Science.gov

Sample records for global climate part

  1. Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part II: climate variability

    NASA Astrophysics Data System (ADS)

    Rackow, T.; Goessling, H. F.; Jung, T.; Sidorenko, D.; Semmler, T.; Barbi, D.; Handorf, D.

    2016-06-01

    This study forms part II of two papers describing ECHAM6-FESOM, a newly established global climate model with a unique multi-resolution sea ice-ocean component. While part I deals with the model description and the mean climate state, here we examine the internal climate variability of the model under constant present-day (1990) conditions. We (1) assess the internal variations in the model in terms of objective variability performance indices, (2) analyze variations in global mean surface temperature and put them in context to variations in the observed record, with particular emphasis on the recent warming slowdown, (3) analyze and validate the most common atmospheric and oceanic variability patterns, (4) diagnose the potential predictability of various climate indices, and (5) put the multi-resolution approach to the test by comparing two setups that differ only in oceanic resolution in the equatorial belt, where one ocean mesh keeps the coarse ~1° resolution applied in the adjacent open-ocean regions and the other mesh is gradually refined to ~0.25°. Objective variability performance indices show that, in the considered setups, ECHAM6-FESOM performs overall favourably compared to five well-established climate models. Internal variations of the global mean surface temperature in the model are consistent with observed fluctuations and suggest that the recent warming slowdown can be explained as a once-in-one-hundred-years event caused by internal climate variability; periods of strong cooling in the model (`hiatus' analogs) are mainly associated with ENSO-related variability and to a lesser degree also to PDO shifts, with the AMO playing a minor role. Common atmospheric and oceanic variability patterns are simulated largely consistent with their real counterparts. Typical deficits also found in other models at similar resolutions remain, in particular too weak non-seasonal variability of SSTs over large parts of the ocean and episodic periods of almost absent

  2. Simulating Global Climate Summits

    ERIC Educational Resources Information Center

    Vesperman, Dean P.; Haste, Turtle; Alrivy, Stéphane

    2014-01-01

    One of the most persistent and controversial issues facing the global community is climate change. With the creation of the UN Framework Convention on Climate Change (UNFCCC) in 1992 and the Kyoto Protocol (1997), the global community established some common ground on how to address this issue. However, the last several climate summits have failed…

  3. GFDL's CM2 global coupled climate models. Part I: Formulation and simulation characteristics

    USGS Publications Warehouse

    Delworth, T.L.; Broccoli, A.J.; Rosati, A.; Stouffer, R.J.; Balaji, V.; Beesley, J.A.; Cooke, W.F.; Dixon, K.W.; Dunne, J.; Dunne, K.A.; Durachta, J.W.; Findell, K.L.; Ginoux, P.; Gnanadesikan, A.; Gordon, C.T.; Griffies, S.M.; Gudgel, R.; Harrison, M.J.; Held, I.M.; Hemler, R.S.; Horowitz, L.W.; Klein, S.A.; Knutson, T.R.; Kushner, P.J.; Langenhorst, A.R.; Lee, H.-C.; Lin, S.-J.; Lu, J.; Malyshev, S.L.; Milly, P.C.D.; Ramaswamy, V.; Russell, J.; Schwarzkopf, M.D.; Shevliakova, E.; Sirutis, J.J.; Spelman, M.J.; Stern, W.F.; Winton, M.; Wittenberg, A.T.; Wyman, B.; Zeng, F.; Zhang, R.

    2006-01-01

    The formulation and simulation characteristics of two new global coupled climate models developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) are described. The models were designed to simulate atmospheric and oceanic climate and variability from the diurnal time scale through multicentury climate change, given our computational constraints. In particular, an important goal was to use the same model for both experimental seasonal to interannual forecasting and the study of multicentury global climate change, and this goal has been achieved. Tw o versions of the coupled model are described, called CM2.0 and CM2.1. The versions differ primarily in the dynamical core used in the atmospheric component, along with the cloud tuning and some details of the land and ocean components. For both coupled models, the resolution of the land and atmospheric components is 2?? latitude ?? 2.5?? longitude; the atmospheric model has 24 vertical levels. The ocean resolution is 1?? in latitude and longitude, with meridional resolution equatorward of 30?? becoming progressively finer, such that the meridional resolution is 1/3?? at the equator. There are 50 vertical levels in the ocean, with 22 evenly spaced levels within the top 220 m. The ocean component has poles over North America and Eurasia to avoid polar filtering. Neither coupled model employs flux adjustments. The co ntrol simulations have stable, realistic climates when integrated over multiple centuries. Both models have simulations of ENSO that are substantially improved relative to previous GFDL coupled models. The CM2.0 model has been further evaluated as an ENSO forecast model and has good skill (CM2.1 has not been evaluated as an ENSO forecast model). Generally reduced temperature and salinity biases exist in CM2.1 relative to CM2.0. These reductions are associated with 1) improved simulations of surface wind stress in CM2.1 and associated changes in oceanic gyre circulations; 2) changes in cloud tuning and

  4. Global climate change

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    Present processes of global climate change are reviewed. The processes determining global temperature are briefly described and the concept of effective temperature is elucidated. The greenhouse effect is examined, including the sources and sinks of greenhouse gases.

  5. The GISS Global Climate-Middle Atmosphere Model. Part I: Model Structure and Climatology.

    NASA Astrophysics Data System (ADS)

    Rind, D.; Suozzo, R.; Balachandran, N. K.; Lacis, A.; Russell, G.

    1988-02-01

    The GISS global climate model (Hansen et al.) has been extended to include the middle atmosphere up to an altitude of approximately 85 km. The model has the full array of processes used for climate research, i.e., numerical solutions of the primitive equations, calculation of radiative and surface fluxes, a complete hydrologic cycle with convective and cloud cover parameterizations, etc. In addition, a parameterized gravity wave drag formulation has been incorporated, in which gravity-wave momentum fluxes due to flow over topography, wind shear and convection are calculated at each grid box, using theoretical relationships between the grid-scale variables and expected source strengths. The parameterized waves then propagate vertically upward depending on the instantaneous wind and temperature profiles, with waves breaking at levels in which their momentum flux exceed the background saturation value. Radiative damping is also calculated, and the total momentum convergence in each layer is used to alter the local wind, while the kinetic energy dissipation warms the temperature. Thus the generation, propagation, breaking and drag are all a function of the calculated variables at each grid box for the various vertical levels.The model has been run for five years, and the results compared with observations. The model produces generally realistic fields of temperature and wind throughout the atmosphere up to approximately 75 km. Important aspects of the current simulation include a proper break between the tropospheric and stratospheric jets, realistic closing off of the wintertime jet in the mesosphere, the observed warm winter/cold summer mesosphere, and a semiannual wind oscillation near the stratopause. The most obvious deficiencies are that the long-wave energy itself is somewhat too small in the low and midstratosphere, temperatures are too cold near the model top and are too warm in the polar Southern Hemisphere lower stratosphere during winter. Also, the model

  6. Designing Global Climate Change

    NASA Astrophysics Data System (ADS)

    Griffith, P. C.; ORyan, C.

    2012-12-01

    In a time when sensationalism rules the online world, it is best to keep things short. The people of the online world are not passing back and forth lengthy articles, but rather brief glimpses of complex information. This is the target audience we attempt to educate. Our challenge is then to attack not only ignorance, but also apathy toward global climate change, while conforming to popular modes of learning. When communicating our scientific material, it was difficult to determine what level of information was appropriate for our audience, especially with complex subject matter. Our unconventional approach for communicating the carbon crisis as it applies to global climate change caters to these 'recreational learners'. Using story-telling devices acquired from Carolyne's biomedical art background coupled with Peter's extensive knowledge of carbon cycle and ecosystems science, we developed a dynamic series of illustrations that capture the attention of a callous audience. Adapting complex carbon cycle and climate science into comic-book-style animations creates a channel between artist, scientist, and the general public. Brief scenes of information accompanied by text provide a perfect platform for visual learners, as well as fresh portrayals of stale material for the jaded. In this way art transcends the barriers of the cerebral and the abstract, paving the road to understanding.;

  7. GFDL's ESM2 global coupled climate-carbon Earth System Models. Part I: physical formulation and baseline simulation characteristics

    USGS Publications Warehouse

    Dunne, John P.; John, Jasmin G.; Adcroft, Alistair J.; Griffies, Stephen M.; Hallberg, Robert W.; Shevalikova, Elena; Stouffer, Ronald J.; Cooke, William; Dunne, Krista A.; Harrison, Matthew J.; Krasting, John P.; Malyshev, Sergey L.; Milly, P.C.D.; Phillipps, Peter J.; Sentman, Lori A.; Samuels, Bonita L.; Spelman, Michael J.; Winton, Michael; Wittenberg, Andrew T.; Zadeh, Niki

    2012-01-01

    We describe the physical climate formulation and simulation characteristics of two new global coupled carbon-climate Earth System Models, ESM2M and ESM2G. These models demonstrate similar climate fidelity as the Geophysical Fluid Dynamics Laboratory's previous CM2.1 climate model while incorporating explicit and consistent carbon dynamics. The two models differ exclusively in the physical ocean component; ESM2M uses Modular Ocean Model version 4.1 with vertical pressure layers while ESM2G uses Generalized Ocean Layer Dynamics with a bulk mixed layer and interior isopycnal layers. Differences in the ocean mean state include the thermocline depth being relatively deep in ESM2M and relatively shallow in ESM2G compared to observations. The crucial role of ocean dynamics on climate variability is highlighted in the El Niño-Southern Oscillation being overly strong in ESM2M and overly weak ESM2G relative to observations. Thus, while ESM2G might better represent climate changes relating to: total heat content variability given its lack of long term drift, gyre circulation and ventilation in the North Pacific, tropical Atlantic and Indian Oceans, and depth structure in the overturning and abyssal flows, ESM2M might better represent climate changes relating to: surface circulation given its superior surface temperature, salinity and height patterns, tropical Pacific circulation and variability, and Southern Ocean dynamics. Our overall assessment is that neither model is fundamentally superior to the other, and that both models achieve sufficient fidelity to allow meaningful climate and earth system modeling applications. This affords us the ability to assess the role of ocean configuration on earth system interactions in the context of two state-of-the-art coupled carbon-climate models.

  8. An empirical model of global climate - Part 1: Reduced impact of volcanoes upon consideration of ocean circulation

    NASA Astrophysics Data System (ADS)

    Canty, T.; Mascioli, N. R.; Smarte, M.; Salawitch, R. J.

    2012-09-01

    Observed reductions in Earth's surface temperature following explosive volcanic eruptions have been used as a proxy for geo-engineering of climate by the artificial enhancement of stratospheric sulfate. Earth cools following major eruptions due to an increase in the reflection of sunlight caused by a dramatic enhancement of the stratospheric sulfate aerosol burden. Significant global cooling has been observed following the four major eruptions since 1900: Santa María, Mount Agung, El Chichón, and Mount Pinatubo, leading IPCC (2007) to state "major volcanic eruptions can thus cause a drop in global mean surface temperature of about half a degree Celsius that can last for months and even years". We use a multiple linear regression model applied to the global surface temperature anomaly to suggest that exchange of heat between the atmosphere and ocean, driven by variations in the strength of the Atlantic Meridional Overturning Circulation (AMOC), has been a factor in the decline of global temperature following these eruptions. The veracity of this suggestion depends on whether the Atlantic Multidecadal Oscillation (AMO) truly represents a proxy for the strength of the AMOC and the precise quantification of global cooling due to volcanoes depends on how the AMO is detrended. If the AMO is detrended using anthropogenic radiative forcing of climate, we find that surface cooling attributed to Mount Pinatubo, using the Hadley Centre/University of East Anglia surface temperature record, maximizes at 0.15 °C globally and 0.35 °C over land. These values are about a factor of 2 less than found when the AMO is neglected in the model and quite a bit lower than the canonical 0.5 °C cooling usually attributed to Pinatubo. The AMO had begun to decrease prior to the four major eruptions, suggesting that exchange of heat between the atmosphere and ocean due to variations in the strength of the AMOC drives the climate system, rather than responds to volcanic perturbations. The

  9. A Global Climate Model for Instruction.

    ERIC Educational Resources Information Center

    Burt, James E.

    This paper describes a simple global climate model useful in a freshman or sophomore level course in climatology. There are three parts to the paper. The first part describes the model, which is a global model of surface air temperature averaged over latitude and longitude. Samples of the types of calculations performed in the model are provided.…

  10. Integrated assessment of global water scarcity over the 21st century - Part 2: Climate change mitigation policies

    NASA Astrophysics Data System (ADS)

    Hejazi, M. I.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Eom, J.; Wise, M.; Patel, P.; Calvin, K.

    2013-03-01

    We investigate the effects of emission mitigation policies on water scarcity both globally and regionally using the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W m-2 in year 2095 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), under two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The results are compared to a baseline scenario (i.e. no climate change mitigation policy) with radiative forcing reaching 8.8 W m-2 (equivalent to the SRES A1Fi emission scenario) by 2095. When compared to the baseline scenario and maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095 particularly with more stringent climate mitigation targets. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food and energy production, and in land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops. This study implies an increasingly prominent role for water availability in future human decisions, and highlights the importance of including water in integrated assessment of global change. Future research will be directed at incorporating water shortage feedbacks in GCAM to better understand how such stresses will propagate across the various human and natural systems in GCAM.

  11. Integrated assessment of global water scarcity over the 21st century - Part 2: Climate change mitigation policies

    SciTech Connect

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Chaturvedi, Vaibhav; Wise, Marshall A.; Patel, Pralit L.; Eom, Jiyong; Calvin, Katherine V.

    2013-01-01

    We investigate the effects of emission mitigation policies on water scarcity both globally and regionally using the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W/m2 in year 2095 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), under two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The results are compared to a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) by 2095. When compared to the baseline scenario and maintaining the same baseline underlying socioeconomic assumptions, water scarcity declines under a UCT mitigation policy while increases with a FFICT mitigation scenario by the year 2095 with more stringent climate mitigation targets. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food, energy, and land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops. This study implies an increasingly prominent role for water availability in future human decisions, and highlights the importance of including water in integrated assessment of global change. Future research will be directed at incorporating water shortage feedbacks in GCAM to better understand how such stresses will propagate across the various human and natural systems in GCAM.

  12. Global climate feedbacks

    SciTech Connect

    Manowitz, B.

    1990-10-01

    The important physical, chemical, and biological events that affect global climate change occur on a mesoscale -- requiring high spatial resolution for their analysis. The Department of Energy has formulated two major initiatives under the US Global Change Program: ARM (Atmospheric Radiation Measurements), and CHAMMP (Computer Hardware Advanced Mathematics and Model Physics). ARM is designed to use ground and air-craft based observations to document profiles of atmospheric composition, clouds, and radiative fluxes. With research and models of important physical processes, ARM will delineate the relationships between trace gases, aerosol and cloud structure, and radiative transfer in the atmosphere, and will improve the parameterization of global circulation models. The present GCMs do not model important feedbacks, including those from clouds, oceans, and land processes. The purpose of this workshop is to identify such potential feedbacks, to evaluate the uncertainties in the feedback processes (and, if possible, to parameterize the feedback processes so that they can be treated in a GCM), and to recommend research programs that will reduce the uncertainties in important feedback processes. Individual reports are processed separately for the data bases.

  13. Teaching about Global Climate Change

    ERIC Educational Resources Information Center

    Heffron, Susan Gallagher; Valmond, Kharra

    2011-01-01

    Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media…

  14. Global climatic change

    SciTech Connect

    Houghton, R.A.; Woodwell, G.M.

    1989-04-01

    This paper reviews the climatic effects of trace gases such as carbon dioxide and methane. It discusses the expected changes from the increases in trace gases and the extent to which the expected changes can be found in the climate record and in the retreat of glaciers. The use of ice cores in correlating atmospheric composition and climate is discussed. The response of terrestrial ecosystems as a biotic feedback is discussed. Possible responses are discussed, including reduction in fossil-fuel use, controls on deforestation, and reforestation. International aspects, such as the implications for developing nations, are addressed.

  15. Global Climate Change.

    ERIC Educational Resources Information Center

    Hall, Dorothy K.

    1989-01-01

    Discusses recent changes in the Earth's climate. Summarizes reports on changes related to carbon dioxide, temperature, rain, sea level, and glaciers in polar areas. Describes the present effort to measure the changes. Lists 16 references. (YP)

  16. Global Climatic Change.

    ERIC Educational Resources Information Center

    Houghton, Richard A.; Woodwell, George M.

    1989-01-01

    Cites some of the evidence which suggests that the production of carbon dioxide and methane from human activities has begun to change the climate. Describes some measures which should be taken to stop or slow this progression. (RT)

  17. Global Distribution and Climate Forcing of Marine Organic Aerosol - Part 2: Effects on Cloud Properties and Radiative Forcing

    SciTech Connect

    Gantt, Brett; Xu, Jun; Meskhidze, N.; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

    2012-07-25

    A series of simulations with the Community Atmosphere Model version 5 (CAM5) with a 7-mode Modal Aerosol Model were conducted to assess the changes in cloud microphysical properties and radiative forcing resulting from marine organic aerosols. Model simulations show that the anthropogenic aerosol indirect forcing (AIF) predicted by CAM5 is decreased in absolute magnitude by up to 0.09 Wm{sup -2} (7 %) when marine organic aerosols are included. Changes in the AIF from marine organic aerosols are associated with small global increases in low-level incloud droplet number concentration and liquid water path of 1.3 cm{sup -3} (1.5 %) and 0.22 gm{sup -2} (0.5 %), respectively. Areas especially sensitive to changes in cloud properties due to marine organic aerosol include the Southern Ocean, North Pacific Ocean, and North Atlantic Ocean, all of which are characterized by high marine organic emission rates. As climate models are particularly sensitive to the background aerosol concentration, this small but non-negligible change in the AIF due to marine organic aerosols provides a notable link for ocean-ecosystem marine low-level cloud interactions and may be a candidate for consideration in future earth system models.

  18. Forests, carbon and global climate.

    PubMed

    Malhi, Yadvinder; Meir, Patrick; Brown, Sandra

    2002-08-15

    This review places into context the role that forest ecosystems play in the global carbon cycle, and their potential interactions with climate change. We first examine the natural, preindustrial carbon cycle. Every year forest gross photosynthesis cycles approximately one-twelfth of the atmospheric stock of carbon dioxide, accounting for 50% of terrestrial photosynthesis. This cycling has remained almost constant since the end of the last ice age, but since the Industrial Revolution it has undergone substantial disruption as a result of the injection of 480 PgC into the atmosphere through fossil-fuel combustion and land-use change, including forest clearance. In the second part of this paper we review this 'carbon disruption', and its impact on the oceans, atmosphere and biosphere. Tropical deforestation is resulting in a release of 1.7 PgC yr(-1) into the atmosphere. However, there is also strong evidence for a 'sink' for carbon in natural vegetation (carbon absorption), which can be explained partly by the regrowth of forests on abandoned lands, and partly by a global change factor, the most likely cause being 'fertilization' resulting from the increase in atmospheric CO(2). In the 1990s this biosphere sink was estimated to be sequestering 3.2 PgC yr(-1) and is likely to have substantial effects on the dynamics, structure and biodiversity of all forests. Finally, we examine the potential for forest protection and afforestation to mitigate climate change. An extensive global carbon sequestration programme has the potential to make a particularly significant contribution to controlling the rise in CO2 emissions in the next few decades. In the course of the whole century, however, even the maximum amount of carbon that could be sequestered will be dwarfed by the magnitude of (projected) fossil-fuel emissions. Forest carbon sequestration should only be viewed as a component of a mitigation strategy, not as a substitute for the changes in energy supply, use and

  19. Global Climate Change Interaction Web.

    ERIC Educational Resources Information Center

    Fortner, Rosanne W.

    1998-01-01

    Students investigate the effects of global climate change on life in the Great Lakes region in this activity. Teams working together construct as many links as possible for such factors as rainfall, lake water, evaporation, skiing, zebra mussels, wetlands, shipping, walleye, toxic chemicals, coastal homes, and population. (PVD)

  20. Global Air Quality and Climate

    NASA Technical Reports Server (NTRS)

    Fiore, Arlene M.; Naik, Vaishali; Steiner, Allison; Unger, Nadine; Bergmann, Dan; Prather, Michael; Righi, Mattia; Rumbold, Steven T.; Shindell, Drew T.; Skeie, Ragnhild B.; Sudo, Kengo; Szopa, Sophie; Horowitz, Larry W.; Takemura, Toshihiko; Zeng, Guang; Cameron-Smith, Philip J.; Cionni, Irene; Collins, William J.; Dalsoren, Stig; Eyring, Veronika; Folberth, Gerd A.; Ginoux, Paul; Josse, Batrice; Lamarque, Jean-Francois; OConnor, Fiona M.; Mackenzie, Ian A.; Nagashima, Tatsuya; Shindell, Drew Todd; Spracklen, Dominick V.

    2012-01-01

    Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH4), ozone precursors (O3), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O3 precursor CH4 would slow near-term warming by decreasing both CH4 and tropospheric O3. Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NOx) emissions, which increase tropospheric O3 (warming) but also increase aerosols and decrease CH4 (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH4 volatile organic compounds (NMVOC) warm by increasing both O3 and CH4. Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O3 and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative

  1. Global air quality and climate.

    PubMed

    Fiore, Arlene M; Naik, Vaishali; Spracklen, Dominick V; Steiner, Allison; Unger, Nadine; Prather, Michael; Bergmann, Dan; Cameron-Smith, Philip J; Cionni, Irene; Collins, William J; Dalsøren, Stig; Eyring, Veronika; Folberth, Gerd A; Ginoux, Paul; Horowitz, Larry W; Josse, Béatrice; Lamarque, Jean-François; MacKenzie, Ian A; Nagashima, Tatsuya; O'Connor, Fiona M; Righi, Mattia; Rumbold, Steven T; Shindell, Drew T; Skeie, Ragnhild B; Sudo, Kengo; Szopa, Sophie; Takemura, Toshihiko; Zeng, Guang

    2012-10-07

    Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH(4)), ozone precursors (O(3)), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O(3) precursor CH(4) would slow near-term warming by decreasing both CH(4) and tropospheric O(3). Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NO(x)) emissions, which increase tropospheric O(3) (warming) but also increase aerosols and decrease CH(4) (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH(4) volatile organic compounds (NMVOC) warm by increasing both O(3) and CH(4). Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O(3) and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas

  2. Global Carbon Cycle and Climate Change

    NASA Astrophysics Data System (ADS)

    Wofsy, Steven C.

    2004-11-01

    Kirill Kondratyev and his colleagues present an unusual look at global change issues, with particular emphasis on quantitative models that can capture diverse aspects of the complete Earth system-vegetation, atmosphere, oceans, and human beings. The focus is on the global carbon cycle as a prime indicator of global environmental stresses. It includes some remarkably sharp, and insightful critical analysis of the Kyoto Protocol and IPCC activity, and provides citations to a large sampling of Russian-language papers mostly unknown elsewhere. The critique of current policy trends is, in many respects, the most interesting part of the book. The authors are skeptical of claims about attribution of recent climate trends to human intervention, but devastating in their demolition of the ``skeptics'' views that nothing is seriously wrong in the global environmental system. They convincingly bring to bear the most telling observations and facts to make these arguments compelling and clarifying.

  3. Global Climate Change and Agriculture

    SciTech Connect

    Izaurralde, Roberto C.

    2009-01-01

    The Fourth Assessment Report of the Intergovernmental Panel on Climate Change released in 2007 significantly increased our confidence about the role that humans play in forcing climate change. There is now a high degree of confidence that the (a) current atmospheric concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) far exceed those of the pre-industrial era, (b) global increases in CO2 arise mainly from fossil fuel use and land use change while those of CH4 and N2O originate primarily from agricultural activities, and (c) the net effect of human activities since 1750 has led to a warming of the lower layers of the atmosphere, with an increased radiative forcing of 1.6 W m-2. Depending on the scenario of human population growth and global development, mean global temperatures could rise between 1.8 and 4.0 °C by the end of the 21st century.

  4. Global distribution of soil organic carbon, based on the Harmonized World Soil Database - Part 2: Certainty of changes related to land-use and climate

    NASA Astrophysics Data System (ADS)

    Köchy, M.; Don, A.; van der Molen, M. K.; Freibauer, A.

    2014-09-01

    Global biosphere models vary greatly in their projections of future changes of global soil organic carbon (SOC) stocks and aggregated global SOC masses in response to climate change. We estimated the certainty (likelihood) and quantity of increases and decreases on a half-degree grid. We assessed the effect of changes in controlling factors, including net primary productivity (NPP), litter quality, soil acidity, water-saturation, depth of permafrost, land use, temperature, and aridity, in a temporally implicit model that uses categorized driver variables associated by probabilities (Bayesian Network). The probability-weighted results show that, globally, climate effects on NPP had the strongest impact on SOC stocks and the certainty of change after 75 years. Actual land use had the greatest effect locally because the assumed certainty of land use change per unit area was small. The probability-weighted contribution of climate to decomposition was greatest in the humid tropics because of greater absolute effects on decomposition fractions at higher temperatures. In contrast, climate effects on decomposition fractions were small in cold regions. Differences in decomposition rates between contemporary and future climate were greatest in arid subtropical regions because of projected strong increases in precipitation. Warming in boreal and arctic regions increased NPP, balancing or outweighing potential losses from thawing of permafrost. Across contrasting NPP scenarios tropical mountain forests were identified as hotspots of future highly certain C losses. Global soil C mass will increase by 1% with a certainty of 75% if NPP increases due to carbon-dioxide fertilization. At a certainty level of 75%, soil C mass will not change if CO2-induced increase of NPP is limited by nutrients.

  5. Climate science: Misconceptions of global catastrophe

    NASA Astrophysics Data System (ADS)

    Rocklöv, Joacim

    2016-04-01

    American attitudes to changing weather, and therefore to climate change, have been analysed on the basis of US migration patterns since the 1970s. The findings have implications for the success of global climate policies. See Letter p.357

  6. Global Climate Change and the Mitigation Challenge

    EPA Science Inventory

    Book edited by Frank Princiotta titled Global Climate Change--The Technology Challenge Transparent modeling tools and the most recent literature are used, to quantify the challenge posed by climate change and potential technological remedies. The chapter examines forces driving ...

  7. Thermohaline circulations and global climate change

    SciTech Connect

    Hanson, H.P.

    1992-01-01

    Thermohaline Circulations and Global Climate Change'' is concerned with investigating the hypothesis that changes in surface thermal and hydrological forcing of the North Atlantic, changes that might be expected to accompany CO{sub 2}-induced global warming, could result in ocean-atmosphere interactions' exerting a positive feedback on the climate system. Because the North Atlantic is the source of much of the global ocean's reservoir of deep water, and because this deep water could sequester large amounts of anthropogenically produced Co{sub 2}, changes in the rate of deep-water production are important to future climates. Since deep-water production is controlled, in part, by the annual cycle of the atmospheric forcing of the North Atlantic, and since this forcing depends strongly on both hydrological and thermal processes as well as the windstress, there is the potential for feedback between the relatively short-term response of the atmosphere to changing radiative forcing and the longer-term processes in the oceans. Work over the past 12 months has proceeded in several directions.

  8. Thermohaline circulations and global climate change

    SciTech Connect

    Hanson, H.P.

    1992-01-01

    This report discusses research activities conducted during the period 15 January 1992--14 December 1992. Thermohaline Circulations and Global Climate Change is concerned with investigating the hypothesis that changes in surface thermal and hydrological forcing of the North Atlantic, changes that might be expected to accompany C0[sub 2]-induced global warming, could result in ocean-atmosphere interactions' exerting a positive feedback on the climate system. Because the North Atlantic is the source of much of the global ocean's reservoir of deep water, and because this deep water could sequester large amounts of anthropogenically produced C0[sub 2], changes in the rate of deep-water production are important to future climates. Since deep-water Production is controlled, in part, by the annual cycle of the atmospheric forcing of the North Atlantic, and since this forcing depends strongly on both hydrological and thermal processes as well as the windstress, there is the potential for feedback between the relatively short-term response of the atmosphere to changing radiative forcing and the longer-term processes in the oceans. Work over the past 11 months has proceeded according to the continuation discussion of last January and several new results have arisen.

  9. Worldwide glacier monitoring as part of policy-related climate observation: development and strategy of the Global Terrestrial Network for Glaciers (GTN-G)

    NASA Astrophysics Data System (ADS)

    Haeberli, W.; Zemp, M.

    2011-12-01

    Internationally coordinated observation of long-term glacier fluctuations as a key indication of global climate changes has a long tradition, starting already in 1894. With the development of the Global Climate Observing System in support of the United Nations Framework Convention on Climate Change, glaciers and ice caps became an Essential Climate Variable within the Global Terrestrial Observing System. A corresponding Global Terrestrial Network for Glaciers (GTN-G) was indeed established as a pilot project to this program. The basic principles followed by GTN-G and similar networks are to be relevant, feasible, comprehensive and understandable to a wider scientific community and the public. Following recommendations by the International Council for Sciences, a contribution should be made to free and unrestricted international sharing of high-quality, long-term and standardized data and information products. A tiered strategy was adopted in order to bridge the gap between detailed process studies at selected field sites with global coverage through satellite remote sensing. Efforts were also made to ensure continuity of long-term measurement series by combining traditional approaches with modern, future-oriented technologies. Today, the GTN-G is jointly run by three operational bodies in glacier monitoring, which are the World Glacier Monitoring Service, the US National Snow and Ice Data Center, and the Global Land Ice Measurements from Space initiative. With an online service, GTN-G provides fast access to regularly updated information on glacier fluctuation and inventory data. Currently, this includes global information from 100,000 glaciers mainly based on aerial photographs and outlines from 95,000 glaciers mainly based on satellite images, length change series from 1,800 glaciers, mass balance series from 250 glaciers, information on special events (e.g., hazards, surges, calving instabilities) from 130 glaciers, as well as 13,000 photographs from some 500

  10. Energy, atmospheric chemistry, and global climate

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    Global atmospheric changes due to ozone destruction and the greenhouse effect are discussed. The work of the Intergovernmental Panel on Climate Change is reviewed, including its judgements regarding global warming and its recommendations for improving predictive capability. The chemistry of ozone destruction and the global atmospheric budget of nitrous oxide are reviewed, and the global sources of nitrous oxide are described.

  11. Global climate change and children's health.

    PubMed

    Shea, Katherine M

    2007-11-01

    There is a broad scientific consensus that the global climate is warming, the process is accelerating, and that human activities are very likely (>90% probability) the main cause. This warming will have effects on ecosystems and human health, many of them adverse. Children will experience both the direct and indirect effects of climate change. Actions taken by individuals, communities, businesses, and governments will affect the magnitude and rate of global climate change and resultant health impacts. This technical report reviews the nature of the global problem and anticipated health effects on children and supports the recommendations in the accompanying policy statement on climate change and children's health.

  12. Global lightning activity and climate change

    SciTech Connect

    Price, C.G.

    1993-12-31

    The relationship between global lightning frequencies and global climate change is examined in this thesis. In order to study global impacts of climate change, global climate models or General Circulations Models (GCMs) need to be utilized. Since these models have coarse resolutions many atmospheric phenomena that occur at subgrid scales, such as lightning, need to be parameterized whenever possible. We begin with a simple parameterization used to Simulate total (intracloud and cloud-to-ground) lightning frequencies. The parameterization uses convective cloud top height to approximate lightning frequencies. Then we consider a parameterization for simulating cloud-to-ground (CG) lightning around the globe. This parameterization uses the thickness of the cold cloud sector in thunderstorms (0{degrees}C to cloud top) to calculate the proportion of CG flashes in a particular thunderstorm. We model lightning in the Goddard Institute for Space Studies (GISS) GCM. We present two climate change scenarios. One for a climate where the solar constant is reduced by 2% (5.9{degrees}C global cooling), and one for a climate with twice the present concentration of CO{sub 2} in the atmosphere (4.2{degrees}C global warming). The results imply a 24%/30% decrease/increase in global lightning frequencies for the cooler/warmer climate. The possibility of using the above findings to monitor future global warming is discussed. The earth`s ionospheric potential, which is regulated by global thunderstorm activity, could supply valuable information regarding global surface temperature fluctuations. Finally, we look at the implications of changes in both lightning frequencies and the hydrological cycle, as a result of global warming, on natural forest fires. In the U.S. the annual mean number of lightning fires could increase by 40% while the area burned may increase by 65% in a 2{times}CO{sub 2} climate. On a global scale the largest increase in lightning fires can be expected in the tropics.

  13. Carbon dioxide effects research and assessment program. A comprehensive plan. Part I. The global carbon cycle and climatic effects of increasing carbon dioxide

    SciTech Connect

    Slade, David H.

    1980-08-01

    Initial plans for research of the carbon dioxide (CO/sub 2/) and climate issue were prepared in 1978 and were reviewed extensively at that time by federal agencies and members of the scientific community. Since then the plans have been used to guide early phases of the Department of Energy's and the nation's efforts related to this issue. This document represents a revision of the 1978 plan to (a) reflect recent ideas and strategies for carbon cycle research, and (b) expand the scope of research on climatic responses to increasing atmospheric concentrations of CO/sub 2/. The revised plan takes into account a number of investigations already being supported by various agencies, and it attempts to build on or add to existing research where there is a crucial need for information directly related to the CO/sub 2/ issue. It should be recognized that this document is the first section of a comprehensive plan on the overall consequences of increasing concentrations of CO/sub 2/, and includes guidelines for research on the Global Carbon Cycle and Climatic Effects of Increasing CO/sub 2/.

  14. Climate change. A global threat to cardiopulmonary health.

    PubMed

    Rice, Mary B; Thurston, George D; Balmes, John R; Pinkerton, Kent E

    2014-03-01

    Recent changes in the global climate system have resulted in excess mortality and morbidity, particularly among susceptible individuals with preexisting cardiopulmonary disease. These weather patterns are projected to continue and intensify as a result of rising CO2 levels, according to the most recent projections by climate scientists. In this Pulmonary Perspective, motivated by the American Thoracic Society Committees on Environmental Health Policy and International Health, we review the global human health consequences of projected changes in climate for which there is a high level of confidence and scientific evidence of health effects, with a focus on cardiopulmonary health. We discuss how many of the climate-related health effects will disproportionally affect people from economically disadvantaged parts of the world, who contribute relatively little to CO2 emissions. Last, we discuss the financial implications of climate change solutions from a public health perspective and argue for a harmonized approach to clean air and climate change policies.

  15. Climate Change. A Global Threat to Cardiopulmonary Health

    PubMed Central

    Thurston, George D.; Balmes, John R.; Pinkerton, Kent E.

    2014-01-01

    Recent changes in the global climate system have resulted in excess mortality and morbidity, particularly among susceptible individuals with preexisting cardiopulmonary disease. These weather patterns are projected to continue and intensify as a result of rising CO2 levels, according to the most recent projections by climate scientists. In this Pulmonary Perspective, motivated by the American Thoracic Society Committees on Environmental Health Policy and International Health, we review the global human health consequences of projected changes in climate for which there is a high level of confidence and scientific evidence of health effects, with a focus on cardiopulmonary health. We discuss how many of the climate-related health effects will disproportionally affect people from economically disadvantaged parts of the world, who contribute relatively little to CO2 emissions. Last, we discuss the financial implications of climate change solutions from a public health perspective and argue for a harmonized approach to clean air and climate change policies. PMID:24400619

  16. Psychological research and global climate change

    NASA Astrophysics Data System (ADS)

    Clayton, Susan; Devine-Wright, Patrick; Stern, Paul C.; Whitmarsh, Lorraine; Carrico, Amanda; Steg, Linda; Swim, Janet; Bonnes, Mirilia

    2015-07-01

    Human behaviour is integral not only to causing global climate change but also to responding and adapting to it. Here, we argue that psychological research should inform efforts to address climate change, to avoid misunderstandings about human behaviour and motivations that can lead to ineffective or misguided policies. We review three key research areas: describing human perceptions of climate change; understanding and changing individual and household behaviour that drives climate change; and examining the human impacts of climate change and adaptation responses. Although much has been learned in these areas, we suggest important directions for further research.

  17. Climate Cases: Learning about Student Conceptualizations of Global Climate Change

    ERIC Educational Resources Information Center

    Tierney, Benjamin P.

    2013-01-01

    The complex topic of global climate change continues to be a challenging yet important topic among science educators and researchers. This mixed methods study adds to the growing research by investigating student conceptions of climate change from a system theory perspective (Von Bertalanffy, 1968) by asking the question, "How do differences…

  18. Impact of solar panels on global climate

    NASA Astrophysics Data System (ADS)

    Hu, Aixue; Levis, Samuel; Meehl, Gerald A.; Han, Weiqing; Washington, Warren M.; Oleson, Keith W.; van Ruijven, Bas J.; He, Mingqiong; Strand, Warren G.

    2016-03-01

    Regardless of the harmful effects of burning fossil fuels on global climate, other energy sources will become more important in the future because fossil fuels could run out by the early twenty-second century given the present rate of consumption. This implies that sooner or later humanity will rely heavily on renewable energy sources. Here we model the effects of an idealized large-scale application of renewable energy on global and regional climate relative to a background climate of the representative concentration pathway 2.6 scenario (RCP2.6; ref. ). We find that solar panels alone induce regional cooling by converting incoming solar energy to electricity in comparison to the climate without solar panels. The conversion of this electricity to heat, primarily in urban areas, increases regional and global temperatures which compensate the cooling effect. However, there are consequences involved with these processes that modulate the global atmospheric circulation, resulting in changes in regional precipitation.

  19. Terrestrial ecosystem feedbacks to global climate change

    SciTech Connect

    Lashof, D.A.; DeAngelo, B.J.; Saleska, S.R.; Harte, J.

    1997-12-31

    Anthropogenic greenhouse gases are expected to induce changes in global climate that can alter ecosystems in ways that, in turn, may further affect climate. Such climate-ecosystem interactions can generate either positive or negative feedbacks to the climate system, thereby either enhancing or diminishing the magnitude of global climate change. Important terrestrial feedback mechanisms include CO{sub 2} fertilization (negative feedbacks), carbon storage in vegetation and soils (positive and negative feedbacks), vegetation albedo (positive feedbacks), and peatland methane emissions (positive and negative feedbacks). While the processes involved are complex, not readily quantifiable, and demonstrate both positive and negative feedback potential, the authors conclude that the combined effect of the feedback mechanisms reviewed here will likely amplify climate change relative to current projections that have not yet adequately incorporated these mechanisms. 162 refs., 7 figs., 3 tabs.

  20. Global climate change and international security

    SciTech Connect

    Rice, M.

    1991-01-01

    On May 8--10, 1991, the Midwest Consortium of International Security Studies (MCISS) and Argonne National Laboratory cosponsored a conference on Global Climate Change and International Security. The aim was to bring together natural and social scientists to examine the economic, sociopolitical, and security implications of the climate changes predicted by the general circulation models developed by natural scientists. Five themes emerged from the papers and discussions: (1) general circulation models and predicted climate change; (2) the effects of climate change on agriculture, especially in the Third World; (3) economic implications of policies to reduce greenhouse gas emissions; (4) the sociopolitical consequences of climate change; and (5) the effect of climate change on global security.

  1. Global Climate Change Pilot Course Project

    NASA Astrophysics Data System (ADS)

    Schuenemann, K. C.; Wagner, R.

    2011-12-01

    In fall 2011 a pilot course on "Global Climate Change" is being offered, which has been proposed to educate urban, diverse, undergraduate students about climate change at the introductory level. The course has been approved to fulfill two general college requirements, a natural sciences requirement that focuses on the scientific method, as well as a global diversity requirement. This course presents the science behind global climate change from an Earth systems and atmospheric science perspective. These concepts then provide the basis to explore the effect of global warming on regions throughout the world. Climate change has been taught as a sub-topic in other courses in the past solely using scientific concepts, with little success in altering the climate change misconceptions of the students. This pilot course will see if new, innovative projects described below can make more of an impact on the students' views of climate change. Results of the successes or failures of these projects will be reported, as well as results of a pre- and post-course questionnaire on climate change given to students taking the course. Students in the class will pair off and choose a global region or country that they will research, write papers on, and then represent in four class discussions spaced throughout the semester. The first report will include details on the current climate of their region and how the climate shapes that region's society and culture. The second report will discuss how that region is contributing to climate change and/or sequestering greenhouse gases. Thirdly, students will discuss observed and predicted changes in that region's climate and what impact it has had, and could have, on their society. Lastly, students will report on what role their region has played in mitigating climate change, any policies their region may have implemented, and how their region can or cannot adapt to future climate changes. They will also try to get a feel for the region

  2. Global climate change and US agriculture

    NASA Technical Reports Server (NTRS)

    Adams, Richard M.; Rosenzweig, Cynthia; Peart, Robert M.; Ritchie, Joe T.; Mccarl, Bruce A.

    1990-01-01

    Agricultural productivity is expected to be sensitive to global climate change. Models from atmospheric science, plant science, and agricultural economics are linked to explore this sensitivity. Although the results depend on the severity of climate change and the compensating effects of carbon dioxide on crop yields, the simulation suggests that irrigated acreage will expand and regional patterns of U.S. agriculture will shift. The impact of the U.S. economy strongly depends on which climate model is used.

  3. The Psychological Impacts of Global Climate Change

    ERIC Educational Resources Information Center

    Doherty, Thomas J.; Clayton, Susan

    2011-01-01

    An appreciation of the psychological impacts of global climate change entails recognizing the complexity and multiple meanings associated with climate change; situating impacts within other social, technological, and ecological transitions; and recognizing mediators and moderators of impacts. This article describes three classes of psychological…

  4. Does climate directly influence NPP globally?

    PubMed

    Chu, Chengjin; Bartlett, Megan; Wang, Youshi; He, Fangliang; Weiner, Jacob; Chave, Jérôme; Sack, Lawren

    2016-01-01

    The need for rigorous analyses of climate impacts has never been more crucial. Current textbooks state that climate directly influences ecosystem annual net primary productivity (NPP), emphasizing the urgent need to monitor the impacts of climate change. A recent paper challenged this consensus, arguing, based on an analysis of NPP for 1247 woody plant communities across global climate gradients, that temperature and precipitation have negligible direct effects on NPP and only perhaps have indirect effects by constraining total stand biomass (Mtot ) and stand age (a). The authors of that study concluded that the length of the growing season (lgs ) might have a minor influence on NPP, an effect they considered not to be directly related to climate. In this article, we describe flaws that affected that study's conclusions and present novel analyses to disentangle the effects of stand variables and climate in determining NPP. We re-analyzed the same database to partition the direct and indirect effects of climate on NPP, using three approaches: maximum-likelihood model selection, independent-effects analysis, and structural equation modeling. These new analyses showed that about half of the global variation in NPP could be explained by Mtot combined with climate variables and supported strong and direct influences of climate independently of Mtot , both for NPP and for net biomass change averaged across the known lifetime of the stands (ABC = average biomass change). We show that lgs is an important climate variable, intrinsically correlated with, and contributing to mean annual temperature and precipitation (Tann and Pann ), all important climatic drivers of NPP. Our analyses provide guidance for statistical and mechanistic analyses of climate drivers of ecosystem processes for predictive modeling and provide novel evidence supporting the strong, direct role of climate in determining vegetation productivity at the global scale.

  5. Global Warming and Climate Change Science

    NASA Astrophysics Data System (ADS)

    Jain, Atul

    2008-03-01

    Global climate change has emerged as a major scientific and political issue within a few short decades. Scientific evidence clearly indicates that this change is a result of a complex interplay between a number of human-related and natural earth systems. While the complexity of the earth-ocean-atmosphere system makes the understanding and prediction of global climate change very difficult, improved scientific knowledge and research capabilities are advancing our understanding of global climate change resulting from rising atmospheric levels of radiatively important (mostly heat-trapping) gases and particles. The effects of climate change can be assessed with climate models, which account for complex physical, chemical and biological processes, and interactions of these processes with human activities, especially the burning of fossil fuels along with land use changes. This presentation begins with a discussion of the current understanding of the concerns about climate change, and then discusses the role climate models in scientific projections of climate change as well as their current strengths and weaknesses.

  6. Integrated regional changes in arctic climate feedbacks: Implications for the global climate system

    USGS Publications Warehouse

    McGuire, A.D.; Chapin, F. S.; Walsh, J.E.; Wirth, C.; ,

    2006-01-01

    The Arctic is a key part of the global climate system because the net positive energy input to the tropics must ultimately be resolved through substantial energy losses in high-latitude regions. The Arctic influences the global climate system through both positive and negative feedbacks that involve physical, ecological, and human systems of the Arctic. The balance of evidence suggests that positive feedbacks to global warming will likely dominate in the Arctic during the next 50 to 100 years. However, the negative feedbacks associated with changing the freshwater balance of the Arctic Ocean might abruptly launch the planet into another glacial period on longer timescales. In light of uncertainties and the vulnerabilities of the climate system to responses in the Arctic, it is important that we improve our understanding of how integrated regional changes in the Arctic will likely influence the evolution of the global climate system. Copyright ?? 2006 by Annual Reviews. All rights reserved.

  7. Effects of climate variability on global scale flood risk

    NASA Astrophysics Data System (ADS)

    Ward, P.; Dettinger, M. D.; Kummu, M.; Jongman, B.; Sperna Weiland, F.; Winsemius, H.

    2013-12-01

    In this contribution we demonstrate the influence of climate variability on flood risk. Globally, flooding is one of the worst natural hazards in terms of economic damages; Munich Re estimates global losses in the last decade to be in excess of $240 billion. As a result, scientifically sound estimates of flood risk at the largest scales are increasingly needed by industry (including multinational companies and the insurance industry) and policy communities. Several assessments of global scale flood risk under current and conditions have recently become available, and this year has seen the first studies assessing how flood risk may change in the future due to global change. However, the influence of climate variability on flood risk has as yet hardly been studied, despite the fact that: (a) in other fields (drought, hurricane damage, food production) this variability is as important for policy and practice as long term change; and (b) climate variability has a strong influence in peak riverflows around the world. To address this issue, this contribution illustrates the influence of ENSO-driven climate variability on flood risk, at both the globally aggregated scale and the scale of countries and large river basins. Although it exerts significant and widespread influences on flood peak discharges in many parts of the world, we show that ENSO does not have a statistically significant influence on flood risk once aggregated to global totals. At the scale of individual countries, though, strong relationships exist over large parts of the Earth's surface. For example, we find particularly strong anomalies of flood risk in El Niño or La Niña years (compared to all years) in southern Africa, parts of western Africa, Australia, parts of Central Eurasia (especially for El Niño), the western USA (especially for La Niña), and parts of South America. These findings have large implications for both decadal climate-risk projections and long-term future climate change

  8. Global Climate Change and Children's Health.

    PubMed

    Ahdoot, Samantha; Pacheco, Susan E

    2015-11-01

    Rising global temperature is causing major physical, chemical, and ecological changes across the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as climate change, are the result of contemporary human activity. Climate change poses threats to human health, safety, and security. Children are uniquely vulnerable to these threats. The effects of climate change on child health include physical and psychological sequelae of weather disasters, increased heat stress, decreased air quality, altered disease patterns of some climate-sensitive infections, and food, water, and nutrient insecurity in vulnerable regions. Prompt implementation of mitigation and adaptation strategies will protect children against worsening of the problem and its associated health effects. This technical report reviews the nature of climate change and its associated child health effects and supports the recommendations in the accompanying policy statement on climate change and children's health.

  9. Climate change impacts on global food security.

    PubMed

    Wheeler, Tim; von Braun, Joachim

    2013-08-02

    Climate change could potentially interrupt progress toward a world without hunger. A robust and coherent global pattern is discernible of the impacts of climate change on crop productivity that could have consequences for food availability. The stability of whole food systems may be at risk under climate change because of short-term variability in supply. However, the potential impact is less clear at regional scales, but it is likely that climate variability and change will exacerbate food insecurity in areas currently vulnerable to hunger and undernutrition. Likewise, it can be anticipated that food access and utilization will be affected indirectly via collateral effects on household and individual incomes, and food utilization could be impaired by loss of access to drinking water and damage to health. The evidence supports the need for considerable investment in adaptation and mitigation actions toward a "climate-smart food system" that is more resilient to climate change influences on food security.

  10. Global climate imprint on seismic noise

    NASA Astrophysics Data System (ADS)

    Stutzmann, EléOnore; Schimmel, Martin; Patau, GenevièVe; Maggi, Alessia

    2009-11-01

    In the absence of earthquakes, oceanic microseisms are the strongest signals recorded by seismic stations. Using the GEOSCOPE global seismic network, we show that the secondary microseism spectra have global characteristics that depend on the station latitude and on the season. In both hemispheres, noise amplitude is larger during local winter, and close to the equator, noise amplitude is stable over the year. There is an excellent correlation between microseism amplitude variations over the year and changes in the highest wave areas. Considering the polarization of the secondary microseisms, we show that stations in the Northern Hemisphere and close to the equator record significant changes of the secondary microseism source azimuth over the year. During Northern Hemisphere summer, part or all of the sources are systematically located farther toward the south than during winter. Stations in French Guyana (MPG) and in Algeria (TAM) record microseisms generated several thousand kilometers away in the South Pacific Ocean and in the Indian Ocean, respectively. Thus, secondary microseism sources generated by ocean waves which originate in the Southern Hemisphere can be recorded by Northern Hemisphere stations when local sources are weak. We also show, considering a station close to Antarctica, that primary and secondary microseism noise amplitudes are strongly affected by changes of the sea ice floe and that sources of these microseisms are in different areas. Microseism recording can therefore be used to monitor climate changes.

  11. Globalization to amplify economic climate losses

    NASA Astrophysics Data System (ADS)

    Otto, C.; Wenz, L.; Levermann, A.

    2015-12-01

    Economic welfare under enhanced anthropogenic carbon emissions and associated future warming poses a major challenge for a society with an evolving globally connected economy. Unabated climate change will impact economic output for example through heat-stress-related reductions in productivity. Since meteorologically-induced production reductions can propagate along supply chains, structural changes in the economic network may influence climate-related losses. The role of the economic network evolution for climate impacts has been neither quantified nor qualitatively understood. Here we show that since the beginning of the 21st century the structural change of the global supply network has been such that an increase of spillover losses due to unanticipated climatic events has to be expected. We quantify primary, secondary and higher-order losses from reduced labor productivity under past and present economic and climatic conditions and find that indirect losses are significant and increase with rising temperatures. The connectivity of the economic network has increased in such a way as to foster the propagation of production loss. This supply chain connectivity robustly exhibits the characteristic distribution of self-organized criticality which has been shifted towards higher values since 2001. Losses due to this structural evolution dominated over the effect of comparably weak climatic changes during this decade. Our finding suggests that the current form of globalization may amplify losses due to climatic extremes and thus necessitate structural adaptation that requires more foresight than presently prevalent.

  12. Uncertainty and global climate change research

    SciTech Connect

    Tonn, B.E.; Weiher, R.

    1994-06-01

    The Workshop on Uncertainty and Global Climate Change Research March 22--23, 1994, in Knoxville, Tennessee. This report summarizes the results and recommendations of the workshop. The purpose of the workshop was to examine in-depth the concept of uncertainty. From an analytical point of view, uncertainty is a central feature of global climate science, economics and decision making. The magnitude and complexity of uncertainty surrounding global climate change has made it quite difficult to answer even the most simple and important of questions-whether potentially costly action is required now to ameliorate adverse consequences of global climate change or whether delay is warranted to gain better information to reduce uncertainties. A major conclusion of the workshop is that multidisciplinary integrated assessments using decision analytic techniques as a foundation is key to addressing global change policy concerns. First, uncertainty must be dealt with explicitly and rigorously since it is and will continue to be a key feature of analysis and recommendations on policy questions for years to come. Second, key policy questions and variables need to be explicitly identified, prioritized, and their uncertainty characterized to guide the entire scientific, modeling, and policy analysis process. Multidisciplinary integrated assessment techniques and value of information methodologies are best suited for this task. In terms of timeliness and relevance of developing and applying decision analytic techniques, the global change research and policy communities are moving rapidly toward integrated approaches to research design and policy analysis.

  13. Global climate change and international security.

    SciTech Connect

    Karas, Thomas H.

    2003-11-01

    This report originates in a workshop held at Sandia National Laboratories, bringing together a variety of external experts with Sandia personnel to discuss 'The Implications of Global Climate Change for International Security.' Whatever the future of the current global warming trend, paleoclimatic history shows that climate change happens, sometimes abruptly. These changes can severely impact human water supplies, agriculture, migration patterns, infrastructure, financial flows, disease prevalence, and economic activity. Those impacts, in turn, can lead to national or international security problems stemming from aggravation of internal conflicts, increased poverty and inequality, exacerbation of existing international conflicts, diversion of national and international resources from international security programs (military or non-military), contribution to global economic decline or collapse, or international realignments based on climate change mitigation policies. After reviewing these potential problems, the report concludes with a brief listing of some research, technology, and policy measures that might mitigate them.

  14. The global land rush and climate change

    NASA Astrophysics Data System (ADS)

    Davis, Kyle Frankel; Rulli, Maria Cristina; D'Odorico, Paolo

    2015-08-01

    Climate change poses a serious global challenge in the face of rapidly increasing human demand for energy and food. A recent phenomenon in which climate change may play an important role is the acquisition of large tracts of land in the developing world by governments and corporations. In the target countries, where land is relatively inexpensive, the potential to increase crop yields is generally high and property rights are often poorly defined. By acquiring land, investors can realize large profits and countries can substantially alter the land and water resources under their control, thereby changing their outlook for meeting future demand. While the drivers, actors, and impacts involved with land deals have received substantial attention in the literature, we propose that climate change plays an important yet underappreciated role, both through its direct effects on agricultural production and through its influence on mitigative or adaptive policy decisions. Drawing from various literature sources as well as a new global database on reported land deals, we trace the evolution of the global land rush and highlight prominent examples in which the role of climate change is evident. We find that climate change—both historical and anticipated—interacts substantially with drivers of land acquisitions, having important implications for the resilience of communities in targeted areas. As a result of this synthesis, we ultimately contend that considerations of climate change should be integrated into future policy decisions relating to the large-scale land acquisitions.

  15. Selecting global climate models for regional climate change studies.

    PubMed

    Pierce, David W; Barnett, Tim P; Santer, Benjamin D; Gleckler, Peter J

    2009-05-26

    Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U.S. Models are often selected for a regional D&A analysis based on the quality of the simulated regional climate. Accordingly, 42 performance metrics based on seasonal temperature and precipitation, the El Nino/Southern Oscillation (ENSO), and the Pacific Decadal Oscillation are constructed and applied to 21 global models. However, no strong relationship is found between the score of the models on the metrics and results of the D&A analysis. Instead, the importance of having ensembles of runs with enough realizations to reduce the effects of natural internal climate variability is emphasized. Also, the superiority of the multimodel ensemble average (MM) to any 1 individual model, already found in global studies examining the mean climate, is true in this regional study that includes measures of variability as well. Evidence is shown that this superiority is largely caused by the cancellation of offsetting errors in the individual global models. Results with both the MM and models picked randomly confirm the original D&A results of anthropogenically forced JFM temperature changes in the western U.S. Future projections of temperature do not depend on model performance until the 2080s, after which the better performing models show warmer temperatures.

  16. Selecting global climate models for regional climate change studies

    PubMed Central

    Pierce, David W.; Barnett, Tim P.; Santer, Benjamin D.; Gleckler, Peter J.

    2009-01-01

    Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U.S. Models are often selected for a regional D&A analysis based on the quality of the simulated regional climate. Accordingly, 42 performance metrics based on seasonal temperature and precipitation, the El Nino/Southern Oscillation (ENSO), and the Pacific Decadal Oscillation are constructed and applied to 21 global models. However, no strong relationship is found between the score of the models on the metrics and results of the D&A analysis. Instead, the importance of having ensembles of runs with enough realizations to reduce the effects of natural internal climate variability is emphasized. Also, the superiority of the multimodel ensemble average (MM) to any 1 individual model, already found in global studies examining the mean climate, is true in this regional study that includes measures of variability as well. Evidence is shown that this superiority is largely caused by the cancellation of offsetting errors in the individual global models. Results with both the MM and models picked randomly confirm the original D&A results of anthropogenically forced JFM temperature changes in the western U.S. Future projections of temperature do not depend on model performance until the 2080s, after which the better performing models show warmer temperatures. PMID:19439652

  17. Global Distributions of Vulnerability to Climate Change

    SciTech Connect

    Yohe, Gary; Malone, Elizabeth L.; Brenkert, Antoinette L.; Schlesinger, Michael; Meij, Henk; Xiaoshi, Xing

    2006-12-01

    Signatories of the United Nations Framework Convention on Climate Change (UNFCCC) have committed themselves to addressing the “specific needs and special circumstances of developing country parties, especially those that are particularly vulnerable to the adverse effects of climate change”.1 The Intergovernmental Panel on Climate Change (IPCC) has since concluded with high confidence that “developing countries will be more vulnerable to climate change than developed countries”.2 In their most recent report, however, the IPCC notes that “current knowledge of adaptation and adaptive capacity is insufficient for reliable prediction of adaptations” 3 because “the capacity to adapt varies considerably among regions, countries and socioeconomic groups and will vary over time”.4 Here, we respond to the apparent contradiction in these two statements by exploring how variation in adaptive capacity and climate impacts combine to influence the global distribution of vulnerability. We find that all countries will be vulnerable to climate change, even if their adaptive capacities are enhanced. Developing nations are most vulnerable to modest climate change. Reducing greenhouse-gas emissions would diminish their vulnerabilities significantly. Developed countries would benefit most from mitigation for moderate climate change. Extreme climate change overwhelms the abilities of all countries to adapt. These findings should inform both ongoing negotiations for the next commitment period of the Kyoto Protocol and emerging plans for implementing UNFCCC-sponsored adaptation funds.

  18. Global climate evolution during the last deglaciation.

    PubMed

    Clark, Peter U; Shakun, Jeremy D; Baker, Paul A; Bartlein, Patrick J; Brewer, Simon; Brook, Ed; Carlson, Anders E; Cheng, Hai; Kaufman, Darrell S; Liu, Zhengyu; Marchitto, Thomas M; Mix, Alan C; Morrill, Carrie; Otto-Bliesner, Bette L; Pahnke, Katharina; Russell, James M; Whitlock, Cathy; Adkins, Jess F; Blois, Jessica L; Clark, Jorie; Colman, Steven M; Curry, William B; Flower, Ben P; He, Feng; Johnson, Thomas C; Lynch-Stieglitz, Jean; Markgraf, Vera; McManus, Jerry; Mitrovica, Jerry X; Moreno, Patricio I; Williams, John W

    2012-05-08

    Deciphering the evolution of global climate from the end of the Last Glacial Maximum approximately 19 ka to the early Holocene 11 ka presents an outstanding opportunity for understanding the transient response of Earth's climate system to external and internal forcings. During this interval of global warming, the decay of ice sheets caused global mean sea level to rise by approximately 80 m; terrestrial and marine ecosystems experienced large disturbances and range shifts; perturbations to the carbon cycle resulted in a net release of the greenhouse gases CO(2) and CH(4) to the atmosphere; and changes in atmosphere and ocean circulation affected the global distribution and fluxes of water and heat. Here we summarize a major effort by the paleoclimate research community to characterize these changes through the development of well-dated, high-resolution records of the deep and intermediate ocean as well as surface climate. Our synthesis indicates that the superposition of two modes explains much of the variability in regional and global climate during the last deglaciation, with a strong association between the first mode and variations in greenhouse gases, and between the second mode and variations in the Atlantic meridional overturning circulation.

  19. The Global Climate Observing System. French contribution

    NASA Astrophysics Data System (ADS)

    Juvanon-Du-Vachat, R.

    2010-09-01

    THE GLOBAL CLIMATE OBSERVING SYSTEM. FRENCH CONTRIBUTION Régis Juvanon du Vachat Société Météorologique de France, c/o D2I/MI, 1, Quai Branly 75007 Paris France is participating fully in the Global Climate Observing System (GCOS). It incorporates the following four components: meteorological and atmospheric, oceanic, terrestrial, spatial, which will be briefly presented, especially in relation with the monitoring of the climate. The presentation will give an overview of the general principles governing the GCOS system and particularly the concepts used to maintain efficiently this climate observing system for a long period of time ("from research networks to operational networks"). The presentation will cover all the four components of the GCOS system. The whole report has been published in the Fifth National Communication from France to the UNFCCC (United Nations Framework Convention on Climate Change). The presentation will give an overview of the different networks of these four domains devoted to the monitoring of climate and maintained by France and highlighting the strengths and weaknesses of this climate observing system.

  20. Global climate change and pedogenic carbonates

    SciTech Connect

    Lal, R.; Kimble, J.M.; Stewart, B.A.; Eswaran, H.

    1999-11-01

    Global Climate Change summarizes what is known about soil inorganic carbon and develops strategies that could lead to the retention of more carbon in the soil. It covers basic concepts, analytical methods, secondary carbonates, and research and development priorities. With this book one will get a better understanding of the global carbon cycle, organic and inorganic carbon, and their roles, or what is known of them, in the greenhouse effect.

  1. Engineering change in global climate

    SciTech Connect

    Schneider, S.H.

    1996-12-31

    {open_quotes}With increased public focus on global warming and in the wake of the intense heat waves, drought, fires, and super-hurricanes that occurred in 1988 and 1989, interest in geoengineering has surged,{close_quotes} says Stephen H. Schneider, professor of biological science at Stanford University in Stanford, California. One scheme set forth in a National Research Council report proposes using 16-inch naval guns to fire aerosol shells into the stratosphere in hopes of offsetting {open_quotes}the radiative effects of increasing carbon dioxide,{close_quotes} Schneider says. Schneider, however, would prefer that we {open_quotes}seek measures that can cure our global {open_quote}addiction{close_quote} to polluting practices.{close_quotes} Rather than playing God, he says we should {open_quotes}stick to being human and pursue problem - solving methods currently within our grasp.{close_quotes} Such strategies include efforts to promote energy efficiency and reduce our reliance on automobiles.

  2. Global climate change model natural climate variation: Paleoclimate data base, probabilities and astronomic predictors

    SciTech Connect

    Kukla, G.; Gavin, J.

    1994-05-01

    This report was prepared at the Lamont-Doherty Geological Observatory of Columbia University at Palisades, New York, under subcontract to Pacific Northwest Laboratory it is a part of a larger project of global climate studies which supports site characterization work required for the selection of a potential high-level nuclear waste repository and forms part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work under the PASS Program is currently focusing on the proposed site at Yucca Mountain, Nevada, and is under the overall direction of the Yucca Mountain Project Office US Department of Energy, Las Vegas, Nevada. The final results of the PNL project will provide input to global atmospheric models designed to test specific climate scenarios which will be used in the site specific modeling work of others. The primary purpose of the data bases compiled and of the astronomic predictive models is to aid in the estimation of the probabilities of future climate states. The results will be used by two other teams working on the global climate study under contract to PNL. They are located at and the University of Maine in Orono, Maine, and the Applied Research Corporation in College Station, Texas. This report presents the results of the third year`s work on the global climate change models and the data bases describing past climates.

