively little to CO2 emissions. Last, we discuss the financial implications of climate change solutions from a public health perspective and argue for a harmonized approach to clean air and climate change policies. PMID:24400619

  19. Dawn of astronomy and global climate change

    NASA Astrophysics Data System (ADS)

    Nakamura, Tsuko

    2007-12-01

    The author proposes that the birth of astronomy in ancient civilizations, which took place nearly simultaneously (4000 - 5000 years ago) around the Nile, Tigris and Euphrates, Indus, and the Yellow River, was caused by the global climate change (cooling and drying) that started about 5000 years ago after the hypsithermal (high-temperature) period. It is also pointed out that a few names of Twenty-Four Qi's appearing in old Chinese calendars are remnants of the calm climate in the hypsithermal period. It is discussed that numerous meteorological records seen in divination inscriptions on bones and tortoise-shells excavated at the capital of the ancient Yin (Shang) dynasty suggest occurrence of the climatic cooling and drying at that time and this change triggered spawning the early Chinese astronomy.

  20. The deep-sea under global change.

    PubMed

    Danovaro, Roberto; Corinaldesi, Cinzia; Dell'Anno, Antonio; Snelgrove, Paul V R

    2017-06-05

    The deep ocean encompasses 95% of the oceans' volume and is the largest and least explored biome of Earth's Biosphere. New life forms are continuously being discovered. The physiological mechanisms allowing organisms to adapt to extreme conditions of the deep ocean (high pressures, from very low to very high temperatures, food shortage, lack of solar light) are still largely unknown. Some deep-sea species have very long life-spans, whereas others can tolerate toxic compounds at high concentrations; these characteristics offer an opportunity to explore the specialized biochemical and physiological mechanisms associated with these responses. Widespread symbiotic relationships play fundamental roles in driving host functions, nutrition, health, and evolution. Deep-sea organisms communicate and interact through sound emissions, chemical signals and bioluminescence. Several giants of the oceans hunt exclusively at depth, and new studies reveal a tight connection between processes in the shallow water and some deep-sea species. Limited biological knowledge of the deep-sea limits our capacity to predict future response of deep-sea organisms subject to increasing human pressure and changing global environmental conditions. Molecular tools, sensor-tagged animals, in situ and laboratory experiments, and new technologies can enable unprecedented advancement of deep-sea biology, and facilitate the sustainable management of deep ocean use under global change. Copyright © 2017. Published by Elsevier Ltd.

  1. Linked Open Data in the Global Change Information System (GCIS)

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt A.

    2012-01-01

    The U.S. Global Change Research Program (http://globalchange.gov) coordinates and integrates federal research on changes in the global environment and their implications for society. The USGCRP is developing a Global Change Information System (GCIS) that will centralize access to data and information related to global change across the U.S. federal government. The first implementation will focus on the 2013 National Climate Assessment (NCA) . (http://assessment.globalchange.gov) The NCA integrates, evaluates, and interprets the findings of the USGCRP; analyzes the effects of global change on the natural environment, agriculture, energy production and use, land and water resources, transportation, human health and welfare, human social systems, and biological diversity; and analyzes current trends in global change, both human-induced and natural, and projects major trends for the subsequent 25 to 100 years. The NCA has received over 500 distinct technical inputs to the process, many of which are reports distilling and synthesizing even more information, coming from thousands of individuals around the federal, state and local governments, academic institutions and non-governmental organizations. The GCIS will present a web-based version of the NCA including annotations linking the findings and content of the NCA with the scientific research, datasets, models, observations, etc. that led to its conclusions. It will use semantic tagging and a linked data approach, assigning globally unique, persistent, resolvable identifiers to all of the related entities and capturing and presenting the relationships between them, both internally and referencing out to other linked data sources and back to agency data centers. The developing W3C PROV Data Model and ontology will be used to capture the provenance trail and present it in both human readable web pages and machine readable formats such as RDF and SPARQL. This will improve visibility into the assessment process, increase

  2. Global climate change and terrestrial net primary production

    NASA Technical Reports Server (NTRS)

    Melillo, Jerry M.; Mcguire, A. D.; Kicklighter, David W.; Moore, Berrien, III; Vorosmarty, Charles J.; Schloss, Annette L.

    1993-01-01

    A process-based model was used to estimate global patterns of net primary production and soil nitrogen cycling for contemporary climate conditions and current atmospheric CO2 concentration. Over half of the global annual net primary production was estimated to occur in the tropics, with most of the production attributable to tropical evergreen forest. The effects of CO2 doubling and associated climate changes were also explored. The responses in tropical and dry temperate ecosystems were dominated by CO2, but those in northern and moist temperate ecosystems reflected the effects of temperature on nitrogen availability.

  3. Global climate change and terrestrial net primary production

    NASA Technical Reports Server (NTRS)

    Melillo, Jerry M.; Mcguire, A. D.; Kicklighter, David W.; Moore, Berrien, III; Vorosmarty, Charles J.; Schloss, Annette L.

    1993-01-01

    A process-based model was used to estimate global patterns of net primary production and soil nitrogen cycling for contemporary climate conditions and current atmospheric CO2 concentration. Over half of the global annual net primary production was estimated to occur in the tropics, with most of the production attributable to tropical evergreen forest. The effects of CO2 doubling and associated climate changes were also explored. The responses in tropical and dry temperate ecosystems were dominated by CO2, but those in northern and moist temperate ecosystems reflected the effects of temperature on nitrogen availability.

  4. Global Analogues of Climate Change Effects on Agriculture and Groundwater Between Hydrologically Similar Regions of the World

    USDA-ARS?s Scientific Manuscript database

    Large regions of the world are heavily dependent upon groundwater for domestic water and irrigation. The impacts of climate change, including modified climate variability, on groundwater resources, soil water, agriculture, and human life are relatively unknown in most areas, and key sensitivities n...

  5. Global climate change is confounding species conservation strategies.

    PubMed

    Koopowitz, Harold; Hawkins, Bradford A

    2012-06-01

    Most organisms face similar problems with respect to their conservation in the face of global climate change. Here, we examine probable effects of climate change on the hyperdiverse plant family Orchidaceae. In the 20th century, the major concerns for orchid conservation revolved around unsustainable harvest for the orchid trade and, more importantly, land conversion from natural ecosystems to those unable to support wild orchid populations. Land conversion included logging, fire regimes and forest conversions to agricultural systems. Although those forms of degradation continue, an additional suite of threats has emerged, fueled by global climate change. Global climate change involves more than responses of orchid populations to increases in ambient temperature. Increasing temperature induces secondary effects that can be more significant than simple changes in temperature. Among these new threats are extended and prolonged fire seasons, rising sea levels, increases in cyclonic storms, seasonal climate shifts, changes in orthographic wind dew point and increased drought. The long-term outlook for orchid biodiversity in the wild is dismal, as it is for many animal groups, and we need to start rethinking strategies for conservation in a rapidly changing world.

  6. Interfacing remote sensing and geographic information systems for global environmental change research

    NASA Technical Reports Server (NTRS)

    Lee, Jae K.; Randolph, J. C.; Lulla, Kamlesh P.; Helfert, Michael R.

    1993-01-01

    Because changes in the Earth's environment have become major global issues, continuous, longterm scientific information is required to assess global problems such as deforestation, desertification, greenhouse effects and climate variations. Global change studies require understanding of interactions of complex processes regulating the Earth system. Space-based Earth observation is an essential element in global change research for documenting changes in Earth environment. It provides synoptic data for conceptual predictive modeling of future environmental change. This paper provides a brief overview of remote sensing technology from the perspective of global change research.

  7. Interfacing remote sensing and geographic information systems for global environmental change research

    NASA Technical Reports Server (NTRS)

    Lee, Jae K.; Randolph, J. C.; Lulla, Kamlesh P.; Helfert, Michael R.

    1993-01-01

    Because changes in the Earth's environment have become major global issues, continuous, longterm scientific information is required to assess global problems such as deforestation, desertification, greenhouse effects and climate variations. Global change studies require understanding of interactions of complex processes regulating the Earth system. Space-based Earth observation is an essential element in global change research for documenting changes in Earth environment. It provides synoptic data for conceptual predictive modeling of future environmental change. This paper provides a brief overview of remote sensing technology from the perspective of global change research.

  8. Do disease cycles follow changes in weather? Researchers ponder global warming`s effect on the carriers of human illness

    SciTech Connect

    Brown, K.S.

    1996-07-01

    Two years ago, Mother Nature one-upped an Institute of Medicine (IOM) committee big time. In 1991, the committee had wracked its collective brains to come up with a plausible epidemic scenario for a report on disease emergence. The team finally settled on a potential southern US outbreak of yellow fever, a well-known African viral disease carried by mosquitoes. The idea was realistic, if not particularly imaginative. Yellow fever is an old problem. Shortly after the report on microbe-induced epidemics was released, Mother Nature displayed tremendous creativity. In the spring of 1993, a mysterious virus began killing young people in the Southwest. The culprit turned out to be a previously unrecognized strain of hantavirus, which causes a deadly respiratory disease. Emerging from its natural host, the common deer mouse, the hantavirus strain affected at least 131 people. Half died. Today, emerging viruses have shocked the public and sent scientists searching for causes of epidemics and factors that determine how serious disease outbreaks might be be. One factor gaining attention climate. To learn how global warming might affect mosquitoes, mice and other microbe carriers, biologists are studying diseases within an environmental context. This article discusses the work in this area and some of the results, speculations, and future areas of interest.

  9. NASA NDATC Global Climate Change Education Initiative

    NASA Astrophysics Data System (ADS)

    Bennett, B.; Wood, E.; Meyer, D.; Maynard, N.; Pandya, R. E.

    2009-12-01

    This project aligns with NASA’s Strategic Goal 3A - “Study Earth from space to advance scientific understanding and meet societal needs and focuses on funding from the GCCE Funding Category 2: Strengthen the Teaching and Learning About Global Climate Change Within Formal Education Systems. According to the Intergovernmental Panel on Climate Change Report (2007) those communities with the least amount of resources will be most vulnerable, and least likely to adapt to the impacts brought on by a changing climate. Further, the level of vulnerability of these communities is directly correlated with their ability to implement short, medium and long range mitigation measures. The North Dakota Association of Tribal Colleges (NDATC) has established a climate change education initiative among its six member Tribal Colleges and Universities (TCUs). The goal of this project is to enhance the TCUs capacity to educate their constituents on the science of climate change and mitigation strategies specifically as they apply to Indian Country. NDATC is comprised of six American Indian tribally chartered colleges (TCUs) which include: Cankdeska Cikana Community College, serving the Spirit Lake Dakota Nation; Fort Berthold Community College, serving the Mandan, Hidatsa, and Arikara Nation; Sitting Bull College, serving the Hunkpapa Lakota and Dakota Nation; Turtle Mountain Community College, serving the Turtle Mountain Band of Chippewa; Sisseton Wahpeton College serving the Sisseton and Wahpeton Dakota Nation, and United Tribes Technical College, serving over 70 Tribal groups from across the United States. The purpose of this project is to (1) increase awareness of climate change and its potential impacts in Indian Country through education for students, faculty and presidents of the TCUs as well as Tribal leadership; (2) increase the capacity of TCUs to respond to this global threat on behalf of tribal people; (3) develop climate change mitigation strategies relevant to Indian

  10. Global climate change and infectious diseases.

    PubMed

    Shuman, E K

    2011-01-01

    Climate change is occurring as a result of warming of the earth's atmosphere due to human activity generating excess amounts of greenhouse gases. Because of its potential impact on the hydrologic cycle and severe weather events, climate change is expected to have an enormous effect on human health, including on the burden and distribution of many infectious diseases. The infectious diseases that will be most affected by climate change include those that are spread by insect vectors and by contaminated water. The burden of adverse health effects due to these infectious diseases will fall primarily on developing countries, while it is the developed countries that are primarily responsible for climate change. It is up to governments and individuals to take the lead in halting climate change, and we must increase our understanding of the ecology of infectious diseases in order to protect vulnerable populations.

  11. Neutron Capture Rates near A=130 which Effect a Global Change to the r-Process Abundance Distribution

    SciTech Connect

    Surman, Rebecca; Beun, Joshua; Mclaughlin, Gail C; Hix, William Raphael

    2009-01-01

    We investigate the impact of neutron capture rates near the A=130 peak on the r-process abundance pattern. We show that these capture rates can alter the abundances of individual nuclear species, not only in the region of A=130 peak but also throughout the abundance pattern. We discuss in general the nonequilibrium processes that produce these abundance changes and determine which capture rates have the most significant impact.

  12. Global change effects on the long-term feeding ecology and contaminant exposures of East Greenland polar bears.

    PubMed

    McKinney, Melissa A; Iverson, Sara J; Fisk, Aaron T; Sonne, Christian; Rigét, Frank F; Letcher, Robert J; Arts, Michael T; Born, Erik W; Rosing-Asvid, Aqqalu; Dietz, Rune

    2013-08-01

    Rapid climate changes are occurring in the Arctic, with substantial repercussions for arctic ecosystems. It is challenging to assess ecosystem changes in remote polar environments, but one successful approach has entailed monitoring the diets of upper trophic level consumers. Quantitative fatty acid signature analysis (QFASA) and fatty acid carbon isotope (δ(13) C-FA) patterns were used to assess diets of East Greenland (EG) polar bears (Ursus maritimus) (n = 310) over the past three decades. QFASA-generated diet estimates indicated that, on average, EG bears mainly consumed arctic ringed seals (47.5 ± 2.1%), migratory subarctic harp (30.6 ± 1.5%) and hooded (16.7 ± 1.3%) seals and rarely, if ever, consumed bearded seals, narwhals or walruses. Ringed seal consumption declined by 14%/decade over 28 years (90.1 ± 2.5% in 1984 to 33.9 ± 11.1% in 2011). Hooded seal consumption increased by 9.5%/decade (0.0 ± 0.0% in 1984 to 25.9 ± 9.1% in 2011). This increase may include harp seal, since hooded and harp seal FA signatures were not as well differentiated relative to other prey species. Declining δ(13) C-FA ratios supported shifts from more nearshore/benthic/ice-associated prey to more offshore/pelagic/open-water-associated prey, consistent with diet estimates. Increased hooded seal and decreased ringed seal consumption occurred during years when the North Atlantic Oscillation (NAO) was lower. Thus, periods with warmer temperatures and less sea ice were associated with more subarctic and less arctic seal species consumption. These changes in the relative abundance, accessibility, or distribution of arctic and subarctic marine mammals may have health consequences for EG polar bears. For example, the diet change resulted in consistently slower temporal declines in adipose levels of legacy persistent organic pollutants, as the subarctic seals have higher contaminant burdens than arctic seals. Overall, considerable changes are occurring in the EG

  13. From global change science to action with social sciences

    SciTech Connect

    Weaver, C. P.; Mooney, Sian; Allen, D.; Beller-Simms, Nancy; Fish, T.; Grambsch, A.; Hohenstein, W.; Jacobs, Kathy; Kenney, Melissa A.; Lane, Meredith A.; Langner, L.; Larson, E.; McGinnis, D. L.; Moss, Richard H.; Nichols, L. G.; Nierenberg, Claudia; Seyller, E. A.; Stern, Paul; Winthrop, R.

    2014-08-01

    US efforts to integrate social and biophysical sciences to address the issue of global change exist within a wider movement to understand global change as a societal challenge and to inform policy. Insights from the social sciences can help transform global change research into action.

  14. Plant - microbe interactions under Global Change: the microbial perspective

    NASA Astrophysics Data System (ADS)

    Richter, Andreas

    2017-04-01

    There is ample evidence that both microorganisms and plants will respond to Global Changes, such as enhanced temperatures, increased nitrogen deposition and atmospheric CO2 concentrations, or biodiversity loss. Plant and microbial activities are linked, amongst other factors, by belowground carbon allocation and aboveground nutrient allocation, which may be altered under Global Changes to different extents. The effect of Global Changes on the interaction of plants and microbes is therefore often difficult to predict. In my talk, I will look at plant-microbe interactions from a microbial perspective. I will ask the question what the direct and indirect (plant-mediated) effects of Global Changes are on microbial activities in soil and what this in turn means for plants and for ecosystem-scale fluxes. I will present results from an in-situ drought experiment, from a long-term soil warming experiment and from a plant diversity experiment, where we investigated microbial growth and turnover, carbon and nutrient use efficiency and gross nutrient transformation rates.

  15. Global patterns of change in discharge regimes for 2100

    NASA Astrophysics Data System (ADS)

    Sperna Weiland, F. C.; van Beek, L. P. H.; Kwadijk, J. C. J.; Bierkens, M. F. P.

    2012-04-01

    This study makes a thorough global assessment of the effects of climate change on hydrological regimes and their accompanying uncertainties. Meteorological data from twelve GCMs (SRES scenarios A1B and control experiment 20C3M) are used to drive the global hydrological model PCR-GLOBWB. This reveals in which regions of the world changes in hydrology can be detected that have a high likelihood and are consistent amongst the ensemble of GCMs. New compared to existing studies is: (1) the comparison of spatial patterns of regime changes and (2) the quantification of notable consistent changes calculated relative to the GCM specific natural variability. The resulting consistency maps indicate in which regions the likelihood of hydrological change is large. Projections of different GCMs diverge widely. This underscores the need of using a multi-model ensemble. Despite discrepancies amongst models, consistent results are revealed: by 2100 the GCMs project consistent decreases in discharge for southern Europe, southern Australia, parts of Africa and southwestern South-America. Discharge decreases strongly for most African rivers, the Murray and the Danube while discharge of monsoon influenced rivers slightly increases. In the Arctic regions river discharge increases and a phase-shift towards earlier peaks is observed. Results are comparable to previous global studies, with a few exceptions. Globally we calculated an ensemble mean discharge increase of more than ten percent. This increase contradicts previously estimated decreases, which is amongst others caused by the use of smaller GCM ensembles and different reference periods.

  16. Global patterns of change in discharge regimes for 2100

    NASA Astrophysics Data System (ADS)

    Sperna Weiland, F. C.; van Beek, L. P. H.; Kwadijk, J. C. J.; Bierkens, M. F. P.

    2011-12-01

    This study makes a thorough global assessment of the effects of climate change on hydrological regimes and their accompanying uncertainties. Meteorological data from twelve GCMs (SRES scenarios A1B, and control experiment 20C3M) are used to drive the global hydrological model PCR-GLOBWB. We reveal in which regions of the world changes in hydrology can be detected that are significant and consistent amongst the ensemble of GCMs. New compared to existing studies is: (1) the comparison of spatial patterns of regime changes and (2) the quantification of consistent significant change calculatesd relative to both the natural variability and the inter-model spread. The resulting consistency maps indicate in which regions likelihood of hydrological change is large. Projections of different GCMs diverge widely. This underscores the need of using a multi-model ensemble. Despite discrepancies amongst models, consistent results are revealed: by 2100 the GCMs project consistent decreases in discharge for southern Europe, southern Australia, parts of Africa and southwestern South-America. Discharge decreases are large for most African rivers, the Murray and the Danube. While discharge of Monsoon influenced rivers slightly increases. In the Arctic regions river discharge increases and a phase-shift towards earlier peaks is observed. Results are comparable to previous global studies, with a few exceptions. Globally we calculated an ensemble mean discharge increase of more than ten percent. This increase contradicts previously estimated decreases, which is amongst others caused by the use of smaller GCM ensembles and different reference periods.