  3. Global Climate Change and Children's Health.

    PubMed

    2015-11-01

    Rising global temperatures are causing major physical, chemical, and ecological changes in the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as "climate change," are the result of contemporary human activity. Climate change poses threats to human health, safety, and security, and children are uniquely vulnerable to these threats. The effects of climate change on child health include: physical and psychological sequelae of weather disasters; increased heat stress; decreased air quality; altered disease patterns of some climate-sensitive infections; and food, water, and nutrient insecurity in vulnerable regions. The social foundations of children's mental and physical health are threatened by the specter of far-reaching effects of unchecked climate change, including community and global instability, mass migrations, and increased conflict. Given this knowledge, failure to take prompt, substantive action would be an act of injustice to all children. A paradigm shift in production and consumption of energy is both a necessity and an opportunity for major innovation, job creation, and significant, immediate associated health benefits. Pediatricians have a uniquely valuable role to play in the societal response to this global challenge.

  4. Climate change and the global malaria recession.

    PubMed

    Gething, Peter W; Smith, David L; Patil, Anand P; Tatem, Andrew J; Snow, Robert W; Hay, Simon I

    2010-05-20

    The current and potential future impact of climate change on malaria is of major public health interest. The proposed effects of rising global temperatures on the future spread and intensification of the disease, and on existing malaria morbidity and mortality rates, substantively influence global health policy. The contemporary spatial limits of Plasmodium falciparum malaria and its endemicity within this range, when compared with comparable historical maps, offer unique insights into the changing global epidemiology of malaria over the last century. It has long been known that the range of malaria has contracted through a century of economic development and disease control. Here, for the first time, we quantify this contraction and the global decreases in malaria endemicity since approximately 1900. We compare the magnitude of these changes to the size of effects on malaria endemicity proposed under future climate scenarios and associated with widely used public health interventions. Our findings have two key and often ignored implications with respect to climate change and malaria. First, widespread claims that rising mean temperatures have already led to increases in worldwide malaria morbidity and mortality are largely at odds with observed decreasing global trends in both its endemicity and geographic extent. Second, the proposed future effects of rising temperatures on endemicity are at least one order of magnitude smaller than changes observed since about 1900 and up to two orders of magnitude smaller than those that can be achieved by the effective scale-up of key control measures. Predictions of an intensification of malaria in a warmer world, based on extrapolated empirical relationships or biological mechanisms, must be set against a context of a century of warming that has seen marked global declines in the disease and a substantial weakening of the global correlation between malaria endemicity and climate.

  5. Global fish production and climate change

    SciTech Connect

    Brander, K.M.

    2007-12-11

    Current global fisheries production of {approx}160 million tons is rising as a result of increases in aquaculture production. A number of climate-related threats to both capture fisheries and aquaculture are identified, but there is low confidence in predictions of future fisheries production because of uncertainty over future global aquatic net primary production and the transfer of this production through the food chain to human consumption. Recent changes in the distribution and productivity of a number of fish species can be ascribed with high confidence to regional climate variability, such as the El Nino-Southern Oscillation. Future production may increase in some high-latitude regions because of warming and decreased ice cover, but the dynamics in low-latitude regions are giverned by different processes, and production may decline as a result of reduced vertical mixing of the water column and, hence, reduced recycling of nutrients. There are strong interactions between the effects of fishing and the effects of climate because fishing reduces the age, size, and geographic diversity of populations and the biodiversity of marine ecosystems, making both more sensitive to additional stresses such as climate change. Inland fisheries are additionally threatened by changes in precipiation and water management. The frequency and intensity of extreme climate events is likely to have a major impact on future fisheries production in both inland and marine systems. Reducing fishing mortality in the majority of fisheries, which are currently fully exploited or overexploited, is the pricipal feasible means of reducing the impacts of climate change.

  6. Climate Effects of Global Land Cover Change

    SciTech Connect

    Gibbard, S G; Caldeira, K; Bala, G; Phillips, T; Wickett, M

    2005-08-24

    There are two competing effects of global land cover change on climate: an albedo effect which leads to heating when changing from grass/croplands to forest, and an evapotranspiration effect which tends to produce cooling. It is not clear which effect would dominate in a global land cover change scenario. We have performed coupled land/ocean/atmosphere simulations of global land cover change using the NCAR CAM3 atmospheric general circulation model. We find that replacement of current vegetation by trees on a global basis would lead to a global annual mean warming of 1.6 C, nearly 75% of the warming produced under a doubled CO{sub 2} concentration, while global replacement by grasslands would result in a cooling of 0.4 C. These results suggest that more research is necessary before forest carbon storage should be deployed as a mitigation strategy for global warming. In particular, high latitude forests probably have a net warming effect on the Earth's climate.

  7. Transfer payments in global climate policy

    NASA Astrophysics Data System (ADS)

    Landis, Florian; Bernauer, Thomas

    2012-08-01

    Many scientists and policymakers agree that large financial flows from richer to poorer countries will be necessary to reach an agreement on reducing greenhouse-gas emissions enough to keep global warming below 2°C. But the required amounts of transfer payments and justifications for them remain contested. We contribute to this debate by developing an argument for transfer payments that derives from the differences between carbon prices that different countries may set in light of two distinct criteria for appropriate levels of emission reductions. If, for reasons of cost efficiency, a globally uniform carbon price was installed, transfer payments would be required to offset these differences. We combine global climate modelling with regional welfare analysis to estimate regional carbon prices under various climate change, emissions and economic scenarios. The estimated ratios between regional carbon prices are surprisingly robust to different modelling assumptions. To the extent that burden-sharing choices in global climate policy are motivated by regional carbon prices, our analysis allows for a quantification of required transfer payments. Assuming a global carbon price of US$35 per tCO2, for example, our estimates would justify transfer payments of the order of US$15-48 billion per year.

  8. Global water resources affected by human interventions and climate change.

    PubMed

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D; Wada, Yoshihide; Wisser, Dominik

    2014-03-04

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future.

  9. Global water resources affected by human interventions and climate change

    PubMed Central

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D.; Wada, Yoshihide; Wisser, Dominik

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future. PMID:24344275

  10. Asia's changing role in global climate change.

    PubMed

    Siddiqi, Toufiq A

    2008-10-01

    Asia's role in global climate change has evolved significantly from the time when the Kyoto Protocol was being negotiated. Emissions of carbon dioxide, the principal greenhouse gas, from energy use in Asian countries now exceed those from the European Union or North America. Three of the top five emitters-China, India, and Japan, are Asian countries. Any meaningful global effort to address global climate change requires the active cooperation of these and other large Asian countries, if it is to succeed. Issues of equity between countries, within countries, and between generations, need to be tackled. Some quantitative current and historic data to illustrate the difficulties involved are provided, and one approach to making progress is suggested.

  11. Global Framework for Climate Services (GFCS)

    NASA Astrophysics Data System (ADS)

    Lúcio, F.

    2012-04-01

    Climate information at global, regional and national levels and in timeframes ranging from the past, present and future climate is fundamental for planning, sustainable development and to help organizations, countries and individuals adopt appropriate strategies to adapt to climate variability and change. Based on this recognition, in 2009, the Heads of States and Governments, Ministers and Heads of Delegation representing more than 150 countries, 34 United Nations Organizations and 36 Governmental and non-Governmental international organizations, and more than 2500 experts present at the Third World Climate Conference (WCC - 3) unanimously agreed to develop the Global Framework for Climate Services (GFCS) to strengthen the production, availability, delivery and application of science-based climate prediction and services. They requested that a taskforce of high-level independent advisors be appointed to prepare a report, including recommendations on the proposed elements of the Framework and the next steps for its implementation. The high-level taskforce produced a report which was endorsed by the Sixteeth World Meteorological Congress XVI in May 2011. A process for the development of the implementation plan and the governance structure of the Global Framework for Climate Services (GFCS) is well under way being led by the World Meteorological Organization within the UN system. This process involves consultations that engage a broad range of stakeholders including governments, UN and international agencies, regional organizations and specific communities of practitioners. These consultations are being conducted to facilitate discussions of key issues related to the production, availability, delivery and application of climate services in the four priority sectors of the framework (agriculture, water, health and disaster risk reduction) so that the implementation plan of the Framework is a true reflection of the aspirations of stakeholders. The GFCS is envisaged as

  12. Remote sensing and global climate change

    SciTech Connect

    Vaughan, A.; Cracknell, A.P.

    1994-12-31

    This book, based on lectures from the Dundee Summer Schools in Remote Sensing in 1992, focuses on aspects of remote sensing related to climatic change. The organization of the book focuses on particular parts of the climate system and then discusses the different satellite systems relevant to their measurement. The following subject areas are included in the book: background information about the climate system and remote sensing; atmospheric applications in both lower and upper atmosphere; land surface including snow and ice, altimetry in Antarctica, land surface energy budget and albedo; marine science; ecological monitoring in St. Petersburg, Russia.

  13. Climate change hotspots in the CMIP5 global climate model ensemble.

    PubMed

    Diffenbaugh, Noah S; Giorgi, Filippo

    2012-01-10

    We use a statistical metric of multi-dimensional climate change to quantify the emergence of global climate change hotspots in the CMIP5 climate model ensemble. Our hotspot metric extends previous work through the inclusion of extreme seasonal temperature and precipitation, which exert critical influence on climate change impacts. The results identify areas of the Amazon, the Sahel and tropical West Africa, Indonesia, and the Tibetan Plateau as persistent regional climate change hotspots throughout the 21(st) century of the RCP8.5 and RCP4.5 forcing pathways. In addition, areas of southern Africa, the Mediterranean, the Arctic, and Central America/western North America also emerge as prominent regional climate change hotspots in response to intermediate and high levels of forcing. Comparisons of different periods of the two forcing pathways suggest that the pattern of aggregate change is fairly robust to the level of global warming below approximately 2°C of global warming (relative to the late-20(th)-century baseline), but not at the higher levels of global warming that occur in the late-21(st)-century period of the RCP8.5 pathway, with areas of southern Africa, the Mediterranean, and the Arctic exhibiting particular intensification of relative aggregate climate change in response to high levels of forcing. Although specific impacts will clearly be shaped by the interaction of climate change with human and biological vulnerabilities, our identification of climate change hotspots can help to inform mitigation and adaptation decisions by quantifying the rate, magnitude and causes of the aggregate climate response in different parts of the world.

  14. Global climate change and children's health.

    PubMed

    Shea, Katherine M

    2007-11-01

    There is broad scientific consensus that Earth's climate is warming rapidly and at an accelerating rate. Human activities, primarily the burning of fossil fuels, are very likely (>90% probability) to be the main cause of this warming. Climate-sensitive changes in ecosystems are already being observed, and fundamental, potentially irreversible, ecological changes may occur in the coming decades. Conservative environmental estimates of the impact of climate changes that are already in process indicate that they will result in numerous health effects to children. The nature and extent of these changes will be greatly affected by actions taken or not taken now at the global level. Physicians have written on the projected effects of climate change on public health, but little has been written specifically on anticipated effects of climate change on children's health. Children represent a particularly vulnerable group that is likely to suffer disproportionately from both direct and indirect adverse health effects of climate change. Pediatric health care professionals should understand these threats, anticipate their effects on children's health, and participate as children's advocates for strong mitigation and adaptation strategies now. Any solutions that address climate change must be developed within the context of overall sustainability (the use of resources by the current generation to meet current needs while ensuring that future generations will be able to meet their needs). Pediatric health care professionals can be leaders in a move away from a traditional focus on disease prevention to a broad, integrated focus on sustainability as synonymous with health. This policy statement is supported by a technical report that examines in some depth the nature of the problem of climate change, likely effects on children's health as a result of climate change, and the critical importance of responding promptly and aggressively to reduce activities that are contributing to

  15. Evaluating Global Climate Change Education Initiative

    NASA Astrophysics Data System (ADS)

    Weston, T. J.

    2011-12-01

    The Global Climate Change Education initiative (GCCE) is a multi-site effort funded by the National Science Foundation to develop web resources. The objective of curricular modules is to improve content knowledge and change attitudes about climate change among undergraduate science students. The two-year evaluation of the project was conducted by Tim Weston from the University of Colorado. The small-scale evaluation first developed measures for attitude and content about climate change, and then administered the measures online. Analysis of results is ongoing. The evaluator wanted to know the attitudes and content knowledge of students after completing the modules, and if attitudes and content knowledge shifted from pre to post. An additional component of the evaluation focused on student understanding of specific global warming topics after completing the modules. Developing the test and survey involved reviewing existing measures, soliciting content from stakeholders in the grant, and then establishing a content framework that covered the important topics in climate change linked to project curricula. The pilot attitude measure contained fourteen agree/disagree items (I believe people should change their lifestyles to help minimize climate change), five self-assessment questions (How informed are you about the different causes of climate change? ), and wo previous experience questions about previous science courses taken, and actions related to climate change. The content measure contained 10 multiple-choice items asking about changes in global average temperature, the scientific methods of climate change, and the primary countries and human activities responsible for climate change. Questions were designed to reflect a mixture of general science literacy about climate change and more specific content related knowledge taught in the curricula. Both content and attitude measures were piloted with students, who answered questions using a think-aloud" interview

  16. Deep solar minimum and global climate changes.

    PubMed

    Hady, Ahmed A

    2013-05-01

    This paper examines the deep minimum of solar cycle 23 and its potential impact on climate change. In addition, a source region of the solar winds at solar activity minimum, especially in the solar cycle 23, the deepest during the last 500 years, has been studied. Solar activities have had notable effect on palaeoclimatic changes. Contemporary solar activity are so weak and hence expected to cause global cooling. Prevalent global warming, caused by building-up of green-house gases in the troposphere, seems to exceed this solar effect. This paper discusses this issue.

  17. State of Climate 2011 - Global Ocean Phytoplankton

    NASA Technical Reports Server (NTRS)

    Siegel, D. A.; Antoine, D.; Behrenfeld, M. J.; d'Andon, O. H. Fanton; Fields, E.; Franz, B. A.; Goryl, P.; Maritorena, S.; McClain, C. R.; Wang, M.; Yoder, J. A.

    2012-01-01

    Phytoplankton photosynthesis in the sun lit upper layer of the global ocean is the overwhelmingly dominant source of organic matter that fuels marine ecosystems. Phytoplankton contribute roughly half of the global (land and ocean) net primary production (NPP; gross photosynthesis minus plant respiration) and phytoplankton carbon fixation is the primary conduit through which atmospheric CO2 concentrations interact with the ocean s carbon cycle. Phytoplankton productivity depends on the availability of sunlight, macronutrients (e.g., nitrogen, phosphorous), and micronutrients (e.g., iron), and thus is sensitive to climate-driven changes in the delivery of these resources to the euphotic zone

  18. Avian migration phenology and global climate change.

    PubMed

    Cotton, Peter A

    2003-10-14

    There is mounting evidence that global climate change has extended growing seasons, changed distribution patterns, and altered the phenology of flowering, breeding, and migration. For migratory birds, the timing of arrival on breeding territories and over-wintering grounds is a key determinant of reproductive success, survivorship, and fitness. But we know little of the factors controlling earlier passage in long-distance migrants. Over the past 30 years in Oxfordshire, U.K., the average arrival and departure dates of 20 migrant bird species have both advanced by 8 days; consequently, the overall residence time in Oxfordshire has remained unchanged. The timing of arrival has advanced in relation to increasing winter temperatures in sub-Saharan Africa, whereas the timing of departure has advanced after elevated summer temperatures in Oxfordshire. This finding demonstrates that migratory phenology is quite likely to be affected by global climate change and links events in tropical winter quarters with those in temperate breeding areas.

  19. Dawn of astronomy and global climate change

    NASA Astrophysics Data System (ADS)

    Nakamura, Tsuko

    2007-12-01

    The author proposes that the birth of astronomy in ancient civilizations, which took place nearly simultaneously (4000 - 5000 years ago) around the Nile, Tigris and Euphrates, Indus, and the Yellow River, was caused by the global climate change (cooling and drying) that started about 5000 years ago after the hypsithermal (high-temperature) period. It is also pointed out that a few names of Twenty-Four Qi's appearing in old Chinese calendars are remnants of the calm climate in the hypsithermal period. It is discussed that numerous meteorological records seen in divination inscriptions on bones and tortoise-shells excavated at the capital of the ancient Yin (Shang) dynasty suggest occurrence of the climatic cooling and drying at that time and this change triggered spawning the early Chinese astronomy.

  20. Stormy Weather: 101 Solutions to Global Climate Change.

    ERIC Educational Resources Information Center

    Dauncey, Guy

    This document presents 101 solutions to global climate change. These solutions are actions that are well suited to every level of society. This book creates awareness about global climate change. The history of Earth and the greenhouse effect are discussed, and explanations and solutions to global climate change are provided including traveling…

  1. Global fish production and climate change.

    PubMed

    Brander, K M

    2007-12-11

    Current global fisheries production of approximately 160 million tons is rising as a result of increases in aquaculture production. A number of climate-related threats to both capture fisheries and aquaculture are identified, but we have low confidence in predictions of future fisheries production because of uncertainty over future global aquatic net primary production and the transfer of this production through the food chain to human consumption. Recent changes in the distribution and productivity of a number of fish species can be ascribed with high confidence to regional climate variability, such as the El Niño-Southern Oscillation. Future production may increase in some high-latitude regions because of warming and decreased ice cover, but the dynamics in low-latitude regions are governed by different processes, and production may decline as a result of reduced vertical mixing of the water column and, hence, reduced recycling of nutrients. There are strong interactions between the effects of fishing and the effects of climate because fishing reduces the age, size, and geographic diversity of populations and the biodiversity of marine ecosystems, making both more sensitive to additional stresses such as climate change. Inland fisheries are additionally threatened by changes in precipitation and water management. The frequency and intensity of extreme climate events is likely to have a major impact on future fisheries production in both inland and marine systems. Reducing fishing mortality in the majority of fisheries, which are currently fully exploited or overexploited, is the principal feasible means of reducing the impacts of climate change.

  2. Pliocene oceanic seaways and global climate

    NASA Astrophysics Data System (ADS)

    Karas, Cyrus; Nürnberg, Dirk; Bahr, André; Groeneveld, Jeroen; Herrle, Jens O.; Tiedemann, Ralf; Demenocal, Peter B.

    2017-01-01

    Tectonically induced changes in oceanic seaways had profound effects on global and regional climate during the Late Neogene. The constriction of the Central American Seaway reached a critical threshold during the early Pliocene ~4.8–4 million years (Ma) ago. Model simulations indicate the strengthening of the Atlantic Meridional Overturning Circulation (AMOC) with a signature warming response in the Northern Hemisphere and cooling in the Southern Hemisphere. Subsequently, between ~4–3 Ma, the constriction of the Indonesian Seaway impacted regional climate and might have accelerated the Northern Hemisphere Glaciation. We here present Pliocene Atlantic interhemispheric sea surface temperature and salinity gradients (deduced from foraminiferal Mg/Ca and stable oxygen isotopes, δ18O) in combination with a recently published benthic stable carbon isotope (δ13C) record from the southernmost extent of North Atlantic Deep Water to reconstruct gateway-related changes in the AMOC mode. After an early reduction of the AMOC at ~5.3 Ma, we show in agreement with model simulations of the impacts of Central American Seaway closure a strengthened AMOC with a global climate signature. During ~3.8–3 Ma, we suggest a weakening of the AMOC in line with the global cooling trend, with possible contributions from the constriction of the Indonesian Seaway.

  3. Pliocene oceanic seaways and global climate.

    PubMed

    Karas, Cyrus; Nürnberg, Dirk; Bahr, André; Groeneveld, Jeroen; Herrle, Jens O; Tiedemann, Ralf; deMenocal, Peter B

    2017-01-05

    Tectonically induced changes in oceanic seaways had profound effects on global and regional climate during the Late Neogene. The constriction of the Central American Seaway reached a critical threshold during the early Pliocene ~4.8-4 million years (Ma) ago. Model simulations indicate the strengthening of the Atlantic Meridional Overturning Circulation (AMOC) with a signature warming response in the Northern Hemisphere and cooling in the Southern Hemisphere. Subsequently, between ~4-3 Ma, the constriction of the Indonesian Seaway impacted regional climate and might have accelerated the Northern Hemisphere Glaciation. We here present Pliocene Atlantic interhemispheric sea surface temperature and salinity gradients (deduced from foraminiferal Mg/Ca and stable oxygen isotopes, δ(18)O) in combination with a recently published benthic stable carbon isotope (δ(13)C) record from the southernmost extent of North Atlantic Deep Water to reconstruct gateway-related changes in the AMOC mode. After an early reduction of the AMOC at ~5.3 Ma, we show in agreement with model simulations of the impacts of Central American Seaway closure a strengthened AMOC with a global climate signature. During ~3.8-3 Ma, we suggest a weakening of the AMOC in line with the global cooling trend, with possible contributions from the constriction of the Indonesian Seaway.

  4. Pliocene oceanic seaways and global climate

    PubMed Central

    Karas, Cyrus; Nürnberg, Dirk; Bahr, André; Groeneveld, Jeroen; Herrle, Jens O.; Tiedemann, Ralf; deMenocal, Peter B.

    2017-01-01

    Tectonically induced changes in oceanic seaways had profound effects on global and regional climate during the Late Neogene. The constriction of the Central American Seaway reached a critical threshold during the early Pliocene ~4.8–4 million years (Ma) ago. Model simulations indicate the strengthening of the Atlantic Meridional Overturning Circulation (AMOC) with a signature warming response in the Northern Hemisphere and cooling in the Southern Hemisphere. Subsequently, between ~4–3 Ma, the constriction of the Indonesian Seaway impacted regional climate and might have accelerated the Northern Hemisphere Glaciation. We here present Pliocene Atlantic interhemispheric sea surface temperature and salinity gradients (deduced from foraminiferal Mg/Ca and stable oxygen isotopes, δ18O) in combination with a recently published benthic stable carbon isotope (δ13C) record from the southernmost extent of North Atlantic Deep Water to reconstruct gateway-related changes in the AMOC mode. After an early reduction of the AMOC at ~5.3 Ma, we show in agreement with model simulations of the impacts of Central American Seaway closure a strengthened AMOC with a global climate signature. During ~3.8–3 Ma, we suggest a weakening of the AMOC in line with the global cooling trend, with possible contributions from the constriction of the Indonesian Seaway. PMID:28054561

  5. Using Updated Climate Accounting to Slow Global Warming Before 2035

    NASA Astrophysics Data System (ADS)

    Schultz, T.

    2015-12-01

    The current and projected worsening of climate impacts make clear the urgency of limiting the global mean temperature to 2°C over preindustrial levels. But while mitigation policy today may slow global warming at the end of the century, it will not keep global warming within these limits. This failure arises in large part from the climate accounting system used to inform this policy, which does not factor in several scientific findings from the last two decades, including: The urgent need to slow global warming before 2035. This can postpone the time the +1.5°C limit is passed, and is the only way to avoid the most serious long-term climate disruptions. That while it may mitigate warming by the end of the century, reducing emissions of CO2 alone, according to UNEP/WMO[1], will do "little to mitigate warming over the next 20-30 years," and "may temporarily enhance near-term warming as sulfate [cooling] is reduced." That the only emissions reductions that can slow warming before 2035 are focused on short-lived climate pollutants. A small increase in current mitigation funding could fund these projects, the most promising of which target emissions in regional climate "hot spots" like the Arctic and India.[2] To ensure policies can effectively slow global warming before 2035, a new climate accounting system is needed. Such an updated system is being standardized in the USA,[3] and has been proposed for use in ISO standards. The key features of this updated system are: consideration of all climate pollutants and their multi-faceted climate effects; use of time horizons which prioritize mitigation of near-term warming; a consistent and accurate accounting for "biogenic" CO2; protocols ensuring that new scientific findings are incorporated; and a distinct accounting for emissions affecting regional "hot spots". This accounting system also considers environmental impacts outside of climate change, a feature necessary to identify "win-win" projects with climate benefits

  6. Climate Discovery: NCAR Online Education Climate and Global Change Professional Development Program

    NASA Astrophysics Data System (ADS)

    Ward, D. L.; Johnson, R. M.; Foster, S.; Henderson, S.; Gardiner, L.; Russell, R.; Meymaris, K.; Hatheway, B.

    2007-12-01

    The National Center for Atmospheric Research (NCAR) is offering middle and high school teachers an opportunity to learn about the science of climate and how current research is advancing our understanding through Climate Discovery, a series of three online professional development courses. The goals of the Climate Discovery online course series are to provide climate science content relevant to National Science Education Standards, to share easy to implement, hands-on classroom activities that facilitate student understanding of climate and global change, and to provide a broad overview of Earth system science to educator-leaders who are teaching sciences at the middle and high school levels. The first course in the series, Introduction to Earth's Climate, explores climate science and serves as the introduction to the Climate Discovery series. The second course, Earth System Science: A Climate Change Perspective, explores Earth as a system from the perspective of climate and global change, describing the interactions between the various parts of the Earth system, and how they all affect our climate. The final course, Understanding Climate Change Today, provides an opportunity to learn about the impacts of global change as well as exploring how climate models are developed and used to understand likely scenarios of future climate and how current scientific research is improving the quality of climate predictions. The online courses, instructed by science education specialists, combine information about current research and modeling efforts with classroom-tested science inquiry activities. The online course experience features a high level of interactivity, tools for assessment, and effective community-building interactive technologies. We encourage teachers immediately apply their learning by enriching their existing standards-aligned science curriculum, bringing the science of Earth's climate to their students. In this presentation, course developers and

  7. The psychological impacts of global climate change.

    PubMed

    Doherty, Thomas J; Clayton, Susan

    2011-01-01

    An appreciation of the psychological impacts of global climate change entails recognizing the complexity and multiple meanings associated with climate change; situating impacts within other social, technological, and ecological transitions; and recognizing mediators and moderators of impacts. This article describes three classes of psychological impacts: direct (e.g., acute or traumatic effects of extreme weather events and a changed environment); indirect (e.g., threats to emotional well-being based on observation of impacts and concern or uncertainty about future risks); and psychosocial (e.g., chronic social and community effects of heat, drought, migrations, and climate-related conflicts, and postdisaster adjustment). Responses include providing psychological interventions in the wake of acute impacts and reducing the vulnerabilities contributing to their severity; promoting emotional resiliency and empowerment in the context of indirect impacts; and acting at systems and policy levels to address broad psychosocial impacts. The challenge of climate change calls for increased ecological literacy, a widened ethical responsibility, investigations into a range of psychological and social adaptations, and an allocation of resources and training to improve psychologists' competency in addressing climate change-related impacts.

  8. Global climate change: the quantifiable sustainability challenge.

    PubMed

    Princiotta, Frank T; Loughlin, Daniel H

    2014-09-01

    Population growth and the pressures spawned by increasing demands for energy and resource-intensive goods, foods, and services are driving unsustainable growth in greenhouse gas (GHG) emissions. Recent GHG emission trends are consistent with worst-case scenarios of the previous decade. Dramatic and near-term emission reductions likely will be needed to ameliorate the potential deleterious impacts of climate change. To achieve such reductions, fundamental changes are required in the way that energy is generated and used. New technologies must be developed and deployed at a rapid rate. Advances in carbon capture and storage, renewable, nuclear and transportation technologies are particularly important; however, global research and development efforts related to these technologies currently appear to fall short relative to needs. Even with a proactive and international mitigation effort, humanity will need to adapt to climate change, but the adaptation needs and damages will be far greater if mitigation activities are not pursued in earnest. In this review, research is highlighted that indicates increasing global and regional temperatures and ties climate changes to increasing GHG emissions. GHG mitigation targets necessary for limiting future global temperature increases are discussed, including how factors such as population growth and the growing energy intensity of the developing world will make these reduction targets more challenging. Potential technological pathways for meeting emission reduction targets are examined, barriers are discussed, and global and US. modeling results are presented that suggest that the necessary pathways will require radically transformed electric and mobile sectors. While geoengineering options have been proposed to allow more time for serious emission reductions, these measures are at the conceptual stage with many unanswered cost, environmental, and political issues. Implications: This paper lays out the case that mitigating the

  9. Fracking in the face of global climate change

    NASA Astrophysics Data System (ADS)

    Peterson, P.; Gautier, C.

    2015-12-01

    Until recently, "peak oil" was regarded as imminent. Now, however, the recent rapid increase in US oil and gas production from shale exploitation has delayed peak oil. This delay raises grave climate concerns. The development of new technologies (such as horizontal drilling) means that enormous unconventional reserves distributed worldwide may be readily recoverable, with large negative consequences on the global greenhouse gas emissions trajectory. If even a small portion of these unconventional reserves were exploited, it is highly likely that limiting global Earth warming to 2ºC, a goal being discussed for COP 21, will be impossible. Instead, tipping points in the climate system will likely be reached, with serious effects, including greatly accelerated ice melting, leading to large and unstoppable global sea level rise. The enthusiasm for shale gas stems in part from its potential role as a bridge fuel to wean the country from coal until low-carbon alternatives come into full play. However, shale gas and oil production entail direct adverse environmental impacts (air and water pollution, induced earthquakes and public health risks) that are only now coming to light. Gas production through fracking also has severe impacts on climate through the release of methane, a potent greenhouse gas that leaks from production sites. In intensive fracking regions, high methane concentrations are measured on the ground and are now detectable in satellite data. Proponents of gas fracking argue that with the right policies to protect communities and the environment, natural gas can be harnessed as part of a broad climate strategy. But opponents of gas fracking believe that no regulation will be adequate to protect communities and the local environment. They also fear that natural gas produced through fracking will delay progress toward a carbon-free future. We will explore the consequences for the global climate of exploiting these very large oil and gas resources.

  10. Potential impact of global climate change on malaria risk

    SciTech Connect

    Martens, W.J.M.; Rotmans, J. |; Niessen, L.W.; Jetten, T.H.; McMichael, A.J.

    1995-05-01

    The biological activity and geographic distribution of the malarial parasite and its vector are sensitive to climatic influences, especially temperature and precipitation. We have incorporated General Circulation Model-based scenarios of anthropogenic global climate change in an integrated linked-system model for predicting changes in malaria epidemic potential in the next century. The concept of the disability-adjusted life years is included to arrive at a single measure of the effect of anthropogenic climate change on the health impact of malaria. Assessment of the potential impact of global climate change on the incidence of malaria suggests a widespread increase of risk due to expansion of the areas suitable for malaria transmission. This predicted increase is most pronounced at the borders of endemic malaria areas and at higher altitudes within malarial areas. The incidence of infection is sensitive to climate changes in areas of Southeast Asia, South America, and parts of Africa where the disease is less endemic; in these regions the numbers of years of healthy life lost may increase significantly. However, the simulated changes in malaria risk must be interpreted on the basis of local environmental conditions, the effects of socioeconomic developments, and malaria control programs or capabilities. 33 refs., 5 figs., 1 tab.

  11. Global climate change and infectious diseases

    SciTech Connect

    Shope, R. )

    1991-12-01

    The effects of global climate change on infectious diseases are hypothetical until more is known about the degree of change in temperature and humidity that will occur. Diseases most likely to increase in their distribution and severity have three-factor (agent, vector, and human being) and four-factor (plus vertebrate reservoir host) ecology. Aedes aegypti and Aedes albopictus mosquitoes may move northward and have more rapid metamorphosis with global warming. These mosquitoes transmit dengue virus, and Aedes aegypti transmits yellow fever virus. The faster metamorphosis and a shorter extrinsic incubation of dengue and yellow fever viruses could lead to epidemics in North America. Vibrio cholera is harbored persistently in the estuaries of the U.S. Gulf Coast. Over the past 200 years, cholera has become pandemic seven times with spread from Asia to Europe, Africa, and North America. Global warming may lead to changes in water ecology that could enhance similar spread of cholera in North America. Some other infectious diseases such as LaCrosse encephalitis and Lyme disease are caused by agents closely dependent on the integrity of their environment. These diseases may become less prominent with global warming because of anticipated modification of their habitats. Ecological studies will help as to understand more fully the possible consequences of global warming. New and more effective methods for control of vectors will be needed. 12 refs., 1 tab.

  12. Global climate change and infectious diseases.

    PubMed Central

    Shope, R

    1991-01-01

    The effects of global climate change on infectious diseases are hypothetical until more is known about the degree of change in temperature and humidity that will occur. Diseases most likely to increase in their distribution and severity have three-factor (agent, vector, and human being) and four-factor (plus vertebrate reservoir host) ecology. Aedes aegypti and Aedes albopictus mosquitoes may move northward and have more rapid metamorphosis with global warming. These mosquitoes transmit dengue virus, and Aedes aegypti transmits yellow fever virus. The faster metamorphosis and a shorter extrinsic incubation of dengue and yellow fever viruses could lead to epidemics in North America. Vibrio cholerae is harbored persistently in the estuaries of the U.S. Gulf Coast. Over the past 200 years, cholera has become pandemic seven times with spread from Asia to Europe, Africa, and North America. Global warming may lead to changes in water ecology that could enhance similar spread of cholera in North America. Some other infectious diseases such as LaCrosse encephalitis and Lyme disease are caused by agents closely dependent on the integrity of their environment. These diseases may become less prominent with global warming because of anticipated modification of their habitats. Ecological studies will help us to understand more fully the possible consequences of global warming. New and more effective methods for control of vectors will be needed. PMID:1820262

  13. The global climate of December 1992-February 1993. Part II: Large-scale variability across the tropical Western Pacific during TOGA COARE

    SciTech Connect

    Gutzler, D.S.; Kiladis, G.N.; Meehl, G.A.; Wheeler, M.; Weickmann, K.M.

    1994-10-01

    Recently, scientists from more than a dozen countries carried out the field phase of a project called the Coupled Ocean-Atmosphere Response Experiment (COARE), devoted to describing the ocean-atmosphere system of the western Pacific near-equatorial warm pool. This paper places the weather and climate observed during the four-month Intensive Observation Period (IOP) into context with regard to large-scale, low-frequency fluctuations of the ocean-atmospheric system. The description emphasizes large-scale, low-frequency SST and atmospheric variability across the tropical western Pacific, and therefore completely neglects important elements of the measurement campaign conducted during the IOP, including oceanographic sampling of the vertical structure of the warm pool mixed layer, measurement of fluxes at the air-sea interface, and detailed studies of cloud and precipitation processes.

  14. NASA NDATC Global Climate Change Education Initiative

    NASA Astrophysics Data System (ADS)

    Bennett, B.; Wood, E.; Meyer, D.; Maynard, N.; Pandya, R. E.

    2009-12-01

    This project aligns with NASA’s Strategic Goal 3A - “Study Earth from space to advance scientific understanding and meet societal needs and focuses on funding from the GCCE Funding Category 2: Strengthen the Teaching and Learning About Global Climate Change Within Formal Education Systems. According to the Intergovernmental Panel on Climate Change Report (2007) those communities with the least amount of resources will be most vulnerable, and least likely to adapt to the impacts brought on by a changing climate. Further, the level of vulnerability of these communities is directly correlated with their ability to implement short, medium and long range mitigation measures. The North Dakota Association of Tribal Colleges (NDATC) has established a climate change education initiative among its six member Tribal Colleges and Universities (TCUs). The goal of this project is to enhance the TCUs capacity to educate their constituents on the science of climate change and mitigation strategies specifically as they apply to Indian Country. NDATC is comprised of six American Indian tribally chartered colleges (TCUs) which include: Cankdeska Cikana Community College, serving the Spirit Lake Dakota Nation; Fort Berthold Community College, serving the Mandan, Hidatsa, and Arikara Nation; Sitting Bull College, serving the Hunkpapa Lakota and Dakota Nation; Turtle Mountain Community College, serving the Turtle Mountain Band of Chippewa; Sisseton Wahpeton College serving the Sisseton and Wahpeton Dakota Nation, and United Tribes Technical College, serving over 70 Tribal groups from across the United States. The purpose of this project is to (1) increase awareness of climate change and its potential impacts in Indian Country through education for students, faculty and presidents of the TCUs as well as Tribal leadership; (2) increase the capacity of TCUs to respond to this global threat on behalf of tribal people; (3) develop climate change mitigation strategies relevant to Indian

  15. GLOBAL CLIMATE CHANGE--THE TECHNOLOGY CHALLENGE

    EPA Science Inventory

    Anthropogenic emissions of greenhouse gases, such as carbon dioxide, have led to increasing atmospheric concentrations which are at least partly responsible for the roughly 0.7% degree C global warming earth has experienced since the industrial revolution. With industrial activit...

  16. Global Climate Models of the Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Forget, F.; Lebonnois, S.

    On the basis of the global climate models (GCMs) originally developed for Earth, several teams around the world have been able to develop GCMs for the atmospheres of the other terrestrial bodies in our solar system: Venus, Mars, Titan, Triton, and Pluto. In spite of the apparent complexity of climate systems and meteorology, GCMs are based on a limited number of equations. In practice, relatively complete climate simulators can be developed by combining a few components such as a dynamical core, a radiative transfer solver, a parameterization of turbulence and convection, a thermal ground model, and a volatile phase change code, possibly completed by a few specific schemes. It can be shown that many of these GCM components are "universal" so that we can envisage building realistic climate models for any kind of terrestrial planets and atmospheres that we can imagine. Such a tool is useful for conducting scientific investigations on the possible climates of terrestrial extrasolar planets, or to study past environments in the solar system. The ambition behind the development of GCMs is high: The ultimate goal is to build numerical simulators based only on universal physical or chemical equations, yet able to reproduce or predict all the available observations on a given planet, without any ad hoc forcing. In other words, we aim to virtually create in our computers planets that "behave" exactly like the actual planets themselves. In reality, of course, nature is always more complex than expected, but we learn a lot in the process. In this chapter we detail some lessons learned in the solar system: In many cases, GCMs work. They have been able to simulate many aspects of planetary climates without difficulty. In some cases, however, problems have been encountered, sometimes simply because a key process has been forgotten in the model or is not yet correctly parameterized, but also because sometimes the climate regime seems to be result of a subtle balance between

  17. Implications of global warming for the climate of African rainforests

    PubMed Central

    James, Rachel; Washington, Richard; Rowell, David P.

    2013-01-01

    African rainforests are likely to be vulnerable to changes in temperature and precipitation, yet there has been relatively little research to suggest how the regional climate might respond to global warming. This study presents projections of temperature and precipitation indices of relevance to African rainforests, using global climate model experiments to identify local change as a function of global temperature increase. A multi-model ensemble and two perturbed physics ensembles are used, one with over 100 members. In the east of the Congo Basin, most models (92%) show a wet signal, whereas in west equatorial Africa, the majority (73%) project an increase in dry season water deficits. This drying is amplified as global temperature increases, and in over half of coupled models by greater than 3% per °C of global warming. Analysis of atmospheric dynamics in a subset of models suggests that this could be partly because of a rearrangement of zonal circulation, with enhanced convection in the Indian Ocean and anomalous subsidence over west equatorial Africa, the Atlantic Ocean and, in some seasons, the Amazon Basin. Further research to assess the plausibility of this and other mechanisms is important, given the potential implications of drying in these rainforest regions. PMID:23878329

  18. Implications of global warming for the climate of African rainforests.

    PubMed

    James, Rachel; Washington, Richard; Rowell, David P

    2013-01-01

    African rainforests are likely to be vulnerable to changes in temperature and precipitation, yet there has been relatively little research to suggest how the regional climate might respond to global warming. This study presents projections of temperature and precipitation indices of relevance to African rainforests, using global climate model experiments to identify local change as a function of global temperature increase. A multi-model ensemble and two perturbed physics ensembles are used, one with over 100 members. In the east of the Congo Basin, most models (92%) show a wet signal, whereas in west equatorial Africa, the majority (73%) project an increase in dry season water deficits. This drying is amplified as global temperature increases, and in over half of coupled models by greater than 3% per °C of global warming. Analysis of atmospheric dynamics in a subset of models suggests that this could be partly because of a rearrangement of zonal circulation, with enhanced convection in the Indian Ocean and anomalous subsidence over west equatorial Africa, the Atlantic Ocean and, in some seasons, the Amazon Basin. Further research to assess the plausibility of this and other mechanisms is important, given the potential implications of drying in these rainforest regions.

  19. Climate change: impacts on and implications for global health.

    PubMed

    St Louis, Michael E; Hess, Jeremy J

    2008-11-01

    The most severe consequences of climate change will accrue to the poorest people in the poorest countries, despite their own negligible contribution to greenhouse gas emissions. In recent years, global health efforts in those same countries have grown dramatically. However, the emerging scientific consensus about climate change has not yet had much influence on the routine practice and strategies of global health. We review here the anticipated types and global distribution of health impacts of climate change, discuss relevant aspects of current global interventions for health in low-income countries, and consider potential elements of a framework for appropriately and efficiently mainstreaming global climate change-mitigation and -adaptation strategies into the ongoing enterprise of global health. We propose a collaborative learning initiative involving four areas: (1) increased awareness among current global health practitioners of climate change and its potential impacts for the most disadvantaged, (2) strengthening of the evidence base, (3) incorporation now of climate change-mitigation and -adaptation concerns into design of ongoing global health programs, and (4) alignment of current global health program targets and methods with larger frameworks for climate change and sustainable development. The great vulnerability to climate change of populations reached by current global health efforts should prompt all concerned with global health to take a leading role in advocating for climate change mitigation in their own countries.

  20. Global metabolic impacts of recent climate warming.

    PubMed

    Dillon, Michael E; Wang, George; Huey, Raymond B

    2010-10-07

    Documented shifts in geographical ranges, seasonal phenology, community interactions, genetics and extinctions have been attributed to recent global warming. Many such biotic shifts have been detected at mid- to high latitudes in the Northern Hemisphere-a latitudinal pattern that is expected because warming is fastest in these regions. In contrast, shifts in tropical regions are expected to be less marked because warming is less pronounced there. However, biotic impacts of warming are mediated through physiology, and metabolic rate, which is a fundamental measure of physiological activity and ecological impact, increases exponentially rather than linearly with temperature in ectotherms. Therefore, tropical ectotherms (with warm baseline temperatures) should experience larger absolute shifts in metabolic rate than the magnitude of tropical temperature change itself would suggest, but the impact of climate warming on metabolic rate has never been quantified on a global scale. Here we show that estimated changes in terrestrial metabolic rates in the tropics are large, are equivalent in magnitude to those in the north temperate-zone regions, and are in fact far greater than those in the Arctic, even though tropical temperature change has been relatively small. Because of temperature's nonlinear effects on metabolism, tropical organisms, which constitute much of Earth's biodiversity, should be profoundly affected by recent and projected climate warming.

  1. White House Conference on Global Climate Change

    SciTech Connect

    Not Available

    1993-11-01

    President Clinton has directed the White House office on Environmental Policy to coordinate an interagency process to develop a plan to fulfill the commitment he made in his Earth Day address on April 21, 1993. This plan will become the cornerstone of the Climate Change Plan that will be completed shortly after the Rio Accord enters into force. The Office on Environmental Policy established the Interagency Climate Change Mitigation Group to draw on the expertise of federal agencies including the National Economic Council; the Council of Economic Advisors; the Office of Science and Technology Policy; the Office of Management and Budget; the National Security Council; the Domestic Policy Council; the Environmental Protection Agency; and the Departments of Energy, Transportation, Agriculture, Interior, Treasury, Commerce, and State. Working groups have been established to examine six key policy areas: energy demand, energy supply, joint implementation, methane and other gases, sinks, and transportation. The purpose of the White House Conference on Global Climate Change was to ``tap the real-world experiences`` of diverse participants and seek ideas and information for meeting the President`s goals. During the opening session, senior administration officials defined the challenge ahead and encouraged open and frank conversation about the best possible ways to meet it.

  2. U.S. Global Climate Change Impacts Report, Global Climate Change

    NASA Astrophysics Data System (ADS)

    Santer, B.

    2009-12-01

    The first Key Finding from the recent USGCRP report “Global Climate Change Impacts in the United States” is: 1. Global warming is unequivocal and primarily human-induced. Global temperature has increased over the past 50 years. This observed increase is due primarily to human-induced emissions of heat-trapping gases. This statement is based on a combination of observational, theoretical and model based analyses and are a consensus opinion of the report’s Lead Author team. The scientific rationale supporting this consensus will be summarized.

  3. Studies of dynamical processes affecting global climate

    SciTech Connect

    Keller, C.; Cooper, D.; Eichinger, W.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development project at the Los Alamos National Laboratory (LANL). The main objective was, by a combined theoretical and observational approach, to develop improved models of dynamic processes in the oceans and atmosphere and to incorporate them into large climate codes, chiefly in four main areas: numerical physics, chemistry, water vapor, and ocean-atmosphere interactions. Main areas of investigation included studies of: cloud parameterizations for global climate codes, Lidar and the planetary boundary layer, chemistry, climate variability using coupled ocean-atmospheric models, and numerical physical methods. This project employed a unique approach that included participation of a number of University of California faculty, postdoctoral fellows and graduate students who collaborated with Los Alamos research staff on specific tasks, thus greatly enhancing the research output. Overall accomplishments during the sensing of the atmospheric planetary were: (1) first two- and three-dimensional remote sensing of the atmospheric planetary boundary layer using Lidars, (2) modeling of 20-year cycle in both pressure and sea surface temperatures in North Pacific, (3) modeling of low frequency internal variability, (4) addition of aerosols to stratosphere to simulate Pinatubo effect on ozone, (5) development of fast, comprehensive chemistry in the troposphere for urban pollution studies, (6) new prognostic cloud parameterization in global atmospheric code remedied problems with North Pacific atmospheric circulation and excessive equatorial precipitation, (7) development of a unique aerosol analysis technique, the aerosol time-of-flight mass spectrometer (ATOFMS), which allows real-time analysis of the size and chemical composition of individual aerosol particles, and (8) numerical physics applying Approximate Inertial Manifolds to ocean circulation. 14 refs., 6 figs.

  4. Globally Gridded Satellite observations for climate studies

    USGS Publications Warehouse

    Knapp, K.R.; Ansari, S.; Bain, C.L.; Bourassa, M.A.; Dickinson, M.J.; Funk, C.; Helms, C.N.; Hennon, C.C.; Holmes, C.D.; Huffman, G.J.; Kossin, J.P.; Lee, H.-T.; Loew, A.; Magnusdottir, G.

    2011-01-01

    Geostationary satellites have provided routine, high temporal resolution Earth observations since the 1970s. Despite the long period of record, use of these data in climate studies has been limited for numerous reasons, among them that no central archive of geostationary data for all international satellites exists, full temporal and spatial resolution data are voluminous, and diverse calibration and navigation formats encumber the uniform processing needed for multisatellite climate studies. The International Satellite Cloud Climatology Project (ISCCP) set the stage for overcoming these issues by archiving a subset of the full-resolution geostationary data at ~10-km resolution at 3-hourly intervals since 1983. Recent efforts at NOAA's National Climatic Data Center to provide convenient access to these data include remapping the data to a standard map projection, recalibrating the data to optimize temporal homogeneity, extending the record of observations back to 1980, and reformatting the data for broad public distribution. The Gridded Satellite (GridSat) dataset includes observations from the visible, infrared window, and infrared water vapor channels. Data are stored in Network Common Data Format (netCDF) using standards that permit a wide variety of tools and libraries to process the data quickly and easily. A novel data layering approach, together with appropriate satellite and file metadata, allows users to access GridSat data at varying levels of complexity based on their needs. The result is a climate data record already in use by the meteorological community. Examples include reanalysis of tropical cyclones, studies of global precipitation, and detection and tracking of the intertropical convergence zone.

  5. Effect of global climate on termites population. Effect of termites population on global climate

    NASA Astrophysics Data System (ADS)

    Sapunov, Valentin

    2010-05-01

    The global climate is under control of factors having both earth and space origin. Global warming took place from XVII century till 1997. Then global cold snap began. This dynamics had effect on global distribution of some animals including termites. Direct human effect on climate is not significant. At the same time man plays role of trigger switching on significant biosphere processes controlling climate. The transformation of marginal lands, development of industry and building, stimulated increase of termite niche and population. Termite role in green house gases production increases too. It may have regular effect on world climate. The dry wood is substrate for metabolism of termites living under symbiosis with bacteria Hypermastigina (Flagellata). The use of dry wood by humanity increased from 18 *108 ton in XVIII to 9*109 to the middle of XX century. Then use of wood decreased because of a new technology development. Hence termite population is controlled by microevolution depending on dry wood and climate dynamics. Producing by them green house gases had reciprocal effect on world climate. It is possible to describe and predict dynamic of termite population using methods of mathematical ecology and analogs with other well studied insects (Colorado potatoes beetle, Chrisomelid beetle Zygogramma and so on). Reclamation of new ecological niche for such insects as termites needs 70 - 75 years. That is delay of population dynamics in relation to dynamics of dry wood production. General principles of population growth were described by G.Gause (1934) and some authors of the end of XX century. This works and analogs with other insects suggest model of termite distribution during XXI century. The extremum of population and its green house gases production would be gotten during 8 - 10 years. Then the number of specimens and sum biological mass would be stabilized and decreased. Termite gas production is not priority for climate regulation, but it has importance as

  6. Psychology's contributions to understanding and addressing global climate change.

    PubMed

    Swim, Janet K; Stern, Paul C; Doherty, Thomas J; Clayton, Susan; Reser, Joseph P; Weber, Elke U; Gifford, Robert; Howard, George S

    2011-01-01

    Global climate change poses one of the greatest challenges facing humanity in this century. This article, which introduces the American Psychologist special issue on global climate change, follows from the report of the American Psychological Association Task Force on the Interface Between Psychology and Global Climate Change. In this article, we place psychological dimensions of climate change within the broader context of human dimensions of climate change by addressing (a) human causes of, consequences of, and responses (adaptation and mitigation) to climate change and (b) the links between these aspects of climate change and cognitive, affective, motivational, interpersonal, and organizational responses and processes. Characteristics of psychology that cross content domains and that make the field well suited for providing an understanding of climate change and addressing its challenges are highlighted. We also consider ethical imperatives for psychologists' involvement and provide suggestions for ways to increase psychologists' contribution to the science of climate change.

  7. Climate change and global agriculture: Recent findings and issues

    SciTech Connect

    Reilly, J.

    1995-08-01

    This paper (a) reviews existing findings on the global impacts of climate change on agriculture, (b) identifies limitations of these findings, and (c) discusses three issues of interest on the Intergovernmental Panel on Climate Change (IPCC). The three issues are as follows: regional effects versus global efficiency: the issue of hunger; climate change, agriculture and economic development; cost and disruption of adaptation to climate change. 45 refs., 3 tabs.

  8. Climate Change: U.S.-China Partnership for Global Security

    DTIC Science & Technology

    2010-03-01

    that “ global warming is the greatest hoax ever perpetrated on the American people.”7 Apposing arguments regarding climate change are not surprising... Warming CLASSIFICATION: Unclassified China has capitalized on economic globalization to emerge as one of the largest industrial nations, and...Climate Change (IPCC), the impact of global warming on planet earth depends on the extent of human adaptation to climate change and the rate of

  9. Global Framework for Climate Services (GFCS): status of implementation

    NASA Astrophysics Data System (ADS)

    Lucio, Filipe

    2015-04-01

    sectors. Establishment of regional capacities through climate centres to support national institutional capacities is a major focus. The Proof of Concept will be replicated in other parts of the world to ensure worldwide improvements in climate services for the four priority areas to facilitate the reduction of society's vulnerability to climate-related hazards and the advancement of the key global development goals. To streamline and harness climate research and knowledge in support of GFCS implementation, regional research plans or agendas are being shaped in different regions. For example, a Climate Research for Development Agenda for Africa (CR4D) is being developed under the leadership of the World Climate Research Programme (WCRP) and in cooperation with the African Union Commission and other partners. Similarly, regional climate research priorities are being developed for Latin America and the Caribbean, following the WCRP Conference for Latin America and the Caribbean (Montevideo, March 2014). Availability of regional research plans or agendas would ensure more effective research and involvement of national experts in climate research activities.

  10. U.S. Global Climate Change Impacts Report, Adaptation

    NASA Astrophysics Data System (ADS)

    Pulwarty, R.

    2009-12-01

    Adaptation measures improve our ability to cope with or avoid harmful climate impacts and take advantage of beneficial ones, now and as climate varies and changes. Adaptation and mitigation are necessary elements of an effective response to climate change. Adaptation options also have the potential to moderate harmful impacts of current and future climate variability and change. The Global Climate Change Impacts Report identifies examples of adaptation-related actions currently being pursued in various sectors and regions to address climate change, as well as other environmental problems that could be exacerbated by climate change such as urban air pollution and heat waves. Some adaptation options that are currently being pursued in various regions and sectors to deal with climate change and/or other environmental issues are identified in this report. A range of adaptation responses can be employed to reduce risks through redesign or relocation of infrastructure, sustainability of ecosystem services, increased redundancy of critical social services, and operational improvements. Adapting to climate change is an evolutionary process and requires both analytic and deliberative decision support. Many of the climate change impacts described in the report have economic consequences. A significant part of these consequences flow through public and private insurance markets, which essentially aggregate and distribute society's risk. However, in most cases, there is currently insufficient robust information to evaluate the practicality, efficiency, effectiveness, costs, or benefits of adaptation measures, highlighting a need for research. Adaptation planning efforts such as that being conducted in New York City and the Colorado River will be described. Climate will be continually changing, moving at a relatively rapid rate, outside the range to which society has adapted in the past. The precise amounts and timing of these changes will not be known with certainty. The

  11. Global Framework for Climate Services (GFCS): implementation approach

    NASA Astrophysics Data System (ADS)

    Lucio, Filipe

    2013-04-01

    The Extraordinary Session of the World Meteorological Congress, held from 29 to 31 October 2012, adopted the Implementation Plan of the Global Framework for Climate Services, for the subsequent consideration by the Intergovernmental Board on Climate Services, which will host its first session in July 2013. The Extraordinary Congress called for an immediate move to action, so that the work undertaken can result in activities on the ground which will benefit, in particular, vulnerable countries. The development of the GFCS through a broad consultation process accross the pillars of the GFCS (User Interface Platform; Observations and Monitoring; Climate Services Information System; Research, Modelling and Prediction; and Capacity Development) and the initial four priority areas (Agriculture and Food Security; Water; Health and Disaster Risk Reductio) identified a number of challenges, which in some cases constitute barries to implementation: - Accessibility: many countries do not have climate services at all, and all countries have scope to improve access to such services; - Capacity: many countries lack the capacity to anticipate and managed climate-related risks and opportunities; - Data: the current availability and quality of climate observations and impacts data are inadequate for large parts of the globe; - Partnerships: mechanisms to enhance interaction between climate users and providers are not always well developed, and user requirements are not always adequately understood and addressed; - Quality: operational climate services are lagging advances in climate and applications science, and the spatial and temporal resolution of information to support decision-making is often insufficient to match user requirements. To address these challenges, the Implementation Plan of the GFCS identified initial implementation projects and activities. The initial priority is to establish the leadership and management capacity to take the GFCS forward at all levels. Capacity

  12. Architecting next 30 years of climate monitoring from space with instructive examples from NPOESS and GCOS plus new rule-based decision tools: suggesting and promoting global collaborative paths forward (Part V)

    NASA Astrophysics Data System (ADS)

    Helmuth, Douglas B.; Bell, Raymond M.; Lentz, Christopher A.

    2013-10-01

    Collecting the earth's critical climate signatures over the next 30 years is an obvious priority for many world governments and international organizations. Implementing a solution requires bridging from today's scientific missions to `operational' constellations that are adequate to support the future demands of decision makers, scientific investigators and global users for trusted data.

  13. Climate Change in New England | Energy and Global Climate ...

    EPA Pesticide Factsheets

    2017-04-10

    EPA Region 1's Energy and Climate Unit and Oceans and Coastal Unit provide information and technical assistance on climate change impacts and adaptation, resilience and preparedness to climate disruptions

  14. 76 FR 41525 - Hewlett Packard Global Parts Supply Chain, Global Product Life Cycles Management Unit Including...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-14

    ... Parts Supply Chain, Global Product Life Cycles Management Unit, including teleworkers reporting to... Employment and Training Administration Hewlett Packard Global Parts Supply Chain, Global Product Life Cycles... Chain, Global Product Life Cycles Management Unit, including teleworkers reporting to Houston,...

  15. Using Immersion to teach Global Climate Change

    NASA Astrophysics Data System (ADS)

    Sumners, C. T.; Handron, K.; Reiff, P. H.; Law, C. C.

    2004-12-01

    Students are increasingly jaded to programs that preach, and museums are increasingly finding it difficult to attract students who can retrieve information quickly from the internet or cable TV. A new medium of immersive theater can now engulf the viewer in the subject, bringing a novel view to the exciting new data sets and images now available. By telling a compelling story with characters they can identify with, global climate change can be experienced and its effects brought home in a dramatic and effective way. We have developed several shows highlighting climate change (Powers of Time, Secrets of the Dead Sea), and are developing new shows (Earth's Wild Ride, Earth in the Balance) which can be used to take the visitor into the past or into the future. Clips from the shows and evidence of their effectiveness as an educational tool for Earth science will be shown. If possible, our new portable dome system will be set up in the poster hall for longer live demos of our shows.

  16. Global Seasonal Influenza Epidemics and Climate

    NASA Astrophysics Data System (ADS)

    Tamerius, James

    2013-04-01

    Recent evidence suggests that low specific humidity conditions facilitate the transmission of the influenza virus in temperate regions and result in annual winter epidemics. However, this relationship does not account for the epidemiology of influenza in tropical and subtropical regions where epidemics often occur during the rainy season or transmit year-round without a well-defined season. We assessed the role of specific humidity and other local climatic variables on influenza virus seasonality by modeling epidemiological and climatic information from 78 study sites sampled globally. We substantiated that there are two types of environmental conditions associated with seasonal influenza epidemics: "cold-dry" and "humid-rainy". For sites where monthly average specific humidity or temperature decreases below thresholds of approximately 11-12 g/kg and 18-21 °C during the year, influenza activity peaks during the cold-dry season (i.e., winter) when specific humidity and temperature are at minimal levels. For sites where specific humidity and temperature do not decrease below these thresholds, seasonal influenza activity is more likely to peak in months when average precipitation totals are maximal and greater than 150 mm per month. Based on these findings, we develop Susceptible-Exposed-Infected-Recovered-Susceptible (SEIRS) models forced by daily weather observations of specific humidity and precipitation that simulate the diversity of seasonal influenza signals worldwide.

  17. Global Climate Change and the Wildlands of Montana: Promoting Scientific Understanding for K-12 Educators

    NASA Astrophysics Data System (ADS)

    Graumlich, L. J.; Simonsen, L. M.

    2004-12-01

    The complexities and uncertainties associated with the science of global climate change is a barrier to the implementation of global change into K-12 classrooms. This issue is part of a larger conundrum where by teachers who are not well-versed in the content of an emerging science field are less likely to incorporate that topic into their curriculum. As such, it is not surprising that the K-12 community has been slow to embrace global climate change as a curriculum element, given that science underlying global climate change is interdisciplinary and replete with new discoveries, complex models, and competing theories. Faculty members associated with the Big Sky Institute have experimented with ways to promote collaboration between researchers and educators to enhance scientific literacy. In 2004, with funding from the US Environmental Protection Agency and private foundations, we implemented a five-day, field based professional development workshop for middle and high school teachers that focused on the research underlying EPA's Climate Change, Wildlife and Wildlands curriculum. A primary objective of the overall project is to promote one-on-one engagement of teachers with researchers whose work forms the basis of the content of the curriculum. Further, we seek to assess the degree to which increased content knowledge leads to incorporation of global climate change content into classrooms and curricula. During the workshop, we focused on two broad research findings, namely: 1) Global climate change is systemically pervasive such that even wildlands (i.e., unmanaged, pristine parks and reserves) are or potentially will be altered by global climate change. 2) At the same time, natural climate variability may enhance or mask human-induced climate impacts on wildlands and wildlife. In addition, we emphasized two broadly framed "ways of thinking" about global climate change, namely: 1) Wildlands can be used to detect and measure the impacts of human-induced climate

  18. Ad hoc committee on global climate issues: Annual report

    USGS Publications Warehouse

    Gerhard, L.C.; Hanson, B.M.B.

    2000-01-01

    The AAPG Ad Hoc Committee on Global Climate Issues has studied the supposition of human-induced climate change since the committee's inception in January 1998. This paper details the progress and findings of the committee through June 1999. At that time there had been essentially no geologic input into the global climate change debate. The following statements reflect the current state of climate knowledge from the geologic perspective as interpreted by the majority of the committee membership. The committee recognizes that new data could change its conclusions. The earth's climate is constantly changing owing to natural variability in earth processes. Natural climate variability over recent geological time is greater than reasonable estimates of potential human-induced greenhouse gas changes. Because no tool is available to test the supposition of human-induced climate change and the range of natural variability is so great, there is no discernible human influence on global climate at this time.

  19. Global climate change crosses state boundaries

    SciTech Connect

    Changnon, S.A.

    1996-12-31

    The hot, dry summer of 1988 brought the specter of global warming a bit too close for comfort. {open_quotes}Scorching heat, not scientific models, attracted media attention,{close_quotes} says Stanley A. Changnon, senior scientist with the Illinois State Water Survey in Champaign, Illinois. Rising temperatures in the late 1980`s prompted individual states to begin to take action to curb greenhouse-gas emissions. A 1990 report by the National Governors Association identified two guiding principles for addressing climate change issues. {open_quotes}First, that energy policy must be at the center of any efforts to control greenhouse-gas emissions. Second, that state can...restrict emissions through state policies related to public utilities, land use, transportation, and even taxation,{close_quotes} Changnon says. Even if concerns for global warming prove to be overblown, states decided to act for broader economic and environmental reasons. Such initiatives not only save money, but they improve air quality and leave the nation more energy independent,{close_quotes} Changnon says.

  20. SubArctic Oceans and Global Climate

    NASA Astrophysics Data System (ADS)

    Rhines, P. B.

    2004-12-01

    The passages connecting the Arctic Ocean with the Atlantic and Pacific, and their `mediterranean' basins, are focal points for the global meridional overturning circulation, and all of the climate impacts which this implies. It is also a difficult region to model accurately: the sensitivity of climate models to subpolar ocean dynamics is well-known. In this talk we stress the need to instrument and analyze the subpolar oceans, and some examples of sustained observations developing there. Results from satellite altimetry, recent Seaglider deployments from Greenland, and mooring arrays will be described. In particular we show the first Seaglider sections of hydrography and bio-optical profiles of the Labrador Sea (one of the first extended deployments of this autonomous undersea vehicle); we discuss the decline during the 1990s of the subpolar gyre circulation of the Atlantic from its great strength during the positive NAO period of the early 1990s, and its relevance to the salinity decline observed over a much longer period; we review observations of the flows at the Iceland-Scotland Ridge and Davis Strait, argued in terms of volume transport plots on the potential temperature/salinity plane; we display maps of the `convection resistance' (related to dynamic height) and its sensitivity to surface low-salinity water masses and their partition between shallow continental shelves and deep ocean. This is a particularly exciting time for climate studies, with fundamental properties of the atmosphere-ocean circulation under debate, even before one considers natural and human-induced variability. Is the four-decade long decline in subArctic salinity the result of increased hydrologic cycle, increased or altered Arctic outflow to the Atlantic, or slowing of the subpolar circulation? Is the basic intensity of the MOC more dependent on high-latitude buoyancy forcing, or wind- or tide-driven mixing in the upwelling branch, or possibly wind-stress at high latitude? Is the

  1. Possible implications of global climate change on global lightning distributions and frequencies

    NASA Technical Reports Server (NTRS)

    Price, Colin; Rind, David

    1994-01-01

    The Goddard Institute for Space Studies (GISS) general circulation model (GCM) is used to study the possible implications of past and future climate change on global lightning frequencies. Two climate change experiments were conducted: one for a 2 x CO2 climate (representing a 4.2 degs C global warming) and one for a 2% decrease in the solar constant (representing a 5.9 degs C global cooling). The results suggest at 30% increase in global lightning activity for the warmer climate and a 24% decrease in global lightning activity for the colder climate. This implies an approximate 5-6% change in global lightning frequencies for every 1 degs C global warming/cooling. Both intracloud and cloud-to-ground frequencies are modeled, with cloud-to-ground lightning frequencies showing larger sensitivity to climate change than intracloud frequencies. The magnitude of the modeled lightning changes depends on season, location, and even time of day.