  17. Transgenerational effects of global environmental change: long-term CO(2) and nitrogen treatments influence offspring growth response to elevated CO(2).

    PubMed

    Lau, Jennifer A; Peiffer, Jill; Reich, Peter B; Tiffin, Peter

    2008-11-01

    Global environmental changes can have immediate impacts on plant growth, physiology, and phenology. Long-term effects that are only observable after one or more generations are also likely to occur. These transgenerational effects can result either from maternal environmental effects or from evolutionary responses to novel selection pressures and are important because they may alter the ultimate ecological impact of the environmental change. Here, we show that transgenerational effects of atmospheric carbon dioxide (CO(2)) and soil nitrogen (N) treatments influence the magnitude of plant growth responses to elevated CO(2) (eCO(2)). We collected seeds from Lupinus perennis, Poa pratensis, and Schizachyrium scoparium populations that had experienced five growing seasons of ambient CO(2) (aCO(2)) or eCO(2) treatments and ambient or increased N deposition and planted these seeds into aCO(2) or eCO(2) environments. We found that the offspring eCO(2) treatments stimulated immediate increases in L. perennis and P. pratensis growth and that the maternal CO(2) environment influenced the magnitude of this growth response for L. perennis: biomass responses of offspring from the eCO(2) maternal treatments were only 54% that of the offspring from the aCO(2) maternal treatments. Similar trends were observed for P. pratensis and S. scoparium. We detected some evidence that long-term N treatments also altered growth responses to eCO(2); offspring reared from seed from maternal N-addition treatments tended to show greater positive growth responses to eCO(2) than offspring from ambient N maternal treatments. However, the effects of long-term N treatments on offspring survival showed the opposite pattern. Combined, our results suggest that transgenerational effects of eCO(2) and N-addition may influence the growth stimulation effects of eCO(2), potentially altering the long-term impacts of eCO(2) on plant populations.

  18. Global climate change crosses state boundaries

    SciTech Connect

    Changnon, S.A.

    1996-12-31

    The hot, dry summer of 1988 brought the specter of global warming a bit too close for comfort. {open_quotes}Scorching heat, not scientific models, attracted media attention,{close_quotes} says Stanley A. Changnon, senior scientist with the Illinois State Water Survey in Champaign, Illinois. Rising temperatures in the late 1980`s prompted individual states to begin to take action to curb greenhouse-gas emissions. A 1990 report by the National Governors Association identified two guiding principles for addressing climate change issues. {open_quotes}First, that energy policy must be at the center of any efforts to control greenhouse-gas emissions. Second, that state can...restrict emissions through state policies related to public utilities, land use, transportation, and even taxation,{close_quotes} Changnon says. Even if concerns for global warming prove to be overblown, states decided to act for broader economic and environmental reasons. Such initiatives not only save money, but they improve air quality and leave the nation more energy independent,{close_quotes} Changnon says.

  19. Global climate change impacts on forests and markets

    NASA Astrophysics Data System (ADS)

    Tian, Xiaohui; Sohngen, Brent; Kim, John B.; Ohrel, Sara; Cole, Jefferson

    2016-03-01

    This paper develops an economic analysis of climate change impacts in the global forest sector. It illustrates how potential future climate change impacts can be integrated into a dynamic forestry economics model using data from a global dynamic vegetation model, the MC2 model. The results suggest that climate change will cause forest outputs (such as timber) to increase by approximately 30% over the century. Aboveground forest carbon storage also is projected to increase, by approximately 26 Pg C by 2115, as a result of climate change, potentially providing an offset to emissions from other sectors. The effects of climate mitigation policies in the energy sector are then examined. When climate mitigation in the energy sector reduces warming, we project a smaller increase in forest outputs over the timeframe of the analysis, and we project a reduction in the sink capacity of forests of around 12 Pg C by 2115.

  20. Global Climate Change Adaptation Priorities for Biodiversity and Food Security

    PubMed Central

    Hannah, Lee; Ikegami, Makihiko; Hole, David G.; Seo, Changwan; Butchart, Stuart H. M.; Peterson, A. Townsend; Roehrdanz, Patrick R.

    2013-01-01

    International policy is placing increasing emphasis on adaptation to climate change, including the allocation of new funds to assist adaptation efforts. Climate change adaptation funding may be most effective where it meets integrated goals, but global geographic priorities based on multiple development and ecological criteria are not well characterized. Here we show that human and natural adaptation needs related to maintaining agricultural productivity and ecosystem integrity intersect in ten major areas globally, providing a coherent set of international priorities for adaptation funding. An additional seven regional areas are identified as worthy of additional study. The priority areas are locations where changes in crop suitability affecting impoverished farmers intersect with changes in ranges of restricted-range species. Agreement among multiple climate models and emissions scenarios suggests that these priorities are robust. Adaptation funding directed to these areas could simultaneously address multiple international policy goals, including poverty reduction, protecting agricultural production and safeguarding ecosystem services. PMID:23991125

  1. Global climate change adaptation priorities for biodiversity and food security.

    PubMed

    Hannah, Lee; Ikegami, Makihiko; Hole, David G; Seo, Changwan; Butchart, Stuart H M; Peterson, A Townsend; Roehrdanz, Patrick R

    2013-01-01

    International policy is placing increasing emphasis on adaptation to climate change, including the allocation of new funds to assist adaptation efforts. Climate change adaptation funding may be most effective where it meets integrated goals, but global geographic priorities based on multiple development and ecological criteria are not well characterized. Here we show that human and natural adaptation needs related to maintaining agricultural productivity and ecosystem integrity intersect in ten major areas globally, providing a coherent set of international priorities for adaptation funding. An additional seven regional areas are identified as worthy of additional study. The priority areas are locations where changes in crop suitability affecting impoverished farmers intersect with changes in ranges of restricted-range species. Agreement among multiple climate models and emissions scenarios suggests that these priorities are robust. Adaptation funding directed to these areas could simultaneously address multiple international policy goals, including poverty reduction, protecting agricultural production and safeguarding ecosystem services.

  2. Global Change. Teaching Activities on Global Change for Grades 4-6.

    ERIC Educational Resources Information Center

    Geological Survey (Dept. of Interior), Reston, VA.

    This packet contains a series of teaching guides on global change. The series includes lessons on dendrochronology; land, air, and water; and island living. Included is information such as : laws of straws; where land, air, and water meet; and Earth as home. Each section provides an introductory description of the activity, the purpose of the…

  3. Global Governance for Health: how to motivate political change?

    PubMed

    McNeill, D; Ottersen, O P

    2015-07-01

    In this article, we address a central theme that was discussed at the Durham Health Summit: how can politics be brought back into global health governance and figure much more prominently in discussions around policy? We begin by briefly summarizing the report of the Lancet - University of Oslo Commission on Global Governance for Health: 'The Political Origins of Health Inequity' Ottersen et al. In order to provide compelling evidence of the central argument, the Commission selected seven case studies relating to, inter alia, economic and fiscal policy, food security, and foreign trade and investment agreements. Based on an analysis of these studies, the report concludes that the problems identified are often due to political choices: an unwillingness to change the global system of governance. This raises the question: what is the most effective way that a report of this kind can be used to motivate policy-makers, and the public at large, to demand change? What kind of moral or rational argument is most likely to lead to action? In this paper we assess the merits of various alternative perspectives: health as an investment; health as a global public good; health and human security; health and human development; health as a human right; health and global justice. We conclude that what is required in order to motivate change is a more explicitly political and moral perspective - favouring the later rather than the earlier alternatives just listed. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  4. Talking about Climate Change and Global Warming

    PubMed Central

    Kim, Ji Yoon; Joo, Gea-Jae

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warming (GW) and Climate change (CC) to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined. PMID:26418127

  5. Talking about Climate Change and Global Warming.

    PubMed

    Lineman, Maurice; Do, Yuno; Kim, Ji Yoon; Joo, Gea-Jae

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warming (GW) and Climate change (CC) to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined.

  6. White House Conference on Global Climate Change

    SciTech Connect

    Not Available

    1993-11-01

    President Clinton has directed the White House office on Environmental Policy to coordinate an interagency process to develop a plan to fulfill the commitment he made in his Earth Day address on April 21, 1993. This plan will become the cornerstone of the Climate Change Plan that will be completed shortly after the Rio Accord enters into force. The Office on Environmental Policy established the Interagency Climate Change Mitigation Group to draw on the expertise of federal agencies including the National Economic Council; the Council of Economic Advisors; the Office of Science and Technology Policy; the Office of Management and Budget; the National Security Council; the Domestic Policy Council; the Environmental Protection Agency; and the Departments of Energy, Transportation, Agriculture, Interior, Treasury, Commerce, and State. Working groups have been established to examine six key policy areas: energy demand, energy supply, joint implementation, methane and other gases, sinks, and transportation. The purpose of the White House Conference on Global Climate Change was to ``tap the real-world experiences`` of diverse participants and seek ideas and information for meeting the President`s goals. During the opening session, senior administration officials defined the challenge ahead and encouraged open and frank conversation about the best possible ways to meet it.

  7. Sustainable biochar to mitigate global climate change

    PubMed Central

    Woolf, Dominic; Amonette, James E.; Street-Perrott, F. Alayne; Lehmann, Johannes; Joseph, Stephen

    2010-01-01

    Production of biochar (the carbon (C)-rich solid formed by pyrolysis of biomass) and its storage in soils have been suggested as a means of abating climate change by sequestering carbon, while simultaneously providing energy and increasing crop yields. Substantial uncertainties exist, however, regarding the impact, capacity and sustainability of biochar at the global level. In this paper we estimate the maximum sustainable technical potential of biochar to mitigate climate change. Annual net emissions of carbon dioxide (CO2), methane and nitrous oxide could be reduced by a maximum of 1.8 Pg CO2-C equivalent (CO2-Ce) per year (12% of current anthropogenic CO2-Ce emissions; 1 Pg=1 Gt), and total net emissions over the course of a century by 130 Pg CO2-Ce, without endangering food security, habitat or soil conservation. Biochar has a larger climate-change mitigation potential than combustion of the same sustainably procured biomass for bioenergy, except when fertile soils are amended while coal is the fuel being offset. PMID:20975722

  8. [Subjective causal scenarios for global environmental change].

    PubMed

    Böhm, G; Mader, S

    1998-01-01

    Two studies are presented that investigate the assumptions that risk evaluation is based on subjective causal scenarios, and that the cognitive representation of global environmental risks is structured according to five causal levels: human attitudes, human activities, emissions or pollutions, environmental changes, and negative consequences. In study 1, 30 subjects listed in free-response format causes, consequences, and remedial measures for 14 environmental risks. Differences between predictive and diagnostic inferences were found: whereas subjects tend to assign immediate rather than mediated causes, they predominantly assign negative consequences for humans, irrespective of the length of the causal chain that leads to these consequences. In study 2, 41 subjects judged the overall similarity between 25 environmental risks. A multidimensional scaling analysis of these similarity judgments replicates the theoretically assumed five causal levels. Results of both studies support the assumptions that risk evaluation is based on implicit causal hypotheses and that the proposed five-level structure adequately describes the cognitive representation of environmental risks.

  9. Boreal forest health and global change.

    PubMed

    Gauthier, S; Bernier, P; Kuuluvainen, T; Shvidenko, A Z; Schepaschenko, D G

    2015-08-21

    The boreal forest, one of the largest biomes on Earth, provides ecosystem services that benefit society at levels ranging from local to global. Currently, about two-thirds of the area covered by this biome is under some form of management, mostly for wood production. Services such as climate regulation are also provided by both the unmanaged and managed boreal forests. Although most of the boreal forests have retained the resilience to cope with current disturbances, projected environmental changes of unprecedented speed and amplitude pose a substantial threat to their health. Management options to reduce these threats are available and could be implemented, but economic incentives and a greater focus on the boreal biome in international fora are needed to support further adaptation and mitigation actions.

  10. Resource subsidies between stream and terrestrial ecosystems under global change

    USGS Publications Warehouse

    Larsen, Stefano; Muehlbauer, Jeffrey D.; Marti Roca, Maria Eugenia

    2016-01-01

    Streams and adjacent terrestrial ecosystems are characterized by permeable boundaries that are crossed by resource subsidies. Although the importance of these subsidies for riverine ecosystems is increasingly recognized, little is known about how they may be influenced by global environmental change. Drawing from available evidence, in this review we propose a conceptual framework to evaluate the effects of global change on the quality and spatiotemporal dynamics of stream–terrestrial subsidies. We illustrate how changes to hydrological and temperature regimes, atmospheric CO2 concentration, land use and the distribution of nonindigenous species can influence subsidy fluxes by affecting the biology and ecology of donor and recipient systems and the physical characteristics of stream–riparian boundaries. Climate-driven changes in the physiology and phenology of organisms with complex life cycles will influence their development time, body size and emergence patterns, with consequences for adjacent terrestrial consumers. Also, novel species interactions can modify subsidy dynamics via complex bottom-up and top-down effects. Given the seasonality and pulsed nature of subsidies, alterations of the temporal and spatial synchrony of resource availability to consumers across ecosystems are likely to result in ecological mismatches that can scale up from individual responses, to communities, to ecosystems. Similarly, altered hydrology, temperature, CO2 concentration and land use will modify the recruitment and quality of riparian vegetation, the timing of leaf abscission and the establishment of invasive riparian species. Along with morphological changes to stream–terrestrial boundaries, these will alter the use and fluxes of allochthonous subsidies associated with stream ecosystems. Future research should aim to understand how subsidy dynamics will be affected by key drivers of global change, including agricultural intensification, increasing water use and biotic

  11. Resource subsidies between stream and terrestrial ecosystems under global change.

    PubMed

    Larsen, Stefano; Muehlbauer, Jeffrey D; Marti, Eugenia

    2016-07-01

    Streams and adjacent terrestrial ecosystems are characterized by permeable boundaries that are crossed by resource subsidies. Although the importance of these subsidies for riverine ecosystems is increasingly recognized, little is known about how they may be influenced by global environmental change. Drawing from available evidence, in this review we propose a conceptual framework to evaluate the effects of global change on the quality and spatiotemporal dynamics of stream-terrestrial subsidies. We illustrate how changes to hydrological and temperature regimes, atmospheric CO2 concentration, land use and the distribution of nonindigenous species can influence subsidy fluxes by affecting the biology and ecology of donor and recipient systems and the physical characteristics of stream-riparian boundaries. Climate-driven changes in the physiology and phenology of organisms with complex life cycles will influence their development time, body size and emergence patterns, with consequences for adjacent terrestrial consumers. Also, novel species interactions can modify subsidy dynamics via complex bottom-up and top-down effects. Given the seasonality and pulsed nature of subsidies, alterations of the temporal and spatial synchrony of resource availability to consumers across ecosystems are likely to result in ecological mismatches that can scale up from individual responses, to communities, to ecosystems. Similarly, altered hydrology, temperature, CO2 concentration and land use will modify the recruitment and quality of riparian vegetation, the timing of leaf abscission and the establishment of invasive riparian species. Along with morphological changes to stream-terrestrial boundaries, these will alter the use and fluxes of allochthonous subsidies associated with stream ecosystems. Future research should aim to understand how subsidy dynamics will be affected by key drivers of global change, including agricultural intensification, increasing water use and biotic

  12. Multi-year effects of feral sorghum spp under ambient and global change conditions in sunlit mesocosms

    EPA Science Inventory

    Background/Questions/Methods Biofuel crops, proposed as a means to reduce dependence on fossil fuels, raise concerns regarding ecological risks of their escape from cultivation. We report here second year results of our study on potential effects of feral biofuel crops on nati...

  13. Multi-year effects of feral sorghum spp under ambient and global change conditions in sunlit mesocosms

    EPA Science Inventory

    Background/Questions/Methods Biofuel crops, proposed as a means to reduce dependence on fossil fuels, raise concerns regarding ecological risks of their escape from cultivation. We report here second year results of our study on potential effects of feral biofuel crops on nati...

  14. Eutrophication of Cape Cod estuaries: Effect of decadal changes in global-driven atmospheric and local-scale wastewater nutrient loads.

    PubMed

    Valiela, Ivan; Owens, Caroline; Elmstrom, Elizabeth; Lloret, Javier

    2016-09-15

    Nitrogen (N) supply by atmospheric deposition, wastewater, and fertilizers controls estuarine eutrophication. In New England, atmospheric N loads recently decreased by 50% and land-derived contributions rose about 80%, owing to national-scale emission controls and local urban development. The decrease in atmospheric deposition was large enough to balance increases in land-derived N loads, so total N loads to Waquoit Bay estuaries in Cape Cod did not change significantly between 1990 and 2014. Unchanged N regimes were corroborated by finding no differences in estuarine nutrient concentrations and macrophyte biomass between pre-2005 and in 2015. Coastal zones, subject to reasonably rapid changes in global and local driver variables, will require that assessment and management of eutrophication include adaptive strategies that capture effects of changing baselines. Management initiatives will be constrained by spatial scale of driver variables: local efforts may address wastewater and fertilizer N sources, but atmospheric sources require national or international attention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Global Environmental Change: Modifying Human Contributions Through Education

    NASA Astrophysics Data System (ADS)

    Carter, Lynne M.

    1998-12-01

    The 1995 Intergovernmental Panel on Climate Change (IPCC, 1996) Science report concludes that evidence now available "points toward a discernible human influence on global climate" (p. 439). Reductions in emissions will require changes in human behavior. This study assessed whether gains in global environmental change knowledge would lead to changes in human behaviors that could be deemed environmentally responsible. The study assessed the impact on participant behavior of a two-and-one-half day National Informal Educators Workshop and Videoconference held November 14-16, 1994. The workshops were located in seven down-link sites around the continental U.S. and Hawaii. The program utilized a variety of pedagogical techniques during five hours of satellite programming with national expertise on global change topics (natural variability, greenhouse effect, ozone depletion, ecosystem response, and population and resource distribution) and applications of that information with local experts in regional workshops. Participants implemented many personal and professional behavior changes after participation in this program. Six behavior change scales were created from assessment of survey responses (four coefficient alphas were above .7, one was .68, and one was .58). Personal behavior changes grouped into three categories: Use of Fewer Resources (acts of everyday life generally under volitional control), Purchasing Choices/Options (less frequent acts, not under total volitional control, with significant environmental effect over the lifetime of the decision, e.g., an automobile) and Increased Awareness and Discussion (indicating changes in "habits of mind"). The professional behavior changes also grouped into three categories: Curriculum Development (developing/revising curricula including new knowledge); Networking (with colleagues from the program); and Office Procedures (reflecting environmentally responsible behavior). The statistically significant behavior changes

  16. Effecting change in primary care management of respiratory conditions: a global scoping exercise and literature review of educational interventions to inform the IPCRG's E-Quality initiative.