  2. Land Cover / Climate Interaction at Global and Regional Scales

    NASA Astrophysics Data System (ADS)

    Xue, Y.

    2014-12-01

    Land cover and climate interact at regional and global scales through biophysical, biogeochemical, and ecological processes. Land cover change (LCC) affects regional climate through impacts on surface albedo and surface net radiation, on the partitioning of available energy between sensible and latent heat fluxes, on the atmospheric heating, moisture flux convergence and circulation, and the partitioning of rainfall between evaporation and runoff. Meanwhile, the climate variability and change also affect the LCC. Based on historical anthropogenic land cover change data from 1948-2005, numerical experiments that were designed to test its impact using general circulation models indicate that the LCC enhances the global warming in past half century. This is because after land degradation, reduction of evaporation is dominant, leading to surface warming. The reduction of net radiation due to high surface albedo plays a secondary role. Meanwhile, its impact on the regional monsoon is significant. The produced monsoon rainfall anomaly is not only limited within the land degradation area but extend to much large area through its interaction with the atmospheric circulations. The warming climate and climate variability also affect the vegetation distribution. For instance, with a coupled biophysical and dynamic vegetation model forced by the observed meteorological data, the North America leaf area index (LAI) shows an increasing trend after the 1970s in responding to warming. Meanwhile, the effects of the severe drought during 1987-1992 and the last decade in the southwestern U.S. on vegetation are also evident from the simulated and satellite-derived LAIs. The land covers in some parts of North America also show substantial changes. Evaluations of these simulations using satellite data are crucial. The critical issues in applying satellite data for LCC studies are also discussed.

  3. The real ecological fallacy: epidemiology and global climate change.

    PubMed

    Krieger, Nancy

    2015-08-01

    Prompted by my participation in the People's Climate March held in New York City on 21 September 2014, as part of the 'Harvard Divest' contingent, in this brief essay I reflect on the late 20th century development of--and debates over--the necessity of ecological thinking in epidemiology, and also the still limited engagement of our field with work on the health impact of global climate change. Revisiting critiques about the damaging influence of methodological individualism on our field, I extend critique of the still influential notion of 'ecological fallacy,' including its wilful disregard for ecology itself as being pertinent to people's ways of living--and dying. Indeed, the real 'ecological fallacy' is to think epidemiologists or others could ever understand the people's health except in societal and ecological, and hence historical, context. I conclude by urging all of us, as members of the broader scientific community, whether or not we directly study the health impacts of the planetary emergency of global climate change, to step up by joining the call for universities to divest from fossil fuels.

  4. Global Responses to Potential Climate Change: A Simulation.

    ERIC Educational Resources Information Center

    Williams, Mary Louise; Mowry, George

    This interdisciplinary five-day unit provides students with an understanding of the issues in the debate on global climate change. Introductory lessons enhance understanding of the "greenhouse gases" and their sources with possible global effects of climate change. Students then roleplay negotiators from 10 nations in a simulation of the…

  5. Thermohaline circulations and global climate change. Final report

    SciTech Connect

    Hanson, H.P.

    1996-10-01

    This report discusses results from the project entitled Thermohaline Circulations and Global Climate Change. Results are discussed in three sections related to the development of the Miami Isopycnic Coordinate Ocean Model (MICOM), surface forcing of the ocean by the atmosphere, and experiments with the MICOM related to the problem of the ocean`s response to global climate change. It will require the use of a global, coupled ocean-atmospheric climate model to quantify the feedbacks between ocean and atmosphere associated with climate changes. The results presented here do provide guidance for such studies in the future.

  6. International Peer Collaboration to Learn about Global Climate Changes

    ERIC Educational Resources Information Center

    Korsager, Majken; Slotta, James D.

    2015-01-01

    Climate change is not local; it is global. This means that many environmental issues related to climate change are not geographically limited and hence concern humans in more than one location. There is a growing body of research indicating that today's increased climate change is caused by human activities and our modern lifestyle. Consequently,…

  7. Assessing Elementary Science Methods Students' Understanding about Global Climate Change

    ERIC Educational Resources Information Center

    Lambert, Julie L.; Lindgren, Joan; Bleicher, Robert

    2012-01-01

    Global climate change, referred to as climate change in this paper, has become an important planetary issue, and given that K-12 students have numerous alternative conceptions or lack of prior knowledge, it is critical that teachers have an understanding of the fundamental science underlying climate change. Teachers need to understand the natural…

  8. Sustainable biochar to mitigate global climate change

    SciTech Connect

    Woolf, Dominic; Amonette, James E.; Street-Perrott, F. A.; Lehmann, Johannes C.; Joseph, Stephen

    2010-08-10

    Production of biochar (the carbon-rich solid formed by pyrolysis of biomass), in combination with its storage in soils, has been suggested as a means to abate anthropogenic climate change, while simultaneously increasing crop yields. The climate mitigation potential stems primarily from the highly recalcitrant nature of biochar, which slows the rate at which photosynthetically fixed carbon is returned to the atmosphere. Significant uncertainties exist, however, regarding the impact, capacity, and sustainability of biochar for carbon capture and storage when scaled to the global level. Previous estimates, based on simple assumptions, vary widely. Here we show that, subject to strict environmental and modest economic constraints on biomass procurement and biochar production methods, annual net emissions of CO2, CH4 and N2O could be reduced by 1.1 - 1.9 Pg CO2-C equivalent (CO2-Ce)/yr (7 - 13% of current anthropogenic CO2-Ce emissions; 1Pg = 1 Gt). Over one century, cumulative net emissions of these gases could be reduced by 72-140 Pg CO2-Ce. The lower end of this range uses currently untapped residues and wastes; the upper end requires substantial alteration to global biomass management, but would not endanger food security, habitat or soil conservation. Half the avoided emissions are due to the net C sequestered as biochar, one-quarter to replacement of fossil-fuel energy by pyrolysis energy, and one-quarter to avoided emissions of CH4 and N2O. The total mitigation potential is 18-30% greater than if the same biomass were combusted to produce energy. Despite limited data for the decomposition rate of biochar in soils and the effects of biochar additions on soil greenhouse-gas fluxes, sensitivity within realistic ranges of these parameters is small, resulting in an uncertainty of ±8% (±1 s.d.) in our estimates. Achieving these mitigation results requires, however, that biochar production be performed using only low-emissions technologies and feedstocks obtained

  9. Global and Mediterranean climate change: a short summary.

    PubMed

    Ciardini, Virginia; Contessa, Gian Marco; Falsaperla, Rosaria; Gómez-Amo, José Luis; Meloni, Daniela; Monteleone, Francesco; Pace, Giandomenico; Piacentino, Salvatore; Sferlazzo, Damiano; di Sarra, Alcide

    2016-01-01

    Observed changes at the global scale. An increase of the annual mean global temperature and changes of other climate parameters have been observed in the last century. The global temperature and the atmospheric concentration of greenhouse gases are changing at a very fast pace compared to those found in palaeoclimate records. Changes in the Mediterranean. Variations of some climate change indicators can be much larger at the local than at the global scale, and the Mediterranean has been indicated among the regions most sensitive to climate change, also due to the increasing anthropogenic pressure. Model projections for the Mediterranean foresee further warming, droughts, and long-lasting modifications.

  10. Sensitivity of global terrestrial ecosystems to climate variability

    NASA Astrophysics Data System (ADS)

    Seddon, Alistair W. R.; Macias-Fauria, Marc; Long, Peter R.; Benz, David; Willis, Kathy J.

    2016-03-01

    The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems—be they natural or with a strong anthropogenic signature—to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.

  11. Sensitivity of global terrestrial ecosystems to climate variability.

    PubMed

    Seddon, Alistair W R; Macias-Fauria, Marc; Long, Peter R; Benz, David; Willis, Kathy J

    2016-03-10

    The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems--be they natural or with a strong anthropogenic signature--to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.

  12. Climate variation explains a third of global crop yield variability

    NASA Astrophysics Data System (ADS)

    Ray, Deepak K.; Gerber, James S.; MacDonald, Graham K.; West, Paul C.

    2015-01-01

    Many studies have examined the role of mean climate change in agriculture, but an understanding of the influence of inter-annual climate variations on crop yields in different regions remains elusive. We use detailed crop statistics time series for ~13,500 political units to examine how recent climate variability led to variations in maize, rice, wheat and soybean crop yields worldwide. While some areas show no significant influence of climate variability, in substantial areas of the global breadbaskets, >60% of the yield variability can be explained by climate variability. Globally, climate variability accounts for roughly a third (~32-39%) of the observed yield variability. Our study uniquely illustrates spatial patterns in the relationship between climate variability and crop yield variability, highlighting where variations in temperature, precipitation or their interaction explain yield variability. We discuss key drivers for the observed variations to target further research and policy interventions geared towards buffering future crop production from climate variability.

  13. Climate variation explains a third of global crop yield variability.

    PubMed

    Ray, Deepak K; Gerber, James S; MacDonald, Graham K; West, Paul C

    2015-01-22

    Many studies have examined the role of mean climate change in agriculture, but an understanding of the influence of inter-annual climate variations on crop yields in different regions remains elusive. We use detailed crop statistics time series for ~13,500 political units to examine how recent climate variability led to variations in maize, rice, wheat and soybean crop yields worldwide. While some areas show no significant influence of climate variability, in substantial areas of the global breadbaskets, >60% of the yield variability can be explained by climate variability. Globally, climate variability accounts for roughly a third (~32-39%) of the observed yield variability. Our study uniquely illustrates spatial patterns in the relationship between climate variability and crop yield variability, highlighting where variations in temperature, precipitation or their interaction explain yield variability. We discuss key drivers for the observed variations to target further research and policy interventions geared towards buffering future crop production from climate variability.

  14. Climate variation explains a third of global crop yield variability

    PubMed Central

    Ray, Deepak K.; Gerber, James S.; MacDonald, Graham K.; West, Paul C.

    2015-01-01

    Many studies have examined the role of mean climate change in agriculture, but an understanding of the influence of inter-annual climate variations on crop yields in different regions remains elusive. We use detailed crop statistics time series for ~13,500 political units to examine how recent climate variability led to variations in maize, rice, wheat and soybean crop yields worldwide. While some areas show no significant influence of climate variability, in substantial areas of the global breadbaskets, >60% of the yield variability can be explained by climate variability. Globally, climate variability accounts for roughly a third (~32–39%) of the observed yield variability. Our study uniquely illustrates spatial patterns in the relationship between climate variability and crop yield variability, highlighting where variations in temperature, precipitation or their interaction explain yield variability. We discuss key drivers for the observed variations to target further research and policy interventions geared towards buffering future crop production from climate variability. PMID:25609225

  15. Seasonal Climate Extremes : Mechanism, Predictability and Responses to Global Warming

    NASA Astrophysics Data System (ADS)

    Shongwe, M. E.

    2010-01-01

    Climate extremes are rarely occurring natural phenomena in the climate system. They often pose one of the greatest environmental threats to human and natural systems. Statistical methods are commonly used to investigate characteristics of climate extremes. The fitted statistical properties are often interpolated or extrapolated to give an indication of the likelihood of a certain event within a given period or interval. Under changing climatic conditions, the statistical properties of climate extremes are also changing. It is an important scientific goal to predict how the properties of extreme events change. To achieve this goal, observational and model studies aimed at revealing important features are a necessary prerequisite. Notable progress has been made in understanding mechanisms that influence climate variability and extremes in many parts of the globe including Europe. However, some of the recently observed unprecedented extremes cannot be fully explained from the already identified forcing factors. A better understanding of why these extreme events occur and their sensitivity to certain reinforcing and/or competing factors is useful. Understanding their basic form as well as their temporal variability is also vital and can contribute to global scientific efforts directed at advancing climate prediction capabilities, particularly making skilful forecasts and realistic projections of extremes. In this thesis temperature and precipitation extremes in Europe and Africa, respectively, are investigated. Emphasis is placed on the mechanisms underlying the occurrence of the extremes, their predictability and their likely response to global warming. The focus is on some selected seasons when extremes typically occur. An atmospheric energy budget analysis for the record-breaking European Autumn 2006 event has been carried out with the goal to identify the sources of energy for the extreme event. Net radiational heating is compared to surface turbulent fluxes of

  16. Environmental health implications of global climate change.

    PubMed

    Watson, Robert T; Patz, Jonathan; Gubler, Duane J; Parson, Edward A; Vincent, James H

    2005-09-01

    This paper reviews the background that has led to the now almost-universally held opinion in the scientific community that global climate change is occurring and is inescapably linked with anthropogenic activity. The potential implications to human health are considerable and very diverse. These include, for example, the increased direct impacts of heat and of rises in sea level, exacerbated air and water-borne harmful agents, and--associated with all the preceding--the emergence of environmental refugees. Vector-borne diseases, in particular those associated with blood-sucking arthropods such as mosquitoes, may be significantly impacted, including redistribution of some of those diseases to areas not previously affected. Responses to possible impending environmental and public health crises must involve political and socio-economic considerations, adding even greater complexity to what is already a difficult challenge. In some areas, adjustments to national and international public health practices and policies may be effective, at least in the short and medium terms. But in others, more drastic measures will be required. Environmental monitoring, in its widest sense, will play a significant role in the future management of the problem.

  17. Talking about Climate Change and Global Warming.

    PubMed

    Lineman, Maurice; Do, Yuno; Kim, Ji Yoon; Joo, Gea-Jae

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warming (GW) and Climate change (CC) to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined.

  18. Talking about Climate Change and Global Warming

    PubMed Central

    Kim, Ji Yoon; Joo, Gea-Jae

    2015-01-01

    The increasing prevalence of social networks provides researchers greater opportunities to evaluate and assess changes in public opinion and public sentiment towards issues of social consequence. Using trend and sentiment analysis is one method whereby researchers can identify changes in public perception that can be used to enhance the development of a social consciousness towards a specific public interest. The following study assessed Relative search volume (RSV) patterns for global warming (GW) and Climate change (CC) to determine public knowledge and awareness of these terms. In conjunction with this, the researchers looked at the sentiment connected to these terms in social media networks. It was found that there was a relationship between the awareness of the information and the amount of publicity generated around the terminology. Furthermore, the primary driver for the increase in awareness was an increase in publicity in either a positive or a negative light. Sentiment analysis further confirmed that the primary emotive connections to the words were derived from the original context in which the word was framed. Thus having awareness or knowledge of a topic is strongly related to its public exposure in the media, and the emotional context of this relationship is dependent on the context in which the relationship was originally established. This has value in fields like conservation, law enforcement, or other fields where the practice can and often does have two very strong emotive responses based on the context of the problems being examined. PMID:26418127

  19. Cooperation and discord in global climate policy

    NASA Astrophysics Data System (ADS)

    Keohane, Robert O.; Victor, David G.

    2016-06-01

    Effective mitigation of climate change will require deep international cooperation, which is much more difficult to organize than the shallow coordination observed so far. Assessing the prospects for effective joint action on climate change requires an understanding of both the structure of the climate change problem and national preferences for policy action. Preferences have become clearer in light of the United Nations Framework Convention on Climate Change Conference of the Parties in December 2015. Although deep cooperation remains elusive, many partial efforts could build confidence and lead to larger cuts in emissions. This strategy of decentralized policy coordination will not solve the climate problem, but it could lead incrementally to deeper cooperation.

  20. Health, fairness and New Zealand's contribution to global post-2020 climate change action.

    PubMed

    Bennett, Hayley; Macmillan, Alex; Jones, Rhys

    2015-05-29

    Health and wellbeing have been largely ignored in discussions around climate change targets and action to date. The current public consultation around New Zealand's post-2020 climate target is an opportunity for health professionals to highlight the health implications of climate change. Without urgent global efforts to bring down global GHG (greenhouse gas) emissions, the world is heading towards high levels of global warming, which will have devastating impacts on human health and wellbeing. New Zealand's action to bring down GHG emissions (as part of the global effort) has potential to improve health and reduce costs on the health sector, if health and fairness are put at the centre of policies to address climate change. New Zealand should commit to at least 40 % reductions in GHG emissions by 2030, and zero carbon emissions before 2050, with healthy and fair policies across sectors to enable reaching these targets.

  1. Impacts of climate change on the global forest sector

    USGS Publications Warehouse

    Perez-Garcia, J.; Joyce, L.A.; McGuire, A.D.; Xiao, X.

    2002-01-01

    The path and magnitude of future anthropogenic emissions of carbon dioxide will likely influence changes in climate that may impact the global forest sector. These responses in the global forest sector may have implications for international efforts to stabilize the atmospheric concentration of carbon dioxide. This study takes a step toward including the role of global forest sector in integrated assessments of the global carbon cycle by linking global models of climate dynamics, ecosystem processes and forest economics to assess the potential responses of the global forest sector to different levels of greenhouse gas emissions. We utilize three climate scenarios and two economic scenarios to represent a range of greenhouse gas emissions and economic behavior. At the end of the analysis period (2040), the potential responses in regional forest growing stock simulated by the global ecosystem model range from decreases and increases for the low emissions climate scenario to increases in all regions for the high emissions climate scenario. The changes in vegetation are used to adjust timber supply in the softwood and hardwood sectors of the economic model. In general, the global changes in welfare are positive, but small across all scenarios. At the regional level, the changes in welfare can be large and either negative or positive. Markets and trade in forest products play important roles in whether a region realizes any gains associated with climate change. In general, regions with the lowest wood fiber production cost are able to expand harvests. Trade in forest products leads to lower prices elsewhere. The low-cost regions expand market shares and force higher-cost regions to decrease their harvests. Trade produces different economic gains and losses across the globe even though, globally, economic welfare increases. The results of this study indicate that assumptions within alternative climate scenarios and about trade in forest products are important factors

  2. Scientist's Perceptions of Uncertainty During Discussions of Global Climate

    NASA Astrophysics Data System (ADS)

    Romanello, S.; Fortner, R.; Dervin, B.

    2003-04-01

    This research examines the nature of disagreements between natural and social scientists during discussions of global climate change. In particular, it explores whether the disagreements between natural and social scientists are related to the ontological, epistemological, or methodological nature of the uncertainty of global climate change during these discussions. A purposeful sample of 30 natural and social scientists recognized as experts in global climate change by the United States Global Change Research Program (USGCRP) and National Academies Committee on Global Change were interviewed to elicit their perceptions of disagreements during their three most troublesome discussions on global climate change. A mixed-method (qualitative plus quantitative research) approach with three independent variables was used to explore nature of uncertainty as a mediating variable in the relationships between academic training, level of sureness, level of knowledge, and position on global climate change, and the nature of disagreements and bridging strategies of natural and social scientists (Patton, 1997; Frechtling et al., 1997). This dissertation posits that it is the differences in the nature of uncertainty communicated by natural and social scientists and not sureness, knowledge, and position on global climate change that causes disagreements between the groups. By describing the nature of disagreements between natural and social scientists and illuminating bridging techniques scientists use during these disagreements, it is hoped that information collected from this research will create a better dialogue between the scientists studying global climate change by providing communication strategies which will allow those versed in one particular area to speak to non-experts whether they be other scientists, media officials, or the public. These tangible strategies can then be used by government agencies to create better communications and education plans, which can

  3. Global Climate Responses to Anthropogenic Groundwater Exploitation

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Xie, Z.

    2015-12-01

    In this study, a groundwater exploitation scheme is incorporated into the earth system model, Community Earth System Model 1.2.0 (CESM1.2.0), which is called CESM1.2_GW, and the climatic responses to anthropogenic groundwater withdrawal are then investigated on global scale. The scheme models anthropogenic groundwater exploitation and consumption, which are then divided into agricultural irrigation, industrial use and domestic use. A group of 41-year ensemble groundwater exploitation simulations with six different initial conditions, and a group of ensemble control simulations without exploitation are conducted using the developed model CESM1.2_GW with water supplies and demands estimated. The results reveal that the groundwater exploitation and water consumption cause drying effects on soil moisture in deep layers and wetting effects in upper layers, along with a rapidly declining groundwater table in Central US, Haihe River Basin in China and Northern India and Pakistan where groundwater extraction are most severe in the world. The atmosphere also responds to anthropogenic groundwater exploitation. Cooling effects on lower troposphere appear in large areas of North China Plain and of Northern India and Pakistan. Increased precipitation occurs in Haihe River Basin due to increased evapotranspiration from irrigation. Decreased precipitation occurs in Northern India because water vapor here is taken away by monsoon anomalies induced by anthropogenic alteration of groundwater. The local reducing effects of anthropogenic groundwater exploitation on total terrestrial water storage evinces that water resource is unsustainable with the current high exploitation rate. Therefore, a balance between slow groundwater withdrawal and rapid human economic development must be achieved to maintain a sustainable water resource, especially in over-exploitation regions such as Central US, Northern China, India and Pakistan.

  4. Rubisco, Rubisco activase, and global climate change.

    PubMed

    Sage, Rowan F; Way, Danielle A; Kubien, David S

    2008-01-01

    Global warming and the rise in atmospheric CO(2) will increase the operating temperature of leaves in coming decades, often well above the thermal optimum for photosynthesis. Presently, there is controversy over the limiting processes controlling photosynthesis at elevated temperature. Leading models propose that the reduction in photosynthesis at elevated temperature is a function of either declining capacity of electron transport to regenerate RuBP, or reductions in the capacity of Rubisco activase to maintain Rubisco in an active configuration. Identifying which of these processes is the principal limitation at elevated temperature is complicated because each may be regulated in response to a limitation in the other. Biochemical and gas exchange assessments can disentangle these photosynthetic limitations; however, comprehensive assessments are often difficult and, for many species, virtually impossible. It is proposed that measurement of the initial slope of the CO(2) response of photosynthesis (the A/C(i) response) can be a useful means to screen for Rubisco activase limitations. This is because a reduction in the Rubisco activation state should be most apparent at low CO(2) when Rubisco capacity is generally limiting. In sweet potato, spinach, and tobacco, the initial slope of the A/C(i) response shows no evidence of activase limitations at high temperature, as the slope can be accurately modelled using the kinetic parameters of fully activated Rubisco. In black spruce (Picea mariana), a reduction in the initial slope above 30 degrees C cannot be explained by the known kinetics of fully activated Rubisco, indicating that activase may be limiting at high temperatures. Because black spruce is the dominant species in the boreal forest of North America, Rubisco activase may be an unusually important factor determining the response of the boreal biome to climate change.

  5. Global lightning activity and climate change. Ph.D. Thesis

    SciTech Connect

    Price, C.G.

    1993-01-01

    The relationship between global lightning frequencies and global climate change is examined in this thesis. In order to study global impacts of climate change, global climate models or General Circulations Models (GCM`s) need to be utilized. Since these models have coarse resolutions many atmospheric phenomena that occur at subgrid scales, such as lightning, need to be parameterized whenever possible. The first chapter introduces a simple parameterization used to simulate total (intracloud and cloud-to-ground) lightning frequencies. The parameterization uses convective cloud top height to approximate lightning frequencies. The second chapter deals with a parameterization for simulating cloud-to-ground (CG) lightning around the globe. This parameterization uses the thickness of the cold cloud sector in thunderstorms (0 C to cloud top) to calculate the proportion of CG flashes in a particular thunderstorm. The third chapter deals with the modelling of lightning in the Goddard Institute for Space Studies (GISS) GCM. This chapter presents results from the model`s control run. The fourth chapter presents two climate change scenarios. One for a climate where the solar constant is reduced by 2% (5.9 C global cooling), and one for a climate with twice the present concentration of CO2 in the atmosphere (4.2 C global warming). The results imply a 24% / 30% decrease/increase in global lightning frequencies for the cooler/warmer climate. The fifth chapter considers the possibility of using the above findings to monitor future global warming. The results show that the earth`s ionospheric potential, which is regulated by global thunderstorm activity, could possibly supply valuable information regarding global surface temperature fluctuations. The sixth and final chapter looks at the implications of changes in both lightning frequencies and the hydrological cycle, as a result of global warming, on natural forest fires.

  6. Engaging Undergraduates in Methods of Communicating Global Climate Change

    NASA Astrophysics Data System (ADS)

    Hall, C.; Colgan, M. W.; Humphreys, R. R.

    2010-12-01

    Global Climate Change has become a politically contentious issue in large part because of the failure of scientists to effectively communicate this complex subject to the general public. In a Global Change class, offered within a science department and therefore focused primarily on the underlying science, we have incorporated a citizen science module into the course to raise awareness among future scientists to the importance of communicating information to a broad and diverse audience. The citizen science component of this course focuses on how the predicted climate changes will alter the ecologic and economic landscape of the southeastern region. Helping potential scientists to learn to effectively communicate with the general public is particularly poignant for this predominate southern student body. A Pew Research Center for the People and the Press study found that less than 50% of Southerners surveyed felt that global warming is a very serious problem and over 30% of Southerners did not believe that there was any credible evidence that the Earth is warming. This interdisciplinary and topical nature of the course attracts student from a variety of disciplines, which provides the class with a cross section of students not typically found in most geology classes. This mixture provides a diversity of skills and interest that leads to success of the Citizen Science component. This learning approach was adapted from an education module developed through the Earth System Science Education Alliance and a newly developed component to that program on citizen science. Student teams developed several citizen science-related public service announcements concerning projected global change effects on Charleston and the South Carolina area. The scenario concerned the development of an information campaign for the City of Charleston, culminating with the student presentations on their findings to City officials. Through this real-life process, the students developed new

  7. The fingerprints of global climate change on insect populations.

    PubMed

    Boggs, Carol L

    2016-10-01

    Synthesizing papers from the last two years, I examined generalizations about the fingerprints of climate change on insects' population dynamics and phenology. Recent work shows that populations can differ in response to changes in climate means and variances. The part of the thermal niche occupied by an insect population, voltinism, plasticity and adaptation to weather perturbations, and interactions with other species can all exacerbate or mitigate responses to climate change. Likewise, land use change or agricultural practices can affect responses to climate change. Nonetheless, our knowledge of effects of climate change is still biased by organism and geographic region, and to some extent by scale of climate parameter.

  8. Examining Long-Term Global Climate Change on the Web.

    ERIC Educational Resources Information Center

    Huntoon, Jacqueline E.; Ridky, Robert K.

    2002-01-01

    Describes a web-based, inquiry-oriented activity that enables students to examine long-term global climate change. Supports instruction in other topics such as population growth. (Contains 34 references.) (DDR)

  9. Global warming: China’s contribution to climate change

    NASA Astrophysics Data System (ADS)

    Spracklen, Dominick V.

    2016-03-01

    Carbon dioxide emissions from fossil-fuel use in China have grown dramatically in the past few decades, yet it emerges that the country's relative contribution to global climate change has remained surprisingly constant. See Letter p.357

  10. Marine viruses and global climate change.

    PubMed

    Danovaro, Roberto; Corinaldesi, Cinzia; Dell'anno, Antonio; Fuhrman, Jed A; Middelburg, Jack J; Noble, Rachel T; Suttle, Curtis A

    2011-11-01

    Sea-surface warming, sea-ice melting and related freshening, changes in circulation and mixing regimes, and ocean acidification induced by the present climate changes are modifying marine ecosystem structure and function and have the potential to alter the cycling of carbon and nutrients in surface oceans. Changing climate has direct and indirect consequences on marine viruses, including cascading effects on biogeochemical cycles, food webs, and the metabolic balance of the ocean. We discuss here a range of case studies of climate change and the potential consequences on virus function, viral assemblages and virus-host interactions. In turn, marine viruses influence directly and indirectly biogeochemical cycles, carbon sequestration capacity of the oceans and the gas exchange between the ocean surface and the atmosphere. We cannot yet predict whether the viruses will exacerbate or attenuate the magnitude of climate changes on marine ecosystems, but we provide evidence that marine viruses interact actively with the present climate change and are a key biotic component that is able to influence the oceans' feedback on climate change. Long-term and wide spatial-scale studies, and improved knowledge of host-virus dynamics in the world's oceans will permit the incorporation of the viral component into future ocean climate models and increase the accuracy of the predictions of the climate change impacts on the function of the oceans.

  11. Geodynamic contributions to global climatic change

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.

    1992-01-01

    Orbital and rotational variations perturb the latitudinal and seasonal pattern of incident solar radiation, producing major climatic change on time scales of 10(exp 4)-10(exp 6) years. The orbital variations are oblivious to internal structure and processes, but the rotational variations are not. A program of investigation whose objective would be to explore and quantify three aspects of orbital, rotational, and climatic interactions is described. An important premise of this investigation is the synergism between geodynamics and paleoclimate. Better geophysical models of precessional dynamics are needed in order to accurately reconstruct the radiative input to climate models. Some of the paleoclimate proxy records contain information relevant to solid Earth processes, on time scales which are difficult to constrain otherwise. Specific mechanisms which will be addressed include: (1) climatic consequences of deglacial polar motion; and (2) precessional and climatic consequences of glacially induced perturbations in the gravitational oblateness and partial decoupling of the mantle and core. The approach entails constructing theoretical models of the rotational, deformational, radiative, and climatic response of the Earth to known orbital perturbations, and comparing these with extensive records of paleoclimate proxy data. Several of the mechanisms of interest may participate in previously unrecognized feed-back loops in the climate dynamics system. A new algorithm for estimating climatically diagnostic locations and seasons from the paleoclimate time series is proposed.

  12. Global climate change and infectious diseases.

    PubMed

    Shuman, E K

    2011-01-01

    Climate change is occurring as a result of warming of the earth's atmosphere due to human activity generating excess amounts of greenhouse gases. Because of its potential impact on the hydrologic cycle and severe weather events, climate change is expected to have an enormous effect on human health, including on the burden and distribution of many infectious diseases. The infectious diseases that will be most affected by climate change include those that are spread by insect vectors and by contaminated water. The burden of adverse health effects due to these infectious diseases will fall primarily on developing countries, while it is the developed countries that are primarily responsible for climate change. It is up to governments and individuals to take the lead in halting climate change, and we must increase our understanding of the ecology of infectious diseases in order to protect vulnerable populations.

  13. Global climate change impacts on forests and markets

    NASA Astrophysics Data System (ADS)

    Tian, Xiaohui; Sohngen, Brent; Kim, John B.; Ohrel, Sara; Cole, Jefferson

    2016-03-01

    This paper develops an economic analysis of climate change impacts in the global forest sector. It illustrates how potential future climate change impacts can be integrated into a dynamic forestry economics model using data from a global dynamic vegetation model, the MC2 model. The results suggest that climate change will cause forest outputs (such as timber) to increase by approximately 30% over the century. Aboveground forest carbon storage also is projected to increase, by approximately 26 Pg C by 2115, as a result of climate change, potentially providing an offset to emissions from other sectors. The effects of climate mitigation policies in the energy sector are then examined. When climate mitigation in the energy sector reduces warming, we project a smaller increase in forest outputs over the timeframe of the analysis, and we project a reduction in the sink capacity of forests of around 12 Pg C by 2115.

  14. A Tale of Two Minds: Psychology and Global Climate Change

    ERIC Educational Resources Information Center

    Howard, George S.

    2010-01-01

    The American Psychological Association recently released its Presidential Task Force report on Psychology and Global Climate Change. Its principles and proposals would inaugurate a long and productive program of psychological research on climate change. But is it too little, too late? Climatologists have been growing progressively gloomier over…

  15. Quantifying the Climate Regulation Values of Ecosystems Globally

    NASA Astrophysics Data System (ADS)

    Anderson-Teixeira, K. J.; DeLucia, E. H.; Snyder, P. K.; LeBauer, D.; Long, S.

    2014-12-01

    Terrestrial ecosystems play an important role in the climate system, regulating climate through both biogeochemical (greenhouse-gas regulation) and biophysical (regulation of water and energy) mechanisms. However, initiatives aimed at climate protection through land management account only for biogeochemical mechanisms. By ignoring biophysical processes, these initiatives risk promoting suboptimal solutions. Our recently proposed metric for the climate regulation value (CRV) of ecosystems provides one potential approach to quantifying how biogeochemical and biophysical effects combine to determine the climate services of terrestrial ecosystems. In order to provide broadly accessible estimates of CRV for ecosystems worldwide, we have created an online ecosystem climate regulation services calculator with global coverage. The CRV calculator incorporates global maps of climatically significant ecosystem properties (for example, biomass, soil carbon, and evapotranspiration) to provide location-specific CRV estimates. We use this calculator to derive values for forests globally, revealing that CRV commonly differs meaningfully from values derived based purely on carbon storage. In the face of increasing land-use pressures and the increasingly urgent need for climate change mitigation, the CRV calculator has the potential to facilitate improved quantification of ecosystem climate regulation services by scientists, conservationists, policy makers, and the private sector.

  16. The Global Change Information System (GCIS): A Clearinghouse For Climatic Information

    NASA Astrophysics Data System (ADS)

    Goldstein, J.; Tilmes, C.; Aulenbach, S.; Duggan, B.

    2013-12-01

    An overview of how the Global Change Information System (GCIS), forthcoming in March 2014, satisfies the terms of the White House Office of Science Technology and Policy (OSTP)'s memorandum. This portal is being developed by the US Global Change Research Program (USGCRP), an interagency program coordinating Federal government climate research. Initially, it will support the traceability of the findings and figures presented the Third National Climate Assessment (NCA) by linking to their supporting scientific data and publications. Eventually, GCIS will grow beyond the NCA, increasing public access to all research and data relevant for global change across the USGCRP through its curation of the data underlying climatic studies. As a part of the curation process, GCIS efforts will also be geared towards identifying assets of climatic studies that may not be clear in the underlying published study, including the version of the dataset utilized, and will contain sets of formal metadata for each figure and dataset.

  17. Long-Term Monitoring of Global Climate Forcings and Feedbacks

    NASA Technical Reports Server (NTRS)

    Hansen, J. (Editor); Rossow, W. (Editor); Fung, I. (Editor)

    1993-01-01

    A workshop on Long-Term Monitoring of Global Climate Forcings and Feedbacks was held February 3-4, 1992, at NASA's Goddard Institute for Space Studies to discuss the measurements required to interpret long-term global temperature changes, to critique the proposed contributions of a series of small satellites (Climsat), and to identify needed complementary monitoring. The workshop concluded that long-term (several decades) of continuous monitoring of the major climate forcings and feedbacks is essential for understanding long-term climate change.

  18. PERSPECTIVE: Climate change, biofuels, and global food security

    NASA Astrophysics Data System (ADS)

    Cassman, Kenneth G.

    2007-03-01

    There is a new urgency to improve the accuracy of predicting climate change impact on crop yields because the balance between food supply and demand is shifting abruptly from surplus to deficit. This reversal is being driven by a rapid rise in petroleum prices and, in response, a massive global expansion of biofuel production from maize, oilseed, and sugar crops. Soon the price of these commodities will be determined by their value as feedstock for biofuel rather than their importance as human food or livestock feed [1]. The expectation that petroleum prices will remain high and supportive government policies in several major crop producing countries are providing strong momentum for continued expansion of biofuel production capacity and the associated pressures on global food supply. Farmers in countries that account for a majority of the world's biofuel crop production will enjoy the promise of markedly higher commodity prices and incomesNote1. In contrast, urban and rural poor in food-importing countries will pay much higher prices for basic food staples and there will be less grain available for humanitarian aid. For example, the developing countries of Africa import about 10 MMt of maize each year; another 3 5 MMt of cereal grains are provided as humanitarian aid (figure 1). In a world where more than 800 million are already undernourished and the demand for crop commodities may soon exceed supply, alleviating hunger will no longer be solely a matter of poverty alleviation and more equitable food distribution, which has been the situation for the past thirty years. Instead, food security will also depend on accelerating the rate of gain in crop yields and food production capacity at both local and global scales. Maize imports and cereal donations as humanitarian aid to the developing countries of Africa Figure 1. Maize imports (yellow bar) and cereal donations as humanitarian aid to the developing countries of Africa, 2001 2003. MMT = million metric tons. Data

  19. Global Climate Change. Selected Annotated Bibliography. Second Edition.

    ERIC Educational Resources Information Center

    Jones, Douglas E.

    This annotated bibliography on global climate change contains 27 articles designed to expand the breadth and depth of information presented in the Global Change Information Packet. Most articles were chosen from journals likely to be available in most medium-sized public or college libraries. The articles cover a variety of topics related to…

  20. What does global mean temperature tell us about local climate?

    PubMed

    Sutton, Rowan; Suckling, Emma; Hawkins, Ed

    2015-11-13

    The subject of climate feedbacks focuses attention on global mean surface air temperature (GMST) as the key metric of climate change. But what does knowledge of past and future GMST tell us about the climate of specific regions? In the context of the ongoing UNFCCC process, this is an important question for policy-makers as well as for scientists. The answer depends on many factors, including the mechanisms causing changes, the timescale of the changes, and the variables and regions of interest. This paper provides a review and analysis of the relationship between changes in GMST and changes in local climate, first in observational records and then in a range of climate model simulations, which are used to interpret the observations. The focus is on decadal timescales, which are of particular interest in relation to recent and near-future anthropogenic climate change. It is shown that GMST primarily provides information about forced responses, but that understanding and quantifying internal variability is essential to projecting climate and climate impacts on regional-to-local scales. The relationship between local forced responses and GMST is often linear but may be nonlinear, and can be greatly complicated by competition between different forcing factors. Climate projections are limited not only by uncertainties in the signal of climate change but also by uncertainties in the characteristics of real-world internal variability. Finally, it is shown that the relationship between GMST and local climate provides a simple approach to climate change detection, and a useful guide to attribution studies.

  1. Mass support for global climate agreements depends on institutional design

    PubMed Central

    Bechtel, Michael M.; Scheve, Kenneth F.

    2013-01-01

    Effective climate mitigation requires international cooperation, and these global efforts need broad public support to be sustainable over the long run. We provide estimates of public support for different types of climate agreements in France, Germany, the United Kingdom, and the United States. Using data from a large-scale experimental survey, we explore how three key dimensions of global climate cooperation—costs and distribution, participation, and enforcement—affect individuals’ willingness to support these international efforts. We find that design features have significant effects on public support. Specifically, our results indicate that support is higher for global climate agreements that involve lower costs, distribute costs according to prominent fairness principles, encompass more countries, and include a small sanction if a country fails to meet its emissions reduction targets. In contrast to well-documented baseline differences in public support for climate mitigation efforts, opinion responds similarly to changes in climate policy design in all four countries. We also find that the effects of institutional design features can bring about decisive changes in the level of public support for a global climate agreement. Moreover, the results appear consistent with the view that the sensitivity of public support to design features reflects underlying norms of reciprocity and individuals’ beliefs about the potential effectiveness of specific agreements. PMID:23886666

  2. A Comprehensive Data Portal for Global Climate Information

    NASA Astrophysics Data System (ADS)

    Diamond, Howard J.; Lief, Christina J.

    2009-09-01

    The Global Observing Systems Information Center (GOSIC), initiated in 1997 at the request of the Global Climate Observing System (GCOS) Steering Committee (see http://www.wmo.int/pages/prog/gcos/Publications/gcos-39.pdf), responds to a need identified by the global climate observing community for easier and more effective access to observational climate data and information. GOSIC manages an online portal providing an entry point for users of climate-related global observing systems data and information systems. Following its initial development and implementation at the University of Delaware from 1997 to 2006, the U.S. National Oceanic and Atmospheric Administration's National Climatic Data Center (NCDC) assumed operational responsibility for GOSIC on behalf of the international climate observing and data user communities. The goal of GOSIC is to provide basic user services, including a description of the systems and their data as well as a tailored search capability that facilitates access to a worldwide set of observations and derived products. GOSIC's unique value is its ability to quickly link users, via a consistent and user-friendly interface, to a wide range of data sets that reside at multiple data centers; the GOSIC portal (http://GOSIC.org) provides users with links to data, metadata, other search tools, and related climate-observing information.

  3. Mass support for global climate agreements depends on institutional design.

    PubMed

    Bechtel, Michael M; Scheve, Kenneth F

    2013-08-20

    Effective climate mitigation requires international cooperation, and these global efforts need broad public support to be sustainable over the long run. We provide estimates of public support for different types of climate agreements in France, Germany, the United Kingdom, and the United States. Using data from a large-scale experimental survey, we explore how three key dimensions of global climate cooperation--costs and distribution, participation, and enforcement--affect individuals' willingness to support these international efforts. We find that design features have significant effects on public support. Specifically, our results indicate that support is higher for global climate agreements that involve lower costs, distribute costs according to prominent fairness principles, encompass more countries, and include a small sanction if a country fails to meet its emissions reduction targets. In contrast to well-documented baseline differences in public support for climate mitigation efforts, opinion responds similarly to changes in climate policy design in all four countries. We also find that the effects of institutional design features can bring about decisive changes in the level of public support for a global climate agreement. Moreover, the results appear consistent with the view that the sensitivity of public support to design features reflects underlying norms of reciprocity and individuals' beliefs about the potential effectiveness of specific agreements.

  4. The Intensification of Global and Regional Climate Variability and Change

    NASA Astrophysics Data System (ADS)

    Weaver, S. J.

    2015-12-01

    Recent evidence from the IPCC and National Climate Assessment reports indicate that extreme climate events are increasing in many regions of the world. Interestingly, the nature and causes of the changes in extremes may be expressed differently for the global and regional scales, and also amongst climate variables (e.g., precipitation and temperature). For instance, over the last several decades the temperature probability density function on the global scale exhibits a mean shift to the warmer side, as opposed to a change in it's variability. Conversely, the interannual variability of precipitation is intensifying on the regional scale, especially over the U.S. during spring. Although the statistical characteristics of the temperature and precipitation changes may have a varied expression they both contribute to the potential for increases in extreme events. The causes and physical mechanisms for the intensification of mean global temperature and regional precipitation variability are explored using observationally constrained datasets and non-traditional climate model approaches.

  5. CRISM's Global Mapping of Mars, Part 1

    NASA Technical Reports Server (NTRS)

    2007-01-01

    After a year in Mars orbit, CRISM has taken enough images to allow the team to release the first parts of a global spectral map of Mars to the Planetary Data System (PDS), NASA's digital library of planetary data.

    CRISM's global mapping is called the 'multispectral survey.' The team uses the word 'survey' because a reason for gathering this data set is to search for new sites for targeted observations, high-resolution views of the surface at 18 meters per pixel in 544 colors. Another reason for the multispectral survey is to provide contextual information. Targeted observations have such a large data volume (about 200 megabytes apiece) that only about 1% of Mars can be imaged at CRISM's highest resolution. The multispectral survey is a lower data volume type of observation that fills in the gaps between targeted observations, allowing scientists to better understand their geologic context.

    The global map is built from tens of thousands of image strips each about 10 kilometers (6.2 miles) wide and thousands of kilometers long. During the multispectral survey, CRISM returns data from only 72 carefully selected wavelengths that cover absorptions indicative of the mineral groups that CRISM is looking for on Mars. Data volume is further decreased by binning image pixels inside the instrument to a scale of about 200 meters (660 feet) per pixel. The total reduction in data volume per square kilometer is a factor of 700, making the multispectral survey manageable to acquire and transmit to Earth. Once on the ground, the strips of data are mosaicked into maps. The multispectral survey is too large to show the whole planet in a single map, so the map is divided into 1,964 'tiles,' each about 300 kilometers (186 miles) across. There are three versions of each tile, processed to progressively greater levels to strip away the obscuring effects of the dusty atmosphere and to highlight mineral variations in surface materials.

    This is the first version of tile

  6. CRISM's Global Mapping of Mars, Part 2

    NASA Technical Reports Server (NTRS)

    2007-01-01

    After a year in Mars orbit, CRISM has taken enough images to allow the team to release the first parts of a global spectral map of Mars to the Planetary Data System (PDS), NASA's digital library of planetary data.

    CRISM's global mapping is called the 'multispectral survey.' The team uses the word 'survey' because a reason for gathering this data set is to search for new sites for targeted observations, high-resolution views of the surface at 18 meters per pixel in 544 colors. Another reason for the multispectral survey is to provide contextual information. Targeted observations have such a large data volume (about 200 megabytes apiece) that only about 1% of Mars can be imaged at CRISM's highest resolution. The multispectral survey is a lower data volume type of observation that fills in the gaps between targeted observations, allowing scientists to better understand their geologic context.

    The global map is built from tens of thousands of image strips each about 10 kilometers (6.2 miles) wide and thousands of kilometers long. During the multispectral survey, CRISM returns data from only 72 carefully selected wavelengths that cover absorptions indicative of the mineral groups that CRISM is looking for on Mars. Data volume is further decreased by binning image pixels inside the instrument to a scale of about 200 meters (660 feet) per pixel. The total reduction in data volume per square kilometer is a factor of 700, making the multispectral survey manageable to acquire and transmit to Earth. Once on the ground, the strips of data are mosaicked into maps. The multispectral survey is too large to show the whole planet in a single map, so the map is divided into 1,964 'tiles,' each about 300 kilometers (186 miles) across. There are three versions of each tile, processed to progressively greater levels to strip away the obscuring effects of the dusty atmosphere and to highlight mineral variations in surface materials.

    This is the first version of tile

  7. Ozone, Climate, and Global Atmospheric Change.

    ERIC Educational Resources Information Center

    Levine, Joel S.

    1992-01-01

    Presents an overview of global atmospheric problems relating to ozone depletion and global warming. Provides background information on the composition of the earth's atmosphere and origin of atmospheric ozone. Describes causes, effects, and evidence of ozone depletion and the greenhouse effect. A vignette provides a summary of a 1991 assessment of…

  8. Ozone, Climate, and Global Atmospheric Change

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1992-01-01

    The delicate balance of the gases that make up our atmosphere allows life to exist on Earth. Ozone depletion and global warming are related to changes in the concentrations of these gases. To solve global atmospheric problems, we need to understand the composition and chemistry of the Earth's atmosphere and the impact of human activities on them.

  9. Changes in Southeast Asian Climate: Response to and Feedback onto Global Climate Change

    NASA Astrophysics Data System (ADS)

    Yang, S.

    2015-12-01

    This study is focused on the long-term changes in the climate over Southeast Asia (SEA) and its adjacent regions. The changes in SEA climate are closely related to the changes in global climate, especially via the changes in ENSO and the large-scale Asian monsoon circulation. In the past decades, both ENSO and the monsoon have experienced remarkable long-term changes, leading to significant climate signals over Southeast Asia and its adjacent regions. This study attributes these climate signals to different factors, emphasizing the contributions from water vapor feedback to surface climate signals, and from cloud and atmospheric feedbacks to the changes in the troposphere. On the other hand, SEA and its adjacent regions also exert significant influences on the climate outside the regions. Various experiments with NCAR CESM and other earth system models are applied to investigate the impacts of the regional climate on the climate over Africa, Asian-Pacific-American regions, and the southern hemisphere.

  10. Convergence of terrestrial plant production across global climate gradients.

    PubMed

    Michaletz, Sean T; Cheng, Dongliang; Kerkhoff, Andrew J; Enquist, Brian J

    2014-08-07

    Variation in terrestrial net primary production (NPP) with climate is thought to originate from a direct influence of temperature and precipitation on plant metabolism. However, variation in NPP may also result from an indirect influence of climate by means of plant age, stand biomass, growing season length and local adaptation. To identify the relative importance of direct and indirect climate effects, we extend metabolic scaling theory to link hypothesized climate influences with NPP, and assess hypothesized relationships using a global compilation of ecosystem woody plant biomass and production data. Notably, age and biomass explained most of the variation in production whereas temperature and precipitation explained almost none, suggesting that climate indirectly (not directly) influences production. Furthermore, our theory shows that variation in NPP is characterized by a common scaling relationship, suggesting that global change models can incorporate the mechanisms governing this relationship to improve predictions of future ecosystem function.

  11. The missing data on global climate change

    SciTech Connect

    Hansen, J.; Rossow, W.; Fung, I. )

    1990-01-01

    Much of the data we need to characterize changes in the Earth's climate are being acquired by operational satellites and ground stations. Additional parameters need to be measured. The necessary data-gathering instruments are to be included in the Earth Observing Systems, a set of large polar-orbiting platforms to be launched by the National Aeronautics and Space Administration by the end of this decade. Any analysis of climate must take into account climate forcings (anthropogenic or externally imposed changes), climate feedbacks which can be either positive or negative, and climate diagnostics. Existing and proposed sources for acquiring the data are listed in Table 1. A system utilizing three instruments on two satellites is proposed. These small satellites would complement the large polar platforms and speed up the acquisition of data. The three proposed instruments would include an upper atmosphere aerosol and gas monitor, atropospheric aerosol and cloud monitor, and an earth radiation budget monitor at the top of the atmosphere. Preliminary cost estimates and advantages of this system are given.

  12. Global patterns of species richness and climate

    SciTech Connect

    Currie, D.J. )

    1994-06-01

    Why are there many species in some places and few in others Several studies have shown that the variation in the number of species over continent-sized areas is closely related to the variation in macroclimatic factors: heat and moisture for terrestrial plants, and heat for terrestrial vertebrates. Yet, most of these studies dealt primarily with temperature areas on single continents. If contemporary climate is the principle determinant of large-scale patterns of richness, then richness should be related to climate in similar ways on different continents, regardless of their evolutionary histories. To test the hypothesis, we have gathered published data on the distributions of birds and mammals in temperature and tropical areas. We found that richness varies as a function of potential evapotranspiration in very similar ways on different continents in temperate areas, although there is some significant variation among continents that is unrelated to climate. In tropical areas, richness is more closely related to precipitation and annual climatic variability. Re-analysis of published data on plant richness is consistent with these observations. We conclude that most of the variation in large-scale patterns of species richness can be accounted for by contemporary climate.

  13. Global climate change: A strategic issue facing Illinois

    SciTech Connect

    Womeldorff, P.J.

    1995-12-31

    This paper discusses global climate change, summarizes activities related to climate change, and identifies possible outcomes of the current debate on the subject. Aspects of climate change related to economic issues are very briefly summarized; it is suggested that the end result will be a change in lifestyle in developed countries. International activities, with an emphasis on the Framework Convention on Climate Change, and U.S. activities are outlined. It is recommended that the minimum action required is to work to understand the issue and prepare for possible action.

  14. Ecological response to global climatic change

    USGS Publications Warehouse

    Malanson, G.P.; Butler, D.R.; Walsh, S. J.; Janelle, Donald G.; Warf, Barney; Hansen, Kathy

    2004-01-01

    Climate change and ecological change go hand in hand. Because we value our ecological environment, any change has the potential to be a problem. Geographers have been drawn to this challenge, and have been successful in addressing it, because the primary ecological response to climate changes in the past — the waxing and waning of the great ice sheets over the past 2 million years – was the changing geographic range of the biota. Plants and animals changed their location. Geographers have been deeply involved in documenting the changing biota of the past, and today we are called upon to help assess the possible responses to ongoing and future climatic change and, thus, their impacts. Assessing the potential responses is important for policy makers to judge the outcomes of action or inaction and also sets the stage for preparation for and mitigation of change.

  15. Illinois task force on global climate change

    SciTech Connect

    Griffin, B.S.

    1996-12-31

    The purpose of this report is to document progress in the areas of national policy development, emissions reduction, research and education, and adaptation, and to identify specific actions that will be undertaken to implement the Illinois state action plan. The task force has been tracking national and international climate change policy, and helping shape national policy agenda. Identification and implementation of cost-effective mitigation measures has been performed for emissions reduction. In the area of research and education, the task force is developing the capacity to measure climate change indicators, maintaining and enhancing Illinois relevant research, and strengthening climate change education. Activities relevant to adaptation to new policy include strengthening water laws and planning for adaptation. 6 figs., 4 tabs.

  16. Global hydropower potential during recent droughts and under changing climate

    NASA Astrophysics Data System (ADS)

    Van Vliet, Michelle T. H.; Sheffield, Justin; Wiberg, David; Wood, Eric F.

    2015-04-01

    There is a strong dependency of world's electricity sector on available water resources for hydropower generation. Recent droughts showed the vulnerability of the electricity sector to surface water constraints with reduced potentials for hydropower generation in different regions worldwide. Using a global modelling framework consisting of the VIC hydrological model and a hydropower model, we assess the impacts of recent droughts and future climate change on hydropower generation potentials worldwide. Our hydrological-electricity modelling framework was optimized and evaluated for 1981-2010, showing a realistic representation of observed streamflow and hydropower generation. We assessed the impacts of recent droughts and future climate change for more than 25,000 hydropower plants worldwide. Our results show that hydropower production potentials were significantly reduced during severe recent streamflow droughts (including e.g. summer of 2003 in Europe and 2007 in the United States). Model simulations with bias-corrected CMIP5 general circulation model output indicate that in several regions considerable reductions in hydropower production potentials are projected due to declines in streamflow during parts of the year. Considering these impacts and the long design life of power plant infrastructure, adaptation options should be included in today's planning and strategies to meet the growing electricity demand in the 21st century.

  17. Climatic change controls productivity variation in global grasslands.

    PubMed

    Gao, Qingzhu; Zhu, Wenquan; Schwartz, Mark W; Ganjurjav, Hasbagan; Wan, Yunfan; Qin, Xiaobo; Ma, Xin; Williamson, Matthew A; Li, Yue

    2016-05-31

    Detection and identification of the impacts of climate change on ecosystems have been core issues in climate change research in recent years. In this study, we compared average annual values of the normalized difference vegetation index (NDVI) with theoretical net primary productivity (NPP) values based on temperature and precipitation to determine the effect of historic climate change on global grassland productivity from 1982 to 2011. Comparison of trends in actual productivity (NDVI) with climate-induced potential productivity showed that the trends in average productivity in nearly 40% of global grassland areas have been significantly affected by climate change. The contribution of climate change to variability in grassland productivity was 15.2-71.2% during 1982-2011. Climate change contributed significantly to long-term trends in grassland productivity mainly in North America, central Eurasia, central Africa, and Oceania; these regions will be more sensitive to future climate change impacts. The impacts of climate change on variability in grassland productivity were greater in the Western Hemisphere than the Eastern Hemisphere. Confirmation of the observed trends requires long-term controlled experiments and multi-model ensembles to reduce uncertainties and explain mechanisms.

  18. Climatic change controls productivity variation in global grasslands

    NASA Astrophysics Data System (ADS)

    Gao, Qingzhu; Zhu, Wenquan; Schwartz, Mark W.; Ganjurjav, Hasbagan; Wan, Yunfan; Qin, Xiaobo; Ma, Xin; Williamson, Matthew A.; Li, Yue

    2016-05-01

    Detection and identification of the impacts of climate change on ecosystems have been core issues in climate change research in recent years. In this study, we compared average annual values of the normalized difference vegetation index (NDVI) with theoretical net primary productivity (NPP) values based on temperature and precipitation to determine the effect of historic climate change on global grassland productivity from 1982 to 2011. Comparison of trends in actual productivity (NDVI) with climate-induced potential productivity showed that the trends in average productivity in nearly 40% of global grassland areas have been significantly affected by climate change. The contribution of climate change to variability in grassland productivity was 15.2–71.2% during 1982–2011. Climate change contributed significantly to long-term trends in grassland productivity mainly in North America, central Eurasia, central Africa, and Oceania; these regions will be more sensitive to future climate change impacts. The impacts of climate change on variability in grassland productivity were greater in the Western Hemisphere than the Eastern Hemisphere. Confirmation of the observed trends requires long-term controlled experiments and multi-model ensembles to reduce uncertainties and explain mechanisms.

  19. Climatic change controls productivity variation in global grasslands

    PubMed Central

    Gao, Qingzhu; Zhu, Wenquan; Schwartz, Mark W.; Ganjurjav, Hasbagan; Wan, Yunfan; Qin, Xiaobo; Ma, Xin; Williamson, Matthew A.; Li, Yue

    2016-01-01

    Detection and identification of the impacts of climate change on ecosystems have been core issues in climate change research in recent years. In this study, we compared average annual values of the normalized difference vegetation index (NDVI) with theoretical net primary productivity (NPP) values based on temperature and precipitation to determine the effect of historic climate change on global grassland productivity from 1982 to 2011. Comparison of trends in actual productivity (NDVI) with climate-induced potential productivity showed that the trends in average productivity in nearly 40% of global grassland areas have been significantly affected by climate change. The contribution of climate change to variability in grassland productivity was 15.2–71.2% during 1982–2011. Climate change contributed significantly to long-term trends in grassland productivity mainly in North America, central Eurasia, central Africa, and Oceania; these regions will be more sensitive to future climate change impacts. The impacts of climate change on variability in grassland productivity were greater in the Western Hemisphere than the Eastern Hemisphere. Confirmation of the observed trends requires long-term controlled experiments and multi-model ensembles to reduce uncertainties and explain mechanisms. PMID:27243565

  20. 76 FR 34271 - Hewlett Packard, Global Parts Supply Chain, Global Product Life Cycles Management Unit, Including...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... workers of Hewlett Packard, Global Parts Supply Chain, Global Product Life Cycles Management Unit... Employment and Training Administration Hewlett Packard, Global Parts Supply Chain, Global Product Life Cycles... Supply Chain Group, including leased workers from QFlex, North America Logistics and UPS...

  1. Changes in the Global Wave Climate from Single-Model Projections

    NASA Astrophysics Data System (ADS)

    Lemos, Gil; Behrens, Arno; Dobrynin, Mikhail; Miranda, Pedro; Semedo, Alvaro; Staneva, Joanna

    2016-04-01

    Ocean surface wind waves are of outmost relevance for practical and scientific reasons. On the one hand waves have a direct impact in coastal erosion, but also in sediment transport and beach nourishment, in ship routing and ship design, as well as in coastal and offshore infrastructures, just to mention the most relevant. On the other hand waves are part of the climate system, and modulate most of the exchanges that take place at the atmosphere-ocean interface. In fact waves are the "ultimate" air-sea interaction process, clearly visible and noticeable. Up until recently the impact of climate change in future global wave climate had received very little attention. Some single model single scenario global wave climate projections, based on CMIP3 scenarios, were pursuit and received relative attention in the IPCC (Intergovernmental Panel for Climate Change) AR5 (Fifth Assessment Report). In the present study the impact of a warmer climate in the future global wave climate is investigated through a 3-member "coherent" ensemble of wave climate projections: single-model, single-forcing, and single-scenario. In this methodology model variability is eliminated, leaving only room for the climate change signal. The three ensemble members were produced with the wave model WAM, forced with wind speed and ice coverage from EC-Earth projections, following the representative concentration pathway with a high emissions scenario 8.5 (RCP8.5). The ensemble present climate reference period (the control run) has been set for 1971 to 2005. The projected changes in the global wave climate are analyzed for the 2071-2100 period. The ensemble reference period is evaluated trough the comparison with the European Centre for medium-range weather forecasts (ECMWF) ERA-Interim reanalysis.

  2. Temperature, global climate change and food security

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accelerated climate change is expected to have a significant, but variable impact on the world’s major cropping zones. Crops will experience increasingly warmer, drier and more variable growing conditions in the temperate to subtropical latitudes towards 2050 and beyond. Short-term (1-5 day) spikes ...

  3. Civil conflicts are associated with the global climate.

    PubMed

    Hsiang, Solomon M; Meng, Kyle C; Cane, Mark A

    2011-08-24

    It has been proposed that changes in global climate have been responsible for episodes of widespread violence and even the collapse of civilizations. Yet previous studies have not shown that violence can be attributed to the global climate, only that random weather events might be correlated with conflict in some cases. Here we directly associate planetary-scale climate changes with global patterns of civil conflict by examining the dominant interannual mode of the modern climate, the El Niño/Southern Oscillation (ENSO). Historians have argued that ENSO may have driven global patterns of civil conflict in the distant past, a hypothesis that we extend to the modern era and test quantitatively. Using data from 1950 to 2004, we show that the probability of new civil conflicts arising throughout the tropics doubles during El Niño years relative to La Niña years. This result, which indicates that ENSO may have had a role in 21% of all civil conflicts since 1950, is the first demonstration that the stability of modern societies relates strongly to the global climate.

  4. Global Climate Change and Ocean Education

    NASA Astrophysics Data System (ADS)

    Spitzer, W.; Anderson, J.

    2011-12-01

    The New England Aquarium, collaborating with other aquariums across the country, is leading a national effort to enable aquariums and related informal science education institutions to effectively communicate the impacts of climate change and ocean acidification on marine animals, habitats and ecosystems. Our goal is to build on visitors' emotional connection with ocean animals, connect to their deeply held values, help them understand causes and effects of climate change and motivate them to embrace effective solutions. Our objectives are to: (1) Build a national coalition of aquariums and related informal education institutions collaborating on climate change education; (2) Develop an interpretive framework for climate change and the ocean that is scientifically sound, research-based, field tested and evaluated; and (3) Build capacity of aquariums to interpret climate change via training for interpreters, interactive exhibits and activities and communities of practice for ongoing support. Centers of informal learning have the potential to bring important environmental issues to the public by presenting the facts, explaining the science, connecting with existing values and interests, and motivating concern and action. Centers that work with live animals (including aquariums, zoos, nature centers, national parks, national marine sanctuaries, etc.) are unique in that they attract large numbers of people of all ages (over 140 million in the US), have strong connections to the natural, and engage many visitors who may not come with a primary interest in science. Recent research indicates that that the public expects and trusts aquariums, zoos, and museums to communicate solutions to environmental and ocean issues, and to advance ocean conservation, and that climate change is the environmental issue of most concern to the public; Ironically, however, most people do not associate climate change with ocean health, or understand the critical role that the ocean plays in

  5. Groundwater and climate change: mitigating the global groundwater crisis and adapting to climate change model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To better understand the effects of climate change on global groundwater resources, the United Nations Educational, Scientific, and Cultural Organization (UNESCO) International Hydrological Programme (IHP) initiated the GRAPHIC (Groundwater Resources Assessment under the Pressures of Humanity and Cl...

  6. Global climate changes, natural disasters, and travel health risks.

    PubMed

    Diaz, James H

    2006-01-01

    Whether the result of cyclical atmospheric changes, anthropogenic activities, or combinations of both, authorities now agree that the earth is warming from a variety of climatic effects, including the cascading effects of greenhouse gas emissions to support human activities. To date, most reports of the public health outcomes of global warming have been anecdotal and retrospective in design and have focused on heat stroke deaths following heat waves, drowning deaths in floods and tsunamis, and mosquito-borne infectious disease outbreaks following tropical storms and cyclones. Accurate predictions of the true public health outcomes of global climate change are confounded by several effect modifiers including human acclimatization and adaptation, the contributions of natural climatic changes, and many conflicting atmospheric models of climate change. Nevertheless, temporal relationships between environmental factors and human health outcomes have been identified and may be used as criteria to judge the causality of associations between the human health outcomes of climate changes and climate-driven natural disasters. Travel medicine physicians are obligated to educate their patients about the known public health outcomes of climate changes, about the disease and injury risk factors their patients may face from climate-spawned natural disasters, and about the best preventive measures to reduce infectious diseases and injuries following natural disasters throughout the world.

  7. CRISM's Global Mapping of Mars, Part 3

    NASA Technical Reports Server (NTRS)

    2007-01-01

    After a year in Mars orbit, CRISM has taken enough images to allow the team to release the first parts of a global spectral map of Mars to the Planetary Data System (PDS), NASA's digital library of planetary data.