    PubMed

    McDonnell, Juliet; Williams, Siân; Chavannes, Niels H; Correia de Sousa, Jaime; Fardy, H John; Fletcher, Monica; Stout, James; Tomlins, Ron; Yusuf, Osman M; Pinnock, Hilary

    2012-12-01

    This discussion paper describes a scoping exercise and literature review commissioned by the International Primary Care Respiratory Group (IPCRG) to inform their E-Quality programme which seeks to support small-scale educational projects to improve respiratory management in primary care. Our narrative review synthesises information from three sources: publications concerning the global context and health systems development; a literature search of Medline, CINAHL and Cochrane databases; and a series of eight interviews conducted with members of the IPCRG faculty. Educational interventions sit within complex healthcare, economic, and policy contexts. It is essential that any development project considers the local circumstances in terms of economic resources, political circumstances, organisation and administrative capacities, as well as the specific quality issue to be addressed. There is limited evidence (in terms of changed clinician behaviour and/or improved health outcomes) regarding the merits of different educational and quality improvement approaches. Features of educational interventions that were most likely to show some evidence of effectiveness included being carefully designed, multifaceted, engaged health professionals in their learning, provided ongoing support, were sensitive to local circumstances, and delivered in combination with other quality improvement strategies. To be effective, educational interventions must consider the complex healthcare systems within which they operate. The criteria for the IPCRG E-Quality awards thus require applicants not only to describe their proposed educational initiative but also to consider the practical and local barriers to successful implementation, and to propose a robust evaluation in terms of changed clinician behaviour or improved health outcomes.

  17. Persistent Identification of Agents and Objects of Global Change

    NASA Astrophysics Data System (ADS)

    Tilmes, C.; Fox, P. A.; Waple, A.; Zednik, S.

    2012-12-01

    "Global Change" includes climate change, ecological change, land-use changes and host of other interacting complex systems including societal and institutional implications. This vast body of information includes scientific research, data, measurements, models, analyses, assessments, etc. It is produced by a collection of multi-disciplinary researchers and organizations from around the world and demand for this information is increasing from a multitude of different audiences and stakeholders. The identification and organization of the agents and objects of global change information and their inter-relationships and contributions to the whole story of change is critical for conveying the state of knowledge, its complexity as well as syntheses and key messages to researchers, decision makers, and the public. The U.S. Global Change Research Program (http://globalchange.gov) coordinates and integrates federal research on changes in the global environment and their implications for society. The USGCRP is developing a Global Change Information System (GCIS) that will organize and present our best understanding of global change, and all the contributing information that leads to that understanding, including the provenance needed to trust and use that information. The first implementation will provide provenance for the National Climate Assessment (NCA). (http://assessment.globalchange.gov) The NCA must integrate, evaluate, and interpret the findings of the USGCRP; analyze the effects of global change on the natural environment, agriculture, energy production and use, land and water resources, transportation, human health and welfare, human social systems, and biological diversity; and analyze current trends in global change, both human-induced and natural, and projects major trends for the subsequent 25 to 100 years. It also assesses information at the regional scale across the Nation. A synthesis report is required not less frequently than every four years and the next

  18. Marine viruses and global climate change.

    PubMed

    Danovaro, Roberto; Corinaldesi, Cinzia; Dell'anno, Antonio; Fuhrman, Jed A; Middelburg, Jack J; Noble, Rachel T; Suttle, Curtis A

    2011-11-01

    Sea-surface warming, sea-ice melting and related freshening, changes in circulation and mixing regimes, and ocean acidification induced by the present climate changes are modifying marine ecosystem structure and function and have the potential to alter the cycling of carbon and nutrients in surface oceans. Changing climate has direct and indirect consequences on marine viruses, including cascading effects on biogeochemical cycles, food webs, and the metabolic balance of the ocean. We discuss here a range of case studies of climate change and the potential consequences on virus function, viral assemblages and virus-host interactions. In turn, marine viruses influence directly and indirectly biogeochemical cycles, carbon sequestration capacity of the oceans and the gas exchange between the ocean surface and the atmosphere. We cannot yet predict whether the viruses will exacerbate or attenuate the magnitude of climate changes on marine ecosystems, but we provide evidence that marine viruses interact actively with the present climate change and are a key biotic component that is able to influence the oceans' feedback on climate change. Long-term and wide spatial-scale studies, and improved knowledge of host-virus dynamics in the world's oceans will permit the incorporation of the viral component into future ocean climate models and increase the accuracy of the predictions of the climate change impacts on the function of the oceans.

  19. Global change and river flow in Italy

    NASA Astrophysics Data System (ADS)

    Billi, Paolo; Fazzini, Massimiliano

    2017-08-01

    The hydrological data of 23 flow gauges, evenly distributed across the Italian territory and covering almost 40% of it, have been analyzed in order to verify the occurrence of temporal trends and their rates of change. A total of 102 time series diagrams of the parameters considered, i.e. precipitation, runoff, maximum discharge, discharge exceed 10 days a year, were obtained. The results indicate that all the parameters considered show a decreasing trend. Also the comparison of bankfull discharge calculated for three periods, prior to 1951, 1951-1980 and 1981-2007, indicate a substantial decrease. The general decrease in river flow is accounted for in terms of global change (namely precipitation, land use change and water consumption increase). In the aim to summarize the pattern of change of the parameters considered, the data have been standardized and mean time series of Z score for a few representative rivers have been obtained. All these results depict for Italy a framework of substantial decrease of water resources (average precipitation and runoff decreasing rates are - 2.11 and - 2.65 mmyr- 1, respectively) and sediment transport capacity with evident consequences on the river ecosystems and beach stability. The countertrending behavior of medium to high discharge of the Po River are analyzed and explained in terms of temperature increase. In order to investigate the role of the upstream catchment area in determining the variability of a few of the parameters considered in this study, simple regression analyses have been performed which demonstrate a high degree of accuracy in predicting specific discharges also for rivers without flow records or insufficient flow data.

  20. Flood Risk and Global Change: Future Prospects

    NASA Astrophysics Data System (ADS)

    Serra-Llobet, A.

    2014-12-01

    Global flood risk is increasing in response to population growth in flood-prone areas, human encroachment into natural flood paths (exacerbating flooding in areas formerly out of harm's way), and climate change (which alters variables driving floods). How will societies respond to and manage flood risk in coming decades? Analysis of flood policy evolution in the EU and US demonstrates that changes occurred in steps, in direct response to disasters. After the flood produced by the collapse of Tous Dam in 1982, Spain initiated a systematic assessment of areas of greatest flood risk and civil protection response. The devastating floods on the Elbe and elsewhere in central Europe in 2002 motivated adoption of the EU Floods Directive (2007), which requires member states to develop systematic flood risk maps (now due) and flood risk management plans (due in 2015). The flooding of New Orleans by Hurricane Katrina in 2005 resulted in a nationwide levee-safety assessment and improvements in communicating risk, but overall less fundamental change in US flood management than manifest in the EU since 2007. In the developing world, large (and increasing) concentrations of populations in low-lying floodplains, deltas, and coasts are increasingly vulnerable, and governments mostly ill-equipped to implement fundamental changes in land use to prevent future increases in exposure, nor to develop responses to the current threats. Even in the developed world, there is surprisingly little research on how well residents of flood-prone lands understand their true risk, especially when they are 'protected' by '100-year' levees. Looking ahead, researchers and decision makers should prioritize improvements in flood risk perception, river-basin-scale assessment of flood runoff processes (under current and future climate and land-use conditions) and flood management alternatives, and bridging the disconnect between national and international floodplain management policies and local land

  1. Exposure-response analyses of the effects of pregabalin in patients with fibromyalgia using daily pain scores and patient global impression of change.

    PubMed

    Byon, Wonkyung; Ouellet, Daniele; Chew, Marci; Ito, Kaori; Burger, Paula; Pauer, Lynne; Zeiher, Bernhardt; Corrigan, Brian

    2010-07-01

    Data from 4 phase 2/3 studies were pooled to characterize the exposure response of daily pregabalin (150-600 mg) in patients with fibromyalgia using self-assessed daily pain scores (PAIN) and end-of-treatment patient global impression of change (PGIC). The exposure responses of both endpoints were characterized by an Emax model using nonlinear mixed-effects modeling (NONMEM). Drug effect on PAIN relative to placebo was significant with additional maximum effect of 1.51 points on the logit scale and EC50 of 1.54 ng/mL (dose of 174 mg) and a rapid onset (half-life of 11 hours), consistent with the half-life of the drug. The decrease in PAIN with placebo occurred more slowly, reaching maximum response (1.52 points on the logit scale) after 1 month. Drug response in fibromyalgia was dependent on age and sex, with greater PAIN reduction in older patients, in addition to the effect of creatinine clearance, and in females. For PGIC, administration of pregabalin resulted in an increase in the proportion of patients reporting improvement with an ED50 of 228 mg. The analyses support the recommended dose of pregabalin in patients with fibromyalgia of 300 to 450 mg/d.

  2. The potential impact of global environmental change on population health.

    PubMed

    Tong, S

    2000-10-01

    Due to rapid industrial changes and increased pressure of people on fragile ecosystems, large-scale environmental perturbations have been occurring on Earth. Major current environmental problems that can be expected to have a substantial effect on human health include human-induced climate change and stratosphere ozone depletion, because they threaten the ecological support systems on which human life depends. The most serious potential consequence of global environmental change is the erosion of Earth's life-support systems. The public health assessments of the present and future anthropogenic damage to the biosphere have important implications for human health and wellbeing. Medical practitioners have an important role to play in this field.

  3. Phylogenetic Responses of Forest Trees to Global Change

    PubMed Central

    Senior, John K.; Schweitzer, Jennifer A.; O’Reilly-Wapstra, Julianne; Chapman, Samantha K.; Steane, Dorothy; Langley, Adam; Bailey, Joseph K.

    2013-01-01

    In a rapidly changing biosphere, approaches to understanding the ecology and evolution of forest species will be critical to predict and mitigate the effects of anthropogenic global change on forest ecosystems. Utilizing 26 forest species in a factorial experiment with two levels each of atmospheric CO2 and soil nitrogen, we examined the hypothesis that phylogeny would influence plant performance in response to elevated CO2 and nitrogen fertilization. We found highly idiosyncratic responses at the species level. However, significant, among-genetic lineage responses were present across a molecularly determined phylogeny, indicating that past evolutionary history may have an important role in the response of whole genetic lineages to future global change. These data imply that some genetic lineages will perform well and that others will not, depending upon the environmental context. PMID:23593164

  4. Re-Structuring of Marine Communities Exposed to Environmental Change: A Global Study on the Interactive Effects of Species and Functional Richness

    PubMed Central

    Wahl, Martin; Link, Heike; Alexandridis, Nicolaos; Thomason, Jeremy C.; Cifuentes, Mauricio; Costello, Mark J.; da Gama, Bernardo A. P.; Hillock, Kristina; Hobday, Alistair J.; Kaufmann, Manfred J.; Keller, Stefanie; Kraufvelin, Patrik; Krüger, Ina; Lauterbach, Lars; Antunes, Bruno L.; Molis, Markus; Nakaoka, Masahiro; Nyström, Julia; bin Radzi, Zulkamal; Stockhausen, Björn; Thiel, Martin; Vance, Thomas; Weseloh, Annika; Whittle, Mark; Wiesmann, Lisa; Wunderer, Laura; Yamakita, Takehisa; Lenz, Mark

    2011-01-01

    Species richness is the most commonly used but controversial biodiversity metric in studies on aspects of community stability such as structural composition or productivity. The apparent ambiguity of theoretical and experimental findings may in part be due to experimental shortcomings and/or heterogeneity of scales and methods in earlier studies. This has led to an urgent call for improved and more realistic experiments. In a series of experiments replicated at a global scale we translocated several hundred marine hard bottom communities to new environments simulating a rapid but moderate environmental change. Subsequently, we measured their rate of compositional change (re-structuring) which in the great majority of cases represented a compositional convergence towards local communities. Re-structuring is driven by mortality of community components (original species) and establishment of new species in the changed environmental context. The rate of this re-structuring was then related to various system properties. We show that availability of free substratum relates negatively while taxon richness relates positively to structural persistence (i.e., no or slow re-structuring). Thus, when faced with environmental change, taxon-rich communities retain their original composition longer than taxon-poor communities. The effect of taxon richness, however, interacts with another aspect of diversity, functional richness. Indeed, taxon richness relates positively to persistence in functionally depauperate communities, but not in functionally diverse communities. The interaction between taxonomic and functional diversity with regard to the behaviour of communities exposed to environmental stress may help understand some of the seemingly contrasting findings of past research. PMID:21611170

  5. INTRODUCTION: Anticipated changes in the global atmospheric water cycle

    NASA Astrophysics Data System (ADS)

    Allan, Richard P.; Liepert, Beate G.

    2010-06-01

    intensification of precipitation (O'Gorman and Schneider 2009) and analysis of observed and simulated changes in extreme rainfall for Europe (Lenderink and van Mijgaard 2008) and over tropical oceans by Allan et al (2010) appear to corroborate this. Radiative absorption by water vapour (Previdi 2010, Stephens and Ellis 2008) also provides a thermodynamic feedback on the water cycle, and explains why climate model projections of global precipitation and evaporation of around 1-3% K-1 are muted with respect to the expected 7% K-1 increases in low-level moisture. Climate models achieve dynamical responses through reductions in strength of the Walker circulation (Vecchi et al 2006) and small yet systematic changes in the atmospheric boundary layer over the ocean that modify evaporation (Richter and Xie 2008). A further consequence is anticipated sub-tropical drying (Neelin et al 2006, Chou et al 2007); Allan et al (2010) confirm a decline in dry sub-tropical precipitation while the wet regions become wetter both in model simulations and satellite-based observations. Discrepancies between observed and climate model simulated hydrological response to warming (Wentz et al 2007, Yu and Weller 2007) are of immediate concern in understanding and predicting future responses. Over decadal time-scales it is important to establish whether such discrepancies relate to the observing system, climate modeling deficiencies, or are a statistical artifact of the brevity of the satellite records (Liepert and Previdi 2009). Techniques for extracting information on century-scale changes in precipitation are emerging (Smith et al 2009) but are also subject to severe limitations. Past decadal-scale changes in the water cycle may be further influenced by regionally and temporally varying forcings and resulting feedbacks which must be represented realistically by models (Andrews et al 2009). The radiative impact of aerosols and their indirect effects on clouds and precipitation (Liepert et al 2004) provide

  6. What are the effects of Agro-Ecological Zones and land use region boundaries on land resource projection using the Global Change Assessment Model?

    SciTech Connect

    Di Vittorio, Alan V.; Kyle, Page; Collins, William D.

    2016-11-01

    Understanding the potential impacts of climate change is complicated by mismatched spatial representations between gridded Earth System Models (ESMs) and Integrated Assessment Models (IAMs), whose regions are typically larger and defined by geopolitical and biophysical criteria. In this study we address uncertainty stemming from the construction of land use regions in an IAM, the Global Change Assessment Model (GCAM), whose regions are currently based on historical climatic conditions (1961-1990). We re-define GCAM’s regions according to projected climatic conditions (2070-2099), and investigate how this changes model outcomes for land use, agriculture, and forestry. By 2100, we find potentially large differences in projected global and regional area of biomass energy crops, fodder crops, harvested forest, and intensive pasture. These land area differences correspond with changes in agricultural commodity prices and production. These results have broader implications for understanding policy scenarios and potential impacts, and for evaluating and comparing IAM and ESM simulations.

  7. Climate change: impacts on and implications for global health.

    PubMed

    St Louis, Michael E; Hess, Jeremy J

    2008-11-01

    The most severe consequences of climate change will accrue to the poorest people in the poorest countries, despite their own negligible contribution to greenhouse gas emissions. In recent years, global health efforts in those same countries have grown dramatically. However, the emerging scientific consensus about climate change has not yet had much influence on the routine practice and strategies of global health. We review here the anticipated types and global distribution of health impacts of climate change, discuss relevant aspects of current global interventions for health in low-income countries, and consider potential elements of a framework for appropriately and efficiently mainstreaming global climate change-mitigation and -adaptation strategies into the ongoing enterprise of global health. We propose a collaborative learning initiative involving four areas: (1) increased awareness among current global health practitioners of climate change and its potential impacts for the most disadvantaged, (2) strengthening of the evidence base, (3) incorporation now of climate change-mitigation and -adaptation concerns into design of ongoing global health programs, and (4) alignment of current global health program targets and methods with larger frameworks for climate change and sustainable development. The great vulnerability to climate change of populations reached by current global health efforts should prompt all concerned with global health to take a leading role in advocating for climate change mitigation in their own countries.

  8. Global climate changes, natural disasters, and travel health risks.

    PubMed

    Diaz, James H

    2006-01-01

    Whether the result of cyclical atmospheric changes, anthropogenic activities, or combinations of both, authorities now agree that the earth is warming from a variety of climatic effects, including the cascading effects of greenhouse gas emissions to support human activities. To date, most reports of the public health outcomes of global warming have been anecdotal and retrospective in design and have focused on heat stroke deaths following heat waves, drowning deaths in floods and tsunamis, and mosquito-borne infectious disease outbreaks following tropical storms and cyclones. Accurate predictions of the true public health outcomes of global climate change are confounded by several effect modifiers including human acclimatization and adaptation, the contributions of natural climatic changes, and many conflicting atmospheric models of climate change. Nevertheless, temporal relationships between environmental factors and human health outcomes have been identified and may be used as criteria to judge the causality of associations between the human health outcomes of climate changes and climate-driven natural disasters. Travel medicine physicians are obligated to educate their patients about the known public health outcomes of climate changes, about the disease and injury risk factors their patients may face from climate-spawned natural disasters, and about the best preventive measures to reduce infectious diseases and injuries following natural disasters throughout the world.

  9. Productivity of aquatic primary producers under global climate change.

    PubMed

    Häder, Donat-P; Villafañe, Virginia E; Helbling, E Walter

    2014-10-01

    The productivity of aquatic primary producers depends on a number of biotic and abiotic factors, such as pH, CO2 concentration, temperature, nutrient availability, solar UV and PAR irradiances, mixing frequency as well as herbivore pressure and the presence of viruses, among others. The effects of these factors, within a climate change context, may be additive, synergistic or antagonistic. Since some of them, e.g. solar radiation and temperature, vary along a latitudinal gradient, this perspective about the effects of global climate change on primary producers will consider ecosystems individually, separated into polar (Arctic and Antarctic), temperate and tropical waters. As coastal waters are characterized by lower light penetration and higher DOM and nutrient concentrations, they are considered in a separate section. Freshwater systems are also governed by different conditions and therefore also treated in their own section. Overall, we show that although there are general common trends of changes in variables associated with global change (e.g. the impact of UVR on photosynthesis tends to decrease with increasing temperature and nutrient input), the responses of aquatic primary producers have great variability in the different ecosystems across latitudes. This is mainly due to direct or indirect effects associated with physico-chemical changes that occur within water bodies. Therefore we stress the need for regional predictions on the responses of primary producers to climate change as it is not warranted to extrapolate from one system to another.

  10. The economics of long-term global climate change

    SciTech Connect

    Not Available

    1990-09-01

    This report is intended to provide an overview of economic issues and research relevant to possible, long-term global climate change. It is primarily a critical survey, not a statement of Administration or Department policy. This report should serve to indicate that economic analysis of global change is in its infancy few assertions about costs or benefits can be made with confidence. The state of the literature precludes any attempt to produce anything like a comprehensive benefit-cost analysis. Moreover, almost all the quantitative estimates regarding physical and economic effects in this report, as well as many of the qualitative assertions, are controversial. Section I provides background on greenhouse gas emissions and their likely climatic effects and on available policy instruments. Section II considers the costs of living with global change, assuming no substantial efforts to reduce greenhouse gas emissions. Section III considers costs of reducing these emissions, though the available literature does not contain estimates of the costs of policies that would, on the assumptions of current climate models, prevent climate change altogether. The individual sections are not entirely compartmentalized, but can be read independently if necessary.