    CRISM's global mapping is called the 'multispectral survey.' The team uses the word 'survey' because a reason for gathering this data set is to search for new sites for targeted observations, high-resolution views of the surface at 18 meters per pixel in 544 colors. Another reason for the multispectral survey is to provide contextual information. Targeted observations have such a large data volume (about 200 megabytes apiece) that only about 1% of Mars can be imaged at CRISM's highest resolution. The multispectral survey is a lower data volume type of observation that fills in the gaps between targeted observations, allowing scientists to better understand their geologic context.

    The global map is built from tens of thousands of image strips each about 10 kilometers (6.2 miles) wide and thousands of kilometers long. During the multispectral survey, CRISM returns data from only 72 carefully selected wavelengths that cover absorptions indicative of the mineral groups that CRISM is looking for on Mars. Data volume is further decreased by binning image pixels inside the instrument to a scale of about 200 meters (660 feet) per pixel. The total reduction in data volume per square kilometer is a factor of 700, making the multispectral survey manageable to acquire and transmit to Earth. Once on the ground, the strips of data are mosaicked into maps. The multispectral survey is too large to show the whole planet in a single map, so the map is divided into 1,964 'tiles,' each about 300 kilometers (186 miles) across. There are three versions of each tile, processed to progressively greater levels to strip away the obscuring effects of the dusty atmosphere and to highlight mineral variations in surface materials.

    This is the third and most

  8. CRISM's Global Mapping of Mars, Part 3

    NASA Technical Reports Server (NTRS)

    2007-01-01

    After a year in Mars orbit, CRISM has taken enough images to allow the team to release the first parts of a global spectral map of Mars to the Planetary Data System (PDS), NASA's digital library of planetary data.

    CRISM's global mapping is called the 'multispectral survey.' The team uses the word 'survey' because a reason for gathering this data set is to search for new sites for targeted observations, high-resolution views of the surface at 18 meters per pixel in 544 colors. Another reason for the multispectral survey is to provide contextual information. Targeted observations have such a large data volume (about 200 megabytes apiece) that only about 1% of Mars can be imaged at CRISM's highest resolution. The multispectral survey is a lower data volume type of observation that fills in the gaps between targeted observations, allowing scientists to better understand their geologic context.

    The global map is built from tens of thousands of image strips each about 10 kilometers (6.2 miles) wide and thousands of kilometers long. During the multispectral survey, CRISM returns data from only 72 carefully selected wavelengths that cover absorptions indicative of the mineral groups that CRISM is looking for on Mars. Data volume is further decreased by binning image pixels inside the instrument to a scale of about 200 meters (660 feet) per pixel. The total reduction in data volume per square kilometer is a factor of 700, making the multispectral survey manageable to acquire and transmit to Earth. Once on the ground, the strips of data are mosaicked into maps. The multispectral survey is too large to show the whole planet in a single map, so the map is divided into 1,964 'tiles,' each about 300 kilometers (186 miles) across. There are three versions of each tile, processed to progressively greater levels to strip away the obscuring effects of the dusty atmosphere and to highlight mineral variations in surface materials.

    This is the third and most

  9. Global climate change: Social and economic research issues

    SciTech Connect

    Rice, M.; Snow, J.; Jacobson, H.

    1992-05-01

    This workshop was designed to bring together a group of scholars, primarily from the social sciences, to explore research that might help in dealing with global climate change. To illustrate the state of present understanding, it seemed useful to focus this workshop on three broad questions that are involved in coping with climate change. These are: (1) How can the anticipated economic costs and benefits of climate change be identified; (2) How can the impacts of climate change be adjusted to or avoided; (3) What previously studied models are available for institutional management of the global environment? The resulting discussions may (1) identify worthwhile avenues for further social science research, (2) help develop feedback for natural scientists about research information from this domain needed by social scientists, and (3) provide policymakers with the sort of relevant research information from the social science community that is currently available. Individual papers are processed separately for the database.

  10. Developing country finance in a post-2020 global climate agreement

    NASA Astrophysics Data System (ADS)

    Hannam, Phillip M.; Liao, Zhenliang; Davis, Steven J.; Oppenheimer, Michael

    2015-11-01

    A central task for negotiators of the post-2020 global climate agreement is to construct a finance regime that supports low-carbon development in developing economies. As power sector investments between developing countries grow, the climate finance regime should incentivize the decarbonization of these major sources of finance by integrating them as a complement to the commitments of developed nations. The emergence of the Asian Infrastructure Investment Bank, South-South Cooperation Fund and other nascent institutions reveal the fissures that exist in rules and norms surrounding international finance in the power sector. Structuring the climate agreement in Paris to credit qualified finance from the developing world could have several advantages, including: (1) encouraging low-carbon cooperation between developing countries; (2) incentivizing emerging investors to prefer low-carbon investments; and (3) enabling more cost-effective attainment of national and global climate objectives. Failure to coordinate on standards now could hinder low-carbon development in the decades to come.

  11. The rogue nature of hiatuses in a global warming climate

    NASA Astrophysics Data System (ADS)

    Sévellec, F.; Sinha, B.; Skliris, N.

    2016-08-01

    The nature of rogue events is their unlikelihood and the recent unpredicted decade-long slowdown in surface warming, the so-called hiatus, may be such an event. However, given decadal variability in climate, global surface temperatures were never expected to increase monotonically with increasing radiative forcing. Here surface air temperature from 20 climate models is analyzed to estimate the historical and future likelihood of hiatuses and "surges" (faster than expected warming), showing that the global hiatus of the early 21st century was extremely unlikely. A novel analysis of future climate scenarios suggests that hiatuses will almost vanish and surges will strongly intensify by 2100 under a "business as usual" scenario. For "CO2 stabilisation" scenarios, hiatus, and surge characteristics revert to typical 1940s values. These results suggest to study the hiatus of the early 21st century and future reoccurrences as rogue events, at the limit of the variability of current climate modelling capability.

  12. Population and climate pressures on global river water quality

    NASA Astrophysics Data System (ADS)

    Wen, Yingrong; Schoups, Gerrit; van de Giesen, Nick

    2015-04-01

    We present a global analysis of the combined effects of population growth and climate change on river water quality. In-stream Biological Oxygen Demand (BOD) concentration is calculated along global river networks using past, current and future information on gridded population and river discharge. Our model accounts for the accumulation (from populated areas), transport, dilution, and degradation of BOD to reveal the combined effects of population growth and climate change on river water quality. From 1950 to 2000, our analysis indicates that rivers that flow through regions with increasing population undergo a prominent deterioration of water quality, especially in developing countries with a lack of treatment plants. By 2050, population growth and climate change have varying effects on degradation of river water quality, with their combined effect amplified in region undergoing both population growth (more pollutant loading) and decrease in discharge (less dilution capacity). Keywords: Population growth, Climate change, River water quality, Space-time analysis, Water management

  13. Central Africa: Global climate change and development. Synopsis

    SciTech Connect

    Not Available

    1992-01-01

    Central Africa contains the largest remaining contiguous expanse of moist tropical forest on the African continent and the second largest in the world. However, deforestation rates are rising as the result of rapid population growth, inappropriate economic policies, economic downturns, and weak management capacities. If clearing rates continue to rise, a substantial amount of carbon dioxide will be released into the atmosphere, thus contributing to global climate change. The report summarizes a study designed as a first step in understanding the complex dynamics of the causes and effects of global climate change in Central Africa. The current state of the region's forests, greenhouse gas emissions from deforestation and biomass burning, and the potential impacts of global climate change are discussed.

  14. Climate change and the potential global distribution of Aedes aegypti: spatial modelling using GIS and CLIMEX.

    PubMed

    Khormi, Hassan M; Kumar, Lalit

    2014-05-01

    We examined the potential added risk posed by global climate change on the dengue vector Aedes aegypti abundance using CLIMEX, a powerful tool for exploring the relationship between the fundamental and realised niche of any species. After calibrating the model using data from several knowledge domains, including geographical distribution records, we estimated potential distributions of the mosquito under current and future potential scenarios. The impact of climate change on its potential distribution was assessed with two global climate models, the CSIRO-Mk3.0 and the MIROC-H, run with two potential, future emission scenarios (A1B and A2) published by the Intergovernmental Panel on Climate Change. We compared today's climate situation with two arbitrarily chosen future time points (2030 and 2070) to see the impact on the worldwide distribution of A. aegypti . The model for the current global climate indicated favourable areas for the mosquito within its known distribution in tropical and subtropical areas. However, even if much of the tropics and subtropics will continue to be suitable, the climatically favourable areas for A. aegypti globally are projected to contract under the future scenarios produced by these models, while currently unfavourable areas, such as inland Australia, the Arabian Peninsula, southern Iran and some parts of North America may become climatically favourable for this mosquito species. The climate models for the Aedes dengue vector presented here should be useful for management purposes as they can be adapted for decision/making regarding allocation of resources for dengue risk toward areas where risk infection remains and away from areas where climatic suitability is likely to decrease in the future.

  15. Sensitivity of regional climate to global temperature and forcing

    NASA Astrophysics Data System (ADS)

    Tebaldi, Claudia; O'Neill, Brian; Lamarque, Jean-François

    2015-07-01

    The sensitivity of regional climate to global average radiative forcing and temperature change is important for setting global climate policy targets and designing scenarios. Setting effective policy targets requires an understanding of the consequences exceeding them, even by small amounts, and the effective design of sets of scenarios requires the knowledge of how different emissions, concentrations, or forcing need to be in order to produce substantial differences in climate outcomes. Using an extensive database of climate model simulations, we quantify how differences in global average quantities relate to differences in both the spatial extent and magnitude of climate outcomes at regional (250-1250 km) scales. We show that differences of about 0.3 °C in global average temperature are required to generate statistically significant changes in regional annual average temperature over more than half of the Earth’s land surface. A global difference of 0.8 °C is necessary to produce regional warming over half the land surface that is not only significant but reaches at least 1 °C. As much as 2.5 to 3 °C is required for a statistically significant change in regional annual average precipitation that is equally pervasive. Global average temperature change provides a better metric than radiative forcing for indicating differences in regional climate outcomes due to the path dependency of the effects of radiative forcing. For example, a difference in radiative forcing of 0.5 W m-2 can produce statistically significant differences in regional temperature over an area that ranges between 30% and 85% of the land surface, depending on the forcing pathway.

  16. Convergence of soil nitrogen isotopes across global climate gradients

    PubMed Central

    Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; Brookshire, E. N. J.; Cramer, Michael D.; Hasselquist, Niles J.; Hobbie, Erik A.; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J. Marty; Mack, Michelle C.; Marin-Spiotta, Erika; Mayor, Jordan R.; McLauchlan, Kendra K.; Michelsen, Anders; Nardoto, Gabriela B.; Oliveira, Rafael S.; Perakis, Steven S.; Peri, Pablo L.; Quesada, Carlos A.; Richter, Andreas; Schipper, Louis A.; Stevenson, Bryan A.; Turner, Benjamin L.; Viani, Ricardo A. G.; Wanek, Wolfgang; Zeller, Bernd

    2015-01-01

    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15N:14N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss. PMID:25655192

  17. Convergence of soil nitrogen isotopes across global climate gradients.

    PubMed

    Craine, Joseph M; Elmore, Andrew J; Wang, Lixin; Augusto, Laurent; Baisden, W Troy; Brookshire, E N J; Cramer, Michael D; Hasselquist, Niles J; Hobbie, Erik A; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J Marty; Mack, Michelle C; Marin-Spiotta, Erika; Mayor, Jordan R; McLauchlan, Kendra K; Michelsen, Anders; Nardoto, Gabriela B; Oliveira, Rafael S; Perakis, Steven S; Peri, Pablo L; Quesada, Carlos A; Richter, Andreas; Schipper, Louis A; Stevenson, Bryan A; Turner, Benjamin L; Viani, Ricardo A G; Wanek, Wolfgang; Zeller, Bernd

    2015-02-06

    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

  18. Convergence of soil nitrogen isotopes across global climate gradients

    USGS Publications Warehouse

    Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; Brookshire, E. N. J.; Cramer, Michael D.; Hasselquist, Niles J.; Hobbie, Erik A.; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J. Marty; Mack, Michelle C.; Marin-Spiotta, Erika; Mayor, Jordan R.; McLauchlan, Kendra K.; Michelsen, Anders; Nardoto, Gabriela B.; Oliveira, Rafael S.; Perakis, Steven S.; Peri, Pablo L.; Quesada, Carlos A.; Richter, Andreas; Schipper, Louis A.; Stevenson, Bryan A.; Turner, Benjamin L.; Viani, Ricardo A. G.; Wanek, Wolfgang; Zeller, Bernd

    2015-01-01

    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15 N: 14 N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15 N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

  19. Global climate change: A utility industry perspective

    SciTech Connect

    DeMichele, O.M.

    1994-12-31

    Many electric utilities have accepted responsibility to help reduce carbon dioxide emissions. Many have enthusiastically committed their support. No one industry, government or environmental group can take responsibility for, or stop, climate change. However, for a long time, electric utilities took an unfair share of the blame. Since 1973, US electricity use has increased 61%. But, total energy use went up only 11%. Meanwhile, carbon dioxide emissions per dollar of gross domestic product dropped 29%. In other words, increased electrification actually increases energy efficiency and reduces greenhouse gases.

  20. Increasing Diversity in Global Climate Change Research for Undergraduates

    NASA Astrophysics Data System (ADS)

    Johnson, L. P.; Marchese, P.; Carlson, B. E.; Howard, A. M.; Peteet, D. M.; Rosenzweig, C.; Druyan, L. M.; Fulakeza, M.; Gaffin, S.; Austin, S. A.; Cheung, T. D.; Damas, M. C.; Boxe, C.; Prince, T.; Ng, C.; Frost, J.

    2014-12-01

    Global Climate Change and the ability to predict the effects of forcings and feedback mechanisms on global and local climate are critical to the survival of the inhabitants of planet Earth. It is therefore important to motivate students to continue their studies towards advanced degrees and pursue careers related to climate change. This is best accomplished by involving undergraduates in global climate change research. This Research Experience for Undergraduates (REU) initiative is based at the City University of New York (CUNY) and the Goddard Institute for Space Studies (GISS), and is supported by NASA and NSF. Mentors for the primarily summer research experiences include CUNY faculty and GISS scientists. Research topics include the Wetland Carbon Project, The Cooling Power Of Urban Vegetation, Internal Ocean Mixing, El Niño Southern Oscillation, Pollution Transport and Tropospheric Ozone. Students are recruited from CUNY colleges and other colleges and universities. The program maintains an emphasis on under-represented minorities and females. Approximately sixty percent of the undergraduate students are under-represented minorities and forty percent are female. The project is supported by NSF award AGS-1359293 REU Site: CUNY/GISS Center for Global Climate Research.

  1. Projected change in global fisheries revenues under climate change

    PubMed Central

    Lam, Vicky W. Y.; Cheung, William W. L.; Reygondeau, Gabriel; Sumaila, U. Rashid

    2016-01-01

    Previous studies highlight the winners and losers in fisheries under climate change based on shifts in biomass, species composition and potential catches. Understanding how climate change is likely to alter the fisheries revenues of maritime countries is a crucial next step towards the development of effective socio-economic policy and food sustainability strategies to mitigate and adapt to climate change. Particularly, fish prices and cross-oceans connections through distant water fishing operations may largely modify the projected climate change impacts on fisheries revenues. However, these factors have not formally been considered in global studies. Here, using climate-living marine resources simulation models, we show that global fisheries revenues could drop by 35% more than the projected decrease in catches by the 2050 s under high CO2 emission scenarios. Regionally, the projected increases in fish catch in high latitudes may not translate into increases in revenues because of the increasing dominance of low value fish, and the decrease in catches by these countries’ vessels operating in more severely impacted distant waters. Also, we find that developing countries with high fisheries dependency are negatively impacted. Our results suggest the need to conduct full-fledged economic analyses of the potential economic effects of climate change on global marine fisheries. PMID:27600330

  2. Projected change in global fisheries revenues under climate change.

    PubMed

    Lam, Vicky W Y; Cheung, William W L; Reygondeau, Gabriel; Sumaila, U Rashid

    2016-09-07

    Previous studies highlight the winners and losers in fisheries under climate change based on shifts in biomass, species composition and potential catches. Understanding how climate change is likely to alter the fisheries revenues of maritime countries is a crucial next step towards the development of effective socio-economic policy and food sustainability strategies to mitigate and adapt to climate change. Particularly, fish prices and cross-oceans connections through distant water fishing operations may largely modify the projected climate change impacts on fisheries revenues. However, these factors have not formally been considered in global studies. Here, using climate-living marine resources simulation models, we show that global fisheries revenues could drop by 35% more than the projected decrease in catches by the 2050 s under high CO2 emission scenarios. Regionally, the projected increases in fish catch in high latitudes may not translate into increases in revenues because of the increasing dominance of low value fish, and the decrease in catches by these countries' vessels operating in more severely impacted distant waters. Also, we find that developing countries with high fisheries dependency are negatively impacted. Our results suggest the need to conduct full-fledged economic analyses of the potential economic effects of climate change on global marine fisheries.

  3. Projected change in global fisheries revenues under climate change

    NASA Astrophysics Data System (ADS)

    Lam, Vicky W. Y.; Cheung, William W. L.; Reygondeau, Gabriel; Sumaila, U. Rashid

    2016-09-01

    Previous studies highlight the winners and losers in fisheries under climate change based on shifts in biomass, species composition and potential catches. Understanding how climate change is likely to alter the fisheries revenues of maritime countries is a crucial next step towards the development of effective socio-economic policy and food sustainability strategies to mitigate and adapt to climate change. Particularly, fish prices and cross-oceans connections through distant water fishing operations may largely modify the projected climate change impacts on fisheries revenues. However, these factors have not formally been considered in global studies. Here, using climate-living marine resources simulation models, we show that global fisheries revenues could drop by 35% more than the projected decrease in catches by the 2050 s under high CO2 emission scenarios. Regionally, the projected increases in fish catch in high latitudes may not translate into increases in revenues because of the increasing dominance of low value fish, and the decrease in catches by these countries’ vessels operating in more severely impacted distant waters. Also, we find that developing countries with high fisheries dependency are negatively impacted. Our results suggest the need to conduct full-fledged economic analyses of the potential economic effects of climate change on global marine fisheries.

  4. Global climate change and terrestrial net primary production

    NASA Technical Reports Server (NTRS)

    Melillo, Jerry M.; Mcguire, A. D.; Kicklighter, David W.; Moore, Berrien, III; Vorosmarty, Charles J.; Schloss, Annette L.

    1993-01-01

    A process-based model was used to estimate global patterns of net primary production and soil nitrogen cycling for contemporary climate conditions and current atmospheric CO2 concentration. Over half of the global annual net primary production was estimated to occur in the tropics, with most of the production attributable to tropical evergreen forest. The effects of CO2 doubling and associated climate changes were also explored. The responses in tropical and dry temperate ecosystems were dominated by CO2, but those in northern and moist temperate ecosystems reflected the effects of temperature on nitrogen availability.

  5. Global potential of biospheric carbon management for climate mitigation.

    PubMed

    Canadell, Josep G; Schulze, E Detlef

    2014-11-19

    Elevated concentrations of atmospheric greenhouse gases (GHGs), particularly carbon dioxide (CO2), have affected the global climate. Land-based biological carbon mitigation strategies are considered an important and viable pathway towards climate stabilization. However, to satisfy the growing demands for food, wood products, energy, climate mitigation and biodiversity conservation-all of which compete for increasingly limited quantities of biomass and land-the deployment of mitigation strategies must be driven by sustainable and integrated land management. If executed accordingly, through avoided emissions and carbon sequestration, biological carbon and bioenergy mitigation could save up to 38 billion tonnes of carbon and 3-8% of estimated energy consumption, respectively, by 2050.

  6. Exploring Local Approaches to Communicating Global Climate Change Information

    NASA Astrophysics Data System (ADS)

    Stevermer, A. J.

    2002-12-01

    Expected future climate changes are often presented as a global problem, requiring a global solution. Although this statement is accurate, communicating climate change science and prospective solutions must begin at local levels, each with its own subset of complexities to be addressed. Scientific evaluation of local changes can be complicated by large variability occurring over small spatial scales; this variability hinders efforts both to analyze past local changes and to project future ones. The situation is further encumbered by challenges associated with scientific literacy in the U.S., as well as by pressing economic difficulties. For people facing real-life financial and other uncertainties, a projected ``1.4 to 5.8 degrees Celsius'' rise in global temperature is likely to remain only an abstract concept. Despite this lack of concreteness, recent surveys have found that most U.S. residents believe current global warming science, and an even greater number view the prospect of increased warming as at least a ``somewhat serious'' problem. People will often be able to speak of long-term climate changes in their area, whether observed changes in the amount of snow cover in winter, or in the duration of extreme heat periods in summer. This work will explore the benefits and difficulties of communicating climate change from a local, rather than global, perspective, and seek out possible strategies for making less abstract, more concrete, and most importantly, more understandable information available to the public.

  7. Future projections for Mexican faunas under global climate change scenarios.

    PubMed

    Peterson, A Townsend; Ortega-Huerta, Miguel A; Bartley, Jeremy; Sánchez-Cordero, Victor; Soberón, Jorge; Buddemeier, Robert H; Stockwell, David R B

    2002-04-11

    Global climates are changing rapidly, with unexpected consequences. Because elements of biodiversity respond intimately to climate as an important driving force of distributional limitation, distributional shifts and biodiversity losses are expected. Nevertheless, in spite of modelling efforts focused on single species or entire ecosystems, a few preliminary surveys of fauna-wide effects, and evidence of climate change-mediated shifts in several species, the likely effects of climate change on species' distributions remain little known, and fauna-wide or community-level effects are almost completely unexplored. Here, using a genetic algorithm and museum specimen occurrence data, we develop ecological niche models for 1,870 species occurring in Mexico and project them onto two climate surfaces modelled for 2055. Although extinctions and drastic range reductions are predicted to be relatively few, species turnover in some local communities is predicted to be high (>40% of species), suggesting that severe ecological perturbations may result.

  8. The effects of variable biome distribution on global climate

    SciTech Connect

    Noever, D.A.; Brittain, A.; Matsos, H.C.; Baskaran, S.; Obenhuber, D.

    1996-12-31

    In projecting climatic adjustments to anthropogenically elevated atmospheric carbon dioxide, most global climate models fix biome distribution to current geographic conditions. The authors develop a model that examines the albedo-related effects of biome distribution on global temperature. The model was tested on historical biome changes since 1860 and the results fit both the observed trend and order of magnitude change in global temperature. Once backtested in this way on historical data, the model is then used to generate an optimized future biome distribution which minimizes projected greenhouse effects on global temperature. Because of the complexity of this combinatorial search an artificial intelligence method, the genetic algorithm, was employed. The genetic algorithm assigns various biome distributions to the planet, then adjusts their percentage area and albedo effects to regulate or moderate temperature changes.

  9. Global biomass burning. Atmospheric, climatic, and biospheric implications

    SciTech Connect

    Levine, J.S.

    1991-01-01

    Biomass burning is a significant source of atmospheric gases and, as such, may contribute to global climate changes. Biomass burning includes burning forests and savanna grasslands for land clearing, burning agricultural stubble and waste after harvesting, and burning biomass fuels. The chapters in this volume include the following topics: remote sensing of biomass burning from space;geographical distribution of burning; combustion products of burning in tropical, temperate and boreal ecosystems; burning as a global source of atmospheric gases and particulates; impacts of biomass burning gases and particulates on global climate; and the role of biomass burning on biodiversity and past global extinctions. A total of 1428 references are cited for the 63 chapters. Individual chapters are indexed separately for the data bases.

  10. Reducing global health inequalities. Part 1

    PubMed Central

    Stuart, Kenneth; Soulsby, EJL

    2011-01-01

    This paper summarizes four UK reviews of socially stratified health inequalities that were undertaken during the past five decades. It describes the background of misplaced optimism and false hopes which characterized the UK's own record of health inequalities; the broken promises on debt cancellations which was the experience of developing countries. It describes why the UK's past leadership record in international health provides grounds for optimism for the future and for benefits for both developed and developing countries through the adoption of more collaborative approaches to global health than have characterized international relationships in the past. It recalls the enthusiasm generated in the UK, and internationally, by the establishment of the Global Commission on the Social Determinants of Health. It promotes the perception of health both as a global public good and as a developmental issue and why a focus on poverty is essential to the address of global health issues. It sees the designing of appropriate strategies and partnerships towards the achievement of the Millennium Development Goals as an important first step for achieving successful address to global public health issues. PMID:21816930

  11. Climate Mitigation Policy Implications for Global Irrigation Water Demand

    SciTech Connect

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.

    2013-08-22

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of alternative land-use emissions mitigation policy options—one which values terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to lead to increased demand for water for agricultural systems (+200%), even in the absence of climate change. In general policies to mitigate climate change will increase agricultural demands for water, regardless of whether or not terrestrial carbon is valued or not. Burgeoning demands for water are driven by the demand for bioenergy in response to emissions mitigation policies. We also find that the policy matters. Increases in the demand for water when terrestrial carbon emissions go un-prices are vastly larger than when terrestrial system carbon emissions are prices at the same rate as fossil fuel and industrial emissions. Our estimates for increased water demands when terrestrial carbon systems go un-priced are larger than earlier studies. We find that the deployment of improved irrigation delivery systems could mitigate some of the increase in water demands, but cannot reverse the increases in water demands when terrestrial carbon

  12. What does global mean temperature tell us about local climate?

    PubMed Central

    Sutton, Rowan; Suckling, Emma; Hawkins, Ed

    2015-01-01

    The subject of climate feedbacks focuses attention on global mean surface air temperature (GMST) as the key metric of climate change. But what does knowledge of past and future GMST tell us about the climate of specific regions? In the context of the ongoing UNFCCC process, this is an important question for policy-makers as well as for scientists. The answer depends on many factors, including the mechanisms causing changes, the timescale of the changes, and the variables and regions of interest. This paper provides a review and analysis of the relationship between changes in GMST and changes in local climate, first in observational records and then in a range of climate model simulations, which are used to interpret the observations. The focus is on decadal timescales, which are of particular interest in relation to recent and near-future anthropogenic climate change. It is shown that GMST primarily provides information about forced responses, but that understanding and quantifying internal variability is essential to projecting climate and climate impacts on regional-to-local scales. The relationship between local forced responses and GMST is often linear but may be nonlinear, and can be greatly complicated by competition between different forcing factors. Climate projections are limited not only by uncertainties in the signal of climate change but also by uncertainties in the characteristics of real-world internal variability. Finally, it is shown that the relationship between GMST and local climate provides a simple approach to climate change detection, and a useful guide to attribution studies. PMID:26438282

  13. Impact of climate change on global malaria distribution.

    PubMed

    Caminade, Cyril; Kovats, Sari; Rocklov, Joacim; Tompkins, Adrian M; Morse, Andrew P; Colón-González, Felipe J; Stenlund, Hans; Martens, Pim; Lloyd, Simon J

    2014-03-04

    Malaria is an important disease that has a global distribution and significant health burden. The spatial limits of its distribution and seasonal activity are sensitive to climate factors, as well as the local capacity to control the disease. Malaria is also one of the few health outcomes that has been modeled by more than one research group and can therefore facilitate the first model intercomparison for health impacts under a future with climate change. We used bias-corrected temperature and rainfall simulations from the Coupled Model Intercomparison Project Phase 5 climate models to compare the metrics of five statistical and dynamical malaria impact models for three future time periods (2030s, 2050s, and 2080s). We evaluated three malaria outcome metrics at global and regional levels: climate suitability, additional population at risk and additional person-months at risk across the model outputs. The malaria projections were based on five different global climate models, each run under four emission scenarios (Representative Concentration Pathways, RCPs) and a single population projection. We also investigated the modeling uncertainty associated with future projections of populations at risk for malaria owing to climate change. Our findings show an overall global net increase in climate suitability and a net increase in the population at risk, but with large uncertainties. The model outputs indicate a net increase in the annual person-months at risk when comparing from RCP2.6 to RCP8.5 from the 2050s to the 2080s. The malaria outcome metrics were highly sensitive to the choice of malaria impact model, especially over the epidemic fringes of the malaria distribution.

  14. Impact of climate change on global malaria distribution

    PubMed Central

    Caminade, Cyril; Kovats, Sari; Rocklov, Joacim; Tompkins, Adrian M.; Morse, Andrew P.; Colón-González, Felipe J.; Stenlund, Hans; Martens, Pim; Lloyd, Simon J.

    2014-01-01

    Malaria is an important disease that has a global distribution and significant health burden. The spatial limits of its distribution and seasonal activity are sensitive to climate factors, as well as the local capacity to control the disease. Malaria is also one of the few health outcomes that has been modeled by more than one research group and can therefore facilitate the first model intercomparison for health impacts under a future with climate change. We used bias-corrected temperature and rainfall simulations from the Coupled Model Intercomparison Project Phase 5 climate models to compare the metrics of five statistical and dynamical malaria impact models for three future time periods (2030s, 2050s, and 2080s). We evaluated three malaria outcome metrics at global and regional levels: climate suitability, additional population at risk and additional person-months at risk across the model outputs. The malaria projections were based on five different global climate models, each run under four emission scenarios (Representative Concentration Pathways, RCPs) and a single population projection. We also investigated the modeling uncertainty associated with future projections of populations at risk for malaria owing to climate change. Our findings show an overall global net increase in climate suitability and a net increase in the population at risk, but with large uncertainties. The model outputs indicate a net increase in the annual person-months at risk when comparing from RCP2.6 to RCP8.5 from the 2050s to the 2080s. The malaria outcome metrics were highly sensitive to the choice of malaria impact model, especially over the epidemic fringes of the malaria distribution. PMID:24596427

  15. Global Climatic Controls On Leaf Size

    NASA Astrophysics Data System (ADS)

    Wright, I. J.; Prentice, I. C.; Dong, N.; Maire, V.

    2015-12-01

    Since the 1890s it's been known that the wet tropics harbour plants with exceptionally large leaves. Yet the observed latitudinal gradient of leaf size has never been fully explained: it is still unclear which aspects of climate are most important for understanding geographic trends in leaf size, a trait that varies many thousand-fold among species. The key is the leaf-to-air temperature difference, which depends on the balance of energy inputs (irradiance) and outputs (transpirational cooling, losses to the night sky). Smaller leaves track air temperatures more closely than larger leaves. Widely cited optimality-based theories predict an advantage for smaller leaves in dry environments, where transpiration is restricted, but are silent on the latitudinal gradient. We aimed to characterize and explain the worldwide pattern of leaf size. Across 7900 species from 651 sites, here we show that: large-leaved species predominate in wet, hot, sunny environments; smaller-leaved species typify hot, sunny environments only when arid; small leaves are required to avoid freezing in high latitudes and at high elevation, and to avoid overheating in dry environments. This simple pattern was unclear in earlier, more limited analyses. We present a simple but robust, fresh approach to energy-balance modelling for both day-time and night-time leaf-to-air temperature differences, and thus risk of overheating and of frost damage. Our analysis shows night-chilling is important as well as day-heating, and simplifies leaf temperature modelling. It provides both a framework for modelling leaf size constraints, and a solution to one of the oldest conundrums in ecology. Although the path forward is not yet fully clear, because of its role in controlling leaf temperatures we suggest that climate-related leaf size constraints could usefully feature in the next generation of land ecosystem models.

  16. Effects of boreal forest vegetation on global climate

    NASA Astrophysics Data System (ADS)

    Bonan, Gordon B.; Pollard, David; Thompson, Starley L.

    1992-10-01

    TERRESTRIAL ecosystems are thought to play an important role in determining regional and global climate1-6 one example of this is in Amazonia, where destruction of the tropical rainforest leads to warmer and drier conditions4-6. Boreal forest ecosystems may also affect climate. As temperatures rise, the amount of continental and oceanic snow and ice is reduced, so the land and ocean surfaces absorb greater amounts of solar radiation, reinforcing the warming in a 'snow/ice/albedo' feedback which results in large climate sensitivity to radiative forcings7-9. This sensitivity is moderated, however, by the presence of trees in northern latitudes, which mask the high reflectance of snow10,11, leading to warmer winter temperatures than if trees were not present12-14. Here we present results from a global climate model which show that the boreal forest warms both winter and summer air temperatures, relative to simulations in which the forest is replaced with bare ground or tundra vegetation. Our results suggest that future redistributions of boreal forest and tundra vegetation (due, for example, to extensive logging, or the influence of global warming) could initiate important climate feedbacks, which could also extend to lower latitudes.

  17. Climate-induced forest dieback: An escalating global phenomenon?

    USGS Publications Warehouse

    Allen, C.D.

    2009-01-01

    The impacts of growing human populations and economies are both rapidly and directly transforming forests in many areas. However, little known are the pervasive effects of the ongoing climatic changes on the condition and status of forests around the world. Global patterns are now evident with the global tree mortality that is now above its usual mortality levels as it is affected by drought and heat-related forest stress and dieback. Thus, the possibility of an increased risk of climate-induced dieback is now being considered within many of the forests and woodlands of today. A focus will be given on the climatic water stress that is driven by both drought and warm temperatures. However, studying the trends in forest mortality and predictions has its limitations with such a number of information gaps and scientific uncertainties. First is the absence of an adequate global data on forest health status, followed by the fact that only a few tree species have the researchers an adequate quantitative knowledge with regards to its physiological thresholds of individual tree mortality from chronic or acute water stress. Lastly, the adequate knowledge of the feedback and non-linear interactions between climate-induced forest stress and other climate-related disturbance processes are lacking among the current scientists.

  18. Global climate change is confounding species conservation strategies.

    PubMed

    Koopowitz, Harold; Hawkins, Bradford A

    2012-06-01

    Most organisms face similar problems with respect to their conservation in the face of global climate change. Here, we examine probable effects of climate change on the hyperdiverse plant family Orchidaceae. In the 20th century, the major concerns for orchid conservation revolved around unsustainable harvest for the orchid trade and, more importantly, land conversion from natural ecosystems to those unable to support wild orchid populations. Land conversion included logging, fire regimes and forest conversions to agricultural systems. Although those forms of degradation continue, an additional suite of threats has emerged, fueled by global climate change. Global climate change involves more than responses of orchid populations to increases in ambient temperature. Increasing temperature induces secondary effects that can be more significant than simple changes in temperature. Among these new threats are extended and prolonged fire seasons, rising sea levels, increases in cyclonic storms, seasonal climate shifts, changes in orthographic wind dew point and increased drought. The long-term outlook for orchid biodiversity in the wild is dismal, as it is for many animal groups, and we need to start rethinking strategies for conservation in a rapidly changing world.

  19. IMPACTS OF GLOBAL CLIMATE CHANGE ADAPTION ON SUSTAINABILITY

    EPA Science Inventory

    This presentation presents the potential impacts that global climate change may have on the quality and quantity of water available to drinking water and wastewater treatment systems and the adaptations these systems might have to employ in order to remain in regulatory complianc...

  20. MODELING THE IMPACT OF AIR POLLUTION ON GLOBAL CLIMATE CHANGE

    EPA Science Inventory

    Tropospheric ozone (O3) and aerosols have major effects on climate and are the two air pollutants of most concern in the developed world. O3 is a major greenhouse gas (GHG) and light-absorbing aerosols such as black carbon (BC) also contribute to global warm...

  1. Linking Urban Air Pollution to Global Tropospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Wang, Chien

    2005-01-01

    The two major tasks of this project are to study: (a) the impact of urban nonlinear chemistry on chemical budgets of key pollutants in non-urban areas; and (b) the influence of air pollution control strategies in selected metropolitan areas, particularly of emerging economies in East and South Asia, on tropospheric chemistry and hence on regional and global climate.

  2. Climate impacts on global hot spots of marine biodiversity.

    PubMed

    Ramírez, Francisco; Afán, Isabel; Davis, Lloyd S; Chiaradia, André

    2017-02-01

    Human activities drive environmental changes at scales that could potentially cause ecosystem collapses in the marine environment. We combined information on marine biodiversity with spatial assessments of the impacts of climate change to identify the key areas to prioritize for the conservation of global marine biodiversity. This process identified six marine regions of exceptional biodiversity based on global distributions of 1729 species of fish, 124 marine mammals, and 330 seabirds. Overall, these hot spots of marine biodiversity coincide with areas most severely affected by global warming. In particular, these marine biodiversity hot spots have undergone local to regional increasing water temperatures, slowing current circulation, and decreasing primary productivity. Furthermore, when we overlapped these hot spots with available industrial fishery data, albeit coarser than our estimates of climate impacts, they suggest a worrying coincidence whereby the world's richest areas for marine biodiversity are also those areas mostly affected by both climate change and industrial fishing. In light of these findings, we offer an adaptable framework for determining local to regional areas of special concern for the conservation of marine biodiversity. This has exposed the need for finer-scaled fishery data to assist in the management of global fisheries if the accumulative, but potentially preventable, effect of fishing on climate change impacts is to be minimized within areas prioritized for marine biodiversity conservation.

  3. Mechanistic Toxicology in the Face of Global Climate Change

    EPA Science Inventory

    To incorporate effects of global climate change (GCC) into regulatory assessments of chemical risk, damage and restoration needs, an understanding is needed of GCC effects on mechanisms of chemical toxicity and the implications of those effects when placed in context with GCC eff...

  4. Knowledge of Global Climate Change: View of Iranian University Students

    ERIC Educational Resources Information Center

    Salehi, Sadegh; Nejad, Zahra Pazuki; Mahmoudi, Hossein; Burkart, Stefan

    2016-01-01

    This article assesses students' understanding of global climate change (GCC) and social factors affecting it. It was hypothesized that students who demonstrate pro-environmental attitudes are more likely to possess higher knowledge of GCC. It was further hypothesized that trust and personal efficiency would have a positive effect on the knowledge…

  5. Global climate change--The technology challenge: China

    EPA Science Inventory

    Population growth and developmental pressures, spawned by an increasing demand for resource intensive goods, foods and services, are altering the planet in ways that threaten the long-term well-being of humans and other species. Global climate change and its associated impacts is...

  6. Seventh Grade Students' Conceptions of Global Warming and Climate Change

    ERIC Educational Resources Information Center

    Shepardson, Daniel P.; Niyogi, Dev; Choi, Soyoung; Charusombat, Umarporn

    2009-01-01

    The purpose of this study was to investigate seventh grade students' conceptions of global warming and climate change. The study was descriptive in nature and involved the collection of qualitative data from 91 seventh grade students from three different schools in the Midwest, USA. An open response and draw and explain assessment instrument was…

  7. Climate impacts on global hot spots of marine biodiversity

    PubMed Central

    Ramírez, Francisco; Afán, Isabel; Davis, Lloyd S.; Chiaradia, André

    2017-01-01

    Human activities drive environmental changes at scales that could potentially cause ecosystem collapses in the marine environment. We combined information on marine biodiversity with spatial assessments of the impacts of climate change to identify the key areas to prioritize for the conservation of global marine biodiversity. This process identified six marine regions of exceptional biodiversity based on global distributions of 1729 species of fish, 124 marine mammals, and 330 seabirds. Overall, these hot spots of marine biodiversity coincide with areas most severely affected by global warming. In particular, these marine biodiversity hot spots have undergone local to regional increasing water temperatures, slowing current circulation, and decreasing primary productivity. Furthermore, when we overlapped these hot spots with available industrial fishery data, albeit coarser than our estimates of climate impacts, they suggest a worrying coincidence whereby the world’s richest areas for marine biodiversity are also those areas mostly affected by both climate change and industrial fishing. In light of these findings, we offer an adaptable framework for determining local to regional areas of special concern for the conservation of marine biodiversity. This has exposed the need for finer-scaled fishery data to assist in the management of global fisheries if the accumulative, but potentially preventable, effect of fishing on climate change impacts is to be minimized within areas prioritized for marine biodiversity conservation. PMID:28261659

  8. Achieving Global Ocean Color Climate Data Records

    NASA Technical Reports Server (NTRS)

    Franz, Bryan

    2010-01-01

    Ocean color, or the spectral distribution of visible light upwelling from beneath the ocean surface, carries information on the composition and concentration of biological constituents within the water column. The CZCS mission in 1978 demonstrated that quantitative ocean color measurements could be. made from spaceborne sensors, given sufficient corrections for atmospheric effects and a rigorous calibration and validation program. The launch of SeaWiFS in 1997 represents the beginning of NASA's ongoing efforts to develop a continuous ocean color data record with sufficient coverage and fidelity for global change research. Achievements in establishing and maintaining the consistency of the time-series through multiple missions and varying instrument designs will be highlighted in this talk, including measurements from NASA'S MODIS instruments currently flying on the Terra and Aqua platforms, as well as the MERIS sensor flown by ESA and the OCM-2 sensor recently launched by ISRO.

  9. Globalization in the pharmaceutical industry, Part I.

    PubMed

    Casadio Tarabusi, C; Vickery, G

    1998-01-01

    This report on the pharmaceutical industry will be published in two parts. Part I begins with a summary of the study and its conclusions. The authors then provide an overview of the characteristics of the industry and current trends in its growth and structure: production and consumption, employment, research and development, capital investment, firm and product concentration and product competition, and pricing. A discussion of international trade follows, covering intra- and inter-regional, intra-firm, and intra-industry trade. The report will continue in the next issue of the Journal (Part II) with a look at foreign direct investment, inter-firm networks, and governmental policies.

  10. Global water resources: vulnerability from climate change and population growth.

    PubMed

    Vörösmarty, C J; Green, P; Salisbury, J; Lammers, R B

    2000-07-14

    The future adequacy of freshwater resources is difficult to assess, owing to a complex and rapidly changing geography of water supply and use. Numerical experiments combining climate model outputs, water budgets, and socioeconomic information along digitized river networks demonstrate that (i) a large proportion of the world's population is currently experiencing water stress and (ii) rising water demands greatly outweigh greenhouse warming in defining the state of global water systems to 2025. Consideration of direct human impacts on global water supply remains a poorly articulated but potentially important facet of the larger global change question.

  11. Biophysical climate impacts of recent changes in global forest cover

    NASA Astrophysics Data System (ADS)

    Alkama, Ramdane; Cescatti, Alessandro

    2016-02-01

    Changes in forest cover affect the local climate by modulating the land-atmosphere fluxes of energy and water. The magnitude of this biophysical effect is still debated in the scientific community and currently ignored in climate treaties. Here we present an observation-driven assessment of the climate impacts of recent forest losses and gains, based on Earth observations of global forest cover and land surface temperatures. Our results show that forest losses amplify the diurnal temperature variation and increase the mean and maximum air temperature, with the largest signal in arid zones, followed by temperate, tropical, and boreal zones. In the decade 2003-2012, variations of forest cover generated a mean biophysical warming on land corresponding to about 18% of the global biogeochemical signal due to CO2 emission from land-use change.

  12. Biophysical climate impacts of recent changes in global forest cover.

    PubMed

    Alkama, Ramdane; Cescatti, Alessandro

    2016-02-05

    Changes in forest cover affect the local climate by modulating the land-atmosphere fluxes of energy and water. The magnitude of this biophysical effect is still debated in the scientific community and currently ignored in climate treaties. Here we present an observation-driven assessment of the climate impacts of recent forest losses and gains, based on Earth observations of global forest cover and land surface temperatures. Our results show that forest losses amplify the diurnal temperature variation and increase the mean and maximum air temperature, with the largest signal in arid zones, followed by temperate, tropical, and boreal zones. In the decade 2003-2012, variations of forest cover generated a mean biophysical warming on land corresponding to about 18% of the global biogeochemical signal due to CO2 emission from land-use change.

  13. Global Climate Change Adaptation Priorities for Biodiversity and Food Security

    PubMed Central

    Hannah, Lee; Ikegami, Makihiko; Hole, David G.; Seo, Changwan; Butchart, Stuart H. M.; Peterson, A. Townsend; Roehrdanz, Patrick R.

    2013-01-01

    International policy is placing increasing emphasis on adaptation to climate change, including the allocation of new funds to assist adaptation efforts. Climate change adaptation funding may be most effective where it meets integrated goals, but global geographic priorities based on multiple development and ecological criteria are not well characterized. Here we show that human and natural adaptation needs related to maintaining agricultural productivity and ecosystem integrity intersect in ten major areas globally, providing a coherent set of international priorities for adaptation funding. An additional seven regional areas are identified as worthy of additional study. The priority areas are locations where changes in crop suitability affecting impoverished farmers intersect with changes in ranges of restricted-range species. Agreement among multiple climate models and emissions scenarios suggests that these priorities are robust. Adaptation funding directed to these areas could simultaneously address multiple international policy goals, including poverty reduction, protecting agricultural production and safeguarding ecosystem services. PMID:23991125

  14. Global climate change adaptation priorities for biodiversity and food security.

    PubMed

    Hannah, Lee; Ikegami, Makihiko; Hole, David G; Seo, Changwan; Butchart, Stuart H M; Peterson, A Townsend; Roehrdanz, Patrick R

    2013-01-01

    International policy is placing increasing emphasis on adaptation to climate change, including the allocation of new funds to assist adaptation efforts. Climate change adaptation funding may be most effective where it meets integrated goals, but global geographic priorities based on multiple development and ecological criteria are not well characterized. Here we show that human and natural adaptation needs related to maintaining agricultural productivity and ecosystem integrity intersect in ten major areas globally, providing a coherent set of international priorities for adaptation funding. An additional seven regional areas are identified as worthy of additional study. The priority areas are locations where changes in crop suitability affecting impoverished farmers intersect with changes in ranges of restricted-range species. Agreement among multiple climate models and emissions scenarios suggests that these priorities are robust. Adaptation funding directed to these areas could simultaneously address multiple international policy goals, including poverty reduction, protecting agricultural production and safeguarding ecosystem services.

  15. Quantifying Contributions of Climate Feedbacks to Global Warming Pattern Formation

    NASA Astrophysics Data System (ADS)

    Song, X.; Zhang, G. J.; Cai, M.

    2013-12-01

    The ';';climate feedback-response analysis method'' (CFRAM) was applied to the NCAR CCSM3.0 simulation to analyze the strength and spatial distribution of climate feedbacks and to quantify their contributions to global and regional surface temperature changes in response to a doubling of CO2. Instead of analyzing the climate sensitivity, the CFRAM directly attributes the temperature change to individual radiative and non-radiative feedbacks. The radiative feedback decomposition is based on hourly model output rather than monthly mean data that are commonly used in climate feedback analysis. This gives a more accurate quantification of the cloud and albedo feedbacks. The process-based decomposition of non-radiative feedback enables us to understand the roles of GCM physical and dynamic processes in climate change. The pattern correlation, the centered root-mean-square (RMS) difference and the ratio of variations (represented by standard deviations) between the partial surface temperature change due to each feedback process and the total surface temperature change in CCSM3.0 simulation are examined to quantify the roles of each feedback process in the global warming pattern formation. The contributions of climate feedbacks to the regional warming are also discussed.

  16. Emissions and climate forcing from global and Arctic fishing vessels

    NASA Astrophysics Data System (ADS)

    McKuin, Brandi; Campbell, J. Elliott

    2016-02-01

    Fishing vessels were recently found to be the largest source of black carbon ship emissions in the Arctic, suggesting that the fishing sector should be a focus for future studies. Here we developed a global and Arctic emissions inventory for fishing vessel emissions of short-lived and long-lived climate forcers based on data from a wide range of vessel sizes, fuel sulfur contents, engine types, and operational characteristics. We found that previous work generally underestimated emissions of short-lived climate forcers due to a failure to account for small fishing vessels as well as variability in emission factors. In particular, global black carbon emissions were underestimated by an order of magnitude. Furthermore, our order of magnitude estimate of the net climate effect from these fishing vessel emissions suggests that short-lived climate forcing may be particularly important in regions where fuel has a low sulfur content. These results have implications for proposed maritime policies and provide a foundation for future climate simulations to forecast climate change impacts in the Arctic.

  17. Global climate and infectious disease: The cholera paradigm

    SciTech Connect

    Colwell, R.R.

    1996-12-20

    Historically, infectious diseases have had a profound effect on human populations, including their evolution and cultural development. Despite significant advances in medical science, infectious diseases continue to impact human populations in many parts of the world. Emerging diseases are considered to be those infections that either are newly appearing in the population or are rapidly increasing in incidence or expanding in geographic range. Emergence of disease is not a simple phenomenon, mainly because infectious diseases are dynamic. Most new infections are not caused by truly new pathogens but are microorganisms (viruses, bacteria, fungi, protozoa, and helminths) that find a new way to enter a susceptible host and are newly recognized because of recently developed, sensitive techniques. Human activities drive emergence of disease and a variety of social, economic, political, climatic, technological, and environmental factors can shape the pattern of a disease and influence its emergence into populations. For example, travel affects emergence of disease, and human migrations have been the main source of epidemics throughout history. Trade caravans, religious pilgrimage, and military campaigns facilitated the spread of plague, smallpox, and cholera. Global travel is a fact of modern life and, equally so, the continued evolution of microorganisms; therefore, new infections will continue to emerge, and known infections will change in distribution, frequency, and severity. 88 refs., 1 fig.

  18. Modelling Climate/Global Change and Assessing Environmental Risks for Siberia

    NASA Astrophysics Data System (ADS)

    Lykosov, V. N.; Kabanov, M. V.; Heimann, M.; Gordov, E. P.

    2009-04-01

    The state-of-the-art climate models are based on a combined atmosphere-ocean general circulation model. A central direction of their development is associated with an increasingly accurate description of all physical processes participating in climate formation. In modeling global climate, it is necessary to reconstruct seasonal and monthly mean values, seasonal variability (monsoon cycle, parameters of storm-tracks, etc.), climatic variability (its dominating modes, such as El Niño or Arctic Oscillation), etc. At the same time, it is quite urgent now to use modern mathematical models in studying regional climate and ecological peculiarities, in particular, that of Northern Eurasia. It is related with the fact that, according to modern ideas, natural environment in mid- and high latitudes of the Northern hemisphere is most sensitive to the observed global climate changes. One should consider such tasks of modeling regional climate as detailed reconstruction of its characteristics, investigation of the peculiarities of hydrological cycle, estimation of the possibility of extreme phenomena to occur, and investigation of the consequences of the regional climate changes for the environment and socio-economic relations as its basic tasks. Changes in nature and climate in Siberia are of special interest in view of the global change in the Earth system. The vast continental territory of Siberia is undoubtedly a ponderable natural territorial region of Eurasian continent, which is characterized by the various combinations of climate-forming factors. Forests, water, and wetland areas are situated on a significant part of Siberia. They play planetary important regulating role due to the processes of emission and accumulation of the main greenhouse gases (carbon dioxide, methane, etc.). Evidence of the enhanced rates of the warming observed in the region and the consequences of such warming for natural environment are undoubtedly important reason for integrated regional

  19. The impact of the permafrost carbon feedback on global climate

    NASA Astrophysics Data System (ADS)

    Schaefer, Kevin; Lantuit, Hugues; Romanovsky, Vladimir E.; Schuur, Edward A. G.; Witt, Ronald

    2014-08-01

    Degrading permafrost can alter ecosystems, damage infrastructure, and release enough carbon dioxide (CO2) and methane (CH4) to influence global climate. The permafrost carbon feedback (PCF) is the amplification of surface warming due to CO2 and CH4 emissions from thawing permafrost. An analysis of available estimates PCF strength and timing indicate 120 ± 85 Gt of carbon emissions from thawing permafrost by 2100. This is equivalent to 5.7 ± 4.0% of total anthropogenic emissions for the Intergovernmental Panel on Climate Change (IPCC) representative concentration pathway (RCP) 8.5 scenario and would increase global temperatures by 0.29 ± 0.21 °C or 7.8 ± 5.7%. For RCP4.5, the scenario closest to the 2 °C warming target for the climate change treaty, the range of cumulative emissions in 2100 from thawing permafrost decreases to between 27 and 100 Gt C with temperature increases between 0.05 and 0.15 °C, but the relative fraction of permafrost to total emissions increases to between 3% and 11%. Any substantial warming results in a committed, long-term carbon release from thawing permafrost with 60% of emissions occurring after 2100, indicating that not accounting for permafrost emissions risks overshooting the 2 °C warming target. Climate projections in the IPCC Fifth Assessment Report (AR5), and any emissions targets based on those projections, do not adequately account for emissions from thawing permafrost and the effects of the PCF on global climate. We recommend the IPCC commission a special assessment focusing on the PCF and its impact on global climate to supplement the AR5 in support of treaty negotiation.

  20. Global reductions in seafloor biomass in response to climate change.

    PubMed

    Jones, Daniel O B; Yool, Andrew; Wei, Chih-Lin; Henson, Stephanie A; Ruhl, Henry A; Watson, Reg A; Gehlen, Marion

    2014-06-01

    Seafloor organisms are vital for healthy marine ecosystems, contributing to elemental cycling, benthic remineralization, and ultimately sequestration of carbon. Deep-sea life is primarily reliant on the export flux of particulate organic carbon from the surface ocean for food, but most ocean biogeochemistry models predict global decreases in export flux resulting from 21st century anthropogenically induced warming. Here we show that decadal-to-century scale changes in carbon export associated with climate change lead to an estimated 5.2% decrease in future (2091-2100) global open ocean benthic biomass under RCP8.5 (reduction of 5.2 Mt C) compared with contemporary conditions (2006-2015). Our projections use multi-model mean export flux estimates from eight fully coupled earth system models, which contributed to the Coupled Model Intercomparison Project Phase 5, that have been forced by high and low representative concentration pathways (RCP8.5 and 4.5, respectively). These export flux estimates are used in conjunction with published empirical relationships to predict changes in benthic biomass. The polar oceans and some upwelling areas may experience increases in benthic biomass, but most other regions show decreases, with up to 38% reductions in parts of the northeast Atlantic. Our analysis projects a future ocean with smaller sized infaunal benthos, potentially reducing energy transfer rates though benthic multicellular food webs. More than 80% of potential deep-water biodiversity hotspots known around the world, including canyons, seamounts, and cold-water coral reefs, are projected to experience negative changes in biomass. These major reductions in biomass may lead to widespread change in benthic ecosystems and the functions and services they provide.

  1. Global reductions in seafloor biomass in response to climate change

    PubMed Central

    Jones, Daniel O B; Yool, Andrew; Wei, Chih-Lin; Henson, Stephanie A; Ruhl, Henry A; Watson, Reg A; Gehlen, Marion

    2014-01-01

    Seafloor organisms are vital for healthy marine ecosystems, contributing to elemental cycling, benthic remineralization, and ultimately sequestration of carbon. Deep-sea life is primarily reliant on the export flux of particulate organic carbon from the surface ocean for food, but most ocean biogeochemistry models predict global decreases in export flux resulting from 21st century anthropogenically induced warming. Here we show that decadal-to-century scale changes in carbon export associated with climate change lead to an estimated 5.2% decrease in future (2091–2100) global open ocean benthic biomass under RCP8.5 (reduction of 5.2 Mt C) compared with contemporary conditions (2006–2015). Our projections use multi-model mean export flux estimates from eight fully coupled earth system models, which contributed to the Coupled Model Intercomparison Project Phase 5, that have been forced by high and low representative concentration pathways (RCP8.5 and 4.5, respectively). These export flux estimates are used in conjunction with published empirical relationships to predict changes in benthic biomass. The polar oceans and some upwelling areas may experience increases in benthic biomass, but most other regions show decreases, with up to 38% reductions in parts of the northeast Atlantic. Our analysis projects a future ocean with smaller sized infaunal benthos, potentially reducing energy transfer rates though benthic multicellular food webs. More than 80% of potential deep-water biodiversity hotspots known around the world, including canyons, seamounts, and cold-water coral reefs, are projected to experience negative changes in biomass. These major reductions in biomass may lead to widespread change in benthic ecosystems and the functions and services they provide. PMID:24382828

  2. Trends in Global Vegetation Activity and Climatic Drivers Indicate a Decoupled Response to Climate Change.

    PubMed

    Schut, Antonius G T; Ivits, Eva; Conijn, Jacob G; Ten Brink, Ben; Fensholt, Rasmus

    2015-01-01

    Detailed understanding of a possible decoupling between climatic drivers of plant productivity and the response of ecosystems vegetation is required. We compared trends in six NDVI metrics (1982-2010) derived from the GIMMS3g dataset with modelled biomass productivity and assessed uncertainty in trend estimates. Annual total biomass weight (TBW) was calculated with the LINPAC model. Trends were determined using a simple linear regression, a Thiel-Sen medium slope and a piecewise regression (PWR) with two segments. Values of NDVI metrics were related to Net Primary Production (MODIS-NPP) and TBW per biome and land-use type. The simple linear and Thiel-Sen trends did not differ much whereas PWR increased the fraction of explained variation, depending on the NDVI metric considered. A positive trend in TBW indicating more favorable climatic conditions was found for 24% of pixels on land, and for 5% a negative trend. A decoupled trend, indicating positive TBW trends and monotonic negative or segmented and negative NDVI trends, was observed for 17-36% of all productive areas depending on the NDVI metric used. For only 1-2% of all pixels in productive areas, a diverging and greening trend was found despite a strong negative trend in TBW. The choice of NDVI metric used strongly affected outcomes on regional scales and differences in the fraction of explained variation in MODIS-NPP between biomes were large, and a combination of NDVI metrics is recommended for global studies. We have found an increasing difference between trends in climatic drivers and observed NDVI for large parts of the globe. Our findings suggest that future scenarios must consider impacts of constraints on plant growth such as extremes in weather and nutrient availability to predict changes in NPP and CO2 sequestration capacity.

  3. Trends in Global Vegetation Activity and Climatic Drivers Indicate a Decoupled Response to Climate Change

    PubMed Central

    Schut, Antonius G. T.; Ivits, Eva; Conijn, Jacob G.; ten Brink, Ben; Fensholt, Rasmus

    2015-01-01

    Detailed understanding of a possible decoupling between climatic drivers of plant productivity and the response of ecosystems vegetation is required. We compared trends in six NDVI metrics (1982–2010) derived from the GIMMS3g dataset with modelled biomass productivity and assessed uncertainty in trend estimates. Annual total biomass weight (TBW) was calculated with the LINPAC model. Trends were determined using a simple linear regression, a Thiel-Sen medium slope and a piecewise regression (PWR) with two segments. Values of NDVI metrics were related to Net Primary Production (MODIS-NPP) and TBW per biome and land-use type. The simple linear and Thiel-Sen trends did not differ much whereas PWR increased the fraction of explained variation, depending on the NDVI metric considered. A positive trend in TBW indicating more favorable climatic conditions was found for 24% of pixels on land, and for 5% a negative trend. A decoupled trend, indicating positive TBW trends and monotonic negative or segmented and negative NDVI trends, was observed for 17–36% of all productive areas depending on the NDVI metric used. For only 1–2% of all pixels in productive areas, a diverging and greening trend was found despite a strong negative trend in TBW. The choice of NDVI metric used strongly affected outcomes on regional scales and differences in the fraction of explained variation in MODIS-NPP between biomes were large, and a combination of NDVI metrics is recommended for global studies. We have found an increasing difference between trends in climatic drivers and observed NDVI for large parts of the globe. Our findings suggest that future scenarios must consider impacts of constraints on plant growth such as extremes in weather and nutrient availability to predict changes in NPP and CO2 sequestration capacity. PMID:26466347

  4. Understanding coupled climatic, hydrological, and ecosystem responses to global climate change in the Colorado Rockies

    SciTech Connect

    Stohlgren, T.J.; Baron, J. )

    1993-06-01

    A long-term research program to assess the potential effect of global climate change on the Front Range of the Colorado Rockies, including Rocky Mountain National Park is underway. Specifically, three integrated studies are designed to: (1) project future climate change for the Colorado Rockies using a mesoscale atmospheric model to downscale general circulation model results; (2) develop an understanding of the abiotic and biotic controls on forest distribution and productivity as a basis for assessing potential vegetation change for a range of projected climate scenarios; and (3) evaluate potential responses of hydrologic and aquatic ecosystem processes to climate change at watershed, drainage basin and regional scales. The synthesis of these studies will, in addition, assess the interaction between regional vegetation distribution, mesoscale climate, and hydrology. Our goal is to develop a better understanding of regional climate and hydrologic patterns and of species-environment relationships to determine which species and ecosystem processes are most sensitive to rapid environmental change.

  5. Climatic irregular staircases: generalized acceleration of global warming

    PubMed Central

    De Saedeleer, Bernard

    2016-01-01

    Global warming rates mentioned in the literature are often restricted to a couple of arbitrary periods of time, or of isolated values of the starting year, lacking a global view. In this study, we perform on the contrary an exhaustive parametric analysis of the NASA GISS LOTI data, and also of the HadCRUT4 data. The starting year systematically varies between 1880 and 2002, and the averaging period from 5 to 30 yr — not only decades; the ending year also varies . In this way, we uncover a whole unexplored space of values for the global warming rate, and access the full picture. Additionally, stairstep averaging and linear least squares fitting to determine climatic trends have been sofar exclusive. We propose here an original hybrid method which combines both approaches in order to derive a new type of climatic trend. We find that there is an overall acceleration of the global warming whatever the value of the averaging period, and that 99.9% of the 3029 Earth’s climatic irregular staircases are rising. Graphical evidence is also given that choosing an El Niño year as starting year gives lower global warming rates — except if there is a volcanic cooling in parallel. Our rates agree and generalize several results mentioned in the literature. PMID:26813867

  6. Climatic irregular staircases: generalized acceleration of global warming.

    PubMed

    De Saedeleer, Bernard

    2016-01-27

    Global warming rates mentioned in the literature are often restricted to a couple of arbitrary periods of time, or of isolated values of the starting year, lacking a global view. In this study, we perform on the contrary an exhaustive parametric analysis of the NASA GISS LOTI data, and also of the HadCRUT4 data. The starting year systematically varies between 1880 and 2002, and the averaging period from 5 to 30 yr - not only decades; the ending year also varies . In this way, we uncover a whole unexplored space of values for the global warming rate, and access the full picture. Additionally, stairstep averaging and linear least squares fitting to determine climatic trends have been sofar exclusive. We propose here an original hybrid method which combines both approaches in order to derive a new type of climatic trend. We find that there is an overall acceleration of the global warming whatever the value of the averaging period, and that 99.9% of the 3029 Earth's climatic irregular staircases are rising. Graphical evidence is also given that choosing an El Niño year as starting year gives lower global warming rates - except if there is a volcanic cooling in parallel. Our rates agree and generalize several results mentioned in the literature.

  7. Engaging the Global South on climate engineering research

    NASA Astrophysics Data System (ADS)

    Winickoff, David E.; Flegal, Jane A.; Asrat, Asfawossen

    2015-07-01

    The Global South is relatively under-represented in public deliberations about solar radiation management (SRM), a controversial climate engineering concept. This Perspective analyses the outputs of a deliberative exercise about SRM, which took place at the University of California-Berkeley and involved 45 mid-career environmental leaders, 39 of whom were from the Global South. This analysis identifies and discusses four themes from the Berkeley workshop that might inform research and governance in this arena: (1) the 'moral hazard' problem should be reframed to emphasize 'moral responsibility'; (2) climate models of SRM deployment may not be credible as primary inputs to policy because they cannot sufficiently address local concerns such as access to water; (3) small outdoor experiments require some form of international public accountability; and (4) inclusion of actors from the Global South will strengthen both SRM research and governance.

  8. No easy answers for global climate change research

    NASA Astrophysics Data System (ADS)

    Wakefield, J.