  11. Shifting Global Invasive Potential of European Plants with Climate Change

    PubMed Central

    Peterson, A. Townsend; Stewart, Aimee; Mohamed, Kamal I.; Araújo, Miguel B.

    2008-01-01

    Global climate change and invasions by nonnative species rank among the top concerns for agents of biological loss in coming decades. Although each of these themes has seen considerable attention in the modeling and forecasting communities, their joint effects remain little explored and poorly understood. We developed ecological niche models for 1804 species from the European flora, which we projected globally to identify areas of potential distribution, both at present and across 4 scenarios of future (2055) climates. As expected from previous studies, projections based on the CGCM1 climate model were more extreme than those based on the HadCM3 model, and projections based on the a2 emissions scenario were more extreme than those based on the b2 emissions scenario. However, less expected were the highly nonlinear and contrasting projected changes in distributional areas among continents: increases in distributional potential in Europe often corresponded with decreases on other continents, and species seeing expanding potential on one continent often saw contracting potential on others. In conclusion, global climate change will have complex effects on invasive potential of plant species. The shifts and changes identified in this study suggest strongly that biological communities will see dramatic reorganizations in coming decades owing to shifting invasive potential by nonnative species. PMID:18560572

  12. Shifting global invasive potential of European plants with climate change.

    PubMed

    Peterson, A Townsend; Stewart, Aimee; Mohamed, Kamal I; Araújo, Miguel B

    2008-06-18

    Global climate change and invasions by nonnative species rank among the top concerns for agents of biological loss in coming decades. Although each of these themes has seen considerable attention in the modeling and forecasting communities, their joint effects remain little explored and poorly understood. We developed ecological niche models for 1804 species from the European flora, which we projected globally to identify areas of potential distribution, both at present and across 4 scenarios of future (2055) climates. As expected from previous studies, projections based on the CGCM1 climate model were more extreme than those based on the HadCM3 model, and projections based on the a2 emissions scenario were more extreme than those based on the b2 emissions scenario. However, less expected were the highly nonlinear and contrasting projected changes in distributional areas among continents: increases in distributional potential in Europe often corresponded with decreases on other continents, and species seeing expanding potential on one continent often saw contracting potential on others. In conclusion, global climate change will have complex effects on invasive potential of plant species. The shifts and changes identified in this study suggest strongly that biological communities will see dramatic reorganizations in coming decades owing to shifting invasive potential by nonnative species.

  13. Increasing Diversity in Global Climate Change Research for Undergraduates

    NASA Astrophysics Data System (ADS)

    Johnson, L. P.; Marchese, P.; Carlson, B. E.; Howard, A. M.; Peteet, D. M.; Rosenzweig, C.; Druyan, L. M.; Fulakeza, M.; Gaffin, S.; Austin, S. A.; Cheung, T. D.; Damas, M. C.; Boxe, C.; Prince, T.; Ng, C.; Frost, J.

    2014-12-01

    Global Climate Change and the ability to predict the effects of forcings and feedback mechanisms on global and local climate are critical to the survival of the inhabitants of planet Earth. It is therefore important to motivate students to continue their studies towards advanced degrees and pursue careers related to climate change. This is best accomplished by involving undergraduates in global climate change research. This Research Experience for Undergraduates (REU) initiative is based at the City University of New York (CUNY) and the Goddard Institute for Space Studies (GISS), and is supported by NASA and NSF. Mentors for the primarily summer research experiences include CUNY faculty and GISS scientists. Research topics include the Wetland Carbon Project, The Cooling Power Of Urban Vegetation, Internal Ocean Mixing, El Niño Southern Oscillation, Pollution Transport and Tropospheric Ozone. Students are recruited from CUNY colleges and other colleges and universities. The program maintains an emphasis on under-represented minorities and females. Approximately sixty percent of the undergraduate students are under-represented minorities and forty percent are female. The project is supported by NSF award AGS-1359293 REU Site: CUNY/GISS Center for Global Climate Research.

  14. Development and validation of an experimental life support system for assessing the effects of global climate change and environmental contamination on estuarine and coastal marine benthic communities.

    PubMed

    Coelho, Francisco J R C; Rocha, Rui J M; Pires, Ana C C; Ladeiro, Bruno; Castanheira, José M; Costa, Rodrigo; Almeida, Adelaide; Cunha, Angela; Lillebø, Ana Isabel; Ribeiro, Rui; Pereira, Ruth; Lopes, Isabel; Marques, Catarina; Moreira-Santos, Matilde; Calado, Ricardo; Cleary, Daniel F R; Gomes, Newton C M

    2013-08-01

    An experimental life support system (ELSS) was constructed to study the interactive effects of multiple stressors on coastal and estuarine benthic communities, specifically perturbations driven by global climate change and anthropogenic environmental contamination. The ELSS allows researchers to control salinity, pH, temperature, ultraviolet radiation (UVR), tidal rhythms and exposure to selected contaminants. Unlike most microcosms previously described, our system enables true independent replication (including randomization). In addition to this, it can be assembled using commercially available materials and equipment, thereby facilitating the replication of identical experimental setups in different geographical locations. Here, we validate the reproducibility and environmental quality of the system by comparing chemical and biological parameters recorded in our ELSS with those prevalent in the natural environment. Water, sediment microbial community and ragworm (the polychaete Hediste diversicolor) samples were obtained from four microcosms after 57 days of operation. In general, average concentrations of dissolved inorganic nutrients (NO3 (-) ; NH4 (+) and PO4 (-3) ) in the water column of the ELSS experimental control units were within the range of concentrations recorded in the natural environment. While some shifts in bacterial community composition were observed between in situ and ELSS sediment samples, the relative abundance of most metabolically active bacterial taxa appeared to be stable. In addition, ELSS operation did not significantly affect survival, oxidative stress and neurological biomarkers of the model organism Hediste diversicolor. The validation data indicate that this system can be used to assess independent or interactive effects of climate change and environmental contamination on benthic communities. Researchers will be able to simulate the effects of these stressors on processes driven by microbial communities, sediment and seawater

  15. Preparing for Change: Challenges and Opportunities in a Global World

    NASA Astrophysics Data System (ADS)

    O'Hara, Sabine

    2009-03-01

    Our world is becoming increasingly global. This may sound like a clich'e, yet it is true nonetheless, and poses unprecedented challenges for graduate education. For the new generation of researchers, teachers and professionals to be successful they must be prepared in more than the content area of their chosen field. They must also acquire proficiency in global awareness, cultural literacy, multicultural teamwork and language facility. These global skill sets form the basis for effective multicultural collaboration and will become increasingly important even for those who do not intend to study or work abroad. Knowledge has become more portable in the internet age; large data bases and reports can be accessed in real time from various locations around the globe; information is exchanged in multifaceted knowledge networks; collaborative research takes place within and outside of the traditional venue of the research university in the private sector, research institutes, and associations; research networks span multiple disciplines as progress invariably occurs at the intersection of previously discrete fields of inquiry. Global collaboration thus is no longer dependent on the physical proximity of collaborators but can take place anywhere any time. This then requires yet another set of skills, namely the ability to adapt to change, exhibit flexibility and transfer skills to a range of contexts and applications. Effective graduate education must address these realities and expose students to learning opportunities that will enable them to acquire these much needed global skills sets.

  16. Climatic change controls productivity variation in global grasslands

    NASA Astrophysics Data System (ADS)

    Gao, Qingzhu; Zhu, Wenquan; Schwartz, Mark W.; Ganjurjav, Hasbagan; Wan, Yunfan; Qin, Xiaobo; Ma, Xin; Williamson, Matthew A.; Li, Yue

    2016-05-01

    Detection and identification of the impacts of climate change on ecosystems have been core issues in climate change research in recent years. In this study, we compared average annual values of the normalized difference vegetation index (NDVI) with theoretical net primary productivity (NPP) values based on temperature and precipitation to determine the effect of historic climate change on global grassland productivity from 1982 to 2011. Comparison of trends in actual productivity (NDVI) with climate-induced potential productivity showed that the trends in average productivity in nearly 40% of global grassland areas have been significantly affected by climate change. The contribution of climate change to variability in grassland productivity was 15.2–71.2% during 1982–2011. Climate change contributed significantly to long-term trends in grassland productivity mainly in North America, central Eurasia, central Africa, and Oceania; these regions will be more sensitive to future climate change impacts. The impacts of climate change on variability in grassland productivity were greater in the Western Hemisphere than the Eastern Hemisphere. Confirmation of the observed trends requires long-term controlled experiments and multi-model ensembles to reduce uncertainties and explain mechanisms.

  17. Climatic change controls productivity variation in global grasslands.

    PubMed

    Gao, Qingzhu; Zhu, Wenquan; Schwartz, Mark W; Ganjurjav, Hasbagan; Wan, Yunfan; Qin, Xiaobo; Ma, Xin; Williamson, Matthew A; Li, Yue

    2016-05-31

    Detection and identification of the impacts of climate change on ecosystems have been core issues in climate change research in recent years. In this study, we compared average annual values of the normalized difference vegetation index (NDVI) with theoretical net primary productivity (NPP) values based on temperature and precipitation to determine the effect of historic climate change on global grassland productivity from 1982 to 2011. Comparison of trends in actual productivity (NDVI) with climate-induced potential productivity showed that the trends in average productivity in nearly 40% of global grassland areas have been significantly affected by climate change. The contribution of climate change to variability in grassland productivity was 15.2-71.2% during 1982-2011. Climate change contributed significantly to long-term trends in grassland productivity mainly in North America, central Eurasia, central Africa, and Oceania; these regions will be more sensitive to future climate change impacts. The impacts of climate change on variability in grassland productivity were greater in the Western Hemisphere than the Eastern Hemisphere. Confirmation of the observed trends requires long-term controlled experiments and multi-model ensembles to reduce uncertainties and explain mechanisms.