    First the word was that not only car emissions but cow burps may play a significant role in global warming. Then, the story turned to rice paddies and cockroaches as likely sources of greenhouse gases. Sound confusing? It should.Now even experts readily admit global warming research is chock-full of uncertainties. And these issues offer only a freeze-frame of the broader climate change motion picture. Everything from whether sea levels will rise to whether hurricanes will be come more frequent to whether solar forcing plays a role in all of this is now in question. This means that making and implementing effective international climate change policies remains a tenuous process—even at a time when the overall funding for global change research is at an all-time high in the United States.

  9. Visualization of the chains of risks under global climate change

    NASA Astrophysics Data System (ADS)

    Yokohata, T.; Nishina, K.; Takahashi, K.; Kiguchi, M.; Iseri, Y.; Sueyoshi, T.; Yoshimori, M.; Iwase, K.; Yamamoto, A.; Shigemitsu, M.; Honda, Y.; Hanasaki, N.; Masaki, Y.; Ito, A.; Iizumi, T.; Sakurai, G.; Okada, M.; Emori, S.; Oki, T.

    2014-12-01

    Anthropogenic climate change possibly causes various impacts on human society and ecosystem. Here, we call possible damages or benefits caused by the future climate change as "climate risks". Many climate risks are closely interconnected with each other by direct cause-effect relationship. In this study, the major climate risks are comprehensively summarized based on the survey of studies in the literature using IPCC AR5 etc, and their cause-effect relationship are visualized by a "network diagram". This research is conducted by the collaboration between the experts of various fields, such as water, energy, agriculture, health, society, and eco-system under the project called ICA-RUS (Integrated Climate Assessment - Risks, Uncertainties and Society). First, the climate risks are classified into 9 categories (water, energy, food, health, disaster, industry, society, ecosystem, and tipping elements). Second, researchers of these fields in our project survey the research articles, and pick up items of climate risks, and possible cause-effect relationship between the risk items. A long list of the climate risks is summarized into ~130, and that of possible cause-effect relationship between the risk items is summarized into ~300, because the network diagram would be illegible if the number of the risk items and cause-effect relationship is too large. Here, we only consider the risks that could occur if climate mitigation policies are not conducted. Finally, the chain of climate risks is visualized by creating a "network diagram" based on a network graph theory (Fruchtman & Reingold algorithm). Through the analysis of network diagram, we find that climate risks at various sectors are closely related. For example, the decrease in the precipitation under the global climate change possibly causes the decrease in river runoff and the decrease in soil moisture, which causes the changes in crop production. The changes in crop production can have an impact on society by

  10. A Global Framework for Monitoring Phenological Responses to Climate Change

    SciTech Connect

    White, Michael A; Hoffman, Forrest M; Hargrove, William Walter; Nemani, Ramakrishna R

    2005-01-01

    Remote sensing of vegetation phenology is an important method with which to monitor terrestrial responses to climate change, but most approaches include signals from multiple forcings, such as mixed phenological signals from multiple biomes, urbanization, political changes, shifts in agricultural practices, and disturbances. Consequently, it is difficult to extract a clear signal from the usually assumed forcing: climate change. Here, using global 8 km 1982 to 1999 Normalized Difference Vegetation Index (NDVI) data and an eight-element monthly climatology, we identified pixels whose wavelet power spectrum was consistently dominated by annual cycles and then created phenologically and climatically self-similar clusters, which we term phenoregions. We then ranked and screened each phenoregion as a function of landcover homogeneity and consistency, evidence of human impacts, and political diversity. Remaining phenoregions represented areas with a minimized probability of non-climatic forcings and form elemental units for long-term phenological monitoring.

  11. Self-regulation in land plant and global climate interactions

    NASA Astrophysics Data System (ADS)

    Morel, V.; dePolo, P.; Matsumoto, K.

    2013-12-01

    The interactions between land plants and climate have long been recognized. As global climate change occurs, there is a necessity to understand the sensitivity of vegetation and the surrounding physical environment to these changes. In this study, we use MESMO-2E, an earth system model of intermediate complexity, to investigate the response of climate and land plants to changes in the optimal growth conditions of the plants (temperature and ambient carbon dioxide level). In an initial set of sensitivity experiments, the amount of carbon stored in vegetation, and consequently the air temperature, were reduced as the climate changed from pre-industrial to glacial conditions. As the optimal temperature and carbon dioxide levels were changed to be similar to that of the glacial environment, an increase in carbon vegetation and air temperature was observed, suggesting a self-regulation mechanism. Results of further sensitivity experiments that work to identify the self-regulation mechanism will be presented.

  12. Global climate change and the mitigation challenge.

    PubMed

    Princiotta, Frank

    2009-10-01

    Anthropogenic emissions of greenhouse gases, especially carbon dioxide (CO2), have led to increasing atmospheric concentrations, very likely the primary cause of the 0.8 degrees C warming the Earth has experienced since the Industrial Revolution. With industrial activity and population expected to increase for the rest of the century, large increases in greenhouse gas emissions are projected, with substantial global additional warming predicted. This paper examines forces driving CO2 emissions, a concise sector-by-sector summary of mitigation options, and research and development (R&D) priorities. To constrain warming to below approximately 2.5 degrees C in 2100, the recent annual 3% CO2 emission growth rate needs to transform rapidly to an annual decrease rate of from 1 to 3% for decades. Furthermore, the current generation of energy generation and end-use technologies are capable of achieving less than half of the emission reduction needed for such a major mitigation program. New technologies will have to be developed and deployed at a rapid rate, especially for the key power generation and transportation sectors. Current energy technology research, development, demonstration, and deployment (RDD&D) programs fall far short of what is required.

  13. Global climate change and the mitigation challenge

    SciTech Connect

    Frank Princiotta

    2009-10-15

    Anthropogenic emissions of greenhouse gases, especially carbon dioxide (CO{sub 2}), have led to increasing atmospheric concentrations, very likely the primary cause of the 0.8{sup o}C warming the Earth has experienced since the Industrial Revolution. With industrial activity and population expected to increase for the rest of the century, large increases in greenhouse gas emissions are projected, with substantial global additional warming predicted. This paper examines forces driving CO{sub 2} emissions, a concise sector-by-sector summary of mitigation options, and research and development (R&D) priorities. To constrain warming to below approximately 2.5{sup o}C in 2100, the recent annual 3% CO{sub 2} emission growth rate needs to transform rapidly to an annual decrease rate of from 1 to 3% for decades. Furthermore, the current generation of energy generation and end-use technologies are capable of achieving less than half of the emission reduction needed for such a major mitigation program. New technologies will have to be developed and deployed at a rapid rate, especially for the key power generation and transportation sectors. Current energy technology research, development, demonstration, and deployment (RDD&D) programs fall far short of what is required. 20 refs., 18 figs., 4 tabs.

  14. Global Framework for Climate Services (GFCS): status of implementation

    NASA Astrophysics Data System (ADS)

    Lucio, Filipe

    2014-05-01

    The GFCS is a global partnership of governments and UN and international agencies that produce and use climate information and services. WMO, which is leading the initiative in collaboration with UN ISDR, WHO, WFP, FAO, UNESCO, UNDP and other UN and international partners are pooling their expertise and resources in order to co-design and co-produce knowledge, information and services to support effective decision making in response to climate variability and change in four priority areas (agriculture and fod security, water, health and disaster risk reduction). To address the entire value chain for the effective production and application of climate services the GFCS main components or pillars are being implemented, namely: • User Interface Platform — to provide ways for climate service users and providers to interact to identify needs and capacities and improve the effectiveness of the Framework and its climate services; • Climate Services Information System — to produce and distribute climate data, products and information according to the needs of users and to agreed standards; • Observations and Monitoring - to generate the necessary data for climate services according to agreed standards; • Research, Modelling and Prediction — to harness science capabilities and results and develop appropriate tools to meet the needs of climate services; • Capacity Building — to support the systematic development of the institutions, infrastructure and human resources needed for effective climate services. Activities are being implemented in various countries in Africa, the Caribbean and South pacific Islands. This paper will provide details on the status of implementation of the GFCS worldwider.

  15. Globalization in the pharmaceutical industry, Part II.

    PubMed

    Casadio Tarabusi, C; Vickery, G

    1998-01-01

    This is the second of a two-part report on the pharmaceutical industry. Part II begins with a discussion of foreign direct investment and inter-firm networks, which covers international mergers, acquisitions, and minority participation; market shares of foreign-controlled firms; international collaboration agreements (with a special note on agreements in biotechnology); and licensing agreements. The final section of the report covers governmental policies on health and safety regulation, price regulation, industry and technology, trade, foreign investment, protection of intellectual property, and competition.

  16. Importance of Sea Ice for Validating Global Climate Models

    NASA Technical Reports Server (NTRS)

    Geiger, Cathleen A.

    1997-01-01

    Reproduction of current day large-scale physical features and processes is a critical test of global climate model performance. Without this benchmark, prognoses of future climate conditions are at best speculation. A fundamental question relevant to this issue is, which processes and observations are both robust and sensitive enough to be used for model validation and furthermore are they also indicators of the problem at hand? In the case of global climate, one of the problems at hand is to distinguish between anthropogenic and naturally occuring climate responses. The polar regions provide an excellent testing ground to examine this problem because few humans make their livelihood there, such that anthropogenic influences in the polar regions usually spawn from global redistribution of a source originating elsewhere. Concomitantly, polar regions are one of the few places where responses to climate are non-anthropogenic. Thus, if an anthropogenic effect has reached the polar regions (e.g. the case of upper atmospheric ozone sensitivity to CFCs), it has most likely had an impact globally but is more difficult to sort out from local effects in areas where anthropogenic activity is high. Within this context, sea ice has served as both a monitoring platform and sensitivity parameter of polar climate response since the time of Fridtjof Nansen. Sea ice resides in the polar regions at the air-sea interface such that changes in either the global atmospheric or oceanic circulation set up complex non-linear responses in sea ice which are uniquely determined. Sea ice currently covers a maximum of about 7% of the earth's surface but was completely absent during the Jurassic Period and far more extensive during the various ice ages. It is also geophysically very thin (typically <10 m in Arctic, <3 m in Antarctic) compared to the troposphere (roughly 10 km) and deep ocean (roughly 3 to 4 km). Because of these unique conditions, polar researchers regard sea ice as one of the

  17. Global climate change impacts on coastal ecosystems in the Gulf of Mexico: considerations for integrated coastal management

    USGS Publications Warehouse

    Day, John W.; Yáñez-Arancibia, Alejandro; Cowan, James H.; Day, Richard H.; Twilley, Robert R.; Rybczyk, John R.

    2013-01-01

    Global climate change is important in considerations of integrated coastal management in the Gulf of Mexico. This is true for a number of reasons. Climate in the Gulf spans the range from tropical to the lower part of the temperate zone. Thus, as climate warms, the tropical temperate interface, which is currently mostly offshore in the Gulf of Mexico, will increasingly move over the coastal zone of the northern and eastern parts of the Gulf. Currently, this interface is located in South Florida and around the US-Mexico border in the Texas-Tamaulipas region. Maintaining healthy coastal ecosystems is important because they will be more resistant to climate change.

  18. Climate, CO2, and demographic impacts on global wildfire emissions

    NASA Astrophysics Data System (ADS)

    Knorr, W.; Jiang, L.; Arneth, A.

    2015-09-01

    Wildfires are by far the largest contributor to global biomass burning and constitute a large global source of atmospheric traces gases and aerosols. Such emissions have a considerable impact on air quality and constitute a major health hazard. Biomass burning also influences the radiative balance of the atmosphere and is thus not only of societal, but also of significant scientific interest. There is a common perception that climate change will lead to an increase in emissions as hot and dry weather events that promote wildfire will become more common. However, even though a few studies have found that the inclusion of CO2 fertilization of photosynthesis and changes in human population patterns will tend to somewhat lower predictions of future wildfire emissions, no such study has included full ensemble ranges of both climate predictions and population projections, including the effect of different degrees of urbanisation. Here, we present a series of 124 simulations with the LPJ-GUESS-SIMFIRE global dynamic vegetation - wildfire model, including a semi-empirical formulation for the prediction of burned area based on fire weather, fuel continuity and human population density. The simulations comprise Climate Model Intercomparison Project 5 (CMIP5) climate predictions from eight Earth system models using two Representative Concentration Pathways (RCPs) and five scenarios of future human population density based on the series of Shared Socioeconomic Pathways (SSPs), sensitivity tests for the effect of climate and CO2, as well as a sensitivity analysis using two alternative parameterisations of the semi-empirical burned-area model. Contrary to previous work, we find no clear future trend of global wildfire emissions for the moderate emissions and climate change scenario based on the RCP 4.5. Only historical population change introduces a decline by around 15 % since 1900. Future emissions could either increase for low population growth and fast urbanisation, or

  19. Role of Bioethanol in Global Climate Change

    SciTech Connect

    Sheehan, J.

    1998-01-01

    The United States Department of Energy (DOE) has supported a research and development program for the establishment of renewable, biomass-derived, liquid fuels for the better part of the last twenty years. These 'biofuels' represent opportunities to respond to uncertainties about our energy security and the future health of our environment. Throughout its history, the Biofuels program has experienced an ongoing fiscal 'roller coaster'. Funding has ebbed and flowed with changing political and public attitudes about energy. The program was initiated in a flood of funding in the late 1970s related to the energy shortages experienced in that period. The flooding turned rapidly to drought as falling oil prices dissipated public concern about energy supplies. In the late 1980s, funding for the program slowly increased, driven by national security issues.

  20. Carbon's corner in the global climate challange

    NASA Astrophysics Data System (ADS)

    Liddicoat, Joseph

    2010-05-01

    Unlike on other planets in the Solar System, most of the carbon in carbon dioxide (CO2) that degassed from Earth during its formation nearly 4.5 billion years ago is in limestone as the mineral calcite (CaCO3). Consequently, the small percentage (about 0.04) of CO2 in Earth's atmosphere can be changed easily by the combustion of fossil fuels. Since the early 1950s when accurate measurements of atmospheric CO2 began, it has been documented that the amount of CO2 in Earth's atmosphere is increasing at an exponential rate (Report of U.S. National Academy of Science, 2007). This course is a science elective that embraces the ideals of SENCER (Science Education for New Civic Engagements and Responsibilities) that connects science and civic engagement by teaching through complex, contested, current, and unresolved societal issues to basic science. Specifically, the instruction invites students to put scientific knowledge and the scientific method to practical use on matters of immediate interest not only to the students but also to the general public. This is done through a careful examination of the ecological and environmental issues surrounding the build-up of CO2 in the atmosphere as presented in CO2 Rising - The World's Greatest Environmental Challenge by Tyler Volk. A reflective reading of Volk's non-technical but engaging book, complemented by weekly 180-minutes of in-class instruction, results in an understanding of topics that are necessary for an informed public that continues the discussion about catastrophic global warming that might result from unchecked burning of fossil fuels by humans.

  1. "Ask Argonne" - Robert Jacob, Climate Scientist, Part 2

    ScienceCinema

    Jacob, Robert

    2016-07-12

    Previously, climate scientist Robert Jacob talked a bit about the work he does and invited questions from the public during Part 1 of his "Ask Argonne" video set (http://bit.ly/1aK6WDv). In Part 2, he answers some of the questions that were submitted.

  2. "Ask Argonne" - Robert Jacob, Climate Scientist, Part 2

    SciTech Connect

    Jacob, Robert

    2014-01-08

    Previously, climate scientist Robert Jacob talked a bit about the work he does and invited questions from the public during Part 1 of his "Ask Argonne" video set (http://bit.ly/1aK6WDv). In Part 2, he answers some of the questions that were submitted.

  3. Shifting Global Invasive Potential of European Plants with Climate Change

    PubMed Central

    Peterson, A. Townsend; Stewart, Aimee; Mohamed, Kamal I.; Araújo, Miguel B.

    2008-01-01

    Global climate change and invasions by nonnative species rank among the top concerns for agents of biological loss in coming decades. Although each of these themes has seen considerable attention in the modeling and forecasting communities, their joint effects remain little explored and poorly understood. We developed ecological niche models for 1804 species from the European flora, which we projected globally to identify areas of potential distribution, both at present and across 4 scenarios of future (2055) climates. As expected from previous studies, projections based on the CGCM1 climate model were more extreme than those based on the HadCM3 model, and projections based on the a2 emissions scenario were more extreme than those based on the b2 emissions scenario. However, less expected were the highly nonlinear and contrasting projected changes in distributional areas among continents: increases in distributional potential in Europe often corresponded with decreases on other continents, and species seeing expanding potential on one continent often saw contracting potential on others. In conclusion, global climate change will have complex effects on invasive potential of plant species. The shifts and changes identified in this study suggest strongly that biological communities will see dramatic reorganizations in coming decades owing to shifting invasive potential by nonnative species. PMID:18560572

  4. Global patterns in endemism explained by past climatic change.

    PubMed

    Jansson, Roland

    2003-03-22

    I propose that global patterns in numbers of range-restricted endemic species are caused by variation in the amplitude of climatic change occurring on time-scales of 10-100 thousand years (Milankovitch oscillations). The smaller the climatic shifts, the more probable it is that palaeoendemics survive and that diverging gene pools persist without going extinct or merging, favouring the evolution of neoendemics. Using the change in mean annual temperature since the last glacial maximum, estimated from global circulation models, I show that the higher the temperature change in an area, the fewer endemic species of mammals, birds, reptiles, amphibians and vascular plants it harbours. This relationship was robust to variation in area (for areas greater than 10(4) km2), latitudinal position, extent of former glaciation and whether or not areas are oceanic islands. Past climatic change was a better predictor of endemism than annual temperature range in all phylads except amphibians, suggesting that Rapoport's rule (i.e. species range sizes increase with latitude) is best explained by the increase in the amplitude of climatic oscillations towards the poles. Globally, endemic-rich areas are predicted to warm less in response to greenhouse-gas emissions, but the predicted warming would cause many habitats to disappear regionally, leading to species extinctions.

  5. The economics of long-term global climate change

    SciTech Connect

    Not Available

    1990-09-01

    This report is intended to provide an overview of economic issues and research relevant to possible, long-term global climate change. It is primarily a critical survey, not a statement of Administration or Department policy. This report should serve to indicate that economic analysis of global change is in its infancy few assertions about costs or benefits can be made with confidence. The state of the literature precludes any attempt to produce anything like a comprehensive benefit-cost analysis. Moreover, almost all the quantitative estimates regarding physical and economic effects in this report, as well as many of the qualitative assertions, are controversial. Section I provides background on greenhouse gas emissions and their likely climatic effects and on available policy instruments. Section II considers the costs of living with global change, assuming no substantial efforts to reduce greenhouse gas emissions. Section III considers costs of reducing these emissions, though the available literature does not contain estimates of the costs of policies that would, on the assumptions of current climate models, prevent climate change altogether. The individual sections are not entirely compartmentalized, but can be read independently if necessary.

  6. Shifting global invasive potential of European plants with climate change.

    PubMed

    Peterson, A Townsend; Stewart, Aimee; Mohamed, Kamal I; Araújo, Miguel B

    2008-06-18

    Global climate change and invasions by nonnative species rank among the top concerns for agents of biological loss in coming decades. Although each of these themes has seen considerable attention in the modeling and forecasting communities, their joint effects remain little explored and poorly understood. We developed ecological niche models for 1804 species from the European flora, which we projected globally to identify areas of potential distribution, both at present and across 4 scenarios of future (2055) climates. As expected from previous studies, projections based on the CGCM1 climate model were more extreme than those based on the HadCM3 model, and projections based on the a2 emissions scenario were more extreme than those based on the b2 emissions scenario. However, less expected were the highly nonlinear and contrasting projected changes in distributional areas among continents: increases in distributional potential in Europe often corresponded with decreases on other continents, and species seeing expanding potential on one continent often saw contracting potential on others. In conclusion, global climate change will have complex effects on invasive potential of plant species. The shifts and changes identified in this study suggest strongly that biological communities will see dramatic reorganizations in coming decades owing to shifting invasive potential by nonnative species.

  7. Global semi-arid climate change over last 60 years

    NASA Astrophysics Data System (ADS)

    Huang, Jianping; Ji, Mingxia; Xie, Yongkun; Wang, Shanshan; He, Yongli; Ran, Jinjiang

    2016-02-01

    This study analyzes areal changes and regional climate variations in global semi-arid regions over 61 years (1948-2008) and investigates the dynamics of global semi-arid climate change. The results reveal that the largest expansion of drylands has occurred in semi-arid regions since the early 1960s. This expansion of semi-arid regions accounts for more than half of the total dryland expansion. The area of semi-arid regions in the most recent 15 years studied (1990-2004) is 7 % larger than that during the first 15 years (1948-1962) of the study period; this expansion totaled 0.4 × 106 and 1.2 × 106 km2 within the American continents and in the Eastern Hemisphere, respectively. Although semi-arid expansion occurred in both regions, the shifting patterns of the expansion are different. Across the American continents, the newly formed semi-arid regions developed from arid regions, in which the climate became wetter. Conversely, in the continental Eastern Hemisphere, semi-arid regions replaced sub-humid/humid regions, in which the climate became drier. The climate change in drying semi-arid regions over East Asia is primarily dominated by a weakened East Asian summer monsoon, while the wetting of semi-arid regions over North America is primarily controlled by enhanced westerlies.

  8. Global semi-arid climate change over last 60 years

    NASA Astrophysics Data System (ADS)

    Ji, Mingxia; Huang, Jianping

    2016-04-01

    This study analyzes areal changes and regional climate variations in global semi-arid regions over 61 years (1948-2008) and investigates the dynamics of global semi- arid climate change. The results reveal that the largest expansion of drylands has occurred in semi-arid regions since the early 1960s. This expansion of semi-arid regions accounts for more than half of the total dryland expansion. The area of semi-arid regions in the most recent 15 years studied (1990-2004) is 7 % larger than that during the first 15 years (1948-1962) of the study period; this expansion totaled 0.4×106 and 1.2×106 km2 within the American continents and in the Eastern Hemisphere, respectively. Although semi-arid expansion occurred in both regions, the shifting patterns of the expansion are different. Across the American continents, the newly formed semi-arid regions developed from arid regions, in which the climate became wetter. Conversely, in the continental Eastern Hemisphere, semi-arid regions replaced sub-humid/humid regions, in which the climate became drier. The climate change in drying semi-arid regions over East Asia is primarily dominated by a weakened East Asian summer monsoon, while the wetting of semi-arid regions over North America is primarily controlled by enhanced westerlies.

  9. Why ocean heat transport warms the global mean climate

    NASA Astrophysics Data System (ADS)

    Herweijer, Celine; Seager, Richard; Winton, Michael; Clement, Amy

    2005-08-01

    Observational and modelling evidence suggest that poleward ocean heat transport (OHT) can vary in response to both natural climate variability and greenhouse warming. Recent modelling studies have shown that increased OHT warms both the tropical and global mean climates. Using two different coupled climate models with mixed-layer oceans, with and without OHT, along with a coupled model with a fixed-current ocean component in which the currents are uniformly reduced and increased by 50%, an attempt is made to explain why this may happen.OHT warms the global mean climate by 1 to 1.6K in the atmospheric general circulation (AGCM) ML model and 3.5K in the AGCM fixed current model. In each model the warming is attributed to an increase in atmospheric greenhouse trapping, primarily clear-sky greenhouse trapping, and a reduction in albedo. This occurs as OHT moistens the atmosphere, particularly at subtropical latitudes. This is not purely a thermodynamic response to the reduction in planetary albedo at these latitudes. It is a change in atmospheric circulation that both redistributes the water vapour and allows for a global atmospheric moistening—a positive 'dynamical' water vapour feedback. With increasing OHT the atmospheric water vapour content increases as atmospheric convection spreads out of the deep tropics. The global mean planetary albedo is decreased with increased OHT. This change is explained by a decrease in subtropical and mid-latitude low cloudiness, along with a reduction in high-latitude surface albedo due to decreased sea ice. The climate models with the mixed layer oceans underestimate both the subtropical low cloud cover and the high-latitude sea ice/surface albedo, and consequently have a smaller warming response to OHT.

  10. Global climate and the distribution of plant biomes.

    PubMed

    Woodward, F I; Lomas, M R; Kelly, C K

    2004-10-29

    Biomes are areas of vegetation that are characterized by the same life-form. Traditional definitions of biomes have also included either geographical or climatic descriptors. This approach describes a wide range of biomes that can be correlated with characteristic climatic conditions, or climatic envelopes. The application of remote sensing technology to the frequent observation of biomes has led to a move away from the often subjective definition of biomes to one that is objective. Carefully characterized observations of life-form, by satellite, have been used to reconsider biome classification and their climatic envelopes. Five major tree biomes can be recognized by satellites based on leaf longevity and morphology: needleleaf evergreen, broadleaf evergreen, needleleaf deciduous, broadleaf cold deciduous and broadleaf drought deciduous. Observations indicate that broadleaf drought deciduous vegetation grades substantially into broadleaf evergreen vegetation. The needleleaf deciduous biome occurs in the world's coldest climates, where summer drought and therefore a drought deciduous biome are absent. Traditional biome definitions are quite static, implying no change in their life-form composition with time, within their particular climatic envelopes. However, this is not the case where there has been global ingress of grasslands and croplands into forested vegetation. The global spread of grasses, a new super-biome, was probably initiated 30-45 Myr ago by an increase in global aridity, and was driven by the natural spread of the disturbances of fire and animal grazing. These disturbances have been further extended over the Holocene era by human activities that have increased the land areas available for domestic animal grazing and for growing crops. The current situation is that grasses now occur in most, if not all biomes, and in many areas they dominate and define the biome. Croplands are also increasing, defining a new and relatively recent component to the

  11. Incorporating global climate change exercises into historical geology courses

    NASA Astrophysics Data System (ADS)

    Cooper, C. M.; Baldwin, K.

    2011-12-01

    Historical geology courses examine the patterns of the Earth's history including both Earth resources and climate change. Though a natural fit for these courses, there is a dearth of information and exercises on global climate change and sustainability integrated within existing Historical Geology laboratory and lecture texts; paradoxically, there is a wealth of educational material on climate change. While educational resources on global climate change are made available to educators, how to incorporate those resources into an existing historical geology curriculum is not explicit. Issues of sustainability, such as global climate change, allows the course to engage students (both science and non-science majors) into topics that are relevant to today's society, while examining the Earth's past history for support of their understanding of Earth's cycles. This often serves as a point of disconnect for students - how do deep time concepts taught in the course relate to their day to day life? To bridge this gap, we have compiled inquiry based lab exercises allowing student ownership of sustainability concepts that lecture alone does not provide. We will present initial assessment of student learning through a formative assessment survey to determine their current content knowledge as well as their beliefs about sustainability and climate change. This survey will also examine their preconceptions about how historical geology connects with modern day issues of sustainability. We will compare these survey results with a summative assessment designed to mirror the pre-survey questions and discuss the implications of the study. We will expand the course exercises and assessment to an online course offered in the spring.

  12. Cenozoic fluctuations in biotic parts of the global carbon cycle

    NASA Astrophysics Data System (ADS)

    Olson, Jerry S.

    The mass of organic carbon in land plants presumably decreased over much of Tertiary time. Global average cooling, mountain building, rain shadows, and other drying displaced forests and led to the expansion of shrublands, grasslands and deserts. Quaternary cold repeatedly stimulated the expansion of tundra and cold deserts. Lowering of sea level partly compensated with new areas for coastal and wetland vegetation. Interglacial an postglacial ice retreats opened new lands for boreal, mostly conifer forests (taiga), and for renewed storage of peat in mires. Early Holocene broad-leaved forests expanded again (along with temperate and humid tropical/subtropical climates) and constitute most of the world's plant carbon mass. Slightly less than 800 109 metric tons C is a plausible estimate in all live land plants in mid-Holocene time. Variations from this estimate by a factor of about 2 seem likely within the late Cenozoic Era: higher in early Miocene and lower in glacial times; 460-660×109 metric tons C from A.D. 1980 to ˜1780 A.D.

  13. The gender perspective in climate change and global health

    PubMed Central

    Preet, Raman; Nilsson, Maria; Schumann, Barbara; Evengård, Birgitta

    2010-01-01

    Background Population health is a primary goal of sustainable development. United Nations international conferences like the Beijing Platform for Action have highlighted the key role of women in ensuring sustainable development. In the context of climate change, women are affected the most while they display knowledge and skills to orient themselves toward climate adaptation activities within their societies. Objective To investigate how the gender perspective is addressed as an issue in research and policy-making concerning climate change and global health. Methods A broad literature search was undertaken using the databases Pubmed and Web of Science to explore the terms ‘climate change,’ ‘health,’ ‘gender,’ and ‘policy.’ Climate change and health-related policy documents of the World Health Organization (WHO) and National Communications and National Adaptation Programs of Action reports submitted to the United Nations Framework Convention on Climate Change of selected countries were studied. Assessment guidelines to review these reports were developed from this study's viewpoint. Results The database search results showed almost no articles when the four terms were searched together. The WHO documents lacked a gender perspective in their approach and future recommendations on climate policies. The reviewed UN reports were also neutral to gender perspective except one of the studied documents. Conclusion Despite recognizing the differential effects of climate change on health of women and men as a consequence of complex social contexts and adaptive capacities, the study finds gender to be an underrepresented or non-existing variable both in research and studied policy documents in the field of climate change and health. PMID:21160554

  14. Estimating maximum global wind power availability and associated climatic consequences

    NASA Astrophysics Data System (ADS)

    Miller, Lee; Gans, Fabian; Kleidon, Axel

    2010-05-01

    Estimating maximum global wind power availability and associated climatic consequences Wind speed reflects the continuous generation of kinetic energy and its dissipation, primarily in the atmospheric boundary layer. When wind turbines extract kinetic wind energy, less kinetic energy remains in the atmosphere in the mean state. While this effect does not play a significant role for a single turbine, it becomes a critical factor for the estimation of large-scale wind power availability. This extraction of kinetic energy by turbines also competes with the natural processes of kinetic energy dissipation, thus setting fundamental limits on extractability that are not considered in previous large-scale studies [1,2,3]. Our simple momentum balance model using ECMWF climate data illustrates a fundamental limit to global wind power extractability and thereby electricity potential (93TW). This is independent of engineering advances in turbine design and wind farm layout. These results are supported by similar results using a global climate model of intermediate complexity. Varying the surface drag coefficient with different simulations allows us to directly relate changes in atmospheric and boundary layer dissipation with resulting climate indices and wind power potential. These new estimates of the maximum power generation by wind turbines are well above the currently installed capacity. Hence, present day installations are unlikely to have a global impact. However, when compared to the current human energy demand of 17TW combined with plans by the US and EU to drastically increase onshore and offshore wind turbine installations [4,5,6], understanding the climatic response and ultimate limitations of wind power as a large-scale renewable energy source is critical. [1] Archer, C., and M.Z. Jacobson, (2005) Evaluation of global wind power, J. Geophys. Res. 110:D12110. [2] Lu, X., M.B. McElroy, and J. Kiviluoma, (2009) Global potential for wind-generated electricity, Proc

  15. Evaluation of Northern Hemisphere natural climate variability in multiple temperature reconstructions and global climate model simulations

    NASA Astrophysics Data System (ADS)

    Bell, J. L.; Sloan, L. C.; Revenaugh, J.; Duffy, P. B.

    2003-06-01

    The detection of anthropogenic climate change in observations and the validation of climate models both rely on understanding natural climate variability. To evaluate internal climate variability, we apply spectral analysis to time series of surface air temperature (SAT) from nine coupled general circulation model (GCM) simulations, three recent global paleotemperature reconstructions, and Northern Hemisphere (NH) instrumental records. Our comparison is focused on the NH due to the greater spatial and temporal coverage and validation of the available NH temperature reconstructions. The paleotemperature reconstructions capture the general magnitude of NH climate variability, but not the precise variance and specific spatial, temporal, or periodic signals demonstrated in the instrumental record. The models achieved varying degrees of success for each measure of variability analyzed, with none of the models consistently capturing the appropriate variability. In general, the models performed best in the analysis of combined mean annual land and marine variability.

  16. Florida-focused climate change lesson demonstrations from the ASK Florida global and regional climate change professional development workshops

    NASA Astrophysics Data System (ADS)

    Weihs, R. R.

    2013-12-01

    A variety of Florida-focused climate change activities will be featured as part of the ASK Florida global and regional climate change professional development workshops. In a combined effort from Florida State University's Center for Ocean-Atmospheric Prediction Studies (COAPS) and University of South Florida's Coalition for Science Literacy (CSL), and supported by NASA's NICE initiative, the ASK Florida professional development workshops are a series of workshops designed to enhance and support climate change information and related pedagogical skills for middle school science teachers from Title-I schools in Florida. These workshops took place during a two-year period from 2011 to 2013 and consisted of two cohorts in Hillsborough and Volusia counties in Florida. Featured activities include lab-style exercises demonstrating topics such as storm surge and coastal geometry, sea level rise from thermal expansion, and the greenhouse effect. These types of labs are modified so that they allow more independent, inquiry thinking as they require teachers to design their own experiment in order to test a hypothesis. Lecture based activities are used to cover a broad range of topics including hurricanes, climate modeling, and sink holes. The more innovative activities are group activities that utilize roll-playing, technology and resources, and group discussion. For example, 'Climate Gallery Walk' is an activity that features group discussions on each of the climate literacy principles established by the United States Global Change Research Program. By observing discussions between individuals and groups, this activity helps the facilitators gather information on their previous knowledge and identify possible misconceptions that will be addressed within the workshops. Furthermore, 'Fact or Misconception' presents the challenge of identifying whether a given statement is fact or misconception based on the material covered throughout the workshops. It serves as a way to

  17. Global public-private partnerships: Part II--What are the health issues for global governance?

    PubMed Central

    Buse, K.; Walt, G.

    2000-01-01

    This is the second of a two-part review of global public-private partnerships (GPPPs) for health development. Part I was published in the April issue of the Bulletin (Vol. 78, No. 4). The recent emergence of GPPPs is rapidly reconfiguring the international health landscape. While most multilateral and bilateral agencies are currently grappling with how to proceed, there is little information in the public domain concerning how individual partnerships work and to date very little consideration of the many implications of this trend. This paper differentiates between product-based, product development-based and issues/systems-based GPPPs and describes a number of examples of each type in the health sector. The benefits of these initiatives, not least the major resources which they harness for specific health problems, are identified. The final section of the paper explores the implications and dilemmas posed by GPPPs. It discusses whether or not shared goals can transcend conflicting values and mandates and how governance of partnership arrangements may transform and undermine certain attributes of multilateral organizations. The paper concludes that the current climate of goodwill between public and private sectors offers an opportunity that should not be missed: it can be used not only to foster new partnership but to ensure that partnership is truly in the interests of international public health. PMID:10859865

  18. Anticipated public health consequences of global climate change.

    PubMed

    Longstreth, J

    1991-12-01

    Human activities are placing enormous pressures on the biosphere. The introduction of new chemicals and the increasing ambient levels of existing chemicals have resulted in atmospheric degradation. This paper reviews some of the adverse effects of stratospheric ozone depletion and global warming. Because the atmospheric effects of ozone depletion are fairly well characterized, quantitative risk estimates have been developed. However, because the atmospheric effects of global warming are less understood, public health problems that could be intensified by climate change are assessed qualitatively. The interactive effects of these two phenomena are also discussed.

  19. Climate Change and Expected Impacts on the Global Water Cycle

    NASA Technical Reports Server (NTRS)

    Rind, David; Hansen, James E. (Technical Monitor)

    2002-01-01

    How the elements of the global hydrologic cycle may respond to climate change is reviewed, first from a discussion of the physical sensitivity of these elements to changes in temperature, and then from a comparison of observations of hydrologic changes over the past 100 million years. Observations of current changes in the hydrologic cycle are then compared with projected future changes given the prospect of global warming. It is shown that some of the projections come close to matching the estimated hydrologic changes that occurred long ago when the earth was very warm.

  20. Using a Global Climate Model in an On-line Climate Change Course

    NASA Astrophysics Data System (ADS)

    Randle, D. E.; Chandler, M. A.; Sohl, L. E.

    2012-12-01

    Seminars on Science: Climate Change is an on-line, graduate-level teacher professional development course offered by the American Museum of Natural History. It is an intensive 6-week course covering a broad range of global climate topics, from the fundamentals of the climate system, to the causes of climate change, the role of paleoclimate investigations, and a discussion of potential consequences and risks. The instructional method blends essays, videos, textbooks, and linked websites, with required participation in electronic discussion forums that are moderated by an experienced educator and a course scientist. Most weeks include additional assignments. Three of these assignments employ computer models, including two weeks spent working with a full-fledged 3D global climate model (GCM). The global climate modeling environment is supplied through a partnership with Columbia University's Educational Global Climate Modeling Project (EdGCM). The objective is to have participants gain hands-on experience with one of the most important, yet misunderstood, aspects of climate change research. Participants in the course are supplied with a USB drive that includes installers for the software and sample data. The EdGCM software includes a version of NASA's global climate model fitted with a graphical user interface and pre-loaded with several climate change simulations. Step-by-step assignments and video tutorials help walk people through these challenging exercises and the course incorporates a special assignment discussion forum to help with technical problems and questions about the NASA GCM. There are several takeaways from our first year and a half of offering this course, which has become one of the most popular out of the twelve courses offered by the Museum. Participants report a high level of satisfaction in using EdGCM. Some report frustration at the initial steps, but overwhelmingly claim that the assignments are worth the effort. Many of the difficulties that

  1. The effect of eurasian snow cover on global climate.

    PubMed

    Barnett, T P; Dümenil, L; Schlese, U; Roeckner, E

    1988-01-29

    Numerical simulations with a global atmospheric circulation model suggest that largescale variations in the amount of snowfall over Eurasia in the springtime are linked to the subsequent strength of the Asian summer monsoon. Large-scale changes in Eurasian snow cover are coupled to larger scale changes in the global climate system. There is a large, strong teleconnection to the atmospheric field over North America. The model results also show snow cover effects to subsequently alter other climatic fields known to be intimately associated with the El Niño-Southern Oscillation (ENSO) phenomenon. Thus the model results seem to challenge the current dogma that the ENSO phenomenon is solely the result of close coupling between the atmosphere and ocean by suggesting that processes over continental land masses may also have to be considered.

  2. The Effect of Eurasian Snow Cover on Global Climate

    NASA Astrophysics Data System (ADS)

    Barnett, T. P.; Dumenil, L.; Schlese, U.; Roeckner, E.

    1988-01-01

    Numerical simulations with a global atmospheric circulation model suggest that large-scale variations in the amount of snowfall over Eurasia in the springtime are linked to the subsequent strength of the Asian summer monsoon. Large-scale changes in Eurasian snow cover are coupled to larger scale changes in the global climate system. There is a large, strong teleconnection to the atmospheric field over North America. The model results also show cover effects to subsequently alter other climatic fields known to be intimately associated with the El Nino-Southern Oscillation (ENSO) phenomenon. Thus the model results seem to challenge the current dogma that the ENSO phenomenon is solely the result of close coupling between the atmosphere and ocean by suggesting that processes over continental land masses may also have to be considered.

  3. A fast multipole transformation for global climate calculations

    SciTech Connect

    Holmes, J.A.; Wang, Z.; Drake, J.B.; Lyon, B.F.; Chen, W.T.

    1996-01-01

    A fast multipole transformation is adapted to the evaluation of summations that occur in global climate calculations when transforming between spatial and spherical harmonic representations. For each summation, the timing of the fast multipole transformation scales linearly with the number of latitude gridpoints, but the timing for direct evaluations scales quadratically. In spite of a larger computational overhead, this scaling advantage renders the fast multipole method faster than direct evaluation for transformations involving greater than approximately 300 to 500 gridpoints. Convergence of the fast multipole transformation is accurate to machine precision. As the resolution in global climate calculations continues to increase, an increasingly large fraction of the computational work involves the transformation between spatial and spherical harmonic representations. The fast multipole transformation offers a significant reduction in computational time for these high-resolution cases.

  4. Climate trends and global crop production since 1980.

    PubMed

    Lobell, David B; Schlenker, Wolfram; Costa-Roberts, Justin

    2011-07-29

    Efforts to anticipate how climate change will affect future food availability can benefit from understanding the impacts of changes to date. We found that in the cropping regions and growing seasons of most countries, with the important exception of the United States, temperature trends from 1980 to 2008 exceeded one standard deviation of historic year-to-year variability. Models that link yields of the four largest commodity crops to weather indicate that global maize and wheat production declined by 3.8 and 5.5%, respectively, relative to a counterfactual without climate trends. For soybeans and rice, winners and losers largely balanced out. Climate trends were large enough in some countries to offset a significant portion of the increases in average yields that arose from technology, carbon dioxide fertilization, and other factors.

  5. Climate Trends and Global Crop Production Since 1980

    NASA Astrophysics Data System (ADS)

    Lobell, David B.; Schlenker, Wolfram; Costa-Roberts, Justin

    2011-07-01

    Efforts to anticipate how climate change will affect future food availability can benefit from understanding the impacts of changes to date. We found that in the cropping regions and growing seasons of most countries, with the important exception of the United States, temperature trends from 1980 to 2008 exceeded one standard deviation of historic year-to-year variability. Models that link yields of the four largest commodity crops to weather indicate that global maize and wheat production declined by 3.8 and 5.5%, respectively, relative to a counterfactual without climate trends. For soybeans and rice, winners and losers largely balanced out. Climate trends were large enough in some countries to offset a significant portion of the increases in average yields that arose from technology, carbon dioxide fertilization, and other factors.

  6. U.S. Global Climate Change Impacts Overview

    NASA Astrophysics Data System (ADS)

    Karl, T. R.

    2009-12-01

    This past year the US Global Change Research Program released a report that summarized the science of climate change and the impacts of climate change on the United States, now and in the future. The report underscores the importance of measures to reduce climate change. In the context of impacts, the report identifies examples of actions currently being pursued in various sectors and regions to address climate change as well as other environmental problems that could be exacerbated by climate change. This state-of-knowledge report also identifies areas in which scientific uncertainty limits our ability to estimate future climate changes and its impacts. Key findings of the report include: (1) Global warming is unequivocal and primarily human induced. - This statement is stronger than the IPCC (2007) statement because new attribution studies since that report continue to implicate human caused changes over the past 50 years. (2) Climate Changes are underway in the Unites States and are projected to grow. - These include increases in heavy downpours, rising temperature and sea level, rapidly retreating glaciers, thawing permafrost, lengthening growing seasons lengthening ice-free seasons in the oceans and on lakes and rivers, earlier snowmelt and alteration in river flows. (3) Widespread climate-related impacts are occurring now and are expected to increase. - The impacts vary from region to region, but are already affecting many sectors e.g., water, energy, transportation, agriculture, ecosystems, etc. (4) Climate change will stress water resources. - Water is an issue in every region of the US, but the nature of the impacts vary (5) Crop and livestock production will be increasingly challenged. - Warming related to high emission scenarios often negatively affect crop growth and yields levels. Increased pests, water stress, diseases, and weather extremes will pose adaptation challenges for crops and livestock production. (6) Coastal areas are at increased risk from

  7. Global crop yield response to extreme heat stress under multiple climate change futures

    NASA Astrophysics Data System (ADS)

    Deryng, Delphine; Conway, Declan; Ramankutty, Navin; Price, Jeff; Warren, Rachel

    2014-03-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (ΔY = -12.8 ± 6.7% versus - 7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (ΔY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (ΔY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.

  8. Global crop yield response to extreme heat stress under multiple climate change futures

    NASA Astrophysics Data System (ADS)

    Deryng, D.; Conway, D.; Ramankutty, N.; Price, J.; Warren, R.

    2014-12-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (dY = -12.8 ± 6.7% versus -7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (dY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (dY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.

  9. The impacts of climate change on global irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cai, X.

    2011-12-01

    Climate change tends to affect the irrigation water requirement of current irrigated agricultural land, and also changes the water availability for current rain-fed land by the end of this century. We use the most up-to-date climatic and crop datasets (e.g., global irrigated/rain-fed crop areas and grid level crop growing calendar (Portmann, Siebert and Döll, 2010, Global Biogeochemical Cycles 24)) to evaluate the requirements of currently irrigated land and the water deficit for rain-fed land for all major crops under current and projected climate. Six general circulation models (GCMs) under two emission scenarios, A1B & B1, are assembled using two methods, the Simple Average Method (SAM) and Root Mean Square Error Ensemble Method (RMSEMM), to deal with the GCM regional variability. It is found that the global irrigation requirement and the water deficit are both going to increase significantly under all scenarios, particularly under the A1B emission scenario. For example, the projected irrigation requirement is expected to increase by about 2500 million m3 for wheat, 3200 million m3 for maize and another 3300 million m3 for rice. At the same time, the water deficit for current rain-fed cropland will be widened by around 3000, 4000, 2100 million m3 for wheat, maize and rice respectively. Regional analysis is conducted for Africa, China, Europe, India, South America and the United States. It is found that the U.S. may expect the greatest rise in irrigation requirements for wheat and maize, while the South America may suffer the greatest increase for rice. In addition, Africa and the U.S. may face a larger water deficit for both wheat and maize on rain-fed land, and South America just for rice. In summary, climate change is likely to bring severe challenges for irrigation systems and make global water shortage even worse by the end of this century. These pressures will call for extensive adaptation measures. The change in crop water requirements and availability

  10. Ways to Include Global Climate Change in Courses for Prospective Teachers

    ERIC Educational Resources Information Center

    van Zee, Emily; Grobart, Emma; Roberts-Harris, Deborah

    2016-01-01

    What responsibility do science teacher educators have for engaging students in learning about global climate change in courses? How can the topic of global climate change be added to an already packed course curriculum? The authors have begun assembling instructional resources and learning ways others have incorporated global climate change in…

  11. Sixth-Grade Students' Progress in Understanding the Mechanisms of Global Climate Change

    ERIC Educational Resources Information Center

    Visintainer, Tammie; Linn, Marcia

    2015-01-01

    Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in…

  12. Science of Global Climate Modeling: Confirmation from Discoveries on Mars

    NASA Astrophysics Data System (ADS)

    Hartmann, William K.

    2012-10-01

    As early as 1993, analysis of obliquity changes on Mars revealed irregular cycles of high excursion, over 45°1. Further obliquity analyses indicated that insolation and climatic conditions vary with time, with the four most recent episodes of obliquity >45° occurring about 5.5, 8, 9, and 15 My.2 Various researchers applied global climate models, using Martian parameters and obliquity changes. The models (independent of Martian geomorphological observations) indicate exceptional climate conditions during the high-obliquity episodes at >45°3,4, with localized massive ice deposition effects east of Hellas and on the west slopes of Tharsis.5 At last year’s DPS my co-authors and I detailed evidence of unusual active glaciation in Greg crater, near the center of the predicted area of ice accumulation during high obliquity.6 We found that the timescale of glacial surface layer activity matches the general 5-15 My timescale of the last episodes of high obliquity and ice deposition. Radar results confirm ice deposits in debris aprons concentrated in the same area.7 Less direct evidence has also been found for glacial ice deposits in the west Tharsis region.8 Here I emphasize that if the models can be adjusted to Mars and then successfully indicate unusual, specific features that we see there, it is an argument for the robustness of climate modeling in general. In recent years we have see various public figures casting doubt on the validity of terrestrial global modeling. The successful match of Martian climate modeling with direct Martian geological and chronometric observations provides an interesting and teachable refutation of the attacks on climate science. References: 1. Science 259:1294-1297; 2. LPSC XXXV, Abs. 1600; 3. Nature 412:411-413; 4. Science 295:110-113; 5. Science 311:368-371; 6. EPSC-DPS Abs. 1394; 7. Science 322:1235-1238; 8. Nature 434:346-351.

  13. Assessing Significance of Global Climate Change in Local Climate Time Series

    NASA Astrophysics Data System (ADS)

    Livezey, M. M.; Bair, A.; Livezey, R.; Hollingshead, A.; Horsfall, F. M. C.; Meyers, J. C.

    2014-12-01

    A common question by users to NOAA National Weather Service (NWS) local offices is how significant is global climate change in their local area. The scientific community provides copious information on global climate change, including assessments, for large regions. However, most decisions are made at the local level, where little or no information typically exists. To address this need, NOAA NWS released operationally the Local Climate Analysis Tool (LCAT) in 2013 and specifically incorporated a capability into the tool to determine the local Rate of Change (ROC). Although ROC provides answers to some questions, we have seen an additional need for clarification on the significance of the ROC, such as whether or not it differentiates natural variability from a real signal of longer-term climate change. This question becomes very important for decision makers in consideration of their long term planning efforts to build local resilience to changes in climate. LCAT uses three trend adjustment methods in computing ROC: Hinge, Optimal Climate Normals (OCN), and Exponentially Weighted Moving Average (EWMA). The Hinge tracks changes in climate time series, and OCN and EWMS track changes in climate normals. ROC is the slope of the straight line fit of the trend. Standard statistical methodology in use provides guidance for confidence intervals of the slope parameter (von Storch and Zwiers, 1999), which works well for a linear regression fit and can be used for ROCs of OCN and EWMA. However the Hinge, which is a linear fit anchored on one end, needs some additional adjustments and most likely will have smaller confidence intervals than those estimated by the statistical method. An additional way to look at the problem is to assess how the climate change signal compares to climate variability in the local time series. Livezey et al. (2007) suggested the use of the signal to noise ratio to estimate the significance of the rate of climate change. The signal to noise ratio of

  14. Climate velocity and the future global redistribution of marine biodiversity

    NASA Astrophysics Data System (ADS)

    García Molinos, Jorge; Halpern, Benjamin S.; Schoeman, David S.; Brown, Christopher J.; Kiessling, Wolfgang; Moore, Pippa J.; Pandolfi, John M.; Poloczanska, Elvira S.; Richardson, Anthony J.; Burrows, Michael T.

    2016-01-01

    Anticipating the effect of climate change on biodiversity, in particular on changes in community composition, is crucial for adaptive ecosystem management but remains a critical knowledge gap. Here, we use climate velocity trajectories, together with information on thermal tolerances and habitat preferences, to project changes in global patterns of marine species richness and community composition under IPCC Representative Concentration Pathways (RCPs) 4.5 and 8.5. Our simple, intuitive approach emphasizes climate connectivity, and enables us to model over 12 times as many species as previous studies. We find that range expansions prevail over contractions for both RCPs up to 2100, producing a net local increase in richness globally, and temporal changes in composition, driven by the redistribution rather than the loss of diversity. Conversely, widespread invasions homogenize present-day communities across multiple regions. High extirpation rates are expected regionally (for example, Indo-Pacific), particularly under RCP8.5, leading to strong decreases in richness and the anticipated formation of no-analogue communities where invasions are common. The spatial congruence of these patterns with contemporary human impacts highlights potential areas of future conservation concern. These results strongly suggest that the millennial stability of current global marine diversity patterns, against which conservation plans are assessed, will change rapidly over the course of the century in response to ocean warming.

  15. The contribution of China's emissions to global climate forcing.

    PubMed

    Li, Bengang; Gasser, Thomas; Ciais, Philippe; Piao, Shilong; Tao, Shu; Balkanski, Yves; Hauglustaine, Didier; Boisier, Juan-Pablo; Chen, Zhuo; Huang, Mengtian; Li, Laurent Zhaoxin; Li, Yue; Liu, Hongyan; Liu, Junfeng; Peng, Shushi; Shen, Zehao; Sun, Zhenzhong; Wang, Rong; Wang, Tao; Yin, Guodong; Yin, Yi; Zeng, Hui; Zeng, Zhenzhong; Zhou, Feng

    2016-03-17

    Knowledge of the contribution that individual countries have made to global radiative forcing is important to the implementation of the agreement on "common but differentiated responsibilities" reached by the United Nations Framework Convention on Climate Change. Over the past three decades, China has experienced rapid economic development, accompanied by increased emission of greenhouse gases, ozone precursors and aerosols, but the magnitude of the associated radiative forcing has remained unclear. Here we use a global coupled biogeochemistry-climate model and a chemistry and transport model to quantify China's present-day contribution to global radiative forcing due to well-mixed greenhouse gases, short-lived atmospheric climate forcers and land-use-induced regional surface albedo changes. We find that China contributes 10% ± 4% of the current global radiative forcing. China's relative contribution to the positive (warming) component of global radiative forcing, mainly induced by well-mixed greenhouse gases and black carbon aerosols, is 12% ± 2%. Its relative contribution to the negative (cooling) component is 15% ± 6%, dominated by the effect of sulfate and nitrate aerosols. China's strongest contributions are 0.16 ± 0.02 watts per square metre for CO2 from fossil fuel burning, 0.13 ± 0.05 watts per square metre for CH4, -0.11 ± 0.05 watts per square metre for sulfate aerosols, and 0.09 ± 0.06 watts per square metre for black carbon aerosols. China's eventual goal of improving air quality will result in changes in radiative forcing in the coming years: a reduction of sulfur dioxide emissions would drive a faster future warming, unless offset by larger reductions of radiative forcing from well-mixed greenhouse gases and black carbon.

  16. Sensitivity of flood events to global climate change

    NASA Astrophysics Data System (ADS)

    Panagoulia, Dionysia; Dimou, George

    1997-04-01

    The sensitivity of Acheloos river flood events at the outfall of the mountainous Mesochora catchment in Central Greece was analysed under various scenarios of global climate change. The climate change pattern was simulated through a set of hypothetical and monthly GISS (Goddard Institute for Space Studies) scenarios of temperature increase coupled with precipitation changes. The daily outflow of the catchment, which is dominated by spring snowmelt runoff, was simulated by the coupling of snowmelt and soil moisture accounting models of the US National Weather Service River Forecast System. Two threshold levels were used to define a flood day—the double and triple long-term mean daily streamflow—and the flood parameters (occurrences, duration, magnitude, etc.) for these cases were determined. Despite the complicated response of flood events to temperature increase and threshold, both hypothetical and monthly GISS representations of climate change resulted in more and longer flood events for climates with increased precipitation. All climates yielded larger flood volumes and greater mean values of flood peaks with respect to precipitation increase. The lower threshold resulted in more and longer flood occurrences, as well as smaller flood volumes and peaks than those of the upper one. The combination of higher and frequent flood events could lead to greater risks of inudation and possible damage to structures. Furthermore, the winter swelling of the streamflow could increase erosion of the river bed and banks and hence modify the river profile.

  17. Ecological risk assessment in the context of global climate change.

    PubMed

    Landis, Wayne G; Durda, Judi L; Brooks, Marjorie L; Chapman, Peter M; Menzie, Charles A; Stahl, Ralph G; Stauber, Jennifer L

    2013-01-01

    Changes to sources, stressors, habitats, and geographic ranges; toxicological effects; end points; and uncertainty estimation require significant changes in the implementation of ecological risk assessment (ERA). Because of the lack of analog systems and circumstances in historically studied sites, there is a likelihood of type III error. As a first step, the authors propose a decision key to aid managers and risk assessors in determining when and to what extent climate change should be incorporated. Next, when global climate change is an important factor, the authors recommend seven critical changes to ERA. First, develop conceptual cause-effect diagrams that consider relevant management decisions as well as appropriate spatial and temporal scales to include both direct and indirect effects of climate change and the stressor of management interest. Second, develop assessment end points that are expressed as ecosystem services. Third, evaluate multiple stressors and nonlinear responses-include the chemicals and the stressors related to climate change. Fourth, estimate how climate change will affect or modify management options as the impacts become manifest. Fifth, consider the direction and rate of change relative to management objectives, recognizing that both positive and negative outcomes can occur. Sixth, determine the major drivers of uncertainty, estimating and bounding stochastic uncertainty spatially, temporally, and progressively. Seventh, plan for adaptive management to account for changing environmental conditions and consequent changes to ecosystem services. Good communication is essential for making risk-related information understandable and useful for managers and stakeholders to implement a successful risk-assessment and decision-making process.

  18. Urban climate versus global climate change-what makes the difference for dengue?

    PubMed

    Misslin, Renaud; Telle, Olivier; Daudé, Eric; Vaguet, Alain; Paul, Richard E

    2016-10-01

    The expansion in the geographical distribution of vector-borne diseases is a much emphasized consequence of climate change, as are the consequences of urbanization for diseases that are already endemic, which may be even more important for public health. In this paper, we focus on dengue, the most widespread urban vector-borne disease. Largely urban with a tropical/subtropical distribution and vectored by a domesticated mosquito, Aedes aegypti, dengue poses a serious public health threat. Temperature plays a determinant role in dengue epidemic potential, affecting crucial parts of the mosquito and viral life cycles. The urban predilection of the mosquito species will further exacerbate the impact of global temperature change because of the urban heat island effect. Even within a city, temperatures can vary by 10 °C according to urban land use, and diurnal temperature range (DTR) can be even greater. DTR has been shown to contribute significantly to dengue epidemic potential. Unraveling the importance of within-city temperature is as important for dengue as for the negative health consequences of high temperatures that have thus far been emphasized, for example, pollution and heat stroke. Urban and landscape planning designed to mitigate the non-infectious negative effects of temperature should additionally focus on dengue, which is currently spreading worldwide with no signs of respite.

  19. Climate Models from the Joint Global Change Research Institute

    DOE Data Explorer

    Staff at the Joint Institute develop and use models to simulate the economic and physical impacts of global change policy options. The GCAM, for example, gives analysts insight into how regional and national economies might respond to climate change mitigation policies including carbon taxes, carbon trading, and accelerated deployment of energy technology. Three available models are Phoenix, GCAM, and EPIC. Phoenix is a global, dynamic recursive, computable general equilibrium model that is solved in five-year time steps from 2005 through 2100 and divides the world into twenty-four regions. Each region includes twenty-six industrial sectors. Particular attention is paid to energy production in Phoenix. There are nine electricity-generating technologies (coal, natural gas, oil, biomass, nuclear, hydro, wind, solar, and geothermal) and four additional energy commodities: crude oil, refined oil products, coal, and natural gas. Phoenix is designed to answer economic questions related to international climate and energy policy and international trade. Phoenix replaces the Second Generation Model (SGM) that was formerly used for general equilibrium analysis at JGCRI. GCAM is the Global Change Assessment Model, a partial equilibrium model of the world with 14 regions. GCAM operates in 5 year time steps from 1990 to 2095 and is designed to examine long-term changes in the coupled energy, agriculture/land-use, and climate system. GCAM includes a 151-region agriculture land-use module and a reduced form carbon cycle and climate module in addition to its incorporation of demographics, resources, energy production and consumption. The model has been used extensively in a number of assessment and modeling activities such as the Energy Modeling Forum (EMF), the U.S. Climate Change Technology Program, and the U.S. Climate Change Science Program and IPCC assessment reports. GCAM is now freely available as a community model. The Environmental Policy Integrated Climate (EPIC) Model

  20. Accounting for Global Climate Model Projection Uncertainty in Modern Statistical Downscaling

    SciTech Connect

    Johannesson, G

    2010-03-17

    Future climate change has emerged as a national and a global security threat. To carry out the needed adaptation and mitigation steps, a quantification of the expected level of climate change is needed, both at the global and the regional scale; in the end, the impact of climate change is felt at the local/regional level. An important part of such climate change assessment is uncertainty quantification. Decision and policy makers are not only interested in 'best guesses' of expected climate change, but rather probabilistic quantification (e.g., Rougier, 2007). For example, consider the following question: What is the probability that the average summer temperature will increase by at least 4 C in region R if global CO{sub 2} emission increases by P% from current levels by time T? It is a simple question, but one that remains very difficult to answer. It is answering these kind of questions that is the focus of this effort. The uncertainty associated with future climate change can be attributed to three major factors: (1) Uncertainty about future emission of green house gasses (GHG). (2) Given a future GHG emission scenario, what is its impact on the global climate? (3) Given a particular evolution of the global climate, what does it mean for a particular location/region? In what follows, we assume a particular GHG emission scenario has been selected. Given the GHG emission scenario, the current batch of the state-of-the-art global climate models (GCMs) is used to simulate future climate under this scenario, yielding an ensemble of future climate projections (which reflect, to some degree our uncertainty of being able to simulate future climate give a particular GHG scenario). Due to the coarse-resolution nature of the GCM projections, they need to be spatially downscaled for regional impact assessments. To downscale a given GCM projection, two methods have emerged: dynamical downscaling and statistical (empirical) downscaling (SDS). Dynamic downscaling involves

  1. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends

    SciTech Connect

    Mao, Jiafu; Shi, Xiaoying; Ricciuto, Daniel M.; Wei, Yaxing; Thornton, Peter E.; Hoffman, Forrest M.; Fu, Wenting; Fisher, Joshua B.; Dickinson, Robert E.; Shem, Willis; Piao, Shilong; Wang, Kaicun; Schwalm, Christopher R.; Tian, Hanqin; Mu, Mingquan; Arain, Altaf; Ciais, Philippe; Cook, Robert; Dai, Yongjiu; Hayes, Daniel; Huang, Maoyi; Huang, Suo; Huntzinger, Deborah N.; Ito, Akihiko; Jain, Atul; King, Anthony W.; Lei, Huimin; Lu, Chaoqun; Michalak, Anna M.; Parazoo, Nicholas; Peng, Changhui; Peng, Shushi; Poulter, Benjamin; Schaefer, Kevin; Jafarov, Elchin; Wang, Weile; Zeng, Ning; Zeng, Zhenzhong; Zhao, Fang; Zhu, Qiuan; Zhu, Zaichun

    2015-09-08

    Here, we examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes from 1982-2010 using multiple estimates from remote sensing-based datasets and process-oriented land surface models. A significant increased trend of ET in each hemisphere was consistently revealed by observationally-constrained data and multi-model ensembles that considered historic natural and anthropogenic drivers. The climate impacts were simulated to determine the spatiotemporal variations in ET. Globally, rising CO2 ranked second in these models after the predominant climatic influences, and yielded a decreasing trend in canopy transpiration and ET, especially for tropical forests and high-latitude shrub land. Increased nitrogen deposition slightly amplified global ET via enhanced plant growth. Land-use-induced ET responses, albeit with substantial uncertainties across the factorial analysis, were minor globally, but pronounced locally, particularly over regions with intensive land-cover changes. Our study highlights the importance of employing multi-stream ET and ET-component estimates to quantify the strengthening anthropogenic fingerprint in the global hydrologic cycle.

  2. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends

    NASA Astrophysics Data System (ADS)

    Mao, J.; Fu, W.; Shi, X.; Ricciuto, D. M.; Fisher, J. B.; Dickinson, R. E.; Wei, Y.; Shem, W.; Piao, S.; Wang, K.; Schwalm, C. R.; Tian, H.; Mu, M.; Arain, M. A.; Ciais, P.; Cook, R. B.; Dai, Y. J.; Hayes, D. J.; Hoffman, F. M.; Huang, M.; Huang, S.; Huntzinger, D. N.; Ito, A.; Jain, A. K.; King, A. W.; Lei, H.; Lu, C.; Michalak, A. M.; Parazoo, N.; Peng, C.; Peng, S.; Poulter, B.; Schaefer, K. M.; Jafarov, E. E.; Thornton, P. E.; Wang, W.; Zeng, N.; Zeng, Z.; Zhao, F.; Zhu, Q.; Zhu, Z.

    2015-12-01

    We examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes from 1982-2010 using multiple estimates from remote sensing-based datasets and process-oriented land surface models. A significant increased trend of ET in each hemisphere was consistently revealed by observationally-constrained data and multi-model ensembles that considered historic natural and anthropogenic drivers. The climate impacts were simulated to determine the spatiotemporal variations in ET. Globally, rising CO2 ranked second in these models after the predominant climatic influences, and yielded decreased trends in canopy transpiration and ET, especially for tropical forests and high-latitude shrub land. Increased nitrogen deposition slightly amplified global ET via enhanced plant growth. Land-use-induced ET responses, albeit with substantial uncertainties across the factorial analysis, were minor globally, but pronounced locally, particularly over regions with intensive land-cover changes. Our study highlights the importance of employing multi-stream ET and ET-component estimates to quantify the strengthening anthropogenic fingerprint in the global hydrologic cycle.

  3. Permafrost carbon-climate feedbacks accelerate global warming.

    PubMed

    Koven, Charles D; Ringeval, Bruno; Friedlingstein, Pierre; Ciais, Philippe; Cadule, Patricia; Khvorostyanov, Dmitry; Krinner, Gerhard; Tarnocai, Charles

    2011-09-06

    Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH(4) emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO(2) by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO(2) fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH(4)/y to 41-70 Tg CH(4)/y, with increases due to CO(2) fertilization, permafrost thaw, and warming-induced increased CH(4) flux densities partially offset by a reduction in wetland extent.

  4. U.S. Global Climate Change Impacts Report, National Climate Change

    NASA Astrophysics Data System (ADS)

    Wehner, M. F.

    2009-12-01

    The second Key Finding from the recent USGRP report “Global Climate Change Impacts in the United States” is: 2. Climate changes are underway in the United States and are projected to grow. Climate-related changes are already observed in the United States and its coastal waters. These include increases in heavy downpours, rising temperature and sea level, rapidly retreating glaciers, thawing permafrost, lengthening growing seasons, lengthening ice-free seasons in the ocean and on lakes and rivers, earlier snowmelt, and alterations in river flows. These changes are projected to grow. The Key Findings are based on a combination of observational, theoretical and model based analyses and are a consensus opinion of the report’s Lead Author team. The model based projections of future climate used in the report will be detailed. A discussion of the source and magnitudes of uncertainties in these projections will also be presented.

  5. Decadal modulation of global surface temperature by internal climate variability

    NASA Astrophysics Data System (ADS)

    Dai, Aiguo; Fyfe, John C.; Xie, Shang-Ping; Dai, Xingang

    2015-06-01

    Despite a steady increase in atmospheric greenhouse gases (GHGs), global-mean surface temperature (T) has shown no discernible warming since about 2000, in sharp contrast to model simulations, which on average project strong warming. The recent slowdown in observed surface warming has been attributed to decadal cooling in the tropical Pacific, intensifying trade winds, changes in El Niño activity, increasing volcanic activity and decreasing solar irradiance. Earlier periods of arrested warming have been observed but received much less attention than the recent period, and their causes are poorly understood. Here we analyse observed and model-simulated global T fields to quantify the contributions of internal climate variability (ICV) to decadal changes in global-mean T since 1920. We show that the Interdecadal Pacific Oscillation (IPO) has been associated with large T anomalies over both ocean and land. Combined with another leading mode of ICV, the IPO explains most of the difference between observed and model-simulated rates of decadal change in global-mean T since 1920, and particularly over the so-called `hiatus' period since about 2000. We conclude that ICV, mainly through the IPO, was largely responsible for the recent slowdown, as well as for earlier slowdowns and accelerations in global-mean T since 1920, with preferred spatial patterns different from those associated with GHG-induced warming or aerosol-induced cooling. Recent history suggests that the IPO could reverse course and lead to accelerated global warming in the coming decades.

  6. Decadal Modulation of Global Surface Temperature By Internal Climate Variability

    NASA Astrophysics Data System (ADS)

    Dai, A.; Fyfe, J. C.; Xie, S. P.; Dai, X.

    2014-12-01

    Despite a steady increase in atmospheric greenhouse gases (GHGs), global-mean surface temperature (T) has shown no discernable warming since about 2000, in sharp contrast to model simulations which on average project strong warming. The recent slowdown in observed surface warming has been attributed to decadal cooling in the tropical Pacific, intensifying trade winds, changes in El Niño activity, increasing volcanic activity and decreasing solar irradiance. Earlier periods of arrested warming have been observed but received much less attention than the recent period, and their causes are poorly understood. Here we analyze observed and model-simulated global T fields to quantify the contributions of internal climate variability (ICV) to decadal changes in global-mean T since 1920. We show that the Inter-decadal Pacific Oscillation (IPO) has been associated with large T anomalies over both ocean and land since 1920. Combined with another leading mode of ICV, the IPO explains most of the difference between observed and model-simulated rates of decadal change in global-mean T since 1920, and particularly over the so-called "hiatus" period since about 2000. We conclude that ICV, mainly through the IPO, was largely responsible for the recent slowdown, as well as for earlier slowdowns and accelerations in global-mean T since 1920, with preferred spatial patterns different from GHG-induced warming. Recent history suggests that the IPO could reverse course and lead to accelerated global warming in the coming decades.

  7. Variations in Global Precipitation: Climate-scale to Floods

    NASA Technical Reports Server (NTRS)

    Adler, Robert

    2006-01-01

    Variations in global precipitation from climate-scale to small scale are examined using satellite-based analyses of the Global Precipitation Climatology Project (GPCP) and information from the Tropical Rainfall Measuring Mission (TRMM). Global and large regional rainfall variations and possible long-term changes are examined using the 27- year (1979-2005) monthly dataset from the GPCP. In addition to global patterns associated with phenomena such as ENSO, the data set is explored for evidence of longterm change. Although the global change of precipitation in the data set is near zero, the data set does indicate a small upward trend in the Tropics (25S-25N), especially over ocean. Techniques are derived to isolate and eliminate variations due to ENS0 and major volcanic eruptions and the significance of the trend is examined. The status of TRMM estimates is examined in terms of evaluating and improving the long-term global data set. To look at rainfall variations on a much smaller scale TRMM data is used in combination with observations from other satellites to produce a 3-hr resolution, eight-year data set for examination of weather events and for practical applications such as detecting floods. Characteristics of the data set are presented and examples of recent flood events are examined.

  8. Ocean Global Warming Impacts on the South America Climate

    NASA Astrophysics Data System (ADS)

    Ramos-Da-Silva, Renato

    2016-03-01

    The global Ocean-Land-Atmosphere Model (OLAM) model was used to estimate the impacts of the global oceanic warming on the climate projections for the 21st Century focusing on the South America region. This new model is able to represent simultaneously the global and regional scales using a refining grid approach for the region of interest. First, the model was run for a 31-year control period consisting on the years 1960-1990 using the monthly Sea Surface Temperature (SST) from the Atmospheric Model Intercomparison Project (AMIP) data as a driver for the ocean fluxes. Then, the model was run for the period 2010-2100 using the monthly projected SST from the Hadley Center model (HadCM3) as a driver for the oceanic changes. The model was set up with an icosahedral triangular global grid having about 250 km of grid spacing and with a refining grid resolution with the cells reaching about 32 km over the South America region. The results show an overall temperature increase mainly over the center of the Amazon basin caused by the increase of the greenhouse effect of the water vapor; a decrease on precipitation mainly over the northeast Brazil and an increase in the south and over the western Amazon region; and a major increase on the near surface wind speed. These results are similar to the global coupled models; however, OLAM has a novel type of grid that can provide the interaction between the global and regional scales simultaneously.

  9. Structural Design Feasibility Study for the Global Climate Experiment

    SciTech Connect

    Lewin,K.F.; Nagy, J.

    2008-12-01

    Neon, Inc. is proposing to establish a Global Change Experiment (GCE) Facility to increase our understanding of how ecological systems differ in their vulnerability to changes in climate and other relevant global change drivers, as well as provide the mechanistic basis for forecasting ecological change in the future. The experimental design was initially envisioned to consist of two complementary components; (A) a multi-factor experiment manipulating CO{sub 2}, temperature and water availability and (B) a water balance experiment. As the design analysis and cost estimates progressed, it became clear that (1) the technical difficulties of obtaining tight temperature control and maintaining elevated atmospheric carbon dioxide levels within an enclosure were greater than had been expected and (2) the envisioned study would not fit into the expected budget envelope if this was done in a partially or completely enclosed structure. After discussions between NEON management, the GCE science team, and Keith Lewin, NEON, Inc. requested Keith Lewin to expand the scope of this design study to include open-field exposure systems. In order to develop the GCE design to the point where it can be presented within a proposal for funding, a feasibility study of climate manipulation structures must be conducted to determine design approaches and rough cost estimates, and to identify advantages and disadvantages of these approaches including the associated experimental artifacts. NEON, Inc requested this design study in order to develop concepts for the climate manipulation structures to support the NEON Global Climate Experiment. This study summarizes the design concepts considered for constructing and operating the GCE Facility and their associated construction, maintenance and operations costs. Comparisons and comments about experimental artifacts, construction challenges and operational uncertainties are provided to assist in selecting the final facility design. The overall goal

  10. Climatic controls on the global distribution, abundance, and species richness of mangrove forests

    USGS Publications Warehouse

    Osland, Michael J.; Feher, Laura; Griffith, Kereen; Cavanaugh, Kyle C.; Enwright, Nicholas M.; Day, Richard H.; Stagg, Camille L.; Krauss, Ken W.; Howard, Rebecca J.; Grace, James B.; Rogers, Kerrylee

    2017-01-01

    Mangrove forests are highly productive tidal saline wetland ecosystems found along sheltered tropical and subtropical coasts. Ecologists have long assumed that climatic drivers (i.e., temperature and rainfall regimes) govern the global distribution, structure, and function of mangrove forests. However, data constraints have hindered the quantification of direct climate-mangrove linkages in many parts of the world. Recently, the quality and availability of global-scale climate and mangrove data have been improving. Here, we used these data to better understand the influence of air temperature and rainfall regimes upon the distribution, abundance, and species richness of mangrove forests. Although our analyses identify global-scale relationships and thresholds, we show that the influence of climatic drivers is best characterized via regional range limit-specific analyses. We quantified climatic controls across targeted gradients in temperature and/or rainfall within 14 mangrove distributional range limits. Climatic thresholds for mangrove presence, abundance, and species richness differed among the 14 studied range limits. We identified minimum temperature-based thresholds for range limits in eastern North America, eastern Australia, New Zealand, eastern Asia, eastern South America, and southeast Africa. We identified rainfall-based thresholds for range limits in western North America, western Gulf of Mexico, western South America, western Australia, Middle East, northwest Africa, east central Africa, and west central Africa. Our results show that in certain range limits (e.g., eastern North America, western Gulf of Mexico, eastern Asia), winter air temperature extremes play an especially important role. We conclude that rainfall and temperature regimes are both important in western North America, western Gulf of Mexico, and western Australia. With climate change, alterations in temperature and rainfall regimes will affect the global distribution, abundance, and

  11. Influence of global climatic processes on environment The Arctic seas

    NASA Astrophysics Data System (ADS)

    Kholmyansky, Mikhael; Anokhin, Vladimir; Kartashov, Alexandr

    2016-04-01

    One of the most actual problems of the present is changes of environment of Arctic regions under the influence of global climatic processes. Authors as a result of the works executed by them in different areas of the Russian Arctic regions, have received the materials characterising intensity of these processes. Complex researches are carried out on water area and in a coastal zone the White, the Barents, the Kara and the East-Siberian seas, on lake water areas of subarctic region since 1972 on the present. Into structure of researches enter: hydrophysical, cryological observations, direct measurements of temperatures, the analysis of the drill data, electrometric definitions of the parametres of a frozen zone, lithodynamic and geochemical definitions, geophysical investigations of boreholes, studying of glaciers on the basis of visual observations and the analysis of photographs. The obtained data allows to estimate change of temperature of a water layer, deposits and benthonic horizon of atmosphere for last 25 years. On the average they make 0,38⁰C for sea waters, 0,23⁰C for friable deposits and 0,72⁰C for atmosphere. Under the influence of temperature changes in hydrosphere and lithosphere of a shelf cryolithic zone changes the characteristics. It is possible to note depth increase of roof position of the cryolithic zone on the most part of the studied water area. Modern fast rise in temperature high-ice rocks composing coast, has led to avalanche process thermo - denudation and to receipt in the sea of quantity of a material of 1978 three times exceeding level Rise in temperature involves appreciable deviation borders of the Arctic glacial covers. On our monitoring measurements change of the maintenance of oxygen in benthonic area towards increase that is connected with reduction of the general salinity of waters at the expense of fresh water arriving at ice thawing is noticed. It, in turn, leads to change of a biogene part of ecosystem. The executed

  12. Effects of Irrigation on Global Climate During the 20th Century

    NASA Technical Reports Server (NTRS)

    Puma, M. J.; Cook, B. I.

    2010-01-01

    Various studies have documented the effects of modern ]day irrigation on regional and global climate, but none, to date, have considered the time ]varying impact of steadily increasing irrigation rates on climate during the 20th century. We investigate the impacts of observed irrigation changes over this century with two ensemble simulations using an atmosphere general circulation model. Both ensembles are forced with transient climate forcings and observed sea surface temperatures from 1902 to 2000; one ensemble includes irrigation specified by a time ]varying data set of irrigation water withdrawals. Early in the century, irrigation is primarily localized over southern and eastern Asia, leading to significant cooling in boreal summer (June.August) over these regions. This cooling spreads and intensifies by century fs end, following the rapid expansion of irrigation over North America, Europe, and Asia. Irrigation also leads to boreal winter (December.February) warming over parts of North America and Asia in the latter part of the century, due to enhanced downward longwave fluxes from increased near ]surface humidity. Precipitation increases occur primarily downwind of the major irrigation areas, although precipitation in parts of India decreases due to a weaker summer monsoon. Irrigation begins to significantly reduce temperatures and temperature trends during boreal summer over the Northern Hemisphere midlatitudes and tropics beginning around 1950; significant increases in precipitation occur in these same latitude bands. These trends reveal the varying importance of irrigation ]climate interactions and suggest that future climate studies should account for irrigation, especially in regions with unsustainable irrigation resources.

  13. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    NASA Astrophysics Data System (ADS)

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison; Zhang, Xuesong; Jones, Russell; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, Benjamin; McFarland, James; Strzepek, Kenneth; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from 32.7 billion to 54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  14. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    SciTech Connect

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison; Zhang, Xuesong; Jones, Russell; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, Benjamin; McFarland, James; Strzepek, Kenneth; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from $32.7 billion to $54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  15. The Global Climate Dashboard: a Software Interface to Stream Comprehensive Climate Data

    NASA Astrophysics Data System (ADS)

    Gardiner, N.; Phillips, M.; NOAA Climate Portal Dashboard

    2011-12-01

    The Global Climate Dashboard is an integral component of NOAA's web portal to climate data, services, and value-added content for decision-makers, teachers, and the science-attentive public (www.clmate.gov). The dashboard provides a rapid view of observational data that demonstrate climate change and variability, as well as outputs from the Climate Model Intercomparison Project version 3, which was built to support the Intergovernmental Panel on Climate Change fourth assessment. The data shown in the dashboard therefore span a range of climate science disciplines with applications that serve audiences with diverse needs. The dashboard is designed with reusable software components that allow it to be implemented incrementally on a wide range of platforms including desktops, tablet devices, and mobile phones. The underlying software components support live streaming of data and provide a way of encapsulating graph sytles and other presentation details into a device-independent standard format that results in a common visual look and feel across all platforms. Here we describe the pedagogical objectives, technical implementation, and the deployment of the dashboard through climate.gov and partner web sites and describe plans to develop a mobile application using the same framework.

  16. Studies and research on global climate change produced in Dobrogea

    NASA Astrophysics Data System (ADS)

    Serban, Cristina; Maftei, Carmen; Zagan, Sabina; Chitu, Greti; Zagan, Remus

    2013-04-01

    Studies and research on global climate change produced in Dobrogea Atmospheric phenomena risk, high acuity products in recent years compels us to a more careful study of the phenomena caused by global climate change produced in Dobrogea. Risk atmospheric phenomena and quick release is characterized by extremely high energies that are catastrophic, sudden and hard to prognosis in current contexts. In our paper we clarify the concept of aridity, and discusses related concepts including indices of aridity, and their influence on Dobrogea area and soil features including climatic water deficit. The drought impact is evaluated by calculating different indices of drought from meteorological and hydrological point of view. In Dobrogea, the phenomena mentioned already manifested by hail, violent storms, tornadoes, heavy precipitation, rainfall, manifested in short periods, producing floods and landslides. Sudden changes, increased environmental air parameters (temperature, humidity, atmospheric pressure) creates, in turn, serious human discomfort and other negative effects of socio-economic. These "risk events" is frequently interleaves severe periods of drought, completing the sequence of natural disasters are difficult to predict. Another characteristic of desertification in Dobrogea is eroding - cruel impoverishment of the soil created by strong winds and violent rain causes strong erosion. Dust storms and sand pits desert areas severely affects state land, forests and degrade air quality breathable, cruelly destroying into ozone. Summarizing, the objective of this paper is to present some results using drought indices and a Grid computing application, which estimates the land surface temperature (LST) and normalized difference vegetation index (NDVI) at regional scale.

  17. [Forest litter decomposition and its responses to global climate change].

    PubMed

    Yang, Wan-Qin; Deng, Ren-Ju; Zhang, Jian

    2007-12-01

    Litter decomposition is one of the important processes in forest ecosystem, which is controlled by both biotic and abiotic factors such as climate, litter quality, and soil organisms. Up to now, numerous studies have been made on the dynamics of aboveground litter in different forest ecosystems, nutrient release during its decomposition, and effects of biotic and abiotic factors on the decomposition, but less information has been reported on the decomposition of belowground forest litter. Recently, the responses of forest litter decomposition to global climate change characterized by elevated atmospheric CO2 concentration and temperature have got worldwide concern, but there remains uncertainty in research results. In the further study, more attention should be paid on the contribution of forest litter decomposition to soil organic carbon sequestration, the physical, chemical and biological processes of below- and above-ground litter decomposition, the responses of forest litter decomposition to the ecological factors (e.g. seasonal freeze-thaw cycle and drying-rewetting cycle) and their interactions, and the mechanisms of litter (especially belowground litter) decomposition responses to global climate change.

  18. Global Wildfire Forecasts Using Large Scale Climate Indices

    NASA Astrophysics Data System (ADS)

    Shen, Huizhong; Tao, Shu

    2016-04-01

    Using weather readings, fire early warning can provided forecast 4-6 hour in advance to minimize fire loss. The benefit would be dramatically enhanced if relatively accurate long-term projection can be also provided. Here we present a novel method for predicting global fire season severity (FSS) at least three months in advance using multiple large-scale climate indices (CIs). The predictive ability is proven effective for various geographic locations and resolution. Globally, as well as in most continents, the El Niño Southern Oscillation (ENSO) is the dominant driving force controlling interannual FSS variability, whereas other CIs also play indispensable roles. We found that a moderate El Niño event is responsible for 465 (272-658 as interquartile range) Tg carbon release and an annual increase of 29,500 (24,500-34,800) deaths from inhalation exposure to air pollutants. Southeast Asia accounts for half of the deaths. Both intercorrelation and interaction of WPs and CIs are revealed, suggesting possible climate-induced modification of fire responses to weather conditions. Our models can benefit fire management in response to climate change.

  19. Regional downscaling of global climate runs for Nepal

    NASA Astrophysics Data System (ADS)

    Granerød, M.; Mesquita, M. D.; Basnayake, S.

    2011-12-01

    Nepal is a vulnerable country to changes in climate. This is mainly due to its dependency on water resources from the Himalayas. There is evidence of significant warming in Nepal, with an average trend of around +0.06 degrees Celsius per year. Studies have shown that the warming rates are higher in higher altitudes. Such temperature trend will have an impact on the melting of the glaciers and consequently on Nepal. Precipitation has also been observed to have increased, but not at the same magnitude as temperature. The water supply is affected by more unpredictable precipitation that can lead to droughts and shorter heavy rainfall. Future projections can give an indication whether these factors will affect river runoff, which can have large impacts on agriculture and in other sectors. Global Climate Models (GCMs) have a coarse resolution and limitations in the numerical and in the physical treatment. More detailed climate datasets are needed to produce climate projections for countries like Nepal. In this study, we use the climate version of the Weather Research and Forecasting model (clWRF3.1.1, developed at the University of Cantabria, Spain), which is a regional climate model (RCM), to provide a more detailed description of future climate scenarios in Nepal. The Atmospheric General Circulation Model, ARPEGE, has been used to provide lateral boundary conditions for the model evaluation. A control simulation from 1970 to 2000, and 4 future climate scenario runs from 2030 to 2060 are created based on these data. The parent domain has a horizontal grid resolution of 48 km, covering the area 68 to 100 degrees East and 1 degree South to 38 degree North. The nested domain has a horizontal grid resolution of 12 km, covering the area 79 to 90 degree East and 25 to 32 degree North. Both domains are run with 37 vertical levels reaching up to 50 hPa. In the clWRF setup, the microphysical scheme used is the WRF Single-Moment 3-class scheme and the cumulus option is the Grell

  20. Testing empirical relationships between global sea-level and global temperature in long climate model simulations

    NASA Astrophysics Data System (ADS)

    von Storch, H.; Zorita, E.; Gonzalez-Rouco, F.

    2009-04-01

    Estimations of future global sea-level rise brought about by increasing concentrations of atmospheric greenhouse gases of anthropogenic origin are based on simulations with coarse-resolution global climate models, which imposes some limitations on the skill of future projections because some of the processes that modulate the heat and fresh water flux into may not be adequately represented. To fill this gap, and until more complex climate models are available, some ad-hoc methods have been proposed that link the rise in global average temperature with the global mean sea-level rise. The statistical methods can be calibrated with observations and applied to the future global temperature rise simulated by climate models. This methods can be tested in the virtual reality simulated by global atmosphere.ocean models. Thereby, deficiencies can be identified and improvement suggested. The output of 1000-year long climate model simulation with the coupled atmosphere-ocean model ECHO-G over the past millennium has been used to determine the skill of different predictors to describe the variations of the rate of sea-level change in the simulation. These predictor variables comprise the global mean near-surface temperature, its rate of change with time and the heat-flux into the ocean. It is found that, in the framework of this climate simulation, global mean temperature is not a good predictor for the rate-of-change of sea-level. The correlation between both variables is not stable along the simulations and even its sign changes. A better predictor is the rate-of-change of temperature. Its correlation with the rate-of-change of sea-level is much more stable, it is always positive along the simulation, and there exists a lead-lag relationship between both that can be understood in simple physical terms. The best predictor among those tested is the heat-flux into the ocean. Its correlation is higher and there exists no time lag to the rate-of-change of sea-level, as expected

  1. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes.

    PubMed

    Cornelissen, Johannes H C; van Bodegom, Peter M; Aerts, Rien; Callaghan, Terry V; van Logtestijn, Richard S P; Alatalo, Juha; Chapin, F Stuart; Gerdol, Renato; Gudmundsson, Jon; Gwynn-Jones, Dylan; Hartley, Anne E; Hik, David S; Hofgaard, Annika; Jónsdóttir, Ingibjörg S; Karlsson, Staffan; Klein, Julia A; Laundre, Jim; Magnusson, Borgthor; Michelsen, Anders; Molau, Ulf; Onipchenko, Vladimir G; Quested, Helen M; Sandvik, Sylvi M; Schmidt, Inger K; Shaver, Gus R; Solheim, Bjørn; Soudzilovskaia, Nadejda A; Stenström, Anna; Tolvanen, Anne; Totland, Ørjan; Wada, Naoya; Welker, Jeffrey M; Zhao, Xinquan

    2007-07-01

    Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide. Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.

  2. A review of Thailand`s strategies for global climate change

    SciTech Connect

    Boonchalermkit, S.

    1994-12-31

    Thailand is greatly concerned about global climate change, which is caused primarily by the burning of fossil fuels, deforestation and the release of chlorofluorocarbons. The country itself is not currently a major contributor to global climate change. However, as Thailand`s economy expands and its burning of fossil fuels increases, the country`s contribution to global climate change could increase. Thailand`s use of primary energy supplies grew at an average rate of 13.4 percent per year in the period 1985 to 1990. The rapid, sustained growth was due to the overall pace of growth in the economy and the expansion of industrial, construction, and transportation activities. The primary energy demand was approximately 31,600 kilotons of oil equivalent (KTOE) in 1990. The transportation sector accounted for the largest proportion of energy demand at 30 percent. Within the next 15 years, the power sector is expected to overtake the transportation sector as the largest consumer of energy. Petroleum is currently the predominant source of energy in Thailand, accounting for 56 percent of the primary energy demand. Thailand recognizes that it has an important part to play in finding solutions to minimizing emissions of greenhouse gases and identifying viable response strategies. Thus, in this paper the authors will present several policy strategies relevant to climate change in Thailand and discuss how they have been implemented and enforced. Policies concerning forestry, energy, and environment are reviewed in detail in this paper.

  3. Global climate forcing of aerosols embodied in international trade

    NASA Astrophysics Data System (ADS)

    Lin, Jintai; Tong, Dan; Davis, Steven; Ni, Ruijing; Tan, Xiaoxiao; Pan, Da; Zhao, Hongyan; Lu, Zifeng; Streets, David; Feng, Tong; Zhang, Qiang; Yan, Yingying; Hu, Yongyun; Li, Jing; Liu, Zhu; Jiang, Xujia; Geng, Guannan; He, Kebin; Huang, Yi; Guan, Dabo

    2016-10-01

    International trade separates regions consuming goods and services from regions where goods and related aerosol pollution are produced. Yet the role of trade in aerosol climate forcing attributed to different regions has never been quantified. Here, we contrast the direct radiative forcing of aerosols related to regions' consumption of goods and services against the forcing due to emissions produced in each region. Aerosols assessed include black carbon, primary organic aerosol, and secondary inorganic aerosols, including sulfate, nitrate and ammonium. We find that global aerosol radiative forcing due to emissions produced in East Asia is much stronger than the forcing related to goods and services ultimately consumed in that region because of its large net export of emissions-intensive goods. The opposite is true for net importers such as Western Europe and North America: global radiative forcing related to consumption is much greater than the forcing due to emissions produced in these regions. Overall, trade is associated with a shift of radiative forcing from net importing to net exporting regions. Compared to greenhouse gases such as carbon dioxide, the short atmospheric lifetimes of aerosols cause large localized differences between consumption- and production-related radiative forcing. International efforts to reduce emissions in the exporting countries will help alleviate trade-related climate and health impacts of aerosols while lowering global emissions.

  4. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends

    DOE PAGES

    Mao, Jiafu; Shi, Xiaoying; Ricciuto, Daniel M.; ...

    2015-09-08

    Here, we examined natural and anthropogenic controls on terrestrial evapotranspiration (ET) changes from 1982-2010 using multiple estimates from remote sensing-based datasets and process-oriented land surface models. A significant increased trend of ET in each hemisphere was consistently revealed by observationally-constrained data and multi-model ensembles that considered historic natural and anthropogenic drivers. The climate impacts were simulated to determine the spatiotemporal variations in ET. Globally, rising CO2 ranked second in these models after the predominant climatic influences, and yielded a decreasing trend in canopy transpiration and ET, especially for tropical forests and high-latitude shrub land. Increased nitrogen deposition slightly amplified globalmore » ET via enhanced plant growth. Land-use-induced ET responses, albeit with substantial uncertainties across the factorial analysis, were minor globally, but pronounced locally, particularly over regions with intensive land-cover changes. Our study highlights the importance of employing multi-stream ET and ET-component estimates to quantify the strengthening anthropogenic fingerprint in the global hydrologic cycle.« less

  5. Values and uncertainties in the predictions of global climate models.

    PubMed

    Winsberg, Eric

    2012-06-01

    Over the last several years, there has been an explosion of interest and attention devoted to the problem of Uncertainty Quantification (UQ) in climate science-that is, to giving quantitative estimates of the degree of uncertainty associated with the predictions of global and regional climate models. The technical challenges associated with this project are formidable, and so the statistical community has understandably devoted itself primarily to overcoming them. But even as these technical challenges are being met, a number of persistent conceptual difficulties remain. So why is UQ so important in climate science? UQ, I would like to argue, is first and foremost a tool for communicating knowledge from experts to policy makers in a way that is meant to be free from the influence of social and ethical values. But the standard ways of using probabilities to separate ethical and social values from scientific practice cannot be applied in a great deal of climate modeling, because the roles of values in creating the models cannot be discerned after the fact-the models are too complex and the result of too much distributed epistemic labor. I argue, therefore, that typical approaches for handling ethical/social values in science do not work well here.

  6. Response of seafloor ecosystems to abrupt global climate change.

    PubMed

    Moffitt, Sarah E; Hill, Tessa M; Roopnarine, Peter D; Kennett, James P

    2015-04-14

    Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to <0.5 mL⋅L(-1) [O2]) associated with abrupt (<100 y) warming of the eastern Pacific. The biotic turnover and recovery events within the record expand known rates of marine biological recovery by an order of magnitude, from <100 to >1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems.

  7. Equilibrium of Global Amphibian Species Distributions with Climate

    PubMed Central

    Munguía, Mariana; Rahbek, Carsten; Rangel, Thiago F.; Diniz-Filho, Jose Alexandre F.; Araújo, Miguel B.

    2012-01-01

    A common assumption in bioclimatic envelope modeling is that species distributions are in equilibrium with contemporary climate. A number of studies have measured departures from equilibrium in species distributions in particular regions, but such investigations were never carried out for a complete lineage across its entire distribution. We measure departures of equilibrium with contemporary climate for the distributions of the world amphibian species. Specifically, we fitted bioclimatic envelopes for 5544 species using three presence-only models. We then measured the proportion of the modeled envelope that is currently occupied by the species, as a metric of equilibrium of species distributions with climate. The assumption was that the greater the difference between modeled bioclimatic envelope and the occupied distribution, the greater the likelihood that species distribution would not be at equilibrium with contemporary climate. On average, amphibians occupied 30% to 57% of their potential distributions. Although patterns differed across regions, there were no significant differences among lineages. Species in the Neotropic, Afrotropics, Indo-Malay, and Palaearctic occupied a smaller proportion of their potential distributions than species in the Nearctic, Madagascar, and Australasia. We acknowledge that our models underestimate non equilibrium, and discuss potential reasons for the observed patterns. From a modeling perspective our results support the view that at global scale bioclimatic envelope models might perform similarly across lineages but differently across regions. PMID:22511938

  8. Malaria Ecology, Disease Burden and Global Climate Change

    NASA Astrophysics Data System (ADS)

    Mccord, G. C.

    2014-12-01

    Malaria has afflicted human society for over 2 million years, and remains one of the great killer diseases today. The disease is the fourth leading cause of death for children under five in low income countries (after neonatal disorders, diarrhea, and pneumonia) and is responsible for at least one in every five child deaths in sub-Saharan Africa. It kills up to 3 million people a year, though in recent years scale up of anti-malaria efforts in Africa may have brought deaths to below 1 million. Malaria is highly conditioned by ecology, because of which climate change is likely to change the local dynamics of the disease through changes in ambient temperature and precipitation. To assess the potential implications of climate change for the malaria burden, this paper employs a Malaria Ecology Index from the epidemiology literature, relates it to malaria incidence and mortality using global country-level data , and then draws implications for 2100 by extrapolating the index using several general circulation model (GCM) predictions of temperature and precipitation. The results highlight the climate change driven increase in the basic reproduction number of the disease and the resulting complications for further gains in elimination. For illustrative purposes, I report the change in malaria incidence and mortality if climate change were to happen immediately under current technology and public health efforts.

  9. Response of seafloor ecosystems to abrupt global climate change

    PubMed Central

    Moffitt, Sarah E.; Hill, Tessa M.; Roopnarine, Peter D.; Kennett, James P.

    2015-01-01

    Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to <0.5 mL⋅L−1 [O2]) associated with abrupt (<100 y) warming of the eastern Pacific. The biotic turnover and recovery events within the record expand known rates of marine biological recovery by an order of magnitude, from <100 to >1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems. PMID:25825727

  10. Response of seafloor ecosystems to abrupt global climate change

    NASA Astrophysics Data System (ADS)

    Moffitt, Sarah E.; Hill, Tessa M.; Roopnarine, Peter D.; Kennett, James P.

    2015-04-01

    Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to <0.5 mLṡL-1 [O2]) associated with abrupt (<100 y) warming of the eastern Pacific. The biotic turnover and recovery events within the record expand known rates of marine biological recovery by an order of magnitude, from <100 to >1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems.

  11. Global mean sea level - Indicator of climate change

    NASA Technical Reports Server (NTRS)

    Robock, A.; Hansen, J.; Gornitz, V.; Lebedeff, S.; Moore, E.; Etkins, R.; Epstein, E.

    1983-01-01

    A critical discussion is presented on the use by Etkins and Epstein (1982) of combined surface air temperature and sea level time series to draw conclusions concerning the discharge of the polar ice sheets. It is objected by Robock that they used Northern Hemisphere land surface air temperature records which are unrepresentative of global sea surface temperature, and he suggests that externally imposed volcanic dust and CO2 forcings can adequately account for observed temperature changes over the last century, with global sea level changing in passive response to sea change as a result of thermal expansion. Hansen et al. adduce evidence for global cooling due to ice discharge that has not exceeded a few hundredths of a degree centigrade in the last century, precluding any importance of this phenomenon in the interpretation of global mean temperature trends for this period. Etkins and Epstein reply that since their 1982 report additional evidence has emerged for the hypothesis that the polar ice caps are diminishing. It is reasserted that each of the indices discussed, including global mean sea surface temperature and sea level, polar ice sheet mass balance, water mass characteristics, and the spin rate and axis of rotation displacement of the earth, are physically linked and can be systematically monitored, as is currently being planned under the auspices of the National Climate Program.

  12. Global Air Quality and Climate Impacts of Mitigating Short-lived Climate Pollution in China

    NASA Astrophysics Data System (ADS)

    Harper, K.; Unger, N.; Heyes, C.; Kiesewetter, G.; Klimont, Z.; Schoepp, W.; Wagner, F.

    2014-12-01

    China is a major emitter of harmful air pollutants, including the short-lived climate pollutants (SLCPs) and their precursors. Implementation of pollution control technologies provides a mechanism for simultaneously protecting human and ecosystem health and achieving near-term climate co-benefits; however, predicting the outcomes of technical and policy interventions is challenging because the SLCPs participate in both climate warming and cooling and share many common emission sources. Here, we present the results of a combined regional integrated assessment and global climate modeling study aimed at quantifying the near-term climate and air quality co-benefits of selective control of Chinese air pollution emissions. Results from IIASA's Greenhouse Gas - Air Pollution Interactions and Synergies (GAINS) integrated assessment model indicate that methane emission reductions make up > 75% of possible CO2-equivalent emission reductions of the SLCPs and their precursors in China in 2030. A multi-pollutant emission reduction scenario incorporating the 2030 Chinese pollution control measures with the highest potential for future climate impact is applied to the NASA ModelE2 - Yale Interactive Terrestrial Biosphere (NASA ModelE2-YIBs) global carbon - chemistry - climate model to assess the regional and long-range impacts of Chinese SLCP mitigation measures. Using model simulations that incorporate dynamic methane emissions and photosynthesis-dependent isoprene emissions, we quantify the impacts of Chinese reductions of the short-lived air pollutants on radiative forcing and on surface ozone and particulate air pollution. Present-day modeled methane mole fractions are evaluated against SCIAMACHY methane columns and NOAA ESRL/GMD surface flask measurements.

  13. The local, remote, and global consequences of climate feedbacks

    NASA Astrophysics Data System (ADS)

    Feldl, Nicole

    Climate feedbacks offer a powerful framework for revealing the energetic pathways by which the system adjusts to an imposed forcing, such as an increase in atmospheric CO2. We investigate how local atmospheric feedbacks, such as those associated with Arctic sea ice and the Walker circulation, affect both global climate sensitivity and spatial patterns of warming. Emphasis is placed on a general circulation model with idealized boundary conditions, for the clarity it provides. For this aquaplanet simulation, we account for rapid tropospheric adjustments to CO2 and explicitly diagnose feedbacks (using radiative kernels) and forcing for this precise model set-up. In particular, a detailed closure of the energy budget within a clean experimental set-up allows us to consider nonlinear interactions between feedbacks. The inclusion of a tropical Walker circulation is found to prime the Hadley Circulation for a larger deceleration under CO2 doubling, by altering subtropical stratus decks and the meridional feedback gradient. We perform targeted experiments to isolate the atmospheric processes responsible for the variability in climate sensitivity, with implications for high-sensitivity paleoclimates. The local climate response is characterized in terms of the meridional structure of feedbacks, atmospheric heat transport, nonlinearities, and forcing. Our results display a combination of positive subtropical feedbacks and polar amplified warming. These two factors imply a critical role for transport and nonlinear effects, with the latter acting to substantially reduce global climate sensitivity. At the hemispheric scale, a rich picture emerges: anomalous divergence of heat flux away from positive feedbacks in the subtropics; clear-sky nonlinearities that reinforce the pattern of tropical cooling and high-latitude warming tendencies; and strong ice-line feedbacks that drive further amplification of polar warming. These results have implications for regional climate

  14. Globalization, commodification and mass transplant of nurses: Part 1.

    PubMed

    Cutcliffe, John R; Yarbrough, Susan

    This two-part article examines the mass transplantation of nurses within the context of globalization. Part one focused on the international data regarding the global shortage of nurses, the increase in nurse migration from 'underdeveloped' to 'Western' countries, definitions and descriptions of global health and summarized the debate so far, such as it is. Part two draws attention to how this group of migrating nurses is more often than not comprised disproportionately of women and accordingly, draws on critical feminist ideas to demonstrate how such mass transplantation of nurses adds to the idea of women as a commodity. It then draws attention to other similar examples of the commodification of women and highlights the impacts of the loss of this labour force on the 'exporting' countries. The article concludes by joining with others who have proffered constructive suggestions for addressing this problem.

  15. Homogeneity of a Global Multisatellite Soil Moisture Climate Data Record

    NASA Technical Reports Server (NTRS)

    Su, Chun-Hsu; Ryu, Dongryeol; Dorigo, Wouter; Zwieback, Simon; Gruber, Alexander; Albergel, Clement; Reichle, Rolf H.; Wagner, Wolfgang

    2016-01-01

    Climate Data Records (CDR) that blend multiple satellite products are invaluable for climate studies, trend analysis and risk assessments. Knowledge of any inhomogeneities in the CDR is therefore critical for making correct inferences. This work proposes a methodology to identify the spatiotemporal extent of the inhomogeneities in a 36-year, global multisatellite soil moisture CDR as the result of changing observing systems. Inhomogeneities are detected at up to 24 percent of the tested pixels with spatial extent varying with satellite changeover times. Nevertheless, the contiguous periods without inhomogeneities at changeover times are generally longer than 10 years. Although the inhomogeneities have measurable impact on the derived trends, these trends are similar to those observed in ground data and land surface reanalysis, with an average error less than 0.003 cubic meters per cubic meter per year. These results strengthen the basis of using the product for long-term studies and demonstrate the necessity of homogeneity testing of multisatellite CDRs in general.

  16. Homogeneity of a global multisatellite soil moisture climate data record

    NASA Astrophysics Data System (ADS)

    Su, Chun-Hsu; Ryu, Dongryeol; Dorigo, Wouter; Zwieback, Simon; Gruber, Alexander; Albergel, Clement; Reichle, Rolf H.; Wagner, Wolfgang

    2016-11-01

    Climate Data Records (CDR) that blend multiple satellite products are invaluable for climate studies, trend analysis and risk assessments. Knowledge of any inhomogeneities in the CDR is therefore critical for making correct inferences. This work proposes a methodology to identify the spatiotemporal extent of the inhomogeneities in a 36 year, global multisatellite soil moisture CDR as the result of changing observing systems. Inhomogeneities are detected at up to 24% of the tested pixels with spatial extent varying with satellite changeover times. Nevertheless, the contiguous periods without inhomogeneities at changeover times are generally longer than 10 years. Although the inhomogeneities have measurable impact on the derived trends, these trends are similar to those observed in ground data and land surface reanalysis, with an average error less than 0.003 m3 m-3 y-1. These results strengthen the basis of using the product for long-term studies and demonstrate the necessity of homogeneity testing of multisatellite CDRs in general.

  17. Integrated regional assessment of global climatic change: lessons from the Mackenzie Basin Impact Study (MBIS)

    NASA Astrophysics Data System (ADS)

    Cohen, Stewart J.

    1996-04-01

    This paper outlines the potential role integrated regional assessments of global climatic change scenarios could play in building better links between science and related policy concerns. The concept is illustrated through description of an ongoing case study from Canada—the Mackenzie Basin Impact Study (MBIS). As part of the Government of Canada's Green Plan, the Global Warming Science Program includes a study of regional impacts of global warming scenarios in the Mackenzie Basin, located in northwestern Canada. The MBIS is a six-year program focussing on potential climate-induced changes in the land and water resource base, and the implications of four scenarios of global climatic change on land use and economic policies in this region. These policy issues include interjurisdictional water management, sustainability of native lifestyles, economic development opportunities (agriculture, forestry, tourism, etc.), sustainability of ecosystems and infrastructure maintenance. MBIS is due to be completed in 1997. MBIS represents an attempt to address regional impacts by incorporating a "family of integrators" into the study framework, and by directly involving stakeholders in planning and research activities. The experience in organizing and carrying out this project may provide some lessons for others interested in organizing regional or country studies.

  18. CO2 embodied in international trade with implications for global climate policy.

    PubMed

    Peters, Glen P; Hertwich, Edgar G

    2008-03-01

    The flow of pollution through international trade flows has the ability to undermine environmental policies, particularly for global pollutants. In this article we determine the CO2 emissions embodied in international trade among 87 countries for the year 2001. We find that globally there are over 5.3 Gt of CO2 embodied in trade and that Annex B countries are net importers of CO2 emissions. Depending on country characteristics--such as size variables and geographic location--there are considerable variations in the embodied emissions. We argue that emissions embodied in trade may have a significant impact on participation in and effectiveness of global climate policies such as the Kyoto Protocol. We discuss several policy options to reduce the impact of trade in global climate policy. If countries take binding commitments as a part of a coalition, instead of as individual countries, then the impacts of trade can be substantially reduced. Adjusting emission inventories for trade gives a more consistent description of a country's environmental pressures and circumvents many trade related issues. It also gives opportunities to exploit trade as a means of mitigating emissions. Not least, a better understanding of the role that trade plays in a country's economic and environmental development will help design more effective and participatory climate policy post-Kyoto.

  19. Global Food Security in a Changing Climate: Considerations and Projections

    NASA Astrophysics Data System (ADS)

    Walsh, M. K.; Brown, M. E.; Backlund, P. W.; Antle, J. M.; Carr, E. R.; Easterling, W. E.; Funk, C. C.; Murray, A.; Ngugi, M.; Barrett, C. B.; Ingram, J. S. I.; Dancheck, V.; O'Neill, B. C.; Tebaldi, C.; Mata, T.; Ojima, D. S.; Grace, K.; Jiang, H.; Bellemare, M.; Attavanich, W.; Ammann, C. M.; Maletta, H.

    2015-12-01

    Global food security is an elusive challenge and important policy focus from the community to the globe. Food is provisioned through food systems that may be simple or labyrinthine, yet each has vulnerabilities to climate change through its effects on food production, transportation, storage, and other integral food system activities. At the same time, the future of food systems is sensitive to socioeconomic trajectories determined by choices made outside of the food system, itself. Constrictions for any reason can lead to decreased food availability, access, utilization, or stability - that is, to diminished food security. Possible changes in trade and other U.S. relationships to the rest of the world under changing conditions to the end of the century are considered through integrated assessment modelling under a range of emissions scenarios. Climate change is likely to diminish continued progress on global food security through production disruptions leading to local availability limitations and price increases, interrupted transport conduits, and diminished food safety, among other causes. In the near term, some high-latitude production export regions may benefit from changes in climate. The types and price of food imports is likely to change, as are export demands, affecting U.S. consumers and producers. Demands placed on foreign assistance programs may increase, as may demand for advanced technologies. Adaptation across the food system has great potential to manage climate change effects on food security, and the complexity of the food system offers multiple potential points of intervention for decision makers at every level. However, effective adaptation is subject to highly localized conditions and socioeconomic factors, and the technical feasibility of an adaptive intervention is not necessarily a guarantee of its application if it is unaffordable or does not provide benefits within a relatively short time frame.

  20. Global climate change and planktic foraminiferal response in the Maastrichtian

    NASA Astrophysics Data System (ADS)

    Abramovich, Sigal; Yovel-Corem, Shlomit; Almogi-Labin, Ahuva; Benjamini, Chaim

    2010-04-01

    The lengthy warm, stable climate of the Cretaceous terminated in the Campanian with a cooling trend, interrupted in the early and latest Maastrichtian by two events of global warming, at ˜70-68 Ma and at 65.78-65.57 Ma. These climatic oscillations had a profound effect on pelagic ecosystems, especially on planktic foraminiferal populations. Here we compare biotic responses in the tropical-subtropical (Tethyan) open ocean and mesotrophic (Zin Valley, Israel) and oligotrophic (Tunisia) slopes, which correlate directly with global warming and cooling. The two warming events coincide with blooms of Guembelitria, an extreme opportunist genus best known as the main survivor of the Cretaceous-Paleogene (K-Pg) catastrophe. In the Maastrichtian, Guembelitria bloomed in the uppermost surface water above shelf and slope environments but failed to reach the open ocean as it did at K-Pg. The coldest interval of the late Maastrichtian (˜68-65.78 Ma) is marked by an acme of the otherwise rare species Gansserina gansseri, a deep-dwelling keeled globotruncanid. The G. gansseri acme event can be traced from the deep ocean even onto the Tethyan slope, marking copious production and circulation of cold intermediate water. This acme is abruptly terminated by extinction of the species, a dramatic reversal attributed to a short-term global warming episode. This extinction corresponds precisely with the second bloom of Guembelitria that began ˜300 kyr prior to the K-Pg event. The antithetical relationship between blooming of Guembelitria and the G. gansseri acme reflects planktic foraminiferal sensitivity to warm-cool-warm-cool climatic oscillations marking the end of the Cretaceous.

  1. Studies of climate dynamics with innovative global-model simulations

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoming

    Climate simulations with different degrees of idealization are essential for the development of our understanding of the climate system. Studies in this dissertation employ carefully designed global-model simulations for the goal of gaining theoretical and conceptual insights into some problems of climate dynamics. Firstly, global warming-induced changes in extreme precipitation are investigated using a global climate model with idealized geography. The precipitation changes over an idealized north-south mid-latitude mountain barrier at the western margin of an otherwise flat continent are studied. The intensity of the 40 most intense events on the western slopes increases by about ~4°C of surface warming. In contrast, the intensity of the top 40 events on the eastern mountain slopes increases at about ~6°C. This higher sensitivity is due to enhanced ascent during the eastern-slope events, which can be explained in terms of linear mountain-wave theory relating to global warming-induced changes in the upper-tropospheric static stability and the tropopause level. Dominated by different dynamical factors, changes in the intensity of extreme precipitation events over plains and oceans might differ from changes over mountains. So the response of extreme precipitation over mountains and flat areas are further compared using larger data sets of simulated extreme events over the two types of surfaces. It is found that the sensitivity of extreme precipitation to increases in global mean surface temperature is 3% per °C lower over mountains than over the oceans or the plains. The difference in sensitivity among these regions is not due to thermodynamic effects, but rather to differences between the gravity-wave dynamics governing vertical velocities over the mountains and the cyclone dynamics governing vertical motions over the oceans and plains. The strengthening of latent heating in the storms over oceans and plains leads to stronger ascent in the warming climate

  2. Environmental health risk assessment and management for global climate change

    NASA Astrophysics Data System (ADS)

    Carter, P.

    2014-12-01

    This environmental health risk assessment and management approach for atmospheric greenhouse gas (GHG) pollution is based almost entirely on IPCC AR5 (2014) content, but the IPCC does not make recommendations. Large climate model uncertainties may be large environmental health risks. In accordance with environmental health risk management, we use the standard (IPCC-endorsed) formula of risk as the product of magnitude times probability, with an extremely high standard of precaution. Atmospheric GHG pollution, causing global warming, climate change and ocean acidification, is increasing as fast as ever. Time is of the essence to inform and make recommendations to governments and the public. While the 2ºC target is the only formally agreed-upon policy limit, for the most vulnerable nations, a 1.5ºC limit is being considered by the UNFCCC Secretariat. The Climate Action Network International (2014), representing civil society, recommends that the 1.5ºC limit be kept open and that emissions decline from 2015. James Hansen et al (2013) have argued that 1ºC is the danger limit. Taking into account committed global warming, its millennial duration, multiple large sources of amplifying climate feedbacks and multiple adverse impacts of global warming and climate change on crops, and population health impacts, all the IPCC AR5 scenarios carry extreme environmental health risks to large human populations and to the future of humanity as a whole. Our risk consideration finds that 2ºC carries high risks of many catastrophic impacts, that 1.5ºC carries high risks of many disastrous impacts, and that 1ºC is the danger limit. IPCC AR4 (2007) showed that emissions must be reversed by 2015 for a 2ºC warming limit. For the IPCC AR5 only the best-case scenario RCP2.6, is projected to stay under 2ºC by 2100 but the upper range is just above 2ºC. It calls for emissions to decline by 2020. We recommend that for catastrophic environmental health risk aversion, emissions decline

  3. Global climate drives southern right whale (Eubalaena australis) population dynamics.

    PubMed

    Leaper, Russell; Cooke, Justin; Trathan, Phil; Reid, Keith; Rowntree, Victoria; Payne, Roger

    2006-06-22

    Sea surface temperature (SST) time-series from the southwest Atlantic and the El Niño 4 region in the western Pacific were compared to an index of annual calving success of the southern right whale (Eubalaena australis) breeding in Argentina. There was a strong relationship between right whale calving output and SST anomalies at South Georgia in the autumn of the previous year and also with mean El Niño 4 SST anomalies delayed by 6 years. These results extend similar observations from other krill predators and show clear linkages between global climate signals and the biological processes affecting whale population dynamics.

  4. Global covariation of carbon turnover times with climate in terrestrial ecosystems.

    PubMed

    Carvalhais, Nuno; Forkel, Matthias; Khomik, Myroslava; Bellarby, Jessica; Jung, Martin; Migliavacca, Mirco; Mu, Mingquan; Saatchi, Sassan; Santoro, Maurizio; Thurner, Martin; Weber, Ulrich; Ahrens, Bernhard; Beer, Christian; Cescatti, Alessandro; Randerson, James T; Reichstein, Markus

    2014-10-09

    The response of the terrestrial carbon cycle to climate change is among the largest uncertainties affecting future climate change projections. The feedback between the terrestrial carbon cycle and climate is partly determined by changes in the turnover time of carbon in land ecosystems, which in turn is an ecosystem property that emerges from the interplay between climate, soil and vegetation type. Here we present a global, spatially explicit and observation-based assessment of whole-ecosystem carbon turnover times that combines new estimates of vegetation and soil organic carbon stocks and fluxes. We find that the overall mean global carbon turnover time is 23(+7)(-4) years (95 per cent confidence interval). On average, carbon resides in the vegetation and soil near the Equator for a shorter time than at latitudes north of 75° north (mean turnover times of 15 and 255 years, respectively). We identify a clear dependence of the turnover time on temperature, as expected from our present understanding of temperature controls on ecosystem dynamics. Surprisingly, our analysis also reveals a similarly strong association between turnover time and precipitation. Moreover, we find that the ecosystem carbon turnover times simulated by state-of-the-art coupled climate/carbon-cycle models vary widely and that numerical simulations, on average, tend to underestimate the global carbon turnover time by 36 per cent. The models show stronger spatial relationships with temperature than do observation-based estimates, but generally do not reproduce the strong relationships with precipitation and predict faster carbon turnover in many semi-arid regions. Our findings suggest that future climate/carbon-cycle feedbacks may depend more strongly on changes in the hydrological cycle than is expected at present and is considered in Earth system models.

  5. Global health equity and climate stabilisation: a common agenda.

    PubMed

    Friel, Sharon; Marmot, Michael; McMichael, Anthony J; Kjellstrom, Tord; Vågerö, Denny

    2008-11-08

    Although health has improved for many people, the extent of health inequities between and within countries is growing. Meanwhile, humankind is disrupting the global climate and other life-supporting environmental systems, thereby creating serious risks for health and wellbeing, especially in vulnerable populations but ultimately for everybody. Underlying determinants of health inequity and environmental change overlap substantially; they are signs of an economic system predicated on asymmetric growth and competition, shaped by market forces that mostly disregard health and environmental consequences rather than by values of fairness and support. A shift is needed in priorities in economic development towards healthy forms of urbanisation, more efficient and renewable energy sources, and a sustainable and fairer food system. Global interconnectedness and interdependence enable the social and environmental determinants of health to be addressed in ways that will increase health equity, reduce poverty, and build societies that live within environmental limits.

  6. ECOLOGICAL RISK ASSESSMENT IN THE CONTEXT OF GLOBAL CLIMATE CHANGE

    PubMed Central

    Landis, Wayne G; Durda, Judi L; Brooks, Marjorie L; Chapman, Peter M; Menzie, Charles A; Stahl, Ralph G; Stauber, Jennifer L

    2013-01-01

    Changes to sources, stressors, habitats, and geographic ranges; toxicological effects; end points; and uncertainty estimation require significant changes in the implementation of ecological risk assessment (ERA). Because of the lack of analog systems and circumstances in historically studied sites, there is a likelihood of type III error. As a first step, the authors propose a decision key to aid managers and risk assessors in determining when and to what extent climate change should be incorporated. Next, when global climate change is an important factor, the authors recommend seven critical changes to ERA. First, develop conceptual cause–effect diagrams that consider relevant management decisions as well as appropriate spatial and temporal scales to include both direct and indirect effects of climate change and the stressor of management interest. Second, develop assessment end points that are expressed as ecosystem services. Third, evaluate multiple stressors and nonlinear responses—include the chemicals and the stressors related to climate change. Fourth, estimate how climate change will affect or modify management options as the impacts become manifest. Fifth, consider the direction and rate of change relative to management objectives, recognizing that both positive and negative outcomes can occur. Sixth, determine the major drivers of uncertainty, estimating and bounding stochastic uncertainty spatially, temporally, and progressively. Seventh, plan for adaptive management to account for changing environmental conditions and consequent changes to ecosystem services. Good communication is essential for making risk-related information understandable and useful for managers and stakeholders to implement a successful risk-assessment and decision-making process. Environ. Toxicol. Chem. 2013;32:79–92. © 2012 SETAC PMID:23161373

  7. Multidecadal climate variability of global lands and oceans

    USGS Publications Warehouse

    McCabe, G.J.; Palecki, M.A.

    2006-01-01

    Principal components analysis (PCA) and singular value decomposition (SVD) are used to identify the primary modes of decadal and multidecadal variability in annual global Palmer Drought Severity Index (PDSI) values and sea-surface temperature (SSTs). The PDSI and SST data for 1925-2003 were detrended and smoothed (with a 10-year moving average) to isolate the decadal and multidecadal variability. The first two principal components (PCs) of the PDSI PCA explained almost 38% of the decadal and multidecadal variance in the detrended and smoothed global annual PDSI data. The first two PCs of detrended and smoothed global annual SSTs explained nearly 56% of the decadal variability in global SSTs. The PDSI PCs and the SST PCs are directly correlated in a pairwise fashion. The first PDSI and SST PCs reflect variability of the detrended and smoothed annual Pacific Decadal Oscillation (PDO), as well as detrended and smoothed annual Indian Ocean SSTs. The second set of PCs is strongly associated with the Atlantic Multidecadal Oscillation (AMO). The SVD analysis of the cross-covariance of the PDSI and SST data confirmed the close link between the PDSI and SST modes of decadal and multidecadal variation and provided a verification of the PCA results. These findings indicate that the major modes of multidecadal variations in SSTs and land-surface climate conditions are highly interrelated through a small number of spatially complex but slowly varying teleconnections. Therefore, these relations may be adaptable to providing improved baseline conditions for seasonal climate forecasting. Published in 2006 by John Wiley & Sons, Ltd.

  8. Global economic and health benefits of tobacco control: part 2.

    PubMed

    Wipfli, H; Samet, J M

    2009-09-01

    Although the risks of tobacco smoking have been known for decades, the pandemic of tobacco use continues. There are an estimated 1.3 billion smokers worldwide, along with millions more using various oral tobacco products. Recent global estimates place the mortality burden from tobacco use at over 6 million annually, with nearly two-thirds of these deaths occurring in developing countries. If current patterns persist, there will be an estimated 1 billion deaths from tobacco during the twenty-first century. Part 1 of this two-part paper provides an overview of the tobacco pandemic, the scope of the pandemic, and its economic and health consequences. Part 2 reviews the history of tobacco control to date and addresses the current global strategy, based on the World Health Organization's (WHO's) Framework Convention on Tobacco Control and the MPOWER package of interventions. Part 2 ends with a consideration of scenarios for the future of the pandemic.

  9. Controls on the Archean climate system investigated with a global climate model.

    PubMed

    Wolf, E T; Toon, O B

    2014-03-01

    The most obvious means of resolving the faint young Sun paradox is to invoke large quantities of greenhouse gases, namely, CO2 and CH4. However, numerous changes to the Archean climate system have been suggested that may have yielded additional warming, thus easing the required greenhouse gas burden. Here, we use a three-dimensional climate model to examine some of the factors that controlled Archean climate. We examine changes to Earth's rotation rate, surface albedo, cloud properties, and total atmospheric pressure following proposals from the recent literature. While the effects of increased planetary rotation rate on surface temperature are insignificant, plausible changes to the surface albedo, cloud droplet number concentrations, and atmospheric nitrogen inventory may each impart global mean warming of 3-7 K. While none of these changes present a singular solution to the faint young Sun paradox, a combination can have a large impact on climate. Global mean surface temperatures at or above 288 K could easily have been maintained throughout the entirety of the Archean if plausible changes to clouds, surface albedo, and nitrogen content occurred.

  10. Climate Change and a Global City: An Assessment of the Metropolitan East Coast Region

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia; Solecki, William

    1999-01-01

    The objective of the research is to derive an assessment of the potential climate change impacts on a global city - in this case the 31 county region that comprises the New York City metropolitan area. This study comprises one of the regional components that contribute to the ongoing U.S. National Assessment: The Potential Consequences of Climate Variability and Change and is an application of state-of-the-art climate change science to a set of linked sectoral assessment analyses for the Metro East Coast (MEC) region. We illustrate how three interacting elements of global cities react and respond to climate variability and change with a broad conceptual model. These elements include: people (e.g., socio- demographic conditions), place (e.g., physical systems), and pulse (e.g., decision-making and economic activities). The model assumes that a comprehensive assessment of potential climate change can be derived from examining the impacts within each of these elements and at their intersections. Thus, the assessment attempts to determine the within-element and the inter-element effects. Five interacting sector studies representing the three intersecting elements are evaluated. They include the Coastal Zone, Infrastructure, Water Supply, Public Health, and Institutional Decision-making. Each study assesses potential climate change impacts on the sector and on the intersecting elements, through the analysis of the following parts: 1. Current conditions of sector in the region; 2. Lessons and evidence derived from past climate variability; 3. Scenario predictions affecting sector; potential impacts of scenario predictions; 4. Knowledge/information gaps and critical issues including identification of additional research questions, effectiveness of modeling efforts, equity of impacts, potential non-local interactions, and policy recommendations; and 5. Identification of coping strategies - i.e., resilience building, mitigation strategies, new technologies, education that

  11. A new climate dataset for systematic assessments of climate change impacts as a function of global warming

    NASA Astrophysics Data System (ADS)

    Heinke, J.; Ostberg, S.; Schaphoff, S.; Frieler, K.; Müller, C.; Gerten, D.; Meinshausen, M.; Lucht, W.

    2013-10-01

    In the ongoing political debate on climate change, global mean temperature change (ΔTglob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines, systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalised patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 Atmosphere-Ocean General Circulation Models (AOGCMs). The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilise a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper) facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

  12. Climate Change Impacts for Conterminous USA: An Integrated Assessment Part 2. Models and Validation

    SciTech Connect

    Thomson, Allison M.; Rosenberg, Norman J.; Izaurralde, R Cesar C.; Brown, Robert A.

    2005-03-01

    As CO{sub 2} and other greenhouse gases accumulate in the atmosphere and contribute to rising global temperatures, it is important to examine how a changing climate may affect natural and managed ecosystems. In this series of papers, we study the impacts of climate change on agriculture, water resources and natural ecosystems in the conterminous United States using a suite of climate change predictions from General Circulation Models (GCMs) as described in Part 1. Here we describe the agriculture model EPIC and the HUMUS water model and validate them with historical crop yields and streamflow data. We compare EPIC simulated grain and forage crop yields with historical crop yields from the US Department of Agriculture and find an acceptable level of agreement for this study. The validation of HUMUS simulated streamflow with estimates of natural streamflow from the US Geological Survey shows that the model is able to reproduce significant relationships and capture major trends.

  13. Global N2 fixation and its response to global climate change and increasing CO2 level

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Houlton, B. Z.; Field, C. B.; Vitousek, P. M.

    2007-12-01

    Biological nitrogen fixation is the largest nitrogen input to many natural terrestrial ecosystems, particularly tropical ecosystems, thereby influencing primary production, CO2 uptake, and responses to climate change. However, our understanding of biological nitrogen fixation is still very limited, and the dominant plant family capable of fixing N2 symbiotically, the Leguminasae, exhibits considerable geographic variation in the terrestrial biosphere. Based on the principles of resource optimization, we developed a new model to constrain our understanding of the geographic distribution of N fixation globally. Our model treats N fixation according to the C cost of fixing N, coupled with the N cost associated with acquiring P from the soil for plant growth. The model was used to estimate the rate of global symbiotic N2 fixation and the response of symbiotic N2 fixers to changes in climate and rising atmospheric CO2. We shall discuss global N limitation of terrestrial carbon uptake and its implications for climate-carbon cycle feedbacks from present to year 2100.

  14. Treatment of Solar and Thermal Radiation in Global Climate Models

    NASA Astrophysics Data System (ADS)

    Lacis, A. A.; Oinas, V.

    2015-12-01

    It is the interaction of solar and thermal radiation with the climate system constituents that determines the prevailing climate on Earth. The principal radiative constituents of the climate system are clouds, aerosols, greenhouse gases, and the ground surface. Accurate rendering of their interaction with the incident solar radiation and the outgoing thermal radiation is required if a climate model is to be capable of simulating and predicting the complex changes that take place in the terrestrial climate system. In the GISS climate model, these radiative tasks are accomplished with a GCM radiation model that utilizes the correlated k-distribution treatment that closely matches Line-by-Line accuracy (Lacis and Oinas, 1991) for the gaseous absorbers, and an adaptation of the doubling/adding method (Lacis and Hansen, 1974) to compute multiple scattering by clouds and aerosols. The radiative parameters to model the spectral dependence of solar and longwave radiation (UV to microwave) utilizes Mie scattering and T-matrix calculations covering the broad range of particle sizes and compositions encountered in the climate system. Cloud treatment also incorporates an empirical representation of sub-grid inhomogeneity and space-time variability of cloud optical properties (derived from ISCCP data) that utilizes a Monte Carlo-based re-scaling parameterization of the cloud plane-parallel radiative parameters (Cairns et al, 2001). The longwave calculations compute correlated k-distribution radiances at three quadrature points (without scattering), and include the effects of cloud scattering in parameterized form for the outgoing and downwelling LW fluxes. For hygroscopic aerosols (e.g., sulfates, nitrates, sea salt), the effects of changing relative humidity on particle size and refractive index are explicitly taken into account. In this way, the GISS GCM radiation model calculates the SW and LW radiative fluxes, and the corresponding radiative heating and cooling rates in

  15. Global Catastrophes in Perspective: Asteroid Impacts vs Climate Change

    NASA Astrophysics Data System (ADS)

    Boslough, M. B.; Harris, A. W.