  18. Climatic change controls productivity variation in global grasslands

    PubMed Central

    Gao, Qingzhu; Zhu, Wenquan; Schwartz, Mark W.; Ganjurjav, Hasbagan; Wan, Yunfan; Qin, Xiaobo; Ma, Xin; Williamson, Matthew A.; Li, Yue

    2016-01-01

    Detection and identification of the impacts of climate change on ecosystems have been core issues in climate change research in recent years. In this study, we compared average annual values of the normalized difference vegetation index (NDVI) with theoretical net primary productivity (NPP) values based on temperature and precipitation to determine the effect of historic climate change on global grassland productivity from 1982 to 2011. Comparison of trends in actual productivity (NDVI) with climate-induced potential productivity showed that the trends in average productivity in nearly 40% of global grassland areas have been significantly affected by climate change. The contribution of climate change to variability in grassland productivity was 15.2–71.2% during 1982–2011. Climate change contributed significantly to long-term trends in grassland productivity mainly in North America, central Eurasia, central Africa, and Oceania; these regions will be more sensitive to future climate change impacts. The impacts of climate change on variability in grassland productivity were greater in the Western Hemisphere than the Eastern Hemisphere. Confirmation of the observed trends requires long-term controlled experiments and multi-model ensembles to reduce uncertainties and explain mechanisms. PMID:27243565

  19. Illinois task force on global climate change

    SciTech Connect

    Griffin, B.S.

    1996-12-31

    The purpose of this report is to document progress in the areas of national policy development, emissions reduction, research and education, and adaptation, and to identify specific actions that will be undertaken to implement the Illinois state action plan. The task force has been tracking national and international climate change policy, and helping shape national policy agenda. Identification and implementation of cost-effective mitigation measures has been performed for emissions reduction. In the area of research and education, the task force is developing the capacity to measure climate change indicators, maintaining and enhancing Illinois relevant research, and strengthening climate change education. Activities relevant to adaptation to new policy include strengthening water laws and planning for adaptation. 6 figs., 4 tabs.

  20. Global change and the groundwater management challenge

    NASA Astrophysics Data System (ADS)

    Gorelick, Steven M.; Zheng, Chunmiao

    2015-05-01

    With rivers in critical regions already exploited to capacity throughout the world and groundwater overdraft as well as large-scale contamination occurring in many areas, we have entered an era in which multiple simultaneous stresses will drive water management. Increasingly, groundwater resources are taking a more prominent role in providing freshwater supplies. We discuss the competing fresh groundwater needs for human consumption, food production, energy, and the environment, as well as physical hazards, and conflicts due to transboundary overexploitation. During the past 50 years, groundwater management modeling has focused on combining simulation with optimization methods to inspect important problems ranging from contaminant remediation to agricultural irrigation management. The compound challenges now faced by water planners require a new generation of aquifer management models that address the broad impacts of global change on aquifer storage and depletion trajectory management, land subsidence, groundwater-dependent ecosystems, seawater intrusion, anthropogenic and geogenic contamination, supply vulnerability, and long-term sustainability. The scope of research efforts is only beginning to address complex interactions using multiagent system models that are not readily formulated as optimization problems and that consider a suite of human behavioral responses.

  1. Southern Ocean: Its involvement in global change

    SciTech Connect

    Gordon, A.L.

    1992-03-01

    Southern Ocean is the site of considerable water mass formation which cools and ventilates the modern world ocean. At the polar front zone, formation of cool, low salinity water sinks and spreads northward at intermediate depths limiting the downward penetration of the thermocline. Within the seasonal sea ice zone and along the margins of Antarctica, convection injects very cold oxygenated water into the deep and bottom ocean. These conditions developed as Antarctica shifted into its present configuration and grew a persistent glacial ice sheet, about 14 million years ago. The potential of the Southern Ocean to ventilate the deep and bottom ocean layers is related to occurrence of polynyas that form within the winter sea ice cover. Global climate changes would be expected to alter the polynya size and frequency. Under greenhouse-induced warming offshore polynyas may become less common as the static stability of the Southern Ocean mixed layer increases. This would diminish the Southern Ocean's cooling influence on the deep layers of the world ocean, resulting in a warmer deep ocean. The fate of coastal polynyas is less clear.

  2. Causes of change in 20th century global river discharge

    NASA Astrophysics Data System (ADS)

    Gerten, Dieter; Rost, Stefanie; von Bloh, Werner; Lucht, Wolfgang

    2008-10-01

    A global vegetation and hydrology model (LPJmL) was applied to quantify the contributions of changing precipitation, temperature, atmospheric CO2 content, land use and irrigation to worldwide trends in 20th century river discharge (Q). Consistently with observations, Q decreased in parts of Africa, central/southern Asia and south-eastern Europe, and increased especially in parts of North America and western Asia. Based on the CRU TS2.1 climatology, total global Q rose over 1901-2002 (trend, 30.8 km3 a-2, equaling 7.7%), due primarily to increasing precipitation (individual effect, +24.7 km3 a-2). Global warming (-3.1), rising CO2 (+4.4), land cover changes (+5.9) and irrigation (-1.1) also had discernible effects. However, sign and magnitude of trends exhibited pronounced decadal variability and differed among precipitation forcing datasets. Since recent trends in these and other drivers of Q are mainly anthropogenic, we conclude that humans exert an increasing influence on the global water cycle.

  3. Modelling of global change at the mesopause

    NASA Astrophysics Data System (ADS)

    Gruzdev, A.; Brasseur, G.

    2003-04-01

    Significant negative temperature trend at the northern hemisphere mesospause for winter season has been documented by different methods of observations. For studying mechanisms of the mesopause cooling, simulations with the use of the chemical dynamical radiative two-dimensional model named SOCRATES are used. Probable mechanisms of the observed cooling of the mesosphere and lower thermosphere can be of radiation as well as dynamical nature. Among these are changes in contents of greenhouse gases and changes in gravity wave momentum deposition affecting the meridional circulation in the upper mesosphere. Combined increase for the last 50 year, in accordance with the observed trends, in contents of CO2, methane, N2O, and water vapor as well as the lower troposphere warming results in a simulated cooling of a few K at the mesopause for winter and summer seasons. This shows that the trends in the contents of greenhouse gases and the lower troposphere temperature are not the only (and, probably, not the main) reason of the large cooling in the upper mesosphere, at least in the framework of a two-dimensional model. Long-term changes in the circulation resulting in changes of gravity wave momentum and energy deposition, which affects the circulation in the middle atmosphere, could also be responsible for this effect. As an example, the doubling of the model gravity wave forcing results in an essential cooling by several K at the northern hemisphere mesopause in winter. The simulated effect of combined changes in contents of greenhouse gases, low troposphere temperature, and doubling of the gravity wave forcing is the cooling of the model mesopause by 8-10 K in the middle-to-high latitudes of the northern hemisphere in winter, along with insignificant thermal effect in summer.

  4. Ecological effects of environmental change.

    PubMed

    Luque, Gloria M; Hochberg, Michael E; Holyoak, Marcel; Hossaert, Martine; Gaill, Françoise; Courchamp, Franck

    2013-05-01

    This Special Issue of Ecology Letters presents contributions from an international meeting organised by Centre National de la Recherche Scientifique (CNRS) and Ecology Letters on the broad theme of ecological effects of global environmental change. The objectives of these articles are to synthesise, hypothesise and illustrate the ecological effects of environmental change drivers and their interactions, including habitat loss and fragmentation, pollution, invasive species and climate change. A range of disciplines is represented, including stoichiometry, cell biology, genetics, evolution and biodiversity conservation. The authors emphasise the need to account for several key ecological factors and different spatial and temporal scales in global change research. They also stress the importance of ecosystem complexity through approaches such as functional group and network analyses, and of mechanisms and predictive models with respect to environmental responses to global change across an ecological continuum: population, communities and ecosystems. Lastly, these articles provide important insights and recommendations for environmental conservation and management, as well as highlighting future research priorities.

  5. Potential impact of global climate change on malaria risk

    SciTech Connect

    Martens, W.J.M.; Rotmans, J. |; Niessen, L.W.; Jetten, T.H.; McMichael, A.J.

    1995-05-01

    The biological activity and geographic distribution of the malarial parasite and its vector are sensitive to climatic influences, especially temperature and precipitation. We have incorporated General Circulation Model-based scenarios of anthropogenic global climate change in an integrated linked-system model for predicting changes in malaria epidemic potential in the next century. The concept of the disability-adjusted life years is included to arrive at a single measure of the effect of anthropogenic climate change on the health impact of malaria. Assessment of the potential impact of global climate change on the incidence of malaria suggests a widespread increase of risk due to expansion of the areas suitable for malaria transmission. This predicted increase is most pronounced at the borders of endemic malaria areas and at higher altitudes within malarial areas. The incidence of infection is sensitive to climate changes in areas of Southeast Asia, South America, and parts of Africa where the disease is less endemic; in these regions the numbers of years of healthy life lost may increase significantly. However, the simulated changes in malaria risk must be interpreted on the basis of local environmental conditions, the effects of socioeconomic developments, and malaria control programs or capabilities. 33 refs., 5 figs., 1 tab.

  6. A Rapid Global Effects Capability

    DTIC Science & Technology

    2016-06-01

    emerging technologies, future platforms, and force structure .3 Research included historical references, primary, and secondary sources. Interviews...40 RECOMMENDATIONS………………………………………………………………. 41 BIBLIOGRAPHY ...including, but not limited to, basing, emerging technologies, future platforms, and force structure .8 Thesis statement A Rapid Global Effects