    2008-12-01

    When allocating resources to address threats, decision makers are best served by having objective assessments of the relative magnitude of the threats in question. Asteroids greater than about 1 km in diameter are assumed by the planetary impact community to exceed a "global catastrophe threshold". Impacts from smaller objects are expected to cause local or regional destruction, and would be the proximate cause of most associated fatalities. Impacts above the threshold would be expected to alter the climate, killing billions of people and causing a collapse of civilization. In this apocalyptic scenario, only a small fraction of the casualties would be attributable to direct effects of the impact: the blast wave, thermal radiation, debris, ground motion, or tsunami. The vast majority of deaths would come later and be due to indirect causes: starvation, disease, or violence as a consequence of societal disruption related to the impact-induced global climate change. The concept of a catastrophe threshold comes from "nuclear winter" studies, which form the basis for quantitative estimates of the consequences of a large impact. The probability estimates come from astronomical observations and statistical analysis. Much of the impact threat, at its core, is a climate-change threat. Prior to the Spaceguard Survey of Near-Earth Objects (NEOs), the chance of dying from an asteroid impact was estimated to be 1 in 25,000 (Chapman & Morrison, 1994). Most of the large asteroids have now been discovered, and none is on an impact trajectory. Moreover, new data show that mid-sized asteroids (tens to hundreds of meters across) are less abundant than previously thought, by a factor of three. We now estimate that the lifetime odds of being killed by the impact of one of the remaining undiscovered NEOs are about one in 720,000 for individuals with a life expectancy of 80 years (Harris, 2008). One objective way to compare the relative magnitude of the impact threat to that of

  16. Climate Impacts of Large-scale Wind Farms as Parameterized in a Global Climate Model

    NASA Astrophysics Data System (ADS)

    Fitch, Anna

    2015-04-01

    The local, regional and global climate impacts of a large-scale global deployment of wind power in regionally high densities over land is investigated for a 60 year period. Wind farms are represented as elevated momentum sinks, as well as enhanced turbulence to represent turbine blade mixing in a global climate model, the Community Atmosphere Model version 5 (CAM5). For a total installed capacity of 2.5 TW, to provide 16% of the world's projected electricity demand in 2050, minimal impacts are found, both regionally and globally, on temperature, sensible and latent heat fluxes, cloud and precipitation. A mean near-surface warming of 0.12+/-0.07 K is seen within the wind farms. Impacts on wind speed and turbulence are more pronounced, but largely confined to within the wind farm areas. Increasing the wind farm areas to provide an installed capacity of 10 TW, or 65% of the 2050 electricity demand, causes further impacts, however, they remain slight overall. Maximum temperature changes are less than 0.5 K in the wind farm areas. Impacts, both within the wind farms and beyond, become more pronounced with a doubling in turbine density, to provide 20 TW of installed capacity, or 130% of the 2050 electricity demand. However, maximum temperature changes remain less than 0.7 K. Representing wind farms instead as an increase in surface roughness generally produces similar mean results, however, maximum changes increase and influences on wind and turbulence are exaggerated. Overall, wind farm impacts are much weaker than those expected from greenhouse gas emissions, with global mean climate impacts very slight.

  17. Biogeophysical effects of CO2-fertilization on global climate

    SciTech Connect

    Bala, G; Caldeira, K; Mirin, A; Wickett, M; Delire, C; Phillips, T J

    2006-04-26

    CO{sub 2}-fertilization affects plant growth, which modifies surface physical properties, altering the surface albedo, and fluxes of sensible and latent heat. We investigate how such CO{sub 2}-fertilization effects on vegetation and surface properties would affect the climate system. Using a global three-dimensional climate-carbon model that simulates vegetation dynamics, we compare two multi-century simulations: a ''Control'' simulation with no emissions, and a ''Physiol-noGHG'' simulation where physiological changes occur as a result of prescribed CO{sub 2} emissions, but where CO{sub 2}-induced greenhouse warming is not included. In our simulations, CO{sub 2}-fertilization produces warming; we obtain an annual- and global-mean warming of about 0.65 K (and land-only warming of 1.4 K) after 430 years. This century-scale warming is mostly due to a decreased surface albedo associated with the expansion of the Northern Hemisphere boreal forests. On decadal time scales, the CO{sub 2} uptake by afforestation should produce a cooling effect that exceeds this albedo-based warming; but if the forests remain in place, the CO{sub 2}-enhanced-greenhouse effect would diminish as the ocean equilibrates with the atmosphere, whereas the albedo effect would persist. Thus, on century time scales, there is the prospect for net warming from CO{sub 2}-fertilization of the land biosphere. Further study is needed to confirm and better quantify our results.

  18. Thermohaline circulations and global climate change. Final report

    SciTech Connect

    Hanson, H.P.

    1994-09-01

    This research is ultimately concerned with investigating the hypothesis that changes in surface thermal and hydrological forcing of the North Atlantic, changes that might be expected to accompany CO2-induced global warming, could result in ocean-atmosphere interactions` exerting a positive feedback on the climate system. This report concerns research conducted with funding from the Carbon Dioxide Research Program (now the Global Climate Change Program) of the US Department of Energy via grant no. DE-FG02-90ER61019 during the period 15 July 1990 - 14 July 1994. This was a three-year award, extended to a fourth year (15 July 1993 - 14 July 1994) via a no-cost extension. It is important to emphasize that this award has been renewed for an additional two years (15 July 1993 - 14 July 1995) via grant no. DE-FG03-93ER61646 (with the same title). Because the project was originally envisioned to be a five-year effort, many of the important results and conclusions will be available for the Final Report of that second award. This report therefore concerns mainly preliminary conclusions and a discussion of progress toward understanding the central hypothesis of the research.

  19. THE IMPACT OF THERMAL ENGINEERING RESEARCH ON GLOBAL CLIMATE CHANGE

    SciTech Connect

    Phelan, Patrick; Abdelaziz, Omar; Otanicar, Todd; Phelan, Bernadette; Prasher, Ravi; Taylor, Robert; Tyagi, Himanshu

    2014-01-01

    Global climate change is recognized by many people around the world as being one of the most pressing issues facing our society today. The thermal engineering research community clearly plays an important role in addressing this critical issue, but what kind of thermal engineering research is, or will be, most impactful? In other words, in what directions should thermal engineering research be targeted in order to derive the greatest benefit with respect to global climate change? To answer this question we consider the potential reduction in greenhouse gas (GHG) emissions, coupled with potential economic impacts, resulting from thermal engineering research. Here a new model framework is introduced that allows a technological, sector-by-sector analysis of GHG emissions avoidance. For each sector, we consider the maximum reduction in CO2 emissions due to such research, and the cost effectiveness of the new efficient technologies. The results are normalized on a country-by-country basis, where we consider the USA, the European Union, China, India, and Australia as representative countries or regions. Among energy supply-side technologies, improvements in coal-burning power generation are seen as having the most beneficial CO2 and economic impacts. The one demand-side technology considered, residential space cooling, offers positive but limited impacts. The proposed framework can be extended to include additional technologies and impacts, such as water consumption.

  20. Globalization, commodification and mass transplant of nurses: Part 1.

    PubMed

    Cutcliffe, John R; Yarbrough, Susan

    The world is currently facing a shortage of nurses and this is predicted to worsen as a result of the looming en masse retirement of the so-called 'baby-boom' generation. Moreover, this problem is foreseen to be far more pronounced in Western countries where the post-Second World War 'baby-boom' demographic was (and is) most prominent. Data collected by various international organizations illustrates a corresponding recent increase in nurse migration and that such mass transplantation inevitably involves the unidirectional movement of nurses from developing countries to developed Western countries. As a result, this two-part article examines this mass transplantation within the context of globalization. Part one provides compelling international data regarding the global shortage of nurses and the corresponding increase in nurse migration from 'underdeveloped' to 'Western' countries. It then situates the phenomenon in the context of global health and highlights the extent of the debate so far, such as it is.

  1. Biotechnology in a global economy. Volume 2. Part 1

    SciTech Connect

    Not Available

    1991-06-01

    Volume 2, Part 1 of Biotechnology in a Global Economy is comprised of various papers relating to the biotechnology industry and its level of development in various countries. Major topics discussed include current status of the industry in these countries, financing sources, future strategies, special projects being pursued, and technology transfer.

  2. Educating Part-Time MBAs for the Global Business Environment

    ERIC Educational Resources Information Center

    Randolph, W. Alan

    2008-01-01

    To be successful managers in the business world of the 21st century, MBA students must acquire global skills of business acumen, reflection, cultural sensitivity, and multi-cultural teamwork. Developing these skills requires international experience, but educating part-time MBAs creates a special challenge demanding both rigor and efficiency. This…

  3. Global agricultural intensification during climate change: a role for genomics.

    PubMed

    Abberton, Michael; Batley, Jacqueline; Bentley, Alison; Bryant, John; Cai, Hongwei; Cockram, James; de Oliveira, Antonio Costa; Cseke, Leland J; Dempewolf, Hannes; De Pace, Ciro; Edwards, David; Gepts, Paul; Greenland, Andy; Hall, Anthony E; Henry, Robert; Hori, Kiyosumi; Howe, Glenn Thomas; Hughes, Stephen; Humphreys, Mike; Lightfoot, David; Marshall, Athole; Mayes, Sean; Nguyen, Henry T; Ogbonnaya, Francis C; Ortiz, Rodomiro; Paterson, Andrew H; Tuberosa, Roberto; Valliyodan, Babu; Varshney, Rajeev K; Yano, Masahiro

    2016-04-01

    Agriculture is now facing the 'perfect storm' of climate change, increasing costs of fertilizer and rising food demands from a larger and wealthier human population. These factors point to a global food deficit unless the efficiency and resilience of crop production is increased. The intensification of agriculture has focused on improving production under optimized conditions, with significant agronomic inputs. Furthermore, the intensive cultivation of a limited number of crops has drastically narrowed the number of plant species humans rely on. A new agricultural paradigm is required, reducing dependence on high inputs and increasing crop diversity, yield stability and environmental resilience. Genomics offers unprecedented opportunities to increase crop yield, quality and stability of production through advanced breeding strategies, enhancing the resilience of major crops to climate variability, and increasing the productivity and range of minor crops to diversify the food supply. Here we review the state of the art of genomic-assisted breeding for the most important staples that feed the world, and how to use and adapt such genomic tools to accelerate development of both major and minor crops with desired traits that enhance adaptation to, or mitigate the effects of climate change.

  4. Global change and marine communities: alien species and climate change.

    PubMed

    Occhipinti-Ambrogi, Anna

    2007-01-01

    Anthropogenic influences on the biosphere since the advent of the industrial age are increasingly causing global changes. Climatic change and the rising concentration of greenhouse gases in the atmosphere are ranking high in scientific and public agendas, and other components of global change are also frequently addressed, among which are the introductions of non indigenous species (NIS) in biogeographic regions well separated from the donor region, often followed by spectacular invasions. In the marine environment, both climatic change and spread of alien species have been studied extensively; this review is aimed at examining the main responses of ecosystems to climatic change, taking into account the increasing importance of biological invasions. Some general principles on NIS introductions in the marine environment are recalled, such as the importance of propagule pressure and of development stages during the time course of an invasion. Climatic change is known to affect many ecological properties; it interacts also with NIS in many possible ways. Direct (proximate) effects on individuals and populations of altered physical-chemical conditions are distinguished from indirect effects on emergent properties (species distribution, diversity, and production). Climatically driven changes may affect both local dispersal mechanisms, due to the alteration of current patterns, and competitive interactions between NIS and native species, due to the onset of new thermal optima and/or different carbonate chemistry. As well as latitudinal range expansions of species correlated with changing temperature conditions, and effects on species richness and the correlated extinction of native species, some invasions may provoke multiple effects which involve overall ecosystem functioning (material flow between trophic groups, primary production, relative extent of organic material decomposition, extent of benthic-pelagic coupling). Some examples are given, including a special

  5. Greenhouse Development Rights. An approach to the global climate regime that takes climate protection seriously while also preserving the right to human development

    SciTech Connect

    Athanasiou, T.; Kartha, S.; Baer, P.

    2006-11-15

    This brief paper introduces a new approach to the global climate regime, one designed to recognize the urgency of the climate crisis, while at the same time embracing the fundamental right to human development. This 'Greenhouse Development Rights' approach is not primarily defended on ethical grounds. It's core justification, rather, is a realistic one - our claim is that this approach, or something like it, is needed if we're to break the global impasse over developmental equity in a climate constrained world. We put forward this new approach not because we believe that it will be readily adopted as the foundation of the post-2012 regime. Rather, we intend it as a standard of comparison, a reference framework that marks out the steps that must be part of an effective climate regime, while refusing to prejudge which of them will or will not ultimately be deemed politically acceptable. Against this reference framework, given regime proposals can be measured to determine how realistic they are, from the standpoint of genuinely addressing the North/South impasse and having a chance of preventing a climate catastrophe. The climate crisis, as most everyone in the climate community knows, is upon us. Still, the pace of our response has been profoundly inadequate, so this paper will begin with the blunt truth. The science now tells us that we're pushing beyond mere 'dangerous anthropogenic interference with the climate system', and are rather on the verge of committing to catastrophic interference.

  6. Advancing Collaborative Climate Studies through Globally Distributed Geospatial Analysis

    NASA Astrophysics Data System (ADS)

    Singh, R.; Percivall, G.

    2009-12-01

    (note: acronym glossary at end of abstract) For scientists to have confidence in the veracity of data sets and computational processes not under their control, operational transparency must be much greater than previously required. Being able to have a universally understood and machine-readable language for describing such things as the completeness of metadata, data provenance and uncertainty, and the discrete computational steps in a complex process take on increased importance. OGC has been involved with technological issues associated with climate change since 2005 when we, along with the IEEE Committee on Earth Observation, began a close working relationship with GEO and GEOSS (http://earthobservations.org). GEO/GEOS provide the technology platform to GCOS who in turn represents the earth observation community to UNFCCC. OGC and IEEE are the organizers of the GEO/GEOSS Architecture Implementation Pilot (see http://www.ogcnetwork.net/AIpilot). This continuing work involves closely working with GOOS (Global Ocean Observing System) and WMO (World Meteorological Organization). This session reports on the findings of recent work within the OGC’s community of software developers and users to apply geospatial web services to the climate studies domain. The value of this work is to evolve OGC web services, moving from data access and query to geo-processing and workflows. Two projects will be described, the GEOSS API-2 and the CCIP. AIP is a task of the GEOSS Architecture and Data Committee. During its duration, two GEO Tasks defined the project: AIP-2 began as GEO Task AR-07-02, to lead the incorporation of contributed components consistent with the GEOSS Architecture using a GEO Web Portal and a Clearinghouse search facility to access services through GEOSS Interoperability Arrangements in support of the GEOSS Societal Benefit Areas. AIP-2 concluded as GEOS Task AR-09-01b, to develop and pilot new process and infrastructure components for the GEOSS Common

  7. Imprints of climate forcings in global gridded temperature data

    NASA Astrophysics Data System (ADS)

    Mikšovský, Jiří; Holtanová, Eva; Pišoft, Petr

    2016-03-01

    Monthly near-surface temperature anomalies from several gridded data sets (GISTEMP, Berkeley Earth, MLOST, HadCRUT4, 20th Century Reanalysis) were investigated and compared with regard to the presence of components attributable to external climate forcings (associated with anthropogenic greenhouse gases, as well as solar and volcanic activity) and to major internal climate variability modes (El Niño/Southern Oscillation, North Atlantic Oscillation, Atlantic Multidecadal Oscillation, Pacific Decadal Oscillation and variability characterized by the Trans-Polar Index). Multiple linear regression was used to separate components related to individual explanatory variables in local monthly temperatures as well as in their global means, over the 1901-2010 period. Strong correlations of temperature and anthropogenic forcing were confirmed for most of the globe, whereas only weaker and mostly statistically insignificant connections to solar activity were indicated. Imprints of volcanic forcing were found to be largely insignificant in the local temperatures, in contrast to the clear volcanic signature in their global averages. Attention was also paid to the manifestations of short-term time shifts in the responses to the forcings, and to differences in the spatial fingerprints detected from individual temperature data sets. It is shown that although the resemblance of the response patterns is usually strong, some regional contrasts appear. Noteworthy differences from the other data sets were found especially for the 20th Century Reanalysis, particularly for the components attributable to anthropogenic forcing over land, but also in the response to volcanism and in some of the teleconnection patterns related to the internal climate variability modes.

  8. The Indonesian Throughflow and the Global Climate System.

    NASA Astrophysics Data System (ADS)

    Schneider, Niklas

    1998-04-01

    The role of the Indonesian Throughflow in the global climate system is investigated with a coupled ocean-atmosphere model by contrasting simulations with realistic throughflow and closed Indonesian passages.The Indonesian Throughflow affects the oceanic circulation and thermocline depth around Australia and in the Indian Ocean as described in previous studies and explained by Sverdrup transports. An open throughflow thereby increases surface temperatures in the eastern Indian ocean, reduces temperatures in the equatorial Pacific, and shifts the warm pool and centers of deep convection in the atmosphere to the west. This control on sea surface temperature and deep convection affects atmospheric pressure in the entire Tropics and, via atmospheric teleconnections, in the midlatitudes. As a result, surface wind stress in the entire Tropics changes and meridional and zonal gradients of the tropical thermocline and associated currents increase in the Pacific and decrease in the Indian Ocean. The response includes an acceleration of the equatorial undercurrent in the Pacific, and a deceleration in the Indian Ocean. Thus the Indonesian Throughflow exerts significant control over the global climate in general and the tropical climate in particular.Changes of surface fluxes in the Pacific warm pool region are consistent with the notion that shading by clouds, rather than increases of evaporation, limit highest surface temperatures in the open ocean of the western Pacific. In the marginal seas of the Pacific and in the Indian Ocean no such relationship is found. The feedback of the throughflow transport and its wind forcing is negative and suggests that this interplay cannot excite growing solution or lead to self-sustained oscillations of the ocean-atmosphere system.

  9. Global Squeeze: Assessing Climate-Critical Resource Constraints for Coastal Climate Adaptation

    NASA Astrophysics Data System (ADS)

    Chase, N. T.; Becker, A.; Schwegler, B.; Fischer, M.

    2014-12-01

    The projected impacts of climate change in the coastal zone will require local planning and local resources to adapt to increasing risks of social, environmental, and economic consequences from extreme events. This means that, for the first time in human history, aggregated local demands could outpace global supply of certain "climate-critical resources." For example, construction materials such as sand and gravel, steel, and cement may be needed to fortify many coastal locations at roughly the same point in time if decision makers begin to construct new storm barriers or elevate coastal lands. Where might adaptation bottlenecks occur? Can the world produce enough cement to armour the world's seaports as flood risks increase due to sea-level rise and more intense storms? Just how many coastal engineers would multiple such projects require? Understanding such global implications of adaptation requires global datasets—such as bathymetry, coastal topography, local sea-level rise and storm surge projections, and construction resource production capacity—that are currently unavailable at a resolution appropriate for a global-scale analysis. Our research group has identified numerous gaps in available data necessary to make such estimates on both the supply and demand sides of this equation. This presentation examines the emerging need and current availability of these types of datasets and argues for new coordinated efforts to develop and share such data.

  10. Globalization and the trade in human body parts.

    PubMed

    Harrison, T

    1999-02-01

    Since the early 1980s, the number and variety of organ transplantations has increased enormously worldwide. Accompanying this increase has been the emergence of a market for human body parts. This paper argues that, while the trade in human body parts is conditioned by technological advances, it must be understood in the broader context of globalization, specifically the extension and intensification of a capitalist mode of exchange. In this regard, it is argued that the trade in human body parts mirrors the "normal" system of unequal exchanges that mark other forms of trade between the developed and undeveloped regions of the world.

  11. Disease emergence from global climate and land use change.

    PubMed

    Patz, Jonathan A; Olson, Sarah H; Uejio, Christopher K; Gibbs, Holly K

    2008-11-01

    Climate change and land use change can affect multiple infectious diseases of humans, acting either independently or synergistically. Expanded efforts in empiric and future scenario-based risk assessment are required to anticipate problems. Moreover, the many health impacts of climate and land use change must be examined in the context of the myriad other environmental and behavioral determinants of disease. To optimize prevention capabilities, upstream environmental approaches must be part of any intervention, rather than assaults on single agents of disease. Clinicians must develop stronger ties, not only to public health officials and scientists, but also to earth and environmental scientists and policy makers. Without such efforts, we will inevitably benefit our current generation at the cost of generations to come.

  12. Regional features of global climate change in the Carpathian Basin

    NASA Astrophysics Data System (ADS)

    Pongrácz, R.; Bartholy, J.; Matyasovszky, I.; Schlanger, V.

    2003-04-01

    IPCC TAR suggests that eastern and central European countries could become highly vulnerable to global warming. Our investigations support these findings, especially, in case of two subregions: (1) Hungarian Great Plain, (2) watershed of the Lake Balaton. Severe shortage of precipitation occurred in the last few decades in both areas, thus, ecosystems must face to high risk of environmental change. The Great Plain is the largest agricultural area in Hungary where high variability of floods and droughts causes severe damages in crop yields and human settlements. Frequent extreme events may result in unstable climate conditions and increased vulnerability of agricultural activity in this region. One of the largest lake in Europe is the Lake Balaton with its unique 3.3 meter depth on average. In the last few years, the mean water level has decreased by 0.6-0.8 m several times for a few months period. The only outflow of the lake, a small creek (called Sio) has been regulated in 1863 in order to control the water runoff from the lake to the river Danube (120 km distance). The aim of our investigations is to compare climate change scenarios for these two sensitive regions. Two downscaling techniques have been compared, namely, (1) stochastical downscaling method nested in coupled ocean-atmosphere GCMs, (2) an upwelling diffusion energy balance model combined with GCM outputs and IPCC emission scenarios. The stochastical downscaling method includes large-scale circulation of the atmosphere, and also, it is able to represent the linkage between the local surface variables and large-scale circulation. Seasonal and annual changes in temperature and precipitation have been determined in case of the 2xCO2 climate and compared to historical data. Furthermore, several IPCC emission scenarios have been compared and GCM outputs have been analysed in order to project climate conditions for the 21st century in the Carpathian Basin.

  13. Globally Gridded Satellite (GridSat) Observations for Climate Studies

    NASA Technical Reports Server (NTRS)

    Knapp, Kenneth R.; Ansari, Steve; Bain, Caroline L.; Bourassa, Mark A.; Dickinson, Michael J.; Funk, Chris; Helms, Chip N.; Hennon, Christopher C.; Holmes, Christopher D.; Huffman, George J.; Kossin, James P.; Lee, Hai-Tien; Loew, Alexander; Magnusdottir, Gudrun

    2012-01-01

    Geostationary satellites have provided routine, high temporal resolution Earth observations since the 1970s. Despite the long period of record, use of these data in climate studies has been limited for numerous reasons, among them: there is no central archive of geostationary data for all international satellites, full temporal and spatial resolution data are voluminous, and diverse calibration and navigation formats encumber the uniform processing needed for multi-satellite climate studies. The International Satellite Cloud Climatology Project set the stage for overcoming these issues by archiving a subset of the full resolution geostationary data at approx.10 km resolution at 3 hourly intervals since 1983. Recent efforts at NOAA s National Climatic Data Center to provide convenient access to these data include remapping the data to a standard map projection, recalibrating the data to optimize temporal homogeneity, extending the record of observations back to 1980, and reformatting the data for broad public distribution. The Gridded Satellite (GridSat) dataset includes observations from the visible, infrared window, and infrared water vapor channels. Data are stored in the netCDF format using standards that permit a wide variety of tools and libraries to quickly and easily process the data. A novel data layering approach, together with appropriate satellite and file metadata, allows users to access GridSat data at varying levels of complexity based on their needs. The result is a climate data record already in use by the meteorological community. Examples include reanalysis of tropical cyclones, studies of global precipitation, and detection and tracking of the intertropical convergence zone.

  14. Regional and Global Climate Response to Anthropogenic SO2 Emissions from China in Three Climate Models

    NASA Technical Reports Server (NTRS)

    Kasoar, M.; Voulgarakis, Apostolos; Lamarque, Jean-Francois; Shindell, Drew T.; Bellouin, Nicholas; Collins, William J.; Faluvegi, Greg; Tsigaridis, Kostas

    2016-01-01

    We use the HadGEM3-GA4, CESM1, and GISS ModelE2 climate models to investigate the global and regional aerosol burden, radiative flux, and surface temperature responses to removing anthropogenic sulfur dioxide (SO2) emissions from China. We find that the models differ by up to a factor of 6 in the simulated change in aerosol optical depth (AOD) and shortwave radiative flux over China that results from reduced sulfate aerosol, leading to a large range of magnitudes in the regional and global temperature responses. Two of the three models simulate a near-ubiquitous hemispheric warming due to the regional SO2 removal, with similarities in the local and remote pattern of response, but overall with a substantially different magnitude. The third model simulates almost no significant temperature response. We attribute the discrepancies in the response to a combination of substantial differences in the chemical conversion of SO2 to sulfate, translation of sulfate mass into AOD, cloud radiative interactions, and differences in the radiative forcing efficiency of sulfate aerosol in the models. The model with the strongest response (HadGEM3-GA4) compares best with observations of AOD regionally, however the other two models compare similarly (albeit poorly) and still disagree substantially in their simulated climate response, indicating that total AOD observations are far from sufficient to determine which model response is more plausible. Our results highlight that there remains a large uncertainty in the representation of both aerosol chemistry as well as direct and indirect aerosol radiative effects in current climate models, and reinforces that caution must be applied when interpreting the results of modelling studies of aerosol influences on climate. Model studies that implicate aerosols in climate responses should ideally explore a range of radiative forcing strengths representative of this uncertainty, in addition to thoroughly evaluating the models used against

  15. The Role of Global Hydrologic Processes in Interannual and Long-Term Climate Variability

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.

    1997-01-01

    The earth's climate and its variability is linked inextricably with the presence of water on our planet. El Nino / Southern Oscillation-- the major mode of interannual variability-- is characterized by strong perturbations in oceanic evaporation, tropical rainfall, and radiation. On longer time scales, the major feedback mechanism in CO2-induced global warming is actually that due to increased water vapor holding capacity of the atmosphere. The global hydrologic cycle effects on climate are manifested through influence of cloud and water vapor on energy fluxes at the top of atmosphere and at the surface. Surface moisture anomalies retain the "memory" of past precipitation anomalies and subsequently alter the partitioning of latent and sensible heat fluxes at the surface. At the top of atmosphere, water vapor and cloud perturbations alter the net amount of radiation that the earth's climate system receives. These pervasive linkages between water, radiation, and surface processes present major complexities for observing and modeling climate variations. Major uncertainties in the observations include vertical structure of clouds and water vapor, surface energy balance, and transport of water and heat by wind fields. Modeling climate variability and change on a physical basis requires accurate by simplified submodels of radiation, cloud formation, radiative exchange, surface biophysics, and oceanic energy flux. In the past, we m safely say that being "data poor' has limited our depth of understanding and impeded model validation and improvement. Beginning with pre-EOS data sets, many of these barriers are being removed. EOS platforms with the suite of measurements dedicated to specific science questions are part of our most cost effective path to improved understanding and predictive capability. This talk will highlight some of the major questions confronting global hydrology and the prospects for significant progress afforded by EOS-era measurements.

  16. Expansion of global drylands under a warming climate

    NASA Astrophysics Data System (ADS)

    Feng, S.; Fu, Q.

    2013-10-01

    Global drylands encompassing hyper-arid, arid, semiarid, and dry subhumid areas cover about 41 percent of the earth's terrestrial surface and are home to more than a third of the world's population. By analyzing observations for 1948-2008 and climate model simulations for 1948-2100, we show that global drylands have expanded in the last sixty years and will continue to expand in the 21st~century. By the end of this century, the world's drylands (under a high greenhouse gas emission scenario) are projected to be 5.8 × 106 km2 (or 10%) larger than in the 1961-1990 climatology. The major expansion of arid regions will occur over southwest North America, the northern fringe of Africa, southern Africa, and Australia, while major expansions of semiarid regions will occur over the north side of the Mediterranean, southern Africa, and North and South America. The global dryland expansions will increase the population affected by water scarcity and land degradations.

  17. Indicators on economic risk from global climate change.

    PubMed

    Grossmann, Wolf D; Steininger, Karl; Grossmann, Iris; Magaard, Lorenz

    2009-08-15

    Climate change mitigation requires a rapid decrease of global emissions of greenhouse gases (GHGs) from their present value of 8.4 Gt/C/year to, as of current knowledge, approximately 1 GtC/year by the end of the century. The necessary decrease of GHG emissions will have large impacts on existing and new investments with long lifetimes, such coal-fired power plants or buildings. Strategic decision making for major investments can be facilitated by indicators that express the likelihood of costly retrofitting or shut-down of carbon intensive equipment over time. We provide a set of simple indicators that support assessment and decision making in this field. Given a certain emissions target, carbon allowance prices in a cap-and-trade plan will depend on the development of the global economy and the degree to which the target is approached on the global and national levels. The indicators measure the degree to which a given emissions target is approached nationally and assess risks for long-lived investments subject to a range of emissions targets. A comparative case study on existing coal-fired power plants with planned plants and utility-scale photovoltaic power-plants confirms that high risk for coal-fired power plants is emerging. New legislation further confirms this result.

  18. Using Argumentation to Foster Learning about Global Climate Change

    NASA Astrophysics Data System (ADS)

    Golden, B. W.

    2012-12-01

    Given the complexity of the science involving climate change (IPCC, 2007), its lack of curricular focus within US K-12 schooling (Golden, 2009), and the difficulty in effecting conceptual change in science (Vosniadou, 2007), we sought to research middle school students' conceptions about climate change, in addition to how those conceptions changed during and as a result of a deliberately designed global climate change (GCC) unit. In a sixth grade classroom, a unit was designed which incorporated Argumentation-Driven Inquiry (Sampson & Grooms, 2010). That is, students were assigned to groups and asked to make sense of standard GCC data such as paleoclimate data from ice cores, direct temperature measurement, and Keeling curves, in addition to learning about the greenhouse effect in a modeling lesson (Hocking, et al, 1993). The students were then challenged, in groups, to create, on whiteboards, explanations and defend these explanations to and with their peers. They did two iterations of this argumentation. The first iteration focused on the simple identification of climate change patterns. The second focused on developing causal explanations for those patterns. After two rounds of such argumentation, the students were then asked to write (individually) a "final" argument which accounted for the given data. Interview and written data were analyzed prior to the given unit, during it, and after it, in order to capture complicated nuance that might escape detection by simpler research means such as surveys. Several findings emerged which promised to be of interest to climate change educators. The first is that many students tended to "know" many "facts" about climate change, but were unable to connect these disparate facts in any meaningful ways. A second finding is that while no students changed their entire belief systems, even after a robust unit which would seemingly challenge such, each student engaged did indeed modify the manner in which they discussed the

  19. Global Climate Change, Food Security, and Local Sustainability: Increasing Climate Literacy in Urban Students

    NASA Astrophysics Data System (ADS)

    Boger, R. A.; Low, R.; Gorokhovich, Y.

    2011-12-01

    Three higher education institutions, University of Nebraska-Lincoln (UNL), Brooklyn College, and Lehman College, are working together to share expertise and resources to expand climate change topics offered to undergraduate and graduate students in New York City (NYC). This collaboration combines existing UNL educational learning resources and infrastructure in virtual coursework. It will supply global climate change education and locally-based research experiences to the highly diverse undergraduate students of Brooklyn and Lehman Colleges and to middle and high school teachers in NYC. Through the university partnership, UNL materials are being adapted and augmented to include authentic research experiences for undergraduates and teachers using NASA satellite data, geographic information system (GIS) tools, and/or locally collected microclimate data from urban gardens. Learners download NASA data, apply an Earth system approach, and employ GIS in the analysis of food production landscapes in a dynamically changing climate system. The resulting course will be offered via Blackboard courseware, supported by Web 2.0 technologies designed specifically to support dialogue, data, and web publication sharing between partners, teachers and middle school, high school and undergraduate student researchers. NYC is in the center of the urban farming movement. By exploring water and food topics of direct relevance to students' lives and community, we anticipate that students will be motivated and more empowered to make connections between climate change and potential impacts on the health and happiness of people in their community, in the United States and around the world. Final course will be piloted in 2012.

  20. Central Africa: Global climate change and development. Overview. Technical report

    SciTech Connect

    Not Available

    1993-01-01

    The preliminary study focuses on the six countries of central Africa which contain the largest remaining contiguous block of closed forests in sub-Saharan Africa: Cameroon, Central African Republic, the Congo, Equatorial Guinea, Gabon, and Zaire. The carbon in the vegetation and soils in these moist tropical forests and surrounding seasonal woodlands constitute the greatest potential source of future carbon dioxide (CO2) emissions from sub-Saharan Africa. This study also considers the importance of savanna burning, although in less depth since the small savanna area in central Africa precludes this activity from being a large regional source of emissions. Analysis of biogeophysical and socioeconomic issues relevant to global climate change, and research containing both space-based and ground-based components, were undertaken.

  1. Global Farm Animal Production and Global Warming: Impacting and Mitigating Climate Change

    PubMed Central

    Koneswaran, Gowri; Nierenberg, Danielle

    2008-01-01

    Background The farm animal sector is the single largest anthropogenic user of land, contributing to many environmental problems, including global warming and climate change. Objectives The aim of this study was to synthesize and expand upon existing data on the contribution of farm animal production to climate change. Methods We analyzed the scientific literature on farm animal production and documented greenhouse gas (GHG) emissions, as well as various mitigation strategies. Discussions An analysis of meat, egg, and milk production encompasses not only the direct rearing and slaughtering of animals, but also grain and fertilizer production for animal feed, waste storage and disposal, water use, and energy expenditures on farms and in transporting feed and finished animal products, among other key impacts of the production process as a whole. Conclusions Immediate and far-reaching changes in current animal agriculture practices and consumption patterns are both critical and timely if GHGs from the farm animal sector are to be mitigated. PMID:18470284

  2. Climate model simulations of the mid-Pliocene: Earth's last great interval of global warmth

    USGS Publications Warehouse

    Dolan, A.M.; Haywood, A.M.; Dowsett, H.J.

    2012-01-01

    Pliocene Model Intercomparison Project Workshop; Reston, Virginia, 2–4 August 2011 The Pliocene Model Intercomparison Project (PlioMIP), supported by the U.S. Geological Survey's (USGS) Pliocene Research, Interpretation and Synoptic Mapping (PRISM) project and Powell Center, is an integral part of a third iteration of the Paleoclimate Modelling Intercomparison Project (PMIP3). PlioMIP's aim is to systematically compare structurally different climate models. This is done in the context of the mid-Pliocene (~3.3–3.0 million years ago), a geological interval when the global annual mean temperature was similar to predictions for the next century.

  3. Climate model simulations of the mid-Pliocene: Earth's last great interval of global warmth

    NASA Astrophysics Data System (ADS)

    Dolan, Aisling M.; Haywood, Alan M.; Dowsett, Harry J.

    2012-01-01

    Pliocene Model Intercomparison Project Workshop; Reston, Virginia, 2-4 August 2011 The Pliocene Model Intercomparison Project (PlioMIP), supported by the U.S. Geological Survey's (USGS) Pliocene Research, Interpretation and Synoptic Mapping (PRISM) project and Powell Center, is an integral part of a third iteration of the Paleoclimate Modelling Intercomparison Project (PMIP3). PlioMIP's aim is to systematically compare structurally different climate models. This is done in the context of the mid-Pliocene (˜3.3-3.0 million years ago), a geological interval when the global annual mean temperature was similar to predictions for the next century.

  4. Global Ocean Sedimentation Patterns: Plate Tectonic History Versus Climate Change

    NASA Astrophysics Data System (ADS)

    Goswami, A.; Reynolds, E.; Olson, P.; Hinnov, L. A.; Gnanadesikan, A.

    2014-12-01

    Global sediment data (Whittaker et al., 2013) and carbonate content data (Archer, 1996) allows examination of ocean sedimentation evolution with respect to age of the underlying ocean crust (Müller et al., 2008). From these data, we construct time series of ocean sediment thickness and carbonate deposition rate for the Atlantic, Pacific, and Indian ocean basins for the past 120 Ma. These time series are unique to each basin and reflect an integrated response to plate tectonics and climate change. The goal is to parameterize ocean sedimentation tied to crustal age for paleoclimate studies. For each basin, total sediment thickness and carbonate deposition rate from 0.1 x 0.1 degree cells are binned according to basement crustal age; area-corrected moments (mean, variance, etc.) are calculated for each bin. Segmented linear fits identify trends in present-day carbonate deposition rates and changes in ocean sedimentation from 0 to 120 Ma. In the North and South Atlantic and Indian oceans, mean sediment thickness versus crustal age is well represented by three linear segments, with the slope of each segment increasing with increasing crustal age. However, the transition age between linear segments varies among the three basins. In contrast, mean sediment thickness in the North and South Pacific oceans are numerically smaller and well represented by two linear segments with slopes that decrease with increasing crustal age. These opposing trends are more consistent with the plate tectonic history of each basin being the controlling factor in sedimentation rates, rather than climate change. Unlike total sediment thickness, carbonate deposition rates decrease smoothly with crustal age in all basins, with the primary controls being ocean chemistry and water column depth.References: Archer, D., 1996, Global Biogeochem. Cycles 10, 159-174.Müller, R.D., et al., 2008, Science, 319, 1357-1362.Whittaker, J., et al., 2013, Geochem., Geophys., Geosyst. DOI: 10.1002/ggge.20181

  5. A global empirical system for probabilistic seasonal climate prediction

    NASA Astrophysics Data System (ADS)

    Eden, J. M.; van Oldenborgh, G. J.; Hawkins, E.; Suckling, E. B.

    2015-12-01

    Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a simple empirical system based on multiple linear regression for producing probabilistic forecasts of seasonal surface air temperature and precipitation across the globe. The global CO2-equivalent concentration is taken as the primary predictor; subsequent predictors, including large-scale modes of variability in the climate system and local-scale information, are selected on the basis of their physical relationship with the predictand. The focus given to the climate change signal as a source of skill and the probabilistic nature of the forecasts produced constitute a novel approach to global empirical prediction. Hindcasts for the period 1961-2013 are validated against observations using deterministic (correlation of seasonal means) and probabilistic (continuous rank probability skill scores) metrics. Good skill is found in many regions, particularly for surface air temperature and most notably in much of Europe during the spring and summer seasons. For precipitation, skill is generally limited to regions with known El Niño-Southern Oscillation (ENSO) teleconnections. The system is used in a quasi-operational framework to generate empirical seasonal forecasts on a monthly basis.

  6. Possibility to explain global climate variations by earthquakes influence

    NASA Astrophysics Data System (ADS)

    Molchanov, O.

    2009-12-01

    An additional natural source of the global warming could be heat flux from seismicity. Estimated earthquakes energy release in the near-equatorial Pacific area during a year ≈ 1020 J that is equivalent to the energy released in the detonation about one million atomic bombs of Hiroshima class and produce average power flux due to seismicity ≈ 0.3-1 W/m2 . We have analyzed together the slow climate temperature variations in the near-equatorial Pacific Ocean area (SSTOI indices) and crustal seismic activity in the same region during 1973-2008 time period using correlation analysis and found similarity in seismic and ENSO periodicities (the latter with time lag about 1.5 years). Trends of the processes are also similar showing about 2 times increase in average seismic energy release during the whole period of analysis and conventional 0.10C/(10 years) increase in SSTOI index anomalies. Our main conclusion is on real possibility of climate-seismicity coupling. It is rather probable that at least partially climate ENSO oscillations and temperature anomaly trends are induced by similar variation in seismicity. A mechanism of several years periodicity in the seismic activity is unclear at present. Probably it is initiated in the upper mantle of the Earth (depth 600-700 km) and then penetrates in the crust as so-called deformation (or stress) wave with time delay from 3 to 10 years [1] [1] O.A. Molchanov and S. Uyeda, Upward migration of earthquake hypocenters in Japan,Kurile- Kamchatka and Sunda subduction zones, Physics and Chemistry of the Earth, 34, 423-430, 2009; doi:10.1016/j.pce.2008.09.011.

  7. Drought Duration Biases in Current Global Climate Models

    NASA Astrophysics Data System (ADS)

    Moon, Heewon; Gudmundsson, Lukas; Seneviratne, Sonia

    2016-04-01

    Several droughts in the recent past are characterized by their increased duration and intensity. In particular, substantially prolonged droughts have brought major societal and economic losses in certain regions, yet climate change projections of such droughts in terms of duration is subject to large uncertainties. This study analyzes the biases of drought duration in state-of-the-art global climate model (GCM) simulations from the 5th phase of Coupled Model Intercomparison Project (CMIP5). Drought durations are defined as negative precipitation anomalies and evaluated with three observation-based datasets in the period of 1901-2010. Large spread in biases of GCMs is commonly found in all regions, with particular strong biases in North East Brazil, Africa, Northern Australia, Central America, Central and Northern Europe, Sahel and Asia. Also in most regions, the interquartile range of bias lies below 0, meaning that the GCMs tend to underestimate drought durations. Meanwhile in some regions such as Western South America, the Amazon, Sahel, West and South Africa, and Asia, considerable inconsistency among the three observation-based datasets were found. These results indicate substantial uncertainties and errors in current GCMs for simulating drought durations as well as a large spread in observation-based datasets, both of which are found to be particularly strong in those regions that are often considered to be hot spots of projected future drying. The underlying sources of these uncertainties need to be identified in further study and will be applied to constrain GCM-based drought projections under climate change.

  8. Continental Heat Gain in the Global Climate System

    NASA Astrophysics Data System (ADS)

    Smerdon, J. E.; Beltrami, H.; Pollack, H. N.; Huang, S.

    2001-12-01

    Observed increases in 20th century surface-air temperatures are one consequence of a net energy flux into all major components of the Earth climate system including the atmosphere, ocean, cryosphere, and lithosphere. Levitus et al. [2001] have estimated the heat gained by the atmosphere, ocean and cryosphere as 18.2x1022 J, 6.6x1021 J, and 8.1x1021 J, respectively, over the past half-century. However the heat gain of the lithosphere via a heat flux across the solid surface of the continents (30% of the Earth's surface) was not addressed in the Levitus analysis. Here we calculate that final component of Earth's changing energy budget, using ground-surface temperature reconstructions for the continents [Huang et al., 2000]. These reconstructions have shown a warming of at least 0.5 K in the 20th century and were used to determine the flux estimates presented here. In the last half-century, the interval of time considered by Levitus et al., there was an average flux of 40 mW/m2 across the land surface into the subsurface, leading to 9.2x1021 J absorbed by the ground. This amount of heat is significantly less than the energy transferred into the oceans, but of the same magnitude as the energy absorbed by the atmosphere or cryosphere. The heat inputs into all the major components of the climate system - atmosphere, ocean, cryosphere, lithosphere - conservatively sum to more than 20x1022 J during the last half-century, and reinforce the conclusion that the warming in this interval has been truly global. Huang, S., Pollack, H.N., and Shen, P.-Y. 2000. Temperature trends over the past five centuries reconstructed from borehole temperatures. Nature. 403. 756-758 Levitus, S., Antonov, J., Wang, J., Delworth, T. L., Dixon, K. and Broccoli, A. 2001. Anthropogenic warming of the Earth's climate system. Science, 292, 267-270

  9. Global climate change and the evolutionary ecology of ecosystem functioning.

    PubMed

    Schmitz, Oswald J

    2013-09-01

    Environmental warming due to global climate change is an important stressor that stands to alter organismal physiology and, ultimately, carbon cycling in ecosystems. Yet the theoretical framework for predicting warming effects on whole-ecosystem carbon balance by way of changes in organismal physiology remains rudimentary. This is because ecosystem science has yet to embrace principles of evolutionary ecology that offer the means to explain how environmental stress on organisms mediates ecosystem carbon dynamics. Here, using selected case studies and a theoretical model, I sketch out one framework that shows how increases in animal metabolic rates in response to thermal stress lead to phenotypically plastic shifts in animal elemental demand, from nitrogen-rich proteins that support production to carbon-rich soluble carbohydrates that support elevated energy demands. I further show how such a switch in resource selection alters the fate of carbon between atmospheric versus animal, plant, and soil pools. The framework shows that animals, despite having relatively low biomass representation in ecosystems, can nonetheless have disproportionately larger effects on carbon cycling in ecosystems whose effects are exacerbated by environmental stressors like climate warming.

  10. Langmuir mixing effects on global climate: WAVEWATCH III in CESM

    NASA Astrophysics Data System (ADS)

    Li, Qing; Webb, Adrean; Fox-Kemper, Baylor; Craig, Anthony; Danabasoglu, Gokhan; Large, William G.; Vertenstein, Mariana

    2016-07-01

    Large-Eddy Simulations (LES) have shown the effects of ocean surface gravity waves in enhancing the ocean boundary layer mixing through Langmuir turbulence. Neglecting this Langmuir mixing process may contribute to the common shallow bias in mixed layer depth in regions of the Southern Ocean and the Northern Atlantic in most state-of-the-art climate models. In this study, a third generation wave model, WAVEWATCH III, has been incorporated as a component of the Community Earth System Model, version 1.2 (CESM1.2). In particular, the wave model is now coupled with the ocean model through a modified version of the K-Profile Parameterization (KPP) to approximate the influence of Langmuir mixing. Unlike past studies, the wind-wave misalignment and the effects of Stokes drift penetration depth are considered through empirical scalings based on the rate of mixing in LES. Wave-Ocean only experiments show substantial improvements in the shallow biases of mixed layer depth in the Southern Ocean. Ventilation is enhanced and low concentration biases of pCFC-11 are reduced in the Southern Hemisphere. A majority of the improvements persist in the presence of other climate feedbacks in the fully coupled experiments. In addition, warming of the subsurface water over the majority of global ocean is observed in the fully coupled experiments with waves, and the cold subsurface ocean temperature biases are reduced.

  11. Global climate change and implications for disease emergence.

    PubMed

    Slenning, B D

    2010-01-01

    The early consequences of global climate change (GCC) are well documented. However, future impacts on ecosystem health, and on the health of humans, domestic animals, and wildlife, are much less well understood. Evidence of increasing frequency of extreme weather events (the 2003 trans-European heat wave, extended droughts in Australia and South America), of geographic changes in vector-borne disease (bluetongue and hanta viruses emerging in northern Europe, dengue virus expanding in central and northern America), and of altered animal behavioral responses (changes in bird migration patterns and fishery numbers) warrants action. To make valid choices, however, practitioners and decision makers must understand what is known about GCC and what is only theory. There will be a multitude of microbial, vector, and host responses to climate change, for example, and not all organisms will respond similarly or across equal time scales. Unfortunately, for many organisms and ecosystems the scientific community has a relatively poor understanding of current effectors and balances, making it problematic to describe the current situation, let alone to validate future predictions. The need for enhanced basic research and systematic surveillance programs is obvious, but putting such programs into place is daunting. However, the threats are real and fast approaching. What is done in the next few years may be decisive, whether for the good or the ill of all.

  12. Changes of the Oceanic Long-term and seasonal variation in a Global-warming Climate

    NASA Astrophysics Data System (ADS)

    Xia, Q.; He, Y.; Dong, C.

    2015-12-01

    Abstract: Gridded absolute dynamic topography (ADT) from AVISO and outputs of sea surface height above geoid from a series of climate models run for CMIP5 are used to analysis global sea level variation. Variance has been calculated to determine the magnitude of change in sea level variation over two decades. Increasing trend of variance of ADT suggests an enhanced fluctuation as well as geostrophic shear of global ocean. To further determine on what scale does the increasing fluctuation dominate, the global absolute dynamic topography (ADT) has been separated into two distinguished parts: the global five-year mean sea surface (MSS) and the residual absolute dynamic topography (RADT). Increased variance of MSS can be ascribed to the nonuniform rising of global sea level and an enhancement of ocean gyres in the Pacific Ocean. While trend in the variance of RADT is found to be close to zero which suggests an unchanged ocean mesoscale variability. The Gaussian-like distribution of global ADT are used to study the change in extreme sea levels. Information entropy has also been adapted in our study. Increasing trend of information entropy which measures the degree of dispersion of a probability distribution suggests more appearance of extreme sea levels. Extreme high sea levels are increasing with a higher growing rate than the mean sea level rise.

  13. Late Pleistocene climate change and the global expansion of anatomically modern humans.

    PubMed

    Eriksson, Anders; Betti, Lia; Friend, Andrew D; Lycett, Stephen J; Singarayer, Joy S; von Cramon-Taubadel, Noreen; Valdes, Paul J; Balloux, Francois; Manica, Andrea

    2012-10-02

    The extent to which past climate change has dictated the pattern and timing of the out-of-Africa expansion by anatomically modern humans is currently unclear [Stewart JR, Stringer CB (2012) Science 335:1317-1321]. In particular, the incompleteness of the fossil record makes it difficult to quantify the effect of climate. Here, we take a different approach to this problem; rather than relying on the appearance of fossils or archaeological evidence to determine arrival times in different parts of the world, we use patterns of genetic variation in modern human populations to determine the plausibility of past demographic parameters. We develop a spatially explicit model of the expansion of anatomically modern humans and use climate reconstructions over the past 120 ky based on the Hadley Centre global climate model HadCM3 to quantify the possible effects of climate on human demography. The combinations of demographic parameters compatible with the current genetic makeup of worldwide populations indicate a clear effect of climate on past population densities. Our estimates of this effect, based on population genetics, capture the observed relationship between current climate and population density in modern hunter-gatherers worldwide, providing supporting evidence for the realism of our approach. Furthermore, although we did not use any archaeological and anthropological data to inform the model, the arrival times in different continents predicted by our model are also broadly consistent with the fossil and archaeological records. Our framework provides the most accurate spatiotemporal reconstruction of human demographic history available at present and will allow for a greater integration of genetic and archaeological evidence.

  14. "we cannot Wait to ACT!" Simulating Global Climate Summits with Gifted and Talented Students

    NASA Astrophysics Data System (ADS)

    Haste, T.; Vesperman, D.; Alrivy, S.

    2012-12-01

    Students simulated the 2011 Durban Climate Summit in order to experience two roles: global diplomats attempting to solve a significant global problem and scientists as contributors of knowledge. Together, they worked to develop a framework to provide global solutions as world leaders. This project demonstrated [highlighted?] student work from the climate summit, describing how students promoted dialogue and provided climate science information to their diplomatic peers, who then used this information in diplomatic negotiations. By focusing on increasing student climate literacy, students engaged in both climate science and global diplomacy through meaningful simulations to understand the global and political issues surrounding Climate Change mitigation. Three classes of international middle school students attending Johns Hopkins Center for Talented Youth summer programs enacted the 2011 Durban Model United Nations meeting. One class developed a deep understanding of climate and climate science by working with computer models and data to represent members of the IPCC. Members of this class collaborated with climate scientists, conducted experiments, and developed a well-rounded understanding of paleoclimate, current climatic trends, carbon cycling, and modeling future outcomes. Two additional classes took on the roles of UN diplomats, researched their respective nations, engaged in practice UN simulations, and developed a working understanding of the diplomatic process. Students representing the IPCC assisted their diplomatic peers in developing and proposing possible UN resolutions. All three classes worked together to enact the Durban Climate Summit with the underlying focus of developing diplomatic Climate Change mitigation strategies and ultimately resolutions for member nations.

  15. Long-run evolution of the global economy - Part 2: Hindcasts of innovation and growth

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.

    2015-10-01

    Long-range climate forecasts use integrated assessment models to link the global economy to greenhouse gas emissions. This paper evaluates an alternative economic framework outlined in part 1 of this study (Garrett, 2014) that approaches the global economy using purely physical principles rather than explicitly resolved societal dynamics. If this model is initialized with economic data from the 1950s, it yields hindcasts for how fast global economic production and energy consumption grew between 2000 and 2010 with skill scores > 90 % relative to a model of persistence in trends. The model appears to attain high skill partly because there was a strong impulse of discovery of fossil fuel energy reserves in the mid-twentieth century that helped civilization to grow rapidly as a deterministic physical response. Forecasting the coming century may prove more of a challenge because the effect of the energy impulse appears to have nearly run its course. Nonetheless, an understanding of the external forces that drive civilization may help development of constrained futures for the coupled evolution of civilization and climate during the Anthropocene.

  16. The Global Climate Anomaly in 1940-1942

    NASA Astrophysics Data System (ADS)

    Brönnimann, S.; Luterbacher, J.; Staehelin, J.; Svendby, T. M.

    2003-12-01

    An unprecedented climatic anomaly occurred in the tropics and in the Northern Hemisphere in 1940-1942. During a strong and prolonged El Niño [Bigg & Inoué, QJRMS 118 (1992), 125], extremely cold winters were observed in Europe, accompanied by very warm temperatures in Alaska and large parts of the Arctic and a cold North Pacific. The anomalies were strong (comprising the two coldest European winters of the 20th century) and extraordinarily persistent. In addition, exceptionally high values of total ozone are reported [Langlo, Geofys. Publ. 18/6 (1952)], pointing to an anomalous stratospheric circulation. Events of this magnitude have a strong economical and environmental impact; the 1940s anomaly even affected World War II. Studying this anomaly in detail contributes to (1) document the extent of 20th century climate variability, (2) understand large-scale coupling processes between the tropics and the extratropics and between the troposphere and the stratosphere and (3) develop tools to analyze past upper-level climate variability prior to 1948, i.e., the reanalysis period. For this study we have compiled, digitized, and re-evaluated several tens of thousands of temperature and pressure profiles from aircraft and radiosonde ascents up to 50 hPa [Brönnimann, Int. J. Clim. 23 (2003), 769]. The upper-air data were supplemented with data from the Earth's surface and used to statistically reconstruct monthly upper-level fields for the extratropical Northern Hemisphere up to 100 hPa [Brönnimann & Luterbacher, Clim. Dyn., submitted]. Although the quality of the reconstructed stratospheric fields is not comparable to more recent data, it is sufficient to allow a broad characterization of the circulation at 100 hPa during the early 1940s. In addition to upper-air data, several total ozone series from the 1940s were re-evaluated [Brönnimann et al., QJRMS 129 (2003), 2819], providing further information on the stratosphere. In this paper we present an analysis of these

  17. Linking science more closely to policy-making: Global climate change and the national reorganization of science and technology policy

    SciTech Connect

    Glasser, R.D.

    1994-04-01

    This paper examines the national trends behind recent efforts to link science and technology more closely to policy-making. It describes the politics surrounding the establishment of the National Science and Technology Council and its committee on Environment and Natural Resources (of which the global change program is a part). It discusses the evolution of the ``assessments`` function within the climate change program in general, and within the Department of Energy, in particular, and how the Clinton Administration`s approach to climate change ``assessments`` function within the climate change program in general, and within the Department of Energy, in particular, and how the Clinton Administration`s approach to climate change ``assessments`` differs from that of its predecessor. The paper concludes with a critique both of the national reorganization of science and technology policy and of the assessments component of the climate change program.

  18. A Plan for Measuring Climatic Scale Global Precipitation Variability: The Global Precipitation Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The outstanding success of the Tropical Rainfall Measuring Mission (TRMM) stemmed from a near flawless launch and deployment, a highly successful measurement campaign, achievement of all original scientific objectives before the mission life had ended, and the accomplishment of a number of unanticipated but important additional scientific advances. This success and the realization that satellite rainfall datasets are now a foremost tool in the understanding of decadal climate variability has helped motivate a comprehensive global rainfall measuring mission, called 'The Global Precipitation Mission' (GPM). The intent of this mission is to address looming scientific questions arising in the context of global climate-water cycle interactions, hydrometeorology, weather prediction, the global carbon budget, and atmosphere-biosphere-cryosphere chemistry. This paper addresses the status of that mission currently planed for launch in the early 2007 time frame. The GPM design involves a nine-member satellite constellation, one of which will be an advanced TRMM-like 'core' satellite carrying a dual-frequency Ku-Ka band radar (df-PR) and a TMI-like radiometer. The other eight members of the constellation can be considered drones to the core satellite, each carrying some type of passive microwave radiometer measuring across the 10.7-85 GHz frequency range, likely based on both real and synthetic aperture antenna technology and to include a combination of new lightweight dedicated GPM drones and both co-existing operational and experimental satellites carrying passive microwave radiometers (i.e., SSM/l, AMSR, etc.). The constellation is designed to provide a minimum of three-hour sampling at any spot on the globe using sun-synchronous orbit architecture, with the core satellite providing relevant measurements on internal cloud precipitation microphysical processes. The core satellite also enables 'training' and 'calibration' of the drone retrieval process. Additional

  19. Steps Toward an Aerosol-Type Global Climate Data Record

    NASA Astrophysics Data System (ADS)

    Kahn, R. A.

    2015-12-01

    Earth-observing satellites have produced a global record of aerosol optical depth approaching two decades in length. However a global record of aerosol properties at the level-of-detail required for constraining aerosol radiative forcing, aerosol-cloud interaction assessments, and many air quality applications is as yet lacking. Some aerosol-type information is derived from surface-based photometers, and qualitative classification is possible under favorable conditions from MISR, POLDER, and CALIPSO. More detailed particle microphysical properties are obtained from in situ measurements, but sampling is poor, and the suite of coincident measurements required for many applications is rarely acquired. Aerosol transport models can connect remote-sensing and in situ observations to specific aerosol sources, and extrapolate limited observational sampling in space and time. The biggest challenges to producing a global aerosol-type data record are filling gaps in detailed observations, maintaining global observing capabilities, and putting the pieces together. Obtaining detailed particle properties is probably the leading observational gap. One simplifying factor is that, for a given aerosol source and season, aerosol amounts can vary, but the particle properties tend to be repeatable. So an aircraft payload designed and deployed frequently enough to acquire the PDFs of the key variables could fill this gap; the SAM-CAAM (Systematic Aircraft Measurements to Characterize Aerosol Air Masses) concept aims at meeting this objective. Such data would add value to the entire satellite data record, improving the aerosol property assumptions in retrievals, and providing quantitative mass extinction efficiencies to translate between remote-sensing optical constraints and the aerosol mass book-kept in climate models. This will also help putting the pieces together in other ways, by improving the connection between remote-sensing particle types and those defined in models. The

  20. Globalization and social determinants of health: Promoting health equity in global governance (part 3 of 3)

    PubMed Central

    Labonté, Ronald; Schrecker, Ted

    2007-01-01

    This article is the third in a three-part review of research on globalization and the social determinants of health (SDH). In the first article of the series, we identified and defended an economically oriented definition of globalization and addressed a number of important conceptual and metholodogical issues. In the second article, we identified and described seven key clusters of pathways relevant to globalization's influence on SDH. This discussion provided the basis for the premise from which we begin this article: interventions to reduce health inequities by way of SDH are inextricably linked with social protection, economic management and development strategy. Reflecting this insight, and against the background of the Millennium Development Goals (MDGs), we focus on the asymmetrical distribution of gains, losses and power that is characteristic of globalization in its current form and identify a number of areas for innovation on the part of the international community: making more resources available for health systems, as part of the more general task of expanding and improving development assistance; expanding debt relief and taking poverty reduction more seriously; reforming the international trade regime; considering the implications of health as a human right; and protecting the policy space available to national governments to address social determinants of health, notably with respect to the hypermobility of financial capital. We conclude by suggesting that responses to globalization's effects on social determinants of health can be classified with reference to two contrasting visions of the future, reflecting quite distinct values. PMID:17578570

  1. Globalization and social determinants of health: Promoting health equity in global governance (part 3 of 3).

    PubMed

    Labonté, Ronald; Schrecker, Ted

    2007-06-19

    This article is the third in a three-part review of research on globalization and the social determinants of health (SDH). In the first article of the series, we identified and defended an economically oriented definition of globalization and addressed a number of important conceptual and metholodogical issues. In the second article, we identified and described seven key clusters of pathways relevant to globalization's influence on SDH. This discussion provided the basis for the premise from which we begin this article: interventions to reduce health inequities by way of SDH are inextricably linked with social protection, economic management and development strategy. Reflecting this insight, and against the background of the Millennium Development Goals (MDGs), we focus on the asymmetrical distribution of gains, losses and power that is characteristic of globalization in its current form and identify a number of areas for innovation on the part of the international community: making more resources available for health systems, as part of the more general task of expanding and improving development assistance; expanding debt relief and taking poverty reduction more seriously; reforming the international trade regime; considering the implications of health as a human right; and protecting the policy space available to national governments to address social determinants of health, notably with respect to the hypermobility of financial capital. We conclude by suggesting that responses to globalization's effects on social determinants of health can be classified with reference to two contrasting visions of the future, reflecting quite distinct values.

  2. Strategy to use the Terra Aerosol Information to Derive the Global Aerosol Radiative Forcing of Climate

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Terra will derive the aerosol optical thickness and properties. The aerosol properties can be used to distinguish between natural and human-made aerosol. In the polar orbit Terra will measure aerosol only once a day, around 10:30 am. How will we use this information to study the global radiative impacts of aerosol on climate? We shall present a strategy to address this problem. It includes the following steps: - From the Terra aerosol optical thickness and size distribution model we derive the effect of aerosol on reflection of solar radiation at the top of the atmosphere. In a sensitivity study we show that the effect of aerosol on solar fluxes can be derived 10 times more accurately from the MODIS data than derivation of the optical thickness itself. Applications to data over several regions will be given. - Using 1/2 million AERONET global data of aerosol spectral optical thickness we show that the aerosol optical thickness and properties during the Terra 10:30 pass are equivalent to the daily average. Due to the aerosol lifetime of several days measurements at this time of the day are enough to assess the daily impact of aerosol on radiation. - Aerosol impact on the top of the atmosphere is only part of the climate question. The INDOEX experiment showed that addressing the impact of aerosol on climate, requires also measurements of the aerosol forcing at the surface. This can be done by a combination of measurements of MODIS and AERONET data.

  3. A global map of suitability for coastal Vibrio cholerae under current and future climate conditions.

    PubMed

    Escobar, Luis E; Ryan, Sadie J; Stewart-Ibarra, Anna M; Finkelstein, Julia L; King, Christine A; Qiao, Huijie; Polhemus, Mark E

    2015-09-01

    Vibrio cholerae is a globally distributed water-borne pathogen that causes severe diarrheal disease and mortality, with current outbreaks as part of the seventh pandemic. Further understanding of the role of environmental factors in potential pathogen distribution and corresponding V. cholerae disease transmission over time and space is urgently needed to target surveillance of cholera and other climate and water-sensitive diseases. We used an ecological niche model (ENM) to identify environmental variables associated with V. cholerae presence in marine environments, to project a global model of V. cholerae distribution in ocean waters under current and future climate scenarios. We generated an ENM using published reports of V. cholerae in seawater and freely available remotely sensed imagery. Models indicated that factors associated with V. cholerae presence included chlorophyll-a, pH, and sea surface temperature (SST), with chlorophyll-a demonstrating the greatest explanatory power from variables selected for model calibration. We identified specific geographic areas for potential V. cholerae distribution. Coastal Bangladesh, where cholera is endemic, was found to be environmentally similar to coastal areas in Latin America. In a conservative climate change scenario, we observed a predicted increase in areas with environmental conditions suitable for V. cholerae. Findings highlight the potential for vulnerability maps to inform cholera surveillance, early warning systems, and disease prevention and control.

  4. Global water resources assessment at a sub-annual timescale: Application to climate change impact assessment

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Hanasaki, N.; Takahashi, K.; Hijioka, Y.

    2010-12-01

    Several reports have assessed water scarcity globally using the widely accepted withdrawal-to-water resources ratio (hereafter WWR). This index is defined as the ratio of annual withdrawal to the annual renewable water resources (runoff). The index has also been used widely to assess the impact of climate change on global water resources. Here, we ask whether it is appropriate to use the WWR to assess the impact of climate change. Global warming is projected to increase the mean annual runoff in many parts of the world. Therefore, in these regions, the WWR decreases, by definition. However, water scarcity may not always be alleviated in these regions. Global warming is also projected to increase the temporal and spatial variability of precipitation, decrease snowfall, and change the timing of snowmelt. These phenomena may increase the temporal gap between water availability and water demand, which might worsen local water scarcity, even if the mean annual runoff is increased. To assess the impact of climate change on global water resources incorporating subannual time-scale phenomena, this study applies a new water scarcity index, the cumulative withdrawal-to-demand ratio (hereafter CWD). This index is defined as the ratio of the accumulation of daily water withdrawal from local water resources to the accumulation of daily water demand. To estimate daily water withdrawal and water demand, we used the state-of-the-art H08 global water resources model. Our results indicated that global warming increased the mean annual runoff in 52% of the total land area globally. However, in 22% of the area where runoff increased, the CWD showed increased water stress. Those regions included India, northern China, and northern Europe. For India, the increase in water stress was attributed to the seasonal gap between runoff increase and water demand. The increased runoff was concentrated in a few months, while the high water demand months differed and were much longer. For Europe

  5. U.S. Global Climate Change Impacts Report, Alaska Region

    NASA Astrophysics Data System (ADS)

    McGuire, D.

    2009-12-01

    The assessment of the Global Climate Change Impacts in the United States includes analyses of the potential climate change impacts in Alaska. The resulting findings are discussed in this presentation, with the effects on water resources discussed separately. Major findings include: Summers are getting hotter and drier, with increasing evaporation outpacing increased precipitation. Climate changes are already affecting water, energy, transportation, agriculture, ecosystems, and health. These impacts are different from region to region and will grow under projected climate change. Wildfires and insect problems are increasing. Climate plays a key role in determining the extent and severity of insect outbreaks and wildfire. The area burned in North America’s northern forest that spans Alaska and Canada tripled from the 1960s to the 1990s. During the 1990s, south-central Alaska experienced the largest outbreak of spruce bark beetles in the world because of warmer weather in all seasons of the year. Under changing climate conditions, the average area burned per year in Alaska is projected to double by the middle of this century10. By the end of this century, area burned by fire is projected to triple under a moderate greenhouse gas emissions scenario and to quadruple under a higher emissions scenario. Close-bodied lakes are declining in area. A continued decline in the area of surface water would present challenges for the management of natural resources and ecosystems on National Wildlife Refuges in Alaska. These refuges, which cover over 77 million acres (21 percent of Alaska) and comprise 81 percent of the U.S. National Wildlife Refuge System, provide a breeding habitat for millions of waterfowl and shorebirds that winter in the lower 48 states. Permafrost thawing will damage public and private infrastructure. Land subsidence (sinking) associated with the thawing of permafrost presents substantial challenges to engineers attempting to preserve infrastructure in

  6. The rise of global mean sea level as an indication of climate change.

    PubMed

    Etkins, R; Epstein, E S

    1982-01-15

    Rising mean sea level, it is proposed, is a significant indicator of global climate change. The principal factors that can have contributed to the observed increases of global mean sea level in recent decades are thermal expansion of the oceans and the discharge of polar ice sheets. Calculations indicate that thermal expansion cannot be the sole factor responsible for the observed rise in sea level over the last 40 years; significant discharges of polar ice must also be occurring. Global warming, due in some degree presumably to increasing atmospheric carbon dioxide, has been opposed by the extraction of heat necessary to melt the discharged ice. During the past 40 years more than 50,000 cubic kilometers of ice has been discharged and has melted, reducing the surface warming that might otherwise have occurred by as much as a factor of 2. The transfer of mass from the polar regions to a thin spherical shell covering all the oceans should have increased the earth's moment of inertia and correspondingly reduced the speed of rotation by about 1.5 parts in 10(8). This accounts for about three quarters of the observed fractional reduction in the earth's angular velocity since 1940. Monitoring of global mean sea level, ocean surface temperatures, and the earth's speed of rotation should be complemented by monitoring of the polar ice sheets, as is now possible by satellite altimetry. All parts of the puzzle need to be examined in order that a consistent picture emerge.

  7. Re-Examining the Relationship between Tillage Regime and Global Climate Change

    ERIC Educational Resources Information Center

    Hammons, Sarah K.

    2009-01-01

    It is known that anthropogenic greenhouse gas emissions are a major contributor to global climate change and that reducing our emissions will stem its acceleration (Baker et al., 2007). Aside from emission reductions, another method for stemming global climate change is to reduce the levels of greenhouse gases already in the atmosphere by storing…

  8. Hands-on Materials for Teaching about Global Climate Change through Graph Interpretation

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Hallagan, Jean E.; Shaffer, Barbara

    2008-01-01

    Teachers need to address global climate change with students in their classrooms as evidence for consequences from these environmental changes mounts. One way to approach global climate change is through examination of authentic data. Mathematics and science may be integrated by interpreting graphs from the professional literature. This study…

  9. Global climate change research at the U.S. Environmental Protection Agency

    EPA Science Inventory

    The science surrounding global climate change is complex and has been interpreted in many ways. The concept of the Greenhouse Effect—viewed as the cause of global climate change—is quite simple, but the Earth’s response is not. After more than two decades of intensive research, s...

  10. Globalization and social determinants of health: The role of the global marketplace (part 2 of 3).

    PubMed

    Labonté, Ronald; Schrecker, Ted

    2007-06-19

    Globalization is a key context for the study of social determinants of health (SDH): broadly stated, SDH are the conditions in which people live and work, and that affect their opportunities to lead healthy lives. In the first article in this three part series, we described the origins of the series in work conducted for the Globalization Knowledge Network of the World Health Organization's Commission on Social Determinants of Health and in the Commission's specific concern with health equity. We identified and defended a definition of globalization that gives primacy to the drivers and effects of transnational economic integration, and addressed a number of important conceptual and methodological issues in studying globalization's effects on SDH and their distribution, emphasizing the need for transdisciplinary approaches that reflect the complexity of the topic. In this second article, we identify and describe several, often interacting clusters of pathways leading from globalization to changes in SDH that are relevant to health equity. These involve: trade liberalization; the global reorganization of production and labour markets; debt crises and economic restructuring; financial liberalization; urban settings; influences that operate by way of the physical environment; and health systems changed by the global marketplace.

  11. Globalization and social determinants of health: The role of the global marketplace (part 2 of 3)

    PubMed Central

    Labonté, Ronald; Schrecker, Ted

    2007-01-01

    Globalization is a key context for the study of social determinants of health (SDH): broadly stated, SDH are the conditions in which people live and work, and that affect their opportunities to lead healthy lives. In the first article in this three part series, we described the origins of the series in work conducted for the Globalization Knowledge Network of the World Health Organization's Commission on Social Determinants of Health and in the Commission's specific concern with health equity. We identified and defended a definition of globalization that gives primacy to the drivers and effects of transnational economic integration, and addressed a number of important conceptual and methodological issues in studying globalization's effects on SDH and their distribution, emphasizing the need for transdisciplinary approaches that reflect the complexity of the topic. In this second article, we identify and describe several, often interacting clusters of pathways leading from globalization to changes in SDH that are relevant to health equity. These involve: trade liberalization; the global reorganization of production and labour markets; debt crises and economic restructuring; financial liberalization; urban settings; influences that operate by way of the physical environment; and health systems changed by the global marketplace. PMID:17578569

  12. The Polar Regions and Martian Climate: Studies with a Global Climate Model

    NASA Technical Reports Server (NTRS)

    Wilson, R. J.; Richardson, M. I.; Smith, M. D.

    2003-01-01

    Much of the interest in the polar regions centers on the fact that they likely contain the best record of Martian climate change on time scales from years to eons. This expectation is based upon the observed occurrence of weathering product deposits and volatile reservoirs that are coupled to the climate. Interpretation and understanding of these records requires understanding of the mechanisms that involve the exchange of dust, water, and carbon dioxide between the surface and atmosphere, and the atmospheric redistribution of these species. We will summarize our use of the GFDL Mars general circulation model (MGCM), to exploration aspects of the interaction between the global climate and the polar regions. For example, our studies have shown that while the northern polar cap is the dominant seasonal source for water, it can act as a net annual source or sink for water, depending upon the cap temperatures and the bulk humidity of the atmosphere. This behavior regulates the annual and global average humidity of the atmosphere, as the cap acts as a sink if the atmosphere is too wet and a source if it is too dry. We will then focus our presentation on the ability of the MGCM to simulate the observed diurnal variations of surface temperature. We are particularly interested in assessing the influence of dust aerosol and water ice clouds on simulated surface temperature and the comparison with observations. Surface thermal inertia and albedo are critical boundary inputs for MGCM simulations. Thermal inertia is also of intrinsic interest as it may be related to properties of the surface such as particle size and surface character.

  13. The Influence of Global Climate Changes on Storm-Tracks of Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Martynova, Y.; Krupchatnikov, V. N.

    2012-12-01

    Non-stationary eddies in mid-latitude storm-tracks are an important mechanism of energy, moment and moisture transfer in climate system [1]. Baroclinic eddies bring heavy rains and other hazard weather phenomena in the middle latitudes, play an important role in the global energy and the hydrological cycle. Recently, the increase of a cyclones rate at high latitudes with their frequency decrease in the second half of the 20th century was discovered using reanalysis data [2,3]. However, there is still no common point of view about how storm-track's distribution and intensity will be changed under the climate change influence [4,5]. In our work we investigate a variation of transient eddies general propagation tracks as a result of the global climate change effect. Using global large-scale intermediate complexity model of climate system [6] the numerical experiment was provided for the time period from 850 to 3000 year with a scenario of greenhouse gases influence on climate. From 850 to 2005 this impact was set according to the protocol "Historical simulations" of CMIP5 [7]. For 21th century anthropogenic effects were set according to the most aggressive scenario RCP 8.5 [8]. For the period 22-23 centuries CO2 concentration was on the level of 2100 year, and for 24-30 centuries it returned to pre-industrial value linearly in time of 100 years. Using a filter [9] we defined three variation intervals: low-frequency, medium-frequency and high-frequency. In our work we paid attention to medium-scale waves (i.e. 2-8 days). Two seasons were chosen: winter and summer. For each season we considered average fields of parameters characterizing poleward heat flux at 700 mb and transient eddies variance at 250 mb. Besides of the sensitivity of storm-track dynamic we considered some other features of "warm" climate. The work is partially supported by The Ministry of Education and Science of the Russian Federation #(#07.514.11.4044), RFBR grants #10-07-00547, #11-05-01190, and SB

  14. Adaptation responses to climate change differ between global megacities

    NASA Astrophysics Data System (ADS)

    Georgeson, Lucien; Maslin, Mark; Poessinouw, Martyn; Howard, Steve

    2016-06-01

    Urban areas are increasingly at risk from climate change, with negative impacts predicted for human health, the economy and ecosystems. These risks require responses from cities to improve their resilience. Policymakers need to understand current adaptation spend to plan comprehensively and effectively. Through the measurement of spend in the newly defined `adaptation economy', we analyse current climate change adaptation efforts in ten megacities. In all cases, the adaptation economy remains a small part of the overall economy, representing a maximum of 0.33% of a city's gross domestic product (here referred to as GDPc). Differences in total spend are significant between cities in developed, emerging and developing countries, ranging from #15 million to #1,600 million. Comparing key subsectors, we demonstrate the differences in adaptation profiles. Developing cities have higher proportional spend on health and agriculture, whereas developed cities have higher spend on energy and water. Spend per capita and percentage of GDPc comparisons more clearly show disparities between cities. Developing country cities spend half the proportion of GDPc and significantly less per capita, suggesting that adaptation spend is driven by wealth rather than the number of vulnerable people. This indicates that current adaptation activities are insufficient in major population centres in developing and emerging economies.

  15. The influence of large-scale wind power on global climate

    PubMed Central

    Keith, David W.; DeCarolis, Joseph F.; Denkenberger, David C.; Lenschow, Donald H.; Malyshev, Sergey L.; Pacala, Stephen; Rasch, Philip J.

    2004-01-01

    Large-scale use of wind power can alter local and global climate by extracting kinetic energy and altering turbulent transport in the atmospheric boundary layer. We report climate-model simulations that address the possible climatic impacts of wind power at regional to global scales by using two general circulation models and several parameterizations of the interaction of wind turbines with the boundary layer. We find that very large amounts of wind power can produce nonnegligible climatic change at continental scales. Although large-scale effects are observed, wind power has a negligible effect on global-mean surface temperature, and it would deliver enormous global benefits by reducing emissions of CO2 and air pollutants. Our results may enable a comparison between the climate impacts due to wind power and the reduction in climatic impacts achieved by the substitution of wind for fossil fuels. PMID:15536131

  16. The influence of large-scale wind power on global climate.

    PubMed

    Keith, David W; Decarolis, Joseph F; Denkenberger, David C; Lenschow, Donald H; Malyshev, Sergey L; Pacala, Stephen; Rasch, Philip J

    2004-11-16

    Large-scale use of wind power can alter local and global climate by extracting kinetic energy and altering turbulent transport in the atmospheric boundary layer. We report climate-model simulations that address the possible climatic impacts of wind power at regional to global scales by using two general circulation models and several parameterizations of the interaction of wind turbines with the boundary layer. We find that very large amounts of wind power can produce nonnegligible climatic change at continental scales. Although large-scale effects are observed, wind power has a negligible effect on global-mean surface temperature, and it would deliver enormous global benefits by reducing emissions of CO(2) and air pollutants. Our results may enable a comparison between the climate impacts due to wind power and the reduction in climatic impacts achieved by the substitution of wind for fossil fuels.

  17. Climate. Varying planetary heat sink led to global-warming slowdown and acceleration.

    PubMed

    Chen, Xianyao; Tung, Ka-Kit

    2014-08-22

    A vacillating global heat sink at intermediate ocean depths is associated with different climate regimes of surface warming under anthropogenic forcing: The latter part of the 20th century saw rapid global warming as more heat stayed near the surface. In the 21st century, surface warming slowed as more heat moved into deeper oceans. In situ and reanalyzed data are used to trace the pathways of ocean heat uptake. In addition to the shallow La Niña-like patterns in the Pacific that were the previous focus, we found that the slowdown is mainly caused by heat transported to deeper layers in the Atlantic and the Southern oceans, initiated by a recurrent salinity anomaly in the subpolar North Atlantic. Cooling periods associated with the latter deeper heat-sequestration mechanism historically lasted 20 to 35 years.

  18. Climate change impacts on West Nile virus transmission in a global context.

    PubMed

    Paz, Shlomit

    2015-04-05

    West Nile virus (WNV), the most widely distributed virus of the encephalitic flaviviruses, is a vector-borne pathogen of global importance. The transmission cycle exists in rural and urban areas where the virus infects birds, humans, horses and other mammals. Multiple factors impact the transmission and distribution of WNV, related to the dynamics and interactions between pathogen, vector, vertebrate hosts and environment. Hence, among other drivers, weather conditions have direct and indirect influences on vector competence (the ability to acquire, maintain and transmit the virus), on the vector population dynamic and on the virus replication rate within the mosquito, which are mostly weather dependent. The importance of climatic factors (temperature, precipitation, relative humidity and winds) as drivers in WNV epidemiology is increasing under conditions of climate change. Indeed, recent changes in climatic conditions, particularly increased ambient temperature and fluctuations in rainfall amounts, contributed to the maintenance (endemization process) of WNV in various locations in southern Europe, western Asia, the eastern Mediterranean, the Canadian Prairies, parts of the USA and Australia. As predictions show that the current trends are expected to continue, for better preparedness, any assessment of future transmission of WNV should take into consideration the impacts of climate change.

  19. Predicted response of stem respiration in ponderosa pine to global climate change

    SciTech Connect

    Carey, E.V.; DeLucia, E.H.; Callaway, R.M. )

    1994-06-01

    We measured woody tissue respiration on boles of desert and montane populations of Pinus ponderosa growing in the Great Basin Desert and on the east-slope of the Sierra Nevada as part of a study of responses of P. ponderosa to global climate change. The differences in temperature and precipitation between desert and montane populations match changes in climate predicted from a doubling of atmospheric CO[sub 2]; therefore, these naturally occurring populations represent the difference between present and future climatic conditions for these trees. Allometric relationships derived previously, indicate that for trees of equal diameter, desert trees predicted that desert trees would have lower Q[sub 10] responses for respiration (increase in respiration with a 10[degrees] increase in temperature) volume was not different between populations (Desert: 3.24; Montane: 3.13 moles m[sup [minus]3] sec[sup [minus]1]). Moreover, between population differences in Q[sub 10] for respiration were not statistically significant (Desert: 2.27; Montane: 2.39). Results suggest that under predicted future climatic conditions increased respiratory losses from woody tissue resulting from increased allocation to sapwood may offset increases in carbon uptake due to enhanced photosynthesis from elevated CO[sub 2].

  20. Climate change impacts on West Nile virus transmission in a global context

    PubMed Central

    Paz, Shlomit

    2015-01-01

    West Nile virus (WNV), the most widely distributed virus of the encephalitic flaviviruses, is a vector-borne pathogen of global importance. The transmission cycle exists in rural and urban areas where the virus infects birds, humans, horses and other mammals. Multiple factors impact the transmission and distribution of WNV, related to the dynamics and interactions between pathogen, vector, vertebrate hosts and environment. Hence, among other drivers, weather conditions have direct and indirect influences on vector competence (the ability to acquire, maintain and transmit the virus), on the vector population dynamic and on the virus replication rate within the mosquito, which are mostly weather dependent. The importance of climatic factors (temperature, precipitation, relative humidity and winds) as drivers in WNV epidemiology is increasing under conditions of climate change. Indeed, recent changes in climatic conditions, particularly increased ambient temperature and fluctuations in rainfall amounts, contributed to the maintenance (endemization process) of WNV in various locations in southern Europe, western Asia, the eastern Mediterranean, the Canadian Prairies, parts of the USA and Australia. As predictions show that the current trends are expected to continue, for better preparedness, any assessment of future transmission of WNV should take into consideration the impacts of climate change. PMID:25688020

  1. Climate change projections for CORDEX-Africa with COSMO-CLM regional climate model and differences with the driving global climate models

    NASA Astrophysics Data System (ADS)

    Dosio, Alessandro; Panitz, Hans-Jürgen

    2016-03-01

    In the framework of the coordinated regional climate downscaling experiment (CORDEX), an ensemble of climate change projections for Africa has been created by downscaling the simulations of four global climate models (GCMs) by means of the consortium for small-scale modeling (COSMO) regional climate model (RCM) (COSMO-CLM, hereafter, CCLM). Differences between the projected temperature and precipitation simulated by CCLM and the driving GCMs are analyzed and discussed. The projected increase of seasonal temperature is found to be relatively similar between GCMs and RCM, although large differences (more than 1 °C) exist locally. Differences are also found for extreme-event related quantities, such as the spread of the upper end of the maximum temperature probability distribution function and, in turn, the duration of heat waves. Larger uncertainties are found in the future precipitation changes; this is partly a consequence of the inter-model (GCMs) variability over some areas (e.g. Sahel). However, over other regions (e.g. Central Africa) the rainfall trends simulated by CCLM and the GCMs show opposite signs, with CCLM showing a significant reduction in precipitation at the end of the century. This uncertain and sometimes contrasting behaviour is further investigated by analyzing the different models' response to the land-atmosphere interaction and feedback. Given the large uncertainty associated with inter-model variability across GCMs and the reduced spread in the results when a single RCM is used for downscaling, we strongly emphasize the importance of exploiting fully the CORDEX-Africa multi-GCM/multi-RCM ensemble in order to assess the robustness of the climate change signal and, possibly, to identify and quantify the many sources of uncertainty that still remain.

  2. Learning Climate in Schools: Part II. Teacher Views of the Learning and Organizational Climate in Schools. Evaluation Brief.

    ERIC Educational Resources Information Center

    Cobb, Carolyn

    Part I of the Learning Climate in Schools evaluation brief looked at violence and disruptive behavior in the North Carolina public schools from several perspectives, including that of teachers expressed in an annual survey. Part II examines teacher perceptions of learning and organizational climates using another set of teacher responses to the…

  3. Modeling and Analysis of Global and Regional Climate Change in Relation to Atmospheric Hydrologic Processes

    NASA Technical Reports Server (NTRS)

    Johnson, Donald R.

    2001-01-01

    This research was directed to the development and application of global isentropic modeling and analysis capabilities to describe hydrologic processes and energy exchange in the climate system, and discern regional climate change. An additional objective was to investigate the accuracy and theoretical limits of global climate predictability which are imposed by the inherent limitations of simulating trace constituent transport and the hydrologic processes of condensation, precipitation and cloud life cycles.

  4. Educating About Global Climate Change With A Cultural Perspective

    NASA Astrophysics Data System (ADS)

    Valdez, C.; Fessenden, J.; Kanjorski, N.; Hall, M. K.

    2004-12-01

    Predominantly minority populated schools in Northern New Mexico are plagued by low standardized test scores and high drop-out rates. The school system is currently failing students, and success in science is reliant on self-motivation among students. In order for students to gain momentum in a system where exposure to science is not prevalent, it is important for them to get outside support that catalyzes their interest. Collaboration between Los Alamos National Laboratory (LANL), Science Education Solutions (SES), and local schools has been established to identify student needs and provide them with the opportunity to engage in science through hands-on experience with world-class scientists. Students are being introduced to the prospects of a scientific career while getting the unique chance to explore different aspects of several LANL scientists' research. This initiative also incorporates cultural awareness efforts to promote parent and community involvement. In the past year, two pilot projects were carried out to test the concepts, goals, and methods of the collaboration. One pilot project used plant growth studies in predominantly Hispanic fifth-grade classrooms to stimulate student interest. Students explored tree ring cores and tested water-use efficiency with sponges. The other pilot project included a two-day workshop for Native American students from Jemez Pueblo focusing on global climate change. This project combined a class component and hands-on field research. Samples were taken from LANL research sites with in-field lessons from scientists who monitor the sites. In addition, Jemez Pueblo officials were able to tie the sites to the student's lives with a historical and cultural overview. The most successful elements from these pilot projects are being used to develop a long-term project that will pique student interest in the science disciplines. Field activities garnered the most enthusiastic response from students, while in-class lessons were less

  5. Quantitative Study of the Present-Day Climate of the Middle Tennessee Elk Watershed Area From Global and Regional Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Kebede, G.

    2015-12-01

    As part of a wider hydro climatic modeling research, we studied the spatial and temporal variability of precipitation and temperature over the Middle Tennessee Elk watershed and its environs using regional climate model simulations over the past 30 years. Three sets of simulations with the Hadley Center's regional climate model (PRECIS) were carried out for the present day climate (1980-2010) at a resolution of 25km covering the southeastern U.S. These three sets simulations are driven by lateral boundary conditions taken from ERA-Interim reanalysis, and two global climate models (HadCM3 and ECHAM5) respectively. For validation, high resolution observed daily data sets from North American Land-Data Assimilation System (NLDAS) and Climate Research Unit, CRU data are used. Preliminary results show that the spatial distribution of the present-day seasonal mean rainfall and temperature, simulated by PRECIS, are not only consistent with NLDAS and CRU but also captured fine scale spatial structures that are missing in the global model simulations due to their coarse resolution. In addition, the annual cycle and intera-anual variability, particularly that of temperature, are reasonably well reproduced by the PRECIS. When comparing the PRECIS simulations with the driving GCMs, PRECIS is sensitive to the choice of the driving GCM, suggesting a careful selection of driving GCM based on the current climate performance for the use of future climate impact assessment. Quantitative understanding of the climate system and better estimation of the fresh water balance over the Middle Tennessee Elk watershed is a vital corner stone for a sustainable economic growth of the region over the coming decades.

  6. Prospects of Russian Agriculture development under global climate and technological changes

    NASA Astrophysics Data System (ADS)

    Valentini, Riccardo; Vasenev, Ivan

    2015-04-01

    Despite the great progresses of the last century in the agricultural sector and food supply, still about 820 million of people in developing countries are facing food scarcity and malnutrition. More than 180 million children are underweight. Except in Africa, 80 percent of the production gains came from increased yields in major cereal crops. The area cultivated has actually begun to decline in some regions. From now on, however, even Africa, which has always relied on cultivation of new land for production increases, will have to count on yield gains or pay high financial and ecological costs for expansion into areas not yet cultivated. The global scenario is changing fast. The technological, climatic and human-induced factors are creating long-lasting effects on the lives of people and on economic activities around the globe. In particular, climate change and/or variability is exacerbating rural increasing heat stress to natural habitats and human settlements, increasing climatic extremes, including drought and impacting food production. Agriculture of any kind is strongly influenced by the availability of water. Climate change will modify rainfall, evaporation, runoff, and soil moisture storage. Changes in total seasonal precipitation or in its pattern of variability are both important. The occurrence of moisture stress during flowering, pollination, and grain-filling is harmful to most crops and particularly so to corn, soybeans, and wheat. Increased evaporation from the soil and accelerated transpiration in the plants themselves will cause moisture stress; as a result there will be a need to develop crop varieties with greater drought tolerance. These climate change effects are particularly harmful in tropical regions of South America, Africa and South East Asia where food production is feeding a large part of world countries and poses serious risks to global food security in the future. Despite global projected climate change will affect a general decline of

  7. A new dataset for systematic assessments of climate change impacts as a function of global warming

    NASA Astrophysics Data System (ADS)

    Heinke, J.; Ostberg, S.; Schaphoff, S.; Frieler, K.; M{ü}ller, C.; Gerten, D.; Meinshausen, M.; Lucht, W.

    2012-11-01

    In the ongoing political debate on climate change, global mean temperature change (ΔTglob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a~narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalized patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 AOGCMs. The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilize a simplified relationships betweenΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper) facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

  8. Impacts of tectonic and orbital forcing on East African climate: A comparison based on global climate model simulations.

    NASA Astrophysics Data System (ADS)

    Kaspar, F.; Prömmel, K.; Cubasch, U.

    2009-04-01

    Tectonic uplift and erosional denudation can have drastic effects on global and regional climate patterns, which in turn have a significant impact on ecosystems and the distribution of biogeographic zones. The interdisciplinary Research Unit RiftLink (www.riftlink.de) addresses the causes of rift-flank uplift in the East African Rift, its impact on climate changes in equatorial Africa, and the possible connection to the evolution of hominids. Understanding the mechanisms and origin of atmospheric moisture transport is essential for the interpretation of paleoclimatic proxies. Here, we present results from the climate modelling component of RiftLink. The global atmosphere-ocean model ECHO-G has been forced with topographic and orbital scenarios in order to evaluate the relative role of both factors for the past climate of East Africa. The model consists of the ECHAM4 atmosphere model at approx. 3.75° resolution coupled to the HOPE-G ocean model at approx. 2.8°. Forcing the model with a significantly reduced topography in Eastern and Southern Africa leads to a distinct increase in moisture transport from the Indian ocean into the eastern part of the continent and increased precipitation in Eastern Africa. Simulations with step-wise reduced height show that this climate change occurs continuously with the change in topography, i.e. an abrupt change of local climatic features with a critical height is not found. If these results are used for the interpretation of proxy data, it has do be considered that other forcing factors can lead to comparable changes in moisture availability. As an example, we tested the impact of changes in the Earth's orbit around the Sun. For these simulations, we forced the same climate model with the orbital configuration of the last interglacial (at 125,000 years before present, i.e. the Eemian interglacial) and the last glacial inception (at 115,000 years before present). The induced changes in the seasonal and spatial structure of

  9. GOES Cloud Detection at the Global Hydrology and Climate Center

    NASA Technical Reports Server (NTRS)

    Laws, Kevin; Jedlovec, Gary J.; Arnold, James E. (Technical Monitor)

    2002-01-01

    The bi-spectral threshold (BTH) for cloud detection and height assignment is now operational at NASA's Global Hydrology and Climate Center (GHCC). This new approach is similar in principle to the bi-spectral spatial coherence (BSC) method with improvements made to produce a more robust cloud-filtering algorithm for nighttime cloud detection and subsequent 24-hour operational cloud top pressure assignment. The method capitalizes on cloud and surface emissivity differences from the GOES 3.9 and 10.7-micrometer channels to distinguish cloudy from clear pixels. Separate threshold values are determined for day and nighttime detection, and applied to a 20-day minimum composite difference image to better filter background effects and enhance differences in cloud properties. A cloud top pressure is assigned to each cloudy pixel by referencing the 10.7-micrometer channel temperature to a thermodynamic profile from a locally -run regional forecast model. This paper and supplemental poster will present an objective validation of nighttime cloud detection by the BTH approach in comparison with previous methods. The cloud top pressure will be evaluated by comparing to the NESDIS operational CO2 slicing approach.

  10. California Wintertime Precipitation in Regional and Global Climate Models

    SciTech Connect

    Caldwell, P M

    2009-04-27

    In this paper, wintertime precipitation from a variety of observational datasets, regional climate models (RCMs), and general circulation models (GCMs) is averaged over the state of California (CA) and compared. Several averaging methodologies are considered and all are found to give similar values when model grid spacing is less than 3{sup o}. This suggests that CA is a reasonable size for regional intercomparisons using modern GCMs. Results show that reanalysis-forced RCMs tend to significantly overpredict CA precipitation. This appears to be due mainly to overprediction of extreme events; RCM precipitation frequency is generally underpredicted. Overprediction is also reflected in wintertime precipitation variability, which tends to be too high for RCMs on both daily and interannual scales. Wintertime precipitation in most (but not all) GCMs is underestimated. This is in contrast to previous studies based on global blended gauge/satellite observations which are shown here to underestimate precipitation relative to higher-resolution gauge-only datasets. Several GCMs provide reasonable daily precipitation distributions, a trait which doesn't seem tied to model resolution. GCM daily and interannual variability is generally underpredicted.

  11. Intercomparison of the Cloud Water Phase among Global Climate Models

    SciTech Connect

    Komurcu, Muge; Storelvmo, Trude; Tan, Ivy; Lohmann, U.; Yun, Yuxing; Penner, Joyce E.; Wang, Yong; Liu, Xiaohong; Takemura, T.

    2014-03-27

    Mixed-phase clouds (clouds that consist of both cloud droplets and ice crystals) are frequently present in the Earth’s atmosphere and influence the Earth’s energy budget through their radiative properties, which are highly dependent on the cloud water phase. In this study, the phase partitioning of cloud water is compared among six global climate models (GCMs) and with Cloud and Aerosol Lidar with Orthogonal Polarization retrievals. It is found that the GCMs predict vastly different distributions of cloud phase for a given temperature, and none of them are capable of reproducing the spatial distribution or magnitude of the observed phase partitioning. While some GCMs produced liquid water paths comparable to satellite observations, they all failed to preserve sufficient liquid water at mixed-phase cloud temperatures. Our results suggest that validating GCMs using only the vertically integrated water contents could lead to amplified differences in cloud radiative feedback. The sensitivity of the simulated cloud phase in GCMs to the choice of heterogeneous ice nucleation parameterization is also investigated. The response to a change in ice nucleation is quite different for each GCM, and the implementation of the same ice nucleation parameterization in all models does not reduce the spread in simulated phase among GCMs. The results suggest that processes subsequent to ice nucleation are at least as important in determining phase and should be the focus of future studies aimed at understanding and reducing differences among the models.

  12. Climate Change and Groundwater-Implications for Global Food and Water Security

    NASA Astrophysics Data System (ADS)

    Dettinger, M. D.; Earman, S.; Funk, C. C.

    2011-12-01

    Current projections of 21st Century climate change indicate that warming temperatures and changing precipitation may threaten water sources in many regions. Many projections have been developed of the potential impacts on surface water supplies, but few have yet been developed for groundwater systems. Groundwater systems, though, may be quite vulnerable to the effects of climate change, with changes in precipitation amounts and timing directly challenging recharge and pumpage in many settings, and the effects of warming on evapotranspiration demands and on the intensities of rainfall and runoff indirectly impacting groundwater recharge and discharge rates and locations. Another potential indirect impact of warming on groundwater may be through changes in precipitation form. In many regions, groundwater recharge is preferentially derived from melting snowpacks, because seasonal snowpacks accumulate precipitation from multiple storms prior to releasing it in slow steady streams that are well suited for possible recharge, especially in relatively dry settings. Loss of snowpacks due to warming trends, like those in western North America, is likely to disrupt and, in many settings, decrease past recharge patterns and totals, and indeed recharge may be even more vulnerable to warming effects than is surface runoff in many settings. These potential impacts on groundwater should be of widespread concern because groundwater pumpage supplies much of the water used for irrigated agriculture globally. Recent mapping (by others) has identified broad areas where groundwater withdrawals are outpacing recharge rates beneath Pakistan and northwestern India, the Great Plains of North America, parts of northern Argentina and Bolivia, large parts of central Asia, and elsewhere. Notably, many of these same areas are on the ramparts of mountain ranges that may be particularly prone to loss of snowpack under even moderate warming trends, e.g., as indicated by having large fractions of

  13. Troposphere-Stratosphere Coupled Chemistry-Climate Interactions: From Global Warming Projections to Air Quality

    NASA Astrophysics Data System (ADS)

    Nowack, P. J.; Abraham, N. L.; Maycock, A. C.; Braesicke, P.; Pyle, J. A.

    2015-12-01

    Changes in stratospheric composition can affect tropospheric composition and vice versa. Of particular interest are trace gas concentrations at the interface between these two atmospheric layers in the tropical upper troposphere and lower stratosphere (UTLS). This is due to the crucial importance of composition changes in the UTLS for the global energy budget. In a recent study (Nowack et al., 2015), we provided further evidence that composition changes in the tropical UTLS can significantly affect global warming projections. Using a state-of-the-art atmosphere-ocean chemistry-climate model, we found a ~20% smaller global warming in response to an abrupt 4xCO2 forcing if composition feedbacks were included in the calculations as compared to simulations in which composition feedbacks were not considered. We attributed this large difference in surface warming mainly to circulation-driven decreases in tropical UTLS ozone and related changes in stratospheric water vapor, partly counteracted by simultaneous changes in ice clouds. Here, we explain why this result is expected to differ between models and how, inter alia, tropospheric chemical mechanisms can contribute to this uncertainty. We highlight that improving our understanding of processes in the tropical UTLS and their representation in Earth system models remains a key challenge in climate research.Finally, taking geoengineering as a new example, we show that changes in the stratosphere can have an impact on air quality in the troposphere. In particular, we explain for a simple solar radiation management scenario how changes in surface ozone can be linked to changes in meteorology and composition in the troposphere and stratosphere. In conclusion, we highlight the importance of considering air quality impacts when evaluating a variety of geoengineering scenarios. Reference: Nowack, P.J., Abraham, N.L., Maycock, A.C., Braesicke, P., Gregory, J.M., Joshi, M.M., Osprey, A., and Pyle, J.A. Nature Climate Change 5, 41

  14. An investigation of climate patterns on Earth-like planets using the NASA GISS global climate model II

    NASA Astrophysics Data System (ADS)

    Elowitz, Robert Mark

    To determine the capability of NASA's GISS GCM-II global climate model, the user-friendly EdGCM interface to the 3-D climate model code was evaluated by simulating global climate patterns that Earth-like planets may experience. The simulation scenarios involved different greenhouse gas emissions trends, planetary orbital parameters, and solar irradiance variations. It is found that the EdGCM interface to the GCM-II 3-D climate model is capable of studying climate patterns on hypothetical Earth-like planets, with some limitations involved. Studying extreme climate patterns on Earth-like planets as a function of planetary obliquity, orbital eccentricity, atmospheric composition, solar irradiance variations, and location with the host star's habitable zone is needed to determine whether such planets are habitable for life as we know it. Studying the behavior of climate on hypothetical Earth-like planet also provides insight into the future climate of our own planet. A database of climate models based on hypothetical Earth-like worlds will provide a valuable resource to the astrobiology community in support of future detections of exoplanets with masses, sizes, and composition similar to Earth. At present, most studies involved the use of 1-D, or 2-D climate models to explore planetary climate on Earth-like planets. This is due to the difficulty of using very complex 3-D climate model codes that typically have poor user interfaces or interfaces that are very difficult to use. EdGCM provides scientists with a user-friendly interface to a full 3-D climate model capable of simulating the climate on Earth-like planets. However, EdGCM is extremely limited in studying global climate on exo-Earth planets outside our solar system. The user is able to change the simulation initial conditions, including different greenhouse gas concentrations and their associated trends, solar irradiance and its trend over time, planetary obliquity and orbit eccentricity, and heliocentric

  15. Global Climate Change Impacts in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change impacts on the United States vary by region and sector of the economy. Responses to climate change fall into two major categories. Mitigation focuses on the reducing emissions of heat-trapping gases or increasing their uptake to reduce the amount and speed of climate change. Adaptatio...

  16. Projected shifts in Coffea arabica suitability among major global producing regions due to climate change.

    PubMed

    Ovalle-Rivera, Oriana; Läderach, Peter; Bunn, Christian; Obersteiner, Michael; Schroth, Götz

    2015-01-01

    Regional studies have shown that climate change will affect climatic suitability for Arabica coffee (Coffea arabica) within current regions of production. Increases in temperature and changes in precipitation patterns will decrease yield, reduce quality and increase pest and disease pressure. This is the first global study on the impact of climate change on suitability to grow Arabica coffee. We modeled the global distribution of Arabica coffee under changes in climatic suitability by 2050s as projected by 21 global circulation models. The results suggest decreased areas suitable for Arabica coffee in Mesoamerica at lower altitudes. In South America close to the equator higher elevations could benefit, but higher latitudes lose suitability. Coffee regions in Ethiopia and Kenya are projected to become more suitable but those in India and Vietnam to become less suitable. Globally, we predict decreases in climatic suitability at lower altitudes and high latitudes, which may shift production among the major regions that produce Arabica coffee.

  17. Projected Shifts in Coffea arabica Suitability among Major Global Producing Regions Due to Climate Change

    PubMed Central

    Ovalle-Rivera, Oriana; Läderach, Peter; Bunn, Christian; Obersteiner, Michael; Schroth, Götz

    2015-01-01

    Regional studies have shown that climate change will affect climatic suitability for Arabica coffee (Coffea arabica) within current regions of production. Increases in temperature and changes in precipitation patterns will decrease yield, reduce quality and increase pest and disease pressure. This is the first global study on the impact of climate change on suitability to grow Arabica coffee. We modeled the global distribution of Arabica coffee under changes in climatic suitability by 2050s as projected by 21 global circulation models. The results suggest decreased areas suitable for Arabica coffee in Mesoamerica at lower altitudes. In South America close to the equator higher elevations could benefit, but higher latitudes lose suitability. Coffee regions in Ethiopia and Kenya are projected to become more suitable but those in India and Vietnam to become less suitable. Globally, we predict decreases in climatic suitability at lower altitudes and high latitudes, which may shift production among the major regions that produce Arabica coffee. PMID:25875230

  18. Atmospheric and oceanographic research review, 1978. [global weather, ocean/air interactions, and climate

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Research activities related to global weather, ocean/air interactions, and climate are reported. The global weather research is aimed at improving the assimilation of satellite-derived data in weather forecast models, developing analysis/forecast models that can more fully utilize satellite data, and developing new measures of forecast skill to properly assess the impact of satellite data on weather forecasting. The oceanographic research goal is to understand and model the processes that determine the general circulation of the oceans, focusing on those processes that affect sea surface temperature and oceanic heat storage, which are the oceanographic variables with the greatest influence on climate. The climate research objective is to support the development and effective utilization of space-acquired data systems in climate forecast models and to conduct sensitivity studies to determine the affect of lower boundary conditions on climate and predictability studies to determine which global climate features can be modeled either deterministically or statistically.

  19. Increasing climate extremes under global warming - What is the driving force?

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Wang, S. Y.; Gillies, R. R.; Hipps, L.; Kravitz, B.; Rasch, P. J.

    2015-12-01

    More climate extreme events have occurred in recent years, including the continual development of extreme drought in California, the severe cold winters in the eastern U.S. since 2014, 2015 Washington drought, and excessive wildfire events over Alaska in 2015. These have been casually attributed to global warming. However, a need for further understanding of mechanisms responsible for climate extremes is growing. In this presentation, we'll use sets of climate model simulation that designed to identify the role of the oceanic feedback in increasing climate extremes under global warming. One is with a fully coupled climate model forced by 1% ramping CO2, and the other is with an atmosphere only model forced by the same CO2 forcing. By contrasting these two, an importance of the oceanic feedback in increasing climate extremes under global warming can be diagnosed.

  20. Uncertainty and Risk in the Predictions of Global Climate Models. (Invited)

    NASA Astrophysics Data System (ADS)

    Winsberg, E.

    2009-12-01

    There has been a great deal of emphasis, in recent years, on developing methods for assigning probabilities, in the form of quantitative margins of uncertainty (QMUs) to the predictions of global climate models. In this paper, I will argue that a large part of the motivation for this activity has been misplaced. Rather than explicit QMUs, climate scientists ought to focus on risk mitigation: offering policy advice about what courses of action need to be taken in order to reduce the risk of negative outcomes to acceptable levels. The advantages of QMUs are clear. QMUs can be an extremely effective tool for dividing our intellectual labor into the epistemic and the normative. If scientists can manage to objectively assign probabilities to various outcomes given certain choices of action, then they can effectively leave decisions about the relative social value of these outcomes out of the work they do as experts. In this way, it is commonly thought, scientists can keep ethical questions—like questions about the relative value of environmental stability vs. the availability of fossil fuels for economic development—separate from the purely scientific questions about the workings of the climate system. It is this line of thinking, or so I argue, that has motivated the large quantity of intellectual labor that has recently been devoted, by both climate scientists and statisticians, to attaching QMUs to the predictions of global climate models. Such an approach, and the attendant division of labor that it affords between those who discover the facts and those who decide what we should value, has obvious advantages. Scientists, after all, are not elected leaders, and they lack the political legitimacy to make decisions on behalf of the public about what is socially valuable. Elected leaders, on the other hand, rarely have the expertise they would need to accurately forecast, for themselves, what the likely outcomes of their policy choices would be. Since it would be

  1. HPC Aspects of Variable-Resolution Global Climate Modeling using a Multi-scale Convection Parameterization

    EPA Science Inventory

    High performance computing (HPC) requirements for the new generation variable grid resolution (VGR) global climate models differ from that of traditional global models. A VGR global model with 15 km grids over the CONUS stretching to 60 km grids elsewhere will have about ~2.5 tim...

  2. Aerosol Properties and Processes: A Path from Field and Laboratory Measurements to Global Climate Models

    SciTech Connect

    Ghan, Steven J.; Schwartz, Stephen E.

    2007-07-01

    Aerosols exert a substantial influence on climate and climate change through a variety of complex mechanisms. Consequently there is a need to represent aerosol effects in global climate models, and models have begun to include representations of these effects. However, the treatment of aerosols in current global climate models is presently highly simplified, omitting many important processes and feedbacks. Consequently there is need for substantial improvement. Here we describe the U. S. Department of Energy strategy for improving the treatment of aerosol properties and processes in global climate models. The strategy begins with a foundation of field and laboratory measurements that provide the basis for modules of selected aerosol properties and processes. These modules are then integrated in regional aerosol models, which are evaluated by comparing with field measurements. Issues of scale are then addressed so that the modules can be applied to global aerosol models, which are evaluated by comparing with global satellite measurements. Finally, the validated set of modules are applied to global climate models for multi-century simulations. This strategy can be applied to successive generations of global climate models.

  3. Different parts, different stories: climate sensitivity of growth is stronger in root collars versus stems in tundra shrubs.

    PubMed

    Ropars, Pascale; Angers-Blondin, Sandra; Gagnon, Marianne; Myers-Smith, Isla H; Lévesque, Esther; Boudreau, Stéphane

    2017-01-20

    Shrub densification has been widely reported across the circumpolar arctic and subarctic biomes in recent years. Long-term analyses based on dendrochronological techniques applied to shrubs have linked this phenomenon to climate change. However, the multi-stemmed structure of shrubs makes them difficult to sample and therefore leads to non-uniform sampling protocols among shrub ecologists, who will favor either root collars or stems to conduct dendrochronological analyses. Through a comparative study of the use of root collars and stems of Betula glandulosa, a common North American shrub species, we evaluated the relative sensitivity of each plant part to climate variables, and assessed if this sensitivity is consistent across three different types of environments in northwestern Québec, Canada (terrace, hilltop and snowbed). We found that root collars had greater sensitivity to climate than stems, and that these differences were maintained across the three types of environment. Growth at the root collar was best explained by spring precipitation and summer temperature, whereas stem growth showed weak and inconsistent responses to climate variables. Moreover, sensitivity to climate was not consistent among plant parts, as individuals having climate sensitive root collars did not tend to have climate sensitive stems. These differences in sensitivity of shrub parts to climate highlight the complexity of resource allocation in multi-stemmed plants. Whereas stem initiation and growth are driven by micro-environmental variables such as light availability and competition, root collars integrate the growth of all plant parts instead, rendering them less affected by mechanisms such as competition and more responsive to signals of global change. Although further investigations are required to determine the degree to which these findings are generalizable across the tundra biome, our results indicate that consistency and caution in the choice of plant parts are a key

  4. Time-lag effects of global vegetation responses to climate change.

    PubMed

    Wu, Donghai; Zhao, Xiang; Liang, Shunlin; Zhou, Tao; Huang, Kaicheng; Tang, Bijian; Zhao, Wenqian

    2015-09-01

    Climate conditions significantly affect vegetation growth in terrestrial ecosystems. Due to the spatial heterogeneity of ecosystems, the vegetation responses to climate vary considerably with the diverse spatial patterns and the time-lag effects, which are the most important mechanism of climate-vegetation interactive effects. Extensive studies focused on large-scale vegetation-climate interactions use the simultaneous meteorological and vegetation indicators to develop models; however, the time-lag effects are less considered, which tends to increase uncertainty. In this study, we aim to quantitatively determine the time-lag effects of global vegetation responses to different climatic factors using the GIMMS3g NDVI time series and the CRU temperature, precipitation, and solar radiation datasets. First, this study analyzed the time-lag effects of global vegetation responses to different climatic factors. Then, a multiple linear regression model and partial correlation model were established to statistically analyze the roles of different climatic factors on vegetation responses, from which the primary climate-driving factors for different vegetation types were determined. The results showed that (i) both the time-lag effects of the vegetation responses and the major climate-driving factors that significantly affect vegetation growth varied significantly at the global scale, which was related to the diverse vegetation and climate characteristics; (ii) regarding the time-lag effects, the climatic factors explained 64% variation of the global vegetation growth, which was 11% relatively higher than the model ignoring the time-lag effects; (iii) for the area with a significant change trend (for the period 1982-2008) in the global GIMMS3g NDVI (P < 0.05), the primary driving factor was temperature; and (iv) at the regional scale, the variation in vegetation growth was also related to human activities and natural disturbances. Considering the time-lag effects is quite

  5. Building Inter-hemispheric Climate and Global Change Education Programs for Students, Teachers, and the Public

    NASA Astrophysics Data System (ADS)

    Johnson, R.; Lagrave, M.; Bergman, J.; Carbone, L.; Foster, S.; Gardiner, L.; Genyuk, J.; Henderson, S.; Russell, R.; Ward, D.

    2007-05-01

    The National Center for Atmospheric Research in Boulder Colorado is a leading research institution in the area of global and climate change research worldwide. As a component of NCAR's mission in research, education, and service, NCAR supports numerous programs designed to bring this science to different audiences in order to promote better understanding of climate and global change research as well as its relevance in learning contexts. Our climate and global change education and outreach effort targets several audiences, including online and in-person professional development for middle and high school educators, exhibits, tours, websites, and development of educational resources on climate and global change topics. The design of our program intentionally leverages resources in support of multiple audiences (including Spanish-speakers) in different settings. Beginning in 2006, building on relationships developed through the Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign, we began to expand our collaborations with scientists and educators in Latin America, including Mexico and Chile.

  6. An 18 million year record of vegetation and climate change in northwestern Canada and Alaska: Tectonic and global climatic correlates

    USGS Publications Warehouse

    White, J.M.; Ager, T.A.; Adam, D.P.; Leopold, E.B.; Liu, Gaisheng; Jette, H.; Schweger, C.E.

    1997-01-01

    We reconstruct long-term vegetation/paleoclimatic trends, spanning the last 18 million years, in Alaska. Yukon and far western Northwest Territories. Twenty-one average percentage spectra for pollen and spores are assembled from eight surface/subsurface sections. The sections are dated independently or by correlation. Pollen and spore ratios indicate the direction of change in vegetation and climatic parameters growing season temperature (T(est)), tree canopy density (C(est)) and paludification at study sites (P(est)). A global warm peak ca. 15 Ma is shown by the abundance of thermophilous taxa, including Fagus and Quercus. A temperature decline immediately following 15 Ma parallels climatic reconstructions based on marine oxygen isotopes. Subsequent declines correlate to the Messinian event and the onset of late Pliocene Pleistocene glaciation. After 7 Ma herbs and shrubs become more important elements of the palynological assemblages, suggesting a more continental, colder/drier climate. However, a late Pliocene warm interval is evident. Vegetation/climatic changes during the early to late Miocene show synchrony with, and are most economically attributable to, global events. After 7 Ma, vegetation/climate change is attributed primarily to latest Miocene-to-Pleistocene uplift of the Alaska Range and St. Elias Mrs. The continuing influence of global climatic patterns is shown in the late Pliocene warm interval, despite uplift to the south. The opening of the Bering Strait ca. 3 Ma may have moderated the climate in the study area.

  7. Braking effect of climate and topography on global change-induced upslope forest expansion

    NASA Astrophysics Data System (ADS)

    Alatalo, Juha M.; Ferrarini, Alessandro

    2017-03-01

    Forests are expected to expand into alpine areas due to global climate change. It has recently been shown that temperature alone cannot realistically explain this process and that upslope tree advance in a warmer scenario may depend on the availability of sites with adequate geomorphic/topographic characteristics. Here, we show that, besides topography (slope and aspect), climate itself can produce a braking effect on the upslope advance of subalpine forests and that tree limit is influenced by non-linear and non-monotonic contributions of the climate variables which act upon treeline upslope advance with varying relative strengths. Our results suggest that global climate change impact on the upslope advance of subalpine forests should be interpreted in a more complex way where climate can both speed up and slow down the process depending on complex patterns of contribution from each climate and non-climate variable.

  8. Global climate change attitudes and perceptions among south American zoo visitors.

    PubMed

    Luebke, Jerry F; Clayton, Susan; Kelly, Lisa-Anne DeGregoria; Grajal, Alejandro

    2015-01-01

    There is a substantial gap between the scientific evidence for anthropogenic climate change and the human response to this evidence. Perceptions of and responses to climate change can differ among regions of the world, as well as within countries. Therefore, information about the public's attitudes and perceptions related to climate change is essential to the development of relevant educational resources. In the present study, zoo visitors in four South American countries responded to a questionnaire regarding their attitudes and perceptions toward global climate change. Results indicated that most respondents are already highly concerned about global climate change and are interested in greater engagement in pro-environmental behaviors. Visitors also perceive various obstacles to engagement in climate change mitigation behaviors. We discuss the results of our study in terms of addressing visitors' climate change attitudes and perceptions within the social and emotional context of zoo settings.

  9. Braking effect of climate and topography on global change-induced upslope forest expansion.

    PubMed

    Alatalo, Juha M; Ferrarini, Alessandro

    2017-03-01

    Forests are expected to expand into alpine areas due to global climate change. It has recently been shown that temperature alone cannot realistically explain this process and that upslope tree advance in a warmer scenario may depend on the availability of sites with adequate geomorphic/topographic characteristics. Here, we show that, besides topography (slope and aspect), climate itself can produce a braking effect on the upslope advance of subalpine forests and that tree limit is influenced by non-linear and non-monotonic contributions of the climate variables which act upon treeline upslope advance with varying relative strengths. Our results suggest that global climate change impact on the upslope advance of subalpine forests should be interpreted in a more complex way where climate can both speed up and slow down the process depending on complex patterns of contribution from each climate and non-climate variable.

  10. Braking effect of climate and topography on global change-induced upslope forest expansion

    NASA Astrophysics Data System (ADS)

    Alatalo, Juha M.; Ferrarini, Alessandro

    2016-08-01

    Forests are expected to expand into alpine areas due to global climate change. It has recently been shown that temperature alone cannot realistically explain this process and that upslope tree advance in a warmer scenario may depend on the availability of sites with adequate geomorphic/topographic characteristics. Here, we show that, besides topography (slope and aspect), climate itself can produce a braking effect on the upslope advance of subalpine forests and that tree limit is influenced by non-linear and non-monotonic contributions of the climate variables which act upon treeline upslope advance with varying relative strengths. Our results suggest that global climate change impact on the upslope advance of subalpine forests should be interpreted in a more complex way where climate can both speed up and slow down the process depending on complex patterns of contribution from each climate and non-climate variable.

  11. Regional Climate Downscaling Using a High-resolution Global Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Kunhu Bangalath, Hamza; Stenchikov, Georgiy; Osipov, Sergey

    2013-04-01

    In this study, we used HIRAM, a high-resolution atmospheric model [Zhao et al., 2009] for climate downscaling with the horizontal grid spacing of 25 km. Our simulations followed the CORDEX protocol [Giorgi et al., 2009] and were conducted for historic (1975-2006) and future (2005-2050) periods using both RCP 4.5 and RCP 8.5 scenarios. Compared with the Geophysical Fluid Dynamics Laboratory (GFDL) AM2.0 and AM2.1 [Delworth et al., 2006], HIRAM uses enhanced vertical discretization on 32 vertical layers instead of 24 and replaces the relaxed Arakawa-Schubert convective closure with the one developed at the University of Washington. The model retains the surface flux, boundary layer, large-scale cloud microphysics, and radiative transfer modules from the AM2 family [Delworth et al., 2006]. HIRAM also employs a cubed-sphere implementation (here at 25-km resolution) of a finite-volume dynamical core and is coupled to LM3, a new land model with ecosystem dynamics and hydrology. In our simulations, the Sea Surface Temperatures (SSTs) from the GFDL Earth System Model runs, ESM2M and ESM2G, performed for the International Panel for Climate Change AR5 project with a latitude-longitude grid of 2°x2.5° were adopted as the bottom boundary conditions over the sea. We used prescribed time-varying greenhouse gas and stratospheric/tropospheric aerosol distribution datasets to reproduce the observed radiative forcing in the model as described by Delworth et al. [2006]. Here, we present results for the CORDEX Middle East and North Africa domain and compared them with the coarse-resolution ESM2M/ESM2G simulations as well as with the nested regional model projections. Delworth, T. et al. (2006), GFDL's CM2 Global Coupled Models. Part I: Formulation and Simulation Characteristics, J. Climate, 19, 643-674. Giorgi, F., C. Jones, and G. Asrar (2009), Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58, 175-183 Zhao, M., I. M. Held, S-J. Lin

  12. Making the climate part of the human world

    NASA Astrophysics Data System (ADS)

    Donner, S. D.

    2011-12-01

    Doubts about the scientific evidence for anthropogenic climate change persist among the general public, particularly in North America, despite overwhelming consensus in the scientific community about the human influence on the climate system. The public uncertainty may be rooted in the belief, held by many cultures across the planet, that the climate is not directly influenced by people. The belief in divine control of weather and climate can in some cases be traced back to the development of agriculture and the early city-states. Drawing upon evidence from anthropology, theology and communication studies, I suggest that in many regions this deeply ingrained belief may limit public acceptance of the evidence for anthropogenic climate change and explain the persistent appeal of climate change "skepticism". Successful climate change education and outreach programs should be designed to help overcome perceived conflict between climate science and long-held cultural beliefs, drawing upon lessons from communication and education of other potentially divisive subjects like evolution.

  13. NASA/JPL CLIMATE DAY: Middle and High School Students Get the Facts about Global Climate Change

    NASA Astrophysics Data System (ADS)

    Richardson, Annie; Callery, Susan; Srinivasan, Margaret

    2013-04-01

    In 2007, NASA Headquarters requested that Earth Science outreach teams brainstorm new education and public outreach activities that would focus on the topic of global climate change. At the Jet Propulsion Laboratory (JPL), Annie Richardson, outreach lead for the Ocean Surface Topography missions came up with the idea of a "Climate Day", capitalizing on the popular Earth Day name and events held annually throughout the world. JPL Climate Day would be an education and public outreach event whose objectives are to provide the latest scientific facts about global climate change - including the role the ocean plays in it, the contributions that NASA/JPL satellites and scientists make to the body of knowledge on the topic, and what we as individuals can do to promote global sustainability. The primary goal is that participants get this information in a fun and exciting environment, and walk away feeling empowered and capable of confidently engaging in the global climate debate. In March 2008, JPL and its partners held the first Climate Day event. 950 students from seven school districts heard from five scientists; visited exhibits, and participated in hands-on-activities. Pleased with the outcome, we organized JPL Climate Day 2010 at the Pasadena Convention Center in Pasadena, California, reaching more than 1700 students, teachers, and members of the general public over two days. Taking note of this successful model, NASA funded a multi-center, NASA Climate Day proposal in 2010 to expand Climate Day nation-wide. The NASA Climate Day proposal is a three-pronged project consisting of a cadre of Earth Ambassadors selected from among NASA-affiliated informal educators; a "Climate Day Kit" consisting of climate-related electronic resources available to the Earth Ambassadors; and NASA Climate Day events to be held in Earth Ambassador communities across the United States. NASA/JPL continues to host the original Climate Day event and in 2012 held its 4th event, at the Pasadena

  14. The case of the global jitters - Even in seemingly stable times, climate can take an abrupt turn

    SciTech Connect

    Monastersky, R.

    1996-03-02

    Research in different parts of the world has recently revealed signs that climate has behaved erratically during the last few millennia. Conditions in various regions have shifted abruptly and repeatedly, perhaps even at the time of the collapse of the Akkadian civilization in 2200 B.C. This article discusses recent work of various scientists, who are trying to forecast future conditions, to understand what is causing these shifts and whether this rhythum has played a role in recent global warming. A side bar discusses signs of a solar link to climatic change.

  15. Dangers of using global bioclimatic datasets for ecological niche modeling. Limitations for future climate projections

    NASA Astrophysics Data System (ADS)

    Bedia, Joaquín; Herrera, Sixto; Gutiérrez, José Manuel

    2013-08-01

    Global bioclimatic datasets are being widely used in ecological research to estimate the potential distribution of species using Climate Envelope Models (CEMs). These datasets are easily available and offer high resolution information for all land areas globally. However, they have not been tested rigorously in smaller regions, and their use in regional CEM studies may pose problems derived from their poor representation of local climate features. Moreover, these problems may be enhanced when using CEMs for future climate projections—a topic of current active research—due to the uncertainty derived from the future altered climate scenarios.

  16. Future Global Water Resources with respect to Climate Change and Water Withdrawals

    NASA Astrophysics Data System (ADS)

    Murray, S. J.; Foster, P.; Prentice, C.

    2010-12-01

    Reliable estimation of the combined pressures on future global freshwater resources is important for water resource management and assessment of the risks of water-related problems and conflicts. It requires both accurate simulation of the continental hydrological cycle, and assessment of the demands brought about by increasing population, industry and agriculture. Climate change is expected to cause changes in vegetation distribution and function (for example, through changes in water use due to changes in vegetation structure and composition, and reduced stomatal conductance induced by increasing concentrations of CO2). These effects require incorporation into simulations of the hydrosphere. The Land Processes and eXchanges Dynamic Global Vegetation Model (LPX-DGVM, a development of the LPJ model) is used to explicitly represent the consequences of such biospheric processes for runoff. Assessments of future global water supplies have been conducted using ClimGen pattern-scaled climate scenarios (based on IPCC AR4 simulations with six AOGCMs) for 1-4°C warming, to force LPX. Results are analysed for 2070-2099. Mean annual runoff is shown to increase throughout most of Eurasia, North America and equatorial regions. The largest decreases are shown for the Mediterranean region, Central America the northern extent of South America, the Arabian peninsula and northern and interior China. The patterns of change generated by the different models typically agree on the direction of regional runoff trends, but show large discrepancies in the magnitude of change, especially in the tropics. Relative to a 1961-1990 baseline, the 2070-2099 month of maximum runoff tends to occur a month earlier under 2°C warming in the northernmost regions, due to decreased snow cover, and a month later in parts of Africa, east Asia and South America. For the same temperature increase, minimum runoff tends to occur up to half a year earlier in eastern Europe, typically four months earlier in

  17. An exploration of Saturn's atmospheric dynamics with Global Climate Modeling

    NASA Astrophysics Data System (ADS)

    Spiga, Aymeric; Guerlet, Sandrine; Indurain, Mikel; Meurdesoif, Yann; Millour, Ehouarn; Sylvestre, Mélody; Dubos, Thomas; Fouchet, Thierry

    2015-04-01

    A decade of Cassini observations has yielded a new vision on the dynamical phenomena in Saturn's troposphere and stratosphere. Several puzzling signatures (equatorial oscillations with a period of about half a Saturn year, interhemispheric circulations affecting the hydrocarbons' distribution, including possible effects of rings shadowing, sudden warming associated with the powerful 2010 Great White Spot) cannot be explained by current photochemical and radiative models, which do not include dynamics. We therefore suspect that 1. the observed anomalies arise from large-scale dynamical circulations and 2. those large-scale dynamical motions are driven by atmospheric waves, eddies, and convection, in other words fundamental mechanisms giving birth to, e.g., the Quasi-Biennal Oscillation and Brewer-Dobson circulation in the Earth's middle atmosphere. We explore the plausibility of this scenario using our new Global Climate Modeling (GCM) for Saturn. To build this model, we firstly formulated dedicated physical parameterizations for Saturn's atmosphere, with a particular emphasis on radiative computations (using a correlated-k radiative transfer model, with radiative species and spectral discretization tailored for Saturn) aimed at both efficiency and accuracy, and validated them against existing Cassini observations. A second step consisted in coupling this radiative model to an hydrodynamical solver to predict the three-dimensional evolution of Saturn's tropospheric and stratospheric flow. We will provide an analysis of the first results of those dynamical simulations, with a focus on the development of baroclinic and barotropic instability, on eddy vs. mean flow interactions, and how this could relate to the enigmatic signatures observed by Cassini. Preliminary high-resolution simulations with a new icosahedral dynamical solver adapted to high-performance computing will also be analyzed. Perspectives are twofold: firstly, broadening our fundamental knowledge of

  18. An exploration of Saturn's stratospheric dynamics through Global Climate Modeling

    NASA Astrophysics Data System (ADS)

    Spiga, Aymeric; Guerlet, Sandrine; Indura